irq_work, smp: Allow irq_work on call_single_queue
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
05289b90
TG
89int sched_thermal_decay_shift;
90static int __init setup_sched_thermal_decay_shift(char *str)
91{
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99}
100__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
97fb7a0a 104 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
6d101ba6
OJ
110
111/*
60e17f5c 112 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
113 *
114 * (default: ~20%)
115 */
60e17f5c
VK
116#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
afe06efd
TC
118#endif
119
ec12cb7f
PT
120#ifdef CONFIG_CFS_BANDWIDTH
121/*
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
124 *
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
128 *
2b4d5b25
IM
129 * (default: 5 msec, units: microseconds)
130 */
131unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
132#endif
133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
f38f12d1 194void __init sched_init_granularity(void)
029632fb
PZ
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
2eeb01a2 245 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 246
9dbdb155
PZ
247 while (fact >> 32) {
248 fact >>= 1;
249 shift--;
250 }
029632fb 251
9dbdb155 252 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
253}
254
255
256const struct sched_class fair_sched_class;
a4c2f00f 257
bf0f6f24
IM
258/**************************************************************
259 * CFS operations on generic schedulable entities:
260 */
261
62160e3f 262#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
9148a3a1 265 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
266 return container_of(se, struct task_struct, se);
267}
268
b758149c
PZ
269/* Walk up scheduling entities hierarchy */
270#define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274{
275 return p->se.cfs_rq;
276}
277
278/* runqueue on which this entity is (to be) queued */
279static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280{
281 return se->cfs_rq;
282}
283
284/* runqueue "owned" by this group */
285static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286{
287 return grp->my_q;
288}
289
3c93a0c0
QY
290static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291{
292 if (!path)
293 return;
294
295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 autogroup_path(cfs_rq->tg, path, len);
297 else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 else
300 strlcpy(path, "(null)", len);
301}
302
f6783319 303static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 304{
5d299eab
PZ
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307
308 if (cfs_rq->on_list)
f6783319 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
310
311 cfs_rq->on_list = 1;
312
313 /*
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
321 */
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 324 /*
5d299eab
PZ
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
67e86250 329 */
5d299eab
PZ
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 /*
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
336 */
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 338 return true;
5d299eab 339 }
3d4b47b4 340
5d299eab
PZ
341 if (!cfs_rq->tg->parent) {
342 /*
343 * cfs rq without parent should be put
344 * at the tail of the list.
345 */
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
348 /*
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
351 */
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 353 return true;
3d4b47b4 354 }
5d299eab
PZ
355
356 /*
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
361 */
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 /*
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
366 */
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 368 return false;
3d4b47b4
PZ
369}
370
371static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372{
373 if (cfs_rq->on_list) {
31bc6aea
VG
374 struct rq *rq = rq_of(cfs_rq);
375
376 /*
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
382 */
383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385
3d4b47b4
PZ
386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 cfs_rq->on_list = 0;
388 }
389}
390
5d299eab
PZ
391static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392{
393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394}
395
039ae8bc
VG
396/* Iterate thr' all leaf cfs_rq's on a runqueue */
397#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 leaf_cfs_rq_list)
b758149c
PZ
400
401/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 402static inline struct cfs_rq *
b758149c
PZ
403is_same_group(struct sched_entity *se, struct sched_entity *pse)
404{
405 if (se->cfs_rq == pse->cfs_rq)
fed14d45 406 return se->cfs_rq;
b758149c 407
fed14d45 408 return NULL;
b758149c
PZ
409}
410
411static inline struct sched_entity *parent_entity(struct sched_entity *se)
412{
413 return se->parent;
414}
415
464b7527
PZ
416static void
417find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418{
419 int se_depth, pse_depth;
420
421 /*
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
425 * parent.
426 */
427
428 /* First walk up until both entities are at same depth */
fed14d45
PZ
429 se_depth = (*se)->depth;
430 pse_depth = (*pse)->depth;
464b7527
PZ
431
432 while (se_depth > pse_depth) {
433 se_depth--;
434 *se = parent_entity(*se);
435 }
436
437 while (pse_depth > se_depth) {
438 pse_depth--;
439 *pse = parent_entity(*pse);
440 }
441
442 while (!is_same_group(*se, *pse)) {
443 *se = parent_entity(*se);
444 *pse = parent_entity(*pse);
445 }
446}
447
8f48894f
PZ
448#else /* !CONFIG_FAIR_GROUP_SCHED */
449
450static inline struct task_struct *task_of(struct sched_entity *se)
451{
452 return container_of(se, struct task_struct, se);
453}
bf0f6f24 454
b758149c
PZ
455#define for_each_sched_entity(se) \
456 for (; se; se = NULL)
bf0f6f24 457
b758149c 458static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 459{
b758149c 460 return &task_rq(p)->cfs;
bf0f6f24
IM
461}
462
b758149c
PZ
463static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464{
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
467
468 return &rq->cfs;
469}
470
471/* runqueue "owned" by this group */
472static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473{
474 return NULL;
475}
476
3c93a0c0
QY
477static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478{
479 if (path)
480 strlcpy(path, "(null)", len);
481}
482
f6783319 483static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 484{
f6783319 485 return true;
3d4b47b4
PZ
486}
487
488static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489{
490}
491
5d299eab
PZ
492static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493{
494}
495
039ae8bc
VG
496#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 498
b758149c
PZ
499static inline struct sched_entity *parent_entity(struct sched_entity *se)
500{
501 return NULL;
502}
503
464b7527
PZ
504static inline void
505find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506{
507}
508
b758149c
PZ
509#endif /* CONFIG_FAIR_GROUP_SCHED */
510
6c16a6dc 511static __always_inline
9dbdb155 512void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
513
514/**************************************************************
515 * Scheduling class tree data structure manipulation methods:
516 */
517
1bf08230 518static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 519{
1bf08230 520 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 521 if (delta > 0)
1bf08230 522 max_vruntime = vruntime;
02e0431a 523
1bf08230 524 return max_vruntime;
02e0431a
PZ
525}
526
0702e3eb 527static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
528{
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
532
533 return min_vruntime;
534}
535
54fdc581
FC
536static inline int entity_before(struct sched_entity *a,
537 struct sched_entity *b)
538{
539 return (s64)(a->vruntime - b->vruntime) < 0;
540}
541
1af5f730
PZ
542static void update_min_vruntime(struct cfs_rq *cfs_rq)
543{
b60205c7 544 struct sched_entity *curr = cfs_rq->curr;
bfb06889 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 546
1af5f730
PZ
547 u64 vruntime = cfs_rq->min_vruntime;
548
b60205c7
PZ
549 if (curr) {
550 if (curr->on_rq)
551 vruntime = curr->vruntime;
552 else
553 curr = NULL;
554 }
1af5f730 555
bfb06889
DB
556 if (leftmost) { /* non-empty tree */
557 struct sched_entity *se;
558 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 559
b60205c7 560 if (!curr)
1af5f730
PZ
561 vruntime = se->vruntime;
562 else
563 vruntime = min_vruntime(vruntime, se->vruntime);
564 }
565
1bf08230 566 /* ensure we never gain time by being placed backwards. */
1af5f730 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
568#ifndef CONFIG_64BIT
569 smp_wmb();
570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571#endif
1af5f730
PZ
572}
573
bf0f6f24
IM
574/*
575 * Enqueue an entity into the rb-tree:
576 */
0702e3eb 577static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 578{
bfb06889 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
580 struct rb_node *parent = NULL;
581 struct sched_entity *entry;
bfb06889 582 bool leftmost = true;
bf0f6f24
IM
583
584 /*
585 * Find the right place in the rbtree:
586 */
587 while (*link) {
588 parent = *link;
589 entry = rb_entry(parent, struct sched_entity, run_node);
590 /*
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
593 */
2bd2d6f2 594 if (entity_before(se, entry)) {
bf0f6f24
IM
595 link = &parent->rb_left;
596 } else {
597 link = &parent->rb_right;
bfb06889 598 leftmost = false;
bf0f6f24
IM
599 }
600 }
601
bf0f6f24 602 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
603 rb_insert_color_cached(&se->run_node,
604 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
605}
606
0702e3eb 607static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
bfb06889 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
610}
611
029632fb 612struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 613{
bfb06889 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
615
616 if (!left)
617 return NULL;
618
619 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
620}
621
ac53db59
RR
622static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623{
624 struct rb_node *next = rb_next(&se->run_node);
625
626 if (!next)
627 return NULL;
628
629 return rb_entry(next, struct sched_entity, run_node);
630}
631
632#ifdef CONFIG_SCHED_DEBUG
029632fb 633struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 634{
bfb06889 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 636
70eee74b
BS
637 if (!last)
638 return NULL;
7eee3e67
IM
639
640 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
641}
642
bf0f6f24
IM
643/**************************************************************
644 * Scheduling class statistics methods:
645 */
646
acb4a848 647int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 648 void __user *buffer, size_t *lenp,
b2be5e96
PZ
649 loff_t *ppos)
650{
8d65af78 651 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 652 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
653
654 if (ret || !write)
655 return ret;
656
657 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
658 sysctl_sched_min_granularity);
659
acb4a848
CE
660#define WRT_SYSCTL(name) \
661 (normalized_sysctl_##name = sysctl_##name / (factor))
662 WRT_SYSCTL(sched_min_granularity);
663 WRT_SYSCTL(sched_latency);
664 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
665#undef WRT_SYSCTL
666
b2be5e96
PZ
667 return 0;
668}
669#endif
647e7cac 670
a7be37ac 671/*
f9c0b095 672 * delta /= w
a7be37ac 673 */
9dbdb155 674static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 675{
f9c0b095 676 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 677 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
678
679 return delta;
680}
681
647e7cac
IM
682/*
683 * The idea is to set a period in which each task runs once.
684 *
532b1858 685 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
686 * this period because otherwise the slices get too small.
687 *
688 * p = (nr <= nl) ? l : l*nr/nl
689 */
4d78e7b6
PZ
690static u64 __sched_period(unsigned long nr_running)
691{
8e2b0bf3
BF
692 if (unlikely(nr_running > sched_nr_latency))
693 return nr_running * sysctl_sched_min_granularity;
694 else
695 return sysctl_sched_latency;
4d78e7b6
PZ
696}
697
647e7cac
IM
698/*
699 * We calculate the wall-time slice from the period by taking a part
700 * proportional to the weight.
701 *
f9c0b095 702 * s = p*P[w/rw]
647e7cac 703 */
6d0f0ebd 704static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 705{
0a582440 706 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 707
0a582440 708 for_each_sched_entity(se) {
6272d68c 709 struct load_weight *load;
3104bf03 710 struct load_weight lw;
6272d68c
LM
711
712 cfs_rq = cfs_rq_of(se);
713 load = &cfs_rq->load;
f9c0b095 714
0a582440 715 if (unlikely(!se->on_rq)) {
3104bf03 716 lw = cfs_rq->load;
0a582440
MG
717
718 update_load_add(&lw, se->load.weight);
719 load = &lw;
720 }
9dbdb155 721 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
722 }
723 return slice;
bf0f6f24
IM
724}
725
647e7cac 726/*
660cc00f 727 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 728 *
f9c0b095 729 * vs = s/w
647e7cac 730 */
f9c0b095 731static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 732{
f9c0b095 733 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
734}
735
c0796298 736#include "pelt.h"
23127296 737#ifdef CONFIG_SMP
283e2ed3 738
772bd008 739static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 740static unsigned long task_h_load(struct task_struct *p);
3b1baa64 741static unsigned long capacity_of(int cpu);
fb13c7ee 742
540247fb
YD
743/* Give new sched_entity start runnable values to heavy its load in infant time */
744void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 745{
540247fb 746 struct sched_avg *sa = &se->avg;
a75cdaa9 747
f207934f
PZ
748 memset(sa, 0, sizeof(*sa));
749
b5a9b340 750 /*
dfcb245e 751 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 752 * they get a chance to stabilize to their real load level.
dfcb245e 753 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
754 * nothing has been attached to the task group yet.
755 */
756 if (entity_is_task(se))
0dacee1b 757 sa->load_avg = scale_load_down(se->load.weight);
f207934f 758
9d89c257 759 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 760}
7ea241af 761
df217913 762static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 763
2b8c41da
YD
764/*
765 * With new tasks being created, their initial util_avgs are extrapolated
766 * based on the cfs_rq's current util_avg:
767 *
768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 *
770 * However, in many cases, the above util_avg does not give a desired
771 * value. Moreover, the sum of the util_avgs may be divergent, such
772 * as when the series is a harmonic series.
773 *
774 * To solve this problem, we also cap the util_avg of successive tasks to
775 * only 1/2 of the left utilization budget:
776 *
8fe5c5a9 777 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 778 *
8fe5c5a9 779 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 780 *
8fe5c5a9
QP
781 * For example, for a CPU with 1024 of capacity, a simplest series from
782 * the beginning would be like:
2b8c41da
YD
783 *
784 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
785 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 *
787 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
788 * if util_avg > util_avg_cap.
789 */
d0fe0b9c 790void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 791{
d0fe0b9c 792 struct sched_entity *se = &p->se;
2b8c41da
YD
793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
794 struct sched_avg *sa = &se->avg;
8ec59c0f 795 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 796 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
797
798 if (cap > 0) {
799 if (cfs_rq->avg.util_avg != 0) {
800 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
801 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
802
803 if (sa->util_avg > cap)
804 sa->util_avg = cap;
805 } else {
806 sa->util_avg = cap;
807 }
2b8c41da 808 }
7dc603c9 809
9f683953
VG
810 sa->runnable_avg = cpu_scale;
811
d0fe0b9c
DE
812 if (p->sched_class != &fair_sched_class) {
813 /*
814 * For !fair tasks do:
815 *
816 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 817 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
818 switched_from_fair(rq, p);
819 *
820 * such that the next switched_to_fair() has the
821 * expected state.
822 */
823 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
824 return;
7dc603c9
PZ
825 }
826
df217913 827 attach_entity_cfs_rq(se);
2b8c41da
YD
828}
829
7dc603c9 830#else /* !CONFIG_SMP */
540247fb 831void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
832{
833}
d0fe0b9c 834void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
835{
836}
3d30544f
PZ
837static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
838{
839}
7dc603c9 840#endif /* CONFIG_SMP */
a75cdaa9 841
bf0f6f24 842/*
9dbdb155 843 * Update the current task's runtime statistics.
bf0f6f24 844 */
b7cc0896 845static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 846{
429d43bc 847 struct sched_entity *curr = cfs_rq->curr;
78becc27 848 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 849 u64 delta_exec;
bf0f6f24
IM
850
851 if (unlikely(!curr))
852 return;
853
9dbdb155
PZ
854 delta_exec = now - curr->exec_start;
855 if (unlikely((s64)delta_exec <= 0))
34f28ecd 856 return;
bf0f6f24 857
8ebc91d9 858 curr->exec_start = now;
d842de87 859
9dbdb155
PZ
860 schedstat_set(curr->statistics.exec_max,
861 max(delta_exec, curr->statistics.exec_max));
862
863 curr->sum_exec_runtime += delta_exec;
ae92882e 864 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
865
866 curr->vruntime += calc_delta_fair(delta_exec, curr);
867 update_min_vruntime(cfs_rq);
868
d842de87
SV
869 if (entity_is_task(curr)) {
870 struct task_struct *curtask = task_of(curr);
871
f977bb49 872 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 873 cgroup_account_cputime(curtask, delta_exec);
f06febc9 874 account_group_exec_runtime(curtask, delta_exec);
d842de87 875 }
ec12cb7f
PT
876
877 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
878}
879
6e998916
SG
880static void update_curr_fair(struct rq *rq)
881{
882 update_curr(cfs_rq_of(&rq->curr->se));
883}
884
bf0f6f24 885static inline void
5870db5b 886update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 887{
4fa8d299
JP
888 u64 wait_start, prev_wait_start;
889
890 if (!schedstat_enabled())
891 return;
892
893 wait_start = rq_clock(rq_of(cfs_rq));
894 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
895
896 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
897 likely(wait_start > prev_wait_start))
898 wait_start -= prev_wait_start;
3ea94de1 899
2ed41a55 900 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
901}
902
4fa8d299 903static inline void
3ea94de1
JP
904update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
905{
906 struct task_struct *p;
cb251765
MG
907 u64 delta;
908
4fa8d299
JP
909 if (!schedstat_enabled())
910 return;
911
912 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
913
914 if (entity_is_task(se)) {
915 p = task_of(se);
916 if (task_on_rq_migrating(p)) {
917 /*
918 * Preserve migrating task's wait time so wait_start
919 * time stamp can be adjusted to accumulate wait time
920 * prior to migration.
921 */
2ed41a55 922 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
923 return;
924 }
925 trace_sched_stat_wait(p, delta);
926 }
927
2ed41a55 928 __schedstat_set(se->statistics.wait_max,
4fa8d299 929 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
930 __schedstat_inc(se->statistics.wait_count);
931 __schedstat_add(se->statistics.wait_sum, delta);
932 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 933}
3ea94de1 934
4fa8d299 935static inline void
1a3d027c
JP
936update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
937{
938 struct task_struct *tsk = NULL;
4fa8d299
JP
939 u64 sleep_start, block_start;
940
941 if (!schedstat_enabled())
942 return;
943
944 sleep_start = schedstat_val(se->statistics.sleep_start);
945 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
946
947 if (entity_is_task(se))
948 tsk = task_of(se);
949
4fa8d299
JP
950 if (sleep_start) {
951 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
952
953 if ((s64)delta < 0)
954 delta = 0;
955
4fa8d299 956 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 957 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 958
2ed41a55
PZ
959 __schedstat_set(se->statistics.sleep_start, 0);
960 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
961
962 if (tsk) {
963 account_scheduler_latency(tsk, delta >> 10, 1);
964 trace_sched_stat_sleep(tsk, delta);
965 }
966 }
4fa8d299
JP
967 if (block_start) {
968 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
969
970 if ((s64)delta < 0)
971 delta = 0;
972
4fa8d299 973 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 974 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 975
2ed41a55
PZ
976 __schedstat_set(se->statistics.block_start, 0);
977 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
978
979 if (tsk) {
980 if (tsk->in_iowait) {
2ed41a55
PZ
981 __schedstat_add(se->statistics.iowait_sum, delta);
982 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
983 trace_sched_stat_iowait(tsk, delta);
984 }
985
986 trace_sched_stat_blocked(tsk, delta);
987
988 /*
989 * Blocking time is in units of nanosecs, so shift by
990 * 20 to get a milliseconds-range estimation of the
991 * amount of time that the task spent sleeping:
992 */
993 if (unlikely(prof_on == SLEEP_PROFILING)) {
994 profile_hits(SLEEP_PROFILING,
995 (void *)get_wchan(tsk),
996 delta >> 20);
997 }
998 account_scheduler_latency(tsk, delta >> 10, 0);
999 }
1000 }
3ea94de1 1001}
3ea94de1 1002
bf0f6f24
IM
1003/*
1004 * Task is being enqueued - update stats:
1005 */
cb251765 1006static inline void
1a3d027c 1007update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1008{
4fa8d299
JP
1009 if (!schedstat_enabled())
1010 return;
1011
bf0f6f24
IM
1012 /*
1013 * Are we enqueueing a waiting task? (for current tasks
1014 * a dequeue/enqueue event is a NOP)
1015 */
429d43bc 1016 if (se != cfs_rq->curr)
5870db5b 1017 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1018
1019 if (flags & ENQUEUE_WAKEUP)
1020 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1021}
1022
bf0f6f24 1023static inline void
cb251765 1024update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1025{
4fa8d299
JP
1026
1027 if (!schedstat_enabled())
1028 return;
1029
bf0f6f24
IM
1030 /*
1031 * Mark the end of the wait period if dequeueing a
1032 * waiting task:
1033 */
429d43bc 1034 if (se != cfs_rq->curr)
9ef0a961 1035 update_stats_wait_end(cfs_rq, se);
cb251765 1036
4fa8d299
JP
1037 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1038 struct task_struct *tsk = task_of(se);
cb251765 1039
4fa8d299 1040 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1041 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1042 rq_clock(rq_of(cfs_rq)));
1043 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1044 __schedstat_set(se->statistics.block_start,
4fa8d299 1045 rq_clock(rq_of(cfs_rq)));
cb251765 1046 }
cb251765
MG
1047}
1048
bf0f6f24
IM
1049/*
1050 * We are picking a new current task - update its stats:
1051 */
1052static inline void
79303e9e 1053update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1054{
1055 /*
1056 * We are starting a new run period:
1057 */
78becc27 1058 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1059}
1060
bf0f6f24
IM
1061/**************************************************
1062 * Scheduling class queueing methods:
1063 */
1064
cbee9f88
PZ
1065#ifdef CONFIG_NUMA_BALANCING
1066/*
598f0ec0
MG
1067 * Approximate time to scan a full NUMA task in ms. The task scan period is
1068 * calculated based on the tasks virtual memory size and
1069 * numa_balancing_scan_size.
cbee9f88 1070 */
598f0ec0
MG
1071unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1072unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1073
1074/* Portion of address space to scan in MB */
1075unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1076
4b96a29b
PZ
1077/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1078unsigned int sysctl_numa_balancing_scan_delay = 1000;
1079
b5dd77c8 1080struct numa_group {
c45a7795 1081 refcount_t refcount;
b5dd77c8
RR
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
1085 pid_t gid;
1086 int active_nodes;
1087
1088 struct rcu_head rcu;
1089 unsigned long total_faults;
1090 unsigned long max_faults_cpu;
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
1096 unsigned long *faults_cpu;
04f5c362 1097 unsigned long faults[];
b5dd77c8
RR
1098};
1099
cb361d8c
JH
1100/*
1101 * For functions that can be called in multiple contexts that permit reading
1102 * ->numa_group (see struct task_struct for locking rules).
1103 */
1104static struct numa_group *deref_task_numa_group(struct task_struct *p)
1105{
1106 return rcu_dereference_check(p->numa_group, p == current ||
1107 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1108}
1109
1110static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1111{
1112 return rcu_dereference_protected(p->numa_group, p == current);
1113}
1114
b5dd77c8
RR
1115static inline unsigned long group_faults_priv(struct numa_group *ng);
1116static inline unsigned long group_faults_shared(struct numa_group *ng);
1117
598f0ec0
MG
1118static unsigned int task_nr_scan_windows(struct task_struct *p)
1119{
1120 unsigned long rss = 0;
1121 unsigned long nr_scan_pages;
1122
1123 /*
1124 * Calculations based on RSS as non-present and empty pages are skipped
1125 * by the PTE scanner and NUMA hinting faults should be trapped based
1126 * on resident pages
1127 */
1128 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1129 rss = get_mm_rss(p->mm);
1130 if (!rss)
1131 rss = nr_scan_pages;
1132
1133 rss = round_up(rss, nr_scan_pages);
1134 return rss / nr_scan_pages;
1135}
1136
1137/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1138#define MAX_SCAN_WINDOW 2560
1139
1140static unsigned int task_scan_min(struct task_struct *p)
1141{
316c1608 1142 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1143 unsigned int scan, floor;
1144 unsigned int windows = 1;
1145
64192658
KT
1146 if (scan_size < MAX_SCAN_WINDOW)
1147 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1148 floor = 1000 / windows;
1149
1150 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1151 return max_t(unsigned int, floor, scan);
1152}
1153
b5dd77c8
RR
1154static unsigned int task_scan_start(struct task_struct *p)
1155{
1156 unsigned long smin = task_scan_min(p);
1157 unsigned long period = smin;
cb361d8c 1158 struct numa_group *ng;
b5dd77c8
RR
1159
1160 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1161 rcu_read_lock();
1162 ng = rcu_dereference(p->numa_group);
1163 if (ng) {
b5dd77c8
RR
1164 unsigned long shared = group_faults_shared(ng);
1165 unsigned long private = group_faults_priv(ng);
1166
c45a7795 1167 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1168 period *= shared + 1;
1169 period /= private + shared + 1;
1170 }
cb361d8c 1171 rcu_read_unlock();
b5dd77c8
RR
1172
1173 return max(smin, period);
1174}
1175
598f0ec0
MG
1176static unsigned int task_scan_max(struct task_struct *p)
1177{
b5dd77c8
RR
1178 unsigned long smin = task_scan_min(p);
1179 unsigned long smax;
cb361d8c 1180 struct numa_group *ng;
598f0ec0
MG
1181
1182 /* Watch for min being lower than max due to floor calculations */
1183 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1184
1185 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1186 ng = deref_curr_numa_group(p);
1187 if (ng) {
b5dd77c8
RR
1188 unsigned long shared = group_faults_shared(ng);
1189 unsigned long private = group_faults_priv(ng);
1190 unsigned long period = smax;
1191
c45a7795 1192 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1193 period *= shared + 1;
1194 period /= private + shared + 1;
1195
1196 smax = max(smax, period);
1197 }
1198
598f0ec0
MG
1199 return max(smin, smax);
1200}
1201
0ec8aa00
PZ
1202static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1203{
98fa15f3 1204 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1205 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1206}
1207
1208static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1209{
98fa15f3 1210 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1211 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1212}
1213
be1e4e76
RR
1214/* Shared or private faults. */
1215#define NR_NUMA_HINT_FAULT_TYPES 2
1216
1217/* Memory and CPU locality */
1218#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1219
1220/* Averaged statistics, and temporary buffers. */
1221#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1222
e29cf08b
MG
1223pid_t task_numa_group_id(struct task_struct *p)
1224{
cb361d8c
JH
1225 struct numa_group *ng;
1226 pid_t gid = 0;
1227
1228 rcu_read_lock();
1229 ng = rcu_dereference(p->numa_group);
1230 if (ng)
1231 gid = ng->gid;
1232 rcu_read_unlock();
1233
1234 return gid;
e29cf08b
MG
1235}
1236
44dba3d5 1237/*
97fb7a0a 1238 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1239 * occupy the first half of the array. The second half of the
1240 * array is for current counters, which are averaged into the
1241 * first set by task_numa_placement.
1242 */
1243static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1244{
44dba3d5 1245 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1246}
1247
1248static inline unsigned long task_faults(struct task_struct *p, int nid)
1249{
44dba3d5 1250 if (!p->numa_faults)
ac8e895b
MG
1251 return 0;
1252
44dba3d5
IM
1253 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1255}
1256
83e1d2cd
MG
1257static inline unsigned long group_faults(struct task_struct *p, int nid)
1258{
cb361d8c
JH
1259 struct numa_group *ng = deref_task_numa_group(p);
1260
1261 if (!ng)
83e1d2cd
MG
1262 return 0;
1263
cb361d8c
JH
1264 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1265 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1266}
1267
20e07dea
RR
1268static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1269{
44dba3d5
IM
1270 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1272}
1273
b5dd77c8
RR
1274static inline unsigned long group_faults_priv(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1281 }
1282
1283 return faults;
1284}
1285
1286static inline unsigned long group_faults_shared(struct numa_group *ng)
1287{
1288 unsigned long faults = 0;
1289 int node;
1290
1291 for_each_online_node(node) {
1292 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1293 }
1294
1295 return faults;
1296}
1297
4142c3eb
RR
1298/*
1299 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1300 * considered part of a numa group's pseudo-interleaving set. Migrations
1301 * between these nodes are slowed down, to allow things to settle down.
1302 */
1303#define ACTIVE_NODE_FRACTION 3
1304
1305static bool numa_is_active_node(int nid, struct numa_group *ng)
1306{
1307 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1308}
1309
6c6b1193
RR
1310/* Handle placement on systems where not all nodes are directly connected. */
1311static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1312 int maxdist, bool task)
1313{
1314 unsigned long score = 0;
1315 int node;
1316
1317 /*
1318 * All nodes are directly connected, and the same distance
1319 * from each other. No need for fancy placement algorithms.
1320 */
1321 if (sched_numa_topology_type == NUMA_DIRECT)
1322 return 0;
1323
1324 /*
1325 * This code is called for each node, introducing N^2 complexity,
1326 * which should be ok given the number of nodes rarely exceeds 8.
1327 */
1328 for_each_online_node(node) {
1329 unsigned long faults;
1330 int dist = node_distance(nid, node);
1331
1332 /*
1333 * The furthest away nodes in the system are not interesting
1334 * for placement; nid was already counted.
1335 */
1336 if (dist == sched_max_numa_distance || node == nid)
1337 continue;
1338
1339 /*
1340 * On systems with a backplane NUMA topology, compare groups
1341 * of nodes, and move tasks towards the group with the most
1342 * memory accesses. When comparing two nodes at distance
1343 * "hoplimit", only nodes closer by than "hoplimit" are part
1344 * of each group. Skip other nodes.
1345 */
1346 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1347 dist >= maxdist)
6c6b1193
RR
1348 continue;
1349
1350 /* Add up the faults from nearby nodes. */
1351 if (task)
1352 faults = task_faults(p, node);
1353 else
1354 faults = group_faults(p, node);
1355
1356 /*
1357 * On systems with a glueless mesh NUMA topology, there are
1358 * no fixed "groups of nodes". Instead, nodes that are not
1359 * directly connected bounce traffic through intermediate
1360 * nodes; a numa_group can occupy any set of nodes.
1361 * The further away a node is, the less the faults count.
1362 * This seems to result in good task placement.
1363 */
1364 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1365 faults *= (sched_max_numa_distance - dist);
1366 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1367 }
1368
1369 score += faults;
1370 }
1371
1372 return score;
1373}
1374
83e1d2cd
MG
1375/*
1376 * These return the fraction of accesses done by a particular task, or
1377 * task group, on a particular numa node. The group weight is given a
1378 * larger multiplier, in order to group tasks together that are almost
1379 * evenly spread out between numa nodes.
1380 */
7bd95320
RR
1381static inline unsigned long task_weight(struct task_struct *p, int nid,
1382 int dist)
83e1d2cd 1383{
7bd95320 1384 unsigned long faults, total_faults;
83e1d2cd 1385
44dba3d5 1386 if (!p->numa_faults)
83e1d2cd
MG
1387 return 0;
1388
1389 total_faults = p->total_numa_faults;
1390
1391 if (!total_faults)
1392 return 0;
1393
7bd95320 1394 faults = task_faults(p, nid);
6c6b1193
RR
1395 faults += score_nearby_nodes(p, nid, dist, true);
1396
7bd95320 1397 return 1000 * faults / total_faults;
83e1d2cd
MG
1398}
1399
7bd95320
RR
1400static inline unsigned long group_weight(struct task_struct *p, int nid,
1401 int dist)
83e1d2cd 1402{
cb361d8c 1403 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1404 unsigned long faults, total_faults;
1405
cb361d8c 1406 if (!ng)
7bd95320
RR
1407 return 0;
1408
cb361d8c 1409 total_faults = ng->total_faults;
7bd95320
RR
1410
1411 if (!total_faults)
83e1d2cd
MG
1412 return 0;
1413
7bd95320 1414 faults = group_faults(p, nid);
6c6b1193
RR
1415 faults += score_nearby_nodes(p, nid, dist, false);
1416
7bd95320 1417 return 1000 * faults / total_faults;
83e1d2cd
MG
1418}
1419
10f39042
RR
1420bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1421 int src_nid, int dst_cpu)
1422{
cb361d8c 1423 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1424 int dst_nid = cpu_to_node(dst_cpu);
1425 int last_cpupid, this_cpupid;
1426
1427 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1428 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1429
1430 /*
1431 * Allow first faults or private faults to migrate immediately early in
1432 * the lifetime of a task. The magic number 4 is based on waiting for
1433 * two full passes of the "multi-stage node selection" test that is
1434 * executed below.
1435 */
98fa15f3 1436 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1437 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1438 return true;
10f39042
RR
1439
1440 /*
1441 * Multi-stage node selection is used in conjunction with a periodic
1442 * migration fault to build a temporal task<->page relation. By using
1443 * a two-stage filter we remove short/unlikely relations.
1444 *
1445 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1446 * a task's usage of a particular page (n_p) per total usage of this
1447 * page (n_t) (in a given time-span) to a probability.
1448 *
1449 * Our periodic faults will sample this probability and getting the
1450 * same result twice in a row, given these samples are fully
1451 * independent, is then given by P(n)^2, provided our sample period
1452 * is sufficiently short compared to the usage pattern.
1453 *
1454 * This quadric squishes small probabilities, making it less likely we
1455 * act on an unlikely task<->page relation.
1456 */
10f39042
RR
1457 if (!cpupid_pid_unset(last_cpupid) &&
1458 cpupid_to_nid(last_cpupid) != dst_nid)
1459 return false;
1460
1461 /* Always allow migrate on private faults */
1462 if (cpupid_match_pid(p, last_cpupid))
1463 return true;
1464
1465 /* A shared fault, but p->numa_group has not been set up yet. */
1466 if (!ng)
1467 return true;
1468
1469 /*
4142c3eb
RR
1470 * Destination node is much more heavily used than the source
1471 * node? Allow migration.
10f39042 1472 */
4142c3eb
RR
1473 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1474 ACTIVE_NODE_FRACTION)
10f39042
RR
1475 return true;
1476
1477 /*
4142c3eb
RR
1478 * Distribute memory according to CPU & memory use on each node,
1479 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1480 *
1481 * faults_cpu(dst) 3 faults_cpu(src)
1482 * --------------- * - > ---------------
1483 * faults_mem(dst) 4 faults_mem(src)
10f39042 1484 */
4142c3eb
RR
1485 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1486 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1487}
1488
6499b1b2
VG
1489/*
1490 * 'numa_type' describes the node at the moment of load balancing.
1491 */
1492enum numa_type {
1493 /* The node has spare capacity that can be used to run more tasks. */
1494 node_has_spare = 0,
1495 /*
1496 * The node is fully used and the tasks don't compete for more CPU
1497 * cycles. Nevertheless, some tasks might wait before running.
1498 */
1499 node_fully_busy,
1500 /*
1501 * The node is overloaded and can't provide expected CPU cycles to all
1502 * tasks.
1503 */
1504 node_overloaded
1505};
58d081b5 1506
fb13c7ee 1507/* Cached statistics for all CPUs within a node */
58d081b5
MG
1508struct numa_stats {
1509 unsigned long load;
6499b1b2 1510 unsigned long util;
fb13c7ee 1511 /* Total compute capacity of CPUs on a node */
5ef20ca1 1512 unsigned long compute_capacity;
6499b1b2
VG
1513 unsigned int nr_running;
1514 unsigned int weight;
1515 enum numa_type node_type;
ff7db0bf 1516 int idle_cpu;
58d081b5 1517};
e6628d5b 1518
ff7db0bf
MG
1519static inline bool is_core_idle(int cpu)
1520{
1521#ifdef CONFIG_SCHED_SMT
1522 int sibling;
1523
1524 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1525 if (cpu == sibling)
1526 continue;
1527
1528 if (!idle_cpu(cpu))
1529 return false;
1530 }
1531#endif
1532
1533 return true;
1534}
1535
58d081b5
MG
1536struct task_numa_env {
1537 struct task_struct *p;
e6628d5b 1538
58d081b5
MG
1539 int src_cpu, src_nid;
1540 int dst_cpu, dst_nid;
e6628d5b 1541
58d081b5 1542 struct numa_stats src_stats, dst_stats;
e6628d5b 1543
40ea2b42 1544 int imbalance_pct;
7bd95320 1545 int dist;
fb13c7ee
MG
1546
1547 struct task_struct *best_task;
1548 long best_imp;
58d081b5
MG
1549 int best_cpu;
1550};
1551
6499b1b2
VG
1552static unsigned long cpu_load(struct rq *rq);
1553static unsigned long cpu_util(int cpu);
fb86f5b2 1554static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
6499b1b2
VG
1555
1556static inline enum
1557numa_type numa_classify(unsigned int imbalance_pct,
1558 struct numa_stats *ns)
1559{
1560 if ((ns->nr_running > ns->weight) &&
1561 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1562 return node_overloaded;
1563
1564 if ((ns->nr_running < ns->weight) ||
1565 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1566 return node_has_spare;
1567
1568 return node_fully_busy;
1569}
1570
76c389ab
VS
1571#ifdef CONFIG_SCHED_SMT
1572/* Forward declarations of select_idle_sibling helpers */
1573static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1574static inline int numa_idle_core(int idle_core, int cpu)
1575{
ff7db0bf
MG
1576 if (!static_branch_likely(&sched_smt_present) ||
1577 idle_core >= 0 || !test_idle_cores(cpu, false))
1578 return idle_core;
1579
1580 /*
1581 * Prefer cores instead of packing HT siblings
1582 * and triggering future load balancing.
1583 */
1584 if (is_core_idle(cpu))
1585 idle_core = cpu;
ff7db0bf
MG
1586
1587 return idle_core;
1588}
76c389ab
VS
1589#else
1590static inline int numa_idle_core(int idle_core, int cpu)
1591{
1592 return idle_core;
1593}
1594#endif
ff7db0bf 1595
6499b1b2 1596/*
ff7db0bf
MG
1597 * Gather all necessary information to make NUMA balancing placement
1598 * decisions that are compatible with standard load balancer. This
1599 * borrows code and logic from update_sg_lb_stats but sharing a
1600 * common implementation is impractical.
6499b1b2
VG
1601 */
1602static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1603 struct numa_stats *ns, int nid,
1604 bool find_idle)
6499b1b2 1605{
ff7db0bf 1606 int cpu, idle_core = -1;
6499b1b2
VG
1607
1608 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1609 ns->idle_cpu = -1;
1610
0621df31 1611 rcu_read_lock();
6499b1b2
VG
1612 for_each_cpu(cpu, cpumask_of_node(nid)) {
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 ns->load += cpu_load(rq);
1616 ns->util += cpu_util(cpu);
1617 ns->nr_running += rq->cfs.h_nr_running;
1618 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1619
1620 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1621 if (READ_ONCE(rq->numa_migrate_on) ||
1622 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1623 continue;
1624
1625 if (ns->idle_cpu == -1)
1626 ns->idle_cpu = cpu;
1627
1628 idle_core = numa_idle_core(idle_core, cpu);
1629 }
6499b1b2 1630 }
0621df31 1631 rcu_read_unlock();
6499b1b2
VG
1632
1633 ns->weight = cpumask_weight(cpumask_of_node(nid));
1634
1635 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1636
1637 if (idle_core >= 0)
1638 ns->idle_cpu = idle_core;
6499b1b2
VG
1639}
1640
fb13c7ee
MG
1641static void task_numa_assign(struct task_numa_env *env,
1642 struct task_struct *p, long imp)
1643{
a4739eca
SD
1644 struct rq *rq = cpu_rq(env->dst_cpu);
1645
5fb52dd9
MG
1646 /* Check if run-queue part of active NUMA balance. */
1647 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1648 int cpu;
1649 int start = env->dst_cpu;
1650
1651 /* Find alternative idle CPU. */
1652 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1653 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1654 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1655 continue;
1656 }
1657
1658 env->dst_cpu = cpu;
1659 rq = cpu_rq(env->dst_cpu);
1660 if (!xchg(&rq->numa_migrate_on, 1))
1661 goto assign;
1662 }
1663
1664 /* Failed to find an alternative idle CPU */
a4739eca 1665 return;
5fb52dd9 1666 }
a4739eca 1667
5fb52dd9 1668assign:
a4739eca
SD
1669 /*
1670 * Clear previous best_cpu/rq numa-migrate flag, since task now
1671 * found a better CPU to move/swap.
1672 */
5fb52dd9 1673 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1674 rq = cpu_rq(env->best_cpu);
1675 WRITE_ONCE(rq->numa_migrate_on, 0);
1676 }
1677
fb13c7ee
MG
1678 if (env->best_task)
1679 put_task_struct(env->best_task);
bac78573
ON
1680 if (p)
1681 get_task_struct(p);
fb13c7ee
MG
1682
1683 env->best_task = p;
1684 env->best_imp = imp;
1685 env->best_cpu = env->dst_cpu;
1686}
1687
28a21745 1688static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1689 struct task_numa_env *env)
1690{
e4991b24
RR
1691 long imb, old_imb;
1692 long orig_src_load, orig_dst_load;
28a21745
RR
1693 long src_capacity, dst_capacity;
1694
1695 /*
1696 * The load is corrected for the CPU capacity available on each node.
1697 *
1698 * src_load dst_load
1699 * ------------ vs ---------
1700 * src_capacity dst_capacity
1701 */
1702 src_capacity = env->src_stats.compute_capacity;
1703 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1704
5f95ba7a 1705 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1706
28a21745 1707 orig_src_load = env->src_stats.load;
e4991b24 1708 orig_dst_load = env->dst_stats.load;
28a21745 1709
5f95ba7a 1710 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1711
1712 /* Would this change make things worse? */
1713 return (imb > old_imb);
e63da036
RR
1714}
1715
6fd98e77
SD
1716/*
1717 * Maximum NUMA importance can be 1998 (2*999);
1718 * SMALLIMP @ 30 would be close to 1998/64.
1719 * Used to deter task migration.
1720 */
1721#define SMALLIMP 30
1722
fb13c7ee
MG
1723/*
1724 * This checks if the overall compute and NUMA accesses of the system would
1725 * be improved if the source tasks was migrated to the target dst_cpu taking
1726 * into account that it might be best if task running on the dst_cpu should
1727 * be exchanged with the source task
1728 */
a0f03b61 1729static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1730 long taskimp, long groupimp, bool maymove)
fb13c7ee 1731{
cb361d8c 1732 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1733 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1734 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1735 struct task_struct *cur;
28a21745 1736 long src_load, dst_load;
7bd95320 1737 int dist = env->dist;
cb361d8c
JH
1738 long moveimp = imp;
1739 long load;
a0f03b61 1740 bool stopsearch = false;
fb13c7ee 1741
a4739eca 1742 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1743 return false;
a4739eca 1744
fb13c7ee 1745 rcu_read_lock();
154abafc 1746 cur = rcu_dereference(dst_rq->curr);
bac78573 1747 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1748 cur = NULL;
1749
7af68335
PZ
1750 /*
1751 * Because we have preemption enabled we can get migrated around and
1752 * end try selecting ourselves (current == env->p) as a swap candidate.
