sched/fair: Fix warning on non-SMP build
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 251
62160e3f 252/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254{
62160e3f 255 return cfs_rq->rq;
bf0f6f24
IM
256}
257
8f48894f
PZ
258static inline struct task_struct *task_of(struct sched_entity *se)
259{
9148a3a1 260 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
3d4b47b4
PZ
285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286{
287 if (!cfs_rq->on_list) {
9c2791f9
VG
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
67e86250
PT
290 /*
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
67e86250
PT
298 */
299 if (cfs_rq->tg->parent &&
9c2791f9
VG
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 /*
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
306 */
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 /*
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
313 */
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
316 /*
317 * cfs rq without parent should be put
318 * at the tail of the list.
319 */
67e86250 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
321 &rq->leaf_cfs_rq_list);
322 /*
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
325 */
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
328 /*
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
333 */
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
336 /*
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
339 */
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 341 }
3d4b47b4
PZ
342
343 cfs_rq->on_list = 1;
344 }
345}
346
347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348{
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
352 }
353}
354
b758149c 355/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
356#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
358 leaf_cfs_rq_list)
b758149c
PZ
359
360/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 361static inline struct cfs_rq *
b758149c
PZ
362is_same_group(struct sched_entity *se, struct sched_entity *pse)
363{
364 if (se->cfs_rq == pse->cfs_rq)
fed14d45 365 return se->cfs_rq;
b758149c 366
fed14d45 367 return NULL;
b758149c
PZ
368}
369
370static inline struct sched_entity *parent_entity(struct sched_entity *se)
371{
372 return se->parent;
373}
374
464b7527
PZ
375static void
376find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377{
378 int se_depth, pse_depth;
379
380 /*
381 * preemption test can be made between sibling entities who are in the
382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 * both tasks until we find their ancestors who are siblings of common
384 * parent.
385 */
386
387 /* First walk up until both entities are at same depth */
fed14d45
PZ
388 se_depth = (*se)->depth;
389 pse_depth = (*pse)->depth;
464b7527
PZ
390
391 while (se_depth > pse_depth) {
392 se_depth--;
393 *se = parent_entity(*se);
394 }
395
396 while (pse_depth > se_depth) {
397 pse_depth--;
398 *pse = parent_entity(*pse);
399 }
400
401 while (!is_same_group(*se, *pse)) {
402 *se = parent_entity(*se);
403 *pse = parent_entity(*pse);
404 }
405}
406
8f48894f
PZ
407#else /* !CONFIG_FAIR_GROUP_SCHED */
408
409static inline struct task_struct *task_of(struct sched_entity *se)
410{
411 return container_of(se, struct task_struct, se);
412}
bf0f6f24 413
62160e3f
IM
414static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415{
416 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
417}
418
bf0f6f24 419
b758149c
PZ
420#define for_each_sched_entity(se) \
421 for (; se; se = NULL)
bf0f6f24 422
b758149c 423static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 424{
b758149c 425 return &task_rq(p)->cfs;
bf0f6f24
IM
426}
427
b758149c
PZ
428static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429{
430 struct task_struct *p = task_of(se);
431 struct rq *rq = task_rq(p);
432
433 return &rq->cfs;
434}
435
436/* runqueue "owned" by this group */
437static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438{
439 return NULL;
440}
441
3d4b47b4
PZ
442static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443{
444}
445
446static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447{
448}
449
a9e7f654
TH
450#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 452
b758149c
PZ
453static inline struct sched_entity *parent_entity(struct sched_entity *se)
454{
455 return NULL;
456}
457
464b7527
PZ
458static inline void
459find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460{
461}
462
b758149c
PZ
463#endif /* CONFIG_FAIR_GROUP_SCHED */
464
6c16a6dc 465static __always_inline
9dbdb155 466void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
467
468/**************************************************************
469 * Scheduling class tree data structure manipulation methods:
470 */
471
1bf08230 472static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 473{
1bf08230 474 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 475 if (delta > 0)
1bf08230 476 max_vruntime = vruntime;
02e0431a 477
1bf08230 478 return max_vruntime;
02e0431a
PZ
479}
480
0702e3eb 481static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
482{
483 s64 delta = (s64)(vruntime - min_vruntime);
484 if (delta < 0)
485 min_vruntime = vruntime;
486
487 return min_vruntime;
488}
489
54fdc581
FC
490static inline int entity_before(struct sched_entity *a,
491 struct sched_entity *b)
492{
493 return (s64)(a->vruntime - b->vruntime) < 0;
494}
495
1af5f730
PZ
496static void update_min_vruntime(struct cfs_rq *cfs_rq)
497{
b60205c7 498 struct sched_entity *curr = cfs_rq->curr;
bfb06889 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 500
1af5f730
PZ
501 u64 vruntime = cfs_rq->min_vruntime;
502
b60205c7
PZ
503 if (curr) {
504 if (curr->on_rq)
505 vruntime = curr->vruntime;
506 else
507 curr = NULL;
508 }
1af5f730 509
bfb06889
DB
510 if (leftmost) { /* non-empty tree */
511 struct sched_entity *se;
512 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 513
b60205c7 514 if (!curr)
1af5f730
PZ
515 vruntime = se->vruntime;
516 else
517 vruntime = min_vruntime(vruntime, se->vruntime);
518 }
519
1bf08230 520 /* ensure we never gain time by being placed backwards. */
1af5f730 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
522#ifndef CONFIG_64BIT
523 smp_wmb();
524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525#endif
1af5f730
PZ
526}
527
bf0f6f24
IM
528/*
529 * Enqueue an entity into the rb-tree:
530 */
0702e3eb 531static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bfb06889 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
534 struct rb_node *parent = NULL;
535 struct sched_entity *entry;
bfb06889 536 bool leftmost = true;
bf0f6f24
IM
537
538 /*
539 * Find the right place in the rbtree:
540 */
541 while (*link) {
542 parent = *link;
543 entry = rb_entry(parent, struct sched_entity, run_node);
544 /*
545 * We dont care about collisions. Nodes with
546 * the same key stay together.
547 */
2bd2d6f2 548 if (entity_before(se, entry)) {
bf0f6f24
IM
549 link = &parent->rb_left;
550 } else {
551 link = &parent->rb_right;
bfb06889 552 leftmost = false;
bf0f6f24
IM
553 }
554 }
555
bf0f6f24 556 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
557 rb_insert_color_cached(&se->run_node,
558 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
559}
560
0702e3eb 561static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 562{
bfb06889 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
564}
565
029632fb 566struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 567{
bfb06889 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
569
570 if (!left)
571 return NULL;
572
573 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
574}
575
ac53db59
RR
576static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577{
578 struct rb_node *next = rb_next(&se->run_node);
579
580 if (!next)
581 return NULL;
582
583 return rb_entry(next, struct sched_entity, run_node);
584}
585
586#ifdef CONFIG_SCHED_DEBUG
029632fb 587struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 588{
bfb06889 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 590
70eee74b
BS
591 if (!last)
592 return NULL;
7eee3e67
IM
593
594 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
595}
596
bf0f6f24
IM
597/**************************************************************
598 * Scheduling class statistics methods:
599 */
600
acb4a848 601int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 602 void __user *buffer, size_t *lenp,
b2be5e96
PZ
603 loff_t *ppos)
604{
8d65af78 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 606 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
607
608 if (ret || !write)
609 return ret;
610
611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 sysctl_sched_min_granularity);
613
acb4a848
CE
614#define WRT_SYSCTL(name) \
615 (normalized_sysctl_##name = sysctl_##name / (factor))
616 WRT_SYSCTL(sched_min_granularity);
617 WRT_SYSCTL(sched_latency);
618 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
619#undef WRT_SYSCTL
620
b2be5e96
PZ
621 return 0;
622}
623#endif
647e7cac 624
a7be37ac 625/*
f9c0b095 626 * delta /= w
a7be37ac 627 */
9dbdb155 628static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 629{
f9c0b095 630 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
632
633 return delta;
634}
635
647e7cac
IM
636/*
637 * The idea is to set a period in which each task runs once.
638 *
532b1858 639 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
640 * this period because otherwise the slices get too small.
641 *
642 * p = (nr <= nl) ? l : l*nr/nl
643 */
4d78e7b6
PZ
644static u64 __sched_period(unsigned long nr_running)
645{
8e2b0bf3
BF
646 if (unlikely(nr_running > sched_nr_latency))
647 return nr_running * sysctl_sched_min_granularity;
648 else
649 return sysctl_sched_latency;
4d78e7b6
PZ
650}
651
647e7cac
IM
652/*
653 * We calculate the wall-time slice from the period by taking a part
654 * proportional to the weight.
655 *
f9c0b095 656 * s = p*P[w/rw]
647e7cac 657 */
6d0f0ebd 658static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 659{
0a582440 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 661
0a582440 662 for_each_sched_entity(se) {
6272d68c 663 struct load_weight *load;
3104bf03 664 struct load_weight lw;
6272d68c
LM
665
666 cfs_rq = cfs_rq_of(se);
667 load = &cfs_rq->load;
f9c0b095 668
0a582440 669 if (unlikely(!se->on_rq)) {
3104bf03 670 lw = cfs_rq->load;
0a582440
MG
671
672 update_load_add(&lw, se->load.weight);
673 load = &lw;
674 }
9dbdb155 675 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
676 }
677 return slice;
bf0f6f24
IM
678}
679
647e7cac 680/*
660cc00f 681 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 682 *
f9c0b095 683 * vs = s/w
647e7cac 684 */
f9c0b095 685static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 686{
f9c0b095 687 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
688}
689
a75cdaa9 690#ifdef CONFIG_SMP
c0796298 691#include "pelt.h"
283e2ed3
PZ
692#include "sched-pelt.h"
693
772bd008 694static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 695static unsigned long task_h_load(struct task_struct *p);
3b1baa64 696static unsigned long capacity_of(int cpu);
fb13c7ee 697
540247fb
YD
698/* Give new sched_entity start runnable values to heavy its load in infant time */
699void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 700{
540247fb 701 struct sched_avg *sa = &se->avg;
a75cdaa9 702
f207934f
PZ
703 memset(sa, 0, sizeof(*sa));
704
b5a9b340 705 /*
dfcb245e 706 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 707 * they get a chance to stabilize to their real load level.
dfcb245e 708 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
709 * nothing has been attached to the task group yet.
710 */
711 if (entity_is_task(se))
1ea6c46a 712 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 713
f207934f
PZ
714 se->runnable_weight = se->load.weight;
715
9d89c257 716 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 717}
7ea241af 718
7dc603c9 719static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 720static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 721
2b8c41da
YD
722/*
723 * With new tasks being created, their initial util_avgs are extrapolated
724 * based on the cfs_rq's current util_avg:
725 *
726 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727 *
728 * However, in many cases, the above util_avg does not give a desired
729 * value. Moreover, the sum of the util_avgs may be divergent, such
730 * as when the series is a harmonic series.
731 *
732 * To solve this problem, we also cap the util_avg of successive tasks to
733 * only 1/2 of the left utilization budget:
734 *
8fe5c5a9 735 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 736 *
8fe5c5a9 737 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 738 *
8fe5c5a9
QP
739 * For example, for a CPU with 1024 of capacity, a simplest series from
740 * the beginning would be like:
2b8c41da
YD
741 *
742 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
743 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744 *
745 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746 * if util_avg > util_avg_cap.
747 */
748void post_init_entity_util_avg(struct sched_entity *se)
749{
750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
752 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
754
755 if (cap > 0) {
756 if (cfs_rq->avg.util_avg != 0) {
757 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
758 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759
760 if (sa->util_avg > cap)
761 sa->util_avg = cap;
762 } else {
763 sa->util_avg = cap;
764 }
2b8c41da 765 }
7dc603c9
PZ
766
767 if (entity_is_task(se)) {
768 struct task_struct *p = task_of(se);
769 if (p->sched_class != &fair_sched_class) {
770 /*
771 * For !fair tasks do:
772 *
3a123bbb 773 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 774 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
775 switched_from_fair(rq, p);
776 *
777 * such that the next switched_to_fair() has the
778 * expected state.
779 */
df217913 780 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
781 return;
782 }
783 }
784
df217913 785 attach_entity_cfs_rq(se);
2b8c41da
YD
786}
787
7dc603c9 788#else /* !CONFIG_SMP */
540247fb 789void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
790{
791}
2b8c41da
YD
792void post_init_entity_util_avg(struct sched_entity *se)
793{
794}
3d30544f
PZ
795static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796{
797}
7dc603c9 798#endif /* CONFIG_SMP */
a75cdaa9 799
bf0f6f24 800/*
9dbdb155 801 * Update the current task's runtime statistics.
bf0f6f24 802 */
b7cc0896 803static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 804{
429d43bc 805 struct sched_entity *curr = cfs_rq->curr;
78becc27 806 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 807 u64 delta_exec;
bf0f6f24
IM
808
809 if (unlikely(!curr))
810 return;
811
9dbdb155
PZ
812 delta_exec = now - curr->exec_start;
813 if (unlikely((s64)delta_exec <= 0))
34f28ecd 814 return;
bf0f6f24 815
8ebc91d9 816 curr->exec_start = now;
d842de87 817
9dbdb155
PZ
818 schedstat_set(curr->statistics.exec_max,
819 max(delta_exec, curr->statistics.exec_max));
820
821 curr->sum_exec_runtime += delta_exec;
ae92882e 822 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
823
824 curr->vruntime += calc_delta_fair(delta_exec, curr);
825 update_min_vruntime(cfs_rq);
826
d842de87
SV
827 if (entity_is_task(curr)) {
828 struct task_struct *curtask = task_of(curr);
829
f977bb49 830 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 831 cgroup_account_cputime(curtask, delta_exec);
f06febc9 832 account_group_exec_runtime(curtask, delta_exec);
d842de87 833 }
ec12cb7f
PT
834
835 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
836}
837
6e998916
SG
838static void update_curr_fair(struct rq *rq)
839{
840 update_curr(cfs_rq_of(&rq->curr->se));
841}
842
bf0f6f24 843static inline void
5870db5b 844update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 845{
4fa8d299
JP
846 u64 wait_start, prev_wait_start;
847
848 if (!schedstat_enabled())
849 return;
850
851 wait_start = rq_clock(rq_of(cfs_rq));
852 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
853
854 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
855 likely(wait_start > prev_wait_start))
856 wait_start -= prev_wait_start;
3ea94de1 857
2ed41a55 858 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
859}
860
4fa8d299 861static inline void
3ea94de1
JP
862update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863{
864 struct task_struct *p;
cb251765
MG
865 u64 delta;
866
4fa8d299
JP
867 if (!schedstat_enabled())
868 return;
869
870 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
871
872 if (entity_is_task(se)) {
873 p = task_of(se);
874 if (task_on_rq_migrating(p)) {
875 /*
876 * Preserve migrating task's wait time so wait_start
877 * time stamp can be adjusted to accumulate wait time
878 * prior to migration.
879 */
2ed41a55 880 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
881 return;
882 }
883 trace_sched_stat_wait(p, delta);
884 }
885
2ed41a55 886 __schedstat_set(se->statistics.wait_max,
4fa8d299 887 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
888 __schedstat_inc(se->statistics.wait_count);
889 __schedstat_add(se->statistics.wait_sum, delta);
890 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 891}
3ea94de1 892
4fa8d299 893static inline void
1a3d027c
JP
894update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895{
896 struct task_struct *tsk = NULL;
4fa8d299
JP
897 u64 sleep_start, block_start;
898
899 if (!schedstat_enabled())
900 return;
901
902 sleep_start = schedstat_val(se->statistics.sleep_start);
903 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
904
905 if (entity_is_task(se))
906 tsk = task_of(se);
907
4fa8d299
JP
908 if (sleep_start) {
909 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
910
911 if ((s64)delta < 0)
912 delta = 0;
913
4fa8d299 914 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 915 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 916
2ed41a55
PZ
917 __schedstat_set(se->statistics.sleep_start, 0);
918 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
919
920 if (tsk) {
921 account_scheduler_latency(tsk, delta >> 10, 1);
922 trace_sched_stat_sleep(tsk, delta);
923 }
924 }
4fa8d299
JP
925 if (block_start) {
926 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
927
928 if ((s64)delta < 0)
929 delta = 0;
930
4fa8d299 931 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 932 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 933
2ed41a55
PZ
934 __schedstat_set(se->statistics.block_start, 0);
935 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
936
937 if (tsk) {
938 if (tsk->in_iowait) {
2ed41a55
PZ
939 __schedstat_add(se->statistics.iowait_sum, delta);
940 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
941 trace_sched_stat_iowait(tsk, delta);
942 }
943
944 trace_sched_stat_blocked(tsk, delta);
945
946 /*
947 * Blocking time is in units of nanosecs, so shift by
948 * 20 to get a milliseconds-range estimation of the
949 * amount of time that the task spent sleeping:
950 */
951 if (unlikely(prof_on == SLEEP_PROFILING)) {
952 profile_hits(SLEEP_PROFILING,
953 (void *)get_wchan(tsk),
954 delta >> 20);
955 }
956 account_scheduler_latency(tsk, delta >> 10, 0);
957 }
958 }
3ea94de1 959}
3ea94de1 960
bf0f6f24
IM
961/*
962 * Task is being enqueued - update stats:
963 */
cb251765 964static inline void
1a3d027c 965update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 966{
4fa8d299
JP
967 if (!schedstat_enabled())
968 return;
969
bf0f6f24
IM
970 /*
971 * Are we enqueueing a waiting task? (for current tasks
972 * a dequeue/enqueue event is a NOP)
973 */
429d43bc 974 if (se != cfs_rq->curr)
5870db5b 975 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
976
977 if (flags & ENQUEUE_WAKEUP)
978 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
979}
980
bf0f6f24 981static inline void
cb251765 982update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 983{
4fa8d299
JP
984
985 if (!schedstat_enabled())
986 return;
987
bf0f6f24
IM
988 /*
989 * Mark the end of the wait period if dequeueing a
990 * waiting task:
991 */
429d43bc 992 if (se != cfs_rq->curr)
9ef0a961 993 update_stats_wait_end(cfs_rq, se);
cb251765 994
4fa8d299
JP
995 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 struct task_struct *tsk = task_of(se);
cb251765 997
4fa8d299 998 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 999 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1000 rq_clock(rq_of(cfs_rq)));
1001 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1002 __schedstat_set(se->statistics.block_start,
4fa8d299 1003 rq_clock(rq_of(cfs_rq)));
cb251765 1004 }
cb251765
MG
1005}
1006
bf0f6f24
IM
1007/*
1008 * We are picking a new current task - update its stats:
1009 */
1010static inline void
79303e9e 1011update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1012{
1013 /*
1014 * We are starting a new run period:
1015 */
78becc27 1016 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1017}
1018
bf0f6f24
IM
1019/**************************************************
1020 * Scheduling class queueing methods:
1021 */
1022
cbee9f88
PZ
1023#ifdef CONFIG_NUMA_BALANCING
1024/*
598f0ec0
MG
1025 * Approximate time to scan a full NUMA task in ms. The task scan period is
1026 * calculated based on the tasks virtual memory size and
1027 * numa_balancing_scan_size.
cbee9f88 1028 */
598f0ec0
MG
1029unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1031
1032/* Portion of address space to scan in MB */
1033unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1034
4b96a29b
PZ
1035/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036unsigned int sysctl_numa_balancing_scan_delay = 1000;
1037
b5dd77c8
RR
1038struct numa_group {
1039 atomic_t refcount;
1040
1041 spinlock_t lock; /* nr_tasks, tasks */
1042 int nr_tasks;
1043 pid_t gid;
1044 int active_nodes;
1045
1046 struct rcu_head rcu;
1047 unsigned long total_faults;
1048 unsigned long max_faults_cpu;
1049 /*
1050 * Faults_cpu is used to decide whether memory should move
1051 * towards the CPU. As a consequence, these stats are weighted
1052 * more by CPU use than by memory faults.
1053 */
1054 unsigned long *faults_cpu;
1055 unsigned long faults[0];
1056};
1057
1058static inline unsigned long group_faults_priv(struct numa_group *ng);
1059static inline unsigned long group_faults_shared(struct numa_group *ng);
1060
598f0ec0
MG
1061static unsigned int task_nr_scan_windows(struct task_struct *p)
1062{
1063 unsigned long rss = 0;
1064 unsigned long nr_scan_pages;
1065
1066 /*
1067 * Calculations based on RSS as non-present and empty pages are skipped
1068 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 * on resident pages
1070 */
1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 rss = get_mm_rss(p->mm);
1073 if (!rss)
1074 rss = nr_scan_pages;
1075
1076 rss = round_up(rss, nr_scan_pages);
1077 return rss / nr_scan_pages;
1078}
1079
1080/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081#define MAX_SCAN_WINDOW 2560
1082
1083static unsigned int task_scan_min(struct task_struct *p)
1084{
316c1608 1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1086 unsigned int scan, floor;
1087 unsigned int windows = 1;
1088
64192658
KT
1089 if (scan_size < MAX_SCAN_WINDOW)
1090 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1091 floor = 1000 / windows;
1092
1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 return max_t(unsigned int, floor, scan);
1095}
1096
b5dd77c8
RR
1097static unsigned int task_scan_start(struct task_struct *p)
1098{
1099 unsigned long smin = task_scan_min(p);
1100 unsigned long period = smin;
1101
1102 /* Scale the maximum scan period with the amount of shared memory. */
1103 if (p->numa_group) {
1104 struct numa_group *ng = p->numa_group;
1105 unsigned long shared = group_faults_shared(ng);
1106 unsigned long private = group_faults_priv(ng);
1107
1108 period *= atomic_read(&ng->refcount);
1109 period *= shared + 1;
1110 period /= private + shared + 1;
1111 }
1112
1113 return max(smin, period);
1114}
1115
598f0ec0
MG
1116static unsigned int task_scan_max(struct task_struct *p)
1117{
b5dd77c8
RR
1118 unsigned long smin = task_scan_min(p);
1119 unsigned long smax;
598f0ec0
MG
1120
1121 /* Watch for min being lower than max due to floor calculations */
1122 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1123
1124 /* Scale the maximum scan period with the amount of shared memory. */
1125 if (p->numa_group) {
1126 struct numa_group *ng = p->numa_group;
1127 unsigned long shared = group_faults_shared(ng);
1128 unsigned long private = group_faults_priv(ng);
1129 unsigned long period = smax;
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134
1135 smax = max(smax, period);
1136 }
1137
598f0ec0
MG
1138 return max(smin, smax);
1139}
1140
13784475
MG
1141void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1142{
1143 int mm_users = 0;
1144 struct mm_struct *mm = p->mm;
1145
1146 if (mm) {
1147 mm_users = atomic_read(&mm->mm_users);
1148 if (mm_users == 1) {
1149 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 mm->numa_scan_seq = 0;
1151 }
1152 }
1153 p->node_stamp = 0;
1154 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1155 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1156 p->numa_work.next = &p->numa_work;
1157 p->numa_faults = NULL;
1158 p->numa_group = NULL;
1159 p->last_task_numa_placement = 0;
1160 p->last_sum_exec_runtime = 0;
1161
1162 /* New address space, reset the preferred nid */
1163 if (!(clone_flags & CLONE_VM)) {
1164 p->numa_preferred_nid = -1;
1165 return;
1166 }
1167
1168 /*
1169 * New thread, keep existing numa_preferred_nid which should be copied
1170 * already by arch_dup_task_struct but stagger when scans start.
1171 */
1172 if (mm) {
1173 unsigned int delay;
1174
1175 delay = min_t(unsigned int, task_scan_max(current),
1176 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 delay += 2 * TICK_NSEC;
1178 p->node_stamp = delay;
1179 }
1180}
1181
0ec8aa00
PZ
1182static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183{
1184 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186}
1187
1188static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189{
1190 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192}
1193
be1e4e76
RR
1194/* Shared or private faults. */
1195#define NR_NUMA_HINT_FAULT_TYPES 2
1196
1197/* Memory and CPU locality */
1198#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199
1200/* Averaged statistics, and temporary buffers. */
1201#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202
e29cf08b
MG
1203pid_t task_numa_group_id(struct task_struct *p)
1204{
1205 return p->numa_group ? p->numa_group->gid : 0;
1206}
1207
44dba3d5 1208/*
97fb7a0a 1209 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1210 * occupy the first half of the array. The second half of the
1211 * array is for current counters, which are averaged into the
1212 * first set by task_numa_placement.
1213 */
1214static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1215{
44dba3d5 1216 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1217}
1218
1219static inline unsigned long task_faults(struct task_struct *p, int nid)
1220{
44dba3d5 1221 if (!p->numa_faults)
ac8e895b
MG
1222 return 0;
1223
44dba3d5
IM
1224 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1226}
1227
83e1d2cd
MG
1228static inline unsigned long group_faults(struct task_struct *p, int nid)
1229{
1230 if (!p->numa_group)
1231 return 0;
1232
44dba3d5
IM
1233 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1235}
1236
20e07dea
RR
1237static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238{
44dba3d5
IM
1239 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1241}
1242
b5dd77c8
RR
1243static inline unsigned long group_faults_priv(struct numa_group *ng)
1244{
1245 unsigned long faults = 0;
1246 int node;
1247
1248 for_each_online_node(node) {
1249 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 }
1251
1252 return faults;
1253}
1254
1255static inline unsigned long group_faults_shared(struct numa_group *ng)
1256{
1257 unsigned long faults = 0;
1258 int node;
1259
1260 for_each_online_node(node) {
1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 }
1263
1264 return faults;
1265}
1266
4142c3eb
RR
1267/*
1268 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269 * considered part of a numa group's pseudo-interleaving set. Migrations
1270 * between these nodes are slowed down, to allow things to settle down.
1271 */
1272#define ACTIVE_NODE_FRACTION 3
1273
1274static bool numa_is_active_node(int nid, struct numa_group *ng)
1275{
1276 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277}
1278
6c6b1193
RR
1279/* Handle placement on systems where not all nodes are directly connected. */
1280static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 int maxdist, bool task)
1282{
1283 unsigned long score = 0;
1284 int node;
1285
1286 /*
1287 * All nodes are directly connected, and the same distance
1288 * from each other. No need for fancy placement algorithms.
1289 */
1290 if (sched_numa_topology_type == NUMA_DIRECT)
1291 return 0;
1292
1293 /*
1294 * This code is called for each node, introducing N^2 complexity,
1295 * which should be ok given the number of nodes rarely exceeds 8.
1296 */
1297 for_each_online_node(node) {
1298 unsigned long faults;
1299 int dist = node_distance(nid, node);
1300
1301 /*
1302 * The furthest away nodes in the system are not interesting
1303 * for placement; nid was already counted.
1304 */
1305 if (dist == sched_max_numa_distance || node == nid)
1306 continue;
1307
1308 /*
1309 * On systems with a backplane NUMA topology, compare groups
1310 * of nodes, and move tasks towards the group with the most
1311 * memory accesses. When comparing two nodes at distance
1312 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 * of each group. Skip other nodes.
1314 */
1315 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1316 dist >= maxdist)
6c6b1193
RR
1317 continue;
1318
1319 /* Add up the faults from nearby nodes. */
1320 if (task)
1321 faults = task_faults(p, node);
1322 else
1323 faults = group_faults(p, node);
1324
1325 /*
1326 * On systems with a glueless mesh NUMA topology, there are
1327 * no fixed "groups of nodes". Instead, nodes that are not
1328 * directly connected bounce traffic through intermediate
1329 * nodes; a numa_group can occupy any set of nodes.
1330 * The further away a node is, the less the faults count.
1331 * This seems to result in good task placement.
1332 */
1333 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 faults *= (sched_max_numa_distance - dist);
1335 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 }
1337
1338 score += faults;
1339 }
1340
1341 return score;
1342}
1343
83e1d2cd
MG
1344/*
1345 * These return the fraction of accesses done by a particular task, or
1346 * task group, on a particular numa node. The group weight is given a
1347 * larger multiplier, in order to group tasks together that are almost
1348 * evenly spread out between numa nodes.
1349 */
7bd95320
RR
1350static inline unsigned long task_weight(struct task_struct *p, int nid,
1351 int dist)
83e1d2cd 1352{
7bd95320 1353 unsigned long faults, total_faults;
83e1d2cd 1354
44dba3d5 1355 if (!p->numa_faults)
83e1d2cd
MG
1356 return 0;
1357
1358 total_faults = p->total_numa_faults;
1359
1360 if (!total_faults)
1361 return 0;
1362
7bd95320 1363 faults = task_faults(p, nid);
6c6b1193
RR
1364 faults += score_nearby_nodes(p, nid, dist, true);
1365
7bd95320 1366 return 1000 * faults / total_faults;
83e1d2cd
MG
1367}
1368
7bd95320
RR
1369static inline unsigned long group_weight(struct task_struct *p, int nid,
1370 int dist)
83e1d2cd 1371{
7bd95320
RR
1372 unsigned long faults, total_faults;
1373
1374 if (!p->numa_group)
1375 return 0;
1376
1377 total_faults = p->numa_group->total_faults;
1378
1379 if (!total_faults)
83e1d2cd
MG
1380 return 0;
1381
7bd95320 1382 faults = group_faults(p, nid);
6c6b1193
RR
1383 faults += score_nearby_nodes(p, nid, dist, false);
1384
7bd95320 1385 return 1000 * faults / total_faults;
83e1d2cd
MG
1386}
1387
10f39042
RR
1388bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 int src_nid, int dst_cpu)
1390{
1391 struct numa_group *ng = p->numa_group;
1392 int dst_nid = cpu_to_node(dst_cpu);
1393 int last_cpupid, this_cpupid;
1394
1395 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397
1398 /*
1399 * Allow first faults or private faults to migrate immediately early in
1400 * the lifetime of a task. The magic number 4 is based on waiting for
1401 * two full passes of the "multi-stage node selection" test that is
1402 * executed below.
1403 */
1404 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1406 return true;
10f39042
RR
1407
1408 /*
1409 * Multi-stage node selection is used in conjunction with a periodic
1410 * migration fault to build a temporal task<->page relation. By using
1411 * a two-stage filter we remove short/unlikely relations.
1412 *
1413 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 * a task's usage of a particular page (n_p) per total usage of this
1415 * page (n_t) (in a given time-span) to a probability.
1416 *
1417 * Our periodic faults will sample this probability and getting the
1418 * same result twice in a row, given these samples are fully
1419 * independent, is then given by P(n)^2, provided our sample period
1420 * is sufficiently short compared to the usage pattern.
1421 *
1422 * This quadric squishes small probabilities, making it less likely we
1423 * act on an unlikely task<->page relation.
1424 */
10f39042
RR
1425 if (!cpupid_pid_unset(last_cpupid) &&
1426 cpupid_to_nid(last_cpupid) != dst_nid)
1427 return false;
1428
1429 /* Always allow migrate on private faults */
1430 if (cpupid_match_pid(p, last_cpupid))
1431 return true;
1432
1433 /* A shared fault, but p->numa_group has not been set up yet. */
1434 if (!ng)
1435 return true;
1436
1437 /*
4142c3eb
RR
1438 * Destination node is much more heavily used than the source
1439 * node? Allow migration.
10f39042 1440 */
4142c3eb
RR
1441 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 ACTIVE_NODE_FRACTION)
10f39042
RR
1443 return true;
1444
1445 /*
4142c3eb
RR
1446 * Distribute memory according to CPU & memory use on each node,
1447 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 *
1449 * faults_cpu(dst) 3 faults_cpu(src)
1450 * --------------- * - > ---------------
1451 * faults_mem(dst) 4 faults_mem(src)
10f39042 1452 */
4142c3eb
RR
1453 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1455}
1456
c7132dd6 1457static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
58d081b5 1460
fb13c7ee 1461/* Cached statistics for all CPUs within a node */
58d081b5
MG
1462struct numa_stats {
1463 unsigned long load;
fb13c7ee
MG
1464
1465 /* Total compute capacity of CPUs on a node */
5ef20ca1 1466 unsigned long compute_capacity;
58d081b5 1467};
e6628d5b 1468
fb13c7ee
MG
1469/*
1470 * XXX borrowed from update_sg_lb_stats
1471 */
1472static void update_numa_stats(struct numa_stats *ns, int nid)
1473{
d90707eb 1474 int cpu;
fb13c7ee
MG
1475
1476 memset(ns, 0, sizeof(*ns));
1477 for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 struct rq *rq = cpu_rq(cpu);
1479
c7132dd6 1480 ns->load += weighted_cpuload(rq);
ced549fa 1481 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1482 }
1483
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
a4739eca
SD
1505 struct rq *rq = cpu_rq(env->dst_cpu);
1506
1507 /* Bail out if run-queue part of active NUMA balance. */
1508 if (xchg(&rq->numa_migrate_on, 1))
1509 return;
1510
1511 /*
1512 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 * found a better CPU to move/swap.
1514 */
1515 if (env->best_cpu != -1) {
1516 rq = cpu_rq(env->best_cpu);
1517 WRITE_ONCE(rq->numa_migrate_on, 0);
1518 }
1519
fb13c7ee
MG
1520 if (env->best_task)
1521 put_task_struct(env->best_task);
bac78573
ON
1522 if (p)
1523 get_task_struct(p);
fb13c7ee
MG
1524
1525 env->best_task = p;
1526 env->best_imp = imp;
1527 env->best_cpu = env->dst_cpu;
1528}
1529
28a21745 1530static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1531 struct task_numa_env *env)
1532{
e4991b24
RR
1533 long imb, old_imb;
1534 long orig_src_load, orig_dst_load;
28a21745
RR
1535 long src_capacity, dst_capacity;
1536
1537 /*
1538 * The load is corrected for the CPU capacity available on each node.
1539 *
1540 * src_load dst_load
1541 * ------------ vs ---------
1542 * src_capacity dst_capacity
1543 */
1544 src_capacity = env->src_stats.compute_capacity;
1545 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1546
5f95ba7a 1547 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1548
28a21745 1549 orig_src_load = env->src_stats.load;
e4991b24 1550 orig_dst_load = env->dst_stats.load;
28a21745 1551
5f95ba7a 1552 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1553
1554 /* Would this change make things worse? */
1555 return (imb > old_imb);
e63da036
RR
1556}
1557
6fd98e77
SD
1558/*
1559 * Maximum NUMA importance can be 1998 (2*999);
1560 * SMALLIMP @ 30 would be close to 1998/64.
1561 * Used to deter task migration.
1562 */
1563#define SMALLIMP 30
1564
fb13c7ee
MG
1565/*
1566 * This checks if the overall compute and NUMA accesses of the system would
1567 * be improved if the source tasks was migrated to the target dst_cpu taking
1568 * into account that it might be best if task running on the dst_cpu should
1569 * be exchanged with the source task
1570 */
887c290e 1571static void task_numa_compare(struct task_numa_env *env,
305c1fac 1572 long taskimp, long groupimp, bool maymove)
fb13c7ee 1573{
fb13c7ee
MG
1574 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 struct task_struct *cur;
28a21745 1576 long src_load, dst_load;
fb13c7ee 1577 long load;
1c5d3eb3 1578 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1579 long moveimp = imp;
7bd95320 1580 int dist = env->dist;
fb13c7ee 1581
a4739eca
SD
1582 if (READ_ONCE(dst_rq->numa_migrate_on))
1583 return;
1584
fb13c7ee 1585 rcu_read_lock();
bac78573
ON
1586 cur = task_rcu_dereference(&dst_rq->curr);
1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1588 cur = NULL;
1589
7af68335
PZ
1590 /*
1591 * Because we have preemption enabled we can get migrated around and
1592 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 */
1594 if (cur == env->p)
1595 goto unlock;
1596
305c1fac 1597 if (!cur) {
6fd98e77 1598 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1599 goto assign;
1600 else
1601 goto unlock;
1602 }
1603
fb13c7ee
MG
1604 /*
1605 * "imp" is the fault differential for the source task between the
1606 * source and destination node. Calculate the total differential for
1607 * the source task and potential destination task. The more negative
305c1fac 1608 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1609 * be incurred if the tasks were swapped.
1610 */
305c1fac
SD
1611 /* Skip this swap candidate if cannot move to the source cpu */
1612 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1613 goto unlock;
fb13c7ee 1614
305c1fac
SD
1615 /*
1616 * If dst and source tasks are in the same NUMA group, or not
1617 * in any group then look only at task weights.
1618 */
1619 if (cur->numa_group == env->p->numa_group) {
1620 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 task_weight(cur, env->dst_nid, dist);
887c290e 1622 /*
305c1fac
SD
1623 * Add some hysteresis to prevent swapping the
1624 * tasks within a group over tiny differences.
887c290e 1625 */
305c1fac
SD
1626 if (cur->numa_group)
1627 imp -= imp / 16;
1628 } else {
1629 /*
1630 * Compare the group weights. If a task is all by itself
1631 * (not part of a group), use the task weight instead.
1632 */
1633 if (cur->numa_group && env->p->numa_group)
1634 imp += group_weight(cur, env->src_nid, dist) -
1635 group_weight(cur, env->dst_nid, dist);
1636 else
1637 imp += task_weight(cur, env->src_nid, dist) -
1638 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1639 }
1640
305c1fac 1641 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1642 imp = moveimp;
305c1fac 1643 cur = NULL;
fb13c7ee 1644 goto assign;
305c1fac 1645 }
fb13c7ee 1646
6fd98e77
SD
1647 /*
1648 * If the NUMA importance is less than SMALLIMP,
1649 * task migration might only result in ping pong
1650 * of tasks and also hurt performance due to cache
1651 * misses.
1652 */
1653 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1654 goto unlock;
1655
fb13c7ee
MG
1656 /*
1657 * In the overloaded case, try and keep the load balanced.
1658 */
305c1fac
SD
1659 load = task_h_load(env->p) - task_h_load(cur);
1660 if (!load)
1661 goto assign;
1662
e720fff6
PZ
1663 dst_load = env->dst_stats.load + load;
1664 src_load = env->src_stats.load - load;
fb13c7ee 1665
28a21745 1666 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1667 goto unlock;
1668
305c1fac 1669assign:
ba7e5a27
RR
1670 /*
1671 * One idle CPU per node is evaluated for a task numa move.
1672 * Call select_idle_sibling to maybe find a better one.
1673 */
10e2f1ac
PZ
1674 if (!cur) {
1675 /*
97fb7a0a 1676 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1677 * can be used from IRQ context.
1678 */
1679 local_irq_disable();
772bd008
MR
1680 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1681 env->dst_cpu);
10e2f1ac
PZ
1682 local_irq_enable();
1683 }
ba7e5a27 1684
fb13c7ee
MG
1685 task_numa_assign(env, cur, imp);
1686unlock:
1687 rcu_read_unlock();
1688}
1689
887c290e
RR
1690static void task_numa_find_cpu(struct task_numa_env *env,
1691 long taskimp, long groupimp)
2c8a50aa 1692{
305c1fac
SD
1693 long src_load, dst_load, load;
1694 bool maymove = false;
2c8a50aa
MG
1695 int cpu;
1696
305c1fac
SD
1697 load = task_h_load(env->p);
1698 dst_load = env->dst_stats.load + load;
1699 src_load = env->src_stats.load - load;
1700
1701 /*
1702 * If the improvement from just moving env->p direction is better
1703 * than swapping tasks around, check if a move is possible.
