sched/deadline: Kill task_struct->pi_top_task
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
5ef20ca1 1065 ns->task_capacity =
ca8ce3d0 1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
28a21745 1098static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1099 struct task_numa_env *env)
1100{
1101 long imb, old_imb;
28a21745
RR
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
28a21745
RR
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
28a21745
RR
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
e63da036
RR
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
28a21745
RR
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1137
1138 /* Would this change make things worse? */
1662867a 1139 return (imb > old_imb);
e63da036
RR
1140}
1141
fb13c7ee
MG
1142/*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
887c290e
RR
1148static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
fb13c7ee
MG
1150{
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
6dc1a672 1154 struct task_group *tg;
28a21745 1155 long src_load, dst_load;
fb13c7ee 1156 long load;
1c5d3eb3 1157 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1158 long moveimp = imp;
fb13c7ee
MG
1159
1160 rcu_read_lock();
1161 cur = ACCESS_ONCE(dst_rq->curr);
1162 if (cur->pid == 0) /* idle */
1163 cur = NULL;
1164
1165 /*
1166 * "imp" is the fault differential for the source task between the
1167 * source and destination node. Calculate the total differential for
1168 * the source task and potential destination task. The more negative
1169 * the value is, the more rmeote accesses that would be expected to
1170 * be incurred if the tasks were swapped.
1171 */
1172 if (cur) {
1173 /* Skip this swap candidate if cannot move to the source cpu */
1174 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1175 goto unlock;
1176
887c290e
RR
1177 /*
1178 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1179 * in any group then look only at task weights.
887c290e 1180 */
ca28aa53 1181 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1182 imp = taskimp + task_weight(cur, env->src_nid) -
1183 task_weight(cur, env->dst_nid);
ca28aa53
RR
1184 /*
1185 * Add some hysteresis to prevent swapping the
1186 * tasks within a group over tiny differences.
1187 */
1188 if (cur->numa_group)
1189 imp -= imp/16;
887c290e 1190 } else {
ca28aa53
RR
1191 /*
1192 * Compare the group weights. If a task is all by
1193 * itself (not part of a group), use the task weight
1194 * instead.
1195 */
ca28aa53
RR
1196 if (cur->numa_group)
1197 imp += group_weight(cur, env->src_nid) -
1198 group_weight(cur, env->dst_nid);
1199 else
1200 imp += task_weight(cur, env->src_nid) -
1201 task_weight(cur, env->dst_nid);
887c290e 1202 }
fb13c7ee
MG
1203 }
1204
0132c3e1 1205 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1206 goto unlock;
1207
1208 if (!cur) {
1209 /* Is there capacity at our destination? */
1b6a7495
NP
1210 if (env->src_stats.has_free_capacity &&
1211 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1212 goto unlock;
1213
1214 goto balance;
1215 }
1216
1217 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1218 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1219 dst_rq->nr_running == 1)
fb13c7ee
MG
1220 goto assign;
1221
1222 /*
1223 * In the overloaded case, try and keep the load balanced.
1224 */
1225balance:
6dc1a672
RR
1226 src_load = env->src_stats.load;
1227 dst_load = env->dst_stats.load;
1228
1229 /* Calculate the effect of moving env->p from src to dst. */
1230 load = env->p->se.load.weight;
1231 tg = task_group(env->p);
1232 src_load += effective_load(tg, env->src_cpu, -load, -load);
1233 dst_load += effective_load(tg, env->dst_cpu, load, load);
fb13c7ee 1234
0132c3e1
RR
1235 if (moveimp > imp && moveimp > env->best_imp) {
1236 /*
1237 * If the improvement from just moving env->p direction is
1238 * better than swapping tasks around, check if a move is
1239 * possible. Store a slightly smaller score than moveimp,
1240 * so an actually idle CPU will win.
1241 */
1242 if (!load_too_imbalanced(src_load, dst_load, env)) {
1243 imp = moveimp - 1;
1244 cur = NULL;
1245 goto assign;
1246 }
1247 }
1248
1249 if (imp <= env->best_imp)
1250 goto unlock;
1251
fb13c7ee 1252 if (cur) {
6dc1a672
RR
1253 /* Cur moves in the opposite direction. */
1254 load = cur->se.load.weight;
1255 tg = task_group(cur);
1256 src_load += effective_load(tg, env->src_cpu, load, load);
1257 dst_load += effective_load(tg, env->dst_cpu, -load, -load);
fb13c7ee
MG
1258 }
1259
28a21745 1260 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1261 goto unlock;
1262
1263assign:
1264 task_numa_assign(env, cur, imp);
1265unlock:
1266 rcu_read_unlock();
1267}
1268
887c290e
RR
1269static void task_numa_find_cpu(struct task_numa_env *env,
1270 long taskimp, long groupimp)
2c8a50aa
MG
1271{
1272 int cpu;
1273
1274 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1275 /* Skip this CPU if the source task cannot migrate */
1276 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1277 continue;
1278
1279 env->dst_cpu = cpu;
887c290e 1280 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1281 }
1282}
1283
58d081b5
MG
1284static int task_numa_migrate(struct task_struct *p)
1285{
58d081b5
MG
1286 struct task_numa_env env = {
1287 .p = p,
fb13c7ee 1288
58d081b5 1289 .src_cpu = task_cpu(p),
b32e86b4 1290 .src_nid = task_node(p),
fb13c7ee
MG
1291
1292 .imbalance_pct = 112,
1293
1294 .best_task = NULL,
1295 .best_imp = 0,
1296 .best_cpu = -1
58d081b5
MG
1297 };
1298 struct sched_domain *sd;
887c290e 1299 unsigned long taskweight, groupweight;
2c8a50aa 1300 int nid, ret;
887c290e 1301 long taskimp, groupimp;
e6628d5b 1302
58d081b5 1303 /*
fb13c7ee
MG
1304 * Pick the lowest SD_NUMA domain, as that would have the smallest
1305 * imbalance and would be the first to start moving tasks about.
1306 *
1307 * And we want to avoid any moving of tasks about, as that would create
1308 * random movement of tasks -- counter the numa conditions we're trying
1309 * to satisfy here.
58d081b5
MG
1310 */
1311 rcu_read_lock();
fb13c7ee 1312 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1313 if (sd)
1314 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1315 rcu_read_unlock();
1316
46a73e8a
RR
1317 /*
1318 * Cpusets can break the scheduler domain tree into smaller
1319 * balance domains, some of which do not cross NUMA boundaries.
1320 * Tasks that are "trapped" in such domains cannot be migrated
1321 * elsewhere, so there is no point in (re)trying.
1322 */
1323 if (unlikely(!sd)) {
de1b301a 1324 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1325 return -EINVAL;
1326 }
1327
887c290e
RR
1328 taskweight = task_weight(p, env.src_nid);
1329 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1330 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1331 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1332 taskimp = task_weight(p, env.dst_nid) - taskweight;
1333 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1334 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1335
a43455a1
RR
1336 /* Try to find a spot on the preferred nid. */
1337 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1338
1339 /* No space available on the preferred nid. Look elsewhere. */
1340 if (env.best_cpu == -1) {
2c8a50aa
MG
1341 for_each_online_node(nid) {
1342 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1343 continue;
58d081b5 1344
83e1d2cd 1345 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1346 taskimp = task_weight(p, nid) - taskweight;
1347 groupimp = group_weight(p, nid) - groupweight;
1348 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1349 continue;
1350
2c8a50aa
MG
1351 env.dst_nid = nid;
1352 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1353 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1354 }
1355 }
1356
68d1b02a
RR
1357 /*
1358 * If the task is part of a workload that spans multiple NUMA nodes,
1359 * and is migrating into one of the workload's active nodes, remember
1360 * this node as the task's preferred numa node, so the workload can
1361 * settle down.
1362 * A task that migrated to a second choice node will be better off
1363 * trying for a better one later. Do not set the preferred node here.
1364 */
db015dae
RR
1365 if (p->numa_group) {
1366 if (env.best_cpu == -1)
1367 nid = env.src_nid;
1368 else
1369 nid = env.dst_nid;
1370
1371 if (node_isset(nid, p->numa_group->active_nodes))
1372 sched_setnuma(p, env.dst_nid);
1373 }
1374
1375 /* No better CPU than the current one was found. */
1376 if (env.best_cpu == -1)
1377 return -EAGAIN;
0ec8aa00 1378
04bb2f94
RR
1379 /*
1380 * Reset the scan period if the task is being rescheduled on an
1381 * alternative node to recheck if the tasks is now properly placed.
1382 */
1383 p->numa_scan_period = task_scan_min(p);
1384
fb13c7ee 1385 if (env.best_task == NULL) {
286549dc
MG
1386 ret = migrate_task_to(p, env.best_cpu);
1387 if (ret != 0)
1388 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1389 return ret;
1390 }
1391
1392 ret = migrate_swap(p, env.best_task);
286549dc
MG
1393 if (ret != 0)
1394 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1395 put_task_struct(env.best_task);
1396 return ret;
e6628d5b
MG
1397}
1398
6b9a7460
MG
1399/* Attempt to migrate a task to a CPU on the preferred node. */
1400static void numa_migrate_preferred(struct task_struct *p)
1401{
5085e2a3
RR
1402 unsigned long interval = HZ;
1403
2739d3ee 1404 /* This task has no NUMA fault statistics yet */
ff1df896 1405 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1406 return;
1407
2739d3ee 1408 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1409 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1410 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1411
1412 /* Success if task is already running on preferred CPU */
de1b301a 1413 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1414 return;
1415
1416 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1417 task_numa_migrate(p);
6b9a7460
MG
1418}
1419
20e07dea
RR
1420/*
1421 * Find the nodes on which the workload is actively running. We do this by
1422 * tracking the nodes from which NUMA hinting faults are triggered. This can
1423 * be different from the set of nodes where the workload's memory is currently
1424 * located.
1425 *
1426 * The bitmask is used to make smarter decisions on when to do NUMA page
1427 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1428 * are added when they cause over 6/16 of the maximum number of faults, but
1429 * only removed when they drop below 3/16.
1430 */
1431static void update_numa_active_node_mask(struct numa_group *numa_group)
1432{
1433 unsigned long faults, max_faults = 0;
1434 int nid;
1435
1436 for_each_online_node(nid) {
1437 faults = group_faults_cpu(numa_group, nid);
1438 if (faults > max_faults)
1439 max_faults = faults;
1440 }
1441
1442 for_each_online_node(nid) {
1443 faults = group_faults_cpu(numa_group, nid);
1444 if (!node_isset(nid, numa_group->active_nodes)) {
1445 if (faults > max_faults * 6 / 16)
1446 node_set(nid, numa_group->active_nodes);
1447 } else if (faults < max_faults * 3 / 16)
1448 node_clear(nid, numa_group->active_nodes);
1449 }
1450}
1451
04bb2f94
RR
1452/*
1453 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1454 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1455 * period will be for the next scan window. If local/(local+remote) ratio is
1456 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1457 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1458 */
1459#define NUMA_PERIOD_SLOTS 10
a22b4b01 1460#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1461
1462/*
1463 * Increase the scan period (slow down scanning) if the majority of
1464 * our memory is already on our local node, or if the majority of
1465 * the page accesses are shared with other processes.
1466 * Otherwise, decrease the scan period.
1467 */
1468static void update_task_scan_period(struct task_struct *p,
1469 unsigned long shared, unsigned long private)
1470{
1471 unsigned int period_slot;
1472 int ratio;
1473 int diff;
1474
1475 unsigned long remote = p->numa_faults_locality[0];
1476 unsigned long local = p->numa_faults_locality[1];
1477
1478 /*
1479 * If there were no record hinting faults then either the task is
1480 * completely idle or all activity is areas that are not of interest
1481 * to automatic numa balancing. Scan slower
1482 */
1483 if (local + shared == 0) {
1484 p->numa_scan_period = min(p->numa_scan_period_max,
1485 p->numa_scan_period << 1);
1486
1487 p->mm->numa_next_scan = jiffies +
1488 msecs_to_jiffies(p->numa_scan_period);
1489
1490 return;
1491 }
1492
1493 /*
1494 * Prepare to scale scan period relative to the current period.
1495 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1496 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1497 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1498 */
1499 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1500 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1501 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1502 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1503 if (!slot)
1504 slot = 1;
1505 diff = slot * period_slot;
1506 } else {
1507 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1508
1509 /*
1510 * Scale scan rate increases based on sharing. There is an
1511 * inverse relationship between the degree of sharing and
1512 * the adjustment made to the scanning period. Broadly
1513 * speaking the intent is that there is little point
1514 * scanning faster if shared accesses dominate as it may
1515 * simply bounce migrations uselessly
1516 */
04bb2f94
RR
1517 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1518 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1519 }
1520
1521 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1522 task_scan_min(p), task_scan_max(p));
1523 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1524}
1525
7e2703e6
RR
1526/*
1527 * Get the fraction of time the task has been running since the last
1528 * NUMA placement cycle. The scheduler keeps similar statistics, but
1529 * decays those on a 32ms period, which is orders of magnitude off
1530 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1531 * stats only if the task is so new there are no NUMA statistics yet.
1532 */
1533static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1534{
1535 u64 runtime, delta, now;
1536 /* Use the start of this time slice to avoid calculations. */
1537 now = p->se.exec_start;
1538 runtime = p->se.sum_exec_runtime;
1539
1540 if (p->last_task_numa_placement) {
1541 delta = runtime - p->last_sum_exec_runtime;
1542 *period = now - p->last_task_numa_placement;
1543 } else {
1544 delta = p->se.avg.runnable_avg_sum;
1545 *period = p->se.avg.runnable_avg_period;
1546 }
1547
1548 p->last_sum_exec_runtime = runtime;
1549 p->last_task_numa_placement = now;
1550
1551 return delta;
1552}
1553
cbee9f88
PZ
1554static void task_numa_placement(struct task_struct *p)
1555{
83e1d2cd
MG
1556 int seq, nid, max_nid = -1, max_group_nid = -1;
1557 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1558 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1559 unsigned long total_faults;
1560 u64 runtime, period;
7dbd13ed 1561 spinlock_t *group_lock = NULL;
cbee9f88 1562
2832bc19 1563 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1564 if (p->numa_scan_seq == seq)
1565 return;
1566 p->numa_scan_seq = seq;
598f0ec0 1567 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1568
7e2703e6
RR
1569 total_faults = p->numa_faults_locality[0] +
1570 p->numa_faults_locality[1];
1571 runtime = numa_get_avg_runtime(p, &period);
1572
7dbd13ed
MG
1573 /* If the task is part of a group prevent parallel updates to group stats */
1574 if (p->numa_group) {
1575 group_lock = &p->numa_group->lock;
60e69eed 1576 spin_lock_irq(group_lock);
7dbd13ed
MG
1577 }
1578
688b7585
MG
1579 /* Find the node with the highest number of faults */
1580 for_each_online_node(nid) {
83e1d2cd 1581 unsigned long faults = 0, group_faults = 0;
ac8e895b 1582 int priv, i;
745d6147 1583
be1e4e76 1584 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1585 long diff, f_diff, f_weight;
8c8a743c 1586
ac8e895b 1587 i = task_faults_idx(nid, priv);
745d6147 1588
ac8e895b 1589 /* Decay existing window, copy faults since last scan */
35664fd4 1590 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1591 fault_types[priv] += p->numa_faults_buffer_memory[i];
1592 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1593
7e2703e6
RR
1594 /*
1595 * Normalize the faults_from, so all tasks in a group
1596 * count according to CPU use, instead of by the raw
1597 * number of faults. Tasks with little runtime have
1598 * little over-all impact on throughput, and thus their
1599 * faults are less important.
1600 */
1601 f_weight = div64_u64(runtime << 16, period + 1);
1602 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1603 (total_faults + 1);
35664fd4 1604 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1605 p->numa_faults_buffer_cpu[i] = 0;
1606
35664fd4
RR
1607 p->numa_faults_memory[i] += diff;
1608 p->numa_faults_cpu[i] += f_diff;
ff1df896 1609 faults += p->numa_faults_memory[i];
83e1d2cd 1610 p->total_numa_faults += diff;
8c8a743c
PZ
1611 if (p->numa_group) {
1612 /* safe because we can only change our own group */
989348b5 1613 p->numa_group->faults[i] += diff;
50ec8a40 1614 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1615 p->numa_group->total_faults += diff;
1616 group_faults += p->numa_group->faults[i];
8c8a743c 1617 }
ac8e895b
MG
1618 }
1619
688b7585
MG
1620 if (faults > max_faults) {
1621 max_faults = faults;
1622 max_nid = nid;
1623 }
83e1d2cd
MG
1624
1625 if (group_faults > max_group_faults) {
1626 max_group_faults = group_faults;
1627 max_group_nid = nid;
1628 }
1629 }
1630
04bb2f94
RR
1631 update_task_scan_period(p, fault_types[0], fault_types[1]);
1632
7dbd13ed 1633 if (p->numa_group) {
20e07dea 1634 update_numa_active_node_mask(p->numa_group);
60e69eed 1635 spin_unlock_irq(group_lock);
f0b8a4af 1636 max_nid = max_group_nid;
688b7585
MG
1637 }
1638
bb97fc31
RR
1639 if (max_faults) {
1640 /* Set the new preferred node */
1641 if (max_nid != p->numa_preferred_nid)
1642 sched_setnuma(p, max_nid);
1643
1644 if (task_node(p) != p->numa_preferred_nid)
1645 numa_migrate_preferred(p);
3a7053b3 1646 }
cbee9f88
PZ
1647}
1648
8c8a743c
PZ
1649static inline int get_numa_group(struct numa_group *grp)
1650{
1651 return atomic_inc_not_zero(&grp->refcount);
1652}
1653
1654static inline void put_numa_group(struct numa_group *grp)
1655{
1656 if (atomic_dec_and_test(&grp->refcount))
1657 kfree_rcu(grp, rcu);
1658}
1659
3e6a9418
MG
1660static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1661 int *priv)
8c8a743c
PZ
1662{
1663 struct numa_group *grp, *my_grp;
1664 struct task_struct *tsk;
1665 bool join = false;
1666 int cpu = cpupid_to_cpu(cpupid);
1667 int i;
1668
1669 if (unlikely(!p->numa_group)) {
1670 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1671 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1672
1673 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1674 if (!grp)
1675 return;
1676
1677 atomic_set(&grp->refcount, 1);
1678 spin_lock_init(&grp->lock);
1679 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1680 grp->gid = p->pid;
50ec8a40 1681 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1682 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1683 nr_node_ids;
8c8a743c 1684
20e07dea
RR
1685 node_set(task_node(current), grp->active_nodes);
1686
be1e4e76 1687 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1688 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1689
989348b5 1690 grp->total_faults = p->total_numa_faults;
83e1d2cd 1691
8c8a743c
PZ
1692 list_add(&p->numa_entry, &grp->task_list);
1693 grp->nr_tasks++;
1694 rcu_assign_pointer(p->numa_group, grp);
1695 }
1696
1697 rcu_read_lock();
1698 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1699
1700 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1701 goto no_join;
8c8a743c
PZ
1702
1703 grp = rcu_dereference(tsk->numa_group);
1704 if (!grp)
3354781a 1705 goto no_join;
8c8a743c
PZ
1706
1707 my_grp = p->numa_group;
1708 if (grp == my_grp)
3354781a 1709 goto no_join;
8c8a743c
PZ
1710
1711 /*
1712 * Only join the other group if its bigger; if we're the bigger group,
1713 * the other task will join us.
1714 */
1715 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1716 goto no_join;
8c8a743c
PZ
1717
1718 /*
1719 * Tie-break on the grp address.
1720 */
1721 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1722 goto no_join;
8c8a743c 1723
dabe1d99
RR
1724 /* Always join threads in the same process. */
1725 if (tsk->mm == current->mm)
1726 join = true;
1727
1728 /* Simple filter to avoid false positives due to PID collisions */
1729 if (flags & TNF_SHARED)
1730 join = true;
8c8a743c 1731
3e6a9418
MG
1732 /* Update priv based on whether false sharing was detected */
1733 *priv = !join;
1734
dabe1d99 1735 if (join && !get_numa_group(grp))
3354781a 1736 goto no_join;
8c8a743c 1737
8c8a743c
PZ
1738 rcu_read_unlock();
1739
1740 if (!join)
1741 return;
1742
60e69eed
MG
1743 BUG_ON(irqs_disabled());
1744 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1745
be1e4e76 1746 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1747 my_grp->faults[i] -= p->numa_faults_memory[i];
1748 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1749 }
989348b5
MG
1750 my_grp->total_faults -= p->total_numa_faults;
1751 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1752
1753 list_move(&p->numa_entry, &grp->task_list);
1754 my_grp->nr_tasks--;
1755 grp->nr_tasks++;
1756
1757 spin_unlock(&my_grp->lock);
60e69eed 1758 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1759
1760 rcu_assign_pointer(p->numa_group, grp);
1761
1762 put_numa_group(my_grp);
3354781a
PZ
1763 return;
1764
1765no_join:
1766 rcu_read_unlock();
1767 return;
8c8a743c
PZ
1768}
1769
1770void task_numa_free(struct task_struct *p)
1771{
1772 struct numa_group *grp = p->numa_group;
ff1df896 1773 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1774 unsigned long flags;
1775 int i;
8c8a743c
PZ
1776
1777 if (grp) {
e9dd685c 1778 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1779 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1780 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1781 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1782
8c8a743c
PZ
1783 list_del(&p->numa_entry);
1784 grp->nr_tasks--;
e9dd685c 1785 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1786 rcu_assign_pointer(p->numa_group, NULL);
1787 put_numa_group(grp);
1788 }
1789
ff1df896
RR
1790 p->numa_faults_memory = NULL;
1791 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1792 p->numa_faults_cpu= NULL;
1793 p->numa_faults_buffer_cpu = NULL;
82727018 1794 kfree(numa_faults);
8c8a743c
PZ
1795}
1796
cbee9f88
PZ
1797/*
1798 * Got a PROT_NONE fault for a page on @node.
1799 */
58b46da3 1800void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1801{
1802 struct task_struct *p = current;
6688cc05 1803 bool migrated = flags & TNF_MIGRATED;
58b46da3 1804 int cpu_node = task_node(current);
792568ec 1805 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1806 int priv;
cbee9f88 1807
10e84b97 1808 if (!numabalancing_enabled)
1a687c2e
MG
1809 return;
1810
9ff1d9ff
MG
1811 /* for example, ksmd faulting in a user's mm */
1812 if (!p->mm)
1813 return;
1814
82727018
RR
1815 /* Do not worry about placement if exiting */
1816 if (p->state == TASK_DEAD)
1817 return;
1818
f809ca9a 1819 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1820 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1821 int size = sizeof(*p->numa_faults_memory) *
1822 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1823
be1e4e76 1824 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1825 if (!p->numa_faults_memory)
f809ca9a 1826 return;
745d6147 1827
ff1df896 1828 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1829 /*
1830 * The averaged statistics, shared & private, memory & cpu,
1831 * occupy the first half of the array. The second half of the
1832 * array is for current counters, which are averaged into the
1833 * first set by task_numa_placement.
1834 */
50ec8a40
RR
1835 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1836 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1837 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1838 p->total_numa_faults = 0;
04bb2f94 1839 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1840 }
cbee9f88 1841
8c8a743c
PZ
1842 /*
1843 * First accesses are treated as private, otherwise consider accesses
1844 * to be private if the accessing pid has not changed
1845 */
1846 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1847 priv = 1;
1848 } else {
1849 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1850 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1851 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1852 }
1853
792568ec
RR
1854 /*
1855 * If a workload spans multiple NUMA nodes, a shared fault that
1856 * occurs wholly within the set of nodes that the workload is
1857 * actively using should be counted as local. This allows the
1858 * scan rate to slow down when a workload has settled down.
1859 */
1860 if (!priv && !local && p->numa_group &&
1861 node_isset(cpu_node, p->numa_group->active_nodes) &&
1862 node_isset(mem_node, p->numa_group->active_nodes))
1863 local = 1;
1864
cbee9f88 1865 task_numa_placement(p);
f809ca9a 1866
2739d3ee
RR
1867 /*
1868 * Retry task to preferred node migration periodically, in case it
1869 * case it previously failed, or the scheduler moved us.
1870 */
1871 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1872 numa_migrate_preferred(p);
1873
b32e86b4
IM
1874 if (migrated)
1875 p->numa_pages_migrated += pages;
1876
58b46da3
RR
1877 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1878 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1879 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1880}
1881
6e5fb223
PZ
1882static void reset_ptenuma_scan(struct task_struct *p)
1883{
1884 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1885 p->mm->numa_scan_offset = 0;
1886}
1887
cbee9f88
PZ
1888/*
1889 * The expensive part of numa migration is done from task_work context.
1890 * Triggered from task_tick_numa().
1891 */
1892void task_numa_work(struct callback_head *work)
1893{
1894 unsigned long migrate, next_scan, now = jiffies;
1895 struct task_struct *p = current;
1896 struct mm_struct *mm = p->mm;
6e5fb223 1897 struct vm_area_struct *vma;
9f40604c 1898 unsigned long start, end;
598f0ec0 1899 unsigned long nr_pte_updates = 0;
9f40604c 1900 long pages;
cbee9f88
PZ
1901
1902 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1903
1904 work->next = work; /* protect against double add */
1905 /*
1906 * Who cares about NUMA placement when they're dying.
1907 *
1908 * NOTE: make sure not to dereference p->mm before this check,
1909 * exit_task_work() happens _after_ exit_mm() so we could be called
1910 * without p->mm even though we still had it when we enqueued this
1911 * work.
1912 */
1913 if (p->flags & PF_EXITING)
1914 return;
1915
930aa174 1916 if (!mm->numa_next_scan) {
7e8d16b6
MG
1917 mm->numa_next_scan = now +
1918 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1919 }
1920
cbee9f88
PZ
1921 /*
1922 * Enforce maximal scan/migration frequency..
1923 */
1924 migrate = mm->numa_next_scan;
1925 if (time_before(now, migrate))
1926 return;
1927
598f0ec0
MG
1928 if (p->numa_scan_period == 0) {
1929 p->numa_scan_period_max = task_scan_max(p);
1930 p->numa_scan_period = task_scan_min(p);
1931 }
cbee9f88 1932
fb003b80 1933 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1934 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1935 return;
1936
19a78d11
PZ
1937 /*
1938 * Delay this task enough that another task of this mm will likely win
1939 * the next time around.
