sched/numa: Count pages on active node as local
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
60e69eed 1500 spin_lock_irq(group_lock);
7dbd13ed
MG
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed 1574
60e69eed 1575 spin_unlock_irq(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
60e69eed
MG
1680 BUG_ON(irqs_disabled());
1681 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1682
be1e4e76 1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1684 my_grp->faults[i] -= p->numa_faults_memory[i];
1685 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1686 }
989348b5
MG
1687 my_grp->total_faults -= p->total_numa_faults;
1688 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1689
1690 list_move(&p->numa_entry, &grp->task_list);
1691 my_grp->nr_tasks--;
1692 grp->nr_tasks++;
1693
1694 spin_unlock(&my_grp->lock);
60e69eed 1695 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1696
1697 rcu_assign_pointer(p->numa_group, grp);
1698
1699 put_numa_group(my_grp);
3354781a
PZ
1700 return;
1701
1702no_join:
1703 rcu_read_unlock();
1704 return;
8c8a743c
PZ
1705}
1706
1707void task_numa_free(struct task_struct *p)
1708{
1709 struct numa_group *grp = p->numa_group;
1710 int i;
ff1df896 1711 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1712
1713 if (grp) {
60e69eed 1714 spin_lock_irq(&grp->lock);
be1e4e76 1715 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1716 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1717 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1718
8c8a743c
PZ
1719 list_del(&p->numa_entry);
1720 grp->nr_tasks--;
60e69eed 1721 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1722 rcu_assign_pointer(p->numa_group, NULL);
1723 put_numa_group(grp);
1724 }
1725
ff1df896
RR
1726 p->numa_faults_memory = NULL;
1727 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1728 p->numa_faults_cpu= NULL;
1729 p->numa_faults_buffer_cpu = NULL;
82727018 1730 kfree(numa_faults);
8c8a743c
PZ
1731}
1732
cbee9f88
PZ
1733/*
1734 * Got a PROT_NONE fault for a page on @node.
1735 */
58b46da3 1736void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1737{
1738 struct task_struct *p = current;
6688cc05 1739 bool migrated = flags & TNF_MIGRATED;
58b46da3 1740 int cpu_node = task_node(current);
792568ec 1741 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1742 int priv;
cbee9f88 1743
10e84b97 1744 if (!numabalancing_enabled)
1a687c2e
MG
1745 return;
1746
9ff1d9ff
MG
1747 /* for example, ksmd faulting in a user's mm */
1748 if (!p->mm)
1749 return;
1750
82727018
RR
1751 /* Do not worry about placement if exiting */
1752 if (p->state == TASK_DEAD)
1753 return;
1754
f809ca9a 1755 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1756 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1757 int size = sizeof(*p->numa_faults_memory) *
1758 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1759
be1e4e76 1760 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1761 if (!p->numa_faults_memory)
f809ca9a 1762 return;
745d6147 1763
ff1df896 1764 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1765 /*
1766 * The averaged statistics, shared & private, memory & cpu,
1767 * occupy the first half of the array. The second half of the
1768 * array is for current counters, which are averaged into the
1769 * first set by task_numa_placement.
1770 */
50ec8a40
RR
1771 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1772 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1773 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1774 p->total_numa_faults = 0;
04bb2f94 1775 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1776 }
cbee9f88 1777
8c8a743c
PZ
1778 /*
1779 * First accesses are treated as private, otherwise consider accesses
1780 * to be private if the accessing pid has not changed
1781 */
1782 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783 priv = 1;
1784 } else {
1785 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1786 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1787 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1788 }
1789
792568ec
RR
1790 /*
1791 * If a workload spans multiple NUMA nodes, a shared fault that
1792 * occurs wholly within the set of nodes that the workload is
1793 * actively using should be counted as local. This allows the
1794 * scan rate to slow down when a workload has settled down.
1795 */
1796 if (!priv && !local && p->numa_group &&
1797 node_isset(cpu_node, p->numa_group->active_nodes) &&
1798 node_isset(mem_node, p->numa_group->active_nodes))
1799 local = 1;
1800
cbee9f88 1801 task_numa_placement(p);
f809ca9a 1802
2739d3ee
RR
1803 /*
1804 * Retry task to preferred node migration periodically, in case it
1805 * case it previously failed, or the scheduler moved us.
1806 */
1807 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1808 numa_migrate_preferred(p);
1809
b32e86b4
IM
1810 if (migrated)
1811 p->numa_pages_migrated += pages;
1812
58b46da3
RR
1813 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1814 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1815 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1816}
1817
6e5fb223
PZ
1818static void reset_ptenuma_scan(struct task_struct *p)
1819{
1820 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1821 p->mm->numa_scan_offset = 0;
1822}
1823
cbee9f88
PZ
1824/*
1825 * The expensive part of numa migration is done from task_work context.
1826 * Triggered from task_tick_numa().
1827 */
1828void task_numa_work(struct callback_head *work)
1829{
1830 unsigned long migrate, next_scan, now = jiffies;
1831 struct task_struct *p = current;
1832 struct mm_struct *mm = p->mm;
6e5fb223 1833 struct vm_area_struct *vma;
9f40604c 1834 unsigned long start, end;
598f0ec0 1835 unsigned long nr_pte_updates = 0;
9f40604c 1836 long pages;
cbee9f88
PZ
1837
1838 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1839
1840 work->next = work; /* protect against double add */
1841 /*
1842 * Who cares about NUMA placement when they're dying.
1843 *
1844 * NOTE: make sure not to dereference p->mm before this check,
1845 * exit_task_work() happens _after_ exit_mm() so we could be called
1846 * without p->mm even though we still had it when we enqueued this
1847 * work.
1848 */
1849 if (p->flags & PF_EXITING)
1850 return;
1851
930aa174 1852 if (!mm->numa_next_scan) {
7e8d16b6
MG
1853 mm->numa_next_scan = now +
1854 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1855 }
1856
cbee9f88
PZ
1857 /*
1858 * Enforce maximal scan/migration frequency..
1859 */
1860 migrate = mm->numa_next_scan;
1861 if (time_before(now, migrate))
1862 return;
1863
598f0ec0
MG
1864 if (p->numa_scan_period == 0) {
1865 p->numa_scan_period_max = task_scan_max(p);
1866 p->numa_scan_period = task_scan_min(p);
1867 }
cbee9f88 1868
fb003b80 1869 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1870 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1871 return;
1872
19a78d11
PZ
1873 /*
1874 * Delay this task enough that another task of this mm will likely win
1875 * the next time around.
1876 */
1877 p->node_stamp += 2 * TICK_NSEC;
1878
9f40604c
MG
1879 start = mm->numa_scan_offset;
1880 pages = sysctl_numa_balancing_scan_size;
1881 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1882 if (!pages)
1883 return;
cbee9f88 1884
6e5fb223 1885 down_read(&mm->mmap_sem);
9f40604c 1886 vma = find_vma(mm, start);
6e5fb223
PZ
1887 if (!vma) {
1888 reset_ptenuma_scan(p);
9f40604c 1889 start = 0;
6e5fb223
PZ
1890 vma = mm->mmap;
1891 }
9f40604c 1892 for (; vma; vma = vma->vm_next) {
fc314724 1893 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1894 continue;
1895
4591ce4f
MG
1896 /*
1897 * Shared library pages mapped by multiple processes are not
1898 * migrated as it is expected they are cache replicated. Avoid
1899 * hinting faults in read-only file-backed mappings or the vdso
1900 * as migrating the pages will be of marginal benefit.
1901 */
1902 if (!vma->vm_mm ||
1903 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1904 continue;
1905
3c67f474
MG
1906 /*
1907 * Skip inaccessible VMAs to avoid any confusion between
1908 * PROT_NONE and NUMA hinting ptes
1909 */
1910 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1911 continue;
4591ce4f 1912
9f40604c
MG
1913 do {
1914 start = max(start, vma->vm_start);
1915 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1916 end = min(end, vma->vm_end);
598f0ec0
MG
1917 nr_pte_updates += change_prot_numa(vma, start, end);
1918
1919 /*
1920 * Scan sysctl_numa_balancing_scan_size but ensure that
1921 * at least one PTE is updated so that unused virtual
1922 * address space is quickly skipped.
1923 */
1924 if (nr_pte_updates)
1925 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1926
9f40604c
MG
1927 start = end;
1928 if (pages <= 0)
1929 goto out;
3cf1962c
RR
1930
1931 cond_resched();
9f40604c 1932 } while (end != vma->vm_end);
cbee9f88 1933 }
6e5fb223 1934
9f40604c 1935out:
6e5fb223 1936 /*
c69307d5
PZ
1937 * It is possible to reach the end of the VMA list but the last few
1938 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1939 * would find the !migratable VMA on the next scan but not reset the
1940 * scanner to the start so check it now.
6e5fb223
PZ
1941 */
1942 if (vma)
9f40604c 1943 mm->numa_scan_offset = start;
6e5fb223
PZ
1944 else
1945 reset_ptenuma_scan(p);
1946 up_read(&mm->mmap_sem);
cbee9f88
PZ
1947}
1948
1949/*
1950 * Drive the periodic memory faults..
1951 */
1952void task_tick_numa(struct rq *rq, struct task_struct *curr)
1953{
1954 struct callback_head *work = &curr->numa_work;
1955 u64 period, now;
1956
1957 /*
1958 * We don't care about NUMA placement if we don't have memory.
1959 */
1960 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1961 return;
1962
1963 /*
1964 * Using runtime rather than walltime has the dual advantage that
1965 * we (mostly) drive the selection from busy threads and that the
1966 * task needs to have done some actual work before we bother with
1967 * NUMA placement.
1968 */
1969 now = curr->se.sum_exec_runtime;
1970 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1971
1972 if (now - curr->node_stamp > period) {
4b96a29b 1973 if (!curr->node_stamp)
598f0ec0 1974 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1975 curr->node_stamp += period;
cbee9f88
PZ
1976
1977 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1978 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1979 task_work_add(curr, work, true);
1980 }
1981 }
1982}
1983#else
1984static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1985{
1986}
0ec8aa00
PZ
1987
1988static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1989{
1990}
1991
1992static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1993{
1994}
cbee9f88
PZ
1995#endif /* CONFIG_NUMA_BALANCING */
1996
30cfdcfc
DA
1997static void
1998account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1999{
2000 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2001 if (!parent_entity(se))
029632fb 2002 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2003#ifdef CONFIG_SMP
0ec8aa00
PZ
2004 if (entity_is_task(se)) {
2005 struct rq *rq = rq_of(cfs_rq);
2006
2007 account_numa_enqueue(rq, task_of(se));
2008 list_add(&se->group_node, &rq->cfs_tasks);
2009 }
367456c7 2010#endif
30cfdcfc 2011 cfs_rq->nr_running++;
30cfdcfc
DA
2012}
2013
2014static void
2015account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2016{
2017 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2018 if (!parent_entity(se))
029632fb 2019 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2020 if (entity_is_task(se)) {
2021 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2022 list_del_init(&se->group_node);
0ec8aa00 2023 }
30cfdcfc 2024 cfs_rq->nr_running--;
30cfdcfc
DA
2025}
2026
3ff6dcac
YZ
2027#ifdef CONFIG_FAIR_GROUP_SCHED
2028# ifdef CONFIG_SMP
cf5f0acf
PZ
2029static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2030{
2031 long tg_weight;
2032
2033 /*
2034 * Use this CPU's actual weight instead of the last load_contribution
2035 * to gain a more accurate current total weight. See
2036 * update_cfs_rq_load_contribution().
2037 */
bf5b986e 2038 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2039 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2040 tg_weight += cfs_rq->load.weight;
2041
2042 return tg_weight;
2043}
2044
6d5ab293 2045static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2046{
cf5f0acf 2047 long tg_weight, load, shares;
3ff6dcac 2048
cf5f0acf 2049 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2050 load = cfs_rq->load.weight;
3ff6dcac 2051
3ff6dcac 2052 shares = (tg->shares * load);
cf5f0acf
PZ
2053 if (tg_weight)
2054 shares /= tg_weight;
3ff6dcac
YZ
2055
2056 if (shares < MIN_SHARES)
2057 shares = MIN_SHARES;
2058 if (shares > tg->shares)
2059 shares = tg->shares;
2060
2061 return shares;
2062}
3ff6dcac 2063# else /* CONFIG_SMP */
6d5ab293 2064static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2065{
2066 return tg->shares;
2067}
3ff6dcac 2068# endif /* CONFIG_SMP */
2069dd75
PZ
2069static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2070 unsigned long weight)
2071{
19e5eebb
PT
2072 if (se->on_rq) {
2073 /* commit outstanding execution time */
2074 if (cfs_rq->curr == se)
2075 update_curr(cfs_rq);
2069dd75 2076 account_entity_dequeue(cfs_rq, se);
19e5eebb 2077 }
2069dd75
PZ
2078
2079 update_load_set(&se->load, weight);
2080
2081 if (se->on_rq)
2082 account_entity_enqueue(cfs_rq, se);
2083}
2084
82958366
PT
2085static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2086
6d5ab293 2087static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2088{
2089 struct task_group *tg;
2090 struct sched_entity *se;
3ff6dcac 2091 long shares;
2069dd75 2092
2069dd75
PZ
2093 tg = cfs_rq->tg;
2094 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2095 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2096 return;
3ff6dcac
YZ
2097#ifndef CONFIG_SMP
2098 if (likely(se->load.weight == tg->shares))
2099 return;
2100#endif
6d5ab293 2101 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2102
2103 reweight_entity(cfs_rq_of(se), se, shares);
2104}
2105#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2106static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2107{
2108}
2109#endif /* CONFIG_FAIR_GROUP_SCHED */
2110
141965c7 2111#ifdef CONFIG_SMP
5b51f2f8
PT
2112/*
2113 * We choose a half-life close to 1 scheduling period.
2114 * Note: The tables below are dependent on this value.
2115 */
2116#define LOAD_AVG_PERIOD 32
2117#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2118#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2119
2120/* Precomputed fixed inverse multiplies for multiplication by y^n */
2121static const u32 runnable_avg_yN_inv[] = {
2122 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2123 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2124 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2125 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2126 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2127 0x85aac367, 0x82cd8698,
2128};
2129
2130/*
2131 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2132 * over-estimates when re-combining.
2133 */
2134static const u32 runnable_avg_yN_sum[] = {
2135 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2136 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2137 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2138};
2139
9d85f21c
PT
2140/*
2141 * Approximate:
2142 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2143 */
2144static __always_inline u64 decay_load(u64 val, u64 n)
2145{
5b51f2f8
PT
2146 unsigned int local_n;
2147
2148 if (!n)
2149 return val;
2150 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2151 return 0;
2152
2153 /* after bounds checking we can collapse to 32-bit */
2154 local_n = n;
2155
2156 /*
2157 * As y^PERIOD = 1/2, we can combine
2158 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2159 * With a look-up table which covers k^n (n<PERIOD)
2160 *
2161 * To achieve constant time decay_load.
2162 */
2163 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2164 val >>= local_n / LOAD_AVG_PERIOD;
2165 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2166 }
2167
5b51f2f8
PT
2168 val *= runnable_avg_yN_inv[local_n];
2169 /* We don't use SRR here since we always want to round down. */
2170 return val >> 32;
2171}
2172
2173/*
2174 * For updates fully spanning n periods, the contribution to runnable
2175 * average will be: \Sum 1024*y^n
2176 *
2177 * We can compute this reasonably efficiently by combining:
2178 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2179 */
2180static u32 __compute_runnable_contrib(u64 n)
2181{
2182 u32 contrib = 0;
2183
2184 if (likely(n <= LOAD_AVG_PERIOD))
2185 return runnable_avg_yN_sum[n];
2186 else if (unlikely(n >= LOAD_AVG_MAX_N))
2187 return LOAD_AVG_MAX;
2188
2189 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2190 do {
2191 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2192 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2193
2194 n -= LOAD_AVG_PERIOD;
2195 } while (n > LOAD_AVG_PERIOD);
2196
2197 contrib = decay_load(contrib, n);
2198 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2199}
2200
2201/*
2202 * We can represent the historical contribution to runnable average as the
2203 * coefficients of a geometric series. To do this we sub-divide our runnable
2204 * history into segments of approximately 1ms (1024us); label the segment that
2205 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2206 *
2207 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2208 * p0 p1 p2
2209 * (now) (~1ms ago) (~2ms ago)
2210 *
2211 * Let u_i denote the fraction of p_i that the entity was runnable.
2212 *
2213 * We then designate the fractions u_i as our co-efficients, yielding the
2214 * following representation of historical load:
2215 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2216 *
2217 * We choose y based on the with of a reasonably scheduling period, fixing:
2218 * y^32 = 0.5
2219 *
2220 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2221 * approximately half as much as the contribution to load within the last ms
2222 * (u_0).
2223 *
2224 * When a period "rolls over" and we have new u_0`, multiplying the previous
2225 * sum again by y is sufficient to update:
2226 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2227 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2228 */
2229static __always_inline int __update_entity_runnable_avg(u64 now,
2230 struct sched_avg *sa,
2231 int runnable)
2232{
5b51f2f8
PT
2233 u64 delta, periods;
2234 u32 runnable_contrib;
9d85f21c
PT
2235 int delta_w, decayed = 0;
2236
2237 delta = now - sa->last_runnable_update;
2238 /*
2239 * This should only happen when time goes backwards, which it
2240 * unfortunately does during sched clock init when we swap over to TSC.
2241 */
2242 if ((s64)delta < 0) {
2243 sa->last_runnable_update = now;
2244 return 0;
2245 }
2246
2247 /*
2248 * Use 1024ns as the unit of measurement since it's a reasonable
2249 * approximation of 1us and fast to compute.
2250 */
2251 delta >>= 10;
2252 if (!delta)
2253 return 0;
2254 sa->last_runnable_update = now;
2255
2256 /* delta_w is the amount already accumulated against our next period */
2257 delta_w = sa->runnable_avg_period % 1024;
2258 if (delta + delta_w >= 1024) {
2259 /* period roll-over */
2260 decayed = 1;
2261
2262 /*
2263 * Now that we know we're crossing a period boundary, figure
2264 * out how much from delta we need to complete the current
2265 * period and accrue it.
2266 */
2267 delta_w = 1024 - delta_w;
5b51f2f8
PT
2268 if (runnable)
2269 sa->runnable_avg_sum += delta_w;
2270 sa->runnable_avg_period += delta_w;
2271
2272 delta -= delta_w;
2273
2274 /* Figure out how many additional periods this update spans */
2275 periods = delta / 1024;
2276 delta %= 1024;
2277
2278 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2279 periods + 1);
2280 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2281 periods + 1);
2282
2283 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2284 runnable_contrib = __compute_runnable_contrib(periods);
2285 if (runnable)
2286 sa->runnable_avg_sum += runnable_contrib;
2287 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2288 }
2289
2290 /* Remainder of delta accrued against u_0` */
2291 if (runnable)
2292 sa->runnable_avg_sum += delta;
2293 sa->runnable_avg_period += delta;
2294
2295 return decayed;
2296}
2297
9ee474f5 2298/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2299static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2300{
2301 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2302 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2303
2304 decays -= se->avg.decay_count;
2305 if (!decays)
aff3e498 2306 return 0;
9ee474f5
PT
2307
2308 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2309 se->avg.decay_count = 0;
aff3e498
PT
2310
2311 return decays;
9ee474f5
PT
2312}
2313
c566e8e9
PT
2314#ifdef CONFIG_FAIR_GROUP_SCHED
2315static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2316 int force_update)
2317{
2318 struct task_group *tg = cfs_rq->tg;
bf5b986e 2319 long tg_contrib;
c566e8e9
PT
2320
2321 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2322 tg_contrib -= cfs_rq->tg_load_contrib;
2323
bf5b986e
AS
2324 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2325 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2326 cfs_rq->tg_load_contrib += tg_contrib;
2327 }
2328}
8165e145 2329
bb17f655
PT
2330/*
2331 * Aggregate cfs_rq runnable averages into an equivalent task_group
2332 * representation for computing load contributions.
2333 */
2334static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2335 struct cfs_rq *cfs_rq)
2336{
2337 struct task_group *tg = cfs_rq->tg;
2338 long contrib;
2339
2340 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2341 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2342 sa->runnable_avg_period + 1);
2343 contrib -= cfs_rq->tg_runnable_contrib;
2344
2345 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2346 atomic_add(contrib, &tg->runnable_avg);
2347 cfs_rq->tg_runnable_contrib += contrib;
2348 }
2349}
2350
8165e145
PT
2351static inline void __update_group_entity_contrib(struct sched_entity *se)
2352{
2353 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2354 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2355 int runnable_avg;
2356
8165e145
PT
2357 u64 contrib;
2358
2359 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2360 se->avg.load_avg_contrib = div_u64(contrib,
2361 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2362
2363 /*
2364 * For group entities we need to compute a correction term in the case
2365 * that they are consuming <1 cpu so that we would contribute the same
2366 * load as a task of equal weight.
2367 *
2368 * Explicitly co-ordinating this measurement would be expensive, but
2369 * fortunately the sum of each cpus contribution forms a usable
2370 * lower-bound on the true value.
2371 *
2372 * Consider the aggregate of 2 contributions. Either they are disjoint
2373 * (and the sum represents true value) or they are disjoint and we are
2374 * understating by the aggregate of their overlap.
2375 *
2376 * Extending this to N cpus, for a given overlap, the maximum amount we
2377 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2378 * cpus that overlap for this interval and w_i is the interval width.
2379 *
2380 * On a small machine; the first term is well-bounded which bounds the
2381 * total error since w_i is a subset of the period. Whereas on a
2382 * larger machine, while this first term can be larger, if w_i is the
2383 * of consequential size guaranteed to see n_i*w_i quickly converge to
2384 * our upper bound of 1-cpu.
2385 */
2386 runnable_avg = atomic_read(&tg->runnable_avg);
2387 if (runnable_avg < NICE_0_LOAD) {
2388 se->avg.load_avg_contrib *= runnable_avg;
2389 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2390 }
8165e145 2391}
f5f9739d
DE
2392
2393static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2394{
2395 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2396 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2397}
6e83125c 2398#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2399static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2400 int force_update) {}
bb17f655
PT
2401static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2402 struct cfs_rq *cfs_rq) {}
8165e145 2403static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2404static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2405#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2406
8165e145
PT
2407static inline void __update_task_entity_contrib(struct sched_entity *se)
2408{
2409 u32 contrib;
2410
2411 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2412 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2413 contrib /= (se->avg.runnable_avg_period + 1);
2414 se->avg.load_avg_contrib = scale_load(contrib);
2415}
2416
2dac754e
PT
2417/* Compute the current contribution to load_avg by se, return any delta */
2418static long __update_entity_load_avg_contrib(struct sched_entity *se)
2419{
2420 long old_contrib = se->avg.load_avg_contrib;
2421
8165e145
PT
2422 if (entity_is_task(se)) {
2423 __update_task_entity_contrib(se);
2424 } else {
bb17f655 2425 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2426 __update_group_entity_contrib(se);
2427 }
2dac754e
PT
2428
2429 return se->avg.load_avg_contrib - old_contrib;
2430}
2431
9ee474f5
PT
2432static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2433 long load_contrib)
2434{
2435 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2436 cfs_rq->blocked_load_avg -= load_contrib;
2437 else
2438 cfs_rq->blocked_load_avg = 0;
2439}
2440
f1b17280
PT
2441static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2442
9d85f21c 2443/* Update a sched_entity's runnable average */
9ee474f5
PT
2444static inline void update_entity_load_avg(struct sched_entity *se,
2445 int update_cfs_rq)
9d85f21c 2446{
2dac754e
PT
2447 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2448 long contrib_delta;
f1b17280 2449 u64 now;
2dac754e 2450
f1b17280
PT
2451 /*
2452 * For a group entity we need to use their owned cfs_rq_clock_task() in
2453 * case they are the parent of a throttled hierarchy.