1704 */
1705 maymove = !load_too_imbalanced(src_load, dst_load, env);
1706
2c8a50aa
MG
1707 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 /* Skip this CPU if the source task cannot migrate */
0c98d344 1709 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1710 continue;
1711
1712 env->dst_cpu = cpu;
305c1fac 1713 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1714 }
1715}
1716
58d081b5
MG
1717static int task_numa_migrate(struct task_struct *p)
1718{
58d081b5
MG
1719 struct task_numa_env env = {
1720 .p = p,
fb13c7ee 1721
58d081b5 1722 .src_cpu = task_cpu(p),
b32e86b4 1723 .src_nid = task_node(p),
fb13c7ee
MG
1724
1725 .imbalance_pct = 112,
1726
1727 .best_task = NULL,
1728 .best_imp = 0,
4142c3eb 1729 .best_cpu = -1,
58d081b5
MG
1730 };
1731 struct sched_domain *sd;
a4739eca 1732 struct rq *best_rq;
887c290e 1733 unsigned long taskweight, groupweight;
7bd95320 1734 int nid, ret, dist;
887c290e 1735 long taskimp, groupimp;
e6628d5b 1736
58d081b5 1737 /*
fb13c7ee
MG
1738 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 * imbalance and would be the first to start moving tasks about.
1740 *
1741 * And we want to avoid any moving of tasks about, as that would create
1742 * random movement of tasks -- counter the numa conditions we're trying
1743 * to satisfy here.
58d081b5
MG
1744 */
1745 rcu_read_lock();
fb13c7ee 1746 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1747 if (sd)
1748 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1749 rcu_read_unlock();
1750
46a73e8a
RR
1751 /*
1752 * Cpusets can break the scheduler domain tree into smaller
1753 * balance domains, some of which do not cross NUMA boundaries.
1754 * Tasks that are "trapped" in such domains cannot be migrated
1755 * elsewhere, so there is no point in (re)trying.
1756 */
1757 if (unlikely(!sd)) {
8cd45eee 1758 sched_setnuma(p, task_node(p));
46a73e8a
RR
1759 return -EINVAL;
1760 }
1761
2c8a50aa 1762 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1763 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 taskweight = task_weight(p, env.src_nid, dist);
1765 groupweight = group_weight(p, env.src_nid, dist);
1766 update_numa_stats(&env.src_stats, env.src_nid);
1767 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1769 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1770
a43455a1 1771 /* Try to find a spot on the preferred nid. */
2d4056fa 1772 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1773
9de05d48
RR
1774 /*
1775 * Look at other nodes in these cases:
1776 * - there is no space available on the preferred_nid
1777 * - the task is part of a numa_group that is interleaved across
1778 * multiple NUMA nodes; in order to better consolidate the group,
1779 * we need to check other locations.
1780 */
4142c3eb 1781 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1782 for_each_online_node(nid) {
1783 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1784 continue;
58d081b5 1785
7bd95320 1786 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1787 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 dist != env.dist) {
1789 taskweight = task_weight(p, env.src_nid, dist);
1790 groupweight = group_weight(p, env.src_nid, dist);
1791 }
7bd95320 1792
83e1d2cd 1793 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1794 taskimp = task_weight(p, nid, dist) - taskweight;
1795 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1796 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1797 continue;
1798
7bd95320 1799 env.dist = dist;
2c8a50aa
MG
1800 env.dst_nid = nid;
1801 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1802 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1803 }
1804 }
1805
68d1b02a
RR
1806 /*
1807 * If the task is part of a workload that spans multiple NUMA nodes,
1808 * and is migrating into one of the workload's active nodes, remember
1809 * this node as the task's preferred numa node, so the workload can
1810 * settle down.
1811 * A task that migrated to a second choice node will be better off
1812 * trying for a better one later. Do not set the preferred node here.
1813 */
db015dae
RR
1814 if (p->numa_group) {
1815 if (env.best_cpu == -1)
1816 nid = env.src_nid;
1817 else
8cd45eee 1818 nid = cpu_to_node(env.best_cpu);
db015dae 1819
8cd45eee
SD
1820 if (nid != p->numa_preferred_nid)
1821 sched_setnuma(p, nid);
db015dae
RR
1822 }
1823
1824 /* No better CPU than the current one was found. */
1825 if (env.best_cpu == -1)
1826 return -EAGAIN;
0ec8aa00 1827
a4739eca 1828 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1829 if (env.best_task == NULL) {
286549dc 1830 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1831 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1832 if (ret != 0)
1833 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1834 return ret;
1835 }
1836
0ad4e3df 1837 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1838 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1839
286549dc
MG
1840 if (ret != 0)
1841 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1842 put_task_struct(env.best_task);
1843 return ret;
e6628d5b
MG
1844}
1845
6b9a7460
MG
1846/* Attempt to migrate a task to a CPU on the preferred node. */
1847static void numa_migrate_preferred(struct task_struct *p)
1848{
5085e2a3
RR
1849 unsigned long interval = HZ;
1850
2739d3ee 1851 /* This task has no NUMA fault statistics yet */
44dba3d5 1852 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1853 return;
1854
2739d3ee 1855 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1856 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1857 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1858
1859 /* Success if task is already running on preferred CPU */
de1b301a 1860 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1861 return;
1862
1863 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1864 task_numa_migrate(p);
6b9a7460
MG
1865}
1866
20e07dea 1867/*
4142c3eb 1868 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1869 * tracking the nodes from which NUMA hinting faults are triggered. This can
1870 * be different from the set of nodes where the workload's memory is currently
1871 * located.
20e07dea 1872 */
4142c3eb 1873static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1874{
1875 unsigned long faults, max_faults = 0;
4142c3eb 1876 int nid, active_nodes = 0;
20e07dea
RR
1877
1878 for_each_online_node(nid) {
1879 faults = group_faults_cpu(numa_group, nid);
1880 if (faults > max_faults)
1881 max_faults = faults;
1882 }
1883
1884 for_each_online_node(nid) {
1885 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1886 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1887 active_nodes++;
20e07dea 1888 }
4142c3eb
RR
1889
1890 numa_group->max_faults_cpu = max_faults;
1891 numa_group->active_nodes = active_nodes;
20e07dea
RR
1892}
1893
04bb2f94
RR
1894/*
1895 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1897 * period will be for the next scan window. If local/(local+remote) ratio is
1898 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1900 */
1901#define NUMA_PERIOD_SLOTS 10
a22b4b01 1902#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1903
1904/*
1905 * Increase the scan period (slow down scanning) if the majority of
1906 * our memory is already on our local node, or if the majority of
1907 * the page accesses are shared with other processes.
1908 * Otherwise, decrease the scan period.
1909 */
1910static void update_task_scan_period(struct task_struct *p,
1911 unsigned long shared, unsigned long private)
1912{
1913 unsigned int period_slot;
37ec97de 1914 int lr_ratio, ps_ratio;
04bb2f94
RR
1915 int diff;
1916
1917 unsigned long remote = p->numa_faults_locality[0];
1918 unsigned long local = p->numa_faults_locality[1];
1919
1920 /*
1921 * If there were no record hinting faults then either the task is
1922 * completely idle or all activity is areas that are not of interest
074c2381
MG
1923 * to automatic numa balancing. Related to that, if there were failed
1924 * migration then it implies we are migrating too quickly or the local
1925 * node is overloaded. In either case, scan slower
04bb2f94 1926 */
074c2381 1927 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1928 p->numa_scan_period = min(p->numa_scan_period_max,
1929 p->numa_scan_period << 1);
1930
1931 p->mm->numa_next_scan = jiffies +
1932 msecs_to_jiffies(p->numa_scan_period);
1933
1934 return;
1935 }
1936
1937 /*
1938 * Prepare to scale scan period relative to the current period.
1939 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 */
1943 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1944 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946
1947 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 /*
1949 * Most memory accesses are local. There is no need to
1950 * do fast NUMA scanning, since memory is already local.
1951 */
1952 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1953 if (!slot)
1954 slot = 1;
1955 diff = slot * period_slot;
1956 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 /*
1958 * Most memory accesses are shared with other tasks.
1959 * There is no point in continuing fast NUMA scanning,
1960 * since other tasks may just move the memory elsewhere.
1961 */
1962 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1963 if (!slot)
1964 slot = 1;
1965 diff = slot * period_slot;
1966 } else {
04bb2f94 1967 /*
37ec97de
RR
1968 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 * yet they are not on the local NUMA node. Speed up
1970 * NUMA scanning to get the memory moved over.
04bb2f94 1971 */
37ec97de
RR
1972 int ratio = max(lr_ratio, ps_ratio);
1973 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1974 }
1975
1976 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 task_scan_min(p), task_scan_max(p));
1978 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1979}
1980
7e2703e6
RR
1981/*
1982 * Get the fraction of time the task has been running since the last
1983 * NUMA placement cycle. The scheduler keeps similar statistics, but
1984 * decays those on a 32ms period, which is orders of magnitude off
1985 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986 * stats only if the task is so new there are no NUMA statistics yet.
1987 */
1988static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989{
1990 u64 runtime, delta, now;
1991 /* Use the start of this time slice to avoid calculations. */
1992 now = p->se.exec_start;
1993 runtime = p->se.sum_exec_runtime;
1994
1995 if (p->last_task_numa_placement) {
1996 delta = runtime - p->last_sum_exec_runtime;
1997 *period = now - p->last_task_numa_placement;
1998 } else {
c7b50216 1999 delta = p->se.avg.load_sum;
9d89c257 2000 *period = LOAD_AVG_MAX;
7e2703e6
RR
2001 }
2002
2003 p->last_sum_exec_runtime = runtime;
2004 p->last_task_numa_placement = now;
2005
2006 return delta;
2007}
2008
54009416
RR
2009/*
2010 * Determine the preferred nid for a task in a numa_group. This needs to
2011 * be done in a way that produces consistent results with group_weight,
2012 * otherwise workloads might not converge.
2013 */
2014static int preferred_group_nid(struct task_struct *p, int nid)
2015{
2016 nodemask_t nodes;
2017 int dist;
2018
2019 /* Direct connections between all NUMA nodes. */
2020 if (sched_numa_topology_type == NUMA_DIRECT)
2021 return nid;
2022
2023 /*
2024 * On a system with glueless mesh NUMA topology, group_weight
2025 * scores nodes according to the number of NUMA hinting faults on
2026 * both the node itself, and on nearby nodes.
2027 */
2028 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 unsigned long score, max_score = 0;
2030 int node, max_node = nid;
2031
2032 dist = sched_max_numa_distance;
2033
2034 for_each_online_node(node) {
2035 score = group_weight(p, node, dist);
2036 if (score > max_score) {
2037 max_score = score;
2038 max_node = node;
2039 }
2040 }
2041 return max_node;
2042 }
2043
2044 /*
2045 * Finding the preferred nid in a system with NUMA backplane
2046 * interconnect topology is more involved. The goal is to locate
2047 * tasks from numa_groups near each other in the system, and
2048 * untangle workloads from different sides of the system. This requires
2049 * searching down the hierarchy of node groups, recursively searching
2050 * inside the highest scoring group of nodes. The nodemask tricks
2051 * keep the complexity of the search down.
2052 */
2053 nodes = node_online_map;
2054 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 unsigned long max_faults = 0;
81907478 2056 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2057 int a, b;
2058
2059 /* Are there nodes at this distance from each other? */
2060 if (!find_numa_distance(dist))
2061 continue;
2062
2063 for_each_node_mask(a, nodes) {
2064 unsigned long faults = 0;
2065 nodemask_t this_group;
2066 nodes_clear(this_group);
2067
2068 /* Sum group's NUMA faults; includes a==b case. */
2069 for_each_node_mask(b, nodes) {
2070 if (node_distance(a, b) < dist) {
2071 faults += group_faults(p, b);
2072 node_set(b, this_group);
2073 node_clear(b, nodes);
2074 }
2075 }
2076
2077 /* Remember the top group. */
2078 if (faults > max_faults) {
2079 max_faults = faults;
2080 max_group = this_group;
2081 /*
2082 * subtle: at the smallest distance there is
2083 * just one node left in each "group", the
2084 * winner is the preferred nid.
2085 */
2086 nid = a;
2087 }
2088 }
2089 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2090 if (!max_faults)
2091 break;
54009416
RR
2092 nodes = max_group;
2093 }
2094 return nid;
2095}
2096
cbee9f88
PZ
2097static void task_numa_placement(struct task_struct *p)
2098{
f03bb676
SD
2099 int seq, nid, max_nid = -1;
2100 unsigned long max_faults = 0;
04bb2f94 2101 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2102 unsigned long total_faults;
2103 u64 runtime, period;
7dbd13ed 2104 spinlock_t *group_lock = NULL;
cbee9f88 2105
7e5a2c17
JL
2106 /*
2107 * The p->mm->numa_scan_seq field gets updated without
2108 * exclusive access. Use READ_ONCE() here to ensure
2109 * that the field is read in a single access:
2110 */
316c1608 2111 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2112 if (p->numa_scan_seq == seq)
2113 return;
2114 p->numa_scan_seq = seq;
598f0ec0 2115 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2116
7e2703e6
RR
2117 total_faults = p->numa_faults_locality[0] +
2118 p->numa_faults_locality[1];
2119 runtime = numa_get_avg_runtime(p, &period);
2120
7dbd13ed
MG
2121 /* If the task is part of a group prevent parallel updates to group stats */
2122 if (p->numa_group) {
2123 group_lock = &p->numa_group->lock;
60e69eed 2124 spin_lock_irq(group_lock);
7dbd13ed
MG
2125 }
2126
688b7585
MG
2127 /* Find the node with the highest number of faults */
2128 for_each_online_node(nid) {
44dba3d5
IM
2129 /* Keep track of the offsets in numa_faults array */
2130 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2131 unsigned long faults = 0, group_faults = 0;
44dba3d5 2132 int priv;
745d6147 2133
be1e4e76 2134 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2135 long diff, f_diff, f_weight;
8c8a743c 2136
44dba3d5
IM
2137 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2141
ac8e895b 2142 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2143 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 fault_types[priv] += p->numa_faults[membuf_idx];
2145 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2146
7e2703e6
RR
2147 /*
2148 * Normalize the faults_from, so all tasks in a group
2149 * count according to CPU use, instead of by the raw
2150 * number of faults. Tasks with little runtime have
2151 * little over-all impact on throughput, and thus their
2152 * faults are less important.
2153 */
2154 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2155 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2156 (total_faults + 1);
44dba3d5
IM
2157 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2159
44dba3d5
IM
2160 p->numa_faults[mem_idx] += diff;
2161 p->numa_faults[cpu_idx] += f_diff;
2162 faults += p->numa_faults[mem_idx];
83e1d2cd 2163 p->total_numa_faults += diff;
8c8a743c 2164 if (p->numa_group) {
44dba3d5
IM
2165 /*
2166 * safe because we can only change our own group
2167 *
2168 * mem_idx represents the offset for a given
2169 * nid and priv in a specific region because it
2170 * is at the beginning of the numa_faults array.
2171 */
2172 p->numa_group->faults[mem_idx] += diff;
2173 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2174 p->numa_group->total_faults += diff;
44dba3d5 2175 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2176 }
ac8e895b
MG
2177 }
2178
f03bb676
SD
2179 if (!p->numa_group) {
2180 if (faults > max_faults) {
2181 max_faults = faults;
2182 max_nid = nid;
2183 }
2184 } else if (group_faults > max_faults) {
2185 max_faults = group_faults;
688b7585
MG
2186 max_nid = nid;
2187 }
83e1d2cd
MG
2188 }
2189
7dbd13ed 2190 if (p->numa_group) {
4142c3eb 2191 numa_group_count_active_nodes(p->numa_group);
60e69eed 2192 spin_unlock_irq(group_lock);
f03bb676 2193 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2194 }
2195
bb97fc31
RR
2196 if (max_faults) {
2197 /* Set the new preferred node */
2198 if (max_nid != p->numa_preferred_nid)
2199 sched_setnuma(p, max_nid);
3a7053b3 2200 }
30619c89
SD
2201
2202 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2203}
2204
8c8a743c
PZ
2205static inline int get_numa_group(struct numa_group *grp)
2206{
2207 return atomic_inc_not_zero(&grp->refcount);
2208}
2209
2210static inline void put_numa_group(struct numa_group *grp)
2211{
2212 if (atomic_dec_and_test(&grp->refcount))
2213 kfree_rcu(grp, rcu);
2214}
2215
3e6a9418
MG
2216static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2217 int *priv)
8c8a743c
PZ
2218{
2219 struct numa_group *grp, *my_grp;
2220 struct task_struct *tsk;
2221 bool join = false;
2222 int cpu = cpupid_to_cpu(cpupid);
2223 int i;
2224
2225 if (unlikely(!p->numa_group)) {
2226 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2227 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2228
2229 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2230 if (!grp)
2231 return;
2232
2233 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2234 grp->active_nodes = 1;
2235 grp->max_faults_cpu = 0;
8c8a743c 2236 spin_lock_init(&grp->lock);
e29cf08b 2237 grp->gid = p->pid;
50ec8a40 2238 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2239 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2240 nr_node_ids;
8c8a743c 2241
be1e4e76 2242 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2243 grp->faults[i] = p->numa_faults[i];
8c8a743c 2244
989348b5 2245 grp->total_faults = p->total_numa_faults;
83e1d2cd 2246
8c8a743c
PZ
2247 grp->nr_tasks++;
2248 rcu_assign_pointer(p->numa_group, grp);
2249 }
2250
2251 rcu_read_lock();
316c1608 2252 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2253
2254 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2255 goto no_join;
8c8a743c
PZ
2256
2257 grp = rcu_dereference(tsk->numa_group);
2258 if (!grp)
3354781a 2259 goto no_join;
8c8a743c
PZ
2260
2261 my_grp = p->numa_group;
2262 if (grp == my_grp)
3354781a 2263 goto no_join;
8c8a743c
PZ
2264
2265 /*
2266 * Only join the other group if its bigger; if we're the bigger group,
2267 * the other task will join us.
2268 */
2269 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2270 goto no_join;
8c8a743c
PZ
2271
2272 /*
2273 * Tie-break on the grp address.
2274 */
2275 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2276 goto no_join;
8c8a743c 2277
dabe1d99
RR
2278 /* Always join threads in the same process. */
2279 if (tsk->mm == current->mm)
2280 join = true;
2281
2282 /* Simple filter to avoid false positives due to PID collisions */
2283 if (flags & TNF_SHARED)
2284 join = true;
8c8a743c 2285
3e6a9418
MG
2286 /* Update priv based on whether false sharing was detected */
2287 *priv = !join;
2288
dabe1d99 2289 if (join && !get_numa_group(grp))
3354781a 2290 goto no_join;
8c8a743c 2291
8c8a743c
PZ
2292 rcu_read_unlock();
2293
2294 if (!join)
2295 return;
2296
60e69eed
MG
2297 BUG_ON(irqs_disabled());
2298 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2299
be1e4e76 2300 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2301 my_grp->faults[i] -= p->numa_faults[i];
2302 grp->faults[i] += p->numa_faults[i];
8c8a743c 2303 }
989348b5
MG
2304 my_grp->total_faults -= p->total_numa_faults;
2305 grp->total_faults += p->total_numa_faults;
8c8a743c 2306
8c8a743c
PZ
2307 my_grp->nr_tasks--;
2308 grp->nr_tasks++;
2309
2310 spin_unlock(&my_grp->lock);
60e69eed 2311 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2312
2313 rcu_assign_pointer(p->numa_group, grp);
2314
2315 put_numa_group(my_grp);
3354781a
PZ
2316 return;
2317
2318no_join:
2319 rcu_read_unlock();
2320 return;
8c8a743c
PZ
2321}
2322
2323void task_numa_free(struct task_struct *p)
2324{
2325 struct numa_group *grp = p->numa_group;
44dba3d5 2326 void *numa_faults = p->numa_faults;
e9dd685c
SR
2327 unsigned long flags;
2328 int i;
8c8a743c
PZ
2329
2330 if (grp) {
e9dd685c 2331 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2333 grp->faults[i] -= p->numa_faults[i];
989348b5 2334 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2335
8c8a743c 2336 grp->nr_tasks--;
e9dd685c 2337 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2338 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2339 put_numa_group(grp);
2340 }
2341
44dba3d5 2342 p->numa_faults = NULL;
82727018 2343 kfree(numa_faults);
8c8a743c
PZ
2344}
2345
cbee9f88
PZ
2346/*
2347 * Got a PROT_NONE fault for a page on @node.
2348 */
58b46da3 2349void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2350{
2351 struct task_struct *p = current;
6688cc05 2352 bool migrated = flags & TNF_MIGRATED;
58b46da3 2353 int cpu_node = task_node(current);
792568ec 2354 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2355 struct numa_group *ng;
ac8e895b 2356 int priv;
cbee9f88 2357
2a595721 2358 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2359 return;
2360
9ff1d9ff
MG
2361 /* for example, ksmd faulting in a user's mm */
2362 if (!p->mm)
2363 return;
2364
f809ca9a 2365 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2366 if (unlikely(!p->numa_faults)) {
2367 int size = sizeof(*p->numa_faults) *
be1e4e76 2368 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2369
44dba3d5
IM
2370 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 if (!p->numa_faults)
f809ca9a 2372 return;
745d6147 2373
83e1d2cd 2374 p->total_numa_faults = 0;
04bb2f94 2375 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2376 }
cbee9f88 2377
8c8a743c
PZ
2378 /*
2379 * First accesses are treated as private, otherwise consider accesses
2380 * to be private if the accessing pid has not changed
2381 */
2382 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2383 priv = 1;
2384 } else {
2385 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2386 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2387 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2388 }
2389
792568ec
RR
2390 /*
2391 * If a workload spans multiple NUMA nodes, a shared fault that
2392 * occurs wholly within the set of nodes that the workload is
2393 * actively using should be counted as local. This allows the
2394 * scan rate to slow down when a workload has settled down.
2395 */
4142c3eb
RR
2396 ng = p->numa_group;
2397 if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 numa_is_active_node(cpu_node, ng) &&
2399 numa_is_active_node(mem_node, ng))
792568ec
RR
2400 local = 1;
2401
2739d3ee 2402 /*
e1ff516a
YW
2403 * Retry to migrate task to preferred node periodically, in case it
2404 * previously failed, or the scheduler moved us.
2739d3ee 2405 */
b6a60cf3
SD
2406 if (time_after(jiffies, p->numa_migrate_retry)) {
2407 task_numa_placement(p);
6b9a7460 2408 numa_migrate_preferred(p);
b6a60cf3 2409 }
6b9a7460 2410
b32e86b4
IM
2411 if (migrated)
2412 p->numa_pages_migrated += pages;
074c2381
MG
2413 if (flags & TNF_MIGRATE_FAIL)
2414 p->numa_faults_locality[2] += pages;
b32e86b4 2415
44dba3d5
IM
2416 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2418 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2419}
2420
6e5fb223
PZ
2421static void reset_ptenuma_scan(struct task_struct *p)
2422{
7e5a2c17
JL
2423 /*
2424 * We only did a read acquisition of the mmap sem, so
2425 * p->mm->numa_scan_seq is written to without exclusive access
2426 * and the update is not guaranteed to be atomic. That's not
2427 * much of an issue though, since this is just used for
2428 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 * expensive, to avoid any form of compiler optimizations:
2430 */
316c1608 2431 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2432 p->mm->numa_scan_offset = 0;
2433}
2434
cbee9f88
PZ
2435/*
2436 * The expensive part of numa migration is done from task_work context.
2437 * Triggered from task_tick_numa().
2438 */
2439void task_numa_work(struct callback_head *work)
2440{
2441 unsigned long migrate, next_scan, now = jiffies;
2442 struct task_struct *p = current;
2443 struct mm_struct *mm = p->mm;
51170840 2444 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2445 struct vm_area_struct *vma;
9f40604c 2446 unsigned long start, end;
598f0ec0 2447 unsigned long nr_pte_updates = 0;
4620f8c1 2448 long pages, virtpages;
cbee9f88 2449
9148a3a1 2450 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2451
2452 work->next = work; /* protect against double add */
2453 /*
2454 * Who cares about NUMA placement when they're dying.
2455 *
2456 * NOTE: make sure not to dereference p->mm before this check,
2457 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 * without p->mm even though we still had it when we enqueued this
2459 * work.
2460 */
2461 if (p->flags & PF_EXITING)
2462 return;
2463
930aa174 2464 if (!mm->numa_next_scan) {
7e8d16b6
MG
2465 mm->numa_next_scan = now +
2466 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2467 }
2468
cbee9f88
PZ
2469 /*
2470 * Enforce maximal scan/migration frequency..
2471 */
2472 migrate = mm->numa_next_scan;
2473 if (time_before(now, migrate))
2474 return;
2475
598f0ec0
MG
2476 if (p->numa_scan_period == 0) {
2477 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2478 p->numa_scan_period = task_scan_start(p);
598f0ec0 2479 }
cbee9f88 2480
fb003b80 2481 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2482 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2483 return;
2484
19a78d11
PZ
2485 /*
2486 * Delay this task enough that another task of this mm will likely win
2487 * the next time around.
2488 */
2489 p->node_stamp += 2 * TICK_NSEC;
2490
9f40604c
MG
2491 start = mm->numa_scan_offset;
2492 pages = sysctl_numa_balancing_scan_size;
2493 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2494 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2495 if (!pages)
2496 return;
cbee9f88 2497
4620f8c1 2498
8655d549
VB
2499 if (!down_read_trylock(&mm->mmap_sem))
2500 return;
9f40604c 2501 vma = find_vma(mm, start);
6e5fb223
PZ
2502 if (!vma) {
2503 reset_ptenuma_scan(p);
9f40604c 2504 start = 0;
6e5fb223
PZ
2505 vma = mm->mmap;
2506 }
9f40604c 2507 for (; vma; vma = vma->vm_next) {
6b79c57b 2508 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2509 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2510 continue;
6b79c57b 2511 }
6e5fb223 2512
4591ce4f
MG
2513 /*
2514 * Shared library pages mapped by multiple processes are not
2515 * migrated as it is expected they are cache replicated. Avoid
2516 * hinting faults in read-only file-backed mappings or the vdso
2517 * as migrating the pages will be of marginal benefit.
2518 */
2519 if (!vma->vm_mm ||
2520 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2521 continue;
2522
3c67f474
MG
2523 /*
2524 * Skip inaccessible VMAs to avoid any confusion between
2525 * PROT_NONE and NUMA hinting ptes
2526 */
2527 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2528 continue;
4591ce4f 2529
9f40604c
MG
2530 do {
2531 start = max(start, vma->vm_start);
2532 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 end = min(end, vma->vm_end);
4620f8c1 2534 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2535
2536 /*
4620f8c1
RR
2537 * Try to scan sysctl_numa_balancing_size worth of
2538 * hpages that have at least one present PTE that
2539 * is not already pte-numa. If the VMA contains
2540 * areas that are unused or already full of prot_numa
2541 * PTEs, scan up to virtpages, to skip through those
2542 * areas faster.
598f0ec0
MG
2543 */
2544 if (nr_pte_updates)
2545 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2546 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2547
9f40604c 2548 start = end;
4620f8c1 2549 if (pages <= 0 || virtpages <= 0)
9f40604c 2550 goto out;
3cf1962c
RR
2551
2552 cond_resched();
9f40604c 2553 } while (end != vma->vm_end);
cbee9f88 2554 }
6e5fb223 2555
9f40604c 2556out:
6e5fb223 2557 /*
c69307d5
PZ
2558 * It is possible to reach the end of the VMA list but the last few
2559 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 * would find the !migratable VMA on the next scan but not reset the
2561 * scanner to the start so check it now.
6e5fb223
PZ
2562 */
2563 if (vma)
9f40604c 2564 mm->numa_scan_offset = start;
6e5fb223
PZ
2565 else
2566 reset_ptenuma_scan(p);
2567 up_read(&mm->mmap_sem);
51170840
RR
2568
2569 /*
2570 * Make sure tasks use at least 32x as much time to run other code
2571 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 * Usually update_task_scan_period slows down scanning enough; on an
2573 * overloaded system we need to limit overhead on a per task basis.
2574 */
2575 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 u64 diff = p->se.sum_exec_runtime - runtime;
2577 p->node_stamp += 32 * diff;
2578 }
cbee9f88
PZ
2579}
2580
2581/*
2582 * Drive the periodic memory faults..
2583 */
2584void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585{
2586 struct callback_head *work = &curr->numa_work;
2587 u64 period, now;
2588
2589 /*
2590 * We don't care about NUMA placement if we don't have memory.
2591 */
2592 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2593 return;
2594
2595 /*
2596 * Using runtime rather than walltime has the dual advantage that
2597 * we (mostly) drive the selection from busy threads and that the
2598 * task needs to have done some actual work before we bother with
2599 * NUMA placement.
2600 */
2601 now = curr->se.sum_exec_runtime;
2602 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603
25b3e5a3 2604 if (now > curr->node_stamp + period) {
4b96a29b 2605 if (!curr->node_stamp)
b5dd77c8 2606 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2607 curr->node_stamp += period;
cbee9f88
PZ
2608
2609 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 task_work_add(curr, work, true);
2612 }
2613 }
2614}
3fed382b 2615
3f9672ba
SD
2616static void update_scan_period(struct task_struct *p, int new_cpu)
2617{
2618 int src_nid = cpu_to_node(task_cpu(p));
2619 int dst_nid = cpu_to_node(new_cpu);
2620
05cbdf4f
MG
2621 if (!static_branch_likely(&sched_numa_balancing))
2622 return;
2623
3f9672ba
SD
2624 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2625 return;
2626
05cbdf4f
MG
2627 if (src_nid == dst_nid)
2628 return;
2629
2630 /*
2631 * Allow resets if faults have been trapped before one scan
2632 * has completed. This is most likely due to a new task that
2633 * is pulled cross-node due to wakeups or load balancing.
2634 */
2635 if (p->numa_scan_seq) {
2636 /*
2637 * Avoid scan adjustments if moving to the preferred
2638 * node or if the task was not previously running on
2639 * the preferred node.
2640 */
2641 if (dst_nid == p->numa_preferred_nid ||
2642 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2643 return;
2644 }
2645
2646 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2647}
2648
cbee9f88
PZ
2649#else
2650static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651{
2652}
0ec8aa00
PZ
2653
2654static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655{
2656}
2657
2658static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659{
2660}
3fed382b 2661
3f9672ba
SD
2662static inline void update_scan_period(struct task_struct *p, int new_cpu)
2663{
2664}
2665
cbee9f88
PZ
2666#endif /* CONFIG_NUMA_BALANCING */
2667
30cfdcfc
DA
2668static void
2669account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670{
2671 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2672 if (!parent_entity(se))
029632fb 2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2674#ifdef CONFIG_SMP
0ec8aa00
PZ
2675 if (entity_is_task(se)) {
2676 struct rq *rq = rq_of(cfs_rq);
2677
2678 account_numa_enqueue(rq, task_of(se));
2679 list_add(&se->group_node, &rq->cfs_tasks);
2680 }
367456c7 2681#endif
30cfdcfc 2682 cfs_rq->nr_running++;
30cfdcfc
DA
2683}
2684
2685static void
2686account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687{
2688 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2689 if (!parent_entity(se))
029632fb 2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2691#ifdef CONFIG_SMP
0ec8aa00
PZ
2692 if (entity_is_task(se)) {
2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2694 list_del_init(&se->group_node);
0ec8aa00 2695 }
bfdb198c 2696#endif
30cfdcfc 2697 cfs_rq->nr_running--;
30cfdcfc
DA
2698}
2699
8d5b9025
PZ
2700/*
2701 * Signed add and clamp on underflow.
2702 *
2703 * Explicitly do a load-store to ensure the intermediate value never hits
2704 * memory. This allows lockless observations without ever seeing the negative
2705 * values.
2706 */
2707#define add_positive(_ptr, _val) do { \
2708 typeof(_ptr) ptr = (_ptr); \
2709 typeof(_val) val = (_val); \
2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2711 \
2712 res = var + val; \
2713 \
2714 if (val < 0 && res > var) \
2715 res = 0; \
2716 \
2717 WRITE_ONCE(*ptr, res); \
2718} while (0)
2719
2720/*
2721 * Unsigned subtract and clamp on underflow.
2722 *
2723 * Explicitly do a load-store to ensure the intermediate value never hits
2724 * memory. This allows lockless observations without ever seeing the negative
2725 * values.
2726 */
2727#define sub_positive(_ptr, _val) do { \
2728 typeof(_ptr) ptr = (_ptr); \
2729 typeof(*ptr) val = (_val); \
2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2731 res = var - val; \
2732 if (res > var) \
2733 res = 0; \
2734 WRITE_ONCE(*ptr, res); \
2735} while (0)
2736
b5c0ce7b
PB
2737/*
2738 * Remove and clamp on negative, from a local variable.
2739 *
2740 * A variant of sub_positive(), which does not use explicit load-store
2741 * and is thus optimized for local variable updates.
2742 */
2743#define lsub_positive(_ptr, _val) do { \
2744 typeof(_ptr) ptr = (_ptr); \
2745 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2746} while (0)
2747
8d5b9025 2748#ifdef CONFIG_SMP
8d5b9025
PZ
2749static inline void
2750enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2751{
1ea6c46a
PZ
2752 cfs_rq->runnable_weight += se->runnable_weight;
2753
2754 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2755 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2756}
2757
2758static inline void
2759dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760{
1ea6c46a
PZ
2761 cfs_rq->runnable_weight -= se->runnable_weight;
2762
2763 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2764 sub_positive(&cfs_rq->avg.runnable_load_sum,
2765 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2766}
2767
2768static inline void
2769enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2770{
2771 cfs_rq->avg.load_avg += se->avg.load_avg;
2772 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2773}
2774
2775static inline void
2776dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777{
2778 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2779 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2780}
2781#else
2782static inline void
2783enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2784static inline void
2785dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2786static inline void
2787enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2788static inline void
2789dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2790#endif
2791
9059393e 2792static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2793 unsigned long weight, unsigned long runnable)
9059393e
VG
2794{
2795 if (se->on_rq) {
2796 /* commit outstanding execution time */
2797 if (cfs_rq->curr == se)
2798 update_curr(cfs_rq);
2799 account_entity_dequeue(cfs_rq, se);
2800 dequeue_runnable_load_avg(cfs_rq, se);
2801 }
2802 dequeue_load_avg(cfs_rq, se);
2803
1ea6c46a 2804 se->runnable_weight = runnable;
9059393e
VG
2805 update_load_set(&se->load, weight);
2806
2807#ifdef CONFIG_SMP
1ea6c46a
PZ
2808 do {
2809 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2810
2811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2812 se->avg.runnable_load_avg =
2813 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2814 } while (0);
9059393e
VG
2815#endif
2816
2817 enqueue_load_avg(cfs_rq, se);
2818 if (se->on_rq) {
2819 account_entity_enqueue(cfs_rq, se);
2820 enqueue_runnable_load_avg(cfs_rq, se);
2821 }
2822}
2823
2824void reweight_task(struct task_struct *p, int prio)
2825{
2826 struct sched_entity *se = &p->se;
2827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828 struct load_weight *load = &se->load;
2829 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2830
1ea6c46a 2831 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2832 load->inv_weight = sched_prio_to_wmult[prio];
2833}
2834
3ff6dcac 2835#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2836#ifdef CONFIG_SMP
cef27403
PZ
2837/*
2838 * All this does is approximate the hierarchical proportion which includes that
2839 * global sum we all love to hate.
2840 *
2841 * That is, the weight of a group entity, is the proportional share of the
2842 * group weight based on the group runqueue weights. That is:
2843 *
2844 * tg->weight * grq->load.weight
2845 * ge->load.weight = ----------------------------- (1)
2846 * \Sum grq->load.weight
2847 *
2848 * Now, because computing that sum is prohibitively expensive to compute (been
2849 * there, done that) we approximate it with this average stuff. The average
2850 * moves slower and therefore the approximation is cheaper and more stable.
2851 *
2852 * So instead of the above, we substitute:
2853 *
2854 * grq->load.weight -> grq->avg.load_avg (2)
2855 *
2856 * which yields the following:
2857 *
2858 * tg->weight * grq->avg.load_avg
2859 * ge->load.weight = ------------------------------ (3)
2860 * tg->load_avg
2861 *
2862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2863 *
2864 * That is shares_avg, and it is right (given the approximation (2)).
2865 *
2866 * The problem with it is that because the average is slow -- it was designed
2867 * to be exactly that of course -- this leads to transients in boundary
2868 * conditions. In specific, the case where the group was idle and we start the
2869 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2870 * yielding bad latency etc..
2871 *
2872 * Now, in that special case (1) reduces to:
2873 *
2874 * tg->weight * grq->load.weight
17de4ee0 2875 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2876 * grp->load.weight
2877 *
2878 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2879 *
2880 * So what we do is modify our approximation (3) to approach (4) in the (near)
2881 * UP case, like:
2882 *
2883 * ge->load.weight =
2884 *
2885 * tg->weight * grq->load.weight
2886 * --------------------------------------------------- (5)
2887 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2888 *
17de4ee0
PZ
2889 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2890 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2891 *
2892 *
2893 * tg->weight * grq->load.weight
2894 * ge->load.weight = ----------------------------- (6)
2895 * tg_load_avg'
2896 *
2897 * Where:
2898 *
2899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2900 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2901 *
2902 * And that is shares_weight and is icky. In the (near) UP case it approaches
2903 * (4) while in the normal case it approaches (3). It consistently
2904 * overestimates the ge->load.weight and therefore:
2905 *
2906 * \Sum ge->load.weight >= tg->weight
2907 *
2908 * hence icky!
2909 */
2c8e4dce 2910static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2911{
7c80cfc9
PZ
2912 long tg_weight, tg_shares, load, shares;
2913 struct task_group *tg = cfs_rq->tg;
2914
2915 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2916
3d4b60d3 2917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2918
ea1dc6fc 2919 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2920
ea1dc6fc
PZ
2921 /* Ensure tg_weight >= load */
2922 tg_weight -= cfs_rq->tg_load_avg_contrib;
2923 tg_weight += load;
3ff6dcac 2924
7c80cfc9 2925 shares = (tg_shares * load);
cf5f0acf
PZ
2926 if (tg_weight)
2927 shares /= tg_weight;
3ff6dcac 2928
b8fd8423
DE
2929 /*
2930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2931 * of a group with small tg->shares value. It is a floor value which is
2932 * assigned as a minimum load.weight to the sched_entity representing
2933 * the group on a CPU.
2934 *
2935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2936 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2939 * instead of 0.
2940 */
7c80cfc9 2941 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2942}
2c8e4dce
JB
2943
2944/*
17de4ee0
PZ
2945 * This calculates the effective runnable weight for a group entity based on
2946 * the group entity weight calculated above.
2947 *
2948 * Because of the above approximation (2), our group entity weight is
2949 * an load_avg based ratio (3). This means that it includes blocked load and
2950 * does not represent the runnable weight.
2951 *
2952 * Approximate the group entity's runnable weight per ratio from the group
2953 * runqueue:
2954 *
2955 * grq->avg.runnable_load_avg
2956 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2957 * grq->avg.load_avg
2958 *
2959 * However, analogous to above, since the avg numbers are slow, this leads to
2960 * transients in the from-idle case. Instead we use:
2961 *
2962 * ge->runnable_weight = ge->load.weight *
2963 *
2964 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2965 * ----------------------------------------------------- (8)
2966 * max(grq->avg.load_avg, grq->load.weight)
2967 *
2968 * Where these max() serve both to use the 'instant' values to fix the slow
2969 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2970 */
2971static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2972{
17de4ee0
PZ
2973 long runnable, load_avg;
2974
2975 load_avg = max(cfs_rq->avg.load_avg,
2976 scale_load_down(cfs_rq->load.weight));
2977
2978 runnable = max(cfs_rq->avg.runnable_load_avg,
2979 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2980
2981 runnable *= shares;
2982 if (load_avg)
2983 runnable /= load_avg;
17de4ee0 2984
2c8e4dce
JB
2985 return clamp_t(long, runnable, MIN_SHARES, shares);
2986}
387f77cc 2987#endif /* CONFIG_SMP */
ea1dc6fc 2988
82958366
PT
2989static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2990
1ea6c46a
PZ
2991/*
2992 * Recomputes the group entity based on the current state of its group
2993 * runqueue.