1940 */
1941 p->node_stamp += 2 * TICK_NSEC;
1942
9f40604c
MG
1943 start = mm->numa_scan_offset;
1944 pages = sysctl_numa_balancing_scan_size;
1945 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1946 if (!pages)
1947 return;
cbee9f88 1948
6e5fb223 1949 down_read(&mm->mmap_sem);
9f40604c 1950 vma = find_vma(mm, start);
6e5fb223
PZ
1951 if (!vma) {
1952 reset_ptenuma_scan(p);
9f40604c 1953 start = 0;
6e5fb223
PZ
1954 vma = mm->mmap;
1955 }
9f40604c 1956 for (; vma; vma = vma->vm_next) {
fc314724 1957 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1958 continue;
1959
4591ce4f
MG
1960 /*
1961 * Shared library pages mapped by multiple processes are not
1962 * migrated as it is expected they are cache replicated. Avoid
1963 * hinting faults in read-only file-backed mappings or the vdso
1964 * as migrating the pages will be of marginal benefit.
1965 */
1966 if (!vma->vm_mm ||
1967 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1968 continue;
1969
3c67f474
MG
1970 /*
1971 * Skip inaccessible VMAs to avoid any confusion between
1972 * PROT_NONE and NUMA hinting ptes
1973 */
1974 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1975 continue;
4591ce4f 1976
9f40604c
MG
1977 do {
1978 start = max(start, vma->vm_start);
1979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1980 end = min(end, vma->vm_end);
598f0ec0
MG
1981 nr_pte_updates += change_prot_numa(vma, start, end);
1982
1983 /*
1984 * Scan sysctl_numa_balancing_scan_size but ensure that
1985 * at least one PTE is updated so that unused virtual
1986 * address space is quickly skipped.
1987 */
1988 if (nr_pte_updates)
1989 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1990
9f40604c
MG
1991 start = end;
1992 if (pages <= 0)
1993 goto out;
3cf1962c
RR
1994
1995 cond_resched();
9f40604c 1996 } while (end != vma->vm_end);
cbee9f88 1997 }
6e5fb223 1998
9f40604c 1999out:
6e5fb223 2000 /*
c69307d5
PZ
2001 * It is possible to reach the end of the VMA list but the last few
2002 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2003 * would find the !migratable VMA on the next scan but not reset the
2004 * scanner to the start so check it now.
6e5fb223
PZ
2005 */
2006 if (vma)
9f40604c 2007 mm->numa_scan_offset = start;
6e5fb223
PZ
2008 else
2009 reset_ptenuma_scan(p);
2010 up_read(&mm->mmap_sem);
cbee9f88
PZ
2011}
2012
2013/*
2014 * Drive the periodic memory faults..
2015 */
2016void task_tick_numa(struct rq *rq, struct task_struct *curr)
2017{
2018 struct callback_head *work = &curr->numa_work;
2019 u64 period, now;
2020
2021 /*
2022 * We don't care about NUMA placement if we don't have memory.
2023 */
2024 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2025 return;
2026
2027 /*
2028 * Using runtime rather than walltime has the dual advantage that
2029 * we (mostly) drive the selection from busy threads and that the
2030 * task needs to have done some actual work before we bother with
2031 * NUMA placement.
2032 */
2033 now = curr->se.sum_exec_runtime;
2034 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2035
2036 if (now - curr->node_stamp > period) {
4b96a29b 2037 if (!curr->node_stamp)
598f0ec0 2038 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2039 curr->node_stamp += period;
cbee9f88
PZ
2040
2041 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2042 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2043 task_work_add(curr, work, true);
2044 }
2045 }
2046}
2047#else
2048static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2049{
2050}
0ec8aa00
PZ
2051
2052static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2053{
2054}
2055
2056static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2057{
2058}
cbee9f88
PZ
2059#endif /* CONFIG_NUMA_BALANCING */
2060
30cfdcfc
DA
2061static void
2062account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2063{
2064 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2065 if (!parent_entity(se))
029632fb 2066 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2067#ifdef CONFIG_SMP
0ec8aa00
PZ
2068 if (entity_is_task(se)) {
2069 struct rq *rq = rq_of(cfs_rq);
2070
2071 account_numa_enqueue(rq, task_of(se));
2072 list_add(&se->group_node, &rq->cfs_tasks);
2073 }
367456c7 2074#endif
30cfdcfc 2075 cfs_rq->nr_running++;
30cfdcfc
DA
2076}
2077
2078static void
2079account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2080{
2081 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2082 if (!parent_entity(se))
029632fb 2083 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2084 if (entity_is_task(se)) {
2085 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2086 list_del_init(&se->group_node);
0ec8aa00 2087 }
30cfdcfc 2088 cfs_rq->nr_running--;
30cfdcfc
DA
2089}
2090
3ff6dcac
YZ
2091#ifdef CONFIG_FAIR_GROUP_SCHED
2092# ifdef CONFIG_SMP
cf5f0acf
PZ
2093static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2094{
2095 long tg_weight;
2096
2097 /*
2098 * Use this CPU's actual weight instead of the last load_contribution
2099 * to gain a more accurate current total weight. See
2100 * update_cfs_rq_load_contribution().
2101 */
bf5b986e 2102 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2103 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2104 tg_weight += cfs_rq->load.weight;
2105
2106 return tg_weight;
2107}
2108
6d5ab293 2109static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2110{
cf5f0acf 2111 long tg_weight, load, shares;
3ff6dcac 2112
cf5f0acf 2113 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2114 load = cfs_rq->load.weight;
3ff6dcac 2115
3ff6dcac 2116 shares = (tg->shares * load);
cf5f0acf
PZ
2117 if (tg_weight)
2118 shares /= tg_weight;
3ff6dcac
YZ
2119
2120 if (shares < MIN_SHARES)
2121 shares = MIN_SHARES;
2122 if (shares > tg->shares)
2123 shares = tg->shares;
2124
2125 return shares;
2126}
3ff6dcac 2127# else /* CONFIG_SMP */
6d5ab293 2128static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2129{
2130 return tg->shares;
2131}
3ff6dcac 2132# endif /* CONFIG_SMP */
2069dd75
PZ
2133static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2134 unsigned long weight)
2135{
19e5eebb
PT
2136 if (se->on_rq) {
2137 /* commit outstanding execution time */
2138 if (cfs_rq->curr == se)
2139 update_curr(cfs_rq);
2069dd75 2140 account_entity_dequeue(cfs_rq, se);
19e5eebb 2141 }
2069dd75
PZ
2142
2143 update_load_set(&se->load, weight);
2144
2145 if (se->on_rq)
2146 account_entity_enqueue(cfs_rq, se);
2147}
2148
82958366
PT
2149static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2150
6d5ab293 2151static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2152{
2153 struct task_group *tg;
2154 struct sched_entity *se;
3ff6dcac 2155 long shares;
2069dd75 2156
2069dd75
PZ
2157 tg = cfs_rq->tg;
2158 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2159 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2160 return;
3ff6dcac
YZ
2161#ifndef CONFIG_SMP
2162 if (likely(se->load.weight == tg->shares))
2163 return;
2164#endif
6d5ab293 2165 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2166
2167 reweight_entity(cfs_rq_of(se), se, shares);
2168}
2169#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2170static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2171{
2172}
2173#endif /* CONFIG_FAIR_GROUP_SCHED */
2174
141965c7 2175#ifdef CONFIG_SMP
5b51f2f8
PT
2176/*
2177 * We choose a half-life close to 1 scheduling period.
2178 * Note: The tables below are dependent on this value.
2179 */
2180#define LOAD_AVG_PERIOD 32
2181#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2182#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2183
2184/* Precomputed fixed inverse multiplies for multiplication by y^n */
2185static const u32 runnable_avg_yN_inv[] = {
2186 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2187 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2188 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2189 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2190 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2191 0x85aac367, 0x82cd8698,
2192};
2193
2194/*
2195 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2196 * over-estimates when re-combining.
2197 */
2198static const u32 runnable_avg_yN_sum[] = {
2199 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2200 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2201 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2202};
2203
9d85f21c
PT
2204/*
2205 * Approximate:
2206 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2207 */
2208static __always_inline u64 decay_load(u64 val, u64 n)
2209{
5b51f2f8
PT
2210 unsigned int local_n;
2211
2212 if (!n)
2213 return val;
2214 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2215 return 0;
2216
2217 /* after bounds checking we can collapse to 32-bit */
2218 local_n = n;
2219
2220 /*
2221 * As y^PERIOD = 1/2, we can combine
2222 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2223 * With a look-up table which covers k^n (n<PERIOD)
2224 *
2225 * To achieve constant time decay_load.
2226 */
2227 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2228 val >>= local_n / LOAD_AVG_PERIOD;
2229 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2230 }
2231
5b51f2f8
PT
2232 val *= runnable_avg_yN_inv[local_n];
2233 /* We don't use SRR here since we always want to round down. */
2234 return val >> 32;
2235}
2236
2237/*
2238 * For updates fully spanning n periods, the contribution to runnable
2239 * average will be: \Sum 1024*y^n
2240 *
2241 * We can compute this reasonably efficiently by combining:
2242 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2243 */
2244static u32 __compute_runnable_contrib(u64 n)
2245{
2246 u32 contrib = 0;
2247
2248 if (likely(n <= LOAD_AVG_PERIOD))
2249 return runnable_avg_yN_sum[n];
2250 else if (unlikely(n >= LOAD_AVG_MAX_N))
2251 return LOAD_AVG_MAX;
2252
2253 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2254 do {
2255 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2256 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2257
2258 n -= LOAD_AVG_PERIOD;
2259 } while (n > LOAD_AVG_PERIOD);
2260
2261 contrib = decay_load(contrib, n);
2262 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2263}
2264
2265/*
2266 * We can represent the historical contribution to runnable average as the
2267 * coefficients of a geometric series. To do this we sub-divide our runnable
2268 * history into segments of approximately 1ms (1024us); label the segment that
2269 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2270 *
2271 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2272 * p0 p1 p2
2273 * (now) (~1ms ago) (~2ms ago)
2274 *
2275 * Let u_i denote the fraction of p_i that the entity was runnable.
2276 *
2277 * We then designate the fractions u_i as our co-efficients, yielding the
2278 * following representation of historical load:
2279 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2280 *
2281 * We choose y based on the with of a reasonably scheduling period, fixing:
2282 * y^32 = 0.5
2283 *
2284 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2285 * approximately half as much as the contribution to load within the last ms
2286 * (u_0).
2287 *
2288 * When a period "rolls over" and we have new u_0`, multiplying the previous
2289 * sum again by y is sufficient to update:
2290 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2291 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2292 */
2293static __always_inline int __update_entity_runnable_avg(u64 now,
2294 struct sched_avg *sa,
2295 int runnable)
2296{
5b51f2f8
PT
2297 u64 delta, periods;
2298 u32 runnable_contrib;
9d85f21c
PT
2299 int delta_w, decayed = 0;
2300
2301 delta = now - sa->last_runnable_update;
2302 /*
2303 * This should only happen when time goes backwards, which it
2304 * unfortunately does during sched clock init when we swap over to TSC.
2305 */
2306 if ((s64)delta < 0) {
2307 sa->last_runnable_update = now;
2308 return 0;
2309 }
2310
2311 /*
2312 * Use 1024ns as the unit of measurement since it's a reasonable
2313 * approximation of 1us and fast to compute.
2314 */
2315 delta >>= 10;
2316 if (!delta)
2317 return 0;
2318 sa->last_runnable_update = now;
2319
2320 /* delta_w is the amount already accumulated against our next period */
2321 delta_w = sa->runnable_avg_period % 1024;
2322 if (delta + delta_w >= 1024) {
2323 /* period roll-over */
2324 decayed = 1;
2325
2326 /*
2327 * Now that we know we're crossing a period boundary, figure
2328 * out how much from delta we need to complete the current
2329 * period and accrue it.
2330 */
2331 delta_w = 1024 - delta_w;
5b51f2f8
PT
2332 if (runnable)
2333 sa->runnable_avg_sum += delta_w;
2334 sa->runnable_avg_period += delta_w;
2335
2336 delta -= delta_w;
2337
2338 /* Figure out how many additional periods this update spans */
2339 periods = delta / 1024;
2340 delta %= 1024;
2341
2342 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2343 periods + 1);
2344 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2345 periods + 1);
2346
2347 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2348 runnable_contrib = __compute_runnable_contrib(periods);
2349 if (runnable)
2350 sa->runnable_avg_sum += runnable_contrib;
2351 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2352 }
2353
2354 /* Remainder of delta accrued against u_0` */
2355 if (runnable)
2356 sa->runnable_avg_sum += delta;
2357 sa->runnable_avg_period += delta;
2358
2359 return decayed;
2360}
2361
9ee474f5 2362/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2363static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2364{
2365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2366 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2367
2368 decays -= se->avg.decay_count;
2369 if (!decays)
aff3e498 2370 return 0;
9ee474f5
PT
2371
2372 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2373 se->avg.decay_count = 0;
aff3e498
PT
2374
2375 return decays;
9ee474f5
PT
2376}
2377
c566e8e9
PT
2378#ifdef CONFIG_FAIR_GROUP_SCHED
2379static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2380 int force_update)
2381{
2382 struct task_group *tg = cfs_rq->tg;
bf5b986e 2383 long tg_contrib;
c566e8e9
PT
2384
2385 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2386 tg_contrib -= cfs_rq->tg_load_contrib;
2387
bf5b986e
AS
2388 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2389 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2390 cfs_rq->tg_load_contrib += tg_contrib;
2391 }
2392}
8165e145 2393
bb17f655
PT
2394/*
2395 * Aggregate cfs_rq runnable averages into an equivalent task_group
2396 * representation for computing load contributions.
2397 */
2398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2399 struct cfs_rq *cfs_rq)
2400{
2401 struct task_group *tg = cfs_rq->tg;
2402 long contrib;
2403
2404 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2405 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2406 sa->runnable_avg_period + 1);
2407 contrib -= cfs_rq->tg_runnable_contrib;
2408
2409 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2410 atomic_add(contrib, &tg->runnable_avg);
2411 cfs_rq->tg_runnable_contrib += contrib;
2412 }
2413}
2414
8165e145
PT
2415static inline void __update_group_entity_contrib(struct sched_entity *se)
2416{
2417 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2418 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2419 int runnable_avg;
2420
8165e145
PT
2421 u64 contrib;
2422
2423 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2424 se->avg.load_avg_contrib = div_u64(contrib,
2425 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2426
2427 /*
2428 * For group entities we need to compute a correction term in the case
2429 * that they are consuming <1 cpu so that we would contribute the same
2430 * load as a task of equal weight.
2431 *
2432 * Explicitly co-ordinating this measurement would be expensive, but
2433 * fortunately the sum of each cpus contribution forms a usable
2434 * lower-bound on the true value.
2435 *
2436 * Consider the aggregate of 2 contributions. Either they are disjoint
2437 * (and the sum represents true value) or they are disjoint and we are
2438 * understating by the aggregate of their overlap.
2439 *
2440 * Extending this to N cpus, for a given overlap, the maximum amount we
2441 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2442 * cpus that overlap for this interval and w_i is the interval width.
2443 *
2444 * On a small machine; the first term is well-bounded which bounds the
2445 * total error since w_i is a subset of the period. Whereas on a
2446 * larger machine, while this first term can be larger, if w_i is the
2447 * of consequential size guaranteed to see n_i*w_i quickly converge to
2448 * our upper bound of 1-cpu.
2449 */
2450 runnable_avg = atomic_read(&tg->runnable_avg);
2451 if (runnable_avg < NICE_0_LOAD) {
2452 se->avg.load_avg_contrib *= runnable_avg;
2453 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2454 }
8165e145 2455}
f5f9739d
DE
2456
2457static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2458{
2459 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2460 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2461}
6e83125c 2462#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2463static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2464 int force_update) {}
bb17f655
PT
2465static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2466 struct cfs_rq *cfs_rq) {}
8165e145 2467static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2468static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2469#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2470
8165e145
PT
2471static inline void __update_task_entity_contrib(struct sched_entity *se)
2472{
2473 u32 contrib;
2474
2475 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2476 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2477 contrib /= (se->avg.runnable_avg_period + 1);
2478 se->avg.load_avg_contrib = scale_load(contrib);
2479}
2480
2dac754e
PT
2481/* Compute the current contribution to load_avg by se, return any delta */
2482static long __update_entity_load_avg_contrib(struct sched_entity *se)
2483{
2484 long old_contrib = se->avg.load_avg_contrib;
2485
8165e145
PT
2486 if (entity_is_task(se)) {
2487 __update_task_entity_contrib(se);
2488 } else {
bb17f655 2489 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2490 __update_group_entity_contrib(se);
2491 }
2dac754e
PT
2492
2493 return se->avg.load_avg_contrib - old_contrib;
2494}
2495
9ee474f5
PT
2496static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2497 long load_contrib)
2498{
2499 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2500 cfs_rq->blocked_load_avg -= load_contrib;
2501 else
2502 cfs_rq->blocked_load_avg = 0;
2503}
2504
f1b17280
PT
2505static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2506
9d85f21c 2507/* Update a sched_entity's runnable average */
9ee474f5
PT
2508static inline void update_entity_load_avg(struct sched_entity *se,
2509 int update_cfs_rq)
9d85f21c 2510{
2dac754e
PT
2511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2512 long contrib_delta;
f1b17280 2513 u64 now;
2dac754e 2514
f1b17280
PT
2515 /*
2516 * For a group entity we need to use their owned cfs_rq_clock_task() in
2517 * case they are the parent of a throttled hierarchy.
2518 */
2519 if (entity_is_task(se))
2520 now = cfs_rq_clock_task(cfs_rq);
2521 else
2522 now = cfs_rq_clock_task(group_cfs_rq(se));
2523
2524 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2525 return;
2526
2527 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2528
2529 if (!update_cfs_rq)
2530 return;
2531
2dac754e
PT
2532 if (se->on_rq)
2533 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2534 else
2535 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2536}
2537
2538/*
2539 * Decay the load contributed by all blocked children and account this so that
2540 * their contribution may appropriately discounted when they wake up.
2541 */
aff3e498 2542static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2543{
f1b17280 2544 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2545 u64 decays;
2546
2547 decays = now - cfs_rq->last_decay;
aff3e498 2548 if (!decays && !force_update)
9ee474f5
PT
2549 return;
2550
2509940f
AS
2551 if (atomic_long_read(&cfs_rq->removed_load)) {
2552 unsigned long removed_load;
2553 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2554 subtract_blocked_load_contrib(cfs_rq, removed_load);
2555 }
9ee474f5 2556
aff3e498
PT
2557 if (decays) {
2558 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2559 decays);
2560 atomic64_add(decays, &cfs_rq->decay_counter);
2561 cfs_rq->last_decay = now;
2562 }
c566e8e9
PT
2563
2564 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2565}
18bf2805 2566
2dac754e
PT
2567/* Add the load generated by se into cfs_rq's child load-average */
2568static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2569 struct sched_entity *se,
2570 int wakeup)
2dac754e 2571{
aff3e498
PT
2572 /*
2573 * We track migrations using entity decay_count <= 0, on a wake-up
2574 * migration we use a negative decay count to track the remote decays
2575 * accumulated while sleeping.
a75cdaa9
AS
2576 *
2577 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2578 * are seen by enqueue_entity_load_avg() as a migration with an already
2579 * constructed load_avg_contrib.
aff3e498
PT
2580 */
2581 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2582 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2583 if (se->avg.decay_count) {
2584 /*
2585 * In a wake-up migration we have to approximate the
2586 * time sleeping. This is because we can't synchronize
2587 * clock_task between the two cpus, and it is not
2588 * guaranteed to be read-safe. Instead, we can
2589 * approximate this using our carried decays, which are
2590 * explicitly atomically readable.
2591 */
2592 se->avg.last_runnable_update -= (-se->avg.decay_count)
2593 << 20;
2594 update_entity_load_avg(se, 0);
2595 /* Indicate that we're now synchronized and on-rq */
2596 se->avg.decay_count = 0;
2597 }
9ee474f5
PT
2598 wakeup = 0;
2599 } else {
9390675a 2600 __synchronize_entity_decay(se);
9ee474f5
PT
2601 }
2602
aff3e498
PT
2603 /* migrated tasks did not contribute to our blocked load */
2604 if (wakeup) {
9ee474f5 2605 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2606 update_entity_load_avg(se, 0);
2607 }
9ee474f5 2608
2dac754e 2609 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2610 /* we force update consideration on load-balancer moves */
2611 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2612}
2613
9ee474f5
PT
2614/*
2615 * Remove se's load from this cfs_rq child load-average, if the entity is
2616 * transitioning to a blocked state we track its projected decay using
2617 * blocked_load_avg.
2618 */
2dac754e 2619static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2620 struct sched_entity *se,
2621 int sleep)
2dac754e 2622{
9ee474f5 2623 update_entity_load_avg(se, 1);
aff3e498
PT
2624 /* we force update consideration on load-balancer moves */
2625 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2626
2dac754e 2627 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2628 if (sleep) {
2629 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2630 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2631 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2632}
642dbc39
VG
2633
2634/*
2635 * Update the rq's load with the elapsed running time before entering
2636 * idle. if the last scheduled task is not a CFS task, idle_enter will
2637 * be the only way to update the runnable statistic.
2638 */
2639void idle_enter_fair(struct rq *this_rq)
2640{
2641 update_rq_runnable_avg(this_rq, 1);
2642}
2643
2644/*
2645 * Update the rq's load with the elapsed idle time before a task is
2646 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2647 * be the only way to update the runnable statistic.
2648 */
2649void idle_exit_fair(struct rq *this_rq)
2650{
2651 update_rq_runnable_avg(this_rq, 0);
2652}
2653
6e83125c
PZ
2654static int idle_balance(struct rq *this_rq);
2655
38033c37
PZ
2656#else /* CONFIG_SMP */
2657
9ee474f5
PT
2658static inline void update_entity_load_avg(struct sched_entity *se,
2659 int update_cfs_rq) {}
18bf2805 2660static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2661static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2662 struct sched_entity *se,
2663 int wakeup) {}
2dac754e 2664static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2665 struct sched_entity *se,
2666 int sleep) {}
aff3e498
PT
2667static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2668 int force_update) {}
6e83125c
PZ
2669
2670static inline int idle_balance(struct rq *rq)
2671{
2672 return 0;
2673}
2674
38033c37 2675#endif /* CONFIG_SMP */
9d85f21c 2676
2396af69 2677static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2678{
bf0f6f24 2679#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2680 struct task_struct *tsk = NULL;
2681
2682 if (entity_is_task(se))
2683 tsk = task_of(se);
2684
41acab88 2685 if (se->statistics.sleep_start) {
78becc27 2686 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2687
2688 if ((s64)delta < 0)
2689 delta = 0;
2690
41acab88
LDM
2691 if (unlikely(delta > se->statistics.sleep_max))
2692 se->statistics.sleep_max = delta;
bf0f6f24 2693
8c79a045 2694 se->statistics.sleep_start = 0;
41acab88 2695 se->statistics.sum_sleep_runtime += delta;
9745512c 2696
768d0c27 2697 if (tsk) {
e414314c 2698 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2699 trace_sched_stat_sleep(tsk, delta);
2700 }
bf0f6f24 2701 }
41acab88 2702 if (se->statistics.block_start) {
78becc27 2703 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2704
2705 if ((s64)delta < 0)
2706 delta = 0;
2707
41acab88
LDM
2708 if (unlikely(delta > se->statistics.block_max))
2709 se->statistics.block_max = delta;
bf0f6f24 2710
8c79a045 2711 se->statistics.block_start = 0;
41acab88 2712 se->statistics.sum_sleep_runtime += delta;
30084fbd 2713
e414314c 2714 if (tsk) {
8f0dfc34 2715 if (tsk->in_iowait) {
41acab88
LDM
2716 se->statistics.iowait_sum += delta;
2717 se->statistics.iowait_count++;
768d0c27 2718 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2719 }
2720
b781a602
AV
2721 trace_sched_stat_blocked(tsk, delta);
2722
e414314c
PZ
2723 /*
2724 * Blocking time is in units of nanosecs, so shift by
2725 * 20 to get a milliseconds-range estimation of the
2726 * amount of time that the task spent sleeping:
2727 */
2728 if (unlikely(prof_on == SLEEP_PROFILING)) {
2729 profile_hits(SLEEP_PROFILING,
2730 (void *)get_wchan(tsk),
2731 delta >> 20);
2732 }
2733 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2734 }
bf0f6f24
IM
2735 }
2736#endif
2737}
2738
ddc97297
PZ
2739static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740{
2741#ifdef CONFIG_SCHED_DEBUG
2742 s64 d = se->vruntime - cfs_rq->min_vruntime;
2743
2744 if (d < 0)
2745 d = -d;
2746
2747 if (d > 3*sysctl_sched_latency)
2748 schedstat_inc(cfs_rq, nr_spread_over);
2749#endif
2750}
2751
aeb73b04
PZ
2752static void
2753place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2754{
1af5f730 2755 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2756
2cb8600e
PZ
2757 /*
2758 * The 'current' period is already promised to the current tasks,
2759 * however the extra weight of the new task will slow them down a
2760 * little, place the new task so that it fits in the slot that
2761 * stays open at the end.
2762 */
94dfb5e7 2763 if (initial && sched_feat(START_DEBIT))
f9c0b095 2764 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2765
a2e7a7eb 2766 /* sleeps up to a single latency don't count. */
5ca9880c 2767 if (!initial) {
a2e7a7eb 2768 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2769
a2e7a7eb
MG
2770 /*
2771 * Halve their sleep time's effect, to allow
2772 * for a gentler effect of sleepers:
2773 */
2774 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2775 thresh >>= 1;
51e0304c 2776
a2e7a7eb 2777 vruntime -= thresh;
aeb73b04
PZ
2778 }
2779
b5d9d734 2780 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2781 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2782}
2783
d3d9dc33
PT
2784static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2785
bf0f6f24 2786static void
88ec22d3 2787enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2788{
88ec22d3
PZ
2789 /*
2790 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2791 * through calling update_curr().