1753 */
a0f03b61
MG
1754 if (cur == env->p) {
1755 stopsearch = true;
7af68335 1756 goto unlock;
a0f03b61 1757 }
7af68335 1758
305c1fac 1759 if (!cur) {
6fd98e77 1760 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1761 goto assign;
1762 else
1763 goto unlock;
1764 }
1765
88cca72c
MG
1766 /* Skip this swap candidate if cannot move to the source cpu. */
1767 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1768 goto unlock;
1769
1770 /*
1771 * Skip this swap candidate if it is not moving to its preferred
1772 * node and the best task is.
1773 */
1774 if (env->best_task &&
1775 env->best_task->numa_preferred_nid == env->src_nid &&
1776 cur->numa_preferred_nid != env->src_nid) {
1777 goto unlock;
1778 }
1779
fb13c7ee
MG
1780 /*
1781 * "imp" is the fault differential for the source task between the
1782 * source and destination node. Calculate the total differential for
1783 * the source task and potential destination task. The more negative
305c1fac 1784 * the value is, the more remote accesses that would be expected to
fb13c7ee 1785 * be incurred if the tasks were swapped.
88cca72c 1786 *
305c1fac
SD
1787 * If dst and source tasks are in the same NUMA group, or not
1788 * in any group then look only at task weights.
1789 */
cb361d8c
JH
1790 cur_ng = rcu_dereference(cur->numa_group);
1791 if (cur_ng == p_ng) {
305c1fac
SD
1792 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1793 task_weight(cur, env->dst_nid, dist);
887c290e 1794 /*
305c1fac
SD
1795 * Add some hysteresis to prevent swapping the
1796 * tasks within a group over tiny differences.
887c290e 1797 */
cb361d8c 1798 if (cur_ng)
305c1fac
SD
1799 imp -= imp / 16;
1800 } else {
1801 /*
1802 * Compare the group weights. If a task is all by itself
1803 * (not part of a group), use the task weight instead.
1804 */
cb361d8c 1805 if (cur_ng && p_ng)
305c1fac
SD
1806 imp += group_weight(cur, env->src_nid, dist) -
1807 group_weight(cur, env->dst_nid, dist);
1808 else
1809 imp += task_weight(cur, env->src_nid, dist) -
1810 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1811 }
1812
88cca72c
MG
1813 /* Discourage picking a task already on its preferred node */
1814 if (cur->numa_preferred_nid == env->dst_nid)
1815 imp -= imp / 16;
1816
1817 /*
1818 * Encourage picking a task that moves to its preferred node.
1819 * This potentially makes imp larger than it's maximum of
1820 * 1998 (see SMALLIMP and task_weight for why) but in this
1821 * case, it does not matter.
1822 */
1823 if (cur->numa_preferred_nid == env->src_nid)
1824 imp += imp / 8;
1825
305c1fac 1826 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1827 imp = moveimp;
305c1fac 1828 cur = NULL;
fb13c7ee 1829 goto assign;
305c1fac 1830 }
fb13c7ee 1831
88cca72c
MG
1832 /*
1833 * Prefer swapping with a task moving to its preferred node over a
1834 * task that is not.
1835 */
1836 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1837 env->best_task->numa_preferred_nid != env->src_nid) {
1838 goto assign;
1839 }
1840
6fd98e77
SD
1841 /*
1842 * If the NUMA importance is less than SMALLIMP,
1843 * task migration might only result in ping pong
1844 * of tasks and also hurt performance due to cache
1845 * misses.
1846 */
1847 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1848 goto unlock;
1849
fb13c7ee
MG
1850 /*
1851 * In the overloaded case, try and keep the load balanced.
1852 */
305c1fac
SD
1853 load = task_h_load(env->p) - task_h_load(cur);
1854 if (!load)
1855 goto assign;
1856
e720fff6
PZ
1857 dst_load = env->dst_stats.load + load;
1858 src_load = env->src_stats.load - load;
fb13c7ee 1859
28a21745 1860 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1861 goto unlock;
1862
305c1fac 1863assign:
ff7db0bf 1864 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1865 if (!cur) {
ff7db0bf
MG
1866 int cpu = env->dst_stats.idle_cpu;
1867
1868 /* Nothing cached so current CPU went idle since the search. */
1869 if (cpu < 0)
1870 cpu = env->dst_cpu;
1871
10e2f1ac 1872 /*
ff7db0bf
MG
1873 * If the CPU is no longer truly idle and the previous best CPU
1874 * is, keep using it.
10e2f1ac 1875 */
ff7db0bf
MG
1876 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1877 idle_cpu(env->best_cpu)) {
1878 cpu = env->best_cpu;
1879 }
1880
ff7db0bf 1881 env->dst_cpu = cpu;
10e2f1ac 1882 }
ba7e5a27 1883
fb13c7ee 1884 task_numa_assign(env, cur, imp);
a0f03b61
MG
1885
1886 /*
1887 * If a move to idle is allowed because there is capacity or load
1888 * balance improves then stop the search. While a better swap
1889 * candidate may exist, a search is not free.
1890 */
1891 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1892 stopsearch = true;
1893
1894 /*
1895 * If a swap candidate must be identified and the current best task
1896 * moves its preferred node then stop the search.
1897 */
1898 if (!maymove && env->best_task &&
1899 env->best_task->numa_preferred_nid == env->src_nid) {
1900 stopsearch = true;
1901 }
fb13c7ee
MG
1902unlock:
1903 rcu_read_unlock();
a0f03b61
MG
1904
1905 return stopsearch;
fb13c7ee
MG
1906}
1907
887c290e
RR
1908static void task_numa_find_cpu(struct task_numa_env *env,
1909 long taskimp, long groupimp)
2c8a50aa 1910{
305c1fac 1911 bool maymove = false;
2c8a50aa
MG
1912 int cpu;
1913
305c1fac 1914 /*
fb86f5b2
MG
1915 * If dst node has spare capacity, then check if there is an
1916 * imbalance that would be overruled by the load balancer.
305c1fac 1917 */
fb86f5b2
MG
1918 if (env->dst_stats.node_type == node_has_spare) {
1919 unsigned int imbalance;
1920 int src_running, dst_running;
1921
1922 /*
1923 * Would movement cause an imbalance? Note that if src has
1924 * more running tasks that the imbalance is ignored as the
1925 * move improves the imbalance from the perspective of the
1926 * CPU load balancer.
1927 * */
1928 src_running = env->src_stats.nr_running - 1;
1929 dst_running = env->dst_stats.nr_running + 1;
1930 imbalance = max(0, dst_running - src_running);
1931 imbalance = adjust_numa_imbalance(imbalance, src_running);
1932
1933 /* Use idle CPU if there is no imbalance */
ff7db0bf 1934 if (!imbalance) {
fb86f5b2 1935 maymove = true;
ff7db0bf
MG
1936 if (env->dst_stats.idle_cpu >= 0) {
1937 env->dst_cpu = env->dst_stats.idle_cpu;
1938 task_numa_assign(env, NULL, 0);
1939 return;
1940 }
1941 }
fb86f5b2
MG
1942 } else {
1943 long src_load, dst_load, load;
1944 /*
1945 * If the improvement from just moving env->p direction is better
1946 * than swapping tasks around, check if a move is possible.
1947 */
1948 load = task_h_load(env->p);
1949 dst_load = env->dst_stats.load + load;
1950 src_load = env->src_stats.load - load;
1951 maymove = !load_too_imbalanced(src_load, dst_load, env);
1952 }
305c1fac 1953
2c8a50aa
MG
1954 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1955 /* Skip this CPU if the source task cannot migrate */
3bd37062 1956 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1957 continue;
1958
1959 env->dst_cpu = cpu;
a0f03b61
MG
1960 if (task_numa_compare(env, taskimp, groupimp, maymove))
1961 break;
2c8a50aa
MG
1962 }
1963}
1964
58d081b5
MG
1965static int task_numa_migrate(struct task_struct *p)
1966{
58d081b5
MG
1967 struct task_numa_env env = {
1968 .p = p,
fb13c7ee 1969
58d081b5 1970 .src_cpu = task_cpu(p),
b32e86b4 1971 .src_nid = task_node(p),
fb13c7ee
MG
1972
1973 .imbalance_pct = 112,
1974
1975 .best_task = NULL,
1976 .best_imp = 0,
4142c3eb 1977 .best_cpu = -1,
58d081b5 1978 };
cb361d8c 1979 unsigned long taskweight, groupweight;
58d081b5 1980 struct sched_domain *sd;
cb361d8c
JH
1981 long taskimp, groupimp;
1982 struct numa_group *ng;
a4739eca 1983 struct rq *best_rq;
7bd95320 1984 int nid, ret, dist;
e6628d5b 1985
58d081b5 1986 /*
fb13c7ee
MG
1987 * Pick the lowest SD_NUMA domain, as that would have the smallest
1988 * imbalance and would be the first to start moving tasks about.
1989 *
1990 * And we want to avoid any moving of tasks about, as that would create
1991 * random movement of tasks -- counter the numa conditions we're trying
1992 * to satisfy here.
58d081b5
MG
1993 */
1994 rcu_read_lock();
fb13c7ee 1995 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1996 if (sd)
1997 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1998 rcu_read_unlock();
1999
46a73e8a
RR
2000 /*
2001 * Cpusets can break the scheduler domain tree into smaller
2002 * balance domains, some of which do not cross NUMA boundaries.
2003 * Tasks that are "trapped" in such domains cannot be migrated
2004 * elsewhere, so there is no point in (re)trying.
2005 */
2006 if (unlikely(!sd)) {
8cd45eee 2007 sched_setnuma(p, task_node(p));
46a73e8a
RR
2008 return -EINVAL;
2009 }
2010
2c8a50aa 2011 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2012 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2013 taskweight = task_weight(p, env.src_nid, dist);
2014 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2015 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2016 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2017 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2018 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2019
a43455a1 2020 /* Try to find a spot on the preferred nid. */
2d4056fa 2021 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2022
9de05d48
RR
2023 /*
2024 * Look at other nodes in these cases:
2025 * - there is no space available on the preferred_nid
2026 * - the task is part of a numa_group that is interleaved across
2027 * multiple NUMA nodes; in order to better consolidate the group,
2028 * we need to check other locations.
2029 */
cb361d8c
JH
2030 ng = deref_curr_numa_group(p);
2031 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2032 for_each_online_node(nid) {
2033 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2034 continue;
58d081b5 2035
7bd95320 2036 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2037 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2038 dist != env.dist) {
2039 taskweight = task_weight(p, env.src_nid, dist);
2040 groupweight = group_weight(p, env.src_nid, dist);
2041 }
7bd95320 2042
83e1d2cd 2043 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2044 taskimp = task_weight(p, nid, dist) - taskweight;
2045 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2046 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2047 continue;
2048
7bd95320 2049 env.dist = dist;
2c8a50aa 2050 env.dst_nid = nid;
ff7db0bf 2051 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2052 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2053 }
2054 }
2055
68d1b02a
RR
2056 /*
2057 * If the task is part of a workload that spans multiple NUMA nodes,
2058 * and is migrating into one of the workload's active nodes, remember
2059 * this node as the task's preferred numa node, so the workload can
2060 * settle down.
2061 * A task that migrated to a second choice node will be better off
2062 * trying for a better one later. Do not set the preferred node here.
2063 */
cb361d8c 2064 if (ng) {
db015dae
RR
2065 if (env.best_cpu == -1)
2066 nid = env.src_nid;
2067 else
8cd45eee 2068 nid = cpu_to_node(env.best_cpu);
db015dae 2069
8cd45eee
SD
2070 if (nid != p->numa_preferred_nid)
2071 sched_setnuma(p, nid);
db015dae
RR
2072 }
2073
2074 /* No better CPU than the current one was found. */
f22aef4a 2075 if (env.best_cpu == -1) {
b2b2042b 2076 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2077 return -EAGAIN;
f22aef4a 2078 }
0ec8aa00 2079
a4739eca 2080 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2081 if (env.best_task == NULL) {
286549dc 2082 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2083 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2084 if (ret != 0)
b2b2042b 2085 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2086 return ret;
2087 }
2088
0ad4e3df 2089 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2090 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2091
286549dc 2092 if (ret != 0)
b2b2042b 2093 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2094 put_task_struct(env.best_task);
2095 return ret;
e6628d5b
MG
2096}
2097
6b9a7460
MG
2098/* Attempt to migrate a task to a CPU on the preferred node. */
2099static void numa_migrate_preferred(struct task_struct *p)
2100{
5085e2a3
RR
2101 unsigned long interval = HZ;
2102
2739d3ee 2103 /* This task has no NUMA fault statistics yet */
98fa15f3 2104 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2105 return;
2106
2739d3ee 2107 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2108 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2109 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2110
2111 /* Success if task is already running on preferred CPU */
de1b301a 2112 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2113 return;
2114
2115 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2116 task_numa_migrate(p);
6b9a7460
MG
2117}
2118
20e07dea 2119/*
4142c3eb 2120 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2121 * tracking the nodes from which NUMA hinting faults are triggered. This can
2122 * be different from the set of nodes where the workload's memory is currently
2123 * located.
20e07dea 2124 */
4142c3eb 2125static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2126{
2127 unsigned long faults, max_faults = 0;
4142c3eb 2128 int nid, active_nodes = 0;
20e07dea
RR
2129
2130 for_each_online_node(nid) {
2131 faults = group_faults_cpu(numa_group, nid);
2132 if (faults > max_faults)
2133 max_faults = faults;
2134 }
2135
2136 for_each_online_node(nid) {
2137 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2138 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2139 active_nodes++;
20e07dea 2140 }
4142c3eb
RR
2141
2142 numa_group->max_faults_cpu = max_faults;
2143 numa_group->active_nodes = active_nodes;
20e07dea
RR
2144}
2145
04bb2f94
RR
2146/*
2147 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2148 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2149 * period will be for the next scan window. If local/(local+remote) ratio is
2150 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2151 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2152 */
2153#define NUMA_PERIOD_SLOTS 10
a22b4b01 2154#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2155
2156/*
2157 * Increase the scan period (slow down scanning) if the majority of
2158 * our memory is already on our local node, or if the majority of
2159 * the page accesses are shared with other processes.
2160 * Otherwise, decrease the scan period.
2161 */
2162static void update_task_scan_period(struct task_struct *p,
2163 unsigned long shared, unsigned long private)
2164{
2165 unsigned int period_slot;
37ec97de 2166 int lr_ratio, ps_ratio;
04bb2f94
RR
2167 int diff;
2168
2169 unsigned long remote = p->numa_faults_locality[0];
2170 unsigned long local = p->numa_faults_locality[1];
2171
2172 /*
2173 * If there were no record hinting faults then either the task is
2174 * completely idle or all activity is areas that are not of interest
074c2381
MG
2175 * to automatic numa balancing. Related to that, if there were failed
2176 * migration then it implies we are migrating too quickly or the local
2177 * node is overloaded. In either case, scan slower
04bb2f94 2178 */
074c2381 2179 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2180 p->numa_scan_period = min(p->numa_scan_period_max,
2181 p->numa_scan_period << 1);
2182
2183 p->mm->numa_next_scan = jiffies +
2184 msecs_to_jiffies(p->numa_scan_period);
2185
2186 return;
2187 }
2188
2189 /*
2190 * Prepare to scale scan period relative to the current period.
2191 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2192 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2193 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 */
2195 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2196 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2197 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2198
2199 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2200 /*
2201 * Most memory accesses are local. There is no need to
2202 * do fast NUMA scanning, since memory is already local.
2203 */
2204 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2205 if (!slot)
2206 slot = 1;
2207 diff = slot * period_slot;
2208 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2209 /*
2210 * Most memory accesses are shared with other tasks.
2211 * There is no point in continuing fast NUMA scanning,
2212 * since other tasks may just move the memory elsewhere.
2213 */
2214 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2215 if (!slot)
2216 slot = 1;
2217 diff = slot * period_slot;
2218 } else {
04bb2f94 2219 /*
37ec97de
RR
2220 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2221 * yet they are not on the local NUMA node. Speed up
2222 * NUMA scanning to get the memory moved over.
04bb2f94 2223 */
37ec97de
RR
2224 int ratio = max(lr_ratio, ps_ratio);
2225 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2226 }
2227
2228 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2229 task_scan_min(p), task_scan_max(p));
2230 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2231}
2232
7e2703e6
RR
2233/*
2234 * Get the fraction of time the task has been running since the last
2235 * NUMA placement cycle. The scheduler keeps similar statistics, but
2236 * decays those on a 32ms period, which is orders of magnitude off
2237 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2238 * stats only if the task is so new there are no NUMA statistics yet.
2239 */
2240static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2241{
2242 u64 runtime, delta, now;
2243 /* Use the start of this time slice to avoid calculations. */
2244 now = p->se.exec_start;
2245 runtime = p->se.sum_exec_runtime;
2246
2247 if (p->last_task_numa_placement) {
2248 delta = runtime - p->last_sum_exec_runtime;
2249 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2250
2251 /* Avoid time going backwards, prevent potential divide error: */
2252 if (unlikely((s64)*period < 0))
2253 *period = 0;
7e2703e6 2254 } else {
c7b50216 2255 delta = p->se.avg.load_sum;
9d89c257 2256 *period = LOAD_AVG_MAX;
7e2703e6
RR
2257 }
2258
2259 p->last_sum_exec_runtime = runtime;
2260 p->last_task_numa_placement = now;
2261
2262 return delta;
2263}
2264
54009416
RR
2265/*
2266 * Determine the preferred nid for a task in a numa_group. This needs to
2267 * be done in a way that produces consistent results with group_weight,
2268 * otherwise workloads might not converge.
2269 */
2270static int preferred_group_nid(struct task_struct *p, int nid)
2271{
2272 nodemask_t nodes;
2273 int dist;
2274
2275 /* Direct connections between all NUMA nodes. */
2276 if (sched_numa_topology_type == NUMA_DIRECT)
2277 return nid;
2278
2279 /*
2280 * On a system with glueless mesh NUMA topology, group_weight
2281 * scores nodes according to the number of NUMA hinting faults on
2282 * both the node itself, and on nearby nodes.
2283 */
2284 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2285 unsigned long score, max_score = 0;
2286 int node, max_node = nid;
2287
2288 dist = sched_max_numa_distance;
2289
2290 for_each_online_node(node) {
2291 score = group_weight(p, node, dist);
2292 if (score > max_score) {
2293 max_score = score;
2294 max_node = node;
2295 }
2296 }
2297 return max_node;
2298 }
2299
2300 /*
2301 * Finding the preferred nid in a system with NUMA backplane
2302 * interconnect topology is more involved. The goal is to locate
2303 * tasks from numa_groups near each other in the system, and
2304 * untangle workloads from different sides of the system. This requires
2305 * searching down the hierarchy of node groups, recursively searching
2306 * inside the highest scoring group of nodes. The nodemask tricks
2307 * keep the complexity of the search down.
2308 */
2309 nodes = node_online_map;
2310 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2311 unsigned long max_faults = 0;
81907478 2312 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2313 int a, b;
2314
2315 /* Are there nodes at this distance from each other? */
2316 if (!find_numa_distance(dist))
2317 continue;
2318
2319 for_each_node_mask(a, nodes) {
2320 unsigned long faults = 0;
2321 nodemask_t this_group;
2322 nodes_clear(this_group);
2323
2324 /* Sum group's NUMA faults; includes a==b case. */
2325 for_each_node_mask(b, nodes) {
2326 if (node_distance(a, b) < dist) {
2327 faults += group_faults(p, b);
2328 node_set(b, this_group);
2329 node_clear(b, nodes);
2330 }
2331 }
2332
2333 /* Remember the top group. */
2334 if (faults > max_faults) {
2335 max_faults = faults;
2336 max_group = this_group;
2337 /*
2338 * subtle: at the smallest distance there is
2339 * just one node left in each "group", the
2340 * winner is the preferred nid.
2341 */
2342 nid = a;
2343 }
2344 }
2345 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2346 if (!max_faults)
2347 break;
54009416
RR
2348 nodes = max_group;
2349 }
2350 return nid;
2351}
2352
cbee9f88
PZ
2353static void task_numa_placement(struct task_struct *p)
2354{
98fa15f3 2355 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2356 unsigned long max_faults = 0;
04bb2f94 2357 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2358 unsigned long total_faults;
2359 u64 runtime, period;
7dbd13ed 2360 spinlock_t *group_lock = NULL;
cb361d8c 2361 struct numa_group *ng;
cbee9f88 2362
7e5a2c17
JL
2363 /*
2364 * The p->mm->numa_scan_seq field gets updated without
2365 * exclusive access. Use READ_ONCE() here to ensure
2366 * that the field is read in a single access:
2367 */
316c1608 2368 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2369 if (p->numa_scan_seq == seq)
2370 return;
2371 p->numa_scan_seq = seq;
598f0ec0 2372 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2373
7e2703e6
RR
2374 total_faults = p->numa_faults_locality[0] +
2375 p->numa_faults_locality[1];
2376 runtime = numa_get_avg_runtime(p, &period);
2377
7dbd13ed 2378 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2379 ng = deref_curr_numa_group(p);
2380 if (ng) {
2381 group_lock = &ng->lock;
60e69eed 2382 spin_lock_irq(group_lock);
7dbd13ed
MG
2383 }
2384
688b7585
MG
2385 /* Find the node with the highest number of faults */
2386 for_each_online_node(nid) {
44dba3d5
IM
2387 /* Keep track of the offsets in numa_faults array */
2388 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2389 unsigned long faults = 0, group_faults = 0;
44dba3d5 2390 int priv;
745d6147 2391
be1e4e76 2392 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2393 long diff, f_diff, f_weight;
8c8a743c 2394
44dba3d5
IM
2395 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2396 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2397 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2398 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2399
ac8e895b 2400 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2401 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2402 fault_types[priv] += p->numa_faults[membuf_idx];
2403 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2404
7e2703e6
RR
2405 /*
2406 * Normalize the faults_from, so all tasks in a group
2407 * count according to CPU use, instead of by the raw
2408 * number of faults. Tasks with little runtime have
2409 * little over-all impact on throughput, and thus their
2410 * faults are less important.
2411 */
2412 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2413 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2414 (total_faults + 1);
44dba3d5
IM
2415 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2416 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2417
44dba3d5
IM
2418 p->numa_faults[mem_idx] += diff;
2419 p->numa_faults[cpu_idx] += f_diff;
2420 faults += p->numa_faults[mem_idx];
83e1d2cd 2421 p->total_numa_faults += diff;
cb361d8c 2422 if (ng) {
44dba3d5
IM
2423 /*
2424 * safe because we can only change our own group
2425 *
2426 * mem_idx represents the offset for a given
2427 * nid and priv in a specific region because it
2428 * is at the beginning of the numa_faults array.
2429 */
cb361d8c
JH
2430 ng->faults[mem_idx] += diff;
2431 ng->faults_cpu[mem_idx] += f_diff;
2432 ng->total_faults += diff;
2433 group_faults += ng->faults[mem_idx];
8c8a743c 2434 }
ac8e895b
MG
2435 }
2436
cb361d8c 2437 if (!ng) {
f03bb676
SD
2438 if (faults > max_faults) {
2439 max_faults = faults;
2440 max_nid = nid;
2441 }
2442 } else if (group_faults > max_faults) {
2443 max_faults = group_faults;
688b7585
MG
2444 max_nid = nid;
2445 }
83e1d2cd
MG
2446 }
2447
cb361d8c
JH
2448 if (ng) {
2449 numa_group_count_active_nodes(ng);
60e69eed 2450 spin_unlock_irq(group_lock);
f03bb676 2451 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2452 }
2453
bb97fc31
RR
2454 if (max_faults) {
2455 /* Set the new preferred node */
2456 if (max_nid != p->numa_preferred_nid)
2457 sched_setnuma(p, max_nid);
3a7053b3 2458 }
30619c89
SD
2459
2460 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2461}
2462
8c8a743c
PZ
2463static inline int get_numa_group(struct numa_group *grp)
2464{
c45a7795 2465 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2466}
2467
2468static inline void put_numa_group(struct numa_group *grp)
2469{
c45a7795 2470 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2471 kfree_rcu(grp, rcu);
2472}
2473
3e6a9418
MG
2474static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2475 int *priv)
8c8a743c
PZ
2476{
2477 struct numa_group *grp, *my_grp;
2478 struct task_struct *tsk;
2479 bool join = false;
2480 int cpu = cpupid_to_cpu(cpupid);
2481 int i;
2482
cb361d8c 2483 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2484 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2485 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2486
2487 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2488 if (!grp)
2489 return;
2490
c45a7795 2491 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2492 grp->active_nodes = 1;
2493 grp->max_faults_cpu = 0;
8c8a743c 2494 spin_lock_init(&grp->lock);
e29cf08b 2495 grp->gid = p->pid;
50ec8a40 2496 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2497 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2498 nr_node_ids;
8c8a743c 2499
be1e4e76 2500 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2501 grp->faults[i] = p->numa_faults[i];
8c8a743c 2502
989348b5 2503 grp->total_faults = p->total_numa_faults;
83e1d2cd 2504
8c8a743c
PZ
2505 grp->nr_tasks++;
2506 rcu_assign_pointer(p->numa_group, grp);
2507 }
2508
2509 rcu_read_lock();
316c1608 2510 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2511
2512 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2513 goto no_join;
8c8a743c
PZ
2514
2515 grp = rcu_dereference(tsk->numa_group);
2516 if (!grp)
3354781a 2517 goto no_join;
8c8a743c 2518
cb361d8c 2519 my_grp = deref_curr_numa_group(p);
8c8a743c 2520 if (grp == my_grp)
3354781a 2521 goto no_join;
8c8a743c
PZ
2522
2523 /*
2524 * Only join the other group if its bigger; if we're the bigger group,
2525 * the other task will join us.
2526 */
2527 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2528 goto no_join;
8c8a743c
PZ
2529
2530 /*
2531 * Tie-break on the grp address.
2532 */
2533 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2534 goto no_join;
8c8a743c 2535
dabe1d99
RR
2536 /* Always join threads in the same process. */
2537 if (tsk->mm == current->mm)
2538 join = true;
2539
2540 /* Simple filter to avoid false positives due to PID collisions */
2541 if (flags & TNF_SHARED)
2542 join = true;
8c8a743c 2543
3e6a9418
MG
2544 /* Update priv based on whether false sharing was detected */
2545 *priv = !join;
2546
dabe1d99 2547 if (join && !get_numa_group(grp))
3354781a 2548 goto no_join;
8c8a743c 2549
8c8a743c
PZ
2550 rcu_read_unlock();
2551
2552 if (!join)
2553 return;
2554
60e69eed
MG
2555 BUG_ON(irqs_disabled());
2556 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2557
be1e4e76 2558 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2559 my_grp->faults[i] -= p->numa_faults[i];
2560 grp->faults[i] += p->numa_faults[i];
8c8a743c 2561 }
989348b5
MG
2562 my_grp->total_faults -= p->total_numa_faults;
2563 grp->total_faults += p->total_numa_faults;
8c8a743c 2564
8c8a743c
PZ
2565 my_grp->nr_tasks--;
2566 grp->nr_tasks++;
2567
2568 spin_unlock(&my_grp->lock);
60e69eed 2569 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2570
2571 rcu_assign_pointer(p->numa_group, grp);
2572
2573 put_numa_group(my_grp);
3354781a
PZ
2574 return;
2575
2576no_join:
2577 rcu_read_unlock();
2578 return;
8c8a743c
PZ
2579}
2580
16d51a59
JH
2581/*
2582 * Get rid of NUMA staticstics associated with a task (either current or dead).
2583 * If @final is set, the task is dead and has reached refcount zero, so we can
2584 * safely free all relevant data structures. Otherwise, there might be
2585 * concurrent reads from places like load balancing and procfs, and we should
2586 * reset the data back to default state without freeing ->numa_faults.
2587 */
2588void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2589{
cb361d8c
JH
2590 /* safe: p either is current or is being freed by current */
2591 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2592 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2593 unsigned long flags;
2594 int i;
8c8a743c 2595
16d51a59
JH
2596 if (!numa_faults)
2597 return;
2598
8c8a743c 2599 if (grp) {
e9dd685c 2600 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2601 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2602 grp->faults[i] -= p->numa_faults[i];
989348b5 2603 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2604
8c8a743c 2605 grp->nr_tasks--;
e9dd685c 2606 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2607 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2608 put_numa_group(grp);
2609 }
2610
16d51a59
JH
2611 if (final) {
2612 p->numa_faults = NULL;
2613 kfree(numa_faults);
2614 } else {
2615 p->total_numa_faults = 0;
2616 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2617 numa_faults[i] = 0;
2618 }
8c8a743c
PZ
2619}
2620
cbee9f88
PZ
2621/*
2622 * Got a PROT_NONE fault for a page on @node.
2623 */
58b46da3 2624void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2625{
2626 struct task_struct *p = current;
6688cc05 2627 bool migrated = flags & TNF_MIGRATED;
58b46da3 2628 int cpu_node = task_node(current);
792568ec 2629 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2630 struct numa_group *ng;
ac8e895b 2631 int priv;
cbee9f88 2632
2a595721 2633 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2634 return;
2635
9ff1d9ff
MG
2636 /* for example, ksmd faulting in a user's mm */
2637 if (!p->mm)
2638 return;
2639
f809ca9a 2640 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2641 if (unlikely(!p->numa_faults)) {
2642 int size = sizeof(*p->numa_faults) *
be1e4e76 2643 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2644
44dba3d5
IM
2645 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2646 if (!p->numa_faults)
f809ca9a 2647 return;
745d6147 2648
83e1d2cd 2649 p->total_numa_faults = 0;
04bb2f94 2650 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2651 }
cbee9f88 2652
8c8a743c
PZ
2653 /*
2654 * First accesses are treated as private, otherwise consider accesses
2655 * to be private if the accessing pid has not changed
2656 */
2657 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2658 priv = 1;
2659 } else {
2660 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2661 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2662 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2663 }
2664
792568ec
RR
2665 /*
2666 * If a workload spans multiple NUMA nodes, a shared fault that
2667 * occurs wholly within the set of nodes that the workload is
2668 * actively using should be counted as local. This allows the
2669 * scan rate to slow down when a workload has settled down.
2670 */
cb361d8c 2671 ng = deref_curr_numa_group(p);
4142c3eb
RR
2672 if (!priv && !local && ng && ng->active_nodes > 1 &&
2673 numa_is_active_node(cpu_node, ng) &&
2674 numa_is_active_node(mem_node, ng))
792568ec
RR
2675 local = 1;
2676
2739d3ee 2677 /*
e1ff516a
YW
2678 * Retry to migrate task to preferred node periodically, in case it
2679 * previously failed, or the scheduler moved us.
2739d3ee 2680 */
b6a60cf3
SD
2681 if (time_after(jiffies, p->numa_migrate_retry)) {
2682 task_numa_placement(p);
6b9a7460 2683 numa_migrate_preferred(p);
b6a60cf3 2684 }
6b9a7460 2685
b32e86b4
IM
2686 if (migrated)
2687 p->numa_pages_migrated += pages;
074c2381
MG
2688 if (flags & TNF_MIGRATE_FAIL)
2689 p->numa_faults_locality[2] += pages;
b32e86b4 2690
44dba3d5
IM
2691 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2692 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2693 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2694}
2695
6e5fb223
PZ
2696static void reset_ptenuma_scan(struct task_struct *p)
2697{
7e5a2c17
JL
2698 /*
2699 * We only did a read acquisition of the mmap sem, so
2700 * p->mm->numa_scan_seq is written to without exclusive access
2701 * and the update is not guaranteed to be atomic. That's not
2702 * much of an issue though, since this is just used for
2703 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2704 * expensive, to avoid any form of compiler optimizations:
2705 */
316c1608 2706 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2707 p->mm->numa_scan_offset = 0;
2708}
2709
cbee9f88
PZ
2710/*
2711 * The expensive part of numa migration is done from task_work context.
2712 * Triggered from task_tick_numa().
2713 */
9434f9f5 2714static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2715{
2716 unsigned long migrate, next_scan, now = jiffies;
2717 struct task_struct *p = current;
2718 struct mm_struct *mm = p->mm;
51170840 2719 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2720 struct vm_area_struct *vma;
9f40604c 2721 unsigned long start, end;
598f0ec0 2722 unsigned long nr_pte_updates = 0;
4620f8c1 2723 long pages, virtpages;
cbee9f88 2724
9148a3a1 2725 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2726
b34920d4 2727 work->next = work;
cbee9f88
PZ
2728 /*
2729 * Who cares about NUMA placement when they're dying.
2730 *
2731 * NOTE: make sure not to dereference p->mm before this check,
2732 * exit_task_work() happens _after_ exit_mm() so we could be called
2733 * without p->mm even though we still had it when we enqueued this
2734 * work.
2735 */
2736 if (p->flags & PF_EXITING)
2737 return;
2738
930aa174 2739 if (!mm->numa_next_scan) {
7e8d16b6
MG
2740 mm->numa_next_scan = now +
2741 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2742 }
2743
cbee9f88
PZ
2744 /*
2745 * Enforce maximal scan/migration frequency..
2746 */
2747 migrate = mm->numa_next_scan;
2748 if (time_before(now, migrate))
2749 return;
2750
598f0ec0
MG
2751 if (p->numa_scan_period == 0) {
2752 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2753 p->numa_scan_period = task_scan_start(p);
598f0ec0 2754 }
cbee9f88 2755
fb003b80 2756 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2757 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2758 return;
2759
19a78d11
PZ
2760 /*
2761 * Delay this task enough that another task of this mm will likely win
2762 * the next time around.
2763 */
2764 p->node_stamp += 2 * TICK_NSEC;
2765
9f40604c
MG
2766 start = mm->numa_scan_offset;
2767 pages = sysctl_numa_balancing_scan_size;
2768 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2769 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2770 if (!pages)
2771 return;
cbee9f88 2772
4620f8c1 2773
8655d549
VB
2774 if (!down_read_trylock(&mm->mmap_sem))
2775 return;
9f40604c 2776 vma = find_vma(mm, start);
6e5fb223
PZ
2777 if (!vma) {
2778 reset_ptenuma_scan(p);
9f40604c 2779 start = 0;
6e5fb223
PZ
2780 vma = mm->mmap;
2781 }
9f40604c 2782 for (; vma; vma = vma->vm_next) {
6b79c57b 2783 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2784 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2785 continue;
6b79c57b 2786 }
6e5fb223 2787
4591ce4f
MG
2788 /*
2789 * Shared library pages mapped by multiple processes are not
2790 * migrated as it is expected they are cache replicated. Avoid
2791 * hinting faults in read-only file-backed mappings or the vdso
2792 * as migrating the pages will be of marginal benefit.
2793 */
2794 if (!vma->vm_mm ||
2795 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2796 continue;
2797
3c67f474
MG
2798 /*
2799 * Skip inaccessible VMAs to avoid any confusion between
2800 * PROT_NONE and NUMA hinting ptes
2801 */
3122e80e 2802 if (!vma_is_accessible(vma))
3c67f474 2803 continue;
4591ce4f 2804
9f40604c
MG
2805 do {
2806 start = max(start, vma->vm_start);
2807 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2808 end = min(end, vma->vm_end);
4620f8c1 2809 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2810
2811 /*
4620f8c1
RR
2812 * Try to scan sysctl_numa_balancing_size worth of
2813 * hpages that have at least one present PTE that
2814 * is not already pte-numa. If the VMA contains
2815 * areas that are unused or already full of prot_numa
2816 * PTEs, scan up to virtpages, to skip through those
2817 * areas faster.
598f0ec0
MG
2818 */
2819 if (nr_pte_updates)
2820 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2821 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2822
9f40604c 2823 start = end;
4620f8c1 2824 if (pages <= 0 || virtpages <= 0)
9f40604c 2825 goto out;
3cf1962c
RR
2826
2827 cond_resched();
9f40604c 2828 } while (end != vma->vm_end);
cbee9f88 2829 }
6e5fb223 2830
9f40604c 2831out:
6e5fb223 2832 /*
c69307d5
PZ
2833 * It is possible to reach the end of the VMA list but the last few
2834 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2835 * would find the !migratable VMA on the next scan but not reset the
2836 * scanner to the start so check it now.
6e5fb223
PZ
2837 */
2838 if (vma)
9f40604c 2839 mm->numa_scan_offset = start;
6e5fb223
PZ
2840 else
2841 reset_ptenuma_scan(p);
2842 up_read(&mm->mmap_sem);
51170840
RR
2843
2844 /*
2845 * Make sure tasks use at least 32x as much time to run other code
2846 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2847 * Usually update_task_scan_period slows down scanning enough; on an
2848 * overloaded system we need to limit overhead on a per task basis.
2849 */
2850 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2851 u64 diff = p->se.sum_exec_runtime - runtime;
2852 p->node_stamp += 32 * diff;
2853 }
cbee9f88
PZ
2854}
2855
d35927a1
VS
2856void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2857{
2858 int mm_users = 0;
2859 struct mm_struct *mm = p->mm;
2860
2861 if (mm) {
2862 mm_users = atomic_read(&mm->mm_users);
2863 if (mm_users == 1) {
2864 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2865 mm->numa_scan_seq = 0;
2866 }
2867 }
2868 p->node_stamp = 0;
2869 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2870 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2871 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2872 p->numa_work.next = &p->numa_work;
2873 p->numa_faults = NULL;
2874 RCU_INIT_POINTER(p->numa_group, NULL);
2875 p->last_task_numa_placement = 0;
2876 p->last_sum_exec_runtime = 0;
2877
b34920d4
VS
2878 init_task_work(&p->numa_work, task_numa_work);
2879
d35927a1
VS
2880 /* New address space, reset the preferred nid */
2881 if (!(clone_flags & CLONE_VM)) {
2882 p->numa_preferred_nid = NUMA_NO_NODE;
2883 return;
2884 }
2885
2886 /*
2887 * New thread, keep existing numa_preferred_nid which should be copied
2888 * already by arch_dup_task_struct but stagger when scans start.
2889 */
2890 if (mm) {
2891 unsigned int delay;
2892
2893 delay = min_t(unsigned int, task_scan_max(current),
2894 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2895 delay += 2 * TICK_NSEC;
2896 p->node_stamp = delay;
2897 }
2898}
2899
cbee9f88
PZ
2900/*
2901 * Drive the periodic memory faults..
2902 */
b1546edc 2903static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2904{
2905 struct callback_head *work = &curr->numa_work;
2906 u64 period, now;
2907
2908 /*
2909 * We don't care about NUMA placement if we don't have memory.
2910 */
18f855e5 2911 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2912 return;
2913
2914 /*
2915 * Using runtime rather than walltime has the dual advantage that
2916 * we (mostly) drive the selection from busy threads and that the
2917 * task needs to have done some actual work before we bother with
2918 * NUMA placement.
2919 */
2920 now = curr->se.sum_exec_runtime;
2921 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2922
25b3e5a3 2923 if (now > curr->node_stamp + period) {
4b96a29b 2924 if (!curr->node_stamp)
b5dd77c8 2925 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2926 curr->node_stamp += period;
cbee9f88 2927
b34920d4 2928 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2929 task_work_add(curr, work, true);
cbee9f88
PZ
2930 }
2931}
3fed382b 2932
3f9672ba
SD
2933static void update_scan_period(struct task_struct *p, int new_cpu)
2934{
2935 int src_nid = cpu_to_node(task_cpu(p));
2936 int dst_nid = cpu_to_node(new_cpu);
2937
05cbdf4f
MG
2938 if (!static_branch_likely(&sched_numa_balancing))
2939 return;
2940
3f9672ba
SD
2941 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2942 return;
2943
05cbdf4f
MG
2944 if (src_nid == dst_nid)
2945 return;
2946
2947 /*
2948 * Allow resets if faults have been trapped before one scan
2949 * has completed. This is most likely due to a new task that
2950 * is pulled cross-node due to wakeups or load balancing.
2951 */
2952 if (p->numa_scan_seq) {
2953 /*
2954 * Avoid scan adjustments if moving to the preferred
2955 * node or if the task was not previously running on
2956 * the preferred node.
2957 */
2958 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2959 (p->numa_preferred_nid != NUMA_NO_NODE &&
2960 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2961 return;
2962 }
2963
2964 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2965}
2966
cbee9f88
PZ
2967#else
2968static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2969{
2970}
0ec8aa00
PZ
2971
2972static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2973{
2974}
2975
2976static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2977{
2978}
3fed382b 2979
3f9672ba
SD
2980static inline void update_scan_period(struct task_struct *p, int new_cpu)
2981{
2982}
2983
cbee9f88
PZ
2984#endif /* CONFIG_NUMA_BALANCING */
2985
30cfdcfc
DA
2986static void
2987account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2988{
2989 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2990#ifdef CONFIG_SMP
0ec8aa00
PZ
2991 if (entity_is_task(se)) {
2992 struct rq *rq = rq_of(cfs_rq);
2993
2994 account_numa_enqueue(rq, task_of(se));
2995 list_add(&se->group_node, &rq->cfs_tasks);
2996 }
367456c7 2997#endif
30cfdcfc 2998 cfs_rq->nr_running++;
30cfdcfc
DA
2999}
3000
3001static void
3002account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3003{
3004 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3005#ifdef CONFIG_SMP
0ec8aa00
PZ
3006 if (entity_is_task(se)) {
3007 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3008 list_del_init(&se->group_node);
0ec8aa00 3009 }
bfdb198c 3010#endif
30cfdcfc 3011 cfs_rq->nr_running--;
30cfdcfc
DA
3012}
3013
8d5b9025
PZ
3014/*
3015 * Signed add and clamp on underflow.
3016 *
3017 * Explicitly do a load-store to ensure the intermediate value never hits
3018 * memory. This allows lockless observations without ever seeing the negative
3019 * values.
3020 */
3021#define add_positive(_ptr, _val) do { \
3022 typeof(_ptr) ptr = (_ptr); \
3023 typeof(_val) val = (_val); \
3024 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3025 \
3026 res = var + val; \
3027 \
3028 if (val < 0 && res > var) \
3029 res = 0; \
3030 \
3031 WRITE_ONCE(*ptr, res); \
3032} while (0)
3033
3034/*
3035 * Unsigned subtract and clamp on underflow.
3036 *
3037 * Explicitly do a load-store to ensure the intermediate value never hits
3038 * memory. This allows lockless observations without ever seeing the negative
3039 * values.