2454 */
2455 if (entity_is_task(se))
2456 now = cfs_rq_clock_task(cfs_rq);
2457 else
2458 now = cfs_rq_clock_task(group_cfs_rq(se));
2459
2460 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2461 return;
2462
2463 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2464
2465 if (!update_cfs_rq)
2466 return;
2467
2dac754e
PT
2468 if (se->on_rq)
2469 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2470 else
2471 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2472}
2473
2474/*
2475 * Decay the load contributed by all blocked children and account this so that
2476 * their contribution may appropriately discounted when they wake up.
2477 */
aff3e498 2478static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2479{
f1b17280 2480 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2481 u64 decays;
2482
2483 decays = now - cfs_rq->last_decay;
aff3e498 2484 if (!decays && !force_update)
9ee474f5
PT
2485 return;
2486
2509940f
AS
2487 if (atomic_long_read(&cfs_rq->removed_load)) {
2488 unsigned long removed_load;
2489 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2490 subtract_blocked_load_contrib(cfs_rq, removed_load);
2491 }
9ee474f5 2492
aff3e498
PT
2493 if (decays) {
2494 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2495 decays);
2496 atomic64_add(decays, &cfs_rq->decay_counter);
2497 cfs_rq->last_decay = now;
2498 }
c566e8e9
PT
2499
2500 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2501}
18bf2805 2502
2dac754e
PT
2503/* Add the load generated by se into cfs_rq's child load-average */
2504static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2505 struct sched_entity *se,
2506 int wakeup)
2dac754e 2507{
aff3e498
PT
2508 /*
2509 * We track migrations using entity decay_count <= 0, on a wake-up
2510 * migration we use a negative decay count to track the remote decays
2511 * accumulated while sleeping.
a75cdaa9
AS
2512 *
2513 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2514 * are seen by enqueue_entity_load_avg() as a migration with an already
2515 * constructed load_avg_contrib.
aff3e498
PT
2516 */
2517 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2518 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2519 if (se->avg.decay_count) {
2520 /*
2521 * In a wake-up migration we have to approximate the
2522 * time sleeping. This is because we can't synchronize
2523 * clock_task between the two cpus, and it is not
2524 * guaranteed to be read-safe. Instead, we can
2525 * approximate this using our carried decays, which are
2526 * explicitly atomically readable.
2527 */
2528 se->avg.last_runnable_update -= (-se->avg.decay_count)
2529 << 20;
2530 update_entity_load_avg(se, 0);
2531 /* Indicate that we're now synchronized and on-rq */
2532 se->avg.decay_count = 0;
2533 }
9ee474f5
PT
2534 wakeup = 0;
2535 } else {
9390675a 2536 __synchronize_entity_decay(se);
9ee474f5
PT
2537 }
2538
aff3e498
PT
2539 /* migrated tasks did not contribute to our blocked load */
2540 if (wakeup) {
9ee474f5 2541 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2542 update_entity_load_avg(se, 0);
2543 }
9ee474f5 2544
2dac754e 2545 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2546 /* we force update consideration on load-balancer moves */
2547 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2548}
2549
9ee474f5
PT
2550/*
2551 * Remove se's load from this cfs_rq child load-average, if the entity is
2552 * transitioning to a blocked state we track its projected decay using
2553 * blocked_load_avg.
2554 */
2dac754e 2555static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2556 struct sched_entity *se,
2557 int sleep)
2dac754e 2558{
9ee474f5 2559 update_entity_load_avg(se, 1);
aff3e498
PT
2560 /* we force update consideration on load-balancer moves */
2561 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2562
2dac754e 2563 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2564 if (sleep) {
2565 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2566 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2567 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2568}
642dbc39
VG
2569
2570/*
2571 * Update the rq's load with the elapsed running time before entering
2572 * idle. if the last scheduled task is not a CFS task, idle_enter will
2573 * be the only way to update the runnable statistic.
2574 */
2575void idle_enter_fair(struct rq *this_rq)
2576{
2577 update_rq_runnable_avg(this_rq, 1);
2578}
2579
2580/*
2581 * Update the rq's load with the elapsed idle time before a task is
2582 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2583 * be the only way to update the runnable statistic.
2584 */
2585void idle_exit_fair(struct rq *this_rq)
2586{
2587 update_rq_runnable_avg(this_rq, 0);
2588}
2589
6e83125c
PZ
2590static int idle_balance(struct rq *this_rq);
2591
38033c37
PZ
2592#else /* CONFIG_SMP */
2593
9ee474f5
PT
2594static inline void update_entity_load_avg(struct sched_entity *se,
2595 int update_cfs_rq) {}
18bf2805 2596static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2597static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2598 struct sched_entity *se,
2599 int wakeup) {}
2dac754e 2600static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2601 struct sched_entity *se,
2602 int sleep) {}
aff3e498
PT
2603static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2604 int force_update) {}
6e83125c
PZ
2605
2606static inline int idle_balance(struct rq *rq)
2607{
2608 return 0;
2609}
2610
38033c37 2611#endif /* CONFIG_SMP */
9d85f21c 2612
2396af69 2613static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2614{
bf0f6f24 2615#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2616 struct task_struct *tsk = NULL;
2617
2618 if (entity_is_task(se))
2619 tsk = task_of(se);
2620
41acab88 2621 if (se->statistics.sleep_start) {
78becc27 2622 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2623
2624 if ((s64)delta < 0)
2625 delta = 0;
2626
41acab88
LDM
2627 if (unlikely(delta > se->statistics.sleep_max))
2628 se->statistics.sleep_max = delta;
bf0f6f24 2629
8c79a045 2630 se->statistics.sleep_start = 0;
41acab88 2631 se->statistics.sum_sleep_runtime += delta;
9745512c 2632
768d0c27 2633 if (tsk) {
e414314c 2634 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2635 trace_sched_stat_sleep(tsk, delta);
2636 }
bf0f6f24 2637 }
41acab88 2638 if (se->statistics.block_start) {
78becc27 2639 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2640
2641 if ((s64)delta < 0)
2642 delta = 0;
2643
41acab88
LDM
2644 if (unlikely(delta > se->statistics.block_max))
2645 se->statistics.block_max = delta;
bf0f6f24 2646
8c79a045 2647 se->statistics.block_start = 0;
41acab88 2648 se->statistics.sum_sleep_runtime += delta;
30084fbd 2649
e414314c 2650 if (tsk) {
8f0dfc34 2651 if (tsk->in_iowait) {
41acab88
LDM
2652 se->statistics.iowait_sum += delta;
2653 se->statistics.iowait_count++;
768d0c27 2654 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2655 }
2656
b781a602
AV
2657 trace_sched_stat_blocked(tsk, delta);
2658
e414314c
PZ
2659 /*
2660 * Blocking time is in units of nanosecs, so shift by
2661 * 20 to get a milliseconds-range estimation of the
2662 * amount of time that the task spent sleeping:
2663 */
2664 if (unlikely(prof_on == SLEEP_PROFILING)) {
2665 profile_hits(SLEEP_PROFILING,
2666 (void *)get_wchan(tsk),
2667 delta >> 20);
2668 }
2669 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2670 }
bf0f6f24
IM
2671 }
2672#endif
2673}
2674
ddc97297
PZ
2675static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2676{
2677#ifdef CONFIG_SCHED_DEBUG
2678 s64 d = se->vruntime - cfs_rq->min_vruntime;
2679
2680 if (d < 0)
2681 d = -d;
2682
2683 if (d > 3*sysctl_sched_latency)
2684 schedstat_inc(cfs_rq, nr_spread_over);
2685#endif
2686}
2687
aeb73b04
PZ
2688static void
2689place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2690{
1af5f730 2691 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2692
2cb8600e
PZ
2693 /*
2694 * The 'current' period is already promised to the current tasks,
2695 * however the extra weight of the new task will slow them down a
2696 * little, place the new task so that it fits in the slot that
2697 * stays open at the end.
2698 */
94dfb5e7 2699 if (initial && sched_feat(START_DEBIT))
f9c0b095 2700 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2701
a2e7a7eb 2702 /* sleeps up to a single latency don't count. */
5ca9880c 2703 if (!initial) {
a2e7a7eb 2704 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2705
a2e7a7eb
MG
2706 /*
2707 * Halve their sleep time's effect, to allow
2708 * for a gentler effect of sleepers:
2709 */
2710 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2711 thresh >>= 1;
51e0304c 2712
a2e7a7eb 2713 vruntime -= thresh;
aeb73b04
PZ
2714 }
2715
b5d9d734 2716 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2717 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2718}
2719
d3d9dc33
PT
2720static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2721
bf0f6f24 2722static void
88ec22d3 2723enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2724{
88ec22d3
PZ
2725 /*
2726 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2727 * through calling update_curr().
88ec22d3 2728 */
371fd7e7 2729 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2730 se->vruntime += cfs_rq->min_vruntime;
2731
bf0f6f24 2732 /*
a2a2d680 2733 * Update run-time statistics of the 'current'.
bf0f6f24 2734 */
b7cc0896 2735 update_curr(cfs_rq);
f269ae04 2736 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2737 account_entity_enqueue(cfs_rq, se);
2738 update_cfs_shares(cfs_rq);
bf0f6f24 2739
88ec22d3 2740 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2741 place_entity(cfs_rq, se, 0);
2396af69 2742 enqueue_sleeper(cfs_rq, se);
e9acbff6 2743 }
bf0f6f24 2744
d2417e5a 2745 update_stats_enqueue(cfs_rq, se);
ddc97297 2746 check_spread(cfs_rq, se);
83b699ed
SV
2747 if (se != cfs_rq->curr)
2748 __enqueue_entity(cfs_rq, se);
2069dd75 2749 se->on_rq = 1;
3d4b47b4 2750
d3d9dc33 2751 if (cfs_rq->nr_running == 1) {
3d4b47b4 2752 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2753 check_enqueue_throttle(cfs_rq);
2754 }
bf0f6f24
IM
2755}
2756
2c13c919 2757static void __clear_buddies_last(struct sched_entity *se)
2002c695 2758{
2c13c919
RR
2759 for_each_sched_entity(se) {
2760 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2761 if (cfs_rq->last != se)
2c13c919 2762 break;
f1044799
PZ
2763
2764 cfs_rq->last = NULL;
2c13c919
RR
2765 }
2766}
2002c695 2767
2c13c919
RR
2768static void __clear_buddies_next(struct sched_entity *se)
2769{
2770 for_each_sched_entity(se) {
2771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2772 if (cfs_rq->next != se)
2c13c919 2773 break;
f1044799
PZ
2774
2775 cfs_rq->next = NULL;
2c13c919 2776 }
2002c695
PZ
2777}
2778
ac53db59
RR
2779static void __clear_buddies_skip(struct sched_entity *se)
2780{
2781 for_each_sched_entity(se) {
2782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2783 if (cfs_rq->skip != se)
ac53db59 2784 break;
f1044799
PZ
2785
2786 cfs_rq->skip = NULL;
ac53db59
RR
2787 }
2788}
2789
a571bbea
PZ
2790static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2791{
2c13c919
RR
2792 if (cfs_rq->last == se)
2793 __clear_buddies_last(se);
2794
2795 if (cfs_rq->next == se)
2796 __clear_buddies_next(se);
ac53db59
RR
2797
2798 if (cfs_rq->skip == se)
2799 __clear_buddies_skip(se);
a571bbea
PZ
2800}
2801
6c16a6dc 2802static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2803
bf0f6f24 2804static void
371fd7e7 2805dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2806{
a2a2d680
DA
2807 /*
2808 * Update run-time statistics of the 'current'.
2809 */
2810 update_curr(cfs_rq);
17bc14b7 2811 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2812
19b6a2e3 2813 update_stats_dequeue(cfs_rq, se);
371fd7e7 2814 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2815#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2816 if (entity_is_task(se)) {
2817 struct task_struct *tsk = task_of(se);
2818
2819 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2820 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2821 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2822 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2823 }
db36cc7d 2824#endif
67e9fb2a
PZ
2825 }
2826
2002c695 2827 clear_buddies(cfs_rq, se);
4793241b 2828
83b699ed 2829 if (se != cfs_rq->curr)
30cfdcfc 2830 __dequeue_entity(cfs_rq, se);
17bc14b7 2831 se->on_rq = 0;
30cfdcfc 2832 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2833
2834 /*
2835 * Normalize the entity after updating the min_vruntime because the
2836 * update can refer to the ->curr item and we need to reflect this
2837 * movement in our normalized position.
2838 */
371fd7e7 2839 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2840 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2841
d8b4986d
PT
2842 /* return excess runtime on last dequeue */
2843 return_cfs_rq_runtime(cfs_rq);
2844
1e876231 2845 update_min_vruntime(cfs_rq);
17bc14b7 2846 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2847}
2848
2849/*
2850 * Preempt the current task with a newly woken task if needed:
2851 */
7c92e54f 2852static void
2e09bf55 2853check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2854{
11697830 2855 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2856 struct sched_entity *se;
2857 s64 delta;
11697830 2858
6d0f0ebd 2859 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2860 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2861 if (delta_exec > ideal_runtime) {
bf0f6f24 2862 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2863 /*
2864 * The current task ran long enough, ensure it doesn't get
2865 * re-elected due to buddy favours.
2866 */
2867 clear_buddies(cfs_rq, curr);
f685ceac
MG
2868 return;
2869 }
2870
2871 /*
2872 * Ensure that a task that missed wakeup preemption by a
2873 * narrow margin doesn't have to wait for a full slice.
2874 * This also mitigates buddy induced latencies under load.
2875 */
f685ceac
MG
2876 if (delta_exec < sysctl_sched_min_granularity)
2877 return;
2878
f4cfb33e
WX
2879 se = __pick_first_entity(cfs_rq);
2880 delta = curr->vruntime - se->vruntime;
f685ceac 2881
f4cfb33e
WX
2882 if (delta < 0)
2883 return;
d7d82944 2884
f4cfb33e
WX
2885 if (delta > ideal_runtime)
2886 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2887}
2888
83b699ed 2889static void
8494f412 2890set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2891{
83b699ed
SV
2892 /* 'current' is not kept within the tree. */
2893 if (se->on_rq) {
2894 /*
2895 * Any task has to be enqueued before it get to execute on
2896 * a CPU. So account for the time it spent waiting on the
2897 * runqueue.
2898 */
2899 update_stats_wait_end(cfs_rq, se);
2900 __dequeue_entity(cfs_rq, se);
2901 }
2902
79303e9e 2903 update_stats_curr_start(cfs_rq, se);
429d43bc 2904 cfs_rq->curr = se;
eba1ed4b
IM
2905#ifdef CONFIG_SCHEDSTATS
2906 /*
2907 * Track our maximum slice length, if the CPU's load is at
2908 * least twice that of our own weight (i.e. dont track it
2909 * when there are only lesser-weight tasks around):
2910 */
495eca49 2911 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2912 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2913 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2914 }
2915#endif
4a55b450 2916 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2917}
2918
3f3a4904
PZ
2919static int
2920wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2921
ac53db59
RR
2922/*
2923 * Pick the next process, keeping these things in mind, in this order:
2924 * 1) keep things fair between processes/task groups
2925 * 2) pick the "next" process, since someone really wants that to run
2926 * 3) pick the "last" process, for cache locality
2927 * 4) do not run the "skip" process, if something else is available
2928 */
678d5718
PZ
2929static struct sched_entity *
2930pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2931{
678d5718
PZ
2932 struct sched_entity *left = __pick_first_entity(cfs_rq);
2933 struct sched_entity *se;
2934
2935 /*
2936 * If curr is set we have to see if its left of the leftmost entity
2937 * still in the tree, provided there was anything in the tree at all.
2938 */
2939 if (!left || (curr && entity_before(curr, left)))
2940 left = curr;
2941
2942 se = left; /* ideally we run the leftmost entity */
f4b6755f 2943
ac53db59
RR
2944 /*
2945 * Avoid running the skip buddy, if running something else can
2946 * be done without getting too unfair.
2947 */
2948 if (cfs_rq->skip == se) {
678d5718
PZ
2949 struct sched_entity *second;
2950
2951 if (se == curr) {
2952 second = __pick_first_entity(cfs_rq);
2953 } else {
2954 second = __pick_next_entity(se);
2955 if (!second || (curr && entity_before(curr, second)))
2956 second = curr;
2957 }
2958
ac53db59
RR
2959 if (second && wakeup_preempt_entity(second, left) < 1)
2960 se = second;
2961 }
aa2ac252 2962
f685ceac
MG
2963 /*
2964 * Prefer last buddy, try to return the CPU to a preempted task.
2965 */
2966 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2967 se = cfs_rq->last;
2968
ac53db59
RR
2969 /*
2970 * Someone really wants this to run. If it's not unfair, run it.
2971 */
2972 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2973 se = cfs_rq->next;
2974
f685ceac 2975 clear_buddies(cfs_rq, se);
4793241b
PZ
2976
2977 return se;
aa2ac252
PZ
2978}
2979
678d5718 2980static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2981
ab6cde26 2982static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2983{
2984 /*
2985 * If still on the runqueue then deactivate_task()
2986 * was not called and update_curr() has to be done:
2987 */
2988 if (prev->on_rq)
b7cc0896 2989 update_curr(cfs_rq);
bf0f6f24 2990
d3d9dc33
PT
2991 /* throttle cfs_rqs exceeding runtime */
2992 check_cfs_rq_runtime(cfs_rq);
2993
ddc97297 2994 check_spread(cfs_rq, prev);
30cfdcfc 2995 if (prev->on_rq) {
5870db5b 2996 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2997 /* Put 'current' back into the tree. */
2998 __enqueue_entity(cfs_rq, prev);
9d85f21c 2999 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3000 update_entity_load_avg(prev, 1);
30cfdcfc 3001 }
429d43bc 3002 cfs_rq->curr = NULL;
bf0f6f24
IM
3003}
3004
8f4d37ec
PZ
3005static void
3006entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3007{
bf0f6f24 3008 /*
30cfdcfc 3009 * Update run-time statistics of the 'current'.
bf0f6f24 3010 */
30cfdcfc 3011 update_curr(cfs_rq);
bf0f6f24 3012
9d85f21c
PT
3013 /*
3014 * Ensure that runnable average is periodically updated.
3015 */
9ee474f5 3016 update_entity_load_avg(curr, 1);
aff3e498 3017 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3018 update_cfs_shares(cfs_rq);
9d85f21c 3019
8f4d37ec
PZ
3020#ifdef CONFIG_SCHED_HRTICK
3021 /*
3022 * queued ticks are scheduled to match the slice, so don't bother
3023 * validating it and just reschedule.
3024 */
983ed7a6
HH
3025 if (queued) {
3026 resched_task(rq_of(cfs_rq)->curr);
3027 return;
3028 }
8f4d37ec
PZ
3029 /*
3030 * don't let the period tick interfere with the hrtick preemption
3031 */
3032 if (!sched_feat(DOUBLE_TICK) &&
3033 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3034 return;
3035#endif
3036
2c2efaed 3037 if (cfs_rq->nr_running > 1)
2e09bf55 3038 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3039}
3040
ab84d31e
PT
3041
3042/**************************************************
3043 * CFS bandwidth control machinery
3044 */
3045
3046#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3047
3048#ifdef HAVE_JUMP_LABEL
c5905afb 3049static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3050
3051static inline bool cfs_bandwidth_used(void)
3052{
c5905afb 3053 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3054}
3055
1ee14e6c 3056void cfs_bandwidth_usage_inc(void)
029632fb 3057{
1ee14e6c
BS
3058 static_key_slow_inc(&__cfs_bandwidth_used);
3059}
3060
3061void cfs_bandwidth_usage_dec(void)
3062{
3063 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3064}
3065#else /* HAVE_JUMP_LABEL */
3066static bool cfs_bandwidth_used(void)
3067{
3068 return true;
3069}
3070
1ee14e6c
BS
3071void cfs_bandwidth_usage_inc(void) {}
3072void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3073#endif /* HAVE_JUMP_LABEL */
3074
ab84d31e
PT
3075/*
3076 * default period for cfs group bandwidth.
3077 * default: 0.1s, units: nanoseconds
3078 */
3079static inline u64 default_cfs_period(void)
3080{
3081 return 100000000ULL;
3082}
ec12cb7f
PT
3083
3084static inline u64 sched_cfs_bandwidth_slice(void)
3085{
3086 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3087}
3088
a9cf55b2
PT
3089/*
3090 * Replenish runtime according to assigned quota and update expiration time.
3091 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3092 * additional synchronization around rq->lock.
3093 *
3094 * requires cfs_b->lock
3095 */
029632fb 3096void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3097{
3098 u64 now;
3099
3100 if (cfs_b->quota == RUNTIME_INF)
3101 return;
3102
3103 now = sched_clock_cpu(smp_processor_id());
3104 cfs_b->runtime = cfs_b->quota;
3105 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3106}
3107
029632fb
PZ
3108static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3109{
3110 return &tg->cfs_bandwidth;
3111}
3112
f1b17280
PT
3113/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3114static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3115{
3116 if (unlikely(cfs_rq->throttle_count))
3117 return cfs_rq->throttled_clock_task;
3118
78becc27 3119 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3120}
3121
85dac906
PT
3122/* returns 0 on failure to allocate runtime */
3123static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3124{
3125 struct task_group *tg = cfs_rq->tg;
3126 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3127 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3128
3129 /* note: this is a positive sum as runtime_remaining <= 0 */
3130 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3131
3132 raw_spin_lock(&cfs_b->lock);
3133 if (cfs_b->quota == RUNTIME_INF)
3134 amount = min_amount;
58088ad0 3135 else {
a9cf55b2
PT
3136 /*
3137 * If the bandwidth pool has become inactive, then at least one
3138 * period must have elapsed since the last consumption.
3139 * Refresh the global state and ensure bandwidth timer becomes
3140 * active.
3141 */
3142 if (!cfs_b->timer_active) {
3143 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3144 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3145 }
58088ad0
PT
3146
3147 if (cfs_b->runtime > 0) {
3148 amount = min(cfs_b->runtime, min_amount);
3149 cfs_b->runtime -= amount;
3150 cfs_b->idle = 0;
3151 }
ec12cb7f 3152 }
a9cf55b2 3153 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3154 raw_spin_unlock(&cfs_b->lock);
3155
3156 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3157 /*
3158 * we may have advanced our local expiration to account for allowed
3159 * spread between our sched_clock and the one on which runtime was
3160 * issued.
3161 */
3162 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3163 cfs_rq->runtime_expires = expires;
85dac906
PT
3164
3165 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3166}
3167
a9cf55b2
PT
3168/*
3169 * Note: This depends on the synchronization provided by sched_clock and the
3170 * fact that rq->clock snapshots this value.
3171 */
3172static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3173{
a9cf55b2 3174 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3175
3176 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3177 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3178 return;
3179
a9cf55b2
PT
3180 if (cfs_rq->runtime_remaining < 0)
3181 return;
3182
3183 /*
3184 * If the local deadline has passed we have to consider the
3185 * possibility that our sched_clock is 'fast' and the global deadline
3186 * has not truly expired.
3187 *
3188 * Fortunately we can check determine whether this the case by checking
3189 * whether the global deadline has advanced.