88ec22d3 2792 */
371fd7e7 2793 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2794 se->vruntime += cfs_rq->min_vruntime;
2795
bf0f6f24 2796 /*
a2a2d680 2797 * Update run-time statistics of the 'current'.
bf0f6f24 2798 */
b7cc0896 2799 update_curr(cfs_rq);
f269ae04 2800 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2801 account_entity_enqueue(cfs_rq, se);
2802 update_cfs_shares(cfs_rq);
bf0f6f24 2803
88ec22d3 2804 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2805 place_entity(cfs_rq, se, 0);
2396af69 2806 enqueue_sleeper(cfs_rq, se);
e9acbff6 2807 }
bf0f6f24 2808
d2417e5a 2809 update_stats_enqueue(cfs_rq, se);
ddc97297 2810 check_spread(cfs_rq, se);
83b699ed
SV
2811 if (se != cfs_rq->curr)
2812 __enqueue_entity(cfs_rq, se);
2069dd75 2813 se->on_rq = 1;
3d4b47b4 2814
d3d9dc33 2815 if (cfs_rq->nr_running == 1) {
3d4b47b4 2816 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2817 check_enqueue_throttle(cfs_rq);
2818 }
bf0f6f24
IM
2819}
2820
2c13c919 2821static void __clear_buddies_last(struct sched_entity *se)
2002c695 2822{
2c13c919
RR
2823 for_each_sched_entity(se) {
2824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2825 if (cfs_rq->last != se)
2c13c919 2826 break;
f1044799
PZ
2827
2828 cfs_rq->last = NULL;
2c13c919
RR
2829 }
2830}
2002c695 2831
2c13c919
RR
2832static void __clear_buddies_next(struct sched_entity *se)
2833{
2834 for_each_sched_entity(se) {
2835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2836 if (cfs_rq->next != se)
2c13c919 2837 break;
f1044799
PZ
2838
2839 cfs_rq->next = NULL;
2c13c919 2840 }
2002c695
PZ
2841}
2842
ac53db59
RR
2843static void __clear_buddies_skip(struct sched_entity *se)
2844{
2845 for_each_sched_entity(se) {
2846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2847 if (cfs_rq->skip != se)
ac53db59 2848 break;
f1044799
PZ
2849
2850 cfs_rq->skip = NULL;
ac53db59
RR
2851 }
2852}
2853
a571bbea
PZ
2854static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2855{
2c13c919
RR
2856 if (cfs_rq->last == se)
2857 __clear_buddies_last(se);
2858
2859 if (cfs_rq->next == se)
2860 __clear_buddies_next(se);
ac53db59
RR
2861
2862 if (cfs_rq->skip == se)
2863 __clear_buddies_skip(se);
a571bbea
PZ
2864}
2865
6c16a6dc 2866static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2867
bf0f6f24 2868static void
371fd7e7 2869dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2870{
a2a2d680
DA
2871 /*
2872 * Update run-time statistics of the 'current'.
2873 */
2874 update_curr(cfs_rq);
17bc14b7 2875 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2876
19b6a2e3 2877 update_stats_dequeue(cfs_rq, se);
371fd7e7 2878 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2879#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2880 if (entity_is_task(se)) {
2881 struct task_struct *tsk = task_of(se);
2882
2883 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2884 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2885 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2886 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2887 }
db36cc7d 2888#endif
67e9fb2a
PZ
2889 }
2890
2002c695 2891 clear_buddies(cfs_rq, se);
4793241b 2892
83b699ed 2893 if (se != cfs_rq->curr)
30cfdcfc 2894 __dequeue_entity(cfs_rq, se);
17bc14b7 2895 se->on_rq = 0;
30cfdcfc 2896 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2897
2898 /*
2899 * Normalize the entity after updating the min_vruntime because the
2900 * update can refer to the ->curr item and we need to reflect this
2901 * movement in our normalized position.
2902 */
371fd7e7 2903 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2904 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2905
d8b4986d
PT
2906 /* return excess runtime on last dequeue */
2907 return_cfs_rq_runtime(cfs_rq);
2908
1e876231 2909 update_min_vruntime(cfs_rq);
17bc14b7 2910 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2911}
2912
2913/*
2914 * Preempt the current task with a newly woken task if needed:
2915 */
7c92e54f 2916static void
2e09bf55 2917check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2918{
11697830 2919 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2920 struct sched_entity *se;
2921 s64 delta;
11697830 2922
6d0f0ebd 2923 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2924 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2925 if (delta_exec > ideal_runtime) {
bf0f6f24 2926 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2927 /*
2928 * The current task ran long enough, ensure it doesn't get
2929 * re-elected due to buddy favours.
2930 */
2931 clear_buddies(cfs_rq, curr);
f685ceac
MG
2932 return;
2933 }
2934
2935 /*
2936 * Ensure that a task that missed wakeup preemption by a
2937 * narrow margin doesn't have to wait for a full slice.
2938 * This also mitigates buddy induced latencies under load.
2939 */
f685ceac
MG
2940 if (delta_exec < sysctl_sched_min_granularity)
2941 return;
2942
f4cfb33e
WX
2943 se = __pick_first_entity(cfs_rq);
2944 delta = curr->vruntime - se->vruntime;
f685ceac 2945
f4cfb33e
WX
2946 if (delta < 0)
2947 return;
d7d82944 2948
f4cfb33e
WX
2949 if (delta > ideal_runtime)
2950 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2951}
2952
83b699ed 2953static void
8494f412 2954set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2955{
83b699ed
SV
2956 /* 'current' is not kept within the tree. */
2957 if (se->on_rq) {
2958 /*
2959 * Any task has to be enqueued before it get to execute on
2960 * a CPU. So account for the time it spent waiting on the
2961 * runqueue.
2962 */
2963 update_stats_wait_end(cfs_rq, se);
2964 __dequeue_entity(cfs_rq, se);
2965 }
2966
79303e9e 2967 update_stats_curr_start(cfs_rq, se);
429d43bc 2968 cfs_rq->curr = se;
eba1ed4b
IM
2969#ifdef CONFIG_SCHEDSTATS
2970 /*
2971 * Track our maximum slice length, if the CPU's load is at
2972 * least twice that of our own weight (i.e. dont track it
2973 * when there are only lesser-weight tasks around):
2974 */
495eca49 2975 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2976 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2977 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2978 }
2979#endif
4a55b450 2980 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2981}
2982
3f3a4904
PZ
2983static int
2984wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2985
ac53db59
RR
2986/*
2987 * Pick the next process, keeping these things in mind, in this order:
2988 * 1) keep things fair between processes/task groups
2989 * 2) pick the "next" process, since someone really wants that to run
2990 * 3) pick the "last" process, for cache locality
2991 * 4) do not run the "skip" process, if something else is available
2992 */
678d5718
PZ
2993static struct sched_entity *
2994pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2995{
678d5718
PZ
2996 struct sched_entity *left = __pick_first_entity(cfs_rq);
2997 struct sched_entity *se;
2998
2999 /*
3000 * If curr is set we have to see if its left of the leftmost entity
3001 * still in the tree, provided there was anything in the tree at all.
3002 */
3003 if (!left || (curr && entity_before(curr, left)))
3004 left = curr;
3005
3006 se = left; /* ideally we run the leftmost entity */
f4b6755f 3007
ac53db59
RR
3008 /*
3009 * Avoid running the skip buddy, if running something else can
3010 * be done without getting too unfair.
3011 */
3012 if (cfs_rq->skip == se) {
678d5718
PZ
3013 struct sched_entity *second;
3014
3015 if (se == curr) {
3016 second = __pick_first_entity(cfs_rq);
3017 } else {
3018 second = __pick_next_entity(se);
3019 if (!second || (curr && entity_before(curr, second)))
3020 second = curr;
3021 }
3022
ac53db59
RR
3023 if (second && wakeup_preempt_entity(second, left) < 1)
3024 se = second;
3025 }
aa2ac252 3026
f685ceac
MG
3027 /*
3028 * Prefer last buddy, try to return the CPU to a preempted task.
3029 */
3030 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3031 se = cfs_rq->last;
3032
ac53db59
RR
3033 /*
3034 * Someone really wants this to run. If it's not unfair, run it.
3035 */
3036 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3037 se = cfs_rq->next;
3038
f685ceac 3039 clear_buddies(cfs_rq, se);
4793241b
PZ
3040
3041 return se;
aa2ac252
PZ
3042}
3043
678d5718 3044static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3045
ab6cde26 3046static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3047{
3048 /*
3049 * If still on the runqueue then deactivate_task()
3050 * was not called and update_curr() has to be done:
3051 */
3052 if (prev->on_rq)
b7cc0896 3053 update_curr(cfs_rq);
bf0f6f24 3054
d3d9dc33
PT
3055 /* throttle cfs_rqs exceeding runtime */
3056 check_cfs_rq_runtime(cfs_rq);
3057
ddc97297 3058 check_spread(cfs_rq, prev);
30cfdcfc 3059 if (prev->on_rq) {
5870db5b 3060 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3061 /* Put 'current' back into the tree. */
3062 __enqueue_entity(cfs_rq, prev);
9d85f21c 3063 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3064 update_entity_load_avg(prev, 1);
30cfdcfc 3065 }
429d43bc 3066 cfs_rq->curr = NULL;
bf0f6f24
IM
3067}
3068
8f4d37ec
PZ
3069static void
3070entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3071{
bf0f6f24 3072 /*
30cfdcfc 3073 * Update run-time statistics of the 'current'.
bf0f6f24 3074 */
30cfdcfc 3075 update_curr(cfs_rq);
bf0f6f24 3076
9d85f21c
PT
3077 /*
3078 * Ensure that runnable average is periodically updated.
3079 */
9ee474f5 3080 update_entity_load_avg(curr, 1);
aff3e498 3081 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3082 update_cfs_shares(cfs_rq);
9d85f21c 3083
8f4d37ec
PZ
3084#ifdef CONFIG_SCHED_HRTICK
3085 /*
3086 * queued ticks are scheduled to match the slice, so don't bother
3087 * validating it and just reschedule.
3088 */
983ed7a6
HH
3089 if (queued) {
3090 resched_task(rq_of(cfs_rq)->curr);
3091 return;
3092 }
8f4d37ec
PZ
3093 /*
3094 * don't let the period tick interfere with the hrtick preemption
3095 */
3096 if (!sched_feat(DOUBLE_TICK) &&
3097 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3098 return;
3099#endif
3100
2c2efaed 3101 if (cfs_rq->nr_running > 1)
2e09bf55 3102 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3103}
3104
ab84d31e
PT
3105
3106/**************************************************
3107 * CFS bandwidth control machinery
3108 */
3109
3110#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3111
3112#ifdef HAVE_JUMP_LABEL
c5905afb 3113static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3114
3115static inline bool cfs_bandwidth_used(void)
3116{
c5905afb 3117 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3118}
3119
1ee14e6c 3120void cfs_bandwidth_usage_inc(void)
029632fb 3121{
1ee14e6c
BS
3122 static_key_slow_inc(&__cfs_bandwidth_used);
3123}
3124
3125void cfs_bandwidth_usage_dec(void)
3126{
3127 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3128}
3129#else /* HAVE_JUMP_LABEL */
3130static bool cfs_bandwidth_used(void)
3131{
3132 return true;
3133}
3134
1ee14e6c
BS
3135void cfs_bandwidth_usage_inc(void) {}
3136void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3137#endif /* HAVE_JUMP_LABEL */
3138
ab84d31e
PT
3139/*
3140 * default period for cfs group bandwidth.
3141 * default: 0.1s, units: nanoseconds
3142 */
3143static inline u64 default_cfs_period(void)
3144{
3145 return 100000000ULL;
3146}
ec12cb7f
PT
3147
3148static inline u64 sched_cfs_bandwidth_slice(void)
3149{
3150 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3151}
3152
a9cf55b2
PT
3153/*
3154 * Replenish runtime according to assigned quota and update expiration time.
3155 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3156 * additional synchronization around rq->lock.
3157 *
3158 * requires cfs_b->lock
3159 */
029632fb 3160void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3161{
3162 u64 now;
3163
3164 if (cfs_b->quota == RUNTIME_INF)
3165 return;
3166
3167 now = sched_clock_cpu(smp_processor_id());
3168 cfs_b->runtime = cfs_b->quota;
3169 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3170}
3171
029632fb
PZ
3172static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3173{
3174 return &tg->cfs_bandwidth;
3175}
3176
f1b17280
PT
3177/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3178static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3179{
3180 if (unlikely(cfs_rq->throttle_count))
3181 return cfs_rq->throttled_clock_task;
3182
78becc27 3183 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3184}
3185
85dac906
PT
3186/* returns 0 on failure to allocate runtime */
3187static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3188{
3189 struct task_group *tg = cfs_rq->tg;
3190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3191 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3192
3193 /* note: this is a positive sum as runtime_remaining <= 0 */
3194 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3195
3196 raw_spin_lock(&cfs_b->lock);
3197 if (cfs_b->quota == RUNTIME_INF)
3198 amount = min_amount;
58088ad0 3199 else {
a9cf55b2
PT
3200 /*
3201 * If the bandwidth pool has become inactive, then at least one
3202 * period must have elapsed since the last consumption.
3203 * Refresh the global state and ensure bandwidth timer becomes
3204 * active.
3205 */
3206 if (!cfs_b->timer_active) {
3207 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3208 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3209 }
58088ad0
PT
3210
3211 if (cfs_b->runtime > 0) {
3212 amount = min(cfs_b->runtime, min_amount);
3213 cfs_b->runtime -= amount;
3214 cfs_b->idle = 0;
3215 }
ec12cb7f 3216 }
a9cf55b2 3217 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3218 raw_spin_unlock(&cfs_b->lock);
3219
3220 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3221 /*
3222 * we may have advanced our local expiration to account for allowed
3223 * spread between our sched_clock and the one on which runtime was
3224 * issued.
3225 */
3226 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3227 cfs_rq->runtime_expires = expires;
85dac906
PT
3228
3229 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3230}
3231
a9cf55b2
PT
3232/*
3233 * Note: This depends on the synchronization provided by sched_clock and the
3234 * fact that rq->clock snapshots this value.
3235 */
3236static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3237{
a9cf55b2 3238 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3239
3240 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3241 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3242 return;
3243
a9cf55b2
PT
3244 if (cfs_rq->runtime_remaining < 0)
3245 return;
3246
3247 /*
3248 * If the local deadline has passed we have to consider the
3249 * possibility that our sched_clock is 'fast' and the global deadline
3250 * has not truly expired.
3251 *
3252 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3253 * whether the global deadline has advanced. It is valid to compare
3254 * cfs_b->runtime_expires without any locks since we only care about
3255 * exact equality, so a partial write will still work.
a9cf55b2
PT
3256 */
3257
51f2176d 3258 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3259 /* extend local deadline, drift is bounded above by 2 ticks */
3260 cfs_rq->runtime_expires += TICK_NSEC;
3261 } else {
3262 /* global deadline is ahead, expiration has passed */
3263 cfs_rq->runtime_remaining = 0;
3264 }
3265}
3266
9dbdb155 3267static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3268{
3269 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3270 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3271 expire_cfs_rq_runtime(cfs_rq);
3272
3273 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3274 return;
3275
85dac906
PT
3276 /*
3277 * if we're unable to extend our runtime we resched so that the active
3278 * hierarchy can be throttled
3279 */
3280 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3281 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3282}
3283
6c16a6dc 3284static __always_inline
9dbdb155 3285void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3286{
56f570e5 3287 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3288 return;
3289
3290 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3291}
3292
85dac906
PT
3293static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3294{
56f570e5 3295 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3296}
3297
64660c86
PT
3298/* check whether cfs_rq, or any parent, is throttled */
3299static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3300{
56f570e5 3301 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3302}
3303
3304/*
3305 * Ensure that neither of the group entities corresponding to src_cpu or
3306 * dest_cpu are members of a throttled hierarchy when performing group
3307 * load-balance operations.
3308 */
3309static inline int throttled_lb_pair(struct task_group *tg,
3310 int src_cpu, int dest_cpu)
3311{
3312 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3313
3314 src_cfs_rq = tg->cfs_rq[src_cpu];
3315 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3316
3317 return throttled_hierarchy(src_cfs_rq) ||
3318 throttled_hierarchy(dest_cfs_rq);
3319}
3320
3321/* updated child weight may affect parent so we have to do this bottom up */
3322static int tg_unthrottle_up(struct task_group *tg, void *data)
3323{
3324 struct rq *rq = data;
3325 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3326
3327 cfs_rq->throttle_count--;
3328#ifdef CONFIG_SMP
3329 if (!cfs_rq->throttle_count) {
f1b17280 3330 /* adjust cfs_rq_clock_task() */
78becc27 3331 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3332 cfs_rq->throttled_clock_task;
64660c86
PT
3333 }
3334#endif
3335
3336 return 0;
3337}
3338
3339static int tg_throttle_down(struct task_group *tg, void *data)
3340{
3341 struct rq *rq = data;
3342 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3343
82958366
PT
3344 /* group is entering throttled state, stop time */
3345 if (!cfs_rq->throttle_count)
78becc27 3346 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3347 cfs_rq->throttle_count++;
3348
3349 return 0;
3350}
3351
d3d9dc33 3352static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3353{
3354 struct rq *rq = rq_of(cfs_rq);
3355 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3356 struct sched_entity *se;
3357 long task_delta, dequeue = 1;
3358
3359 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3360
f1b17280 3361 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3362 rcu_read_lock();
3363 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3364 rcu_read_unlock();
85dac906
PT
3365
3366 task_delta = cfs_rq->h_nr_running;
3367 for_each_sched_entity(se) {
3368 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3369 /* throttled entity or throttle-on-deactivate */
3370 if (!se->on_rq)
3371 break;
3372
3373 if (dequeue)
3374 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3375 qcfs_rq->h_nr_running -= task_delta;
3376
3377 if (qcfs_rq->load.weight)
3378 dequeue = 0;
3379 }
3380
3381 if (!se)
72465447 3382 sub_nr_running(rq, task_delta);
85dac906
PT
3383
3384 cfs_rq->throttled = 1;
78becc27 3385 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3386 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3387 /*
3388 * Add to the _head_ of the list, so that an already-started
3389 * distribute_cfs_runtime will not see us
3390 */
3391 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3392 if (!cfs_b->timer_active)
09dc4ab0 3393 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3394 raw_spin_unlock(&cfs_b->lock);
3395}
3396
029632fb 3397void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3398{
3399 struct rq *rq = rq_of(cfs_rq);
3400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3401 struct sched_entity *se;
3402 int enqueue = 1;
3403 long task_delta;
3404
22b958d8 3405 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3406
3407 cfs_rq->throttled = 0;
1a55af2e
FW
3408
3409 update_rq_clock(rq);
3410
671fd9da 3411 raw_spin_lock(&cfs_b->lock);
78becc27 3412 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3413 list_del_rcu(&cfs_rq->throttled_list);
3414 raw_spin_unlock(&cfs_b->lock);
3415
64660c86
PT
3416 /* update hierarchical throttle state */
3417 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3418
671fd9da
PT
3419 if (!cfs_rq->load.weight)
3420 return;
3421
3422 task_delta = cfs_rq->h_nr_running;
3423 for_each_sched_entity(se) {
3424 if (se->on_rq)
3425 enqueue = 0;
3426
3427 cfs_rq = cfs_rq_of(se);
3428 if (enqueue)
3429 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3430 cfs_rq->h_nr_running += task_delta;
3431
3432 if (cfs_rq_throttled(cfs_rq))
3433 break;
3434 }
3435
3436 if (!se)
72465447 3437 add_nr_running(rq, task_delta);
671fd9da
PT
3438
3439 /* determine whether we need to wake up potentially idle cpu */
3440 if (rq->curr == rq->idle && rq->cfs.nr_running)
3441 resched_task(rq->curr);
3442}
3443
3444static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3445 u64 remaining, u64 expires)
3446{
3447 struct cfs_rq *cfs_rq;
c06f04c7
BS
3448 u64 runtime;
3449 u64 starting_runtime = remaining;
671fd9da
PT
3450
3451 rcu_read_lock();
3452 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3453 throttled_list) {
3454 struct rq *rq = rq_of(cfs_rq);
3455
3456 raw_spin_lock(&rq->lock);
3457 if (!cfs_rq_throttled(cfs_rq))
3458 goto next;
3459
3460 runtime = -cfs_rq->runtime_remaining + 1;
3461 if (runtime > remaining)
3462 runtime = remaining;
3463 remaining -= runtime;
3464
3465 cfs_rq->runtime_remaining += runtime;
3466 cfs_rq->runtime_expires = expires;
3467
3468 /* we check whether we're throttled above */
3469 if (cfs_rq->runtime_remaining > 0)
3470 unthrottle_cfs_rq(cfs_rq);
3471
3472next:
3473 raw_spin_unlock(&rq->lock);
3474
3475 if (!remaining)
3476 break;
3477 }
3478 rcu_read_unlock();
3479
c06f04c7 3480 return starting_runtime - remaining;
671fd9da
PT
3481}
3482
58088ad0
PT
3483/*
3484 * Responsible for refilling a task_group's bandwidth and unthrottling its
3485 * cfs_rqs as appropriate. If there has been no activity within the last
3486 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3487 * used to track this state.
3488 */
3489static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3490{
671fd9da 3491 u64 runtime, runtime_expires;
51f2176d 3492 int throttled;
58088ad0 3493
58088ad0
PT
3494 /* no need to continue the timer with no bandwidth constraint */
3495 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3496 goto out_deactivate;
58088ad0 3497
671fd9da 3498 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3499 cfs_b->nr_periods += overrun;
671fd9da 3500
51f2176d
BS
3501 /*
3502 * idle depends on !throttled (for the case of a large deficit), and if
3503 * we're going inactive then everything else can be deferred
3504 */
3505 if (cfs_b->idle && !throttled)
3506 goto out_deactivate;
a9cf55b2 3507
927b54fc
BS
3508 /*
3509 * if we have relooped after returning idle once, we need to update our
3510 * status as actually running, so that other cpus doing
3511 * __start_cfs_bandwidth will stop trying to cancel us.
3512 */
3513 cfs_b->timer_active = 1;
3514
a9cf55b2
PT
3515 __refill_cfs_bandwidth_runtime(cfs_b);
3516
671fd9da
PT
3517 if (!throttled) {
3518 /* mark as potentially idle for the upcoming period */
3519 cfs_b->idle = 1;
51f2176d 3520 return 0;
671fd9da
PT
3521 }
3522
e8da1b18
NR
3523 /* account preceding periods in which throttling occurred */
3524 cfs_b->nr_throttled += overrun;
3525
671fd9da 3526 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3527
3528 /*
c06f04c7
BS
3529 * This check is repeated as we are holding onto the new bandwidth while
3530 * we unthrottle. This can potentially race with an unthrottled group
3531 * trying to acquire new bandwidth from the global pool. This can result
3532 * in us over-using our runtime if it is all used during this loop, but
3533 * only by limited amounts in that extreme case.
671fd9da 3534 */
c06f04c7
BS
3535 while (throttled && cfs_b->runtime > 0) {
3536 runtime = cfs_b->runtime;
671fd9da
PT
3537 raw_spin_unlock(&cfs_b->lock);
3538 /* we can't nest cfs_b->lock while distributing bandwidth */
3539 runtime = distribute_cfs_runtime(cfs_b, runtime,
3540 runtime_expires);
3541 raw_spin_lock(&cfs_b->lock);
3542
3543 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3544
3545 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3546 }
58088ad0 3547
671fd9da
PT
3548 /*
3549 * While we are ensured activity in the period following an
3550 * unthrottle, this also covers the case in which the new bandwidth is
3551 * insufficient to cover the existing bandwidth deficit. (Forcing the
3552 * timer to remain active while there are any throttled entities.)
3553 */
3554 cfs_b->idle = 0;
58088ad0 3555
51f2176d
BS
3556 return 0;
3557
3558out_deactivate:
3559 cfs_b->timer_active = 0;
3560 return 1;
58088ad0 3561}
d3d9dc33 3562
d8b4986d
PT
3563/* a cfs_rq won't donate quota below this amount */
3564static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3565/* minimum remaining period time to redistribute slack quota */
3566static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3567/* how long we wait to gather additional slack before distributing */
3568static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3569
db06e78c
BS
3570/*
3571 * Are we near the end of the current quota period?
3572 *
3573 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3574 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3575 * migrate_hrtimers, base is never cleared, so we are fine.
3576 */
d8b4986d
PT
3577static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3578{
3579 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3580 u64 remaining;
3581
3582 /* if the call-back is running a quota refresh is already occurring */
3583 if (hrtimer_callback_running(refresh_timer))
3584 return 1;
3585
3586 /* is a quota refresh about to occur? */
3587 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3588 if (remaining < min_expire)
3589 return 1;
3590
3591 return 0;
3592}
3593
3594static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3595{
3596 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3597
3598 /* if there's a quota refresh soon don't bother with slack */
3599 if (runtime_refresh_within(cfs_b, min_left))
3600 return;
3601
3602 start_bandwidth_timer(&cfs_b->slack_timer,
3603 ns_to_ktime(cfs_bandwidth_slack_period));
3604}
3605
3606/* we know any runtime found here is valid as update_curr() precedes return */
3607static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3608{
3609 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3610 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3611
3612 if (slack_runtime <= 0)
3613 return;
3614
3615 raw_spin_lock(&cfs_b->lock);
3616 if (cfs_b->quota != RUNTIME_INF &&
3617 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3618 cfs_b->runtime += slack_runtime;
3619
3620 /* we are under rq->lock, defer unthrottling using a timer */
3621 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3622 !list_empty(&cfs_b->throttled_cfs_rq))
3623 start_cfs_slack_bandwidth(cfs_b);
3624 }
3625 raw_spin_unlock(&cfs_b->lock);
3626
3627 /* even if it's not valid for return we don't want to try again */
3628 cfs_rq->runtime_remaining -= slack_runtime;
3629}
3630
3631static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3632{
56f570e5
PT
3633 if (!cfs_bandwidth_used())
3634 return;
3635
fccfdc6f 3636 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3637 return;
3638
3639 __return_cfs_rq_runtime(cfs_rq);
3640}
3641
3642/*
3643 * This is done with a timer (instead of inline with bandwidth return) since
3644 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3645 */
3646static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3647{
3648 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3649 u64 expires;
3650
3651 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3652 raw_spin_lock(&cfs_b->lock);
3653 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3654 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3655 return;
db06e78c 3656 }
d8b4986d 3657
c06f04c7 3658 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3659 runtime = cfs_b->runtime;
c06f04c7 3660
d8b4986d
PT
3661 expires = cfs_b->runtime_expires;
3662 raw_spin_unlock(&cfs_b->lock);
3663
3664 if (!runtime)
3665 return;
3666
3667 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3668
3669 raw_spin_lock(&cfs_b->lock);
3670 if (expires == cfs_b->runtime_expires)
c06f04c7 3671 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3672 raw_spin_unlock(&cfs_b->lock);
3673}
3674
d3d9dc33
PT
3675/*
3676 * When a group wakes up we want to make sure that its quota is not already
3677 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3678 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3679 */
3680static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3681{
56f570e5
PT
3682 if (!cfs_bandwidth_used())
3683 return;
3684
d3d9dc33
PT
3685 /* an active group must be handled by the update_curr()->put() path */
3686 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3687 return;
3688
3689 /* ensure the group is not already throttled */
3690 if (cfs_rq_throttled(cfs_rq))
3691 return;
3692
3693 /* update runtime allocation */
3694 account_cfs_rq_runtime(cfs_rq, 0);
3695 if (cfs_rq->runtime_remaining <= 0)
3696 throttle_cfs_rq(cfs_rq);
3697}
3698
3699/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3700static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3701{
56f570e5 3702 if (!cfs_bandwidth_used())
678d5718 3703 return false;
56f570e5 3704
d3d9dc33 3705 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3706 return false;
d3d9dc33
PT
3707
3708 /*
3709 * it's possible for a throttled entity to be forced into a running
3710 * state (e.g. set_curr_task), in this case we're finished.