2994 */
2995static void update_cfs_group(struct sched_entity *se)
2069dd75 2996{
1ea6c46a
PZ
2997 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2998 long shares, runnable;
2069dd75 2999
1ea6c46a 3000 if (!gcfs_rq)
89ee048f
VG
3001 return;
3002
1ea6c46a 3003 if (throttled_hierarchy(gcfs_rq))
2069dd75 3004 return;
89ee048f 3005
3ff6dcac 3006#ifndef CONFIG_SMP
1ea6c46a 3007 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3008
3009 if (likely(se->load.weight == shares))
3ff6dcac 3010 return;
7c80cfc9 3011#else
2c8e4dce
JB
3012 shares = calc_group_shares(gcfs_rq);
3013 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3014#endif
2069dd75 3015
1ea6c46a 3016 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3017}
89ee048f 3018
2069dd75 3019#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3020static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3021{
3022}
3023#endif /* CONFIG_FAIR_GROUP_SCHED */
3024
ea14b57e 3025static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3026{
43964409
LT
3027 struct rq *rq = rq_of(cfs_rq);
3028
ea14b57e 3029 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3030 /*
3031 * There are a few boundary cases this might miss but it should
3032 * get called often enough that that should (hopefully) not be
9783be2c 3033 * a real problem.
a030d738
VK
3034 *
3035 * It will not get called when we go idle, because the idle
3036 * thread is a different class (!fair), nor will the utilization
3037 * number include things like RT tasks.
3038 *
3039 * As is, the util number is not freq-invariant (we'd have to
3040 * implement arch_scale_freq_capacity() for that).
3041 *
3042 * See cpu_util().
3043 */
ea14b57e 3044 cpufreq_update_util(rq, flags);
a030d738
VK
3045 }
3046}
3047
141965c7 3048#ifdef CONFIG_SMP
c566e8e9 3049#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3050/**
3051 * update_tg_load_avg - update the tg's load avg
3052 * @cfs_rq: the cfs_rq whose avg changed
3053 * @force: update regardless of how small the difference
3054 *
3055 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3056 * However, because tg->load_avg is a global value there are performance
3057 * considerations.
3058 *
3059 * In order to avoid having to look at the other cfs_rq's, we use a
3060 * differential update where we store the last value we propagated. This in
3061 * turn allows skipping updates if the differential is 'small'.
3062 *
815abf5a 3063 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3064 */
9d89c257 3065static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3066{
9d89c257 3067 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3068
aa0b7ae0
WL
3069 /*
3070 * No need to update load_avg for root_task_group as it is not used.
3071 */
3072 if (cfs_rq->tg == &root_task_group)
3073 return;
3074
9d89c257
YD
3075 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3076 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3077 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3078 }
8165e145 3079}
f5f9739d 3080
ad936d86 3081/*
97fb7a0a 3082 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3083 * caller only guarantees p->pi_lock is held; no other assumptions,
3084 * including the state of rq->lock, should be made.
3085 */
3086void set_task_rq_fair(struct sched_entity *se,
3087 struct cfs_rq *prev, struct cfs_rq *next)
3088{
0ccb977f
PZ
3089 u64 p_last_update_time;
3090 u64 n_last_update_time;
3091
ad936d86
BP
3092 if (!sched_feat(ATTACH_AGE_LOAD))
3093 return;
3094
3095 /*
3096 * We are supposed to update the task to "current" time, then its up to
3097 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3098 * getting what current time is, so simply throw away the out-of-date
3099 * time. This will result in the wakee task is less decayed, but giving
3100 * the wakee more load sounds not bad.
3101 */
0ccb977f
PZ
3102 if (!(se->avg.last_update_time && prev))
3103 return;
ad936d86
BP
3104
3105#ifndef CONFIG_64BIT
0ccb977f 3106 {
ad936d86
BP
3107 u64 p_last_update_time_copy;
3108 u64 n_last_update_time_copy;
3109
3110 do {
3111 p_last_update_time_copy = prev->load_last_update_time_copy;
3112 n_last_update_time_copy = next->load_last_update_time_copy;
3113
3114 smp_rmb();
3115
3116 p_last_update_time = prev->avg.last_update_time;
3117 n_last_update_time = next->avg.last_update_time;
3118
3119 } while (p_last_update_time != p_last_update_time_copy ||
3120 n_last_update_time != n_last_update_time_copy);
0ccb977f 3121 }
ad936d86 3122#else
0ccb977f
PZ
3123 p_last_update_time = prev->avg.last_update_time;
3124 n_last_update_time = next->avg.last_update_time;
ad936d86 3125#endif
0ccb977f
PZ
3126 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3127 se->avg.last_update_time = n_last_update_time;
ad936d86 3128}
09a43ace 3129
0e2d2aaa
PZ
3130
3131/*
3132 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3133 * propagate its contribution. The key to this propagation is the invariant
3134 * that for each group:
3135 *
3136 * ge->avg == grq->avg (1)
3137 *
3138 * _IFF_ we look at the pure running and runnable sums. Because they
3139 * represent the very same entity, just at different points in the hierarchy.
3140 *
a4c3c049
VG
3141 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3142 * sum over (but still wrong, because the group entity and group rq do not have
3143 * their PELT windows aligned).
0e2d2aaa
PZ
3144 *
3145 * However, update_tg_cfs_runnable() is more complex. So we have:
3146 *
3147 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3148 *
3149 * And since, like util, the runnable part should be directly transferable,
3150 * the following would _appear_ to be the straight forward approach:
3151 *
a4c3c049 3152 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3153 *
3154 * And per (1) we have:
3155 *
a4c3c049 3156 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3157 *
3158 * Which gives:
3159 *
3160 * ge->load.weight * grq->avg.load_avg
3161 * ge->avg.load_avg = ----------------------------------- (4)
3162 * grq->load.weight
3163 *
3164 * Except that is wrong!
3165 *
3166 * Because while for entities historical weight is not important and we
3167 * really only care about our future and therefore can consider a pure
3168 * runnable sum, runqueues can NOT do this.
3169 *
3170 * We specifically want runqueues to have a load_avg that includes
3171 * historical weights. Those represent the blocked load, the load we expect
3172 * to (shortly) return to us. This only works by keeping the weights as
3173 * integral part of the sum. We therefore cannot decompose as per (3).
3174 *
a4c3c049
VG
3175 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3176 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3177 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3178 * runnable section of these tasks overlap (or not). If they were to perfectly
3179 * align the rq as a whole would be runnable 2/3 of the time. If however we
3180 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3181 *
a4c3c049 3182 * So we'll have to approximate.. :/
0e2d2aaa 3183 *
a4c3c049 3184 * Given the constraint:
0e2d2aaa 3185 *
a4c3c049 3186 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3187 *
a4c3c049
VG
3188 * We can construct a rule that adds runnable to a rq by assuming minimal
3189 * overlap.
0e2d2aaa 3190 *
a4c3c049 3191 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3192 *
a4c3c049 3193 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3194 *
a4c3c049 3195 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3196 *
0e2d2aaa
PZ
3197 */
3198
09a43ace 3199static inline void
0e2d2aaa 3200update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3201{
09a43ace
VG
3202 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3203
3204 /* Nothing to update */
3205 if (!delta)
3206 return;
3207
a4c3c049
VG
3208 /*
3209 * The relation between sum and avg is:
3210 *
3211 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3212 *
3213 * however, the PELT windows are not aligned between grq and gse.
3214 */
3215
09a43ace
VG
3216 /* Set new sched_entity's utilization */
3217 se->avg.util_avg = gcfs_rq->avg.util_avg;
3218 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3219
3220 /* Update parent cfs_rq utilization */
3221 add_positive(&cfs_rq->avg.util_avg, delta);
3222 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3223}
3224
09a43ace 3225static inline void
0e2d2aaa 3226update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3227{
a4c3c049
VG
3228 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3229 unsigned long runnable_load_avg, load_avg;
3230 u64 runnable_load_sum, load_sum = 0;
3231 s64 delta_sum;
09a43ace 3232
0e2d2aaa
PZ
3233 if (!runnable_sum)
3234 return;
09a43ace 3235
0e2d2aaa 3236 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3237
a4c3c049
VG
3238 if (runnable_sum >= 0) {
3239 /*
3240 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3241 * the CPU is saturated running == runnable.
3242 */
3243 runnable_sum += se->avg.load_sum;
3244 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3245 } else {
3246 /*
3247 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3248 * assuming all tasks are equally runnable.
3249 */
3250 if (scale_load_down(gcfs_rq->load.weight)) {
3251 load_sum = div_s64(gcfs_rq->avg.load_sum,
3252 scale_load_down(gcfs_rq->load.weight));
3253 }
3254
3255 /* But make sure to not inflate se's runnable */
3256 runnable_sum = min(se->avg.load_sum, load_sum);
3257 }
3258
3259 /*
3260 * runnable_sum can't be lower than running_sum
97fb7a0a 3261 * As running sum is scale with CPU capacity wehreas the runnable sum
a4c3c049
VG
3262 * is not we rescale running_sum 1st
3263 */
3264 running_sum = se->avg.util_sum /
3265 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3266 runnable_sum = max(runnable_sum, running_sum);
3267
0e2d2aaa
PZ
3268 load_sum = (s64)se_weight(se) * runnable_sum;
3269 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3270
a4c3c049
VG
3271 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3272 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3273
a4c3c049
VG
3274 se->avg.load_sum = runnable_sum;
3275 se->avg.load_avg = load_avg;
3276 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3277 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3278
1ea6c46a
PZ
3279 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3280 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3281 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3282 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3283
a4c3c049
VG
3284 se->avg.runnable_load_sum = runnable_sum;
3285 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3286
09a43ace 3287 if (se->on_rq) {
a4c3c049
VG
3288 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3289 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3290 }
3291}
3292
0e2d2aaa 3293static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3294{
0e2d2aaa
PZ
3295 cfs_rq->propagate = 1;
3296 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3297}
3298
3299/* Update task and its cfs_rq load average */
3300static inline int propagate_entity_load_avg(struct sched_entity *se)
3301{
0e2d2aaa 3302 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3303
3304 if (entity_is_task(se))
3305 return 0;
3306
0e2d2aaa
PZ
3307 gcfs_rq = group_cfs_rq(se);
3308 if (!gcfs_rq->propagate)
09a43ace
VG
3309 return 0;
3310
0e2d2aaa
PZ
3311 gcfs_rq->propagate = 0;
3312
09a43ace
VG
3313 cfs_rq = cfs_rq_of(se);
3314
0e2d2aaa 3315 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3316
0e2d2aaa
PZ
3317 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3318 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3319
3320 return 1;
3321}
3322
bc427898
VG
3323/*
3324 * Check if we need to update the load and the utilization of a blocked
3325 * group_entity:
3326 */
3327static inline bool skip_blocked_update(struct sched_entity *se)
3328{
3329 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3330
3331 /*
3332 * If sched_entity still have not zero load or utilization, we have to
3333 * decay it:
3334 */
3335 if (se->avg.load_avg || se->avg.util_avg)
3336 return false;
3337
3338 /*
3339 * If there is a pending propagation, we have to update the load and
3340 * the utilization of the sched_entity:
3341 */
0e2d2aaa 3342 if (gcfs_rq->propagate)
bc427898
VG
3343 return false;
3344
3345 /*
3346 * Otherwise, the load and the utilization of the sched_entity is
3347 * already zero and there is no pending propagation, so it will be a
3348 * waste of time to try to decay it:
3349 */
3350 return true;
3351}
3352
6e83125c 3353#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3354
9d89c257 3355static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3356
3357static inline int propagate_entity_load_avg(struct sched_entity *se)
3358{
3359 return 0;
3360}
3361
0e2d2aaa 3362static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3363
6e83125c 3364#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3365
3d30544f
PZ
3366/**
3367 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3368 * @now: current time, as per cfs_rq_clock_task()
3369 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3370 *
3371 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3372 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3373 * post_init_entity_util_avg().
3374 *
3375 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3376 *
7c3edd2c
PZ
3377 * Returns true if the load decayed or we removed load.
3378 *
3379 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3380 * call update_tg_load_avg() when this function returns true.
3d30544f 3381 */
a2c6c91f 3382static inline int
3a123bbb 3383update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3384{
0e2d2aaa 3385 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3386 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3387 int decayed = 0;
2dac754e 3388
2a2f5d4e
PZ
3389 if (cfs_rq->removed.nr) {
3390 unsigned long r;
9a2dd585 3391 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3392
3393 raw_spin_lock(&cfs_rq->removed.lock);
3394 swap(cfs_rq->removed.util_avg, removed_util);
3395 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3396 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3397 cfs_rq->removed.nr = 0;
3398 raw_spin_unlock(&cfs_rq->removed.lock);
3399
2a2f5d4e 3400 r = removed_load;
89741892 3401 sub_positive(&sa->load_avg, r);
9a2dd585 3402 sub_positive(&sa->load_sum, r * divider);
2dac754e 3403
2a2f5d4e 3404 r = removed_util;
89741892 3405 sub_positive(&sa->util_avg, r);
9a2dd585 3406 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3407
0e2d2aaa 3408 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3409
3410 decayed = 1;
9d89c257 3411 }
36ee28e4 3412
2a2f5d4e 3413 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3414
9d89c257
YD
3415#ifndef CONFIG_64BIT
3416 smp_wmb();
3417 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3418#endif
36ee28e4 3419
2a2f5d4e 3420 if (decayed)
ea14b57e 3421 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3422
2a2f5d4e 3423 return decayed;
21e96f88
SM
3424}
3425
3d30544f
PZ
3426/**
3427 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3428 * @cfs_rq: cfs_rq to attach to
3429 * @se: sched_entity to attach
882a78a9 3430 * @flags: migration hints
3d30544f
PZ
3431 *
3432 * Must call update_cfs_rq_load_avg() before this, since we rely on
3433 * cfs_rq->avg.last_update_time being current.
3434 */
ea14b57e 3435static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3436{
f207934f
PZ
3437 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3438
3439 /*
3440 * When we attach the @se to the @cfs_rq, we must align the decay
3441 * window because without that, really weird and wonderful things can
3442 * happen.
3443 *
3444 * XXX illustrate
3445 */
a05e8c51 3446 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3447 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3448
3449 /*
3450 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3451 * period_contrib. This isn't strictly correct, but since we're
3452 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3453 * _sum a little.
3454 */
3455 se->avg.util_sum = se->avg.util_avg * divider;
3456
3457 se->avg.load_sum = divider;
3458 if (se_weight(se)) {
3459 se->avg.load_sum =
3460 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3461 }
3462
3463 se->avg.runnable_load_sum = se->avg.load_sum;
3464
8d5b9025 3465 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3466 cfs_rq->avg.util_avg += se->avg.util_avg;
3467 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3468
3469 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3470
ea14b57e 3471 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3472}
3473
3d30544f
PZ
3474/**
3475 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3476 * @cfs_rq: cfs_rq to detach from
3477 * @se: sched_entity to detach
3478 *
3479 * Must call update_cfs_rq_load_avg() before this, since we rely on
3480 * cfs_rq->avg.last_update_time being current.
3481 */
a05e8c51
BP
3482static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483{
8d5b9025 3484 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3485 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3486 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3487
3488 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3489
ea14b57e 3490 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3491}
3492
b382a531
PZ
3493/*
3494 * Optional action to be done while updating the load average
3495 */
3496#define UPDATE_TG 0x1
3497#define SKIP_AGE_LOAD 0x2
3498#define DO_ATTACH 0x4
3499
3500/* Update task and its cfs_rq load average */
3501static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3502{
3503 u64 now = cfs_rq_clock_task(cfs_rq);
3504 struct rq *rq = rq_of(cfs_rq);
3505 int cpu = cpu_of(rq);
3506 int decayed;
3507
3508 /*
3509 * Track task load average for carrying it to new CPU after migrated, and
3510 * track group sched_entity load average for task_h_load calc in migration
3511 */
3512 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3513 __update_load_avg_se(now, cpu, cfs_rq, se);
3514
3515 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3516 decayed |= propagate_entity_load_avg(se);
3517
3518 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3519
ea14b57e
PZ
3520 /*
3521 * DO_ATTACH means we're here from enqueue_entity().
3522 * !last_update_time means we've passed through
3523 * migrate_task_rq_fair() indicating we migrated.
3524 *
3525 * IOW we're enqueueing a task on a new CPU.
3526 */
3527 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3528 update_tg_load_avg(cfs_rq, 0);
3529
3530 } else if (decayed && (flags & UPDATE_TG))
3531 update_tg_load_avg(cfs_rq, 0);
3532}
3533
9d89c257 3534#ifndef CONFIG_64BIT
0905f04e
YD
3535static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3536{
9d89c257 3537 u64 last_update_time_copy;
0905f04e 3538 u64 last_update_time;
9ee474f5 3539
9d89c257
YD
3540 do {
3541 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3542 smp_rmb();
3543 last_update_time = cfs_rq->avg.last_update_time;
3544 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3545
3546 return last_update_time;
3547}
9d89c257 3548#else
0905f04e
YD
3549static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3550{
3551 return cfs_rq->avg.last_update_time;
3552}
9d89c257
YD
3553#endif
3554
104cb16d
MR
3555/*
3556 * Synchronize entity load avg of dequeued entity without locking
3557 * the previous rq.
3558 */
3559void sync_entity_load_avg(struct sched_entity *se)
3560{
3561 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3562 u64 last_update_time;
3563
3564 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3565 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3566}
3567
0905f04e
YD
3568/*
3569 * Task first catches up with cfs_rq, and then subtract
3570 * itself from the cfs_rq (task must be off the queue now).
3571 */
3572void remove_entity_load_avg(struct sched_entity *se)
3573{
3574 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3575 unsigned long flags;
0905f04e
YD
3576
3577 /*
7dc603c9
PZ
3578 * tasks cannot exit without having gone through wake_up_new_task() ->
3579 * post_init_entity_util_avg() which will have added things to the
3580 * cfs_rq, so we can remove unconditionally.
3581 *
3582 * Similarly for groups, they will have passed through
3583 * post_init_entity_util_avg() before unregister_sched_fair_group()
3584 * calls this.
0905f04e 3585 */
0905f04e 3586
104cb16d 3587 sync_entity_load_avg(se);
2a2f5d4e
PZ
3588
3589 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3590 ++cfs_rq->removed.nr;
3591 cfs_rq->removed.util_avg += se->avg.util_avg;
3592 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3593 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3594 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3595}
642dbc39 3596
7ea241af
YD
3597static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3598{
1ea6c46a 3599 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3600}
3601
3602static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3603{
3604 return cfs_rq->avg.load_avg;
3605}
3606
46f69fa3 3607static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3608
7f65ea42
PB
3609static inline unsigned long task_util(struct task_struct *p)
3610{
3611 return READ_ONCE(p->se.avg.util_avg);
3612}
3613
3614static inline unsigned long _task_util_est(struct task_struct *p)
3615{
3616 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3617
92a801e5 3618 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3619}
3620
3621static inline unsigned long task_util_est(struct task_struct *p)
3622{
3623 return max(task_util(p), _task_util_est(p));
3624}
3625
3626static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3627 struct task_struct *p)
3628{
3629 unsigned int enqueued;
3630
3631 if (!sched_feat(UTIL_EST))
3632 return;
3633
3634 /* Update root cfs_rq's estimated utilization */
3635 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3636 enqueued += _task_util_est(p);
7f65ea42
PB
3637 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3638}
3639
3640/*
3641 * Check if a (signed) value is within a specified (unsigned) margin,
3642 * based on the observation that:
3643 *
3644 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3645 *
3646 * NOTE: this only works when value + maring < INT_MAX.
3647 */
3648static inline bool within_margin(int value, int margin)
3649{
3650 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3651}
3652
3653static void
3654util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3655{
3656 long last_ewma_diff;
3657 struct util_est ue;
3658
3659 if (!sched_feat(UTIL_EST))
3660 return;
3661
3482d98b
VG
3662 /* Update root cfs_rq's estimated utilization */
3663 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3664 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3665 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3666
3667 /*
3668 * Skip update of task's estimated utilization when the task has not
3669 * yet completed an activation, e.g. being migrated.
3670 */
3671 if (!task_sleep)
3672 return;
3673
d519329f
PB
3674 /*
3675 * If the PELT values haven't changed since enqueue time,
3676 * skip the util_est update.
3677 */
3678 ue = p->se.avg.util_est;
3679 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3680 return;
3681
7f65ea42
PB
3682 /*
3683 * Skip update of task's estimated utilization when its EWMA is
3684 * already ~1% close to its last activation value.
3685 */
d519329f 3686 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3687 last_ewma_diff = ue.enqueued - ue.ewma;
3688 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3689 return;
3690
3691 /*
3692 * Update Task's estimated utilization
3693 *
3694 * When *p completes an activation we can consolidate another sample
3695 * of the task size. This is done by storing the current PELT value
3696 * as ue.enqueued and by using this value to update the Exponential
3697 * Weighted Moving Average (EWMA):
3698 *
3699 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3700 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3701 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3702 * = w * ( last_ewma_diff ) + ewma(t-1)
3703 * = w * (last_ewma_diff + ewma(t-1) / w)
3704 *
3705 * Where 'w' is the weight of new samples, which is configured to be
3706 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3707 */
3708 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3709 ue.ewma += last_ewma_diff;
3710 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3711 WRITE_ONCE(p->se.avg.util_est, ue);
3712}
3713
3b1baa64
MR
3714static inline int task_fits_capacity(struct task_struct *p, long capacity)
3715{
3716 return capacity * 1024 > task_util_est(p) * capacity_margin;
3717}
3718
3719static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3720{
3721 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3722 return;
3723
3724 if (!p) {
3725 rq->misfit_task_load = 0;
3726 return;
3727 }
3728
3729 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3730 rq->misfit_task_load = 0;
3731 return;
3732 }
3733
3734 rq->misfit_task_load = task_h_load(p);
3735}
3736
38033c37
PZ
3737#else /* CONFIG_SMP */
3738
d31b1a66
VG
3739#define UPDATE_TG 0x0
3740#define SKIP_AGE_LOAD 0x0
b382a531 3741#define DO_ATTACH 0x0
d31b1a66 3742
88c0616e 3743static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3744{
ea14b57e 3745 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3746}
3747
9d89c257 3748static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3749
a05e8c51 3750static inline void
ea14b57e 3751attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3752static inline void
3753detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3754
46f69fa3 3755static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3756{
3757 return 0;
3758}
3759
7f65ea42
PB
3760static inline void
3761util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3762
3763static inline void
3764util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3765 bool task_sleep) {}
3b1baa64 3766static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3767
38033c37 3768#endif /* CONFIG_SMP */
9d85f21c 3769
ddc97297
PZ
3770static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771{
3772#ifdef CONFIG_SCHED_DEBUG
3773 s64 d = se->vruntime - cfs_rq->min_vruntime;
3774
3775 if (d < 0)
3776 d = -d;
3777
3778 if (d > 3*sysctl_sched_latency)
ae92882e 3779 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3780#endif
3781}
3782
aeb73b04
PZ
3783static void
3784place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3785{
1af5f730 3786 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3787
2cb8600e
PZ
3788 /*
3789 * The 'current' period is already promised to the current tasks,
3790 * however the extra weight of the new task will slow them down a
3791 * little, place the new task so that it fits in the slot that
3792 * stays open at the end.
3793 */
94dfb5e7 3794 if (initial && sched_feat(START_DEBIT))
f9c0b095 3795 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3796
a2e7a7eb 3797 /* sleeps up to a single latency don't count. */
5ca9880c 3798 if (!initial) {
a2e7a7eb 3799 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3800
a2e7a7eb
MG
3801 /*
3802 * Halve their sleep time's effect, to allow
3803 * for a gentler effect of sleepers:
3804 */
3805 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3806 thresh >>= 1;
51e0304c 3807
a2e7a7eb 3808 vruntime -= thresh;
aeb73b04
PZ
3809 }
3810
b5d9d734 3811 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3812 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3813}
3814
d3d9dc33
PT
3815static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3816
cb251765
MG
3817static inline void check_schedstat_required(void)
3818{
3819#ifdef CONFIG_SCHEDSTATS
3820 if (schedstat_enabled())
3821 return;
3822
3823 /* Force schedstat enabled if a dependent tracepoint is active */
3824 if (trace_sched_stat_wait_enabled() ||
3825 trace_sched_stat_sleep_enabled() ||
3826 trace_sched_stat_iowait_enabled() ||
3827 trace_sched_stat_blocked_enabled() ||
3828 trace_sched_stat_runtime_enabled()) {
eda8dca5 3829 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3830 "stat_blocked and stat_runtime require the "
f67abed5 3831 "kernel parameter schedstats=enable or "
cb251765
MG
3832 "kernel.sched_schedstats=1\n");
3833 }
3834#endif
3835}
3836
b5179ac7
PZ
3837
3838/*
3839 * MIGRATION
3840 *
3841 * dequeue
3842 * update_curr()
3843 * update_min_vruntime()
3844 * vruntime -= min_vruntime
3845 *
3846 * enqueue
3847 * update_curr()
3848 * update_min_vruntime()
3849 * vruntime += min_vruntime
3850 *
3851 * this way the vruntime transition between RQs is done when both
3852 * min_vruntime are up-to-date.
3853 *
3854 * WAKEUP (remote)
3855 *
59efa0ba 3856 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3857 * vruntime -= min_vruntime
3858 *
3859 * enqueue
3860 * update_curr()
3861 * update_min_vruntime()
3862 * vruntime += min_vruntime
3863 *
3864 * this way we don't have the most up-to-date min_vruntime on the originating
3865 * CPU and an up-to-date min_vruntime on the destination CPU.
3866 */
3867
bf0f6f24 3868static void
88ec22d3 3869enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3870{
2f950354
PZ
3871 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3872 bool curr = cfs_rq->curr == se;
3873
88ec22d3 3874 /*
2f950354
PZ
3875 * If we're the current task, we must renormalise before calling
3876 * update_curr().
88ec22d3 3877 */
2f950354 3878 if (renorm && curr)
88ec22d3
PZ
3879 se->vruntime += cfs_rq->min_vruntime;
3880
2f950354
PZ
3881 update_curr(cfs_rq);
3882
bf0f6f24 3883 /*
2f950354
PZ
3884 * Otherwise, renormalise after, such that we're placed at the current
3885 * moment in time, instead of some random moment in the past. Being
3886 * placed in the past could significantly boost this task to the
3887 * fairness detriment of existing tasks.
bf0f6f24 3888 */
2f950354
PZ
3889 if (renorm && !curr)
3890 se->vruntime += cfs_rq->min_vruntime;
3891
89ee048f
VG
3892 /*
3893 * When enqueuing a sched_entity, we must:
3894 * - Update loads to have both entity and cfs_rq synced with now.
3895 * - Add its load to cfs_rq->runnable_avg
3896 * - For group_entity, update its weight to reflect the new share of
3897 * its group cfs_rq
3898 * - Add its new weight to cfs_rq->load.weight
3899 */
b382a531 3900 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3901 update_cfs_group(se);
b5b3e35f 3902 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3903 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3904
1a3d027c 3905 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3906 place_entity(cfs_rq, se, 0);
bf0f6f24 3907
cb251765 3908 check_schedstat_required();
4fa8d299
JP
3909 update_stats_enqueue(cfs_rq, se, flags);
3910 check_spread(cfs_rq, se);
2f950354 3911 if (!curr)
83b699ed 3912 __enqueue_entity(cfs_rq, se);
2069dd75 3913 se->on_rq = 1;
3d4b47b4 3914
d3d9dc33 3915 if (cfs_rq->nr_running == 1) {
3d4b47b4 3916 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3917 check_enqueue_throttle(cfs_rq);
3918 }
bf0f6f24
IM
3919}
3920
2c13c919 3921static void __clear_buddies_last(struct sched_entity *se)
2002c695 3922{
2c13c919
RR
3923 for_each_sched_entity(se) {
3924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3925 if (cfs_rq->last != se)
2c13c919 3926 break;
f1044799
PZ
3927
3928 cfs_rq->last = NULL;
2c13c919
RR
3929 }
3930}
2002c695 3931
2c13c919
RR
3932static void __clear_buddies_next(struct sched_entity *se)
3933{
3934 for_each_sched_entity(se) {
3935 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3936 if (cfs_rq->next != se)
2c13c919 3937 break;
f1044799
PZ
3938
3939 cfs_rq->next = NULL;
2c13c919 3940 }
2002c695
PZ
3941}
3942
ac53db59
RR
3943static void __clear_buddies_skip(struct sched_entity *se)
3944{
3945 for_each_sched_entity(se) {
3946 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3947 if (cfs_rq->skip != se)
ac53db59 3948 break;
f1044799
PZ
3949
3950 cfs_rq->skip = NULL;
ac53db59
RR
3951 }
3952}
3953
a571bbea
PZ
3954static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3955{
2c13c919
RR
3956 if (cfs_rq->last == se)
3957 __clear_buddies_last(se);
3958
3959 if (cfs_rq->next == se)
3960 __clear_buddies_next(se);
ac53db59
RR
3961
3962 if (cfs_rq->skip == se)
3963 __clear_buddies_skip(se);
a571bbea
PZ
3964}
3965
6c16a6dc 3966static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3967
bf0f6f24 3968static void
371fd7e7 3969dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3970{
a2a2d680
DA
3971 /*
3972 * Update run-time statistics of the 'current'.
3973 */
3974 update_curr(cfs_rq);
89ee048f
VG
3975
3976 /*
3977 * When dequeuing a sched_entity, we must:
3978 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
3979 * - Subtract its load from the cfs_rq->runnable_avg.
3980 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
3981 * - For group entity, update its weight to reflect the new share
3982 * of its group cfs_rq.
3983 */
88c0616e 3984 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3985 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3986
4fa8d299 3987 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3988
2002c695 3989 clear_buddies(cfs_rq, se);
4793241b 3990
83b699ed 3991 if (se != cfs_rq->curr)
30cfdcfc 3992 __dequeue_entity(cfs_rq, se);
17bc14b7 3993 se->on_rq = 0;
30cfdcfc 3994 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3995
3996 /*
b60205c7
PZ
3997 * Normalize after update_curr(); which will also have moved
3998 * min_vruntime if @se is the one holding it back. But before doing
3999 * update_min_vruntime() again, which will discount @se's position and
4000 * can move min_vruntime forward still more.
88ec22d3 4001 */
371fd7e7 4002 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4003 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4004
d8b4986d
PT
4005 /* return excess runtime on last dequeue */
4006 return_cfs_rq_runtime(cfs_rq);
4007
1ea6c46a 4008 update_cfs_group(se);
b60205c7
PZ
4009
4010 /*
4011 * Now advance min_vruntime if @se was the entity holding it back,
4012 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4013 * put back on, and if we advance min_vruntime, we'll be placed back
4014 * further than we started -- ie. we'll be penalized.
4015 */
9845c49c 4016 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4017 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4018}
4019
4020/*
4021 * Preempt the current task with a newly woken task if needed:
4022 */
7c92e54f 4023static void
2e09bf55 4024check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4025{
11697830 4026 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4027 struct sched_entity *se;
4028 s64 delta;
11697830 4029
6d0f0ebd 4030 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4031 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4032 if (delta_exec > ideal_runtime) {
8875125e 4033 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4034 /*
4035 * The current task ran long enough, ensure it doesn't get
4036 * re-elected due to buddy favours.
4037 */
4038 clear_buddies(cfs_rq, curr);
f685ceac
MG
4039 return;
4040 }
4041
4042 /*
4043 * Ensure that a task that missed wakeup preemption by a
4044 * narrow margin doesn't have to wait for a full slice.
4045 * This also mitigates buddy induced latencies under load.
4046 */
f685ceac
MG
4047 if (delta_exec < sysctl_sched_min_granularity)
4048 return;
4049
f4cfb33e
WX
4050 se = __pick_first_entity(cfs_rq);
4051 delta = curr->vruntime - se->vruntime;
f685ceac 4052
f4cfb33e
WX
4053 if (delta < 0)
4054 return;
d7d82944 4055
f4cfb33e 4056 if (delta > ideal_runtime)
8875125e 4057 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4058}
4059
83b699ed 4060static void
8494f412 4061set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4062{
83b699ed
SV
4063 /* 'current' is not kept within the tree. */
4064 if (se->on_rq) {
4065 /*
4066 * Any task has to be enqueued before it get to execute on
4067 * a CPU. So account for the time it spent waiting on the
4068 * runqueue.
4069 */
4fa8d299 4070 update_stats_wait_end(cfs_rq, se);
83b699ed 4071 __dequeue_entity(cfs_rq, se);
88c0616e 4072 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4073 }
4074
79303e9e 4075 update_stats_curr_start(cfs_rq, se);
429d43bc 4076 cfs_rq->curr = se;
4fa8d299 4077
eba1ed4b
IM
4078 /*
4079 * Track our maximum slice length, if the CPU's load is at
4080 * least twice that of our own weight (i.e. dont track it
4081 * when there are only lesser-weight tasks around):
4082 */
cb251765 4083 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4084 schedstat_set(se->statistics.slice_max,
4085 max((u64)schedstat_val(se->statistics.slice_max),
4086 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4087 }
4fa8d299 4088
4a55b450 4089 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4090}
4091
3f3a4904
PZ
4092static int
4093wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4094
ac53db59
RR
4095/*
4096 * Pick the next process, keeping these things in mind, in this order:
4097 * 1) keep things fair between processes/task groups
4098 * 2) pick the "next" process, since someone really wants that to run
4099 * 3) pick the "last" process, for cache locality
4100 * 4) do not run the "skip" process, if something else is available
4101 */
678d5718
PZ
4102static struct sched_entity *
4103pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4104{
678d5718
PZ
4105 struct sched_entity *left = __pick_first_entity(cfs_rq);
4106 struct sched_entity *se;
4107
4108 /*
4109 * If curr is set we have to see if its left of the leftmost entity
4110 * still in the tree, provided there was anything in the tree at all.
4111 */
4112 if (!left || (curr && entity_before(curr, left)))
4113 left = curr;
4114
4115 se = left; /* ideally we run the leftmost entity */
f4b6755f 4116
ac53db59
RR
4117 /*
4118 * Avoid running the skip buddy, if running something else can
4119 * be done without getting too unfair.
4120 */
4121 if (cfs_rq->skip == se) {
678d5718
PZ
4122 struct sched_entity *second;
4123
4124 if (se == curr) {
4125 second = __pick_first_entity(cfs_rq);
4126 } else {
4127 second = __pick_next_entity(se);
4128 if (!second || (curr && entity_before(curr, second)))
4129 second = curr;
4130 }
4131
ac53db59
RR
4132 if (second && wakeup_preempt_entity(second, left) < 1)
4133 se = second;
4134 }
aa2ac252 4135
f685ceac
MG
4136 /*
4137 * Prefer last buddy, try to return the CPU to a preempted task.
4138 */
4139 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4140 se = cfs_rq->last;
4141
ac53db59
RR
4142 /*
4143 * Someone really wants this to run. If it's not unfair, run it.
4144 */
4145 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4146 se = cfs_rq->next;
4147
f685ceac 4148 clear_buddies(cfs_rq, se);
4793241b
PZ
4149
4150 return se;
aa2ac252
PZ
4151}
4152
678d5718 4153static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4154
ab6cde26 4155static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4156{
4157 /*
4158 * If still on the runqueue then deactivate_task()
4159 * was not called and update_curr() has to be done:
4160 */
4161 if (prev->on_rq)
b7cc0896 4162 update_curr(cfs_rq);
bf0f6f24 4163
d3d9dc33
PT
4164 /* throttle cfs_rqs exceeding runtime */
4165 check_cfs_rq_runtime(cfs_rq);
4166
4fa8d299 4167 check_spread(cfs_rq, prev);
cb251765 4168
30cfdcfc 4169 if (prev->on_rq) {
4fa8d299 4170 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4171 /* Put 'current' back into the tree. */
4172 __enqueue_entity(cfs_rq, prev);
9d85f21c 4173 /* in !on_rq case, update occurred at dequeue */
88c0616e 4174 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4175 }
429d43bc 4176 cfs_rq->curr = NULL;
bf0f6f24
IM
4177}
4178
8f4d37ec
PZ
4179static void
4180entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4181{
bf0f6f24 4182 /*
30cfdcfc 4183 * Update run-time statistics of the 'current'.
bf0f6f24 4184 */
30cfdcfc 4185 update_curr(cfs_rq);
bf0f6f24 4186
9d85f21c
PT
4187 /*
4188 * Ensure that runnable average is periodically updated.
4189 */
88c0616e 4190 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4191 update_cfs_group(curr);
9d85f21c 4192
8f4d37ec
PZ
4193#ifdef CONFIG_SCHED_HRTICK
4194 /*
4195 * queued ticks are scheduled to match the slice, so don't bother
4196 * validating it and just reschedule.
4197 */
983ed7a6 4198 if (queued) {
8875125e 4199 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4200 return;
4201 }
8f4d37ec
PZ
4202 /*
4203 * don't let the period tick interfere with the hrtick preemption
4204 */
4205 if (!sched_feat(DOUBLE_TICK) &&
4206 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4207 return;
4208#endif
4209
2c2efaed 4210 if (cfs_rq->nr_running > 1)
2e09bf55 4211 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4212}
4213
ab84d31e
PT
4214
4215/**************************************************
4216 * CFS bandwidth control machinery
4217 */
4218
4219#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4220
4221#ifdef HAVE_JUMP_LABEL
c5905afb 4222static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4223
4224static inline bool cfs_bandwidth_used(void)
4225{
c5905afb 4226 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4227}
4228
1ee14e6c 4229void cfs_bandwidth_usage_inc(void)
029632fb 4230{
ce48c146 4231 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4232}
4233
4234void cfs_bandwidth_usage_dec(void)
4235{
ce48c146 4236 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb
PZ
4237}
4238#else /* HAVE_JUMP_LABEL */
4239static bool cfs_bandwidth_used(void)
4240{
4241 return true;
4242}
4243
1ee14e6c
BS
4244void cfs_bandwidth_usage_inc(void) {}
4245void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4246#endif /* HAVE_JUMP_LABEL */
4247
ab84d31e
PT
4248/*
4249 * default period for cfs group bandwidth.
4250 * default: 0.1s, units: nanoseconds
4251 */
4252static inline u64 default_cfs_period(void)
4253{
4254 return 100000000ULL;
4255}
ec12cb7f
PT
4256
4257static inline u64 sched_cfs_bandwidth_slice(void)
4258{
4259 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4260}
4261
a9cf55b2
PT
4262/*
4263 * Replenish runtime according to assigned quota and update expiration time.
4264 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4265 * additional synchronization around rq->lock.