3190 */
3191
3192 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3193 /* extend local deadline, drift is bounded above by 2 ticks */
3194 cfs_rq->runtime_expires += TICK_NSEC;
3195 } else {
3196 /* global deadline is ahead, expiration has passed */
3197 cfs_rq->runtime_remaining = 0;
3198 }
3199}
3200
9dbdb155 3201static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3202{
3203 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3204 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3205 expire_cfs_rq_runtime(cfs_rq);
3206
3207 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3208 return;
3209
85dac906
PT
3210 /*
3211 * if we're unable to extend our runtime we resched so that the active
3212 * hierarchy can be throttled
3213 */
3214 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3215 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3216}
3217
6c16a6dc 3218static __always_inline
9dbdb155 3219void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3220{
56f570e5 3221 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3222 return;
3223
3224 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3225}
3226
85dac906
PT
3227static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3228{
56f570e5 3229 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3230}
3231
64660c86
PT
3232/* check whether cfs_rq, or any parent, is throttled */
3233static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3234{
56f570e5 3235 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3236}
3237
3238/*
3239 * Ensure that neither of the group entities corresponding to src_cpu or
3240 * dest_cpu are members of a throttled hierarchy when performing group
3241 * load-balance operations.
3242 */
3243static inline int throttled_lb_pair(struct task_group *tg,
3244 int src_cpu, int dest_cpu)
3245{
3246 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3247
3248 src_cfs_rq = tg->cfs_rq[src_cpu];
3249 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3250
3251 return throttled_hierarchy(src_cfs_rq) ||
3252 throttled_hierarchy(dest_cfs_rq);
3253}
3254
3255/* updated child weight may affect parent so we have to do this bottom up */
3256static int tg_unthrottle_up(struct task_group *tg, void *data)
3257{
3258 struct rq *rq = data;
3259 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3260
3261 cfs_rq->throttle_count--;
3262#ifdef CONFIG_SMP
3263 if (!cfs_rq->throttle_count) {
f1b17280 3264 /* adjust cfs_rq_clock_task() */
78becc27 3265 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3266 cfs_rq->throttled_clock_task;
64660c86
PT
3267 }
3268#endif
3269
3270 return 0;
3271}
3272
3273static int tg_throttle_down(struct task_group *tg, void *data)
3274{
3275 struct rq *rq = data;
3276 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3277
82958366
PT
3278 /* group is entering throttled state, stop time */
3279 if (!cfs_rq->throttle_count)
78becc27 3280 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3281 cfs_rq->throttle_count++;
3282
3283 return 0;
3284}
3285
d3d9dc33 3286static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3287{
3288 struct rq *rq = rq_of(cfs_rq);
3289 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3290 struct sched_entity *se;
3291 long task_delta, dequeue = 1;
3292
3293 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3294
f1b17280 3295 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3296 rcu_read_lock();
3297 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3298 rcu_read_unlock();
85dac906
PT
3299
3300 task_delta = cfs_rq->h_nr_running;
3301 for_each_sched_entity(se) {
3302 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3303 /* throttled entity or throttle-on-deactivate */
3304 if (!se->on_rq)
3305 break;
3306
3307 if (dequeue)
3308 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3309 qcfs_rq->h_nr_running -= task_delta;
3310
3311 if (qcfs_rq->load.weight)
3312 dequeue = 0;
3313 }
3314
3315 if (!se)
3316 rq->nr_running -= task_delta;
3317
3318 cfs_rq->throttled = 1;
78becc27 3319 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3320 raw_spin_lock(&cfs_b->lock);
3321 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3322 if (!cfs_b->timer_active)
3323 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3324 raw_spin_unlock(&cfs_b->lock);
3325}
3326
029632fb 3327void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3328{
3329 struct rq *rq = rq_of(cfs_rq);
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 struct sched_entity *se;
3332 int enqueue = 1;
3333 long task_delta;
3334
22b958d8 3335 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3336
3337 cfs_rq->throttled = 0;
1a55af2e
FW
3338
3339 update_rq_clock(rq);
3340
671fd9da 3341 raw_spin_lock(&cfs_b->lock);
78becc27 3342 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3343 list_del_rcu(&cfs_rq->throttled_list);
3344 raw_spin_unlock(&cfs_b->lock);
3345
64660c86
PT
3346 /* update hierarchical throttle state */
3347 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3348
671fd9da
PT
3349 if (!cfs_rq->load.weight)
3350 return;
3351
3352 task_delta = cfs_rq->h_nr_running;
3353 for_each_sched_entity(se) {
3354 if (se->on_rq)
3355 enqueue = 0;
3356
3357 cfs_rq = cfs_rq_of(se);
3358 if (enqueue)
3359 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3360 cfs_rq->h_nr_running += task_delta;
3361
3362 if (cfs_rq_throttled(cfs_rq))
3363 break;
3364 }
3365
3366 if (!se)
3367 rq->nr_running += task_delta;
3368
3369 /* determine whether we need to wake up potentially idle cpu */
3370 if (rq->curr == rq->idle && rq->cfs.nr_running)
3371 resched_task(rq->curr);
3372}
3373
3374static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3375 u64 remaining, u64 expires)
3376{
3377 struct cfs_rq *cfs_rq;
3378 u64 runtime = remaining;
3379
3380 rcu_read_lock();
3381 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3382 throttled_list) {
3383 struct rq *rq = rq_of(cfs_rq);
3384
3385 raw_spin_lock(&rq->lock);
3386 if (!cfs_rq_throttled(cfs_rq))
3387 goto next;
3388
3389 runtime = -cfs_rq->runtime_remaining + 1;
3390 if (runtime > remaining)
3391 runtime = remaining;
3392 remaining -= runtime;
3393
3394 cfs_rq->runtime_remaining += runtime;
3395 cfs_rq->runtime_expires = expires;
3396
3397 /* we check whether we're throttled above */
3398 if (cfs_rq->runtime_remaining > 0)
3399 unthrottle_cfs_rq(cfs_rq);
3400
3401next:
3402 raw_spin_unlock(&rq->lock);
3403
3404 if (!remaining)
3405 break;
3406 }
3407 rcu_read_unlock();
3408
3409 return remaining;
3410}
3411
58088ad0
PT
3412/*
3413 * Responsible for refilling a task_group's bandwidth and unthrottling its
3414 * cfs_rqs as appropriate. If there has been no activity within the last
3415 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3416 * used to track this state.
3417 */
3418static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3419{
671fd9da
PT
3420 u64 runtime, runtime_expires;
3421 int idle = 1, throttled;
58088ad0
PT
3422
3423 raw_spin_lock(&cfs_b->lock);
3424 /* no need to continue the timer with no bandwidth constraint */
3425 if (cfs_b->quota == RUNTIME_INF)
3426 goto out_unlock;
3427
671fd9da
PT
3428 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3429 /* idle depends on !throttled (for the case of a large deficit) */
3430 idle = cfs_b->idle && !throttled;
e8da1b18 3431 cfs_b->nr_periods += overrun;
671fd9da 3432
a9cf55b2
PT
3433 /* if we're going inactive then everything else can be deferred */
3434 if (idle)
3435 goto out_unlock;
3436
927b54fc
BS
3437 /*
3438 * if we have relooped after returning idle once, we need to update our
3439 * status as actually running, so that other cpus doing
3440 * __start_cfs_bandwidth will stop trying to cancel us.
3441 */
3442 cfs_b->timer_active = 1;
3443
a9cf55b2
PT
3444 __refill_cfs_bandwidth_runtime(cfs_b);
3445
671fd9da
PT
3446 if (!throttled) {
3447 /* mark as potentially idle for the upcoming period */
3448 cfs_b->idle = 1;
3449 goto out_unlock;
3450 }
3451
e8da1b18
NR
3452 /* account preceding periods in which throttling occurred */
3453 cfs_b->nr_throttled += overrun;
3454
671fd9da
PT
3455 /*
3456 * There are throttled entities so we must first use the new bandwidth
3457 * to unthrottle them before making it generally available. This
3458 * ensures that all existing debts will be paid before a new cfs_rq is
3459 * allowed to run.
3460 */
3461 runtime = cfs_b->runtime;
3462 runtime_expires = cfs_b->runtime_expires;
3463 cfs_b->runtime = 0;
3464
3465 /*
3466 * This check is repeated as we are holding onto the new bandwidth
3467 * while we unthrottle. This can potentially race with an unthrottled
3468 * group trying to acquire new bandwidth from the global pool.
3469 */
3470 while (throttled && runtime > 0) {
3471 raw_spin_unlock(&cfs_b->lock);
3472 /* we can't nest cfs_b->lock while distributing bandwidth */
3473 runtime = distribute_cfs_runtime(cfs_b, runtime,
3474 runtime_expires);
3475 raw_spin_lock(&cfs_b->lock);
3476
3477 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3478 }
58088ad0 3479
671fd9da
PT
3480 /* return (any) remaining runtime */
3481 cfs_b->runtime = runtime;
3482 /*
3483 * While we are ensured activity in the period following an
3484 * unthrottle, this also covers the case in which the new bandwidth is
3485 * insufficient to cover the existing bandwidth deficit. (Forcing the
3486 * timer to remain active while there are any throttled entities.)
3487 */
3488 cfs_b->idle = 0;
58088ad0
PT
3489out_unlock:
3490 if (idle)
3491 cfs_b->timer_active = 0;
3492 raw_spin_unlock(&cfs_b->lock);
3493
3494 return idle;
3495}
d3d9dc33 3496
d8b4986d
PT
3497/* a cfs_rq won't donate quota below this amount */
3498static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3499/* minimum remaining period time to redistribute slack quota */
3500static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3501/* how long we wait to gather additional slack before distributing */
3502static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3503
db06e78c
BS
3504/*
3505 * Are we near the end of the current quota period?
3506 *
3507 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3508 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3509 * migrate_hrtimers, base is never cleared, so we are fine.
3510 */
d8b4986d
PT
3511static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3512{
3513 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3514 u64 remaining;
3515
3516 /* if the call-back is running a quota refresh is already occurring */
3517 if (hrtimer_callback_running(refresh_timer))
3518 return 1;
3519
3520 /* is a quota refresh about to occur? */
3521 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3522 if (remaining < min_expire)
3523 return 1;
3524
3525 return 0;
3526}
3527
3528static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3529{
3530 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3531
3532 /* if there's a quota refresh soon don't bother with slack */
3533 if (runtime_refresh_within(cfs_b, min_left))
3534 return;
3535
3536 start_bandwidth_timer(&cfs_b->slack_timer,
3537 ns_to_ktime(cfs_bandwidth_slack_period));
3538}
3539
3540/* we know any runtime found here is valid as update_curr() precedes return */
3541static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3542{
3543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3544 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3545
3546 if (slack_runtime <= 0)
3547 return;
3548
3549 raw_spin_lock(&cfs_b->lock);
3550 if (cfs_b->quota != RUNTIME_INF &&
3551 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3552 cfs_b->runtime += slack_runtime;
3553
3554 /* we are under rq->lock, defer unthrottling using a timer */
3555 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3556 !list_empty(&cfs_b->throttled_cfs_rq))
3557 start_cfs_slack_bandwidth(cfs_b);
3558 }
3559 raw_spin_unlock(&cfs_b->lock);
3560
3561 /* even if it's not valid for return we don't want to try again */
3562 cfs_rq->runtime_remaining -= slack_runtime;
3563}
3564
3565static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3566{
56f570e5
PT
3567 if (!cfs_bandwidth_used())
3568 return;
3569
fccfdc6f 3570 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3571 return;
3572
3573 __return_cfs_rq_runtime(cfs_rq);
3574}
3575
3576/*
3577 * This is done with a timer (instead of inline with bandwidth return) since
3578 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3579 */
3580static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3581{
3582 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3583 u64 expires;
3584
3585 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3586 raw_spin_lock(&cfs_b->lock);
3587 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3588 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3589 return;
db06e78c 3590 }
d8b4986d 3591
d8b4986d
PT
3592 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3593 runtime = cfs_b->runtime;
3594 cfs_b->runtime = 0;
3595 }
3596 expires = cfs_b->runtime_expires;
3597 raw_spin_unlock(&cfs_b->lock);
3598
3599 if (!runtime)
3600 return;
3601
3602 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3603
3604 raw_spin_lock(&cfs_b->lock);
3605 if (expires == cfs_b->runtime_expires)
3606 cfs_b->runtime = runtime;
3607 raw_spin_unlock(&cfs_b->lock);
3608}
3609
d3d9dc33
PT
3610/*
3611 * When a group wakes up we want to make sure that its quota is not already
3612 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3613 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3614 */
3615static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3616{
56f570e5
PT
3617 if (!cfs_bandwidth_used())
3618 return;
3619
d3d9dc33
PT
3620 /* an active group must be handled by the update_curr()->put() path */
3621 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3622 return;
3623
3624 /* ensure the group is not already throttled */
3625 if (cfs_rq_throttled(cfs_rq))
3626 return;
3627
3628 /* update runtime allocation */
3629 account_cfs_rq_runtime(cfs_rq, 0);
3630 if (cfs_rq->runtime_remaining <= 0)
3631 throttle_cfs_rq(cfs_rq);
3632}
3633
3634/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3635static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3636{
56f570e5 3637 if (!cfs_bandwidth_used())
678d5718 3638 return false;
56f570e5 3639
d3d9dc33 3640 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3641 return false;
d3d9dc33
PT
3642
3643 /*
3644 * it's possible for a throttled entity to be forced into a running
3645 * state (e.g. set_curr_task), in this case we're finished.
3646 */
3647 if (cfs_rq_throttled(cfs_rq))
678d5718 3648 return true;
d3d9dc33
PT
3649
3650 throttle_cfs_rq(cfs_rq);
678d5718 3651 return true;
d3d9dc33 3652}
029632fb 3653
029632fb
PZ
3654static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3655{
3656 struct cfs_bandwidth *cfs_b =
3657 container_of(timer, struct cfs_bandwidth, slack_timer);
3658 do_sched_cfs_slack_timer(cfs_b);
3659
3660 return HRTIMER_NORESTART;
3661}
3662
3663static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3664{
3665 struct cfs_bandwidth *cfs_b =
3666 container_of(timer, struct cfs_bandwidth, period_timer);
3667 ktime_t now;
3668 int overrun;
3669 int idle = 0;
3670
3671 for (;;) {
3672 now = hrtimer_cb_get_time(timer);
3673 overrun = hrtimer_forward(timer, now, cfs_b->period);
3674
3675 if (!overrun)
3676 break;
3677
3678 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3679 }
3680
3681 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3682}
3683
3684void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3685{
3686 raw_spin_lock_init(&cfs_b->lock);
3687 cfs_b->runtime = 0;
3688 cfs_b->quota = RUNTIME_INF;
3689 cfs_b->period = ns_to_ktime(default_cfs_period());
3690
3691 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3692 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3693 cfs_b->period_timer.function = sched_cfs_period_timer;
3694 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3695 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3696}
3697
3698static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3699{
3700 cfs_rq->runtime_enabled = 0;
3701 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3702}
3703
3704/* requires cfs_b->lock, may release to reprogram timer */
3705void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3706{
3707 /*
3708 * The timer may be active because we're trying to set a new bandwidth
3709 * period or because we're racing with the tear-down path
3710 * (timer_active==0 becomes visible before the hrtimer call-back
3711 * terminates). In either case we ensure that it's re-programmed
3712 */
927b54fc
BS
3713 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3714 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3715 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3716 raw_spin_unlock(&cfs_b->lock);
927b54fc 3717 cpu_relax();
029632fb
PZ
3718 raw_spin_lock(&cfs_b->lock);
3719 /* if someone else restarted the timer then we're done */
3720 if (cfs_b->timer_active)
3721 return;
3722 }
3723
3724 cfs_b->timer_active = 1;
3725 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3726}
3727
3728static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3729{
3730 hrtimer_cancel(&cfs_b->period_timer);
3731 hrtimer_cancel(&cfs_b->slack_timer);
3732}
3733
38dc3348 3734static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3735{
3736 struct cfs_rq *cfs_rq;
3737
3738 for_each_leaf_cfs_rq(rq, cfs_rq) {
3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3740
3741 if (!cfs_rq->runtime_enabled)
3742 continue;
3743
3744 /*
3745 * clock_task is not advancing so we just need to make sure
3746 * there's some valid quota amount
3747 */
3748 cfs_rq->runtime_remaining = cfs_b->quota;
3749 if (cfs_rq_throttled(cfs_rq))
3750 unthrottle_cfs_rq(cfs_rq);
3751 }
3752}
3753
3754#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3755static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3756{
78becc27 3757 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3758}
3759
9dbdb155 3760static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3761static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3762static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3763static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3764
3765static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3766{
3767 return 0;
3768}
64660c86
PT
3769
3770static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3771{
3772 return 0;
3773}
3774
3775static inline int throttled_lb_pair(struct task_group *tg,
3776 int src_cpu, int dest_cpu)
3777{
3778 return 0;
3779}
029632fb
PZ
3780
3781void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3782
3783#ifdef CONFIG_FAIR_GROUP_SCHED
3784static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3785#endif
3786
029632fb
PZ
3787static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3788{
3789 return NULL;
3790}
3791static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3792static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3793
3794#endif /* CONFIG_CFS_BANDWIDTH */
3795
bf0f6f24
IM
3796/**************************************************
3797 * CFS operations on tasks:
3798 */
3799
8f4d37ec
PZ
3800#ifdef CONFIG_SCHED_HRTICK
3801static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3802{
8f4d37ec
PZ
3803 struct sched_entity *se = &p->se;
3804 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3805
3806 WARN_ON(task_rq(p) != rq);
3807
b39e66ea 3808 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3809 u64 slice = sched_slice(cfs_rq, se);
3810 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3811 s64 delta = slice - ran;
3812
3813 if (delta < 0) {
3814 if (rq->curr == p)
3815 resched_task(p);
3816 return;
3817 }
3818
3819 /*
3820 * Don't schedule slices shorter than 10000ns, that just
3821 * doesn't make sense. Rely on vruntime for fairness.
3822 */
31656519 3823 if (rq->curr != p)
157124c1 3824 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3825
31656519 3826 hrtick_start(rq, delta);
8f4d37ec
PZ
3827 }
3828}
a4c2f00f
PZ
3829
3830/*
3831 * called from enqueue/dequeue and updates the hrtick when the
3832 * current task is from our class and nr_running is low enough
3833 * to matter.
3834 */
3835static void hrtick_update(struct rq *rq)
3836{
3837 struct task_struct *curr = rq->curr;
3838
b39e66ea 3839 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3840 return;
3841
3842 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3843 hrtick_start_fair(rq, curr);
3844}
55e12e5e 3845#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3846static inline void
3847hrtick_start_fair(struct rq *rq, struct task_struct *p)
3848{
3849}
a4c2f00f
PZ
3850
3851static inline void hrtick_update(struct rq *rq)
3852{
3853}
8f4d37ec
PZ
3854#endif
3855
bf0f6f24
IM
3856/*
3857 * The enqueue_task method is called before nr_running is
3858 * increased. Here we update the fair scheduling stats and
3859 * then put the task into the rbtree:
3860 */
ea87bb78 3861static void
371fd7e7 3862enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3863{
3864 struct cfs_rq *cfs_rq;
62fb1851 3865 struct sched_entity *se = &p->se;
bf0f6f24
IM
3866
3867 for_each_sched_entity(se) {
62fb1851 3868 if (se->on_rq)
bf0f6f24
IM
3869 break;
3870 cfs_rq = cfs_rq_of(se);
88ec22d3 3871 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3872
3873 /*
3874 * end evaluation on encountering a throttled cfs_rq
3875 *
3876 * note: in the case of encountering a throttled cfs_rq we will
3877 * post the final h_nr_running increment below.
3878 */
3879 if (cfs_rq_throttled(cfs_rq))
3880 break;
953bfcd1 3881 cfs_rq->h_nr_running++;
85dac906 3882
88ec22d3 3883 flags = ENQUEUE_WAKEUP;
bf0f6f24 3884 }
8f4d37ec 3885
2069dd75 3886 for_each_sched_entity(se) {
0f317143 3887 cfs_rq = cfs_rq_of(se);
953bfcd1 3888 cfs_rq->h_nr_running++;
2069dd75 3889
85dac906
PT
3890 if (cfs_rq_throttled(cfs_rq))
3891 break;
3892
17bc14b7 3893 update_cfs_shares(cfs_rq);
9ee474f5 3894 update_entity_load_avg(se, 1);
2069dd75
PZ
3895 }
3896
18bf2805
BS
3897 if (!se) {
3898 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3899 inc_nr_running(rq);
18bf2805 3900 }
a4c2f00f 3901 hrtick_update(rq);
bf0f6f24
IM
3902}
3903
2f36825b
VP
3904static void set_next_buddy(struct sched_entity *se);
3905
bf0f6f24
IM
3906/*
3907 * The dequeue_task method is called before nr_running is
3908 * decreased. We remove the task from the rbtree and
3909 * update the fair scheduling stats:
3910 */
371fd7e7 3911static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3912{
3913 struct cfs_rq *cfs_rq;
62fb1851 3914 struct sched_entity *se = &p->se;
2f36825b 3915 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3916
3917 for_each_sched_entity(se) {
3918 cfs_rq = cfs_rq_of(se);
371fd7e7 3919 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3920
3921 /*
3922 * end evaluation on encountering a throttled cfs_rq
3923 *
3924 * note: in the case of encountering a throttled cfs_rq we will
3925 * post the final h_nr_running decrement below.
3926 */
3927 if (cfs_rq_throttled(cfs_rq))
3928 break;
953bfcd1 3929 cfs_rq->h_nr_running--;
2069dd75 3930
bf0f6f24 3931 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3932 if (cfs_rq->load.weight) {
3933 /*
3934 * Bias pick_next to pick a task from this cfs_rq, as
3935 * p is sleeping when it is within its sched_slice.
3936 */
3937 if (task_sleep && parent_entity(se))
3938 set_next_buddy(parent_entity(se));
9598c82d
PT
3939
3940 /* avoid re-evaluating load for this entity */
3941 se = parent_entity(se);
bf0f6f24 3942 break;
2f36825b 3943 }
371fd7e7 3944 flags |= DEQUEUE_SLEEP;
bf0f6f24 3945 }
8f4d37ec 3946
2069dd75 3947 for_each_sched_entity(se) {
0f317143 3948 cfs_rq = cfs_rq_of(se);
953bfcd1 3949 cfs_rq->h_nr_running--;
2069dd75 3950
85dac906
PT
3951 if (cfs_rq_throttled(cfs_rq))
3952 break;
3953
17bc14b7 3954 update_cfs_shares(cfs_rq);
9ee474f5 3955 update_entity_load_avg(se, 1);
2069dd75
PZ
3956 }
3957
18bf2805 3958 if (!se) {
85dac906 3959 dec_nr_running(rq);
18bf2805
BS
3960 update_rq_runnable_avg(rq, 1);
3961 }
a4c2f00f 3962 hrtick_update(rq);
bf0f6f24
IM
3963}
3964
e7693a36 3965#ifdef CONFIG_SMP
029632fb
PZ
3966/* Used instead of source_load when we know the type == 0 */
3967static unsigned long weighted_cpuload(const int cpu)
3968{
b92486cb 3969 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3970}
3971
3972/*
3973 * Return a low guess at the load of a migration-source cpu weighted
3974 * according to the scheduling class and "nice" value.
3975 *
3976 * We want to under-estimate the load of migration sources, to
3977 * balance conservatively.
3978 */
3979static unsigned long source_load(int cpu, int type)
3980{
3981 struct rq *rq = cpu_rq(cpu);
3982 unsigned long total = weighted_cpuload(cpu);
3983
3984 if (type == 0 || !sched_feat(LB_BIAS))
3985 return total;
3986
3987 return min(rq->cpu_load[type-1], total);
3988}
3989
3990/*
3991 * Return a high guess at the load of a migration-target cpu weighted
3992 * according to the scheduling class and "nice" value.
