sched/fair: Drop always true parameter of update_cfs_rq_load_avg()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7
PZ
515 struct sched_entity *curr = cfs_rq->curr;
516
1af5f730
PZ
517 u64 vruntime = cfs_rq->min_vruntime;
518
b60205c7
PZ
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
1af5f730
PZ
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
549{
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bf0f6f24
IM
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
1af5f730 577 if (leftmost)
57cb499d 578 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
582}
583
0702e3eb 584static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 585{
3fe69747
PZ
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
3fe69747
PZ
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
3fe69747 591 }
e9acbff6 592
bf0f6f24 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
f4b6755f
PZ
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
7eee3e67 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67
IM
623
624 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
acb4a848 631int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 632 void __user *buffer, size_t *lenp,
b2be5e96
PZ
633 loff_t *ppos)
634{
8d65af78 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 636 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0a582440 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 691
0a582440 692 for_each_sched_entity(se) {
6272d68c 693 struct load_weight *load;
3104bf03 694 struct load_weight lw;
6272d68c
LM
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
f9c0b095 698
0a582440 699 if (unlikely(!se->on_rq)) {
3104bf03 700 lw = cfs_rq->load;
0a582440
MG
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
9dbdb155 705 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
706 }
707 return slice;
bf0f6f24
IM
708}
709
647e7cac 710/*
660cc00f 711 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 712 *
f9c0b095 713 * vs = s/w
647e7cac 714 */
f9c0b095 715static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 716{
f9c0b095 717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
718}
719
a75cdaa9 720#ifdef CONFIG_SMP
283e2ed3
PZ
721
722#include "sched-pelt.h"
723
772bd008 724static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
725static unsigned long task_h_load(struct task_struct *p);
726
540247fb
YD
727/* Give new sched_entity start runnable values to heavy its load in infant time */
728void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 729{
540247fb 730 struct sched_avg *sa = &se->avg;
a75cdaa9 731
9d89c257
YD
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
b5a9b340
VG
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
7dc603c9 756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 757static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 758
2b8c41da
YD
759/*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784void post_init_entity_util_avg(struct sched_entity *se)
785{
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
172895e6 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
7dc603c9
PZ
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
3a123bbb 809 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
df217913 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
817 return;
818 }
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
2b8c41da
YD
828void post_init_entity_util_avg(struct sched_entity *se)
829{
830}
3d30544f
PZ
831static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 867 cpuacct_charge(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
4fa8d299 894 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
4fa8d299 916 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
4fa8d299
JP
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 927}
3ea94de1 928
4fa8d299 929static inline void
1a3d027c
JP
930update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931{
932 struct task_struct *tsk = NULL;
4fa8d299
JP
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
4fa8d299
JP
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
946
947 if ((s64)delta < 0)
948 delta = 0;
949
4fa8d299
JP
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 952
4fa8d299
JP
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
4fa8d299
JP
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
963
964 if ((s64)delta < 0)
965 delta = 0;
966
4fa8d299
JP
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
1a3d027c 969
4fa8d299
JP
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
972
973 if (tsk) {
974 if (tsk->in_iowait) {
4fa8d299
JP
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
3ea94de1 995}
3ea94de1 996
bf0f6f24
IM
997/*
998 * Task is being enqueued - update stats:
999 */
cb251765 1000static inline void
1a3d027c 1001update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1002{
4fa8d299
JP
1003 if (!schedstat_enabled())
1004 return;
1005
bf0f6f24
IM
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
429d43bc 1010 if (se != cfs_rq->curr)
5870db5b 1011 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1015}
1016
bf0f6f24 1017static inline void
cb251765 1018update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
4fa8d299
JP
1020
1021 if (!schedstat_enabled())
1022 return;
1023
bf0f6f24
IM
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
429d43bc 1028 if (se != cfs_rq->curr)
9ef0a961 1029 update_stats_wait_end(cfs_rq, se);
cb251765 1030
4fa8d299
JP
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
cb251765 1033
4fa8d299
JP
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
cb251765 1040 }
cb251765
MG
1041}
1042
bf0f6f24
IM
1043/*
1044 * We are picking a new current task - update its stats:
1045 */
1046static inline void
79303e9e 1047update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1048{
1049 /*
1050 * We are starting a new run period:
1051 */
78becc27 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1053}
1054
bf0f6f24
IM
1055/**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
cbee9f88
PZ
1059#ifdef CONFIG_NUMA_BALANCING
1060/*
598f0ec0
MG
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
cbee9f88 1064 */
598f0ec0
MG
1065unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1067
1068/* Portion of address space to scan in MB */
1069unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1070
4b96a29b
PZ
1071/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
598f0ec0
MG
1074static unsigned int task_nr_scan_windows(struct task_struct *p)
1075{
1076 unsigned long rss = 0;
1077 unsigned long nr_scan_pages;
1078
1079 /*
1080 * Calculations based on RSS as non-present and empty pages are skipped
1081 * by the PTE scanner and NUMA hinting faults should be trapped based
1082 * on resident pages
1083 */
1084 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1085 rss = get_mm_rss(p->mm);
1086 if (!rss)
1087 rss = nr_scan_pages;
1088
1089 rss = round_up(rss, nr_scan_pages);
1090 return rss / nr_scan_pages;
1091}
1092
1093/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1094#define MAX_SCAN_WINDOW 2560
1095
1096static unsigned int task_scan_min(struct task_struct *p)
1097{
316c1608 1098 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1099 unsigned int scan, floor;
1100 unsigned int windows = 1;
1101
64192658
KT
1102 if (scan_size < MAX_SCAN_WINDOW)
1103 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1104 floor = 1000 / windows;
1105
1106 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1107 return max_t(unsigned int, floor, scan);
1108}
1109
1110static unsigned int task_scan_max(struct task_struct *p)
1111{
1112 unsigned int smin = task_scan_min(p);
1113 unsigned int smax;
1114
1115 /* Watch for min being lower than max due to floor calculations */
1116 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1117 return max(smin, smax);
1118}
1119
0ec8aa00
PZ
1120static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1121{
1122 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1123 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1124}
1125
1126static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1127{
1128 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1129 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1130}
1131
8c8a743c
PZ
1132struct numa_group {
1133 atomic_t refcount;
1134
1135 spinlock_t lock; /* nr_tasks, tasks */
1136 int nr_tasks;
e29cf08b 1137 pid_t gid;
4142c3eb 1138 int active_nodes;
8c8a743c
PZ
1139
1140 struct rcu_head rcu;
989348b5 1141 unsigned long total_faults;
4142c3eb 1142 unsigned long max_faults_cpu;
7e2703e6
RR
1143 /*
1144 * Faults_cpu is used to decide whether memory should move
1145 * towards the CPU. As a consequence, these stats are weighted
1146 * more by CPU use than by memory faults.
1147 */
50ec8a40 1148 unsigned long *faults_cpu;
989348b5 1149 unsigned long faults[0];
8c8a743c
PZ
1150};
1151
be1e4e76
RR
1152/* Shared or private faults. */
1153#define NR_NUMA_HINT_FAULT_TYPES 2
1154
1155/* Memory and CPU locality */
1156#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1157
1158/* Averaged statistics, and temporary buffers. */
1159#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1160
e29cf08b
MG
1161pid_t task_numa_group_id(struct task_struct *p)
1162{
1163 return p->numa_group ? p->numa_group->gid : 0;
1164}
1165
44dba3d5
IM
1166/*
1167 * The averaged statistics, shared & private, memory & cpu,
1168 * occupy the first half of the array. The second half of the
1169 * array is for current counters, which are averaged into the
1170 * first set by task_numa_placement.
1171 */
1172static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1173{
44dba3d5 1174 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1175}
1176
1177static inline unsigned long task_faults(struct task_struct *p, int nid)
1178{
44dba3d5 1179 if (!p->numa_faults)
ac8e895b
MG
1180 return 0;
1181
44dba3d5
IM
1182 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1183 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1184}
1185
83e1d2cd
MG
1186static inline unsigned long group_faults(struct task_struct *p, int nid)
1187{
1188 if (!p->numa_group)
1189 return 0;
1190
44dba3d5
IM
1191 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1192 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1193}
1194
20e07dea
RR
1195static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1196{
44dba3d5
IM
1197 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1199}
1200
4142c3eb
RR
1201/*
1202 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1203 * considered part of a numa group's pseudo-interleaving set. Migrations
1204 * between these nodes are slowed down, to allow things to settle down.
1205 */
1206#define ACTIVE_NODE_FRACTION 3
1207
1208static bool numa_is_active_node(int nid, struct numa_group *ng)
1209{
1210 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1211}
1212
6c6b1193
RR
1213/* Handle placement on systems where not all nodes are directly connected. */
1214static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1215 int maxdist, bool task)
1216{
1217 unsigned long score = 0;
1218 int node;
1219
1220 /*
1221 * All nodes are directly connected, and the same distance
1222 * from each other. No need for fancy placement algorithms.
1223 */
1224 if (sched_numa_topology_type == NUMA_DIRECT)
1225 return 0;
1226
1227 /*
1228 * This code is called for each node, introducing N^2 complexity,
1229 * which should be ok given the number of nodes rarely exceeds 8.
1230 */
1231 for_each_online_node(node) {
1232 unsigned long faults;
1233 int dist = node_distance(nid, node);
1234
1235 /*
1236 * The furthest away nodes in the system are not interesting
1237 * for placement; nid was already counted.
1238 */
1239 if (dist == sched_max_numa_distance || node == nid)
1240 continue;
1241
1242 /*
1243 * On systems with a backplane NUMA topology, compare groups
1244 * of nodes, and move tasks towards the group with the most
1245 * memory accesses. When comparing two nodes at distance
1246 * "hoplimit", only nodes closer by than "hoplimit" are part
1247 * of each group. Skip other nodes.
1248 */
1249 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1250 dist > maxdist)
1251 continue;
1252
1253 /* Add up the faults from nearby nodes. */
1254 if (task)
1255 faults = task_faults(p, node);
1256 else
1257 faults = group_faults(p, node);
1258
1259 /*
1260 * On systems with a glueless mesh NUMA topology, there are
1261 * no fixed "groups of nodes". Instead, nodes that are not
1262 * directly connected bounce traffic through intermediate
1263 * nodes; a numa_group can occupy any set of nodes.
1264 * The further away a node is, the less the faults count.
1265 * This seems to result in good task placement.
1266 */
1267 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1268 faults *= (sched_max_numa_distance - dist);
1269 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1270 }
1271
1272 score += faults;
1273 }
1274
1275 return score;
1276}
1277
83e1d2cd
MG
1278/*
1279 * These return the fraction of accesses done by a particular task, or
1280 * task group, on a particular numa node. The group weight is given a
1281 * larger multiplier, in order to group tasks together that are almost
1282 * evenly spread out between numa nodes.
1283 */
7bd95320
RR
1284static inline unsigned long task_weight(struct task_struct *p, int nid,
1285 int dist)
83e1d2cd 1286{
7bd95320 1287 unsigned long faults, total_faults;
83e1d2cd 1288
44dba3d5 1289 if (!p->numa_faults)
83e1d2cd
MG
1290 return 0;
1291
1292 total_faults = p->total_numa_faults;
1293
1294 if (!total_faults)
1295 return 0;
1296
7bd95320 1297 faults = task_faults(p, nid);
6c6b1193
RR
1298 faults += score_nearby_nodes(p, nid, dist, true);
1299
7bd95320 1300 return 1000 * faults / total_faults;
83e1d2cd
MG
1301}
1302
7bd95320
RR
1303static inline unsigned long group_weight(struct task_struct *p, int nid,
1304 int dist)
83e1d2cd 1305{
7bd95320
RR
1306 unsigned long faults, total_faults;
1307
1308 if (!p->numa_group)
1309 return 0;
1310
1311 total_faults = p->numa_group->total_faults;
1312
1313 if (!total_faults)
83e1d2cd
MG
1314 return 0;
1315
7bd95320 1316 faults = group_faults(p, nid);
6c6b1193
RR
1317 faults += score_nearby_nodes(p, nid, dist, false);
1318
7bd95320 1319 return 1000 * faults / total_faults;
83e1d2cd
MG
1320}
1321
10f39042
RR
1322bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1323 int src_nid, int dst_cpu)
1324{
1325 struct numa_group *ng = p->numa_group;
1326 int dst_nid = cpu_to_node(dst_cpu);
1327 int last_cpupid, this_cpupid;
1328
1329 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1330
1331 /*
1332 * Multi-stage node selection is used in conjunction with a periodic
1333 * migration fault to build a temporal task<->page relation. By using
1334 * a two-stage filter we remove short/unlikely relations.
1335 *
1336 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1337 * a task's usage of a particular page (n_p) per total usage of this
1338 * page (n_t) (in a given time-span) to a probability.
1339 *
1340 * Our periodic faults will sample this probability and getting the
1341 * same result twice in a row, given these samples are fully
1342 * independent, is then given by P(n)^2, provided our sample period
1343 * is sufficiently short compared to the usage pattern.
1344 *
1345 * This quadric squishes small probabilities, making it less likely we
1346 * act on an unlikely task<->page relation.
1347 */
1348 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1349 if (!cpupid_pid_unset(last_cpupid) &&
1350 cpupid_to_nid(last_cpupid) != dst_nid)
1351 return false;
1352
1353 /* Always allow migrate on private faults */
1354 if (cpupid_match_pid(p, last_cpupid))
1355 return true;
1356
1357 /* A shared fault, but p->numa_group has not been set up yet. */
1358 if (!ng)
1359 return true;
1360
1361 /*
4142c3eb
RR
1362 * Destination node is much more heavily used than the source
1363 * node? Allow migration.
10f39042 1364 */
4142c3eb
RR
1365 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1366 ACTIVE_NODE_FRACTION)
10f39042
RR
1367 return true;
1368
1369 /*
4142c3eb
RR
1370 * Distribute memory according to CPU & memory use on each node,
1371 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1372 *
1373 * faults_cpu(dst) 3 faults_cpu(src)
1374 * --------------- * - > ---------------
1375 * faults_mem(dst) 4 faults_mem(src)
10f39042 1376 */
4142c3eb
RR
1377 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1378 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1379}
1380
c7132dd6 1381static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1382static unsigned long source_load(int cpu, int type);
1383static unsigned long target_load(int cpu, int type);
ced549fa 1384static unsigned long capacity_of(int cpu);
58d081b5 1385
fb13c7ee 1386/* Cached statistics for all CPUs within a node */
58d081b5 1387struct numa_stats {
fb13c7ee 1388 unsigned long nr_running;
58d081b5 1389 unsigned long load;
fb13c7ee
MG
1390
1391 /* Total compute capacity of CPUs on a node */
5ef20ca1 1392 unsigned long compute_capacity;
fb13c7ee
MG
1393
1394 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1395 unsigned long task_capacity;
1b6a7495 1396 int has_free_capacity;
58d081b5 1397};
e6628d5b 1398
fb13c7ee
MG
1399/*
1400 * XXX borrowed from update_sg_lb_stats
1401 */
1402static void update_numa_stats(struct numa_stats *ns, int nid)
1403{
83d7f242
RR
1404 int smt, cpu, cpus = 0;
1405 unsigned long capacity;
fb13c7ee
MG
1406
1407 memset(ns, 0, sizeof(*ns));
1408 for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 struct rq *rq = cpu_rq(cpu);
1410
1411 ns->nr_running += rq->nr_running;
c7132dd6 1412 ns->load += weighted_cpuload(rq);
ced549fa 1413 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1414
1415 cpus++;
fb13c7ee
MG
1416 }
1417
5eca82a9
PZ
1418 /*
1419 * If we raced with hotplug and there are no CPUs left in our mask
1420 * the @ns structure is NULL'ed and task_numa_compare() will
1421 * not find this node attractive.
1422 *
1b6a7495
NP
1423 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 * imbalance and bail there.
5eca82a9
PZ
1425 */
1426 if (!cpus)
1427 return;
1428
83d7f242
RR
1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 capacity = cpus / smt; /* cores */
1432
1433 ns->task_capacity = min_t(unsigned, capacity,
1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1436}
1437
58d081b5
MG
1438struct task_numa_env {
1439 struct task_struct *p;
e6628d5b 1440
58d081b5
MG
1441 int src_cpu, src_nid;
1442 int dst_cpu, dst_nid;
e6628d5b 1443
58d081b5 1444 struct numa_stats src_stats, dst_stats;
e6628d5b 1445
40ea2b42 1446 int imbalance_pct;
7bd95320 1447 int dist;
fb13c7ee
MG
1448
1449 struct task_struct *best_task;
1450 long best_imp;
58d081b5
MG
1451 int best_cpu;
1452};
1453
fb13c7ee
MG
1454static void task_numa_assign(struct task_numa_env *env,
1455 struct task_struct *p, long imp)
1456{
1457 if (env->best_task)
1458 put_task_struct(env->best_task);
bac78573
ON
1459 if (p)
1460 get_task_struct(p);
fb13c7ee
MG
1461
1462 env->best_task = p;
1463 env->best_imp = imp;
1464 env->best_cpu = env->dst_cpu;
1465}
1466
28a21745 1467static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1468 struct task_numa_env *env)
1469{
e4991b24
RR
1470 long imb, old_imb;
1471 long orig_src_load, orig_dst_load;
28a21745
RR
1472 long src_capacity, dst_capacity;
1473
1474 /*
1475 * The load is corrected for the CPU capacity available on each node.
1476 *
1477 * src_load dst_load
1478 * ------------ vs ---------
1479 * src_capacity dst_capacity
1480 */
1481 src_capacity = env->src_stats.compute_capacity;
1482 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1483
1484 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1485 if (dst_load < src_load)
1486 swap(dst_load, src_load);
e63da036
RR
1487
1488 /* Is the difference below the threshold? */
e4991b24
RR
1489 imb = dst_load * src_capacity * 100 -
1490 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1491 if (imb <= 0)
1492 return false;
1493
1494 /*
1495 * The imbalance is above the allowed threshold.
e4991b24 1496 * Compare it with the old imbalance.
e63da036 1497 */
28a21745 1498 orig_src_load = env->src_stats.load;
e4991b24 1499 orig_dst_load = env->dst_stats.load;
28a21745 1500
e4991b24
RR
1501 if (orig_dst_load < orig_src_load)
1502 swap(orig_dst_load, orig_src_load);
e63da036 1503
e4991b24
RR
1504 old_imb = orig_dst_load * src_capacity * 100 -
1505 orig_src_load * dst_capacity * env->imbalance_pct;
1506
1507 /* Would this change make things worse? */
1508 return (imb > old_imb);
e63da036
RR
1509}
1510
fb13c7ee
MG
1511/*
1512 * This checks if the overall compute and NUMA accesses of the system would
1513 * be improved if the source tasks was migrated to the target dst_cpu taking
1514 * into account that it might be best if task running on the dst_cpu should
1515 * be exchanged with the source task
1516 */
887c290e
RR
1517static void task_numa_compare(struct task_numa_env *env,
1518 long taskimp, long groupimp)
fb13c7ee
MG
1519{
1520 struct rq *src_rq = cpu_rq(env->src_cpu);
1521 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 struct task_struct *cur;
28a21745 1523 long src_load, dst_load;
fb13c7ee 1524 long load;
1c5d3eb3 1525 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1526 long moveimp = imp;
7bd95320 1527 int dist = env->dist;
fb13c7ee
MG
1528
1529 rcu_read_lock();
bac78573
ON
1530 cur = task_rcu_dereference(&dst_rq->curr);
1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1532 cur = NULL;
1533
7af68335
PZ
1534 /*
1535 * Because we have preemption enabled we can get migrated around and
1536 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 */
1538 if (cur == env->p)
1539 goto unlock;
1540
fb13c7ee
MG
1541 /*
1542 * "imp" is the fault differential for the source task between the
1543 * source and destination node. Calculate the total differential for
1544 * the source task and potential destination task. The more negative
1545 * the value is, the more rmeote accesses that would be expected to
1546 * be incurred if the tasks were swapped.
1547 */
1548 if (cur) {
1549 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1551 goto unlock;
1552
887c290e
RR
1553 /*
1554 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1555 * in any group then look only at task weights.
887c290e 1556 */
ca28aa53 1557 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1558 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1560 /*
1561 * Add some hysteresis to prevent swapping the
1562 * tasks within a group over tiny differences.
1563 */
1564 if (cur->numa_group)
1565 imp -= imp/16;
887c290e 1566 } else {
ca28aa53
RR
1567 /*
1568 * Compare the group weights. If a task is all by
1569 * itself (not part of a group), use the task weight
1570 * instead.
1571 */
ca28aa53 1572 if (cur->numa_group)
7bd95320
RR
1573 imp += group_weight(cur, env->src_nid, dist) -
1574 group_weight(cur, env->dst_nid, dist);
ca28aa53 1575 else
7bd95320
RR
1576 imp += task_weight(cur, env->src_nid, dist) -
1577 task_weight(cur, env->dst_nid, dist);
887c290e 1578 }
fb13c7ee
MG
1579 }
1580
0132c3e1 1581 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1582 goto unlock;
1583
1584 if (!cur) {
1585 /* Is there capacity at our destination? */
b932c03c 1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1587 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1588 goto unlock;
1589
1590 goto balance;
1591 }
1592
1593 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1594 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 dst_rq->nr_running == 1)
fb13c7ee
MG
1596 goto assign;
1597
1598 /*
1599 * In the overloaded case, try and keep the load balanced.
1600 */
1601balance:
e720fff6
PZ
1602 load = task_h_load(env->p);
1603 dst_load = env->dst_stats.load + load;
1604 src_load = env->src_stats.load - load;
fb13c7ee 1605
0132c3e1
RR
1606 if (moveimp > imp && moveimp > env->best_imp) {
1607 /*
1608 * If the improvement from just moving env->p direction is
1609 * better than swapping tasks around, check if a move is
1610 * possible. Store a slightly smaller score than moveimp,
1611 * so an actually idle CPU will win.
1612 */
1613 if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 imp = moveimp - 1;
1615 cur = NULL;
1616 goto assign;
1617 }
1618 }
1619
1620 if (imp <= env->best_imp)
1621 goto unlock;
1622
fb13c7ee 1623 if (cur) {
e720fff6
PZ
1624 load = task_h_load(cur);
1625 dst_load -= load;
1626 src_load += load;
fb13c7ee
MG
1627 }
1628
28a21745 1629 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1630 goto unlock;
1631
ba7e5a27
RR
1632 /*
1633 * One idle CPU per node is evaluated for a task numa move.
1634 * Call select_idle_sibling to maybe find a better one.
1635 */
10e2f1ac
PZ
1636 if (!cur) {
1637 /*
1638 * select_idle_siblings() uses an per-cpu cpumask that
1639 * can be used from IRQ context.
1640 */
1641 local_irq_disable();
772bd008
MR
1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 env->dst_cpu);
10e2f1ac
PZ
1644 local_irq_enable();
1645 }
ba7e5a27 1646
fb13c7ee
MG
1647assign:
1648 task_numa_assign(env, cur, imp);
1649unlock:
1650 rcu_read_unlock();
1651}
1652
887c290e
RR
1653static void task_numa_find_cpu(struct task_numa_env *env,
1654 long taskimp, long groupimp)
2c8a50aa
MG
1655{
1656 int cpu;
1657
1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 /* Skip this CPU if the source task cannot migrate */
0c98d344 1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1661 continue;
1662
1663 env->dst_cpu = cpu;
887c290e 1664 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1665 }
1666}
1667
6f9aad0b
RR
1668/* Only move tasks to a NUMA node less busy than the current node. */
1669static bool numa_has_capacity(struct task_numa_env *env)
1670{
1671 struct numa_stats *src = &env->src_stats;
1672 struct numa_stats *dst = &env->dst_stats;
1673
1674 if (src->has_free_capacity && !dst->has_free_capacity)
1675 return false;
1676
1677 /*
1678 * Only consider a task move if the source has a higher load
1679 * than the destination, corrected for CPU capacity on each node.
1680 *
1681 * src->load dst->load
1682 * --------------------- vs ---------------------
1683 * src->compute_capacity dst->compute_capacity
1684 */
44dcb04f
SD
1685 if (src->load * dst->compute_capacity * env->imbalance_pct >
1686
1687 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1688 return true;
1689
1690 return false;
1691}
1692
58d081b5
MG
1693static int task_numa_migrate(struct task_struct *p)
1694{
58d081b5
MG
1695 struct task_numa_env env = {
1696 .p = p,
fb13c7ee 1697
58d081b5 1698 .src_cpu = task_cpu(p),
b32e86b4 1699 .src_nid = task_node(p),
fb13c7ee
MG
1700
1701 .imbalance_pct = 112,
1702
1703 .best_task = NULL,
1704 .best_imp = 0,
4142c3eb 1705 .best_cpu = -1,
58d081b5
MG
1706 };
1707 struct sched_domain *sd;
887c290e 1708 unsigned long taskweight, groupweight;
7bd95320 1709 int nid, ret, dist;
887c290e 1710 long taskimp, groupimp;
e6628d5b 1711
58d081b5 1712 /*
fb13c7ee
MG
1713 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 * imbalance and would be the first to start moving tasks about.
1715 *
1716 * And we want to avoid any moving of tasks about, as that would create
1717 * random movement of tasks -- counter the numa conditions we're trying
1718 * to satisfy here.
58d081b5
MG
1719 */
1720 rcu_read_lock();
fb13c7ee 1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1722 if (sd)
1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1724 rcu_read_unlock();
1725
46a73e8a
RR
1726 /*
1727 * Cpusets can break the scheduler domain tree into smaller
1728 * balance domains, some of which do not cross NUMA boundaries.
1729 * Tasks that are "trapped" in such domains cannot be migrated
1730 * elsewhere, so there is no point in (re)trying.