4266 *
4267 * requires cfs_b->lock
4268 */
029632fb 4269void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4270{
4271 u64 now;
4272
4273 if (cfs_b->quota == RUNTIME_INF)
4274 return;
4275
4276 now = sched_clock_cpu(smp_processor_id());
4277 cfs_b->runtime = cfs_b->quota;
4278 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4279 cfs_b->expires_seq++;
a9cf55b2
PT
4280}
4281
029632fb
PZ
4282static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4283{
4284 return &tg->cfs_bandwidth;
4285}
4286
f1b17280
PT
4287/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4288static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4289{
4290 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4291 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4292
78becc27 4293 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4294}
4295
85dac906
PT
4296/* returns 0 on failure to allocate runtime */
4297static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4298{
4299 struct task_group *tg = cfs_rq->tg;
4300 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4301 u64 amount = 0, min_amount, expires;
512ac999 4302 int expires_seq;
ec12cb7f
PT
4303
4304 /* note: this is a positive sum as runtime_remaining <= 0 */
4305 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4306
4307 raw_spin_lock(&cfs_b->lock);
4308 if (cfs_b->quota == RUNTIME_INF)
4309 amount = min_amount;
58088ad0 4310 else {
77a4d1a1 4311 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4312
4313 if (cfs_b->runtime > 0) {
4314 amount = min(cfs_b->runtime, min_amount);
4315 cfs_b->runtime -= amount;
4316 cfs_b->idle = 0;
4317 }
ec12cb7f 4318 }
512ac999 4319 expires_seq = cfs_b->expires_seq;
a9cf55b2 4320 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4321 raw_spin_unlock(&cfs_b->lock);
4322
4323 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4324 /*
4325 * we may have advanced our local expiration to account for allowed
4326 * spread between our sched_clock and the one on which runtime was
4327 * issued.
4328 */
512ac999
XP
4329 if (cfs_rq->expires_seq != expires_seq) {
4330 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4331 cfs_rq->runtime_expires = expires;
512ac999 4332 }
85dac906
PT
4333
4334 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4335}
4336
a9cf55b2
PT
4337/*
4338 * Note: This depends on the synchronization provided by sched_clock and the
4339 * fact that rq->clock snapshots this value.
4340 */
4341static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4342{
a9cf55b2 4343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4344
4345 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4346 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4347 return;
4348
a9cf55b2
PT
4349 if (cfs_rq->runtime_remaining < 0)
4350 return;
4351
4352 /*
4353 * If the local deadline has passed we have to consider the
4354 * possibility that our sched_clock is 'fast' and the global deadline
4355 * has not truly expired.
4356 *
4357 * Fortunately we can check determine whether this the case by checking
512ac999 4358 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4359 */
512ac999 4360 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4361 /* extend local deadline, drift is bounded above by 2 ticks */
4362 cfs_rq->runtime_expires += TICK_NSEC;
4363 } else {
4364 /* global deadline is ahead, expiration has passed */
4365 cfs_rq->runtime_remaining = 0;
4366 }
4367}
4368
9dbdb155 4369static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4370{
4371 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4372 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4373 expire_cfs_rq_runtime(cfs_rq);
4374
4375 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4376 return;
4377
85dac906
PT
4378 /*
4379 * if we're unable to extend our runtime we resched so that the active
4380 * hierarchy can be throttled
4381 */
4382 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4383 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4384}
4385
6c16a6dc 4386static __always_inline
9dbdb155 4387void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4388{
56f570e5 4389 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4390 return;
4391
4392 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4393}
4394
85dac906
PT
4395static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4396{
56f570e5 4397 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4398}
4399
64660c86
PT
4400/* check whether cfs_rq, or any parent, is throttled */
4401static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4402{
56f570e5 4403 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4404}
4405
4406/*
4407 * Ensure that neither of the group entities corresponding to src_cpu or
4408 * dest_cpu are members of a throttled hierarchy when performing group
4409 * load-balance operations.
4410 */
4411static inline int throttled_lb_pair(struct task_group *tg,
4412 int src_cpu, int dest_cpu)
4413{
4414 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4415
4416 src_cfs_rq = tg->cfs_rq[src_cpu];
4417 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4418
4419 return throttled_hierarchy(src_cfs_rq) ||
4420 throttled_hierarchy(dest_cfs_rq);
4421}
4422
64660c86
PT
4423static int tg_unthrottle_up(struct task_group *tg, void *data)
4424{
4425 struct rq *rq = data;
4426 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4427
4428 cfs_rq->throttle_count--;
64660c86 4429 if (!cfs_rq->throttle_count) {
f1b17280 4430 /* adjust cfs_rq_clock_task() */
78becc27 4431 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4432 cfs_rq->throttled_clock_task;
64660c86 4433 }
64660c86
PT
4434
4435 return 0;
4436}
4437
4438static int tg_throttle_down(struct task_group *tg, void *data)
4439{
4440 struct rq *rq = data;
4441 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4442
82958366
PT
4443 /* group is entering throttled state, stop time */
4444 if (!cfs_rq->throttle_count)
78becc27 4445 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4446 cfs_rq->throttle_count++;
4447
4448 return 0;
4449}
4450
d3d9dc33 4451static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4452{
4453 struct rq *rq = rq_of(cfs_rq);
4454 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4455 struct sched_entity *se;
4456 long task_delta, dequeue = 1;
77a4d1a1 4457 bool empty;
85dac906
PT
4458
4459 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4460
f1b17280 4461 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4462 rcu_read_lock();
4463 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4464 rcu_read_unlock();
85dac906
PT
4465
4466 task_delta = cfs_rq->h_nr_running;
4467 for_each_sched_entity(se) {
4468 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4469 /* throttled entity or throttle-on-deactivate */
4470 if (!se->on_rq)
4471 break;
4472
4473 if (dequeue)
4474 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4475 qcfs_rq->h_nr_running -= task_delta;
4476
4477 if (qcfs_rq->load.weight)
4478 dequeue = 0;
4479 }
4480
4481 if (!se)
72465447 4482 sub_nr_running(rq, task_delta);
85dac906
PT
4483
4484 cfs_rq->throttled = 1;
78becc27 4485 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4486 raw_spin_lock(&cfs_b->lock);
d49db342 4487 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4488
c06f04c7
BS
4489 /*
4490 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4491 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4492 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4493 */
baa9be4f
PA
4494 if (cfs_b->distribute_running)
4495 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4496 else
4497 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4498
4499 /*
4500 * If we're the first throttled task, make sure the bandwidth
4501 * timer is running.
4502 */
4503 if (empty)
4504 start_cfs_bandwidth(cfs_b);
4505
85dac906
PT
4506 raw_spin_unlock(&cfs_b->lock);
4507}
4508
029632fb 4509void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4510{
4511 struct rq *rq = rq_of(cfs_rq);
4512 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4513 struct sched_entity *se;
4514 int enqueue = 1;
4515 long task_delta;
4516
22b958d8 4517 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4518
4519 cfs_rq->throttled = 0;
1a55af2e
FW
4520
4521 update_rq_clock(rq);
4522
671fd9da 4523 raw_spin_lock(&cfs_b->lock);
78becc27 4524 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4525 list_del_rcu(&cfs_rq->throttled_list);
4526 raw_spin_unlock(&cfs_b->lock);
4527
64660c86
PT
4528 /* update hierarchical throttle state */
4529 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4530
671fd9da
PT
4531 if (!cfs_rq->load.weight)
4532 return;
4533
4534 task_delta = cfs_rq->h_nr_running;
4535 for_each_sched_entity(se) {
4536 if (se->on_rq)
4537 enqueue = 0;
4538
4539 cfs_rq = cfs_rq_of(se);
4540 if (enqueue)
4541 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4542 cfs_rq->h_nr_running += task_delta;
4543
4544 if (cfs_rq_throttled(cfs_rq))
4545 break;
4546 }
4547
4548 if (!se)
72465447 4549 add_nr_running(rq, task_delta);
671fd9da 4550
97fb7a0a 4551 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4552 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4553 resched_curr(rq);
671fd9da
PT
4554}
4555
4556static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4557 u64 remaining, u64 expires)
4558{
4559 struct cfs_rq *cfs_rq;
c06f04c7
BS
4560 u64 runtime;
4561 u64 starting_runtime = remaining;
671fd9da
PT
4562
4563 rcu_read_lock();
4564 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4565 throttled_list) {
4566 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4567 struct rq_flags rf;
671fd9da 4568
8a8c69c3 4569 rq_lock(rq, &rf);
671fd9da
PT
4570 if (!cfs_rq_throttled(cfs_rq))
4571 goto next;
4572
4573 runtime = -cfs_rq->runtime_remaining + 1;
4574 if (runtime > remaining)
4575 runtime = remaining;
4576 remaining -= runtime;
4577
4578 cfs_rq->runtime_remaining += runtime;
4579 cfs_rq->runtime_expires = expires;
4580
4581 /* we check whether we're throttled above */
4582 if (cfs_rq->runtime_remaining > 0)
4583 unthrottle_cfs_rq(cfs_rq);
4584
4585next:
8a8c69c3 4586 rq_unlock(rq, &rf);
671fd9da
PT
4587
4588 if (!remaining)
4589 break;
4590 }
4591 rcu_read_unlock();
4592
c06f04c7 4593 return starting_runtime - remaining;
671fd9da
PT
4594}
4595
58088ad0
PT
4596/*
4597 * Responsible for refilling a task_group's bandwidth and unthrottling its
4598 * cfs_rqs as appropriate. If there has been no activity within the last
4599 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4600 * used to track this state.
4601 */
4602static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4603{
671fd9da 4604 u64 runtime, runtime_expires;
51f2176d 4605 int throttled;
58088ad0 4606
58088ad0
PT
4607 /* no need to continue the timer with no bandwidth constraint */
4608 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4609 goto out_deactivate;
58088ad0 4610
671fd9da 4611 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4612 cfs_b->nr_periods += overrun;
671fd9da 4613
51f2176d
BS
4614 /*
4615 * idle depends on !throttled (for the case of a large deficit), and if
4616 * we're going inactive then everything else can be deferred
4617 */
4618 if (cfs_b->idle && !throttled)
4619 goto out_deactivate;
a9cf55b2
PT
4620
4621 __refill_cfs_bandwidth_runtime(cfs_b);
4622
671fd9da
PT
4623 if (!throttled) {
4624 /* mark as potentially idle for the upcoming period */
4625 cfs_b->idle = 1;
51f2176d 4626 return 0;
671fd9da
PT
4627 }
4628
e8da1b18
NR
4629 /* account preceding periods in which throttling occurred */
4630 cfs_b->nr_throttled += overrun;
4631
671fd9da 4632 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4633
4634 /*
c06f04c7
BS
4635 * This check is repeated as we are holding onto the new bandwidth while
4636 * we unthrottle. This can potentially race with an unthrottled group
4637 * trying to acquire new bandwidth from the global pool. This can result
4638 * in us over-using our runtime if it is all used during this loop, but
4639 * only by limited amounts in that extreme case.
671fd9da 4640 */
baa9be4f 4641 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4642 runtime = cfs_b->runtime;
baa9be4f 4643 cfs_b->distribute_running = 1;
671fd9da
PT
4644 raw_spin_unlock(&cfs_b->lock);
4645 /* we can't nest cfs_b->lock while distributing bandwidth */
4646 runtime = distribute_cfs_runtime(cfs_b, runtime,
4647 runtime_expires);
4648 raw_spin_lock(&cfs_b->lock);
4649
baa9be4f 4650 cfs_b->distribute_running = 0;
671fd9da 4651 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4652
b5c0ce7b 4653 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4654 }
58088ad0 4655
671fd9da
PT
4656 /*
4657 * While we are ensured activity in the period following an
4658 * unthrottle, this also covers the case in which the new bandwidth is
4659 * insufficient to cover the existing bandwidth deficit. (Forcing the
4660 * timer to remain active while there are any throttled entities.)
4661 */
4662 cfs_b->idle = 0;
58088ad0 4663
51f2176d
BS
4664 return 0;
4665
4666out_deactivate:
51f2176d 4667 return 1;
58088ad0 4668}
d3d9dc33 4669
d8b4986d
PT
4670/* a cfs_rq won't donate quota below this amount */
4671static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4672/* minimum remaining period time to redistribute slack quota */
4673static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4674/* how long we wait to gather additional slack before distributing */
4675static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4676
db06e78c
BS
4677/*
4678 * Are we near the end of the current quota period?
4679 *
4680 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4681 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4682 * migrate_hrtimers, base is never cleared, so we are fine.
4683 */
d8b4986d
PT
4684static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4685{
4686 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4687 u64 remaining;
4688
4689 /* if the call-back is running a quota refresh is already occurring */
4690 if (hrtimer_callback_running(refresh_timer))
4691 return 1;
4692
4693 /* is a quota refresh about to occur? */
4694 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4695 if (remaining < min_expire)
4696 return 1;
4697
4698 return 0;
4699}
4700
4701static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4702{
4703 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4704
4705 /* if there's a quota refresh soon don't bother with slack */
4706 if (runtime_refresh_within(cfs_b, min_left))
4707 return;
4708
4cfafd30
PZ
4709 hrtimer_start(&cfs_b->slack_timer,
4710 ns_to_ktime(cfs_bandwidth_slack_period),
4711 HRTIMER_MODE_REL);
d8b4986d
PT
4712}
4713
4714/* we know any runtime found here is valid as update_curr() precedes return */
4715static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4716{
4717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4718 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4719
4720 if (slack_runtime <= 0)
4721 return;
4722
4723 raw_spin_lock(&cfs_b->lock);
4724 if (cfs_b->quota != RUNTIME_INF &&
4725 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4726 cfs_b->runtime += slack_runtime;
4727
4728 /* we are under rq->lock, defer unthrottling using a timer */
4729 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4730 !list_empty(&cfs_b->throttled_cfs_rq))
4731 start_cfs_slack_bandwidth(cfs_b);
4732 }
4733 raw_spin_unlock(&cfs_b->lock);
4734
4735 /* even if it's not valid for return we don't want to try again */
4736 cfs_rq->runtime_remaining -= slack_runtime;
4737}
4738
4739static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4740{
56f570e5
PT
4741 if (!cfs_bandwidth_used())
4742 return;
4743
fccfdc6f 4744 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4745 return;
4746
4747 __return_cfs_rq_runtime(cfs_rq);
4748}
4749
4750/*
4751 * This is done with a timer (instead of inline with bandwidth return) since
4752 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4753 */
4754static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4755{
4756 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4757 u64 expires;
4758
4759 /* confirm we're still not at a refresh boundary */
db06e78c 4760 raw_spin_lock(&cfs_b->lock);
baa9be4f
PA
4761 if (cfs_b->distribute_running) {
4762 raw_spin_unlock(&cfs_b->lock);
4763 return;
4764 }
4765
db06e78c
BS
4766 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4767 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4768 return;
db06e78c 4769 }
d8b4986d 4770
c06f04c7 4771 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4772 runtime = cfs_b->runtime;
c06f04c7 4773
d8b4986d 4774 expires = cfs_b->runtime_expires;
baa9be4f
PA
4775 if (runtime)
4776 cfs_b->distribute_running = 1;
4777
d8b4986d
PT
4778 raw_spin_unlock(&cfs_b->lock);
4779
4780 if (!runtime)
4781 return;
4782
4783 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4784
4785 raw_spin_lock(&cfs_b->lock);
4786 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4787 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4788 cfs_b->distribute_running = 0;
d8b4986d
PT
4789 raw_spin_unlock(&cfs_b->lock);
4790}
4791
d3d9dc33
PT
4792/*
4793 * When a group wakes up we want to make sure that its quota is not already
4794 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4795 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4796 */
4797static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4798{
56f570e5
PT
4799 if (!cfs_bandwidth_used())
4800 return;
4801
d3d9dc33
PT
4802 /* an active group must be handled by the update_curr()->put() path */
4803 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4804 return;
4805
4806 /* ensure the group is not already throttled */
4807 if (cfs_rq_throttled(cfs_rq))
4808 return;
4809
4810 /* update runtime allocation */
4811 account_cfs_rq_runtime(cfs_rq, 0);
4812 if (cfs_rq->runtime_remaining <= 0)
4813 throttle_cfs_rq(cfs_rq);
4814}
4815
55e16d30
PZ
4816static void sync_throttle(struct task_group *tg, int cpu)
4817{
4818 struct cfs_rq *pcfs_rq, *cfs_rq;
4819
4820 if (!cfs_bandwidth_used())
4821 return;
4822
4823 if (!tg->parent)
4824 return;
4825
4826 cfs_rq = tg->cfs_rq[cpu];
4827 pcfs_rq = tg->parent->cfs_rq[cpu];
4828
4829 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4830 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4831}
4832
d3d9dc33 4833/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4834static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4835{
56f570e5 4836 if (!cfs_bandwidth_used())
678d5718 4837 return false;
56f570e5 4838
d3d9dc33 4839 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4840 return false;
d3d9dc33
PT
4841
4842 /*
4843 * it's possible for a throttled entity to be forced into a running
4844 * state (e.g. set_curr_task), in this case we're finished.
4845 */
4846 if (cfs_rq_throttled(cfs_rq))
678d5718 4847 return true;
d3d9dc33
PT
4848
4849 throttle_cfs_rq(cfs_rq);
678d5718 4850 return true;
d3d9dc33 4851}
029632fb 4852
029632fb
PZ
4853static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4854{
4855 struct cfs_bandwidth *cfs_b =
4856 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4857
029632fb
PZ
4858 do_sched_cfs_slack_timer(cfs_b);
4859
4860 return HRTIMER_NORESTART;
4861}
4862
4863static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4864{
4865 struct cfs_bandwidth *cfs_b =
4866 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4867 int overrun;
4868 int idle = 0;
4869
51f2176d 4870 raw_spin_lock(&cfs_b->lock);
029632fb 4871 for (;;) {
77a4d1a1 4872 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4873 if (!overrun)
4874 break;
4875
4876 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4877 }
4cfafd30
PZ
4878 if (idle)
4879 cfs_b->period_active = 0;
51f2176d 4880 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4881
4882 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4883}
4884
4885void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4886{
4887 raw_spin_lock_init(&cfs_b->lock);
4888 cfs_b->runtime = 0;
4889 cfs_b->quota = RUNTIME_INF;
4890 cfs_b->period = ns_to_ktime(default_cfs_period());
4891
4892 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4893 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4894 cfs_b->period_timer.function = sched_cfs_period_timer;
4895 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4896 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4897 cfs_b->distribute_running = 0;
029632fb
PZ
4898}
4899
4900static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4901{
4902 cfs_rq->runtime_enabled = 0;
4903 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4904}
4905
77a4d1a1 4906void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4907{
f1d1be8a
XP
4908 u64 overrun;
4909
4cfafd30 4910 lockdep_assert_held(&cfs_b->lock);
029632fb 4911
f1d1be8a
XP
4912 if (cfs_b->period_active)
4913 return;
4914
4915 cfs_b->period_active = 1;
4916 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4917 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4918 cfs_b->expires_seq++;
4919 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4920}
4921
4922static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4923{
7f1a169b
TH
4924 /* init_cfs_bandwidth() was not called */
4925 if (!cfs_b->throttled_cfs_rq.next)
4926 return;
4927
029632fb
PZ
4928 hrtimer_cancel(&cfs_b->period_timer);
4929 hrtimer_cancel(&cfs_b->slack_timer);
4930}
4931
502ce005 4932/*
97fb7a0a 4933 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4934 *
4935 * The race is harmless, since modifying bandwidth settings of unhooked group
4936 * bits doesn't do much.
4937 */
4938
4939/* cpu online calback */
0e59bdae
KT
4940static void __maybe_unused update_runtime_enabled(struct rq *rq)
4941{
502ce005 4942 struct task_group *tg;
0e59bdae 4943
502ce005
PZ
4944 lockdep_assert_held(&rq->lock);
4945
4946 rcu_read_lock();
4947 list_for_each_entry_rcu(tg, &task_groups, list) {
4948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4949 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4950
4951 raw_spin_lock(&cfs_b->lock);
4952 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4953 raw_spin_unlock(&cfs_b->lock);
4954 }
502ce005 4955 rcu_read_unlock();
0e59bdae
KT
4956}
4957
502ce005 4958/* cpu offline callback */
38dc3348 4959static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4960{
502ce005
PZ
4961 struct task_group *tg;
4962
4963 lockdep_assert_held(&rq->lock);
4964
4965 rcu_read_lock();
4966 list_for_each_entry_rcu(tg, &task_groups, list) {
4967 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4968
029632fb
PZ
4969 if (!cfs_rq->runtime_enabled)
4970 continue;
4971
4972 /*
4973 * clock_task is not advancing so we just need to make sure
4974 * there's some valid quota amount
4975 */
51f2176d 4976 cfs_rq->runtime_remaining = 1;
0e59bdae 4977 /*
97fb7a0a 4978 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
4979 * in take_cpu_down(), so we prevent new cfs throttling here.
4980 */
4981 cfs_rq->runtime_enabled = 0;
4982
029632fb
PZ
4983 if (cfs_rq_throttled(cfs_rq))
4984 unthrottle_cfs_rq(cfs_rq);
4985 }
502ce005 4986 rcu_read_unlock();
029632fb
PZ
4987}
4988
4989#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4990static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4991{
78becc27 4992 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4993}
4994
9dbdb155 4995static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4996static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4997static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4998static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4999static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5000
5001static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5002{
5003 return 0;
5004}
64660c86
PT
5005
5006static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5007{
5008 return 0;
5009}
5010
5011static inline int throttled_lb_pair(struct task_group *tg,
5012 int src_cpu, int dest_cpu)
5013{
5014 return 0;
5015}
029632fb
PZ
5016
5017void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5018
5019#ifdef CONFIG_FAIR_GROUP_SCHED
5020static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5021#endif
5022
029632fb
PZ
5023static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5024{
5025 return NULL;
5026}
5027static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5028static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5029static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5030
5031#endif /* CONFIG_CFS_BANDWIDTH */
5032
bf0f6f24
IM
5033/**************************************************
5034 * CFS operations on tasks:
5035 */
5036
8f4d37ec
PZ
5037#ifdef CONFIG_SCHED_HRTICK
5038static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5039{
8f4d37ec
PZ
5040 struct sched_entity *se = &p->se;
5041 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5042
9148a3a1 5043 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5044
8bf46a39 5045 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5046 u64 slice = sched_slice(cfs_rq, se);
5047 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5048 s64 delta = slice - ran;
5049
5050 if (delta < 0) {
5051 if (rq->curr == p)
8875125e 5052 resched_curr(rq);
8f4d37ec
PZ
5053 return;
5054 }
31656519 5055 hrtick_start(rq, delta);
8f4d37ec
PZ
5056 }
5057}
a4c2f00f
PZ
5058
5059/*
5060 * called from enqueue/dequeue and updates the hrtick when the
5061 * current task is from our class and nr_running is low enough
5062 * to matter.
5063 */
5064static void hrtick_update(struct rq *rq)
5065{
5066 struct task_struct *curr = rq->curr;
5067
b39e66ea 5068 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5069 return;
5070
5071 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5072 hrtick_start_fair(rq, curr);
5073}
55e12e5e 5074#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5075static inline void
5076hrtick_start_fair(struct rq *rq, struct task_struct *p)
5077{
5078}
a4c2f00f
PZ
5079
5080static inline void hrtick_update(struct rq *rq)
5081{
5082}
8f4d37ec
PZ
5083#endif
5084
2802bf3c
MR
5085#ifdef CONFIG_SMP
5086static inline unsigned long cpu_util(int cpu);
5087static unsigned long capacity_of(int cpu);
5088
5089static inline bool cpu_overutilized(int cpu)
5090{
5091 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5092}
5093
5094static inline void update_overutilized_status(struct rq *rq)
5095{
5096 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5097 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5098}
5099#else
5100static inline void update_overutilized_status(struct rq *rq) { }
5101#endif
5102
bf0f6f24
IM
5103/*
5104 * The enqueue_task method is called before nr_running is
5105 * increased. Here we update the fair scheduling stats and
5106 * then put the task into the rbtree:
5107 */
ea87bb78 5108static void
371fd7e7 5109enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5110{
5111 struct cfs_rq *cfs_rq;
62fb1851 5112 struct sched_entity *se = &p->se;
bf0f6f24 5113
2539fc82
PB
5114 /*
5115 * The code below (indirectly) updates schedutil which looks at
5116 * the cfs_rq utilization to select a frequency.
5117 * Let's add the task's estimated utilization to the cfs_rq's
5118 * estimated utilization, before we update schedutil.
5119 */
5120 util_est_enqueue(&rq->cfs, p);
5121
8c34ab19
RW
5122 /*
5123 * If in_iowait is set, the code below may not trigger any cpufreq
5124 * utilization updates, so do it here explicitly with the IOWAIT flag
5125 * passed.
5126 */
5127 if (p->in_iowait)
674e7541 5128 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5129
bf0f6f24 5130 for_each_sched_entity(se) {
62fb1851 5131 if (se->on_rq)
bf0f6f24
IM
5132 break;
5133 cfs_rq = cfs_rq_of(se);
88ec22d3 5134 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5135
5136 /*
5137 * end evaluation on encountering a throttled cfs_rq
5138 *
5139 * note: in the case of encountering a throttled cfs_rq we will
5140 * post the final h_nr_running increment below.
e210bffd 5141 */
85dac906
PT
5142 if (cfs_rq_throttled(cfs_rq))
5143 break;
953bfcd1 5144 cfs_rq->h_nr_running++;
85dac906 5145
88ec22d3 5146 flags = ENQUEUE_WAKEUP;
bf0f6f24 5147 }
8f4d37ec 5148
2069dd75 5149 for_each_sched_entity(se) {
0f317143 5150 cfs_rq = cfs_rq_of(se);
953bfcd1 5151 cfs_rq->h_nr_running++;
2069dd75 5152
85dac906
PT
5153 if (cfs_rq_throttled(cfs_rq))
5154 break;
5155
88c0616e 5156 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5157 update_cfs_group(se);
2069dd75
PZ
5158 }
5159
2802bf3c 5160 if (!se) {
72465447 5161 add_nr_running(rq, 1);
2802bf3c
MR
5162 /*
5163 * Since new tasks are assigned an initial util_avg equal to
5164 * half of the spare capacity of their CPU, tiny tasks have the
5165 * ability to cross the overutilized threshold, which will
5166 * result in the load balancer ruining all the task placement
5167 * done by EAS. As a way to mitigate that effect, do not account
5168 * for the first enqueue operation of new tasks during the
5169 * overutilized flag detection.
5170 *
5171 * A better way of solving this problem would be to wait for
5172 * the PELT signals of tasks to converge before taking them
5173 * into account, but that is not straightforward to implement,
5174 * and the following generally works well enough in practice.
5175 */
5176 if (flags & ENQUEUE_WAKEUP)
5177 update_overutilized_status(rq);
5178
5179 }
cd126afe 5180
a4c2f00f 5181 hrtick_update(rq);
bf0f6f24
IM
5182}
5183
2f36825b
VP
5184static void set_next_buddy(struct sched_entity *se);
5185
bf0f6f24
IM
5186/*
5187 * The dequeue_task method is called before nr_running is
5188 * decreased. We remove the task from the rbtree and
5189 * update the fair scheduling stats:
5190 */
371fd7e7 5191static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5192{
5193 struct cfs_rq *cfs_rq;
62fb1851 5194 struct sched_entity *se = &p->se;
2f36825b 5195 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5196
5197 for_each_sched_entity(se) {
5198 cfs_rq = cfs_rq_of(se);
371fd7e7 5199 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5200
5201 /*
5202 * end evaluation on encountering a throttled cfs_rq
5203 *
5204 * note: in the case of encountering a throttled cfs_rq we will
5205 * post the final h_nr_running decrement below.
5206 */
5207 if (cfs_rq_throttled(cfs_rq))
5208 break;
953bfcd1 5209 cfs_rq->h_nr_running--;
2069dd75 5210
bf0f6f24 5211 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5212 if (cfs_rq->load.weight) {
754bd598
KK
5213 /* Avoid re-evaluating load for this entity: */
5214 se = parent_entity(se);
2f36825b
VP
5215 /*
5216 * Bias pick_next to pick a task from this cfs_rq, as
5217 * p is sleeping when it is within its sched_slice.
5218 */
754bd598
KK
5219 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5220 set_next_buddy(se);
bf0f6f24 5221 break;
2f36825b 5222 }
371fd7e7 5223 flags |= DEQUEUE_SLEEP;
bf0f6f24 5224 }
8f4d37ec 5225
2069dd75 5226 for_each_sched_entity(se) {
0f317143 5227 cfs_rq = cfs_rq_of(se);
953bfcd1 5228 cfs_rq->h_nr_running--;
2069dd75 5229
85dac906
PT
5230 if (cfs_rq_throttled(cfs_rq))
5231 break;
5232
88c0616e 5233 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5234 update_cfs_group(se);
2069dd75
PZ
5235 }
5236
cd126afe 5237 if (!se)
72465447 5238 sub_nr_running(rq, 1);
cd126afe 5239
7f65ea42 5240 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5241 hrtick_update(rq);
bf0f6f24
IM
5242}
5243
e7693a36 5244#ifdef CONFIG_SMP
10e2f1ac
PZ
5245
5246/* Working cpumask for: load_balance, load_balance_newidle. */
5247DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5248DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5249
9fd81dd5 5250#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5251/*
5252 * per rq 'load' arrray crap; XXX kill this.
5253 */
5254
5255/*
d937cdc5 5256 * The exact cpuload calculated at every tick would be:
3289bdb4 5257 *
d937cdc5
PZ
5258 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5259 *
97fb7a0a
IM
5260 * If a CPU misses updates for n ticks (as it was idle) and update gets
5261 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5262 *
5263 * load_n = (1 - 1/2^i)^n * load_0
5264 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5265 *
5266 * decay_load_missed() below does efficient calculation of
3289bdb4 5267 *
d937cdc5
PZ
5268 * load' = (1 - 1/2^i)^n * load
5269 *
5270 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5271 * This allows us to precompute the above in said factors, thereby allowing the
5272 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5273 * fixed_power_int())
3289bdb4 5274 *
d937cdc5 5275 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5276 */
5277#define DEGRADE_SHIFT 7
d937cdc5
PZ
5278
5279static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5280static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5281 { 0, 0, 0, 0, 0, 0, 0, 0 },
5282 { 64, 32, 8, 0, 0, 0, 0, 0 },
5283 { 96, 72, 40, 12, 1, 0, 0, 0 },
5284 { 112, 98, 75, 43, 15, 1, 0, 0 },
5285 { 120, 112, 98, 76, 45, 16, 2, 0 }
5286};
3289bdb4
PZ
5287
5288/*
5289 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5290 * would be when CPU is idle and so we just decay the old load without
5291 * adding any new load.
5292 */
5293static unsigned long
5294decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5295{
5296 int j = 0;
5297
5298 if (!missed_updates)
5299 return load;
5300
5301 if (missed_updates >= degrade_zero_ticks[idx])
5302 return 0;
5303
5304 if (idx == 1)
5305 return load >> missed_updates;
5306
5307 while (missed_updates) {
5308 if (missed_updates % 2)
5309 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5310
5311 missed_updates >>= 1;
5312 j++;
5313 }
5314 return load;
5315}
e022e0d3
PZ
5316
5317static struct {
5318 cpumask_var_t idle_cpus_mask;
5319 atomic_t nr_cpus;
f643ea22 5320 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5321 unsigned long next_balance; /* in jiffy units */
f643ea22 5322 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5323} nohz ____cacheline_aligned;
5324
9fd81dd5 5325#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5326
59543275 5327/**
cee1afce 5328 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5329 * @this_rq: The rq to update statistics for
5330 * @this_load: The current load
5331 * @pending_updates: The number of missed updates
59543275 5332 *
3289bdb4 5333 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5334 * scheduler tick (TICK_NSEC).
5335 *
5336 * This function computes a decaying average:
5337 *
5338 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5339 *
5340 * Because of NOHZ it might not get called on every tick which gives need for
5341 * the @pending_updates argument.
5342 *
5343 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5344 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5345 * = A * (A * load[i]_n-2 + B) + B
5346 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5347 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5348 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5349 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5350 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5351 *
5352 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5353 * any change in load would have resulted in the tick being turned back on.
5354 *
5355 * For regular NOHZ, this reduces to:
5356 *
5357 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5358 *
5359 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5360 * term.
3289bdb4 5361 */
1f41906a
FW
5362static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5363 unsigned long pending_updates)
3289bdb4 5364{
9fd81dd5 5365 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5366 int i, scale;
5367
5368 this_rq->nr_load_updates++;
5369
5370 /* Update our load: */
5371 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5372 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5373 unsigned long old_load, new_load;
5374
5375 /* scale is effectively 1 << i now, and >> i divides by scale */
5376
7400d3bb 5377 old_load = this_rq->cpu_load[i];
9fd81dd5 5378#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5379 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5380 if (tickless_load) {
5381 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5382 /*
5383 * old_load can never be a negative value because a
5384 * decayed tickless_load cannot be greater than the
5385 * original tickless_load.
5386 */
5387 old_load += tickless_load;
5388 }
9fd81dd5 5389#endif
3289bdb4
PZ
5390 new_load = this_load;
5391 /*
5392 * Round up the averaging division if load is increasing. This
5393 * prevents us from getting stuck on 9 if the load is 10, for
5394 * example.
5395 */
5396 if (new_load > old_load)
5397 new_load += scale - 1;
5398
5399 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5400 }
3289bdb4
PZ
5401}
5402
7ea241af 5403/* Used instead of source_load when we know the type == 0 */
c7132dd6 5404static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5405{
c7132dd6 5406 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5407}
5408
3289bdb4 5409#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5410/*
5411 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5412 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5413 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5414 *
5415 * Therefore we need to avoid the delta approach from the regular tick when
5416 * possible since that would seriously skew the load calculation. This is why we
5417 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5418 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5419 * loop exit, nohz_idle_balance, nohz full exit...)
5420 *
5421 * This means we might still be one tick off for nohz periods.
5422 */
5423
5424static void cpu_load_update_nohz(struct rq *this_rq,
5425 unsigned long curr_jiffies,
5426 unsigned long load)
be68a682
FW
5427{
5428 unsigned long pending_updates;
5429
5430 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5431 if (pending_updates) {
5432 this_rq->last_load_update_tick = curr_jiffies;
5433 /*
5434 * In the regular NOHZ case, we were idle, this means load 0.
5435 * In the NOHZ_FULL case, we were non-idle, we should consider
5436 * its weighted load.
5437 */
1f41906a 5438 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5439 }
5440}
5441
3289bdb4
PZ
5442/*
5443 * Called from nohz_idle_balance() to update the load ratings before doing the
5444 * idle balance.
5445 */
cee1afce 5446static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5447{
3289bdb4
PZ
5448 /*
5449 * bail if there's load or we're actually up-to-date.
5450 */
c7132dd6 5451 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5452 return;
5453
1f41906a 5454 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5455}
5456
5457/*
1f41906a
FW
5458 * Record CPU load on nohz entry so we know the tickless load to account
5459 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5460 * than other cpu_load[idx] but it should be fine as cpu_load readers
5461 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5462 */
1f41906a 5463void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5464{
5465 struct rq *this_rq = this_rq();
1f41906a
FW
5466
5467 /*
5468 * This is all lockless but should be fine. If weighted_cpuload changes
5469 * concurrently we'll exit nohz. And cpu_load write can race with
5470 * cpu_load_update_idle() but both updater would be writing the same.
5471 */
c7132dd6 5472 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5473}
5474
5475/*
5476 * Account the tickless load in the end of a nohz frame.
5477 */
5478void cpu_load_update_nohz_stop(void)
5479{
316c1608 5480 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5481 struct rq *this_rq = this_rq();
5482 unsigned long load;
8a8c69c3 5483 struct rq_flags rf;
3289bdb4
PZ
5484
5485 if (curr_jiffies == this_rq->last_load_update_tick)
5486 return;
5487
c7132dd6 5488 load = weighted_cpuload(this_rq);
8a8c69c3 5489 rq_lock(this_rq, &rf);
b52fad2d 5490 update_rq_clock(this_rq);
1f41906a 5491 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5492 rq_unlock(this_rq, &rf);
3289bdb4 5493}
1f41906a
FW
5494#else /* !CONFIG_NO_HZ_COMMON */
5495static inline void cpu_load_update_nohz(struct rq *this_rq,
5496 unsigned long curr_jiffies,
5497 unsigned long load) { }
5498#endif /* CONFIG_NO_HZ_COMMON */
5499
5500static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5501{
9fd81dd5 5502#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5503 /* See the mess around cpu_load_update_nohz(). */
5504 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5505#endif
1f41906a
FW
5506 cpu_load_update(this_rq, load, 1);
5507}
3289bdb4
PZ
5508
5509/*
5510 * Called from scheduler_tick()
5511 */
cee1afce 5512void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5513{
c7132dd6 5514 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5515
5516 if (tick_nohz_tick_stopped())
5517 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5518 else
5519 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5520}
5521
029632fb 5522/*
97fb7a0a 5523 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5524 * according to the scheduling class and "nice" value.
5525 *
5526 * We want to under-estimate the load of migration sources, to
5527 * balance conservatively.
5528 */
5529static unsigned long source_load(int cpu, int type)
5530{
5531 struct rq *rq = cpu_rq(cpu);
c7132dd6 5532 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5533
5534 if (type == 0 || !sched_feat(LB_BIAS))
5535 return total;
5536
5537 return min(rq->cpu_load[type-1], total);
5538}
5539
5540/*
97fb7a0a 5541 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5542 * according to the scheduling class and "nice" value.
5543 */
5544static unsigned long target_load(int cpu, int type)
5545{
5546 struct rq *rq = cpu_rq(cpu);
c7132dd6 5547 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5548
5549 if (type == 0 || !sched_feat(LB_BIAS))
5550 return total;
5551
5552 return max(rq->cpu_load[type-1], total);
5553}
5554
ced549fa 5555static unsigned long capacity_of(int cpu)
029632fb 5556{
ced549fa 5557 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5558}
5559
ca6d75e6
VG
5560static unsigned long capacity_orig_of(int cpu)
5561{
5562 return cpu_rq(cpu)->cpu_capacity_orig;
5563}
5564
029632fb
PZ
5565static unsigned long cpu_avg_load_per_task(int cpu)
5566{
5567 struct rq *rq = cpu_rq(cpu);
316c1608 5568 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5569 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5570
5571 if (nr_running)
b92486cb 5572 return load_avg / nr_running;
029632fb
PZ
5573
5574 return 0;
5575}
5576
c58d25f3
PZ
5577static void record_wakee(struct task_struct *p)
5578{
5579 /*
5580 * Only decay a single time; tasks that have less then 1 wakeup per
5581 * jiffy will not have built up many flips.
5582 */
5583 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5584 current->wakee_flips >>= 1;
5585 current->wakee_flip_decay_ts = jiffies;
5586 }
5587
5588 if (current->last_wakee != p) {
5589 current->last_wakee = p;
5590 current->wakee_flips++;
5591 }
5592}
5593
63b0e9ed
MG
5594/*
5595 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5596 *
63b0e9ed 5597 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5598 * at a frequency roughly N times higher than one of its wakees.
5599 *
5600 * In order to determine whether we should let the load spread vs consolidating
5601 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5602 * partner, and a factor of lls_size higher frequency in the other.
5603 *
5604 * With both conditions met, we can be relatively sure that the relationship is
5605 * non-monogamous, with partner count exceeding socket size.
5606 *
5607 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5608 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5609 * socket size.
63b0e9ed 5610 */
62470419
MW
5611static int wake_wide(struct task_struct *p)
5612{
63b0e9ed
MG
5613 unsigned int master = current->wakee_flips;
5614 unsigned int slave = p->wakee_flips;
7d9ffa89 5615 int factor = this_cpu_read(sd_llc_size);
62470419 5616
63b0e9ed
MG
5617 if (master < slave)
5618 swap(master, slave);
5619 if (slave < factor || master < slave * factor)
5620 return 0;
5621 return 1;
62470419
MW
5622}
5623
90001d67 5624/*
d153b153
PZ
5625 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5626 * soonest. For the purpose of speed we only consider the waking and previous
5627 * CPU.