3993 */
3994static unsigned long target_load(int cpu, int type)
3995{
3996 struct rq *rq = cpu_rq(cpu);
3997 unsigned long total = weighted_cpuload(cpu);
3998
3999 if (type == 0 || !sched_feat(LB_BIAS))
4000 return total;
4001
4002 return max(rq->cpu_load[type-1], total);
4003}
4004
4005static unsigned long power_of(int cpu)
4006{
4007 return cpu_rq(cpu)->cpu_power;
4008}
4009
4010static unsigned long cpu_avg_load_per_task(int cpu)
4011{
4012 struct rq *rq = cpu_rq(cpu);
4013 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4014 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4015
4016 if (nr_running)
b92486cb 4017 return load_avg / nr_running;
029632fb
PZ
4018
4019 return 0;
4020}
4021
62470419
MW
4022static void record_wakee(struct task_struct *p)
4023{
4024 /*
4025 * Rough decay (wiping) for cost saving, don't worry
4026 * about the boundary, really active task won't care
4027 * about the loss.
4028 */
4029 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4030 current->wakee_flips = 0;
4031 current->wakee_flip_decay_ts = jiffies;
4032 }
4033
4034 if (current->last_wakee != p) {
4035 current->last_wakee = p;
4036 current->wakee_flips++;
4037 }
4038}
098fb9db 4039
74f8e4b2 4040static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4041{
4042 struct sched_entity *se = &p->se;
4043 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4044 u64 min_vruntime;
4045
4046#ifndef CONFIG_64BIT
4047 u64 min_vruntime_copy;
88ec22d3 4048
3fe1698b
PZ
4049 do {
4050 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4051 smp_rmb();
4052 min_vruntime = cfs_rq->min_vruntime;
4053 } while (min_vruntime != min_vruntime_copy);
4054#else
4055 min_vruntime = cfs_rq->min_vruntime;
4056#endif
88ec22d3 4057
3fe1698b 4058 se->vruntime -= min_vruntime;
62470419 4059 record_wakee(p);
88ec22d3
PZ
4060}
4061
bb3469ac 4062#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4063/*
4064 * effective_load() calculates the load change as seen from the root_task_group
4065 *
4066 * Adding load to a group doesn't make a group heavier, but can cause movement
4067 * of group shares between cpus. Assuming the shares were perfectly aligned one
4068 * can calculate the shift in shares.
cf5f0acf
PZ
4069 *
4070 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4071 * on this @cpu and results in a total addition (subtraction) of @wg to the
4072 * total group weight.
4073 *
4074 * Given a runqueue weight distribution (rw_i) we can compute a shares
4075 * distribution (s_i) using:
4076 *
4077 * s_i = rw_i / \Sum rw_j (1)
4078 *
4079 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4080 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4081 * shares distribution (s_i):
4082 *
4083 * rw_i = { 2, 4, 1, 0 }
4084 * s_i = { 2/7, 4/7, 1/7, 0 }
4085 *
4086 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4087 * task used to run on and the CPU the waker is running on), we need to
4088 * compute the effect of waking a task on either CPU and, in case of a sync
4089 * wakeup, compute the effect of the current task going to sleep.
4090 *
4091 * So for a change of @wl to the local @cpu with an overall group weight change
4092 * of @wl we can compute the new shares distribution (s'_i) using:
4093 *
4094 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4095 *
4096 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4097 * differences in waking a task to CPU 0. The additional task changes the
4098 * weight and shares distributions like:
4099 *
4100 * rw'_i = { 3, 4, 1, 0 }
4101 * s'_i = { 3/8, 4/8, 1/8, 0 }
4102 *
4103 * We can then compute the difference in effective weight by using:
4104 *
4105 * dw_i = S * (s'_i - s_i) (3)
4106 *
4107 * Where 'S' is the group weight as seen by its parent.
4108 *
4109 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4110 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4111 * 4/7) times the weight of the group.
f5bfb7d9 4112 */
2069dd75 4113static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4114{
4be9daaa 4115 struct sched_entity *se = tg->se[cpu];
f1d239f7 4116
9722c2da 4117 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4118 return wl;
4119
4be9daaa 4120 for_each_sched_entity(se) {
cf5f0acf 4121 long w, W;
4be9daaa 4122
977dda7c 4123 tg = se->my_q->tg;
bb3469ac 4124
cf5f0acf
PZ
4125 /*
4126 * W = @wg + \Sum rw_j
4127 */
4128 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4129
cf5f0acf
PZ
4130 /*
4131 * w = rw_i + @wl
4132 */
4133 w = se->my_q->load.weight + wl;
940959e9 4134
cf5f0acf
PZ
4135 /*
4136 * wl = S * s'_i; see (2)
4137 */
4138 if (W > 0 && w < W)
4139 wl = (w * tg->shares) / W;
977dda7c
PT
4140 else
4141 wl = tg->shares;
940959e9 4142
cf5f0acf
PZ
4143 /*
4144 * Per the above, wl is the new se->load.weight value; since
4145 * those are clipped to [MIN_SHARES, ...) do so now. See
4146 * calc_cfs_shares().
4147 */
977dda7c
PT
4148 if (wl < MIN_SHARES)
4149 wl = MIN_SHARES;
cf5f0acf
PZ
4150
4151 /*
4152 * wl = dw_i = S * (s'_i - s_i); see (3)
4153 */
977dda7c 4154 wl -= se->load.weight;
cf5f0acf
PZ
4155
4156 /*
4157 * Recursively apply this logic to all parent groups to compute
4158 * the final effective load change on the root group. Since
4159 * only the @tg group gets extra weight, all parent groups can
4160 * only redistribute existing shares. @wl is the shift in shares
4161 * resulting from this level per the above.
4162 */
4be9daaa 4163 wg = 0;
4be9daaa 4164 }
bb3469ac 4165
4be9daaa 4166 return wl;
bb3469ac
PZ
4167}
4168#else
4be9daaa 4169
58d081b5 4170static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4171{
83378269 4172 return wl;
bb3469ac 4173}
4be9daaa 4174
bb3469ac
PZ
4175#endif
4176
62470419
MW
4177static int wake_wide(struct task_struct *p)
4178{
7d9ffa89 4179 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4180
4181 /*
4182 * Yeah, it's the switching-frequency, could means many wakee or
4183 * rapidly switch, use factor here will just help to automatically
4184 * adjust the loose-degree, so bigger node will lead to more pull.
4185 */
4186 if (p->wakee_flips > factor) {
4187 /*
4188 * wakee is somewhat hot, it needs certain amount of cpu
4189 * resource, so if waker is far more hot, prefer to leave
4190 * it alone.
4191 */
4192 if (current->wakee_flips > (factor * p->wakee_flips))
4193 return 1;
4194 }
4195
4196 return 0;
4197}
4198
c88d5910 4199static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4200{
e37b6a7b 4201 s64 this_load, load;
c88d5910 4202 int idx, this_cpu, prev_cpu;
098fb9db 4203 unsigned long tl_per_task;
c88d5910 4204 struct task_group *tg;
83378269 4205 unsigned long weight;
b3137bc8 4206 int balanced;
098fb9db 4207
62470419
MW
4208 /*
4209 * If we wake multiple tasks be careful to not bounce
4210 * ourselves around too much.
4211 */
4212 if (wake_wide(p))
4213 return 0;
4214
c88d5910
PZ
4215 idx = sd->wake_idx;
4216 this_cpu = smp_processor_id();
4217 prev_cpu = task_cpu(p);
4218 load = source_load(prev_cpu, idx);
4219 this_load = target_load(this_cpu, idx);
098fb9db 4220
b3137bc8
MG
4221 /*
4222 * If sync wakeup then subtract the (maximum possible)
4223 * effect of the currently running task from the load
4224 * of the current CPU:
4225 */
83378269
PZ
4226 if (sync) {
4227 tg = task_group(current);
4228 weight = current->se.load.weight;
4229
c88d5910 4230 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4231 load += effective_load(tg, prev_cpu, 0, -weight);
4232 }
b3137bc8 4233
83378269
PZ
4234 tg = task_group(p);
4235 weight = p->se.load.weight;
b3137bc8 4236
71a29aa7
PZ
4237 /*
4238 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4239 * due to the sync cause above having dropped this_load to 0, we'll
4240 * always have an imbalance, but there's really nothing you can do
4241 * about that, so that's good too.
71a29aa7
PZ
4242 *
4243 * Otherwise check if either cpus are near enough in load to allow this
4244 * task to be woken on this_cpu.
4245 */
e37b6a7b
PT
4246 if (this_load > 0) {
4247 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4248
4249 this_eff_load = 100;
4250 this_eff_load *= power_of(prev_cpu);
4251 this_eff_load *= this_load +
4252 effective_load(tg, this_cpu, weight, weight);
4253
4254 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4255 prev_eff_load *= power_of(this_cpu);
4256 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4257
4258 balanced = this_eff_load <= prev_eff_load;
4259 } else
4260 balanced = true;
b3137bc8 4261
098fb9db 4262 /*
4ae7d5ce
IM
4263 * If the currently running task will sleep within
4264 * a reasonable amount of time then attract this newly
4265 * woken task:
098fb9db 4266 */
2fb7635c
PZ
4267 if (sync && balanced)
4268 return 1;
098fb9db 4269
41acab88 4270 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4271 tl_per_task = cpu_avg_load_per_task(this_cpu);
4272
c88d5910
PZ
4273 if (balanced ||
4274 (this_load <= load &&
4275 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4276 /*
4277 * This domain has SD_WAKE_AFFINE and
4278 * p is cache cold in this domain, and
4279 * there is no bad imbalance.
4280 */
c88d5910 4281 schedstat_inc(sd, ttwu_move_affine);
41acab88 4282 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4283
4284 return 1;
4285 }
4286 return 0;
4287}
4288
aaee1203
PZ
4289/*
4290 * find_idlest_group finds and returns the least busy CPU group within the
4291 * domain.
4292 */
4293static struct sched_group *
78e7ed53 4294find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4295 int this_cpu, int sd_flag)
e7693a36 4296{
b3bd3de6 4297 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4298 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4299 int load_idx = sd->forkexec_idx;
aaee1203 4300 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4301
c44f2a02
VG
4302 if (sd_flag & SD_BALANCE_WAKE)
4303 load_idx = sd->wake_idx;
4304
aaee1203
PZ
4305 do {
4306 unsigned long load, avg_load;
4307 int local_group;
4308 int i;
e7693a36 4309
aaee1203
PZ
4310 /* Skip over this group if it has no CPUs allowed */
4311 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4312 tsk_cpus_allowed(p)))
aaee1203
PZ
4313 continue;
4314
4315 local_group = cpumask_test_cpu(this_cpu,
4316 sched_group_cpus(group));
4317
4318 /* Tally up the load of all CPUs in the group */
4319 avg_load = 0;
4320
4321 for_each_cpu(i, sched_group_cpus(group)) {
4322 /* Bias balancing toward cpus of our domain */
4323 if (local_group)
4324 load = source_load(i, load_idx);
4325 else
4326 load = target_load(i, load_idx);
4327
4328 avg_load += load;
4329 }
4330
4331 /* Adjust by relative CPU power of the group */
9c3f75cb 4332 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4333
4334 if (local_group) {
4335 this_load = avg_load;
aaee1203
PZ
4336 } else if (avg_load < min_load) {
4337 min_load = avg_load;
4338 idlest = group;
4339 }
4340 } while (group = group->next, group != sd->groups);
4341
4342 if (!idlest || 100*this_load < imbalance*min_load)
4343 return NULL;
4344 return idlest;
4345}
4346
4347/*
4348 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4349 */
4350static int
4351find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4352{
4353 unsigned long load, min_load = ULONG_MAX;
4354 int idlest = -1;
4355 int i;
4356
4357 /* Traverse only the allowed CPUs */
fa17b507 4358 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4359 load = weighted_cpuload(i);
4360
4361 if (load < min_load || (load == min_load && i == this_cpu)) {
4362 min_load = load;
4363 idlest = i;
e7693a36
GH
4364 }
4365 }
4366
aaee1203
PZ
4367 return idlest;
4368}
e7693a36 4369
a50bde51
PZ
4370/*
4371 * Try and locate an idle CPU in the sched_domain.
4372 */
99bd5e2f 4373static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4374{
99bd5e2f 4375 struct sched_domain *sd;
37407ea7 4376 struct sched_group *sg;
e0a79f52 4377 int i = task_cpu(p);
a50bde51 4378
e0a79f52
MG
4379 if (idle_cpu(target))
4380 return target;
99bd5e2f
SS
4381
4382 /*
e0a79f52 4383 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4384 */
e0a79f52
MG
4385 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4386 return i;
a50bde51
PZ
4387
4388 /*
37407ea7 4389 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4390 */
518cd623 4391 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4392 for_each_lower_domain(sd) {
37407ea7
LT
4393 sg = sd->groups;
4394 do {
4395 if (!cpumask_intersects(sched_group_cpus(sg),
4396 tsk_cpus_allowed(p)))
4397 goto next;
4398
4399 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4400 if (i == target || !idle_cpu(i))
37407ea7
LT
4401 goto next;
4402 }
970e1789 4403
37407ea7
LT
4404 target = cpumask_first_and(sched_group_cpus(sg),
4405 tsk_cpus_allowed(p));
4406 goto done;
4407next:
4408 sg = sg->next;
4409 } while (sg != sd->groups);
4410 }
4411done:
a50bde51
PZ
4412 return target;
4413}
4414
aaee1203 4415/*
de91b9cb
MR
4416 * select_task_rq_fair: Select target runqueue for the waking task in domains
4417 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4418 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4419 *
de91b9cb
MR
4420 * Balances load by selecting the idlest cpu in the idlest group, or under
4421 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4422 *
de91b9cb 4423 * Returns the target cpu number.
aaee1203
PZ
4424 *
4425 * preempt must be disabled.
4426 */
0017d735 4427static int
ac66f547 4428select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4429{
29cd8bae 4430 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4431 int cpu = smp_processor_id();
c88d5910 4432 int new_cpu = cpu;
99bd5e2f 4433 int want_affine = 0;
5158f4e4 4434 int sync = wake_flags & WF_SYNC;
c88d5910 4435
29baa747 4436 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4437 return prev_cpu;
4438
0763a660 4439 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4440 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4441 want_affine = 1;
4442 new_cpu = prev_cpu;
4443 }
aaee1203 4444
dce840a0 4445 rcu_read_lock();
aaee1203 4446 for_each_domain(cpu, tmp) {
e4f42888
PZ
4447 if (!(tmp->flags & SD_LOAD_BALANCE))
4448 continue;
4449
fe3bcfe1 4450 /*
99bd5e2f
SS
4451 * If both cpu and prev_cpu are part of this domain,
4452 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4453 */
99bd5e2f
SS
4454 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4455 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4456 affine_sd = tmp;
29cd8bae 4457 break;
f03542a7 4458 }
29cd8bae 4459
f03542a7 4460 if (tmp->flags & sd_flag)
29cd8bae
PZ
4461 sd = tmp;
4462 }
4463
8b911acd 4464 if (affine_sd) {
f03542a7 4465 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4466 prev_cpu = cpu;
4467
4468 new_cpu = select_idle_sibling(p, prev_cpu);
4469 goto unlock;
8b911acd 4470 }
e7693a36 4471
aaee1203
PZ
4472 while (sd) {
4473 struct sched_group *group;
c88d5910 4474 int weight;
098fb9db 4475
0763a660 4476 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4477 sd = sd->child;
4478 continue;
4479 }
098fb9db 4480
c44f2a02 4481 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4482 if (!group) {
4483 sd = sd->child;
4484 continue;
4485 }
4ae7d5ce 4486
d7c33c49 4487 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4488 if (new_cpu == -1 || new_cpu == cpu) {
4489 /* Now try balancing at a lower domain level of cpu */
4490 sd = sd->child;
4491 continue;
e7693a36 4492 }
aaee1203
PZ
4493
4494 /* Now try balancing at a lower domain level of new_cpu */
4495 cpu = new_cpu;
669c55e9 4496 weight = sd->span_weight;
aaee1203
PZ
4497 sd = NULL;
4498 for_each_domain(cpu, tmp) {
669c55e9 4499 if (weight <= tmp->span_weight)
aaee1203 4500 break;
0763a660 4501 if (tmp->flags & sd_flag)
aaee1203
PZ
4502 sd = tmp;
4503 }
4504 /* while loop will break here if sd == NULL */
e7693a36 4505 }
dce840a0
PZ
4506unlock:
4507 rcu_read_unlock();
e7693a36 4508
c88d5910 4509 return new_cpu;
e7693a36 4510}
0a74bef8
PT
4511
4512/*
4513 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4514 * cfs_rq_of(p) references at time of call are still valid and identify the
4515 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4516 * other assumptions, including the state of rq->lock, should be made.
4517 */
4518static void
4519migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4520{
aff3e498
PT
4521 struct sched_entity *se = &p->se;
4522 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4523
4524 /*
4525 * Load tracking: accumulate removed load so that it can be processed
4526 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4527 * to blocked load iff they have a positive decay-count. It can never
4528 * be negative here since on-rq tasks have decay-count == 0.
4529 */
4530 if (se->avg.decay_count) {
4531 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4532 atomic_long_add(se->avg.load_avg_contrib,
4533 &cfs_rq->removed_load);
aff3e498 4534 }
0a74bef8 4535}
e7693a36
GH
4536#endif /* CONFIG_SMP */
4537
e52fb7c0
PZ
4538static unsigned long
4539wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4540{
4541 unsigned long gran = sysctl_sched_wakeup_granularity;
4542
4543 /*
e52fb7c0
PZ
4544 * Since its curr running now, convert the gran from real-time
4545 * to virtual-time in his units.
13814d42
MG
4546 *
4547 * By using 'se' instead of 'curr' we penalize light tasks, so
4548 * they get preempted easier. That is, if 'se' < 'curr' then
4549 * the resulting gran will be larger, therefore penalizing the
4550 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4551 * be smaller, again penalizing the lighter task.
4552 *
4553 * This is especially important for buddies when the leftmost
4554 * task is higher priority than the buddy.
0bbd3336 4555 */
f4ad9bd2 4556 return calc_delta_fair(gran, se);
0bbd3336
PZ
4557}
4558
464b7527
PZ
4559/*
4560 * Should 'se' preempt 'curr'.
4561 *
4562 * |s1
4563 * |s2
4564 * |s3
4565 * g
4566 * |<--->|c
4567 *
4568 * w(c, s1) = -1
4569 * w(c, s2) = 0
4570 * w(c, s3) = 1
4571 *
4572 */
4573static int
4574wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4575{
4576 s64 gran, vdiff = curr->vruntime - se->vruntime;
4577
4578 if (vdiff <= 0)
4579 return -1;
4580
e52fb7c0 4581 gran = wakeup_gran(curr, se);
464b7527
PZ
4582 if (vdiff > gran)
4583 return 1;
4584
4585 return 0;
4586}
4587
02479099
PZ
4588static void set_last_buddy(struct sched_entity *se)
4589{
69c80f3e
VP
4590 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4591 return;
4592
4593 for_each_sched_entity(se)
4594 cfs_rq_of(se)->last = se;
02479099
PZ
4595}
4596
4597static void set_next_buddy(struct sched_entity *se)
4598{
69c80f3e
VP
4599 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4600 return;
4601
4602 for_each_sched_entity(se)
4603 cfs_rq_of(se)->next = se;
02479099
PZ
4604}
4605
ac53db59
RR
4606static void set_skip_buddy(struct sched_entity *se)
4607{
69c80f3e
VP
4608 for_each_sched_entity(se)
4609 cfs_rq_of(se)->skip = se;
ac53db59
RR
4610}
4611
bf0f6f24
IM
4612/*
4613 * Preempt the current task with a newly woken task if needed:
4614 */
5a9b86f6 4615static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4616{
4617 struct task_struct *curr = rq->curr;
8651a86c 4618 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4619 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4620 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4621 int next_buddy_marked = 0;
bf0f6f24 4622
4ae7d5ce
IM
4623 if (unlikely(se == pse))
4624 return;
4625
5238cdd3 4626 /*
ddcdf6e7 4627 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4628 * unconditionally check_prempt_curr() after an enqueue (which may have
4629 * lead to a throttle). This both saves work and prevents false
4630 * next-buddy nomination below.
4631 */
4632 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4633 return;
4634
2f36825b 4635 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4636 set_next_buddy(pse);
2f36825b
VP
4637 next_buddy_marked = 1;
4638 }
57fdc26d 4639
aec0a514
BR
4640 /*
4641 * We can come here with TIF_NEED_RESCHED already set from new task
4642 * wake up path.
5238cdd3
PT
4643 *
4644 * Note: this also catches the edge-case of curr being in a throttled
4645 * group (e.g. via set_curr_task), since update_curr() (in the
4646 * enqueue of curr) will have resulted in resched being set. This
4647 * prevents us from potentially nominating it as a false LAST_BUDDY
4648 * below.
aec0a514
BR
4649 */
4650 if (test_tsk_need_resched(curr))
4651 return;
4652
a2f5c9ab
DH
4653 /* Idle tasks are by definition preempted by non-idle tasks. */
4654 if (unlikely(curr->policy == SCHED_IDLE) &&
4655 likely(p->policy != SCHED_IDLE))
4656 goto preempt;
4657
91c234b4 4658 /*
a2f5c9ab
DH
4659 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4660 * is driven by the tick):
91c234b4 4661 */
8ed92e51 4662 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4663 return;
bf0f6f24 4664
464b7527 4665 find_matching_se(&se, &pse);
9bbd7374 4666 update_curr(cfs_rq_of(se));
002f128b 4667 BUG_ON(!pse);
2f36825b
VP
4668 if (wakeup_preempt_entity(se, pse) == 1) {
4669 /*
4670 * Bias pick_next to pick the sched entity that is
4671 * triggering this preemption.
4672 */
4673 if (!next_buddy_marked)
4674 set_next_buddy(pse);
3a7e73a2 4675 goto preempt;
2f36825b 4676 }
464b7527 4677
3a7e73a2 4678 return;
a65ac745 4679
3a7e73a2
PZ
4680preempt:
4681 resched_task(curr);
4682 /*
4683 * Only set the backward buddy when the current task is still
4684 * on the rq. This can happen when a wakeup gets interleaved
4685 * with schedule on the ->pre_schedule() or idle_balance()
4686 * point, either of which can * drop the rq lock.
4687 *
4688 * Also, during early boot the idle thread is in the fair class,
4689 * for obvious reasons its a bad idea to schedule back to it.
4690 */
4691 if (unlikely(!se->on_rq || curr == rq->idle))
4692 return;
4693
4694 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4695 set_last_buddy(se);
bf0f6f24
IM
4696}
4697
606dba2e
PZ
4698static struct task_struct *
4699pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4700{
4701 struct cfs_rq *cfs_rq = &rq->cfs;
4702 struct sched_entity *se;
678d5718 4703 struct task_struct *p;
37e117c0 4704 int new_tasks;
678d5718 4705
6e83125c 4706again:
678d5718
PZ
4707#ifdef CONFIG_FAIR_GROUP_SCHED
4708 if (!cfs_rq->nr_running)
38033c37 4709 goto idle;
678d5718 4710
3f1d2a31 4711 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4712 goto simple;
4713
4714 /*
4715 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4716 * likely that a next task is from the same cgroup as the current.
4717 *
4718 * Therefore attempt to avoid putting and setting the entire cgroup
4719 * hierarchy, only change the part that actually changes.
4720 */
4721
4722 do {
4723 struct sched_entity *curr = cfs_rq->curr;
4724
4725 /*
4726 * Since we got here without doing put_prev_entity() we also
4727 * have to consider cfs_rq->curr. If it is still a runnable
4728 * entity, update_curr() will update its vruntime, otherwise
4729 * forget we've ever seen it.
4730 */
4731 if (curr && curr->on_rq)
4732 update_curr(cfs_rq);
4733 else
4734 curr = NULL;
4735
4736 /*
4737 * This call to check_cfs_rq_runtime() will do the throttle and
4738 * dequeue its entity in the parent(s). Therefore the 'simple'
4739 * nr_running test will indeed be correct.