3040 */
3041#define sub_positive(_ptr, _val) do { \
3042 typeof(_ptr) ptr = (_ptr); \
3043 typeof(*ptr) val = (_val); \
3044 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3045 res = var - val; \
3046 if (res > var) \
3047 res = 0; \
3048 WRITE_ONCE(*ptr, res); \
3049} while (0)
3050
b5c0ce7b
PB
3051/*
3052 * Remove and clamp on negative, from a local variable.
3053 *
3054 * A variant of sub_positive(), which does not use explicit load-store
3055 * and is thus optimized for local variable updates.
3056 */
3057#define lsub_positive(_ptr, _val) do { \
3058 typeof(_ptr) ptr = (_ptr); \
3059 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3060} while (0)
3061
8d5b9025 3062#ifdef CONFIG_SMP
8d5b9025
PZ
3063static inline void
3064enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065{
3066 cfs_rq->avg.load_avg += se->avg.load_avg;
3067 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3068}
3069
3070static inline void
3071dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3072{
3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3074 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3075}
3076#else
3077static inline void
8d5b9025
PZ
3078enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079static inline void
3080dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081#endif
3082
9059393e 3083static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3084 unsigned long weight)
9059393e
VG
3085{
3086 if (se->on_rq) {
3087 /* commit outstanding execution time */
3088 if (cfs_rq->curr == se)
3089 update_curr(cfs_rq);
3090 account_entity_dequeue(cfs_rq, se);
9059393e
VG
3091 }
3092 dequeue_load_avg(cfs_rq, se);
3093
3094 update_load_set(&se->load, weight);
3095
3096#ifdef CONFIG_SMP
1ea6c46a
PZ
3097 do {
3098 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3099
3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3101 } while (0);
9059393e
VG
3102#endif
3103
3104 enqueue_load_avg(cfs_rq, se);
0dacee1b 3105 if (se->on_rq)
9059393e 3106 account_entity_enqueue(cfs_rq, se);
0dacee1b 3107
9059393e
VG
3108}
3109
3110void reweight_task(struct task_struct *p, int prio)
3111{
3112 struct sched_entity *se = &p->se;
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 struct load_weight *load = &se->load;
3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116
0dacee1b 3117 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3118 load->inv_weight = sched_prio_to_wmult[prio];
3119}
3120
3ff6dcac 3121#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3122#ifdef CONFIG_SMP
cef27403
PZ
3123/*
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3126 *
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3129 *
3130 * tg->weight * grq->load.weight
3131 * ge->load.weight = ----------------------------- (1)
3132 * \Sum grq->load.weight
3133 *
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3137 *
3138 * So instead of the above, we substitute:
3139 *
3140 * grq->load.weight -> grq->avg.load_avg (2)
3141 *
3142 * which yields the following:
3143 *
3144 * tg->weight * grq->avg.load_avg
3145 * ge->load.weight = ------------------------------ (3)
3146 * tg->load_avg
3147 *
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 *
3150 * That is shares_avg, and it is right (given the approximation (2)).
3151 *
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3157 *
3158 * Now, in that special case (1) reduces to:
3159 *
3160 * tg->weight * grq->load.weight
17de4ee0 3161 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3162 * grp->load.weight
3163 *
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 *
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3167 * UP case, like:
3168 *
3169 * ge->load.weight =
3170 *
3171 * tg->weight * grq->load.weight
3172 * --------------------------------------------------- (5)
3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 *
17de4ee0
PZ
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3177 *
3178 *
3179 * tg->weight * grq->load.weight
3180 * ge->load.weight = ----------------------------- (6)
3181 * tg_load_avg'
3182 *
3183 * Where:
3184 *
3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3187 *
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3191 *
3192 * \Sum ge->load.weight >= tg->weight
3193 *
3194 * hence icky!
3195 */
2c8e4dce 3196static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3197{
7c80cfc9
PZ
3198 long tg_weight, tg_shares, load, shares;
3199 struct task_group *tg = cfs_rq->tg;
3200
3201 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3202
3d4b60d3 3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3204
ea1dc6fc 3205 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3206
ea1dc6fc
PZ
3207 /* Ensure tg_weight >= load */
3208 tg_weight -= cfs_rq->tg_load_avg_contrib;
3209 tg_weight += load;
3ff6dcac 3210
7c80cfc9 3211 shares = (tg_shares * load);
cf5f0acf
PZ
3212 if (tg_weight)
3213 shares /= tg_weight;
3ff6dcac 3214
b8fd8423
DE
3215 /*
3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 * of a group with small tg->shares value. It is a floor value which is
3218 * assigned as a minimum load.weight to the sched_entity representing
3219 * the group on a CPU.
3220 *
3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3225 * instead of 0.
3226 */
7c80cfc9 3227 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3228}
387f77cc 3229#endif /* CONFIG_SMP */
ea1dc6fc 3230
82958366
PT
3231static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3232
1ea6c46a
PZ
3233/*
3234 * Recomputes the group entity based on the current state of its group
3235 * runqueue.
3236 */
3237static void update_cfs_group(struct sched_entity *se)
2069dd75 3238{
1ea6c46a 3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3240 long shares;
2069dd75 3241
1ea6c46a 3242 if (!gcfs_rq)
89ee048f
VG
3243 return;
3244
1ea6c46a 3245 if (throttled_hierarchy(gcfs_rq))
2069dd75 3246 return;
89ee048f 3247
3ff6dcac 3248#ifndef CONFIG_SMP
0dacee1b 3249 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3250
3251 if (likely(se->load.weight == shares))
3ff6dcac 3252 return;
7c80cfc9 3253#else
2c8e4dce 3254 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3255#endif
2069dd75 3256
0dacee1b 3257 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3258}
89ee048f 3259
2069dd75 3260#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3261static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3262{
3263}
3264#endif /* CONFIG_FAIR_GROUP_SCHED */
3265
ea14b57e 3266static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3267{
43964409
LT
3268 struct rq *rq = rq_of(cfs_rq);
3269
a4f9a0e5 3270 if (&rq->cfs == cfs_rq) {
a030d738
VK
3271 /*
3272 * There are a few boundary cases this might miss but it should
3273 * get called often enough that that should (hopefully) not be
9783be2c 3274 * a real problem.
a030d738
VK
3275 *
3276 * It will not get called when we go idle, because the idle
3277 * thread is a different class (!fair), nor will the utilization
3278 * number include things like RT tasks.
3279 *
3280 * As is, the util number is not freq-invariant (we'd have to
3281 * implement arch_scale_freq_capacity() for that).
3282 *
3283 * See cpu_util().
3284 */
ea14b57e 3285 cpufreq_update_util(rq, flags);
a030d738
VK
3286 }
3287}
3288
141965c7 3289#ifdef CONFIG_SMP
c566e8e9 3290#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3291/**
3292 * update_tg_load_avg - update the tg's load avg
3293 * @cfs_rq: the cfs_rq whose avg changed
3294 * @force: update regardless of how small the difference
3295 *
3296 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3297 * However, because tg->load_avg is a global value there are performance
3298 * considerations.
3299 *
3300 * In order to avoid having to look at the other cfs_rq's, we use a
3301 * differential update where we store the last value we propagated. This in
3302 * turn allows skipping updates if the differential is 'small'.
3303 *
815abf5a 3304 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3305 */
9d89c257 3306static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3307{
9d89c257 3308 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3309
aa0b7ae0
WL
3310 /*
3311 * No need to update load_avg for root_task_group as it is not used.
3312 */
3313 if (cfs_rq->tg == &root_task_group)
3314 return;
3315
9d89c257
YD
3316 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3317 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3318 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3319 }
8165e145 3320}
f5f9739d 3321
ad936d86 3322/*
97fb7a0a 3323 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3324 * caller only guarantees p->pi_lock is held; no other assumptions,
3325 * including the state of rq->lock, should be made.
3326 */
3327void set_task_rq_fair(struct sched_entity *se,
3328 struct cfs_rq *prev, struct cfs_rq *next)
3329{
0ccb977f
PZ
3330 u64 p_last_update_time;
3331 u64 n_last_update_time;
3332
ad936d86
BP
3333 if (!sched_feat(ATTACH_AGE_LOAD))
3334 return;
3335
3336 /*
3337 * We are supposed to update the task to "current" time, then its up to
3338 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3339 * getting what current time is, so simply throw away the out-of-date
3340 * time. This will result in the wakee task is less decayed, but giving
3341 * the wakee more load sounds not bad.
3342 */
0ccb977f
PZ
3343 if (!(se->avg.last_update_time && prev))
3344 return;
ad936d86
BP
3345
3346#ifndef CONFIG_64BIT
0ccb977f 3347 {
ad936d86
BP
3348 u64 p_last_update_time_copy;
3349 u64 n_last_update_time_copy;
3350
3351 do {
3352 p_last_update_time_copy = prev->load_last_update_time_copy;
3353 n_last_update_time_copy = next->load_last_update_time_copy;
3354
3355 smp_rmb();
3356
3357 p_last_update_time = prev->avg.last_update_time;
3358 n_last_update_time = next->avg.last_update_time;
3359
3360 } while (p_last_update_time != p_last_update_time_copy ||
3361 n_last_update_time != n_last_update_time_copy);
0ccb977f 3362 }
ad936d86 3363#else
0ccb977f
PZ
3364 p_last_update_time = prev->avg.last_update_time;
3365 n_last_update_time = next->avg.last_update_time;
ad936d86 3366#endif
23127296 3367 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3368 se->avg.last_update_time = n_last_update_time;
ad936d86 3369}
09a43ace 3370
0e2d2aaa
PZ
3371
3372/*
3373 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3374 * propagate its contribution. The key to this propagation is the invariant
3375 * that for each group:
3376 *
3377 * ge->avg == grq->avg (1)
3378 *
3379 * _IFF_ we look at the pure running and runnable sums. Because they
3380 * represent the very same entity, just at different points in the hierarchy.
3381 *
9f683953
VG
3382 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3383 * and simply copies the running/runnable sum over (but still wrong, because
3384 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3385 *
0dacee1b 3386 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3387 *
3388 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3389 *
3390 * And since, like util, the runnable part should be directly transferable,
3391 * the following would _appear_ to be the straight forward approach:
3392 *
a4c3c049 3393 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3394 *
3395 * And per (1) we have:
3396 *
a4c3c049 3397 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3398 *
3399 * Which gives:
3400 *
3401 * ge->load.weight * grq->avg.load_avg
3402 * ge->avg.load_avg = ----------------------------------- (4)
3403 * grq->load.weight
3404 *
3405 * Except that is wrong!
3406 *
3407 * Because while for entities historical weight is not important and we
3408 * really only care about our future and therefore can consider a pure
3409 * runnable sum, runqueues can NOT do this.
3410 *
3411 * We specifically want runqueues to have a load_avg that includes
3412 * historical weights. Those represent the blocked load, the load we expect
3413 * to (shortly) return to us. This only works by keeping the weights as
3414 * integral part of the sum. We therefore cannot decompose as per (3).
3415 *
a4c3c049
VG
3416 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3417 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3418 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3419 * runnable section of these tasks overlap (or not). If they were to perfectly
3420 * align the rq as a whole would be runnable 2/3 of the time. If however we
3421 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3422 *
a4c3c049 3423 * So we'll have to approximate.. :/
0e2d2aaa 3424 *
a4c3c049 3425 * Given the constraint:
0e2d2aaa 3426 *
a4c3c049 3427 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3428 *
a4c3c049
VG
3429 * We can construct a rule that adds runnable to a rq by assuming minimal
3430 * overlap.
0e2d2aaa 3431 *
a4c3c049 3432 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3433 *
a4c3c049 3434 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3435 *
a4c3c049 3436 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3437 *
0e2d2aaa
PZ
3438 */
3439
09a43ace 3440static inline void
0e2d2aaa 3441update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3442{
09a43ace 3443 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
95d68593
VG
3444 /*
3445 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3446 * See ___update_load_avg() for details.
3447 */
3448 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
09a43ace
VG
3449
3450 /* Nothing to update */
3451 if (!delta)
3452 return;
3453
3454 /* Set new sched_entity's utilization */
3455 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3456 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3457
3458 /* Update parent cfs_rq utilization */
3459 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3460 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3461}
3462
9f683953
VG
3463static inline void
3464update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3465{
3466 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
95d68593
VG
3467 /*
3468 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3469 * See ___update_load_avg() for details.
3470 */
3471 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
9f683953
VG
3472
3473 /* Nothing to update */
3474 if (!delta)
3475 return;
3476
9f683953
VG
3477 /* Set new sched_entity's runnable */
3478 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3479 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3480
3481 /* Update parent cfs_rq runnable */
3482 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3483 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3484}
3485
09a43ace 3486static inline void
0dacee1b 3487update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3488{
a4c3c049 3489 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3490 unsigned long load_avg;
3491 u64 load_sum = 0;
a4c3c049 3492 s64 delta_sum;
95d68593 3493 u32 divider;
09a43ace 3494
0e2d2aaa
PZ
3495 if (!runnable_sum)
3496 return;
09a43ace 3497
0e2d2aaa 3498 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3499
95d68593
VG
3500 /*
3501 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3502 * See ___update_load_avg() for details.
3503 */
3504 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3505
a4c3c049
VG
3506 if (runnable_sum >= 0) {
3507 /*
3508 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3509 * the CPU is saturated running == runnable.
3510 */
3511 runnable_sum += se->avg.load_sum;
95d68593 3512 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3513 } else {
3514 /*
3515 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3516 * assuming all tasks are equally runnable.
3517 */
3518 if (scale_load_down(gcfs_rq->load.weight)) {
3519 load_sum = div_s64(gcfs_rq->avg.load_sum,
3520 scale_load_down(gcfs_rq->load.weight));
3521 }
3522
3523 /* But make sure to not inflate se's runnable */
3524 runnable_sum = min(se->avg.load_sum, load_sum);
3525 }
3526
3527 /*
3528 * runnable_sum can't be lower than running_sum
23127296
VG
3529 * Rescale running sum to be in the same range as runnable sum
3530 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3531 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3532 */
23127296 3533 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3534 runnable_sum = max(runnable_sum, running_sum);
3535
0e2d2aaa 3536 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3537 load_avg = div_s64(load_sum, divider);
09a43ace 3538
a4c3c049
VG
3539 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3540 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3541
a4c3c049
VG
3542 se->avg.load_sum = runnable_sum;
3543 se->avg.load_avg = load_avg;
3544 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3545 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3546}
3547
0e2d2aaa 3548static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3549{
0e2d2aaa
PZ
3550 cfs_rq->propagate = 1;
3551 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3552}
3553
3554/* Update task and its cfs_rq load average */
3555static inline int propagate_entity_load_avg(struct sched_entity *se)
3556{
0e2d2aaa 3557 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3558
3559 if (entity_is_task(se))
3560 return 0;
3561
0e2d2aaa
PZ
3562 gcfs_rq = group_cfs_rq(se);
3563 if (!gcfs_rq->propagate)
09a43ace
VG
3564 return 0;
3565
0e2d2aaa
PZ
3566 gcfs_rq->propagate = 0;
3567
09a43ace
VG
3568 cfs_rq = cfs_rq_of(se);
3569
0e2d2aaa 3570 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3571
0e2d2aaa 3572 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3573 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3574 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3575
ba19f51f 3576 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3577 trace_pelt_se_tp(se);
ba19f51f 3578
09a43ace
VG
3579 return 1;
3580}
3581
bc427898
VG
3582/*
3583 * Check if we need to update the load and the utilization of a blocked
3584 * group_entity:
3585 */
3586static inline bool skip_blocked_update(struct sched_entity *se)
3587{
3588 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3589
3590 /*
3591 * If sched_entity still have not zero load or utilization, we have to
3592 * decay it:
3593 */
3594 if (se->avg.load_avg || se->avg.util_avg)
3595 return false;
3596
3597 /*
3598 * If there is a pending propagation, we have to update the load and
3599 * the utilization of the sched_entity:
3600 */
0e2d2aaa 3601 if (gcfs_rq->propagate)
bc427898
VG
3602 return false;
3603
3604 /*
3605 * Otherwise, the load and the utilization of the sched_entity is
3606 * already zero and there is no pending propagation, so it will be a
3607 * waste of time to try to decay it:
3608 */
3609 return true;
3610}
3611
6e83125c 3612#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3613
9d89c257 3614static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3615
3616static inline int propagate_entity_load_avg(struct sched_entity *se)
3617{
3618 return 0;
3619}
3620
0e2d2aaa 3621static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3622
6e83125c 3623#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3624
3d30544f
PZ
3625/**
3626 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3627 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3628 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3629 *
3630 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3631 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3632 * post_init_entity_util_avg().
3633 *
3634 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3635 *
7c3edd2c
PZ
3636 * Returns true if the load decayed or we removed load.
3637 *
3638 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3639 * call update_tg_load_avg() when this function returns true.
3d30544f 3640 */
a2c6c91f 3641static inline int
3a123bbb 3642update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3643{
9f683953 3644 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3645 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3646 int decayed = 0;
2dac754e 3647
2a2f5d4e
PZ
3648 if (cfs_rq->removed.nr) {
3649 unsigned long r;
9a2dd585 3650 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3651
3652 raw_spin_lock(&cfs_rq->removed.lock);
3653 swap(cfs_rq->removed.util_avg, removed_util);
3654 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3655 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3656 cfs_rq->removed.nr = 0;
3657 raw_spin_unlock(&cfs_rq->removed.lock);
3658
2a2f5d4e 3659 r = removed_load;
89741892 3660 sub_positive(&sa->load_avg, r);
9a2dd585 3661 sub_positive(&sa->load_sum, r * divider);
2dac754e 3662
2a2f5d4e 3663 r = removed_util;
89741892 3664 sub_positive(&sa->util_avg, r);
9a2dd585 3665 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3666
9f683953
VG
3667 r = removed_runnable;
3668 sub_positive(&sa->runnable_avg, r);
3669 sub_positive(&sa->runnable_sum, r * divider);
3670
3671 /*
3672 * removed_runnable is the unweighted version of removed_load so we
3673 * can use it to estimate removed_load_sum.
3674 */
3675 add_tg_cfs_propagate(cfs_rq,
3676 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3677
3678 decayed = 1;
9d89c257 3679 }
36ee28e4 3680
23127296 3681 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3682
9d89c257
YD
3683#ifndef CONFIG_64BIT
3684 smp_wmb();
3685 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3686#endif
36ee28e4 3687
2a2f5d4e 3688 return decayed;
21e96f88
SM
3689}
3690
3d30544f
PZ
3691/**
3692 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3693 * @cfs_rq: cfs_rq to attach to
3694 * @se: sched_entity to attach
3695 *
3696 * Must call update_cfs_rq_load_avg() before this, since we rely on
3697 * cfs_rq->avg.last_update_time being current.
3698 */
a4f9a0e5 3699static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3700{
95d68593
VG
3701 /*
3702 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3703 * See ___update_load_avg() for details.
3704 */
f207934f
PZ
3705 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3706
3707 /*
3708 * When we attach the @se to the @cfs_rq, we must align the decay
3709 * window because without that, really weird and wonderful things can
3710 * happen.
3711 *
3712 * XXX illustrate
3713 */
a05e8c51 3714 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3715 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3716
3717 /*
3718 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3719 * period_contrib. This isn't strictly correct, but since we're
3720 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3721 * _sum a little.
3722 */
3723 se->avg.util_sum = se->avg.util_avg * divider;
3724
9f683953
VG
3725 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3726
f207934f
PZ
3727 se->avg.load_sum = divider;
3728 if (se_weight(se)) {
3729 se->avg.load_sum =
3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3731 }
3732
8d5b9025 3733 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3734 cfs_rq->avg.util_avg += se->avg.util_avg;
3735 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3736 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3737 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3738
3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3740
a4f9a0e5 3741 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3742
3743 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3744}
3745
3d30544f
PZ
3746/**
3747 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3748 * @cfs_rq: cfs_rq to detach from
3749 * @se: sched_entity to detach
3750 *
3751 * Must call update_cfs_rq_load_avg() before this, since we rely on
3752 * cfs_rq->avg.last_update_time being current.
3753 */
a05e8c51
BP
3754static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3755{
8d5b9025 3756 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3757 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3758 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3759 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3760 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3761
3762 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3763
ea14b57e 3764 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3765
3766 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3767}
3768
b382a531
PZ
3769/*
3770 * Optional action to be done while updating the load average
3771 */
3772#define UPDATE_TG 0x1
3773#define SKIP_AGE_LOAD 0x2
3774#define DO_ATTACH 0x4
3775
3776/* Update task and its cfs_rq load average */
3777static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3778{
23127296 3779 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3780 int decayed;
3781
3782 /*
3783 * Track task load average for carrying it to new CPU after migrated, and
3784 * track group sched_entity load average for task_h_load calc in migration
3785 */
3786 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3787 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3788
3789 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3790 decayed |= propagate_entity_load_avg(se);
3791
3792 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3793
ea14b57e
PZ
3794 /*
3795 * DO_ATTACH means we're here from enqueue_entity().
3796 * !last_update_time means we've passed through
3797 * migrate_task_rq_fair() indicating we migrated.
3798 *
3799 * IOW we're enqueueing a task on a new CPU.
3800 */
a4f9a0e5 3801 attach_entity_load_avg(cfs_rq, se);
b382a531
PZ
3802 update_tg_load_avg(cfs_rq, 0);
3803
bef69dd8
VG
3804 } else if (decayed) {
3805 cfs_rq_util_change(cfs_rq, 0);
3806
3807 if (flags & UPDATE_TG)
3808 update_tg_load_avg(cfs_rq, 0);
3809 }
b382a531
PZ
3810}
3811
9d89c257 3812#ifndef CONFIG_64BIT
0905f04e
YD
3813static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3814{
9d89c257 3815 u64 last_update_time_copy;
0905f04e 3816 u64 last_update_time;
9ee474f5 3817
9d89c257
YD
3818 do {
3819 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3820 smp_rmb();
3821 last_update_time = cfs_rq->avg.last_update_time;
3822 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3823
3824 return last_update_time;
3825}
9d89c257 3826#else
0905f04e
YD
3827static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3828{
3829 return cfs_rq->avg.last_update_time;
3830}
9d89c257
YD
3831#endif
3832
104cb16d
MR
3833/*
3834 * Synchronize entity load avg of dequeued entity without locking
3835 * the previous rq.
3836 */
71b47eaf 3837static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3838{
3839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3840 u64 last_update_time;
3841
3842 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3843 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3844}
3845
0905f04e
YD
3846/*
3847 * Task first catches up with cfs_rq, and then subtract
3848 * itself from the cfs_rq (task must be off the queue now).
3849 */
71b47eaf 3850static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3851{
3852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3853 unsigned long flags;
0905f04e
YD
3854
3855 /*
7dc603c9
PZ
3856 * tasks cannot exit without having gone through wake_up_new_task() ->
3857 * post_init_entity_util_avg() which will have added things to the
3858 * cfs_rq, so we can remove unconditionally.
0905f04e 3859 */
0905f04e 3860
104cb16d 3861 sync_entity_load_avg(se);
2a2f5d4e
PZ
3862
3863 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3864 ++cfs_rq->removed.nr;
3865 cfs_rq->removed.util_avg += se->avg.util_avg;
3866 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3867 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3868 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3869}
642dbc39 3870
9f683953
VG
3871static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3872{
3873 return cfs_rq->avg.runnable_avg;
3874}
3875
7ea241af
YD
3876static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3877{
3878 return cfs_rq->avg.load_avg;
3879}
3880
d91cecc1
CY
3881static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3882
7f65ea42
PB
3883static inline unsigned long task_util(struct task_struct *p)
3884{
3885 return READ_ONCE(p->se.avg.util_avg);
3886}
3887
3888static inline unsigned long _task_util_est(struct task_struct *p)
3889{
3890 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3891
92a801e5 3892 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3893}
3894
3895static inline unsigned long task_util_est(struct task_struct *p)
3896{
3897 return max(task_util(p), _task_util_est(p));
3898}
3899
a7008c07
VS
3900#ifdef CONFIG_UCLAMP_TASK
3901static inline unsigned long uclamp_task_util(struct task_struct *p)
3902{
3903 return clamp(task_util_est(p),
3904 uclamp_eff_value(p, UCLAMP_MIN),
3905 uclamp_eff_value(p, UCLAMP_MAX));
3906}
3907#else
3908static inline unsigned long uclamp_task_util(struct task_struct *p)
3909{
3910 return task_util_est(p);
3911}
3912#endif
3913
7f65ea42
PB
3914static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3915 struct task_struct *p)
3916{
3917 unsigned int enqueued;
3918
3919 if (!sched_feat(UTIL_EST))
3920 return;
3921
3922 /* Update root cfs_rq's estimated utilization */
3923 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3924 enqueued += _task_util_est(p);
7f65ea42
PB
3925 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3926}
3927
3928/*
3929 * Check if a (signed) value is within a specified (unsigned) margin,
3930 * based on the observation that:
3931 *
3932 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3933 *
3934 * NOTE: this only works when value + maring < INT_MAX.
3935 */
3936static inline bool within_margin(int value, int margin)
3937{
3938 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3939}
3940
3941static void
3942util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3943{
3944 long last_ewma_diff;
3945 struct util_est ue;
10a35e68 3946 int cpu;
7f65ea42
PB
3947
3948 if (!sched_feat(UTIL_EST))
3949 return;
3950
3482d98b
VG
3951 /* Update root cfs_rq's estimated utilization */
3952 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3953 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3954 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3955
3956 /*
3957 * Skip update of task's estimated utilization when the task has not
3958 * yet completed an activation, e.g. being migrated.
3959 */
3960 if (!task_sleep)
3961 return;
3962
d519329f
PB
3963 /*
3964 * If the PELT values haven't changed since enqueue time,
3965 * skip the util_est update.
3966 */
3967 ue = p->se.avg.util_est;
3968 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3969 return;
3970
b8c96361
PB
3971 /*
3972 * Reset EWMA on utilization increases, the moving average is used only
3973 * to smooth utilization decreases.
3974 */
3975 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3976 if (sched_feat(UTIL_EST_FASTUP)) {
3977 if (ue.ewma < ue.enqueued) {
3978 ue.ewma = ue.enqueued;
3979 goto done;
3980 }
3981 }
3982
7f65ea42
PB
3983 /*
3984 * Skip update of task's estimated utilization when its EWMA is
3985 * already ~1% close to its last activation value.
3986 */
7f65ea42
PB
3987 last_ewma_diff = ue.enqueued - ue.ewma;
3988 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3989 return;
3990
10a35e68
VG
3991 /*
3992 * To avoid overestimation of actual task utilization, skip updates if
3993 * we cannot grant there is idle time in this CPU.
3994 */
3995 cpu = cpu_of(rq_of(cfs_rq));
3996 if (task_util(p) > capacity_orig_of(cpu))
3997 return;
3998
7f65ea42
PB
3999 /*
4000 * Update Task's estimated utilization
4001 *
4002 * When *p completes an activation we can consolidate another sample
4003 * of the task size. This is done by storing the current PELT value
4004 * as ue.enqueued and by using this value to update the Exponential
4005 * Weighted Moving Average (EWMA):
4006 *
4007 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4008 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4009 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4010 * = w * ( last_ewma_diff ) + ewma(t-1)
4011 * = w * (last_ewma_diff + ewma(t-1) / w)
4012 *
4013 * Where 'w' is the weight of new samples, which is configured to be
4014 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4015 */
4016 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4017 ue.ewma += last_ewma_diff;
4018 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4019done:
7f65ea42
PB
4020 WRITE_ONCE(p->se.avg.util_est, ue);
4021}
4022
3b1baa64
MR
4023static inline int task_fits_capacity(struct task_struct *p, long capacity)
4024{
a7008c07 4025 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4026}
4027
4028static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4029{
4030 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4031 return;
4032
4033 if (!p) {
4034 rq->misfit_task_load = 0;
4035 return;
4036 }
4037
4038 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4039 rq->misfit_task_load = 0;
4040 return;
4041 }
4042
4043 rq->misfit_task_load = task_h_load(p);
4044}
4045
38033c37
PZ
4046#else /* CONFIG_SMP */
4047
d31b1a66
VG
4048#define UPDATE_TG 0x0
4049#define SKIP_AGE_LOAD 0x0
b382a531 4050#define DO_ATTACH 0x0
d31b1a66 4051
88c0616e 4052static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4053{
ea14b57e 4054 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4055}
4056
9d89c257 4057static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4058
a05e8c51 4059static inline void
a4f9a0e5 4060attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4061static inline void
4062detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4063
d91cecc1 4064static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4065{
4066 return 0;
4067}
4068
7f65ea42
PB
4069static inline void
4070util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4071
4072static inline void
4073util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4074 bool task_sleep) {}
3b1baa64 4075static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4076
38033c37 4077#endif /* CONFIG_SMP */
9d85f21c 4078
ddc97297
PZ
4079static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4080{
4081#ifdef CONFIG_SCHED_DEBUG
4082 s64 d = se->vruntime - cfs_rq->min_vruntime;
4083
4084 if (d < 0)
4085 d = -d;
4086
4087 if (d > 3*sysctl_sched_latency)
ae92882e 4088 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4089#endif
4090}
4091
aeb73b04
PZ
4092static void
4093place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4094{
1af5f730 4095 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4096
2cb8600e
PZ
4097 /*
4098 * The 'current' period is already promised to the current tasks,
4099 * however the extra weight of the new task will slow them down a
4100 * little, place the new task so that it fits in the slot that
4101 * stays open at the end.
4102 */
94dfb5e7 4103 if (initial && sched_feat(START_DEBIT))
f9c0b095 4104 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4105
a2e7a7eb 4106 /* sleeps up to a single latency don't count. */
5ca9880c 4107 if (!initial) {
a2e7a7eb 4108 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4109
a2e7a7eb
MG
4110 /*
4111 * Halve their sleep time's effect, to allow
4112 * for a gentler effect of sleepers:
4113 */
4114 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4115 thresh >>= 1;
51e0304c 4116
a2e7a7eb 4117 vruntime -= thresh;
aeb73b04
PZ
4118 }
4119
b5d9d734 4120 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4121 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4122}
4123
d3d9dc33
PT
4124static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4125
cb251765
MG
4126static inline void check_schedstat_required(void)
4127{
4128#ifdef CONFIG_SCHEDSTATS
4129 if (schedstat_enabled())
4130 return;
4131
4132 /* Force schedstat enabled if a dependent tracepoint is active */
4133 if (trace_sched_stat_wait_enabled() ||
4134 trace_sched_stat_sleep_enabled() ||
4135 trace_sched_stat_iowait_enabled() ||
4136 trace_sched_stat_blocked_enabled() ||
4137 trace_sched_stat_runtime_enabled()) {
eda8dca5 4138 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4139 "stat_blocked and stat_runtime require the "
f67abed5 4140 "kernel parameter schedstats=enable or "
cb251765
MG
4141 "kernel.sched_schedstats=1\n");
4142 }
4143#endif
4144}
4145
fe61468b 4146static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4147
4148/*
4149 * MIGRATION
4150 *
4151 * dequeue
4152 * update_curr()
4153 * update_min_vruntime()
4154 * vruntime -= min_vruntime
4155 *
4156 * enqueue
4157 * update_curr()
4158 * update_min_vruntime()
4159 * vruntime += min_vruntime
4160 *
4161 * this way the vruntime transition between RQs is done when both
4162 * min_vruntime are up-to-date.
4163 *
4164 * WAKEUP (remote)
4165 *
59efa0ba 4166 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4167 * vruntime -= min_vruntime
4168 *
4169 * enqueue
4170 * update_curr()
4171 * update_min_vruntime()
4172 * vruntime += min_vruntime
4173 *
4174 * this way we don't have the most up-to-date min_vruntime on the originating
4175 * CPU and an up-to-date min_vruntime on the destination CPU.
4176 */
4177
bf0f6f24 4178static void
88ec22d3 4179enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4180{
2f950354
PZ
4181 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4182 bool curr = cfs_rq->curr == se;
4183
88ec22d3 4184 /*
2f950354
PZ
4185 * If we're the current task, we must renormalise before calling
4186 * update_curr().
88ec22d3 4187 */
2f950354 4188 if (renorm && curr)
88ec22d3
PZ
4189 se->vruntime += cfs_rq->min_vruntime;
4190
2f950354
PZ
4191 update_curr(cfs_rq);
4192
bf0f6f24 4193 /*
2f950354
PZ
4194 * Otherwise, renormalise after, such that we're placed at the current
4195 * moment in time, instead of some random moment in the past. Being
4196 * placed in the past could significantly boost this task to the
4197 * fairness detriment of existing tasks.
bf0f6f24 4198 */
2f950354
PZ
4199 if (renorm && !curr)
4200 se->vruntime += cfs_rq->min_vruntime;
4201
89ee048f
VG
4202 /*
4203 * When enqueuing a sched_entity, we must:
4204 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4205 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4206 * - For group_entity, update its weight to reflect the new share of
4207 * its group cfs_rq
4208 * - Add its new weight to cfs_rq->load.weight
4209 */
b382a531 4210 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4211 se_update_runnable(se);
1ea6c46a 4212 update_cfs_group(se);
17bc14b7 4213 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4214
1a3d027c 4215 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4216 place_entity(cfs_rq, se, 0);
bf0f6f24 4217
cb251765 4218 check_schedstat_required();
4fa8d299
JP
4219 update_stats_enqueue(cfs_rq, se, flags);
4220 check_spread(cfs_rq, se);
2f950354 4221 if (!curr)
83b699ed 4222 __enqueue_entity(cfs_rq, se);
2069dd75 4223 se->on_rq = 1;
3d4b47b4 4224
fe61468b
VG
4225 /*
4226 * When bandwidth control is enabled, cfs might have been removed
4227 * because of a parent been throttled but cfs->nr_running > 1. Try to
4228 * add it unconditionnally.
4229 */
4230 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4231 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4232
4233 if (cfs_rq->nr_running == 1)
d3d9dc33 4234 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4235}
4236
2c13c919 4237static void __clear_buddies_last(struct sched_entity *se)
2002c695 4238{
2c13c919
RR
4239 for_each_sched_entity(se) {
4240 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4241 if (cfs_rq->last != se)
2c13c919 4242 break;
f1044799
PZ
4243
4244 cfs_rq->last = NULL;
2c13c919
RR
4245 }
4246}
2002c695 4247
2c13c919
RR
4248static void __clear_buddies_next(struct sched_entity *se)
4249{
4250 for_each_sched_entity(se) {
4251 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4252 if (cfs_rq->next != se)
2c13c919 4253 break;
f1044799
PZ
4254
4255 cfs_rq->next = NULL;
2c13c919 4256 }
2002c695
PZ
4257}
4258
ac53db59
RR
4259static void __clear_buddies_skip(struct sched_entity *se)
4260{
4261 for_each_sched_entity(se) {
4262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4263 if (cfs_rq->skip != se)
ac53db59 4264 break;
f1044799
PZ
4265
4266 cfs_rq->skip = NULL;
ac53db59
RR
4267 }
4268}
4269
a571bbea
PZ
4270static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4271{
2c13c919
RR
4272 if (cfs_rq->last == se)
4273 __clear_buddies_last(se);
4274
4275 if (cfs_rq->next == se)
4276 __clear_buddies_next(se);
ac53db59
RR
4277
4278 if (cfs_rq->skip == se)
4279 __clear_buddies_skip(se);
a571bbea
PZ
4280}
4281
6c16a6dc 4282static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4283
bf0f6f24 4284static void
371fd7e7 4285dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4286{
a2a2d680
DA
4287 /*
4288 * Update run-time statistics of the 'current'.
4289 */
4290 update_curr(cfs_rq);
89ee048f
VG
4291
4292 /*
4293 * When dequeuing a sched_entity, we must:
4294 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4295 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4296 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4297 * - For group entity, update its weight to reflect the new share
4298 * of its group cfs_rq.
4299 */
88c0616e 4300 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4301 se_update_runnable(se);
a2a2d680 4302
4fa8d299 4303 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4304
2002c695 4305 clear_buddies(cfs_rq, se);
4793241b 4306
83b699ed 4307 if (se != cfs_rq->curr)
30cfdcfc 4308 __dequeue_entity(cfs_rq, se);
17bc14b7 4309 se->on_rq = 0;
30cfdcfc 4310 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4311
4312 /*
b60205c7
PZ
4313 * Normalize after update_curr(); which will also have moved
4314 * min_vruntime if @se is the one holding it back. But before doing
4315 * update_min_vruntime() again, which will discount @se's position and
4316 * can move min_vruntime forward still more.
88ec22d3 4317 */
371fd7e7 4318 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4319 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4320
d8b4986d
PT
4321 /* return excess runtime on last dequeue */
4322 return_cfs_rq_runtime(cfs_rq);
4323
1ea6c46a 4324 update_cfs_group(se);
b60205c7
PZ
4325
4326 /*
4327 * Now advance min_vruntime if @se was the entity holding it back,
4328 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4329 * put back on, and if we advance min_vruntime, we'll be placed back
4330 * further than we started -- ie. we'll be penalized.
4331 */
9845c49c 4332 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4333 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4334}
4335
4336/*
4337 * Preempt the current task with a newly woken task if needed:
4338 */
7c92e54f 4339static void
2e09bf55 4340check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4341{
11697830 4342 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4343 struct sched_entity *se;
4344 s64 delta;
11697830 4345
6d0f0ebd 4346 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4347 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4348 if (delta_exec > ideal_runtime) {
8875125e 4349 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4350 /*
4351 * The current task ran long enough, ensure it doesn't get
4352 * re-elected due to buddy favours.
4353 */
4354 clear_buddies(cfs_rq, curr);
f685ceac
MG
4355 return;
4356 }
4357
4358 /*
4359 * Ensure that a task that missed wakeup preemption by a
4360 * narrow margin doesn't have to wait for a full slice.
4361 * This also mitigates buddy induced latencies under load.
4362 */
f685ceac
MG
4363 if (delta_exec < sysctl_sched_min_granularity)
4364 return;
4365
f4cfb33e
WX
4366 se = __pick_first_entity(cfs_rq);
4367 delta = curr->vruntime - se->vruntime;
f685ceac 4368
f4cfb33e
WX
4369 if (delta < 0)
4370 return;
d7d82944 4371
f4cfb33e 4372 if (delta > ideal_runtime)
8875125e 4373 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4374}
4375
83b699ed 4376static void
8494f412 4377set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4378{
83b699ed
SV
4379 /* 'current' is not kept within the tree. */
4380 if (se->on_rq) {
4381 /*
4382 * Any task has to be enqueued before it get to execute on
4383 * a CPU. So account for the time it spent waiting on the
4384 * runqueue.
4385 */
4fa8d299 4386 update_stats_wait_end(cfs_rq, se);
83b699ed 4387 __dequeue_entity(cfs_rq, se);
88c0616e 4388 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4389 }
4390
79303e9e 4391 update_stats_curr_start(cfs_rq, se);
429d43bc 4392 cfs_rq->curr = se;
4fa8d299 4393
eba1ed4b
IM
4394 /*
4395 * Track our maximum slice length, if the CPU's load is at
4396 * least twice that of our own weight (i.e. dont track it
4397 * when there are only lesser-weight tasks around):
4398 */
f2bedc47
DE
4399 if (schedstat_enabled() &&
4400 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4401 schedstat_set(se->statistics.slice_max,
4402 max((u64)schedstat_val(se->statistics.slice_max),
4403 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4404 }
4fa8d299 4405
4a55b450 4406 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4407}
4408
3f3a4904
PZ
4409static int
4410wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4411
ac53db59
RR
4412/*
4413 * Pick the next process, keeping these things in mind, in this order:
4414 * 1) keep things fair between processes/task groups
4415 * 2) pick the "next" process, since someone really wants that to run
4416 * 3) pick the "last" process, for cache locality
4417 * 4) do not run the "skip" process, if something else is available
4418 */
678d5718
PZ
4419static struct sched_entity *
4420pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4421{
678d5718
PZ
4422 struct sched_entity *left = __pick_first_entity(cfs_rq);
4423 struct sched_entity *se;
4424
4425 /*
4426 * If curr is set we have to see if its left of the leftmost entity
4427 * still in the tree, provided there was anything in the tree at all.
4428 */
4429 if (!left || (curr && entity_before(curr, left)))
4430 left = curr;
4431
4432 se = left; /* ideally we run the leftmost entity */
f4b6755f 4433
ac53db59
RR
4434 /*
4435 * Avoid running the skip buddy, if running something else can
4436 * be done without getting too unfair.
4437 */
4438 if (cfs_rq->skip == se) {
678d5718
PZ
4439 struct sched_entity *second;
4440
4441 if (se == curr) {
4442 second = __pick_first_entity(cfs_rq);
4443 } else {
4444 second = __pick_next_entity(se);
4445 if (!second || (curr && entity_before(curr, second)))
4446 second = curr;
4447 }
4448
ac53db59
RR
4449 if (second && wakeup_preempt_entity(second, left) < 1)
4450 se = second;
4451 }
aa2ac252 4452
f685ceac
MG
4453 /*
4454 * Prefer last buddy, try to return the CPU to a preempted task.
4455 */
4456 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4457 se = cfs_rq->last;
4458
ac53db59
RR
4459 /*
4460 * Someone really wants this to run. If it's not unfair, run it.
4461 */
4462 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4463 se = cfs_rq->next;
4464
f685ceac 4465 clear_buddies(cfs_rq, se);
4793241b
PZ
4466
4467 return se;
aa2ac252
PZ
4468}
4469
678d5718 4470static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4471
ab6cde26 4472static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4473{
4474 /*
4475 * If still on the runqueue then deactivate_task()
4476 * was not called and update_curr() has to be done:
4477 */
4478 if (prev->on_rq)
b7cc0896 4479 update_curr(cfs_rq);
bf0f6f24 4480
d3d9dc33
PT
4481 /* throttle cfs_rqs exceeding runtime */
4482 check_cfs_rq_runtime(cfs_rq);
4483
4fa8d299 4484 check_spread(cfs_rq, prev);
cb251765 4485
30cfdcfc 4486 if (prev->on_rq) {
4fa8d299 4487 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4488 /* Put 'current' back into the tree. */
4489 __enqueue_entity(cfs_rq, prev);
9d85f21c 4490 /* in !on_rq case, update occurred at dequeue */
88c0616e 4491 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4492 }
429d43bc 4493 cfs_rq->curr = NULL;
bf0f6f24
IM
4494}
4495
8f4d37ec
PZ
4496static void
4497entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4498{
bf0f6f24 4499 /*
30cfdcfc 4500 * Update run-time statistics of the 'current'.
bf0f6f24 4501 */
30cfdcfc 4502 update_curr(cfs_rq);
bf0f6f24 4503
9d85f21c
PT
4504 /*
4505 * Ensure that runnable average is periodically updated.