1731 */
1732 if (unlikely(!sd)) {
de1b301a 1733 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1734 return -EINVAL;
1735 }
1736
2c8a50aa 1737 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 taskweight = task_weight(p, env.src_nid, dist);
1740 groupweight = group_weight(p, env.src_nid, dist);
1741 update_numa_stats(&env.src_stats, env.src_nid);
1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1744 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1745
a43455a1 1746 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1747 if (numa_has_capacity(&env))
1748 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1749
9de05d48
RR
1750 /*
1751 * Look at other nodes in these cases:
1752 * - there is no space available on the preferred_nid
1753 * - the task is part of a numa_group that is interleaved across
1754 * multiple NUMA nodes; in order to better consolidate the group,
1755 * we need to check other locations.
1756 */
4142c3eb 1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1758 for_each_online_node(nid) {
1759 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 continue;
58d081b5 1761
7bd95320 1762 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1763 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 dist != env.dist) {
1765 taskweight = task_weight(p, env.src_nid, dist);
1766 groupweight = group_weight(p, env.src_nid, dist);
1767 }
7bd95320 1768
83e1d2cd 1769 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1770 taskimp = task_weight(p, nid, dist) - taskweight;
1771 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1772 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1773 continue;
1774
7bd95320 1775 env.dist = dist;
2c8a50aa
MG
1776 env.dst_nid = nid;
1777 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1778 if (numa_has_capacity(&env))
1779 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1780 }
1781 }
1782
68d1b02a
RR
1783 /*
1784 * If the task is part of a workload that spans multiple NUMA nodes,
1785 * and is migrating into one of the workload's active nodes, remember
1786 * this node as the task's preferred numa node, so the workload can
1787 * settle down.
1788 * A task that migrated to a second choice node will be better off
1789 * trying for a better one later. Do not set the preferred node here.
1790 */
db015dae 1791 if (p->numa_group) {
4142c3eb
RR
1792 struct numa_group *ng = p->numa_group;
1793
db015dae
RR
1794 if (env.best_cpu == -1)
1795 nid = env.src_nid;
1796 else
1797 nid = env.dst_nid;
1798
4142c3eb 1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1800 sched_setnuma(p, env.dst_nid);
1801 }
1802
1803 /* No better CPU than the current one was found. */
1804 if (env.best_cpu == -1)
1805 return -EAGAIN;
0ec8aa00 1806
04bb2f94
RR
1807 /*
1808 * Reset the scan period if the task is being rescheduled on an
1809 * alternative node to recheck if the tasks is now properly placed.
1810 */
1811 p->numa_scan_period = task_scan_min(p);
1812
fb13c7ee 1813 if (env.best_task == NULL) {
286549dc
MG
1814 ret = migrate_task_to(p, env.best_cpu);
1815 if (ret != 0)
1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1817 return ret;
1818 }
1819
1820 ret = migrate_swap(p, env.best_task);
286549dc
MG
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1823 put_task_struct(env.best_task);
1824 return ret;
e6628d5b
MG
1825}
1826
6b9a7460
MG
1827/* Attempt to migrate a task to a CPU on the preferred node. */
1828static void numa_migrate_preferred(struct task_struct *p)
1829{
5085e2a3
RR
1830 unsigned long interval = HZ;
1831
2739d3ee 1832 /* This task has no NUMA fault statistics yet */
44dba3d5 1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1834 return;
1835
2739d3ee 1836 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1839
1840 /* Success if task is already running on preferred CPU */
de1b301a 1841 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1842 return;
1843
1844 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1845 task_numa_migrate(p);
6b9a7460
MG
1846}
1847
20e07dea 1848/*
4142c3eb 1849 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1850 * tracking the nodes from which NUMA hinting faults are triggered. This can
1851 * be different from the set of nodes where the workload's memory is currently
1852 * located.
20e07dea 1853 */
4142c3eb 1854static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1855{
1856 unsigned long faults, max_faults = 0;
4142c3eb 1857 int nid, active_nodes = 0;
20e07dea
RR
1858
1859 for_each_online_node(nid) {
1860 faults = group_faults_cpu(numa_group, nid);
1861 if (faults > max_faults)
1862 max_faults = faults;
1863 }
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1867 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 active_nodes++;
20e07dea 1869 }
4142c3eb
RR
1870
1871 numa_group->max_faults_cpu = max_faults;
1872 numa_group->active_nodes = active_nodes;
20e07dea
RR
1873}
1874
04bb2f94
RR
1875/*
1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1878 * period will be for the next scan window. If local/(local+remote) ratio is
1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1881 */
1882#define NUMA_PERIOD_SLOTS 10
a22b4b01 1883#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1884
1885/*
1886 * Increase the scan period (slow down scanning) if the majority of
1887 * our memory is already on our local node, or if the majority of
1888 * the page accesses are shared with other processes.
1889 * Otherwise, decrease the scan period.
1890 */
1891static void update_task_scan_period(struct task_struct *p,
1892 unsigned long shared, unsigned long private)
1893{
1894 unsigned int period_slot;
1895 int ratio;
1896 int diff;
1897
1898 unsigned long remote = p->numa_faults_locality[0];
1899 unsigned long local = p->numa_faults_locality[1];
1900
1901 /*
1902 * If there were no record hinting faults then either the task is
1903 * completely idle or all activity is areas that are not of interest
074c2381
MG
1904 * to automatic numa balancing. Related to that, if there were failed
1905 * migration then it implies we are migrating too quickly or the local
1906 * node is overloaded. In either case, scan slower
04bb2f94 1907 */
074c2381 1908 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1909 p->numa_scan_period = min(p->numa_scan_period_max,
1910 p->numa_scan_period << 1);
1911
1912 p->mm->numa_next_scan = jiffies +
1913 msecs_to_jiffies(p->numa_scan_period);
1914
1915 return;
1916 }
1917
1918 /*
1919 * Prepare to scale scan period relative to the current period.
1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 */
1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1925 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1927 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1928 if (!slot)
1929 slot = 1;
1930 diff = slot * period_slot;
1931 } else {
1932 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1933
1934 /*
1935 * Scale scan rate increases based on sharing. There is an
1936 * inverse relationship between the degree of sharing and
1937 * the adjustment made to the scanning period. Broadly
1938 * speaking the intent is that there is little point
1939 * scanning faster if shared accesses dominate as it may
1940 * simply bounce migrations uselessly
1941 */
2847c90e 1942 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1943 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1944 }
1945
1946 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1947 task_scan_min(p), task_scan_max(p));
1948 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1949}
1950
7e2703e6
RR
1951/*
1952 * Get the fraction of time the task has been running since the last
1953 * NUMA placement cycle. The scheduler keeps similar statistics, but
1954 * decays those on a 32ms period, which is orders of magnitude off
1955 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1956 * stats only if the task is so new there are no NUMA statistics yet.
1957 */
1958static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1959{
1960 u64 runtime, delta, now;
1961 /* Use the start of this time slice to avoid calculations. */
1962 now = p->se.exec_start;
1963 runtime = p->se.sum_exec_runtime;
1964
1965 if (p->last_task_numa_placement) {
1966 delta = runtime - p->last_sum_exec_runtime;
1967 *period = now - p->last_task_numa_placement;
1968 } else {
9d89c257
YD
1969 delta = p->se.avg.load_sum / p->se.load.weight;
1970 *period = LOAD_AVG_MAX;
7e2703e6
RR
1971 }
1972
1973 p->last_sum_exec_runtime = runtime;
1974 p->last_task_numa_placement = now;
1975
1976 return delta;
1977}
1978
54009416
RR
1979/*
1980 * Determine the preferred nid for a task in a numa_group. This needs to
1981 * be done in a way that produces consistent results with group_weight,
1982 * otherwise workloads might not converge.
1983 */
1984static int preferred_group_nid(struct task_struct *p, int nid)
1985{
1986 nodemask_t nodes;
1987 int dist;
1988
1989 /* Direct connections between all NUMA nodes. */
1990 if (sched_numa_topology_type == NUMA_DIRECT)
1991 return nid;
1992
1993 /*
1994 * On a system with glueless mesh NUMA topology, group_weight
1995 * scores nodes according to the number of NUMA hinting faults on
1996 * both the node itself, and on nearby nodes.
1997 */
1998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1999 unsigned long score, max_score = 0;
2000 int node, max_node = nid;
2001
2002 dist = sched_max_numa_distance;
2003
2004 for_each_online_node(node) {
2005 score = group_weight(p, node, dist);
2006 if (score > max_score) {
2007 max_score = score;
2008 max_node = node;
2009 }
2010 }
2011 return max_node;
2012 }
2013
2014 /*
2015 * Finding the preferred nid in a system with NUMA backplane
2016 * interconnect topology is more involved. The goal is to locate
2017 * tasks from numa_groups near each other in the system, and
2018 * untangle workloads from different sides of the system. This requires
2019 * searching down the hierarchy of node groups, recursively searching
2020 * inside the highest scoring group of nodes. The nodemask tricks
2021 * keep the complexity of the search down.
2022 */
2023 nodes = node_online_map;
2024 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2025 unsigned long max_faults = 0;
81907478 2026 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2027 int a, b;
2028
2029 /* Are there nodes at this distance from each other? */
2030 if (!find_numa_distance(dist))
2031 continue;
2032
2033 for_each_node_mask(a, nodes) {
2034 unsigned long faults = 0;
2035 nodemask_t this_group;
2036 nodes_clear(this_group);
2037
2038 /* Sum group's NUMA faults; includes a==b case. */
2039 for_each_node_mask(b, nodes) {
2040 if (node_distance(a, b) < dist) {
2041 faults += group_faults(p, b);
2042 node_set(b, this_group);
2043 node_clear(b, nodes);
2044 }
2045 }
2046
2047 /* Remember the top group. */
2048 if (faults > max_faults) {
2049 max_faults = faults;
2050 max_group = this_group;
2051 /*
2052 * subtle: at the smallest distance there is
2053 * just one node left in each "group", the
2054 * winner is the preferred nid.
2055 */
2056 nid = a;
2057 }
2058 }
2059 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2060 if (!max_faults)
2061 break;
54009416
RR
2062 nodes = max_group;
2063 }
2064 return nid;
2065}
2066
cbee9f88
PZ
2067static void task_numa_placement(struct task_struct *p)
2068{
83e1d2cd
MG
2069 int seq, nid, max_nid = -1, max_group_nid = -1;
2070 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2071 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2072 unsigned long total_faults;
2073 u64 runtime, period;
7dbd13ed 2074 spinlock_t *group_lock = NULL;
cbee9f88 2075
7e5a2c17
JL
2076 /*
2077 * The p->mm->numa_scan_seq field gets updated without
2078 * exclusive access. Use READ_ONCE() here to ensure
2079 * that the field is read in a single access:
2080 */
316c1608 2081 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2082 if (p->numa_scan_seq == seq)
2083 return;
2084 p->numa_scan_seq = seq;
598f0ec0 2085 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2086
7e2703e6
RR
2087 total_faults = p->numa_faults_locality[0] +
2088 p->numa_faults_locality[1];
2089 runtime = numa_get_avg_runtime(p, &period);
2090
7dbd13ed
MG
2091 /* If the task is part of a group prevent parallel updates to group stats */
2092 if (p->numa_group) {
2093 group_lock = &p->numa_group->lock;
60e69eed 2094 spin_lock_irq(group_lock);
7dbd13ed
MG
2095 }
2096
688b7585
MG
2097 /* Find the node with the highest number of faults */
2098 for_each_online_node(nid) {
44dba3d5
IM
2099 /* Keep track of the offsets in numa_faults array */
2100 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2101 unsigned long faults = 0, group_faults = 0;
44dba3d5 2102 int priv;
745d6147 2103
be1e4e76 2104 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2105 long diff, f_diff, f_weight;
8c8a743c 2106
44dba3d5
IM
2107 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2108 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2109 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2110 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2111
ac8e895b 2112 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2113 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2114 fault_types[priv] += p->numa_faults[membuf_idx];
2115 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2116
7e2703e6
RR
2117 /*
2118 * Normalize the faults_from, so all tasks in a group
2119 * count according to CPU use, instead of by the raw
2120 * number of faults. Tasks with little runtime have
2121 * little over-all impact on throughput, and thus their
2122 * faults are less important.
2123 */
2124 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2125 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2126 (total_faults + 1);
44dba3d5
IM
2127 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2128 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2129
44dba3d5
IM
2130 p->numa_faults[mem_idx] += diff;
2131 p->numa_faults[cpu_idx] += f_diff;
2132 faults += p->numa_faults[mem_idx];
83e1d2cd 2133 p->total_numa_faults += diff;
8c8a743c 2134 if (p->numa_group) {
44dba3d5
IM
2135 /*
2136 * safe because we can only change our own group
2137 *
2138 * mem_idx represents the offset for a given
2139 * nid and priv in a specific region because it
2140 * is at the beginning of the numa_faults array.
2141 */
2142 p->numa_group->faults[mem_idx] += diff;
2143 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2144 p->numa_group->total_faults += diff;
44dba3d5 2145 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2146 }
ac8e895b
MG
2147 }
2148
688b7585
MG
2149 if (faults > max_faults) {
2150 max_faults = faults;
2151 max_nid = nid;
2152 }
83e1d2cd
MG
2153
2154 if (group_faults > max_group_faults) {
2155 max_group_faults = group_faults;
2156 max_group_nid = nid;
2157 }
2158 }
2159
04bb2f94
RR
2160 update_task_scan_period(p, fault_types[0], fault_types[1]);
2161
7dbd13ed 2162 if (p->numa_group) {
4142c3eb 2163 numa_group_count_active_nodes(p->numa_group);
60e69eed 2164 spin_unlock_irq(group_lock);
54009416 2165 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2166 }
2167
bb97fc31
RR
2168 if (max_faults) {
2169 /* Set the new preferred node */
2170 if (max_nid != p->numa_preferred_nid)
2171 sched_setnuma(p, max_nid);
2172
2173 if (task_node(p) != p->numa_preferred_nid)
2174 numa_migrate_preferred(p);
3a7053b3 2175 }
cbee9f88
PZ
2176}
2177
8c8a743c
PZ
2178static inline int get_numa_group(struct numa_group *grp)
2179{
2180 return atomic_inc_not_zero(&grp->refcount);
2181}
2182
2183static inline void put_numa_group(struct numa_group *grp)
2184{
2185 if (atomic_dec_and_test(&grp->refcount))
2186 kfree_rcu(grp, rcu);
2187}
2188
3e6a9418
MG
2189static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2190 int *priv)
8c8a743c
PZ
2191{
2192 struct numa_group *grp, *my_grp;
2193 struct task_struct *tsk;
2194 bool join = false;
2195 int cpu = cpupid_to_cpu(cpupid);
2196 int i;
2197
2198 if (unlikely(!p->numa_group)) {
2199 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2200 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2201
2202 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2203 if (!grp)
2204 return;
2205
2206 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2207 grp->active_nodes = 1;
2208 grp->max_faults_cpu = 0;
8c8a743c 2209 spin_lock_init(&grp->lock);
e29cf08b 2210 grp->gid = p->pid;
50ec8a40 2211 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2212 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2213 nr_node_ids;
8c8a743c 2214
be1e4e76 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2216 grp->faults[i] = p->numa_faults[i];
8c8a743c 2217
989348b5 2218 grp->total_faults = p->total_numa_faults;
83e1d2cd 2219
8c8a743c
PZ
2220 grp->nr_tasks++;
2221 rcu_assign_pointer(p->numa_group, grp);
2222 }
2223
2224 rcu_read_lock();
316c1608 2225 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2226
2227 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2228 goto no_join;
8c8a743c
PZ
2229
2230 grp = rcu_dereference(tsk->numa_group);
2231 if (!grp)
3354781a 2232 goto no_join;
8c8a743c
PZ
2233
2234 my_grp = p->numa_group;
2235 if (grp == my_grp)
3354781a 2236 goto no_join;
8c8a743c
PZ
2237
2238 /*
2239 * Only join the other group if its bigger; if we're the bigger group,
2240 * the other task will join us.
2241 */
2242 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2243 goto no_join;
8c8a743c
PZ
2244
2245 /*
2246 * Tie-break on the grp address.
2247 */
2248 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2249 goto no_join;
8c8a743c 2250
dabe1d99
RR
2251 /* Always join threads in the same process. */
2252 if (tsk->mm == current->mm)
2253 join = true;
2254
2255 /* Simple filter to avoid false positives due to PID collisions */
2256 if (flags & TNF_SHARED)
2257 join = true;
8c8a743c 2258
3e6a9418
MG
2259 /* Update priv based on whether false sharing was detected */
2260 *priv = !join;
2261
dabe1d99 2262 if (join && !get_numa_group(grp))
3354781a 2263 goto no_join;
8c8a743c 2264
8c8a743c
PZ
2265 rcu_read_unlock();
2266
2267 if (!join)
2268 return;
2269
60e69eed
MG
2270 BUG_ON(irqs_disabled());
2271 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2272
be1e4e76 2273 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2274 my_grp->faults[i] -= p->numa_faults[i];
2275 grp->faults[i] += p->numa_faults[i];
8c8a743c 2276 }
989348b5
MG
2277 my_grp->total_faults -= p->total_numa_faults;
2278 grp->total_faults += p->total_numa_faults;
8c8a743c 2279
8c8a743c
PZ
2280 my_grp->nr_tasks--;
2281 grp->nr_tasks++;
2282
2283 spin_unlock(&my_grp->lock);
60e69eed 2284 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2285
2286 rcu_assign_pointer(p->numa_group, grp);
2287
2288 put_numa_group(my_grp);
3354781a
PZ
2289 return;
2290
2291no_join:
2292 rcu_read_unlock();
2293 return;
8c8a743c
PZ
2294}
2295
2296void task_numa_free(struct task_struct *p)
2297{
2298 struct numa_group *grp = p->numa_group;
44dba3d5 2299 void *numa_faults = p->numa_faults;
e9dd685c
SR
2300 unsigned long flags;
2301 int i;
8c8a743c
PZ
2302
2303 if (grp) {
e9dd685c 2304 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2305 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2306 grp->faults[i] -= p->numa_faults[i];
989348b5 2307 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2308
8c8a743c 2309 grp->nr_tasks--;
e9dd685c 2310 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2311 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2312 put_numa_group(grp);
2313 }
2314
44dba3d5 2315 p->numa_faults = NULL;
82727018 2316 kfree(numa_faults);
8c8a743c
PZ
2317}
2318
cbee9f88
PZ
2319/*
2320 * Got a PROT_NONE fault for a page on @node.
2321 */
58b46da3 2322void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2323{
2324 struct task_struct *p = current;
6688cc05 2325 bool migrated = flags & TNF_MIGRATED;
58b46da3 2326 int cpu_node = task_node(current);
792568ec 2327 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2328 struct numa_group *ng;
ac8e895b 2329 int priv;
cbee9f88 2330
2a595721 2331 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2332 return;
2333
9ff1d9ff
MG
2334 /* for example, ksmd faulting in a user's mm */
2335 if (!p->mm)
2336 return;
2337
f809ca9a 2338 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2339 if (unlikely(!p->numa_faults)) {
2340 int size = sizeof(*p->numa_faults) *
be1e4e76 2341 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2342
44dba3d5
IM
2343 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2344 if (!p->numa_faults)
f809ca9a 2345 return;
745d6147 2346
83e1d2cd 2347 p->total_numa_faults = 0;
04bb2f94 2348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2349 }
cbee9f88 2350
8c8a743c
PZ
2351 /*
2352 * First accesses are treated as private, otherwise consider accesses
2353 * to be private if the accessing pid has not changed
2354 */
2355 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2356 priv = 1;
2357 } else {
2358 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2359 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2360 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2361 }
2362
792568ec
RR
2363 /*
2364 * If a workload spans multiple NUMA nodes, a shared fault that
2365 * occurs wholly within the set of nodes that the workload is
2366 * actively using should be counted as local. This allows the
2367 * scan rate to slow down when a workload has settled down.
2368 */
4142c3eb
RR
2369 ng = p->numa_group;
2370 if (!priv && !local && ng && ng->active_nodes > 1 &&
2371 numa_is_active_node(cpu_node, ng) &&
2372 numa_is_active_node(mem_node, ng))
792568ec
RR
2373 local = 1;
2374
cbee9f88 2375 task_numa_placement(p);
f809ca9a 2376
2739d3ee
RR
2377 /*
2378 * Retry task to preferred node migration periodically, in case it
2379 * case it previously failed, or the scheduler moved us.
2380 */
2381 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2382 numa_migrate_preferred(p);
2383
b32e86b4
IM
2384 if (migrated)
2385 p->numa_pages_migrated += pages;
074c2381
MG
2386 if (flags & TNF_MIGRATE_FAIL)
2387 p->numa_faults_locality[2] += pages;
b32e86b4 2388
44dba3d5
IM
2389 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2390 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2391 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2392}
2393
6e5fb223
PZ
2394static void reset_ptenuma_scan(struct task_struct *p)
2395{
7e5a2c17
JL
2396 /*
2397 * We only did a read acquisition of the mmap sem, so
2398 * p->mm->numa_scan_seq is written to without exclusive access
2399 * and the update is not guaranteed to be atomic. That's not
2400 * much of an issue though, since this is just used for
2401 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2402 * expensive, to avoid any form of compiler optimizations:
2403 */
316c1608 2404 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2405 p->mm->numa_scan_offset = 0;
2406}
2407
cbee9f88
PZ
2408/*
2409 * The expensive part of numa migration is done from task_work context.
2410 * Triggered from task_tick_numa().
2411 */
2412void task_numa_work(struct callback_head *work)
2413{
2414 unsigned long migrate, next_scan, now = jiffies;
2415 struct task_struct *p = current;
2416 struct mm_struct *mm = p->mm;
51170840 2417 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2418 struct vm_area_struct *vma;
9f40604c 2419 unsigned long start, end;
598f0ec0 2420 unsigned long nr_pte_updates = 0;
4620f8c1 2421 long pages, virtpages;
cbee9f88 2422
9148a3a1 2423 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2424
2425 work->next = work; /* protect against double add */
2426 /*
2427 * Who cares about NUMA placement when they're dying.
2428 *
2429 * NOTE: make sure not to dereference p->mm before this check,
2430 * exit_task_work() happens _after_ exit_mm() so we could be called
2431 * without p->mm even though we still had it when we enqueued this
2432 * work.
2433 */
2434 if (p->flags & PF_EXITING)
2435 return;
2436
930aa174 2437 if (!mm->numa_next_scan) {
7e8d16b6
MG
2438 mm->numa_next_scan = now +
2439 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2440 }
2441
cbee9f88
PZ
2442 /*
2443 * Enforce maximal scan/migration frequency..
2444 */
2445 migrate = mm->numa_next_scan;
2446 if (time_before(now, migrate))
2447 return;
2448
598f0ec0
MG
2449 if (p->numa_scan_period == 0) {
2450 p->numa_scan_period_max = task_scan_max(p);
2451 p->numa_scan_period = task_scan_min(p);
2452 }
cbee9f88 2453
fb003b80 2454 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2455 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2456 return;
2457
19a78d11
PZ
2458 /*
2459 * Delay this task enough that another task of this mm will likely win
2460 * the next time around.
2461 */
2462 p->node_stamp += 2 * TICK_NSEC;
2463
9f40604c
MG
2464 start = mm->numa_scan_offset;
2465 pages = sysctl_numa_balancing_scan_size;
2466 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2467 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2468 if (!pages)
2469 return;
cbee9f88 2470
4620f8c1 2471
8655d549
VB
2472 if (!down_read_trylock(&mm->mmap_sem))
2473 return;
9f40604c 2474 vma = find_vma(mm, start);
6e5fb223
PZ
2475 if (!vma) {
2476 reset_ptenuma_scan(p);
9f40604c 2477 start = 0;
6e5fb223
PZ
2478 vma = mm->mmap;
2479 }
9f40604c 2480 for (; vma; vma = vma->vm_next) {
6b79c57b 2481 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2482 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2483 continue;
6b79c57b 2484 }
6e5fb223 2485
4591ce4f
MG
2486 /*
2487 * Shared library pages mapped by multiple processes are not
2488 * migrated as it is expected they are cache replicated. Avoid
2489 * hinting faults in read-only file-backed mappings or the vdso
2490 * as migrating the pages will be of marginal benefit.
2491 */
2492 if (!vma->vm_mm ||
2493 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2494 continue;
2495
3c67f474
MG
2496 /*
2497 * Skip inaccessible VMAs to avoid any confusion between
2498 * PROT_NONE and NUMA hinting ptes
2499 */
2500 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2501 continue;
4591ce4f 2502
9f40604c
MG
2503 do {
2504 start = max(start, vma->vm_start);
2505 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2506 end = min(end, vma->vm_end);
4620f8c1 2507 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2508
2509 /*
4620f8c1
RR
2510 * Try to scan sysctl_numa_balancing_size worth of
2511 * hpages that have at least one present PTE that
2512 * is not already pte-numa. If the VMA contains
2513 * areas that are unused or already full of prot_numa
2514 * PTEs, scan up to virtpages, to skip through those
2515 * areas faster.
598f0ec0
MG
2516 */
2517 if (nr_pte_updates)
2518 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2519 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2520
9f40604c 2521 start = end;
4620f8c1 2522 if (pages <= 0 || virtpages <= 0)
9f40604c 2523 goto out;
3cf1962c
RR
2524
2525 cond_resched();
9f40604c 2526 } while (end != vma->vm_end);
cbee9f88 2527 }
6e5fb223 2528
9f40604c 2529out:
6e5fb223 2530 /*
c69307d5
PZ
2531 * It is possible to reach the end of the VMA list but the last few
2532 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2533 * would find the !migratable VMA on the next scan but not reset the
2534 * scanner to the start so check it now.
6e5fb223
PZ
2535 */
2536 if (vma)
9f40604c 2537 mm->numa_scan_offset = start;
6e5fb223
PZ
2538 else
2539 reset_ptenuma_scan(p);
2540 up_read(&mm->mmap_sem);
51170840
RR
2541
2542 /*
2543 * Make sure tasks use at least 32x as much time to run other code
2544 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2545 * Usually update_task_scan_period slows down scanning enough; on an
2546 * overloaded system we need to limit overhead on a per task basis.