4740 */
4741 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4742 goto simple;
4743
4744 se = pick_next_entity(cfs_rq, curr);
4745 cfs_rq = group_cfs_rq(se);
4746 } while (cfs_rq);
4747
4748 p = task_of(se);
4749
4750 /*
4751 * Since we haven't yet done put_prev_entity and if the selected task
4752 * is a different task than we started out with, try and touch the
4753 * least amount of cfs_rqs.
4754 */
4755 if (prev != p) {
4756 struct sched_entity *pse = &prev->se;
4757
4758 while (!(cfs_rq = is_same_group(se, pse))) {
4759 int se_depth = se->depth;
4760 int pse_depth = pse->depth;
4761
4762 if (se_depth <= pse_depth) {
4763 put_prev_entity(cfs_rq_of(pse), pse);
4764 pse = parent_entity(pse);
4765 }
4766 if (se_depth >= pse_depth) {
4767 set_next_entity(cfs_rq_of(se), se);
4768 se = parent_entity(se);
4769 }
4770 }
4771
4772 put_prev_entity(cfs_rq, pse);
4773 set_next_entity(cfs_rq, se);
4774 }
4775
4776 if (hrtick_enabled(rq))
4777 hrtick_start_fair(rq, p);
4778
4779 return p;
4780simple:
4781 cfs_rq = &rq->cfs;
4782#endif
bf0f6f24 4783
36ace27e 4784 if (!cfs_rq->nr_running)
38033c37 4785 goto idle;
bf0f6f24 4786
3f1d2a31 4787 put_prev_task(rq, prev);
606dba2e 4788
bf0f6f24 4789 do {
678d5718 4790 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4791 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4792 cfs_rq = group_cfs_rq(se);
4793 } while (cfs_rq);
4794
8f4d37ec 4795 p = task_of(se);
678d5718 4796
b39e66ea
MG
4797 if (hrtick_enabled(rq))
4798 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4799
4800 return p;
38033c37
PZ
4801
4802idle:
e4aa358b 4803 new_tasks = idle_balance(rq);
37e117c0
PZ
4804 /*
4805 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4806 * possible for any higher priority task to appear. In that case we
4807 * must re-start the pick_next_entity() loop.
4808 */
e4aa358b 4809 if (new_tasks < 0)
37e117c0
PZ
4810 return RETRY_TASK;
4811
e4aa358b 4812 if (new_tasks > 0)
38033c37 4813 goto again;
38033c37
PZ
4814
4815 return NULL;
bf0f6f24
IM
4816}
4817
4818/*
4819 * Account for a descheduled task:
4820 */
31ee529c 4821static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4822{
4823 struct sched_entity *se = &prev->se;
4824 struct cfs_rq *cfs_rq;
4825
4826 for_each_sched_entity(se) {
4827 cfs_rq = cfs_rq_of(se);
ab6cde26 4828 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4829 }
4830}
4831
ac53db59
RR
4832/*
4833 * sched_yield() is very simple
4834 *
4835 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4836 */
4837static void yield_task_fair(struct rq *rq)
4838{
4839 struct task_struct *curr = rq->curr;
4840 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4841 struct sched_entity *se = &curr->se;
4842
4843 /*
4844 * Are we the only task in the tree?
4845 */
4846 if (unlikely(rq->nr_running == 1))
4847 return;
4848
4849 clear_buddies(cfs_rq, se);
4850
4851 if (curr->policy != SCHED_BATCH) {
4852 update_rq_clock(rq);
4853 /*
4854 * Update run-time statistics of the 'current'.
4855 */
4856 update_curr(cfs_rq);
916671c0
MG
4857 /*
4858 * Tell update_rq_clock() that we've just updated,
4859 * so we don't do microscopic update in schedule()
4860 * and double the fastpath cost.
4861 */
4862 rq->skip_clock_update = 1;
ac53db59
RR
4863 }
4864
4865 set_skip_buddy(se);
4866}
4867
d95f4122
MG
4868static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4869{
4870 struct sched_entity *se = &p->se;
4871
5238cdd3
PT
4872 /* throttled hierarchies are not runnable */
4873 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4874 return false;
4875
4876 /* Tell the scheduler that we'd really like pse to run next. */
4877 set_next_buddy(se);
4878
d95f4122
MG
4879 yield_task_fair(rq);
4880
4881 return true;
4882}
4883
681f3e68 4884#ifdef CONFIG_SMP
bf0f6f24 4885/**************************************************
e9c84cb8
PZ
4886 * Fair scheduling class load-balancing methods.
4887 *
4888 * BASICS
4889 *
4890 * The purpose of load-balancing is to achieve the same basic fairness the
4891 * per-cpu scheduler provides, namely provide a proportional amount of compute
4892 * time to each task. This is expressed in the following equation:
4893 *
4894 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4895 *
4896 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4897 * W_i,0 is defined as:
4898 *
4899 * W_i,0 = \Sum_j w_i,j (2)
4900 *
4901 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4902 * is derived from the nice value as per prio_to_weight[].
4903 *
4904 * The weight average is an exponential decay average of the instantaneous
4905 * weight:
4906 *
4907 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4908 *
4909 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4910 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4911 * can also include other factors [XXX].
4912 *
4913 * To achieve this balance we define a measure of imbalance which follows
4914 * directly from (1):
4915 *
4916 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4917 *
4918 * We them move tasks around to minimize the imbalance. In the continuous
4919 * function space it is obvious this converges, in the discrete case we get
4920 * a few fun cases generally called infeasible weight scenarios.
4921 *
4922 * [XXX expand on:
4923 * - infeasible weights;
4924 * - local vs global optima in the discrete case. ]
4925 *
4926 *
4927 * SCHED DOMAINS
4928 *
4929 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4930 * for all i,j solution, we create a tree of cpus that follows the hardware
4931 * topology where each level pairs two lower groups (or better). This results
4932 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4933 * tree to only the first of the previous level and we decrease the frequency
4934 * of load-balance at each level inv. proportional to the number of cpus in
4935 * the groups.
4936 *
4937 * This yields:
4938 *
4939 * log_2 n 1 n
4940 * \Sum { --- * --- * 2^i } = O(n) (5)
4941 * i = 0 2^i 2^i
4942 * `- size of each group
4943 * | | `- number of cpus doing load-balance
4944 * | `- freq
4945 * `- sum over all levels
4946 *
4947 * Coupled with a limit on how many tasks we can migrate every balance pass,
4948 * this makes (5) the runtime complexity of the balancer.
4949 *
4950 * An important property here is that each CPU is still (indirectly) connected
4951 * to every other cpu in at most O(log n) steps:
4952 *
4953 * The adjacency matrix of the resulting graph is given by:
4954 *
4955 * log_2 n
4956 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4957 * k = 0
4958 *
4959 * And you'll find that:
4960 *
4961 * A^(log_2 n)_i,j != 0 for all i,j (7)
4962 *
4963 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4964 * The task movement gives a factor of O(m), giving a convergence complexity
4965 * of:
4966 *
4967 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4968 *
4969 *
4970 * WORK CONSERVING
4971 *
4972 * In order to avoid CPUs going idle while there's still work to do, new idle
4973 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4974 * tree itself instead of relying on other CPUs to bring it work.
4975 *
4976 * This adds some complexity to both (5) and (8) but it reduces the total idle
4977 * time.
4978 *
4979 * [XXX more?]
4980 *
4981 *
4982 * CGROUPS
4983 *
4984 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4985 *
4986 * s_k,i
4987 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4988 * S_k
4989 *
4990 * Where
4991 *
4992 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4993 *
4994 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4995 *
4996 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4997 * property.
4998 *
4999 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5000 * rewrite all of this once again.]
5001 */
bf0f6f24 5002
ed387b78
HS
5003static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5004
0ec8aa00
PZ
5005enum fbq_type { regular, remote, all };
5006
ddcdf6e7 5007#define LBF_ALL_PINNED 0x01
367456c7 5008#define LBF_NEED_BREAK 0x02
6263322c
PZ
5009#define LBF_DST_PINNED 0x04
5010#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5011
5012struct lb_env {
5013 struct sched_domain *sd;
5014
ddcdf6e7 5015 struct rq *src_rq;
85c1e7da 5016 int src_cpu;
ddcdf6e7
PZ
5017
5018 int dst_cpu;
5019 struct rq *dst_rq;
5020
88b8dac0
SV
5021 struct cpumask *dst_grpmask;
5022 int new_dst_cpu;
ddcdf6e7 5023 enum cpu_idle_type idle;
bd939f45 5024 long imbalance;
b9403130
MW
5025 /* The set of CPUs under consideration for load-balancing */
5026 struct cpumask *cpus;
5027
ddcdf6e7 5028 unsigned int flags;
367456c7
PZ
5029
5030 unsigned int loop;
5031 unsigned int loop_break;
5032 unsigned int loop_max;
0ec8aa00
PZ
5033
5034 enum fbq_type fbq_type;
ddcdf6e7
PZ
5035};
5036
1e3c88bd 5037/*
ddcdf6e7 5038 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5039 * Both runqueues must be locked.
5040 */
ddcdf6e7 5041static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5042{
ddcdf6e7
PZ
5043 deactivate_task(env->src_rq, p, 0);
5044 set_task_cpu(p, env->dst_cpu);
5045 activate_task(env->dst_rq, p, 0);
5046 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5047}
5048
029632fb
PZ
5049/*
5050 * Is this task likely cache-hot:
5051 */
5052static int
6037dd1a 5053task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5054{
5055 s64 delta;
5056
5057 if (p->sched_class != &fair_sched_class)
5058 return 0;
5059
5060 if (unlikely(p->policy == SCHED_IDLE))
5061 return 0;
5062
5063 /*
5064 * Buddy candidates are cache hot:
5065 */
5066 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5067 (&p->se == cfs_rq_of(&p->se)->next ||
5068 &p->se == cfs_rq_of(&p->se)->last))
5069 return 1;
5070
5071 if (sysctl_sched_migration_cost == -1)
5072 return 1;
5073 if (sysctl_sched_migration_cost == 0)
5074 return 0;
5075
5076 delta = now - p->se.exec_start;
5077
5078 return delta < (s64)sysctl_sched_migration_cost;
5079}
5080
3a7053b3
MG
5081#ifdef CONFIG_NUMA_BALANCING
5082/* Returns true if the destination node has incurred more faults */
5083static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5084{
5085 int src_nid, dst_nid;
5086
ff1df896 5087 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5088 !(env->sd->flags & SD_NUMA)) {
5089 return false;
5090 }
5091
5092 src_nid = cpu_to_node(env->src_cpu);
5093 dst_nid = cpu_to_node(env->dst_cpu);
5094
83e1d2cd 5095 if (src_nid == dst_nid)
3a7053b3
MG
5096 return false;
5097
83e1d2cd
MG
5098 /* Always encourage migration to the preferred node. */
5099 if (dst_nid == p->numa_preferred_nid)
5100 return true;
5101
887c290e
RR
5102 /* If both task and group weight improve, this move is a winner. */
5103 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5104 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5105 return true;
5106
5107 return false;
5108}
7a0f3083
MG
5109
5110
5111static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5112{
5113 int src_nid, dst_nid;
5114
5115 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5116 return false;
5117
ff1df896 5118 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5119 return false;
5120
5121 src_nid = cpu_to_node(env->src_cpu);
5122 dst_nid = cpu_to_node(env->dst_cpu);
5123
83e1d2cd 5124 if (src_nid == dst_nid)
7a0f3083
MG
5125 return false;
5126
83e1d2cd
MG
5127 /* Migrating away from the preferred node is always bad. */
5128 if (src_nid == p->numa_preferred_nid)
5129 return true;
5130
887c290e
RR
5131 /* If either task or group weight get worse, don't do it. */
5132 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5133 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5134 return true;
5135
5136 return false;
5137}
5138
3a7053b3
MG
5139#else
5140static inline bool migrate_improves_locality(struct task_struct *p,
5141 struct lb_env *env)
5142{
5143 return false;
5144}
7a0f3083
MG
5145
5146static inline bool migrate_degrades_locality(struct task_struct *p,
5147 struct lb_env *env)
5148{
5149 return false;
5150}
3a7053b3
MG
5151#endif
5152
1e3c88bd
PZ
5153/*
5154 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5155 */
5156static
8e45cb54 5157int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5158{
5159 int tsk_cache_hot = 0;
5160 /*
5161 * We do not migrate tasks that are:
d3198084 5162 * 1) throttled_lb_pair, or
1e3c88bd 5163 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5164 * 3) running (obviously), or
5165 * 4) are cache-hot on their current CPU.
1e3c88bd 5166 */
d3198084
JK
5167 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5168 return 0;
5169
ddcdf6e7 5170 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5171 int cpu;
88b8dac0 5172
41acab88 5173 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5174
6263322c
PZ
5175 env->flags |= LBF_SOME_PINNED;
5176
88b8dac0
SV
5177 /*
5178 * Remember if this task can be migrated to any other cpu in
5179 * our sched_group. We may want to revisit it if we couldn't
5180 * meet load balance goals by pulling other tasks on src_cpu.
5181 *
5182 * Also avoid computing new_dst_cpu if we have already computed
5183 * one in current iteration.
5184 */
6263322c 5185 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5186 return 0;
5187
e02e60c1
JK
5188 /* Prevent to re-select dst_cpu via env's cpus */
5189 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5190 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5191 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5192 env->new_dst_cpu = cpu;
5193 break;
5194 }
88b8dac0 5195 }
e02e60c1 5196
1e3c88bd
PZ
5197 return 0;
5198 }
88b8dac0
SV
5199
5200 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5201 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5202
ddcdf6e7 5203 if (task_running(env->src_rq, p)) {
41acab88 5204 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5205 return 0;
5206 }
5207
5208 /*
5209 * Aggressive migration if:
3a7053b3
MG
5210 * 1) destination numa is preferred
5211 * 2) task is cache cold, or
5212 * 3) too many balance attempts have failed.
1e3c88bd 5213 */
6037dd1a 5214 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5215 if (!tsk_cache_hot)
5216 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5217
5218 if (migrate_improves_locality(p, env)) {
5219#ifdef CONFIG_SCHEDSTATS
5220 if (tsk_cache_hot) {
5221 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5222 schedstat_inc(p, se.statistics.nr_forced_migrations);
5223 }
5224#endif
5225 return 1;
5226 }
5227
1e3c88bd 5228 if (!tsk_cache_hot ||
8e45cb54 5229 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5230
1e3c88bd 5231 if (tsk_cache_hot) {
8e45cb54 5232 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5233 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5234 }
4e2dcb73 5235
1e3c88bd
PZ
5236 return 1;
5237 }
5238
4e2dcb73
ZH
5239 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5240 return 0;
1e3c88bd
PZ
5241}
5242
897c395f
PZ
5243/*
5244 * move_one_task tries to move exactly one task from busiest to this_rq, as
5245 * part of active balancing operations within "domain".
5246 * Returns 1 if successful and 0 otherwise.
5247 *
5248 * Called with both runqueues locked.
5249 */
8e45cb54 5250static int move_one_task(struct lb_env *env)
897c395f
PZ
5251{
5252 struct task_struct *p, *n;
897c395f 5253
367456c7 5254 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5255 if (!can_migrate_task(p, env))
5256 continue;
897c395f 5257
367456c7
PZ
5258 move_task(p, env);
5259 /*
5260 * Right now, this is only the second place move_task()
5261 * is called, so we can safely collect move_task()
5262 * stats here rather than inside move_task().
5263 */
5264 schedstat_inc(env->sd, lb_gained[env->idle]);
5265 return 1;
897c395f 5266 }
897c395f
PZ
5267 return 0;
5268}
5269
eb95308e
PZ
5270static const unsigned int sched_nr_migrate_break = 32;
5271
5d6523eb 5272/*
bd939f45 5273 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5274 * this_rq, as part of a balancing operation within domain "sd".
5275 * Returns 1 if successful and 0 otherwise.
5276 *
5277 * Called with both runqueues locked.
5278 */
5279static int move_tasks(struct lb_env *env)
1e3c88bd 5280{
5d6523eb
PZ
5281 struct list_head *tasks = &env->src_rq->cfs_tasks;
5282 struct task_struct *p;
367456c7
PZ
5283 unsigned long load;
5284 int pulled = 0;
1e3c88bd 5285
bd939f45 5286 if (env->imbalance <= 0)
5d6523eb 5287 return 0;
1e3c88bd 5288
5d6523eb
PZ
5289 while (!list_empty(tasks)) {
5290 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5291
367456c7
PZ
5292 env->loop++;
5293 /* We've more or less seen every task there is, call it quits */
5d6523eb 5294 if (env->loop > env->loop_max)
367456c7 5295 break;
5d6523eb
PZ
5296
5297 /* take a breather every nr_migrate tasks */
367456c7 5298 if (env->loop > env->loop_break) {
eb95308e 5299 env->loop_break += sched_nr_migrate_break;
8e45cb54 5300 env->flags |= LBF_NEED_BREAK;
ee00e66f 5301 break;
a195f004 5302 }
1e3c88bd 5303
d3198084 5304 if (!can_migrate_task(p, env))
367456c7
PZ
5305 goto next;
5306
5307 load = task_h_load(p);
5d6523eb 5308
eb95308e 5309 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5310 goto next;
5311
bd939f45 5312 if ((load / 2) > env->imbalance)
367456c7 5313 goto next;
1e3c88bd 5314
ddcdf6e7 5315 move_task(p, env);
ee00e66f 5316 pulled++;
bd939f45 5317 env->imbalance -= load;
1e3c88bd
PZ
5318
5319#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5320 /*
5321 * NEWIDLE balancing is a source of latency, so preemptible
5322 * kernels will stop after the first task is pulled to minimize
5323 * the critical section.
5324 */
5d6523eb 5325 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5326 break;
1e3c88bd
PZ
5327#endif
5328
ee00e66f
PZ
5329 /*
5330 * We only want to steal up to the prescribed amount of
5331 * weighted load.
5332 */
bd939f45 5333 if (env->imbalance <= 0)
ee00e66f 5334 break;
367456c7
PZ
5335
5336 continue;
5337next:
5d6523eb 5338 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5339 }
5d6523eb 5340
1e3c88bd 5341 /*
ddcdf6e7
PZ
5342 * Right now, this is one of only two places move_task() is called,
5343 * so we can safely collect move_task() stats here rather than
5344 * inside move_task().
1e3c88bd 5345 */
8e45cb54 5346 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5347
5d6523eb 5348 return pulled;
1e3c88bd
PZ
5349}
5350
230059de 5351#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5352/*
5353 * update tg->load_weight by folding this cpu's load_avg
5354 */
48a16753 5355static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5356{
48a16753
PT
5357 struct sched_entity *se = tg->se[cpu];
5358 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5359
48a16753
PT
5360 /* throttled entities do not contribute to load */
5361 if (throttled_hierarchy(cfs_rq))
5362 return;
9e3081ca 5363
aff3e498 5364 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5365
82958366
PT
5366 if (se) {
5367 update_entity_load_avg(se, 1);
5368 /*
5369 * We pivot on our runnable average having decayed to zero for
5370 * list removal. This generally implies that all our children
5371 * have also been removed (modulo rounding error or bandwidth
5372 * control); however, such cases are rare and we can fix these
5373 * at enqueue.
5374 *
5375 * TODO: fix up out-of-order children on enqueue.
5376 */
5377 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5378 list_del_leaf_cfs_rq(cfs_rq);
5379 } else {
48a16753 5380 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5381 update_rq_runnable_avg(rq, rq->nr_running);
5382 }
9e3081ca
PZ
5383}
5384
48a16753 5385static void update_blocked_averages(int cpu)
9e3081ca 5386{
9e3081ca 5387 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5388 struct cfs_rq *cfs_rq;
5389 unsigned long flags;
9e3081ca 5390
48a16753
PT
5391 raw_spin_lock_irqsave(&rq->lock, flags);
5392 update_rq_clock(rq);
9763b67f
PZ
5393 /*
5394 * Iterates the task_group tree in a bottom up fashion, see
5395 * list_add_leaf_cfs_rq() for details.
5396 */
64660c86 5397 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5398 /*
5399 * Note: We may want to consider periodically releasing
5400 * rq->lock about these updates so that creating many task
5401 * groups does not result in continually extending hold time.
5402 */
5403 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5404 }
48a16753
PT
5405
5406 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5407}
5408
9763b67f 5409/*
68520796 5410 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5411 * This needs to be done in a top-down fashion because the load of a child
5412 * group is a fraction of its parents load.
5413 */
68520796 5414static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5415{
68520796
VD
5416 struct rq *rq = rq_of(cfs_rq);
5417 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5418 unsigned long now = jiffies;
68520796 5419 unsigned long load;
a35b6466 5420
68520796 5421 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5422 return;
5423
68520796
VD
5424 cfs_rq->h_load_next = NULL;
5425 for_each_sched_entity(se) {
5426 cfs_rq = cfs_rq_of(se);
5427 cfs_rq->h_load_next = se;
5428 if (cfs_rq->last_h_load_update == now)
5429 break;
5430 }
a35b6466 5431
68520796 5432 if (!se) {
7e3115ef 5433 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5434 cfs_rq->last_h_load_update = now;
5435 }
5436
5437 while ((se = cfs_rq->h_load_next) != NULL) {
5438 load = cfs_rq->h_load;
5439 load = div64_ul(load * se->avg.load_avg_contrib,
5440 cfs_rq->runnable_load_avg + 1);
5441 cfs_rq = group_cfs_rq(se);
5442 cfs_rq->h_load = load;
5443 cfs_rq->last_h_load_update = now;
5444 }
9763b67f
PZ
5445}
5446
367456c7 5447static unsigned long task_h_load(struct task_struct *p)
230059de 5448{
367456c7 5449 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5450
68520796 5451 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5452 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5453 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5454}
5455#else
48a16753 5456static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5457{
5458}
5459
367456c7 5460static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5461{
a003a25b 5462 return p->se.avg.load_avg_contrib;
1e3c88bd 5463}
230059de 5464#endif
1e3c88bd 5465
1e3c88bd 5466/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5467/*
5468 * sg_lb_stats - stats of a sched_group required for load_balancing
5469 */
5470struct sg_lb_stats {
5471 unsigned long avg_load; /*Avg load across the CPUs of the group */
5472 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5473 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5474 unsigned long load_per_task;
3ae11c90 5475 unsigned long group_power;
147c5fc2
PZ
5476 unsigned int sum_nr_running; /* Nr tasks running in the group */
5477 unsigned int group_capacity;
5478 unsigned int idle_cpus;
5479 unsigned int group_weight;
1e3c88bd 5480 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5481 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5482#ifdef CONFIG_NUMA_BALANCING
5483 unsigned int nr_numa_running;
5484 unsigned int nr_preferred_running;
5485#endif
1e3c88bd
PZ
5486};
5487
56cf515b
JK
5488/*
5489 * sd_lb_stats - Structure to store the statistics of a sched_domain
5490 * during load balancing.
5491 */
5492struct sd_lb_stats {
5493 struct sched_group *busiest; /* Busiest group in this sd */
5494 struct sched_group *local; /* Local group in this sd */
5495 unsigned long total_load; /* Total load of all groups in sd */
5496 unsigned long total_pwr; /* Total power of all groups in sd */
5497 unsigned long avg_load; /* Average load across all groups in sd */
5498
56cf515b 5499 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5500 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5501};
5502
147c5fc2
PZ
5503static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5504{
5505 /*
5506 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5507 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5508 * We must however clear busiest_stat::avg_load because
5509 * update_sd_pick_busiest() reads this before assignment.