90001d67 5628 *
7332dec0
MG
5629 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5630 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5631 *
5632 * wake_affine_weight() - considers the weight to reflect the average
5633 * scheduling latency of the CPUs. This seems to work
5634 * for the overloaded case.
90001d67 5635 */
3b76c4a3 5636static int
89a55f56 5637wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5638{
7332dec0
MG
5639 /*
5640 * If this_cpu is idle, it implies the wakeup is from interrupt
5641 * context. Only allow the move if cache is shared. Otherwise an
5642 * interrupt intensive workload could force all tasks onto one
5643 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5644 *
5645 * If the prev_cpu is idle and cache affine then avoid a migration.
5646 * There is no guarantee that the cache hot data from an interrupt
5647 * is more important than cache hot data on the prev_cpu and from
5648 * a cpufreq perspective, it's better to have higher utilisation
5649 * on one CPU.
7332dec0 5650 */
943d355d
RJ
5651 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5652 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5653
d153b153 5654 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5655 return this_cpu;
90001d67 5656
3b76c4a3 5657 return nr_cpumask_bits;
90001d67
PZ
5658}
5659
3b76c4a3 5660static int
f2cdd9cc
PZ
5661wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5662 int this_cpu, int prev_cpu, int sync)
90001d67 5663{
90001d67
PZ
5664 s64 this_eff_load, prev_eff_load;
5665 unsigned long task_load;
5666
f2cdd9cc 5667 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5668
90001d67
PZ
5669 if (sync) {
5670 unsigned long current_load = task_h_load(current);
5671
f2cdd9cc 5672 if (current_load > this_eff_load)
3b76c4a3 5673 return this_cpu;
90001d67 5674
f2cdd9cc 5675 this_eff_load -= current_load;
90001d67
PZ
5676 }
5677
90001d67
PZ
5678 task_load = task_h_load(p);
5679
f2cdd9cc
PZ
5680 this_eff_load += task_load;
5681 if (sched_feat(WA_BIAS))
5682 this_eff_load *= 100;
5683 this_eff_load *= capacity_of(prev_cpu);
90001d67 5684
eeb60398 5685 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5686 prev_eff_load -= task_load;
5687 if (sched_feat(WA_BIAS))
5688 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5689 prev_eff_load *= capacity_of(this_cpu);
90001d67 5690
082f764a
MG
5691 /*
5692 * If sync, adjust the weight of prev_eff_load such that if
5693 * prev_eff == this_eff that select_idle_sibling() will consider
5694 * stacking the wakee on top of the waker if no other CPU is
5695 * idle.
5696 */
5697 if (sync)
5698 prev_eff_load += 1;
5699
5700 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5701}
5702
772bd008 5703static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5704 int this_cpu, int prev_cpu, int sync)
098fb9db 5705{
3b76c4a3 5706 int target = nr_cpumask_bits;
098fb9db 5707
89a55f56 5708 if (sched_feat(WA_IDLE))
3b76c4a3 5709 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5710
3b76c4a3
MG
5711 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5712 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5713
ae92882e 5714 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5715 if (target == nr_cpumask_bits)
5716 return prev_cpu;
098fb9db 5717
3b76c4a3
MG
5718 schedstat_inc(sd->ttwu_move_affine);
5719 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5720 return target;
098fb9db
IM
5721}
5722
c469933e 5723static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5724
c469933e 5725static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5726{
c469933e 5727 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5728}
5729
aaee1203
PZ
5730/*
5731 * find_idlest_group finds and returns the least busy CPU group within the
5732 * domain.
6fee85cc
BJ
5733 *
5734 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5735 */
5736static struct sched_group *
78e7ed53 5737find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5738 int this_cpu, int sd_flag)
e7693a36 5739{
b3bd3de6 5740 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5741 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5742 unsigned long min_runnable_load = ULONG_MAX;
5743 unsigned long this_runnable_load = ULONG_MAX;
5744 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5745 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5746 int load_idx = sd->forkexec_idx;
6b94780e
VG
5747 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5748 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5749 (sd->imbalance_pct-100) / 100;
e7693a36 5750
c44f2a02
VG
5751 if (sd_flag & SD_BALANCE_WAKE)
5752 load_idx = sd->wake_idx;
5753
aaee1203 5754 do {
6b94780e
VG
5755 unsigned long load, avg_load, runnable_load;
5756 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5757 int local_group;
5758 int i;
e7693a36 5759
aaee1203 5760 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5761 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5762 &p->cpus_allowed))
aaee1203
PZ
5763 continue;
5764
5765 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5766 sched_group_span(group));
aaee1203 5767
6a0b19c0
MR
5768 /*
5769 * Tally up the load of all CPUs in the group and find
5770 * the group containing the CPU with most spare capacity.
5771 */
aaee1203 5772 avg_load = 0;
6b94780e 5773 runnable_load = 0;
6a0b19c0 5774 max_spare_cap = 0;
aaee1203 5775
ae4df9d6 5776 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5777 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5778 if (local_group)
5779 load = source_load(i, load_idx);
5780 else
5781 load = target_load(i, load_idx);
5782
6b94780e
VG
5783 runnable_load += load;
5784
5785 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5786
c469933e 5787 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5788
5789 if (spare_cap > max_spare_cap)
5790 max_spare_cap = spare_cap;
aaee1203
PZ
5791 }
5792
63b2ca30 5793 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5794 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5795 group->sgc->capacity;
5796 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5797 group->sgc->capacity;
aaee1203
PZ
5798
5799 if (local_group) {
6b94780e
VG
5800 this_runnable_load = runnable_load;
5801 this_avg_load = avg_load;
6a0b19c0
MR
5802 this_spare = max_spare_cap;
5803 } else {
6b94780e
VG
5804 if (min_runnable_load > (runnable_load + imbalance)) {
5805 /*
5806 * The runnable load is significantly smaller
97fb7a0a 5807 * so we can pick this new CPU:
6b94780e
VG
5808 */
5809 min_runnable_load = runnable_load;
5810 min_avg_load = avg_load;
5811 idlest = group;
5812 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5813 (100*min_avg_load > imbalance_scale*avg_load)) {
5814 /*
5815 * The runnable loads are close so take the
97fb7a0a 5816 * blocked load into account through avg_load:
6b94780e
VG
5817 */
5818 min_avg_load = avg_load;
6a0b19c0
MR
5819 idlest = group;
5820 }
5821
5822 if (most_spare < max_spare_cap) {
5823 most_spare = max_spare_cap;
5824 most_spare_sg = group;
5825 }
aaee1203
PZ
5826 }
5827 } while (group = group->next, group != sd->groups);
5828
6a0b19c0
MR
5829 /*
5830 * The cross-over point between using spare capacity or least load
5831 * is too conservative for high utilization tasks on partially
5832 * utilized systems if we require spare_capacity > task_util(p),
5833 * so we allow for some task stuffing by using
5834 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5835 *
5836 * Spare capacity can't be used for fork because the utilization has
5837 * not been set yet, we must first select a rq to compute the initial
5838 * utilization.
6a0b19c0 5839 */
f519a3f1
VG
5840 if (sd_flag & SD_BALANCE_FORK)
5841 goto skip_spare;
5842
6a0b19c0 5843 if (this_spare > task_util(p) / 2 &&
6b94780e 5844 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5845 return NULL;
6b94780e
VG
5846
5847 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5848 return most_spare_sg;
5849
f519a3f1 5850skip_spare:
6b94780e
VG
5851 if (!idlest)
5852 return NULL;
5853
2c833627
MG
5854 /*
5855 * When comparing groups across NUMA domains, it's possible for the
5856 * local domain to be very lightly loaded relative to the remote
5857 * domains but "imbalance" skews the comparison making remote CPUs
5858 * look much more favourable. When considering cross-domain, add
5859 * imbalance to the runnable load on the remote node and consider
5860 * staying local.
5861 */
5862 if ((sd->flags & SD_NUMA) &&
5863 min_runnable_load + imbalance >= this_runnable_load)
5864 return NULL;
5865
6b94780e 5866 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5867 return NULL;
6b94780e
VG
5868
5869 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5870 (100*this_avg_load < imbalance_scale*min_avg_load))
5871 return NULL;
5872
aaee1203
PZ
5873 return idlest;
5874}
5875
5876/*
97fb7a0a 5877 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5878 */
5879static int
18bd1b4b 5880find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5881{
5882 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5883 unsigned int min_exit_latency = UINT_MAX;
5884 u64 latest_idle_timestamp = 0;
5885 int least_loaded_cpu = this_cpu;
5886 int shallowest_idle_cpu = -1;
aaee1203
PZ
5887 int i;
5888
eaecf41f
MR
5889 /* Check if we have any choice: */
5890 if (group->group_weight == 1)
ae4df9d6 5891 return cpumask_first(sched_group_span(group));
eaecf41f 5892
aaee1203 5893 /* Traverse only the allowed CPUs */
ae4df9d6 5894 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5895 if (available_idle_cpu(i)) {
83a0a96a
NP
5896 struct rq *rq = cpu_rq(i);
5897 struct cpuidle_state *idle = idle_get_state(rq);
5898 if (idle && idle->exit_latency < min_exit_latency) {
5899 /*
5900 * We give priority to a CPU whose idle state
5901 * has the smallest exit latency irrespective
5902 * of any idle timestamp.
5903 */
5904 min_exit_latency = idle->exit_latency;
5905 latest_idle_timestamp = rq->idle_stamp;
5906 shallowest_idle_cpu = i;
5907 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5908 rq->idle_stamp > latest_idle_timestamp) {
5909 /*
5910 * If equal or no active idle state, then
5911 * the most recently idled CPU might have
5912 * a warmer cache.
5913 */
5914 latest_idle_timestamp = rq->idle_stamp;
5915 shallowest_idle_cpu = i;
5916 }
9f96742a 5917 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5918 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5919 if (load < min_load) {
83a0a96a
NP
5920 min_load = load;
5921 least_loaded_cpu = i;
5922 }
e7693a36
GH
5923 }
5924 }
5925
83a0a96a 5926 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5927}
e7693a36 5928
18bd1b4b
BJ
5929static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5930 int cpu, int prev_cpu, int sd_flag)
5931{
93f50f90 5932 int new_cpu = cpu;
18bd1b4b 5933
6fee85cc
BJ
5934 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5935 return prev_cpu;
5936
c976a862 5937 /*
c469933e
PB
5938 * We need task's util for capacity_spare_without, sync it up to
5939 * prev_cpu's last_update_time.
c976a862
VK
5940 */
5941 if (!(sd_flag & SD_BALANCE_FORK))
5942 sync_entity_load_avg(&p->se);
5943
18bd1b4b
BJ
5944 while (sd) {
5945 struct sched_group *group;
5946 struct sched_domain *tmp;
5947 int weight;
5948
5949 if (!(sd->flags & sd_flag)) {
5950 sd = sd->child;
5951 continue;
5952 }
5953
5954 group = find_idlest_group(sd, p, cpu, sd_flag);
5955 if (!group) {
5956 sd = sd->child;
5957 continue;
5958 }
5959
5960 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5961 if (new_cpu == cpu) {
97fb7a0a 5962 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5963 sd = sd->child;
5964 continue;
5965 }
5966
97fb7a0a 5967 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5968 cpu = new_cpu;
5969 weight = sd->span_weight;
5970 sd = NULL;
5971 for_each_domain(cpu, tmp) {
5972 if (weight <= tmp->span_weight)
5973 break;
5974 if (tmp->flags & sd_flag)
5975 sd = tmp;
5976 }
18bd1b4b
BJ
5977 }
5978
5979 return new_cpu;
5980}
5981
10e2f1ac 5982#ifdef CONFIG_SCHED_SMT
ba2591a5 5983DEFINE_STATIC_KEY_FALSE(sched_smt_present);
10e2f1ac
PZ
5984
5985static inline void set_idle_cores(int cpu, int val)
5986{
5987 struct sched_domain_shared *sds;
5988
5989 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5990 if (sds)
5991 WRITE_ONCE(sds->has_idle_cores, val);
5992}
5993
5994static inline bool test_idle_cores(int cpu, bool def)
5995{
5996 struct sched_domain_shared *sds;
5997
5998 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5999 if (sds)
6000 return READ_ONCE(sds->has_idle_cores);
6001
6002 return def;
6003}
6004
6005/*
6006 * Scans the local SMT mask to see if the entire core is idle, and records this
6007 * information in sd_llc_shared->has_idle_cores.
6008 *
6009 * Since SMT siblings share all cache levels, inspecting this limited remote
6010 * state should be fairly cheap.
6011 */
1b568f0a 6012void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6013{
6014 int core = cpu_of(rq);
6015 int cpu;
6016
6017 rcu_read_lock();
6018 if (test_idle_cores(core, true))
6019 goto unlock;
6020
6021 for_each_cpu(cpu, cpu_smt_mask(core)) {
6022 if (cpu == core)
6023 continue;
6024
943d355d 6025 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6026 goto unlock;
6027 }
6028
6029 set_idle_cores(core, 1);
6030unlock:
6031 rcu_read_unlock();
6032}
6033
6034/*
6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6036 * there are no idle cores left in the system; tracked through
6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6038 */
6039static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6040{
6041 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6042 int core, cpu;
10e2f1ac 6043
1b568f0a
PZ
6044 if (!static_branch_likely(&sched_smt_present))
6045 return -1;
6046
10e2f1ac
PZ
6047 if (!test_idle_cores(target, false))
6048 return -1;
6049
0c98d344 6050 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6051
c743f0a5 6052 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6053 bool idle = true;
6054
6055 for_each_cpu(cpu, cpu_smt_mask(core)) {
6056 cpumask_clear_cpu(cpu, cpus);
943d355d 6057 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6058 idle = false;
6059 }
6060
6061 if (idle)
6062 return core;
6063 }
6064
6065 /*
6066 * Failed to find an idle core; stop looking for one.
6067 */
6068 set_idle_cores(target, 0);
6069
6070 return -1;
6071}
6072
6073/*
6074 * Scan the local SMT mask for idle CPUs.
6075 */
6076static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6077{
6078 int cpu;
6079
1b568f0a
PZ
6080 if (!static_branch_likely(&sched_smt_present))
6081 return -1;
6082
10e2f1ac 6083 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6084 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6085 continue;
943d355d 6086 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6087 return cpu;
6088 }
6089
6090 return -1;
6091}
6092
6093#else /* CONFIG_SCHED_SMT */
6094
6095static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6096{
6097 return -1;
6098}
6099
6100static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6101{
6102 return -1;
6103}
6104
6105#endif /* CONFIG_SCHED_SMT */
6106
6107/*
6108 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6109 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6110 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6111 */
10e2f1ac
PZ
6112static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6113{
9cfb38a7 6114 struct sched_domain *this_sd;
1ad3aaf3 6115 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6116 u64 time, cost;
6117 s64 delta;
1ad3aaf3 6118 int cpu, nr = INT_MAX;
10e2f1ac 6119
9cfb38a7
WL
6120 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6121 if (!this_sd)
6122 return -1;
6123
10e2f1ac
PZ
6124 /*
6125 * Due to large variance we need a large fuzz factor; hackbench in
6126 * particularly is sensitive here.
6127 */
1ad3aaf3
PZ
6128 avg_idle = this_rq()->avg_idle / 512;
6129 avg_cost = this_sd->avg_scan_cost + 1;
6130
6131 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6132 return -1;
6133
1ad3aaf3
PZ
6134 if (sched_feat(SIS_PROP)) {
6135 u64 span_avg = sd->span_weight * avg_idle;
6136 if (span_avg > 4*avg_cost)
6137 nr = div_u64(span_avg, avg_cost);
6138 else
6139 nr = 4;
6140 }
6141
10e2f1ac
PZ
6142 time = local_clock();
6143
c743f0a5 6144 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6145 if (!--nr)
6146 return -1;
0c98d344 6147 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6148 continue;
943d355d 6149 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6150 break;
6151 }
6152
6153 time = local_clock() - time;
6154 cost = this_sd->avg_scan_cost;
6155 delta = (s64)(time - cost) / 8;
6156 this_sd->avg_scan_cost += delta;
6157
6158 return cpu;
6159}
6160
6161/*
6162 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6163 */
772bd008 6164static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6165{
99bd5e2f 6166 struct sched_domain *sd;
32e839dd 6167 int i, recent_used_cpu;
a50bde51 6168
943d355d 6169 if (available_idle_cpu(target))
e0a79f52 6170 return target;
99bd5e2f
SS
6171
6172 /*
97fb7a0a 6173 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6174 */
943d355d 6175 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6176 return prev;
a50bde51 6177
97fb7a0a 6178 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6179 recent_used_cpu = p->recent_used_cpu;
6180 if (recent_used_cpu != prev &&
6181 recent_used_cpu != target &&
6182 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6183 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6184 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6185 /*
6186 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6187 * candidate for the next wake:
32e839dd
MG
6188 */
6189 p->recent_used_cpu = prev;
6190 return recent_used_cpu;
6191 }
6192
518cd623 6193 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6194 if (!sd)
6195 return target;
772bd008 6196
10e2f1ac
PZ
6197 i = select_idle_core(p, sd, target);
6198 if ((unsigned)i < nr_cpumask_bits)
6199 return i;
37407ea7 6200
10e2f1ac
PZ
6201 i = select_idle_cpu(p, sd, target);
6202 if ((unsigned)i < nr_cpumask_bits)
6203 return i;
6204
6205 i = select_idle_smt(p, sd, target);
6206 if ((unsigned)i < nr_cpumask_bits)
6207 return i;
970e1789 6208
a50bde51
PZ
6209 return target;
6210}
231678b7 6211
f9be3e59
PB
6212/**
6213 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6214 * @cpu: the CPU to get the utilization of
6215 *
6216 * The unit of the return value must be the one of capacity so we can compare
6217 * the utilization with the capacity of the CPU that is available for CFS task
6218 * (ie cpu_capacity).
231678b7
DE
6219 *
6220 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6221 * recent utilization of currently non-runnable tasks on a CPU. It represents
6222 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6223 * capacity_orig is the cpu_capacity available at the highest frequency
6224 * (arch_scale_freq_capacity()).
6225 * The utilization of a CPU converges towards a sum equal to or less than the
6226 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6227 * the running time on this CPU scaled by capacity_curr.
6228 *
f9be3e59
PB
6229 * The estimated utilization of a CPU is defined to be the maximum between its
6230 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6231 * currently RUNNABLE on that CPU.
6232 * This allows to properly represent the expected utilization of a CPU which
6233 * has just got a big task running since a long sleep period. At the same time
6234 * however it preserves the benefits of the "blocked utilization" in
6235 * describing the potential for other tasks waking up on the same CPU.
6236 *
231678b7
DE
6237 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6238 * higher than capacity_orig because of unfortunate rounding in
6239 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6240 * the average stabilizes with the new running time. We need to check that the
6241 * utilization stays within the range of [0..capacity_orig] and cap it if
6242 * necessary. Without utilization capping, a group could be seen as overloaded
6243 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6244 * available capacity. We allow utilization to overshoot capacity_curr (but not
6245 * capacity_orig) as it useful for predicting the capacity required after task
6246 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6247 *
6248 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6249 */
f9be3e59 6250static inline unsigned long cpu_util(int cpu)
8bb5b00c 6251{
f9be3e59
PB
6252 struct cfs_rq *cfs_rq;
6253 unsigned int util;
6254
6255 cfs_rq = &cpu_rq(cpu)->cfs;
6256 util = READ_ONCE(cfs_rq->avg.util_avg);
6257
6258 if (sched_feat(UTIL_EST))
6259 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6260
f9be3e59 6261 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6262}
a50bde51 6263
104cb16d 6264/*
c469933e
PB
6265 * cpu_util_without: compute cpu utilization without any contributions from *p
6266 * @cpu: the CPU which utilization is requested
6267 * @p: the task which utilization should be discounted
6268 *
6269 * The utilization of a CPU is defined by the utilization of tasks currently
6270 * enqueued on that CPU as well as tasks which are currently sleeping after an
6271 * execution on that CPU.
6272 *
6273 * This method returns the utilization of the specified CPU by discounting the
6274 * utilization of the specified task, whenever the task is currently
6275 * contributing to the CPU utilization.
104cb16d 6276 */
c469933e 6277static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6278{
f9be3e59
PB
6279 struct cfs_rq *cfs_rq;
6280 unsigned int util;
104cb16d
MR
6281
6282 /* Task has no contribution or is new */
f9be3e59 6283 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6284 return cpu_util(cpu);
6285
f9be3e59
PB
6286 cfs_rq = &cpu_rq(cpu)->cfs;
6287 util = READ_ONCE(cfs_rq->avg.util_avg);
6288
c469933e 6289 /* Discount task's util from CPU's util */
b5c0ce7b 6290 lsub_positive(&util, task_util(p));
104cb16d 6291
f9be3e59
PB
6292 /*
6293 * Covered cases:
6294 *
6295 * a) if *p is the only task sleeping on this CPU, then:
6296 * cpu_util (== task_util) > util_est (== 0)
6297 * and thus we return:
c469933e 6298 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6299 *
6300 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6301 * IDLE, then:
6302 * cpu_util >= task_util
6303 * cpu_util > util_est (== 0)
6304 * and thus we discount *p's blocked utilization to return:
c469933e 6305 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6306 *
6307 * c) if other tasks are RUNNABLE on that CPU and
6308 * util_est > cpu_util
6309 * then we use util_est since it returns a more restrictive
6310 * estimation of the spare capacity on that CPU, by just
6311 * considering the expected utilization of tasks already
6312 * runnable on that CPU.
6313 *
6314 * Cases a) and b) are covered by the above code, while case c) is
6315 * covered by the following code when estimated utilization is
6316 * enabled.
6317 */
c469933e
PB
6318 if (sched_feat(UTIL_EST)) {
6319 unsigned int estimated =
6320 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6321
6322 /*
6323 * Despite the following checks we still have a small window
6324 * for a possible race, when an execl's select_task_rq_fair()
6325 * races with LB's detach_task():
6326 *
6327 * detach_task()
6328 * p->on_rq = TASK_ON_RQ_MIGRATING;
6329 * ---------------------------------- A
6330 * deactivate_task() \
6331 * dequeue_task() + RaceTime
6332 * util_est_dequeue() /
6333 * ---------------------------------- B
6334 *
6335 * The additional check on "current == p" it's required to
6336 * properly fix the execl regression and it helps in further
6337 * reducing the chances for the above race.
6338 */
b5c0ce7b
PB
6339 if (unlikely(task_on_rq_queued(p) || current == p))
6340 lsub_positive(&estimated, _task_util_est(p));
6341
c469933e
PB
6342 util = max(util, estimated);
6343 }
f9be3e59
PB
6344
6345 /*
6346 * Utilization (estimated) can exceed the CPU capacity, thus let's
6347 * clamp to the maximum CPU capacity to ensure consistency with
6348 * the cpu_util call.
6349 */
6350 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6351}
6352
3273163c
MR
6353/*
6354 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6355 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6356 *
6357 * In that case WAKE_AFFINE doesn't make sense and we'll let
6358 * BALANCE_WAKE sort things out.
6359 */
6360static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6361{
6362 long min_cap, max_cap;
6363
df054e84
MR
6364 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6365 return 0;
6366
3273163c
MR
6367 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6368 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6369
6370 /* Minimum capacity is close to max, no need to abort wake_affine */
6371 if (max_cap - min_cap < max_cap >> 3)
6372 return 0;
6373
104cb16d
MR
6374 /* Bring task utilization in sync with prev_cpu */
6375 sync_entity_load_avg(&p->se);
6376
3b1baa64 6377 return !task_fits_capacity(p, min_cap);
3273163c
MR
6378}
6379
390031e4
QP
6380/*
6381 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6382 * to @dst_cpu.
6383 */
6384static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6385{
6386 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6387 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6388
6389 /*
6390 * If @p migrates from @cpu to another, remove its contribution. Or,
6391 * if @p migrates from another CPU to @cpu, add its contribution. In
6392 * the other cases, @cpu is not impacted by the migration, so the
6393 * util_avg should already be correct.
6394 */
6395 if (task_cpu(p) == cpu && dst_cpu != cpu)
6396 sub_positive(&util, task_util(p));
6397 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6398 util += task_util(p);
6399
6400 if (sched_feat(UTIL_EST)) {
6401 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6402
6403 /*
6404 * During wake-up, the task isn't enqueued yet and doesn't
6405 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6406 * so just add it (if needed) to "simulate" what will be
6407 * cpu_util() after the task has been enqueued.
6408 */
6409 if (dst_cpu == cpu)
6410 util_est += _task_util_est(p);
6411
6412 util = max(util, util_est);
6413 }
6414
6415 return min(util, capacity_orig_of(cpu));
6416}
6417
6418/*
6419 * compute_energy(): Estimates the energy that would be consumed if @p was
6420 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6421 * landscape of the * CPUs after the task migration, and uses the Energy Model
6422 * to compute what would be the energy if we decided to actually migrate that
6423 * task.
6424 */
6425static long
6426compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6427{
6428 long util, max_util, sum_util, energy = 0;
6429 int cpu;
6430
6431 for (; pd; pd = pd->next) {
6432 max_util = sum_util = 0;
6433 /*
6434 * The capacity state of CPUs of the current rd can be driven by
6435 * CPUs of another rd if they belong to the same performance
6436 * domain. So, account for the utilization of these CPUs too
6437 * by masking pd with cpu_online_mask instead of the rd span.
6438 *
6439 * If an entire performance domain is outside of the current rd,
6440 * it will not appear in its pd list and will not be accounted
6441 * by compute_energy().
6442 */
6443 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6444 util = cpu_util_next(cpu, p, dst_cpu);
6445 util = schedutil_energy_util(cpu, util);
6446 max_util = max(util, max_util);
6447 sum_util += util;
6448 }
6449
6450 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6451 }
6452
6453 return energy;
6454}
6455
732cd75b
QP
6456/*
6457 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6458 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6459 * spare capacity in each performance domain and uses it as a potential
6460 * candidate to execute the task. Then, it uses the Energy Model to figure
6461 * out which of the CPU candidates is the most energy-efficient.
6462 *
6463 * The rationale for this heuristic is as follows. In a performance domain,
6464 * all the most energy efficient CPU candidates (according to the Energy
6465 * Model) are those for which we'll request a low frequency. When there are
6466 * several CPUs for which the frequency request will be the same, we don't
6467 * have enough data to break the tie between them, because the Energy Model
6468 * only includes active power costs. With this model, if we assume that
6469 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6470 * the maximum spare capacity in a performance domain is guaranteed to be among
6471 * the best candidates of the performance domain.
6472 *
6473 * In practice, it could be preferable from an energy standpoint to pack
6474 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6475 * but that could also hurt our chances to go cluster idle, and we have no
6476 * ways to tell with the current Energy Model if this is actually a good
6477 * idea or not. So, find_energy_efficient_cpu() basically favors
6478 * cluster-packing, and spreading inside a cluster. That should at least be
6479 * a good thing for latency, and this is consistent with the idea that most
6480 * of the energy savings of EAS come from the asymmetry of the system, and
6481 * not so much from breaking the tie between identical CPUs. That's also the
6482 * reason why EAS is enabled in the topology code only for systems where
6483 * SD_ASYM_CPUCAPACITY is set.
6484 *
6485 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6486 * they don't have any useful utilization data yet and it's not possible to
6487 * forecast their impact on energy consumption. Consequently, they will be
6488 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6489 * to be energy-inefficient in some use-cases. The alternative would be to
6490 * bias new tasks towards specific types of CPUs first, or to try to infer
6491 * their util_avg from the parent task, but those heuristics could hurt
6492 * other use-cases too. So, until someone finds a better way to solve this,
6493 * let's keep things simple by re-using the existing slow path.
6494 */
6495
6496static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6497{
6498 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6499 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6500 int cpu, best_energy_cpu = prev_cpu;
6501 struct perf_domain *head, *pd;
6502 unsigned long cpu_cap, util;
6503 struct sched_domain *sd;
6504
6505 rcu_read_lock();
6506 pd = rcu_dereference(rd->pd);
6507 if (!pd || READ_ONCE(rd->overutilized))
6508 goto fail;
6509 head = pd;
6510
6511 /*
6512 * Energy-aware wake-up happens on the lowest sched_domain starting
6513 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6514 */
6515 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6516 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6517 sd = sd->parent;
6518 if (!sd)
6519 goto fail;
6520
6521 sync_entity_load_avg(&p->se);
6522 if (!task_util_est(p))
6523 goto unlock;
6524
6525 for (; pd; pd = pd->next) {
6526 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6527 int max_spare_cap_cpu = -1;
6528
6529 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6530 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6531 continue;
6532
6533 /* Skip CPUs that will be overutilized. */
6534 util = cpu_util_next(cpu, p, cpu);
6535 cpu_cap = capacity_of(cpu);
6536 if (cpu_cap * 1024 < util * capacity_margin)
6537 continue;
6538
6539 /* Always use prev_cpu as a candidate. */
6540 if (cpu == prev_cpu) {
6541 prev_energy = compute_energy(p, prev_cpu, head);
6542 best_energy = min(best_energy, prev_energy);
6543 continue;
6544 }
6545
6546 /*
6547 * Find the CPU with the maximum spare capacity in
6548 * the performance domain
6549 */
6550 spare_cap = cpu_cap - util;
6551 if (spare_cap > max_spare_cap) {
6552 max_spare_cap = spare_cap;
6553 max_spare_cap_cpu = cpu;
6554 }
6555 }
6556
6557 /* Evaluate the energy impact of using this CPU. */
6558 if (max_spare_cap_cpu >= 0) {
6559 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6560 if (cur_energy < best_energy) {
6561 best_energy = cur_energy;
6562 best_energy_cpu = max_spare_cap_cpu;
6563 }
6564 }
6565 }
6566unlock:
6567 rcu_read_unlock();
6568
6569 /*
6570 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6571 * least 6% of the energy used by prev_cpu.
6572 */
6573 if (prev_energy == ULONG_MAX)
6574 return best_energy_cpu;
6575
6576 if ((prev_energy - best_energy) > (prev_energy >> 4))
6577 return best_energy_cpu;
6578
6579 return prev_cpu;
6580
6581fail:
6582 rcu_read_unlock();
6583
6584 return -1;
6585}
6586
aaee1203 6587/*
de91b9cb
MR
6588 * select_task_rq_fair: Select target runqueue for the waking task in domains
6589 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6590 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6591 *
97fb7a0a
IM
6592 * Balances load by selecting the idlest CPU in the idlest group, or under
6593 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6594 *
97fb7a0a 6595 * Returns the target CPU number.
aaee1203
PZ
6596 *
6597 * preempt must be disabled.
6598 */
0017d735 6599static int
ac66f547 6600select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6601{
f1d88b44 6602 struct sched_domain *tmp, *sd = NULL;
c88d5910 6603 int cpu = smp_processor_id();
63b0e9ed 6604 int new_cpu = prev_cpu;
99bd5e2f 6605 int want_affine = 0;
24d0c1d6 6606 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6607
c58d25f3
PZ
6608 if (sd_flag & SD_BALANCE_WAKE) {
6609 record_wakee(p);
732cd75b
QP
6610
6611 if (static_branch_unlikely(&sched_energy_present)) {
6612 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6613 if (new_cpu >= 0)
6614 return new_cpu;
6615 new_cpu = prev_cpu;
6616 }
6617
6618 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6619 cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6620 }
aaee1203 6621
dce840a0 6622 rcu_read_lock();
aaee1203 6623 for_each_domain(cpu, tmp) {
e4f42888 6624 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6625 break;
e4f42888 6626
fe3bcfe1 6627 /*
97fb7a0a 6628 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6629 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6630 */
99bd5e2f
SS
6631 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6632 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6633 if (cpu != prev_cpu)
6634 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6635
6636 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6637 break;
f03542a7 6638 }
29cd8bae 6639
f03542a7 6640 if (tmp->flags & sd_flag)
29cd8bae 6641 sd = tmp;
63b0e9ed
MG
6642 else if (!want_affine)
6643 break;
29cd8bae
PZ
6644 }
6645
f1d88b44
VK
6646 if (unlikely(sd)) {
6647 /* Slow path */
18bd1b4b 6648 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6649 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6650 /* Fast path */
6651
6652 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6653
6654 if (want_affine)
6655 current->recent_used_cpu = cpu;
e7693a36 6656 }
dce840a0 6657 rcu_read_unlock();
e7693a36 6658
c88d5910 6659 return new_cpu;
e7693a36 6660}
0a74bef8 6661
144d8487
PZ
6662static void detach_entity_cfs_rq(struct sched_entity *se);
6663
0a74bef8 6664/*
97fb7a0a 6665 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6666 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6667 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6668 */
3f9672ba 6669static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6670{
59efa0ba
PZ
6671 /*
6672 * As blocked tasks retain absolute vruntime the migration needs to
6673 * deal with this by subtracting the old and adding the new
6674 * min_vruntime -- the latter is done by enqueue_entity() when placing
6675 * the task on the new runqueue.
6676 */
6677 if (p->state == TASK_WAKING) {
6678 struct sched_entity *se = &p->se;
6679 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6680 u64 min_vruntime;
6681
6682#ifndef CONFIG_64BIT
6683 u64 min_vruntime_copy;
6684
6685 do {
6686 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6687 smp_rmb();
6688 min_vruntime = cfs_rq->min_vruntime;
6689 } while (min_vruntime != min_vruntime_copy);
6690#else
6691 min_vruntime = cfs_rq->min_vruntime;
6692#endif
6693
6694 se->vruntime -= min_vruntime;
6695 }
6696
144d8487
PZ
6697 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6698 /*
6699 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6700 * rq->lock and can modify state directly.
6701 */
6702 lockdep_assert_held(&task_rq(p)->lock);
6703 detach_entity_cfs_rq(&p->se);
6704
6705 } else {
6706 /*
6707 * We are supposed to update the task to "current" time, then
6708 * its up to date and ready to go to new CPU/cfs_rq. But we
6709 * have difficulty in getting what current time is, so simply
6710 * throw away the out-of-date time. This will result in the
6711 * wakee task is less decayed, but giving the wakee more load
6712 * sounds not bad.
6713 */
6714 remove_entity_load_avg(&p->se);
6715 }
9d89c257
YD
6716
6717 /* Tell new CPU we are migrated */
6718 p->se.avg.last_update_time = 0;
3944a927
BS
6719
6720 /* We have migrated, no longer consider this task hot */
9d89c257 6721 p->se.exec_start = 0;
3f9672ba
SD
6722
6723 update_scan_period(p, new_cpu);
0a74bef8 6724}
12695578
YD
6725
6726static void task_dead_fair(struct task_struct *p)
6727{
6728 remove_entity_load_avg(&p->se);
6729}
e7693a36
GH
6730#endif /* CONFIG_SMP */
6731
a555e9d8 6732static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6733{
6734 unsigned long gran = sysctl_sched_wakeup_granularity;
6735
6736 /*
e52fb7c0
PZ
6737 * Since its curr running now, convert the gran from real-time
6738 * to virtual-time in his units.
13814d42
MG
6739 *
6740 * By using 'se' instead of 'curr' we penalize light tasks, so
6741 * they get preempted easier. That is, if 'se' < 'curr' then
6742 * the resulting gran will be larger, therefore penalizing the
6743 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6744 * be smaller, again penalizing the lighter task.
6745 *
6746 * This is especially important for buddies when the leftmost
6747 * task is higher priority than the buddy.
0bbd3336 6748 */
f4ad9bd2 6749 return calc_delta_fair(gran, se);
0bbd3336
PZ
6750}
6751
464b7527
PZ
6752/*
6753 * Should 'se' preempt 'curr'.
6754 *
6755 * |s1
6756 * |s2
6757 * |s3
6758 * g
6759 * |<--->|c
6760 *
6761 * w(c, s1) = -1
6762 * w(c, s2) = 0
6763 * w(c, s3) = 1
6764 *
6765 */
6766static int
6767wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6768{
6769 s64 gran, vdiff = curr->vruntime - se->vruntime;
6770
6771 if (vdiff <= 0)
6772 return -1;
6773
a555e9d8 6774 gran = wakeup_gran(se);
464b7527
PZ
6775 if (vdiff > gran)
6776 return 1;
6777
6778 return 0;
6779}
6780
02479099
PZ
6781static void set_last_buddy(struct sched_entity *se)
6782{
1da1843f 6783 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6784 return;
6785
c5ae366e
DA
6786 for_each_sched_entity(se) {
6787 if (SCHED_WARN_ON(!se->on_rq))
6788 return;
69c80f3e 6789 cfs_rq_of(se)->last = se;
c5ae366e 6790 }
02479099
PZ
6791}
6792
6793static void set_next_buddy(struct sched_entity *se)
6794{
1da1843f 6795 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6796 return;
6797
c5ae366e
DA
6798 for_each_sched_entity(se) {
6799 if (SCHED_WARN_ON(!se->on_rq))
6800 return;
69c80f3e 6801 cfs_rq_of(se)->next = se;
c5ae366e 6802 }
02479099
PZ
6803}
6804
ac53db59
RR
6805static void set_skip_buddy(struct sched_entity *se)
6806{
69c80f3e
VP
6807 for_each_sched_entity(se)
6808 cfs_rq_of(se)->skip = se;
ac53db59
RR
6809}
6810
bf0f6f24
IM
6811/*
6812 * Preempt the current task with a newly woken task if needed:
6813 */
5a9b86f6 6814static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6815{
6816 struct task_struct *curr = rq->curr;
8651a86c 6817 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6818 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6819 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6820 int next_buddy_marked = 0;
bf0f6f24 6821
4ae7d5ce
IM
6822 if (unlikely(se == pse))
6823 return;
6824
5238cdd3 6825 /*
163122b7 6826 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6827 * unconditionally check_prempt_curr() after an enqueue (which may have
6828 * lead to a throttle). This both saves work and prevents false
6829 * next-buddy nomination below.
6830 */
6831 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6832 return;
6833
2f36825b 6834 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6835 set_next_buddy(pse);
2f36825b
VP
6836 next_buddy_marked = 1;
6837 }
57fdc26d 6838
aec0a514
BR
6839 /*
6840 * We can come here with TIF_NEED_RESCHED already set from new task
6841 * wake up path.
5238cdd3
PT
6842 *
6843 * Note: this also catches the edge-case of curr being in a throttled
6844 * group (e.g. via set_curr_task), since update_curr() (in the
6845 * enqueue of curr) will have resulted in resched being set. This
6846 * prevents us from potentially nominating it as a false LAST_BUDDY
6847 * below.
aec0a514
BR
6848 */
6849 if (test_tsk_need_resched(curr))
6850 return;
6851
a2f5c9ab 6852 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6853 if (unlikely(task_has_idle_policy(curr)) &&
6854 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6855 goto preempt;
6856
91c234b4 6857 /*
a2f5c9ab
DH
6858 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6859 * is driven by the tick):
91c234b4 6860 */
8ed92e51 6861 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6862 return;
bf0f6f24 6863
464b7527 6864 find_matching_se(&se, &pse);
9bbd7374 6865 update_curr(cfs_rq_of(se));
002f128b 6866 BUG_ON(!pse);
2f36825b
VP
6867 if (wakeup_preempt_entity(se, pse) == 1) {
6868 /*
6869 * Bias pick_next to pick the sched entity that is
6870 * triggering this preemption.