2547 */
2548 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2549 u64 diff = p->se.sum_exec_runtime - runtime;
2550 p->node_stamp += 32 * diff;
2551 }
cbee9f88
PZ
2552}
2553
2554/*
2555 * Drive the periodic memory faults..
2556 */
2557void task_tick_numa(struct rq *rq, struct task_struct *curr)
2558{
2559 struct callback_head *work = &curr->numa_work;
2560 u64 period, now;
2561
2562 /*
2563 * We don't care about NUMA placement if we don't have memory.
2564 */
2565 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2566 return;
2567
2568 /*
2569 * Using runtime rather than walltime has the dual advantage that
2570 * we (mostly) drive the selection from busy threads and that the
2571 * task needs to have done some actual work before we bother with
2572 * NUMA placement.
2573 */
2574 now = curr->se.sum_exec_runtime;
2575 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2576
25b3e5a3 2577 if (now > curr->node_stamp + period) {
4b96a29b 2578 if (!curr->node_stamp)
598f0ec0 2579 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2580 curr->node_stamp += period;
cbee9f88
PZ
2581
2582 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2583 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2584 task_work_add(curr, work, true);
2585 }
2586 }
2587}
3fed382b
RR
2588
2589/*
2590 * Can a task be moved from prev_cpu to this_cpu without causing a load
2591 * imbalance that would trigger the load balancer?
2592 */
2593static inline bool numa_wake_affine(struct sched_domain *sd,
2594 struct task_struct *p, int this_cpu,
2595 int prev_cpu, int sync)
2596{
2597 struct numa_stats prev_load, this_load;
2598 s64 this_eff_load, prev_eff_load;
2599
2600 update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
2601 update_numa_stats(&this_load, cpu_to_node(this_cpu));
2602
2603 /*
2604 * If sync wakeup then subtract the (maximum possible)
2605 * effect of the currently running task from the load
2606 * of the current CPU:
2607 */
2608 if (sync) {
2609 unsigned long current_load = task_h_load(current);
2610
2611 if (this_load.load > current_load)
2612 this_load.load -= current_load;
2613 else
2614 this_load.load = 0;
2615 }
2616
2617 /*
2618 * In low-load situations, where this_cpu's node is idle due to the
2619 * sync cause above having dropped this_load.load to 0, move the task.
2620 * Moving to an idle socket will not create a bad imbalance.
2621 *
2622 * Otherwise check if the nodes are near enough in load to allow this
2623 * task to be woken on this_cpu's node.
2624 */
2625 if (this_load.load > 0) {
2626 unsigned long task_load = task_h_load(p);
2627
2628 this_eff_load = 100;
2629 this_eff_load *= prev_load.compute_capacity;
2630
2631 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2632 prev_eff_load *= this_load.compute_capacity;
2633
2634 this_eff_load *= this_load.load + task_load;
2635 prev_eff_load *= prev_load.load - task_load;
2636
2637 return this_eff_load <= prev_eff_load;
2638 }
2639
2640 return true;
2641}
cbee9f88
PZ
2642#else
2643static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2644{
2645}
0ec8aa00
PZ
2646
2647static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2648{
2649}
2650
2651static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2652{
2653}
3fed382b 2654
ff801b71 2655#ifdef CONFIG_SMP
3fed382b
RR
2656static inline bool numa_wake_affine(struct sched_domain *sd,
2657 struct task_struct *p, int this_cpu,
2658 int prev_cpu, int sync)
2659{
2660 return true;
2661}
ff801b71 2662#endif /* !SMP */
cbee9f88
PZ
2663#endif /* CONFIG_NUMA_BALANCING */
2664
30cfdcfc
DA
2665static void
2666account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2667{
2668 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2669 if (!parent_entity(se))
029632fb 2670 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2671#ifdef CONFIG_SMP
0ec8aa00
PZ
2672 if (entity_is_task(se)) {
2673 struct rq *rq = rq_of(cfs_rq);
2674
2675 account_numa_enqueue(rq, task_of(se));
2676 list_add(&se->group_node, &rq->cfs_tasks);
2677 }
367456c7 2678#endif
30cfdcfc 2679 cfs_rq->nr_running++;
30cfdcfc
DA
2680}
2681
2682static void
2683account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2684{
2685 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2686 if (!parent_entity(se))
029632fb 2687 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2688#ifdef CONFIG_SMP
0ec8aa00
PZ
2689 if (entity_is_task(se)) {
2690 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2691 list_del_init(&se->group_node);
0ec8aa00 2692 }
bfdb198c 2693#endif
30cfdcfc 2694 cfs_rq->nr_running--;
30cfdcfc
DA
2695}
2696
3ff6dcac
YZ
2697#ifdef CONFIG_FAIR_GROUP_SCHED
2698# ifdef CONFIG_SMP
ea1dc6fc 2699static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2700{
ea1dc6fc 2701 long tg_weight, load, shares;
cf5f0acf
PZ
2702
2703 /*
ea1dc6fc
PZ
2704 * This really should be: cfs_rq->avg.load_avg, but instead we use
2705 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2706 * the shares for small weight interactive tasks.
cf5f0acf 2707 */
ea1dc6fc 2708 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2709
ea1dc6fc 2710 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2711
ea1dc6fc
PZ
2712 /* Ensure tg_weight >= load */
2713 tg_weight -= cfs_rq->tg_load_avg_contrib;
2714 tg_weight += load;
3ff6dcac 2715
3ff6dcac 2716 shares = (tg->shares * load);
cf5f0acf
PZ
2717 if (tg_weight)
2718 shares /= tg_weight;
3ff6dcac 2719
b8fd8423
DE
2720 /*
2721 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2722 * of a group with small tg->shares value. It is a floor value which is
2723 * assigned as a minimum load.weight to the sched_entity representing
2724 * the group on a CPU.
2725 *
2726 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2727 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2728 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2729 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2730 * instead of 0.
2731 */
3ff6dcac
YZ
2732 if (shares < MIN_SHARES)
2733 shares = MIN_SHARES;
2734 if (shares > tg->shares)
2735 shares = tg->shares;
2736
2737 return shares;
2738}
3ff6dcac 2739# else /* CONFIG_SMP */
6d5ab293 2740static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2741{
2742 return tg->shares;
2743}
3ff6dcac 2744# endif /* CONFIG_SMP */
ea1dc6fc 2745
2069dd75
PZ
2746static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2747 unsigned long weight)
2748{
19e5eebb
PT
2749 if (se->on_rq) {
2750 /* commit outstanding execution time */
2751 if (cfs_rq->curr == se)
2752 update_curr(cfs_rq);
2069dd75 2753 account_entity_dequeue(cfs_rq, se);
19e5eebb 2754 }
2069dd75
PZ
2755
2756 update_load_set(&se->load, weight);
2757
2758 if (se->on_rq)
2759 account_entity_enqueue(cfs_rq, se);
2760}
2761
82958366
PT
2762static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2763
89ee048f 2764static void update_cfs_shares(struct sched_entity *se)
2069dd75 2765{
89ee048f 2766 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2767 struct task_group *tg;
3ff6dcac 2768 long shares;
2069dd75 2769
89ee048f
VG
2770 if (!cfs_rq)
2771 return;
2772
2773 if (throttled_hierarchy(cfs_rq))
2069dd75 2774 return;
89ee048f
VG
2775
2776 tg = cfs_rq->tg;
2777
3ff6dcac
YZ
2778#ifndef CONFIG_SMP
2779 if (likely(se->load.weight == tg->shares))
2780 return;
2781#endif
6d5ab293 2782 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2783
2784 reweight_entity(cfs_rq_of(se), se, shares);
2785}
89ee048f 2786
2069dd75 2787#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2788static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2789{
2790}
2791#endif /* CONFIG_FAIR_GROUP_SCHED */
2792
a030d738
VK
2793static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2794{
2795 if (&this_rq()->cfs == cfs_rq) {
2796 /*
2797 * There are a few boundary cases this might miss but it should
2798 * get called often enough that that should (hopefully) not be
2799 * a real problem -- added to that it only calls on the local
2800 * CPU, so if we enqueue remotely we'll miss an update, but
2801 * the next tick/schedule should update.
2802 *
2803 * It will not get called when we go idle, because the idle
2804 * thread is a different class (!fair), nor will the utilization
2805 * number include things like RT tasks.
2806 *
2807 * As is, the util number is not freq-invariant (we'd have to
2808 * implement arch_scale_freq_capacity() for that).
2809 *
2810 * See cpu_util().
2811 */
2812 cpufreq_update_util(rq_of(cfs_rq), 0);
2813 }
2814}
2815
141965c7 2816#ifdef CONFIG_SMP
9d85f21c
PT
2817/*
2818 * Approximate:
2819 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2820 */
a481db34 2821static u64 decay_load(u64 val, u64 n)
9d85f21c 2822{
5b51f2f8
PT
2823 unsigned int local_n;
2824
05296e75 2825 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2826 return 0;
2827
2828 /* after bounds checking we can collapse to 32-bit */
2829 local_n = n;
2830
2831 /*
2832 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2833 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2834 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2835 *
2836 * To achieve constant time decay_load.
2837 */
2838 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2839 val >>= local_n / LOAD_AVG_PERIOD;
2840 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2841 }
2842
9d89c257
YD
2843 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2844 return val;
5b51f2f8
PT
2845}
2846
05296e75 2847static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2848{
05296e75 2849 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2850
a481db34 2851 /*
3841cdc3 2852 * c1 = d1 y^p
a481db34 2853 */
05296e75 2854 c1 = decay_load((u64)d1, periods);
a481db34 2855
a481db34 2856 /*
3841cdc3 2857 * p-1
05296e75
PZ
2858 * c2 = 1024 \Sum y^n
2859 * n=1
a481db34 2860 *
05296e75
PZ
2861 * inf inf
2862 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2863 * n=0 n=p
a481db34 2864 */
05296e75 2865 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2866
2867 return c1 + c2 + c3;
9d85f21c
PT
2868}
2869
54a21385 2870#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2871
a481db34
YD
2872/*
2873 * Accumulate the three separate parts of the sum; d1 the remainder
2874 * of the last (incomplete) period, d2 the span of full periods and d3
2875 * the remainder of the (incomplete) current period.
2876 *
2877 * d1 d2 d3
2878 * ^ ^ ^
2879 * | | |
2880 * |<->|<----------------->|<--->|
2881 * ... |---x---|------| ... |------|-----x (now)
2882 *
3841cdc3
PZ
2883 * p-1
2884 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2885 * n=1
a481db34 2886 *
3841cdc3 2887 * = u y^p + (Step 1)
a481db34 2888 *
3841cdc3
PZ
2889 * p-1
2890 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2891 * n=1
a481db34
YD
2892 */
2893static __always_inline u32
2894accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2895 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2896{
2897 unsigned long scale_freq, scale_cpu;
05296e75 2898 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2899 u64 periods;
a481db34
YD
2900
2901 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2902 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2903
2904 delta += sa->period_contrib;
2905 periods = delta / 1024; /* A period is 1024us (~1ms) */
2906
2907 /*
2908 * Step 1: decay old *_sum if we crossed period boundaries.
2909 */
2910 if (periods) {
2911 sa->load_sum = decay_load(sa->load_sum, periods);
2912 if (cfs_rq) {
2913 cfs_rq->runnable_load_sum =
2914 decay_load(cfs_rq->runnable_load_sum, periods);
2915 }
2916 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2917
05296e75
PZ
2918 /*
2919 * Step 2
2920 */
2921 delta %= 1024;
2922 contrib = __accumulate_pelt_segments(periods,
2923 1024 - sa->period_contrib, delta);
2924 }
a481db34
YD
2925 sa->period_contrib = delta;
2926
2927 contrib = cap_scale(contrib, scale_freq);
2928 if (weight) {
2929 sa->load_sum += weight * contrib;
2930 if (cfs_rq)
2931 cfs_rq->runnable_load_sum += weight * contrib;
2932 }
2933 if (running)
2934 sa->util_sum += contrib * scale_cpu;
2935
2936 return periods;
2937}
2938
9d85f21c
PT
2939/*
2940 * We can represent the historical contribution to runnable average as the
2941 * coefficients of a geometric series. To do this we sub-divide our runnable
2942 * history into segments of approximately 1ms (1024us); label the segment that
2943 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2944 *
2945 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2946 * p0 p1 p2
2947 * (now) (~1ms ago) (~2ms ago)
2948 *
2949 * Let u_i denote the fraction of p_i that the entity was runnable.
2950 *
2951 * We then designate the fractions u_i as our co-efficients, yielding the
2952 * following representation of historical load:
2953 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2954 *
2955 * We choose y based on the with of a reasonably scheduling period, fixing:
2956 * y^32 = 0.5
2957 *
2958 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2959 * approximately half as much as the contribution to load within the last ms
2960 * (u_0).
2961 *
2962 * When a period "rolls over" and we have new u_0`, multiplying the previous
2963 * sum again by y is sufficient to update:
2964 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2965 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2966 */
9d89c257 2967static __always_inline int
0ccb977f 2968___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2969 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2970{
a481db34 2971 u64 delta;
9d85f21c 2972
9d89c257 2973 delta = now - sa->last_update_time;
9d85f21c
PT
2974 /*
2975 * This should only happen when time goes backwards, which it
2976 * unfortunately does during sched clock init when we swap over to TSC.
2977 */
2978 if ((s64)delta < 0) {
9d89c257 2979 sa->last_update_time = now;
9d85f21c
PT
2980 return 0;
2981 }
2982
2983 /*
2984 * Use 1024ns as the unit of measurement since it's a reasonable
2985 * approximation of 1us and fast to compute.
2986 */
2987 delta >>= 10;
2988 if (!delta)
2989 return 0;
bb0bd044
PZ
2990
2991 sa->last_update_time += delta << 10;
9d85f21c 2992
a481db34
YD
2993 /*
2994 * Now we know we crossed measurement unit boundaries. The *_avg
2995 * accrues by two steps:
2996 *
2997 * Step 1: accumulate *_sum since last_update_time. If we haven't
2998 * crossed period boundaries, finish.
2999 */
3000 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3001 return 0;
9ee474f5 3002
a481db34
YD
3003 /*
3004 * Step 2: update *_avg.
3005 */
625ed2bf 3006 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
3007 if (cfs_rq) {
3008 cfs_rq->runnable_load_avg =
625ed2bf 3009 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 3010 }
625ed2bf 3011 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 3012
a481db34 3013 return 1;
9ee474f5
PT
3014}
3015
0ccb977f
PZ
3016static int
3017__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3018{
3019 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3020}
3021
3022static int
3023__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3024{
3025 return ___update_load_avg(now, cpu, &se->avg,
3026 se->on_rq * scale_load_down(se->load.weight),
3027 cfs_rq->curr == se, NULL);
3028}
3029
3030static int
3031__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3032{
3033 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3034 scale_load_down(cfs_rq->load.weight),
3035 cfs_rq->curr != NULL, cfs_rq);
3036}
3037
09a43ace
VG
3038/*
3039 * Signed add and clamp on underflow.
3040 *
3041 * Explicitly do a load-store to ensure the intermediate value never hits
3042 * memory. This allows lockless observations without ever seeing the negative
3043 * values.
3044 */
3045#define add_positive(_ptr, _val) do { \
3046 typeof(_ptr) ptr = (_ptr); \
3047 typeof(_val) val = (_val); \
3048 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3049 \
3050 res = var + val; \
3051 \
3052 if (val < 0 && res > var) \
3053 res = 0; \
3054 \
3055 WRITE_ONCE(*ptr, res); \
3056} while (0)
3057
c566e8e9 3058#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3059/**
3060 * update_tg_load_avg - update the tg's load avg
3061 * @cfs_rq: the cfs_rq whose avg changed
3062 * @force: update regardless of how small the difference
3063 *
3064 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3065 * However, because tg->load_avg is a global value there are performance
3066 * considerations.
3067 *
3068 * In order to avoid having to look at the other cfs_rq's, we use a
3069 * differential update where we store the last value we propagated. This in
3070 * turn allows skipping updates if the differential is 'small'.
3071 *
815abf5a 3072 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3073 */
9d89c257 3074static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3075{
9d89c257 3076 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3077
aa0b7ae0
WL
3078 /*
3079 * No need to update load_avg for root_task_group as it is not used.
3080 */
3081 if (cfs_rq->tg == &root_task_group)
3082 return;
3083
9d89c257
YD
3084 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3085 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3086 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3087 }
8165e145 3088}
f5f9739d 3089
ad936d86
BP
3090/*
3091 * Called within set_task_rq() right before setting a task's cpu. The
3092 * caller only guarantees p->pi_lock is held; no other assumptions,
3093 * including the state of rq->lock, should be made.
3094 */
3095void set_task_rq_fair(struct sched_entity *se,
3096 struct cfs_rq *prev, struct cfs_rq *next)
3097{
0ccb977f
PZ
3098 u64 p_last_update_time;
3099 u64 n_last_update_time;
3100
ad936d86
BP
3101 if (!sched_feat(ATTACH_AGE_LOAD))
3102 return;
3103
3104 /*
3105 * We are supposed to update the task to "current" time, then its up to
3106 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3107 * getting what current time is, so simply throw away the out-of-date
3108 * time. This will result in the wakee task is less decayed, but giving
3109 * the wakee more load sounds not bad.
3110 */
0ccb977f
PZ
3111 if (!(se->avg.last_update_time && prev))
3112 return;
ad936d86
BP
3113
3114#ifndef CONFIG_64BIT
0ccb977f 3115 {
ad936d86
BP
3116 u64 p_last_update_time_copy;
3117 u64 n_last_update_time_copy;
3118
3119 do {
3120 p_last_update_time_copy = prev->load_last_update_time_copy;
3121 n_last_update_time_copy = next->load_last_update_time_copy;
3122
3123 smp_rmb();
3124
3125 p_last_update_time = prev->avg.last_update_time;
3126 n_last_update_time = next->avg.last_update_time;
3127
3128 } while (p_last_update_time != p_last_update_time_copy ||
3129 n_last_update_time != n_last_update_time_copy);
0ccb977f 3130 }
ad936d86 3131#else
0ccb977f
PZ
3132 p_last_update_time = prev->avg.last_update_time;
3133 n_last_update_time = next->avg.last_update_time;
ad936d86 3134#endif
0ccb977f
PZ
3135 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3136 se->avg.last_update_time = n_last_update_time;
ad936d86 3137}
09a43ace
VG
3138
3139/* Take into account change of utilization of a child task group */
3140static inline void
3141update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3142{
3143 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3144 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3145
3146 /* Nothing to update */
3147 if (!delta)
3148 return;
3149
3150 /* Set new sched_entity's utilization */
3151 se->avg.util_avg = gcfs_rq->avg.util_avg;
3152 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3153
3154 /* Update parent cfs_rq utilization */
3155 add_positive(&cfs_rq->avg.util_avg, delta);
3156 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3157}
3158
3159/* Take into account change of load of a child task group */
3160static inline void
3161update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3162{
3163 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3164 long delta, load = gcfs_rq->avg.load_avg;
3165
3166 /*
3167 * If the load of group cfs_rq is null, the load of the
3168 * sched_entity will also be null so we can skip the formula
3169 */
3170 if (load) {
3171 long tg_load;
3172
3173 /* Get tg's load and ensure tg_load > 0 */
3174 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3175
3176 /* Ensure tg_load >= load and updated with current load*/
3177 tg_load -= gcfs_rq->tg_load_avg_contrib;
3178 tg_load += load;
3179
3180 /*
3181 * We need to compute a correction term in the case that the
3182 * task group is consuming more CPU than a task of equal
3183 * weight. A task with a weight equals to tg->shares will have
3184 * a load less or equal to scale_load_down(tg->shares).
3185 * Similarly, the sched_entities that represent the task group
3186 * at parent level, can't have a load higher than
3187 * scale_load_down(tg->shares). And the Sum of sched_entities'
3188 * load must be <= scale_load_down(tg->shares).
3189 */
3190 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3191 /* scale gcfs_rq's load into tg's shares*/
3192 load *= scale_load_down(gcfs_rq->tg->shares);
3193 load /= tg_load;
3194 }
3195 }
3196
3197 delta = load - se->avg.load_avg;
3198
3199 /* Nothing to update */
3200 if (!delta)
3201 return;
3202
3203 /* Set new sched_entity's load */
3204 se->avg.load_avg = load;
3205 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3206
3207 /* Update parent cfs_rq load */
3208 add_positive(&cfs_rq->avg.load_avg, delta);
3209 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3210
3211 /*
3212 * If the sched_entity is already enqueued, we also have to update the
3213 * runnable load avg.
3214 */
3215 if (se->on_rq) {
3216 /* Update parent cfs_rq runnable_load_avg */
3217 add_positive(&cfs_rq->runnable_load_avg, delta);
3218 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3219 }
3220}
3221
3222static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3223{
3224 cfs_rq->propagate_avg = 1;
3225}
3226
3227static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3228{
3229 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3230
3231 if (!cfs_rq->propagate_avg)
3232 return 0;
3233
3234 cfs_rq->propagate_avg = 0;
3235 return 1;
3236}
3237
3238/* Update task and its cfs_rq load average */
3239static inline int propagate_entity_load_avg(struct sched_entity *se)
3240{
3241 struct cfs_rq *cfs_rq;
3242
3243 if (entity_is_task(se))
3244 return 0;
3245
3246 if (!test_and_clear_tg_cfs_propagate(se))
3247 return 0;
3248
3249 cfs_rq = cfs_rq_of(se);
3250
3251 set_tg_cfs_propagate(cfs_rq);
3252
3253 update_tg_cfs_util(cfs_rq, se);
3254 update_tg_cfs_load(cfs_rq, se);
3255
3256 return 1;
3257}
3258
bc427898
VG
3259/*
3260 * Check if we need to update the load and the utilization of a blocked
3261 * group_entity:
3262 */
3263static inline bool skip_blocked_update(struct sched_entity *se)
3264{
3265 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3266
3267 /*
3268 * If sched_entity still have not zero load or utilization, we have to
3269 * decay it:
3270 */
3271 if (se->avg.load_avg || se->avg.util_avg)
3272 return false;
3273
3274 /*
3275 * If there is a pending propagation, we have to update the load and
3276 * the utilization of the sched_entity:
3277 */
3278 if (gcfs_rq->propagate_avg)
3279 return false;
3280
3281 /*
3282 * Otherwise, the load and the utilization of the sched_entity is
3283 * already zero and there is no pending propagation, so it will be a
3284 * waste of time to try to decay it:
3285 */
3286 return true;
3287}
3288
6e83125c 3289#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3290
9d89c257 3291static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3292
3293static inline int propagate_entity_load_avg(struct sched_entity *se)
3294{
3295 return 0;
3296}
3297
3298static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3299
6e83125c 3300#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3301
89741892
PZ
3302/*
3303 * Unsigned subtract and clamp on underflow.
3304 *
3305 * Explicitly do a load-store to ensure the intermediate value never hits
3306 * memory. This allows lockless observations without ever seeing the negative
3307 * values.
3308 */
3309#define sub_positive(_ptr, _val) do { \
3310 typeof(_ptr) ptr = (_ptr); \
3311 typeof(*ptr) val = (_val); \
3312 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3313 res = var - val; \
3314 if (res > var) \
3315 res = 0; \
3316 WRITE_ONCE(*ptr, res); \
3317} while (0)
3318
3d30544f
PZ
3319/**
3320 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3321 * @now: current time, as per cfs_rq_clock_task()
3322 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3323 *
3324 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3325 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3326 * post_init_entity_util_avg().
3327 *
3328 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3329 *
7c3edd2c
PZ
3330 * Returns true if the load decayed or we removed load.
3331 *
3332 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3333 * call update_tg_load_avg() when this function returns true.
3d30544f 3334 */
a2c6c91f 3335static inline int
3a123bbb 3336update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3337{
9d89c257 3338 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3339 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3340
9d89c257 3341 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3342 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3343 sub_positive(&sa->load_avg, r);
3344 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3345 removed_load = 1;
4e516076 3346 set_tg_cfs_propagate(cfs_rq);
8165e145 3347 }
2dac754e 3348
9d89c257
YD
3349 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3350 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3351 sub_positive(&sa->util_avg, r);
3352 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3353 removed_util = 1;
4e516076 3354 set_tg_cfs_propagate(cfs_rq);
9d89c257 3355 }
36ee28e4 3356
0ccb977f 3357 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3358
9d89c257
YD
3359#ifndef CONFIG_64BIT
3360 smp_wmb();
3361 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3362#endif
36ee28e4 3363
3a123bbb 3364 if (decayed || removed_util)
a2c6c91f 3365 cfs_rq_util_change(cfs_rq);
21e96f88 3366
41e0d37f 3367 return decayed || removed_load;
21e96f88
SM
3368}
3369
d31b1a66
VG
3370/*
3371 * Optional action to be done while updating the load average
3372 */
3373#define UPDATE_TG 0x1
3374#define SKIP_AGE_LOAD 0x2
3375
21e96f88 3376/* Update task and its cfs_rq load average */
d31b1a66 3377static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3378{
3379 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3380 u64 now = cfs_rq_clock_task(cfs_rq);
3381 struct rq *rq = rq_of(cfs_rq);
3382 int cpu = cpu_of(rq);
09a43ace 3383 int decayed;
21e96f88
SM
3384
3385 /*
3386 * Track task load average for carrying it to new CPU after migrated, and
3387 * track group sched_entity load average for task_h_load calc in migration
3388 */
0ccb977f
PZ
3389 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3390 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3391
3a123bbb 3392 decayed = update_cfs_rq_load_avg(now, cfs_rq);
09a43ace
VG
3393 decayed |= propagate_entity_load_avg(se);
3394
3395 if (decayed && (flags & UPDATE_TG))
21e96f88 3396 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3397}
3398
3d30544f
PZ
3399/**
3400 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3401 * @cfs_rq: cfs_rq to attach to
3402 * @se: sched_entity to attach
3403 *
3404 * Must call update_cfs_rq_load_avg() before this, since we rely on
3405 * cfs_rq->avg.last_update_time being current.