4506 */
88c0616e 4507 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4508 update_cfs_group(curr);
9d85f21c 4509
8f4d37ec
PZ
4510#ifdef CONFIG_SCHED_HRTICK
4511 /*
4512 * queued ticks are scheduled to match the slice, so don't bother
4513 * validating it and just reschedule.
4514 */
983ed7a6 4515 if (queued) {
8875125e 4516 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4517 return;
4518 }
8f4d37ec
PZ
4519 /*
4520 * don't let the period tick interfere with the hrtick preemption
4521 */
4522 if (!sched_feat(DOUBLE_TICK) &&
4523 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4524 return;
4525#endif
4526
2c2efaed 4527 if (cfs_rq->nr_running > 1)
2e09bf55 4528 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4529}
4530
ab84d31e
PT
4531
4532/**************************************************
4533 * CFS bandwidth control machinery
4534 */
4535
4536#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4537
e9666d10 4538#ifdef CONFIG_JUMP_LABEL
c5905afb 4539static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4540
4541static inline bool cfs_bandwidth_used(void)
4542{
c5905afb 4543 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4544}
4545
1ee14e6c 4546void cfs_bandwidth_usage_inc(void)
029632fb 4547{
ce48c146 4548 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4549}
4550
4551void cfs_bandwidth_usage_dec(void)
4552{
ce48c146 4553 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4554}
e9666d10 4555#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4556static bool cfs_bandwidth_used(void)
4557{
4558 return true;
4559}
4560
1ee14e6c
BS
4561void cfs_bandwidth_usage_inc(void) {}
4562void cfs_bandwidth_usage_dec(void) {}
e9666d10 4563#endif /* CONFIG_JUMP_LABEL */
029632fb 4564
ab84d31e
PT
4565/*
4566 * default period for cfs group bandwidth.
4567 * default: 0.1s, units: nanoseconds
4568 */
4569static inline u64 default_cfs_period(void)
4570{
4571 return 100000000ULL;
4572}
ec12cb7f
PT
4573
4574static inline u64 sched_cfs_bandwidth_slice(void)
4575{
4576 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4577}
4578
a9cf55b2 4579/*
763a9ec0
QC
4580 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4581 * directly instead of rq->clock to avoid adding additional synchronization
4582 * around rq->lock.
a9cf55b2
PT
4583 *
4584 * requires cfs_b->lock
4585 */
029632fb 4586void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4587{
763a9ec0
QC
4588 if (cfs_b->quota != RUNTIME_INF)
4589 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4590}
4591
029632fb
PZ
4592static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4593{
4594 return &tg->cfs_bandwidth;
4595}
4596
85dac906 4597/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4598static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4599 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4600{
e98fa02c
PT
4601 u64 min_amount, amount = 0;
4602
4603 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4604
4605 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4606 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4607
ec12cb7f
PT
4608 if (cfs_b->quota == RUNTIME_INF)
4609 amount = min_amount;
58088ad0 4610 else {
77a4d1a1 4611 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4612
4613 if (cfs_b->runtime > 0) {
4614 amount = min(cfs_b->runtime, min_amount);
4615 cfs_b->runtime -= amount;
4616 cfs_b->idle = 0;
4617 }
ec12cb7f 4618 }
ec12cb7f
PT
4619
4620 cfs_rq->runtime_remaining += amount;
85dac906
PT
4621
4622 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4623}
4624
e98fa02c
PT
4625/* returns 0 on failure to allocate runtime */
4626static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4627{
4628 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4629 int ret;
4630
4631 raw_spin_lock(&cfs_b->lock);
4632 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4633 raw_spin_unlock(&cfs_b->lock);
4634
4635 return ret;
4636}
4637
9dbdb155 4638static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4639{
4640 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4641 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4642
4643 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4644 return;
4645
5e2d2cc2
L
4646 if (cfs_rq->throttled)
4647 return;
85dac906
PT
4648 /*
4649 * if we're unable to extend our runtime we resched so that the active
4650 * hierarchy can be throttled
4651 */
4652 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4653 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4654}
4655
6c16a6dc 4656static __always_inline
9dbdb155 4657void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4658{
56f570e5 4659 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4660 return;
4661
4662 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4663}
4664
85dac906
PT
4665static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4666{
56f570e5 4667 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4668}
4669
64660c86
PT
4670/* check whether cfs_rq, or any parent, is throttled */
4671static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4672{
56f570e5 4673 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4674}
4675
4676/*
4677 * Ensure that neither of the group entities corresponding to src_cpu or
4678 * dest_cpu are members of a throttled hierarchy when performing group
4679 * load-balance operations.
4680 */
4681static inline int throttled_lb_pair(struct task_group *tg,
4682 int src_cpu, int dest_cpu)
4683{
4684 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4685
4686 src_cfs_rq = tg->cfs_rq[src_cpu];
4687 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4688
4689 return throttled_hierarchy(src_cfs_rq) ||
4690 throttled_hierarchy(dest_cfs_rq);
4691}
4692
64660c86
PT
4693static int tg_unthrottle_up(struct task_group *tg, void *data)
4694{
4695 struct rq *rq = data;
4696 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4697
4698 cfs_rq->throttle_count--;
64660c86 4699 if (!cfs_rq->throttle_count) {
78becc27 4700 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4701 cfs_rq->throttled_clock_task;
31bc6aea
VG
4702
4703 /* Add cfs_rq with already running entity in the list */
4704 if (cfs_rq->nr_running >= 1)
4705 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4706 }
64660c86
PT
4707
4708 return 0;
4709}
4710
4711static int tg_throttle_down(struct task_group *tg, void *data)
4712{
4713 struct rq *rq = data;
4714 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4715
82958366 4716 /* group is entering throttled state, stop time */
31bc6aea 4717 if (!cfs_rq->throttle_count) {
78becc27 4718 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4719 list_del_leaf_cfs_rq(cfs_rq);
4720 }
64660c86
PT
4721 cfs_rq->throttle_count++;
4722
4723 return 0;
4724}
4725
e98fa02c 4726static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4727{
4728 struct rq *rq = rq_of(cfs_rq);
4729 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4730 struct sched_entity *se;
43e9f7f2 4731 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4732
4733 raw_spin_lock(&cfs_b->lock);
4734 /* This will start the period timer if necessary */
4735 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4736 /*
4737 * We have raced with bandwidth becoming available, and if we
4738 * actually throttled the timer might not unthrottle us for an
4739 * entire period. We additionally needed to make sure that any
4740 * subsequent check_cfs_rq_runtime calls agree not to throttle
4741 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4742 * for 1ns of runtime rather than just check cfs_b.
4743 */
4744 dequeue = 0;
4745 } else {
4746 list_add_tail_rcu(&cfs_rq->throttled_list,
4747 &cfs_b->throttled_cfs_rq);
4748 }
4749 raw_spin_unlock(&cfs_b->lock);
4750
4751 if (!dequeue)
4752 return false; /* Throttle no longer required. */
85dac906
PT
4753
4754 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4755
f1b17280 4756 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4757 rcu_read_lock();
4758 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4759 rcu_read_unlock();
85dac906
PT
4760
4761 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4762 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4763 for_each_sched_entity(se) {
4764 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4765 /* throttled entity or throttle-on-deactivate */
4766 if (!se->on_rq)
4767 break;
4768
6212437f 4769 if (dequeue) {
85dac906 4770 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f
VG
4771 } else {
4772 update_load_avg(qcfs_rq, se, 0);
4773 se_update_runnable(se);
4774 }
4775
85dac906 4776 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4777 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4778
4779 if (qcfs_rq->load.weight)
4780 dequeue = 0;
4781 }
4782
4783 if (!se)
72465447 4784 sub_nr_running(rq, task_delta);
85dac906 4785
c06f04c7 4786 /*
e98fa02c
PT
4787 * Note: distribution will already see us throttled via the
4788 * throttled-list. rq->lock protects completion.
c06f04c7 4789 */
e98fa02c
PT
4790 cfs_rq->throttled = 1;
4791 cfs_rq->throttled_clock = rq_clock(rq);
4792 return true;
85dac906
PT
4793}
4794
029632fb 4795void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4796{
4797 struct rq *rq = rq_of(cfs_rq);
4798 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4799 struct sched_entity *se;
43e9f7f2 4800 long task_delta, idle_task_delta;
671fd9da 4801
22b958d8 4802 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4803
4804 cfs_rq->throttled = 0;
1a55af2e
FW
4805
4806 update_rq_clock(rq);
4807
671fd9da 4808 raw_spin_lock(&cfs_b->lock);
78becc27 4809 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4810 list_del_rcu(&cfs_rq->throttled_list);
4811 raw_spin_unlock(&cfs_b->lock);
4812
64660c86
PT
4813 /* update hierarchical throttle state */
4814 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4815
671fd9da
PT
4816 if (!cfs_rq->load.weight)
4817 return;
4818
4819 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4820 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4821 for_each_sched_entity(se) {
4822 if (se->on_rq)
39f23ce0
VG
4823 break;
4824 cfs_rq = cfs_rq_of(se);
4825 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4826
4827 cfs_rq->h_nr_running += task_delta;
4828 cfs_rq->idle_h_nr_running += idle_task_delta;
4829
4830 /* end evaluation on encountering a throttled cfs_rq */
4831 if (cfs_rq_throttled(cfs_rq))
4832 goto unthrottle_throttle;
4833 }
671fd9da 4834
39f23ce0 4835 for_each_sched_entity(se) {
671fd9da 4836 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4837
4838 update_load_avg(cfs_rq, se, UPDATE_TG);
4839 se_update_runnable(se);
6212437f 4840
671fd9da 4841 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4842 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4843
39f23ce0
VG
4844
4845 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4846 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4847 goto unthrottle_throttle;
4848
4849 /*
4850 * One parent has been throttled and cfs_rq removed from the
4851 * list. Add it back to not break the leaf list.
4852 */
4853 if (throttled_hierarchy(cfs_rq))
4854 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4855 }
4856
39f23ce0
VG
4857 /* At this point se is NULL and we are at root level*/
4858 add_nr_running(rq, task_delta);
671fd9da 4859
39f23ce0 4860unthrottle_throttle:
fe61468b
VG
4861 /*
4862 * The cfs_rq_throttled() breaks in the above iteration can result in
4863 * incomplete leaf list maintenance, resulting in triggering the
4864 * assertion below.
4865 */
4866 for_each_sched_entity(se) {
4867 cfs_rq = cfs_rq_of(se);
4868
39f23ce0
VG
4869 if (list_add_leaf_cfs_rq(cfs_rq))
4870 break;
fe61468b
VG
4871 }
4872
4873 assert_list_leaf_cfs_rq(rq);
4874
97fb7a0a 4875 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4876 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4877 resched_curr(rq);
671fd9da
PT
4878}
4879
26a8b127 4880static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4881{
4882 struct cfs_rq *cfs_rq;
26a8b127 4883 u64 runtime, remaining = 1;
671fd9da
PT
4884
4885 rcu_read_lock();
4886 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4887 throttled_list) {
4888 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4889 struct rq_flags rf;
671fd9da 4890
c0ad4aa4 4891 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4892 if (!cfs_rq_throttled(cfs_rq))
4893 goto next;
4894
5e2d2cc2
L
4895 /* By the above check, this should never be true */
4896 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4897
26a8b127 4898 raw_spin_lock(&cfs_b->lock);
671fd9da 4899 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4900 if (runtime > cfs_b->runtime)
4901 runtime = cfs_b->runtime;
4902 cfs_b->runtime -= runtime;
4903 remaining = cfs_b->runtime;
4904 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4905
4906 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4907
4908 /* we check whether we're throttled above */
4909 if (cfs_rq->runtime_remaining > 0)
4910 unthrottle_cfs_rq(cfs_rq);
4911
4912next:
c0ad4aa4 4913 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4914
4915 if (!remaining)
4916 break;
4917 }
4918 rcu_read_unlock();
671fd9da
PT
4919}
4920
58088ad0
PT
4921/*
4922 * Responsible for refilling a task_group's bandwidth and unthrottling its
4923 * cfs_rqs as appropriate. If there has been no activity within the last
4924 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4925 * used to track this state.
4926 */
c0ad4aa4 4927static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4928{
51f2176d 4929 int throttled;
58088ad0 4930
58088ad0
PT
4931 /* no need to continue the timer with no bandwidth constraint */
4932 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4933 goto out_deactivate;
58088ad0 4934
671fd9da 4935 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4936 cfs_b->nr_periods += overrun;
671fd9da 4937
51f2176d
BS
4938 /*
4939 * idle depends on !throttled (for the case of a large deficit), and if
4940 * we're going inactive then everything else can be deferred
4941 */
4942 if (cfs_b->idle && !throttled)
4943 goto out_deactivate;
a9cf55b2
PT
4944
4945 __refill_cfs_bandwidth_runtime(cfs_b);
4946
671fd9da
PT
4947 if (!throttled) {
4948 /* mark as potentially idle for the upcoming period */
4949 cfs_b->idle = 1;
51f2176d 4950 return 0;
671fd9da
PT
4951 }
4952
e8da1b18
NR
4953 /* account preceding periods in which throttling occurred */
4954 cfs_b->nr_throttled += overrun;
4955
671fd9da 4956 /*
26a8b127 4957 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4958 */
ab93a4bc 4959 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 4960 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4961 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 4962 distribute_cfs_runtime(cfs_b);
c0ad4aa4 4963 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
4964
4965 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4966 }
58088ad0 4967
671fd9da
PT
4968 /*
4969 * While we are ensured activity in the period following an
4970 * unthrottle, this also covers the case in which the new bandwidth is
4971 * insufficient to cover the existing bandwidth deficit. (Forcing the
4972 * timer to remain active while there are any throttled entities.)
4973 */
4974 cfs_b->idle = 0;
58088ad0 4975
51f2176d
BS
4976 return 0;
4977
4978out_deactivate:
51f2176d 4979 return 1;
58088ad0 4980}
d3d9dc33 4981
d8b4986d
PT
4982/* a cfs_rq won't donate quota below this amount */
4983static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4984/* minimum remaining period time to redistribute slack quota */
4985static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4986/* how long we wait to gather additional slack before distributing */
4987static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4988
db06e78c
BS
4989/*
4990 * Are we near the end of the current quota period?
4991 *
4992 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4993 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4994 * migrate_hrtimers, base is never cleared, so we are fine.
4995 */
d8b4986d
PT
4996static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4997{
4998 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4999 u64 remaining;
5000
5001 /* if the call-back is running a quota refresh is already occurring */
5002 if (hrtimer_callback_running(refresh_timer))
5003 return 1;
5004
5005 /* is a quota refresh about to occur? */
5006 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5007 if (remaining < min_expire)
5008 return 1;
5009
5010 return 0;
5011}
5012
5013static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5014{
5015 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5016
5017 /* if there's a quota refresh soon don't bother with slack */
5018 if (runtime_refresh_within(cfs_b, min_left))
5019 return;
5020
66567fcb 5021 /* don't push forwards an existing deferred unthrottle */
5022 if (cfs_b->slack_started)
5023 return;
5024 cfs_b->slack_started = true;
5025
4cfafd30
PZ
5026 hrtimer_start(&cfs_b->slack_timer,
5027 ns_to_ktime(cfs_bandwidth_slack_period),
5028 HRTIMER_MODE_REL);
d8b4986d
PT
5029}
5030
5031/* we know any runtime found here is valid as update_curr() precedes return */
5032static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5033{
5034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5035 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5036
5037 if (slack_runtime <= 0)
5038 return;
5039
5040 raw_spin_lock(&cfs_b->lock);
de53fd7a 5041 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5042 cfs_b->runtime += slack_runtime;
5043
5044 /* we are under rq->lock, defer unthrottling using a timer */
5045 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5046 !list_empty(&cfs_b->throttled_cfs_rq))
5047 start_cfs_slack_bandwidth(cfs_b);
5048 }
5049 raw_spin_unlock(&cfs_b->lock);
5050
5051 /* even if it's not valid for return we don't want to try again */
5052 cfs_rq->runtime_remaining -= slack_runtime;
5053}
5054
5055static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5056{
56f570e5
PT
5057 if (!cfs_bandwidth_used())
5058 return;
5059
fccfdc6f 5060 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5061 return;
5062
5063 __return_cfs_rq_runtime(cfs_rq);
5064}
5065
5066/*
5067 * This is done with a timer (instead of inline with bandwidth return) since
5068 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5069 */
5070static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5071{
5072 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5073 unsigned long flags;
d8b4986d
PT
5074
5075 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5076 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5077 cfs_b->slack_started = false;
baa9be4f 5078
db06e78c 5079 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5080 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5081 return;
db06e78c 5082 }
d8b4986d 5083
c06f04c7 5084 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5085 runtime = cfs_b->runtime;
c06f04c7 5086
c0ad4aa4 5087 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5088
5089 if (!runtime)
5090 return;
5091
26a8b127 5092 distribute_cfs_runtime(cfs_b);
d8b4986d 5093
c0ad4aa4 5094 raw_spin_lock_irqsave(&cfs_b->lock, flags);
c0ad4aa4 5095 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5096}
5097
d3d9dc33
PT
5098/*
5099 * When a group wakes up we want to make sure that its quota is not already
5100 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5101 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5102 */
5103static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5104{
56f570e5
PT
5105 if (!cfs_bandwidth_used())
5106 return;
5107
d3d9dc33
PT
5108 /* an active group must be handled by the update_curr()->put() path */
5109 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5110 return;
5111
5112 /* ensure the group is not already throttled */
5113 if (cfs_rq_throttled(cfs_rq))
5114 return;
5115
5116 /* update runtime allocation */
5117 account_cfs_rq_runtime(cfs_rq, 0);
5118 if (cfs_rq->runtime_remaining <= 0)
5119 throttle_cfs_rq(cfs_rq);
5120}
5121
55e16d30
PZ
5122static void sync_throttle(struct task_group *tg, int cpu)
5123{
5124 struct cfs_rq *pcfs_rq, *cfs_rq;
5125
5126 if (!cfs_bandwidth_used())
5127 return;
5128
5129 if (!tg->parent)
5130 return;
5131
5132 cfs_rq = tg->cfs_rq[cpu];
5133 pcfs_rq = tg->parent->cfs_rq[cpu];
5134
5135 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5136 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5137}
5138
d3d9dc33 5139/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5140static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5141{
56f570e5 5142 if (!cfs_bandwidth_used())
678d5718 5143 return false;
56f570e5 5144
d3d9dc33 5145 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5146 return false;
d3d9dc33
PT
5147
5148 /*
5149 * it's possible for a throttled entity to be forced into a running
5150 * state (e.g. set_curr_task), in this case we're finished.
5151 */
5152 if (cfs_rq_throttled(cfs_rq))
678d5718 5153 return true;
d3d9dc33 5154
e98fa02c 5155 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5156}
029632fb 5157
029632fb
PZ
5158static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5159{
5160 struct cfs_bandwidth *cfs_b =
5161 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5162
029632fb
PZ
5163 do_sched_cfs_slack_timer(cfs_b);
5164
5165 return HRTIMER_NORESTART;
5166}
5167
2e8e1922
PA
5168extern const u64 max_cfs_quota_period;
5169
029632fb
PZ
5170static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5171{
5172 struct cfs_bandwidth *cfs_b =
5173 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5174 unsigned long flags;
029632fb
PZ
5175 int overrun;
5176 int idle = 0;
2e8e1922 5177 int count = 0;
029632fb 5178
c0ad4aa4 5179 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5180 for (;;) {
77a4d1a1 5181 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5182 if (!overrun)
5183 break;
5184
5a6d6a6c
HC
5185 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5186
2e8e1922
PA
5187 if (++count > 3) {
5188 u64 new, old = ktime_to_ns(cfs_b->period);
5189
4929a4e6
XZ
5190 /*
5191 * Grow period by a factor of 2 to avoid losing precision.
5192 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5193 * to fail.
5194 */
5195 new = old * 2;
5196 if (new < max_cfs_quota_period) {
5197 cfs_b->period = ns_to_ktime(new);
5198 cfs_b->quota *= 2;
5199
5200 pr_warn_ratelimited(
5201 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5202 smp_processor_id(),
5203 div_u64(new, NSEC_PER_USEC),
5204 div_u64(cfs_b->quota, NSEC_PER_USEC));
5205 } else {
5206 pr_warn_ratelimited(
5207 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5208 smp_processor_id(),
5209 div_u64(old, NSEC_PER_USEC),
5210 div_u64(cfs_b->quota, NSEC_PER_USEC));
5211 }
2e8e1922
PA
5212
5213 /* reset count so we don't come right back in here */
5214 count = 0;
5215 }
029632fb 5216 }
4cfafd30
PZ
5217 if (idle)
5218 cfs_b->period_active = 0;
c0ad4aa4 5219 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5220
5221 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5222}
5223
5224void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5225{
5226 raw_spin_lock_init(&cfs_b->lock);
5227 cfs_b->runtime = 0;
5228 cfs_b->quota = RUNTIME_INF;
5229 cfs_b->period = ns_to_ktime(default_cfs_period());
5230
5231 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5232 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5233 cfs_b->period_timer.function = sched_cfs_period_timer;
5234 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5235 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5236 cfs_b->slack_started = false;
029632fb
PZ
5237}
5238
5239static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5240{
5241 cfs_rq->runtime_enabled = 0;
5242 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5243}
5244
77a4d1a1 5245void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5246{
4cfafd30 5247 lockdep_assert_held(&cfs_b->lock);
029632fb 5248
f1d1be8a
XP
5249 if (cfs_b->period_active)
5250 return;
5251
5252 cfs_b->period_active = 1;
763a9ec0 5253 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5254 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5255}
5256
5257static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5258{
7f1a169b
TH
5259 /* init_cfs_bandwidth() was not called */
5260 if (!cfs_b->throttled_cfs_rq.next)
5261 return;
5262
029632fb
PZ
5263 hrtimer_cancel(&cfs_b->period_timer);
5264 hrtimer_cancel(&cfs_b->slack_timer);
5265}
5266
502ce005 5267/*
97fb7a0a 5268 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5269 *
5270 * The race is harmless, since modifying bandwidth settings of unhooked group
5271 * bits doesn't do much.
5272 */
5273
5274/* cpu online calback */
0e59bdae
KT
5275static void __maybe_unused update_runtime_enabled(struct rq *rq)
5276{
502ce005 5277 struct task_group *tg;
0e59bdae 5278
502ce005
PZ
5279 lockdep_assert_held(&rq->lock);
5280
5281 rcu_read_lock();
5282 list_for_each_entry_rcu(tg, &task_groups, list) {
5283 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5284 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5285
5286 raw_spin_lock(&cfs_b->lock);
5287 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5288 raw_spin_unlock(&cfs_b->lock);
5289 }
502ce005 5290 rcu_read_unlock();
0e59bdae
KT
5291}
5292
502ce005 5293/* cpu offline callback */
38dc3348 5294static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5295{
502ce005
PZ
5296 struct task_group *tg;
5297
5298 lockdep_assert_held(&rq->lock);
5299
5300 rcu_read_lock();
5301 list_for_each_entry_rcu(tg, &task_groups, list) {
5302 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5303
029632fb
PZ
5304 if (!cfs_rq->runtime_enabled)
5305 continue;
5306
5307 /*
5308 * clock_task is not advancing so we just need to make sure
5309 * there's some valid quota amount
5310 */
51f2176d 5311 cfs_rq->runtime_remaining = 1;
0e59bdae 5312 /*
97fb7a0a 5313 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5314 * in take_cpu_down(), so we prevent new cfs throttling here.
5315 */
5316 cfs_rq->runtime_enabled = 0;
5317
029632fb
PZ
5318 if (cfs_rq_throttled(cfs_rq))
5319 unthrottle_cfs_rq(cfs_rq);
5320 }
502ce005 5321 rcu_read_unlock();
029632fb
PZ
5322}
5323
5324#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5325
5326static inline bool cfs_bandwidth_used(void)
5327{
5328 return false;
5329}
5330
9dbdb155 5331static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5332static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5333static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5334static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5335static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5336
5337static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5338{
5339 return 0;
5340}
64660c86
PT
5341
5342static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5343{
5344 return 0;
5345}
5346
5347static inline int throttled_lb_pair(struct task_group *tg,
5348 int src_cpu, int dest_cpu)
5349{
5350 return 0;
5351}
029632fb
PZ
5352
5353void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5354
5355#ifdef CONFIG_FAIR_GROUP_SCHED
5356static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5357#endif
5358
029632fb
PZ
5359static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5360{
5361 return NULL;
5362}
5363static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5364static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5365static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5366
5367#endif /* CONFIG_CFS_BANDWIDTH */
5368
bf0f6f24
IM
5369/**************************************************
5370 * CFS operations on tasks:
5371 */
5372
8f4d37ec
PZ
5373#ifdef CONFIG_SCHED_HRTICK
5374static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5375{
8f4d37ec
PZ
5376 struct sched_entity *se = &p->se;
5377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5378
9148a3a1 5379 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5380
8bf46a39 5381 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5382 u64 slice = sched_slice(cfs_rq, se);
5383 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5384 s64 delta = slice - ran;
5385
5386 if (delta < 0) {
5387 if (rq->curr == p)
8875125e 5388 resched_curr(rq);
8f4d37ec
PZ
5389 return;
5390 }
31656519 5391 hrtick_start(rq, delta);
8f4d37ec
PZ
5392 }
5393}
a4c2f00f
PZ
5394
5395/*
5396 * called from enqueue/dequeue and updates the hrtick when the
5397 * current task is from our class and nr_running is low enough
5398 * to matter.
5399 */
5400static void hrtick_update(struct rq *rq)
5401{
5402 struct task_struct *curr = rq->curr;
5403
b39e66ea 5404 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5405 return;
5406
5407 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5408 hrtick_start_fair(rq, curr);
5409}
55e12e5e 5410#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5411static inline void
5412hrtick_start_fair(struct rq *rq, struct task_struct *p)
5413{
5414}
a4c2f00f
PZ
5415
5416static inline void hrtick_update(struct rq *rq)
5417{
5418}
8f4d37ec
PZ
5419#endif
5420
2802bf3c
MR
5421#ifdef CONFIG_SMP
5422static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5423
5424static inline bool cpu_overutilized(int cpu)
5425{
60e17f5c 5426 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5427}
5428
5429static inline void update_overutilized_status(struct rq *rq)
5430{
f9f240f9 5431 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5432 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5433 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5434 }
2802bf3c
MR
5435}
5436#else
5437static inline void update_overutilized_status(struct rq *rq) { }
5438#endif
5439
323af6de
VK
5440/* Runqueue only has SCHED_IDLE tasks enqueued */
5441static int sched_idle_rq(struct rq *rq)
5442{
5443 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5444 rq->nr_running);
5445}
5446
afa70d94 5447#ifdef CONFIG_SMP
323af6de
VK
5448static int sched_idle_cpu(int cpu)
5449{
5450 return sched_idle_rq(cpu_rq(cpu));
5451}
afa70d94 5452#endif
323af6de 5453
bf0f6f24
IM
5454/*
5455 * The enqueue_task method is called before nr_running is
5456 * increased. Here we update the fair scheduling stats and
5457 * then put the task into the rbtree:
5458 */
ea87bb78 5459static void
371fd7e7 5460enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5461{
5462 struct cfs_rq *cfs_rq;
62fb1851 5463 struct sched_entity *se = &p->se;
43e9f7f2 5464 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5465
2539fc82
PB
5466 /*
5467 * The code below (indirectly) updates schedutil which looks at
5468 * the cfs_rq utilization to select a frequency.
5469 * Let's add the task's estimated utilization to the cfs_rq's
5470 * estimated utilization, before we update schedutil.
5471 */
5472 util_est_enqueue(&rq->cfs, p);
5473
8c34ab19
RW
5474 /*
5475 * If in_iowait is set, the code below may not trigger any cpufreq
5476 * utilization updates, so do it here explicitly with the IOWAIT flag
5477 * passed.
5478 */
5479 if (p->in_iowait)
674e7541 5480 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5481
bf0f6f24 5482 for_each_sched_entity(se) {
62fb1851 5483 if (se->on_rq)
bf0f6f24
IM
5484 break;
5485 cfs_rq = cfs_rq_of(se);
88ec22d3 5486 enqueue_entity(cfs_rq, se, flags);
85dac906 5487
953bfcd1 5488 cfs_rq->h_nr_running++;
43e9f7f2 5489 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5490
6d4d2246
VG
5491 /* end evaluation on encountering a throttled cfs_rq */
5492 if (cfs_rq_throttled(cfs_rq))
5493 goto enqueue_throttle;
5494
88ec22d3 5495 flags = ENQUEUE_WAKEUP;
bf0f6f24 5496 }
8f4d37ec 5497
2069dd75 5498 for_each_sched_entity(se) {
0f317143 5499 cfs_rq = cfs_rq_of(se);
2069dd75 5500
88c0616e 5501 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5502 se_update_runnable(se);
1ea6c46a 5503 update_cfs_group(se);
6d4d2246
VG
5504
5505 cfs_rq->h_nr_running++;
5506 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5507
5508 /* end evaluation on encountering a throttled cfs_rq */
5509 if (cfs_rq_throttled(cfs_rq))
5510 goto enqueue_throttle;
b34cb07d
PA
5511
5512 /*
5513 * One parent has been throttled and cfs_rq removed from the
5514 * list. Add it back to not break the leaf list.
5515 */
5516 if (throttled_hierarchy(cfs_rq))
5517 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5518 }
5519
7d148be6
VG
5520 /* At this point se is NULL and we are at root level*/
5521 add_nr_running(rq, 1);
2802bf3c 5522
7d148be6
VG
5523 /*
5524 * Since new tasks are assigned an initial util_avg equal to
5525 * half of the spare capacity of their CPU, tiny tasks have the
5526 * ability to cross the overutilized threshold, which will
5527 * result in the load balancer ruining all the task placement
5528 * done by EAS. As a way to mitigate that effect, do not account
5529 * for the first enqueue operation of new tasks during the
5530 * overutilized flag detection.
5531 *
5532 * A better way of solving this problem would be to wait for
5533 * the PELT signals of tasks to converge before taking them
5534 * into account, but that is not straightforward to implement,
5535 * and the following generally works well enough in practice.
5536 */
5537 if (flags & ENQUEUE_WAKEUP)
5538 update_overutilized_status(rq);
cd126afe 5539
7d148be6 5540enqueue_throttle:
f6783319
VG
5541 if (cfs_bandwidth_used()) {
5542 /*
5543 * When bandwidth control is enabled; the cfs_rq_throttled()
5544 * breaks in the above iteration can result in incomplete
5545 * leaf list maintenance, resulting in triggering the assertion
5546 * below.
5547 */
5548 for_each_sched_entity(se) {
5549 cfs_rq = cfs_rq_of(se);
5550
5551 if (list_add_leaf_cfs_rq(cfs_rq))
5552 break;
5553 }
5554 }
5555
5d299eab
PZ
5556 assert_list_leaf_cfs_rq(rq);
5557
a4c2f00f 5558 hrtick_update(rq);
bf0f6f24
IM
5559}
5560
2f36825b
VP
5561static void set_next_buddy(struct sched_entity *se);
5562
bf0f6f24
IM
5563/*
5564 * The dequeue_task method is called before nr_running is
5565 * decreased. We remove the task from the rbtree and
5566 * update the fair scheduling stats:
5567 */
371fd7e7 5568static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5569{
5570 struct cfs_rq *cfs_rq;
62fb1851 5571 struct sched_entity *se = &p->se;
2f36825b 5572 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5573 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5574 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5575
5576 for_each_sched_entity(se) {
5577 cfs_rq = cfs_rq_of(se);
371fd7e7 5578 dequeue_entity(cfs_rq, se, flags);
85dac906 5579
953bfcd1 5580 cfs_rq->h_nr_running--;
43e9f7f2 5581 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5582
6d4d2246
VG
5583 /* end evaluation on encountering a throttled cfs_rq */
5584 if (cfs_rq_throttled(cfs_rq))
5585 goto dequeue_throttle;
5586
bf0f6f24 5587 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5588 if (cfs_rq->load.weight) {
754bd598
KK
5589 /* Avoid re-evaluating load for this entity: */
5590 se = parent_entity(se);
2f36825b
VP
5591 /*
5592 * Bias pick_next to pick a task from this cfs_rq, as
5593 * p is sleeping when it is within its sched_slice.
5594 */
754bd598
KK
5595 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5596 set_next_buddy(se);
bf0f6f24 5597 break;
2f36825b 5598 }
371fd7e7 5599 flags |= DEQUEUE_SLEEP;
bf0f6f24 5600 }
8f4d37ec 5601
2069dd75 5602 for_each_sched_entity(se) {
0f317143 5603 cfs_rq = cfs_rq_of(se);
2069dd75 5604
88c0616e 5605 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5606 se_update_runnable(se);
1ea6c46a 5607 update_cfs_group(se);
6d4d2246
VG
5608
5609 cfs_rq->h_nr_running--;
5610 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5611
5612 /* end evaluation on encountering a throttled cfs_rq */
5613 if (cfs_rq_throttled(cfs_rq))
5614 goto dequeue_throttle;
5615
2069dd75
PZ
5616 }
5617
6d4d2246 5618dequeue_throttle:
cd126afe 5619 if (!se)
72465447 5620 sub_nr_running(rq, 1);
cd126afe 5621
323af6de
VK
5622 /* balance early to pull high priority tasks */
5623 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5624 rq->next_balance = jiffies;
5625
7f65ea42 5626 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5627 hrtick_update(rq);
bf0f6f24
IM
5628}
5629
e7693a36 5630#ifdef CONFIG_SMP
10e2f1ac
PZ
5631
5632/* Working cpumask for: load_balance, load_balance_newidle. */
5633DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5634DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5635
9fd81dd5 5636#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5637
5638static struct {
5639 cpumask_var_t idle_cpus_mask;
5640 atomic_t nr_cpus;
f643ea22 5641 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5642 unsigned long next_balance; /* in jiffy units */
f643ea22 5643 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5644} nohz ____cacheline_aligned;
5645
9fd81dd5 5646#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5647
b0fb1eb4
VG
5648static unsigned long cpu_load(struct rq *rq)
5649{
5650 return cfs_rq_load_avg(&rq->cfs);
5651}
5652
3318544b
VG
5653/*
5654 * cpu_load_without - compute CPU load without any contributions from *p
5655 * @cpu: the CPU which load is requested
5656 * @p: the task which load should be discounted
5657 *
5658 * The load of a CPU is defined by the load of tasks currently enqueued on that
5659 * CPU as well as tasks which are currently sleeping after an execution on that
5660 * CPU.
5661 *
5662 * This method returns the load of the specified CPU by discounting the load of
5663 * the specified task, whenever the task is currently contributing to the CPU
5664 * load.
5665 */
5666static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5667{
5668 struct cfs_rq *cfs_rq;
5669 unsigned int load;
5670
5671 /* Task has no contribution or is new */
5672 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5673 return cpu_load(rq);
5674
5675 cfs_rq = &rq->cfs;
5676 load = READ_ONCE(cfs_rq->avg.load_avg);
5677
5678 /* Discount task's util from CPU's util */
5679 lsub_positive(&load, task_h_load(p));
5680
5681 return load;
5682}
5683
9f683953
VG
5684static unsigned long cpu_runnable(struct rq *rq)
5685{
5686 return cfs_rq_runnable_avg(&rq->cfs);
5687}
5688
070f5e86
VG
5689static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5690{
5691 struct cfs_rq *cfs_rq;
5692 unsigned int runnable;
5693
5694 /* Task has no contribution or is new */
5695 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5696 return cpu_runnable(rq);
5697
5698 cfs_rq = &rq->cfs;
5699 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5700
5701 /* Discount task's runnable from CPU's runnable */
5702 lsub_positive(&runnable, p->se.avg.runnable_avg);
5703
5704 return runnable;
5705}
5706
ced549fa 5707static unsigned long capacity_of(int cpu)
029632fb 5708{
ced549fa 5709 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5710}
5711
c58d25f3
PZ
5712static void record_wakee(struct task_struct *p)
5713{
5714 /*
5715 * Only decay a single time; tasks that have less then 1 wakeup per
5716 * jiffy will not have built up many flips.
5717 */
5718 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5719 current->wakee_flips >>= 1;
5720 current->wakee_flip_decay_ts = jiffies;
5721 }
5722
5723 if (current->last_wakee != p) {
5724 current->last_wakee = p;
5725 current->wakee_flips++;
5726 }
5727}
5728
63b0e9ed
MG
5729/*
5730 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5731 *
63b0e9ed 5732 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5733 * at a frequency roughly N times higher than one of its wakees.
5734 *
5735 * In order to determine whether we should let the load spread vs consolidating
5736 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5737 * partner, and a factor of lls_size higher frequency in the other.
5738 *
5739 * With both conditions met, we can be relatively sure that the relationship is
5740 * non-monogamous, with partner count exceeding socket size.
5741 *
5742 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5743 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5744 * socket size.
63b0e9ed 5745 */
62470419
MW
5746static int wake_wide(struct task_struct *p)
5747{
63b0e9ed
MG
5748 unsigned int master = current->wakee_flips;
5749 unsigned int slave = p->wakee_flips;
17c891ab 5750 int factor = __this_cpu_read(sd_llc_size);
62470419 5751
63b0e9ed
MG
5752 if (master < slave)
5753 swap(master, slave);
5754 if (slave < factor || master < slave * factor)
5755 return 0;
5756 return 1;
62470419
MW
5757}
5758
90001d67 5759/*
d153b153
PZ
5760 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5761 * soonest. For the purpose of speed we only consider the waking and previous
5762 * CPU.
90001d67 5763 *
7332dec0
MG
5764 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5765 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5766 *
5767 * wake_affine_weight() - considers the weight to reflect the average
5768 * scheduling latency of the CPUs. This seems to work
5769 * for the overloaded case.
90001d67 5770 */
3b76c4a3 5771static int
89a55f56 5772wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5773{
7332dec0
MG
5774 /*
5775 * If this_cpu is idle, it implies the wakeup is from interrupt
5776 * context. Only allow the move if cache is shared. Otherwise an
5777 * interrupt intensive workload could force all tasks onto one
5778 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5779 *
5780 * If the prev_cpu is idle and cache affine then avoid a migration.
5781 * There is no guarantee that the cache hot data from an interrupt
5782 * is more important than cache hot data on the prev_cpu and from
5783 * a cpufreq perspective, it's better to have higher utilisation
5784 * on one CPU.
7332dec0 5785 */
943d355d
RJ
5786 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5787 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5788
d153b153 5789 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5790 return this_cpu;
90001d67 5791
3b76c4a3 5792 return nr_cpumask_bits;
90001d67
PZ
5793}
5794
3b76c4a3 5795static int
f2cdd9cc
PZ
5796wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5797 int this_cpu, int prev_cpu, int sync)
90001d67 5798{
90001d67
PZ
5799 s64 this_eff_load, prev_eff_load;
5800 unsigned long task_load;
5801
11f10e54 5802 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5803
90001d67
PZ
5804 if (sync) {
5805 unsigned long current_load = task_h_load(current);
5806
f2cdd9cc 5807 if (current_load > this_eff_load)
3b76c4a3 5808 return this_cpu;
90001d67 5809
f2cdd9cc 5810 this_eff_load -= current_load;
90001d67
PZ
5811 }
5812
90001d67
PZ
5813 task_load = task_h_load(p);
5814
f2cdd9cc
PZ
5815 this_eff_load += task_load;
5816 if (sched_feat(WA_BIAS))
5817 this_eff_load *= 100;
5818 this_eff_load *= capacity_of(prev_cpu);
90001d67 5819
11f10e54 5820 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5821 prev_eff_load -= task_load;
5822 if (sched_feat(WA_BIAS))
5823 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5824 prev_eff_load *= capacity_of(this_cpu);
90001d67 5825
082f764a
MG
5826 /*
5827 * If sync, adjust the weight of prev_eff_load such that if
5828 * prev_eff == this_eff that select_idle_sibling() will consider
5829 * stacking the wakee on top of the waker if no other CPU is
5830 * idle.
5831 */
5832 if (sync)
5833 prev_eff_load += 1;
5834
5835 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5836}
5837
772bd008 5838static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5839 int this_cpu, int prev_cpu, int sync)
098fb9db 5840{
3b76c4a3 5841 int target = nr_cpumask_bits;
098fb9db 5842
89a55f56 5843 if (sched_feat(WA_IDLE))
3b76c4a3 5844 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5845
3b76c4a3
MG
5846 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5847 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5848
ae92882e 5849 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5850 if (target == nr_cpumask_bits)
5851 return prev_cpu;
098fb9db 5852
3b76c4a3
MG
5853 schedstat_inc(sd->ttwu_move_affine);
5854 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5855 return target;
098fb9db
IM
5856}
5857
aaee1203 5858static struct sched_group *
45da2773 5859find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5860
5861/*
97fb7a0a 5862 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5863 */
5864static int
18bd1b4b 5865find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5866{
5867 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5868 unsigned int min_exit_latency = UINT_MAX;
5869 u64 latest_idle_timestamp = 0;
5870 int least_loaded_cpu = this_cpu;
17346452 5871 int shallowest_idle_cpu = -1;
aaee1203
PZ
5872 int i;
5873
eaecf41f
MR
5874 /* Check if we have any choice: */
5875 if (group->group_weight == 1)
ae4df9d6 5876 return cpumask_first(sched_group_span(group));
eaecf41f 5877
aaee1203 5878 /* Traverse only the allowed CPUs */
3bd37062 5879 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5880 if (sched_idle_cpu(i))
5881 return i;
5882
943d355d 5883 if (available_idle_cpu(i)) {
83a0a96a
NP
5884 struct rq *rq = cpu_rq(i);
5885 struct cpuidle_state *idle = idle_get_state(rq);
5886 if (idle && idle->exit_latency < min_exit_latency) {
5887 /*
5888 * We give priority to a CPU whose idle state
5889 * has the smallest exit latency irrespective
5890 * of any idle timestamp.