3711 */
3712 if (cfs_rq_throttled(cfs_rq))
678d5718 3713 return true;
d3d9dc33
PT
3714
3715 throttle_cfs_rq(cfs_rq);
678d5718 3716 return true;
d3d9dc33 3717}
029632fb 3718
029632fb
PZ
3719static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3720{
3721 struct cfs_bandwidth *cfs_b =
3722 container_of(timer, struct cfs_bandwidth, slack_timer);
3723 do_sched_cfs_slack_timer(cfs_b);
3724
3725 return HRTIMER_NORESTART;
3726}
3727
3728static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3729{
3730 struct cfs_bandwidth *cfs_b =
3731 container_of(timer, struct cfs_bandwidth, period_timer);
3732 ktime_t now;
3733 int overrun;
3734 int idle = 0;
3735
51f2176d 3736 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3737 for (;;) {
3738 now = hrtimer_cb_get_time(timer);
3739 overrun = hrtimer_forward(timer, now, cfs_b->period);
3740
3741 if (!overrun)
3742 break;
3743
3744 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3745 }
51f2176d 3746 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3747
3748 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3749}
3750
3751void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3752{
3753 raw_spin_lock_init(&cfs_b->lock);
3754 cfs_b->runtime = 0;
3755 cfs_b->quota = RUNTIME_INF;
3756 cfs_b->period = ns_to_ktime(default_cfs_period());
3757
3758 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3759 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3760 cfs_b->period_timer.function = sched_cfs_period_timer;
3761 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3762 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3763}
3764
3765static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3766{
3767 cfs_rq->runtime_enabled = 0;
3768 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3769}
3770
3771/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3772void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3773{
3774 /*
3775 * The timer may be active because we're trying to set a new bandwidth
3776 * period or because we're racing with the tear-down path
3777 * (timer_active==0 becomes visible before the hrtimer call-back
3778 * terminates). In either case we ensure that it's re-programmed
3779 */
927b54fc
BS
3780 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3781 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3782 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3783 raw_spin_unlock(&cfs_b->lock);
927b54fc 3784 cpu_relax();
029632fb
PZ
3785 raw_spin_lock(&cfs_b->lock);
3786 /* if someone else restarted the timer then we're done */
09dc4ab0 3787 if (!force && cfs_b->timer_active)
029632fb
PZ
3788 return;
3789 }
3790
3791 cfs_b->timer_active = 1;
3792 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3793}
3794
3795static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3796{
3797 hrtimer_cancel(&cfs_b->period_timer);
3798 hrtimer_cancel(&cfs_b->slack_timer);
3799}
3800
0e59bdae
KT
3801static void __maybe_unused update_runtime_enabled(struct rq *rq)
3802{
3803 struct cfs_rq *cfs_rq;
3804
3805 for_each_leaf_cfs_rq(rq, cfs_rq) {
3806 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3807
3808 raw_spin_lock(&cfs_b->lock);
3809 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3810 raw_spin_unlock(&cfs_b->lock);
3811 }
3812}
3813
38dc3348 3814static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3815{
3816 struct cfs_rq *cfs_rq;
3817
3818 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3819 if (!cfs_rq->runtime_enabled)
3820 continue;
3821
3822 /*
3823 * clock_task is not advancing so we just need to make sure
3824 * there's some valid quota amount
3825 */
51f2176d 3826 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3827 /*
3828 * Offline rq is schedulable till cpu is completely disabled
3829 * in take_cpu_down(), so we prevent new cfs throttling here.
3830 */
3831 cfs_rq->runtime_enabled = 0;
3832
029632fb
PZ
3833 if (cfs_rq_throttled(cfs_rq))
3834 unthrottle_cfs_rq(cfs_rq);
3835 }
3836}
3837
3838#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3839static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3840{
78becc27 3841 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3842}
3843
9dbdb155 3844static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3845static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3846static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3847static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3848
3849static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3850{
3851 return 0;
3852}
64660c86
PT
3853
3854static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3855{
3856 return 0;
3857}
3858
3859static inline int throttled_lb_pair(struct task_group *tg,
3860 int src_cpu, int dest_cpu)
3861{
3862 return 0;
3863}
029632fb
PZ
3864
3865void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3866
3867#ifdef CONFIG_FAIR_GROUP_SCHED
3868static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3869#endif
3870
029632fb
PZ
3871static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3872{
3873 return NULL;
3874}
3875static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3876static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3877static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3878
3879#endif /* CONFIG_CFS_BANDWIDTH */
3880
bf0f6f24
IM
3881/**************************************************
3882 * CFS operations on tasks:
3883 */
3884
8f4d37ec
PZ
3885#ifdef CONFIG_SCHED_HRTICK
3886static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3887{
8f4d37ec
PZ
3888 struct sched_entity *se = &p->se;
3889 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3890
3891 WARN_ON(task_rq(p) != rq);
3892
b39e66ea 3893 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3894 u64 slice = sched_slice(cfs_rq, se);
3895 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3896 s64 delta = slice - ran;
3897
3898 if (delta < 0) {
3899 if (rq->curr == p)
3900 resched_task(p);
3901 return;
3902 }
3903
3904 /*
3905 * Don't schedule slices shorter than 10000ns, that just
3906 * doesn't make sense. Rely on vruntime for fairness.
3907 */
31656519 3908 if (rq->curr != p)
157124c1 3909 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3910
31656519 3911 hrtick_start(rq, delta);
8f4d37ec
PZ
3912 }
3913}
a4c2f00f
PZ
3914
3915/*
3916 * called from enqueue/dequeue and updates the hrtick when the
3917 * current task is from our class and nr_running is low enough
3918 * to matter.
3919 */
3920static void hrtick_update(struct rq *rq)
3921{
3922 struct task_struct *curr = rq->curr;
3923
b39e66ea 3924 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3925 return;
3926
3927 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3928 hrtick_start_fair(rq, curr);
3929}
55e12e5e 3930#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3931static inline void
3932hrtick_start_fair(struct rq *rq, struct task_struct *p)
3933{
3934}
a4c2f00f
PZ
3935
3936static inline void hrtick_update(struct rq *rq)
3937{
3938}
8f4d37ec
PZ
3939#endif
3940
bf0f6f24
IM
3941/*
3942 * The enqueue_task method is called before nr_running is
3943 * increased. Here we update the fair scheduling stats and
3944 * then put the task into the rbtree:
3945 */
ea87bb78 3946static void
371fd7e7 3947enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3948{
3949 struct cfs_rq *cfs_rq;
62fb1851 3950 struct sched_entity *se = &p->se;
bf0f6f24
IM
3951
3952 for_each_sched_entity(se) {
62fb1851 3953 if (se->on_rq)
bf0f6f24
IM
3954 break;
3955 cfs_rq = cfs_rq_of(se);
88ec22d3 3956 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3957
3958 /*
3959 * end evaluation on encountering a throttled cfs_rq
3960 *
3961 * note: in the case of encountering a throttled cfs_rq we will
3962 * post the final h_nr_running increment below.
3963 */
3964 if (cfs_rq_throttled(cfs_rq))
3965 break;
953bfcd1 3966 cfs_rq->h_nr_running++;
85dac906 3967
88ec22d3 3968 flags = ENQUEUE_WAKEUP;
bf0f6f24 3969 }
8f4d37ec 3970
2069dd75 3971 for_each_sched_entity(se) {
0f317143 3972 cfs_rq = cfs_rq_of(se);
953bfcd1 3973 cfs_rq->h_nr_running++;
2069dd75 3974
85dac906
PT
3975 if (cfs_rq_throttled(cfs_rq))
3976 break;
3977
17bc14b7 3978 update_cfs_shares(cfs_rq);
9ee474f5 3979 update_entity_load_avg(se, 1);
2069dd75
PZ
3980 }
3981
18bf2805
BS
3982 if (!se) {
3983 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3984 add_nr_running(rq, 1);
18bf2805 3985 }
a4c2f00f 3986 hrtick_update(rq);
bf0f6f24
IM
3987}
3988
2f36825b
VP
3989static void set_next_buddy(struct sched_entity *se);
3990
bf0f6f24
IM
3991/*
3992 * The dequeue_task method is called before nr_running is
3993 * decreased. We remove the task from the rbtree and
3994 * update the fair scheduling stats:
3995 */
371fd7e7 3996static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3997{
3998 struct cfs_rq *cfs_rq;
62fb1851 3999 struct sched_entity *se = &p->se;
2f36825b 4000 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4001
4002 for_each_sched_entity(se) {
4003 cfs_rq = cfs_rq_of(se);
371fd7e7 4004 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4005
4006 /*
4007 * end evaluation on encountering a throttled cfs_rq
4008 *
4009 * note: in the case of encountering a throttled cfs_rq we will
4010 * post the final h_nr_running decrement below.
4011 */
4012 if (cfs_rq_throttled(cfs_rq))
4013 break;
953bfcd1 4014 cfs_rq->h_nr_running--;
2069dd75 4015
bf0f6f24 4016 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4017 if (cfs_rq->load.weight) {
4018 /*
4019 * Bias pick_next to pick a task from this cfs_rq, as
4020 * p is sleeping when it is within its sched_slice.
4021 */
4022 if (task_sleep && parent_entity(se))
4023 set_next_buddy(parent_entity(se));
9598c82d
PT
4024
4025 /* avoid re-evaluating load for this entity */
4026 se = parent_entity(se);
bf0f6f24 4027 break;
2f36825b 4028 }
371fd7e7 4029 flags |= DEQUEUE_SLEEP;
bf0f6f24 4030 }
8f4d37ec 4031
2069dd75 4032 for_each_sched_entity(se) {
0f317143 4033 cfs_rq = cfs_rq_of(se);
953bfcd1 4034 cfs_rq->h_nr_running--;
2069dd75 4035
85dac906
PT
4036 if (cfs_rq_throttled(cfs_rq))
4037 break;
4038
17bc14b7 4039 update_cfs_shares(cfs_rq);
9ee474f5 4040 update_entity_load_avg(se, 1);
2069dd75
PZ
4041 }
4042
18bf2805 4043 if (!se) {
72465447 4044 sub_nr_running(rq, 1);
18bf2805
BS
4045 update_rq_runnable_avg(rq, 1);
4046 }
a4c2f00f 4047 hrtick_update(rq);
bf0f6f24
IM
4048}
4049
e7693a36 4050#ifdef CONFIG_SMP
029632fb
PZ
4051/* Used instead of source_load when we know the type == 0 */
4052static unsigned long weighted_cpuload(const int cpu)
4053{
b92486cb 4054 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4055}
4056
4057/*
4058 * Return a low guess at the load of a migration-source cpu weighted
4059 * according to the scheduling class and "nice" value.
4060 *
4061 * We want to under-estimate the load of migration sources, to
4062 * balance conservatively.
4063 */
4064static unsigned long source_load(int cpu, int type)
4065{
4066 struct rq *rq = cpu_rq(cpu);
4067 unsigned long total = weighted_cpuload(cpu);
4068
4069 if (type == 0 || !sched_feat(LB_BIAS))
4070 return total;
4071
4072 return min(rq->cpu_load[type-1], total);
4073}
4074
4075/*
4076 * Return a high guess at the load of a migration-target cpu weighted
4077 * according to the scheduling class and "nice" value.
4078 */
4079static unsigned long target_load(int cpu, int type)
4080{
4081 struct rq *rq = cpu_rq(cpu);
4082 unsigned long total = weighted_cpuload(cpu);
4083
4084 if (type == 0 || !sched_feat(LB_BIAS))
4085 return total;
4086
4087 return max(rq->cpu_load[type-1], total);
4088}
4089
ced549fa 4090static unsigned long capacity_of(int cpu)
029632fb 4091{
ced549fa 4092 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4093}
4094
4095static unsigned long cpu_avg_load_per_task(int cpu)
4096{
4097 struct rq *rq = cpu_rq(cpu);
4098 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4099 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4100
4101 if (nr_running)
b92486cb 4102 return load_avg / nr_running;
029632fb
PZ
4103
4104 return 0;
4105}
4106
62470419
MW
4107static void record_wakee(struct task_struct *p)
4108{
4109 /*
4110 * Rough decay (wiping) for cost saving, don't worry
4111 * about the boundary, really active task won't care
4112 * about the loss.
4113 */
2538d960 4114 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4115 current->wakee_flips >>= 1;
62470419
MW
4116 current->wakee_flip_decay_ts = jiffies;
4117 }
4118
4119 if (current->last_wakee != p) {
4120 current->last_wakee = p;
4121 current->wakee_flips++;
4122 }
4123}
098fb9db 4124
74f8e4b2 4125static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4126{
4127 struct sched_entity *se = &p->se;
4128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4129 u64 min_vruntime;
4130
4131#ifndef CONFIG_64BIT
4132 u64 min_vruntime_copy;
88ec22d3 4133
3fe1698b
PZ
4134 do {
4135 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4136 smp_rmb();
4137 min_vruntime = cfs_rq->min_vruntime;
4138 } while (min_vruntime != min_vruntime_copy);
4139#else
4140 min_vruntime = cfs_rq->min_vruntime;
4141#endif
88ec22d3 4142
3fe1698b 4143 se->vruntime -= min_vruntime;
62470419 4144 record_wakee(p);
88ec22d3
PZ
4145}
4146
bb3469ac 4147#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4148/*
4149 * effective_load() calculates the load change as seen from the root_task_group
4150 *
4151 * Adding load to a group doesn't make a group heavier, but can cause movement
4152 * of group shares between cpus. Assuming the shares were perfectly aligned one
4153 * can calculate the shift in shares.
cf5f0acf
PZ
4154 *
4155 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4156 * on this @cpu and results in a total addition (subtraction) of @wg to the
4157 * total group weight.
4158 *
4159 * Given a runqueue weight distribution (rw_i) we can compute a shares
4160 * distribution (s_i) using:
4161 *
4162 * s_i = rw_i / \Sum rw_j (1)
4163 *
4164 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4165 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4166 * shares distribution (s_i):
4167 *
4168 * rw_i = { 2, 4, 1, 0 }
4169 * s_i = { 2/7, 4/7, 1/7, 0 }
4170 *
4171 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4172 * task used to run on and the CPU the waker is running on), we need to
4173 * compute the effect of waking a task on either CPU and, in case of a sync
4174 * wakeup, compute the effect of the current task going to sleep.
4175 *
4176 * So for a change of @wl to the local @cpu with an overall group weight change
4177 * of @wl we can compute the new shares distribution (s'_i) using:
4178 *
4179 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4180 *
4181 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4182 * differences in waking a task to CPU 0. The additional task changes the
4183 * weight and shares distributions like:
4184 *
4185 * rw'_i = { 3, 4, 1, 0 }
4186 * s'_i = { 3/8, 4/8, 1/8, 0 }
4187 *
4188 * We can then compute the difference in effective weight by using:
4189 *
4190 * dw_i = S * (s'_i - s_i) (3)
4191 *
4192 * Where 'S' is the group weight as seen by its parent.
4193 *
4194 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4195 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4196 * 4/7) times the weight of the group.
f5bfb7d9 4197 */
2069dd75 4198static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4199{
4be9daaa 4200 struct sched_entity *se = tg->se[cpu];
f1d239f7 4201
9722c2da 4202 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4203 return wl;
4204
4be9daaa 4205 for_each_sched_entity(se) {
cf5f0acf 4206 long w, W;
4be9daaa 4207
977dda7c 4208 tg = se->my_q->tg;
bb3469ac 4209
cf5f0acf
PZ
4210 /*
4211 * W = @wg + \Sum rw_j
4212 */
4213 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4214
cf5f0acf
PZ
4215 /*
4216 * w = rw_i + @wl
4217 */
4218 w = se->my_q->load.weight + wl;
940959e9 4219
cf5f0acf
PZ
4220 /*
4221 * wl = S * s'_i; see (2)
4222 */
4223 if (W > 0 && w < W)
4224 wl = (w * tg->shares) / W;
977dda7c
PT
4225 else
4226 wl = tg->shares;
940959e9 4227
cf5f0acf
PZ
4228 /*
4229 * Per the above, wl is the new se->load.weight value; since
4230 * those are clipped to [MIN_SHARES, ...) do so now. See
4231 * calc_cfs_shares().
4232 */
977dda7c
PT
4233 if (wl < MIN_SHARES)
4234 wl = MIN_SHARES;
cf5f0acf
PZ
4235
4236 /*
4237 * wl = dw_i = S * (s'_i - s_i); see (3)
4238 */
977dda7c 4239 wl -= se->load.weight;
cf5f0acf
PZ
4240
4241 /*
4242 * Recursively apply this logic to all parent groups to compute
4243 * the final effective load change on the root group. Since
4244 * only the @tg group gets extra weight, all parent groups can
4245 * only redistribute existing shares. @wl is the shift in shares
4246 * resulting from this level per the above.
4247 */
4be9daaa 4248 wg = 0;
4be9daaa 4249 }
bb3469ac 4250
4be9daaa 4251 return wl;
bb3469ac
PZ
4252}
4253#else
4be9daaa 4254
58d081b5 4255static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4256{
83378269 4257 return wl;
bb3469ac 4258}
4be9daaa 4259
bb3469ac
PZ
4260#endif
4261
62470419
MW
4262static int wake_wide(struct task_struct *p)
4263{
7d9ffa89 4264 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4265
4266 /*
4267 * Yeah, it's the switching-frequency, could means many wakee or
4268 * rapidly switch, use factor here will just help to automatically
4269 * adjust the loose-degree, so bigger node will lead to more pull.
4270 */
4271 if (p->wakee_flips > factor) {
4272 /*
4273 * wakee is somewhat hot, it needs certain amount of cpu
4274 * resource, so if waker is far more hot, prefer to leave
4275 * it alone.
4276 */
4277 if (current->wakee_flips > (factor * p->wakee_flips))
4278 return 1;
4279 }
4280
4281 return 0;
4282}
4283
c88d5910 4284static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4285{
e37b6a7b 4286 s64 this_load, load;
c88d5910 4287 int idx, this_cpu, prev_cpu;
098fb9db 4288 unsigned long tl_per_task;
c88d5910 4289 struct task_group *tg;
83378269 4290 unsigned long weight;
b3137bc8 4291 int balanced;
098fb9db 4292
62470419
MW
4293 /*
4294 * If we wake multiple tasks be careful to not bounce
4295 * ourselves around too much.
4296 */
4297 if (wake_wide(p))
4298 return 0;
4299
c88d5910
PZ
4300 idx = sd->wake_idx;
4301 this_cpu = smp_processor_id();
4302 prev_cpu = task_cpu(p);
4303 load = source_load(prev_cpu, idx);
4304 this_load = target_load(this_cpu, idx);
098fb9db 4305
b3137bc8
MG
4306 /*
4307 * If sync wakeup then subtract the (maximum possible)
4308 * effect of the currently running task from the load
4309 * of the current CPU:
4310 */
83378269
PZ
4311 if (sync) {
4312 tg = task_group(current);
4313 weight = current->se.load.weight;
4314
c88d5910 4315 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4316 load += effective_load(tg, prev_cpu, 0, -weight);
4317 }
b3137bc8 4318
83378269
PZ
4319 tg = task_group(p);
4320 weight = p->se.load.weight;
b3137bc8 4321
71a29aa7
PZ
4322 /*
4323 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4324 * due to the sync cause above having dropped this_load to 0, we'll
4325 * always have an imbalance, but there's really nothing you can do
4326 * about that, so that's good too.
71a29aa7
PZ
4327 *
4328 * Otherwise check if either cpus are near enough in load to allow this
4329 * task to be woken on this_cpu.
4330 */
e37b6a7b
PT
4331 if (this_load > 0) {
4332 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4333
4334 this_eff_load = 100;
ced549fa 4335 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4336 this_eff_load *= this_load +
4337 effective_load(tg, this_cpu, weight, weight);
4338
4339 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4340 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4341 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4342
4343 balanced = this_eff_load <= prev_eff_load;
4344 } else
4345 balanced = true;
b3137bc8 4346
098fb9db 4347 /*
4ae7d5ce
IM
4348 * If the currently running task will sleep within
4349 * a reasonable amount of time then attract this newly
4350 * woken task:
098fb9db 4351 */
2fb7635c
PZ
4352 if (sync && balanced)
4353 return 1;
098fb9db 4354
41acab88 4355 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4356 tl_per_task = cpu_avg_load_per_task(this_cpu);
4357
c88d5910
PZ
4358 if (balanced ||
4359 (this_load <= load &&
4360 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4361 /*
4362 * This domain has SD_WAKE_AFFINE and
4363 * p is cache cold in this domain, and
4364 * there is no bad imbalance.
4365 */
c88d5910 4366 schedstat_inc(sd, ttwu_move_affine);
41acab88 4367 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4368
4369 return 1;
4370 }
4371 return 0;
4372}
4373
aaee1203
PZ
4374/*
4375 * find_idlest_group finds and returns the least busy CPU group within the
4376 * domain.
4377 */
4378static struct sched_group *
78e7ed53 4379find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4380 int this_cpu, int sd_flag)
e7693a36 4381{
b3bd3de6 4382 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4383 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4384 int load_idx = sd->forkexec_idx;
aaee1203 4385 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4386
c44f2a02
VG
4387 if (sd_flag & SD_BALANCE_WAKE)
4388 load_idx = sd->wake_idx;
4389
aaee1203
PZ
4390 do {
4391 unsigned long load, avg_load;
4392 int local_group;
4393 int i;
e7693a36 4394
aaee1203
PZ
4395 /* Skip over this group if it has no CPUs allowed */
4396 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4397 tsk_cpus_allowed(p)))
aaee1203
PZ
4398 continue;
4399
4400 local_group = cpumask_test_cpu(this_cpu,
4401 sched_group_cpus(group));
4402
4403 /* Tally up the load of all CPUs in the group */
4404 avg_load = 0;
4405
4406 for_each_cpu(i, sched_group_cpus(group)) {
4407 /* Bias balancing toward cpus of our domain */
4408 if (local_group)
4409 load = source_load(i, load_idx);
4410 else
4411 load = target_load(i, load_idx);
4412
4413 avg_load += load;
4414 }
4415
63b2ca30 4416 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4417 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4418
4419 if (local_group) {
4420 this_load = avg_load;
aaee1203
PZ
4421 } else if (avg_load < min_load) {
4422 min_load = avg_load;
4423 idlest = group;
4424 }
4425 } while (group = group->next, group != sd->groups);
4426
4427 if (!idlest || 100*this_load < imbalance*min_load)
4428 return NULL;
4429 return idlest;
4430}
4431
4432/*
4433 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4434 */
4435static int
4436find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4437{
4438 unsigned long load, min_load = ULONG_MAX;
4439 int idlest = -1;
4440 int i;
4441
4442 /* Traverse only the allowed CPUs */
fa17b507 4443 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4444 load = weighted_cpuload(i);
4445
4446 if (load < min_load || (load == min_load && i == this_cpu)) {
4447 min_load = load;
4448 idlest = i;
e7693a36
GH
4449 }
4450 }
4451
aaee1203
PZ
4452 return idlest;
4453}
e7693a36 4454
a50bde51
PZ
4455/*
4456 * Try and locate an idle CPU in the sched_domain.
4457 */
99bd5e2f 4458static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4459{
99bd5e2f 4460 struct sched_domain *sd;
37407ea7 4461 struct sched_group *sg;
e0a79f52 4462 int i = task_cpu(p);
a50bde51 4463
e0a79f52
MG
4464 if (idle_cpu(target))
4465 return target;
99bd5e2f
SS
4466
4467 /*
e0a79f52 4468 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4469 */
e0a79f52
MG
4470 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4471 return i;
a50bde51
PZ
4472
4473 /*
37407ea7 4474 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4475 */
518cd623 4476 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4477 for_each_lower_domain(sd) {
37407ea7
LT
4478 sg = sd->groups;
4479 do {
4480 if (!cpumask_intersects(sched_group_cpus(sg),
4481 tsk_cpus_allowed(p)))
4482 goto next;
4483
4484 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4485 if (i == target || !idle_cpu(i))
37407ea7
LT
4486 goto next;
4487 }
970e1789 4488
37407ea7
LT
4489 target = cpumask_first_and(sched_group_cpus(sg),
4490 tsk_cpus_allowed(p));
4491 goto done;
4492next:
4493 sg = sg->next;
4494 } while (sg != sd->groups);
4495 }
4496done:
a50bde51
PZ
4497 return target;
4498}
4499
aaee1203 4500/*
de91b9cb
MR
4501 * select_task_rq_fair: Select target runqueue for the waking task in domains
4502 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4503 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4504 *
de91b9cb
MR
4505 * Balances load by selecting the idlest cpu in the idlest group, or under
4506 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4507 *
de91b9cb 4508 * Returns the target cpu number.
aaee1203
PZ
4509 *
4510 * preempt must be disabled.