3406 */
a05e8c51
BP
3407static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3408{
3409 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3410 cfs_rq->avg.load_avg += se->avg.load_avg;
3411 cfs_rq->avg.load_sum += se->avg.load_sum;
3412 cfs_rq->avg.util_avg += se->avg.util_avg;
3413 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3414 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3415
3416 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3417}
3418
3d30544f
PZ
3419/**
3420 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3421 * @cfs_rq: cfs_rq to detach from
3422 * @se: sched_entity to detach
3423 *
3424 * Must call update_cfs_rq_load_avg() before this, since we rely on
3425 * cfs_rq->avg.last_update_time being current.
3426 */
a05e8c51
BP
3427static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3428{
a05e8c51 3429
89741892
PZ
3430 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3431 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3432 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3433 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3434 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3435
3436 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3437}
3438
9d89c257
YD
3439/* Add the load generated by se into cfs_rq's load average */
3440static inline void
3441enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3442{
9d89c257 3443 struct sched_avg *sa = &se->avg;
18bf2805 3444
13962234
YD
3445 cfs_rq->runnable_load_avg += sa->load_avg;
3446 cfs_rq->runnable_load_sum += sa->load_sum;
3447
d31b1a66 3448 if (!sa->last_update_time) {
a05e8c51 3449 attach_entity_load_avg(cfs_rq, se);
9d89c257 3450 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3451 }
2dac754e
PT
3452}
3453
13962234
YD
3454/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3455static inline void
3456dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3457{
13962234
YD
3458 cfs_rq->runnable_load_avg =
3459 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3460 cfs_rq->runnable_load_sum =
a05e8c51 3461 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3462}
3463
9d89c257 3464#ifndef CONFIG_64BIT
0905f04e
YD
3465static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3466{
9d89c257 3467 u64 last_update_time_copy;
0905f04e 3468 u64 last_update_time;
9ee474f5 3469
9d89c257
YD
3470 do {
3471 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3472 smp_rmb();
3473 last_update_time = cfs_rq->avg.last_update_time;
3474 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3475
3476 return last_update_time;
3477}
9d89c257 3478#else
0905f04e
YD
3479static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3480{
3481 return cfs_rq->avg.last_update_time;
3482}
9d89c257
YD
3483#endif
3484
104cb16d
MR
3485/*
3486 * Synchronize entity load avg of dequeued entity without locking
3487 * the previous rq.
3488 */
3489void sync_entity_load_avg(struct sched_entity *se)
3490{
3491 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3492 u64 last_update_time;
3493
3494 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3495 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3496}
3497
0905f04e
YD
3498/*
3499 * Task first catches up with cfs_rq, and then subtract
3500 * itself from the cfs_rq (task must be off the queue now).
3501 */
3502void remove_entity_load_avg(struct sched_entity *se)
3503{
3504 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3505
3506 /*
7dc603c9
PZ
3507 * tasks cannot exit without having gone through wake_up_new_task() ->
3508 * post_init_entity_util_avg() which will have added things to the
3509 * cfs_rq, so we can remove unconditionally.
3510 *
3511 * Similarly for groups, they will have passed through
3512 * post_init_entity_util_avg() before unregister_sched_fair_group()
3513 * calls this.
0905f04e 3514 */
0905f04e 3515
104cb16d 3516 sync_entity_load_avg(se);
9d89c257
YD
3517 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3518 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3519}
642dbc39 3520
7ea241af
YD
3521static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3522{
3523 return cfs_rq->runnable_load_avg;
3524}
3525
3526static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3527{
3528 return cfs_rq->avg.load_avg;
3529}
3530
46f69fa3 3531static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3532
38033c37
PZ
3533#else /* CONFIG_SMP */
3534
01011473 3535static inline int
3a123bbb 3536update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3537{
3538 return 0;
3539}
3540
d31b1a66
VG
3541#define UPDATE_TG 0x0
3542#define SKIP_AGE_LOAD 0x0
3543
3544static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3545{
a030d738 3546 cfs_rq_util_change(cfs_rq_of(se));
536bd00c
RW
3547}
3548
9d89c257
YD
3549static inline void
3550enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3551static inline void
3552dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3553static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3554
a05e8c51
BP
3555static inline void
3556attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3557static inline void
3558detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3559
46f69fa3 3560static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3561{
3562 return 0;
3563}
3564
38033c37 3565#endif /* CONFIG_SMP */
9d85f21c 3566
ddc97297
PZ
3567static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3568{
3569#ifdef CONFIG_SCHED_DEBUG
3570 s64 d = se->vruntime - cfs_rq->min_vruntime;
3571
3572 if (d < 0)
3573 d = -d;
3574
3575 if (d > 3*sysctl_sched_latency)
ae92882e 3576 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3577#endif
3578}
3579
aeb73b04
PZ
3580static void
3581place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3582{
1af5f730 3583 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3584
2cb8600e
PZ
3585 /*
3586 * The 'current' period is already promised to the current tasks,
3587 * however the extra weight of the new task will slow them down a
3588 * little, place the new task so that it fits in the slot that
3589 * stays open at the end.
3590 */
94dfb5e7 3591 if (initial && sched_feat(START_DEBIT))
f9c0b095 3592 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3593
a2e7a7eb 3594 /* sleeps up to a single latency don't count. */
5ca9880c 3595 if (!initial) {
a2e7a7eb 3596 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3597
a2e7a7eb
MG
3598 /*
3599 * Halve their sleep time's effect, to allow
3600 * for a gentler effect of sleepers:
3601 */
3602 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3603 thresh >>= 1;
51e0304c 3604
a2e7a7eb 3605 vruntime -= thresh;
aeb73b04
PZ
3606 }
3607
b5d9d734 3608 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3609 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3610}
3611
d3d9dc33
PT
3612static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3613
cb251765
MG
3614static inline void check_schedstat_required(void)
3615{
3616#ifdef CONFIG_SCHEDSTATS
3617 if (schedstat_enabled())
3618 return;
3619
3620 /* Force schedstat enabled if a dependent tracepoint is active */
3621 if (trace_sched_stat_wait_enabled() ||
3622 trace_sched_stat_sleep_enabled() ||
3623 trace_sched_stat_iowait_enabled() ||
3624 trace_sched_stat_blocked_enabled() ||
3625 trace_sched_stat_runtime_enabled()) {
eda8dca5 3626 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3627 "stat_blocked and stat_runtime require the "
f67abed5 3628 "kernel parameter schedstats=enable or "
cb251765
MG
3629 "kernel.sched_schedstats=1\n");
3630 }
3631#endif
3632}
3633
b5179ac7
PZ
3634
3635/*
3636 * MIGRATION
3637 *
3638 * dequeue
3639 * update_curr()
3640 * update_min_vruntime()
3641 * vruntime -= min_vruntime
3642 *
3643 * enqueue
3644 * update_curr()
3645 * update_min_vruntime()
3646 * vruntime += min_vruntime
3647 *
3648 * this way the vruntime transition between RQs is done when both
3649 * min_vruntime are up-to-date.
3650 *
3651 * WAKEUP (remote)
3652 *
59efa0ba 3653 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3654 * vruntime -= min_vruntime
3655 *
3656 * enqueue
3657 * update_curr()
3658 * update_min_vruntime()
3659 * vruntime += min_vruntime
3660 *
3661 * this way we don't have the most up-to-date min_vruntime on the originating
3662 * CPU and an up-to-date min_vruntime on the destination CPU.
3663 */
3664
bf0f6f24 3665static void
88ec22d3 3666enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3667{
2f950354
PZ
3668 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3669 bool curr = cfs_rq->curr == se;
3670
88ec22d3 3671 /*
2f950354
PZ
3672 * If we're the current task, we must renormalise before calling
3673 * update_curr().
88ec22d3 3674 */
2f950354 3675 if (renorm && curr)
88ec22d3
PZ
3676 se->vruntime += cfs_rq->min_vruntime;
3677
2f950354
PZ
3678 update_curr(cfs_rq);
3679
bf0f6f24 3680 /*
2f950354
PZ
3681 * Otherwise, renormalise after, such that we're placed at the current
3682 * moment in time, instead of some random moment in the past. Being
3683 * placed in the past could significantly boost this task to the
3684 * fairness detriment of existing tasks.
bf0f6f24 3685 */
2f950354
PZ
3686 if (renorm && !curr)
3687 se->vruntime += cfs_rq->min_vruntime;
3688
89ee048f
VG
3689 /*
3690 * When enqueuing a sched_entity, we must:
3691 * - Update loads to have both entity and cfs_rq synced with now.
3692 * - Add its load to cfs_rq->runnable_avg
3693 * - For group_entity, update its weight to reflect the new share of
3694 * its group cfs_rq
3695 * - Add its new weight to cfs_rq->load.weight
3696 */
d31b1a66 3697 update_load_avg(se, UPDATE_TG);
9d89c257 3698 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3699 update_cfs_shares(se);
17bc14b7 3700 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3701
1a3d027c 3702 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3703 place_entity(cfs_rq, se, 0);
bf0f6f24 3704
cb251765 3705 check_schedstat_required();
4fa8d299
JP
3706 update_stats_enqueue(cfs_rq, se, flags);
3707 check_spread(cfs_rq, se);
2f950354 3708 if (!curr)
83b699ed 3709 __enqueue_entity(cfs_rq, se);
2069dd75 3710 se->on_rq = 1;
3d4b47b4 3711
d3d9dc33 3712 if (cfs_rq->nr_running == 1) {
3d4b47b4 3713 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3714 check_enqueue_throttle(cfs_rq);
3715 }
bf0f6f24
IM
3716}
3717
2c13c919 3718static void __clear_buddies_last(struct sched_entity *se)
2002c695 3719{
2c13c919
RR
3720 for_each_sched_entity(se) {
3721 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3722 if (cfs_rq->last != se)
2c13c919 3723 break;
f1044799
PZ
3724
3725 cfs_rq->last = NULL;
2c13c919
RR
3726 }
3727}
2002c695 3728
2c13c919
RR
3729static void __clear_buddies_next(struct sched_entity *se)
3730{
3731 for_each_sched_entity(se) {
3732 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3733 if (cfs_rq->next != se)
2c13c919 3734 break;
f1044799
PZ
3735
3736 cfs_rq->next = NULL;
2c13c919 3737 }
2002c695
PZ
3738}
3739
ac53db59
RR
3740static void __clear_buddies_skip(struct sched_entity *se)
3741{
3742 for_each_sched_entity(se) {
3743 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3744 if (cfs_rq->skip != se)
ac53db59 3745 break;
f1044799
PZ
3746
3747 cfs_rq->skip = NULL;
ac53db59
RR
3748 }
3749}
3750
a571bbea
PZ
3751static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3752{
2c13c919
RR
3753 if (cfs_rq->last == se)
3754 __clear_buddies_last(se);
3755
3756 if (cfs_rq->next == se)
3757 __clear_buddies_next(se);
ac53db59
RR
3758
3759 if (cfs_rq->skip == se)
3760 __clear_buddies_skip(se);
a571bbea
PZ
3761}
3762
6c16a6dc 3763static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3764
bf0f6f24 3765static void
371fd7e7 3766dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3767{
a2a2d680
DA
3768 /*
3769 * Update run-time statistics of the 'current'.
3770 */
3771 update_curr(cfs_rq);
89ee048f
VG
3772
3773 /*
3774 * When dequeuing a sched_entity, we must:
3775 * - Update loads to have both entity and cfs_rq synced with now.
3776 * - Substract its load from the cfs_rq->runnable_avg.
3777 * - Substract its previous weight from cfs_rq->load.weight.
3778 * - For group entity, update its weight to reflect the new share
3779 * of its group cfs_rq.
3780 */
d31b1a66 3781 update_load_avg(se, UPDATE_TG);
13962234 3782 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3783
4fa8d299 3784 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3785
2002c695 3786 clear_buddies(cfs_rq, se);
4793241b 3787
83b699ed 3788 if (se != cfs_rq->curr)
30cfdcfc 3789 __dequeue_entity(cfs_rq, se);
17bc14b7 3790 se->on_rq = 0;
30cfdcfc 3791 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3792
3793 /*
b60205c7
PZ
3794 * Normalize after update_curr(); which will also have moved
3795 * min_vruntime if @se is the one holding it back. But before doing
3796 * update_min_vruntime() again, which will discount @se's position and
3797 * can move min_vruntime forward still more.
88ec22d3 3798 */
371fd7e7 3799 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3800 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3801
d8b4986d
PT
3802 /* return excess runtime on last dequeue */
3803 return_cfs_rq_runtime(cfs_rq);
3804
89ee048f 3805 update_cfs_shares(se);
b60205c7
PZ
3806
3807 /*
3808 * Now advance min_vruntime if @se was the entity holding it back,
3809 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3810 * put back on, and if we advance min_vruntime, we'll be placed back
3811 * further than we started -- ie. we'll be penalized.
3812 */
3813 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3814 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3815}
3816
3817/*
3818 * Preempt the current task with a newly woken task if needed:
3819 */
7c92e54f 3820static void
2e09bf55 3821check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3822{
11697830 3823 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3824 struct sched_entity *se;
3825 s64 delta;
11697830 3826
6d0f0ebd 3827 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3828 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3829 if (delta_exec > ideal_runtime) {
8875125e 3830 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3831 /*
3832 * The current task ran long enough, ensure it doesn't get
3833 * re-elected due to buddy favours.
3834 */
3835 clear_buddies(cfs_rq, curr);
f685ceac
MG
3836 return;
3837 }
3838
3839 /*
3840 * Ensure that a task that missed wakeup preemption by a
3841 * narrow margin doesn't have to wait for a full slice.
3842 * This also mitigates buddy induced latencies under load.
3843 */
f685ceac
MG
3844 if (delta_exec < sysctl_sched_min_granularity)
3845 return;
3846
f4cfb33e
WX
3847 se = __pick_first_entity(cfs_rq);
3848 delta = curr->vruntime - se->vruntime;
f685ceac 3849
f4cfb33e
WX
3850 if (delta < 0)
3851 return;
d7d82944 3852
f4cfb33e 3853 if (delta > ideal_runtime)
8875125e 3854 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3855}
3856
83b699ed 3857static void
8494f412 3858set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3859{
83b699ed
SV
3860 /* 'current' is not kept within the tree. */
3861 if (se->on_rq) {
3862 /*
3863 * Any task has to be enqueued before it get to execute on
3864 * a CPU. So account for the time it spent waiting on the
3865 * runqueue.
3866 */
4fa8d299 3867 update_stats_wait_end(cfs_rq, se);
83b699ed 3868 __dequeue_entity(cfs_rq, se);
d31b1a66 3869 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3870 }
3871
79303e9e 3872 update_stats_curr_start(cfs_rq, se);
429d43bc 3873 cfs_rq->curr = se;
4fa8d299 3874
eba1ed4b
IM
3875 /*
3876 * Track our maximum slice length, if the CPU's load is at
3877 * least twice that of our own weight (i.e. dont track it
3878 * when there are only lesser-weight tasks around):
3879 */
cb251765 3880 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3881 schedstat_set(se->statistics.slice_max,
3882 max((u64)schedstat_val(se->statistics.slice_max),
3883 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3884 }
4fa8d299 3885
4a55b450 3886 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3887}
3888
3f3a4904
PZ
3889static int
3890wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3891
ac53db59
RR
3892/*
3893 * Pick the next process, keeping these things in mind, in this order:
3894 * 1) keep things fair between processes/task groups
3895 * 2) pick the "next" process, since someone really wants that to run
3896 * 3) pick the "last" process, for cache locality
3897 * 4) do not run the "skip" process, if something else is available
3898 */
678d5718
PZ
3899static struct sched_entity *
3900pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3901{
678d5718
PZ
3902 struct sched_entity *left = __pick_first_entity(cfs_rq);
3903 struct sched_entity *se;
3904
3905 /*
3906 * If curr is set we have to see if its left of the leftmost entity
3907 * still in the tree, provided there was anything in the tree at all.
3908 */
3909 if (!left || (curr && entity_before(curr, left)))
3910 left = curr;
3911
3912 se = left; /* ideally we run the leftmost entity */
f4b6755f 3913
ac53db59
RR
3914 /*
3915 * Avoid running the skip buddy, if running something else can
3916 * be done without getting too unfair.
3917 */
3918 if (cfs_rq->skip == se) {
678d5718
PZ
3919 struct sched_entity *second;
3920
3921 if (se == curr) {
3922 second = __pick_first_entity(cfs_rq);
3923 } else {
3924 second = __pick_next_entity(se);
3925 if (!second || (curr && entity_before(curr, second)))
3926 second = curr;
3927 }
3928
ac53db59
RR
3929 if (second && wakeup_preempt_entity(second, left) < 1)
3930 se = second;
3931 }
aa2ac252 3932
f685ceac
MG
3933 /*
3934 * Prefer last buddy, try to return the CPU to a preempted task.
3935 */
3936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3937 se = cfs_rq->last;
3938
ac53db59
RR
3939 /*
3940 * Someone really wants this to run. If it's not unfair, run it.
3941 */
3942 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3943 se = cfs_rq->next;
3944
f685ceac 3945 clear_buddies(cfs_rq, se);
4793241b
PZ
3946
3947 return se;
aa2ac252
PZ
3948}
3949
678d5718 3950static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3951
ab6cde26 3952static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3953{
3954 /*
3955 * If still on the runqueue then deactivate_task()
3956 * was not called and update_curr() has to be done:
3957 */
3958 if (prev->on_rq)
b7cc0896 3959 update_curr(cfs_rq);
bf0f6f24 3960
d3d9dc33
PT
3961 /* throttle cfs_rqs exceeding runtime */
3962 check_cfs_rq_runtime(cfs_rq);
3963
4fa8d299 3964 check_spread(cfs_rq, prev);
cb251765 3965
30cfdcfc 3966 if (prev->on_rq) {
4fa8d299 3967 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3968 /* Put 'current' back into the tree. */
3969 __enqueue_entity(cfs_rq, prev);
9d85f21c 3970 /* in !on_rq case, update occurred at dequeue */
9d89c257 3971 update_load_avg(prev, 0);
30cfdcfc 3972 }
429d43bc 3973 cfs_rq->curr = NULL;
bf0f6f24
IM
3974}
3975
8f4d37ec
PZ
3976static void
3977entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3978{
bf0f6f24 3979 /*
30cfdcfc 3980 * Update run-time statistics of the 'current'.
bf0f6f24 3981 */
30cfdcfc 3982 update_curr(cfs_rq);
bf0f6f24 3983
9d85f21c
PT
3984 /*
3985 * Ensure that runnable average is periodically updated.
3986 */
d31b1a66 3987 update_load_avg(curr, UPDATE_TG);
89ee048f 3988 update_cfs_shares(curr);
9d85f21c 3989
8f4d37ec
PZ
3990#ifdef CONFIG_SCHED_HRTICK
3991 /*
3992 * queued ticks are scheduled to match the slice, so don't bother
3993 * validating it and just reschedule.
3994 */
983ed7a6 3995 if (queued) {
8875125e 3996 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3997 return;
3998 }
8f4d37ec
PZ
3999 /*
4000 * don't let the period tick interfere with the hrtick preemption
4001 */
4002 if (!sched_feat(DOUBLE_TICK) &&
4003 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4004 return;
4005#endif
4006
2c2efaed 4007 if (cfs_rq->nr_running > 1)
2e09bf55 4008 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4009}
4010
ab84d31e
PT
4011
4012/**************************************************
4013 * CFS bandwidth control machinery
4014 */
4015
4016#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4017
4018#ifdef HAVE_JUMP_LABEL
c5905afb 4019static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4020
4021static inline bool cfs_bandwidth_used(void)
4022{
c5905afb 4023 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4024}
4025
1ee14e6c 4026void cfs_bandwidth_usage_inc(void)
029632fb 4027{
1ee14e6c
BS
4028 static_key_slow_inc(&__cfs_bandwidth_used);
4029}
4030
4031void cfs_bandwidth_usage_dec(void)
4032{
4033 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4034}
4035#else /* HAVE_JUMP_LABEL */
4036static bool cfs_bandwidth_used(void)
4037{
4038 return true;
4039}
4040
1ee14e6c
BS
4041void cfs_bandwidth_usage_inc(void) {}
4042void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4043#endif /* HAVE_JUMP_LABEL */
4044
ab84d31e
PT
4045/*
4046 * default period for cfs group bandwidth.
4047 * default: 0.1s, units: nanoseconds
4048 */
4049static inline u64 default_cfs_period(void)
4050{
4051 return 100000000ULL;
4052}
ec12cb7f
PT
4053
4054static inline u64 sched_cfs_bandwidth_slice(void)
4055{
4056 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4057}
4058
a9cf55b2
PT
4059/*
4060 * Replenish runtime according to assigned quota and update expiration time.
4061 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4062 * additional synchronization around rq->lock.
4063 *
4064 * requires cfs_b->lock
4065 */
029632fb 4066void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4067{
4068 u64 now;
4069
4070 if (cfs_b->quota == RUNTIME_INF)
4071 return;
4072
4073 now = sched_clock_cpu(smp_processor_id());
4074 cfs_b->runtime = cfs_b->quota;
4075 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4076}
4077
029632fb
PZ
4078static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4079{
4080 return &tg->cfs_bandwidth;
4081}
4082
f1b17280
PT
4083/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4084static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4085{
4086 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4087 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4088
78becc27 4089 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4090}
4091
85dac906
PT
4092/* returns 0 on failure to allocate runtime */
4093static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4094{
4095 struct task_group *tg = cfs_rq->tg;
4096 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4097 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4098
4099 /* note: this is a positive sum as runtime_remaining <= 0 */
4100 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4101
4102 raw_spin_lock(&cfs_b->lock);
4103 if (cfs_b->quota == RUNTIME_INF)
4104 amount = min_amount;
58088ad0 4105 else {
77a4d1a1 4106 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4107
4108 if (cfs_b->runtime > 0) {
4109 amount = min(cfs_b->runtime, min_amount);
4110 cfs_b->runtime -= amount;
4111 cfs_b->idle = 0;
4112 }
ec12cb7f 4113 }
a9cf55b2 4114 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4115 raw_spin_unlock(&cfs_b->lock);
4116
4117 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4118 /*
4119 * we may have advanced our local expiration to account for allowed
4120 * spread between our sched_clock and the one on which runtime was
4121 * issued.
4122 */
4123 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4124 cfs_rq->runtime_expires = expires;
85dac906
PT
4125
4126 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4127}
4128
a9cf55b2
PT
4129/*
4130 * Note: This depends on the synchronization provided by sched_clock and the
4131 * fact that rq->clock snapshots this value.
4132 */
4133static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4134{
a9cf55b2 4135 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4136
4137 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4138 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4139 return;
4140
a9cf55b2
PT
4141 if (cfs_rq->runtime_remaining < 0)
4142 return;
4143
4144 /*
4145 * If the local deadline has passed we have to consider the
4146 * possibility that our sched_clock is 'fast' and the global deadline
4147 * has not truly expired.
4148 *
4149 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4150 * whether the global deadline has advanced. It is valid to compare
4151 * cfs_b->runtime_expires without any locks since we only care about
4152 * exact equality, so a partial write will still work.
a9cf55b2
PT
4153 */
4154
51f2176d 4155 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4156 /* extend local deadline, drift is bounded above by 2 ticks */
4157 cfs_rq->runtime_expires += TICK_NSEC;
4158 } else {
4159 /* global deadline is ahead, expiration has passed */
4160 cfs_rq->runtime_remaining = 0;
4161 }
4162}
4163
9dbdb155 4164static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4165{
4166 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4167 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4168 expire_cfs_rq_runtime(cfs_rq);
4169
4170 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4171 return;
4172
85dac906
PT
4173 /*
4174 * if we're unable to extend our runtime we resched so that the active
4175 * hierarchy can be throttled
4176 */
4177 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4178 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4179}
4180
6c16a6dc 4181static __always_inline
9dbdb155 4182void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4183{
56f570e5 4184 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4185 return;
4186
4187 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4188}
4189
85dac906
PT
4190static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4191{
56f570e5 4192 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4193}
4194
64660c86
PT
4195/* check whether cfs_rq, or any parent, is throttled */
4196static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4197{
56f570e5 4198 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4199}
4200
4201/*
4202 * Ensure that neither of the group entities corresponding to src_cpu or
4203 * dest_cpu are members of a throttled hierarchy when performing group
4204 * load-balance operations.
4205 */
4206static inline int throttled_lb_pair(struct task_group *tg,
4207 int src_cpu, int dest_cpu)
4208{
4209 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4210
4211 src_cfs_rq = tg->cfs_rq[src_cpu];
4212 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4213
4214 return throttled_hierarchy(src_cfs_rq) ||
4215 throttled_hierarchy(dest_cfs_rq);
4216}
4217
4218/* updated child weight may affect parent so we have to do this bottom up */
4219static int tg_unthrottle_up(struct task_group *tg, void *data)
4220{
4221 struct rq *rq = data;
4222 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4223
4224 cfs_rq->throttle_count--;
64660c86 4225 if (!cfs_rq->throttle_count) {
f1b17280 4226 /* adjust cfs_rq_clock_task() */
78becc27 4227 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4228 cfs_rq->throttled_clock_task;
64660c86 4229 }
64660c86
PT
4230
4231 return 0;
4232}
4233
4234static int tg_throttle_down(struct task_group *tg, void *data)
4235{
4236 struct rq *rq = data;
4237 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4238
82958366
PT
4239 /* group is entering throttled state, stop time */
4240 if (!cfs_rq->throttle_count)
78becc27 4241 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4242 cfs_rq->throttle_count++;
4243
4244 return 0;
4245}
4246
d3d9dc33 4247static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4248{
4249 struct rq *rq = rq_of(cfs_rq);
4250 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4251 struct sched_entity *se;
4252 long task_delta, dequeue = 1;
77a4d1a1 4253 bool empty;
85dac906
PT
4254
4255 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4256
f1b17280 4257 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4258 rcu_read_lock();
4259 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4260 rcu_read_unlock();
85dac906
PT
4261
4262 task_delta = cfs_rq->h_nr_running;
4263 for_each_sched_entity(se) {
4264 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4265 /* throttled entity or throttle-on-deactivate */
4266 if (!se->on_rq)
4267 break;
4268
4269 if (dequeue)
4270 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4271 qcfs_rq->h_nr_running -= task_delta;
4272
4273 if (qcfs_rq->load.weight)
4274 dequeue = 0;
4275 }
4276
4277 if (!se)
72465447 4278 sub_nr_running(rq, task_delta);
85dac906
PT
4279
4280 cfs_rq->throttled = 1;
78becc27 4281 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4282 raw_spin_lock(&cfs_b->lock);
d49db342 4283 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4284
c06f04c7
BS
4285 /*
4286 * Add to the _head_ of the list, so that an already-started
4287 * distribute_cfs_runtime will not see us
4288 */
4289 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4290
4291 /*
4292 * If we're the first throttled task, make sure the bandwidth
4293 * timer is running.