5891 */
5892 min_exit_latency = idle->exit_latency;
5893 latest_idle_timestamp = rq->idle_stamp;
5894 shallowest_idle_cpu = i;
5895 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5896 rq->idle_stamp > latest_idle_timestamp) {
5897 /*
5898 * If equal or no active idle state, then
5899 * the most recently idled CPU might have
5900 * a warmer cache.
5901 */
5902 latest_idle_timestamp = rq->idle_stamp;
5903 shallowest_idle_cpu = i;
5904 }
17346452 5905 } else if (shallowest_idle_cpu == -1) {
11f10e54 5906 load = cpu_load(cpu_rq(i));
18cec7e0 5907 if (load < min_load) {
83a0a96a
NP
5908 min_load = load;
5909 least_loaded_cpu = i;
5910 }
e7693a36
GH
5911 }
5912 }
5913
17346452 5914 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5915}
e7693a36 5916
18bd1b4b
BJ
5917static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5918 int cpu, int prev_cpu, int sd_flag)
5919{
93f50f90 5920 int new_cpu = cpu;
18bd1b4b 5921
3bd37062 5922 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5923 return prev_cpu;
5924
c976a862 5925 /*
57abff06 5926 * We need task's util for cpu_util_without, sync it up to
c469933e 5927 * prev_cpu's last_update_time.
c976a862
VK
5928 */
5929 if (!(sd_flag & SD_BALANCE_FORK))
5930 sync_entity_load_avg(&p->se);
5931
18bd1b4b
BJ
5932 while (sd) {
5933 struct sched_group *group;
5934 struct sched_domain *tmp;
5935 int weight;
5936
5937 if (!(sd->flags & sd_flag)) {
5938 sd = sd->child;
5939 continue;
5940 }
5941
45da2773 5942 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5943 if (!group) {
5944 sd = sd->child;
5945 continue;
5946 }
5947
5948 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5949 if (new_cpu == cpu) {
97fb7a0a 5950 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5951 sd = sd->child;
5952 continue;
5953 }
5954
97fb7a0a 5955 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5956 cpu = new_cpu;
5957 weight = sd->span_weight;
5958 sd = NULL;
5959 for_each_domain(cpu, tmp) {
5960 if (weight <= tmp->span_weight)
5961 break;
5962 if (tmp->flags & sd_flag)
5963 sd = tmp;
5964 }
18bd1b4b
BJ
5965 }
5966
5967 return new_cpu;
5968}
5969
10e2f1ac 5970#ifdef CONFIG_SCHED_SMT
ba2591a5 5971DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5972EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5973
5974static inline void set_idle_cores(int cpu, int val)
5975{
5976 struct sched_domain_shared *sds;
5977
5978 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5979 if (sds)
5980 WRITE_ONCE(sds->has_idle_cores, val);
5981}
5982
5983static inline bool test_idle_cores(int cpu, bool def)
5984{
5985 struct sched_domain_shared *sds;
5986
5987 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5988 if (sds)
5989 return READ_ONCE(sds->has_idle_cores);
5990
5991 return def;
5992}
5993
5994/*
5995 * Scans the local SMT mask to see if the entire core is idle, and records this
5996 * information in sd_llc_shared->has_idle_cores.
5997 *
5998 * Since SMT siblings share all cache levels, inspecting this limited remote
5999 * state should be fairly cheap.
6000 */
1b568f0a 6001void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6002{
6003 int core = cpu_of(rq);
6004 int cpu;
6005
6006 rcu_read_lock();
6007 if (test_idle_cores(core, true))
6008 goto unlock;
6009
6010 for_each_cpu(cpu, cpu_smt_mask(core)) {
6011 if (cpu == core)
6012 continue;
6013
943d355d 6014 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6015 goto unlock;
6016 }
6017
6018 set_idle_cores(core, 1);
6019unlock:
6020 rcu_read_unlock();
6021}
6022
6023/*
6024 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6025 * there are no idle cores left in the system; tracked through
6026 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6027 */
6028static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6029{
6030 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6031 int core, cpu;
10e2f1ac 6032
1b568f0a
PZ
6033 if (!static_branch_likely(&sched_smt_present))
6034 return -1;
6035
10e2f1ac
PZ
6036 if (!test_idle_cores(target, false))
6037 return -1;
6038
3bd37062 6039 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6040
c743f0a5 6041 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6042 bool idle = true;
6043
6044 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6045 if (!available_idle_cpu(cpu)) {
10e2f1ac 6046 idle = false;
bec2860a
SD
6047 break;
6048 }
10e2f1ac 6049 }
bec2860a 6050 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6051
6052 if (idle)
6053 return core;
6054 }
6055
6056 /*
6057 * Failed to find an idle core; stop looking for one.
6058 */
6059 set_idle_cores(target, 0);
6060
6061 return -1;
6062}
6063
6064/*
6065 * Scan the local SMT mask for idle CPUs.
6066 */
1b5500d7 6067static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 6068{
17346452 6069 int cpu;
10e2f1ac 6070
1b568f0a
PZ
6071 if (!static_branch_likely(&sched_smt_present))
6072 return -1;
6073
10e2f1ac 6074 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 6075 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 6076 continue;
17346452 6077 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6078 return cpu;
6079 }
6080
17346452 6081 return -1;
10e2f1ac
PZ
6082}
6083
6084#else /* CONFIG_SCHED_SMT */
6085
6086static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6087{
6088 return -1;
6089}
6090
1b5500d7 6091static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
6092{
6093 return -1;
6094}
6095
6096#endif /* CONFIG_SCHED_SMT */
6097
6098/*
6099 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6100 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6101 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6102 */
10e2f1ac
PZ
6103static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6104{
60588bfa 6105 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6106 struct sched_domain *this_sd;
1ad3aaf3 6107 u64 avg_cost, avg_idle;
d76343c6 6108 u64 time;
8dc2d993 6109 int this = smp_processor_id();
17346452 6110 int cpu, nr = INT_MAX;
10e2f1ac 6111
9cfb38a7
WL
6112 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6113 if (!this_sd)
6114 return -1;
6115
10e2f1ac
PZ
6116 /*
6117 * Due to large variance we need a large fuzz factor; hackbench in
6118 * particularly is sensitive here.
6119 */
1ad3aaf3
PZ
6120 avg_idle = this_rq()->avg_idle / 512;
6121 avg_cost = this_sd->avg_scan_cost + 1;
6122
6123 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6124 return -1;
6125
1ad3aaf3
PZ
6126 if (sched_feat(SIS_PROP)) {
6127 u64 span_avg = sd->span_weight * avg_idle;
6128 if (span_avg > 4*avg_cost)
6129 nr = div_u64(span_avg, avg_cost);
6130 else
6131 nr = 4;
6132 }
6133
8dc2d993 6134 time = cpu_clock(this);
10e2f1ac 6135
60588bfa
CJ
6136 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6137
6138 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6139 if (!--nr)
17346452
VK
6140 return -1;
6141 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6142 break;
6143 }
6144
8dc2d993 6145 time = cpu_clock(this) - time;
d76343c6 6146 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6147
6148 return cpu;
6149}
6150
b7a33161
MR
6151/*
6152 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6153 * the task fits. If no CPU is big enough, but there are idle ones, try to
6154 * maximize capacity.
6155 */
6156static int
6157select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6158{
6159 unsigned long best_cap = 0;
6160 int cpu, best_cpu = -1;
6161 struct cpumask *cpus;
6162
6163 sync_entity_load_avg(&p->se);
6164
6165 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6166 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6167
6168 for_each_cpu_wrap(cpu, cpus, target) {
6169 unsigned long cpu_cap = capacity_of(cpu);
6170
6171 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6172 continue;
6173 if (task_fits_capacity(p, cpu_cap))
6174 return cpu;
6175
6176 if (cpu_cap > best_cap) {
6177 best_cap = cpu_cap;
6178 best_cpu = cpu;
6179 }
6180 }
6181
6182 return best_cpu;
6183}
6184
10e2f1ac
PZ
6185/*
6186 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6187 */
772bd008 6188static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6189{
99bd5e2f 6190 struct sched_domain *sd;
32e839dd 6191 int i, recent_used_cpu;
a50bde51 6192
b7a33161
MR
6193 /*
6194 * For asymmetric CPU capacity systems, our domain of interest is
6195 * sd_asym_cpucapacity rather than sd_llc.
6196 */
6197 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6198 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6199 /*
6200 * On an asymmetric CPU capacity system where an exclusive
6201 * cpuset defines a symmetric island (i.e. one unique
6202 * capacity_orig value through the cpuset), the key will be set
6203 * but the CPUs within that cpuset will not have a domain with
6204 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6205 * capacity path.
6206 */
6207 if (!sd)
6208 goto symmetric;
6209
6210 i = select_idle_capacity(p, sd, target);
6211 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6212 }
6213
6214symmetric:
3c29e651 6215 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 6216 return target;
99bd5e2f
SS
6217
6218 /*
97fb7a0a 6219 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6220 */
3c29e651
VK
6221 if (prev != target && cpus_share_cache(prev, target) &&
6222 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6223 return prev;
a50bde51 6224
52262ee5
MG
6225 /*
6226 * Allow a per-cpu kthread to stack with the wakee if the
6227 * kworker thread and the tasks previous CPUs are the same.
6228 * The assumption is that the wakee queued work for the
6229 * per-cpu kthread that is now complete and the wakeup is
6230 * essentially a sync wakeup. An obvious example of this
6231 * pattern is IO completions.
6232 */
6233 if (is_per_cpu_kthread(current) &&
6234 prev == smp_processor_id() &&
6235 this_rq()->nr_running <= 1) {
6236 return prev;
6237 }
6238
97fb7a0a 6239 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6240 recent_used_cpu = p->recent_used_cpu;
6241 if (recent_used_cpu != prev &&
6242 recent_used_cpu != target &&
6243 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6244 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6245 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6246 /*
6247 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6248 * candidate for the next wake:
32e839dd
MG
6249 */
6250 p->recent_used_cpu = prev;
6251 return recent_used_cpu;
6252 }
6253
518cd623 6254 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6255 if (!sd)
6256 return target;
772bd008 6257
10e2f1ac
PZ
6258 i = select_idle_core(p, sd, target);
6259 if ((unsigned)i < nr_cpumask_bits)
6260 return i;
37407ea7 6261
10e2f1ac
PZ
6262 i = select_idle_cpu(p, sd, target);
6263 if ((unsigned)i < nr_cpumask_bits)
6264 return i;
6265
1b5500d7 6266 i = select_idle_smt(p, target);
10e2f1ac
PZ
6267 if ((unsigned)i < nr_cpumask_bits)
6268 return i;
970e1789 6269
a50bde51
PZ
6270 return target;
6271}
231678b7 6272
f9be3e59
PB
6273/**
6274 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6275 * @cpu: the CPU to get the utilization of
6276 *
6277 * The unit of the return value must be the one of capacity so we can compare
6278 * the utilization with the capacity of the CPU that is available for CFS task
6279 * (ie cpu_capacity).
231678b7
DE
6280 *
6281 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6282 * recent utilization of currently non-runnable tasks on a CPU. It represents
6283 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6284 * capacity_orig is the cpu_capacity available at the highest frequency
6285 * (arch_scale_freq_capacity()).
6286 * The utilization of a CPU converges towards a sum equal to or less than the
6287 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6288 * the running time on this CPU scaled by capacity_curr.
6289 *
f9be3e59
PB
6290 * The estimated utilization of a CPU is defined to be the maximum between its
6291 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6292 * currently RUNNABLE on that CPU.
6293 * This allows to properly represent the expected utilization of a CPU which
6294 * has just got a big task running since a long sleep period. At the same time
6295 * however it preserves the benefits of the "blocked utilization" in
6296 * describing the potential for other tasks waking up on the same CPU.
6297 *
231678b7
DE
6298 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6299 * higher than capacity_orig because of unfortunate rounding in
6300 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6301 * the average stabilizes with the new running time. We need to check that the
6302 * utilization stays within the range of [0..capacity_orig] and cap it if
6303 * necessary. Without utilization capping, a group could be seen as overloaded
6304 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6305 * available capacity. We allow utilization to overshoot capacity_curr (but not
6306 * capacity_orig) as it useful for predicting the capacity required after task
6307 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6308 *
6309 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6310 */
f9be3e59 6311static inline unsigned long cpu_util(int cpu)
8bb5b00c 6312{
f9be3e59
PB
6313 struct cfs_rq *cfs_rq;
6314 unsigned int util;
6315
6316 cfs_rq = &cpu_rq(cpu)->cfs;
6317 util = READ_ONCE(cfs_rq->avg.util_avg);
6318
6319 if (sched_feat(UTIL_EST))
6320 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6321
f9be3e59 6322 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6323}
a50bde51 6324
104cb16d 6325/*
c469933e
PB
6326 * cpu_util_without: compute cpu utilization without any contributions from *p
6327 * @cpu: the CPU which utilization is requested
6328 * @p: the task which utilization should be discounted
6329 *
6330 * The utilization of a CPU is defined by the utilization of tasks currently
6331 * enqueued on that CPU as well as tasks which are currently sleeping after an
6332 * execution on that CPU.
6333 *
6334 * This method returns the utilization of the specified CPU by discounting the
6335 * utilization of the specified task, whenever the task is currently
6336 * contributing to the CPU utilization.
104cb16d 6337 */
c469933e 6338static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6339{
f9be3e59
PB
6340 struct cfs_rq *cfs_rq;
6341 unsigned int util;
104cb16d
MR
6342
6343 /* Task has no contribution or is new */
f9be3e59 6344 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6345 return cpu_util(cpu);
6346
f9be3e59
PB
6347 cfs_rq = &cpu_rq(cpu)->cfs;
6348 util = READ_ONCE(cfs_rq->avg.util_avg);
6349
c469933e 6350 /* Discount task's util from CPU's util */
b5c0ce7b 6351 lsub_positive(&util, task_util(p));
104cb16d 6352
f9be3e59
PB
6353 /*
6354 * Covered cases:
6355 *
6356 * a) if *p is the only task sleeping on this CPU, then:
6357 * cpu_util (== task_util) > util_est (== 0)
6358 * and thus we return:
c469933e 6359 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6360 *
6361 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6362 * IDLE, then:
6363 * cpu_util >= task_util
6364 * cpu_util > util_est (== 0)
6365 * and thus we discount *p's blocked utilization to return:
c469933e 6366 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6367 *
6368 * c) if other tasks are RUNNABLE on that CPU and
6369 * util_est > cpu_util
6370 * then we use util_est since it returns a more restrictive
6371 * estimation of the spare capacity on that CPU, by just
6372 * considering the expected utilization of tasks already
6373 * runnable on that CPU.
6374 *
6375 * Cases a) and b) are covered by the above code, while case c) is
6376 * covered by the following code when estimated utilization is
6377 * enabled.
6378 */
c469933e
PB
6379 if (sched_feat(UTIL_EST)) {
6380 unsigned int estimated =
6381 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6382
6383 /*
6384 * Despite the following checks we still have a small window
6385 * for a possible race, when an execl's select_task_rq_fair()
6386 * races with LB's detach_task():
6387 *
6388 * detach_task()
6389 * p->on_rq = TASK_ON_RQ_MIGRATING;
6390 * ---------------------------------- A
6391 * deactivate_task() \
6392 * dequeue_task() + RaceTime
6393 * util_est_dequeue() /
6394 * ---------------------------------- B
6395 *
6396 * The additional check on "current == p" it's required to
6397 * properly fix the execl regression and it helps in further
6398 * reducing the chances for the above race.
6399 */
b5c0ce7b
PB
6400 if (unlikely(task_on_rq_queued(p) || current == p))
6401 lsub_positive(&estimated, _task_util_est(p));
6402
c469933e
PB
6403 util = max(util, estimated);
6404 }
f9be3e59
PB
6405
6406 /*
6407 * Utilization (estimated) can exceed the CPU capacity, thus let's
6408 * clamp to the maximum CPU capacity to ensure consistency with
6409 * the cpu_util call.
6410 */
6411 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6412}
6413
390031e4
QP
6414/*
6415 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6416 * to @dst_cpu.
6417 */
6418static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6419{
6420 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6421 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6422
6423 /*
6424 * If @p migrates from @cpu to another, remove its contribution. Or,
6425 * if @p migrates from another CPU to @cpu, add its contribution. In
6426 * the other cases, @cpu is not impacted by the migration, so the
6427 * util_avg should already be correct.
6428 */
6429 if (task_cpu(p) == cpu && dst_cpu != cpu)
6430 sub_positive(&util, task_util(p));
6431 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6432 util += task_util(p);
6433
6434 if (sched_feat(UTIL_EST)) {
6435 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6436
6437 /*
6438 * During wake-up, the task isn't enqueued yet and doesn't
6439 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6440 * so just add it (if needed) to "simulate" what will be
6441 * cpu_util() after the task has been enqueued.
6442 */
6443 if (dst_cpu == cpu)
6444 util_est += _task_util_est(p);
6445
6446 util = max(util, util_est);
6447 }
6448
6449 return min(util, capacity_orig_of(cpu));
6450}
6451
6452/*
eb92692b 6453 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6454 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6455 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6456 * to compute what would be the energy if we decided to actually migrate that
6457 * task.
6458 */
6459static long
6460compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6461{
eb92692b
QP
6462 struct cpumask *pd_mask = perf_domain_span(pd);
6463 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6464 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6465 int cpu;
6466
eb92692b
QP
6467 /*
6468 * The capacity state of CPUs of the current rd can be driven by CPUs
6469 * of another rd if they belong to the same pd. So, account for the
6470 * utilization of these CPUs too by masking pd with cpu_online_mask
6471 * instead of the rd span.
6472 *
6473 * If an entire pd is outside of the current rd, it will not appear in
6474 * its pd list and will not be accounted by compute_energy().
6475 */
6476 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6477 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6478 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6479
6480 /*
eb92692b
QP
6481 * Busy time computation: utilization clamping is not
6482 * required since the ratio (sum_util / cpu_capacity)
6483 * is already enough to scale the EM reported power
6484 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6485 */
eb92692b
QP
6486 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6487 ENERGY_UTIL, NULL);
af24bde8 6488
390031e4 6489 /*
eb92692b
QP
6490 * Performance domain frequency: utilization clamping
6491 * must be considered since it affects the selection
6492 * of the performance domain frequency.
6493 * NOTE: in case RT tasks are running, by default the
6494 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6495 */
eb92692b
QP
6496 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6497 FREQUENCY_UTIL, tsk);
6498 max_util = max(max_util, cpu_util);
390031e4
QP
6499 }
6500
eb92692b 6501 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6502}
6503
732cd75b
QP
6504/*
6505 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6506 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6507 * spare capacity in each performance domain and uses it as a potential
6508 * candidate to execute the task. Then, it uses the Energy Model to figure
6509 * out which of the CPU candidates is the most energy-efficient.
6510 *
6511 * The rationale for this heuristic is as follows. In a performance domain,
6512 * all the most energy efficient CPU candidates (according to the Energy
6513 * Model) are those for which we'll request a low frequency. When there are
6514 * several CPUs for which the frequency request will be the same, we don't
6515 * have enough data to break the tie between them, because the Energy Model
6516 * only includes active power costs. With this model, if we assume that
6517 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6518 * the maximum spare capacity in a performance domain is guaranteed to be among
6519 * the best candidates of the performance domain.
6520 *
6521 * In practice, it could be preferable from an energy standpoint to pack
6522 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6523 * but that could also hurt our chances to go cluster idle, and we have no
6524 * ways to tell with the current Energy Model if this is actually a good
6525 * idea or not. So, find_energy_efficient_cpu() basically favors
6526 * cluster-packing, and spreading inside a cluster. That should at least be
6527 * a good thing for latency, and this is consistent with the idea that most
6528 * of the energy savings of EAS come from the asymmetry of the system, and
6529 * not so much from breaking the tie between identical CPUs. That's also the
6530 * reason why EAS is enabled in the topology code only for systems where
6531 * SD_ASYM_CPUCAPACITY is set.
6532 *
6533 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6534 * they don't have any useful utilization data yet and it's not possible to
6535 * forecast their impact on energy consumption. Consequently, they will be
6536 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6537 * to be energy-inefficient in some use-cases. The alternative would be to
6538 * bias new tasks towards specific types of CPUs first, or to try to infer
6539 * their util_avg from the parent task, but those heuristics could hurt
6540 * other use-cases too. So, until someone finds a better way to solve this,
6541 * let's keep things simple by re-using the existing slow path.
6542 */
732cd75b
QP
6543static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6544{
eb92692b 6545 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6546 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6547 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6548 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6549 struct sched_domain *sd;
eb92692b 6550 struct perf_domain *pd;
732cd75b
QP
6551
6552 rcu_read_lock();
6553 pd = rcu_dereference(rd->pd);
6554 if (!pd || READ_ONCE(rd->overutilized))
6555 goto fail;
732cd75b
QP
6556
6557 /*
6558 * Energy-aware wake-up happens on the lowest sched_domain starting
6559 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6560 */
6561 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6562 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6563 sd = sd->parent;
6564 if (!sd)
6565 goto fail;
6566
6567 sync_entity_load_avg(&p->se);
6568 if (!task_util_est(p))
6569 goto unlock;
6570
6571 for (; pd; pd = pd->next) {
eb92692b
QP
6572 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6573 unsigned long base_energy_pd;
732cd75b
QP
6574 int max_spare_cap_cpu = -1;
6575
eb92692b
QP
6576 /* Compute the 'base' energy of the pd, without @p */
6577 base_energy_pd = compute_energy(p, -1, pd);
6578 base_energy += base_energy_pd;
6579
732cd75b 6580 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6581 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6582 continue;
6583
732cd75b
QP
6584 util = cpu_util_next(cpu, p, cpu);
6585 cpu_cap = capacity_of(cpu);
1d42509e
VS
6586 spare_cap = cpu_cap - util;
6587
6588 /*
6589 * Skip CPUs that cannot satisfy the capacity request.
6590 * IOW, placing the task there would make the CPU
6591 * overutilized. Take uclamp into account to see how
6592 * much capacity we can get out of the CPU; this is
6593 * aligned with schedutil_cpu_util().
6594 */
6595 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6596 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6597 continue;
6598
6599 /* Always use prev_cpu as a candidate. */
6600 if (cpu == prev_cpu) {
eb92692b
QP
6601 prev_delta = compute_energy(p, prev_cpu, pd);
6602 prev_delta -= base_energy_pd;
6603 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6604 }
6605
6606 /*
6607 * Find the CPU with the maximum spare capacity in
6608 * the performance domain
6609 */
732cd75b
QP
6610 if (spare_cap > max_spare_cap) {
6611 max_spare_cap = spare_cap;
6612 max_spare_cap_cpu = cpu;
6613 }
6614 }
6615
6616 /* Evaluate the energy impact of using this CPU. */
4892f51a 6617 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6618 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6619 cur_delta -= base_energy_pd;
6620 if (cur_delta < best_delta) {
6621 best_delta = cur_delta;
732cd75b
QP
6622 best_energy_cpu = max_spare_cap_cpu;
6623 }
6624 }
6625 }
6626unlock:
6627 rcu_read_unlock();
6628
6629 /*
6630 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6631 * least 6% of the energy used by prev_cpu.
6632 */
eb92692b 6633 if (prev_delta == ULONG_MAX)
732cd75b
QP
6634 return best_energy_cpu;
6635
eb92692b 6636 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6637 return best_energy_cpu;
6638
6639 return prev_cpu;
6640
6641fail:
6642 rcu_read_unlock();
6643
6644 return -1;
6645}
6646
aaee1203 6647/*
de91b9cb
MR
6648 * select_task_rq_fair: Select target runqueue for the waking task in domains
6649 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6650 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6651 *
97fb7a0a
IM
6652 * Balances load by selecting the idlest CPU in the idlest group, or under
6653 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6654 *
97fb7a0a 6655 * Returns the target CPU number.
aaee1203
PZ
6656 *
6657 * preempt must be disabled.
6658 */
0017d735 6659static int
ac66f547 6660select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6661{
f1d88b44 6662 struct sched_domain *tmp, *sd = NULL;
c88d5910 6663 int cpu = smp_processor_id();
63b0e9ed 6664 int new_cpu = prev_cpu;
99bd5e2f 6665 int want_affine = 0;
24d0c1d6 6666 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6667
c58d25f3
PZ
6668 if (sd_flag & SD_BALANCE_WAKE) {
6669 record_wakee(p);
732cd75b 6670
f8a696f2 6671 if (sched_energy_enabled()) {
732cd75b
QP
6672 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6673 if (new_cpu >= 0)
6674 return new_cpu;
6675 new_cpu = prev_cpu;
6676 }
6677
00061968 6678 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6679 }
aaee1203 6680
dce840a0 6681 rcu_read_lock();
aaee1203 6682 for_each_domain(cpu, tmp) {
fe3bcfe1 6683 /*
97fb7a0a 6684 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6685 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6686 */
99bd5e2f
SS
6687 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6688 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6689 if (cpu != prev_cpu)
6690 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6691
6692 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6693 break;
f03542a7 6694 }
29cd8bae 6695
f03542a7 6696 if (tmp->flags & sd_flag)
29cd8bae 6697 sd = tmp;
63b0e9ed
MG
6698 else if (!want_affine)
6699 break;
29cd8bae
PZ
6700 }
6701
f1d88b44
VK
6702 if (unlikely(sd)) {
6703 /* Slow path */
18bd1b4b 6704 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6705 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6706 /* Fast path */
6707
6708 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6709
6710 if (want_affine)
6711 current->recent_used_cpu = cpu;
e7693a36 6712 }
dce840a0 6713 rcu_read_unlock();
e7693a36 6714
c88d5910 6715 return new_cpu;
e7693a36 6716}
0a74bef8 6717
144d8487
PZ
6718static void detach_entity_cfs_rq(struct sched_entity *se);
6719
0a74bef8 6720/*
97fb7a0a 6721 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6722 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6723 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6724 */
3f9672ba 6725static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6726{
59efa0ba
PZ
6727 /*
6728 * As blocked tasks retain absolute vruntime the migration needs to
6729 * deal with this by subtracting the old and adding the new
6730 * min_vruntime -- the latter is done by enqueue_entity() when placing
6731 * the task on the new runqueue.
6732 */
6733 if (p->state == TASK_WAKING) {
6734 struct sched_entity *se = &p->se;
6735 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6736 u64 min_vruntime;
6737
6738#ifndef CONFIG_64BIT
6739 u64 min_vruntime_copy;
6740
6741 do {
6742 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6743 smp_rmb();
6744 min_vruntime = cfs_rq->min_vruntime;
6745 } while (min_vruntime != min_vruntime_copy);
6746#else
6747 min_vruntime = cfs_rq->min_vruntime;
6748#endif
6749
6750 se->vruntime -= min_vruntime;
6751 }
6752
144d8487
PZ
6753 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6754 /*
6755 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6756 * rq->lock and can modify state directly.
6757 */
6758 lockdep_assert_held(&task_rq(p)->lock);
6759 detach_entity_cfs_rq(&p->se);
6760
6761 } else {
6762 /*
6763 * We are supposed to update the task to "current" time, then
6764 * its up to date and ready to go to new CPU/cfs_rq. But we
6765 * have difficulty in getting what current time is, so simply
6766 * throw away the out-of-date time. This will result in the
6767 * wakee task is less decayed, but giving the wakee more load
6768 * sounds not bad.
6769 */
6770 remove_entity_load_avg(&p->se);
6771 }
9d89c257
YD
6772
6773 /* Tell new CPU we are migrated */
6774 p->se.avg.last_update_time = 0;
3944a927
BS
6775
6776 /* We have migrated, no longer consider this task hot */
9d89c257 6777 p->se.exec_start = 0;
3f9672ba
SD
6778
6779 update_scan_period(p, new_cpu);
0a74bef8 6780}
12695578
YD
6781
6782static void task_dead_fair(struct task_struct *p)
6783{
6784 remove_entity_load_avg(&p->se);
6785}
6e2df058
PZ
6786
6787static int
6788balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6789{
6790 if (rq->nr_running)
6791 return 1;
6792
6793 return newidle_balance(rq, rf) != 0;
6794}
e7693a36
GH
6795#endif /* CONFIG_SMP */
6796
a555e9d8 6797static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6798{
6799 unsigned long gran = sysctl_sched_wakeup_granularity;
6800
6801 /*
e52fb7c0
PZ
6802 * Since its curr running now, convert the gran from real-time
6803 * to virtual-time in his units.
13814d42
MG
6804 *
6805 * By using 'se' instead of 'curr' we penalize light tasks, so
6806 * they get preempted easier. That is, if 'se' < 'curr' then
6807 * the resulting gran will be larger, therefore penalizing the
6808 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6809 * be smaller, again penalizing the lighter task.
6810 *
6811 * This is especially important for buddies when the leftmost
6812 * task is higher priority than the buddy.
0bbd3336 6813 */
f4ad9bd2 6814 return calc_delta_fair(gran, se);
0bbd3336
PZ
6815}
6816
464b7527
PZ
6817/*
6818 * Should 'se' preempt 'curr'.
6819 *
6820 * |s1
6821 * |s2
6822 * |s3
6823 * g
6824 * |<--->|c
6825 *
6826 * w(c, s1) = -1
6827 * w(c, s2) = 0
6828 * w(c, s3) = 1
6829 *
6830 */
6831static int
6832wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6833{
6834 s64 gran, vdiff = curr->vruntime - se->vruntime;
6835
6836 if (vdiff <= 0)
6837 return -1;
6838
a555e9d8 6839 gran = wakeup_gran(se);
464b7527
PZ
6840 if (vdiff > gran)
6841 return 1;
6842
6843 return 0;
6844}
6845
02479099
PZ
6846static void set_last_buddy(struct sched_entity *se)
6847{
1da1843f 6848 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6849 return;
6850
c5ae366e
DA
6851 for_each_sched_entity(se) {
6852 if (SCHED_WARN_ON(!se->on_rq))
6853 return;
69c80f3e 6854 cfs_rq_of(se)->last = se;
c5ae366e 6855 }
02479099
PZ
6856}
6857
6858static void set_next_buddy(struct sched_entity *se)
6859{
1da1843f 6860 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6861 return;
6862
c5ae366e
DA
6863 for_each_sched_entity(se) {
6864 if (SCHED_WARN_ON(!se->on_rq))
6865 return;
69c80f3e 6866 cfs_rq_of(se)->next = se;
c5ae366e 6867 }
02479099
PZ
6868}
6869
ac53db59
RR
6870static void set_skip_buddy(struct sched_entity *se)
6871{
69c80f3e
VP
6872 for_each_sched_entity(se)
6873 cfs_rq_of(se)->skip = se;
ac53db59
RR
6874}
6875
bf0f6f24
IM
6876/*
6877 * Preempt the current task with a newly woken task if needed:
6878 */
5a9b86f6 6879static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6880{
6881 struct task_struct *curr = rq->curr;
8651a86c 6882 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6883 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6884 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6885 int next_buddy_marked = 0;
bf0f6f24 6886
4ae7d5ce
IM
6887 if (unlikely(se == pse))
6888 return;
6889
5238cdd3 6890 /*
163122b7 6891 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6892 * unconditionally check_prempt_curr() after an enqueue (which may have
6893 * lead to a throttle). This both saves work and prevents false
6894 * next-buddy nomination below.
6895 */
6896 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6897 return;
6898
2f36825b 6899 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6900 set_next_buddy(pse);
2f36825b
VP
6901 next_buddy_marked = 1;
6902 }
57fdc26d 6903
aec0a514
BR
6904 /*
6905 * We can come here with TIF_NEED_RESCHED already set from new task
6906 * wake up path.
5238cdd3
PT
6907 *
6908 * Note: this also catches the edge-case of curr being in a throttled
6909 * group (e.g. via set_curr_task), since update_curr() (in the
6910 * enqueue of curr) will have resulted in resched being set. This
6911 * prevents us from potentially nominating it as a false LAST_BUDDY
6912 * below.
aec0a514
BR
6913 */
6914 if (test_tsk_need_resched(curr))
6915 return;
6916
a2f5c9ab 6917 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6918 if (unlikely(task_has_idle_policy(curr)) &&
6919 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6920 goto preempt;
6921
91c234b4 6922 /*
a2f5c9ab
DH
6923 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6924 * is driven by the tick):
91c234b4 6925 */
8ed92e51 6926 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6927 return;
bf0f6f24 6928
464b7527 6929 find_matching_se(&se, &pse);
9bbd7374 6930 update_curr(cfs_rq_of(se));
002f128b 6931 BUG_ON(!pse);
2f36825b
VP
6932 if (wakeup_preempt_entity(se, pse) == 1) {
6933 /*
6934 * Bias pick_next to pick the sched entity that is
6935 * triggering this preemption.
6936 */
6937 if (!next_buddy_marked)
6938 set_next_buddy(pse);
3a7e73a2 6939 goto preempt;
2f36825b 6940 }
464b7527 6941
3a7e73a2 6942 return;
a65ac745 6943
3a7e73a2 6944preempt:
8875125e 6945 resched_curr(rq);
3a7e73a2
PZ
6946 /*
6947 * Only set the backward buddy when the current task is still
6948 * on the rq. This can happen when a wakeup gets interleaved
6949 * with schedule on the ->pre_schedule() or idle_balance()
6950 * point, either of which can * drop the rq lock.
6951 *
6952 * Also, during early boot the idle thread is in the fair class,
6953 * for obvious reasons its a bad idea to schedule back to it.
6954 */
6955 if (unlikely(!se->on_rq || curr == rq->idle))
6956 return;
6957
6958 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6959 set_last_buddy(se);
bf0f6f24
IM
6960}
6961
5d7d6056 6962struct task_struct *
d8ac8971 6963pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6964{
6965 struct cfs_rq *cfs_rq = &rq->cfs;
6966 struct sched_entity *se;
678d5718 6967 struct task_struct *p;
37e117c0 6968 int new_tasks;
678d5718 6969
6e83125c 6970again:
6e2df058 6971 if (!sched_fair_runnable(rq))
38033c37 6972 goto idle;
678d5718 6973
9674f5ca 6974#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6975 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6976 goto simple;
6977
6978 /*
6979 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6980 * likely that a next task is from the same cgroup as the current.
6981 *
6982 * Therefore attempt to avoid putting and setting the entire cgroup
6983 * hierarchy, only change the part that actually changes.
6984 */
6985
6986 do {
6987 struct sched_entity *curr = cfs_rq->curr;
6988
6989 /*
6990 * Since we got here without doing put_prev_entity() we also
6991 * have to consider cfs_rq->curr. If it is still a runnable
6992 * entity, update_curr() will update its vruntime, otherwise
6993 * forget we've ever seen it.
6994 */
54d27365
BS
6995 if (curr) {
6996 if (curr->on_rq)
6997 update_curr(cfs_rq);
6998 else
6999 curr = NULL;
678d5718 7000
54d27365
BS
7001 /*
7002 * This call to check_cfs_rq_runtime() will do the
7003 * throttle and dequeue its entity in the parent(s).
9674f5ca 7004 * Therefore the nr_running test will indeed
54d27365
BS
7005 * be correct.
7006 */
9674f5ca
VK
7007 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7008 cfs_rq = &rq->cfs;
7009
7010 if (!cfs_rq->nr_running)
7011 goto idle;
7012
54d27365 7013 goto simple;
9674f5ca 7014 }
54d27365 7015 }
678d5718
PZ
7016
7017 se = pick_next_entity(cfs_rq, curr);
7018 cfs_rq = group_cfs_rq(se);
7019 } while (cfs_rq);
7020
7021 p = task_of(se);
7022
7023 /*
7024 * Since we haven't yet done put_prev_entity and if the selected task
7025 * is a different task than we started out with, try and touch the
7026 * least amount of cfs_rqs.
7027 */
7028 if (prev != p) {
7029 struct sched_entity *pse = &prev->se;
7030
7031 while (!(cfs_rq = is_same_group(se, pse))) {
7032 int se_depth = se->depth;
7033 int pse_depth = pse->depth;
7034
7035 if (se_depth <= pse_depth) {
7036 put_prev_entity(cfs_rq_of(pse), pse);
7037 pse = parent_entity(pse);
7038 }
7039 if (se_depth >= pse_depth) {
7040 set_next_entity(cfs_rq_of(se), se);
7041 se = parent_entity(se);
7042 }
7043 }
7044
7045 put_prev_entity(cfs_rq, pse);
7046 set_next_entity(cfs_rq, se);
7047 }
7048
93824900 7049 goto done;
678d5718 7050simple:
678d5718 7051#endif
67692435
PZ
7052 if (prev)
7053 put_prev_task(rq, prev);
606dba2e 7054
bf0f6f24 7055 do {
678d5718 7056 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7057 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7058 cfs_rq = group_cfs_rq(se);
7059 } while (cfs_rq);
7060
8f4d37ec 7061 p = task_of(se);
678d5718 7062
13a453c2 7063done: __maybe_unused;
93824900
UR
7064#ifdef CONFIG_SMP
7065 /*
7066 * Move the next running task to the front of
7067 * the list, so our cfs_tasks list becomes MRU
7068 * one.
7069 */
7070 list_move(&p->se.group_node, &rq->cfs_tasks);
7071#endif
7072
b39e66ea
MG
7073 if (hrtick_enabled(rq))
7074 hrtick_start_fair(rq, p);
8f4d37ec 7075
3b1baa64
MR
7076 update_misfit_status(p, rq);
7077
8f4d37ec 7078 return p;
38033c37
PZ
7079
7080idle:
67692435
PZ
7081 if (!rf)
7082 return NULL;
7083
5ba553ef 7084 new_tasks = newidle_balance(rq, rf);
46f69fa3 7085
37e117c0 7086 /*
5ba553ef 7087 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7088 * possible for any higher priority task to appear. In that case we
7089 * must re-start the pick_next_entity() loop.
7090 */
e4aa358b 7091 if (new_tasks < 0)
37e117c0
PZ
7092 return RETRY_TASK;
7093
e4aa358b 7094 if (new_tasks > 0)
38033c37 7095 goto again;
38033c37 7096
23127296
VG
7097 /*
7098 * rq is about to be idle, check if we need to update the
7099 * lost_idle_time of clock_pelt
7100 */
7101 update_idle_rq_clock_pelt(rq);
7102
38033c37 7103 return NULL;
bf0f6f24
IM
7104}
7105
98c2f700
PZ
7106static struct task_struct *__pick_next_task_fair(struct rq *rq)
7107{
7108 return pick_next_task_fair(rq, NULL, NULL);
7109}
7110
bf0f6f24
IM
7111/*
7112 * Account for a descheduled task:
7113 */
6e2df058 7114static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7115{
7116 struct sched_entity *se = &prev->se;
7117 struct cfs_rq *cfs_rq;
7118
7119 for_each_sched_entity(se) {
7120 cfs_rq = cfs_rq_of(se);
ab6cde26 7121 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7122 }
7123}
7124
ac53db59
RR
7125/*
7126 * sched_yield() is very simple
7127 *
7128 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7129 */
7130static void yield_task_fair(struct rq *rq)
7131{
7132 struct task_struct *curr = rq->curr;
7133 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7134 struct sched_entity *se = &curr->se;
7135
7136 /*
7137 * Are we the only task in the tree?
7138 */
7139 if (unlikely(rq->nr_running == 1))
7140 return;
7141
7142 clear_buddies(cfs_rq, se);
7143
7144 if (curr->policy != SCHED_BATCH) {
7145 update_rq_clock(rq);
7146 /*
7147 * Update run-time statistics of the 'current'.
7148 */
7149 update_curr(cfs_rq);
916671c0
MG
7150 /*
7151 * Tell update_rq_clock() that we've just updated,
7152 * so we don't do microscopic update in schedule()
7153 * and double the fastpath cost.
7154 */
adcc8da8 7155 rq_clock_skip_update(rq);
ac53db59
RR
7156 }
7157
7158 set_skip_buddy(se);
7159}
7160
d95f4122
MG
7161static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7162{
7163 struct sched_entity *se = &p->se;
7164
5238cdd3
PT
7165 /* throttled hierarchies are not runnable */
7166 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7167 return false;
7168
7169 /* Tell the scheduler that we'd really like pse to run next. */
7170 set_next_buddy(se);
7171
d95f4122
MG
7172 yield_task_fair(rq);
7173
7174 return true;
7175}
7176
681f3e68 7177#ifdef CONFIG_SMP
bf0f6f24 7178/**************************************************
e9c84cb8
PZ
7179 * Fair scheduling class load-balancing methods.
7180 *
7181 * BASICS
7182 *
7183 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7184 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7185 * time to each task. This is expressed in the following equation:
7186 *
7187 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7188 *
97fb7a0a 7189 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7190 * W_i,0 is defined as:
7191 *
7192 * W_i,0 = \Sum_j w_i,j (2)
7193 *
97fb7a0a 7194 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7195 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7196 *
7197 * The weight average is an exponential decay average of the instantaneous
7198 * weight:
7199 *
7200 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7201 *
97fb7a0a 7202 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7203 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7204 * can also include other factors [XXX].
7205 *
7206 * To achieve this balance we define a measure of imbalance which follows
7207 * directly from (1):
7208 *
ced549fa 7209 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7210 *
7211 * We them move tasks around to minimize the imbalance. In the continuous
7212 * function space it is obvious this converges, in the discrete case we get
7213 * a few fun cases generally called infeasible weight scenarios.
7214 *
7215 * [XXX expand on:
7216 * - infeasible weights;
7217 * - local vs global optima in the discrete case. ]
7218 *
7219 *
7220 * SCHED DOMAINS
7221 *
7222 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7223 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7224 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7225 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7226 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7227 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7228 * the groups.
7229 *
7230 * This yields:
7231 *
7232 * log_2 n 1 n
7233 * \Sum { --- * --- * 2^i } = O(n) (5)
7234 * i = 0 2^i 2^i
7235 * `- size of each group
97fb7a0a 7236 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7237 * | `- freq
7238 * `- sum over all levels
7239 *
7240 * Coupled with a limit on how many tasks we can migrate every balance pass,
7241 * this makes (5) the runtime complexity of the balancer.