5510 */
5511 *sds = (struct sd_lb_stats){
5512 .busiest = NULL,
5513 .local = NULL,
5514 .total_load = 0UL,
5515 .total_pwr = 0UL,
5516 .busiest_stat = {
5517 .avg_load = 0UL,
5518 },
5519 };
5520}
5521
1e3c88bd
PZ
5522/**
5523 * get_sd_load_idx - Obtain the load index for a given sched domain.
5524 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5525 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5526 *
5527 * Return: The load index.
1e3c88bd
PZ
5528 */
5529static inline int get_sd_load_idx(struct sched_domain *sd,
5530 enum cpu_idle_type idle)
5531{
5532 int load_idx;
5533
5534 switch (idle) {
5535 case CPU_NOT_IDLE:
5536 load_idx = sd->busy_idx;
5537 break;
5538
5539 case CPU_NEWLY_IDLE:
5540 load_idx = sd->newidle_idx;
5541 break;
5542 default:
5543 load_idx = sd->idle_idx;
5544 break;
5545 }
5546
5547 return load_idx;
5548}
5549
15f803c9 5550static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5551{
1399fa78 5552 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5553}
5554
5555unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5556{
5557 return default_scale_freq_power(sd, cpu);
5558}
5559
15f803c9 5560static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5561{
669c55e9 5562 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5563 unsigned long smt_gain = sd->smt_gain;
5564
5565 smt_gain /= weight;
5566
5567 return smt_gain;
5568}
5569
5570unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5571{
5572 return default_scale_smt_power(sd, cpu);
5573}
5574
15f803c9 5575static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5576{
5577 struct rq *rq = cpu_rq(cpu);
b654f7de 5578 u64 total, available, age_stamp, avg;
cadefd3d 5579 s64 delta;
1e3c88bd 5580
b654f7de
PZ
5581 /*
5582 * Since we're reading these variables without serialization make sure
5583 * we read them once before doing sanity checks on them.
5584 */
5585 age_stamp = ACCESS_ONCE(rq->age_stamp);
5586 avg = ACCESS_ONCE(rq->rt_avg);
5587
cadefd3d
PZ
5588 delta = rq_clock(rq) - age_stamp;
5589 if (unlikely(delta < 0))
5590 delta = 0;
5591
5592 total = sched_avg_period() + delta;
aa483808 5593
b654f7de 5594 if (unlikely(total < avg)) {
aa483808
VP
5595 /* Ensures that power won't end up being negative */
5596 available = 0;
5597 } else {
b654f7de 5598 available = total - avg;
aa483808 5599 }
1e3c88bd 5600
1399fa78
NR
5601 if (unlikely((s64)total < SCHED_POWER_SCALE))
5602 total = SCHED_POWER_SCALE;
1e3c88bd 5603
1399fa78 5604 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5605
5606 return div_u64(available, total);
5607}
5608
5609static void update_cpu_power(struct sched_domain *sd, int cpu)
5610{
669c55e9 5611 unsigned long weight = sd->span_weight;
1399fa78 5612 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5613 struct sched_group *sdg = sd->groups;
5614
1e3c88bd
PZ
5615 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5616 if (sched_feat(ARCH_POWER))
5617 power *= arch_scale_smt_power(sd, cpu);
5618 else
5619 power *= default_scale_smt_power(sd, cpu);
5620
1399fa78 5621 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5622 }
5623
9c3f75cb 5624 sdg->sgp->power_orig = power;
9d5efe05
SV
5625
5626 if (sched_feat(ARCH_POWER))
5627 power *= arch_scale_freq_power(sd, cpu);
5628 else
5629 power *= default_scale_freq_power(sd, cpu);
5630
1399fa78 5631 power >>= SCHED_POWER_SHIFT;
9d5efe05 5632
1e3c88bd 5633 power *= scale_rt_power(cpu);
1399fa78 5634 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5635
5636 if (!power)
5637 power = 1;
5638
e51fd5e2 5639 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5640 sdg->sgp->power = power;
1e3c88bd
PZ
5641}
5642
029632fb 5643void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5644{
5645 struct sched_domain *child = sd->child;
5646 struct sched_group *group, *sdg = sd->groups;
863bffc8 5647 unsigned long power, power_orig;
4ec4412e
VG
5648 unsigned long interval;
5649
5650 interval = msecs_to_jiffies(sd->balance_interval);
5651 interval = clamp(interval, 1UL, max_load_balance_interval);
5652 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5653
5654 if (!child) {
5655 update_cpu_power(sd, cpu);
5656 return;
5657 }
5658
863bffc8 5659 power_orig = power = 0;
1e3c88bd 5660
74a5ce20
PZ
5661 if (child->flags & SD_OVERLAP) {
5662 /*
5663 * SD_OVERLAP domains cannot assume that child groups
5664 * span the current group.
5665 */
5666
863bffc8 5667 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5668 struct sched_group_power *sgp;
5669 struct rq *rq = cpu_rq(cpu);
863bffc8 5670
9abf24d4
SD
5671 /*
5672 * build_sched_domains() -> init_sched_groups_power()
5673 * gets here before we've attached the domains to the
5674 * runqueues.
5675 *
5676 * Use power_of(), which is set irrespective of domains
5677 * in update_cpu_power().
5678 *
5679 * This avoids power/power_orig from being 0 and
5680 * causing divide-by-zero issues on boot.
5681 *
5682 * Runtime updates will correct power_orig.
5683 */
5684 if (unlikely(!rq->sd)) {
5685 power_orig += power_of(cpu);
5686 power += power_of(cpu);
5687 continue;
5688 }
863bffc8 5689
9abf24d4
SD
5690 sgp = rq->sd->groups->sgp;
5691 power_orig += sgp->power_orig;
5692 power += sgp->power;
863bffc8 5693 }
74a5ce20
PZ
5694 } else {
5695 /*
5696 * !SD_OVERLAP domains can assume that child groups
5697 * span the current group.
5698 */
5699
5700 group = child->groups;
5701 do {
863bffc8 5702 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5703 power += group->sgp->power;
5704 group = group->next;
5705 } while (group != child->groups);
5706 }
1e3c88bd 5707
863bffc8
PZ
5708 sdg->sgp->power_orig = power_orig;
5709 sdg->sgp->power = power;
1e3c88bd
PZ
5710}
5711
9d5efe05
SV
5712/*
5713 * Try and fix up capacity for tiny siblings, this is needed when
5714 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5715 * which on its own isn't powerful enough.
5716 *
5717 * See update_sd_pick_busiest() and check_asym_packing().
5718 */
5719static inline int
5720fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5721{
5722 /*
1399fa78 5723 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5724 */
a6c75f2f 5725 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5726 return 0;
5727
5728 /*
5729 * If ~90% of the cpu_power is still there, we're good.
5730 */
9c3f75cb 5731 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5732 return 1;
5733
5734 return 0;
5735}
5736
30ce5dab
PZ
5737/*
5738 * Group imbalance indicates (and tries to solve) the problem where balancing
5739 * groups is inadequate due to tsk_cpus_allowed() constraints.
5740 *
5741 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5742 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5743 * Something like:
5744 *
5745 * { 0 1 2 3 } { 4 5 6 7 }
5746 * * * * *
5747 *
5748 * If we were to balance group-wise we'd place two tasks in the first group and
5749 * two tasks in the second group. Clearly this is undesired as it will overload
5750 * cpu 3 and leave one of the cpus in the second group unused.
5751 *
5752 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5753 * by noticing the lower domain failed to reach balance and had difficulty
5754 * moving tasks due to affinity constraints.
30ce5dab
PZ
5755 *
5756 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5757 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5758 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5759 * to create an effective group imbalance.
5760 *
5761 * This is a somewhat tricky proposition since the next run might not find the
5762 * group imbalance and decide the groups need to be balanced again. A most
5763 * subtle and fragile situation.
5764 */
5765
6263322c 5766static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5767{
6263322c 5768 return group->sgp->imbalance;
30ce5dab
PZ
5769}
5770
b37d9316
PZ
5771/*
5772 * Compute the group capacity.
5773 *
c61037e9
PZ
5774 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5775 * first dividing out the smt factor and computing the actual number of cores
5776 * and limit power unit capacity with that.
b37d9316
PZ
5777 */
5778static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5779{
c61037e9
PZ
5780 unsigned int capacity, smt, cpus;
5781 unsigned int power, power_orig;
5782
5783 power = group->sgp->power;
5784 power_orig = group->sgp->power_orig;
5785 cpus = group->group_weight;
b37d9316 5786
c61037e9
PZ
5787 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5788 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5789 capacity = cpus / smt; /* cores */
b37d9316 5790
c61037e9 5791 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5792 if (!capacity)
5793 capacity = fix_small_capacity(env->sd, group);
5794
5795 return capacity;
5796}
5797
1e3c88bd
PZ
5798/**
5799 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5800 * @env: The load balancing environment.
1e3c88bd 5801 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5802 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5803 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5804 * @sgs: variable to hold the statistics for this group.
5805 */
bd939f45
PZ
5806static inline void update_sg_lb_stats(struct lb_env *env,
5807 struct sched_group *group, int load_idx,
23f0d209 5808 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5809{
30ce5dab 5810 unsigned long load;
bd939f45 5811 int i;
1e3c88bd 5812
b72ff13c
PZ
5813 memset(sgs, 0, sizeof(*sgs));
5814
b9403130 5815 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5816 struct rq *rq = cpu_rq(i);
5817
1e3c88bd 5818 /* Bias balancing toward cpus of our domain */
6263322c 5819 if (local_group)
04f733b4 5820 load = target_load(i, load_idx);
6263322c 5821 else
1e3c88bd 5822 load = source_load(i, load_idx);
1e3c88bd
PZ
5823
5824 sgs->group_load += load;
380c9077 5825 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5826#ifdef CONFIG_NUMA_BALANCING
5827 sgs->nr_numa_running += rq->nr_numa_running;
5828 sgs->nr_preferred_running += rq->nr_preferred_running;
5829#endif
1e3c88bd 5830 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5831 if (idle_cpu(i))
5832 sgs->idle_cpus++;
1e3c88bd
PZ
5833 }
5834
1e3c88bd 5835 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5836 sgs->group_power = group->sgp->power;
5837 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5838
dd5feea1 5839 if (sgs->sum_nr_running)
38d0f770 5840 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5841
aae6d3dd 5842 sgs->group_weight = group->group_weight;
fab47622 5843
b37d9316
PZ
5844 sgs->group_imb = sg_imbalanced(group);
5845 sgs->group_capacity = sg_capacity(env, group);
5846
fab47622
NR
5847 if (sgs->group_capacity > sgs->sum_nr_running)
5848 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5849}
5850
532cb4c4
MN
5851/**
5852 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5853 * @env: The load balancing environment.
532cb4c4
MN
5854 * @sds: sched_domain statistics
5855 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5856 * @sgs: sched_group statistics
532cb4c4
MN
5857 *
5858 * Determine if @sg is a busier group than the previously selected
5859 * busiest group.
e69f6186
YB
5860 *
5861 * Return: %true if @sg is a busier group than the previously selected
5862 * busiest group. %false otherwise.
532cb4c4 5863 */
bd939f45 5864static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5865 struct sd_lb_stats *sds,
5866 struct sched_group *sg,
bd939f45 5867 struct sg_lb_stats *sgs)
532cb4c4 5868{
56cf515b 5869 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5870 return false;
5871
5872 if (sgs->sum_nr_running > sgs->group_capacity)
5873 return true;
5874
5875 if (sgs->group_imb)
5876 return true;
5877
5878 /*
5879 * ASYM_PACKING needs to move all the work to the lowest
5880 * numbered CPUs in the group, therefore mark all groups
5881 * higher than ourself as busy.
5882 */
bd939f45
PZ
5883 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5884 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5885 if (!sds->busiest)
5886 return true;
5887
5888 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5889 return true;
5890 }
5891
5892 return false;
5893}
5894
0ec8aa00
PZ
5895#ifdef CONFIG_NUMA_BALANCING
5896static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5897{
5898 if (sgs->sum_nr_running > sgs->nr_numa_running)
5899 return regular;
5900 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5901 return remote;
5902 return all;
5903}
5904
5905static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5906{
5907 if (rq->nr_running > rq->nr_numa_running)
5908 return regular;
5909 if (rq->nr_running > rq->nr_preferred_running)
5910 return remote;
5911 return all;
5912}
5913#else
5914static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5915{
5916 return all;
5917}
5918
5919static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5920{
5921 return regular;
5922}
5923#endif /* CONFIG_NUMA_BALANCING */
5924
1e3c88bd 5925/**
461819ac 5926 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5927 * @env: The load balancing environment.
1e3c88bd
PZ
5928 * @sds: variable to hold the statistics for this sched_domain.
5929 */
0ec8aa00 5930static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5931{
bd939f45
PZ
5932 struct sched_domain *child = env->sd->child;
5933 struct sched_group *sg = env->sd->groups;
56cf515b 5934 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5935 int load_idx, prefer_sibling = 0;
5936
5937 if (child && child->flags & SD_PREFER_SIBLING)
5938 prefer_sibling = 1;
5939
bd939f45 5940 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5941
5942 do {
56cf515b 5943 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5944 int local_group;
5945
bd939f45 5946 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5947 if (local_group) {
5948 sds->local = sg;
5949 sgs = &sds->local_stat;
b72ff13c
PZ
5950
5951 if (env->idle != CPU_NEWLY_IDLE ||
5952 time_after_eq(jiffies, sg->sgp->next_update))
5953 update_group_power(env->sd, env->dst_cpu);
56cf515b 5954 }
1e3c88bd 5955
56cf515b 5956 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5957
b72ff13c
PZ
5958 if (local_group)
5959 goto next_group;
5960
1e3c88bd
PZ
5961 /*
5962 * In case the child domain prefers tasks go to siblings
532cb4c4 5963 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5964 * and move all the excess tasks away. We lower the capacity
5965 * of a group only if the local group has the capacity to fit
5966 * these excess tasks, i.e. nr_running < group_capacity. The
5967 * extra check prevents the case where you always pull from the
5968 * heaviest group when it is already under-utilized (possible
5969 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5970 */
b72ff13c
PZ
5971 if (prefer_sibling && sds->local &&
5972 sds->local_stat.group_has_capacity)
147c5fc2 5973 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5974
b72ff13c 5975 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5976 sds->busiest = sg;
56cf515b 5977 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5978 }
5979
b72ff13c
PZ
5980next_group:
5981 /* Now, start updating sd_lb_stats */
5982 sds->total_load += sgs->group_load;
5983 sds->total_pwr += sgs->group_power;
5984
532cb4c4 5985 sg = sg->next;
bd939f45 5986 } while (sg != env->sd->groups);
0ec8aa00
PZ
5987
5988 if (env->sd->flags & SD_NUMA)
5989 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5990}
5991
532cb4c4
MN
5992/**
5993 * check_asym_packing - Check to see if the group is packed into the
5994 * sched doman.
5995 *
5996 * This is primarily intended to used at the sibling level. Some
5997 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5998 * case of POWER7, it can move to lower SMT modes only when higher
5999 * threads are idle. When in lower SMT modes, the threads will
6000 * perform better since they share less core resources. Hence when we
6001 * have idle threads, we want them to be the higher ones.
6002 *
6003 * This packing function is run on idle threads. It checks to see if
6004 * the busiest CPU in this domain (core in the P7 case) has a higher
6005 * CPU number than the packing function is being run on. Here we are
6006 * assuming lower CPU number will be equivalent to lower a SMT thread
6007 * number.
6008 *
e69f6186 6009 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6010 * this CPU. The amount of the imbalance is returned in *imbalance.
6011 *
cd96891d 6012 * @env: The load balancing environment.
532cb4c4 6013 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6014 */
bd939f45 6015static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6016{
6017 int busiest_cpu;
6018
bd939f45 6019 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6020 return 0;
6021
6022 if (!sds->busiest)
6023 return 0;
6024
6025 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6026 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6027 return 0;
6028
bd939f45 6029 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6030 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6031 SCHED_POWER_SCALE);
bd939f45 6032
532cb4c4 6033 return 1;
1e3c88bd
PZ
6034}
6035
6036/**
6037 * fix_small_imbalance - Calculate the minor imbalance that exists
6038 * amongst the groups of a sched_domain, during
6039 * load balancing.
cd96891d 6040 * @env: The load balancing environment.
1e3c88bd 6041 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6042 */
bd939f45
PZ
6043static inline
6044void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6045{
6046 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6047 unsigned int imbn = 2;
dd5feea1 6048 unsigned long scaled_busy_load_per_task;
56cf515b 6049 struct sg_lb_stats *local, *busiest;
1e3c88bd 6050
56cf515b
JK
6051 local = &sds->local_stat;
6052 busiest = &sds->busiest_stat;
1e3c88bd 6053
56cf515b
JK
6054 if (!local->sum_nr_running)
6055 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6056 else if (busiest->load_per_task > local->load_per_task)
6057 imbn = 1;
dd5feea1 6058
56cf515b
JK
6059 scaled_busy_load_per_task =
6060 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6061 busiest->group_power;
56cf515b 6062
3029ede3
VD
6063 if (busiest->avg_load + scaled_busy_load_per_task >=
6064 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6065 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6066 return;
6067 }
6068
6069 /*
6070 * OK, we don't have enough imbalance to justify moving tasks,
6071 * however we may be able to increase total CPU power used by
6072 * moving them.
6073 */
6074
3ae11c90 6075 pwr_now += busiest->group_power *
56cf515b 6076 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6077 pwr_now += local->group_power *
56cf515b 6078 min(local->load_per_task, local->avg_load);
1399fa78 6079 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6080
6081 /* Amount of load we'd subtract */
a2cd4260 6082 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6083 pwr_move += busiest->group_power *
56cf515b 6084 min(busiest->load_per_task,
a2cd4260 6085 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6086 }
1e3c88bd
PZ
6087
6088 /* Amount of load we'd add */
3ae11c90 6089 if (busiest->avg_load * busiest->group_power <
56cf515b 6090 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6091 tmp = (busiest->avg_load * busiest->group_power) /
6092 local->group_power;
56cf515b
JK
6093 } else {
6094 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6095 local->group_power;
56cf515b 6096 }
3ae11c90
PZ
6097 pwr_move += local->group_power *
6098 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6099 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6100
6101 /* Move if we gain throughput */
6102 if (pwr_move > pwr_now)
56cf515b 6103 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6104}
6105
6106/**
6107 * calculate_imbalance - Calculate the amount of imbalance present within the
6108 * groups of a given sched_domain during load balance.
bd939f45 6109 * @env: load balance environment
1e3c88bd 6110 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6111 */
bd939f45 6112static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6113{
dd5feea1 6114 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6115 struct sg_lb_stats *local, *busiest;
6116
6117 local = &sds->local_stat;
56cf515b 6118 busiest = &sds->busiest_stat;
dd5feea1 6119
56cf515b 6120 if (busiest->group_imb) {
30ce5dab
PZ
6121 /*
6122 * In the group_imb case we cannot rely on group-wide averages
6123 * to ensure cpu-load equilibrium, look at wider averages. XXX
6124 */
56cf515b
JK
6125 busiest->load_per_task =
6126 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6127 }
6128
1e3c88bd
PZ
6129 /*
6130 * In the presence of smp nice balancing, certain scenarios can have
6131 * max load less than avg load(as we skip the groups at or below
6132 * its cpu_power, while calculating max_load..)
6133 */
b1885550
VD
6134 if (busiest->avg_load <= sds->avg_load ||
6135 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6136 env->imbalance = 0;
6137 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6138 }
6139
56cf515b 6140 if (!busiest->group_imb) {
dd5feea1
SS
6141 /*
6142 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6143 * Except of course for the group_imb case, since then we might
6144 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6145 */
56cf515b
JK
6146 load_above_capacity =
6147 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6148
1399fa78 6149 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6150 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6151 }
6152
6153 /*
6154 * We're trying to get all the cpus to the average_load, so we don't
6155 * want to push ourselves above the average load, nor do we wish to
6156 * reduce the max loaded cpu below the average load. At the same time,
6157 * we also don't want to reduce the group load below the group capacity
6158 * (so that we can implement power-savings policies etc). Thus we look
6159 * for the minimum possible imbalance.
dd5feea1 6160 */
30ce5dab 6161 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6162
6163 /* How much load to actually move to equalise the imbalance */
56cf515b 6164 env->imbalance = min(
3ae11c90
PZ
6165 max_pull * busiest->group_power,
6166 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6167 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6168
6169 /*
6170 * if *imbalance is less than the average load per runnable task
25985edc 6171 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6172 * a think about bumping its value to force at least one task to be
6173 * moved
6174 */
56cf515b 6175 if (env->imbalance < busiest->load_per_task)
bd939f45 6176 return fix_small_imbalance(env, sds);
1e3c88bd 6177}
fab47622 6178
1e3c88bd
PZ
6179/******* find_busiest_group() helpers end here *********************/
6180
6181/**
6182 * find_busiest_group - Returns the busiest group within the sched_domain
6183 * if there is an imbalance. If there isn't an imbalance, and
6184 * the user has opted for power-savings, it returns a group whose
6185 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6186 * such a group exists.
6187 *
6188 * Also calculates the amount of weighted load which should be moved
6189 * to restore balance.
6190 *
cd96891d 6191 * @env: The load balancing environment.
1e3c88bd 6192 *
e69f6186 6193 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6194 * - If no imbalance and user has opted for power-savings balance,
6195 * return the least loaded group whose CPUs can be
6196 * put to idle by rebalancing its tasks onto our group.
6197 */
56cf515b 6198static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6199{
56cf515b 6200 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6201 struct sd_lb_stats sds;
6202
147c5fc2 6203 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6204
6205 /*
6206 * Compute the various statistics relavent for load balancing at
6207 * this level.
6208 */
23f0d209 6209 update_sd_lb_stats(env, &sds);
56cf515b
JK
6210 local = &sds.local_stat;
6211 busiest = &sds.busiest_stat;
1e3c88bd 6212
bd939f45
PZ
6213 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6214 check_asym_packing(env, &sds))
532cb4c4
MN
6215 return sds.busiest;
6216
cc57aa8f 6217 /* There is no busy sibling group to pull tasks from */
56cf515b 6218 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6219 goto out_balanced;
6220
1399fa78 6221 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6222
866ab43e
PZ
6223 /*
6224 * If the busiest group is imbalanced the below checks don't
30ce5dab 6225 * work because they assume all things are equal, which typically
866ab43e
PZ
6226 * isn't true due to cpus_allowed constraints and the like.
6227 */
56cf515b 6228 if (busiest->group_imb)
866ab43e
PZ
6229 goto force_balance;
6230
cc57aa8f 6231 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6232 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6233 !busiest->group_has_capacity)
fab47622
NR
6234 goto force_balance;
6235
cc57aa8f
PZ
6236 /*
6237 * If the local group is more busy than the selected busiest group
6238 * don't try and pull any tasks.
6239 */
56cf515b 6240 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6241 goto out_balanced;
6242
cc57aa8f
PZ
6243 /*
6244 * Don't pull any tasks if this group is already above the domain
6245 * average load.
6246 */
56cf515b 6247 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6248 goto out_balanced;
6249
bd939f45 6250 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6251 /*
6252 * This cpu is idle. If the busiest group load doesn't
6253 * have more tasks than the number of available cpu's and
6254 * there is no imbalance between this and busiest group
6255 * wrt to idle cpu's, it is balanced.
6256 */
56cf515b
JK
6257 if ((local->idle_cpus < busiest->idle_cpus) &&
6258 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6259 goto out_balanced;
c186fafe
PZ
6260 } else {
6261 /*
6262 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6263 * imbalance_pct to be conservative.