4294 */
4295 if (empty)
4296 start_cfs_bandwidth(cfs_b);
4297
85dac906
PT
4298 raw_spin_unlock(&cfs_b->lock);
4299}
4300
029632fb 4301void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4302{
4303 struct rq *rq = rq_of(cfs_rq);
4304 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4305 struct sched_entity *se;
4306 int enqueue = 1;
4307 long task_delta;
4308
22b958d8 4309 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4310
4311 cfs_rq->throttled = 0;
1a55af2e
FW
4312
4313 update_rq_clock(rq);
4314
671fd9da 4315 raw_spin_lock(&cfs_b->lock);
78becc27 4316 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4317 list_del_rcu(&cfs_rq->throttled_list);
4318 raw_spin_unlock(&cfs_b->lock);
4319
64660c86
PT
4320 /* update hierarchical throttle state */
4321 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4322
671fd9da
PT
4323 if (!cfs_rq->load.weight)
4324 return;
4325
4326 task_delta = cfs_rq->h_nr_running;
4327 for_each_sched_entity(se) {
4328 if (se->on_rq)
4329 enqueue = 0;
4330
4331 cfs_rq = cfs_rq_of(se);
4332 if (enqueue)
4333 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4334 cfs_rq->h_nr_running += task_delta;
4335
4336 if (cfs_rq_throttled(cfs_rq))
4337 break;
4338 }
4339
4340 if (!se)
72465447 4341 add_nr_running(rq, task_delta);
671fd9da
PT
4342
4343 /* determine whether we need to wake up potentially idle cpu */
4344 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4345 resched_curr(rq);
671fd9da
PT
4346}
4347
4348static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4349 u64 remaining, u64 expires)
4350{
4351 struct cfs_rq *cfs_rq;
c06f04c7
BS
4352 u64 runtime;
4353 u64 starting_runtime = remaining;
671fd9da
PT
4354
4355 rcu_read_lock();
4356 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4357 throttled_list) {
4358 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4359 struct rq_flags rf;
671fd9da 4360
8a8c69c3 4361 rq_lock(rq, &rf);
671fd9da
PT
4362 if (!cfs_rq_throttled(cfs_rq))
4363 goto next;
4364
4365 runtime = -cfs_rq->runtime_remaining + 1;
4366 if (runtime > remaining)
4367 runtime = remaining;
4368 remaining -= runtime;
4369
4370 cfs_rq->runtime_remaining += runtime;
4371 cfs_rq->runtime_expires = expires;
4372
4373 /* we check whether we're throttled above */
4374 if (cfs_rq->runtime_remaining > 0)
4375 unthrottle_cfs_rq(cfs_rq);
4376
4377next:
8a8c69c3 4378 rq_unlock(rq, &rf);
671fd9da
PT
4379
4380 if (!remaining)
4381 break;
4382 }
4383 rcu_read_unlock();
4384
c06f04c7 4385 return starting_runtime - remaining;
671fd9da
PT
4386}
4387
58088ad0
PT
4388/*
4389 * Responsible for refilling a task_group's bandwidth and unthrottling its
4390 * cfs_rqs as appropriate. If there has been no activity within the last
4391 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4392 * used to track this state.
4393 */
4394static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4395{
671fd9da 4396 u64 runtime, runtime_expires;
51f2176d 4397 int throttled;
58088ad0 4398
58088ad0
PT
4399 /* no need to continue the timer with no bandwidth constraint */
4400 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4401 goto out_deactivate;
58088ad0 4402
671fd9da 4403 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4404 cfs_b->nr_periods += overrun;
671fd9da 4405
51f2176d
BS
4406 /*
4407 * idle depends on !throttled (for the case of a large deficit), and if
4408 * we're going inactive then everything else can be deferred
4409 */
4410 if (cfs_b->idle && !throttled)
4411 goto out_deactivate;
a9cf55b2
PT
4412
4413 __refill_cfs_bandwidth_runtime(cfs_b);
4414
671fd9da
PT
4415 if (!throttled) {
4416 /* mark as potentially idle for the upcoming period */
4417 cfs_b->idle = 1;
51f2176d 4418 return 0;
671fd9da
PT
4419 }
4420
e8da1b18
NR
4421 /* account preceding periods in which throttling occurred */
4422 cfs_b->nr_throttled += overrun;
4423
671fd9da 4424 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4425
4426 /*
c06f04c7
BS
4427 * This check is repeated as we are holding onto the new bandwidth while
4428 * we unthrottle. This can potentially race with an unthrottled group
4429 * trying to acquire new bandwidth from the global pool. This can result
4430 * in us over-using our runtime if it is all used during this loop, but
4431 * only by limited amounts in that extreme case.
671fd9da 4432 */
c06f04c7
BS
4433 while (throttled && cfs_b->runtime > 0) {
4434 runtime = cfs_b->runtime;
671fd9da
PT
4435 raw_spin_unlock(&cfs_b->lock);
4436 /* we can't nest cfs_b->lock while distributing bandwidth */
4437 runtime = distribute_cfs_runtime(cfs_b, runtime,
4438 runtime_expires);
4439 raw_spin_lock(&cfs_b->lock);
4440
4441 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4442
4443 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4444 }
58088ad0 4445
671fd9da
PT
4446 /*
4447 * While we are ensured activity in the period following an
4448 * unthrottle, this also covers the case in which the new bandwidth is
4449 * insufficient to cover the existing bandwidth deficit. (Forcing the
4450 * timer to remain active while there are any throttled entities.)
4451 */
4452 cfs_b->idle = 0;
58088ad0 4453
51f2176d
BS
4454 return 0;
4455
4456out_deactivate:
51f2176d 4457 return 1;
58088ad0 4458}
d3d9dc33 4459
d8b4986d
PT
4460/* a cfs_rq won't donate quota below this amount */
4461static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4462/* minimum remaining period time to redistribute slack quota */
4463static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4464/* how long we wait to gather additional slack before distributing */
4465static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4466
db06e78c
BS
4467/*
4468 * Are we near the end of the current quota period?
4469 *
4470 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4471 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4472 * migrate_hrtimers, base is never cleared, so we are fine.
4473 */
d8b4986d
PT
4474static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4475{
4476 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4477 u64 remaining;
4478
4479 /* if the call-back is running a quota refresh is already occurring */
4480 if (hrtimer_callback_running(refresh_timer))
4481 return 1;
4482
4483 /* is a quota refresh about to occur? */
4484 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4485 if (remaining < min_expire)
4486 return 1;
4487
4488 return 0;
4489}
4490
4491static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4492{
4493 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4494
4495 /* if there's a quota refresh soon don't bother with slack */
4496 if (runtime_refresh_within(cfs_b, min_left))
4497 return;
4498
4cfafd30
PZ
4499 hrtimer_start(&cfs_b->slack_timer,
4500 ns_to_ktime(cfs_bandwidth_slack_period),
4501 HRTIMER_MODE_REL);
d8b4986d
PT
4502}
4503
4504/* we know any runtime found here is valid as update_curr() precedes return */
4505static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4506{
4507 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4508 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4509
4510 if (slack_runtime <= 0)
4511 return;
4512
4513 raw_spin_lock(&cfs_b->lock);
4514 if (cfs_b->quota != RUNTIME_INF &&
4515 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4516 cfs_b->runtime += slack_runtime;
4517
4518 /* we are under rq->lock, defer unthrottling using a timer */
4519 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4520 !list_empty(&cfs_b->throttled_cfs_rq))
4521 start_cfs_slack_bandwidth(cfs_b);
4522 }
4523 raw_spin_unlock(&cfs_b->lock);
4524
4525 /* even if it's not valid for return we don't want to try again */
4526 cfs_rq->runtime_remaining -= slack_runtime;
4527}
4528
4529static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4530{
56f570e5
PT
4531 if (!cfs_bandwidth_used())
4532 return;
4533
fccfdc6f 4534 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4535 return;
4536
4537 __return_cfs_rq_runtime(cfs_rq);
4538}
4539
4540/*
4541 * This is done with a timer (instead of inline with bandwidth return) since
4542 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4543 */
4544static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4545{
4546 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4547 u64 expires;
4548
4549 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4550 raw_spin_lock(&cfs_b->lock);
4551 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4552 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4553 return;
db06e78c 4554 }
d8b4986d 4555
c06f04c7 4556 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4557 runtime = cfs_b->runtime;
c06f04c7 4558
d8b4986d
PT
4559 expires = cfs_b->runtime_expires;
4560 raw_spin_unlock(&cfs_b->lock);
4561
4562 if (!runtime)
4563 return;
4564
4565 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4566
4567 raw_spin_lock(&cfs_b->lock);
4568 if (expires == cfs_b->runtime_expires)
c06f04c7 4569 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4570 raw_spin_unlock(&cfs_b->lock);
4571}
4572
d3d9dc33
PT
4573/*
4574 * When a group wakes up we want to make sure that its quota is not already
4575 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4576 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4577 */
4578static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4579{
56f570e5
PT
4580 if (!cfs_bandwidth_used())
4581 return;
4582
d3d9dc33
PT
4583 /* an active group must be handled by the update_curr()->put() path */
4584 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4585 return;
4586
4587 /* ensure the group is not already throttled */
4588 if (cfs_rq_throttled(cfs_rq))
4589 return;
4590
4591 /* update runtime allocation */
4592 account_cfs_rq_runtime(cfs_rq, 0);
4593 if (cfs_rq->runtime_remaining <= 0)
4594 throttle_cfs_rq(cfs_rq);
4595}
4596
55e16d30
PZ
4597static void sync_throttle(struct task_group *tg, int cpu)
4598{
4599 struct cfs_rq *pcfs_rq, *cfs_rq;
4600
4601 if (!cfs_bandwidth_used())
4602 return;
4603
4604 if (!tg->parent)
4605 return;
4606
4607 cfs_rq = tg->cfs_rq[cpu];
4608 pcfs_rq = tg->parent->cfs_rq[cpu];
4609
4610 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4611 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4612}
4613
d3d9dc33 4614/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4615static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4616{
56f570e5 4617 if (!cfs_bandwidth_used())
678d5718 4618 return false;
56f570e5 4619
d3d9dc33 4620 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4621 return false;
d3d9dc33
PT
4622
4623 /*
4624 * it's possible for a throttled entity to be forced into a running
4625 * state (e.g. set_curr_task), in this case we're finished.
4626 */
4627 if (cfs_rq_throttled(cfs_rq))
678d5718 4628 return true;
d3d9dc33
PT
4629
4630 throttle_cfs_rq(cfs_rq);
678d5718 4631 return true;
d3d9dc33 4632}
029632fb 4633
029632fb
PZ
4634static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4635{
4636 struct cfs_bandwidth *cfs_b =
4637 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4638
029632fb
PZ
4639 do_sched_cfs_slack_timer(cfs_b);
4640
4641 return HRTIMER_NORESTART;
4642}
4643
4644static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4645{
4646 struct cfs_bandwidth *cfs_b =
4647 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4648 int overrun;
4649 int idle = 0;
4650
51f2176d 4651 raw_spin_lock(&cfs_b->lock);
029632fb 4652 for (;;) {
77a4d1a1 4653 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4654 if (!overrun)
4655 break;
4656
4657 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4658 }
4cfafd30
PZ
4659 if (idle)
4660 cfs_b->period_active = 0;
51f2176d 4661 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4662
4663 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4664}
4665
4666void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4667{
4668 raw_spin_lock_init(&cfs_b->lock);
4669 cfs_b->runtime = 0;
4670 cfs_b->quota = RUNTIME_INF;
4671 cfs_b->period = ns_to_ktime(default_cfs_period());
4672
4673 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4674 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4675 cfs_b->period_timer.function = sched_cfs_period_timer;
4676 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4677 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4678}
4679
4680static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4681{
4682 cfs_rq->runtime_enabled = 0;
4683 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4684}
4685
77a4d1a1 4686void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4687{
4cfafd30 4688 lockdep_assert_held(&cfs_b->lock);
029632fb 4689
4cfafd30
PZ
4690 if (!cfs_b->period_active) {
4691 cfs_b->period_active = 1;
4692 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4693 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4694 }
029632fb
PZ
4695}
4696
4697static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4698{
7f1a169b
TH
4699 /* init_cfs_bandwidth() was not called */
4700 if (!cfs_b->throttled_cfs_rq.next)
4701 return;
4702
029632fb
PZ
4703 hrtimer_cancel(&cfs_b->period_timer);
4704 hrtimer_cancel(&cfs_b->slack_timer);
4705}
4706
502ce005
PZ
4707/*
4708 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4709 *
4710 * The race is harmless, since modifying bandwidth settings of unhooked group
4711 * bits doesn't do much.
4712 */
4713
4714/* cpu online calback */
0e59bdae
KT
4715static void __maybe_unused update_runtime_enabled(struct rq *rq)
4716{
502ce005 4717 struct task_group *tg;
0e59bdae 4718
502ce005
PZ
4719 lockdep_assert_held(&rq->lock);
4720
4721 rcu_read_lock();
4722 list_for_each_entry_rcu(tg, &task_groups, list) {
4723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4724 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4725
4726 raw_spin_lock(&cfs_b->lock);
4727 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4728 raw_spin_unlock(&cfs_b->lock);
4729 }
502ce005 4730 rcu_read_unlock();
0e59bdae
KT
4731}
4732
502ce005 4733/* cpu offline callback */
38dc3348 4734static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4735{
502ce005
PZ
4736 struct task_group *tg;
4737
4738 lockdep_assert_held(&rq->lock);
4739
4740 rcu_read_lock();
4741 list_for_each_entry_rcu(tg, &task_groups, list) {
4742 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4743
029632fb
PZ
4744 if (!cfs_rq->runtime_enabled)
4745 continue;
4746
4747 /*
4748 * clock_task is not advancing so we just need to make sure
4749 * there's some valid quota amount
4750 */
51f2176d 4751 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4752 /*
4753 * Offline rq is schedulable till cpu is completely disabled
4754 * in take_cpu_down(), so we prevent new cfs throttling here.
4755 */
4756 cfs_rq->runtime_enabled = 0;
4757
029632fb
PZ
4758 if (cfs_rq_throttled(cfs_rq))
4759 unthrottle_cfs_rq(cfs_rq);
4760 }
502ce005 4761 rcu_read_unlock();
029632fb
PZ
4762}
4763
4764#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4765static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4766{
78becc27 4767 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4768}
4769
9dbdb155 4770static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4771static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4772static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4773static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4774static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4775
4776static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4777{
4778 return 0;
4779}
64660c86
PT
4780
4781static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4782{
4783 return 0;
4784}
4785
4786static inline int throttled_lb_pair(struct task_group *tg,
4787 int src_cpu, int dest_cpu)
4788{
4789 return 0;
4790}
029632fb
PZ
4791
4792void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4793
4794#ifdef CONFIG_FAIR_GROUP_SCHED
4795static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4796#endif
4797
029632fb
PZ
4798static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4799{
4800 return NULL;
4801}
4802static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4803static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4804static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4805
4806#endif /* CONFIG_CFS_BANDWIDTH */
4807
bf0f6f24
IM
4808/**************************************************
4809 * CFS operations on tasks:
4810 */
4811
8f4d37ec
PZ
4812#ifdef CONFIG_SCHED_HRTICK
4813static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4814{
8f4d37ec
PZ
4815 struct sched_entity *se = &p->se;
4816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4817
9148a3a1 4818 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4819
8bf46a39 4820 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4821 u64 slice = sched_slice(cfs_rq, se);
4822 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4823 s64 delta = slice - ran;
4824
4825 if (delta < 0) {
4826 if (rq->curr == p)
8875125e 4827 resched_curr(rq);
8f4d37ec
PZ
4828 return;
4829 }
31656519 4830 hrtick_start(rq, delta);
8f4d37ec
PZ
4831 }
4832}
a4c2f00f
PZ
4833
4834/*
4835 * called from enqueue/dequeue and updates the hrtick when the
4836 * current task is from our class and nr_running is low enough
4837 * to matter.
4838 */
4839static void hrtick_update(struct rq *rq)
4840{
4841 struct task_struct *curr = rq->curr;
4842
b39e66ea 4843 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4844 return;
4845
4846 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4847 hrtick_start_fair(rq, curr);
4848}
55e12e5e 4849#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4850static inline void
4851hrtick_start_fair(struct rq *rq, struct task_struct *p)
4852{
4853}
a4c2f00f
PZ
4854
4855static inline void hrtick_update(struct rq *rq)
4856{
4857}
8f4d37ec
PZ
4858#endif
4859
bf0f6f24
IM
4860/*
4861 * The enqueue_task method is called before nr_running is
4862 * increased. Here we update the fair scheduling stats and
4863 * then put the task into the rbtree:
4864 */
ea87bb78 4865static void
371fd7e7 4866enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4867{
4868 struct cfs_rq *cfs_rq;
62fb1851 4869 struct sched_entity *se = &p->se;
bf0f6f24 4870
8c34ab19
RW
4871 /*
4872 * If in_iowait is set, the code below may not trigger any cpufreq
4873 * utilization updates, so do it here explicitly with the IOWAIT flag
4874 * passed.
4875 */
4876 if (p->in_iowait)
4877 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4878
bf0f6f24 4879 for_each_sched_entity(se) {
62fb1851 4880 if (se->on_rq)
bf0f6f24
IM
4881 break;
4882 cfs_rq = cfs_rq_of(se);
88ec22d3 4883 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4884
4885 /*
4886 * end evaluation on encountering a throttled cfs_rq
4887 *
4888 * note: in the case of encountering a throttled cfs_rq we will
4889 * post the final h_nr_running increment below.
e210bffd 4890 */
85dac906
PT
4891 if (cfs_rq_throttled(cfs_rq))
4892 break;
953bfcd1 4893 cfs_rq->h_nr_running++;
85dac906 4894
88ec22d3 4895 flags = ENQUEUE_WAKEUP;
bf0f6f24 4896 }
8f4d37ec 4897
2069dd75 4898 for_each_sched_entity(se) {
0f317143 4899 cfs_rq = cfs_rq_of(se);
953bfcd1 4900 cfs_rq->h_nr_running++;
2069dd75 4901
85dac906
PT
4902 if (cfs_rq_throttled(cfs_rq))
4903 break;
4904
d31b1a66 4905 update_load_avg(se, UPDATE_TG);
89ee048f 4906 update_cfs_shares(se);
2069dd75
PZ
4907 }
4908
cd126afe 4909 if (!se)
72465447 4910 add_nr_running(rq, 1);
cd126afe 4911
a4c2f00f 4912 hrtick_update(rq);
bf0f6f24
IM
4913}
4914
2f36825b
VP
4915static void set_next_buddy(struct sched_entity *se);
4916
bf0f6f24
IM
4917/*
4918 * The dequeue_task method is called before nr_running is
4919 * decreased. We remove the task from the rbtree and
4920 * update the fair scheduling stats:
4921 */
371fd7e7 4922static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4923{
4924 struct cfs_rq *cfs_rq;
62fb1851 4925 struct sched_entity *se = &p->se;
2f36825b 4926 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4927
4928 for_each_sched_entity(se) {
4929 cfs_rq = cfs_rq_of(se);
371fd7e7 4930 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4931
4932 /*
4933 * end evaluation on encountering a throttled cfs_rq
4934 *
4935 * note: in the case of encountering a throttled cfs_rq we will
4936 * post the final h_nr_running decrement below.
4937 */
4938 if (cfs_rq_throttled(cfs_rq))
4939 break;
953bfcd1 4940 cfs_rq->h_nr_running--;
2069dd75 4941
bf0f6f24 4942 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4943 if (cfs_rq->load.weight) {
754bd598
KK
4944 /* Avoid re-evaluating load for this entity: */
4945 se = parent_entity(se);
2f36825b
VP
4946 /*
4947 * Bias pick_next to pick a task from this cfs_rq, as
4948 * p is sleeping when it is within its sched_slice.
4949 */
754bd598
KK
4950 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4951 set_next_buddy(se);
bf0f6f24 4952 break;
2f36825b 4953 }
371fd7e7 4954 flags |= DEQUEUE_SLEEP;
bf0f6f24 4955 }
8f4d37ec 4956
2069dd75 4957 for_each_sched_entity(se) {
0f317143 4958 cfs_rq = cfs_rq_of(se);
953bfcd1 4959 cfs_rq->h_nr_running--;
2069dd75 4960
85dac906
PT
4961 if (cfs_rq_throttled(cfs_rq))
4962 break;
4963
d31b1a66 4964 update_load_avg(se, UPDATE_TG);
89ee048f 4965 update_cfs_shares(se);
2069dd75
PZ
4966 }
4967
cd126afe 4968 if (!se)
72465447 4969 sub_nr_running(rq, 1);
cd126afe 4970
a4c2f00f 4971 hrtick_update(rq);
bf0f6f24
IM
4972}
4973
e7693a36 4974#ifdef CONFIG_SMP
10e2f1ac
PZ
4975
4976/* Working cpumask for: load_balance, load_balance_newidle. */
4977DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4978DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4979
9fd81dd5 4980#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4981/*
4982 * per rq 'load' arrray crap; XXX kill this.
4983 */
4984
4985/*
d937cdc5 4986 * The exact cpuload calculated at every tick would be:
3289bdb4 4987 *
d937cdc5
PZ
4988 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4989 *
4990 * If a cpu misses updates for n ticks (as it was idle) and update gets
4991 * called on the n+1-th tick when cpu may be busy, then we have:
4992 *
4993 * load_n = (1 - 1/2^i)^n * load_0
4994 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4995 *
4996 * decay_load_missed() below does efficient calculation of
3289bdb4 4997 *
d937cdc5
PZ
4998 * load' = (1 - 1/2^i)^n * load
4999 *
5000 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5001 * This allows us to precompute the above in said factors, thereby allowing the
5002 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5003 * fixed_power_int())
3289bdb4 5004 *
d937cdc5 5005 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5006 */
5007#define DEGRADE_SHIFT 7
d937cdc5
PZ
5008
5009static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5010static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5011 { 0, 0, 0, 0, 0, 0, 0, 0 },
5012 { 64, 32, 8, 0, 0, 0, 0, 0 },
5013 { 96, 72, 40, 12, 1, 0, 0, 0 },
5014 { 112, 98, 75, 43, 15, 1, 0, 0 },
5015 { 120, 112, 98, 76, 45, 16, 2, 0 }
5016};
3289bdb4
PZ
5017
5018/*
5019 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5020 * would be when CPU is idle and so we just decay the old load without
5021 * adding any new load.
5022 */
5023static unsigned long
5024decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5025{
5026 int j = 0;
5027
5028 if (!missed_updates)
5029 return load;
5030
5031 if (missed_updates >= degrade_zero_ticks[idx])
5032 return 0;
5033
5034 if (idx == 1)
5035 return load >> missed_updates;
5036
5037 while (missed_updates) {
5038 if (missed_updates % 2)
5039 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5040
5041 missed_updates >>= 1;
5042 j++;
5043 }
5044 return load;
5045}
9fd81dd5 5046#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5047
59543275 5048/**
cee1afce 5049 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5050 * @this_rq: The rq to update statistics for
5051 * @this_load: The current load
5052 * @pending_updates: The number of missed updates
59543275 5053 *
3289bdb4 5054 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5055 * scheduler tick (TICK_NSEC).
5056 *
5057 * This function computes a decaying average:
5058 *
5059 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5060 *
5061 * Because of NOHZ it might not get called on every tick which gives need for
5062 * the @pending_updates argument.
5063 *
5064 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5065 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5066 * = A * (A * load[i]_n-2 + B) + B
5067 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5068 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5069 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5070 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5071 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5072 *
5073 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5074 * any change in load would have resulted in the tick being turned back on.
5075 *
5076 * For regular NOHZ, this reduces to:
5077 *
5078 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5079 *
5080 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5081 * term.
3289bdb4 5082 */
1f41906a
FW
5083static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5084 unsigned long pending_updates)
3289bdb4 5085{
9fd81dd5 5086 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5087 int i, scale;
5088
5089 this_rq->nr_load_updates++;
5090
5091 /* Update our load: */
5092 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5093 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5094 unsigned long old_load, new_load;
5095
5096 /* scale is effectively 1 << i now, and >> i divides by scale */
5097
7400d3bb 5098 old_load = this_rq->cpu_load[i];
9fd81dd5 5099#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5100 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5101 if (tickless_load) {
5102 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5103 /*
5104 * old_load can never be a negative value because a
5105 * decayed tickless_load cannot be greater than the
5106 * original tickless_load.
5107 */
5108 old_load += tickless_load;
5109 }
9fd81dd5 5110#endif
3289bdb4
PZ
5111 new_load = this_load;
5112 /*
5113 * Round up the averaging division if load is increasing. This
5114 * prevents us from getting stuck on 9 if the load is 10, for
5115 * example.
5116 */
5117 if (new_load > old_load)
5118 new_load += scale - 1;
5119
5120 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5121 }
5122
5123 sched_avg_update(this_rq);
5124}
5125
7ea241af 5126/* Used instead of source_load when we know the type == 0 */
c7132dd6 5127static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5128{
c7132dd6 5129 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5130}
5131
3289bdb4 5132#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5133/*
5134 * There is no sane way to deal with nohz on smp when using jiffies because the
5135 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5136 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5137 *
5138 * Therefore we need to avoid the delta approach from the regular tick when
5139 * possible since that would seriously skew the load calculation. This is why we
5140 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5141 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5142 * loop exit, nohz_idle_balance, nohz full exit...)