7242 *
7243 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7244 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7245 *
7246 * The adjacency matrix of the resulting graph is given by:
7247 *
97a7142f 7248 * log_2 n
e9c84cb8
PZ
7249 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7250 * k = 0
7251 *
7252 * And you'll find that:
7253 *
7254 * A^(log_2 n)_i,j != 0 for all i,j (7)
7255 *
97fb7a0a 7256 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7257 * The task movement gives a factor of O(m), giving a convergence complexity
7258 * of:
7259 *
7260 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7261 *
7262 *
7263 * WORK CONSERVING
7264 *
7265 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7266 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7267 * tree itself instead of relying on other CPUs to bring it work.
7268 *
7269 * This adds some complexity to both (5) and (8) but it reduces the total idle
7270 * time.
7271 *
7272 * [XXX more?]
7273 *
7274 *
7275 * CGROUPS
7276 *
7277 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7278 *
7279 * s_k,i
7280 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7281 * S_k
7282 *
7283 * Where
7284 *
7285 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7286 *
97fb7a0a 7287 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7288 *
7289 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7290 * property.
7291 *
7292 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7293 * rewrite all of this once again.]
97a7142f 7294 */
bf0f6f24 7295
ed387b78
HS
7296static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7297
0ec8aa00
PZ
7298enum fbq_type { regular, remote, all };
7299
0b0695f2 7300/*
a9723389
VG
7301 * 'group_type' describes the group of CPUs at the moment of load balancing.
7302 *
0b0695f2 7303 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7304 * first so the group_type can simply be compared when selecting the busiest
7305 * group. See update_sd_pick_busiest().
0b0695f2 7306 */
3b1baa64 7307enum group_type {
a9723389 7308 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7309 group_has_spare = 0,
a9723389
VG
7310 /*
7311 * The group is fully used and the tasks don't compete for more CPU
7312 * cycles. Nevertheless, some tasks might wait before running.
7313 */
0b0695f2 7314 group_fully_busy,
a9723389
VG
7315 /*
7316 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7317 * and must be migrated to a more powerful CPU.
7318 */
3b1baa64 7319 group_misfit_task,
a9723389
VG
7320 /*
7321 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7322 * and the task should be migrated to it instead of running on the
7323 * current CPU.
7324 */
0b0695f2 7325 group_asym_packing,
a9723389
VG
7326 /*
7327 * The tasks' affinity constraints previously prevented the scheduler
7328 * from balancing the load across the system.
7329 */
3b1baa64 7330 group_imbalanced,
a9723389
VG
7331 /*
7332 * The CPU is overloaded and can't provide expected CPU cycles to all
7333 * tasks.
7334 */
0b0695f2
VG
7335 group_overloaded
7336};
7337
7338enum migration_type {
7339 migrate_load = 0,
7340 migrate_util,
7341 migrate_task,
7342 migrate_misfit
3b1baa64
MR
7343};
7344
ddcdf6e7 7345#define LBF_ALL_PINNED 0x01
367456c7 7346#define LBF_NEED_BREAK 0x02
6263322c
PZ
7347#define LBF_DST_PINNED 0x04
7348#define LBF_SOME_PINNED 0x08
e022e0d3 7349#define LBF_NOHZ_STATS 0x10
f643ea22 7350#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7351
7352struct lb_env {
7353 struct sched_domain *sd;
7354
ddcdf6e7 7355 struct rq *src_rq;
85c1e7da 7356 int src_cpu;
ddcdf6e7
PZ
7357
7358 int dst_cpu;
7359 struct rq *dst_rq;
7360
88b8dac0
SV
7361 struct cpumask *dst_grpmask;
7362 int new_dst_cpu;
ddcdf6e7 7363 enum cpu_idle_type idle;
bd939f45 7364 long imbalance;
b9403130
MW
7365 /* The set of CPUs under consideration for load-balancing */
7366 struct cpumask *cpus;
7367
ddcdf6e7 7368 unsigned int flags;
367456c7
PZ
7369
7370 unsigned int loop;
7371 unsigned int loop_break;
7372 unsigned int loop_max;
0ec8aa00
PZ
7373
7374 enum fbq_type fbq_type;
0b0695f2 7375 enum migration_type migration_type;
163122b7 7376 struct list_head tasks;
ddcdf6e7
PZ
7377};
7378
029632fb
PZ
7379/*
7380 * Is this task likely cache-hot:
7381 */
5d5e2b1b 7382static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7383{
7384 s64 delta;
7385
e5673f28
KT
7386 lockdep_assert_held(&env->src_rq->lock);
7387
029632fb
PZ
7388 if (p->sched_class != &fair_sched_class)
7389 return 0;
7390
1da1843f 7391 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7392 return 0;
7393
7394 /*
7395 * Buddy candidates are cache hot:
7396 */
5d5e2b1b 7397 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7398 (&p->se == cfs_rq_of(&p->se)->next ||
7399 &p->se == cfs_rq_of(&p->se)->last))
7400 return 1;
7401
7402 if (sysctl_sched_migration_cost == -1)
7403 return 1;
7404 if (sysctl_sched_migration_cost == 0)
7405 return 0;
7406
5d5e2b1b 7407 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7408
7409 return delta < (s64)sysctl_sched_migration_cost;
7410}
7411
3a7053b3 7412#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7413/*
2a1ed24c
SD
7414 * Returns 1, if task migration degrades locality
7415 * Returns 0, if task migration improves locality i.e migration preferred.
7416 * Returns -1, if task migration is not affected by locality.
c1ceac62 7417 */
2a1ed24c 7418static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7419{
b1ad065e 7420 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7421 unsigned long src_weight, dst_weight;
7422 int src_nid, dst_nid, dist;
3a7053b3 7423
2a595721 7424 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7425 return -1;
7426
c3b9bc5b 7427 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7428 return -1;
7a0f3083
MG
7429
7430 src_nid = cpu_to_node(env->src_cpu);
7431 dst_nid = cpu_to_node(env->dst_cpu);
7432
83e1d2cd 7433 if (src_nid == dst_nid)
2a1ed24c 7434 return -1;
7a0f3083 7435
2a1ed24c
SD
7436 /* Migrating away from the preferred node is always bad. */
7437 if (src_nid == p->numa_preferred_nid) {
7438 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7439 return 1;
7440 else
7441 return -1;
7442 }
b1ad065e 7443
c1ceac62
RR
7444 /* Encourage migration to the preferred node. */
7445 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7446 return 0;
b1ad065e 7447
739294fb 7448 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7449 if (env->idle == CPU_IDLE)
739294fb
RR
7450 return -1;
7451
f35678b6 7452 dist = node_distance(src_nid, dst_nid);
c1ceac62 7453 if (numa_group) {
f35678b6
SD
7454 src_weight = group_weight(p, src_nid, dist);
7455 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7456 } else {
f35678b6
SD
7457 src_weight = task_weight(p, src_nid, dist);
7458 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7459 }
7460
f35678b6 7461 return dst_weight < src_weight;
7a0f3083
MG
7462}
7463
3a7053b3 7464#else
2a1ed24c 7465static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7466 struct lb_env *env)
7467{
2a1ed24c 7468 return -1;
7a0f3083 7469}
3a7053b3
MG
7470#endif
7471
1e3c88bd
PZ
7472/*
7473 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7474 */
7475static
8e45cb54 7476int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7477{
2a1ed24c 7478 int tsk_cache_hot;
e5673f28
KT
7479
7480 lockdep_assert_held(&env->src_rq->lock);
7481
1e3c88bd
PZ
7482 /*
7483 * We do not migrate tasks that are:
d3198084 7484 * 1) throttled_lb_pair, or
3bd37062 7485 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7486 * 3) running (obviously), or
7487 * 4) are cache-hot on their current CPU.
1e3c88bd 7488 */
d3198084
JK
7489 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7490 return 0;
7491
3bd37062 7492 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7493 int cpu;
88b8dac0 7494
ae92882e 7495 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7496
6263322c
PZ
7497 env->flags |= LBF_SOME_PINNED;
7498
88b8dac0 7499 /*
97fb7a0a 7500 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7501 * our sched_group. We may want to revisit it if we couldn't
7502 * meet load balance goals by pulling other tasks on src_cpu.
7503 *
65a4433a
JH
7504 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7505 * already computed one in current iteration.
88b8dac0 7506 */
65a4433a 7507 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7508 return 0;
7509
97fb7a0a 7510 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7511 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7512 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7513 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7514 env->new_dst_cpu = cpu;
7515 break;
7516 }
88b8dac0 7517 }
e02e60c1 7518
1e3c88bd
PZ
7519 return 0;
7520 }
88b8dac0
SV
7521
7522 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7523 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7524
ddcdf6e7 7525 if (task_running(env->src_rq, p)) {
ae92882e 7526 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7527 return 0;
7528 }
7529
7530 /*
7531 * Aggressive migration if:
3a7053b3
MG
7532 * 1) destination numa is preferred
7533 * 2) task is cache cold, or
7534 * 3) too many balance attempts have failed.
1e3c88bd 7535 */
2a1ed24c
SD
7536 tsk_cache_hot = migrate_degrades_locality(p, env);
7537 if (tsk_cache_hot == -1)
7538 tsk_cache_hot = task_hot(p, env);
3a7053b3 7539
2a1ed24c 7540 if (tsk_cache_hot <= 0 ||
7a96c231 7541 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7542 if (tsk_cache_hot == 1) {
ae92882e
JP
7543 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7544 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7545 }
1e3c88bd
PZ
7546 return 1;
7547 }
7548
ae92882e 7549 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7550 return 0;
1e3c88bd
PZ
7551}
7552
897c395f 7553/*
163122b7
KT
7554 * detach_task() -- detach the task for the migration specified in env
7555 */
7556static void detach_task(struct task_struct *p, struct lb_env *env)
7557{
7558 lockdep_assert_held(&env->src_rq->lock);
7559
5704ac0a 7560 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7561 set_task_cpu(p, env->dst_cpu);
7562}
7563
897c395f 7564/*
e5673f28 7565 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7566 * part of active balancing operations within "domain".
897c395f 7567 *
e5673f28 7568 * Returns a task if successful and NULL otherwise.
897c395f 7569 */
e5673f28 7570static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7571{
93824900 7572 struct task_struct *p;
897c395f 7573
e5673f28
KT
7574 lockdep_assert_held(&env->src_rq->lock);
7575
93824900
UR
7576 list_for_each_entry_reverse(p,
7577 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7578 if (!can_migrate_task(p, env))
7579 continue;
897c395f 7580
163122b7 7581 detach_task(p, env);
e5673f28 7582
367456c7 7583 /*
e5673f28 7584 * Right now, this is only the second place where
163122b7 7585 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7586 * so we can safely collect stats here rather than
163122b7 7587 * inside detach_tasks().
367456c7 7588 */
ae92882e 7589 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7590 return p;
897c395f 7591 }
e5673f28 7592 return NULL;
897c395f
PZ
7593}
7594
eb95308e
PZ
7595static const unsigned int sched_nr_migrate_break = 32;
7596
5d6523eb 7597/*
0b0695f2 7598 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7599 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7600 *
163122b7 7601 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7602 */
163122b7 7603static int detach_tasks(struct lb_env *env)
1e3c88bd 7604{
5d6523eb 7605 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7606 unsigned long util, load;
5d6523eb 7607 struct task_struct *p;
163122b7
KT
7608 int detached = 0;
7609
7610 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7611
bd939f45 7612 if (env->imbalance <= 0)
5d6523eb 7613 return 0;
1e3c88bd 7614
5d6523eb 7615 while (!list_empty(tasks)) {
985d3a4c
YD
7616 /*
7617 * We don't want to steal all, otherwise we may be treated likewise,
7618 * which could at worst lead to a livelock crash.
7619 */
7620 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7621 break;
7622
93824900 7623 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7624
367456c7
PZ
7625 env->loop++;
7626 /* We've more or less seen every task there is, call it quits */
5d6523eb 7627 if (env->loop > env->loop_max)
367456c7 7628 break;
5d6523eb
PZ
7629
7630 /* take a breather every nr_migrate tasks */
367456c7 7631 if (env->loop > env->loop_break) {
eb95308e 7632 env->loop_break += sched_nr_migrate_break;
8e45cb54 7633 env->flags |= LBF_NEED_BREAK;
ee00e66f 7634 break;
a195f004 7635 }
1e3c88bd 7636
d3198084 7637 if (!can_migrate_task(p, env))
367456c7
PZ
7638 goto next;
7639
0b0695f2
VG
7640 switch (env->migration_type) {
7641 case migrate_load:
7642 load = task_h_load(p);
5d6523eb 7643
0b0695f2
VG
7644 if (sched_feat(LB_MIN) &&
7645 load < 16 && !env->sd->nr_balance_failed)
7646 goto next;
367456c7 7647
6cf82d55
VG
7648 /*
7649 * Make sure that we don't migrate too much load.
7650 * Nevertheless, let relax the constraint if
7651 * scheduler fails to find a good waiting task to
7652 * migrate.
7653 */
7654 if (load/2 > env->imbalance &&
7655 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
0b0695f2
VG
7656 goto next;
7657
7658 env->imbalance -= load;
7659 break;
7660
7661 case migrate_util:
7662 util = task_util_est(p);
7663
7664 if (util > env->imbalance)
7665 goto next;
7666
7667 env->imbalance -= util;
7668 break;
7669
7670 case migrate_task:
7671 env->imbalance--;
7672 break;
7673
7674 case migrate_misfit:
c63be7be
VG
7675 /* This is not a misfit task */
7676 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7677 goto next;
7678
7679 env->imbalance = 0;
7680 break;
7681 }
1e3c88bd 7682
163122b7
KT
7683 detach_task(p, env);
7684 list_add(&p->se.group_node, &env->tasks);
7685
7686 detached++;
1e3c88bd 7687
c1a280b6 7688#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7689 /*
7690 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7691 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7692 * the critical section.
7693 */
5d6523eb 7694 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7695 break;
1e3c88bd
PZ
7696#endif
7697
ee00e66f
PZ
7698 /*
7699 * We only want to steal up to the prescribed amount of
0b0695f2 7700 * load/util/tasks.
ee00e66f 7701 */
bd939f45 7702 if (env->imbalance <= 0)
ee00e66f 7703 break;
367456c7
PZ
7704
7705 continue;
7706next:
93824900 7707 list_move(&p->se.group_node, tasks);
1e3c88bd 7708 }
5d6523eb 7709
1e3c88bd 7710 /*
163122b7
KT
7711 * Right now, this is one of only two places we collect this stat
7712 * so we can safely collect detach_one_task() stats here rather
7713 * than inside detach_one_task().
1e3c88bd 7714 */
ae92882e 7715 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7716
163122b7
KT
7717 return detached;
7718}
7719
7720/*
7721 * attach_task() -- attach the task detached by detach_task() to its new rq.
7722 */
7723static void attach_task(struct rq *rq, struct task_struct *p)
7724{
7725 lockdep_assert_held(&rq->lock);
7726
7727 BUG_ON(task_rq(p) != rq);
5704ac0a 7728 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7729 check_preempt_curr(rq, p, 0);
7730}
7731
7732/*
7733 * attach_one_task() -- attaches the task returned from detach_one_task() to
7734 * its new rq.
7735 */
7736static void attach_one_task(struct rq *rq, struct task_struct *p)
7737{
8a8c69c3
PZ
7738 struct rq_flags rf;
7739
7740 rq_lock(rq, &rf);
5704ac0a 7741 update_rq_clock(rq);
163122b7 7742 attach_task(rq, p);
8a8c69c3 7743 rq_unlock(rq, &rf);
163122b7
KT
7744}
7745
7746/*
7747 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7748 * new rq.
7749 */
7750static void attach_tasks(struct lb_env *env)
7751{
7752 struct list_head *tasks = &env->tasks;
7753 struct task_struct *p;
8a8c69c3 7754 struct rq_flags rf;
163122b7 7755
8a8c69c3 7756 rq_lock(env->dst_rq, &rf);
5704ac0a 7757 update_rq_clock(env->dst_rq);
163122b7
KT
7758
7759 while (!list_empty(tasks)) {
7760 p = list_first_entry(tasks, struct task_struct, se.group_node);
7761 list_del_init(&p->se.group_node);
1e3c88bd 7762
163122b7
KT
7763 attach_task(env->dst_rq, p);
7764 }
7765
8a8c69c3 7766 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7767}
7768
b0c79224 7769#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7770static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7771{
7772 if (cfs_rq->avg.load_avg)
7773 return true;
7774
7775 if (cfs_rq->avg.util_avg)
7776 return true;
7777
7778 return false;
7779}
7780
91c27493 7781static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7782{
7783 if (READ_ONCE(rq->avg_rt.util_avg))
7784 return true;
7785
3727e0e1
VG
7786 if (READ_ONCE(rq->avg_dl.util_avg))
7787 return true;
7788
b4eccf5f
TG
7789 if (thermal_load_avg(rq))
7790 return true;
7791
11d4afd4 7792#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7793 if (READ_ONCE(rq->avg_irq.util_avg))
7794 return true;
7795#endif
7796
371bf427
VG
7797 return false;
7798}
7799
b0c79224
VS
7800static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7801{
7802 rq->last_blocked_load_update_tick = jiffies;
7803
7804 if (!has_blocked)
7805 rq->has_blocked_load = 0;
7806}
7807#else
7808static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7809static inline bool others_have_blocked(struct rq *rq) { return false; }
7810static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7811#endif
7812
bef69dd8
VG
7813static bool __update_blocked_others(struct rq *rq, bool *done)
7814{
7815 const struct sched_class *curr_class;
7816 u64 now = rq_clock_pelt(rq);
b4eccf5f 7817 unsigned long thermal_pressure;
bef69dd8
VG
7818 bool decayed;
7819
7820 /*
7821 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7822 * DL and IRQ signals have been updated before updating CFS.
7823 */
7824 curr_class = rq->curr->sched_class;
7825
b4eccf5f
TG
7826 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7827
bef69dd8
VG
7828 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7829 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7830 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7831 update_irq_load_avg(rq, 0);
7832
7833 if (others_have_blocked(rq))
7834 *done = false;
7835
7836 return decayed;
7837}
7838
1936c53c
VG
7839#ifdef CONFIG_FAIR_GROUP_SCHED
7840
039ae8bc
VG
7841static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7842{
7843 if (cfs_rq->load.weight)
7844 return false;
7845
7846 if (cfs_rq->avg.load_sum)
7847 return false;
7848
7849 if (cfs_rq->avg.util_sum)
7850 return false;
7851
9f683953
VG
7852 if (cfs_rq->avg.runnable_sum)
7853 return false;
7854
039ae8bc
VG
7855 return true;
7856}
7857
bef69dd8 7858static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7859{
039ae8bc 7860 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7861 bool decayed = false;
7862 int cpu = cpu_of(rq);
b90f7c9d 7863
9763b67f
PZ
7864 /*
7865 * Iterates the task_group tree in a bottom up fashion, see
7866 * list_add_leaf_cfs_rq() for details.
7867 */
039ae8bc 7868 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7869 struct sched_entity *se;
7870
bef69dd8 7871 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9d89c257 7872 update_tg_load_avg(cfs_rq, 0);
4e516076 7873
bef69dd8
VG
7874 if (cfs_rq == &rq->cfs)
7875 decayed = true;
7876 }
7877
bc427898
VG
7878 /* Propagate pending load changes to the parent, if any: */
7879 se = cfs_rq->tg->se[cpu];
7880 if (se && !skip_blocked_update(se))
88c0616e 7881 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7882
039ae8bc
VG
7883 /*
7884 * There can be a lot of idle CPU cgroups. Don't let fully
7885 * decayed cfs_rqs linger on the list.
7886 */
7887 if (cfs_rq_is_decayed(cfs_rq))
7888 list_del_leaf_cfs_rq(cfs_rq);
7889
1936c53c
VG
7890 /* Don't need periodic decay once load/util_avg are null */
7891 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7892 *done = false;
9d89c257 7893 }
12b04875 7894
bef69dd8 7895 return decayed;
9e3081ca
PZ
7896}
7897
9763b67f 7898/*
68520796 7899 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7900 * This needs to be done in a top-down fashion because the load of a child
7901 * group is a fraction of its parents load.
7902 */
68520796 7903static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7904{
68520796
VD
7905 struct rq *rq = rq_of(cfs_rq);
7906 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7907 unsigned long now = jiffies;
68520796 7908 unsigned long load;
a35b6466 7909
68520796 7910 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7911 return;
7912
0e9f0245 7913 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7914 for_each_sched_entity(se) {
7915 cfs_rq = cfs_rq_of(se);
0e9f0245 7916 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7917 if (cfs_rq->last_h_load_update == now)
7918 break;
7919 }
a35b6466 7920
68520796 7921 if (!se) {
7ea241af 7922 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7923 cfs_rq->last_h_load_update = now;
7924 }
7925
0e9f0245 7926 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7927 load = cfs_rq->h_load;
7ea241af
YD
7928 load = div64_ul(load * se->avg.load_avg,
7929 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7930 cfs_rq = group_cfs_rq(se);
7931 cfs_rq->h_load = load;
7932 cfs_rq->last_h_load_update = now;
7933 }
9763b67f
PZ
7934}
7935
367456c7 7936static unsigned long task_h_load(struct task_struct *p)
230059de 7937{
367456c7 7938 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7939
68520796 7940 update_cfs_rq_h_load(cfs_rq);
9d89c257 7941 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7942 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7943}
7944#else
bef69dd8 7945static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7946{
6c1d47c0 7947 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7948 bool decayed;
b90f7c9d 7949
bef69dd8
VG
7950 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7951 if (cfs_rq_has_blocked(cfs_rq))
7952 *done = false;
b90f7c9d 7953
bef69dd8 7954 return decayed;
9e3081ca
PZ
7955}
7956
367456c7 7957static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7958{
9d89c257 7959 return p->se.avg.load_avg;
1e3c88bd 7960}
230059de 7961#endif
1e3c88bd 7962
bef69dd8
VG
7963static void update_blocked_averages(int cpu)
7964{
7965 bool decayed = false, done = true;
7966 struct rq *rq = cpu_rq(cpu);
7967 struct rq_flags rf;
7968
7969 rq_lock_irqsave(rq, &rf);
7970 update_rq_clock(rq);
7971
7972 decayed |= __update_blocked_others(rq, &done);
7973 decayed |= __update_blocked_fair(rq, &done);
7974
7975 update_blocked_load_status(rq, !done);
7976 if (decayed)
7977 cpufreq_update_util(rq, 0);
7978 rq_unlock_irqrestore(rq, &rf);
7979}
7980
1e3c88bd 7981/********** Helpers for find_busiest_group ************************/
caeb178c 7982
1e3c88bd
PZ
7983/*
7984 * sg_lb_stats - stats of a sched_group required for load_balancing
7985 */
7986struct sg_lb_stats {
7987 unsigned long avg_load; /*Avg load across the CPUs of the group */
7988 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 7989 unsigned long group_capacity;
070f5e86
VG
7990 unsigned long group_util; /* Total utilization over the CPUs of the group */
7991 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 7992 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 7993 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
7994 unsigned int idle_cpus;
7995 unsigned int group_weight;
caeb178c 7996 enum group_type group_type;
490ba971 7997 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 7998 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7999#ifdef CONFIG_NUMA_BALANCING
8000 unsigned int nr_numa_running;
8001 unsigned int nr_preferred_running;
8002#endif
1e3c88bd
PZ
8003};
8004
56cf515b
JK
8005/*
8006 * sd_lb_stats - Structure to store the statistics of a sched_domain
8007 * during load balancing.
8008 */
8009struct sd_lb_stats {
8010 struct sched_group *busiest; /* Busiest group in this sd */
8011 struct sched_group *local; /* Local group in this sd */
8012 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8013 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8014 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8015 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8016
56cf515b 8017 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8018 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8019};
8020
147c5fc2
PZ
8021static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8022{
8023 /*
8024 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8025 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8026 * We must however set busiest_stat::group_type and
8027 * busiest_stat::idle_cpus to the worst busiest group because
8028 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8029 */
8030 *sds = (struct sd_lb_stats){
8031 .busiest = NULL,
8032 .local = NULL,
8033 .total_load = 0UL,
63b2ca30 8034 .total_capacity = 0UL,
147c5fc2 8035 .busiest_stat = {
0b0695f2
VG
8036 .idle_cpus = UINT_MAX,
8037 .group_type = group_has_spare,
147c5fc2
PZ
8038 },
8039 };
8040}
8041
287cdaac 8042static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8043{
8044 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8045 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8046 unsigned long used, free;
523e979d 8047 unsigned long irq;
b654f7de 8048
2e62c474 8049 irq = cpu_util_irq(rq);
cadefd3d 8050
523e979d
VG
8051 if (unlikely(irq >= max))
8052 return 1;
aa483808 8053
467b7d01
TG
8054 /*
8055 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8056 * (running and not running) with weights 0 and 1024 respectively.
8057 * avg_thermal.load_avg tracks thermal pressure and the weighted
8058 * average uses the actual delta max capacity(load).
8059 */
523e979d
VG
8060 used = READ_ONCE(rq->avg_rt.util_avg);
8061 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8062 used += thermal_load_avg(rq);
1e3c88bd 8063
523e979d
VG
8064 if (unlikely(used >= max))
8065 return 1;
1e3c88bd 8066
523e979d 8067 free = max - used;
2e62c474
VG
8068
8069 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8070}
8071
ced549fa 8072static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8073{
287cdaac 8074 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
8075 struct sched_group *sdg = sd->groups;
8076
8ec59c0f 8077 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8078
ced549fa
NP
8079 if (!capacity)
8080 capacity = 1;
1e3c88bd 8081
ced549fa
NP
8082 cpu_rq(cpu)->cpu_capacity = capacity;
8083 sdg->sgc->capacity = capacity;
bf475ce0 8084 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8085 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8086}
8087
63b2ca30 8088void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8089{
8090 struct sched_domain *child = sd->child;
8091 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8092 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8093 unsigned long interval;
8094
8095 interval = msecs_to_jiffies(sd->balance_interval);
8096 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8097 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8098
8099 if (!child) {
ced549fa 8100 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8101 return;
8102 }
8103
dc7ff76e 8104 capacity = 0;
bf475ce0 8105 min_capacity = ULONG_MAX;
e3d6d0cb 8106 max_capacity = 0;
1e3c88bd 8107
74a5ce20
PZ
8108 if (child->flags & SD_OVERLAP) {
8109 /*
8110 * SD_OVERLAP domains cannot assume that child groups
8111 * span the current group.
8112 */
8113
ae4df9d6 8114 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8115 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8116
4c58f57f
PL
8117 capacity += cpu_cap;
8118 min_capacity = min(cpu_cap, min_capacity);
8119 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8120 }
74a5ce20
PZ
8121 } else {
8122 /*
8123 * !SD_OVERLAP domains can assume that child groups
8124 * span the current group.
97a7142f 8125 */
74a5ce20
PZ
8126
8127 group = child->groups;
8128 do {
bf475ce0
MR
8129 struct sched_group_capacity *sgc = group->sgc;
8130
8131 capacity += sgc->capacity;
8132 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8133 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8134 group = group->next;
8135 } while (group != child->groups);
8136 }
1e3c88bd 8137
63b2ca30 8138 sdg->sgc->capacity = capacity;
bf475ce0 8139 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8140 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8141}
8142
9d5efe05 8143/*
ea67821b
VG
8144 * Check whether the capacity of the rq has been noticeably reduced by side
8145 * activity. The imbalance_pct is used for the threshold.
8146 * Return true is the capacity is reduced
9d5efe05
SV
8147 */
8148static inline int
ea67821b 8149check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8150{
ea67821b
VG
8151 return ((rq->cpu_capacity * sd->imbalance_pct) <
8152 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8153}
8154
a0fe2cf0
VS
8155/*
8156 * Check whether a rq has a misfit task and if it looks like we can actually
8157 * help that task: we can migrate the task to a CPU of higher capacity, or
8158 * the task's current CPU is heavily pressured.
8159 */
8160static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8161{
8162 return rq->misfit_task_load &&
8163 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8164 check_cpu_capacity(rq, sd));
8165}
8166
30ce5dab
PZ
8167/*
8168 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8169 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8170 *
97fb7a0a
IM
8171 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8172 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8173 * Something like:
8174 *
2b4d5b25
IM
8175 * { 0 1 2 3 } { 4 5 6 7 }
8176 * * * * *
30ce5dab
PZ
8177 *
8178 * If we were to balance group-wise we'd place two tasks in the first group and
8179 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8180 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8181 *
8182 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8183 * by noticing the lower domain failed to reach balance and had difficulty
8184 * moving tasks due to affinity constraints.
30ce5dab
PZ
8185 *
8186 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8187 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8188 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8189 * to create an effective group imbalance.
8190 *
8191 * This is a somewhat tricky proposition since the next run might not find the
8192 * group imbalance and decide the groups need to be balanced again. A most
8193 * subtle and fragile situation.
8194 */
8195
6263322c 8196static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8197{
63b2ca30 8198 return group->sgc->imbalance;
30ce5dab
PZ
8199}
8200
b37d9316 8201/*
ea67821b
VG
8202 * group_has_capacity returns true if the group has spare capacity that could
8203 * be used by some tasks.
8204 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8205 * smaller than the number of CPUs or if the utilization is lower than the
8206 * available capacity for CFS tasks.
ea67821b
VG
8207 * For the latter, we use a threshold to stabilize the state, to take into
8208 * account the variance of the tasks' load and to return true if the available
8209 * capacity in meaningful for the load balancer.
8210 * As an example, an available capacity of 1% can appear but it doesn't make
8211 * any benefit for the load balance.
b37d9316 8212 */
ea67821b 8213static inline bool
57abff06 8214group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8215{
5e23e474 8216 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8217 return true;
c61037e9 8218
070f5e86
VG
8219 if ((sgs->group_capacity * imbalance_pct) <
8220 (sgs->group_runnable * 100))
8221 return false;
8222
ea67821b 8223 if ((sgs->group_capacity * 100) >
57abff06 8224 (sgs->group_util * imbalance_pct))
ea67821b 8225 return true;
b37d9316 8226
ea67821b
VG
8227 return false;
8228}
8229
8230/*
8231 * group_is_overloaded returns true if the group has more tasks than it can
8232 * handle.
8233 * group_is_overloaded is not equals to !group_has_capacity because a group
8234 * with the exact right number of tasks, has no more spare capacity but is not
8235 * overloaded so both group_has_capacity and group_is_overloaded return
8236 * false.
8237 */
8238static inline bool
57abff06 8239group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8240{
5e23e474 8241 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8242 return false;
b37d9316 8243
ea67821b 8244 if ((sgs->group_capacity * 100) <
57abff06 8245 (sgs->group_util * imbalance_pct))
ea67821b 8246 return true;
b37d9316 8247
070f5e86
VG
8248 if ((sgs->group_capacity * imbalance_pct) <
8249 (sgs->group_runnable * 100))
8250 return true;
8251
ea67821b 8252 return false;
b37d9316
PZ
8253}
8254
9e0994c0 8255/*
e3d6d0cb 8256 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8257 * per-CPU capacity than sched_group ref.
8258 */
8259static inline bool
e3d6d0cb 8260group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8261{
60e17f5c 8262 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8263}
8264
e3d6d0cb
MR
8265/*
8266 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8267 * per-CPU capacity_orig than sched_group ref.
8268 */
8269static inline bool
8270group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8271{
60e17f5c 8272 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8273}
8274
79a89f92 8275static inline enum
57abff06 8276group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8277 struct sched_group *group,
79a89f92 8278 struct sg_lb_stats *sgs)
caeb178c 8279{
57abff06 8280 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8281 return group_overloaded;
8282
8283 if (sg_imbalanced(group))
8284 return group_imbalanced;
8285
0b0695f2
VG
8286 if (sgs->group_asym_packing)
8287 return group_asym_packing;
8288
3b1baa64
MR
8289 if (sgs->group_misfit_task_load)
8290 return group_misfit_task;
8291
57abff06 8292 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8293 return group_fully_busy;
8294
8295 return group_has_spare;
caeb178c
RR
8296}
8297
63928384 8298static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8299{
8300#ifdef CONFIG_NO_HZ_COMMON
8301 unsigned int cpu = rq->cpu;
8302
f643ea22
VG
8303 if (!rq->has_blocked_load)
8304 return false;
8305
e022e0d3 8306 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8307 return false;
e022e0d3 8308
63928384 8309 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8310 return true;
e022e0d3
PZ
8311
8312 update_blocked_averages(cpu);
f643ea22
VG
8313
8314 return rq->has_blocked_load;
8315#else
8316 return false;
e022e0d3
PZ
8317#endif
8318}
8319
1e3c88bd
PZ
8320/**
8321 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8322 * @env: The load balancing environment.
1e3c88bd 8323 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8324 * @sgs: variable to hold the statistics for this group.
630246a0 8325 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8326 */
bd939f45 8327static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8328 struct sched_group *group,
8329 struct sg_lb_stats *sgs,
8330 int *sg_status)
1e3c88bd 8331{
0b0695f2 8332 int i, nr_running, local_group;
1e3c88bd 8333
b72ff13c
PZ
8334 memset(sgs, 0, sizeof(*sgs));
8335
0b0695f2
VG
8336 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8337
ae4df9d6 8338 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8339 struct rq *rq = cpu_rq(i);
8340
63928384 8341 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8342 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8343
b0fb1eb4 8344 sgs->group_load += cpu_load(rq);
9e91d61d 8345 sgs->group_util += cpu_util(i);
070f5e86 8346 sgs->group_runnable += cpu_runnable(rq);
a3498347 8347 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8348
a426f99c 8349 nr_running = rq->nr_running;
5e23e474
VG
8350 sgs->sum_nr_running += nr_running;
8351
a426f99c 8352 if (nr_running > 1)
630246a0 8353 *sg_status |= SG_OVERLOAD;
4486edd1 8354
2802bf3c
MR
8355 if (cpu_overutilized(i))
8356 *sg_status |= SG_OVERUTILIZED;
4486edd1 8357
0ec8aa00
PZ
8358#ifdef CONFIG_NUMA_BALANCING
8359 sgs->nr_numa_running += rq->nr_numa_running;
8360 sgs->nr_preferred_running += rq->nr_preferred_running;
8361#endif
a426f99c
WL
8362 /*
8363 * No need to call idle_cpu() if nr_running is not 0
8364 */
0b0695f2 8365 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8366 sgs->idle_cpus++;
0b0695f2
VG
8367 /* Idle cpu can't have misfit task */
8368 continue;
8369 }
8370
8371 if (local_group)
8372 continue;
3b1baa64 8373
0b0695f2 8374 /* Check for a misfit task on the cpu */
3b1baa64 8375 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8376 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8377 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8378 *sg_status |= SG_OVERLOAD;
757ffdd7 8379 }
1e3c88bd
PZ
8380 }
8381
0b0695f2
VG
8382 /* Check if dst CPU is idle and preferred to this group */
8383 if (env->sd->flags & SD_ASYM_PACKING &&
8384 env->idle != CPU_NOT_IDLE &&
8385 sgs->sum_h_nr_running &&
8386 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8387 sgs->group_asym_packing = 1;
8388 }
8389
63b2ca30 8390 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8391
aae6d3dd 8392 sgs->group_weight = group->group_weight;
b37d9316 8393
57abff06 8394 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8395
8396 /* Computing avg_load makes sense only when group is overloaded */
8397 if (sgs->group_type == group_overloaded)
8398 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8399 sgs->group_capacity;
1e3c88bd
PZ
8400}
8401
532cb4c4
MN
8402/**
8403 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8404 * @env: The load balancing environment.
532cb4c4
MN
8405 * @sds: sched_domain statistics
8406 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8407 * @sgs: sched_group statistics
532cb4c4
MN
8408 *
8409 * Determine if @sg is a busier group than the previously selected
8410 * busiest group.
e69f6186
YB
8411 *
8412 * Return: %true if @sg is a busier group than the previously selected
8413 * busiest group. %false otherwise.
532cb4c4 8414 */
bd939f45 8415static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8416 struct sd_lb_stats *sds,
8417 struct sched_group *sg,
bd939f45 8418 struct sg_lb_stats *sgs)
532cb4c4 8419{
caeb178c 8420 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8421
0b0695f2
VG
8422 /* Make sure that there is at least one task to pull */
8423 if (!sgs->sum_h_nr_running)
8424 return false;
8425
cad68e55
MR
8426 /*
8427 * Don't try to pull misfit tasks we can't help.
8428 * We can use max_capacity here as reduction in capacity on some
8429 * CPUs in the group should either be possible to resolve
8430 * internally or be covered by avg_load imbalance (eventually).
8431 */
8432 if (sgs->group_type == group_misfit_task &&
8433 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8434 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8435 return false;
8436
caeb178c 8437 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8438 return true;
8439
caeb178c
RR
8440 if (sgs->group_type < busiest->group_type)
8441 return false;
8442
9e0994c0 8443 /*
0b0695f2
VG
8444 * The candidate and the current busiest group are the same type of
8445 * group. Let check which one is the busiest according to the type.
9e0994c0 8446 */
9e0994c0 8447
0b0695f2
VG
8448 switch (sgs->group_type) {
8449 case group_overloaded:
8450 /* Select the overloaded group with highest avg_load. */
8451 if (sgs->avg_load <= busiest->avg_load)
8452 return false;
8453 break;
8454
8455 case group_imbalanced:
8456 /*
8457 * Select the 1st imbalanced group as we don't have any way to
8458 * choose one more than another.
8459 */
9e0994c0
MR
8460 return false;
8461
0b0695f2
VG
8462 case group_asym_packing:
8463 /* Prefer to move from lowest priority CPU's work */
8464 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8465 return false;
8466 break;
532cb4c4 8467
0b0695f2
VG
8468 case group_misfit_task:
8469 /*
8470 * If we have more than one misfit sg go with the biggest
8471 * misfit.
8472 */
8473 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8474 return false;
8475 break;
532cb4c4 8476
0b0695f2
VG
8477 case group_fully_busy:
8478 /*
8479 * Select the fully busy group with highest avg_load. In
8480 * theory, there is no need to pull task from such kind of
8481 * group because tasks have all compute capacity that they need
8482 * but we can still improve the overall throughput by reducing
8483 * contention when accessing shared HW resources.
8484 *
8485 * XXX for now avg_load is not computed and always 0 so we
8486 * select the 1st one.
8487 */
8488 if (sgs->avg_load <= busiest->avg_load)
8489 return false;
8490 break;
8491
8492 case group_has_spare:
8493 /*
5f68eb19
VG
8494 * Select not overloaded group with lowest number of idle cpus
8495 * and highest number of running tasks. We could also compare
8496 * the spare capacity which is more stable but it can end up
8497 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8498 * CPUs which means less opportunity to pull tasks.
8499 */
5f68eb19 8500 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8501 return false;
5f68eb19
VG
8502 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8503 (sgs->sum_nr_running <= busiest->sum_nr_running))
8504 return false;
8505
0b0695f2 8506 break;
532cb4c4
MN
8507 }
8508
0b0695f2
VG
8509 /*
8510 * Candidate sg has no more than one task per CPU and has higher
8511 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8512 * throughput. Maximize throughput, power/energy consequences are not
8513 * considered.
8514 */
8515 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8516 (sgs->group_type <= group_fully_busy) &&
8517 (group_smaller_min_cpu_capacity(sds->local, sg)))
8518 return false;
8519
8520 return true;
532cb4c4
MN
8521}
8522
0ec8aa00
PZ
8523#ifdef CONFIG_NUMA_BALANCING
8524static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8525{
a3498347 8526 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8527 return regular;
a3498347 8528 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8529 return remote;
8530 return all;
8531}
8532
8533static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8534{
8535 if (rq->nr_running > rq->nr_numa_running)
8536 return regular;
8537 if (rq->nr_running > rq->nr_preferred_running)
8538 return remote;
8539 return all;
8540}
8541#else
8542static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8543{
8544 return all;
8545}
8546
8547static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8548{
8549 return regular;
8550}
8551#endif /* CONFIG_NUMA_BALANCING */
8552
57abff06
VG
8553
8554struct sg_lb_stats;
8555
3318544b
VG
8556/*
8557 * task_running_on_cpu - return 1 if @p is running on @cpu.
8558 */
8559
8560static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8561{
8562 /* Task has no contribution or is new */
8563 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8564 return 0;
8565
8566 if (task_on_rq_queued(p))
8567 return 1;
8568
8569 return 0;
8570}
8571
8572/**
8573 * idle_cpu_without - would a given CPU be idle without p ?
8574 * @cpu: the processor on which idleness is tested.
8575 * @p: task which should be ignored.
8576 *
8577 * Return: 1 if the CPU would be idle. 0 otherwise.
8578 */
8579static int idle_cpu_without(int cpu, struct task_struct *p)
8580{
8581 struct rq *rq = cpu_rq(cpu);
8582
8583 if (rq->curr != rq->idle && rq->curr != p)
8584 return 0;
8585
8586 /*
8587 * rq->nr_running can't be used but an updated version without the
8588 * impact of p on cpu must be used instead. The updated nr_running
8589 * be computed and tested before calling idle_cpu_without().
8590 */
8591
8592#ifdef CONFIG_SMP
8593 if (!llist_empty(&rq->wake_list))
8594 return 0;
8595#endif
8596
8597 return 1;
8598}
8599
57abff06
VG
8600/*
8601 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8602 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8603 * @group: sched_group whose statistics are to be updated.
8604 * @sgs: variable to hold the statistics for this group.