6264 */
56cf515b
JK
6265 if (100 * busiest->avg_load <=
6266 env->sd->imbalance_pct * local->avg_load)
c186fafe 6267 goto out_balanced;
aae6d3dd 6268 }
1e3c88bd 6269
fab47622 6270force_balance:
1e3c88bd 6271 /* Looks like there is an imbalance. Compute it */
bd939f45 6272 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6273 return sds.busiest;
6274
6275out_balanced:
bd939f45 6276 env->imbalance = 0;
1e3c88bd
PZ
6277 return NULL;
6278}
6279
6280/*
6281 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6282 */
bd939f45 6283static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6284 struct sched_group *group)
1e3c88bd
PZ
6285{
6286 struct rq *busiest = NULL, *rq;
95a79b80 6287 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6288 int i;
6289
6906a408 6290 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6291 unsigned long power, capacity, wl;
6292 enum fbq_type rt;
6293
6294 rq = cpu_rq(i);
6295 rt = fbq_classify_rq(rq);
1e3c88bd 6296
0ec8aa00
PZ
6297 /*
6298 * We classify groups/runqueues into three groups:
6299 * - regular: there are !numa tasks
6300 * - remote: there are numa tasks that run on the 'wrong' node
6301 * - all: there is no distinction
6302 *
6303 * In order to avoid migrating ideally placed numa tasks,
6304 * ignore those when there's better options.
6305 *
6306 * If we ignore the actual busiest queue to migrate another
6307 * task, the next balance pass can still reduce the busiest
6308 * queue by moving tasks around inside the node.
6309 *
6310 * If we cannot move enough load due to this classification
6311 * the next pass will adjust the group classification and
6312 * allow migration of more tasks.
6313 *
6314 * Both cases only affect the total convergence complexity.
6315 */
6316 if (rt > env->fbq_type)
6317 continue;
6318
6319 power = power_of(i);
6320 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6321 if (!capacity)
bd939f45 6322 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6323
6e40f5bb 6324 wl = weighted_cpuload(i);
1e3c88bd 6325
6e40f5bb
TG
6326 /*
6327 * When comparing with imbalance, use weighted_cpuload()
6328 * which is not scaled with the cpu power.
6329 */
bd939f45 6330 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6331 continue;
6332
6e40f5bb
TG
6333 /*
6334 * For the load comparisons with the other cpu's, consider
6335 * the weighted_cpuload() scaled with the cpu power, so that
6336 * the load can be moved away from the cpu that is potentially
6337 * running at a lower capacity.
95a79b80
JK
6338 *
6339 * Thus we're looking for max(wl_i / power_i), crosswise
6340 * multiplication to rid ourselves of the division works out
6341 * to: wl_i * power_j > wl_j * power_i; where j is our
6342 * previous maximum.
6e40f5bb 6343 */
95a79b80
JK
6344 if (wl * busiest_power > busiest_load * power) {
6345 busiest_load = wl;
6346 busiest_power = power;
1e3c88bd
PZ
6347 busiest = rq;
6348 }
6349 }
6350
6351 return busiest;
6352}
6353
6354/*
6355 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6356 * so long as it is large enough.
6357 */
6358#define MAX_PINNED_INTERVAL 512
6359
6360/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6361DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6362
bd939f45 6363static int need_active_balance(struct lb_env *env)
1af3ed3d 6364{
bd939f45
PZ
6365 struct sched_domain *sd = env->sd;
6366
6367 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6368
6369 /*
6370 * ASYM_PACKING needs to force migrate tasks from busy but
6371 * higher numbered CPUs in order to pack all tasks in the
6372 * lowest numbered CPUs.
6373 */
bd939f45 6374 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6375 return 1;
1af3ed3d
PZ
6376 }
6377
6378 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6379}
6380
969c7921
TH
6381static int active_load_balance_cpu_stop(void *data);
6382
23f0d209
JK
6383static int should_we_balance(struct lb_env *env)
6384{
6385 struct sched_group *sg = env->sd->groups;
6386 struct cpumask *sg_cpus, *sg_mask;
6387 int cpu, balance_cpu = -1;
6388
6389 /*
6390 * In the newly idle case, we will allow all the cpu's
6391 * to do the newly idle load balance.
6392 */
6393 if (env->idle == CPU_NEWLY_IDLE)
6394 return 1;
6395
6396 sg_cpus = sched_group_cpus(sg);
6397 sg_mask = sched_group_mask(sg);
6398 /* Try to find first idle cpu */
6399 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6400 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6401 continue;
6402
6403 balance_cpu = cpu;
6404 break;
6405 }
6406
6407 if (balance_cpu == -1)
6408 balance_cpu = group_balance_cpu(sg);
6409
6410 /*
6411 * First idle cpu or the first cpu(busiest) in this sched group
6412 * is eligible for doing load balancing at this and above domains.
6413 */
b0cff9d8 6414 return balance_cpu == env->dst_cpu;
23f0d209
JK
6415}
6416
1e3c88bd
PZ
6417/*
6418 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6419 * tasks if there is an imbalance.
6420 */
6421static int load_balance(int this_cpu, struct rq *this_rq,
6422 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6423 int *continue_balancing)
1e3c88bd 6424{
88b8dac0 6425 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6426 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6427 struct sched_group *group;
1e3c88bd
PZ
6428 struct rq *busiest;
6429 unsigned long flags;
e6252c3e 6430 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6431
8e45cb54
PZ
6432 struct lb_env env = {
6433 .sd = sd,
ddcdf6e7
PZ
6434 .dst_cpu = this_cpu,
6435 .dst_rq = this_rq,
88b8dac0 6436 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6437 .idle = idle,
eb95308e 6438 .loop_break = sched_nr_migrate_break,
b9403130 6439 .cpus = cpus,
0ec8aa00 6440 .fbq_type = all,
8e45cb54
PZ
6441 };
6442
cfc03118
JK
6443 /*
6444 * For NEWLY_IDLE load_balancing, we don't need to consider
6445 * other cpus in our group
6446 */
e02e60c1 6447 if (idle == CPU_NEWLY_IDLE)
cfc03118 6448 env.dst_grpmask = NULL;
cfc03118 6449
1e3c88bd
PZ
6450 cpumask_copy(cpus, cpu_active_mask);
6451
1e3c88bd
PZ
6452 schedstat_inc(sd, lb_count[idle]);
6453
6454redo:
23f0d209
JK
6455 if (!should_we_balance(&env)) {
6456 *continue_balancing = 0;
1e3c88bd 6457 goto out_balanced;
23f0d209 6458 }
1e3c88bd 6459
23f0d209 6460 group = find_busiest_group(&env);
1e3c88bd
PZ
6461 if (!group) {
6462 schedstat_inc(sd, lb_nobusyg[idle]);
6463 goto out_balanced;
6464 }
6465
b9403130 6466 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6467 if (!busiest) {
6468 schedstat_inc(sd, lb_nobusyq[idle]);
6469 goto out_balanced;
6470 }
6471
78feefc5 6472 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6473
bd939f45 6474 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6475
6476 ld_moved = 0;
6477 if (busiest->nr_running > 1) {
6478 /*
6479 * Attempt to move tasks. If find_busiest_group has found
6480 * an imbalance but busiest->nr_running <= 1, the group is
6481 * still unbalanced. ld_moved simply stays zero, so it is
6482 * correctly treated as an imbalance.
6483 */
8e45cb54 6484 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6485 env.src_cpu = busiest->cpu;
6486 env.src_rq = busiest;
6487 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6488
5d6523eb 6489more_balance:
1e3c88bd 6490 local_irq_save(flags);
78feefc5 6491 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6492
6493 /*
6494 * cur_ld_moved - load moved in current iteration
6495 * ld_moved - cumulative load moved across iterations
6496 */
6497 cur_ld_moved = move_tasks(&env);
6498 ld_moved += cur_ld_moved;
78feefc5 6499 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6500 local_irq_restore(flags);
6501
6502 /*
6503 * some other cpu did the load balance for us.
6504 */
88b8dac0
SV
6505 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6506 resched_cpu(env.dst_cpu);
6507
f1cd0858
JK
6508 if (env.flags & LBF_NEED_BREAK) {
6509 env.flags &= ~LBF_NEED_BREAK;
6510 goto more_balance;
6511 }
6512
88b8dac0
SV
6513 /*
6514 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6515 * us and move them to an alternate dst_cpu in our sched_group
6516 * where they can run. The upper limit on how many times we
6517 * iterate on same src_cpu is dependent on number of cpus in our
6518 * sched_group.
6519 *
6520 * This changes load balance semantics a bit on who can move
6521 * load to a given_cpu. In addition to the given_cpu itself
6522 * (or a ilb_cpu acting on its behalf where given_cpu is
6523 * nohz-idle), we now have balance_cpu in a position to move
6524 * load to given_cpu. In rare situations, this may cause
6525 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6526 * _independently_ and at _same_ time to move some load to
6527 * given_cpu) causing exceess load to be moved to given_cpu.
6528 * This however should not happen so much in practice and
6529 * moreover subsequent load balance cycles should correct the
6530 * excess load moved.
6531 */
6263322c 6532 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6533
7aff2e3a
VD
6534 /* Prevent to re-select dst_cpu via env's cpus */
6535 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6536
78feefc5 6537 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6538 env.dst_cpu = env.new_dst_cpu;
6263322c 6539 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6540 env.loop = 0;
6541 env.loop_break = sched_nr_migrate_break;
e02e60c1 6542
88b8dac0
SV
6543 /*
6544 * Go back to "more_balance" rather than "redo" since we
6545 * need to continue with same src_cpu.
6546 */
6547 goto more_balance;
6548 }
1e3c88bd 6549
6263322c
PZ
6550 /*
6551 * We failed to reach balance because of affinity.
6552 */
6553 if (sd_parent) {
6554 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6555
6556 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6557 *group_imbalance = 1;
6558 } else if (*group_imbalance)
6559 *group_imbalance = 0;
6560 }
6561
1e3c88bd 6562 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6563 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6564 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6565 if (!cpumask_empty(cpus)) {
6566 env.loop = 0;
6567 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6568 goto redo;
bbf18b19 6569 }
1e3c88bd
PZ
6570 goto out_balanced;
6571 }
6572 }
6573
6574 if (!ld_moved) {
6575 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6576 /*
6577 * Increment the failure counter only on periodic balance.
6578 * We do not want newidle balance, which can be very
6579 * frequent, pollute the failure counter causing
6580 * excessive cache_hot migrations and active balances.
6581 */
6582 if (idle != CPU_NEWLY_IDLE)
6583 sd->nr_balance_failed++;
1e3c88bd 6584
bd939f45 6585 if (need_active_balance(&env)) {
1e3c88bd
PZ
6586 raw_spin_lock_irqsave(&busiest->lock, flags);
6587
969c7921
TH
6588 /* don't kick the active_load_balance_cpu_stop,
6589 * if the curr task on busiest cpu can't be
6590 * moved to this_cpu
1e3c88bd
PZ
6591 */
6592 if (!cpumask_test_cpu(this_cpu,
fa17b507 6593 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6594 raw_spin_unlock_irqrestore(&busiest->lock,
6595 flags);
8e45cb54 6596 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6597 goto out_one_pinned;
6598 }
6599
969c7921
TH
6600 /*
6601 * ->active_balance synchronizes accesses to
6602 * ->active_balance_work. Once set, it's cleared
6603 * only after active load balance is finished.
6604 */
1e3c88bd
PZ
6605 if (!busiest->active_balance) {
6606 busiest->active_balance = 1;
6607 busiest->push_cpu = this_cpu;
6608 active_balance = 1;
6609 }
6610 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6611
bd939f45 6612 if (active_balance) {
969c7921
TH
6613 stop_one_cpu_nowait(cpu_of(busiest),
6614 active_load_balance_cpu_stop, busiest,
6615 &busiest->active_balance_work);
bd939f45 6616 }
1e3c88bd
PZ
6617
6618 /*
6619 * We've kicked active balancing, reset the failure
6620 * counter.
6621 */
6622 sd->nr_balance_failed = sd->cache_nice_tries+1;
6623 }
6624 } else
6625 sd->nr_balance_failed = 0;
6626
6627 if (likely(!active_balance)) {
6628 /* We were unbalanced, so reset the balancing interval */
6629 sd->balance_interval = sd->min_interval;
6630 } else {
6631 /*
6632 * If we've begun active balancing, start to back off. This
6633 * case may not be covered by the all_pinned logic if there
6634 * is only 1 task on the busy runqueue (because we don't call
6635 * move_tasks).
6636 */
6637 if (sd->balance_interval < sd->max_interval)
6638 sd->balance_interval *= 2;
6639 }
6640
1e3c88bd
PZ
6641 goto out;
6642
6643out_balanced:
6644 schedstat_inc(sd, lb_balanced[idle]);
6645
6646 sd->nr_balance_failed = 0;
6647
6648out_one_pinned:
6649 /* tune up the balancing interval */
8e45cb54 6650 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6651 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6652 (sd->balance_interval < sd->max_interval))
6653 sd->balance_interval *= 2;
6654
46e49b38 6655 ld_moved = 0;
1e3c88bd 6656out:
1e3c88bd
PZ
6657 return ld_moved;
6658}
6659
1e3c88bd
PZ
6660/*
6661 * idle_balance is called by schedule() if this_cpu is about to become
6662 * idle. Attempts to pull tasks from other CPUs.
6663 */
6e83125c 6664static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6665{
6666 struct sched_domain *sd;
6667 int pulled_task = 0;
6668 unsigned long next_balance = jiffies + HZ;
9bd721c5 6669 u64 curr_cost = 0;
b4f2ab43 6670 int this_cpu = this_rq->cpu;
1e3c88bd 6671
6e83125c 6672 idle_enter_fair(this_rq);
0e5b5337 6673
6e83125c
PZ
6674 /*
6675 * We must set idle_stamp _before_ calling idle_balance(), such that we
6676 * measure the duration of idle_balance() as idle time.
6677 */
6678 this_rq->idle_stamp = rq_clock(this_rq);
6679
1e3c88bd 6680 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6681 goto out;
1e3c88bd 6682
f492e12e
PZ
6683 /*
6684 * Drop the rq->lock, but keep IRQ/preempt disabled.
6685 */
6686 raw_spin_unlock(&this_rq->lock);
6687
48a16753 6688 update_blocked_averages(this_cpu);
dce840a0 6689 rcu_read_lock();
1e3c88bd
PZ
6690 for_each_domain(this_cpu, sd) {
6691 unsigned long interval;
23f0d209 6692 int continue_balancing = 1;
9bd721c5 6693 u64 t0, domain_cost;
1e3c88bd
PZ
6694
6695 if (!(sd->flags & SD_LOAD_BALANCE))
6696 continue;
6697
9bd721c5
JL
6698 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6699 break;
6700
f492e12e 6701 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6702 t0 = sched_clock_cpu(this_cpu);
6703
1e3c88bd 6704 /* If we've pulled tasks over stop searching: */
f492e12e 6705 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6706 sd, CPU_NEWLY_IDLE,
6707 &continue_balancing);
9bd721c5
JL
6708
6709 domain_cost = sched_clock_cpu(this_cpu) - t0;
6710 if (domain_cost > sd->max_newidle_lb_cost)
6711 sd->max_newidle_lb_cost = domain_cost;
6712
6713 curr_cost += domain_cost;
f492e12e 6714 }
1e3c88bd
PZ
6715
6716 interval = msecs_to_jiffies(sd->balance_interval);
6717 if (time_after(next_balance, sd->last_balance + interval))
6718 next_balance = sd->last_balance + interval;
3c4017c1 6719 if (pulled_task)
1e3c88bd 6720 break;
1e3c88bd 6721 }
dce840a0 6722 rcu_read_unlock();
f492e12e
PZ
6723
6724 raw_spin_lock(&this_rq->lock);
6725
0e5b5337
JL
6726 if (curr_cost > this_rq->max_idle_balance_cost)
6727 this_rq->max_idle_balance_cost = curr_cost;
6728
e5fc6611 6729 /*
0e5b5337
JL
6730 * While browsing the domains, we released the rq lock, a task could
6731 * have been enqueued in the meantime. Since we're not going idle,
6732 * pretend we pulled a task.
e5fc6611 6733 */
0e5b5337 6734 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6735 pulled_task = 1;
e5fc6611 6736
1e3c88bd
PZ
6737 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6738 /*
6739 * We are going idle. next_balance may be set based on
6740 * a busy processor. So reset next_balance.
6741 */
6742 this_rq->next_balance = next_balance;
6743 }
9bd721c5 6744
6e83125c 6745out:
e4aa358b 6746 /* Is there a task of a high priority class? */
46383648 6747 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6748 pulled_task = -1;
6749
6750 if (pulled_task) {
6751 idle_exit_fair(this_rq);
6e83125c 6752 this_rq->idle_stamp = 0;
e4aa358b 6753 }
6e83125c 6754
3c4017c1 6755 return pulled_task;
1e3c88bd
PZ
6756}
6757
6758/*
969c7921
TH
6759 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6760 * running tasks off the busiest CPU onto idle CPUs. It requires at
6761 * least 1 task to be running on each physical CPU where possible, and
6762 * avoids physical / logical imbalances.
1e3c88bd 6763 */
969c7921 6764static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6765{
969c7921
TH
6766 struct rq *busiest_rq = data;
6767 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6768 int target_cpu = busiest_rq->push_cpu;
969c7921 6769 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6770 struct sched_domain *sd;
969c7921
TH
6771
6772 raw_spin_lock_irq(&busiest_rq->lock);
6773
6774 /* make sure the requested cpu hasn't gone down in the meantime */
6775 if (unlikely(busiest_cpu != smp_processor_id() ||
6776 !busiest_rq->active_balance))
6777 goto out_unlock;
1e3c88bd
PZ
6778
6779 /* Is there any task to move? */
6780 if (busiest_rq->nr_running <= 1)
969c7921 6781 goto out_unlock;
1e3c88bd
PZ
6782
6783 /*
6784 * This condition is "impossible", if it occurs
6785 * we need to fix it. Originally reported by
6786 * Bjorn Helgaas on a 128-cpu setup.
6787 */
6788 BUG_ON(busiest_rq == target_rq);
6789
6790 /* move a task from busiest_rq to target_rq */
6791 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6792
6793 /* Search for an sd spanning us and the target CPU. */
dce840a0 6794 rcu_read_lock();
1e3c88bd
PZ
6795 for_each_domain(target_cpu, sd) {
6796 if ((sd->flags & SD_LOAD_BALANCE) &&
6797 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6798 break;
6799 }
6800
6801 if (likely(sd)) {
8e45cb54
PZ
6802 struct lb_env env = {
6803 .sd = sd,
ddcdf6e7
PZ
6804 .dst_cpu = target_cpu,
6805 .dst_rq = target_rq,
6806 .src_cpu = busiest_rq->cpu,
6807 .src_rq = busiest_rq,
8e45cb54
PZ
6808 .idle = CPU_IDLE,
6809 };
6810
1e3c88bd
PZ
6811 schedstat_inc(sd, alb_count);
6812
8e45cb54 6813 if (move_one_task(&env))
1e3c88bd
PZ
6814 schedstat_inc(sd, alb_pushed);
6815 else
6816 schedstat_inc(sd, alb_failed);
6817 }
dce840a0 6818 rcu_read_unlock();
1e3c88bd 6819 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6820out_unlock:
6821 busiest_rq->active_balance = 0;
6822 raw_spin_unlock_irq(&busiest_rq->lock);
6823 return 0;
1e3c88bd
PZ
6824}
6825
d987fc7f
MG
6826static inline int on_null_domain(struct rq *rq)
6827{
6828 return unlikely(!rcu_dereference_sched(rq->sd));
6829}
6830
3451d024 6831#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6832/*
6833 * idle load balancing details
83cd4fe2
VP
6834 * - When one of the busy CPUs notice that there may be an idle rebalancing
6835 * needed, they will kick the idle load balancer, which then does idle
6836 * load balancing for all the idle CPUs.
6837 */
1e3c88bd 6838static struct {
83cd4fe2 6839 cpumask_var_t idle_cpus_mask;
0b005cf5 6840 atomic_t nr_cpus;
83cd4fe2
VP
6841 unsigned long next_balance; /* in jiffy units */
6842} nohz ____cacheline_aligned;
1e3c88bd 6843
3dd0337d 6844static inline int find_new_ilb(void)
1e3c88bd 6845{
0b005cf5 6846 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6847
786d6dc7
SS
6848 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6849 return ilb;
6850
6851 return nr_cpu_ids;
1e3c88bd 6852}
1e3c88bd 6853
83cd4fe2
VP
6854/*
6855 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6856 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6857 * CPU (if there is one).
6858 */
0aeeeeba 6859static void nohz_balancer_kick(void)
83cd4fe2
VP
6860{
6861 int ilb_cpu;
6862
6863 nohz.next_balance++;
6864
3dd0337d 6865 ilb_cpu = find_new_ilb();
83cd4fe2 6866
0b005cf5
SS
6867 if (ilb_cpu >= nr_cpu_ids)
6868 return;
83cd4fe2 6869
cd490c5b 6870 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6871 return;
6872 /*
6873 * Use smp_send_reschedule() instead of resched_cpu().
6874 * This way we generate a sched IPI on the target cpu which
6875 * is idle. And the softirq performing nohz idle load balance
6876 * will be run before returning from the IPI.
6877 */
6878 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6879 return;
6880}
6881
c1cc017c 6882static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6883{
6884 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6885 /*
6886 * Completely isolated CPUs don't ever set, so we must test.
6887 */
6888 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6889 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6890 atomic_dec(&nohz.nr_cpus);
6891 }
71325960
SS
6892 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6893 }
6894}
6895
69e1e811
SS
6896static inline void set_cpu_sd_state_busy(void)
6897{
6898 struct sched_domain *sd;
37dc6b50 6899 int cpu = smp_processor_id();
69e1e811 6900
69e1e811 6901 rcu_read_lock();
37dc6b50 6902 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6903
6904 if (!sd || !sd->nohz_idle)
6905 goto unlock;
6906 sd->nohz_idle = 0;
6907
37dc6b50 6908 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6909unlock:
69e1e811
SS
6910 rcu_read_unlock();
6911}
6912
6913void set_cpu_sd_state_idle(void)
6914{
6915 struct sched_domain *sd;
37dc6b50 6916 int cpu = smp_processor_id();
69e1e811 6917
69e1e811 6918 rcu_read_lock();
37dc6b50 6919 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6920
6921 if (!sd || sd->nohz_idle)
6922 goto unlock;
6923 sd->nohz_idle = 1;
6924
37dc6b50 6925 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6926unlock:
69e1e811
SS
6927 rcu_read_unlock();
6928}
6929
1e3c88bd 6930/*
c1cc017c 6931 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6932 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6933 */
c1cc017c 6934void nohz_balance_enter_idle(int cpu)
1e3c88bd 6935{
71325960
SS
6936 /*
6937 * If this cpu is going down, then nothing needs to be done.
6938 */
6939 if (!cpu_active(cpu))
6940 return;
6941
c1cc017c
AS
6942 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6943 return;
1e3c88bd 6944
d987fc7f
MG
6945 /*
6946 * If we're a completely isolated CPU, we don't play.
6947 */
6948 if (on_null_domain(cpu_rq(cpu)))
6949 return;
6950
c1cc017c
AS
6951 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6952 atomic_inc(&nohz.nr_cpus);
6953 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6954}
71325960 6955
0db0628d 6956static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6957 unsigned long action, void *hcpu)
6958{
6959 switch (action & ~CPU_TASKS_FROZEN) {
6960 case CPU_DYING:
c1cc017c 6961 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6962 return NOTIFY_OK;
6963 default:
6964 return NOTIFY_DONE;
6965 }
6966}
1e3c88bd
PZ
6967#endif
6968
6969static DEFINE_SPINLOCK(balancing);
6970
49c022e6
PZ
6971/*
6972 * Scale the max load_balance interval with the number of CPUs in the system.
6973 * This trades load-balance latency on larger machines for less cross talk.