4511 */
0017d735 4512static int
ac66f547 4513select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4514{
29cd8bae 4515 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4516 int cpu = smp_processor_id();
c88d5910 4517 int new_cpu = cpu;
99bd5e2f 4518 int want_affine = 0;
5158f4e4 4519 int sync = wake_flags & WF_SYNC;
c88d5910 4520
29baa747 4521 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4522 return prev_cpu;
4523
0763a660 4524 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4525 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4526 want_affine = 1;
4527 new_cpu = prev_cpu;
4528 }
aaee1203 4529
dce840a0 4530 rcu_read_lock();
aaee1203 4531 for_each_domain(cpu, tmp) {
e4f42888
PZ
4532 if (!(tmp->flags & SD_LOAD_BALANCE))
4533 continue;
4534
fe3bcfe1 4535 /*
99bd5e2f
SS
4536 * If both cpu and prev_cpu are part of this domain,
4537 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4538 */
99bd5e2f
SS
4539 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4540 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4541 affine_sd = tmp;
29cd8bae 4542 break;
f03542a7 4543 }
29cd8bae 4544
f03542a7 4545 if (tmp->flags & sd_flag)
29cd8bae
PZ
4546 sd = tmp;
4547 }
4548
8bf21433
RR
4549 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4550 prev_cpu = cpu;
dce840a0 4551
8bf21433 4552 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4553 new_cpu = select_idle_sibling(p, prev_cpu);
4554 goto unlock;
8b911acd 4555 }
e7693a36 4556
aaee1203
PZ
4557 while (sd) {
4558 struct sched_group *group;
c88d5910 4559 int weight;
098fb9db 4560
0763a660 4561 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4562 sd = sd->child;
4563 continue;
4564 }
098fb9db 4565
c44f2a02 4566 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4567 if (!group) {
4568 sd = sd->child;
4569 continue;
4570 }
4ae7d5ce 4571
d7c33c49 4572 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4573 if (new_cpu == -1 || new_cpu == cpu) {
4574 /* Now try balancing at a lower domain level of cpu */
4575 sd = sd->child;
4576 continue;
e7693a36 4577 }
aaee1203
PZ
4578
4579 /* Now try balancing at a lower domain level of new_cpu */
4580 cpu = new_cpu;
669c55e9 4581 weight = sd->span_weight;
aaee1203
PZ
4582 sd = NULL;
4583 for_each_domain(cpu, tmp) {
669c55e9 4584 if (weight <= tmp->span_weight)
aaee1203 4585 break;
0763a660 4586 if (tmp->flags & sd_flag)
aaee1203
PZ
4587 sd = tmp;
4588 }
4589 /* while loop will break here if sd == NULL */
e7693a36 4590 }
dce840a0
PZ
4591unlock:
4592 rcu_read_unlock();
e7693a36 4593
c88d5910 4594 return new_cpu;
e7693a36 4595}
0a74bef8
PT
4596
4597/*
4598 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4599 * cfs_rq_of(p) references at time of call are still valid and identify the
4600 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4601 * other assumptions, including the state of rq->lock, should be made.
4602 */
4603static void
4604migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4605{
aff3e498
PT
4606 struct sched_entity *se = &p->se;
4607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4608
4609 /*
4610 * Load tracking: accumulate removed load so that it can be processed
4611 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4612 * to blocked load iff they have a positive decay-count. It can never
4613 * be negative here since on-rq tasks have decay-count == 0.
4614 */
4615 if (se->avg.decay_count) {
4616 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4617 atomic_long_add(se->avg.load_avg_contrib,
4618 &cfs_rq->removed_load);
aff3e498 4619 }
3944a927
BS
4620
4621 /* We have migrated, no longer consider this task hot */
4622 se->exec_start = 0;
0a74bef8 4623}
e7693a36
GH
4624#endif /* CONFIG_SMP */
4625
e52fb7c0
PZ
4626static unsigned long
4627wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4628{
4629 unsigned long gran = sysctl_sched_wakeup_granularity;
4630
4631 /*
e52fb7c0
PZ
4632 * Since its curr running now, convert the gran from real-time
4633 * to virtual-time in his units.
13814d42
MG
4634 *
4635 * By using 'se' instead of 'curr' we penalize light tasks, so
4636 * they get preempted easier. That is, if 'se' < 'curr' then
4637 * the resulting gran will be larger, therefore penalizing the
4638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4639 * be smaller, again penalizing the lighter task.
4640 *
4641 * This is especially important for buddies when the leftmost
4642 * task is higher priority than the buddy.
0bbd3336 4643 */
f4ad9bd2 4644 return calc_delta_fair(gran, se);
0bbd3336
PZ
4645}
4646
464b7527
PZ
4647/*
4648 * Should 'se' preempt 'curr'.
4649 *
4650 * |s1
4651 * |s2
4652 * |s3
4653 * g
4654 * |<--->|c
4655 *
4656 * w(c, s1) = -1
4657 * w(c, s2) = 0
4658 * w(c, s3) = 1
4659 *
4660 */
4661static int
4662wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4663{
4664 s64 gran, vdiff = curr->vruntime - se->vruntime;
4665
4666 if (vdiff <= 0)
4667 return -1;
4668
e52fb7c0 4669 gran = wakeup_gran(curr, se);
464b7527
PZ
4670 if (vdiff > gran)
4671 return 1;
4672
4673 return 0;
4674}
4675
02479099
PZ
4676static void set_last_buddy(struct sched_entity *se)
4677{
69c80f3e
VP
4678 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4679 return;
4680
4681 for_each_sched_entity(se)
4682 cfs_rq_of(se)->last = se;
02479099
PZ
4683}
4684
4685static void set_next_buddy(struct sched_entity *se)
4686{
69c80f3e
VP
4687 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4688 return;
4689
4690 for_each_sched_entity(se)
4691 cfs_rq_of(se)->next = se;
02479099
PZ
4692}
4693
ac53db59
RR
4694static void set_skip_buddy(struct sched_entity *se)
4695{
69c80f3e
VP
4696 for_each_sched_entity(se)
4697 cfs_rq_of(se)->skip = se;
ac53db59
RR
4698}
4699
bf0f6f24
IM
4700/*
4701 * Preempt the current task with a newly woken task if needed:
4702 */
5a9b86f6 4703static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4704{
4705 struct task_struct *curr = rq->curr;
8651a86c 4706 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4707 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4708 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4709 int next_buddy_marked = 0;
bf0f6f24 4710
4ae7d5ce
IM
4711 if (unlikely(se == pse))
4712 return;
4713
5238cdd3 4714 /*
ddcdf6e7 4715 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4716 * unconditionally check_prempt_curr() after an enqueue (which may have
4717 * lead to a throttle). This both saves work and prevents false
4718 * next-buddy nomination below.
4719 */
4720 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4721 return;
4722
2f36825b 4723 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4724 set_next_buddy(pse);
2f36825b
VP
4725 next_buddy_marked = 1;
4726 }
57fdc26d 4727
aec0a514
BR
4728 /*
4729 * We can come here with TIF_NEED_RESCHED already set from new task
4730 * wake up path.
5238cdd3
PT
4731 *
4732 * Note: this also catches the edge-case of curr being in a throttled
4733 * group (e.g. via set_curr_task), since update_curr() (in the
4734 * enqueue of curr) will have resulted in resched being set. This
4735 * prevents us from potentially nominating it as a false LAST_BUDDY
4736 * below.
aec0a514
BR
4737 */
4738 if (test_tsk_need_resched(curr))
4739 return;
4740
a2f5c9ab
DH
4741 /* Idle tasks are by definition preempted by non-idle tasks. */
4742 if (unlikely(curr->policy == SCHED_IDLE) &&
4743 likely(p->policy != SCHED_IDLE))
4744 goto preempt;
4745
91c234b4 4746 /*
a2f5c9ab
DH
4747 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4748 * is driven by the tick):
91c234b4 4749 */
8ed92e51 4750 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4751 return;
bf0f6f24 4752
464b7527 4753 find_matching_se(&se, &pse);
9bbd7374 4754 update_curr(cfs_rq_of(se));
002f128b 4755 BUG_ON(!pse);
2f36825b
VP
4756 if (wakeup_preempt_entity(se, pse) == 1) {
4757 /*
4758 * Bias pick_next to pick the sched entity that is
4759 * triggering this preemption.
4760 */
4761 if (!next_buddy_marked)
4762 set_next_buddy(pse);
3a7e73a2 4763 goto preempt;
2f36825b 4764 }
464b7527 4765
3a7e73a2 4766 return;
a65ac745 4767
3a7e73a2
PZ
4768preempt:
4769 resched_task(curr);
4770 /*
4771 * Only set the backward buddy when the current task is still
4772 * on the rq. This can happen when a wakeup gets interleaved
4773 * with schedule on the ->pre_schedule() or idle_balance()
4774 * point, either of which can * drop the rq lock.
4775 *
4776 * Also, during early boot the idle thread is in the fair class,
4777 * for obvious reasons its a bad idea to schedule back to it.
4778 */
4779 if (unlikely(!se->on_rq || curr == rq->idle))
4780 return;
4781
4782 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4783 set_last_buddy(se);
bf0f6f24
IM
4784}
4785
606dba2e
PZ
4786static struct task_struct *
4787pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4788{
4789 struct cfs_rq *cfs_rq = &rq->cfs;
4790 struct sched_entity *se;
678d5718 4791 struct task_struct *p;
37e117c0 4792 int new_tasks;
678d5718 4793
6e83125c 4794again:
678d5718
PZ
4795#ifdef CONFIG_FAIR_GROUP_SCHED
4796 if (!cfs_rq->nr_running)
38033c37 4797 goto idle;
678d5718 4798
3f1d2a31 4799 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4800 goto simple;
4801
4802 /*
4803 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4804 * likely that a next task is from the same cgroup as the current.
4805 *
4806 * Therefore attempt to avoid putting and setting the entire cgroup
4807 * hierarchy, only change the part that actually changes.
4808 */
4809
4810 do {
4811 struct sched_entity *curr = cfs_rq->curr;
4812
4813 /*
4814 * Since we got here without doing put_prev_entity() we also
4815 * have to consider cfs_rq->curr. If it is still a runnable
4816 * entity, update_curr() will update its vruntime, otherwise
4817 * forget we've ever seen it.
4818 */
4819 if (curr && curr->on_rq)
4820 update_curr(cfs_rq);
4821 else
4822 curr = NULL;
4823
4824 /*
4825 * This call to check_cfs_rq_runtime() will do the throttle and
4826 * dequeue its entity in the parent(s). Therefore the 'simple'
4827 * nr_running test will indeed be correct.
4828 */
4829 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4830 goto simple;
4831
4832 se = pick_next_entity(cfs_rq, curr);
4833 cfs_rq = group_cfs_rq(se);
4834 } while (cfs_rq);
4835
4836 p = task_of(se);
4837
4838 /*
4839 * Since we haven't yet done put_prev_entity and if the selected task
4840 * is a different task than we started out with, try and touch the
4841 * least amount of cfs_rqs.
4842 */
4843 if (prev != p) {
4844 struct sched_entity *pse = &prev->se;
4845
4846 while (!(cfs_rq = is_same_group(se, pse))) {
4847 int se_depth = se->depth;
4848 int pse_depth = pse->depth;
4849
4850 if (se_depth <= pse_depth) {
4851 put_prev_entity(cfs_rq_of(pse), pse);
4852 pse = parent_entity(pse);
4853 }
4854 if (se_depth >= pse_depth) {
4855 set_next_entity(cfs_rq_of(se), se);
4856 se = parent_entity(se);
4857 }
4858 }
4859
4860 put_prev_entity(cfs_rq, pse);
4861 set_next_entity(cfs_rq, se);
4862 }
4863
4864 if (hrtick_enabled(rq))
4865 hrtick_start_fair(rq, p);
4866
4867 return p;
4868simple:
4869 cfs_rq = &rq->cfs;
4870#endif
bf0f6f24 4871
36ace27e 4872 if (!cfs_rq->nr_running)
38033c37 4873 goto idle;
bf0f6f24 4874
3f1d2a31 4875 put_prev_task(rq, prev);
606dba2e 4876
bf0f6f24 4877 do {
678d5718 4878 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4879 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4880 cfs_rq = group_cfs_rq(se);
4881 } while (cfs_rq);
4882
8f4d37ec 4883 p = task_of(se);
678d5718 4884
b39e66ea
MG
4885 if (hrtick_enabled(rq))
4886 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4887
4888 return p;
38033c37
PZ
4889
4890idle:
e4aa358b 4891 new_tasks = idle_balance(rq);
37e117c0
PZ
4892 /*
4893 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4894 * possible for any higher priority task to appear. In that case we
4895 * must re-start the pick_next_entity() loop.
4896 */
e4aa358b 4897 if (new_tasks < 0)
37e117c0
PZ
4898 return RETRY_TASK;
4899
e4aa358b 4900 if (new_tasks > 0)
38033c37 4901 goto again;
38033c37
PZ
4902
4903 return NULL;
bf0f6f24
IM
4904}
4905
4906/*
4907 * Account for a descheduled task:
4908 */
31ee529c 4909static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4910{
4911 struct sched_entity *se = &prev->se;
4912 struct cfs_rq *cfs_rq;
4913
4914 for_each_sched_entity(se) {
4915 cfs_rq = cfs_rq_of(se);
ab6cde26 4916 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4917 }
4918}
4919
ac53db59
RR
4920/*
4921 * sched_yield() is very simple
4922 *
4923 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4924 */
4925static void yield_task_fair(struct rq *rq)
4926{
4927 struct task_struct *curr = rq->curr;
4928 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4929 struct sched_entity *se = &curr->se;
4930
4931 /*
4932 * Are we the only task in the tree?
4933 */
4934 if (unlikely(rq->nr_running == 1))
4935 return;
4936
4937 clear_buddies(cfs_rq, se);
4938
4939 if (curr->policy != SCHED_BATCH) {
4940 update_rq_clock(rq);
4941 /*
4942 * Update run-time statistics of the 'current'.
4943 */
4944 update_curr(cfs_rq);
916671c0
MG
4945 /*
4946 * Tell update_rq_clock() that we've just updated,
4947 * so we don't do microscopic update in schedule()
4948 * and double the fastpath cost.
4949 */
4950 rq->skip_clock_update = 1;
ac53db59
RR
4951 }
4952
4953 set_skip_buddy(se);
4954}
4955
d95f4122
MG
4956static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4957{
4958 struct sched_entity *se = &p->se;
4959
5238cdd3
PT
4960 /* throttled hierarchies are not runnable */
4961 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4962 return false;
4963
4964 /* Tell the scheduler that we'd really like pse to run next. */
4965 set_next_buddy(se);
4966
d95f4122
MG
4967 yield_task_fair(rq);
4968
4969 return true;
4970}
4971
681f3e68 4972#ifdef CONFIG_SMP
bf0f6f24 4973/**************************************************
e9c84cb8
PZ
4974 * Fair scheduling class load-balancing methods.
4975 *
4976 * BASICS
4977 *
4978 * The purpose of load-balancing is to achieve the same basic fairness the
4979 * per-cpu scheduler provides, namely provide a proportional amount of compute
4980 * time to each task. This is expressed in the following equation:
4981 *
4982 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4983 *
4984 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4985 * W_i,0 is defined as:
4986 *
4987 * W_i,0 = \Sum_j w_i,j (2)
4988 *
4989 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4990 * is derived from the nice value as per prio_to_weight[].
4991 *
4992 * The weight average is an exponential decay average of the instantaneous
4993 * weight:
4994 *
4995 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4996 *
ced549fa 4997 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4998 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4999 * can also include other factors [XXX].
5000 *
5001 * To achieve this balance we define a measure of imbalance which follows
5002 * directly from (1):
5003 *
ced549fa 5004 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5005 *
5006 * We them move tasks around to minimize the imbalance. In the continuous
5007 * function space it is obvious this converges, in the discrete case we get
5008 * a few fun cases generally called infeasible weight scenarios.
5009 *
5010 * [XXX expand on:
5011 * - infeasible weights;
5012 * - local vs global optima in the discrete case. ]
5013 *
5014 *
5015 * SCHED DOMAINS
5016 *
5017 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5018 * for all i,j solution, we create a tree of cpus that follows the hardware
5019 * topology where each level pairs two lower groups (or better). This results
5020 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5021 * tree to only the first of the previous level and we decrease the frequency
5022 * of load-balance at each level inv. proportional to the number of cpus in
5023 * the groups.
5024 *
5025 * This yields:
5026 *
5027 * log_2 n 1 n
5028 * \Sum { --- * --- * 2^i } = O(n) (5)
5029 * i = 0 2^i 2^i
5030 * `- size of each group
5031 * | | `- number of cpus doing load-balance
5032 * | `- freq
5033 * `- sum over all levels
5034 *
5035 * Coupled with a limit on how many tasks we can migrate every balance pass,
5036 * this makes (5) the runtime complexity of the balancer.
5037 *
5038 * An important property here is that each CPU is still (indirectly) connected
5039 * to every other cpu in at most O(log n) steps:
5040 *
5041 * The adjacency matrix of the resulting graph is given by:
5042 *
5043 * log_2 n
5044 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5045 * k = 0
5046 *
5047 * And you'll find that:
5048 *
5049 * A^(log_2 n)_i,j != 0 for all i,j (7)
5050 *
5051 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5052 * The task movement gives a factor of O(m), giving a convergence complexity
5053 * of:
5054 *
5055 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5056 *
5057 *
5058 * WORK CONSERVING
5059 *
5060 * In order to avoid CPUs going idle while there's still work to do, new idle
5061 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5062 * tree itself instead of relying on other CPUs to bring it work.
5063 *
5064 * This adds some complexity to both (5) and (8) but it reduces the total idle
5065 * time.
5066 *
5067 * [XXX more?]
5068 *
5069 *
5070 * CGROUPS
5071 *
5072 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5073 *
5074 * s_k,i
5075 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5076 * S_k
5077 *
5078 * Where
5079 *
5080 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5081 *
5082 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5083 *
5084 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5085 * property.
5086 *
5087 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5088 * rewrite all of this once again.]
5089 */
bf0f6f24 5090
ed387b78
HS
5091static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5092
0ec8aa00
PZ
5093enum fbq_type { regular, remote, all };
5094
ddcdf6e7 5095#define LBF_ALL_PINNED 0x01
367456c7 5096#define LBF_NEED_BREAK 0x02
6263322c
PZ
5097#define LBF_DST_PINNED 0x04
5098#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5099
5100struct lb_env {
5101 struct sched_domain *sd;
5102
ddcdf6e7 5103 struct rq *src_rq;
85c1e7da 5104 int src_cpu;
ddcdf6e7
PZ
5105
5106 int dst_cpu;
5107 struct rq *dst_rq;
5108
88b8dac0
SV
5109 struct cpumask *dst_grpmask;
5110 int new_dst_cpu;
ddcdf6e7 5111 enum cpu_idle_type idle;
bd939f45 5112 long imbalance;
b9403130
MW
5113 /* The set of CPUs under consideration for load-balancing */
5114 struct cpumask *cpus;
5115
ddcdf6e7 5116 unsigned int flags;
367456c7
PZ
5117
5118 unsigned int loop;
5119 unsigned int loop_break;
5120 unsigned int loop_max;
0ec8aa00
PZ
5121
5122 enum fbq_type fbq_type;
ddcdf6e7
PZ
5123};
5124
1e3c88bd 5125/*
ddcdf6e7 5126 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5127 * Both runqueues must be locked.
5128 */
ddcdf6e7 5129static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5130{
ddcdf6e7
PZ
5131 deactivate_task(env->src_rq, p, 0);
5132 set_task_cpu(p, env->dst_cpu);
5133 activate_task(env->dst_rq, p, 0);
5134 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5135}
5136
029632fb
PZ
5137/*
5138 * Is this task likely cache-hot:
5139 */
5d5e2b1b 5140static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5141{
5142 s64 delta;
5143
5144 if (p->sched_class != &fair_sched_class)
5145 return 0;
5146
5147 if (unlikely(p->policy == SCHED_IDLE))
5148 return 0;
5149
5150 /*
5151 * Buddy candidates are cache hot:
5152 */
5d5e2b1b 5153 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5154 (&p->se == cfs_rq_of(&p->se)->next ||
5155 &p->se == cfs_rq_of(&p->se)->last))
5156 return 1;
5157
5158 if (sysctl_sched_migration_cost == -1)
5159 return 1;
5160 if (sysctl_sched_migration_cost == 0)
5161 return 0;
5162
5d5e2b1b 5163 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5164
5165 return delta < (s64)sysctl_sched_migration_cost;
5166}
5167
3a7053b3
MG
5168#ifdef CONFIG_NUMA_BALANCING
5169/* Returns true if the destination node has incurred more faults */
5170static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5171{
b1ad065e 5172 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5173 int src_nid, dst_nid;
5174
ff1df896 5175 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5176 !(env->sd->flags & SD_NUMA)) {
5177 return false;
5178 }
5179
5180 src_nid = cpu_to_node(env->src_cpu);
5181 dst_nid = cpu_to_node(env->dst_cpu);
5182
83e1d2cd 5183 if (src_nid == dst_nid)
3a7053b3
MG
5184 return false;
5185
b1ad065e
RR
5186 if (numa_group) {
5187 /* Task is already in the group's interleave set. */
5188 if (node_isset(src_nid, numa_group->active_nodes))
5189 return false;
83e1d2cd 5190
b1ad065e
RR
5191 /* Task is moving into the group's interleave set. */
5192 if (node_isset(dst_nid, numa_group->active_nodes))
5193 return true;
83e1d2cd 5194
b1ad065e
RR
5195 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5196 }
5197
5198 /* Encourage migration to the preferred node. */
5199 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5200 return true;
5201
b1ad065e 5202 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5203}
7a0f3083
MG
5204
5205
5206static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5207{
b1ad065e 5208 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5209 int src_nid, dst_nid;
5210
5211 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5212 return false;
5213
ff1df896 5214 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5215 return false;
5216
5217 src_nid = cpu_to_node(env->src_cpu);
5218 dst_nid = cpu_to_node(env->dst_cpu);
5219
83e1d2cd 5220 if (src_nid == dst_nid)
7a0f3083
MG
5221 return false;
5222
b1ad065e
RR
5223 if (numa_group) {
5224 /* Task is moving within/into the group's interleave set. */
5225 if (node_isset(dst_nid, numa_group->active_nodes))
5226 return false;
5227
5228 /* Task is moving out of the group's interleave set. */
5229 if (node_isset(src_nid, numa_group->active_nodes))
5230 return true;
5231
5232 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5233 }
5234
83e1d2cd
MG
5235 /* Migrating away from the preferred node is always bad. */
5236 if (src_nid == p->numa_preferred_nid)
5237 return true;
5238
b1ad065e 5239 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5240}
5241
3a7053b3
MG
5242#else
5243static inline bool migrate_improves_locality(struct task_struct *p,
5244 struct lb_env *env)
5245{
5246 return false;
5247}
7a0f3083
MG
5248
5249static inline bool migrate_degrades_locality(struct task_struct *p,
5250 struct lb_env *env)
5251{
5252 return false;
5253}
3a7053b3
MG
5254#endif
5255
1e3c88bd
PZ
5256/*
5257 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5258 */
5259static
8e45cb54 5260int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5261{
5262 int tsk_cache_hot = 0;
5263 /*
5264 * We do not migrate tasks that are:
d3198084 5265 * 1) throttled_lb_pair, or
1e3c88bd 5266 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5267 * 3) running (obviously), or
5268 * 4) are cache-hot on their current CPU.
1e3c88bd 5269 */
d3198084
JK
5270 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5271 return 0;
5272
ddcdf6e7 5273 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5274 int cpu;
88b8dac0 5275
41acab88 5276 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5277
6263322c
PZ
5278 env->flags |= LBF_SOME_PINNED;
5279
88b8dac0
SV
5280 /*
5281 * Remember if this task can be migrated to any other cpu in
5282 * our sched_group. We may want to revisit it if we couldn't
5283 * meet load balance goals by pulling other tasks on src_cpu.
5284 *
5285 * Also avoid computing new_dst_cpu if we have already computed
5286 * one in current iteration.
5287 */
6263322c 5288 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5289 return 0;
5290
e02e60c1
JK
5291 /* Prevent to re-select dst_cpu via env's cpus */
5292 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5293 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5294 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5295 env->new_dst_cpu = cpu;
5296 break;
5297 }
88b8dac0 5298 }
e02e60c1 5299
1e3c88bd
PZ
5300 return 0;
5301 }
88b8dac0
SV
5302
5303 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5304 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5305
ddcdf6e7 5306 if (task_running(env->src_rq, p)) {
41acab88 5307 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5308 return 0;
5309 }
5310
5311 /*
5312 * Aggressive migration if:
3a7053b3
MG
5313 * 1) destination numa is preferred
5314 * 2) task is cache cold, or
5315 * 3) too many balance attempts have failed.
1e3c88bd 5316 */
5d5e2b1b 5317 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5318 if (!tsk_cache_hot)
5319 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5320
5321 if (migrate_improves_locality(p, env)) {
5322#ifdef CONFIG_SCHEDSTATS
5323 if (tsk_cache_hot) {
5324 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5325 schedstat_inc(p, se.statistics.nr_forced_migrations);
5326 }
5327#endif
5328 return 1;
5329 }
5330
1e3c88bd 5331 if (!tsk_cache_hot ||
8e45cb54 5332 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5333
1e3c88bd 5334 if (tsk_cache_hot) {
8e45cb54 5335 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5336 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5337 }
4e2dcb73 5338
1e3c88bd
PZ
5339 return 1;
5340 }
5341
4e2dcb73
ZH
5342 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5343 return 0;
1e3c88bd
PZ
5344}
5345
897c395f
PZ
5346/*
5347 * move_one_task tries to move exactly one task from busiest to this_rq, as
5348 * part of active balancing operations within "domain".
5349 * Returns 1 if successful and 0 otherwise.
5350 *
5351 * Called with both runqueues locked.
5352 */
8e45cb54 5353static int move_one_task(struct lb_env *env)
897c395f
PZ
5354{
5355 struct task_struct *p, *n;
897c395f 5356
367456c7 5357 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5358 if (!can_migrate_task(p, env))
5359 continue;
897c395f 5360
367456c7
PZ
5361 move_task(p, env);
5362 /*
5363 * Right now, this is only the second place move_task()
5364 * is called, so we can safely collect move_task()
5365 * stats here rather than inside move_task().
5366 */
5367 schedstat_inc(env->sd, lb_gained[env->idle]);
5368 return 1;
897c395f 5369 }
897c395f
PZ
5370 return 0;
5371}
5372
eb95308e
PZ
5373static const unsigned int sched_nr_migrate_break = 32;
5374
5d6523eb 5375/*
bd939f45 5376 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5377 * this_rq, as part of a balancing operation within domain "sd".
5378 * Returns 1 if successful and 0 otherwise.
5379 *
5380 * Called with both runqueues locked.