6871 */
6872 if (!next_buddy_marked)
6873 set_next_buddy(pse);
3a7e73a2 6874 goto preempt;
2f36825b 6875 }
464b7527 6876
3a7e73a2 6877 return;
a65ac745 6878
3a7e73a2 6879preempt:
8875125e 6880 resched_curr(rq);
3a7e73a2
PZ
6881 /*
6882 * Only set the backward buddy when the current task is still
6883 * on the rq. This can happen when a wakeup gets interleaved
6884 * with schedule on the ->pre_schedule() or idle_balance()
6885 * point, either of which can * drop the rq lock.
6886 *
6887 * Also, during early boot the idle thread is in the fair class,
6888 * for obvious reasons its a bad idea to schedule back to it.
6889 */
6890 if (unlikely(!se->on_rq || curr == rq->idle))
6891 return;
6892
6893 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6894 set_last_buddy(se);
bf0f6f24
IM
6895}
6896
606dba2e 6897static struct task_struct *
d8ac8971 6898pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6899{
6900 struct cfs_rq *cfs_rq = &rq->cfs;
6901 struct sched_entity *se;
678d5718 6902 struct task_struct *p;
37e117c0 6903 int new_tasks;
678d5718 6904
6e83125c 6905again:
678d5718 6906 if (!cfs_rq->nr_running)
38033c37 6907 goto idle;
678d5718 6908
9674f5ca 6909#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6910 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6911 goto simple;
6912
6913 /*
6914 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6915 * likely that a next task is from the same cgroup as the current.
6916 *
6917 * Therefore attempt to avoid putting and setting the entire cgroup
6918 * hierarchy, only change the part that actually changes.
6919 */
6920
6921 do {
6922 struct sched_entity *curr = cfs_rq->curr;
6923
6924 /*
6925 * Since we got here without doing put_prev_entity() we also
6926 * have to consider cfs_rq->curr. If it is still a runnable
6927 * entity, update_curr() will update its vruntime, otherwise
6928 * forget we've ever seen it.
6929 */
54d27365
BS
6930 if (curr) {
6931 if (curr->on_rq)
6932 update_curr(cfs_rq);
6933 else
6934 curr = NULL;
678d5718 6935
54d27365
BS
6936 /*
6937 * This call to check_cfs_rq_runtime() will do the
6938 * throttle and dequeue its entity in the parent(s).
9674f5ca 6939 * Therefore the nr_running test will indeed
54d27365
BS
6940 * be correct.
6941 */
9674f5ca
VK
6942 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6943 cfs_rq = &rq->cfs;
6944
6945 if (!cfs_rq->nr_running)
6946 goto idle;
6947
54d27365 6948 goto simple;
9674f5ca 6949 }
54d27365 6950 }
678d5718
PZ
6951
6952 se = pick_next_entity(cfs_rq, curr);
6953 cfs_rq = group_cfs_rq(se);
6954 } while (cfs_rq);
6955
6956 p = task_of(se);
6957
6958 /*
6959 * Since we haven't yet done put_prev_entity and if the selected task
6960 * is a different task than we started out with, try and touch the
6961 * least amount of cfs_rqs.
6962 */
6963 if (prev != p) {
6964 struct sched_entity *pse = &prev->se;
6965
6966 while (!(cfs_rq = is_same_group(se, pse))) {
6967 int se_depth = se->depth;
6968 int pse_depth = pse->depth;
6969
6970 if (se_depth <= pse_depth) {
6971 put_prev_entity(cfs_rq_of(pse), pse);
6972 pse = parent_entity(pse);
6973 }
6974 if (se_depth >= pse_depth) {
6975 set_next_entity(cfs_rq_of(se), se);
6976 se = parent_entity(se);
6977 }
6978 }
6979
6980 put_prev_entity(cfs_rq, pse);
6981 set_next_entity(cfs_rq, se);
6982 }
6983
93824900 6984 goto done;
678d5718 6985simple:
678d5718 6986#endif
bf0f6f24 6987
3f1d2a31 6988 put_prev_task(rq, prev);
606dba2e 6989
bf0f6f24 6990 do {
678d5718 6991 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6992 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6993 cfs_rq = group_cfs_rq(se);
6994 } while (cfs_rq);
6995
8f4d37ec 6996 p = task_of(se);
678d5718 6997
13a453c2 6998done: __maybe_unused;
93824900
UR
6999#ifdef CONFIG_SMP
7000 /*
7001 * Move the next running task to the front of
7002 * the list, so our cfs_tasks list becomes MRU
7003 * one.
7004 */
7005 list_move(&p->se.group_node, &rq->cfs_tasks);
7006#endif
7007
b39e66ea
MG
7008 if (hrtick_enabled(rq))
7009 hrtick_start_fair(rq, p);
8f4d37ec 7010
3b1baa64
MR
7011 update_misfit_status(p, rq);
7012
8f4d37ec 7013 return p;
38033c37
PZ
7014
7015idle:
3b1baa64 7016 update_misfit_status(NULL, rq);
46f69fa3
MF
7017 new_tasks = idle_balance(rq, rf);
7018
37e117c0
PZ
7019 /*
7020 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7021 * possible for any higher priority task to appear. In that case we
7022 * must re-start the pick_next_entity() loop.
7023 */
e4aa358b 7024 if (new_tasks < 0)
37e117c0
PZ
7025 return RETRY_TASK;
7026
e4aa358b 7027 if (new_tasks > 0)
38033c37 7028 goto again;
38033c37
PZ
7029
7030 return NULL;
bf0f6f24
IM
7031}
7032
7033/*
7034 * Account for a descheduled task:
7035 */
31ee529c 7036static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7037{
7038 struct sched_entity *se = &prev->se;
7039 struct cfs_rq *cfs_rq;
7040
7041 for_each_sched_entity(se) {
7042 cfs_rq = cfs_rq_of(se);
ab6cde26 7043 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7044 }
7045}
7046
ac53db59
RR
7047/*
7048 * sched_yield() is very simple
7049 *
7050 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7051 */
7052static void yield_task_fair(struct rq *rq)
7053{
7054 struct task_struct *curr = rq->curr;
7055 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7056 struct sched_entity *se = &curr->se;
7057
7058 /*
7059 * Are we the only task in the tree?
7060 */
7061 if (unlikely(rq->nr_running == 1))
7062 return;
7063
7064 clear_buddies(cfs_rq, se);
7065
7066 if (curr->policy != SCHED_BATCH) {
7067 update_rq_clock(rq);
7068 /*
7069 * Update run-time statistics of the 'current'.
7070 */
7071 update_curr(cfs_rq);
916671c0
MG
7072 /*
7073 * Tell update_rq_clock() that we've just updated,
7074 * so we don't do microscopic update in schedule()
7075 * and double the fastpath cost.
7076 */
adcc8da8 7077 rq_clock_skip_update(rq);
ac53db59
RR
7078 }
7079
7080 set_skip_buddy(se);
7081}
7082
d95f4122
MG
7083static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7084{
7085 struct sched_entity *se = &p->se;
7086
5238cdd3
PT
7087 /* throttled hierarchies are not runnable */
7088 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7089 return false;
7090
7091 /* Tell the scheduler that we'd really like pse to run next. */
7092 set_next_buddy(se);
7093
d95f4122
MG
7094 yield_task_fair(rq);
7095
7096 return true;
7097}
7098
681f3e68 7099#ifdef CONFIG_SMP
bf0f6f24 7100/**************************************************
e9c84cb8
PZ
7101 * Fair scheduling class load-balancing methods.
7102 *
7103 * BASICS
7104 *
7105 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7106 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7107 * time to each task. This is expressed in the following equation:
7108 *
7109 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7110 *
97fb7a0a 7111 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7112 * W_i,0 is defined as:
7113 *
7114 * W_i,0 = \Sum_j w_i,j (2)
7115 *
97fb7a0a 7116 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7117 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7118 *
7119 * The weight average is an exponential decay average of the instantaneous
7120 * weight:
7121 *
7122 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7123 *
97fb7a0a 7124 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7125 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7126 * can also include other factors [XXX].
7127 *
7128 * To achieve this balance we define a measure of imbalance which follows
7129 * directly from (1):
7130 *
ced549fa 7131 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7132 *
7133 * We them move tasks around to minimize the imbalance. In the continuous
7134 * function space it is obvious this converges, in the discrete case we get
7135 * a few fun cases generally called infeasible weight scenarios.
7136 *
7137 * [XXX expand on:
7138 * - infeasible weights;
7139 * - local vs global optima in the discrete case. ]
7140 *
7141 *
7142 * SCHED DOMAINS
7143 *
7144 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7145 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7146 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7147 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7148 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7149 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7150 * the groups.
7151 *
7152 * This yields:
7153 *
7154 * log_2 n 1 n
7155 * \Sum { --- * --- * 2^i } = O(n) (5)
7156 * i = 0 2^i 2^i
7157 * `- size of each group
97fb7a0a 7158 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7159 * | `- freq
7160 * `- sum over all levels
7161 *
7162 * Coupled with a limit on how many tasks we can migrate every balance pass,
7163 * this makes (5) the runtime complexity of the balancer.
7164 *
7165 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7166 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7167 *
7168 * The adjacency matrix of the resulting graph is given by:
7169 *
97a7142f 7170 * log_2 n
e9c84cb8
PZ
7171 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7172 * k = 0
7173 *
7174 * And you'll find that:
7175 *
7176 * A^(log_2 n)_i,j != 0 for all i,j (7)
7177 *
97fb7a0a 7178 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7179 * The task movement gives a factor of O(m), giving a convergence complexity
7180 * of:
7181 *
7182 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7183 *
7184 *
7185 * WORK CONSERVING
7186 *
7187 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7188 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7189 * tree itself instead of relying on other CPUs to bring it work.
7190 *
7191 * This adds some complexity to both (5) and (8) but it reduces the total idle
7192 * time.
7193 *
7194 * [XXX more?]
7195 *
7196 *
7197 * CGROUPS
7198 *
7199 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7200 *
7201 * s_k,i
7202 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7203 * S_k
7204 *
7205 * Where
7206 *
7207 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7208 *
97fb7a0a 7209 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7210 *
7211 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7212 * property.
7213 *
7214 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7215 * rewrite all of this once again.]
97a7142f 7216 */
bf0f6f24 7217
ed387b78
HS
7218static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7219
0ec8aa00
PZ
7220enum fbq_type { regular, remote, all };
7221
3b1baa64
MR
7222enum group_type {
7223 group_other = 0,
7224 group_misfit_task,
7225 group_imbalanced,
7226 group_overloaded,
7227};
7228
ddcdf6e7 7229#define LBF_ALL_PINNED 0x01
367456c7 7230#define LBF_NEED_BREAK 0x02
6263322c
PZ
7231#define LBF_DST_PINNED 0x04
7232#define LBF_SOME_PINNED 0x08
e022e0d3 7233#define LBF_NOHZ_STATS 0x10
f643ea22 7234#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7235
7236struct lb_env {
7237 struct sched_domain *sd;
7238
ddcdf6e7 7239 struct rq *src_rq;
85c1e7da 7240 int src_cpu;
ddcdf6e7
PZ
7241
7242 int dst_cpu;
7243 struct rq *dst_rq;
7244
88b8dac0
SV
7245 struct cpumask *dst_grpmask;
7246 int new_dst_cpu;
ddcdf6e7 7247 enum cpu_idle_type idle;
bd939f45 7248 long imbalance;
b9403130
MW
7249 /* The set of CPUs under consideration for load-balancing */
7250 struct cpumask *cpus;
7251
ddcdf6e7 7252 unsigned int flags;
367456c7
PZ
7253
7254 unsigned int loop;
7255 unsigned int loop_break;
7256 unsigned int loop_max;
0ec8aa00
PZ
7257
7258 enum fbq_type fbq_type;
cad68e55 7259 enum group_type src_grp_type;
163122b7 7260 struct list_head tasks;
ddcdf6e7
PZ
7261};
7262
029632fb
PZ
7263/*
7264 * Is this task likely cache-hot:
7265 */
5d5e2b1b 7266static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7267{
7268 s64 delta;
7269
e5673f28
KT
7270 lockdep_assert_held(&env->src_rq->lock);
7271
029632fb
PZ
7272 if (p->sched_class != &fair_sched_class)
7273 return 0;
7274
1da1843f 7275 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7276 return 0;
7277
7278 /*
7279 * Buddy candidates are cache hot:
7280 */
5d5e2b1b 7281 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7282 (&p->se == cfs_rq_of(&p->se)->next ||
7283 &p->se == cfs_rq_of(&p->se)->last))
7284 return 1;
7285
7286 if (sysctl_sched_migration_cost == -1)
7287 return 1;
7288 if (sysctl_sched_migration_cost == 0)
7289 return 0;
7290
5d5e2b1b 7291 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7292
7293 return delta < (s64)sysctl_sched_migration_cost;
7294}
7295
3a7053b3 7296#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7297/*
2a1ed24c
SD
7298 * Returns 1, if task migration degrades locality
7299 * Returns 0, if task migration improves locality i.e migration preferred.
7300 * Returns -1, if task migration is not affected by locality.
c1ceac62 7301 */
2a1ed24c 7302static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7303{
b1ad065e 7304 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7305 unsigned long src_weight, dst_weight;
7306 int src_nid, dst_nid, dist;
3a7053b3 7307
2a595721 7308 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7309 return -1;
7310
c3b9bc5b 7311 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7312 return -1;
7a0f3083
MG
7313
7314 src_nid = cpu_to_node(env->src_cpu);
7315 dst_nid = cpu_to_node(env->dst_cpu);
7316
83e1d2cd 7317 if (src_nid == dst_nid)
2a1ed24c 7318 return -1;
7a0f3083 7319
2a1ed24c
SD
7320 /* Migrating away from the preferred node is always bad. */
7321 if (src_nid == p->numa_preferred_nid) {
7322 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7323 return 1;
7324 else
7325 return -1;
7326 }
b1ad065e 7327
c1ceac62
RR
7328 /* Encourage migration to the preferred node. */
7329 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7330 return 0;
b1ad065e 7331
739294fb 7332 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7333 if (env->idle == CPU_IDLE)
739294fb
RR
7334 return -1;
7335
f35678b6 7336 dist = node_distance(src_nid, dst_nid);
c1ceac62 7337 if (numa_group) {
f35678b6
SD
7338 src_weight = group_weight(p, src_nid, dist);
7339 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7340 } else {
f35678b6
SD
7341 src_weight = task_weight(p, src_nid, dist);
7342 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7343 }
7344
f35678b6 7345 return dst_weight < src_weight;
7a0f3083
MG
7346}
7347
3a7053b3 7348#else
2a1ed24c 7349static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7350 struct lb_env *env)
7351{
2a1ed24c 7352 return -1;
7a0f3083 7353}
3a7053b3
MG
7354#endif
7355
1e3c88bd
PZ
7356/*
7357 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7358 */
7359static
8e45cb54 7360int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7361{
2a1ed24c 7362 int tsk_cache_hot;
e5673f28
KT
7363
7364 lockdep_assert_held(&env->src_rq->lock);
7365
1e3c88bd
PZ
7366 /*
7367 * We do not migrate tasks that are:
d3198084 7368 * 1) throttled_lb_pair, or
1e3c88bd 7369 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7370 * 3) running (obviously), or
7371 * 4) are cache-hot on their current CPU.
1e3c88bd 7372 */
d3198084
JK
7373 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7374 return 0;
7375
0c98d344 7376 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7377 int cpu;
88b8dac0 7378
ae92882e 7379 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7380
6263322c
PZ
7381 env->flags |= LBF_SOME_PINNED;
7382
88b8dac0 7383 /*
97fb7a0a 7384 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7385 * our sched_group. We may want to revisit it if we couldn't
7386 * meet load balance goals by pulling other tasks on src_cpu.
7387 *
65a4433a
JH
7388 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7389 * already computed one in current iteration.
88b8dac0 7390 */
65a4433a 7391 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7392 return 0;
7393
97fb7a0a 7394 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7395 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7396 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7397 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7398 env->new_dst_cpu = cpu;
7399 break;
7400 }
88b8dac0 7401 }
e02e60c1 7402
1e3c88bd
PZ
7403 return 0;
7404 }
88b8dac0
SV
7405
7406 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7407 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7408
ddcdf6e7 7409 if (task_running(env->src_rq, p)) {
ae92882e 7410 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7411 return 0;
7412 }
7413
7414 /*
7415 * Aggressive migration if:
3a7053b3
MG
7416 * 1) destination numa is preferred
7417 * 2) task is cache cold, or
7418 * 3) too many balance attempts have failed.
1e3c88bd 7419 */
2a1ed24c
SD
7420 tsk_cache_hot = migrate_degrades_locality(p, env);
7421 if (tsk_cache_hot == -1)
7422 tsk_cache_hot = task_hot(p, env);
3a7053b3 7423
2a1ed24c 7424 if (tsk_cache_hot <= 0 ||
7a96c231 7425 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7426 if (tsk_cache_hot == 1) {
ae92882e
JP
7427 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7428 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7429 }
1e3c88bd
PZ
7430 return 1;
7431 }
7432
ae92882e 7433 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7434 return 0;
1e3c88bd
PZ
7435}
7436
897c395f 7437/*
163122b7
KT
7438 * detach_task() -- detach the task for the migration specified in env
7439 */
7440static void detach_task(struct task_struct *p, struct lb_env *env)
7441{
7442 lockdep_assert_held(&env->src_rq->lock);
7443
163122b7 7444 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7445 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7446 set_task_cpu(p, env->dst_cpu);
7447}
7448
897c395f 7449/*
e5673f28 7450 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7451 * part of active balancing operations within "domain".
897c395f 7452 *
e5673f28 7453 * Returns a task if successful and NULL otherwise.
897c395f 7454 */
e5673f28 7455static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7456{
93824900 7457 struct task_struct *p;
897c395f 7458
e5673f28
KT
7459 lockdep_assert_held(&env->src_rq->lock);
7460
93824900
UR
7461 list_for_each_entry_reverse(p,
7462 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7463 if (!can_migrate_task(p, env))
7464 continue;
897c395f 7465
163122b7 7466 detach_task(p, env);
e5673f28 7467
367456c7 7468 /*
e5673f28 7469 * Right now, this is only the second place where
163122b7 7470 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7471 * so we can safely collect stats here rather than
163122b7 7472 * inside detach_tasks().
367456c7 7473 */
ae92882e 7474 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7475 return p;
897c395f 7476 }
e5673f28 7477 return NULL;
897c395f
PZ
7478}
7479
eb95308e
PZ
7480static const unsigned int sched_nr_migrate_break = 32;
7481
5d6523eb 7482/*
163122b7
KT
7483 * detach_tasks() -- tries to detach up to imbalance weighted load from
7484 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7485 *
163122b7 7486 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7487 */
163122b7 7488static int detach_tasks(struct lb_env *env)
1e3c88bd 7489{
5d6523eb
PZ
7490 struct list_head *tasks = &env->src_rq->cfs_tasks;
7491 struct task_struct *p;
367456c7 7492 unsigned long load;
163122b7
KT
7493 int detached = 0;
7494
7495 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7496
bd939f45 7497 if (env->imbalance <= 0)
5d6523eb 7498 return 0;
1e3c88bd 7499
5d6523eb 7500 while (!list_empty(tasks)) {
985d3a4c
YD
7501 /*
7502 * We don't want to steal all, otherwise we may be treated likewise,
7503 * which could at worst lead to a livelock crash.
7504 */
7505 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7506 break;
7507
93824900 7508 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7509
367456c7
PZ
7510 env->loop++;
7511 /* We've more or less seen every task there is, call it quits */
5d6523eb 7512 if (env->loop > env->loop_max)
367456c7 7513 break;
5d6523eb
PZ
7514
7515 /* take a breather every nr_migrate tasks */
367456c7 7516 if (env->loop > env->loop_break) {
eb95308e 7517 env->loop_break += sched_nr_migrate_break;
8e45cb54 7518 env->flags |= LBF_NEED_BREAK;
ee00e66f 7519 break;
a195f004 7520 }
1e3c88bd 7521
d3198084 7522 if (!can_migrate_task(p, env))
367456c7
PZ
7523 goto next;
7524
7525 load = task_h_load(p);
5d6523eb 7526
eb95308e 7527 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7528 goto next;
7529
bd939f45 7530 if ((load / 2) > env->imbalance)
367456c7 7531 goto next;
1e3c88bd 7532
163122b7
KT
7533 detach_task(p, env);
7534 list_add(&p->se.group_node, &env->tasks);
7535
7536 detached++;
bd939f45 7537 env->imbalance -= load;
1e3c88bd
PZ
7538
7539#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7540 /*
7541 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7542 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7543 * the critical section.
7544 */
5d6523eb 7545 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7546 break;
1e3c88bd
PZ
7547#endif
7548
ee00e66f
PZ
7549 /*
7550 * We only want to steal up to the prescribed amount of
7551 * weighted load.
7552 */
bd939f45 7553 if (env->imbalance <= 0)
ee00e66f 7554 break;
367456c7
PZ
7555
7556 continue;
7557next:
93824900 7558 list_move(&p->se.group_node, tasks);
1e3c88bd 7559 }
5d6523eb 7560
1e3c88bd 7561 /*
163122b7
KT
7562 * Right now, this is one of only two places we collect this stat
7563 * so we can safely collect detach_one_task() stats here rather
7564 * than inside detach_one_task().
1e3c88bd 7565 */
ae92882e 7566 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7567
163122b7
KT
7568 return detached;
7569}
7570
7571/*
7572 * attach_task() -- attach the task detached by detach_task() to its new rq.
7573 */
7574static void attach_task(struct rq *rq, struct task_struct *p)
7575{
7576 lockdep_assert_held(&rq->lock);
7577
7578 BUG_ON(task_rq(p) != rq);
5704ac0a 7579 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7580 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7581 check_preempt_curr(rq, p, 0);
7582}
7583
7584/*
7585 * attach_one_task() -- attaches the task returned from detach_one_task() to
7586 * its new rq.
7587 */
7588static void attach_one_task(struct rq *rq, struct task_struct *p)
7589{
8a8c69c3
PZ
7590 struct rq_flags rf;
7591
7592 rq_lock(rq, &rf);
5704ac0a 7593 update_rq_clock(rq);
163122b7 7594 attach_task(rq, p);
8a8c69c3 7595 rq_unlock(rq, &rf);
163122b7
KT
7596}
7597
7598/*
7599 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7600 * new rq.
7601 */
7602static void attach_tasks(struct lb_env *env)
7603{
7604 struct list_head *tasks = &env->tasks;
7605 struct task_struct *p;
8a8c69c3 7606 struct rq_flags rf;
163122b7 7607
8a8c69c3 7608 rq_lock(env->dst_rq, &rf);
5704ac0a 7609 update_rq_clock(env->dst_rq);
163122b7
KT
7610
7611 while (!list_empty(tasks)) {
7612 p = list_first_entry(tasks, struct task_struct, se.group_node);
7613 list_del_init(&p->se.group_node);
1e3c88bd 7614
163122b7
KT
7615 attach_task(env->dst_rq, p);
7616 }
7617
8a8c69c3 7618 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7619}
7620
1936c53c
VG
7621static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7622{
7623 if (cfs_rq->avg.load_avg)
7624 return true;
7625
7626 if (cfs_rq->avg.util_avg)
7627 return true;
7628
7629 return false;
7630}
7631
91c27493 7632static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7633{
7634 if (READ_ONCE(rq->avg_rt.util_avg))
7635 return true;
7636
3727e0e1
VG
7637 if (READ_ONCE(rq->avg_dl.util_avg))
7638 return true;
7639
11d4afd4 7640#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7641 if (READ_ONCE(rq->avg_irq.util_avg))
7642 return true;
7643#endif
7644
371bf427
VG
7645 return false;
7646}
7647
1936c53c
VG
7648#ifdef CONFIG_FAIR_GROUP_SCHED
7649
a9e7f654
TH
7650static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7651{
7652 if (cfs_rq->load.weight)
7653 return false;
7654
7655 if (cfs_rq->avg.load_sum)
7656 return false;
7657
7658 if (cfs_rq->avg.util_sum)
7659 return false;
7660
1ea6c46a 7661 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7662 return false;
7663
7664 return true;
7665}
7666
48a16753 7667static void update_blocked_averages(int cpu)
9e3081ca 7668{
9e3081ca 7669 struct rq *rq = cpu_rq(cpu);
a9e7f654 7670 struct cfs_rq *cfs_rq, *pos;
12b04875 7671 const struct sched_class *curr_class;
8a8c69c3 7672 struct rq_flags rf;
f643ea22 7673 bool done = true;
9e3081ca 7674
8a8c69c3 7675 rq_lock_irqsave(rq, &rf);
48a16753 7676 update_rq_clock(rq);
9d89c257 7677
9763b67f
PZ
7678 /*
7679 * Iterates the task_group tree in a bottom up fashion, see
7680 * list_add_leaf_cfs_rq() for details.
7681 */
a9e7f654 7682 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7683 struct sched_entity *se;
7684
9d89c257
YD
7685 /* throttled entities do not contribute to load */
7686 if (throttled_hierarchy(cfs_rq))
7687 continue;
48a16753 7688
3a123bbb 7689 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7690 update_tg_load_avg(cfs_rq, 0);
4e516076 7691
bc427898
VG
7692 /* Propagate pending load changes to the parent, if any: */
7693 se = cfs_rq->tg->se[cpu];
7694 if (se && !skip_blocked_update(se))
88c0616e 7695 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7696
7697 /*
7698 * There can be a lot of idle CPU cgroups. Don't let fully
7699 * decayed cfs_rqs linger on the list.
7700 */
7701 if (cfs_rq_is_decayed(cfs_rq))
7702 list_del_leaf_cfs_rq(cfs_rq);
1936c53c
VG
7703
7704 /* Don't need periodic decay once load/util_avg are null */
7705 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7706 done = false;
9d89c257 7707 }
12b04875
VG
7708
7709 curr_class = rq->curr->sched_class;
7710 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7711 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7712 update_irq_load_avg(rq, 0);
371bf427 7713 /* Don't need periodic decay once load/util_avg are null */
91c27493 7714 if (others_have_blocked(rq))
371bf427 7715 done = false;
e022e0d3
PZ
7716
7717#ifdef CONFIG_NO_HZ_COMMON
7718 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7719 if (done)
7720 rq->has_blocked_load = 0;
e022e0d3 7721#endif
8a8c69c3 7722 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7723}
7724
9763b67f 7725/*
68520796 7726 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7727 * This needs to be done in a top-down fashion because the load of a child
7728 * group is a fraction of its parents load.
7729 */
68520796 7730static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7731{
68520796
VD
7732 struct rq *rq = rq_of(cfs_rq);
7733 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7734 unsigned long now = jiffies;
68520796 7735 unsigned long load;
a35b6466 7736
68520796 7737 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7738 return;
7739
68520796
VD
7740 cfs_rq->h_load_next = NULL;
7741 for_each_sched_entity(se) {
7742 cfs_rq = cfs_rq_of(se);
7743 cfs_rq->h_load_next = se;
7744 if (cfs_rq->last_h_load_update == now)
7745 break;
7746 }
a35b6466 7747
68520796 7748 if (!se) {
7ea241af 7749 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7750 cfs_rq->last_h_load_update = now;
7751 }
7752
7753 while ((se = cfs_rq->h_load_next) != NULL) {
7754 load = cfs_rq->h_load;
7ea241af
YD
7755 load = div64_ul(load * se->avg.load_avg,
7756 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7757 cfs_rq = group_cfs_rq(se);
7758 cfs_rq->h_load = load;
7759 cfs_rq->last_h_load_update = now;
7760 }
9763b67f
PZ
7761}
7762
367456c7 7763static unsigned long task_h_load(struct task_struct *p)
230059de 7764{
367456c7 7765 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7766
68520796 7767 update_cfs_rq_h_load(cfs_rq);
9d89c257 7768 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7769 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7770}
7771#else
48a16753 7772static inline void update_blocked_averages(int cpu)
9e3081ca 7773{
6c1d47c0
VG
7774 struct rq *rq = cpu_rq(cpu);
7775 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7776 const struct sched_class *curr_class;
8a8c69c3 7777 struct rq_flags rf;
6c1d47c0 7778
8a8c69c3 7779 rq_lock_irqsave(rq, &rf);
6c1d47c0 7780 update_rq_clock(rq);
3a123bbb 7781 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
12b04875
VG
7782
7783 curr_class = rq->curr->sched_class;
7784 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7785 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7786 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7787#ifdef CONFIG_NO_HZ_COMMON
7788 rq->last_blocked_load_update_tick = jiffies;
91c27493 7789 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7790 rq->has_blocked_load = 0;
e022e0d3 7791#endif
8a8c69c3 7792 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7793}
7794
367456c7 7795static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7796{
9d89c257 7797 return p->se.avg.load_avg;
1e3c88bd 7798}
230059de 7799#endif
1e3c88bd 7800
1e3c88bd 7801/********** Helpers for find_busiest_group ************************/
caeb178c 7802
1e3c88bd
PZ
7803/*
7804 * sg_lb_stats - stats of a sched_group required for load_balancing
7805 */
7806struct sg_lb_stats {
7807 unsigned long avg_load; /*Avg load across the CPUs of the group */
7808 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7809 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7810 unsigned long load_per_task;
63b2ca30 7811 unsigned long group_capacity;
9e91d61d 7812 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7813 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7814 unsigned int idle_cpus;
7815 unsigned int group_weight;
caeb178c 7816 enum group_type group_type;
ea67821b 7817 int group_no_capacity;
3b1baa64 7818 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7819#ifdef CONFIG_NUMA_BALANCING
7820 unsigned int nr_numa_running;
7821 unsigned int nr_preferred_running;
7822#endif
1e3c88bd
PZ
7823};
7824
56cf515b
JK
7825/*
7826 * sd_lb_stats - Structure to store the statistics of a sched_domain
7827 * during load balancing.
7828 */
7829struct sd_lb_stats {
7830 struct sched_group *busiest; /* Busiest group in this sd */
7831 struct sched_group *local; /* Local group in this sd */
90001d67 7832 unsigned long total_running;
56cf515b 7833 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7834 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7835 unsigned long avg_load; /* Average load across all groups in sd */
7836
56cf515b 7837 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7838 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7839};
7840
147c5fc2
PZ
7841static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7842{
7843 /*
7844 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7845 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7846 * We must however clear busiest_stat::avg_load because
7847 * update_sd_pick_busiest() reads this before assignment.
7848 */
7849 *sds = (struct sd_lb_stats){
7850 .busiest = NULL,
7851 .local = NULL,
90001d67 7852 .total_running = 0UL,
147c5fc2 7853 .total_load = 0UL,
63b2ca30 7854 .total_capacity = 0UL,
147c5fc2
PZ
7855 .busiest_stat = {
7856 .avg_load = 0UL,
caeb178c
RR
7857 .sum_nr_running = 0,
7858 .group_type = group_other,
147c5fc2
PZ
7859 },
7860 };
7861}
7862
1e3c88bd
PZ
7863/**
7864 * get_sd_load_idx - Obtain the load index for a given sched domain.
7865 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7866 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7867 *
7868 * Return: The load index.
1e3c88bd
PZ
7869 */
7870static inline int get_sd_load_idx(struct sched_domain *sd,
7871 enum cpu_idle_type idle)
7872{
7873 int load_idx;
7874
7875 switch (idle) {
7876 case CPU_NOT_IDLE:
7877 load_idx = sd->busy_idx;
7878 break;
7879
7880 case CPU_NEWLY_IDLE:
7881 load_idx = sd->newidle_idx;
7882 break;
7883 default:
7884 load_idx = sd->idle_idx;
7885 break;
7886 }
7887
7888 return load_idx;
7889}
7890
287cdaac 7891static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7892{
7893 struct rq *rq = cpu_rq(cpu);
287cdaac 7894 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
523e979d 7895 unsigned long used, free;
523e979d 7896 unsigned long irq;
b654f7de 7897
2e62c474 7898 irq = cpu_util_irq(rq);
cadefd3d 7899
523e979d
VG
7900 if (unlikely(irq >= max))
7901 return 1;
aa483808 7902
523e979d
VG
7903 used = READ_ONCE(rq->avg_rt.util_avg);
7904 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7905
523e979d
VG
7906 if (unlikely(used >= max))
7907 return 1;
1e3c88bd 7908
523e979d 7909 free = max - used;
2e62c474
VG
7910
7911 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7912}
7913
ced549fa 7914static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7915{
287cdaac 7916 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7917 struct sched_group *sdg = sd->groups;
7918
523e979d 7919 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7920
ced549fa
NP
7921 if (!capacity)
7922 capacity = 1;
1e3c88bd 7923
ced549fa
NP
7924 cpu_rq(cpu)->cpu_capacity = capacity;
7925 sdg->sgc->capacity = capacity;
bf475ce0 7926 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7927 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7928}
7929
63b2ca30 7930void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7931{
7932 struct sched_domain *child = sd->child;
7933 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7934 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7935 unsigned long interval;
7936
7937 interval = msecs_to_jiffies(sd->balance_interval);
7938 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7939 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7940
7941 if (!child) {
ced549fa 7942 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7943 return;
7944 }
7945
dc7ff76e 7946 capacity = 0;
bf475ce0 7947 min_capacity = ULONG_MAX;
e3d6d0cb 7948 max_capacity = 0;
1e3c88bd 7949
74a5ce20
PZ
7950 if (child->flags & SD_OVERLAP) {
7951 /*
7952 * SD_OVERLAP domains cannot assume that child groups
7953 * span the current group.
7954 */
7955
ae4df9d6 7956 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7957 struct sched_group_capacity *sgc;
9abf24d4 7958 struct rq *rq = cpu_rq(cpu);
863bffc8 7959
9abf24d4 7960 /*
63b2ca30 7961 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7962 * gets here before we've attached the domains to the
7963 * runqueues.
7964 *
ced549fa
NP
7965 * Use capacity_of(), which is set irrespective of domains
7966 * in update_cpu_capacity().
9abf24d4 7967 *
dc7ff76e 7968 * This avoids capacity from being 0 and
9abf24d4 7969 * causing divide-by-zero issues on boot.
9abf24d4
SD
7970 */
7971 if (unlikely(!rq->sd)) {
ced549fa 7972 capacity += capacity_of(cpu);
bf475ce0
MR
7973 } else {
7974 sgc = rq->sd->groups->sgc;
7975 capacity += sgc->capacity;
9abf24d4 7976 }
863bffc8 7977
bf475ce0 7978 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7979 max_capacity = max(capacity, max_capacity);
863bffc8 7980 }
74a5ce20
PZ
7981 } else {
7982 /*
7983 * !SD_OVERLAP domains can assume that child groups
7984 * span the current group.
97a7142f 7985 */
74a5ce20
PZ
7986
7987 group = child->groups;
7988 do {
bf475ce0
MR
7989 struct sched_group_capacity *sgc = group->sgc;
7990
7991 capacity += sgc->capacity;
7992 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7993 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7994 group = group->next;
7995 } while (group != child->groups);
7996 }
1e3c88bd 7997
63b2ca30 7998 sdg->sgc->capacity = capacity;
bf475ce0 7999 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8000 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8001}
8002
9d5efe05 8003/*
ea67821b
VG
8004 * Check whether the capacity of the rq has been noticeably reduced by side
8005 * activity. The imbalance_pct is used for the threshold.
8006 * Return true is the capacity is reduced
9d5efe05
SV
8007 */
8008static inline int
ea67821b 8009check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8010{
ea67821b
VG
8011 return ((rq->cpu_capacity * sd->imbalance_pct) <
8012 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8013}
8014
30ce5dab
PZ
8015/*
8016 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 8017 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 8018 *
97fb7a0a
IM
8019 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8020 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8021 * Something like:
8022 *
2b4d5b25
IM
8023 * { 0 1 2 3 } { 4 5 6 7 }
8024 * * * * *
30ce5dab
PZ
8025 *
8026 * If we were to balance group-wise we'd place two tasks in the first group and
8027 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8028 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8029 *
8030 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8031 * by noticing the lower domain failed to reach balance and had difficulty
8032 * moving tasks due to affinity constraints.
30ce5dab
PZ
8033 *
8034 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8035 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8036 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8037 * to create an effective group imbalance.
8038 *
8039 * This is a somewhat tricky proposition since the next run might not find the
8040 * group imbalance and decide the groups need to be balanced again. A most
8041 * subtle and fragile situation.
8042 */
8043
6263322c 8044static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8045{
63b2ca30 8046 return group->sgc->imbalance;
30ce5dab
PZ
8047}
8048
b37d9316 8049/*
ea67821b
VG
8050 * group_has_capacity returns true if the group has spare capacity that could
8051 * be used by some tasks.
8052 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8053 * smaller than the number of CPUs or if the utilization is lower than the
8054 * available capacity for CFS tasks.
ea67821b
VG
8055 * For the latter, we use a threshold to stabilize the state, to take into
8056 * account the variance of the tasks' load and to return true if the available
8057 * capacity in meaningful for the load balancer.
8058 * As an example, an available capacity of 1% can appear but it doesn't make
8059 * any benefit for the load balance.
b37d9316 8060 */
ea67821b
VG
8061static inline bool
8062group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 8063{
ea67821b
VG
8064 if (sgs->sum_nr_running < sgs->group_weight)
8065 return true;
c61037e9 8066
ea67821b 8067 if ((sgs->group_capacity * 100) >
9e91d61d 8068 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8069 return true;
b37d9316 8070
ea67821b
VG
8071 return false;
8072}
8073
8074/*
8075 * group_is_overloaded returns true if the group has more tasks than it can
8076 * handle.
8077 * group_is_overloaded is not equals to !group_has_capacity because a group
8078 * with the exact right number of tasks, has no more spare capacity but is not
8079 * overloaded so both group_has_capacity and group_is_overloaded return
8080 * false.
8081 */
8082static inline bool
8083group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8084{
8085 if (sgs->sum_nr_running <= sgs->group_weight)
8086 return false;
b37d9316 8087
ea67821b 8088 if ((sgs->group_capacity * 100) <
9e91d61d 8089 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8090 return true;
b37d9316 8091
ea67821b 8092 return false;
b37d9316
PZ
8093}
8094
9e0994c0 8095/*
e3d6d0cb 8096 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8097 * per-CPU capacity than sched_group ref.
8098 */
8099static inline bool
e3d6d0cb 8100group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
8101{
8102 return sg->sgc->min_capacity * capacity_margin <
8103 ref->sgc->min_capacity * 1024;
8104}
8105
e3d6d0cb
MR
8106/*
8107 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8108 * per-CPU capacity_orig than sched_group ref.
8109 */
8110static inline bool
8111group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8112{
8113 return sg->sgc->max_capacity * capacity_margin <
8114 ref->sgc->max_capacity * 1024;
8115}
8116
79a89f92
LY
8117static inline enum
8118group_type group_classify(struct sched_group *group,
8119 struct sg_lb_stats *sgs)
caeb178c 8120{
ea67821b 8121 if (sgs->group_no_capacity)
caeb178c
RR
8122 return group_overloaded;
8123
8124 if (sg_imbalanced(group))
8125 return group_imbalanced;
8126
3b1baa64
MR
8127 if (sgs->group_misfit_task_load)
8128 return group_misfit_task;
8129
caeb178c
RR
8130 return group_other;
8131}
8132
63928384 8133static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8134{
8135#ifdef CONFIG_NO_HZ_COMMON
8136 unsigned int cpu = rq->cpu;
8137
f643ea22
VG
8138 if (!rq->has_blocked_load)
8139 return false;
8140
e022e0d3 8141 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8142 return false;
e022e0d3 8143
63928384 8144 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8145 return true;
e022e0d3
PZ
8146
8147 update_blocked_averages(cpu);
f643ea22
VG
8148
8149 return rq->has_blocked_load;
8150#else
8151 return false;
e022e0d3
PZ
8152#endif
8153}
8154
1e3c88bd
PZ
8155/**
8156 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8157 * @env: The load balancing environment.