5143 *
5144 * This means we might still be one tick off for nohz periods.
5145 */
5146
5147static void cpu_load_update_nohz(struct rq *this_rq,
5148 unsigned long curr_jiffies,
5149 unsigned long load)
be68a682
FW
5150{
5151 unsigned long pending_updates;
5152
5153 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5154 if (pending_updates) {
5155 this_rq->last_load_update_tick = curr_jiffies;
5156 /*
5157 * In the regular NOHZ case, we were idle, this means load 0.
5158 * In the NOHZ_FULL case, we were non-idle, we should consider
5159 * its weighted load.
5160 */
1f41906a 5161 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5162 }
5163}
5164
3289bdb4
PZ
5165/*
5166 * Called from nohz_idle_balance() to update the load ratings before doing the
5167 * idle balance.
5168 */
cee1afce 5169static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5170{
3289bdb4
PZ
5171 /*
5172 * bail if there's load or we're actually up-to-date.
5173 */
c7132dd6 5174 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5175 return;
5176
1f41906a 5177 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5178}
5179
5180/*
1f41906a
FW
5181 * Record CPU load on nohz entry so we know the tickless load to account
5182 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5183 * than other cpu_load[idx] but it should be fine as cpu_load readers
5184 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5185 */
1f41906a 5186void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5187{
5188 struct rq *this_rq = this_rq();
1f41906a
FW
5189
5190 /*
5191 * This is all lockless but should be fine. If weighted_cpuload changes
5192 * concurrently we'll exit nohz. And cpu_load write can race with
5193 * cpu_load_update_idle() but both updater would be writing the same.
5194 */
c7132dd6 5195 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5196}
5197
5198/*
5199 * Account the tickless load in the end of a nohz frame.
5200 */
5201void cpu_load_update_nohz_stop(void)
5202{
316c1608 5203 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5204 struct rq *this_rq = this_rq();
5205 unsigned long load;
8a8c69c3 5206 struct rq_flags rf;
3289bdb4
PZ
5207
5208 if (curr_jiffies == this_rq->last_load_update_tick)
5209 return;
5210
c7132dd6 5211 load = weighted_cpuload(this_rq);
8a8c69c3 5212 rq_lock(this_rq, &rf);
b52fad2d 5213 update_rq_clock(this_rq);
1f41906a 5214 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5215 rq_unlock(this_rq, &rf);
3289bdb4 5216}
1f41906a
FW
5217#else /* !CONFIG_NO_HZ_COMMON */
5218static inline void cpu_load_update_nohz(struct rq *this_rq,
5219 unsigned long curr_jiffies,
5220 unsigned long load) { }
5221#endif /* CONFIG_NO_HZ_COMMON */
5222
5223static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5224{
9fd81dd5 5225#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5226 /* See the mess around cpu_load_update_nohz(). */
5227 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5228#endif
1f41906a
FW
5229 cpu_load_update(this_rq, load, 1);
5230}
3289bdb4
PZ
5231
5232/*
5233 * Called from scheduler_tick()
5234 */
cee1afce 5235void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5236{
c7132dd6 5237 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5238
5239 if (tick_nohz_tick_stopped())
5240 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5241 else
5242 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5243}
5244
029632fb
PZ
5245/*
5246 * Return a low guess at the load of a migration-source cpu weighted
5247 * according to the scheduling class and "nice" value.
5248 *
5249 * We want to under-estimate the load of migration sources, to
5250 * balance conservatively.
5251 */
5252static unsigned long source_load(int cpu, int type)
5253{
5254 struct rq *rq = cpu_rq(cpu);
c7132dd6 5255 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5256
5257 if (type == 0 || !sched_feat(LB_BIAS))
5258 return total;
5259
5260 return min(rq->cpu_load[type-1], total);
5261}
5262
5263/*
5264 * Return a high guess at the load of a migration-target cpu weighted
5265 * according to the scheduling class and "nice" value.
5266 */
5267static unsigned long target_load(int cpu, int type)
5268{
5269 struct rq *rq = cpu_rq(cpu);
c7132dd6 5270 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5271
5272 if (type == 0 || !sched_feat(LB_BIAS))
5273 return total;
5274
5275 return max(rq->cpu_load[type-1], total);
5276}
5277
ced549fa 5278static unsigned long capacity_of(int cpu)
029632fb 5279{
ced549fa 5280 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5281}
5282
ca6d75e6
VG
5283static unsigned long capacity_orig_of(int cpu)
5284{
5285 return cpu_rq(cpu)->cpu_capacity_orig;
5286}
5287
029632fb
PZ
5288static unsigned long cpu_avg_load_per_task(int cpu)
5289{
5290 struct rq *rq = cpu_rq(cpu);
316c1608 5291 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5292 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5293
5294 if (nr_running)
b92486cb 5295 return load_avg / nr_running;
029632fb
PZ
5296
5297 return 0;
5298}
5299
c58d25f3
PZ
5300static void record_wakee(struct task_struct *p)
5301{
5302 /*
5303 * Only decay a single time; tasks that have less then 1 wakeup per
5304 * jiffy will not have built up many flips.
5305 */
5306 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5307 current->wakee_flips >>= 1;
5308 current->wakee_flip_decay_ts = jiffies;
5309 }
5310
5311 if (current->last_wakee != p) {
5312 current->last_wakee = p;
5313 current->wakee_flips++;
5314 }
5315}
5316
63b0e9ed
MG
5317/*
5318 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5319 *
63b0e9ed 5320 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5321 * at a frequency roughly N times higher than one of its wakees.
5322 *
5323 * In order to determine whether we should let the load spread vs consolidating
5324 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5325 * partner, and a factor of lls_size higher frequency in the other.
5326 *
5327 * With both conditions met, we can be relatively sure that the relationship is
5328 * non-monogamous, with partner count exceeding socket size.
5329 *
5330 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5331 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5332 * socket size.
63b0e9ed 5333 */
62470419
MW
5334static int wake_wide(struct task_struct *p)
5335{
63b0e9ed
MG
5336 unsigned int master = current->wakee_flips;
5337 unsigned int slave = p->wakee_flips;
7d9ffa89 5338 int factor = this_cpu_read(sd_llc_size);
62470419 5339
63b0e9ed
MG
5340 if (master < slave)
5341 swap(master, slave);
5342 if (slave < factor || master < slave * factor)
5343 return 0;
5344 return 1;
62470419
MW
5345}
5346
772bd008
MR
5347static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5348 int prev_cpu, int sync)
098fb9db 5349{
3fed382b
RR
5350 int this_cpu = smp_processor_id();
5351 bool affine = false;
098fb9db 5352
7d894e6e
RR
5353 /*
5354 * Common case: CPUs are in the same socket, and select_idle_sibling()
5355 * will do its thing regardless of what we return:
5356 */
5357 if (cpus_share_cache(prev_cpu, this_cpu))
3fed382b
RR
5358 affine = true;
5359 else
5360 affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5361
ae92882e 5362 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5363 if (affine) {
5364 schedstat_inc(sd->ttwu_move_affine);
5365 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5366 }
098fb9db 5367
3fed382b 5368 return affine;
098fb9db
IM
5369}
5370
6a0b19c0
MR
5371static inline int task_util(struct task_struct *p);
5372static int cpu_util_wake(int cpu, struct task_struct *p);
5373
5374static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5375{
5376 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5377}
5378
aaee1203
PZ
5379/*
5380 * find_idlest_group finds and returns the least busy CPU group within the
5381 * domain.
5382 */
5383static struct sched_group *
78e7ed53 5384find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5385 int this_cpu, int sd_flag)
e7693a36 5386{
b3bd3de6 5387 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5388 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5389 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5390 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5391 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5392 int load_idx = sd->forkexec_idx;
6b94780e
VG
5393 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5394 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5395 (sd->imbalance_pct-100) / 100;
e7693a36 5396
c44f2a02
VG
5397 if (sd_flag & SD_BALANCE_WAKE)
5398 load_idx = sd->wake_idx;
5399
aaee1203 5400 do {
6b94780e
VG
5401 unsigned long load, avg_load, runnable_load;
5402 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5403 int local_group;
5404 int i;
e7693a36 5405
aaee1203 5406 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5407 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5408 &p->cpus_allowed))
aaee1203
PZ
5409 continue;
5410
5411 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5412 sched_group_span(group));
aaee1203 5413
6a0b19c0
MR
5414 /*
5415 * Tally up the load of all CPUs in the group and find
5416 * the group containing the CPU with most spare capacity.
5417 */
aaee1203 5418 avg_load = 0;
6b94780e 5419 runnable_load = 0;
6a0b19c0 5420 max_spare_cap = 0;
aaee1203 5421
ae4df9d6 5422 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5423 /* Bias balancing toward cpus of our domain */
5424 if (local_group)
5425 load = source_load(i, load_idx);
5426 else
5427 load = target_load(i, load_idx);
5428
6b94780e
VG
5429 runnable_load += load;
5430
5431 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5432
5433 spare_cap = capacity_spare_wake(i, p);
5434
5435 if (spare_cap > max_spare_cap)
5436 max_spare_cap = spare_cap;
aaee1203
PZ
5437 }
5438
63b2ca30 5439 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5440 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5441 group->sgc->capacity;
5442 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5443 group->sgc->capacity;
aaee1203
PZ
5444
5445 if (local_group) {
6b94780e
VG
5446 this_runnable_load = runnable_load;
5447 this_avg_load = avg_load;
6a0b19c0
MR
5448 this_spare = max_spare_cap;
5449 } else {
6b94780e
VG
5450 if (min_runnable_load > (runnable_load + imbalance)) {
5451 /*
5452 * The runnable load is significantly smaller
5453 * so we can pick this new cpu
5454 */
5455 min_runnable_load = runnable_load;
5456 min_avg_load = avg_load;
5457 idlest = group;
5458 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5459 (100*min_avg_load > imbalance_scale*avg_load)) {
5460 /*
5461 * The runnable loads are close so take the
5462 * blocked load into account through avg_load.
5463 */
5464 min_avg_load = avg_load;
6a0b19c0
MR
5465 idlest = group;
5466 }
5467
5468 if (most_spare < max_spare_cap) {
5469 most_spare = max_spare_cap;
5470 most_spare_sg = group;
5471 }
aaee1203
PZ
5472 }
5473 } while (group = group->next, group != sd->groups);
5474
6a0b19c0
MR
5475 /*
5476 * The cross-over point between using spare capacity or least load
5477 * is too conservative for high utilization tasks on partially
5478 * utilized systems if we require spare_capacity > task_util(p),
5479 * so we allow for some task stuffing by using
5480 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5481 *
5482 * Spare capacity can't be used for fork because the utilization has
5483 * not been set yet, we must first select a rq to compute the initial
5484 * utilization.
6a0b19c0 5485 */
f519a3f1
VG
5486 if (sd_flag & SD_BALANCE_FORK)
5487 goto skip_spare;
5488
6a0b19c0 5489 if (this_spare > task_util(p) / 2 &&
6b94780e 5490 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5491 return NULL;
6b94780e
VG
5492
5493 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5494 return most_spare_sg;
5495
f519a3f1 5496skip_spare:
6b94780e
VG
5497 if (!idlest)
5498 return NULL;
5499
5500 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5501 return NULL;
6b94780e
VG
5502
5503 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5504 (100*this_avg_load < imbalance_scale*min_avg_load))
5505 return NULL;
5506
aaee1203
PZ
5507 return idlest;
5508}
5509
5510/*
5511 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5512 */
5513static int
5514find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5515{
5516 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5517 unsigned int min_exit_latency = UINT_MAX;
5518 u64 latest_idle_timestamp = 0;
5519 int least_loaded_cpu = this_cpu;
5520 int shallowest_idle_cpu = -1;
aaee1203
PZ
5521 int i;
5522
eaecf41f
MR
5523 /* Check if we have any choice: */
5524 if (group->group_weight == 1)
ae4df9d6 5525 return cpumask_first(sched_group_span(group));
eaecf41f 5526
aaee1203 5527 /* Traverse only the allowed CPUs */
ae4df9d6 5528 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5529 if (idle_cpu(i)) {
5530 struct rq *rq = cpu_rq(i);
5531 struct cpuidle_state *idle = idle_get_state(rq);
5532 if (idle && idle->exit_latency < min_exit_latency) {
5533 /*
5534 * We give priority to a CPU whose idle state
5535 * has the smallest exit latency irrespective
5536 * of any idle timestamp.
5537 */
5538 min_exit_latency = idle->exit_latency;
5539 latest_idle_timestamp = rq->idle_stamp;
5540 shallowest_idle_cpu = i;
5541 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5542 rq->idle_stamp > latest_idle_timestamp) {
5543 /*
5544 * If equal or no active idle state, then
5545 * the most recently idled CPU might have
5546 * a warmer cache.
5547 */
5548 latest_idle_timestamp = rq->idle_stamp;
5549 shallowest_idle_cpu = i;
5550 }
9f96742a 5551 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5552 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5553 if (load < min_load || (load == min_load && i == this_cpu)) {
5554 min_load = load;
5555 least_loaded_cpu = i;
5556 }
e7693a36
GH
5557 }
5558 }
5559
83a0a96a 5560 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5561}
e7693a36 5562
10e2f1ac
PZ
5563#ifdef CONFIG_SCHED_SMT
5564
5565static inline void set_idle_cores(int cpu, int val)
5566{
5567 struct sched_domain_shared *sds;
5568
5569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5570 if (sds)
5571 WRITE_ONCE(sds->has_idle_cores, val);
5572}
5573
5574static inline bool test_idle_cores(int cpu, bool def)
5575{
5576 struct sched_domain_shared *sds;
5577
5578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5579 if (sds)
5580 return READ_ONCE(sds->has_idle_cores);
5581
5582 return def;
5583}
5584
5585/*
5586 * Scans the local SMT mask to see if the entire core is idle, and records this
5587 * information in sd_llc_shared->has_idle_cores.
5588 *
5589 * Since SMT siblings share all cache levels, inspecting this limited remote
5590 * state should be fairly cheap.
5591 */
1b568f0a 5592void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5593{
5594 int core = cpu_of(rq);
5595 int cpu;
5596
5597 rcu_read_lock();
5598 if (test_idle_cores(core, true))
5599 goto unlock;
5600
5601 for_each_cpu(cpu, cpu_smt_mask(core)) {
5602 if (cpu == core)
5603 continue;
5604
5605 if (!idle_cpu(cpu))
5606 goto unlock;
5607 }
5608
5609 set_idle_cores(core, 1);
5610unlock:
5611 rcu_read_unlock();
5612}
5613
5614/*
5615 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5616 * there are no idle cores left in the system; tracked through
5617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5618 */
5619static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5620{
5621 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5622 int core, cpu;
10e2f1ac 5623
1b568f0a
PZ
5624 if (!static_branch_likely(&sched_smt_present))
5625 return -1;
5626
10e2f1ac
PZ
5627 if (!test_idle_cores(target, false))
5628 return -1;
5629
0c98d344 5630 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5631
c743f0a5 5632 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5633 bool idle = true;
5634
5635 for_each_cpu(cpu, cpu_smt_mask(core)) {
5636 cpumask_clear_cpu(cpu, cpus);
5637 if (!idle_cpu(cpu))
5638 idle = false;
5639 }
5640
5641 if (idle)
5642 return core;
5643 }
5644
5645 /*
5646 * Failed to find an idle core; stop looking for one.
5647 */
5648 set_idle_cores(target, 0);
5649
5650 return -1;
5651}
5652
5653/*
5654 * Scan the local SMT mask for idle CPUs.
5655 */
5656static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5657{
5658 int cpu;
5659
1b568f0a
PZ
5660 if (!static_branch_likely(&sched_smt_present))
5661 return -1;
5662
10e2f1ac 5663 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5664 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5665 continue;
5666 if (idle_cpu(cpu))
5667 return cpu;
5668 }
5669
5670 return -1;
5671}
5672
5673#else /* CONFIG_SCHED_SMT */
5674
5675static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5676{
5677 return -1;
5678}
5679
5680static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5681{
5682 return -1;
5683}
5684
5685#endif /* CONFIG_SCHED_SMT */
5686
5687/*
5688 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5689 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5690 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5691 */
10e2f1ac
PZ
5692static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5693{
9cfb38a7 5694 struct sched_domain *this_sd;
1ad3aaf3 5695 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5696 u64 time, cost;
5697 s64 delta;
1ad3aaf3 5698 int cpu, nr = INT_MAX;
10e2f1ac 5699
9cfb38a7
WL
5700 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5701 if (!this_sd)
5702 return -1;
5703
10e2f1ac
PZ
5704 /*
5705 * Due to large variance we need a large fuzz factor; hackbench in
5706 * particularly is sensitive here.
5707 */
1ad3aaf3
PZ
5708 avg_idle = this_rq()->avg_idle / 512;
5709 avg_cost = this_sd->avg_scan_cost + 1;
5710
5711 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5712 return -1;
5713
1ad3aaf3
PZ
5714 if (sched_feat(SIS_PROP)) {
5715 u64 span_avg = sd->span_weight * avg_idle;
5716 if (span_avg > 4*avg_cost)
5717 nr = div_u64(span_avg, avg_cost);
5718 else
5719 nr = 4;
5720 }
5721
10e2f1ac
PZ
5722 time = local_clock();
5723
c743f0a5 5724 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5725 if (!--nr)
5726 return -1;
0c98d344 5727 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5728 continue;
5729 if (idle_cpu(cpu))
5730 break;
5731 }
5732
5733 time = local_clock() - time;
5734 cost = this_sd->avg_scan_cost;
5735 delta = (s64)(time - cost) / 8;
5736 this_sd->avg_scan_cost += delta;
5737
5738 return cpu;
5739}
5740
5741/*
5742 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5743 */
772bd008 5744static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5745{
99bd5e2f 5746 struct sched_domain *sd;
10e2f1ac 5747 int i;
a50bde51 5748
e0a79f52
MG
5749 if (idle_cpu(target))
5750 return target;
99bd5e2f
SS
5751
5752 /*
10e2f1ac 5753 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5754 */
772bd008
MR
5755 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5756 return prev;
a50bde51 5757
518cd623 5758 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5759 if (!sd)
5760 return target;
772bd008 5761
10e2f1ac
PZ
5762 i = select_idle_core(p, sd, target);
5763 if ((unsigned)i < nr_cpumask_bits)
5764 return i;
37407ea7 5765
10e2f1ac
PZ
5766 i = select_idle_cpu(p, sd, target);
5767 if ((unsigned)i < nr_cpumask_bits)
5768 return i;
5769
5770 i = select_idle_smt(p, sd, target);
5771 if ((unsigned)i < nr_cpumask_bits)
5772 return i;
970e1789 5773
a50bde51
PZ
5774 return target;
5775}
231678b7 5776
8bb5b00c 5777/*
9e91d61d 5778 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5779 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5780 * compare the utilization with the capacity of the CPU that is available for
5781 * CFS task (ie cpu_capacity).
231678b7
DE
5782 *
5783 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5784 * recent utilization of currently non-runnable tasks on a CPU. It represents
5785 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5786 * capacity_orig is the cpu_capacity available at the highest frequency
5787 * (arch_scale_freq_capacity()).
5788 * The utilization of a CPU converges towards a sum equal to or less than the
5789 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5790 * the running time on this CPU scaled by capacity_curr.
5791 *
5792 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5793 * higher than capacity_orig because of unfortunate rounding in
5794 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5795 * the average stabilizes with the new running time. We need to check that the
5796 * utilization stays within the range of [0..capacity_orig] and cap it if
5797 * necessary. Without utilization capping, a group could be seen as overloaded
5798 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5799 * available capacity. We allow utilization to overshoot capacity_curr (but not
5800 * capacity_orig) as it useful for predicting the capacity required after task
5801 * migrations (scheduler-driven DVFS).
8bb5b00c 5802 */
9e91d61d 5803static int cpu_util(int cpu)
8bb5b00c 5804{
9e91d61d 5805 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5806 unsigned long capacity = capacity_orig_of(cpu);
5807
231678b7 5808 return (util >= capacity) ? capacity : util;
8bb5b00c 5809}
a50bde51 5810
3273163c
MR
5811static inline int task_util(struct task_struct *p)
5812{
5813 return p->se.avg.util_avg;
5814}
5815
104cb16d
MR
5816/*
5817 * cpu_util_wake: Compute cpu utilization with any contributions from
5818 * the waking task p removed.
5819 */
5820static int cpu_util_wake(int cpu, struct task_struct *p)
5821{
5822 unsigned long util, capacity;
5823
5824 /* Task has no contribution or is new */
5825 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5826 return cpu_util(cpu);
5827
5828 capacity = capacity_orig_of(cpu);
5829 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5830
5831 return (util >= capacity) ? capacity : util;
5832}
5833
3273163c
MR
5834/*
5835 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5836 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5837 *
5838 * In that case WAKE_AFFINE doesn't make sense and we'll let
5839 * BALANCE_WAKE sort things out.
5840 */
5841static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5842{
5843 long min_cap, max_cap;
5844
5845 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5846 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5847
5848 /* Minimum capacity is close to max, no need to abort wake_affine */
5849 if (max_cap - min_cap < max_cap >> 3)
5850 return 0;
5851
104cb16d
MR
5852 /* Bring task utilization in sync with prev_cpu */
5853 sync_entity_load_avg(&p->se);
5854
3273163c
MR
5855 return min_cap * 1024 < task_util(p) * capacity_margin;
5856}
5857
aaee1203 5858/*
de91b9cb
MR
5859 * select_task_rq_fair: Select target runqueue for the waking task in domains
5860 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5861 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5862 *
de91b9cb
MR
5863 * Balances load by selecting the idlest cpu in the idlest group, or under
5864 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5865 *
de91b9cb 5866 * Returns the target cpu number.
aaee1203
PZ
5867 *
5868 * preempt must be disabled.
5869 */
0017d735 5870static int
ac66f547 5871select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5872{
29cd8bae 5873 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5874 int cpu = smp_processor_id();
63b0e9ed 5875 int new_cpu = prev_cpu;
99bd5e2f 5876 int want_affine = 0;
5158f4e4 5877 int sync = wake_flags & WF_SYNC;
c88d5910 5878
c58d25f3
PZ
5879 if (sd_flag & SD_BALANCE_WAKE) {
5880 record_wakee(p);
3273163c 5881 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5882 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5883 }
aaee1203 5884
dce840a0 5885 rcu_read_lock();
aaee1203 5886 for_each_domain(cpu, tmp) {
e4f42888 5887 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5888 break;
e4f42888 5889
fe3bcfe1 5890 /*
99bd5e2f
SS
5891 * If both cpu and prev_cpu are part of this domain,
5892 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5893 */
99bd5e2f
SS
5894 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5895 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5896 affine_sd = tmp;
29cd8bae 5897 break;
f03542a7 5898 }
29cd8bae 5899
f03542a7 5900 if (tmp->flags & sd_flag)
29cd8bae 5901 sd = tmp;
63b0e9ed
MG
5902 else if (!want_affine)
5903 break;
29cd8bae
PZ
5904 }
5905
63b0e9ed
MG
5906 if (affine_sd) {
5907 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
5908 if (cpu == prev_cpu)
5909 goto pick_cpu;
5910
5911 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5912 new_cpu = cpu;
8b911acd 5913 }
e7693a36 5914
63b0e9ed 5915 if (!sd) {
7d894e6e 5916 pick_cpu:
63b0e9ed 5917 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5918 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5919
5920 } else while (sd) {
aaee1203 5921 struct sched_group *group;
c88d5910 5922 int weight;
098fb9db 5923
0763a660 5924 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5925 sd = sd->child;
5926 continue;
5927 }
098fb9db 5928
c44f2a02 5929 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5930 if (!group) {
5931 sd = sd->child;
5932 continue;
5933 }
4ae7d5ce 5934
d7c33c49 5935 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5936 if (new_cpu == -1 || new_cpu == cpu) {
5937 /* Now try balancing at a lower domain level of cpu */
5938 sd = sd->child;
5939 continue;
e7693a36 5940 }
aaee1203
PZ
5941
5942 /* Now try balancing at a lower domain level of new_cpu */
5943 cpu = new_cpu;
669c55e9 5944 weight = sd->span_weight;
aaee1203
PZ
5945 sd = NULL;
5946 for_each_domain(cpu, tmp) {
669c55e9 5947 if (weight <= tmp->span_weight)
aaee1203 5948 break;
0763a660 5949 if (tmp->flags & sd_flag)
aaee1203
PZ
5950 sd = tmp;
5951 }
5952 /* while loop will break here if sd == NULL */
e7693a36 5953 }
dce840a0 5954 rcu_read_unlock();
e7693a36 5955
c88d5910 5956 return new_cpu;
e7693a36 5957}
0a74bef8
PT
5958
5959/*
5960 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5961 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5962 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5963 */
5a4fd036 5964static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5965{
59efa0ba
PZ
5966 /*
5967 * As blocked tasks retain absolute vruntime the migration needs to
5968 * deal with this by subtracting the old and adding the new
5969 * min_vruntime -- the latter is done by enqueue_entity() when placing
5970 * the task on the new runqueue.