5381 */
5382static int move_tasks(struct lb_env *env)
1e3c88bd 5383{
5d6523eb
PZ
5384 struct list_head *tasks = &env->src_rq->cfs_tasks;
5385 struct task_struct *p;
367456c7
PZ
5386 unsigned long load;
5387 int pulled = 0;
1e3c88bd 5388
bd939f45 5389 if (env->imbalance <= 0)
5d6523eb 5390 return 0;
1e3c88bd 5391
5d6523eb
PZ
5392 while (!list_empty(tasks)) {
5393 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5394
367456c7
PZ
5395 env->loop++;
5396 /* We've more or less seen every task there is, call it quits */
5d6523eb 5397 if (env->loop > env->loop_max)
367456c7 5398 break;
5d6523eb
PZ
5399
5400 /* take a breather every nr_migrate tasks */
367456c7 5401 if (env->loop > env->loop_break) {
eb95308e 5402 env->loop_break += sched_nr_migrate_break;
8e45cb54 5403 env->flags |= LBF_NEED_BREAK;
ee00e66f 5404 break;
a195f004 5405 }
1e3c88bd 5406
d3198084 5407 if (!can_migrate_task(p, env))
367456c7
PZ
5408 goto next;
5409
5410 load = task_h_load(p);
5d6523eb 5411
eb95308e 5412 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5413 goto next;
5414
bd939f45 5415 if ((load / 2) > env->imbalance)
367456c7 5416 goto next;
1e3c88bd 5417
ddcdf6e7 5418 move_task(p, env);
ee00e66f 5419 pulled++;
bd939f45 5420 env->imbalance -= load;
1e3c88bd
PZ
5421
5422#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5423 /*
5424 * NEWIDLE balancing is a source of latency, so preemptible
5425 * kernels will stop after the first task is pulled to minimize
5426 * the critical section.
5427 */
5d6523eb 5428 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5429 break;
1e3c88bd
PZ
5430#endif
5431
ee00e66f
PZ
5432 /*
5433 * We only want to steal up to the prescribed amount of
5434 * weighted load.
5435 */
bd939f45 5436 if (env->imbalance <= 0)
ee00e66f 5437 break;
367456c7
PZ
5438
5439 continue;
5440next:
5d6523eb 5441 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5442 }
5d6523eb 5443
1e3c88bd 5444 /*
ddcdf6e7
PZ
5445 * Right now, this is one of only two places move_task() is called,
5446 * so we can safely collect move_task() stats here rather than
5447 * inside move_task().
1e3c88bd 5448 */
8e45cb54 5449 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5450
5d6523eb 5451 return pulled;
1e3c88bd
PZ
5452}
5453
230059de 5454#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5455/*
5456 * update tg->load_weight by folding this cpu's load_avg
5457 */
48a16753 5458static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5459{
48a16753
PT
5460 struct sched_entity *se = tg->se[cpu];
5461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5462
48a16753
PT
5463 /* throttled entities do not contribute to load */
5464 if (throttled_hierarchy(cfs_rq))
5465 return;
9e3081ca 5466
aff3e498 5467 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5468
82958366
PT
5469 if (se) {
5470 update_entity_load_avg(se, 1);
5471 /*
5472 * We pivot on our runnable average having decayed to zero for
5473 * list removal. This generally implies that all our children
5474 * have also been removed (modulo rounding error or bandwidth
5475 * control); however, such cases are rare and we can fix these
5476 * at enqueue.
5477 *
5478 * TODO: fix up out-of-order children on enqueue.
5479 */
5480 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5481 list_del_leaf_cfs_rq(cfs_rq);
5482 } else {
48a16753 5483 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5484 update_rq_runnable_avg(rq, rq->nr_running);
5485 }
9e3081ca
PZ
5486}
5487
48a16753 5488static void update_blocked_averages(int cpu)
9e3081ca 5489{
9e3081ca 5490 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5491 struct cfs_rq *cfs_rq;
5492 unsigned long flags;
9e3081ca 5493
48a16753
PT
5494 raw_spin_lock_irqsave(&rq->lock, flags);
5495 update_rq_clock(rq);
9763b67f
PZ
5496 /*
5497 * Iterates the task_group tree in a bottom up fashion, see
5498 * list_add_leaf_cfs_rq() for details.
5499 */
64660c86 5500 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5501 /*
5502 * Note: We may want to consider periodically releasing
5503 * rq->lock about these updates so that creating many task
5504 * groups does not result in continually extending hold time.
5505 */
5506 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5507 }
48a16753
PT
5508
5509 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5510}
5511
9763b67f 5512/*
68520796 5513 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5514 * This needs to be done in a top-down fashion because the load of a child
5515 * group is a fraction of its parents load.
5516 */
68520796 5517static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5518{
68520796
VD
5519 struct rq *rq = rq_of(cfs_rq);
5520 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5521 unsigned long now = jiffies;
68520796 5522 unsigned long load;
a35b6466 5523
68520796 5524 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5525 return;
5526
68520796
VD
5527 cfs_rq->h_load_next = NULL;
5528 for_each_sched_entity(se) {
5529 cfs_rq = cfs_rq_of(se);
5530 cfs_rq->h_load_next = se;
5531 if (cfs_rq->last_h_load_update == now)
5532 break;
5533 }
a35b6466 5534
68520796 5535 if (!se) {
7e3115ef 5536 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5537 cfs_rq->last_h_load_update = now;
5538 }
5539
5540 while ((se = cfs_rq->h_load_next) != NULL) {
5541 load = cfs_rq->h_load;
5542 load = div64_ul(load * se->avg.load_avg_contrib,
5543 cfs_rq->runnable_load_avg + 1);
5544 cfs_rq = group_cfs_rq(se);
5545 cfs_rq->h_load = load;
5546 cfs_rq->last_h_load_update = now;
5547 }
9763b67f
PZ
5548}
5549
367456c7 5550static unsigned long task_h_load(struct task_struct *p)
230059de 5551{
367456c7 5552 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5553
68520796 5554 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5555 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5556 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5557}
5558#else
48a16753 5559static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5560{
5561}
5562
367456c7 5563static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5564{
a003a25b 5565 return p->se.avg.load_avg_contrib;
1e3c88bd 5566}
230059de 5567#endif
1e3c88bd 5568
1e3c88bd 5569/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5570/*
5571 * sg_lb_stats - stats of a sched_group required for load_balancing
5572 */
5573struct sg_lb_stats {
5574 unsigned long avg_load; /*Avg load across the CPUs of the group */
5575 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5576 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5577 unsigned long load_per_task;
63b2ca30 5578 unsigned long group_capacity;
147c5fc2 5579 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5580 unsigned int group_capacity_factor;
147c5fc2
PZ
5581 unsigned int idle_cpus;
5582 unsigned int group_weight;
1e3c88bd 5583 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5584 int group_has_free_capacity;
0ec8aa00
PZ
5585#ifdef CONFIG_NUMA_BALANCING
5586 unsigned int nr_numa_running;
5587 unsigned int nr_preferred_running;
5588#endif
1e3c88bd
PZ
5589};
5590
56cf515b
JK
5591/*
5592 * sd_lb_stats - Structure to store the statistics of a sched_domain
5593 * during load balancing.
5594 */
5595struct sd_lb_stats {
5596 struct sched_group *busiest; /* Busiest group in this sd */
5597 struct sched_group *local; /* Local group in this sd */
5598 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5599 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5600 unsigned long avg_load; /* Average load across all groups in sd */
5601
56cf515b 5602 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5603 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5604};
5605
147c5fc2
PZ
5606static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5607{
5608 /*
5609 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5610 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5611 * We must however clear busiest_stat::avg_load because
5612 * update_sd_pick_busiest() reads this before assignment.
5613 */
5614 *sds = (struct sd_lb_stats){
5615 .busiest = NULL,
5616 .local = NULL,
5617 .total_load = 0UL,
63b2ca30 5618 .total_capacity = 0UL,
147c5fc2
PZ
5619 .busiest_stat = {
5620 .avg_load = 0UL,
5621 },
5622 };
5623}
5624
1e3c88bd
PZ
5625/**
5626 * get_sd_load_idx - Obtain the load index for a given sched domain.
5627 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5628 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5629 *
5630 * Return: The load index.
1e3c88bd
PZ
5631 */
5632static inline int get_sd_load_idx(struct sched_domain *sd,
5633 enum cpu_idle_type idle)
5634{
5635 int load_idx;
5636
5637 switch (idle) {
5638 case CPU_NOT_IDLE:
5639 load_idx = sd->busy_idx;
5640 break;
5641
5642 case CPU_NEWLY_IDLE:
5643 load_idx = sd->newidle_idx;
5644 break;
5645 default:
5646 load_idx = sd->idle_idx;
5647 break;
5648 }
5649
5650 return load_idx;
5651}
5652
ced549fa 5653static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5654{
ca8ce3d0 5655 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5656}
5657
ca8ce3d0 5658unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5659{
ced549fa 5660 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5661}
5662
ced549fa 5663static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5664{
669c55e9 5665 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5666 unsigned long smt_gain = sd->smt_gain;
5667
5668 smt_gain /= weight;
5669
5670 return smt_gain;
5671}
5672
ca8ce3d0 5673unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5674{
ced549fa 5675 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5676}
5677
ced549fa 5678static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5679{
5680 struct rq *rq = cpu_rq(cpu);
b654f7de 5681 u64 total, available, age_stamp, avg;
cadefd3d 5682 s64 delta;
1e3c88bd 5683
b654f7de
PZ
5684 /*
5685 * Since we're reading these variables without serialization make sure
5686 * we read them once before doing sanity checks on them.
5687 */
5688 age_stamp = ACCESS_ONCE(rq->age_stamp);
5689 avg = ACCESS_ONCE(rq->rt_avg);
5690
cadefd3d
PZ
5691 delta = rq_clock(rq) - age_stamp;
5692 if (unlikely(delta < 0))
5693 delta = 0;
5694
5695 total = sched_avg_period() + delta;
aa483808 5696
b654f7de 5697 if (unlikely(total < avg)) {
ced549fa 5698 /* Ensures that capacity won't end up being negative */
aa483808
VP
5699 available = 0;
5700 } else {
b654f7de 5701 available = total - avg;
aa483808 5702 }
1e3c88bd 5703
ca8ce3d0
NP
5704 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5705 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5706
ca8ce3d0 5707 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5708
5709 return div_u64(available, total);
5710}
5711
ced549fa 5712static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5713{
669c55e9 5714 unsigned long weight = sd->span_weight;
ca8ce3d0 5715 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5716 struct sched_group *sdg = sd->groups;
5717
5d4dfddd
NP
5718 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5719 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5720 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5721 else
ced549fa 5722 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5723
ca8ce3d0 5724 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5725 }
5726
ced549fa 5727 sdg->sgc->capacity_orig = capacity;
9d5efe05 5728
5d4dfddd 5729 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5730 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5731 else
ced549fa 5732 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5733
ca8ce3d0 5734 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5735
ced549fa 5736 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5737 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5738
ced549fa
NP
5739 if (!capacity)
5740 capacity = 1;
1e3c88bd 5741
ced549fa
NP
5742 cpu_rq(cpu)->cpu_capacity = capacity;
5743 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5744}
5745
63b2ca30 5746void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5747{
5748 struct sched_domain *child = sd->child;
5749 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5750 unsigned long capacity, capacity_orig;
4ec4412e
VG
5751 unsigned long interval;
5752
5753 interval = msecs_to_jiffies(sd->balance_interval);
5754 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5755 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5756
5757 if (!child) {
ced549fa 5758 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5759 return;
5760 }
5761
63b2ca30 5762 capacity_orig = capacity = 0;
1e3c88bd 5763
74a5ce20
PZ
5764 if (child->flags & SD_OVERLAP) {
5765 /*
5766 * SD_OVERLAP domains cannot assume that child groups
5767 * span the current group.
5768 */
5769
863bffc8 5770 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5771 struct sched_group_capacity *sgc;
9abf24d4 5772 struct rq *rq = cpu_rq(cpu);
863bffc8 5773
9abf24d4 5774 /*
63b2ca30 5775 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5776 * gets here before we've attached the domains to the
5777 * runqueues.
5778 *
ced549fa
NP
5779 * Use capacity_of(), which is set irrespective of domains
5780 * in update_cpu_capacity().
9abf24d4 5781 *
63b2ca30 5782 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5783 * causing divide-by-zero issues on boot.
5784 *
63b2ca30 5785 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5786 */
5787 if (unlikely(!rq->sd)) {
ced549fa
NP
5788 capacity_orig += capacity_of(cpu);
5789 capacity += capacity_of(cpu);
9abf24d4
SD
5790 continue;
5791 }
863bffc8 5792
63b2ca30
NP
5793 sgc = rq->sd->groups->sgc;
5794 capacity_orig += sgc->capacity_orig;
5795 capacity += sgc->capacity;
863bffc8 5796 }
74a5ce20
PZ
5797 } else {
5798 /*
5799 * !SD_OVERLAP domains can assume that child groups
5800 * span the current group.
5801 */
5802
5803 group = child->groups;
5804 do {
63b2ca30
NP
5805 capacity_orig += group->sgc->capacity_orig;
5806 capacity += group->sgc->capacity;
74a5ce20
PZ
5807 group = group->next;
5808 } while (group != child->groups);
5809 }
1e3c88bd 5810
63b2ca30
NP
5811 sdg->sgc->capacity_orig = capacity_orig;
5812 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5813}
5814
9d5efe05
SV
5815/*
5816 * Try and fix up capacity for tiny siblings, this is needed when
5817 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5818 * which on its own isn't powerful enough.
5819 *
5820 * See update_sd_pick_busiest() and check_asym_packing().
5821 */
5822static inline int
5823fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5824{
5825 /*
ca8ce3d0 5826 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5827 */
5d4dfddd 5828 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5829 return 0;
5830
5831 /*
63b2ca30 5832 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5833 */
63b2ca30 5834 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5835 return 1;
5836
5837 return 0;
5838}
5839
30ce5dab
PZ
5840/*
5841 * Group imbalance indicates (and tries to solve) the problem where balancing
5842 * groups is inadequate due to tsk_cpus_allowed() constraints.
5843 *
5844 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5845 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5846 * Something like:
5847 *
5848 * { 0 1 2 3 } { 4 5 6 7 }
5849 * * * * *
5850 *
5851 * If we were to balance group-wise we'd place two tasks in the first group and
5852 * two tasks in the second group. Clearly this is undesired as it will overload
5853 * cpu 3 and leave one of the cpus in the second group unused.
5854 *
5855 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5856 * by noticing the lower domain failed to reach balance and had difficulty
5857 * moving tasks due to affinity constraints.
30ce5dab
PZ
5858 *
5859 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5860 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5861 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5862 * to create an effective group imbalance.
5863 *
5864 * This is a somewhat tricky proposition since the next run might not find the
5865 * group imbalance and decide the groups need to be balanced again. A most
5866 * subtle and fragile situation.
5867 */
5868
6263322c 5869static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5870{
63b2ca30 5871 return group->sgc->imbalance;
30ce5dab
PZ
5872}
5873
b37d9316 5874/*
0fedc6c8 5875 * Compute the group capacity factor.
b37d9316 5876 *
ced549fa 5877 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5878 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5879 * and limit unit capacity with that.
b37d9316 5880 */
0fedc6c8 5881static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5882{
0fedc6c8 5883 unsigned int capacity_factor, smt, cpus;
63b2ca30 5884 unsigned int capacity, capacity_orig;
c61037e9 5885
63b2ca30
NP
5886 capacity = group->sgc->capacity;
5887 capacity_orig = group->sgc->capacity_orig;
c61037e9 5888 cpus = group->group_weight;
b37d9316 5889
63b2ca30 5890 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5891 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5892 capacity_factor = cpus / smt; /* cores */
b37d9316 5893
63b2ca30 5894 capacity_factor = min_t(unsigned,
ca8ce3d0 5895 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5896 if (!capacity_factor)
5897 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5898
0fedc6c8 5899 return capacity_factor;
b37d9316
PZ
5900}
5901
1e3c88bd
PZ
5902/**
5903 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5904 * @env: The load balancing environment.
1e3c88bd 5905 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5906 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5907 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5908 * @sgs: variable to hold the statistics for this group.
5909 */
bd939f45
PZ
5910static inline void update_sg_lb_stats(struct lb_env *env,
5911 struct sched_group *group, int load_idx,
4486edd1
TC
5912 int local_group, struct sg_lb_stats *sgs,
5913 bool *overload)
1e3c88bd 5914{
30ce5dab 5915 unsigned long load;
bd939f45 5916 int i;
1e3c88bd 5917
b72ff13c
PZ
5918 memset(sgs, 0, sizeof(*sgs));
5919
b9403130 5920 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5921 struct rq *rq = cpu_rq(i);
5922
1e3c88bd 5923 /* Bias balancing toward cpus of our domain */
6263322c 5924 if (local_group)
04f733b4 5925 load = target_load(i, load_idx);
6263322c 5926 else
1e3c88bd 5927 load = source_load(i, load_idx);
1e3c88bd
PZ
5928
5929 sgs->group_load += load;
380c9077 5930 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
5931
5932 if (rq->nr_running > 1)
5933 *overload = true;
5934
0ec8aa00
PZ
5935#ifdef CONFIG_NUMA_BALANCING
5936 sgs->nr_numa_running += rq->nr_numa_running;
5937 sgs->nr_preferred_running += rq->nr_preferred_running;
5938#endif
1e3c88bd 5939 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5940 if (idle_cpu(i))
5941 sgs->idle_cpus++;
1e3c88bd
PZ
5942 }
5943
63b2ca30
NP
5944 /* Adjust by relative CPU capacity of the group */
5945 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5946 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5947
dd5feea1 5948 if (sgs->sum_nr_running)
38d0f770 5949 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5950
aae6d3dd 5951 sgs->group_weight = group->group_weight;
fab47622 5952
b37d9316 5953 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5954 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5955
0fedc6c8 5956 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5957 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5958}
5959
532cb4c4
MN
5960/**
5961 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5962 * @env: The load balancing environment.
532cb4c4
MN
5963 * @sds: sched_domain statistics
5964 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5965 * @sgs: sched_group statistics
532cb4c4
MN
5966 *
5967 * Determine if @sg is a busier group than the previously selected
5968 * busiest group.
e69f6186
YB
5969 *
5970 * Return: %true if @sg is a busier group than the previously selected
5971 * busiest group. %false otherwise.
532cb4c4 5972 */
bd939f45 5973static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5974 struct sd_lb_stats *sds,
5975 struct sched_group *sg,
bd939f45 5976 struct sg_lb_stats *sgs)
532cb4c4 5977{
56cf515b 5978 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5979 return false;
5980
0fedc6c8 5981 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5982 return true;
5983
5984 if (sgs->group_imb)
5985 return true;
5986
5987 /*
5988 * ASYM_PACKING needs to move all the work to the lowest
5989 * numbered CPUs in the group, therefore mark all groups
5990 * higher than ourself as busy.
5991 */
bd939f45
PZ
5992 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5993 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5994 if (!sds->busiest)
5995 return true;
5996
5997 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5998 return true;
5999 }
6000
6001 return false;
6002}
6003
0ec8aa00
PZ
6004#ifdef CONFIG_NUMA_BALANCING
6005static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6006{
6007 if (sgs->sum_nr_running > sgs->nr_numa_running)
6008 return regular;
6009 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6010 return remote;
6011 return all;
6012}
6013
6014static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6015{
6016 if (rq->nr_running > rq->nr_numa_running)
6017 return regular;
6018 if (rq->nr_running > rq->nr_preferred_running)
6019 return remote;
6020 return all;
6021}
6022#else
6023static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6024{
6025 return all;
6026}
6027
6028static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6029{
6030 return regular;
6031}
6032#endif /* CONFIG_NUMA_BALANCING */
6033
1e3c88bd 6034/**
461819ac 6035 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6036 * @env: The load balancing environment.
1e3c88bd
PZ
6037 * @sds: variable to hold the statistics for this sched_domain.
6038 */
0ec8aa00 6039static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6040{
bd939f45
PZ
6041 struct sched_domain *child = env->sd->child;
6042 struct sched_group *sg = env->sd->groups;
56cf515b 6043 struct sg_lb_stats tmp_sgs;
1e3c88bd 6044 int load_idx, prefer_sibling = 0;
4486edd1 6045 bool overload = false;
1e3c88bd
PZ
6046
6047 if (child && child->flags & SD_PREFER_SIBLING)
6048 prefer_sibling = 1;
6049
bd939f45 6050 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6051
6052 do {
56cf515b 6053 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6054 int local_group;
6055
bd939f45 6056 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6057 if (local_group) {
6058 sds->local = sg;
6059 sgs = &sds->local_stat;
b72ff13c
PZ
6060
6061 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6062 time_after_eq(jiffies, sg->sgc->next_update))
6063 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6064 }
1e3c88bd 6065
4486edd1
TC
6066 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6067 &overload);
1e3c88bd 6068
b72ff13c
PZ
6069 if (local_group)
6070 goto next_group;
6071
1e3c88bd
PZ
6072 /*
6073 * In case the child domain prefers tasks go to siblings
0fedc6c8 6074 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6075 * and move all the excess tasks away. We lower the capacity
6076 * of a group only if the local group has the capacity to fit
0fedc6c8 6077 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6078 * extra check prevents the case where you always pull from the
6079 * heaviest group when it is already under-utilized (possible
6080 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6081 */
b72ff13c 6082 if (prefer_sibling && sds->local &&
1b6a7495 6083 sds->local_stat.group_has_free_capacity)
0fedc6c8 6084 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6085
b72ff13c 6086 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6087 sds->busiest = sg;
56cf515b 6088 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6089 }
6090
b72ff13c
PZ
6091next_group:
6092 /* Now, start updating sd_lb_stats */
6093 sds->total_load += sgs->group_load;
63b2ca30 6094 sds->total_capacity += sgs->group_capacity;
b72ff13c 6095
532cb4c4 6096 sg = sg->next;
bd939f45 6097 } while (sg != env->sd->groups);
0ec8aa00
PZ
6098
6099 if (env->sd->flags & SD_NUMA)
6100 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6101
6102 if (!env->sd->parent) {
6103 /* update overload indicator if we are at root domain */
6104 if (env->dst_rq->rd->overload != overload)
6105 env->dst_rq->rd->overload = overload;
6106 }
6107
532cb4c4
MN
6108}
6109
532cb4c4
MN
6110/**
6111 * check_asym_packing - Check to see if the group is packed into the
6112 * sched doman.
6113 *
6114 * This is primarily intended to used at the sibling level. Some
6115 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6116 * case of POWER7, it can move to lower SMT modes only when higher
6117 * threads are idle. When in lower SMT modes, the threads will
6118 * perform better since they share less core resources. Hence when we
6119 * have idle threads, we want them to be the higher ones.
6120 *
6121 * This packing function is run on idle threads. It checks to see if
6122 * the busiest CPU in this domain (core in the P7 case) has a higher
6123 * CPU number than the packing function is being run on. Here we are
6124 * assuming lower CPU number will be equivalent to lower a SMT thread
6125 * number.
6126 *
e69f6186 6127 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6128 * this CPU. The amount of the imbalance is returned in *imbalance.
6129 *
cd96891d 6130 * @env: The load balancing environment.
532cb4c4 6131 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6132 */
bd939f45 6133static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6134{
6135 int busiest_cpu;
6136
bd939f45 6137 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6138 return 0;
6139
6140 if (!sds->busiest)
6141 return 0;
6142
6143 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6144 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6145 return 0;
6146
bd939f45 6147 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6148 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6149 SCHED_CAPACITY_SCALE);
bd939f45 6150
532cb4c4 6151 return 1;
1e3c88bd
PZ
6152}
6153
6154/**
6155 * fix_small_imbalance - Calculate the minor imbalance that exists
6156 * amongst the groups of a sched_domain, during
6157 * load balancing.
cd96891d 6158 * @env: The load balancing environment.
1e3c88bd 6159 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6160 */
bd939f45
PZ
6161static inline
6162void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6163{
63b2ca30 6164 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6165 unsigned int imbn = 2;
dd5feea1 6166 unsigned long scaled_busy_load_per_task;
56cf515b 6167 struct sg_lb_stats *local, *busiest;
1e3c88bd 6168
56cf515b
JK
6169 local = &sds->local_stat;
6170 busiest = &sds->busiest_stat;
1e3c88bd 6171
56cf515b
JK
6172 if (!local->sum_nr_running)
6173 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6174 else if (busiest->load_per_task > local->load_per_task)
6175 imbn = 1;
dd5feea1 6176
56cf515b 6177 scaled_busy_load_per_task =
ca8ce3d0 6178 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6179 busiest->group_capacity;
56cf515b 6180
3029ede3
VD
6181 if (busiest->avg_load + scaled_busy_load_per_task >=
6182 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6183 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6184 return;
6185 }
6186
6187 /*
6188 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6189 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6190 * moving them.