1e3c88bd 8158 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8159 * @sgs: variable to hold the statistics for this group.
630246a0 8160 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8161 */
bd939f45 8162static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8163 struct sched_group *group,
8164 struct sg_lb_stats *sgs,
8165 int *sg_status)
1e3c88bd 8166{
630246a0
QP
8167 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8168 int load_idx = get_sd_load_idx(env->sd, env->idle);
30ce5dab 8169 unsigned long load;
a426f99c 8170 int i, nr_running;
1e3c88bd 8171
b72ff13c
PZ
8172 memset(sgs, 0, sizeof(*sgs));
8173
ae4df9d6 8174 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8175 struct rq *rq = cpu_rq(i);
8176
63928384 8177 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8178 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8179
97fb7a0a 8180 /* Bias balancing toward CPUs of our domain: */
6263322c 8181 if (local_group)
04f733b4 8182 load = target_load(i, load_idx);
6263322c 8183 else
1e3c88bd 8184 load = source_load(i, load_idx);
1e3c88bd
PZ
8185
8186 sgs->group_load += load;
9e91d61d 8187 sgs->group_util += cpu_util(i);
65fdac08 8188 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8189
a426f99c
WL
8190 nr_running = rq->nr_running;
8191 if (nr_running > 1)
630246a0 8192 *sg_status |= SG_OVERLOAD;
4486edd1 8193
2802bf3c
MR
8194 if (cpu_overutilized(i))
8195 *sg_status |= SG_OVERUTILIZED;
4486edd1 8196
0ec8aa00
PZ
8197#ifdef CONFIG_NUMA_BALANCING
8198 sgs->nr_numa_running += rq->nr_numa_running;
8199 sgs->nr_preferred_running += rq->nr_preferred_running;
8200#endif
c7132dd6 8201 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
8202 /*
8203 * No need to call idle_cpu() if nr_running is not 0
8204 */
8205 if (!nr_running && idle_cpu(i))
aae6d3dd 8206 sgs->idle_cpus++;
3b1baa64
MR
8207
8208 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8209 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8210 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8211 *sg_status |= SG_OVERLOAD;
757ffdd7 8212 }
1e3c88bd
PZ
8213 }
8214
63b2ca30
NP
8215 /* Adjust by relative CPU capacity of the group */
8216 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8217 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8218
dd5feea1 8219 if (sgs->sum_nr_running)
38d0f770 8220 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 8221
aae6d3dd 8222 sgs->group_weight = group->group_weight;
b37d9316 8223
ea67821b 8224 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8225 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8226}
8227
532cb4c4
MN
8228/**
8229 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8230 * @env: The load balancing environment.
532cb4c4
MN
8231 * @sds: sched_domain statistics
8232 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8233 * @sgs: sched_group statistics
532cb4c4
MN
8234 *
8235 * Determine if @sg is a busier group than the previously selected
8236 * busiest group.
e69f6186
YB
8237 *
8238 * Return: %true if @sg is a busier group than the previously selected
8239 * busiest group. %false otherwise.
532cb4c4 8240 */
bd939f45 8241static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8242 struct sd_lb_stats *sds,
8243 struct sched_group *sg,
bd939f45 8244 struct sg_lb_stats *sgs)
532cb4c4 8245{
caeb178c 8246 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8247
cad68e55
MR
8248 /*
8249 * Don't try to pull misfit tasks we can't help.
8250 * We can use max_capacity here as reduction in capacity on some
8251 * CPUs in the group should either be possible to resolve
8252 * internally or be covered by avg_load imbalance (eventually).
8253 */
8254 if (sgs->group_type == group_misfit_task &&
8255 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8256 !group_has_capacity(env, &sds->local_stat)))
8257 return false;
8258
caeb178c 8259 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8260 return true;
8261
caeb178c
RR
8262 if (sgs->group_type < busiest->group_type)
8263 return false;
8264
8265 if (sgs->avg_load <= busiest->avg_load)
8266 return false;
8267
9e0994c0
MR
8268 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8269 goto asym_packing;
8270
8271 /*
8272 * Candidate sg has no more than one task per CPU and
8273 * has higher per-CPU capacity. Migrating tasks to less
8274 * capable CPUs may harm throughput. Maximize throughput,
8275 * power/energy consequences are not considered.
8276 */
8277 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8278 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8279 return false;
8280
cad68e55
MR
8281 /*
8282 * If we have more than one misfit sg go with the biggest misfit.
8283 */
8284 if (sgs->group_type == group_misfit_task &&
8285 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8286 return false;
8287
8288asym_packing:
caeb178c
RR
8289 /* This is the busiest node in its class. */
8290 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8291 return true;
8292
97fb7a0a 8293 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8294 if (env->idle == CPU_NOT_IDLE)
8295 return true;
532cb4c4 8296 /*
afe06efd
TC
8297 * ASYM_PACKING needs to move all the work to the highest
8298 * prority CPUs in the group, therefore mark all groups
8299 * of lower priority than ourself as busy.
532cb4c4 8300 */
afe06efd
TC
8301 if (sgs->sum_nr_running &&
8302 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8303 if (!sds->busiest)
8304 return true;
8305
97fb7a0a 8306 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8307 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8308 sg->asym_prefer_cpu))
532cb4c4
MN
8309 return true;
8310 }
8311
8312 return false;
8313}
8314
0ec8aa00
PZ
8315#ifdef CONFIG_NUMA_BALANCING
8316static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8317{
8318 if (sgs->sum_nr_running > sgs->nr_numa_running)
8319 return regular;
8320 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8321 return remote;
8322 return all;
8323}
8324
8325static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8326{
8327 if (rq->nr_running > rq->nr_numa_running)
8328 return regular;
8329 if (rq->nr_running > rq->nr_preferred_running)
8330 return remote;
8331 return all;
8332}
8333#else
8334static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8335{
8336 return all;
8337}
8338
8339static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8340{
8341 return regular;
8342}
8343#endif /* CONFIG_NUMA_BALANCING */
8344
1e3c88bd 8345/**
461819ac 8346 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8347 * @env: The load balancing environment.
1e3c88bd
PZ
8348 * @sds: variable to hold the statistics for this sched_domain.
8349 */
0ec8aa00 8350static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8351{
bd939f45
PZ
8352 struct sched_domain *child = env->sd->child;
8353 struct sched_group *sg = env->sd->groups;
05b40e05 8354 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8355 struct sg_lb_stats tmp_sgs;
dbbad719 8356 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8357 int sg_status = 0;
1e3c88bd 8358
e022e0d3 8359#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8360 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8361 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8362#endif
8363
1e3c88bd 8364 do {
56cf515b 8365 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8366 int local_group;
8367
ae4df9d6 8368 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8369 if (local_group) {
8370 sds->local = sg;
05b40e05 8371 sgs = local;
b72ff13c
PZ
8372
8373 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8374 time_after_eq(jiffies, sg->sgc->next_update))
8375 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8376 }
1e3c88bd 8377
630246a0 8378 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8379
b72ff13c
PZ
8380 if (local_group)
8381 goto next_group;
8382
1e3c88bd
PZ
8383 /*
8384 * In case the child domain prefers tasks go to siblings
ea67821b 8385 * first, lower the sg capacity so that we'll try
75dd321d
NR
8386 * and move all the excess tasks away. We lower the capacity
8387 * of a group only if the local group has the capacity to fit
ea67821b
VG
8388 * these excess tasks. The extra check prevents the case where
8389 * you always pull from the heaviest group when it is already
8390 * under-utilized (possible with a large weight task outweighs
8391 * the tasks on the system).
1e3c88bd 8392 */
b72ff13c 8393 if (prefer_sibling && sds->local &&
05b40e05
SD
8394 group_has_capacity(env, local) &&
8395 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8396 sgs->group_no_capacity = 1;
79a89f92 8397 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8398 }
1e3c88bd 8399
b72ff13c 8400 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8401 sds->busiest = sg;
56cf515b 8402 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8403 }
8404
b72ff13c
PZ
8405next_group:
8406 /* Now, start updating sd_lb_stats */
90001d67 8407 sds->total_running += sgs->sum_nr_running;
b72ff13c 8408 sds->total_load += sgs->group_load;
63b2ca30 8409 sds->total_capacity += sgs->group_capacity;
b72ff13c 8410
532cb4c4 8411 sg = sg->next;
bd939f45 8412 } while (sg != env->sd->groups);
0ec8aa00 8413
f643ea22
VG
8414#ifdef CONFIG_NO_HZ_COMMON
8415 if ((env->flags & LBF_NOHZ_AGAIN) &&
8416 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8417
8418 WRITE_ONCE(nohz.next_blocked,
8419 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8420 }
8421#endif
8422
0ec8aa00
PZ
8423 if (env->sd->flags & SD_NUMA)
8424 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8425
8426 if (!env->sd->parent) {
2802bf3c
MR
8427 struct root_domain *rd = env->dst_rq->rd;
8428
4486edd1 8429 /* update overload indicator if we are at root domain */
2802bf3c
MR
8430 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8431
8432 /* Update over-utilization (tipping point, U >= 0) indicator */
8433 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8434 } else if (sg_status & SG_OVERUTILIZED) {
8435 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
4486edd1 8436 }
532cb4c4
MN
8437}
8438
532cb4c4
MN
8439/**
8440 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8441 * sched domain.
532cb4c4
MN
8442 *
8443 * This is primarily intended to used at the sibling level. Some
8444 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8445 * case of POWER7, it can move to lower SMT modes only when higher
8446 * threads are idle. When in lower SMT modes, the threads will
8447 * perform better since they share less core resources. Hence when we
8448 * have idle threads, we want them to be the higher ones.
8449 *
8450 * This packing function is run on idle threads. It checks to see if
8451 * the busiest CPU in this domain (core in the P7 case) has a higher
8452 * CPU number than the packing function is being run on. Here we are
8453 * assuming lower CPU number will be equivalent to lower a SMT thread
8454 * number.
8455 *
e69f6186 8456 * Return: 1 when packing is required and a task should be moved to
46123355 8457 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8458 *
cd96891d 8459 * @env: The load balancing environment.
532cb4c4 8460 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8461 */
bd939f45 8462static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8463{
8464 int busiest_cpu;
8465
bd939f45 8466 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8467 return 0;
8468
1f621e02
SD
8469 if (env->idle == CPU_NOT_IDLE)
8470 return 0;
8471
532cb4c4
MN
8472 if (!sds->busiest)
8473 return 0;
8474
afe06efd
TC
8475 busiest_cpu = sds->busiest->asym_prefer_cpu;
8476 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8477 return 0;
8478
bd939f45 8479 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 8480 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 8481 SCHED_CAPACITY_SCALE);
bd939f45 8482
532cb4c4 8483 return 1;
1e3c88bd
PZ
8484}
8485
8486/**
8487 * fix_small_imbalance - Calculate the minor imbalance that exists
8488 * amongst the groups of a sched_domain, during
8489 * load balancing.
cd96891d 8490 * @env: The load balancing environment.
1e3c88bd 8491 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8492 */
bd939f45
PZ
8493static inline
8494void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8495{
63b2ca30 8496 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8497 unsigned int imbn = 2;
dd5feea1 8498 unsigned long scaled_busy_load_per_task;
56cf515b 8499 struct sg_lb_stats *local, *busiest;
1e3c88bd 8500
56cf515b
JK
8501 local = &sds->local_stat;
8502 busiest = &sds->busiest_stat;
1e3c88bd 8503
56cf515b
JK
8504 if (!local->sum_nr_running)
8505 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8506 else if (busiest->load_per_task > local->load_per_task)
8507 imbn = 1;
dd5feea1 8508
56cf515b 8509 scaled_busy_load_per_task =
ca8ce3d0 8510 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8511 busiest->group_capacity;
56cf515b 8512
3029ede3
VD
8513 if (busiest->avg_load + scaled_busy_load_per_task >=
8514 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8515 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8516 return;
8517 }
8518
8519 /*
8520 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8521 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8522 * moving them.
8523 */
8524
63b2ca30 8525 capa_now += busiest->group_capacity *
56cf515b 8526 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8527 capa_now += local->group_capacity *
56cf515b 8528 min(local->load_per_task, local->avg_load);
ca8ce3d0 8529 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8530
8531 /* Amount of load we'd subtract */
a2cd4260 8532 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8533 capa_move += busiest->group_capacity *
56cf515b 8534 min(busiest->load_per_task,
a2cd4260 8535 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8536 }
1e3c88bd
PZ
8537
8538 /* Amount of load we'd add */
63b2ca30 8539 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8540 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8541 tmp = (busiest->avg_load * busiest->group_capacity) /
8542 local->group_capacity;
56cf515b 8543 } else {
ca8ce3d0 8544 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8545 local->group_capacity;
56cf515b 8546 }
63b2ca30 8547 capa_move += local->group_capacity *
3ae11c90 8548 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8549 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8550
8551 /* Move if we gain throughput */
63b2ca30 8552 if (capa_move > capa_now)
56cf515b 8553 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8554}
8555
8556/**
8557 * calculate_imbalance - Calculate the amount of imbalance present within the
8558 * groups of a given sched_domain during load balance.
bd939f45 8559 * @env: load balance environment
1e3c88bd 8560 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8561 */
bd939f45 8562static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8563{
dd5feea1 8564 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8565 struct sg_lb_stats *local, *busiest;
8566
8567 local = &sds->local_stat;
56cf515b 8568 busiest = &sds->busiest_stat;
dd5feea1 8569
caeb178c 8570 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8571 /*
8572 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8573 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8574 */
56cf515b
JK
8575 busiest->load_per_task =
8576 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8577 }
8578
1e3c88bd 8579 /*
885e542c
DE
8580 * Avg load of busiest sg can be less and avg load of local sg can
8581 * be greater than avg load across all sgs of sd because avg load
8582 * factors in sg capacity and sgs with smaller group_type are
8583 * skipped when updating the busiest sg:
1e3c88bd 8584 */
cad68e55
MR
8585 if (busiest->group_type != group_misfit_task &&
8586 (busiest->avg_load <= sds->avg_load ||
8587 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8588 env->imbalance = 0;
8589 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8590 }
8591
9a5d9ba6 8592 /*
97fb7a0a 8593 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8594 */
8595 if (busiest->group_type == group_overloaded &&
8596 local->group_type == group_overloaded) {
1be0eb2a 8597 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8598 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8599 load_above_capacity -= busiest->group_capacity;
26656215 8600 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8601 load_above_capacity /= busiest->group_capacity;
8602 } else
ea67821b 8603 load_above_capacity = ~0UL;
dd5feea1
SS
8604 }
8605
8606 /*
97fb7a0a 8607 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8608 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8609 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8610 * we also don't want to reduce the group load below the group
8611 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8612 */
30ce5dab 8613 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8614
8615 /* How much load to actually move to equalise the imbalance */
56cf515b 8616 env->imbalance = min(
63b2ca30
NP
8617 max_pull * busiest->group_capacity,
8618 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8619 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8620
cad68e55
MR
8621 /* Boost imbalance to allow misfit task to be balanced. */
8622 if (busiest->group_type == group_misfit_task) {
8623 env->imbalance = max_t(long, env->imbalance,
8624 busiest->group_misfit_task_load);
8625 }
8626
1e3c88bd
PZ
8627 /*
8628 * if *imbalance is less than the average load per runnable task
25985edc 8629 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8630 * a think about bumping its value to force at least one task to be
8631 * moved
8632 */
56cf515b 8633 if (env->imbalance < busiest->load_per_task)
bd939f45 8634 return fix_small_imbalance(env, sds);
1e3c88bd 8635}
fab47622 8636
1e3c88bd
PZ
8637/******* find_busiest_group() helpers end here *********************/
8638
8639/**
8640 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8641 * if there is an imbalance.
1e3c88bd
PZ
8642 *
8643 * Also calculates the amount of weighted load which should be moved
8644 * to restore balance.
8645 *
cd96891d 8646 * @env: The load balancing environment.
1e3c88bd 8647 *
e69f6186 8648 * Return: - The busiest group if imbalance exists.
1e3c88bd 8649 */
56cf515b 8650static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8651{
56cf515b 8652 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8653 struct sd_lb_stats sds;
8654
147c5fc2 8655 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8656
8657 /*
8658 * Compute the various statistics relavent for load balancing at
8659 * this level.
8660 */
23f0d209 8661 update_sd_lb_stats(env, &sds);
2802bf3c
MR
8662
8663 if (static_branch_unlikely(&sched_energy_present)) {
8664 struct root_domain *rd = env->dst_rq->rd;
8665
8666 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8667 goto out_balanced;
8668 }
8669
56cf515b
JK
8670 local = &sds.local_stat;
8671 busiest = &sds.busiest_stat;
1e3c88bd 8672
ea67821b 8673 /* ASYM feature bypasses nice load balance check */
1f621e02 8674 if (check_asym_packing(env, &sds))
532cb4c4
MN
8675 return sds.busiest;
8676
cc57aa8f 8677 /* There is no busy sibling group to pull tasks from */
56cf515b 8678 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8679 goto out_balanced;
8680
90001d67 8681 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8682 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8683 / sds.total_capacity;
b0432d8f 8684
866ab43e
PZ
8685 /*
8686 * If the busiest group is imbalanced the below checks don't
30ce5dab 8687 * work because they assume all things are equal, which typically
866ab43e
PZ
8688 * isn't true due to cpus_allowed constraints and the like.
8689 */
caeb178c 8690 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8691 goto force_balance;
8692
583ffd99
BJ
8693 /*
8694 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8695 * capacities from resulting in underutilization due to avg_load.
8696 */
8697 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8698 busiest->group_no_capacity)
fab47622
NR
8699 goto force_balance;
8700
cad68e55
MR
8701 /* Misfit tasks should be dealt with regardless of the avg load */
8702 if (busiest->group_type == group_misfit_task)
8703 goto force_balance;
8704
cc57aa8f 8705 /*
9c58c79a 8706 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8707 * don't try and pull any tasks.
8708 */
56cf515b 8709 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8710 goto out_balanced;
8711
cc57aa8f
PZ
8712 /*
8713 * Don't pull any tasks if this group is already above the domain
8714 * average load.
8715 */
56cf515b 8716 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8717 goto out_balanced;
8718
bd939f45 8719 if (env->idle == CPU_IDLE) {
aae6d3dd 8720 /*
97fb7a0a 8721 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8722 * and there is no imbalance between this and busiest group
97fb7a0a 8723 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8724 * significant if the diff is greater than 1 otherwise we
8725 * might end up to just move the imbalance on another group
aae6d3dd 8726 */
43f4d666
VG
8727 if ((busiest->group_type != group_overloaded) &&
8728 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8729 goto out_balanced;
c186fafe
PZ
8730 } else {
8731 /*
8732 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8733 * imbalance_pct to be conservative.
8734 */
56cf515b
JK
8735 if (100 * busiest->avg_load <=
8736 env->sd->imbalance_pct * local->avg_load)
c186fafe 8737 goto out_balanced;
aae6d3dd 8738 }
1e3c88bd 8739
fab47622 8740force_balance:
1e3c88bd 8741 /* Looks like there is an imbalance. Compute it */
cad68e55 8742 env->src_grp_type = busiest->group_type;
bd939f45 8743 calculate_imbalance(env, &sds);
bb3485c8 8744 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8745
8746out_balanced:
bd939f45 8747 env->imbalance = 0;
1e3c88bd
PZ
8748 return NULL;
8749}
8750
8751/*
97fb7a0a 8752 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8753 */
bd939f45 8754static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8755 struct sched_group *group)
1e3c88bd
PZ
8756{
8757 struct rq *busiest = NULL, *rq;
ced549fa 8758 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8759 int i;
8760
ae4df9d6 8761 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8762 unsigned long capacity, wl;
0ec8aa00
PZ
8763 enum fbq_type rt;
8764
8765 rq = cpu_rq(i);
8766 rt = fbq_classify_rq(rq);
1e3c88bd 8767
0ec8aa00
PZ
8768 /*
8769 * We classify groups/runqueues into three groups:
8770 * - regular: there are !numa tasks
8771 * - remote: there are numa tasks that run on the 'wrong' node
8772 * - all: there is no distinction
8773 *
8774 * In order to avoid migrating ideally placed numa tasks,
8775 * ignore those when there's better options.
8776 *
8777 * If we ignore the actual busiest queue to migrate another
8778 * task, the next balance pass can still reduce the busiest
8779 * queue by moving tasks around inside the node.
8780 *
8781 * If we cannot move enough load due to this classification
8782 * the next pass will adjust the group classification and
8783 * allow migration of more tasks.
8784 *
8785 * Both cases only affect the total convergence complexity.
8786 */
8787 if (rt > env->fbq_type)
8788 continue;
8789
cad68e55
MR
8790 /*
8791 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8792 * seek the "biggest" misfit task.
8793 */
8794 if (env->src_grp_type == group_misfit_task) {
8795 if (rq->misfit_task_load > busiest_load) {
8796 busiest_load = rq->misfit_task_load;
8797 busiest = rq;
8798 }
8799
8800 continue;
8801 }
8802
ced549fa 8803 capacity = capacity_of(i);
9d5efe05 8804
4ad3831a
CR
8805 /*
8806 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8807 * eventually lead to active_balancing high->low capacity.
8808 * Higher per-CPU capacity is considered better than balancing
8809 * average load.
8810 */
8811 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8812 capacity_of(env->dst_cpu) < capacity &&
8813 rq->nr_running == 1)
8814 continue;
8815
c7132dd6 8816 wl = weighted_cpuload(rq);
1e3c88bd 8817
6e40f5bb
TG
8818 /*
8819 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8820 * which is not scaled with the CPU capacity.
6e40f5bb 8821 */
ea67821b
VG
8822
8823 if (rq->nr_running == 1 && wl > env->imbalance &&
8824 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8825 continue;
8826
6e40f5bb 8827 /*
97fb7a0a
IM
8828 * For the load comparisons with the other CPU's, consider
8829 * the weighted_cpuload() scaled with the CPU capacity, so
8830 * that the load can be moved away from the CPU that is
ced549fa 8831 * potentially running at a lower capacity.
95a79b80 8832 *
ced549fa 8833 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8834 * multiplication to rid ourselves of the division works out
ced549fa
NP
8835 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8836 * our previous maximum.
6e40f5bb 8837 */
ced549fa 8838 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8839 busiest_load = wl;
ced549fa 8840 busiest_capacity = capacity;
1e3c88bd
PZ
8841 busiest = rq;
8842 }
8843 }
8844
8845 return busiest;
8846}
8847
8848/*
8849 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8850 * so long as it is large enough.
8851 */
8852#define MAX_PINNED_INTERVAL 512
8853
bd939f45 8854static int need_active_balance(struct lb_env *env)
1af3ed3d 8855{
bd939f45
PZ
8856 struct sched_domain *sd = env->sd;
8857
8858 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8859
8860 /*
8861 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8862 * lower priority CPUs in order to pack all tasks in the
8863 * highest priority CPUs.
532cb4c4 8864 */
afe06efd
TC
8865 if ((sd->flags & SD_ASYM_PACKING) &&
8866 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8867 return 1;
1af3ed3d
PZ
8868 }
8869
1aaf90a4
VG
8870 /*
8871 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8872 * It's worth migrating the task if the src_cpu's capacity is reduced
8873 * because of other sched_class or IRQs if more capacity stays
8874 * available on dst_cpu.
8875 */
8876 if ((env->idle != CPU_NOT_IDLE) &&
8877 (env->src_rq->cfs.h_nr_running == 1)) {
8878 if ((check_cpu_capacity(env->src_rq, sd)) &&
8879 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8880 return 1;
8881 }
8882
cad68e55
MR
8883 if (env->src_grp_type == group_misfit_task)
8884 return 1;
8885
1af3ed3d
PZ
8886 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8887}
8888
969c7921
TH
8889static int active_load_balance_cpu_stop(void *data);
8890
23f0d209
JK
8891static int should_we_balance(struct lb_env *env)
8892{
8893 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8894 int cpu, balance_cpu = -1;
8895
024c9d2f
PZ
8896 /*
8897 * Ensure the balancing environment is consistent; can happen
8898 * when the softirq triggers 'during' hotplug.
8899 */
8900 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8901 return 0;
8902
23f0d209 8903 /*
97fb7a0a 8904 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8905 * to do the newly idle load balance.
8906 */
8907 if (env->idle == CPU_NEWLY_IDLE)
8908 return 1;
8909
97fb7a0a 8910 /* Try to find first idle CPU */
e5c14b1f 8911 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8912 if (!idle_cpu(cpu))
23f0d209
JK
8913 continue;
8914
8915 balance_cpu = cpu;
8916 break;
8917 }
8918
8919 if (balance_cpu == -1)
8920 balance_cpu = group_balance_cpu(sg);
8921
8922 /*
97fb7a0a 8923 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8924 * is eligible for doing load balancing at this and above domains.
8925 */
b0cff9d8 8926 return balance_cpu == env->dst_cpu;
23f0d209
JK
8927}
8928
1e3c88bd
PZ
8929/*
8930 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8931 * tasks if there is an imbalance.
8932 */
8933static int load_balance(int this_cpu, struct rq *this_rq,
8934 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8935 int *continue_balancing)
1e3c88bd 8936{
88b8dac0 8937 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8938 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8939 struct sched_group *group;
1e3c88bd 8940 struct rq *busiest;
8a8c69c3 8941 struct rq_flags rf;
4ba29684 8942 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8943
8e45cb54
PZ
8944 struct lb_env env = {
8945 .sd = sd,
ddcdf6e7
PZ
8946 .dst_cpu = this_cpu,
8947 .dst_rq = this_rq,
ae4df9d6 8948 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8949 .idle = idle,
eb95308e 8950 .loop_break = sched_nr_migrate_break,
b9403130 8951 .cpus = cpus,
0ec8aa00 8952 .fbq_type = all,
163122b7 8953 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8954 };
8955
65a4433a 8956 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8957
ae92882e 8958 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8959
8960redo:
23f0d209
JK
8961 if (!should_we_balance(&env)) {
8962 *continue_balancing = 0;
1e3c88bd 8963 goto out_balanced;
23f0d209 8964 }
1e3c88bd 8965
23f0d209 8966 group = find_busiest_group(&env);
1e3c88bd 8967 if (!group) {
ae92882e 8968 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8969 goto out_balanced;
8970 }
8971
b9403130 8972 busiest = find_busiest_queue(&env, group);
1e3c88bd 8973 if (!busiest) {
ae92882e 8974 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8975 goto out_balanced;
8976 }
8977
78feefc5 8978 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8979
ae92882e 8980 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8981
1aaf90a4
VG
8982 env.src_cpu = busiest->cpu;
8983 env.src_rq = busiest;
8984
1e3c88bd
PZ
8985 ld_moved = 0;
8986 if (busiest->nr_running > 1) {
8987 /*
8988 * Attempt to move tasks. If find_busiest_group has found
8989 * an imbalance but busiest->nr_running <= 1, the group is
8990 * still unbalanced. ld_moved simply stays zero, so it is
8991 * correctly treated as an imbalance.
8992 */
8e45cb54 8993 env.flags |= LBF_ALL_PINNED;
c82513e5 8994 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8995
5d6523eb 8996more_balance:
8a8c69c3 8997 rq_lock_irqsave(busiest, &rf);
3bed5e21 8998 update_rq_clock(busiest);
88b8dac0
SV
8999
9000 /*
9001 * cur_ld_moved - load moved in current iteration
9002 * ld_moved - cumulative load moved across iterations
9003 */
163122b7 9004 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9005
9006 /*
163122b7
KT
9007 * We've detached some tasks from busiest_rq. Every
9008 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9009 * unlock busiest->lock, and we are able to be sure
9010 * that nobody can manipulate the tasks in parallel.
9011 * See task_rq_lock() family for the details.
1e3c88bd 9012 */
163122b7 9013
8a8c69c3 9014 rq_unlock(busiest, &rf);
163122b7
KT
9015
9016 if (cur_ld_moved) {
9017 attach_tasks(&env);
9018 ld_moved += cur_ld_moved;
9019 }
9020
8a8c69c3 9021 local_irq_restore(rf.flags);
88b8dac0 9022
f1cd0858
JK
9023 if (env.flags & LBF_NEED_BREAK) {
9024 env.flags &= ~LBF_NEED_BREAK;
9025 goto more_balance;
9026 }
9027
88b8dac0
SV
9028 /*
9029 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9030 * us and move them to an alternate dst_cpu in our sched_group
9031 * where they can run. The upper limit on how many times we
97fb7a0a 9032 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9033 * sched_group.
9034 *
9035 * This changes load balance semantics a bit on who can move
9036 * load to a given_cpu. In addition to the given_cpu itself
9037 * (or a ilb_cpu acting on its behalf where given_cpu is
9038 * nohz-idle), we now have balance_cpu in a position to move
9039 * load to given_cpu. In rare situations, this may cause
9040 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9041 * _independently_ and at _same_ time to move some load to
9042 * given_cpu) causing exceess load to be moved to given_cpu.
9043 * This however should not happen so much in practice and
9044 * moreover subsequent load balance cycles should correct the
9045 * excess load moved.
9046 */
6263322c 9047 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9048
97fb7a0a 9049 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
9050 cpumask_clear_cpu(env.dst_cpu, env.cpus);
9051
78feefc5 9052 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9053 env.dst_cpu = env.new_dst_cpu;
6263322c 9054 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9055 env.loop = 0;
9056 env.loop_break = sched_nr_migrate_break;
e02e60c1 9057
88b8dac0
SV
9058 /*
9059 * Go back to "more_balance" rather than "redo" since we
9060 * need to continue with same src_cpu.
9061 */
9062 goto more_balance;
9063 }
1e3c88bd 9064
6263322c
PZ
9065 /*
9066 * We failed to reach balance because of affinity.
9067 */
9068 if (sd_parent) {
63b2ca30 9069 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9070
afdeee05 9071 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9072 *group_imbalance = 1;
6263322c
PZ
9073 }
9074
1e3c88bd 9075 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9076 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 9077 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9078 /*
9079 * Attempting to continue load balancing at the current
9080 * sched_domain level only makes sense if there are
9081 * active CPUs remaining as possible busiest CPUs to
9082 * pull load from which are not contained within the
9083 * destination group that is receiving any migrated
9084 * load.
9085 */
9086 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9087 env.loop = 0;
9088 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9089 goto redo;
bbf18b19 9090 }
afdeee05 9091 goto out_all_pinned;
1e3c88bd
PZ
9092 }
9093 }
9094
9095 if (!ld_moved) {
ae92882e 9096 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9097 /*
9098 * Increment the failure counter only on periodic balance.
9099 * We do not want newidle balance, which can be very
9100 * frequent, pollute the failure counter causing
9101 * excessive cache_hot migrations and active balances.
9102 */
9103 if (idle != CPU_NEWLY_IDLE)
9104 sd->nr_balance_failed++;
1e3c88bd 9105
bd939f45 9106 if (need_active_balance(&env)) {
8a8c69c3
PZ
9107 unsigned long flags;
9108
1e3c88bd
PZ
9109 raw_spin_lock_irqsave(&busiest->lock, flags);
9110
97fb7a0a
IM
9111 /*
9112 * Don't kick the active_load_balance_cpu_stop,
9113 * if the curr task on busiest CPU can't be
9114 * moved to this_cpu:
1e3c88bd 9115 */
0c98d344 9116 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
9117 raw_spin_unlock_irqrestore(&busiest->lock,
9118 flags);
8e45cb54 9119 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9120 goto out_one_pinned;
9121 }
9122
969c7921
TH
9123 /*
9124 * ->active_balance synchronizes accesses to
9125 * ->active_balance_work. Once set, it's cleared
9126 * only after active load balance is finished.
9127 */
1e3c88bd
PZ
9128 if (!busiest->active_balance) {
9129 busiest->active_balance = 1;
9130 busiest->push_cpu = this_cpu;
9131 active_balance = 1;
9132 }
9133 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9134
bd939f45 9135 if (active_balance) {
969c7921
TH
9136 stop_one_cpu_nowait(cpu_of(busiest),
9137 active_load_balance_cpu_stop, busiest,
9138 &busiest->active_balance_work);
bd939f45 9139 }
1e3c88bd 9140
d02c0711 9141 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9142 sd->nr_balance_failed = sd->cache_nice_tries+1;
9143 }
9144 } else
9145 sd->nr_balance_failed = 0;
9146
9147 if (likely(!active_balance)) {
9148 /* We were unbalanced, so reset the balancing interval */
9149 sd->balance_interval = sd->min_interval;
9150 } else {
9151 /*
9152 * If we've begun active balancing, start to back off. This
9153 * case may not be covered by the all_pinned logic if there
9154 * is only 1 task on the busy runqueue (because we don't call
163122b7 9155 * detach_tasks).
1e3c88bd
PZ
9156 */
9157 if (sd->balance_interval < sd->max_interval)
9158 sd->balance_interval *= 2;
9159 }
9160
1e3c88bd
PZ
9161 goto out;
9162
9163out_balanced:
afdeee05
VG
9164 /*
9165 * We reach balance although we may have faced some affinity
9166 * constraints. Clear the imbalance flag if it was set.
9167 */
9168 if (sd_parent) {
9169 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9170
9171 if (*group_imbalance)
9172 *group_imbalance = 0;
9173 }
9174
9175out_all_pinned:
9176 /*
9177 * We reach balance because all tasks are pinned at this level so
9178 * we can't migrate them. Let the imbalance flag set so parent level
9179 * can try to migrate them.
9180 */
ae92882e 9181 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9182
9183 sd->nr_balance_failed = 0;
9184
9185out_one_pinned:
3f130a37
VS
9186 ld_moved = 0;
9187
9188 /*
9189 * idle_balance() disregards balance intervals, so we could repeatedly
9190 * reach this code, which would lead to balance_interval skyrocketting
9191 * in a short amount of time. Skip the balance_interval increase logic
9192 * to avoid that.
9193 */
9194 if (env.idle == CPU_NEWLY_IDLE)
9195 goto out;
9196
1e3c88bd 9197 /* tune up the balancing interval */
47b7aee1
VS
9198 if ((env.flags & LBF_ALL_PINNED &&
9199 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9200 sd->balance_interval < sd->max_interval)
1e3c88bd 9201 sd->balance_interval *= 2;
1e3c88bd 9202out:
1e3c88bd
PZ
9203 return ld_moved;
9204}
9205
52a08ef1
JL
9206static inline unsigned long
9207get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9208{
9209 unsigned long interval = sd->balance_interval;
9210
9211 if (cpu_busy)
9212 interval *= sd->busy_factor;
9213
9214 /* scale ms to jiffies */
9215 interval = msecs_to_jiffies(interval);
9216 interval = clamp(interval, 1UL, max_load_balance_interval);
9217
9218 return interval;
9219}
9220
9221static inline void
31851a98 9222update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9223{
9224 unsigned long interval, next;
9225
31851a98
LY
9226 /* used by idle balance, so cpu_busy = 0 */
9227 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9228 next = sd->last_balance + interval;
9229
9230 if (time_after(*next_balance, next))
9231 *next_balance = next;
9232}
9233
1e3c88bd 9234/*
97fb7a0a 9235 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9236 * running tasks off the busiest CPU onto idle CPUs. It requires at
9237 * least 1 task to be running on each physical CPU where possible, and
9238 * avoids physical / logical imbalances.
1e3c88bd 9239 */
969c7921 9240static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9241{
969c7921
TH
9242 struct rq *busiest_rq = data;
9243 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9244 int target_cpu = busiest_rq->push_cpu;
969c7921 9245 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9246 struct sched_domain *sd;
e5673f28 9247 struct task_struct *p = NULL;
8a8c69c3 9248 struct rq_flags rf;
969c7921 9249
8a8c69c3 9250 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9251 /*
9252 * Between queueing the stop-work and running it is a hole in which
9253 * CPUs can become inactive. We should not move tasks from or to
9254 * inactive CPUs.
9255 */
9256 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9257 goto out_unlock;
969c7921 9258
97fb7a0a 9259 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9260 if (unlikely(busiest_cpu != smp_processor_id() ||
9261 !busiest_rq->active_balance))
9262 goto out_unlock;
1e3c88bd
PZ
9263
9264 /* Is there any task to move? */
9265 if (busiest_rq->nr_running <= 1)
969c7921 9266 goto out_unlock;
1e3c88bd
PZ
9267
9268 /*
9269 * This condition is "impossible", if it occurs
9270 * we need to fix it. Originally reported by
97fb7a0a 9271 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9272 */
9273 BUG_ON(busiest_rq == target_rq);
9274
1e3c88bd 9275 /* Search for an sd spanning us and the target CPU. */
dce840a0 9276 rcu_read_lock();
1e3c88bd
PZ
9277 for_each_domain(target_cpu, sd) {
9278 if ((sd->flags & SD_LOAD_BALANCE) &&
9279 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9280 break;
9281 }
9282
9283 if (likely(sd)) {
8e45cb54
PZ
9284 struct lb_env env = {
9285 .sd = sd,
ddcdf6e7
PZ
9286 .dst_cpu = target_cpu,
9287 .dst_rq = target_rq,
9288 .src_cpu = busiest_rq->cpu,
9289 .src_rq = busiest_rq,
8e45cb54 9290 .idle = CPU_IDLE,
65a4433a
JH
9291 /*
9292 * can_migrate_task() doesn't need to compute new_dst_cpu
9293 * for active balancing. Since we have CPU_IDLE, but no
9294 * @dst_grpmask we need to make that test go away with lying
9295 * about DST_PINNED.
9296 */
9297 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9298 };
9299
ae92882e 9300 schedstat_inc(sd->alb_count);
3bed5e21 9301 update_rq_clock(busiest_rq);
1e3c88bd 9302
e5673f28 9303 p = detach_one_task(&env);
d02c0711 9304 if (p) {
ae92882e 9305 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9306 /* Active balancing done, reset the failure counter. */
9307 sd->nr_balance_failed = 0;
9308 } else {
ae92882e 9309 schedstat_inc(sd->alb_failed);
d02c0711 9310 }
1e3c88bd 9311 }
dce840a0 9312 rcu_read_unlock();
969c7921
TH
9313out_unlock:
9314 busiest_rq->active_balance = 0;
8a8c69c3 9315 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9316
9317 if (p)
9318 attach_one_task(target_rq, p);
9319
9320 local_irq_enable();
9321
969c7921 9322 return 0;
1e3c88bd
PZ
9323}
9324
af3fe03c
PZ
9325static DEFINE_SPINLOCK(balancing);
9326
9327/*
9328 * Scale the max load_balance interval with the number of CPUs in the system.
9329 * This trades load-balance latency on larger machines for less cross talk.
9330 */
9331void update_max_interval(void)
9332{
9333 max_load_balance_interval = HZ*num_online_cpus()/10;
9334}
9335
9336/*
9337 * It checks each scheduling domain to see if it is due to be balanced,
9338 * and initiates a balancing operation if so.
9339 *
9340 * Balancing parameters are set up in init_sched_domains.
9341 */
9342static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9343{
9344 int continue_balancing = 1;
9345 int cpu = rq->cpu;
9346 unsigned long interval;
9347 struct sched_domain *sd;
9348 /* Earliest time when we have to do rebalance again */
9349 unsigned long next_balance = jiffies + 60*HZ;
9350 int update_next_balance = 0;
9351 int need_serialize, need_decay = 0;
9352 u64 max_cost = 0;
9353
9354 rcu_read_lock();
9355 for_each_domain(cpu, sd) {
9356 /*
9357 * Decay the newidle max times here because this is a regular
9358 * visit to all the domains. Decay ~1% per second.