5971 */
5972 if (p->state == TASK_WAKING) {
5973 struct sched_entity *se = &p->se;
5974 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5975 u64 min_vruntime;
5976
5977#ifndef CONFIG_64BIT
5978 u64 min_vruntime_copy;
5979
5980 do {
5981 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5982 smp_rmb();
5983 min_vruntime = cfs_rq->min_vruntime;
5984 } while (min_vruntime != min_vruntime_copy);
5985#else
5986 min_vruntime = cfs_rq->min_vruntime;
5987#endif
5988
5989 se->vruntime -= min_vruntime;
5990 }
5991
aff3e498 5992 /*
9d89c257
YD
5993 * We are supposed to update the task to "current" time, then its up to date
5994 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5995 * what current time is, so simply throw away the out-of-date time. This
5996 * will result in the wakee task is less decayed, but giving the wakee more
5997 * load sounds not bad.
aff3e498 5998 */
9d89c257
YD
5999 remove_entity_load_avg(&p->se);
6000
6001 /* Tell new CPU we are migrated */
6002 p->se.avg.last_update_time = 0;
3944a927
BS
6003
6004 /* We have migrated, no longer consider this task hot */
9d89c257 6005 p->se.exec_start = 0;
0a74bef8 6006}
12695578
YD
6007
6008static void task_dead_fair(struct task_struct *p)
6009{
6010 remove_entity_load_avg(&p->se);
6011}
e7693a36
GH
6012#endif /* CONFIG_SMP */
6013
e52fb7c0
PZ
6014static unsigned long
6015wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6016{
6017 unsigned long gran = sysctl_sched_wakeup_granularity;
6018
6019 /*
e52fb7c0
PZ
6020 * Since its curr running now, convert the gran from real-time
6021 * to virtual-time in his units.
13814d42
MG
6022 *
6023 * By using 'se' instead of 'curr' we penalize light tasks, so
6024 * they get preempted easier. That is, if 'se' < 'curr' then
6025 * the resulting gran will be larger, therefore penalizing the
6026 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6027 * be smaller, again penalizing the lighter task.
6028 *
6029 * This is especially important for buddies when the leftmost
6030 * task is higher priority than the buddy.
0bbd3336 6031 */
f4ad9bd2 6032 return calc_delta_fair(gran, se);
0bbd3336
PZ
6033}
6034
464b7527
PZ
6035/*
6036 * Should 'se' preempt 'curr'.
6037 *
6038 * |s1
6039 * |s2
6040 * |s3
6041 * g
6042 * |<--->|c
6043 *
6044 * w(c, s1) = -1
6045 * w(c, s2) = 0
6046 * w(c, s3) = 1
6047 *
6048 */
6049static int
6050wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6051{
6052 s64 gran, vdiff = curr->vruntime - se->vruntime;
6053
6054 if (vdiff <= 0)
6055 return -1;
6056
e52fb7c0 6057 gran = wakeup_gran(curr, se);
464b7527
PZ
6058 if (vdiff > gran)
6059 return 1;
6060
6061 return 0;
6062}
6063
02479099
PZ
6064static void set_last_buddy(struct sched_entity *se)
6065{
69c80f3e
VP
6066 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6067 return;
6068
c5ae366e
DA
6069 for_each_sched_entity(se) {
6070 if (SCHED_WARN_ON(!se->on_rq))
6071 return;
69c80f3e 6072 cfs_rq_of(se)->last = se;
c5ae366e 6073 }
02479099
PZ
6074}
6075
6076static void set_next_buddy(struct sched_entity *se)
6077{
69c80f3e
VP
6078 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6079 return;
6080
c5ae366e
DA
6081 for_each_sched_entity(se) {
6082 if (SCHED_WARN_ON(!se->on_rq))
6083 return;
69c80f3e 6084 cfs_rq_of(se)->next = se;
c5ae366e 6085 }
02479099
PZ
6086}
6087
ac53db59
RR
6088static void set_skip_buddy(struct sched_entity *se)
6089{
69c80f3e
VP
6090 for_each_sched_entity(se)
6091 cfs_rq_of(se)->skip = se;
ac53db59
RR
6092}
6093
bf0f6f24
IM
6094/*
6095 * Preempt the current task with a newly woken task if needed:
6096 */
5a9b86f6 6097static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6098{
6099 struct task_struct *curr = rq->curr;
8651a86c 6100 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6101 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6102 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6103 int next_buddy_marked = 0;
bf0f6f24 6104
4ae7d5ce
IM
6105 if (unlikely(se == pse))
6106 return;
6107
5238cdd3 6108 /*
163122b7 6109 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6110 * unconditionally check_prempt_curr() after an enqueue (which may have
6111 * lead to a throttle). This both saves work and prevents false
6112 * next-buddy nomination below.
6113 */
6114 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6115 return;
6116
2f36825b 6117 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6118 set_next_buddy(pse);
2f36825b
VP
6119 next_buddy_marked = 1;
6120 }
57fdc26d 6121
aec0a514
BR
6122 /*
6123 * We can come here with TIF_NEED_RESCHED already set from new task
6124 * wake up path.
5238cdd3
PT
6125 *
6126 * Note: this also catches the edge-case of curr being in a throttled
6127 * group (e.g. via set_curr_task), since update_curr() (in the
6128 * enqueue of curr) will have resulted in resched being set. This
6129 * prevents us from potentially nominating it as a false LAST_BUDDY
6130 * below.
aec0a514
BR
6131 */
6132 if (test_tsk_need_resched(curr))
6133 return;
6134
a2f5c9ab
DH
6135 /* Idle tasks are by definition preempted by non-idle tasks. */
6136 if (unlikely(curr->policy == SCHED_IDLE) &&
6137 likely(p->policy != SCHED_IDLE))
6138 goto preempt;
6139
91c234b4 6140 /*
a2f5c9ab
DH
6141 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6142 * is driven by the tick):
91c234b4 6143 */
8ed92e51 6144 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6145 return;
bf0f6f24 6146
464b7527 6147 find_matching_se(&se, &pse);
9bbd7374 6148 update_curr(cfs_rq_of(se));
002f128b 6149 BUG_ON(!pse);
2f36825b
VP
6150 if (wakeup_preempt_entity(se, pse) == 1) {
6151 /*
6152 * Bias pick_next to pick the sched entity that is
6153 * triggering this preemption.
6154 */
6155 if (!next_buddy_marked)
6156 set_next_buddy(pse);
3a7e73a2 6157 goto preempt;
2f36825b 6158 }
464b7527 6159
3a7e73a2 6160 return;
a65ac745 6161
3a7e73a2 6162preempt:
8875125e 6163 resched_curr(rq);
3a7e73a2
PZ
6164 /*
6165 * Only set the backward buddy when the current task is still
6166 * on the rq. This can happen when a wakeup gets interleaved
6167 * with schedule on the ->pre_schedule() or idle_balance()
6168 * point, either of which can * drop the rq lock.
6169 *
6170 * Also, during early boot the idle thread is in the fair class,
6171 * for obvious reasons its a bad idea to schedule back to it.
6172 */
6173 if (unlikely(!se->on_rq || curr == rq->idle))
6174 return;
6175
6176 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6177 set_last_buddy(se);
bf0f6f24
IM
6178}
6179
606dba2e 6180static struct task_struct *
d8ac8971 6181pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6182{
6183 struct cfs_rq *cfs_rq = &rq->cfs;
6184 struct sched_entity *se;
678d5718 6185 struct task_struct *p;
37e117c0 6186 int new_tasks;
678d5718 6187
6e83125c 6188again:
678d5718 6189 if (!cfs_rq->nr_running)
38033c37 6190 goto idle;
678d5718 6191
9674f5ca 6192#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6193 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6194 goto simple;
6195
6196 /*
6197 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6198 * likely that a next task is from the same cgroup as the current.
6199 *
6200 * Therefore attempt to avoid putting and setting the entire cgroup
6201 * hierarchy, only change the part that actually changes.
6202 */
6203
6204 do {
6205 struct sched_entity *curr = cfs_rq->curr;
6206
6207 /*
6208 * Since we got here without doing put_prev_entity() we also
6209 * have to consider cfs_rq->curr. If it is still a runnable
6210 * entity, update_curr() will update its vruntime, otherwise
6211 * forget we've ever seen it.
6212 */
54d27365
BS
6213 if (curr) {
6214 if (curr->on_rq)
6215 update_curr(cfs_rq);
6216 else
6217 curr = NULL;
678d5718 6218
54d27365
BS
6219 /*
6220 * This call to check_cfs_rq_runtime() will do the
6221 * throttle and dequeue its entity in the parent(s).
9674f5ca 6222 * Therefore the nr_running test will indeed
54d27365
BS
6223 * be correct.
6224 */
9674f5ca
VK
6225 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6226 cfs_rq = &rq->cfs;
6227
6228 if (!cfs_rq->nr_running)
6229 goto idle;
6230
54d27365 6231 goto simple;
9674f5ca 6232 }
54d27365 6233 }
678d5718
PZ
6234
6235 se = pick_next_entity(cfs_rq, curr);
6236 cfs_rq = group_cfs_rq(se);
6237 } while (cfs_rq);
6238
6239 p = task_of(se);
6240
6241 /*
6242 * Since we haven't yet done put_prev_entity and if the selected task
6243 * is a different task than we started out with, try and touch the
6244 * least amount of cfs_rqs.
6245 */
6246 if (prev != p) {
6247 struct sched_entity *pse = &prev->se;
6248
6249 while (!(cfs_rq = is_same_group(se, pse))) {
6250 int se_depth = se->depth;
6251 int pse_depth = pse->depth;
6252
6253 if (se_depth <= pse_depth) {
6254 put_prev_entity(cfs_rq_of(pse), pse);
6255 pse = parent_entity(pse);
6256 }
6257 if (se_depth >= pse_depth) {
6258 set_next_entity(cfs_rq_of(se), se);
6259 se = parent_entity(se);
6260 }
6261 }
6262
6263 put_prev_entity(cfs_rq, pse);
6264 set_next_entity(cfs_rq, se);
6265 }
6266
6267 if (hrtick_enabled(rq))
6268 hrtick_start_fair(rq, p);
6269
6270 return p;
6271simple:
678d5718 6272#endif
bf0f6f24 6273
3f1d2a31 6274 put_prev_task(rq, prev);
606dba2e 6275
bf0f6f24 6276 do {
678d5718 6277 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6278 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6279 cfs_rq = group_cfs_rq(se);
6280 } while (cfs_rq);
6281
8f4d37ec 6282 p = task_of(se);
678d5718 6283
b39e66ea
MG
6284 if (hrtick_enabled(rq))
6285 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6286
6287 return p;
38033c37
PZ
6288
6289idle:
46f69fa3
MF
6290 new_tasks = idle_balance(rq, rf);
6291
37e117c0
PZ
6292 /*
6293 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6294 * possible for any higher priority task to appear. In that case we
6295 * must re-start the pick_next_entity() loop.
6296 */
e4aa358b 6297 if (new_tasks < 0)
37e117c0
PZ
6298 return RETRY_TASK;
6299
e4aa358b 6300 if (new_tasks > 0)
38033c37 6301 goto again;
38033c37
PZ
6302
6303 return NULL;
bf0f6f24
IM
6304}
6305
6306/*
6307 * Account for a descheduled task:
6308 */
31ee529c 6309static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6310{
6311 struct sched_entity *se = &prev->se;
6312 struct cfs_rq *cfs_rq;
6313
6314 for_each_sched_entity(se) {
6315 cfs_rq = cfs_rq_of(se);
ab6cde26 6316 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6317 }
6318}
6319
ac53db59
RR
6320/*
6321 * sched_yield() is very simple
6322 *
6323 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6324 */
6325static void yield_task_fair(struct rq *rq)
6326{
6327 struct task_struct *curr = rq->curr;
6328 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6329 struct sched_entity *se = &curr->se;
6330
6331 /*
6332 * Are we the only task in the tree?
6333 */
6334 if (unlikely(rq->nr_running == 1))
6335 return;
6336
6337 clear_buddies(cfs_rq, se);
6338
6339 if (curr->policy != SCHED_BATCH) {
6340 update_rq_clock(rq);
6341 /*
6342 * Update run-time statistics of the 'current'.
6343 */
6344 update_curr(cfs_rq);
916671c0
MG
6345 /*
6346 * Tell update_rq_clock() that we've just updated,
6347 * so we don't do microscopic update in schedule()
6348 * and double the fastpath cost.
6349 */
9edfbfed 6350 rq_clock_skip_update(rq, true);
ac53db59
RR
6351 }
6352
6353 set_skip_buddy(se);
6354}
6355
d95f4122
MG
6356static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6357{
6358 struct sched_entity *se = &p->se;
6359
5238cdd3
PT
6360 /* throttled hierarchies are not runnable */
6361 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6362 return false;
6363
6364 /* Tell the scheduler that we'd really like pse to run next. */
6365 set_next_buddy(se);
6366
d95f4122
MG
6367 yield_task_fair(rq);
6368
6369 return true;
6370}
6371
681f3e68 6372#ifdef CONFIG_SMP
bf0f6f24 6373/**************************************************
e9c84cb8
PZ
6374 * Fair scheduling class load-balancing methods.
6375 *
6376 * BASICS
6377 *
6378 * The purpose of load-balancing is to achieve the same basic fairness the
6379 * per-cpu scheduler provides, namely provide a proportional amount of compute
6380 * time to each task. This is expressed in the following equation:
6381 *
6382 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6383 *
6384 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6385 * W_i,0 is defined as:
6386 *
6387 * W_i,0 = \Sum_j w_i,j (2)
6388 *
6389 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6390 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6391 *
6392 * The weight average is an exponential decay average of the instantaneous
6393 * weight:
6394 *
6395 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6396 *
ced549fa 6397 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6398 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6399 * can also include other factors [XXX].
6400 *
6401 * To achieve this balance we define a measure of imbalance which follows
6402 * directly from (1):
6403 *
ced549fa 6404 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6405 *
6406 * We them move tasks around to minimize the imbalance. In the continuous
6407 * function space it is obvious this converges, in the discrete case we get
6408 * a few fun cases generally called infeasible weight scenarios.
6409 *
6410 * [XXX expand on:
6411 * - infeasible weights;
6412 * - local vs global optima in the discrete case. ]
6413 *
6414 *
6415 * SCHED DOMAINS
6416 *
6417 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6418 * for all i,j solution, we create a tree of cpus that follows the hardware
6419 * topology where each level pairs two lower groups (or better). This results
6420 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6421 * tree to only the first of the previous level and we decrease the frequency
6422 * of load-balance at each level inv. proportional to the number of cpus in
6423 * the groups.
6424 *
6425 * This yields:
6426 *
6427 * log_2 n 1 n
6428 * \Sum { --- * --- * 2^i } = O(n) (5)
6429 * i = 0 2^i 2^i
6430 * `- size of each group
6431 * | | `- number of cpus doing load-balance
6432 * | `- freq
6433 * `- sum over all levels
6434 *
6435 * Coupled with a limit on how many tasks we can migrate every balance pass,
6436 * this makes (5) the runtime complexity of the balancer.
6437 *
6438 * An important property here is that each CPU is still (indirectly) connected
6439 * to every other cpu in at most O(log n) steps:
6440 *
6441 * The adjacency matrix of the resulting graph is given by:
6442 *
97a7142f 6443 * log_2 n
e9c84cb8
PZ
6444 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6445 * k = 0
6446 *
6447 * And you'll find that:
6448 *
6449 * A^(log_2 n)_i,j != 0 for all i,j (7)
6450 *
6451 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6452 * The task movement gives a factor of O(m), giving a convergence complexity
6453 * of:
6454 *
6455 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6456 *
6457 *
6458 * WORK CONSERVING
6459 *
6460 * In order to avoid CPUs going idle while there's still work to do, new idle
6461 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6462 * tree itself instead of relying on other CPUs to bring it work.
6463 *
6464 * This adds some complexity to both (5) and (8) but it reduces the total idle
6465 * time.
6466 *
6467 * [XXX more?]
6468 *
6469 *
6470 * CGROUPS
6471 *
6472 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6473 *
6474 * s_k,i
6475 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6476 * S_k
6477 *
6478 * Where
6479 *
6480 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6481 *
6482 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6483 *
6484 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6485 * property.
6486 *
6487 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6488 * rewrite all of this once again.]
97a7142f 6489 */
bf0f6f24 6490
ed387b78
HS
6491static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6492
0ec8aa00
PZ
6493enum fbq_type { regular, remote, all };
6494
ddcdf6e7 6495#define LBF_ALL_PINNED 0x01
367456c7 6496#define LBF_NEED_BREAK 0x02
6263322c
PZ
6497#define LBF_DST_PINNED 0x04
6498#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6499
6500struct lb_env {
6501 struct sched_domain *sd;
6502
ddcdf6e7 6503 struct rq *src_rq;
85c1e7da 6504 int src_cpu;
ddcdf6e7
PZ
6505
6506 int dst_cpu;
6507 struct rq *dst_rq;
6508
88b8dac0
SV
6509 struct cpumask *dst_grpmask;
6510 int new_dst_cpu;
ddcdf6e7 6511 enum cpu_idle_type idle;
bd939f45 6512 long imbalance;
b9403130
MW
6513 /* The set of CPUs under consideration for load-balancing */
6514 struct cpumask *cpus;
6515
ddcdf6e7 6516 unsigned int flags;
367456c7
PZ
6517
6518 unsigned int loop;
6519 unsigned int loop_break;
6520 unsigned int loop_max;
0ec8aa00
PZ
6521
6522 enum fbq_type fbq_type;
163122b7 6523 struct list_head tasks;
ddcdf6e7
PZ
6524};
6525
029632fb
PZ
6526/*
6527 * Is this task likely cache-hot:
6528 */
5d5e2b1b 6529static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6530{
6531 s64 delta;
6532
e5673f28
KT
6533 lockdep_assert_held(&env->src_rq->lock);
6534
029632fb
PZ
6535 if (p->sched_class != &fair_sched_class)
6536 return 0;
6537
6538 if (unlikely(p->policy == SCHED_IDLE))
6539 return 0;
6540
6541 /*
6542 * Buddy candidates are cache hot:
6543 */
5d5e2b1b 6544 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6545 (&p->se == cfs_rq_of(&p->se)->next ||
6546 &p->se == cfs_rq_of(&p->se)->last))
6547 return 1;
6548
6549 if (sysctl_sched_migration_cost == -1)
6550 return 1;
6551 if (sysctl_sched_migration_cost == 0)
6552 return 0;
6553
5d5e2b1b 6554 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6555
6556 return delta < (s64)sysctl_sched_migration_cost;
6557}
6558
3a7053b3 6559#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6560/*
2a1ed24c
SD
6561 * Returns 1, if task migration degrades locality
6562 * Returns 0, if task migration improves locality i.e migration preferred.
6563 * Returns -1, if task migration is not affected by locality.
c1ceac62 6564 */
2a1ed24c 6565static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6566{
b1ad065e 6567 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6568 unsigned long src_faults, dst_faults;
3a7053b3
MG
6569 int src_nid, dst_nid;
6570
2a595721 6571 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6572 return -1;
6573
c3b9bc5b 6574 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6575 return -1;
7a0f3083
MG
6576
6577 src_nid = cpu_to_node(env->src_cpu);
6578 dst_nid = cpu_to_node(env->dst_cpu);
6579
83e1d2cd 6580 if (src_nid == dst_nid)
2a1ed24c 6581 return -1;
7a0f3083 6582
2a1ed24c
SD
6583 /* Migrating away from the preferred node is always bad. */
6584 if (src_nid == p->numa_preferred_nid) {
6585 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6586 return 1;
6587 else
6588 return -1;
6589 }
b1ad065e 6590
c1ceac62
RR
6591 /* Encourage migration to the preferred node. */
6592 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6593 return 0;
b1ad065e 6594
739294fb
RR
6595 /* Leaving a core idle is often worse than degrading locality. */
6596 if (env->idle != CPU_NOT_IDLE)
6597 return -1;
6598
c1ceac62
RR
6599 if (numa_group) {
6600 src_faults = group_faults(p, src_nid);
6601 dst_faults = group_faults(p, dst_nid);
6602 } else {
6603 src_faults = task_faults(p, src_nid);
6604 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6605 }
6606
c1ceac62 6607 return dst_faults < src_faults;
7a0f3083
MG
6608}
6609
3a7053b3 6610#else
2a1ed24c 6611static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6612 struct lb_env *env)
6613{
2a1ed24c 6614 return -1;
7a0f3083 6615}
3a7053b3
MG
6616#endif
6617
1e3c88bd
PZ
6618/*
6619 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6620 */
6621static
8e45cb54 6622int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6623{
2a1ed24c 6624 int tsk_cache_hot;
e5673f28
KT
6625
6626 lockdep_assert_held(&env->src_rq->lock);
6627
1e3c88bd
PZ
6628 /*
6629 * We do not migrate tasks that are:
d3198084 6630 * 1) throttled_lb_pair, or
1e3c88bd 6631 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6632 * 3) running (obviously), or
6633 * 4) are cache-hot on their current CPU.
1e3c88bd 6634 */
d3198084
JK
6635 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6636 return 0;
6637
0c98d344 6638 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6639 int cpu;
88b8dac0 6640
ae92882e 6641 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6642
6263322c
PZ
6643 env->flags |= LBF_SOME_PINNED;
6644
88b8dac0
SV
6645 /*
6646 * Remember if this task can be migrated to any other cpu in
6647 * our sched_group. We may want to revisit it if we couldn't
6648 * meet load balance goals by pulling other tasks on src_cpu.
6649 *
65a4433a
JH
6650 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6651 * already computed one in current iteration.
88b8dac0 6652 */
65a4433a 6653 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6654 return 0;
6655
e02e60c1
JK
6656 /* Prevent to re-select dst_cpu via env's cpus */
6657 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6658 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6659 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6660 env->new_dst_cpu = cpu;
6661 break;
6662 }
88b8dac0 6663 }
e02e60c1 6664
1e3c88bd
PZ
6665 return 0;
6666 }
88b8dac0
SV
6667
6668 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6669 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6670
ddcdf6e7 6671 if (task_running(env->src_rq, p)) {
ae92882e 6672 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6673 return 0;
6674 }
6675
6676 /*
6677 * Aggressive migration if:
3a7053b3
MG
6678 * 1) destination numa is preferred
6679 * 2) task is cache cold, or
6680 * 3) too many balance attempts have failed.
1e3c88bd 6681 */
2a1ed24c
SD
6682 tsk_cache_hot = migrate_degrades_locality(p, env);
6683 if (tsk_cache_hot == -1)
6684 tsk_cache_hot = task_hot(p, env);
3a7053b3 6685
2a1ed24c 6686 if (tsk_cache_hot <= 0 ||
7a96c231 6687 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6688 if (tsk_cache_hot == 1) {
ae92882e
JP
6689 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6690 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6691 }
1e3c88bd
PZ
6692 return 1;
6693 }
6694
ae92882e 6695 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6696 return 0;
1e3c88bd
PZ
6697}
6698
897c395f 6699/*
163122b7
KT
6700 * detach_task() -- detach the task for the migration specified in env
6701 */
6702static void detach_task(struct task_struct *p, struct lb_env *env)
6703{
6704 lockdep_assert_held(&env->src_rq->lock);
6705
163122b7 6706 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6707 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6708 set_task_cpu(p, env->dst_cpu);
6709}
6710
897c395f 6711/*
e5673f28 6712 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6713 * part of active balancing operations within "domain".
897c395f 6714 *
e5673f28 6715 * Returns a task if successful and NULL otherwise.
897c395f 6716 */
e5673f28 6717static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6718{
6719 struct task_struct *p, *n;
897c395f 6720
e5673f28
KT
6721 lockdep_assert_held(&env->src_rq->lock);
6722
367456c7 6723 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6724 if (!can_migrate_task(p, env))
6725 continue;
897c395f 6726
163122b7 6727 detach_task(p, env);
e5673f28 6728
367456c7 6729 /*
e5673f28 6730 * Right now, this is only the second place where
163122b7 6731 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6732 * so we can safely collect stats here rather than
163122b7 6733 * inside detach_tasks().
367456c7 6734 */
ae92882e 6735 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6736 return p;
897c395f 6737 }
e5673f28 6738 return NULL;
897c395f
PZ
6739}
6740
eb95308e
PZ
6741static const unsigned int sched_nr_migrate_break = 32;
6742
5d6523eb 6743/*
163122b7
KT
6744 * detach_tasks() -- tries to detach up to imbalance weighted load from
6745 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6746 *
163122b7 6747 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6748 */
163122b7 6749static int detach_tasks(struct lb_env *env)
1e3c88bd 6750{
5d6523eb
PZ
6751 struct list_head *tasks = &env->src_rq->cfs_tasks;
6752 struct task_struct *p;
367456c7 6753 unsigned long load;
163122b7
KT
6754 int detached = 0;
6755
6756 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6757
bd939f45 6758 if (env->imbalance <= 0)
5d6523eb 6759 return 0;
1e3c88bd 6760
5d6523eb 6761 while (!list_empty(tasks)) {
985d3a4c
YD
6762 /*
6763 * We don't want to steal all, otherwise we may be treated likewise,
6764 * which could at worst lead to a livelock crash.
6765 */
6766 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6767 break;
6768
5d6523eb 6769 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6770
367456c7
PZ
6771 env->loop++;
6772 /* We've more or less seen every task there is, call it quits */
5d6523eb 6773 if (env->loop > env->loop_max)
367456c7 6774 break;
5d6523eb
PZ
6775
6776 /* take a breather every nr_migrate tasks */
367456c7 6777 if (env->loop > env->loop_break) {
eb95308e 6778 env->loop_break += sched_nr_migrate_break;
8e45cb54 6779 env->flags |= LBF_NEED_BREAK;
ee00e66f 6780 break;
a195f004 6781 }
1e3c88bd 6782
d3198084 6783 if (!can_migrate_task(p, env))
367456c7
PZ
6784 goto next;
6785
6786 load = task_h_load(p);
5d6523eb 6787
eb95308e 6788 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6789 goto next;
6790
bd939f45 6791 if ((load / 2) > env->imbalance)
367456c7 6792 goto next;
1e3c88bd 6793
163122b7
KT
6794 detach_task(p, env);
6795 list_add(&p->se.group_node, &env->tasks);
6796
6797 detached++;
bd939f45 6798 env->imbalance -= load;
1e3c88bd
PZ
6799
6800#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6801 /*
6802 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6803 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6804 * the critical section.
6805 */
5d6523eb 6806 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6807 break;
1e3c88bd
PZ
6808#endif
6809
ee00e66f
PZ
6810 /*
6811 * We only want to steal up to the prescribed amount of
6812 * weighted load.