6191 */
6192
63b2ca30 6193 capa_now += busiest->group_capacity *
56cf515b 6194 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6195 capa_now += local->group_capacity *
56cf515b 6196 min(local->load_per_task, local->avg_load);
ca8ce3d0 6197 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6198
6199 /* Amount of load we'd subtract */
a2cd4260 6200 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6201 capa_move += busiest->group_capacity *
56cf515b 6202 min(busiest->load_per_task,
a2cd4260 6203 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6204 }
1e3c88bd
PZ
6205
6206 /* Amount of load we'd add */
63b2ca30 6207 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6208 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6209 tmp = (busiest->avg_load * busiest->group_capacity) /
6210 local->group_capacity;
56cf515b 6211 } else {
ca8ce3d0 6212 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6213 local->group_capacity;
56cf515b 6214 }
63b2ca30 6215 capa_move += local->group_capacity *
3ae11c90 6216 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6217 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6218
6219 /* Move if we gain throughput */
63b2ca30 6220 if (capa_move > capa_now)
56cf515b 6221 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6222}
6223
6224/**
6225 * calculate_imbalance - Calculate the amount of imbalance present within the
6226 * groups of a given sched_domain during load balance.
bd939f45 6227 * @env: load balance environment
1e3c88bd 6228 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6229 */
bd939f45 6230static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6231{
dd5feea1 6232 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6233 struct sg_lb_stats *local, *busiest;
6234
6235 local = &sds->local_stat;
56cf515b 6236 busiest = &sds->busiest_stat;
dd5feea1 6237
56cf515b 6238 if (busiest->group_imb) {
30ce5dab
PZ
6239 /*
6240 * In the group_imb case we cannot rely on group-wide averages
6241 * to ensure cpu-load equilibrium, look at wider averages. XXX
6242 */
56cf515b
JK
6243 busiest->load_per_task =
6244 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6245 }
6246
1e3c88bd
PZ
6247 /*
6248 * In the presence of smp nice balancing, certain scenarios can have
6249 * max load less than avg load(as we skip the groups at or below
ced549fa 6250 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6251 */
b1885550
VD
6252 if (busiest->avg_load <= sds->avg_load ||
6253 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6254 env->imbalance = 0;
6255 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6256 }
6257
56cf515b 6258 if (!busiest->group_imb) {
dd5feea1
SS
6259 /*
6260 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6261 * Except of course for the group_imb case, since then we might
6262 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6263 */
56cf515b 6264 load_above_capacity =
0fedc6c8 6265 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6266
ca8ce3d0 6267 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6268 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6269 }
6270
6271 /*
6272 * We're trying to get all the cpus to the average_load, so we don't
6273 * want to push ourselves above the average load, nor do we wish to
6274 * reduce the max loaded cpu below the average load. At the same time,
6275 * we also don't want to reduce the group load below the group capacity
6276 * (so that we can implement power-savings policies etc). Thus we look
6277 * for the minimum possible imbalance.
dd5feea1 6278 */
30ce5dab 6279 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6280
6281 /* How much load to actually move to equalise the imbalance */
56cf515b 6282 env->imbalance = min(
63b2ca30
NP
6283 max_pull * busiest->group_capacity,
6284 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6285 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6286
6287 /*
6288 * if *imbalance is less than the average load per runnable task
25985edc 6289 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6290 * a think about bumping its value to force at least one task to be
6291 * moved
6292 */
56cf515b 6293 if (env->imbalance < busiest->load_per_task)
bd939f45 6294 return fix_small_imbalance(env, sds);
1e3c88bd 6295}
fab47622 6296
1e3c88bd
PZ
6297/******* find_busiest_group() helpers end here *********************/
6298
6299/**
6300 * find_busiest_group - Returns the busiest group within the sched_domain
6301 * if there is an imbalance. If there isn't an imbalance, and
6302 * the user has opted for power-savings, it returns a group whose
6303 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6304 * such a group exists.
6305 *
6306 * Also calculates the amount of weighted load which should be moved
6307 * to restore balance.
6308 *
cd96891d 6309 * @env: The load balancing environment.
1e3c88bd 6310 *
e69f6186 6311 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6312 * - If no imbalance and user has opted for power-savings balance,
6313 * return the least loaded group whose CPUs can be
6314 * put to idle by rebalancing its tasks onto our group.
6315 */
56cf515b 6316static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6317{
56cf515b 6318 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6319 struct sd_lb_stats sds;
6320
147c5fc2 6321 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6322
6323 /*
6324 * Compute the various statistics relavent for load balancing at
6325 * this level.
6326 */
23f0d209 6327 update_sd_lb_stats(env, &sds);
56cf515b
JK
6328 local = &sds.local_stat;
6329 busiest = &sds.busiest_stat;
1e3c88bd 6330
bd939f45
PZ
6331 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6332 check_asym_packing(env, &sds))
532cb4c4
MN
6333 return sds.busiest;
6334
cc57aa8f 6335 /* There is no busy sibling group to pull tasks from */
56cf515b 6336 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6337 goto out_balanced;
6338
ca8ce3d0
NP
6339 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6340 / sds.total_capacity;
b0432d8f 6341
866ab43e
PZ
6342 /*
6343 * If the busiest group is imbalanced the below checks don't
30ce5dab 6344 * work because they assume all things are equal, which typically
866ab43e
PZ
6345 * isn't true due to cpus_allowed constraints and the like.
6346 */
56cf515b 6347 if (busiest->group_imb)
866ab43e
PZ
6348 goto force_balance;
6349
cc57aa8f 6350 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6351 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6352 !busiest->group_has_free_capacity)
fab47622
NR
6353 goto force_balance;
6354
cc57aa8f
PZ
6355 /*
6356 * If the local group is more busy than the selected busiest group
6357 * don't try and pull any tasks.
6358 */
56cf515b 6359 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6360 goto out_balanced;
6361
cc57aa8f
PZ
6362 /*
6363 * Don't pull any tasks if this group is already above the domain
6364 * average load.
6365 */
56cf515b 6366 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6367 goto out_balanced;
6368
bd939f45 6369 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6370 /*
6371 * This cpu is idle. If the busiest group load doesn't
6372 * have more tasks than the number of available cpu's and
6373 * there is no imbalance between this and busiest group
6374 * wrt to idle cpu's, it is balanced.
6375 */
56cf515b
JK
6376 if ((local->idle_cpus < busiest->idle_cpus) &&
6377 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6378 goto out_balanced;
c186fafe
PZ
6379 } else {
6380 /*
6381 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6382 * imbalance_pct to be conservative.
6383 */
56cf515b
JK
6384 if (100 * busiest->avg_load <=
6385 env->sd->imbalance_pct * local->avg_load)
c186fafe 6386 goto out_balanced;
aae6d3dd 6387 }
1e3c88bd 6388
fab47622 6389force_balance:
1e3c88bd 6390 /* Looks like there is an imbalance. Compute it */
bd939f45 6391 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6392 return sds.busiest;
6393
6394out_balanced:
bd939f45 6395 env->imbalance = 0;
1e3c88bd
PZ
6396 return NULL;
6397}
6398
6399/*
6400 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6401 */
bd939f45 6402static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6403 struct sched_group *group)
1e3c88bd
PZ
6404{
6405 struct rq *busiest = NULL, *rq;
ced549fa 6406 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6407 int i;
6408
6906a408 6409 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6410 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6411 enum fbq_type rt;
6412
6413 rq = cpu_rq(i);
6414 rt = fbq_classify_rq(rq);
1e3c88bd 6415
0ec8aa00
PZ
6416 /*
6417 * We classify groups/runqueues into three groups:
6418 * - regular: there are !numa tasks
6419 * - remote: there are numa tasks that run on the 'wrong' node
6420 * - all: there is no distinction
6421 *
6422 * In order to avoid migrating ideally placed numa tasks,
6423 * ignore those when there's better options.
6424 *
6425 * If we ignore the actual busiest queue to migrate another
6426 * task, the next balance pass can still reduce the busiest
6427 * queue by moving tasks around inside the node.
6428 *
6429 * If we cannot move enough load due to this classification
6430 * the next pass will adjust the group classification and
6431 * allow migration of more tasks.
6432 *
6433 * Both cases only affect the total convergence complexity.
6434 */
6435 if (rt > env->fbq_type)
6436 continue;
6437
ced549fa 6438 capacity = capacity_of(i);
ca8ce3d0 6439 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6440 if (!capacity_factor)
6441 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6442
6e40f5bb 6443 wl = weighted_cpuload(i);
1e3c88bd 6444
6e40f5bb
TG
6445 /*
6446 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6447 * which is not scaled with the cpu capacity.
6e40f5bb 6448 */
0fedc6c8 6449 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6450 continue;
6451
6e40f5bb
TG
6452 /*
6453 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6454 * the weighted_cpuload() scaled with the cpu capacity, so
6455 * that the load can be moved away from the cpu that is
6456 * potentially running at a lower capacity.
95a79b80 6457 *
ced549fa 6458 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6459 * multiplication to rid ourselves of the division works out
ced549fa
NP
6460 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6461 * our previous maximum.
6e40f5bb 6462 */
ced549fa 6463 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6464 busiest_load = wl;
ced549fa 6465 busiest_capacity = capacity;
1e3c88bd
PZ
6466 busiest = rq;
6467 }
6468 }
6469
6470 return busiest;
6471}
6472
6473/*
6474 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6475 * so long as it is large enough.
6476 */
6477#define MAX_PINNED_INTERVAL 512
6478
6479/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6480DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6481
bd939f45 6482static int need_active_balance(struct lb_env *env)
1af3ed3d 6483{
bd939f45
PZ
6484 struct sched_domain *sd = env->sd;
6485
6486 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6487
6488 /*
6489 * ASYM_PACKING needs to force migrate tasks from busy but
6490 * higher numbered CPUs in order to pack all tasks in the
6491 * lowest numbered CPUs.
6492 */
bd939f45 6493 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6494 return 1;
1af3ed3d
PZ
6495 }
6496
6497 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6498}
6499
969c7921
TH
6500static int active_load_balance_cpu_stop(void *data);
6501
23f0d209
JK
6502static int should_we_balance(struct lb_env *env)
6503{
6504 struct sched_group *sg = env->sd->groups;
6505 struct cpumask *sg_cpus, *sg_mask;
6506 int cpu, balance_cpu = -1;
6507
6508 /*
6509 * In the newly idle case, we will allow all the cpu's
6510 * to do the newly idle load balance.
6511 */
6512 if (env->idle == CPU_NEWLY_IDLE)
6513 return 1;
6514
6515 sg_cpus = sched_group_cpus(sg);
6516 sg_mask = sched_group_mask(sg);
6517 /* Try to find first idle cpu */
6518 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6519 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6520 continue;
6521
6522 balance_cpu = cpu;
6523 break;
6524 }
6525
6526 if (balance_cpu == -1)
6527 balance_cpu = group_balance_cpu(sg);
6528
6529 /*
6530 * First idle cpu or the first cpu(busiest) in this sched group
6531 * is eligible for doing load balancing at this and above domains.
6532 */
b0cff9d8 6533 return balance_cpu == env->dst_cpu;
23f0d209
JK
6534}
6535
1e3c88bd
PZ
6536/*
6537 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6538 * tasks if there is an imbalance.
6539 */
6540static int load_balance(int this_cpu, struct rq *this_rq,
6541 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6542 int *continue_balancing)
1e3c88bd 6543{
88b8dac0 6544 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6545 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6546 struct sched_group *group;
1e3c88bd
PZ
6547 struct rq *busiest;
6548 unsigned long flags;
e6252c3e 6549 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6550
8e45cb54
PZ
6551 struct lb_env env = {
6552 .sd = sd,
ddcdf6e7
PZ
6553 .dst_cpu = this_cpu,
6554 .dst_rq = this_rq,
88b8dac0 6555 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6556 .idle = idle,
eb95308e 6557 .loop_break = sched_nr_migrate_break,
b9403130 6558 .cpus = cpus,
0ec8aa00 6559 .fbq_type = all,
8e45cb54
PZ
6560 };
6561
cfc03118
JK
6562 /*
6563 * For NEWLY_IDLE load_balancing, we don't need to consider
6564 * other cpus in our group
6565 */
e02e60c1 6566 if (idle == CPU_NEWLY_IDLE)
cfc03118 6567 env.dst_grpmask = NULL;
cfc03118 6568
1e3c88bd
PZ
6569 cpumask_copy(cpus, cpu_active_mask);
6570
1e3c88bd
PZ
6571 schedstat_inc(sd, lb_count[idle]);
6572
6573redo:
23f0d209
JK
6574 if (!should_we_balance(&env)) {
6575 *continue_balancing = 0;
1e3c88bd 6576 goto out_balanced;
23f0d209 6577 }
1e3c88bd 6578
23f0d209 6579 group = find_busiest_group(&env);
1e3c88bd
PZ
6580 if (!group) {
6581 schedstat_inc(sd, lb_nobusyg[idle]);
6582 goto out_balanced;
6583 }
6584
b9403130 6585 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6586 if (!busiest) {
6587 schedstat_inc(sd, lb_nobusyq[idle]);
6588 goto out_balanced;
6589 }
6590
78feefc5 6591 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6592
bd939f45 6593 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6594
6595 ld_moved = 0;
6596 if (busiest->nr_running > 1) {
6597 /*
6598 * Attempt to move tasks. If find_busiest_group has found
6599 * an imbalance but busiest->nr_running <= 1, the group is
6600 * still unbalanced. ld_moved simply stays zero, so it is
6601 * correctly treated as an imbalance.
6602 */
8e45cb54 6603 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6604 env.src_cpu = busiest->cpu;
6605 env.src_rq = busiest;
6606 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6607
5d6523eb 6608more_balance:
1e3c88bd 6609 local_irq_save(flags);
78feefc5 6610 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6611
6612 /*
6613 * cur_ld_moved - load moved in current iteration
6614 * ld_moved - cumulative load moved across iterations
6615 */
6616 cur_ld_moved = move_tasks(&env);
6617 ld_moved += cur_ld_moved;
78feefc5 6618 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6619 local_irq_restore(flags);
6620
6621 /*
6622 * some other cpu did the load balance for us.
6623 */
88b8dac0
SV
6624 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6625 resched_cpu(env.dst_cpu);
6626
f1cd0858
JK
6627 if (env.flags & LBF_NEED_BREAK) {
6628 env.flags &= ~LBF_NEED_BREAK;
6629 goto more_balance;
6630 }
6631
88b8dac0
SV
6632 /*
6633 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6634 * us and move them to an alternate dst_cpu in our sched_group
6635 * where they can run. The upper limit on how many times we
6636 * iterate on same src_cpu is dependent on number of cpus in our
6637 * sched_group.
6638 *
6639 * This changes load balance semantics a bit on who can move
6640 * load to a given_cpu. In addition to the given_cpu itself
6641 * (or a ilb_cpu acting on its behalf where given_cpu is
6642 * nohz-idle), we now have balance_cpu in a position to move
6643 * load to given_cpu. In rare situations, this may cause
6644 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6645 * _independently_ and at _same_ time to move some load to
6646 * given_cpu) causing exceess load to be moved to given_cpu.
6647 * This however should not happen so much in practice and
6648 * moreover subsequent load balance cycles should correct the
6649 * excess load moved.
6650 */
6263322c 6651 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6652
7aff2e3a
VD
6653 /* Prevent to re-select dst_cpu via env's cpus */
6654 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6655
78feefc5 6656 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6657 env.dst_cpu = env.new_dst_cpu;
6263322c 6658 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6659 env.loop = 0;
6660 env.loop_break = sched_nr_migrate_break;
e02e60c1 6661
88b8dac0
SV
6662 /*
6663 * Go back to "more_balance" rather than "redo" since we
6664 * need to continue with same src_cpu.
6665 */
6666 goto more_balance;
6667 }
1e3c88bd 6668
6263322c
PZ
6669 /*
6670 * We failed to reach balance because of affinity.
6671 */
6672 if (sd_parent) {
63b2ca30 6673 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6674
6675 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6676 *group_imbalance = 1;
6677 } else if (*group_imbalance)
6678 *group_imbalance = 0;
6679 }
6680
1e3c88bd 6681 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6682 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6683 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6684 if (!cpumask_empty(cpus)) {
6685 env.loop = 0;
6686 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6687 goto redo;
bbf18b19 6688 }
1e3c88bd
PZ
6689 goto out_balanced;
6690 }
6691 }
6692
6693 if (!ld_moved) {
6694 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6695 /*
6696 * Increment the failure counter only on periodic balance.
6697 * We do not want newidle balance, which can be very
6698 * frequent, pollute the failure counter causing
6699 * excessive cache_hot migrations and active balances.
6700 */
6701 if (idle != CPU_NEWLY_IDLE)
6702 sd->nr_balance_failed++;
1e3c88bd 6703
bd939f45 6704 if (need_active_balance(&env)) {
1e3c88bd
PZ
6705 raw_spin_lock_irqsave(&busiest->lock, flags);
6706
969c7921
TH
6707 /* don't kick the active_load_balance_cpu_stop,
6708 * if the curr task on busiest cpu can't be
6709 * moved to this_cpu
1e3c88bd
PZ
6710 */
6711 if (!cpumask_test_cpu(this_cpu,
fa17b507 6712 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6713 raw_spin_unlock_irqrestore(&busiest->lock,
6714 flags);
8e45cb54 6715 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6716 goto out_one_pinned;
6717 }
6718
969c7921
TH
6719 /*
6720 * ->active_balance synchronizes accesses to
6721 * ->active_balance_work. Once set, it's cleared
6722 * only after active load balance is finished.
6723 */
1e3c88bd
PZ
6724 if (!busiest->active_balance) {
6725 busiest->active_balance = 1;
6726 busiest->push_cpu = this_cpu;
6727 active_balance = 1;
6728 }
6729 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6730
bd939f45 6731 if (active_balance) {
969c7921
TH
6732 stop_one_cpu_nowait(cpu_of(busiest),
6733 active_load_balance_cpu_stop, busiest,
6734 &busiest->active_balance_work);
bd939f45 6735 }
1e3c88bd
PZ
6736
6737 /*
6738 * We've kicked active balancing, reset the failure
6739 * counter.
6740 */
6741 sd->nr_balance_failed = sd->cache_nice_tries+1;
6742 }
6743 } else
6744 sd->nr_balance_failed = 0;
6745
6746 if (likely(!active_balance)) {
6747 /* We were unbalanced, so reset the balancing interval */
6748 sd->balance_interval = sd->min_interval;
6749 } else {
6750 /*
6751 * If we've begun active balancing, start to back off. This
6752 * case may not be covered by the all_pinned logic if there
6753 * is only 1 task on the busy runqueue (because we don't call
6754 * move_tasks).
6755 */
6756 if (sd->balance_interval < sd->max_interval)
6757 sd->balance_interval *= 2;
6758 }
6759
1e3c88bd
PZ
6760 goto out;
6761
6762out_balanced:
6763 schedstat_inc(sd, lb_balanced[idle]);
6764
6765 sd->nr_balance_failed = 0;
6766
6767out_one_pinned:
6768 /* tune up the balancing interval */
8e45cb54 6769 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6770 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6771 (sd->balance_interval < sd->max_interval))
6772 sd->balance_interval *= 2;
6773
46e49b38 6774 ld_moved = 0;
1e3c88bd 6775out:
1e3c88bd
PZ
6776 return ld_moved;
6777}
6778
52a08ef1
JL
6779static inline unsigned long
6780get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6781{
6782 unsigned long interval = sd->balance_interval;
6783
6784 if (cpu_busy)
6785 interval *= sd->busy_factor;
6786
6787 /* scale ms to jiffies */
6788 interval = msecs_to_jiffies(interval);
6789 interval = clamp(interval, 1UL, max_load_balance_interval);
6790
6791 return interval;
6792}
6793
6794static inline void
6795update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6796{
6797 unsigned long interval, next;
6798
6799 interval = get_sd_balance_interval(sd, cpu_busy);
6800 next = sd->last_balance + interval;
6801
6802 if (time_after(*next_balance, next))
6803 *next_balance = next;
6804}
6805
1e3c88bd
PZ
6806/*
6807 * idle_balance is called by schedule() if this_cpu is about to become
6808 * idle. Attempts to pull tasks from other CPUs.
6809 */
6e83125c 6810static int idle_balance(struct rq *this_rq)
1e3c88bd 6811{
52a08ef1
JL
6812 unsigned long next_balance = jiffies + HZ;
6813 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6814 struct sched_domain *sd;
6815 int pulled_task = 0;
9bd721c5 6816 u64 curr_cost = 0;
1e3c88bd 6817
6e83125c 6818 idle_enter_fair(this_rq);
0e5b5337 6819
6e83125c
PZ
6820 /*
6821 * We must set idle_stamp _before_ calling idle_balance(), such that we
6822 * measure the duration of idle_balance() as idle time.
6823 */
6824 this_rq->idle_stamp = rq_clock(this_rq);
6825
4486edd1
TC
6826 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6827 !this_rq->rd->overload) {
52a08ef1
JL
6828 rcu_read_lock();
6829 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6830 if (sd)
6831 update_next_balance(sd, 0, &next_balance);
6832 rcu_read_unlock();
6833
6e83125c 6834 goto out;
52a08ef1 6835 }
1e3c88bd 6836
f492e12e
PZ
6837 /*
6838 * Drop the rq->lock, but keep IRQ/preempt disabled.
6839 */
6840 raw_spin_unlock(&this_rq->lock);
6841
48a16753 6842 update_blocked_averages(this_cpu);
dce840a0 6843 rcu_read_lock();
1e3c88bd 6844 for_each_domain(this_cpu, sd) {
23f0d209 6845 int continue_balancing = 1;
9bd721c5 6846 u64 t0, domain_cost;
1e3c88bd
PZ
6847
6848 if (!(sd->flags & SD_LOAD_BALANCE))
6849 continue;
6850
52a08ef1
JL
6851 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6852 update_next_balance(sd, 0, &next_balance);
9bd721c5 6853 break;
52a08ef1 6854 }
9bd721c5 6855
f492e12e 6856 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6857 t0 = sched_clock_cpu(this_cpu);
6858
f492e12e 6859 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6860 sd, CPU_NEWLY_IDLE,
6861 &continue_balancing);
9bd721c5
JL
6862
6863 domain_cost = sched_clock_cpu(this_cpu) - t0;
6864 if (domain_cost > sd->max_newidle_lb_cost)
6865 sd->max_newidle_lb_cost = domain_cost;
6866
6867 curr_cost += domain_cost;
f492e12e 6868 }
1e3c88bd 6869
52a08ef1 6870 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6871
6872 /*
6873 * Stop searching for tasks to pull if there are
6874 * now runnable tasks on this rq.
6875 */
6876 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6877 break;
1e3c88bd 6878 }
dce840a0 6879 rcu_read_unlock();
f492e12e
PZ
6880
6881 raw_spin_lock(&this_rq->lock);
6882
0e5b5337
JL
6883 if (curr_cost > this_rq->max_idle_balance_cost)
6884 this_rq->max_idle_balance_cost = curr_cost;
6885
e5fc6611 6886 /*
0e5b5337
JL
6887 * While browsing the domains, we released the rq lock, a task could
6888 * have been enqueued in the meantime. Since we're not going idle,
6889 * pretend we pulled a task.
e5fc6611 6890 */
0e5b5337 6891 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6892 pulled_task = 1;
e5fc6611 6893
52a08ef1
JL
6894out:
6895 /* Move the next balance forward */
6896 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6897 this_rq->next_balance = next_balance;
9bd721c5 6898
e4aa358b 6899 /* Is there a task of a high priority class? */
46383648 6900 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6901 pulled_task = -1;
6902
6903 if (pulled_task) {
6904 idle_exit_fair(this_rq);
6e83125c 6905 this_rq->idle_stamp = 0;
e4aa358b 6906 }
6e83125c 6907
3c4017c1 6908 return pulled_task;
1e3c88bd
PZ
6909}
6910
6911/*
969c7921
TH
6912 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6913 * running tasks off the busiest CPU onto idle CPUs. It requires at
6914 * least 1 task to be running on each physical CPU where possible, and
6915 * avoids physical / logical imbalances.
1e3c88bd 6916 */
969c7921 6917static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6918{
969c7921
TH
6919 struct rq *busiest_rq = data;
6920 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6921 int target_cpu = busiest_rq->push_cpu;
969c7921 6922 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6923 struct sched_domain *sd;
969c7921
TH
6924
6925 raw_spin_lock_irq(&busiest_rq->lock);
6926
6927 /* make sure the requested cpu hasn't gone down in the meantime */
6928 if (unlikely(busiest_cpu != smp_processor_id() ||
6929 !busiest_rq->active_balance))
6930 goto out_unlock;
1e3c88bd
PZ
6931
6932 /* Is there any task to move? */
6933 if (busiest_rq->nr_running <= 1)
969c7921 6934 goto out_unlock;
1e3c88bd
PZ
6935
6936 /*
6937 * This condition is "impossible", if it occurs
6938 * we need to fix it. Originally reported by
6939 * Bjorn Helgaas on a 128-cpu setup.
6940 */
6941 BUG_ON(busiest_rq == target_rq);
6942
6943 /* move a task from busiest_rq to target_rq */
6944 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6945
6946 /* Search for an sd spanning us and the target CPU. */
dce840a0 6947 rcu_read_lock();
1e3c88bd
PZ
6948 for_each_domain(target_cpu, sd) {
6949 if ((sd->flags & SD_LOAD_BALANCE) &&
6950 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6951 break;
6952 }
6953
6954 if (likely(sd)) {
8e45cb54
PZ
6955 struct lb_env env = {
6956 .sd = sd,
ddcdf6e7
PZ
6957 .dst_cpu = target_cpu,
6958 .dst_rq = target_rq,
6959 .src_cpu = busiest_rq->cpu,
6960 .src_rq = busiest_rq,
8e45cb54
PZ
6961 .idle = CPU_IDLE,
6962 };
6963
1e3c88bd
PZ
6964 schedstat_inc(sd, alb_count);
6965
8e45cb54 6966 if (move_one_task(&env))
1e3c88bd
PZ
6967 schedstat_inc(sd, alb_pushed);
6968 else
6969 schedstat_inc(sd, alb_failed);
6970 }
dce840a0 6971 rcu_read_unlock();
1e3c88bd 6972 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6973out_unlock:
6974 busiest_rq->active_balance = 0;
6975 raw_spin_unlock_irq(&busiest_rq->lock);
6976 return 0;
1e3c88bd
PZ
6977}
6978
d987fc7f
MG
6979static inline int on_null_domain(struct rq *rq)
6980{
6981 return unlikely(!rcu_dereference_sched(rq->sd));
6982}
6983
3451d024 6984#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6985/*
6986 * idle load balancing details
83cd4fe2
VP
6987 * - When one of the busy CPUs notice that there may be an idle rebalancing
6988 * needed, they will kick the idle load balancer, which then does idle
6989 * load balancing for all the idle CPUs.
6990 */
1e3c88bd 6991static struct {
83cd4fe2 6992 cpumask_var_t idle_cpus_mask;
0b005cf5 6993 atomic_t nr_cpus;
83cd4fe2
VP
6994 unsigned long next_balance; /* in jiffy units */
6995} nohz ____cacheline_aligned;
1e3c88bd 6996
3dd0337d 6997static inline int find_new_ilb(void)
1e3c88bd 6998{
0b005cf5 6999 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7000
786d6dc7
SS
7001 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7002 return ilb;
7003
7004 return nr_cpu_ids;
1e3c88bd 7005}
1e3c88bd 7006
83cd4fe2
VP
7007/*
7008 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7009 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7010 * CPU (if there is one).
7011 */
0aeeeeba 7012static void nohz_balancer_kick(void)
83cd4fe2
VP
7013{
7014 int ilb_cpu;
7015
7016 nohz.next_balance++;
7017
3dd0337d 7018 ilb_cpu = find_new_ilb();
83cd4fe2 7019
0b005cf5
SS
7020 if (ilb_cpu >= nr_cpu_ids)
7021 return;
83cd4fe2 7022
cd490c5b 7023 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7024 return;
7025 /*
7026 * Use smp_send_reschedule() instead of resched_cpu().