3318544b 8605 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8606 */
8607static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8608 struct sched_group *group,
8609 struct sg_lb_stats *sgs,
8610 struct task_struct *p)
8611{
8612 int i, nr_running;
8613
8614 memset(sgs, 0, sizeof(*sgs));
8615
8616 for_each_cpu(i, sched_group_span(group)) {
8617 struct rq *rq = cpu_rq(i);
3318544b 8618 unsigned int local;
57abff06 8619
3318544b 8620 sgs->group_load += cpu_load_without(rq, p);
57abff06 8621 sgs->group_util += cpu_util_without(i, p);
070f5e86 8622 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8623 local = task_running_on_cpu(i, p);
8624 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8625
3318544b 8626 nr_running = rq->nr_running - local;
57abff06
VG
8627 sgs->sum_nr_running += nr_running;
8628
8629 /*
3318544b 8630 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8631 */
3318544b 8632 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8633 sgs->idle_cpus++;
8634
57abff06
VG
8635 }
8636
8637 /* Check if task fits in the group */
8638 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8639 !task_fits_capacity(p, group->sgc->max_capacity)) {
8640 sgs->group_misfit_task_load = 1;
8641 }
8642
8643 sgs->group_capacity = group->sgc->capacity;
8644
289de359
VG
8645 sgs->group_weight = group->group_weight;
8646
57abff06
VG
8647 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8648
8649 /*
8650 * Computing avg_load makes sense only when group is fully busy or
8651 * overloaded
8652 */
6c8116c9
TZ
8653 if (sgs->group_type == group_fully_busy ||
8654 sgs->group_type == group_overloaded)
57abff06
VG
8655 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8656 sgs->group_capacity;
8657}
8658
8659static bool update_pick_idlest(struct sched_group *idlest,
8660 struct sg_lb_stats *idlest_sgs,
8661 struct sched_group *group,
8662 struct sg_lb_stats *sgs)
8663{
8664 if (sgs->group_type < idlest_sgs->group_type)
8665 return true;
8666
8667 if (sgs->group_type > idlest_sgs->group_type)
8668 return false;
8669
8670 /*
8671 * The candidate and the current idlest group are the same type of
8672 * group. Let check which one is the idlest according to the type.
8673 */
8674
8675 switch (sgs->group_type) {
8676 case group_overloaded:
8677 case group_fully_busy:
8678 /* Select the group with lowest avg_load. */
8679 if (idlest_sgs->avg_load <= sgs->avg_load)
8680 return false;
8681 break;
8682
8683 case group_imbalanced:
8684 case group_asym_packing:
8685 /* Those types are not used in the slow wakeup path */
8686 return false;
8687
8688 case group_misfit_task:
8689 /* Select group with the highest max capacity */
8690 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8691 return false;
8692 break;
8693
8694 case group_has_spare:
8695 /* Select group with most idle CPUs */
8696 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8697 return false;
8698 break;
8699 }
8700
8701 return true;
8702}
8703
8704/*
8705 * find_idlest_group() finds and returns the least busy CPU group within the
8706 * domain.
8707 *
8708 * Assumes p is allowed on at least one CPU in sd.
8709 */
8710static struct sched_group *
45da2773 8711find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8712{
8713 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8714 struct sg_lb_stats local_sgs, tmp_sgs;
8715 struct sg_lb_stats *sgs;
8716 unsigned long imbalance;
8717 struct sg_lb_stats idlest_sgs = {
8718 .avg_load = UINT_MAX,
8719 .group_type = group_overloaded,
8720 };
8721
8722 imbalance = scale_load_down(NICE_0_LOAD) *
8723 (sd->imbalance_pct-100) / 100;
8724
8725 do {
8726 int local_group;
8727
8728 /* Skip over this group if it has no CPUs allowed */
8729 if (!cpumask_intersects(sched_group_span(group),
8730 p->cpus_ptr))
8731 continue;
8732
8733 local_group = cpumask_test_cpu(this_cpu,
8734 sched_group_span(group));
8735
8736 if (local_group) {
8737 sgs = &local_sgs;
8738 local = group;
8739 } else {
8740 sgs = &tmp_sgs;
8741 }
8742
8743 update_sg_wakeup_stats(sd, group, sgs, p);
8744
8745 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8746 idlest = group;
8747 idlest_sgs = *sgs;
8748 }
8749
8750 } while (group = group->next, group != sd->groups);
8751
8752
8753 /* There is no idlest group to push tasks to */
8754 if (!idlest)
8755 return NULL;
8756
7ed735c3
VG
8757 /* The local group has been skipped because of CPU affinity */
8758 if (!local)
8759 return idlest;
8760
57abff06
VG
8761 /*
8762 * If the local group is idler than the selected idlest group
8763 * don't try and push the task.
8764 */
8765 if (local_sgs.group_type < idlest_sgs.group_type)
8766 return NULL;
8767
8768 /*
8769 * If the local group is busier than the selected idlest group
8770 * try and push the task.
8771 */
8772 if (local_sgs.group_type > idlest_sgs.group_type)
8773 return idlest;
8774
8775 switch (local_sgs.group_type) {
8776 case group_overloaded:
8777 case group_fully_busy:
8778 /*
8779 * When comparing groups across NUMA domains, it's possible for
8780 * the local domain to be very lightly loaded relative to the
8781 * remote domains but "imbalance" skews the comparison making
8782 * remote CPUs look much more favourable. When considering
8783 * cross-domain, add imbalance to the load on the remote node
8784 * and consider staying local.
8785 */
8786
8787 if ((sd->flags & SD_NUMA) &&
8788 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8789 return NULL;
8790
8791 /*
8792 * If the local group is less loaded than the selected
8793 * idlest group don't try and push any tasks.
8794 */
8795 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8796 return NULL;
8797
8798 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8799 return NULL;
8800 break;
8801
8802 case group_imbalanced:
8803 case group_asym_packing:
8804 /* Those type are not used in the slow wakeup path */
8805 return NULL;
8806
8807 case group_misfit_task:
8808 /* Select group with the highest max capacity */
8809 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8810 return NULL;
8811 break;
8812
8813 case group_has_spare:
8814 if (sd->flags & SD_NUMA) {
8815#ifdef CONFIG_NUMA_BALANCING
8816 int idlest_cpu;
8817 /*
8818 * If there is spare capacity at NUMA, try to select
8819 * the preferred node
8820 */
8821 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8822 return NULL;
8823
8824 idlest_cpu = cpumask_first(sched_group_span(idlest));
8825 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8826 return idlest;
8827#endif
8828 /*
8829 * Otherwise, keep the task on this node to stay close
8830 * its wakeup source and improve locality. If there is
8831 * a real need of migration, periodic load balance will
8832 * take care of it.
8833 */
8834 if (local_sgs.idle_cpus)
8835 return NULL;
8836 }
8837
8838 /*
8839 * Select group with highest number of idle CPUs. We could also
8840 * compare the utilization which is more stable but it can end
8841 * up that the group has less spare capacity but finally more
8842 * idle CPUs which means more opportunity to run task.
8843 */
8844 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8845 return NULL;
8846 break;
8847 }
8848
8849 return idlest;
8850}
8851
1e3c88bd 8852/**
461819ac 8853 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8854 * @env: The load balancing environment.
1e3c88bd
PZ
8855 * @sds: variable to hold the statistics for this sched_domain.
8856 */
0b0695f2 8857
0ec8aa00 8858static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8859{
bd939f45
PZ
8860 struct sched_domain *child = env->sd->child;
8861 struct sched_group *sg = env->sd->groups;
05b40e05 8862 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8863 struct sg_lb_stats tmp_sgs;
630246a0 8864 int sg_status = 0;
1e3c88bd 8865
e022e0d3 8866#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8867 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8868 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8869#endif
8870
1e3c88bd 8871 do {
56cf515b 8872 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8873 int local_group;
8874
ae4df9d6 8875 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8876 if (local_group) {
8877 sds->local = sg;
05b40e05 8878 sgs = local;
b72ff13c
PZ
8879
8880 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8881 time_after_eq(jiffies, sg->sgc->next_update))
8882 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8883 }
1e3c88bd 8884
630246a0 8885 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8886
b72ff13c
PZ
8887 if (local_group)
8888 goto next_group;
8889
1e3c88bd 8890
b72ff13c 8891 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8892 sds->busiest = sg;
56cf515b 8893 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8894 }
8895
b72ff13c
PZ
8896next_group:
8897 /* Now, start updating sd_lb_stats */
8898 sds->total_load += sgs->group_load;
63b2ca30 8899 sds->total_capacity += sgs->group_capacity;
b72ff13c 8900
532cb4c4 8901 sg = sg->next;
bd939f45 8902 } while (sg != env->sd->groups);
0ec8aa00 8903
0b0695f2
VG
8904 /* Tag domain that child domain prefers tasks go to siblings first */
8905 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8906
f643ea22
VG
8907#ifdef CONFIG_NO_HZ_COMMON
8908 if ((env->flags & LBF_NOHZ_AGAIN) &&
8909 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8910
8911 WRITE_ONCE(nohz.next_blocked,
8912 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8913 }
8914#endif
8915
0ec8aa00
PZ
8916 if (env->sd->flags & SD_NUMA)
8917 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8918
8919 if (!env->sd->parent) {
2802bf3c
MR
8920 struct root_domain *rd = env->dst_rq->rd;
8921
4486edd1 8922 /* update overload indicator if we are at root domain */
2802bf3c
MR
8923 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8924
8925 /* Update over-utilization (tipping point, U >= 0) indicator */
8926 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8927 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8928 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8929 struct root_domain *rd = env->dst_rq->rd;
8930
8931 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8932 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8933 }
532cb4c4
MN
8934}
8935
fb86f5b2
MG
8936static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8937{
8938 unsigned int imbalance_min;
8939
8940 /*
8941 * Allow a small imbalance based on a simple pair of communicating
8942 * tasks that remain local when the source domain is almost idle.
8943 */
8944 imbalance_min = 2;
8945 if (src_nr_running <= imbalance_min)
8946 return 0;
8947
8948 return imbalance;
8949}
8950
1e3c88bd
PZ
8951/**
8952 * calculate_imbalance - Calculate the amount of imbalance present within the
8953 * groups of a given sched_domain during load balance.
bd939f45 8954 * @env: load balance environment
1e3c88bd 8955 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8956 */
bd939f45 8957static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8958{
56cf515b
JK
8959 struct sg_lb_stats *local, *busiest;
8960
8961 local = &sds->local_stat;
56cf515b 8962 busiest = &sds->busiest_stat;
dd5feea1 8963
0b0695f2
VG
8964 if (busiest->group_type == group_misfit_task) {
8965 /* Set imbalance to allow misfit tasks to be balanced. */
8966 env->migration_type = migrate_misfit;
c63be7be 8967 env->imbalance = 1;
0b0695f2
VG
8968 return;
8969 }
8970
8971 if (busiest->group_type == group_asym_packing) {
8972 /*
8973 * In case of asym capacity, we will try to migrate all load to
8974 * the preferred CPU.
8975 */
8976 env->migration_type = migrate_task;
8977 env->imbalance = busiest->sum_h_nr_running;
8978 return;
8979 }
8980
8981 if (busiest->group_type == group_imbalanced) {
8982 /*
8983 * In the group_imb case we cannot rely on group-wide averages
8984 * to ensure CPU-load equilibrium, try to move any task to fix
8985 * the imbalance. The next load balance will take care of
8986 * balancing back the system.
8987 */
8988 env->migration_type = migrate_task;
8989 env->imbalance = 1;
490ba971
VG
8990 return;
8991 }
8992
1e3c88bd 8993 /*
0b0695f2 8994 * Try to use spare capacity of local group without overloading it or
a9723389 8995 * emptying busiest.
1e3c88bd 8996 */
0b0695f2
VG
8997 if (local->group_type == group_has_spare) {
8998 if (busiest->group_type > group_fully_busy) {
8999 /*
9000 * If busiest is overloaded, try to fill spare
9001 * capacity. This might end up creating spare capacity
9002 * in busiest or busiest still being overloaded but
9003 * there is no simple way to directly compute the
9004 * amount of load to migrate in order to balance the
9005 * system.
9006 */
9007 env->migration_type = migrate_util;
9008 env->imbalance = max(local->group_capacity, local->group_util) -
9009 local->group_util;
9010
9011 /*
9012 * In some cases, the group's utilization is max or even
9013 * higher than capacity because of migrations but the
9014 * local CPU is (newly) idle. There is at least one
9015 * waiting task in this overloaded busiest group. Let's
9016 * try to pull it.
9017 */
9018 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9019 env->migration_type = migrate_task;
9020 env->imbalance = 1;
9021 }
9022
9023 return;
9024 }
9025
9026 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9027 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9028 /*
9029 * When prefer sibling, evenly spread running tasks on
9030 * groups.
9031 */
9032 env->migration_type = migrate_task;
5e23e474 9033 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9034 env->imbalance = nr_diff >> 1;
b396f523 9035 } else {
0b0695f2 9036
b396f523
MG
9037 /*
9038 * If there is no overload, we just want to even the number of
9039 * idle cpus.
9040 */
9041 env->migration_type = migrate_task;
9042 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9043 busiest->idle_cpus) >> 1);
b396f523
MG
9044 }
9045
9046 /* Consider allowing a small imbalance between NUMA groups */
fb86f5b2
MG
9047 if (env->sd->flags & SD_NUMA)
9048 env->imbalance = adjust_numa_imbalance(env->imbalance,
9049 busiest->sum_nr_running);
b396f523 9050
fcf0553d 9051 return;
1e3c88bd
PZ
9052 }
9053
9a5d9ba6 9054 /*
0b0695f2
VG
9055 * Local is fully busy but has to take more load to relieve the
9056 * busiest group
9a5d9ba6 9057 */
0b0695f2
VG
9058 if (local->group_type < group_overloaded) {
9059 /*
9060 * Local will become overloaded so the avg_load metrics are
9061 * finally needed.
9062 */
9063
9064 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9065 local->group_capacity;
9066
9067 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9068 sds->total_capacity;
111688ca
AL
9069 /*
9070 * If the local group is more loaded than the selected
9071 * busiest group don't try to pull any tasks.
9072 */
9073 if (local->avg_load >= busiest->avg_load) {
9074 env->imbalance = 0;
9075 return;
9076 }
dd5feea1
SS
9077 }
9078
9079 /*
0b0695f2
VG
9080 * Both group are or will become overloaded and we're trying to get all
9081 * the CPUs to the average_load, so we don't want to push ourselves
9082 * above the average load, nor do we wish to reduce the max loaded CPU
9083 * below the average load. At the same time, we also don't want to
9084 * reduce the group load below the group capacity. Thus we look for
9085 * the minimum possible imbalance.
dd5feea1 9086 */
0b0695f2 9087 env->migration_type = migrate_load;
56cf515b 9088 env->imbalance = min(
0b0695f2 9089 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9090 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9091 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9092}
fab47622 9093
1e3c88bd
PZ
9094/******* find_busiest_group() helpers end here *********************/
9095
0b0695f2
VG
9096/*
9097 * Decision matrix according to the local and busiest group type:
9098 *
9099 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9100 * has_spare nr_idle balanced N/A N/A balanced balanced
9101 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9102 * misfit_task force N/A N/A N/A force force
9103 * asym_packing force force N/A N/A force force
9104 * imbalanced force force N/A N/A force force
9105 * overloaded force force N/A N/A force avg_load
9106 *
9107 * N/A : Not Applicable because already filtered while updating
9108 * statistics.
9109 * balanced : The system is balanced for these 2 groups.
9110 * force : Calculate the imbalance as load migration is probably needed.
9111 * avg_load : Only if imbalance is significant enough.
9112 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9113 * different in groups.
9114 */
9115
1e3c88bd
PZ
9116/**
9117 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9118 * if there is an imbalance.
1e3c88bd 9119 *
a3df0679 9120 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9121 * to restore balance.
9122 *
cd96891d 9123 * @env: The load balancing environment.
1e3c88bd 9124 *
e69f6186 9125 * Return: - The busiest group if imbalance exists.
1e3c88bd 9126 */
56cf515b 9127static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9128{
56cf515b 9129 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9130 struct sd_lb_stats sds;
9131
147c5fc2 9132 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9133
9134 /*
b0fb1eb4 9135 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9136 * this level.
9137 */
23f0d209 9138 update_sd_lb_stats(env, &sds);
2802bf3c 9139
f8a696f2 9140 if (sched_energy_enabled()) {
2802bf3c
MR
9141 struct root_domain *rd = env->dst_rq->rd;
9142
9143 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9144 goto out_balanced;
9145 }
9146
56cf515b
JK
9147 local = &sds.local_stat;
9148 busiest = &sds.busiest_stat;
1e3c88bd 9149
cc57aa8f 9150 /* There is no busy sibling group to pull tasks from */
0b0695f2 9151 if (!sds.busiest)
1e3c88bd
PZ
9152 goto out_balanced;
9153
0b0695f2
VG
9154 /* Misfit tasks should be dealt with regardless of the avg load */
9155 if (busiest->group_type == group_misfit_task)
9156 goto force_balance;
9157
9158 /* ASYM feature bypasses nice load balance check */
9159 if (busiest->group_type == group_asym_packing)
9160 goto force_balance;
b0432d8f 9161
866ab43e
PZ
9162 /*
9163 * If the busiest group is imbalanced the below checks don't
30ce5dab 9164 * work because they assume all things are equal, which typically
3bd37062 9165 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9166 */
caeb178c 9167 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9168 goto force_balance;
9169
cc57aa8f 9170 /*
9c58c79a 9171 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9172 * don't try and pull any tasks.
9173 */
0b0695f2 9174 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9175 goto out_balanced;
9176
cc57aa8f 9177 /*
0b0695f2
VG
9178 * When groups are overloaded, use the avg_load to ensure fairness
9179 * between tasks.
cc57aa8f 9180 */
0b0695f2
VG
9181 if (local->group_type == group_overloaded) {
9182 /*
9183 * If the local group is more loaded than the selected
9184 * busiest group don't try to pull any tasks.
9185 */
9186 if (local->avg_load >= busiest->avg_load)
9187 goto out_balanced;
9188
9189 /* XXX broken for overlapping NUMA groups */
9190 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9191 sds.total_capacity;
1e3c88bd 9192
aae6d3dd 9193 /*
0b0695f2
VG
9194 * Don't pull any tasks if this group is already above the
9195 * domain average load.
aae6d3dd 9196 */
0b0695f2 9197 if (local->avg_load >= sds.avg_load)
aae6d3dd 9198 goto out_balanced;
0b0695f2 9199
c186fafe 9200 /*
0b0695f2
VG
9201 * If the busiest group is more loaded, use imbalance_pct to be
9202 * conservative.
c186fafe 9203 */
56cf515b
JK
9204 if (100 * busiest->avg_load <=
9205 env->sd->imbalance_pct * local->avg_load)
c186fafe 9206 goto out_balanced;
aae6d3dd 9207 }
1e3c88bd 9208
0b0695f2
VG
9209 /* Try to move all excess tasks to child's sibling domain */
9210 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9211 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9212 goto force_balance;
9213
2ab4092f
VG
9214 if (busiest->group_type != group_overloaded) {
9215 if (env->idle == CPU_NOT_IDLE)
9216 /*
9217 * If the busiest group is not overloaded (and as a
9218 * result the local one too) but this CPU is already
9219 * busy, let another idle CPU try to pull task.
9220 */
9221 goto out_balanced;
9222
9223 if (busiest->group_weight > 1 &&
9224 local->idle_cpus <= (busiest->idle_cpus + 1))
9225 /*
9226 * If the busiest group is not overloaded
9227 * and there is no imbalance between this and busiest
9228 * group wrt idle CPUs, it is balanced. The imbalance
9229 * becomes significant if the diff is greater than 1
9230 * otherwise we might end up to just move the imbalance
9231 * on another group. Of course this applies only if
9232 * there is more than 1 CPU per group.
9233 */
9234 goto out_balanced;
9235
9236 if (busiest->sum_h_nr_running == 1)
9237 /*
9238 * busiest doesn't have any tasks waiting to run
9239 */
9240 goto out_balanced;
9241 }
0b0695f2 9242
fab47622 9243force_balance:
1e3c88bd 9244 /* Looks like there is an imbalance. Compute it */
bd939f45 9245 calculate_imbalance(env, &sds);
bb3485c8 9246 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9247
9248out_balanced:
bd939f45 9249 env->imbalance = 0;
1e3c88bd
PZ
9250 return NULL;
9251}
9252
9253/*
97fb7a0a 9254 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9255 */
bd939f45 9256static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9257 struct sched_group *group)
1e3c88bd
PZ
9258{
9259 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9260 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9261 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9262 int i;
9263
ae4df9d6 9264 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9265 unsigned long capacity, load, util;
9266 unsigned int nr_running;
0ec8aa00
PZ
9267 enum fbq_type rt;
9268
9269 rq = cpu_rq(i);
9270 rt = fbq_classify_rq(rq);
1e3c88bd 9271
0ec8aa00
PZ
9272 /*
9273 * We classify groups/runqueues into three groups:
9274 * - regular: there are !numa tasks
9275 * - remote: there are numa tasks that run on the 'wrong' node
9276 * - all: there is no distinction
9277 *
9278 * In order to avoid migrating ideally placed numa tasks,
9279 * ignore those when there's better options.
9280 *
9281 * If we ignore the actual busiest queue to migrate another
9282 * task, the next balance pass can still reduce the busiest
9283 * queue by moving tasks around inside the node.
9284 *
9285 * If we cannot move enough load due to this classification
9286 * the next pass will adjust the group classification and
9287 * allow migration of more tasks.
9288 *
9289 * Both cases only affect the total convergence complexity.
9290 */
9291 if (rt > env->fbq_type)
9292 continue;
9293
ced549fa 9294 capacity = capacity_of(i);
0b0695f2 9295 nr_running = rq->cfs.h_nr_running;
9d5efe05 9296
4ad3831a
CR
9297 /*
9298 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9299 * eventually lead to active_balancing high->low capacity.
9300 * Higher per-CPU capacity is considered better than balancing
9301 * average load.
9302 */
9303 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9304 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9305 nr_running == 1)
4ad3831a
CR
9306 continue;
9307
0b0695f2
VG
9308 switch (env->migration_type) {
9309 case migrate_load:
9310 /*
b0fb1eb4
VG
9311 * When comparing with load imbalance, use cpu_load()
9312 * which is not scaled with the CPU capacity.
0b0695f2 9313 */
b0fb1eb4 9314 load = cpu_load(rq);
1e3c88bd 9315
0b0695f2
VG
9316 if (nr_running == 1 && load > env->imbalance &&
9317 !check_cpu_capacity(rq, env->sd))
9318 break;
ea67821b 9319
0b0695f2
VG
9320 /*
9321 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9322 * consider the cpu_load() scaled with the CPU
9323 * capacity, so that the load can be moved away
9324 * from the CPU that is potentially running at a
9325 * lower capacity.
0b0695f2
VG
9326 *
9327 * Thus we're looking for max(load_i / capacity_i),
9328 * crosswise multiplication to rid ourselves of the
9329 * division works out to:
9330 * load_i * capacity_j > load_j * capacity_i;
9331 * where j is our previous maximum.
9332 */
9333 if (load * busiest_capacity > busiest_load * capacity) {
9334 busiest_load = load;
9335 busiest_capacity = capacity;
9336 busiest = rq;
9337 }
9338 break;
9339
9340 case migrate_util:
9341 util = cpu_util(cpu_of(rq));
9342
c32b4308
VG
9343 /*
9344 * Don't try to pull utilization from a CPU with one
9345 * running task. Whatever its utilization, we will fail
9346 * detach the task.
9347 */
9348 if (nr_running <= 1)
9349 continue;
9350
0b0695f2
VG
9351 if (busiest_util < util) {
9352 busiest_util = util;
9353 busiest = rq;
9354 }
9355 break;
9356
9357 case migrate_task:
9358 if (busiest_nr < nr_running) {
9359 busiest_nr = nr_running;
9360 busiest = rq;
9361 }
9362 break;
9363
9364 case migrate_misfit:
9365 /*
9366 * For ASYM_CPUCAPACITY domains with misfit tasks we
9367 * simply seek the "biggest" misfit task.
9368 */
9369 if (rq->misfit_task_load > busiest_load) {
9370 busiest_load = rq->misfit_task_load;
9371 busiest = rq;
9372 }
9373
9374 break;
1e3c88bd 9375
1e3c88bd
PZ
9376 }
9377 }
9378
9379 return busiest;
9380}
9381
9382/*
9383 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9384 * so long as it is large enough.
9385 */
9386#define MAX_PINNED_INTERVAL 512
9387
46a745d9
VG
9388static inline bool
9389asym_active_balance(struct lb_env *env)
1af3ed3d 9390{
46a745d9
VG
9391 /*
9392 * ASYM_PACKING needs to force migrate tasks from busy but
9393 * lower priority CPUs in order to pack all tasks in the
9394 * highest priority CPUs.
9395 */
9396 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9397 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9398}
bd939f45 9399
46a745d9
VG
9400static inline bool
9401voluntary_active_balance(struct lb_env *env)
9402{
9403 struct sched_domain *sd = env->sd;
532cb4c4 9404
46a745d9
VG
9405 if (asym_active_balance(env))
9406 return 1;
1af3ed3d 9407
1aaf90a4
VG
9408 /*
9409 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9410 * It's worth migrating the task if the src_cpu's capacity is reduced
9411 * because of other sched_class or IRQs if more capacity stays
9412 * available on dst_cpu.
9413 */
9414 if ((env->idle != CPU_NOT_IDLE) &&
9415 (env->src_rq->cfs.h_nr_running == 1)) {
9416 if ((check_cpu_capacity(env->src_rq, sd)) &&
9417 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9418 return 1;
9419 }
9420
0b0695f2 9421 if (env->migration_type == migrate_misfit)
cad68e55
MR
9422 return 1;
9423
46a745d9
VG
9424 return 0;
9425}
9426
9427static int need_active_balance(struct lb_env *env)
9428{
9429 struct sched_domain *sd = env->sd;
9430
9431 if (voluntary_active_balance(env))
9432 return 1;
9433
1af3ed3d
PZ
9434 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9435}
9436
969c7921
TH
9437static int active_load_balance_cpu_stop(void *data);
9438
23f0d209
JK
9439static int should_we_balance(struct lb_env *env)
9440{
9441 struct sched_group *sg = env->sd->groups;
64297f2b 9442 int cpu;
23f0d209 9443
024c9d2f
PZ
9444 /*
9445 * Ensure the balancing environment is consistent; can happen
9446 * when the softirq triggers 'during' hotplug.
9447 */
9448 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9449 return 0;
9450
23f0d209 9451 /*
97fb7a0a 9452 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9453 * to do the newly idle load balance.
9454 */
9455 if (env->idle == CPU_NEWLY_IDLE)
9456 return 1;
9457
97fb7a0a 9458 /* Try to find first idle CPU */
e5c14b1f 9459 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9460 if (!idle_cpu(cpu))
23f0d209
JK
9461 continue;
9462
64297f2b
PW
9463 /* Are we the first idle CPU? */
9464 return cpu == env->dst_cpu;
23f0d209
JK
9465 }
9466
64297f2b
PW
9467 /* Are we the first CPU of this group ? */
9468 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9469}
9470
1e3c88bd
PZ
9471/*
9472 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9473 * tasks if there is an imbalance.
9474 */
9475static int load_balance(int this_cpu, struct rq *this_rq,
9476 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9477 int *continue_balancing)
1e3c88bd 9478{
88b8dac0 9479 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9480 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9481 struct sched_group *group;
1e3c88bd 9482 struct rq *busiest;
8a8c69c3 9483 struct rq_flags rf;
4ba29684 9484 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9485
8e45cb54
PZ
9486 struct lb_env env = {
9487 .sd = sd,
ddcdf6e7
PZ
9488 .dst_cpu = this_cpu,
9489 .dst_rq = this_rq,
ae4df9d6 9490 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9491 .idle = idle,
eb95308e 9492 .loop_break = sched_nr_migrate_break,
b9403130 9493 .cpus = cpus,
0ec8aa00 9494 .fbq_type = all,
163122b7 9495 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9496 };
9497
65a4433a 9498 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9499
ae92882e 9500 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9501
9502redo:
23f0d209
JK
9503 if (!should_we_balance(&env)) {
9504 *continue_balancing = 0;
1e3c88bd 9505 goto out_balanced;
23f0d209 9506 }
1e3c88bd 9507
23f0d209 9508 group = find_busiest_group(&env);
1e3c88bd 9509 if (!group) {
ae92882e 9510 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9511 goto out_balanced;
9512 }
9513
b9403130 9514 busiest = find_busiest_queue(&env, group);
1e3c88bd 9515 if (!busiest) {
ae92882e 9516 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9517 goto out_balanced;
9518 }
9519
78feefc5 9520 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9521
ae92882e 9522 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9523
1aaf90a4
VG
9524 env.src_cpu = busiest->cpu;
9525 env.src_rq = busiest;
9526
1e3c88bd
PZ
9527 ld_moved = 0;
9528 if (busiest->nr_running > 1) {
9529 /*
9530 * Attempt to move tasks. If find_busiest_group has found
9531 * an imbalance but busiest->nr_running <= 1, the group is
9532 * still unbalanced. ld_moved simply stays zero, so it is
9533 * correctly treated as an imbalance.
9534 */
8e45cb54 9535 env.flags |= LBF_ALL_PINNED;
c82513e5 9536 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9537
5d6523eb 9538more_balance:
8a8c69c3 9539 rq_lock_irqsave(busiest, &rf);
3bed5e21 9540 update_rq_clock(busiest);
88b8dac0
SV
9541
9542 /*
9543 * cur_ld_moved - load moved in current iteration
9544 * ld_moved - cumulative load moved across iterations
9545 */
163122b7 9546 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9547
9548 /*
163122b7
KT
9549 * We've detached some tasks from busiest_rq. Every
9550 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9551 * unlock busiest->lock, and we are able to be sure
9552 * that nobody can manipulate the tasks in parallel.
9553 * See task_rq_lock() family for the details.
1e3c88bd 9554 */
163122b7 9555
8a8c69c3 9556 rq_unlock(busiest, &rf);
163122b7
KT
9557
9558 if (cur_ld_moved) {
9559 attach_tasks(&env);
9560 ld_moved += cur_ld_moved;
9561 }
9562
8a8c69c3 9563 local_irq_restore(rf.flags);
88b8dac0 9564
f1cd0858
JK
9565 if (env.flags & LBF_NEED_BREAK) {
9566 env.flags &= ~LBF_NEED_BREAK;
9567 goto more_balance;
9568 }
9569
88b8dac0
SV
9570 /*
9571 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9572 * us and move them to an alternate dst_cpu in our sched_group
9573 * where they can run. The upper limit on how many times we
97fb7a0a 9574 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9575 * sched_group.
9576 *
9577 * This changes load balance semantics a bit on who can move
9578 * load to a given_cpu. In addition to the given_cpu itself
9579 * (or a ilb_cpu acting on its behalf where given_cpu is
9580 * nohz-idle), we now have balance_cpu in a position to move
9581 * load to given_cpu. In rare situations, this may cause
9582 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9583 * _independently_ and at _same_ time to move some load to
9584 * given_cpu) causing exceess load to be moved to given_cpu.
9585 * This however should not happen so much in practice and
9586 * moreover subsequent load balance cycles should correct the
9587 * excess load moved.
9588 */
6263322c 9589 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9590
97fb7a0a 9591 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9592 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9593
78feefc5 9594 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9595 env.dst_cpu = env.new_dst_cpu;
6263322c 9596 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9597 env.loop = 0;
9598 env.loop_break = sched_nr_migrate_break;
e02e60c1 9599
88b8dac0
SV
9600 /*
9601 * Go back to "more_balance" rather than "redo" since we
9602 * need to continue with same src_cpu.
9603 */
9604 goto more_balance;
9605 }
1e3c88bd 9606
6263322c
PZ
9607 /*
9608 * We failed to reach balance because of affinity.
9609 */
9610 if (sd_parent) {
63b2ca30 9611 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9612
afdeee05 9613 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9614 *group_imbalance = 1;
6263322c
PZ
9615 }
9616
1e3c88bd 9617 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9618 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9619 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9620 /*
9621 * Attempting to continue load balancing at the current
9622 * sched_domain level only makes sense if there are
9623 * active CPUs remaining as possible busiest CPUs to
9624 * pull load from which are not contained within the
9625 * destination group that is receiving any migrated
9626 * load.
9627 */
9628 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9629 env.loop = 0;
9630 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9631 goto redo;
bbf18b19 9632 }
afdeee05 9633 goto out_all_pinned;
1e3c88bd
PZ
9634 }
9635 }
9636
9637 if (!ld_moved) {
ae92882e 9638 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9639 /*
9640 * Increment the failure counter only on periodic balance.
9641 * We do not want newidle balance, which can be very
9642 * frequent, pollute the failure counter causing
9643 * excessive cache_hot migrations and active balances.
9644 */
9645 if (idle != CPU_NEWLY_IDLE)
9646 sd->nr_balance_failed++;
1e3c88bd 9647
bd939f45 9648 if (need_active_balance(&env)) {
8a8c69c3
PZ
9649 unsigned long flags;
9650
1e3c88bd
PZ
9651 raw_spin_lock_irqsave(&busiest->lock, flags);
9652
97fb7a0a
IM
9653 /*
9654 * Don't kick the active_load_balance_cpu_stop,
9655 * if the curr task on busiest CPU can't be
9656 * moved to this_cpu:
1e3c88bd 9657 */
3bd37062 9658 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9659 raw_spin_unlock_irqrestore(&busiest->lock,
9660 flags);
8e45cb54 9661 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9662 goto out_one_pinned;
9663 }
9664
969c7921
TH
9665 /*
9666 * ->active_balance synchronizes accesses to
9667 * ->active_balance_work. Once set, it's cleared
9668 * only after active load balance is finished.
9669 */
1e3c88bd
PZ
9670 if (!busiest->active_balance) {
9671 busiest->active_balance = 1;
9672 busiest->push_cpu = this_cpu;
9673 active_balance = 1;
9674 }
9675 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9676
bd939f45 9677 if (active_balance) {
969c7921
TH
9678 stop_one_cpu_nowait(cpu_of(busiest),
9679 active_load_balance_cpu_stop, busiest,
9680 &busiest->active_balance_work);
bd939f45 9681 }
1e3c88bd 9682
d02c0711 9683 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9684 sd->nr_balance_failed = sd->cache_nice_tries+1;
9685 }
9686 } else
9687 sd->nr_balance_failed = 0;
9688
46a745d9 9689 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9690 /* We were unbalanced, so reset the balancing interval */
9691 sd->balance_interval = sd->min_interval;
9692 } else {
9693 /*
9694 * If we've begun active balancing, start to back off. This
9695 * case may not be covered by the all_pinned logic if there
9696 * is only 1 task on the busy runqueue (because we don't call
163122b7 9697 * detach_tasks).
1e3c88bd
PZ
9698 */
9699 if (sd->balance_interval < sd->max_interval)
9700 sd->balance_interval *= 2;
9701 }
9702
1e3c88bd
PZ
9703 goto out;
9704
9705out_balanced:
afdeee05
VG
9706 /*
9707 * We reach balance although we may have faced some affinity
f6cad8df
VG
9708 * constraints. Clear the imbalance flag only if other tasks got
9709 * a chance to move and fix the imbalance.
afdeee05 9710 */
f6cad8df 9711 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9712 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9713
9714 if (*group_imbalance)
9715 *group_imbalance = 0;
9716 }
9717
9718out_all_pinned:
9719 /*
9720 * We reach balance because all tasks are pinned at this level so
9721 * we can't migrate them. Let the imbalance flag set so parent level
9722 * can try to migrate them.
9723 */
ae92882e 9724 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9725
9726 sd->nr_balance_failed = 0;
9727
9728out_one_pinned:
3f130a37
VS
9729 ld_moved = 0;
9730
9731 /*
5ba553ef
PZ
9732 * newidle_balance() disregards balance intervals, so we could
9733 * repeatedly reach this code, which would lead to balance_interval
9734 * skyrocketting in a short amount of time. Skip the balance_interval
9735 * increase logic to avoid that.
3f130a37
VS
9736 */
9737 if (env.idle == CPU_NEWLY_IDLE)
9738 goto out;
9739
1e3c88bd 9740 /* tune up the balancing interval */
47b7aee1
VS
9741 if ((env.flags & LBF_ALL_PINNED &&
9742 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9743 sd->balance_interval < sd->max_interval)
1e3c88bd 9744 sd->balance_interval *= 2;
1e3c88bd 9745out:
1e3c88bd
PZ
9746 return ld_moved;
9747}
9748
52a08ef1
JL
9749static inline unsigned long
9750get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9751{
9752 unsigned long interval = sd->balance_interval;
9753
9754 if (cpu_busy)
9755 interval *= sd->busy_factor;
9756
9757 /* scale ms to jiffies */
9758 interval = msecs_to_jiffies(interval);
9759 interval = clamp(interval, 1UL, max_load_balance_interval);
9760
9761 return interval;
9762}
9763
9764static inline void
31851a98 9765update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9766{
9767 unsigned long interval, next;
9768
31851a98
LY
9769 /* used by idle balance, so cpu_busy = 0 */
9770 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9771 next = sd->last_balance + interval;
9772
9773 if (time_after(*next_balance, next))
9774 *next_balance = next;
9775}
9776
1e3c88bd 9777/*
97fb7a0a 9778 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9779 * running tasks off the busiest CPU onto idle CPUs. It requires at
9780 * least 1 task to be running on each physical CPU where possible, and
9781 * avoids physical / logical imbalances.
1e3c88bd 9782 */
969c7921 9783static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9784{
969c7921
TH
9785 struct rq *busiest_rq = data;
9786 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9787 int target_cpu = busiest_rq->push_cpu;
969c7921 9788 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9789 struct sched_domain *sd;
e5673f28 9790 struct task_struct *p = NULL;
8a8c69c3 9791 struct rq_flags rf;
969c7921 9792
8a8c69c3 9793 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9794 /*
9795 * Between queueing the stop-work and running it is a hole in which
9796 * CPUs can become inactive. We should not move tasks from or to
9797 * inactive CPUs.
9798 */
9799 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9800 goto out_unlock;
969c7921 9801
97fb7a0a 9802 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9803 if (unlikely(busiest_cpu != smp_processor_id() ||
9804 !busiest_rq->active_balance))
9805 goto out_unlock;
1e3c88bd
PZ
9806
9807 /* Is there any task to move? */
9808 if (busiest_rq->nr_running <= 1)
969c7921 9809 goto out_unlock;
1e3c88bd
PZ
9810
9811 /*
9812 * This condition is "impossible", if it occurs
9813 * we need to fix it. Originally reported by
97fb7a0a 9814 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9815 */
9816 BUG_ON(busiest_rq == target_rq);
9817
1e3c88bd 9818 /* Search for an sd spanning us and the target CPU. */
dce840a0 9819 rcu_read_lock();
1e3c88bd 9820 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9821 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9822 break;
1e3c88bd
PZ
9823 }
9824
9825 if (likely(sd)) {
8e45cb54
PZ
9826 struct lb_env env = {
9827 .sd = sd,
ddcdf6e7
PZ
9828 .dst_cpu = target_cpu,
9829 .dst_rq = target_rq,
9830 .src_cpu = busiest_rq->cpu,
9831 .src_rq = busiest_rq,
8e45cb54 9832 .idle = CPU_IDLE,
65a4433a
JH
9833 /*
9834 * can_migrate_task() doesn't need to compute new_dst_cpu
9835 * for active balancing. Since we have CPU_IDLE, but no
9836 * @dst_grpmask we need to make that test go away with lying
9837 * about DST_PINNED.
9838 */
9839 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9840 };
9841
ae92882e 9842 schedstat_inc(sd->alb_count);
3bed5e21 9843 update_rq_clock(busiest_rq);
1e3c88bd 9844
e5673f28 9845 p = detach_one_task(&env);
d02c0711 9846 if (p) {
ae92882e 9847 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9848 /* Active balancing done, reset the failure counter. */
9849 sd->nr_balance_failed = 0;
9850 } else {
ae92882e 9851 schedstat_inc(sd->alb_failed);
d02c0711 9852 }
1e3c88bd 9853 }
dce840a0 9854 rcu_read_unlock();
969c7921
TH
9855out_unlock:
9856 busiest_rq->active_balance = 0;
8a8c69c3 9857 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9858
9859 if (p)
9860 attach_one_task(target_rq, p);
9861
9862 local_irq_enable();
9863
969c7921 9864 return 0;
1e3c88bd
PZ
9865}
9866
af3fe03c
PZ
9867static DEFINE_SPINLOCK(balancing);
9868
9869/*
9870 * Scale the max load_balance interval with the number of CPUs in the system.
9871 * This trades load-balance latency on larger machines for less cross talk.
9872 */
9873void update_max_interval(void)
9874{
9875 max_load_balance_interval = HZ*num_online_cpus()/10;
9876}
9877
9878/*
9879 * It checks each scheduling domain to see if it is due to be balanced,
9880 * and initiates a balancing operation if so.
9881 *
9882 * Balancing parameters are set up in init_sched_domains.
9883 */
9884static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9885{
9886 int continue_balancing = 1;
9887 int cpu = rq->cpu;
323af6de 9888 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9889 unsigned long interval;
9890 struct sched_domain *sd;
9891 /* Earliest time when we have to do rebalance again */
9892 unsigned long next_balance = jiffies + 60*HZ;
9893 int update_next_balance = 0;
9894 int need_serialize, need_decay = 0;
9895 u64 max_cost = 0;
9896
9897 rcu_read_lock();
9898 for_each_domain(cpu, sd) {
9899 /*
9900 * Decay the newidle max times here because this is a regular
9901 * visit to all the domains. Decay ~1% per second.
9902 */
9903 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9904 sd->max_newidle_lb_cost =
9905 (sd->max_newidle_lb_cost * 253) / 256;
9906 sd->next_decay_max_lb_cost = jiffies + HZ;
9907 need_decay = 1;
9908 }
9909 max_cost += sd->max_newidle_lb_cost;
9910
af3fe03c
PZ
9911 /*
9912 * Stop the load balance at this level. There is another
9913 * CPU in our sched group which is doing load balancing more
9914 * actively.
9915 */
9916 if (!continue_balancing) {
9917 if (need_decay)
9918 continue;
9919 break;
9920 }
9921
323af6de 9922 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9923
9924 need_serialize = sd->flags & SD_SERIALIZE;
9925 if (need_serialize) {
9926 if (!spin_trylock(&balancing))
9927 goto out;
9928 }
9929
9930 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9931 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9932 /*
9933 * The LBF_DST_PINNED logic could have changed
9934 * env->dst_cpu, so we can't know our idle
9935 * state even if we migrated tasks. Update it.