9359 */
9360 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9361 sd->max_newidle_lb_cost =
9362 (sd->max_newidle_lb_cost * 253) / 256;
9363 sd->next_decay_max_lb_cost = jiffies + HZ;
9364 need_decay = 1;
9365 }
9366 max_cost += sd->max_newidle_lb_cost;
9367
9368 if (!(sd->flags & SD_LOAD_BALANCE))
9369 continue;
9370
9371 /*
9372 * Stop the load balance at this level. There is another
9373 * CPU in our sched group which is doing load balancing more
9374 * actively.
9375 */
9376 if (!continue_balancing) {
9377 if (need_decay)
9378 continue;
9379 break;
9380 }
9381
9382 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9383
9384 need_serialize = sd->flags & SD_SERIALIZE;
9385 if (need_serialize) {
9386 if (!spin_trylock(&balancing))
9387 goto out;
9388 }
9389
9390 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9391 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9392 /*
9393 * The LBF_DST_PINNED logic could have changed
9394 * env->dst_cpu, so we can't know our idle
9395 * state even if we migrated tasks. Update it.
9396 */
9397 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9398 }
9399 sd->last_balance = jiffies;
9400 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9401 }
9402 if (need_serialize)
9403 spin_unlock(&balancing);
9404out:
9405 if (time_after(next_balance, sd->last_balance + interval)) {
9406 next_balance = sd->last_balance + interval;
9407 update_next_balance = 1;
9408 }
9409 }
9410 if (need_decay) {
9411 /*
9412 * Ensure the rq-wide value also decays but keep it at a
9413 * reasonable floor to avoid funnies with rq->avg_idle.
9414 */
9415 rq->max_idle_balance_cost =
9416 max((u64)sysctl_sched_migration_cost, max_cost);
9417 }
9418 rcu_read_unlock();
9419
9420 /*
9421 * next_balance will be updated only when there is a need.
9422 * When the cpu is attached to null domain for ex, it will not be
9423 * updated.
9424 */
9425 if (likely(update_next_balance)) {
9426 rq->next_balance = next_balance;
9427
9428#ifdef CONFIG_NO_HZ_COMMON
9429 /*
9430 * If this CPU has been elected to perform the nohz idle
9431 * balance. Other idle CPUs have already rebalanced with
9432 * nohz_idle_balance() and nohz.next_balance has been
9433 * updated accordingly. This CPU is now running the idle load
9434 * balance for itself and we need to update the
9435 * nohz.next_balance accordingly.
9436 */
9437 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9438 nohz.next_balance = rq->next_balance;
9439#endif
9440 }
9441}
9442
d987fc7f
MG
9443static inline int on_null_domain(struct rq *rq)
9444{
9445 return unlikely(!rcu_dereference_sched(rq->sd));
9446}
9447
3451d024 9448#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9449/*
9450 * idle load balancing details
83cd4fe2
VP
9451 * - When one of the busy CPUs notice that there may be an idle rebalancing
9452 * needed, they will kick the idle load balancer, which then does idle
9453 * load balancing for all the idle CPUs.
9454 */
1e3c88bd 9455
3dd0337d 9456static inline int find_new_ilb(void)
1e3c88bd 9457{
0b005cf5 9458 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9459
786d6dc7
SS
9460 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9461 return ilb;
9462
9463 return nr_cpu_ids;
1e3c88bd 9464}
1e3c88bd 9465
83cd4fe2
VP
9466/*
9467 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9468 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9469 * CPU (if there is one).
9470 */
a4064fb6 9471static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9472{
9473 int ilb_cpu;
9474
9475 nohz.next_balance++;
9476
3dd0337d 9477 ilb_cpu = find_new_ilb();
83cd4fe2 9478
0b005cf5
SS
9479 if (ilb_cpu >= nr_cpu_ids)
9480 return;
83cd4fe2 9481
a4064fb6 9482 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9483 if (flags & NOHZ_KICK_MASK)
1c792db7 9484 return;
4550487a 9485
1c792db7
SS
9486 /*
9487 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9488 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9489 * is idle. And the softirq performing nohz idle load balance
9490 * will be run before returning from the IPI.
9491 */
9492 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9493}
9494
9495/*
9496 * Current heuristic for kicking the idle load balancer in the presence
9497 * of an idle cpu in the system.
9498 * - This rq has more than one task.
9499 * - This rq has at least one CFS task and the capacity of the CPU is
9500 * significantly reduced because of RT tasks or IRQs.
9501 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9502 * multiple busy cpu.
9503 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9504 * domain span are idle.
9505 */
9506static void nohz_balancer_kick(struct rq *rq)
9507{
9508 unsigned long now = jiffies;
9509 struct sched_domain_shared *sds;
9510 struct sched_domain *sd;
9511 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9512 unsigned int flags = 0;
4550487a
PZ
9513
9514 if (unlikely(rq->idle_balance))
9515 return;
9516
9517 /*
9518 * We may be recently in ticked or tickless idle mode. At the first
9519 * busy tick after returning from idle, we will update the busy stats.
9520 */
00357f5e 9521 nohz_balance_exit_idle(rq);
4550487a
PZ
9522
9523 /*
9524 * None are in tickless mode and hence no need for NOHZ idle load
9525 * balancing.
9526 */
9527 if (likely(!atomic_read(&nohz.nr_cpus)))
9528 return;
9529
f643ea22
VG
9530 if (READ_ONCE(nohz.has_blocked) &&
9531 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9532 flags = NOHZ_STATS_KICK;
9533
4550487a 9534 if (time_before(now, nohz.next_balance))
a4064fb6 9535 goto out;
4550487a 9536
5fbdfae5 9537 if (rq->nr_running >= 2 || rq->misfit_task_load) {
a4064fb6 9538 flags = NOHZ_KICK_MASK;
4550487a
PZ
9539 goto out;
9540 }
9541
9542 rcu_read_lock();
9543 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9544 if (sds) {
9545 /*
9546 * XXX: write a coherent comment on why we do this.
9547 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9548 */
9549 nr_busy = atomic_read(&sds->nr_busy_cpus);
9550 if (nr_busy > 1) {
a4064fb6 9551 flags = NOHZ_KICK_MASK;
4550487a
PZ
9552 goto unlock;
9553 }
9554
9555 }
9556
9557 sd = rcu_dereference(rq->sd);
9558 if (sd) {
9559 if ((rq->cfs.h_nr_running >= 1) &&
9560 check_cpu_capacity(rq, sd)) {
a4064fb6 9561 flags = NOHZ_KICK_MASK;
4550487a
PZ
9562 goto unlock;
9563 }
9564 }
9565
011b27bb 9566 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a
PZ
9567 if (sd) {
9568 for_each_cpu(i, sched_domain_span(sd)) {
9569 if (i == cpu ||
9570 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9571 continue;
9572
9573 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9574 flags = NOHZ_KICK_MASK;
4550487a
PZ
9575 goto unlock;
9576 }
9577 }
9578 }
9579unlock:
9580 rcu_read_unlock();
9581out:
a4064fb6
PZ
9582 if (flags)
9583 kick_ilb(flags);
83cd4fe2
VP
9584}
9585
00357f5e 9586static void set_cpu_sd_state_busy(int cpu)
71325960 9587{
00357f5e 9588 struct sched_domain *sd;
a22e47a4 9589
00357f5e
PZ
9590 rcu_read_lock();
9591 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9592
00357f5e
PZ
9593 if (!sd || !sd->nohz_idle)
9594 goto unlock;
9595 sd->nohz_idle = 0;
9596
9597 atomic_inc(&sd->shared->nr_busy_cpus);
9598unlock:
9599 rcu_read_unlock();
71325960
SS
9600}
9601
00357f5e
PZ
9602void nohz_balance_exit_idle(struct rq *rq)
9603{
9604 SCHED_WARN_ON(rq != this_rq());
9605
9606 if (likely(!rq->nohz_tick_stopped))
9607 return;
9608
9609 rq->nohz_tick_stopped = 0;
9610 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9611 atomic_dec(&nohz.nr_cpus);
9612
9613 set_cpu_sd_state_busy(rq->cpu);
9614}
9615
9616static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9617{
9618 struct sched_domain *sd;
69e1e811 9619
69e1e811 9620 rcu_read_lock();
0e369d75 9621 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9622
9623 if (!sd || sd->nohz_idle)
9624 goto unlock;
9625 sd->nohz_idle = 1;
9626
0e369d75 9627 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9628unlock:
69e1e811
SS
9629 rcu_read_unlock();
9630}
9631
1e3c88bd 9632/*
97fb7a0a 9633 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9634 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9635 */
c1cc017c 9636void nohz_balance_enter_idle(int cpu)
1e3c88bd 9637{
00357f5e
PZ
9638 struct rq *rq = cpu_rq(cpu);
9639
9640 SCHED_WARN_ON(cpu != smp_processor_id());
9641
97fb7a0a 9642 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9643 if (!cpu_active(cpu))
9644 return;
9645
387bc8b5 9646 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9647 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9648 return;
9649
f643ea22
VG
9650 /*
9651 * Can be set safely without rq->lock held
9652 * If a clear happens, it will have evaluated last additions because
9653 * rq->lock is held during the check and the clear
9654 */
9655 rq->has_blocked_load = 1;
9656
9657 /*
9658 * The tick is still stopped but load could have been added in the
9659 * meantime. We set the nohz.has_blocked flag to trig a check of the
9660 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9661 * of nohz.has_blocked can only happen after checking the new load
9662 */
00357f5e 9663 if (rq->nohz_tick_stopped)
f643ea22 9664 goto out;
1e3c88bd 9665
97fb7a0a 9666 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9667 if (on_null_domain(rq))
d987fc7f
MG
9668 return;
9669
00357f5e
PZ
9670 rq->nohz_tick_stopped = 1;
9671
c1cc017c
AS
9672 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9673 atomic_inc(&nohz.nr_cpus);
00357f5e 9674
f643ea22
VG
9675 /*
9676 * Ensures that if nohz_idle_balance() fails to observe our
9677 * @idle_cpus_mask store, it must observe the @has_blocked
9678 * store.
9679 */
9680 smp_mb__after_atomic();
9681
00357f5e 9682 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9683
9684out:
9685 /*
9686 * Each time a cpu enter idle, we assume that it has blocked load and
9687 * enable the periodic update of the load of idle cpus
9688 */
9689 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9690}
1e3c88bd 9691
1e3c88bd 9692/*
31e77c93
VG
9693 * Internal function that runs load balance for all idle cpus. The load balance
9694 * can be a simple update of blocked load or a complete load balance with
9695 * tasks movement depending of flags.
9696 * The function returns false if the loop has stopped before running
9697 * through all idle CPUs.
1e3c88bd 9698 */
31e77c93
VG
9699static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9700 enum cpu_idle_type idle)
83cd4fe2 9701{
c5afb6a8 9702 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9703 unsigned long now = jiffies;
9704 unsigned long next_balance = now + 60*HZ;
f643ea22 9705 bool has_blocked_load = false;
c5afb6a8 9706 int update_next_balance = 0;
b7031a02 9707 int this_cpu = this_rq->cpu;
b7031a02 9708 int balance_cpu;
31e77c93 9709 int ret = false;
b7031a02 9710 struct rq *rq;
83cd4fe2 9711
b7031a02 9712 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9713
f643ea22
VG
9714 /*
9715 * We assume there will be no idle load after this update and clear
9716 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9717 * set the has_blocked flag and trig another update of idle load.
9718 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9719 * setting the flag, we are sure to not clear the state and not
9720 * check the load of an idle cpu.
9721 */
9722 WRITE_ONCE(nohz.has_blocked, 0);
9723
9724 /*
9725 * Ensures that if we miss the CPU, we must see the has_blocked
9726 * store from nohz_balance_enter_idle().
9727 */
9728 smp_mb();
9729
83cd4fe2 9730 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9731 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9732 continue;
9733
9734 /*
97fb7a0a
IM
9735 * If this CPU gets work to do, stop the load balancing
9736 * work being done for other CPUs. Next load
83cd4fe2
VP
9737 * balancing owner will pick it up.
9738 */
f643ea22
VG
9739 if (need_resched()) {
9740 has_blocked_load = true;
9741 goto abort;
9742 }
83cd4fe2 9743
5ed4f1d9
VG
9744 rq = cpu_rq(balance_cpu);
9745
63928384 9746 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9747
ed61bbc6
TC
9748 /*
9749 * If time for next balance is due,
9750 * do the balance.
9751 */
9752 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9753 struct rq_flags rf;
9754
31e77c93 9755 rq_lock_irqsave(rq, &rf);
ed61bbc6 9756 update_rq_clock(rq);
cee1afce 9757 cpu_load_update_idle(rq);
31e77c93 9758 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9759
b7031a02
PZ
9760 if (flags & NOHZ_BALANCE_KICK)
9761 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9762 }
83cd4fe2 9763
c5afb6a8
VG
9764 if (time_after(next_balance, rq->next_balance)) {
9765 next_balance = rq->next_balance;
9766 update_next_balance = 1;
9767 }
83cd4fe2 9768 }
c5afb6a8 9769
31e77c93
VG
9770 /* Newly idle CPU doesn't need an update */
9771 if (idle != CPU_NEWLY_IDLE) {
9772 update_blocked_averages(this_cpu);
9773 has_blocked_load |= this_rq->has_blocked_load;
9774 }
9775
b7031a02
PZ
9776 if (flags & NOHZ_BALANCE_KICK)
9777 rebalance_domains(this_rq, CPU_IDLE);
9778
f643ea22
VG
9779 WRITE_ONCE(nohz.next_blocked,
9780 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9781
31e77c93
VG
9782 /* The full idle balance loop has been done */
9783 ret = true;
9784
f643ea22
VG
9785abort:
9786 /* There is still blocked load, enable periodic update */
9787 if (has_blocked_load)
9788 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9789
c5afb6a8
VG
9790 /*
9791 * next_balance will be updated only when there is a need.
9792 * When the CPU is attached to null domain for ex, it will not be
9793 * updated.
9794 */
9795 if (likely(update_next_balance))
9796 nohz.next_balance = next_balance;
b7031a02 9797
31e77c93
VG
9798 return ret;
9799}
9800
9801/*
9802 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9803 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9804 */
9805static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9806{
9807 int this_cpu = this_rq->cpu;
9808 unsigned int flags;
9809
9810 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9811 return false;
9812
9813 if (idle != CPU_IDLE) {
9814 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9815 return false;
9816 }
9817
80eb8657 9818 /* could be _relaxed() */
31e77c93
VG
9819 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9820 if (!(flags & NOHZ_KICK_MASK))
9821 return false;
9822
9823 _nohz_idle_balance(this_rq, flags, idle);
9824
b7031a02 9825 return true;
83cd4fe2 9826}
31e77c93
VG
9827
9828static void nohz_newidle_balance(struct rq *this_rq)
9829{
9830 int this_cpu = this_rq->cpu;
9831
9832 /*
9833 * This CPU doesn't want to be disturbed by scheduler
9834 * housekeeping
9835 */
9836 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9837 return;
9838
9839 /* Will wake up very soon. No time for doing anything else*/
9840 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9841 return;
9842
9843 /* Don't need to update blocked load of idle CPUs*/
9844 if (!READ_ONCE(nohz.has_blocked) ||
9845 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9846 return;
9847
9848 raw_spin_unlock(&this_rq->lock);
9849 /*
9850 * This CPU is going to be idle and blocked load of idle CPUs
9851 * need to be updated. Run the ilb locally as it is a good
9852 * candidate for ilb instead of waking up another idle CPU.
9853 * Kick an normal ilb if we failed to do the update.
9854 */
9855 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9856 kick_ilb(NOHZ_STATS_KICK);
9857 raw_spin_lock(&this_rq->lock);
9858}
9859
dd707247
PZ
9860#else /* !CONFIG_NO_HZ_COMMON */
9861static inline void nohz_balancer_kick(struct rq *rq) { }
9862
31e77c93 9863static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9864{
9865 return false;
9866}
31e77c93
VG
9867
9868static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9869#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9870
47ea5412
PZ
9871/*
9872 * idle_balance is called by schedule() if this_cpu is about to become
9873 * idle. Attempts to pull tasks from other CPUs.
9874 */
9875static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9876{
9877 unsigned long next_balance = jiffies + HZ;
9878 int this_cpu = this_rq->cpu;
9879 struct sched_domain *sd;
9880 int pulled_task = 0;
9881 u64 curr_cost = 0;
9882
9883 /*
9884 * We must set idle_stamp _before_ calling idle_balance(), such that we
9885 * measure the duration of idle_balance() as idle time.
9886 */
9887 this_rq->idle_stamp = rq_clock(this_rq);
9888
9889 /*
9890 * Do not pull tasks towards !active CPUs...
9891 */
9892 if (!cpu_active(this_cpu))
9893 return 0;
9894
9895 /*
9896 * This is OK, because current is on_cpu, which avoids it being picked
9897 * for load-balance and preemption/IRQs are still disabled avoiding
9898 * further scheduler activity on it and we're being very careful to
9899 * re-start the picking loop.
9900 */
9901 rq_unpin_lock(this_rq, rf);
9902
9903 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9904 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9905
47ea5412
PZ
9906 rcu_read_lock();
9907 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9908 if (sd)
9909 update_next_balance(sd, &next_balance);
9910 rcu_read_unlock();
9911
31e77c93
VG
9912 nohz_newidle_balance(this_rq);
9913
47ea5412
PZ
9914 goto out;
9915 }
9916
9917 raw_spin_unlock(&this_rq->lock);
9918
9919 update_blocked_averages(this_cpu);
9920 rcu_read_lock();
9921 for_each_domain(this_cpu, sd) {
9922 int continue_balancing = 1;
9923 u64 t0, domain_cost;
9924
9925 if (!(sd->flags & SD_LOAD_BALANCE))
9926 continue;
9927
9928 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9929 update_next_balance(sd, &next_balance);
9930 break;
9931 }
9932
9933 if (sd->flags & SD_BALANCE_NEWIDLE) {
9934 t0 = sched_clock_cpu(this_cpu);
9935
9936 pulled_task = load_balance(this_cpu, this_rq,
9937 sd, CPU_NEWLY_IDLE,
9938 &continue_balancing);
9939
9940 domain_cost = sched_clock_cpu(this_cpu) - t0;
9941 if (domain_cost > sd->max_newidle_lb_cost)
9942 sd->max_newidle_lb_cost = domain_cost;
9943
9944 curr_cost += domain_cost;
9945 }
9946
9947 update_next_balance(sd, &next_balance);
9948
9949 /*
9950 * Stop searching for tasks to pull if there are
9951 * now runnable tasks on this rq.
9952 */
9953 if (pulled_task || this_rq->nr_running > 0)
9954 break;
9955 }
9956 rcu_read_unlock();
9957
9958 raw_spin_lock(&this_rq->lock);
9959
9960 if (curr_cost > this_rq->max_idle_balance_cost)
9961 this_rq->max_idle_balance_cost = curr_cost;
9962
457be908 9963out:
47ea5412
PZ
9964 /*
9965 * While browsing the domains, we released the rq lock, a task could
9966 * have been enqueued in the meantime. Since we're not going idle,
9967 * pretend we pulled a task.
9968 */
9969 if (this_rq->cfs.h_nr_running && !pulled_task)
9970 pulled_task = 1;
9971
47ea5412
PZ
9972 /* Move the next balance forward */
9973 if (time_after(this_rq->next_balance, next_balance))
9974 this_rq->next_balance = next_balance;
9975
9976 /* Is there a task of a high priority class? */
9977 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9978 pulled_task = -1;
9979
9980 if (pulled_task)
9981 this_rq->idle_stamp = 0;
9982
9983 rq_repin_lock(this_rq, rf);
9984
9985 return pulled_task;
9986}
9987
83cd4fe2
VP
9988/*
9989 * run_rebalance_domains is triggered when needed from the scheduler tick.
9990 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9991 */
0766f788 9992static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9993{
208cb16b 9994 struct rq *this_rq = this_rq();
6eb57e0d 9995 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9996 CPU_IDLE : CPU_NOT_IDLE;
9997
1e3c88bd 9998 /*
97fb7a0a
IM
9999 * If this CPU has a pending nohz_balance_kick, then do the
10000 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10001 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10002 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10003 * load balance only within the local sched_domain hierarchy
10004 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10005 */
b7031a02
PZ
10006 if (nohz_idle_balance(this_rq, idle))
10007 return;
10008
10009 /* normal load balance */
10010 update_blocked_averages(this_rq->cpu);
d4573c3e 10011 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10012}
10013
1e3c88bd
PZ
10014/*
10015 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10016 */
7caff66f 10017void trigger_load_balance(struct rq *rq)
1e3c88bd 10018{
1e3c88bd 10019 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10020 if (unlikely(on_null_domain(rq)))
10021 return;
10022
10023 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10024 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10025
10026 nohz_balancer_kick(rq);
1e3c88bd
PZ
10027}
10028
0bcdcf28
CE
10029static void rq_online_fair(struct rq *rq)
10030{
10031 update_sysctl();
0e59bdae
KT
10032
10033 update_runtime_enabled(rq);
0bcdcf28
CE
10034}
10035
10036static void rq_offline_fair(struct rq *rq)
10037{
10038 update_sysctl();
a4c96ae3
PB
10039
10040 /* Ensure any throttled groups are reachable by pick_next_task */
10041 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10042}
10043
55e12e5e 10044#endif /* CONFIG_SMP */
e1d1484f 10045
bf0f6f24 10046/*
d84b3131
FW
10047 * scheduler tick hitting a task of our scheduling class.
10048 *
10049 * NOTE: This function can be called remotely by the tick offload that
10050 * goes along full dynticks. Therefore no local assumption can be made
10051 * and everything must be accessed through the @rq and @curr passed in
10052 * parameters.
bf0f6f24 10053 */
8f4d37ec 10054static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10055{
10056 struct cfs_rq *cfs_rq;
10057 struct sched_entity *se = &curr->se;
10058
10059 for_each_sched_entity(se) {
10060 cfs_rq = cfs_rq_of(se);
8f4d37ec 10061 entity_tick(cfs_rq, se, queued);
bf0f6f24 10062 }
18bf2805 10063
b52da86e 10064 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10065 task_tick_numa(rq, curr);
3b1baa64
MR
10066
10067 update_misfit_status(curr, rq);
2802bf3c 10068 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10069}
10070
10071/*
cd29fe6f
PZ
10072 * called on fork with the child task as argument from the parent's context
10073 * - child not yet on the tasklist
10074 * - preemption disabled
bf0f6f24 10075 */
cd29fe6f 10076static void task_fork_fair(struct task_struct *p)
bf0f6f24 10077{
4fc420c9
DN
10078 struct cfs_rq *cfs_rq;
10079 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10080 struct rq *rq = this_rq();
8a8c69c3 10081 struct rq_flags rf;
bf0f6f24 10082
8a8c69c3 10083 rq_lock(rq, &rf);
861d034e
PZ
10084 update_rq_clock(rq);
10085
4fc420c9
DN
10086 cfs_rq = task_cfs_rq(current);
10087 curr = cfs_rq->curr;
e210bffd
PZ
10088 if (curr) {
10089 update_curr(cfs_rq);
b5d9d734 10090 se->vruntime = curr->vruntime;
e210bffd 10091 }
aeb73b04 10092 place_entity(cfs_rq, se, 1);
4d78e7b6 10093
cd29fe6f 10094 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10095 /*
edcb60a3
IM
10096 * Upon rescheduling, sched_class::put_prev_task() will place
10097 * 'current' within the tree based on its new key value.
10098 */
4d78e7b6 10099 swap(curr->vruntime, se->vruntime);
8875125e 10100 resched_curr(rq);
4d78e7b6 10101 }
bf0f6f24 10102
88ec22d3 10103 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10104 rq_unlock(rq, &rf);
bf0f6f24
IM
10105}
10106
cb469845
SR
10107/*
10108 * Priority of the task has changed. Check to see if we preempt
10109 * the current task.
10110 */
da7a735e
PZ
10111static void
10112prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10113{
da0c1e65 10114 if (!task_on_rq_queued(p))
da7a735e
PZ
10115 return;
10116
cb469845
SR
10117 /*
10118 * Reschedule if we are currently running on this runqueue and
10119 * our priority decreased, or if we are not currently running on
10120 * this runqueue and our priority is higher than the current's
10121 */
da7a735e 10122 if (rq->curr == p) {
cb469845 10123 if (p->prio > oldprio)
8875125e 10124 resched_curr(rq);
cb469845 10125 } else
15afe09b 10126 check_preempt_curr(rq, p, 0);
cb469845
SR
10127}
10128
daa59407 10129static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10130{
10131 struct sched_entity *se = &p->se;
da7a735e
PZ
10132
10133 /*
daa59407
BP
10134 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10135 * the dequeue_entity(.flags=0) will already have normalized the
10136 * vruntime.
10137 */
10138 if (p->on_rq)
10139 return true;
10140
10141 /*
10142 * When !on_rq, vruntime of the task has usually NOT been normalized.
10143 * But there are some cases where it has already been normalized:
da7a735e 10144 *
daa59407
BP
10145 * - A forked child which is waiting for being woken up by
10146 * wake_up_new_task().
10147 * - A task which has been woken up by try_to_wake_up() and
10148 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10149 */
d0cdb3ce
SM
10150 if (!se->sum_exec_runtime ||
10151 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10152 return true;
10153
10154 return false;
10155}
10156
09a43ace
VG
10157#ifdef CONFIG_FAIR_GROUP_SCHED
10158/*
10159 * Propagate the changes of the sched_entity across the tg tree to make it
10160 * visible to the root
10161 */
10162static void propagate_entity_cfs_rq(struct sched_entity *se)
10163{
10164 struct cfs_rq *cfs_rq;
10165
10166 /* Start to propagate at parent */
10167 se = se->parent;
10168
10169 for_each_sched_entity(se) {
10170 cfs_rq = cfs_rq_of(se);
10171
10172 if (cfs_rq_throttled(cfs_rq))
10173 break;
10174
88c0616e 10175 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10176 }
10177}
10178#else
10179static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10180#endif
10181
df217913 10182static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10183{
daa59407
BP
10184 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10185
9d89c257 10186 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10187 update_load_avg(cfs_rq, se, 0);
a05e8c51 10188 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10189 update_tg_load_avg(cfs_rq, false);
09a43ace 10190 propagate_entity_cfs_rq(se);
da7a735e
PZ
10191}
10192
df217913 10193static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10194{
daa59407 10195 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10196
10197#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10198 /*
10199 * Since the real-depth could have been changed (only FAIR
10200 * class maintain depth value), reset depth properly.
10201 */
10202 se->depth = se->parent ? se->parent->depth + 1 : 0;
10203#endif
7855a35a 10204
df217913 10205 /* Synchronize entity with its cfs_rq */
88c0616e 10206 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10207 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10208 update_tg_load_avg(cfs_rq, false);
09a43ace 10209 propagate_entity_cfs_rq(se);
df217913
VG
10210}
10211
10212static void detach_task_cfs_rq(struct task_struct *p)
10213{
10214 struct sched_entity *se = &p->se;
10215 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10216
10217 if (!vruntime_normalized(p)) {
10218 /*
10219 * Fix up our vruntime so that the current sleep doesn't
10220 * cause 'unlimited' sleep bonus.
10221 */
10222 place_entity(cfs_rq, se, 0);
10223 se->vruntime -= cfs_rq->min_vruntime;
10224 }
10225
10226 detach_entity_cfs_rq(se);
10227}
10228
10229static void attach_task_cfs_rq(struct task_struct *p)
10230{
10231 struct sched_entity *se = &p->se;
10232 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10233
10234 attach_entity_cfs_rq(se);
daa59407
BP
10235
10236 if (!vruntime_normalized(p))
10237 se->vruntime += cfs_rq->min_vruntime;
10238}
6efdb105 10239
daa59407
BP
10240static void switched_from_fair(struct rq *rq, struct task_struct *p)
10241{
10242 detach_task_cfs_rq(p);
10243}
10244
10245static void switched_to_fair(struct rq *rq, struct task_struct *p)
10246{
10247 attach_task_cfs_rq(p);
7855a35a 10248
daa59407 10249 if (task_on_rq_queued(p)) {
7855a35a 10250 /*
daa59407
BP
10251 * We were most likely switched from sched_rt, so
10252 * kick off the schedule if running, otherwise just see
10253 * if we can still preempt the current task.
7855a35a 10254 */
daa59407
BP
10255 if (rq->curr == p)
10256 resched_curr(rq);
10257 else
10258 check_preempt_curr(rq, p, 0);
7855a35a 10259 }
cb469845
SR
10260}
10261
83b699ed
SV
10262/* Account for a task changing its policy or group.
10263 *
10264 * This routine is mostly called to set cfs_rq->curr field when a task
10265 * migrates between groups/classes.
10266 */
10267static void set_curr_task_fair(struct rq *rq)
10268{
10269 struct sched_entity *se = &rq->curr->se;
10270
ec12cb7f
PT
10271 for_each_sched_entity(se) {
10272 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10273
10274 set_next_entity(cfs_rq, se);
10275 /* ensure bandwidth has been allocated on our new cfs_rq */
10276 account_cfs_rq_runtime(cfs_rq, 0);
10277 }
83b699ed
SV
10278}
10279
029632fb
PZ
10280void init_cfs_rq(struct cfs_rq *cfs_rq)
10281{
bfb06889 10282 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10283 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10284#ifndef CONFIG_64BIT
10285 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10286#endif
141965c7 10287#ifdef CONFIG_SMP
2a2f5d4e 10288 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10289#endif
029632fb
PZ
10290}
10291
810b3817 10292#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10293static void task_set_group_fair(struct task_struct *p)
10294{
10295 struct sched_entity *se = &p->se;
10296
10297 set_task_rq(p, task_cpu(p));
10298 se->depth = se->parent ? se->parent->depth + 1 : 0;
10299}
10300
bc54da21 10301static void task_move_group_fair(struct task_struct *p)
810b3817 10302{
daa59407 10303 detach_task_cfs_rq(p);
b2b5ce02 10304 set_task_rq(p, task_cpu(p));
6efdb105
BP
10305
10306#ifdef CONFIG_SMP
10307 /* Tell se's cfs_rq has been changed -- migrated */
10308 p->se.avg.last_update_time = 0;
10309#endif
daa59407 10310 attach_task_cfs_rq(p);
810b3817 10311}
029632fb 10312
ea86cb4b
VG
10313static void task_change_group_fair(struct task_struct *p, int type)
10314{
10315 switch (type) {
10316 case TASK_SET_GROUP:
10317 task_set_group_fair(p);
10318 break;
10319
10320 case TASK_MOVE_GROUP:
10321 task_move_group_fair(p);
10322 break;
10323 }
10324}
10325
029632fb
PZ
10326void free_fair_sched_group(struct task_group *tg)
10327{
10328 int i;
10329
10330 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10331
10332 for_each_possible_cpu(i) {
10333 if (tg->cfs_rq)
10334 kfree(tg->cfs_rq[i]);
6fe1f348 10335 if (tg->se)
029632fb
PZ
10336 kfree(tg->se[i]);
10337 }
10338
10339 kfree(tg->cfs_rq);
10340 kfree(tg->se);
10341}
10342
10343int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10344{
029632fb 10345 struct sched_entity *se;
b7fa30c9 10346 struct cfs_rq *cfs_rq;
029632fb
PZ
10347 int i;
10348
6396bb22 10349 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10350 if (!tg->cfs_rq)
10351 goto err;
6396bb22 10352 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10353 if (!tg->se)
10354 goto err;
10355
10356 tg->shares = NICE_0_LOAD;
10357
10358 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10359
10360 for_each_possible_cpu(i) {
10361 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10362 GFP_KERNEL, cpu_to_node(i));
10363 if (!cfs_rq)
10364 goto err;
10365
10366 se = kzalloc_node(sizeof(struct sched_entity),
10367 GFP_KERNEL, cpu_to_node(i));
10368 if (!se)
10369 goto err_free_rq;
10370
10371 init_cfs_rq(cfs_rq);
10372 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10373 init_entity_runnable_average(se);
029632fb
PZ
10374 }
10375
10376 return 1;
10377
10378err_free_rq:
10379 kfree(cfs_rq);
10380err:
10381 return 0;
10382}
10383
8663e24d
PZ
10384void online_fair_sched_group(struct task_group *tg)
10385{
10386 struct sched_entity *se;
10387 struct rq *rq;
10388 int i;
10389
10390 for_each_possible_cpu(i) {
10391 rq = cpu_rq(i);
10392 se = tg->se[i];
10393
10394 raw_spin_lock_irq(&rq->lock);
4126bad6 10395 update_rq_clock(rq);
d0326691 10396 attach_entity_cfs_rq(se);
55e16d30 10397 sync_throttle(tg, i);
8663e24d
PZ
10398 raw_spin_unlock_irq(&rq->lock);
10399 }
10400}
10401
6fe1f348 10402void unregister_fair_sched_group(struct task_group *tg)
029632fb 10403{
029632fb 10404 unsigned long flags;
6fe1f348
PZ
10405 struct rq *rq;
10406 int cpu;
029632fb 10407
6fe1f348
PZ
10408 for_each_possible_cpu(cpu) {
10409 if (tg->se[cpu])
10410 remove_entity_load_avg(tg->se[cpu]);
029632fb 10411
6fe1f348
PZ
10412 /*
10413 * Only empty task groups can be destroyed; so we can speculatively
10414 * check on_list without danger of it being re-added.
10415 */
10416 if (!tg->cfs_rq[cpu]->on_list)
10417 continue;
10418
10419 rq = cpu_rq(cpu);
10420
10421 raw_spin_lock_irqsave(&rq->lock, flags);
10422 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10423 raw_spin_unlock_irqrestore(&rq->lock, flags);
10424 }
029632fb
PZ
10425}
10426
10427void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10428 struct sched_entity *se, int cpu,
10429 struct sched_entity *parent)
10430{
10431 struct rq *rq = cpu_rq(cpu);
10432
10433 cfs_rq->tg = tg;
10434 cfs_rq->rq = rq;
029632fb
PZ
10435 init_cfs_rq_runtime(cfs_rq);
10436
10437 tg->cfs_rq[cpu] = cfs_rq;
10438 tg->se[cpu] = se;
10439
10440 /* se could be NULL for root_task_group */
10441 if (!se)
10442 return;
10443
fed14d45 10444 if (!parent) {
029632fb 10445 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10446 se->depth = 0;
10447 } else {
029632fb 10448 se->cfs_rq = parent->my_q;
fed14d45
PZ
10449 se->depth = parent->depth + 1;
10450 }
029632fb
PZ
10451
10452 se->my_q = cfs_rq;
0ac9b1c2
PT
10453 /* guarantee group entities always have weight */
10454 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10455 se->parent = parent;
10456}
10457
10458static DEFINE_MUTEX(shares_mutex);
10459
10460int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10461{
10462 int i;
029632fb
PZ
10463
10464 /*
10465 * We can't change the weight of the root cgroup.
10466 */
10467 if (!tg->se[0])
10468 return -EINVAL;
10469
10470 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10471
10472 mutex_lock(&shares_mutex);
10473 if (tg->shares == shares)
10474 goto done;
10475
10476 tg->shares = shares;
10477 for_each_possible_cpu(i) {
10478 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10479 struct sched_entity *se = tg->se[i];
10480 struct rq_flags rf;
029632fb 10481
029632fb 10482 /* Propagate contribution to hierarchy */
8a8c69c3 10483 rq_lock_irqsave(rq, &rf);
71b1da46 10484 update_rq_clock(rq);
89ee048f 10485 for_each_sched_entity(se) {
88c0616e 10486 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10487 update_cfs_group(se);
89ee048f 10488 }
8a8c69c3 10489 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10490 }
10491
10492done:
10493 mutex_unlock(&shares_mutex);
10494 return 0;
10495}
10496#else /* CONFIG_FAIR_GROUP_SCHED */
10497
10498void free_fair_sched_group(struct task_group *tg) { }
10499
10500int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10501{
10502 return 1;
10503}
10504
8663e24d
PZ
10505void online_fair_sched_group(struct task_group *tg) { }
10506
6fe1f348 10507void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10508
10509#endif /* CONFIG_FAIR_GROUP_SCHED */
10510
810b3817 10511
6d686f45 10512static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10513{
10514 struct sched_entity *se = &task->se;
0d721cea
PW
10515 unsigned int rr_interval = 0;
10516
10517 /*
10518 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10519 * idle runqueue:
10520 */
0d721cea 10521 if (rq->cfs.load.weight)
a59f4e07 10522 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10523
10524 return rr_interval;
10525}
10526
bf0f6f24
IM
10527/*
10528 * All the scheduling class methods:
10529 */
029632fb 10530const struct sched_class fair_sched_class = {
5522d5d5 10531 .next = &idle_sched_class,
bf0f6f24
IM
10532 .enqueue_task = enqueue_task_fair,
10533 .dequeue_task = dequeue_task_fair,
10534 .yield_task = yield_task_fair,
d95f4122 10535 .yield_to_task = yield_to_task_fair,
bf0f6f24 10536
2e09bf55 10537 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10538
10539 .pick_next_task = pick_next_task_fair,
10540 .put_prev_task = put_prev_task_fair,
10541
681f3e68 10542#ifdef CONFIG_SMP
4ce72a2c 10543 .select_task_rq = select_task_rq_fair,
0a74bef8 10544 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10545
0bcdcf28
CE
10546 .rq_online = rq_online_fair,
10547 .rq_offline = rq_offline_fair,
88ec22d3 10548
12695578 10549 .task_dead = task_dead_fair,
c5b28038 10550 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10551#endif
bf0f6f24 10552
83b699ed 10553 .set_curr_task = set_curr_task_fair,
bf0f6f24 10554 .task_tick = task_tick_fair,
cd29fe6f 10555 .task_fork = task_fork_fair,
cb469845
SR
10556
10557 .prio_changed = prio_changed_fair,
da7a735e 10558 .switched_from = switched_from_fair,
cb469845 10559 .switched_to = switched_to_fair,
810b3817 10560
0d721cea
PW
10561 .get_rr_interval = get_rr_interval_fair,
10562
6e998916
SG
10563 .update_curr = update_curr_fair,
10564
810b3817 10565#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10566 .task_change_group = task_change_group_fair,
810b3817 10567#endif
bf0f6f24
IM
10568};
10569
10570#ifdef CONFIG_SCHED_DEBUG
029632fb 10571void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10572{
a9e7f654 10573 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10574
5973e5b9 10575 rcu_read_lock();
a9e7f654 10576 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10577 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10578 rcu_read_unlock();
bf0f6f24 10579}
397f2378
SD
10580
10581#ifdef CONFIG_NUMA_BALANCING
10582void show_numa_stats(struct task_struct *p, struct seq_file *m)
10583{
10584 int node;
10585 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10586
10587 for_each_online_node(node) {
10588 if (p->numa_faults) {
10589 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10590 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10591 }
10592 if (p->numa_group) {
10593 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10594 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10595 }
10596 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10597 }
10598}
10599#endif /* CONFIG_NUMA_BALANCING */
10600#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10601
10602__init void init_sched_fair_class(void)
10603{
10604#ifdef CONFIG_SMP
10605 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10606
3451d024 10607#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10608 nohz.next_balance = jiffies;
f643ea22 10609 nohz.next_blocked = jiffies;
029632fb 10610 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10611#endif
10612#endif /* SMP */
10613
10614}