6974 */
029632fb 6975void update_max_interval(void)
49c022e6
PZ
6976{
6977 max_load_balance_interval = HZ*num_online_cpus()/10;
6978}
6979
1e3c88bd
PZ
6980/*
6981 * It checks each scheduling domain to see if it is due to be balanced,
6982 * and initiates a balancing operation if so.
6983 *
b9b0853a 6984 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6985 */
f7ed0a89 6986static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6987{
23f0d209 6988 int continue_balancing = 1;
f7ed0a89 6989 int cpu = rq->cpu;
1e3c88bd 6990 unsigned long interval;
04f733b4 6991 struct sched_domain *sd;
1e3c88bd
PZ
6992 /* Earliest time when we have to do rebalance again */
6993 unsigned long next_balance = jiffies + 60*HZ;
6994 int update_next_balance = 0;
f48627e6
JL
6995 int need_serialize, need_decay = 0;
6996 u64 max_cost = 0;
1e3c88bd 6997
48a16753 6998 update_blocked_averages(cpu);
2069dd75 6999
dce840a0 7000 rcu_read_lock();
1e3c88bd 7001 for_each_domain(cpu, sd) {
f48627e6
JL
7002 /*
7003 * Decay the newidle max times here because this is a regular
7004 * visit to all the domains. Decay ~1% per second.
7005 */
7006 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7007 sd->max_newidle_lb_cost =
7008 (sd->max_newidle_lb_cost * 253) / 256;
7009 sd->next_decay_max_lb_cost = jiffies + HZ;
7010 need_decay = 1;
7011 }
7012 max_cost += sd->max_newidle_lb_cost;
7013
1e3c88bd
PZ
7014 if (!(sd->flags & SD_LOAD_BALANCE))
7015 continue;
7016
f48627e6
JL
7017 /*
7018 * Stop the load balance at this level. There is another
7019 * CPU in our sched group which is doing load balancing more
7020 * actively.
7021 */
7022 if (!continue_balancing) {
7023 if (need_decay)
7024 continue;
7025 break;
7026 }
7027
1e3c88bd
PZ
7028 interval = sd->balance_interval;
7029 if (idle != CPU_IDLE)
7030 interval *= sd->busy_factor;
7031
7032 /* scale ms to jiffies */
7033 interval = msecs_to_jiffies(interval);
49c022e6 7034 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
7035
7036 need_serialize = sd->flags & SD_SERIALIZE;
7037
7038 if (need_serialize) {
7039 if (!spin_trylock(&balancing))
7040 goto out;
7041 }
7042
7043 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7044 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7045 /*
6263322c 7046 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7047 * env->dst_cpu, so we can't know our idle
7048 * state even if we migrated tasks. Update it.
1e3c88bd 7049 */
de5eb2dd 7050 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7051 }
7052 sd->last_balance = jiffies;
7053 }
7054 if (need_serialize)
7055 spin_unlock(&balancing);
7056out:
7057 if (time_after(next_balance, sd->last_balance + interval)) {
7058 next_balance = sd->last_balance + interval;
7059 update_next_balance = 1;
7060 }
f48627e6
JL
7061 }
7062 if (need_decay) {
1e3c88bd 7063 /*
f48627e6
JL
7064 * Ensure the rq-wide value also decays but keep it at a
7065 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7066 */
f48627e6
JL
7067 rq->max_idle_balance_cost =
7068 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7069 }
dce840a0 7070 rcu_read_unlock();
1e3c88bd
PZ
7071
7072 /*
7073 * next_balance will be updated only when there is a need.
7074 * When the cpu is attached to null domain for ex, it will not be
7075 * updated.
7076 */
7077 if (likely(update_next_balance))
7078 rq->next_balance = next_balance;
7079}
7080
3451d024 7081#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7082/*
3451d024 7083 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7084 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7085 */
208cb16b 7086static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7087{
208cb16b 7088 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7089 struct rq *rq;
7090 int balance_cpu;
7091
1c792db7
SS
7092 if (idle != CPU_IDLE ||
7093 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7094 goto end;
83cd4fe2
VP
7095
7096 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7097 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7098 continue;
7099
7100 /*
7101 * If this cpu gets work to do, stop the load balancing
7102 * work being done for other cpus. Next load
7103 * balancing owner will pick it up.
7104 */
1c792db7 7105 if (need_resched())
83cd4fe2 7106 break;
83cd4fe2 7107
5ed4f1d9
VG
7108 rq = cpu_rq(balance_cpu);
7109
7110 raw_spin_lock_irq(&rq->lock);
7111 update_rq_clock(rq);
7112 update_idle_cpu_load(rq);
7113 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7114
f7ed0a89 7115 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7116
83cd4fe2
VP
7117 if (time_after(this_rq->next_balance, rq->next_balance))
7118 this_rq->next_balance = rq->next_balance;
7119 }
7120 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7121end:
7122 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7123}
7124
7125/*
0b005cf5
SS
7126 * Current heuristic for kicking the idle load balancer in the presence
7127 * of an idle cpu is the system.
7128 * - This rq has more than one task.
7129 * - At any scheduler domain level, this cpu's scheduler group has multiple
7130 * busy cpu's exceeding the group's power.
7131 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7132 * domain span are idle.
83cd4fe2 7133 */
4a725627 7134static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7135{
7136 unsigned long now = jiffies;
0b005cf5 7137 struct sched_domain *sd;
37dc6b50 7138 struct sched_group_power *sgp;
4a725627 7139 int nr_busy, cpu = rq->cpu;
83cd4fe2 7140
4a725627 7141 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7142 return 0;
7143
1c792db7
SS
7144 /*
7145 * We may be recently in ticked or tickless idle mode. At the first
7146 * busy tick after returning from idle, we will update the busy stats.
7147 */
69e1e811 7148 set_cpu_sd_state_busy();
c1cc017c 7149 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7150
7151 /*
7152 * None are in tickless mode and hence no need for NOHZ idle load
7153 * balancing.
7154 */
7155 if (likely(!atomic_read(&nohz.nr_cpus)))
7156 return 0;
1c792db7
SS
7157
7158 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7159 return 0;
7160
0b005cf5
SS
7161 if (rq->nr_running >= 2)
7162 goto need_kick;
83cd4fe2 7163
067491b7 7164 rcu_read_lock();
37dc6b50 7165 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7166
37dc6b50
PM
7167 if (sd) {
7168 sgp = sd->groups->sgp;
7169 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7170
37dc6b50 7171 if (nr_busy > 1)
067491b7 7172 goto need_kick_unlock;
83cd4fe2 7173 }
37dc6b50
PM
7174
7175 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7176
7177 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7178 sched_domain_span(sd)) < cpu))
7179 goto need_kick_unlock;
7180
067491b7 7181 rcu_read_unlock();
83cd4fe2 7182 return 0;
067491b7
PZ
7183
7184need_kick_unlock:
7185 rcu_read_unlock();
0b005cf5
SS
7186need_kick:
7187 return 1;
83cd4fe2
VP
7188}
7189#else
208cb16b 7190static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7191#endif
7192
7193/*
7194 * run_rebalance_domains is triggered when needed from the scheduler tick.
7195 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7196 */
1e3c88bd
PZ
7197static void run_rebalance_domains(struct softirq_action *h)
7198{
208cb16b 7199 struct rq *this_rq = this_rq();
6eb57e0d 7200 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7201 CPU_IDLE : CPU_NOT_IDLE;
7202
f7ed0a89 7203 rebalance_domains(this_rq, idle);
1e3c88bd 7204
1e3c88bd 7205 /*
83cd4fe2 7206 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7207 * balancing on behalf of the other idle cpus whose ticks are
7208 * stopped.
7209 */
208cb16b 7210 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7211}
7212
1e3c88bd
PZ
7213/*
7214 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7215 */
7caff66f 7216void trigger_load_balance(struct rq *rq)
1e3c88bd 7217{
1e3c88bd 7218 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7219 if (unlikely(on_null_domain(rq)))
7220 return;
7221
7222 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7223 raise_softirq(SCHED_SOFTIRQ);
3451d024 7224#ifdef CONFIG_NO_HZ_COMMON
c726099e 7225 if (nohz_kick_needed(rq))
0aeeeeba 7226 nohz_balancer_kick();
83cd4fe2 7227#endif
1e3c88bd
PZ
7228}
7229
0bcdcf28
CE
7230static void rq_online_fair(struct rq *rq)
7231{
7232 update_sysctl();
7233}
7234
7235static void rq_offline_fair(struct rq *rq)
7236{
7237 update_sysctl();
a4c96ae3
PB
7238
7239 /* Ensure any throttled groups are reachable by pick_next_task */
7240 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7241}
7242
55e12e5e 7243#endif /* CONFIG_SMP */
e1d1484f 7244
bf0f6f24
IM
7245/*
7246 * scheduler tick hitting a task of our scheduling class:
7247 */
8f4d37ec 7248static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7249{
7250 struct cfs_rq *cfs_rq;
7251 struct sched_entity *se = &curr->se;
7252
7253 for_each_sched_entity(se) {
7254 cfs_rq = cfs_rq_of(se);
8f4d37ec 7255 entity_tick(cfs_rq, se, queued);
bf0f6f24 7256 }
18bf2805 7257
10e84b97 7258 if (numabalancing_enabled)
cbee9f88 7259 task_tick_numa(rq, curr);
3d59eebc 7260
18bf2805 7261 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7262}
7263
7264/*
cd29fe6f
PZ
7265 * called on fork with the child task as argument from the parent's context
7266 * - child not yet on the tasklist
7267 * - preemption disabled
bf0f6f24 7268 */
cd29fe6f 7269static void task_fork_fair(struct task_struct *p)
bf0f6f24 7270{
4fc420c9
DN
7271 struct cfs_rq *cfs_rq;
7272 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7273 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7274 struct rq *rq = this_rq();
7275 unsigned long flags;
7276
05fa785c 7277 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7278
861d034e
PZ
7279 update_rq_clock(rq);
7280
4fc420c9
DN
7281 cfs_rq = task_cfs_rq(current);
7282 curr = cfs_rq->curr;
7283
6c9a27f5
DN
7284 /*
7285 * Not only the cpu but also the task_group of the parent might have
7286 * been changed after parent->se.parent,cfs_rq were copied to
7287 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7288 * of child point to valid ones.
7289 */
7290 rcu_read_lock();
7291 __set_task_cpu(p, this_cpu);
7292 rcu_read_unlock();
bf0f6f24 7293
7109c442 7294 update_curr(cfs_rq);
cd29fe6f 7295
b5d9d734
MG
7296 if (curr)
7297 se->vruntime = curr->vruntime;
aeb73b04 7298 place_entity(cfs_rq, se, 1);
4d78e7b6 7299
cd29fe6f 7300 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7301 /*
edcb60a3
IM
7302 * Upon rescheduling, sched_class::put_prev_task() will place
7303 * 'current' within the tree based on its new key value.
7304 */
4d78e7b6 7305 swap(curr->vruntime, se->vruntime);
aec0a514 7306 resched_task(rq->curr);
4d78e7b6 7307 }
bf0f6f24 7308
88ec22d3
PZ
7309 se->vruntime -= cfs_rq->min_vruntime;
7310
05fa785c 7311 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7312}
7313
cb469845
SR
7314/*
7315 * Priority of the task has changed. Check to see if we preempt
7316 * the current task.
7317 */
da7a735e
PZ
7318static void
7319prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7320{
da7a735e
PZ
7321 if (!p->se.on_rq)
7322 return;
7323
cb469845
SR
7324 /*
7325 * Reschedule if we are currently running on this runqueue and
7326 * our priority decreased, or if we are not currently running on
7327 * this runqueue and our priority is higher than the current's
7328 */
da7a735e 7329 if (rq->curr == p) {
cb469845
SR
7330 if (p->prio > oldprio)
7331 resched_task(rq->curr);
7332 } else
15afe09b 7333 check_preempt_curr(rq, p, 0);
cb469845
SR
7334}
7335
da7a735e
PZ
7336static void switched_from_fair(struct rq *rq, struct task_struct *p)
7337{
7338 struct sched_entity *se = &p->se;
7339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7340
7341 /*
791c9e02 7342 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7343 * switched back to the fair class the enqueue_entity(.flags=0) will
7344 * do the right thing.
7345 *
791c9e02
GM
7346 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7347 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7348 * the task is sleeping will it still have non-normalized vruntime.
7349 */
791c9e02 7350 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7351 /*
7352 * Fix up our vruntime so that the current sleep doesn't
7353 * cause 'unlimited' sleep bonus.
7354 */
7355 place_entity(cfs_rq, se, 0);
7356 se->vruntime -= cfs_rq->min_vruntime;
7357 }
9ee474f5 7358
141965c7 7359#ifdef CONFIG_SMP
9ee474f5
PT
7360 /*
7361 * Remove our load from contribution when we leave sched_fair
7362 * and ensure we don't carry in an old decay_count if we
7363 * switch back.
7364 */
87e3c8ae
KT
7365 if (se->avg.decay_count) {
7366 __synchronize_entity_decay(se);
7367 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7368 }
7369#endif
da7a735e
PZ
7370}
7371
cb469845
SR
7372/*
7373 * We switched to the sched_fair class.
7374 */
da7a735e 7375static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7376{
eb7a59b2
M
7377 struct sched_entity *se = &p->se;
7378#ifdef CONFIG_FAIR_GROUP_SCHED
7379 /*
7380 * Since the real-depth could have been changed (only FAIR
7381 * class maintain depth value), reset depth properly.
7382 */
7383 se->depth = se->parent ? se->parent->depth + 1 : 0;
7384#endif
7385 if (!se->on_rq)
da7a735e
PZ
7386 return;
7387
cb469845
SR
7388 /*
7389 * We were most likely switched from sched_rt, so
7390 * kick off the schedule if running, otherwise just see
7391 * if we can still preempt the current task.
7392 */
da7a735e 7393 if (rq->curr == p)
cb469845
SR
7394 resched_task(rq->curr);
7395 else
15afe09b 7396 check_preempt_curr(rq, p, 0);
cb469845
SR
7397}
7398
83b699ed
SV
7399/* Account for a task changing its policy or group.
7400 *
7401 * This routine is mostly called to set cfs_rq->curr field when a task
7402 * migrates between groups/classes.
7403 */
7404static void set_curr_task_fair(struct rq *rq)
7405{
7406 struct sched_entity *se = &rq->curr->se;
7407
ec12cb7f
PT
7408 for_each_sched_entity(se) {
7409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7410
7411 set_next_entity(cfs_rq, se);
7412 /* ensure bandwidth has been allocated on our new cfs_rq */
7413 account_cfs_rq_runtime(cfs_rq, 0);
7414 }
83b699ed
SV
7415}
7416
029632fb
PZ
7417void init_cfs_rq(struct cfs_rq *cfs_rq)
7418{
7419 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7420 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7421#ifndef CONFIG_64BIT
7422 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7423#endif
141965c7 7424#ifdef CONFIG_SMP
9ee474f5 7425 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7426 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7427#endif
029632fb
PZ
7428}
7429
810b3817 7430#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7431static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7432{
fed14d45 7433 struct sched_entity *se = &p->se;
aff3e498 7434 struct cfs_rq *cfs_rq;
fed14d45 7435
b2b5ce02
PZ
7436 /*
7437 * If the task was not on the rq at the time of this cgroup movement
7438 * it must have been asleep, sleeping tasks keep their ->vruntime
7439 * absolute on their old rq until wakeup (needed for the fair sleeper
7440 * bonus in place_entity()).
7441 *
7442 * If it was on the rq, we've just 'preempted' it, which does convert
7443 * ->vruntime to a relative base.
7444 *
7445 * Make sure both cases convert their relative position when migrating
7446 * to another cgroup's rq. This does somewhat interfere with the
7447 * fair sleeper stuff for the first placement, but who cares.
7448 */
7ceff013
DN
7449 /*
7450 * When !on_rq, vruntime of the task has usually NOT been normalized.
7451 * But there are some cases where it has already been normalized:
7452 *
7453 * - Moving a forked child which is waiting for being woken up by
7454 * wake_up_new_task().
62af3783
DN
7455 * - Moving a task which has been woken up by try_to_wake_up() and
7456 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7457 *
7458 * To prevent boost or penalty in the new cfs_rq caused by delta
7459 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7460 */
fed14d45 7461 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7462 on_rq = 1;
7463
b2b5ce02 7464 if (!on_rq)
fed14d45 7465 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7466 set_task_rq(p, task_cpu(p));
fed14d45 7467 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7468 if (!on_rq) {
fed14d45
PZ
7469 cfs_rq = cfs_rq_of(se);
7470 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7471#ifdef CONFIG_SMP
7472 /*
7473 * migrate_task_rq_fair() will have removed our previous
7474 * contribution, but we must synchronize for ongoing future
7475 * decay.
7476 */
fed14d45
PZ
7477 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7478 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7479#endif
7480 }
810b3817 7481}
029632fb
PZ
7482
7483void free_fair_sched_group(struct task_group *tg)
7484{
7485 int i;
7486
7487 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7488
7489 for_each_possible_cpu(i) {
7490 if (tg->cfs_rq)
7491 kfree(tg->cfs_rq[i]);
7492 if (tg->se)
7493 kfree(tg->se[i]);
7494 }
7495
7496 kfree(tg->cfs_rq);
7497 kfree(tg->se);
7498}
7499
7500int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7501{
7502 struct cfs_rq *cfs_rq;
7503 struct sched_entity *se;
7504 int i;
7505
7506 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7507 if (!tg->cfs_rq)
7508 goto err;
7509 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7510 if (!tg->se)
7511 goto err;
7512
7513 tg->shares = NICE_0_LOAD;
7514
7515 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7516
7517 for_each_possible_cpu(i) {
7518 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7519 GFP_KERNEL, cpu_to_node(i));
7520 if (!cfs_rq)
7521 goto err;
7522
7523 se = kzalloc_node(sizeof(struct sched_entity),
7524 GFP_KERNEL, cpu_to_node(i));
7525 if (!se)
7526 goto err_free_rq;
7527
7528 init_cfs_rq(cfs_rq);
7529 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7530 }
7531
7532 return 1;
7533
7534err_free_rq:
7535 kfree(cfs_rq);
7536err:
7537 return 0;
7538}
7539
7540void unregister_fair_sched_group(struct task_group *tg, int cpu)
7541{
7542 struct rq *rq = cpu_rq(cpu);
7543 unsigned long flags;
7544
7545 /*
7546 * Only empty task groups can be destroyed; so we can speculatively
7547 * check on_list without danger of it being re-added.
7548 */
7549 if (!tg->cfs_rq[cpu]->on_list)
7550 return;
7551
7552 raw_spin_lock_irqsave(&rq->lock, flags);
7553 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7554 raw_spin_unlock_irqrestore(&rq->lock, flags);
7555}
7556
7557void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7558 struct sched_entity *se, int cpu,
7559 struct sched_entity *parent)
7560{
7561 struct rq *rq = cpu_rq(cpu);
7562
7563 cfs_rq->tg = tg;
7564 cfs_rq->rq = rq;
029632fb
PZ
7565 init_cfs_rq_runtime(cfs_rq);
7566
7567 tg->cfs_rq[cpu] = cfs_rq;
7568 tg->se[cpu] = se;
7569
7570 /* se could be NULL for root_task_group */
7571 if (!se)
7572 return;
7573
fed14d45 7574 if (!parent) {
029632fb 7575 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7576 se->depth = 0;
7577 } else {
029632fb 7578 se->cfs_rq = parent->my_q;
fed14d45
PZ
7579 se->depth = parent->depth + 1;
7580 }
029632fb
PZ
7581
7582 se->my_q = cfs_rq;
0ac9b1c2
PT
7583 /* guarantee group entities always have weight */
7584 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7585 se->parent = parent;
7586}
7587
7588static DEFINE_MUTEX(shares_mutex);
7589
7590int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7591{
7592 int i;
7593 unsigned long flags;
7594
7595 /*
7596 * We can't change the weight of the root cgroup.
7597 */
7598 if (!tg->se[0])
7599 return -EINVAL;
7600
7601 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7602
7603 mutex_lock(&shares_mutex);
7604 if (tg->shares == shares)
7605 goto done;
7606
7607 tg->shares = shares;
7608 for_each_possible_cpu(i) {
7609 struct rq *rq = cpu_rq(i);
7610 struct sched_entity *se;
7611
7612 se = tg->se[i];
7613 /* Propagate contribution to hierarchy */
7614 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7615
7616 /* Possible calls to update_curr() need rq clock */
7617 update_rq_clock(rq);
17bc14b7 7618 for_each_sched_entity(se)
029632fb
PZ
7619 update_cfs_shares(group_cfs_rq(se));
7620 raw_spin_unlock_irqrestore(&rq->lock, flags);
7621 }
7622
7623done:
7624 mutex_unlock(&shares_mutex);
7625 return 0;
7626}
7627#else /* CONFIG_FAIR_GROUP_SCHED */
7628
7629void free_fair_sched_group(struct task_group *tg) { }
7630
7631int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7632{
7633 return 1;
7634}
7635
7636void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7637
7638#endif /* CONFIG_FAIR_GROUP_SCHED */
7639
810b3817 7640
6d686f45 7641static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7642{
7643 struct sched_entity *se = &task->se;
0d721cea
PW
7644 unsigned int rr_interval = 0;
7645
7646 /*
7647 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7648 * idle runqueue:
7649 */
0d721cea 7650 if (rq->cfs.load.weight)
a59f4e07 7651 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7652
7653 return rr_interval;
7654}
7655
bf0f6f24
IM
7656/*
7657 * All the scheduling class methods:
7658 */
029632fb 7659const struct sched_class fair_sched_class = {
5522d5d5 7660 .next = &idle_sched_class,
bf0f6f24
IM
7661 .enqueue_task = enqueue_task_fair,
7662 .dequeue_task = dequeue_task_fair,
7663 .yield_task = yield_task_fair,
d95f4122 7664 .yield_to_task = yield_to_task_fair,
bf0f6f24 7665
2e09bf55 7666 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7667
7668 .pick_next_task = pick_next_task_fair,
7669 .put_prev_task = put_prev_task_fair,
7670
681f3e68 7671#ifdef CONFIG_SMP
4ce72a2c 7672 .select_task_rq = select_task_rq_fair,
0a74bef8 7673 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7674
0bcdcf28
CE
7675 .rq_online = rq_online_fair,
7676 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7677
7678 .task_waking = task_waking_fair,
681f3e68 7679#endif
bf0f6f24 7680
83b699ed 7681 .set_curr_task = set_curr_task_fair,
bf0f6f24 7682 .task_tick = task_tick_fair,
cd29fe6f 7683 .task_fork = task_fork_fair,
cb469845
SR
7684
7685 .prio_changed = prio_changed_fair,
da7a735e 7686 .switched_from = switched_from_fair,
cb469845 7687 .switched_to = switched_to_fair,
810b3817 7688
0d721cea
PW
7689 .get_rr_interval = get_rr_interval_fair,
7690
810b3817 7691#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7692 .task_move_group = task_move_group_fair,
810b3817 7693#endif
bf0f6f24
IM
7694};
7695
7696#ifdef CONFIG_SCHED_DEBUG
029632fb 7697void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7698{
bf0f6f24
IM
7699 struct cfs_rq *cfs_rq;
7700
5973e5b9 7701 rcu_read_lock();
c3b64f1e 7702 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7703 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7704 rcu_read_unlock();
bf0f6f24
IM
7705}
7706#endif
029632fb
PZ
7707
7708__init void init_sched_fair_class(void)
7709{
7710#ifdef CONFIG_SMP
7711 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7712
3451d024 7713#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7714 nohz.next_balance = jiffies;
029632fb 7715 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7716 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7717#endif
7718#endif /* SMP */
7719
7720}