9936 */
9937 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 9938 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9939 }
9940 sd->last_balance = jiffies;
323af6de 9941 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9942 }
9943 if (need_serialize)
9944 spin_unlock(&balancing);
9945out:
9946 if (time_after(next_balance, sd->last_balance + interval)) {
9947 next_balance = sd->last_balance + interval;
9948 update_next_balance = 1;
9949 }
9950 }
9951 if (need_decay) {
9952 /*
9953 * Ensure the rq-wide value also decays but keep it at a
9954 * reasonable floor to avoid funnies with rq->avg_idle.
9955 */
9956 rq->max_idle_balance_cost =
9957 max((u64)sysctl_sched_migration_cost, max_cost);
9958 }
9959 rcu_read_unlock();
9960
9961 /*
9962 * next_balance will be updated only when there is a need.
9963 * When the cpu is attached to null domain for ex, it will not be
9964 * updated.
9965 */
9966 if (likely(update_next_balance)) {
9967 rq->next_balance = next_balance;
9968
9969#ifdef CONFIG_NO_HZ_COMMON
9970 /*
9971 * If this CPU has been elected to perform the nohz idle
9972 * balance. Other idle CPUs have already rebalanced with
9973 * nohz_idle_balance() and nohz.next_balance has been
9974 * updated accordingly. This CPU is now running the idle load
9975 * balance for itself and we need to update the
9976 * nohz.next_balance accordingly.
9977 */
9978 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9979 nohz.next_balance = rq->next_balance;
9980#endif
9981 }
9982}
9983
d987fc7f
MG
9984static inline int on_null_domain(struct rq *rq)
9985{
9986 return unlikely(!rcu_dereference_sched(rq->sd));
9987}
9988
3451d024 9989#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9990/*
9991 * idle load balancing details
83cd4fe2
VP
9992 * - When one of the busy CPUs notice that there may be an idle rebalancing
9993 * needed, they will kick the idle load balancer, which then does idle
9994 * load balancing for all the idle CPUs.
9b019acb
NP
9995 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9996 * anywhere yet.
83cd4fe2 9997 */
1e3c88bd 9998
3dd0337d 9999static inline int find_new_ilb(void)
1e3c88bd 10000{
9b019acb 10001 int ilb;
1e3c88bd 10002
9b019acb
NP
10003 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10004 housekeeping_cpumask(HK_FLAG_MISC)) {
10005 if (idle_cpu(ilb))
10006 return ilb;
10007 }
786d6dc7
SS
10008
10009 return nr_cpu_ids;
1e3c88bd 10010}
1e3c88bd 10011
83cd4fe2 10012/*
9b019acb
NP
10013 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10014 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10015 */
a4064fb6 10016static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10017{
10018 int ilb_cpu;
10019
10020 nohz.next_balance++;
10021
3dd0337d 10022 ilb_cpu = find_new_ilb();
83cd4fe2 10023
0b005cf5
SS
10024 if (ilb_cpu >= nr_cpu_ids)
10025 return;
83cd4fe2 10026
19a1f5ec
PZ
10027 /*
10028 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10029 * the first flag owns it; cleared by nohz_csd_func().
10030 */
a4064fb6 10031 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10032 if (flags & NOHZ_KICK_MASK)
1c792db7 10033 return;
4550487a 10034
1c792db7 10035 /*
90b5363a 10036 * This way we generate an IPI on the target CPU which
1c792db7
SS
10037 * is idle. And the softirq performing nohz idle load balance
10038 * will be run before returning from the IPI.
10039 */
90b5363a 10040 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10041}
10042
10043/*
9f132742
VS
10044 * Current decision point for kicking the idle load balancer in the presence
10045 * of idle CPUs in the system.
4550487a
PZ
10046 */
10047static void nohz_balancer_kick(struct rq *rq)
10048{
10049 unsigned long now = jiffies;
10050 struct sched_domain_shared *sds;
10051 struct sched_domain *sd;
10052 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10053 unsigned int flags = 0;
4550487a
PZ
10054
10055 if (unlikely(rq->idle_balance))
10056 return;
10057
10058 /*
10059 * We may be recently in ticked or tickless idle mode. At the first
10060 * busy tick after returning from idle, we will update the busy stats.
10061 */
00357f5e 10062 nohz_balance_exit_idle(rq);
4550487a
PZ
10063
10064 /*
10065 * None are in tickless mode and hence no need for NOHZ idle load
10066 * balancing.
10067 */
10068 if (likely(!atomic_read(&nohz.nr_cpus)))
10069 return;
10070
f643ea22
VG
10071 if (READ_ONCE(nohz.has_blocked) &&
10072 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10073 flags = NOHZ_STATS_KICK;
10074
4550487a 10075 if (time_before(now, nohz.next_balance))
a4064fb6 10076 goto out;
4550487a 10077
a0fe2cf0 10078 if (rq->nr_running >= 2) {
a4064fb6 10079 flags = NOHZ_KICK_MASK;
4550487a
PZ
10080 goto out;
10081 }
10082
10083 rcu_read_lock();
4550487a
PZ
10084
10085 sd = rcu_dereference(rq->sd);
10086 if (sd) {
e25a7a94
VS
10087 /*
10088 * If there's a CFS task and the current CPU has reduced
10089 * capacity; kick the ILB to see if there's a better CPU to run
10090 * on.
10091 */
10092 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10093 flags = NOHZ_KICK_MASK;
4550487a
PZ
10094 goto unlock;
10095 }
10096 }
10097
011b27bb 10098 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10099 if (sd) {
b9a7b883
VS
10100 /*
10101 * When ASYM_PACKING; see if there's a more preferred CPU
10102 * currently idle; in which case, kick the ILB to move tasks
10103 * around.
10104 */
7edab78d 10105 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10106 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10107 flags = NOHZ_KICK_MASK;
4550487a
PZ
10108 goto unlock;
10109 }
10110 }
10111 }
b9a7b883 10112
a0fe2cf0
VS
10113 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10114 if (sd) {
10115 /*
10116 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10117 * to run the misfit task on.
10118 */
10119 if (check_misfit_status(rq, sd)) {
10120 flags = NOHZ_KICK_MASK;
10121 goto unlock;
10122 }
b9a7b883
VS
10123
10124 /*
10125 * For asymmetric systems, we do not want to nicely balance
10126 * cache use, instead we want to embrace asymmetry and only
10127 * ensure tasks have enough CPU capacity.
10128 *
10129 * Skip the LLC logic because it's not relevant in that case.
10130 */
10131 goto unlock;
a0fe2cf0
VS
10132 }
10133
b9a7b883
VS
10134 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10135 if (sds) {
e25a7a94 10136 /*
b9a7b883
VS
10137 * If there is an imbalance between LLC domains (IOW we could
10138 * increase the overall cache use), we need some less-loaded LLC
10139 * domain to pull some load. Likewise, we may need to spread
10140 * load within the current LLC domain (e.g. packed SMT cores but
10141 * other CPUs are idle). We can't really know from here how busy
10142 * the others are - so just get a nohz balance going if it looks
10143 * like this LLC domain has tasks we could move.
e25a7a94 10144 */
b9a7b883
VS
10145 nr_busy = atomic_read(&sds->nr_busy_cpus);
10146 if (nr_busy > 1) {
10147 flags = NOHZ_KICK_MASK;
10148 goto unlock;
4550487a
PZ
10149 }
10150 }
10151unlock:
10152 rcu_read_unlock();
10153out:
a4064fb6
PZ
10154 if (flags)
10155 kick_ilb(flags);
83cd4fe2
VP
10156}
10157
00357f5e 10158static void set_cpu_sd_state_busy(int cpu)
71325960 10159{
00357f5e 10160 struct sched_domain *sd;
a22e47a4 10161
00357f5e
PZ
10162 rcu_read_lock();
10163 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10164
00357f5e
PZ
10165 if (!sd || !sd->nohz_idle)
10166 goto unlock;
10167 sd->nohz_idle = 0;
10168
10169 atomic_inc(&sd->shared->nr_busy_cpus);
10170unlock:
10171 rcu_read_unlock();
71325960
SS
10172}
10173
00357f5e
PZ
10174void nohz_balance_exit_idle(struct rq *rq)
10175{
10176 SCHED_WARN_ON(rq != this_rq());
10177
10178 if (likely(!rq->nohz_tick_stopped))
10179 return;
10180
10181 rq->nohz_tick_stopped = 0;
10182 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10183 atomic_dec(&nohz.nr_cpus);
10184
10185 set_cpu_sd_state_busy(rq->cpu);
10186}
10187
10188static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10189{
10190 struct sched_domain *sd;
69e1e811 10191
69e1e811 10192 rcu_read_lock();
0e369d75 10193 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10194
10195 if (!sd || sd->nohz_idle)
10196 goto unlock;
10197 sd->nohz_idle = 1;
10198
0e369d75 10199 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10200unlock:
69e1e811
SS
10201 rcu_read_unlock();
10202}
10203
1e3c88bd 10204/*
97fb7a0a 10205 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10206 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10207 */
c1cc017c 10208void nohz_balance_enter_idle(int cpu)
1e3c88bd 10209{
00357f5e
PZ
10210 struct rq *rq = cpu_rq(cpu);
10211
10212 SCHED_WARN_ON(cpu != smp_processor_id());
10213
97fb7a0a 10214 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10215 if (!cpu_active(cpu))
10216 return;
10217
387bc8b5 10218 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10219 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10220 return;
10221
f643ea22
VG
10222 /*
10223 * Can be set safely without rq->lock held
10224 * If a clear happens, it will have evaluated last additions because
10225 * rq->lock is held during the check and the clear
10226 */
10227 rq->has_blocked_load = 1;
10228
10229 /*
10230 * The tick is still stopped but load could have been added in the
10231 * meantime. We set the nohz.has_blocked flag to trig a check of the
10232 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10233 * of nohz.has_blocked can only happen after checking the new load
10234 */
00357f5e 10235 if (rq->nohz_tick_stopped)
f643ea22 10236 goto out;
1e3c88bd 10237
97fb7a0a 10238 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10239 if (on_null_domain(rq))
d987fc7f
MG
10240 return;
10241
00357f5e
PZ
10242 rq->nohz_tick_stopped = 1;
10243
c1cc017c
AS
10244 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10245 atomic_inc(&nohz.nr_cpus);
00357f5e 10246
f643ea22
VG
10247 /*
10248 * Ensures that if nohz_idle_balance() fails to observe our
10249 * @idle_cpus_mask store, it must observe the @has_blocked
10250 * store.
10251 */
10252 smp_mb__after_atomic();
10253
00357f5e 10254 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10255
10256out:
10257 /*
10258 * Each time a cpu enter idle, we assume that it has blocked load and
10259 * enable the periodic update of the load of idle cpus
10260 */
10261 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10262}
1e3c88bd 10263
1e3c88bd 10264/*
31e77c93
VG
10265 * Internal function that runs load balance for all idle cpus. The load balance
10266 * can be a simple update of blocked load or a complete load balance with
10267 * tasks movement depending of flags.
10268 * The function returns false if the loop has stopped before running
10269 * through all idle CPUs.
1e3c88bd 10270 */
31e77c93
VG
10271static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10272 enum cpu_idle_type idle)
83cd4fe2 10273{
c5afb6a8 10274 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10275 unsigned long now = jiffies;
10276 unsigned long next_balance = now + 60*HZ;
f643ea22 10277 bool has_blocked_load = false;
c5afb6a8 10278 int update_next_balance = 0;
b7031a02 10279 int this_cpu = this_rq->cpu;
b7031a02 10280 int balance_cpu;
31e77c93 10281 int ret = false;
b7031a02 10282 struct rq *rq;
83cd4fe2 10283
b7031a02 10284 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10285
f643ea22
VG
10286 /*
10287 * We assume there will be no idle load after this update and clear
10288 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10289 * set the has_blocked flag and trig another update of idle load.
10290 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10291 * setting the flag, we are sure to not clear the state and not
10292 * check the load of an idle cpu.
10293 */
10294 WRITE_ONCE(nohz.has_blocked, 0);
10295
10296 /*
10297 * Ensures that if we miss the CPU, we must see the has_blocked
10298 * store from nohz_balance_enter_idle().
10299 */
10300 smp_mb();
10301
83cd4fe2 10302 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10303 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10304 continue;
10305
10306 /*
97fb7a0a
IM
10307 * If this CPU gets work to do, stop the load balancing
10308 * work being done for other CPUs. Next load
83cd4fe2
VP
10309 * balancing owner will pick it up.
10310 */
f643ea22
VG
10311 if (need_resched()) {
10312 has_blocked_load = true;
10313 goto abort;
10314 }
83cd4fe2 10315
5ed4f1d9
VG
10316 rq = cpu_rq(balance_cpu);
10317
63928384 10318 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10319
ed61bbc6
TC
10320 /*
10321 * If time for next balance is due,
10322 * do the balance.
10323 */
10324 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10325 struct rq_flags rf;
10326
31e77c93 10327 rq_lock_irqsave(rq, &rf);
ed61bbc6 10328 update_rq_clock(rq);
31e77c93 10329 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10330
b7031a02
PZ
10331 if (flags & NOHZ_BALANCE_KICK)
10332 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10333 }
83cd4fe2 10334
c5afb6a8
VG
10335 if (time_after(next_balance, rq->next_balance)) {
10336 next_balance = rq->next_balance;
10337 update_next_balance = 1;
10338 }
83cd4fe2 10339 }
c5afb6a8 10340
31e77c93
VG
10341 /* Newly idle CPU doesn't need an update */
10342 if (idle != CPU_NEWLY_IDLE) {
10343 update_blocked_averages(this_cpu);
10344 has_blocked_load |= this_rq->has_blocked_load;
10345 }
10346
b7031a02
PZ
10347 if (flags & NOHZ_BALANCE_KICK)
10348 rebalance_domains(this_rq, CPU_IDLE);
10349
f643ea22
VG
10350 WRITE_ONCE(nohz.next_blocked,
10351 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10352
31e77c93
VG
10353 /* The full idle balance loop has been done */
10354 ret = true;
10355
f643ea22
VG
10356abort:
10357 /* There is still blocked load, enable periodic update */
10358 if (has_blocked_load)
10359 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10360
c5afb6a8
VG
10361 /*
10362 * next_balance will be updated only when there is a need.
10363 * When the CPU is attached to null domain for ex, it will not be
10364 * updated.
10365 */
10366 if (likely(update_next_balance))
10367 nohz.next_balance = next_balance;
b7031a02 10368
31e77c93
VG
10369 return ret;
10370}
10371
10372/*
10373 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10374 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10375 */
10376static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10377{
19a1f5ec 10378 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10379
19a1f5ec 10380 if (!flags)
31e77c93
VG
10381 return false;
10382
19a1f5ec 10383 this_rq->nohz_idle_balance = 0;
31e77c93 10384
19a1f5ec 10385 if (idle != CPU_IDLE)
31e77c93
VG
10386 return false;
10387
10388 _nohz_idle_balance(this_rq, flags, idle);
10389
b7031a02 10390 return true;
83cd4fe2 10391}
31e77c93
VG
10392
10393static void nohz_newidle_balance(struct rq *this_rq)
10394{
10395 int this_cpu = this_rq->cpu;
10396
10397 /*
10398 * This CPU doesn't want to be disturbed by scheduler
10399 * housekeeping
10400 */
10401 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10402 return;
10403
10404 /* Will wake up very soon. No time for doing anything else*/
10405 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10406 return;
10407
10408 /* Don't need to update blocked load of idle CPUs*/
10409 if (!READ_ONCE(nohz.has_blocked) ||
10410 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10411 return;
10412
10413 raw_spin_unlock(&this_rq->lock);
10414 /*
10415 * This CPU is going to be idle and blocked load of idle CPUs
10416 * need to be updated. Run the ilb locally as it is a good
10417 * candidate for ilb instead of waking up another idle CPU.
10418 * Kick an normal ilb if we failed to do the update.
10419 */
10420 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10421 kick_ilb(NOHZ_STATS_KICK);
10422 raw_spin_lock(&this_rq->lock);
10423}
10424
dd707247
PZ
10425#else /* !CONFIG_NO_HZ_COMMON */
10426static inline void nohz_balancer_kick(struct rq *rq) { }
10427
31e77c93 10428static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10429{
10430 return false;
10431}
31e77c93
VG
10432
10433static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10434#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10435
47ea5412
PZ
10436/*
10437 * idle_balance is called by schedule() if this_cpu is about to become
10438 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10439 *
10440 * Returns:
10441 * < 0 - we released the lock and there are !fair tasks present
10442 * 0 - failed, no new tasks
10443 * > 0 - success, new (fair) tasks present
47ea5412 10444 */
d91cecc1 10445static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10446{
10447 unsigned long next_balance = jiffies + HZ;
10448 int this_cpu = this_rq->cpu;
10449 struct sched_domain *sd;
10450 int pulled_task = 0;
10451 u64 curr_cost = 0;
10452
5ba553ef 10453 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10454 /*
10455 * We must set idle_stamp _before_ calling idle_balance(), such that we
10456 * measure the duration of idle_balance() as idle time.
10457 */
10458 this_rq->idle_stamp = rq_clock(this_rq);
10459
10460 /*
10461 * Do not pull tasks towards !active CPUs...
10462 */
10463 if (!cpu_active(this_cpu))
10464 return 0;
10465
10466 /*
10467 * This is OK, because current is on_cpu, which avoids it being picked
10468 * for load-balance and preemption/IRQs are still disabled avoiding
10469 * further scheduler activity on it and we're being very careful to
10470 * re-start the picking loop.
10471 */
10472 rq_unpin_lock(this_rq, rf);
10473
10474 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10475 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10476
47ea5412
PZ
10477 rcu_read_lock();
10478 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10479 if (sd)
10480 update_next_balance(sd, &next_balance);
10481 rcu_read_unlock();
10482
31e77c93
VG
10483 nohz_newidle_balance(this_rq);
10484
47ea5412
PZ
10485 goto out;
10486 }
10487
10488 raw_spin_unlock(&this_rq->lock);
10489
10490 update_blocked_averages(this_cpu);
10491 rcu_read_lock();
10492 for_each_domain(this_cpu, sd) {
10493 int continue_balancing = 1;
10494 u64 t0, domain_cost;
10495
47ea5412
PZ
10496 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10497 update_next_balance(sd, &next_balance);
10498 break;
10499 }
10500
10501 if (sd->flags & SD_BALANCE_NEWIDLE) {
10502 t0 = sched_clock_cpu(this_cpu);
10503
10504 pulled_task = load_balance(this_cpu, this_rq,
10505 sd, CPU_NEWLY_IDLE,
10506 &continue_balancing);
10507
10508 domain_cost = sched_clock_cpu(this_cpu) - t0;
10509 if (domain_cost > sd->max_newidle_lb_cost)
10510 sd->max_newidle_lb_cost = domain_cost;
10511
10512 curr_cost += domain_cost;
10513 }
10514
10515 update_next_balance(sd, &next_balance);
10516
10517 /*
10518 * Stop searching for tasks to pull if there are
10519 * now runnable tasks on this rq.
10520 */
10521 if (pulled_task || this_rq->nr_running > 0)
10522 break;
10523 }
10524 rcu_read_unlock();
10525
10526 raw_spin_lock(&this_rq->lock);
10527
10528 if (curr_cost > this_rq->max_idle_balance_cost)
10529 this_rq->max_idle_balance_cost = curr_cost;
10530
457be908 10531out:
47ea5412
PZ
10532 /*
10533 * While browsing the domains, we released the rq lock, a task could
10534 * have been enqueued in the meantime. Since we're not going idle,
10535 * pretend we pulled a task.
10536 */
10537 if (this_rq->cfs.h_nr_running && !pulled_task)
10538 pulled_task = 1;
10539
47ea5412
PZ
10540 /* Move the next balance forward */
10541 if (time_after(this_rq->next_balance, next_balance))
10542 this_rq->next_balance = next_balance;
10543
10544 /* Is there a task of a high priority class? */
10545 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10546 pulled_task = -1;
10547
10548 if (pulled_task)
10549 this_rq->idle_stamp = 0;
10550
10551 rq_repin_lock(this_rq, rf);
10552
10553 return pulled_task;
10554}
10555
83cd4fe2
VP
10556/*
10557 * run_rebalance_domains is triggered when needed from the scheduler tick.
10558 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10559 */
0766f788 10560static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10561{
208cb16b 10562 struct rq *this_rq = this_rq();
6eb57e0d 10563 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10564 CPU_IDLE : CPU_NOT_IDLE;
10565
1e3c88bd 10566 /*
97fb7a0a
IM
10567 * If this CPU has a pending nohz_balance_kick, then do the
10568 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10569 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10570 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10571 * load balance only within the local sched_domain hierarchy
10572 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10573 */
b7031a02
PZ
10574 if (nohz_idle_balance(this_rq, idle))
10575 return;
10576
10577 /* normal load balance */
10578 update_blocked_averages(this_rq->cpu);
d4573c3e 10579 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10580}
10581
1e3c88bd
PZ
10582/*
10583 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10584 */
7caff66f 10585void trigger_load_balance(struct rq *rq)
1e3c88bd 10586{
1e3c88bd 10587 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10588 if (unlikely(on_null_domain(rq)))
10589 return;
10590
10591 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10592 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10593
10594 nohz_balancer_kick(rq);
1e3c88bd
PZ
10595}
10596
0bcdcf28
CE
10597static void rq_online_fair(struct rq *rq)
10598{
10599 update_sysctl();
0e59bdae
KT
10600
10601 update_runtime_enabled(rq);
0bcdcf28
CE
10602}
10603
10604static void rq_offline_fair(struct rq *rq)
10605{
10606 update_sysctl();
a4c96ae3
PB
10607
10608 /* Ensure any throttled groups are reachable by pick_next_task */
10609 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10610}
10611
55e12e5e 10612#endif /* CONFIG_SMP */
e1d1484f 10613
bf0f6f24 10614/*
d84b3131
FW
10615 * scheduler tick hitting a task of our scheduling class.
10616 *
10617 * NOTE: This function can be called remotely by the tick offload that
10618 * goes along full dynticks. Therefore no local assumption can be made
10619 * and everything must be accessed through the @rq and @curr passed in
10620 * parameters.
bf0f6f24 10621 */
8f4d37ec 10622static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10623{
10624 struct cfs_rq *cfs_rq;
10625 struct sched_entity *se = &curr->se;
10626
10627 for_each_sched_entity(se) {
10628 cfs_rq = cfs_rq_of(se);
8f4d37ec 10629 entity_tick(cfs_rq, se, queued);
bf0f6f24 10630 }
18bf2805 10631
b52da86e 10632 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10633 task_tick_numa(rq, curr);
3b1baa64
MR
10634
10635 update_misfit_status(curr, rq);
2802bf3c 10636 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10637}
10638
10639/*
cd29fe6f
PZ
10640 * called on fork with the child task as argument from the parent's context
10641 * - child not yet on the tasklist
10642 * - preemption disabled
bf0f6f24 10643 */
cd29fe6f 10644static void task_fork_fair(struct task_struct *p)
bf0f6f24 10645{
4fc420c9
DN
10646 struct cfs_rq *cfs_rq;
10647 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10648 struct rq *rq = this_rq();
8a8c69c3 10649 struct rq_flags rf;
bf0f6f24 10650
8a8c69c3 10651 rq_lock(rq, &rf);
861d034e
PZ
10652 update_rq_clock(rq);
10653
4fc420c9
DN
10654 cfs_rq = task_cfs_rq(current);
10655 curr = cfs_rq->curr;
e210bffd
PZ
10656 if (curr) {
10657 update_curr(cfs_rq);
b5d9d734 10658 se->vruntime = curr->vruntime;
e210bffd 10659 }
aeb73b04 10660 place_entity(cfs_rq, se, 1);
4d78e7b6 10661
cd29fe6f 10662 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10663 /*
edcb60a3
IM
10664 * Upon rescheduling, sched_class::put_prev_task() will place
10665 * 'current' within the tree based on its new key value.
10666 */
4d78e7b6 10667 swap(curr->vruntime, se->vruntime);
8875125e 10668 resched_curr(rq);
4d78e7b6 10669 }
bf0f6f24 10670
88ec22d3 10671 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10672 rq_unlock(rq, &rf);
bf0f6f24
IM
10673}
10674
cb469845
SR
10675/*
10676 * Priority of the task has changed. Check to see if we preempt
10677 * the current task.
10678 */
da7a735e
PZ
10679static void
10680prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10681{
da0c1e65 10682 if (!task_on_rq_queued(p))
da7a735e
PZ
10683 return;
10684
7c2e8bbd
FW
10685 if (rq->cfs.nr_running == 1)
10686 return;
10687
cb469845
SR
10688 /*
10689 * Reschedule if we are currently running on this runqueue and
10690 * our priority decreased, or if we are not currently running on
10691 * this runqueue and our priority is higher than the current's
10692 */
da7a735e 10693 if (rq->curr == p) {
cb469845 10694 if (p->prio > oldprio)
8875125e 10695 resched_curr(rq);
cb469845 10696 } else
15afe09b 10697 check_preempt_curr(rq, p, 0);
cb469845
SR
10698}
10699
daa59407 10700static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10701{
10702 struct sched_entity *se = &p->se;
da7a735e
PZ
10703
10704 /*
daa59407
BP
10705 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10706 * the dequeue_entity(.flags=0) will already have normalized the
10707 * vruntime.
10708 */
10709 if (p->on_rq)
10710 return true;
10711
10712 /*
10713 * When !on_rq, vruntime of the task has usually NOT been normalized.
10714 * But there are some cases where it has already been normalized:
da7a735e 10715 *
daa59407
BP
10716 * - A forked child which is waiting for being woken up by
10717 * wake_up_new_task().
10718 * - A task which has been woken up by try_to_wake_up() and
10719 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10720 */
d0cdb3ce
SM
10721 if (!se->sum_exec_runtime ||
10722 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10723 return true;
10724
10725 return false;
10726}
10727
09a43ace
VG
10728#ifdef CONFIG_FAIR_GROUP_SCHED
10729/*
10730 * Propagate the changes of the sched_entity across the tg tree to make it
10731 * visible to the root
10732 */
10733static void propagate_entity_cfs_rq(struct sched_entity *se)
10734{
10735 struct cfs_rq *cfs_rq;
10736
10737 /* Start to propagate at parent */
10738 se = se->parent;
10739
10740 for_each_sched_entity(se) {
10741 cfs_rq = cfs_rq_of(se);
10742
10743 if (cfs_rq_throttled(cfs_rq))
10744 break;
10745
88c0616e 10746 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10747 }
10748}
10749#else
10750static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10751#endif
10752
df217913 10753static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10754{
daa59407
BP
10755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10756
9d89c257 10757 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10758 update_load_avg(cfs_rq, se, 0);
a05e8c51 10759 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10760 update_tg_load_avg(cfs_rq, false);
09a43ace 10761 propagate_entity_cfs_rq(se);
da7a735e
PZ
10762}
10763
df217913 10764static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10765{
daa59407 10766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10767
10768#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10769 /*
10770 * Since the real-depth could have been changed (only FAIR
10771 * class maintain depth value), reset depth properly.
10772 */
10773 se->depth = se->parent ? se->parent->depth + 1 : 0;
10774#endif
7855a35a 10775
df217913 10776 /* Synchronize entity with its cfs_rq */
88c0616e 10777 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10778 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 10779 update_tg_load_avg(cfs_rq, false);
09a43ace 10780 propagate_entity_cfs_rq(se);
df217913
VG
10781}
10782
10783static void detach_task_cfs_rq(struct task_struct *p)
10784{
10785 struct sched_entity *se = &p->se;
10786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10787
10788 if (!vruntime_normalized(p)) {
10789 /*
10790 * Fix up our vruntime so that the current sleep doesn't
10791 * cause 'unlimited' sleep bonus.
10792 */
10793 place_entity(cfs_rq, se, 0);
10794 se->vruntime -= cfs_rq->min_vruntime;
10795 }
10796
10797 detach_entity_cfs_rq(se);
10798}
10799
10800static void attach_task_cfs_rq(struct task_struct *p)
10801{
10802 struct sched_entity *se = &p->se;
10803 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10804
10805 attach_entity_cfs_rq(se);
daa59407
BP
10806
10807 if (!vruntime_normalized(p))
10808 se->vruntime += cfs_rq->min_vruntime;
10809}
6efdb105 10810
daa59407
BP
10811static void switched_from_fair(struct rq *rq, struct task_struct *p)
10812{
10813 detach_task_cfs_rq(p);
10814}
10815
10816static void switched_to_fair(struct rq *rq, struct task_struct *p)
10817{
10818 attach_task_cfs_rq(p);
7855a35a 10819
daa59407 10820 if (task_on_rq_queued(p)) {
7855a35a 10821 /*
daa59407
BP
10822 * We were most likely switched from sched_rt, so
10823 * kick off the schedule if running, otherwise just see
10824 * if we can still preempt the current task.
7855a35a 10825 */
daa59407
BP
10826 if (rq->curr == p)
10827 resched_curr(rq);
10828 else
10829 check_preempt_curr(rq, p, 0);
7855a35a 10830 }
cb469845
SR
10831}
10832
83b699ed
SV
10833/* Account for a task changing its policy or group.
10834 *
10835 * This routine is mostly called to set cfs_rq->curr field when a task
10836 * migrates between groups/classes.
10837 */
a0e813f2 10838static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10839{
03b7fad1
PZ
10840 struct sched_entity *se = &p->se;
10841
10842#ifdef CONFIG_SMP
10843 if (task_on_rq_queued(p)) {
10844 /*
10845 * Move the next running task to the front of the list, so our
10846 * cfs_tasks list becomes MRU one.
10847 */
10848 list_move(&se->group_node, &rq->cfs_tasks);
10849 }
10850#endif
83b699ed 10851
ec12cb7f
PT
10852 for_each_sched_entity(se) {
10853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10854
10855 set_next_entity(cfs_rq, se);
10856 /* ensure bandwidth has been allocated on our new cfs_rq */
10857 account_cfs_rq_runtime(cfs_rq, 0);
10858 }
83b699ed
SV
10859}
10860
029632fb
PZ
10861void init_cfs_rq(struct cfs_rq *cfs_rq)
10862{
bfb06889 10863 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10864 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10865#ifndef CONFIG_64BIT
10866 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10867#endif
141965c7 10868#ifdef CONFIG_SMP
2a2f5d4e 10869 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10870#endif
029632fb
PZ
10871}
10872
810b3817 10873#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10874static void task_set_group_fair(struct task_struct *p)
10875{
10876 struct sched_entity *se = &p->se;
10877
10878 set_task_rq(p, task_cpu(p));
10879 se->depth = se->parent ? se->parent->depth + 1 : 0;
10880}
10881
bc54da21 10882static void task_move_group_fair(struct task_struct *p)
810b3817 10883{
daa59407 10884 detach_task_cfs_rq(p);
b2b5ce02 10885 set_task_rq(p, task_cpu(p));
6efdb105
BP
10886
10887#ifdef CONFIG_SMP
10888 /* Tell se's cfs_rq has been changed -- migrated */
10889 p->se.avg.last_update_time = 0;
10890#endif
daa59407 10891 attach_task_cfs_rq(p);
810b3817 10892}
029632fb 10893
ea86cb4b
VG
10894static void task_change_group_fair(struct task_struct *p, int type)
10895{
10896 switch (type) {
10897 case TASK_SET_GROUP:
10898 task_set_group_fair(p);
10899 break;
10900
10901 case TASK_MOVE_GROUP:
10902 task_move_group_fair(p);
10903 break;
10904 }
10905}
10906
029632fb
PZ
10907void free_fair_sched_group(struct task_group *tg)
10908{
10909 int i;
10910
10911 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10912
10913 for_each_possible_cpu(i) {
10914 if (tg->cfs_rq)
10915 kfree(tg->cfs_rq[i]);
6fe1f348 10916 if (tg->se)
029632fb
PZ
10917 kfree(tg->se[i]);
10918 }
10919
10920 kfree(tg->cfs_rq);
10921 kfree(tg->se);
10922}
10923
10924int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10925{
029632fb 10926 struct sched_entity *se;
b7fa30c9 10927 struct cfs_rq *cfs_rq;
029632fb
PZ
10928 int i;
10929
6396bb22 10930 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10931 if (!tg->cfs_rq)
10932 goto err;
6396bb22 10933 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10934 if (!tg->se)
10935 goto err;
10936
10937 tg->shares = NICE_0_LOAD;
10938
10939 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10940
10941 for_each_possible_cpu(i) {
10942 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10943 GFP_KERNEL, cpu_to_node(i));
10944 if (!cfs_rq)
10945 goto err;
10946
10947 se = kzalloc_node(sizeof(struct sched_entity),
10948 GFP_KERNEL, cpu_to_node(i));
10949 if (!se)
10950 goto err_free_rq;
10951
10952 init_cfs_rq(cfs_rq);
10953 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10954 init_entity_runnable_average(se);
029632fb
PZ
10955 }
10956
10957 return 1;
10958
10959err_free_rq:
10960 kfree(cfs_rq);
10961err:
10962 return 0;
10963}
10964
8663e24d
PZ
10965void online_fair_sched_group(struct task_group *tg)
10966{
10967 struct sched_entity *se;
a46d14ec 10968 struct rq_flags rf;
8663e24d
PZ
10969 struct rq *rq;
10970 int i;
10971
10972 for_each_possible_cpu(i) {
10973 rq = cpu_rq(i);
10974 se = tg->se[i];
a46d14ec 10975 rq_lock_irq(rq, &rf);
4126bad6 10976 update_rq_clock(rq);
d0326691 10977 attach_entity_cfs_rq(se);
55e16d30 10978 sync_throttle(tg, i);
a46d14ec 10979 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10980 }
10981}
10982
6fe1f348 10983void unregister_fair_sched_group(struct task_group *tg)
029632fb 10984{
029632fb 10985 unsigned long flags;
6fe1f348
PZ
10986 struct rq *rq;
10987 int cpu;
029632fb 10988
6fe1f348
PZ
10989 for_each_possible_cpu(cpu) {
10990 if (tg->se[cpu])
10991 remove_entity_load_avg(tg->se[cpu]);
029632fb 10992
6fe1f348
PZ
10993 /*
10994 * Only empty task groups can be destroyed; so we can speculatively
10995 * check on_list without danger of it being re-added.
10996 */
10997 if (!tg->cfs_rq[cpu]->on_list)
10998 continue;
10999
11000 rq = cpu_rq(cpu);
11001
11002 raw_spin_lock_irqsave(&rq->lock, flags);
11003 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11004 raw_spin_unlock_irqrestore(&rq->lock, flags);
11005 }
029632fb
PZ
11006}
11007
11008void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11009 struct sched_entity *se, int cpu,
11010 struct sched_entity *parent)
11011{
11012 struct rq *rq = cpu_rq(cpu);
11013
11014 cfs_rq->tg = tg;
11015 cfs_rq->rq = rq;
029632fb
PZ
11016 init_cfs_rq_runtime(cfs_rq);
11017
11018 tg->cfs_rq[cpu] = cfs_rq;
11019 tg->se[cpu] = se;
11020
11021 /* se could be NULL for root_task_group */
11022 if (!se)
11023 return;
11024
fed14d45 11025 if (!parent) {
029632fb 11026 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11027 se->depth = 0;
11028 } else {
029632fb 11029 se->cfs_rq = parent->my_q;
fed14d45
PZ
11030 se->depth = parent->depth + 1;
11031 }
029632fb
PZ
11032
11033 se->my_q = cfs_rq;
0ac9b1c2
PT
11034 /* guarantee group entities always have weight */
11035 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11036 se->parent = parent;
11037}
11038
11039static DEFINE_MUTEX(shares_mutex);
11040
11041int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11042{
11043 int i;
029632fb
PZ
11044
11045 /*
11046 * We can't change the weight of the root cgroup.
11047 */
11048 if (!tg->se[0])
11049 return -EINVAL;
11050
11051 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11052
11053 mutex_lock(&shares_mutex);
11054 if (tg->shares == shares)
11055 goto done;
11056
11057 tg->shares = shares;
11058 for_each_possible_cpu(i) {
11059 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11060 struct sched_entity *se = tg->se[i];
11061 struct rq_flags rf;
029632fb 11062
029632fb 11063 /* Propagate contribution to hierarchy */
8a8c69c3 11064 rq_lock_irqsave(rq, &rf);
71b1da46 11065 update_rq_clock(rq);
89ee048f 11066 for_each_sched_entity(se) {
88c0616e 11067 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11068 update_cfs_group(se);
89ee048f 11069 }
8a8c69c3 11070 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11071 }
11072
11073done:
11074 mutex_unlock(&shares_mutex);
11075 return 0;
11076}
11077#else /* CONFIG_FAIR_GROUP_SCHED */
11078
11079void free_fair_sched_group(struct task_group *tg) { }
11080
11081int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11082{
11083 return 1;
11084}
11085
8663e24d
PZ
11086void online_fair_sched_group(struct task_group *tg) { }
11087
6fe1f348 11088void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11089
11090#endif /* CONFIG_FAIR_GROUP_SCHED */
11091
810b3817 11092
6d686f45 11093static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11094{
11095 struct sched_entity *se = &task->se;
0d721cea
PW
11096 unsigned int rr_interval = 0;
11097
11098 /*
11099 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11100 * idle runqueue:
11101 */
0d721cea 11102 if (rq->cfs.load.weight)
a59f4e07 11103 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11104
11105 return rr_interval;
11106}
11107
bf0f6f24
IM
11108/*
11109 * All the scheduling class methods:
11110 */
029632fb 11111const struct sched_class fair_sched_class = {
5522d5d5 11112 .next = &idle_sched_class,
bf0f6f24
IM
11113 .enqueue_task = enqueue_task_fair,
11114 .dequeue_task = dequeue_task_fair,
11115 .yield_task = yield_task_fair,
d95f4122 11116 .yield_to_task = yield_to_task_fair,
bf0f6f24 11117
2e09bf55 11118 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11119
98c2f700 11120 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11121 .put_prev_task = put_prev_task_fair,
03b7fad1 11122 .set_next_task = set_next_task_fair,
bf0f6f24 11123
681f3e68 11124#ifdef CONFIG_SMP
6e2df058 11125 .balance = balance_fair,
4ce72a2c 11126 .select_task_rq = select_task_rq_fair,
0a74bef8 11127 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11128
0bcdcf28
CE
11129 .rq_online = rq_online_fair,
11130 .rq_offline = rq_offline_fair,
88ec22d3 11131
12695578 11132 .task_dead = task_dead_fair,
c5b28038 11133 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11134#endif
bf0f6f24 11135
bf0f6f24 11136 .task_tick = task_tick_fair,
cd29fe6f 11137 .task_fork = task_fork_fair,
cb469845
SR
11138
11139 .prio_changed = prio_changed_fair,
da7a735e 11140 .switched_from = switched_from_fair,
cb469845 11141 .switched_to = switched_to_fair,
810b3817 11142
0d721cea
PW
11143 .get_rr_interval = get_rr_interval_fair,
11144
6e998916
SG
11145 .update_curr = update_curr_fair,
11146
810b3817 11147#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11148 .task_change_group = task_change_group_fair,
810b3817 11149#endif
982d9cdc
PB
11150
11151#ifdef CONFIG_UCLAMP_TASK
11152 .uclamp_enabled = 1,
11153#endif
bf0f6f24
IM
11154};
11155
11156#ifdef CONFIG_SCHED_DEBUG
029632fb 11157void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11158{
039ae8bc 11159 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11160
5973e5b9 11161 rcu_read_lock();
039ae8bc 11162 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11163 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11164 rcu_read_unlock();
bf0f6f24 11165}
397f2378
SD
11166
11167#ifdef CONFIG_NUMA_BALANCING
11168void show_numa_stats(struct task_struct *p, struct seq_file *m)
11169{
11170 int node;
11171 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11172 struct numa_group *ng;
397f2378 11173
cb361d8c
JH
11174 rcu_read_lock();
11175 ng = rcu_dereference(p->numa_group);
397f2378
SD
11176 for_each_online_node(node) {
11177 if (p->numa_faults) {
11178 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11179 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11180 }
cb361d8c
JH
11181 if (ng) {
11182 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11183 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11184 }
11185 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11186 }
cb361d8c 11187 rcu_read_unlock();
397f2378
SD
11188}
11189#endif /* CONFIG_NUMA_BALANCING */
11190#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11191
11192__init void init_sched_fair_class(void)
11193{
11194#ifdef CONFIG_SMP
11195 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11196
3451d024 11197#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11198 nohz.next_balance = jiffies;
f643ea22 11199 nohz.next_blocked = jiffies;
029632fb 11200 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11201#endif
11202#endif /* SMP */
11203
11204}
3c93a0c0
QY
11205
11206/*
11207 * Helper functions to facilitate extracting info from tracepoints.
11208 */
11209
11210const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11211{
11212#ifdef CONFIG_SMP
11213 return cfs_rq ? &cfs_rq->avg : NULL;
11214#else
11215 return NULL;
11216#endif
11217}
11218EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11219
11220char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11221{
11222 if (!cfs_rq) {
11223 if (str)
11224 strlcpy(str, "(null)", len);
11225 else
11226 return NULL;
11227 }
11228
11229 cfs_rq_tg_path(cfs_rq, str, len);
11230 return str;
11231}
11232EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11233
11234int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11235{
11236 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11237}
11238EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11239
11240const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11241{
11242#ifdef CONFIG_SMP
11243 return rq ? &rq->avg_rt : NULL;
11244#else
11245 return NULL;
11246#endif
11247}
11248EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11249
11250const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11251{
11252#ifdef CONFIG_SMP
11253 return rq ? &rq->avg_dl : NULL;
11254#else
11255 return NULL;
11256#endif
11257}
11258EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11259
11260const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11261{
11262#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11263 return rq ? &rq->avg_irq : NULL;
11264#else
11265 return NULL;
11266#endif
11267}
11268EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11269
11270int sched_trace_rq_cpu(struct rq *rq)
11271{
11272 return rq ? cpu_of(rq) : -1;
11273}
11274EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11275
11276const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11277{
11278#ifdef CONFIG_SMP
11279 return rd ? rd->span : NULL;
11280#else
11281 return NULL;
11282#endif
11283}
11284EXPORT_SYMBOL_GPL(sched_trace_rd_span);