7027 * This way we generate a sched IPI on the target cpu which
7028 * is idle. And the softirq performing nohz idle load balance
7029 * will be run before returning from the IPI.
7030 */
7031 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7032 return;
7033}
7034
c1cc017c 7035static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7036{
7037 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7038 /*
7039 * Completely isolated CPUs don't ever set, so we must test.
7040 */
7041 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7042 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7043 atomic_dec(&nohz.nr_cpus);
7044 }
71325960
SS
7045 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7046 }
7047}
7048
69e1e811
SS
7049static inline void set_cpu_sd_state_busy(void)
7050{
7051 struct sched_domain *sd;
37dc6b50 7052 int cpu = smp_processor_id();
69e1e811 7053
69e1e811 7054 rcu_read_lock();
37dc6b50 7055 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7056
7057 if (!sd || !sd->nohz_idle)
7058 goto unlock;
7059 sd->nohz_idle = 0;
7060
63b2ca30 7061 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7062unlock:
69e1e811
SS
7063 rcu_read_unlock();
7064}
7065
7066void set_cpu_sd_state_idle(void)
7067{
7068 struct sched_domain *sd;
37dc6b50 7069 int cpu = smp_processor_id();
69e1e811 7070
69e1e811 7071 rcu_read_lock();
37dc6b50 7072 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7073
7074 if (!sd || sd->nohz_idle)
7075 goto unlock;
7076 sd->nohz_idle = 1;
7077
63b2ca30 7078 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7079unlock:
69e1e811
SS
7080 rcu_read_unlock();
7081}
7082
1e3c88bd 7083/*
c1cc017c 7084 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7085 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7086 */
c1cc017c 7087void nohz_balance_enter_idle(int cpu)
1e3c88bd 7088{
71325960
SS
7089 /*
7090 * If this cpu is going down, then nothing needs to be done.
7091 */
7092 if (!cpu_active(cpu))
7093 return;
7094
c1cc017c
AS
7095 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7096 return;
1e3c88bd 7097
d987fc7f
MG
7098 /*
7099 * If we're a completely isolated CPU, we don't play.
7100 */
7101 if (on_null_domain(cpu_rq(cpu)))
7102 return;
7103
c1cc017c
AS
7104 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7105 atomic_inc(&nohz.nr_cpus);
7106 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7107}
71325960 7108
0db0628d 7109static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7110 unsigned long action, void *hcpu)
7111{
7112 switch (action & ~CPU_TASKS_FROZEN) {
7113 case CPU_DYING:
c1cc017c 7114 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7115 return NOTIFY_OK;
7116 default:
7117 return NOTIFY_DONE;
7118 }
7119}
1e3c88bd
PZ
7120#endif
7121
7122static DEFINE_SPINLOCK(balancing);
7123
49c022e6
PZ
7124/*
7125 * Scale the max load_balance interval with the number of CPUs in the system.
7126 * This trades load-balance latency on larger machines for less cross talk.
7127 */
029632fb 7128void update_max_interval(void)
49c022e6
PZ
7129{
7130 max_load_balance_interval = HZ*num_online_cpus()/10;
7131}
7132
1e3c88bd
PZ
7133/*
7134 * It checks each scheduling domain to see if it is due to be balanced,
7135 * and initiates a balancing operation if so.
7136 *
b9b0853a 7137 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7138 */
f7ed0a89 7139static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7140{
23f0d209 7141 int continue_balancing = 1;
f7ed0a89 7142 int cpu = rq->cpu;
1e3c88bd 7143 unsigned long interval;
04f733b4 7144 struct sched_domain *sd;
1e3c88bd
PZ
7145 /* Earliest time when we have to do rebalance again */
7146 unsigned long next_balance = jiffies + 60*HZ;
7147 int update_next_balance = 0;
f48627e6
JL
7148 int need_serialize, need_decay = 0;
7149 u64 max_cost = 0;
1e3c88bd 7150
48a16753 7151 update_blocked_averages(cpu);
2069dd75 7152
dce840a0 7153 rcu_read_lock();
1e3c88bd 7154 for_each_domain(cpu, sd) {
f48627e6
JL
7155 /*
7156 * Decay the newidle max times here because this is a regular
7157 * visit to all the domains. Decay ~1% per second.
7158 */
7159 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7160 sd->max_newidle_lb_cost =
7161 (sd->max_newidle_lb_cost * 253) / 256;
7162 sd->next_decay_max_lb_cost = jiffies + HZ;
7163 need_decay = 1;
7164 }
7165 max_cost += sd->max_newidle_lb_cost;
7166
1e3c88bd
PZ
7167 if (!(sd->flags & SD_LOAD_BALANCE))
7168 continue;
7169
f48627e6
JL
7170 /*
7171 * Stop the load balance at this level. There is another
7172 * CPU in our sched group which is doing load balancing more
7173 * actively.
7174 */
7175 if (!continue_balancing) {
7176 if (need_decay)
7177 continue;
7178 break;
7179 }
7180
52a08ef1 7181 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7182
7183 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7184 if (need_serialize) {
7185 if (!spin_trylock(&balancing))
7186 goto out;
7187 }
7188
7189 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7190 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7191 /*
6263322c 7192 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7193 * env->dst_cpu, so we can't know our idle
7194 * state even if we migrated tasks. Update it.
1e3c88bd 7195 */
de5eb2dd 7196 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7197 }
7198 sd->last_balance = jiffies;
52a08ef1 7199 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7200 }
7201 if (need_serialize)
7202 spin_unlock(&balancing);
7203out:
7204 if (time_after(next_balance, sd->last_balance + interval)) {
7205 next_balance = sd->last_balance + interval;
7206 update_next_balance = 1;
7207 }
f48627e6
JL
7208 }
7209 if (need_decay) {
1e3c88bd 7210 /*
f48627e6
JL
7211 * Ensure the rq-wide value also decays but keep it at a
7212 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7213 */
f48627e6
JL
7214 rq->max_idle_balance_cost =
7215 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7216 }
dce840a0 7217 rcu_read_unlock();
1e3c88bd
PZ
7218
7219 /*
7220 * next_balance will be updated only when there is a need.
7221 * When the cpu is attached to null domain for ex, it will not be
7222 * updated.
7223 */
7224 if (likely(update_next_balance))
7225 rq->next_balance = next_balance;
7226}
7227
3451d024 7228#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7229/*
3451d024 7230 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7231 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7232 */
208cb16b 7233static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7234{
208cb16b 7235 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7236 struct rq *rq;
7237 int balance_cpu;
7238
1c792db7
SS
7239 if (idle != CPU_IDLE ||
7240 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7241 goto end;
83cd4fe2
VP
7242
7243 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7244 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7245 continue;
7246
7247 /*
7248 * If this cpu gets work to do, stop the load balancing
7249 * work being done for other cpus. Next load
7250 * balancing owner will pick it up.
7251 */
1c792db7 7252 if (need_resched())
83cd4fe2 7253 break;
83cd4fe2 7254
5ed4f1d9
VG
7255 rq = cpu_rq(balance_cpu);
7256
ed61bbc6
TC
7257 /*
7258 * If time for next balance is due,
7259 * do the balance.
7260 */
7261 if (time_after_eq(jiffies, rq->next_balance)) {
7262 raw_spin_lock_irq(&rq->lock);
7263 update_rq_clock(rq);
7264 update_idle_cpu_load(rq);
7265 raw_spin_unlock_irq(&rq->lock);
7266 rebalance_domains(rq, CPU_IDLE);
7267 }
83cd4fe2 7268
83cd4fe2
VP
7269 if (time_after(this_rq->next_balance, rq->next_balance))
7270 this_rq->next_balance = rq->next_balance;
7271 }
7272 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7273end:
7274 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7275}
7276
7277/*
0b005cf5
SS
7278 * Current heuristic for kicking the idle load balancer in the presence
7279 * of an idle cpu is the system.
7280 * - This rq has more than one task.
7281 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7282 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7283 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7284 * domain span are idle.
83cd4fe2 7285 */
4a725627 7286static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7287{
7288 unsigned long now = jiffies;
0b005cf5 7289 struct sched_domain *sd;
63b2ca30 7290 struct sched_group_capacity *sgc;
4a725627 7291 int nr_busy, cpu = rq->cpu;
83cd4fe2 7292
4a725627 7293 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7294 return 0;
7295
1c792db7
SS
7296 /*
7297 * We may be recently in ticked or tickless idle mode. At the first
7298 * busy tick after returning from idle, we will update the busy stats.
7299 */
69e1e811 7300 set_cpu_sd_state_busy();
c1cc017c 7301 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7302
7303 /*
7304 * None are in tickless mode and hence no need for NOHZ idle load
7305 * balancing.
7306 */
7307 if (likely(!atomic_read(&nohz.nr_cpus)))
7308 return 0;
1c792db7
SS
7309
7310 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7311 return 0;
7312
0b005cf5
SS
7313 if (rq->nr_running >= 2)
7314 goto need_kick;
83cd4fe2 7315
067491b7 7316 rcu_read_lock();
37dc6b50 7317 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7318
37dc6b50 7319 if (sd) {
63b2ca30
NP
7320 sgc = sd->groups->sgc;
7321 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7322
37dc6b50 7323 if (nr_busy > 1)
067491b7 7324 goto need_kick_unlock;
83cd4fe2 7325 }
37dc6b50
PM
7326
7327 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7328
7329 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7330 sched_domain_span(sd)) < cpu))
7331 goto need_kick_unlock;
7332
067491b7 7333 rcu_read_unlock();
83cd4fe2 7334 return 0;
067491b7
PZ
7335
7336need_kick_unlock:
7337 rcu_read_unlock();
0b005cf5
SS
7338need_kick:
7339 return 1;
83cd4fe2
VP
7340}
7341#else
208cb16b 7342static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7343#endif
7344
7345/*
7346 * run_rebalance_domains is triggered when needed from the scheduler tick.
7347 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7348 */
1e3c88bd
PZ
7349static void run_rebalance_domains(struct softirq_action *h)
7350{
208cb16b 7351 struct rq *this_rq = this_rq();
6eb57e0d 7352 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7353 CPU_IDLE : CPU_NOT_IDLE;
7354
f7ed0a89 7355 rebalance_domains(this_rq, idle);
1e3c88bd 7356
1e3c88bd 7357 /*
83cd4fe2 7358 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7359 * balancing on behalf of the other idle cpus whose ticks are
7360 * stopped.
7361 */
208cb16b 7362 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7363}
7364
1e3c88bd
PZ
7365/*
7366 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7367 */
7caff66f 7368void trigger_load_balance(struct rq *rq)
1e3c88bd 7369{
1e3c88bd 7370 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7371 if (unlikely(on_null_domain(rq)))
7372 return;
7373
7374 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7375 raise_softirq(SCHED_SOFTIRQ);
3451d024 7376#ifdef CONFIG_NO_HZ_COMMON
c726099e 7377 if (nohz_kick_needed(rq))
0aeeeeba 7378 nohz_balancer_kick();
83cd4fe2 7379#endif
1e3c88bd
PZ
7380}
7381
0bcdcf28
CE
7382static void rq_online_fair(struct rq *rq)
7383{
7384 update_sysctl();
0e59bdae
KT
7385
7386 update_runtime_enabled(rq);
0bcdcf28
CE
7387}
7388
7389static void rq_offline_fair(struct rq *rq)
7390{
7391 update_sysctl();
a4c96ae3
PB
7392
7393 /* Ensure any throttled groups are reachable by pick_next_task */
7394 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7395}
7396
55e12e5e 7397#endif /* CONFIG_SMP */
e1d1484f 7398
bf0f6f24
IM
7399/*
7400 * scheduler tick hitting a task of our scheduling class:
7401 */
8f4d37ec 7402static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7403{
7404 struct cfs_rq *cfs_rq;
7405 struct sched_entity *se = &curr->se;
7406
7407 for_each_sched_entity(se) {
7408 cfs_rq = cfs_rq_of(se);
8f4d37ec 7409 entity_tick(cfs_rq, se, queued);
bf0f6f24 7410 }
18bf2805 7411
10e84b97 7412 if (numabalancing_enabled)
cbee9f88 7413 task_tick_numa(rq, curr);
3d59eebc 7414
18bf2805 7415 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7416}
7417
7418/*
cd29fe6f
PZ
7419 * called on fork with the child task as argument from the parent's context
7420 * - child not yet on the tasklist
7421 * - preemption disabled
bf0f6f24 7422 */
cd29fe6f 7423static void task_fork_fair(struct task_struct *p)
bf0f6f24 7424{
4fc420c9
DN
7425 struct cfs_rq *cfs_rq;
7426 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7427 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7428 struct rq *rq = this_rq();
7429 unsigned long flags;
7430
05fa785c 7431 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7432
861d034e
PZ
7433 update_rq_clock(rq);
7434
4fc420c9
DN
7435 cfs_rq = task_cfs_rq(current);
7436 curr = cfs_rq->curr;
7437
6c9a27f5
DN
7438 /*
7439 * Not only the cpu but also the task_group of the parent might have
7440 * been changed after parent->se.parent,cfs_rq were copied to
7441 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7442 * of child point to valid ones.
7443 */
7444 rcu_read_lock();
7445 __set_task_cpu(p, this_cpu);
7446 rcu_read_unlock();
bf0f6f24 7447
7109c442 7448 update_curr(cfs_rq);
cd29fe6f 7449
b5d9d734
MG
7450 if (curr)
7451 se->vruntime = curr->vruntime;
aeb73b04 7452 place_entity(cfs_rq, se, 1);
4d78e7b6 7453
cd29fe6f 7454 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7455 /*
edcb60a3
IM
7456 * Upon rescheduling, sched_class::put_prev_task() will place
7457 * 'current' within the tree based on its new key value.
7458 */
4d78e7b6 7459 swap(curr->vruntime, se->vruntime);
aec0a514 7460 resched_task(rq->curr);
4d78e7b6 7461 }
bf0f6f24 7462
88ec22d3
PZ
7463 se->vruntime -= cfs_rq->min_vruntime;
7464
05fa785c 7465 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7466}
7467
cb469845
SR
7468/*
7469 * Priority of the task has changed. Check to see if we preempt
7470 * the current task.
7471 */
da7a735e
PZ
7472static void
7473prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7474{
da7a735e
PZ
7475 if (!p->se.on_rq)
7476 return;
7477
cb469845
SR
7478 /*
7479 * Reschedule if we are currently running on this runqueue and
7480 * our priority decreased, or if we are not currently running on
7481 * this runqueue and our priority is higher than the current's
7482 */
da7a735e 7483 if (rq->curr == p) {
cb469845
SR
7484 if (p->prio > oldprio)
7485 resched_task(rq->curr);
7486 } else
15afe09b 7487 check_preempt_curr(rq, p, 0);
cb469845
SR
7488}
7489
da7a735e
PZ
7490static void switched_from_fair(struct rq *rq, struct task_struct *p)
7491{
7492 struct sched_entity *se = &p->se;
7493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7494
7495 /*
791c9e02 7496 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7497 * switched back to the fair class the enqueue_entity(.flags=0) will
7498 * do the right thing.
7499 *
791c9e02
GM
7500 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7501 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7502 * the task is sleeping will it still have non-normalized vruntime.
7503 */
791c9e02 7504 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7505 /*
7506 * Fix up our vruntime so that the current sleep doesn't
7507 * cause 'unlimited' sleep bonus.
7508 */
7509 place_entity(cfs_rq, se, 0);
7510 se->vruntime -= cfs_rq->min_vruntime;
7511 }
9ee474f5 7512
141965c7 7513#ifdef CONFIG_SMP
9ee474f5
PT
7514 /*
7515 * Remove our load from contribution when we leave sched_fair
7516 * and ensure we don't carry in an old decay_count if we
7517 * switch back.
7518 */
87e3c8ae
KT
7519 if (se->avg.decay_count) {
7520 __synchronize_entity_decay(se);
7521 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7522 }
7523#endif
da7a735e
PZ
7524}
7525
cb469845
SR
7526/*
7527 * We switched to the sched_fair class.
7528 */
da7a735e 7529static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7530{
eb7a59b2
M
7531 struct sched_entity *se = &p->se;
7532#ifdef CONFIG_FAIR_GROUP_SCHED
7533 /*
7534 * Since the real-depth could have been changed (only FAIR
7535 * class maintain depth value), reset depth properly.
7536 */
7537 se->depth = se->parent ? se->parent->depth + 1 : 0;
7538#endif
7539 if (!se->on_rq)
da7a735e
PZ
7540 return;
7541
cb469845
SR
7542 /*
7543 * We were most likely switched from sched_rt, so
7544 * kick off the schedule if running, otherwise just see
7545 * if we can still preempt the current task.
7546 */
da7a735e 7547 if (rq->curr == p)
cb469845
SR
7548 resched_task(rq->curr);
7549 else
15afe09b 7550 check_preempt_curr(rq, p, 0);
cb469845
SR
7551}
7552
83b699ed
SV
7553/* Account for a task changing its policy or group.
7554 *
7555 * This routine is mostly called to set cfs_rq->curr field when a task
7556 * migrates between groups/classes.
7557 */
7558static void set_curr_task_fair(struct rq *rq)
7559{
7560 struct sched_entity *se = &rq->curr->se;
7561
ec12cb7f
PT
7562 for_each_sched_entity(se) {
7563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7564
7565 set_next_entity(cfs_rq, se);
7566 /* ensure bandwidth has been allocated on our new cfs_rq */
7567 account_cfs_rq_runtime(cfs_rq, 0);
7568 }
83b699ed
SV
7569}
7570
029632fb
PZ
7571void init_cfs_rq(struct cfs_rq *cfs_rq)
7572{
7573 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7574 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7575#ifndef CONFIG_64BIT
7576 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7577#endif
141965c7 7578#ifdef CONFIG_SMP
9ee474f5 7579 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7580 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7581#endif
029632fb
PZ
7582}
7583
810b3817 7584#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7585static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7586{
fed14d45 7587 struct sched_entity *se = &p->se;
aff3e498 7588 struct cfs_rq *cfs_rq;
fed14d45 7589
b2b5ce02
PZ
7590 /*
7591 * If the task was not on the rq at the time of this cgroup movement
7592 * it must have been asleep, sleeping tasks keep their ->vruntime
7593 * absolute on their old rq until wakeup (needed for the fair sleeper
7594 * bonus in place_entity()).
7595 *
7596 * If it was on the rq, we've just 'preempted' it, which does convert
7597 * ->vruntime to a relative base.
7598 *
7599 * Make sure both cases convert their relative position when migrating
7600 * to another cgroup's rq. This does somewhat interfere with the
7601 * fair sleeper stuff for the first placement, but who cares.
7602 */
7ceff013
DN
7603 /*
7604 * When !on_rq, vruntime of the task has usually NOT been normalized.
7605 * But there are some cases where it has already been normalized:
7606 *
7607 * - Moving a forked child which is waiting for being woken up by
7608 * wake_up_new_task().
62af3783
DN
7609 * - Moving a task which has been woken up by try_to_wake_up() and
7610 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7611 *
7612 * To prevent boost or penalty in the new cfs_rq caused by delta
7613 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7614 */
fed14d45 7615 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7616 on_rq = 1;
7617
b2b5ce02 7618 if (!on_rq)
fed14d45 7619 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7620 set_task_rq(p, task_cpu(p));
fed14d45 7621 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7622 if (!on_rq) {
fed14d45
PZ
7623 cfs_rq = cfs_rq_of(se);
7624 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7625#ifdef CONFIG_SMP
7626 /*
7627 * migrate_task_rq_fair() will have removed our previous
7628 * contribution, but we must synchronize for ongoing future
7629 * decay.
7630 */
fed14d45
PZ
7631 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7632 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7633#endif
7634 }
810b3817 7635}
029632fb
PZ
7636
7637void free_fair_sched_group(struct task_group *tg)
7638{
7639 int i;
7640
7641 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7642
7643 for_each_possible_cpu(i) {
7644 if (tg->cfs_rq)
7645 kfree(tg->cfs_rq[i]);
7646 if (tg->se)
7647 kfree(tg->se[i]);
7648 }
7649
7650 kfree(tg->cfs_rq);
7651 kfree(tg->se);
7652}
7653
7654int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7655{
7656 struct cfs_rq *cfs_rq;
7657 struct sched_entity *se;
7658 int i;
7659
7660 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7661 if (!tg->cfs_rq)
7662 goto err;
7663 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7664 if (!tg->se)
7665 goto err;
7666
7667 tg->shares = NICE_0_LOAD;
7668
7669 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7670
7671 for_each_possible_cpu(i) {
7672 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7673 GFP_KERNEL, cpu_to_node(i));
7674 if (!cfs_rq)
7675 goto err;
7676
7677 se = kzalloc_node(sizeof(struct sched_entity),
7678 GFP_KERNEL, cpu_to_node(i));
7679 if (!se)
7680 goto err_free_rq;
7681
7682 init_cfs_rq(cfs_rq);
7683 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7684 }
7685
7686 return 1;
7687
7688err_free_rq:
7689 kfree(cfs_rq);
7690err:
7691 return 0;
7692}
7693
7694void unregister_fair_sched_group(struct task_group *tg, int cpu)
7695{
7696 struct rq *rq = cpu_rq(cpu);
7697 unsigned long flags;
7698
7699 /*
7700 * Only empty task groups can be destroyed; so we can speculatively
7701 * check on_list without danger of it being re-added.
7702 */
7703 if (!tg->cfs_rq[cpu]->on_list)
7704 return;
7705
7706 raw_spin_lock_irqsave(&rq->lock, flags);
7707 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
7709}
7710
7711void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7712 struct sched_entity *se, int cpu,
7713 struct sched_entity *parent)
7714{
7715 struct rq *rq = cpu_rq(cpu);
7716
7717 cfs_rq->tg = tg;
7718 cfs_rq->rq = rq;
029632fb
PZ
7719 init_cfs_rq_runtime(cfs_rq);
7720
7721 tg->cfs_rq[cpu] = cfs_rq;
7722 tg->se[cpu] = se;
7723
7724 /* se could be NULL for root_task_group */
7725 if (!se)
7726 return;
7727
fed14d45 7728 if (!parent) {
029632fb 7729 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7730 se->depth = 0;
7731 } else {
029632fb 7732 se->cfs_rq = parent->my_q;
fed14d45
PZ
7733 se->depth = parent->depth + 1;
7734 }
029632fb
PZ
7735
7736 se->my_q = cfs_rq;
0ac9b1c2
PT
7737 /* guarantee group entities always have weight */
7738 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7739 se->parent = parent;
7740}
7741
7742static DEFINE_MUTEX(shares_mutex);
7743
7744int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7745{
7746 int i;
7747 unsigned long flags;
7748
7749 /*
7750 * We can't change the weight of the root cgroup.
7751 */
7752 if (!tg->se[0])
7753 return -EINVAL;
7754
7755 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7756
7757 mutex_lock(&shares_mutex);
7758 if (tg->shares == shares)
7759 goto done;
7760
7761 tg->shares = shares;
7762 for_each_possible_cpu(i) {
7763 struct rq *rq = cpu_rq(i);
7764 struct sched_entity *se;
7765
7766 se = tg->se[i];
7767 /* Propagate contribution to hierarchy */
7768 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7769
7770 /* Possible calls to update_curr() need rq clock */
7771 update_rq_clock(rq);
17bc14b7 7772 for_each_sched_entity(se)
029632fb
PZ
7773 update_cfs_shares(group_cfs_rq(se));
7774 raw_spin_unlock_irqrestore(&rq->lock, flags);
7775 }
7776
7777done:
7778 mutex_unlock(&shares_mutex);
7779 return 0;
7780}
7781#else /* CONFIG_FAIR_GROUP_SCHED */
7782
7783void free_fair_sched_group(struct task_group *tg) { }
7784
7785int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7786{
7787 return 1;
7788}
7789
7790void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7791
7792#endif /* CONFIG_FAIR_GROUP_SCHED */
7793
810b3817 7794
6d686f45 7795static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7796{
7797 struct sched_entity *se = &task->se;
0d721cea
PW
7798 unsigned int rr_interval = 0;
7799
7800 /*
7801 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7802 * idle runqueue:
7803 */
0d721cea 7804 if (rq->cfs.load.weight)
a59f4e07 7805 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7806
7807 return rr_interval;
7808}
7809
bf0f6f24
IM
7810/*
7811 * All the scheduling class methods:
7812 */
029632fb 7813const struct sched_class fair_sched_class = {
5522d5d5 7814 .next = &idle_sched_class,
bf0f6f24
IM
7815 .enqueue_task = enqueue_task_fair,
7816 .dequeue_task = dequeue_task_fair,
7817 .yield_task = yield_task_fair,
d95f4122 7818 .yield_to_task = yield_to_task_fair,
bf0f6f24 7819
2e09bf55 7820 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7821
7822 .pick_next_task = pick_next_task_fair,
7823 .put_prev_task = put_prev_task_fair,
7824
681f3e68 7825#ifdef CONFIG_SMP
4ce72a2c 7826 .select_task_rq = select_task_rq_fair,
0a74bef8 7827 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7828
0bcdcf28
CE
7829 .rq_online = rq_online_fair,
7830 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7831
7832 .task_waking = task_waking_fair,
681f3e68 7833#endif
bf0f6f24 7834
83b699ed 7835 .set_curr_task = set_curr_task_fair,
bf0f6f24 7836 .task_tick = task_tick_fair,
cd29fe6f 7837 .task_fork = task_fork_fair,
cb469845
SR
7838
7839 .prio_changed = prio_changed_fair,
da7a735e 7840 .switched_from = switched_from_fair,
cb469845 7841 .switched_to = switched_to_fair,
810b3817 7842
0d721cea
PW
7843 .get_rr_interval = get_rr_interval_fair,
7844
810b3817 7845#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7846 .task_move_group = task_move_group_fair,
810b3817 7847#endif
bf0f6f24
IM
7848};
7849
7850#ifdef CONFIG_SCHED_DEBUG
029632fb 7851void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7852{
bf0f6f24
IM
7853 struct cfs_rq *cfs_rq;
7854
5973e5b9 7855 rcu_read_lock();
c3b64f1e 7856 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7857 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7858 rcu_read_unlock();
bf0f6f24
IM
7859}
7860#endif
029632fb
PZ
7861
7862__init void init_sched_fair_class(void)
7863{
7864#ifdef CONFIG_SMP
7865 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7866
3451d024 7867#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7868 nohz.next_balance = jiffies;
029632fb 7869 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7870 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7871#endif
7872#endif /* SMP */
7873
7874}