6813 */
bd939f45 6814 if (env->imbalance <= 0)
ee00e66f 6815 break;
367456c7
PZ
6816
6817 continue;
6818next:
5d6523eb 6819 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6820 }
5d6523eb 6821
1e3c88bd 6822 /*
163122b7
KT
6823 * Right now, this is one of only two places we collect this stat
6824 * so we can safely collect detach_one_task() stats here rather
6825 * than inside detach_one_task().
1e3c88bd 6826 */
ae92882e 6827 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6828
163122b7
KT
6829 return detached;
6830}
6831
6832/*
6833 * attach_task() -- attach the task detached by detach_task() to its new rq.
6834 */
6835static void attach_task(struct rq *rq, struct task_struct *p)
6836{
6837 lockdep_assert_held(&rq->lock);
6838
6839 BUG_ON(task_rq(p) != rq);
5704ac0a 6840 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6841 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6842 check_preempt_curr(rq, p, 0);
6843}
6844
6845/*
6846 * attach_one_task() -- attaches the task returned from detach_one_task() to
6847 * its new rq.
6848 */
6849static void attach_one_task(struct rq *rq, struct task_struct *p)
6850{
8a8c69c3
PZ
6851 struct rq_flags rf;
6852
6853 rq_lock(rq, &rf);
5704ac0a 6854 update_rq_clock(rq);
163122b7 6855 attach_task(rq, p);
8a8c69c3 6856 rq_unlock(rq, &rf);
163122b7
KT
6857}
6858
6859/*
6860 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6861 * new rq.
6862 */
6863static void attach_tasks(struct lb_env *env)
6864{
6865 struct list_head *tasks = &env->tasks;
6866 struct task_struct *p;
8a8c69c3 6867 struct rq_flags rf;
163122b7 6868
8a8c69c3 6869 rq_lock(env->dst_rq, &rf);
5704ac0a 6870 update_rq_clock(env->dst_rq);
163122b7
KT
6871
6872 while (!list_empty(tasks)) {
6873 p = list_first_entry(tasks, struct task_struct, se.group_node);
6874 list_del_init(&p->se.group_node);
1e3c88bd 6875
163122b7
KT
6876 attach_task(env->dst_rq, p);
6877 }
6878
8a8c69c3 6879 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6880}
6881
230059de 6882#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
6883
6884static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6885{
6886 if (cfs_rq->load.weight)
6887 return false;
6888
6889 if (cfs_rq->avg.load_sum)
6890 return false;
6891
6892 if (cfs_rq->avg.util_sum)
6893 return false;
6894
6895 if (cfs_rq->runnable_load_sum)
6896 return false;
6897
6898 return true;
6899}
6900
48a16753 6901static void update_blocked_averages(int cpu)
9e3081ca 6902{
9e3081ca 6903 struct rq *rq = cpu_rq(cpu);
a9e7f654 6904 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 6905 struct rq_flags rf;
9e3081ca 6906
8a8c69c3 6907 rq_lock_irqsave(rq, &rf);
48a16753 6908 update_rq_clock(rq);
9d89c257 6909
9763b67f
PZ
6910 /*
6911 * Iterates the task_group tree in a bottom up fashion, see
6912 * list_add_leaf_cfs_rq() for details.
6913 */
a9e7f654 6914 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
6915 struct sched_entity *se;
6916
9d89c257
YD
6917 /* throttled entities do not contribute to load */
6918 if (throttled_hierarchy(cfs_rq))
6919 continue;
48a16753 6920
3a123bbb 6921 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 6922 update_tg_load_avg(cfs_rq, 0);
4e516076 6923
bc427898
VG
6924 /* Propagate pending load changes to the parent, if any: */
6925 se = cfs_rq->tg->se[cpu];
6926 if (se && !skip_blocked_update(se))
6927 update_load_avg(se, 0);
a9e7f654
TH
6928
6929 /*
6930 * There can be a lot of idle CPU cgroups. Don't let fully
6931 * decayed cfs_rqs linger on the list.
6932 */
6933 if (cfs_rq_is_decayed(cfs_rq))
6934 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 6935 }
8a8c69c3 6936 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6937}
6938
9763b67f 6939/*
68520796 6940 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6941 * This needs to be done in a top-down fashion because the load of a child
6942 * group is a fraction of its parents load.
6943 */
68520796 6944static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6945{
68520796
VD
6946 struct rq *rq = rq_of(cfs_rq);
6947 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6948 unsigned long now = jiffies;
68520796 6949 unsigned long load;
a35b6466 6950
68520796 6951 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6952 return;
6953
68520796
VD
6954 cfs_rq->h_load_next = NULL;
6955 for_each_sched_entity(se) {
6956 cfs_rq = cfs_rq_of(se);
6957 cfs_rq->h_load_next = se;
6958 if (cfs_rq->last_h_load_update == now)
6959 break;
6960 }
a35b6466 6961
68520796 6962 if (!se) {
7ea241af 6963 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6964 cfs_rq->last_h_load_update = now;
6965 }
6966
6967 while ((se = cfs_rq->h_load_next) != NULL) {
6968 load = cfs_rq->h_load;
7ea241af
YD
6969 load = div64_ul(load * se->avg.load_avg,
6970 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6971 cfs_rq = group_cfs_rq(se);
6972 cfs_rq->h_load = load;
6973 cfs_rq->last_h_load_update = now;
6974 }
9763b67f
PZ
6975}
6976
367456c7 6977static unsigned long task_h_load(struct task_struct *p)
230059de 6978{
367456c7 6979 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6980
68520796 6981 update_cfs_rq_h_load(cfs_rq);
9d89c257 6982 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6983 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6984}
6985#else
48a16753 6986static inline void update_blocked_averages(int cpu)
9e3081ca 6987{
6c1d47c0
VG
6988 struct rq *rq = cpu_rq(cpu);
6989 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 6990 struct rq_flags rf;
6c1d47c0 6991
8a8c69c3 6992 rq_lock_irqsave(rq, &rf);
6c1d47c0 6993 update_rq_clock(rq);
3a123bbb 6994 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 6995 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6996}
6997
367456c7 6998static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6999{
9d89c257 7000 return p->se.avg.load_avg;
1e3c88bd 7001}
230059de 7002#endif
1e3c88bd 7003
1e3c88bd 7004/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7005
7006enum group_type {
7007 group_other = 0,
7008 group_imbalanced,
7009 group_overloaded,
7010};
7011
1e3c88bd
PZ
7012/*
7013 * sg_lb_stats - stats of a sched_group required for load_balancing
7014 */
7015struct sg_lb_stats {
7016 unsigned long avg_load; /*Avg load across the CPUs of the group */
7017 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7018 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7019 unsigned long load_per_task;
63b2ca30 7020 unsigned long group_capacity;
9e91d61d 7021 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7022 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7023 unsigned int idle_cpus;
7024 unsigned int group_weight;
caeb178c 7025 enum group_type group_type;
ea67821b 7026 int group_no_capacity;
0ec8aa00
PZ
7027#ifdef CONFIG_NUMA_BALANCING
7028 unsigned int nr_numa_running;
7029 unsigned int nr_preferred_running;
7030#endif
1e3c88bd
PZ
7031};
7032
56cf515b
JK
7033/*
7034 * sd_lb_stats - Structure to store the statistics of a sched_domain
7035 * during load balancing.
7036 */
7037struct sd_lb_stats {
7038 struct sched_group *busiest; /* Busiest group in this sd */
7039 struct sched_group *local; /* Local group in this sd */
7040 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7041 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7042 unsigned long avg_load; /* Average load across all groups in sd */
7043
56cf515b 7044 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7045 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7046};
7047
147c5fc2
PZ
7048static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7049{
7050 /*
7051 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7052 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7053 * We must however clear busiest_stat::avg_load because
7054 * update_sd_pick_busiest() reads this before assignment.
7055 */
7056 *sds = (struct sd_lb_stats){
7057 .busiest = NULL,
7058 .local = NULL,
7059 .total_load = 0UL,
63b2ca30 7060 .total_capacity = 0UL,
147c5fc2
PZ
7061 .busiest_stat = {
7062 .avg_load = 0UL,
caeb178c
RR
7063 .sum_nr_running = 0,
7064 .group_type = group_other,
147c5fc2
PZ
7065 },
7066 };
7067}
7068
1e3c88bd
PZ
7069/**
7070 * get_sd_load_idx - Obtain the load index for a given sched domain.
7071 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7072 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7073 *
7074 * Return: The load index.
1e3c88bd
PZ
7075 */
7076static inline int get_sd_load_idx(struct sched_domain *sd,
7077 enum cpu_idle_type idle)
7078{
7079 int load_idx;
7080
7081 switch (idle) {
7082 case CPU_NOT_IDLE:
7083 load_idx = sd->busy_idx;
7084 break;
7085
7086 case CPU_NEWLY_IDLE:
7087 load_idx = sd->newidle_idx;
7088 break;
7089 default:
7090 load_idx = sd->idle_idx;
7091 break;
7092 }
7093
7094 return load_idx;
7095}
7096
ced549fa 7097static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7098{
7099 struct rq *rq = cpu_rq(cpu);
b5b4860d 7100 u64 total, used, age_stamp, avg;
cadefd3d 7101 s64 delta;
1e3c88bd 7102
b654f7de
PZ
7103 /*
7104 * Since we're reading these variables without serialization make sure
7105 * we read them once before doing sanity checks on them.
7106 */
316c1608
JL
7107 age_stamp = READ_ONCE(rq->age_stamp);
7108 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7109 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7110
cadefd3d
PZ
7111 if (unlikely(delta < 0))
7112 delta = 0;
7113
7114 total = sched_avg_period() + delta;
aa483808 7115
b5b4860d 7116 used = div_u64(avg, total);
1e3c88bd 7117
b5b4860d
VG
7118 if (likely(used < SCHED_CAPACITY_SCALE))
7119 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7120
b5b4860d 7121 return 1;
1e3c88bd
PZ
7122}
7123
ced549fa 7124static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7125{
8cd5601c 7126 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7127 struct sched_group *sdg = sd->groups;
7128
ca6d75e6 7129 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7130
ced549fa 7131 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7132 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7133
ced549fa
NP
7134 if (!capacity)
7135 capacity = 1;
1e3c88bd 7136
ced549fa
NP
7137 cpu_rq(cpu)->cpu_capacity = capacity;
7138 sdg->sgc->capacity = capacity;
bf475ce0 7139 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7140}
7141
63b2ca30 7142void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7143{
7144 struct sched_domain *child = sd->child;
7145 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7146 unsigned long capacity, min_capacity;
4ec4412e
VG
7147 unsigned long interval;
7148
7149 interval = msecs_to_jiffies(sd->balance_interval);
7150 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7151 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7152
7153 if (!child) {
ced549fa 7154 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7155 return;
7156 }
7157
dc7ff76e 7158 capacity = 0;
bf475ce0 7159 min_capacity = ULONG_MAX;
1e3c88bd 7160
74a5ce20
PZ
7161 if (child->flags & SD_OVERLAP) {
7162 /*
7163 * SD_OVERLAP domains cannot assume that child groups
7164 * span the current group.
7165 */
7166
ae4df9d6 7167 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7168 struct sched_group_capacity *sgc;
9abf24d4 7169 struct rq *rq = cpu_rq(cpu);
863bffc8 7170
9abf24d4 7171 /*
63b2ca30 7172 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7173 * gets here before we've attached the domains to the
7174 * runqueues.
7175 *
ced549fa
NP
7176 * Use capacity_of(), which is set irrespective of domains
7177 * in update_cpu_capacity().
9abf24d4 7178 *
dc7ff76e 7179 * This avoids capacity from being 0 and
9abf24d4 7180 * causing divide-by-zero issues on boot.
9abf24d4
SD
7181 */
7182 if (unlikely(!rq->sd)) {
ced549fa 7183 capacity += capacity_of(cpu);
bf475ce0
MR
7184 } else {
7185 sgc = rq->sd->groups->sgc;
7186 capacity += sgc->capacity;
9abf24d4 7187 }
863bffc8 7188
bf475ce0 7189 min_capacity = min(capacity, min_capacity);
863bffc8 7190 }
74a5ce20
PZ
7191 } else {
7192 /*
7193 * !SD_OVERLAP domains can assume that child groups
7194 * span the current group.
97a7142f 7195 */
74a5ce20
PZ
7196
7197 group = child->groups;
7198 do {
bf475ce0
MR
7199 struct sched_group_capacity *sgc = group->sgc;
7200
7201 capacity += sgc->capacity;
7202 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7203 group = group->next;
7204 } while (group != child->groups);
7205 }
1e3c88bd 7206
63b2ca30 7207 sdg->sgc->capacity = capacity;
bf475ce0 7208 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7209}
7210
9d5efe05 7211/*
ea67821b
VG
7212 * Check whether the capacity of the rq has been noticeably reduced by side
7213 * activity. The imbalance_pct is used for the threshold.
7214 * Return true is the capacity is reduced
9d5efe05
SV
7215 */
7216static inline int
ea67821b 7217check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7218{
ea67821b
VG
7219 return ((rq->cpu_capacity * sd->imbalance_pct) <
7220 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7221}
7222
30ce5dab
PZ
7223/*
7224 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7225 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7226 *
7227 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7228 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7229 * Something like:
7230 *
2b4d5b25
IM
7231 * { 0 1 2 3 } { 4 5 6 7 }
7232 * * * * *
30ce5dab
PZ
7233 *
7234 * If we were to balance group-wise we'd place two tasks in the first group and
7235 * two tasks in the second group. Clearly this is undesired as it will overload
7236 * cpu 3 and leave one of the cpus in the second group unused.
7237 *
7238 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7239 * by noticing the lower domain failed to reach balance and had difficulty
7240 * moving tasks due to affinity constraints.
30ce5dab
PZ
7241 *
7242 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7243 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7244 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7245 * to create an effective group imbalance.
7246 *
7247 * This is a somewhat tricky proposition since the next run might not find the
7248 * group imbalance and decide the groups need to be balanced again. A most
7249 * subtle and fragile situation.
7250 */
7251
6263322c 7252static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7253{
63b2ca30 7254 return group->sgc->imbalance;
30ce5dab
PZ
7255}
7256
b37d9316 7257/*
ea67821b
VG
7258 * group_has_capacity returns true if the group has spare capacity that could
7259 * be used by some tasks.
7260 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7261 * smaller than the number of CPUs or if the utilization is lower than the
7262 * available capacity for CFS tasks.
ea67821b
VG
7263 * For the latter, we use a threshold to stabilize the state, to take into
7264 * account the variance of the tasks' load and to return true if the available
7265 * capacity in meaningful for the load balancer.
7266 * As an example, an available capacity of 1% can appear but it doesn't make
7267 * any benefit for the load balance.
b37d9316 7268 */
ea67821b
VG
7269static inline bool
7270group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7271{
ea67821b
VG
7272 if (sgs->sum_nr_running < sgs->group_weight)
7273 return true;
c61037e9 7274
ea67821b 7275 if ((sgs->group_capacity * 100) >
9e91d61d 7276 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7277 return true;
b37d9316 7278
ea67821b
VG
7279 return false;
7280}
7281
7282/*
7283 * group_is_overloaded returns true if the group has more tasks than it can
7284 * handle.
7285 * group_is_overloaded is not equals to !group_has_capacity because a group
7286 * with the exact right number of tasks, has no more spare capacity but is not
7287 * overloaded so both group_has_capacity and group_is_overloaded return
7288 * false.
7289 */
7290static inline bool
7291group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7292{
7293 if (sgs->sum_nr_running <= sgs->group_weight)
7294 return false;
b37d9316 7295
ea67821b 7296 if ((sgs->group_capacity * 100) <
9e91d61d 7297 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7298 return true;
b37d9316 7299
ea67821b 7300 return false;
b37d9316
PZ
7301}
7302
9e0994c0
MR
7303/*
7304 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7305 * per-CPU capacity than sched_group ref.
7306 */
7307static inline bool
7308group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7309{
7310 return sg->sgc->min_capacity * capacity_margin <
7311 ref->sgc->min_capacity * 1024;
7312}
7313
79a89f92
LY
7314static inline enum
7315group_type group_classify(struct sched_group *group,
7316 struct sg_lb_stats *sgs)
caeb178c 7317{
ea67821b 7318 if (sgs->group_no_capacity)
caeb178c
RR
7319 return group_overloaded;
7320
7321 if (sg_imbalanced(group))
7322 return group_imbalanced;
7323
7324 return group_other;
7325}
7326
1e3c88bd
PZ
7327/**
7328 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7329 * @env: The load balancing environment.
1e3c88bd 7330 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7331 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7332 * @local_group: Does group contain this_cpu.
1e3c88bd 7333 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7334 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7335 */
bd939f45
PZ
7336static inline void update_sg_lb_stats(struct lb_env *env,
7337 struct sched_group *group, int load_idx,
4486edd1
TC
7338 int local_group, struct sg_lb_stats *sgs,
7339 bool *overload)
1e3c88bd 7340{
30ce5dab 7341 unsigned long load;
a426f99c 7342 int i, nr_running;
1e3c88bd 7343
b72ff13c
PZ
7344 memset(sgs, 0, sizeof(*sgs));
7345
ae4df9d6 7346 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7347 struct rq *rq = cpu_rq(i);
7348
1e3c88bd 7349 /* Bias balancing toward cpus of our domain */
6263322c 7350 if (local_group)
04f733b4 7351 load = target_load(i, load_idx);
6263322c 7352 else
1e3c88bd 7353 load = source_load(i, load_idx);
1e3c88bd
PZ
7354
7355 sgs->group_load += load;
9e91d61d 7356 sgs->group_util += cpu_util(i);
65fdac08 7357 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7358
a426f99c
WL
7359 nr_running = rq->nr_running;
7360 if (nr_running > 1)
4486edd1
TC
7361 *overload = true;
7362
0ec8aa00
PZ
7363#ifdef CONFIG_NUMA_BALANCING
7364 sgs->nr_numa_running += rq->nr_numa_running;
7365 sgs->nr_preferred_running += rq->nr_preferred_running;
7366#endif
c7132dd6 7367 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7368 /*
7369 * No need to call idle_cpu() if nr_running is not 0
7370 */
7371 if (!nr_running && idle_cpu(i))
aae6d3dd 7372 sgs->idle_cpus++;
1e3c88bd
PZ
7373 }
7374
63b2ca30
NP
7375 /* Adjust by relative CPU capacity of the group */
7376 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7377 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7378
dd5feea1 7379 if (sgs->sum_nr_running)
38d0f770 7380 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7381
aae6d3dd 7382 sgs->group_weight = group->group_weight;
b37d9316 7383
ea67821b 7384 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7385 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7386}
7387
532cb4c4
MN
7388/**
7389 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7390 * @env: The load balancing environment.
532cb4c4
MN
7391 * @sds: sched_domain statistics
7392 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7393 * @sgs: sched_group statistics
532cb4c4
MN
7394 *
7395 * Determine if @sg is a busier group than the previously selected
7396 * busiest group.
e69f6186
YB
7397 *
7398 * Return: %true if @sg is a busier group than the previously selected
7399 * busiest group. %false otherwise.
532cb4c4 7400 */
bd939f45 7401static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7402 struct sd_lb_stats *sds,
7403 struct sched_group *sg,
bd939f45 7404 struct sg_lb_stats *sgs)
532cb4c4 7405{
caeb178c 7406 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7407
caeb178c 7408 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7409 return true;
7410
caeb178c
RR
7411 if (sgs->group_type < busiest->group_type)
7412 return false;
7413
7414 if (sgs->avg_load <= busiest->avg_load)
7415 return false;
7416
9e0994c0
MR
7417 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7418 goto asym_packing;
7419
7420 /*
7421 * Candidate sg has no more than one task per CPU and
7422 * has higher per-CPU capacity. Migrating tasks to less
7423 * capable CPUs may harm throughput. Maximize throughput,
7424 * power/energy consequences are not considered.
7425 */
7426 if (sgs->sum_nr_running <= sgs->group_weight &&
7427 group_smaller_cpu_capacity(sds->local, sg))
7428 return false;
7429
7430asym_packing:
caeb178c
RR
7431 /* This is the busiest node in its class. */
7432 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7433 return true;
7434
1f621e02
SD
7435 /* No ASYM_PACKING if target cpu is already busy */
7436 if (env->idle == CPU_NOT_IDLE)
7437 return true;
532cb4c4 7438 /*
afe06efd
TC
7439 * ASYM_PACKING needs to move all the work to the highest
7440 * prority CPUs in the group, therefore mark all groups
7441 * of lower priority than ourself as busy.
532cb4c4 7442 */
afe06efd
TC
7443 if (sgs->sum_nr_running &&
7444 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7445 if (!sds->busiest)
7446 return true;
7447
afe06efd
TC
7448 /* Prefer to move from lowest priority cpu's work */
7449 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7450 sg->asym_prefer_cpu))
532cb4c4
MN
7451 return true;
7452 }
7453
7454 return false;
7455}
7456
0ec8aa00
PZ
7457#ifdef CONFIG_NUMA_BALANCING
7458static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7459{
7460 if (sgs->sum_nr_running > sgs->nr_numa_running)
7461 return regular;
7462 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7463 return remote;
7464 return all;
7465}
7466
7467static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7468{
7469 if (rq->nr_running > rq->nr_numa_running)
7470 return regular;
7471 if (rq->nr_running > rq->nr_preferred_running)
7472 return remote;
7473 return all;
7474}
7475#else
7476static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7477{
7478 return all;
7479}
7480
7481static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7482{
7483 return regular;
7484}
7485#endif /* CONFIG_NUMA_BALANCING */
7486
1e3c88bd 7487/**
461819ac 7488 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7489 * @env: The load balancing environment.
1e3c88bd
PZ
7490 * @sds: variable to hold the statistics for this sched_domain.
7491 */
0ec8aa00 7492static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7493{
bd939f45
PZ
7494 struct sched_domain *child = env->sd->child;
7495 struct sched_group *sg = env->sd->groups;
05b40e05 7496 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7497 struct sg_lb_stats tmp_sgs;
1e3c88bd 7498 int load_idx, prefer_sibling = 0;
4486edd1 7499 bool overload = false;
1e3c88bd
PZ
7500
7501 if (child && child->flags & SD_PREFER_SIBLING)
7502 prefer_sibling = 1;
7503
bd939f45 7504 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7505
7506 do {
56cf515b 7507 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7508 int local_group;
7509
ae4df9d6 7510 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7511 if (local_group) {
7512 sds->local = sg;
05b40e05 7513 sgs = local;
b72ff13c
PZ
7514
7515 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7516 time_after_eq(jiffies, sg->sgc->next_update))
7517 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7518 }
1e3c88bd 7519
4486edd1
TC
7520 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7521 &overload);
1e3c88bd 7522
b72ff13c
PZ
7523 if (local_group)
7524 goto next_group;
7525
1e3c88bd
PZ
7526 /*
7527 * In case the child domain prefers tasks go to siblings
ea67821b 7528 * first, lower the sg capacity so that we'll try
75dd321d
NR
7529 * and move all the excess tasks away. We lower the capacity
7530 * of a group only if the local group has the capacity to fit
ea67821b
VG
7531 * these excess tasks. The extra check prevents the case where
7532 * you always pull from the heaviest group when it is already
7533 * under-utilized (possible with a large weight task outweighs
7534 * the tasks on the system).
1e3c88bd 7535 */
b72ff13c 7536 if (prefer_sibling && sds->local &&
05b40e05
SD
7537 group_has_capacity(env, local) &&
7538 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7539 sgs->group_no_capacity = 1;
79a89f92 7540 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7541 }
1e3c88bd 7542
b72ff13c 7543 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7544 sds->busiest = sg;
56cf515b 7545 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7546 }
7547
b72ff13c
PZ
7548next_group:
7549 /* Now, start updating sd_lb_stats */
7550 sds->total_load += sgs->group_load;
63b2ca30 7551 sds->total_capacity += sgs->group_capacity;
b72ff13c 7552
532cb4c4 7553 sg = sg->next;
bd939f45 7554 } while (sg != env->sd->groups);
0ec8aa00
PZ
7555
7556 if (env->sd->flags & SD_NUMA)
7557 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7558
7559 if (!env->sd->parent) {
7560 /* update overload indicator if we are at root domain */
7561 if (env->dst_rq->rd->overload != overload)
7562 env->dst_rq->rd->overload = overload;
7563 }
7564
532cb4c4
MN
7565}
7566
532cb4c4
MN
7567/**
7568 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7569 * sched domain.
532cb4c4
MN
7570 *
7571 * This is primarily intended to used at the sibling level. Some
7572 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7573 * case of POWER7, it can move to lower SMT modes only when higher
7574 * threads are idle. When in lower SMT modes, the threads will
7575 * perform better since they share less core resources. Hence when we
7576 * have idle threads, we want them to be the higher ones.
7577 *
7578 * This packing function is run on idle threads. It checks to see if
7579 * the busiest CPU in this domain (core in the P7 case) has a higher
7580 * CPU number than the packing function is being run on. Here we are
7581 * assuming lower CPU number will be equivalent to lower a SMT thread
7582 * number.
7583 *
e69f6186 7584 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7585 * this CPU. The amount of the imbalance is returned in *imbalance.
7586 *
cd96891d 7587 * @env: The load balancing environment.
532cb4c4 7588 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7589 */
bd939f45 7590static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7591{
7592 int busiest_cpu;
7593
bd939f45 7594 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7595 return 0;
7596
1f621e02
SD
7597 if (env->idle == CPU_NOT_IDLE)
7598 return 0;
7599
532cb4c4
MN
7600 if (!sds->busiest)
7601 return 0;
7602
afe06efd
TC
7603 busiest_cpu = sds->busiest->asym_prefer_cpu;
7604 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7605 return 0;
7606
bd939f45 7607 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7608 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7609 SCHED_CAPACITY_SCALE);
bd939f45 7610
532cb4c4 7611 return 1;
1e3c88bd
PZ
7612}
7613
7614/**
7615 * fix_small_imbalance - Calculate the minor imbalance that exists
7616 * amongst the groups of a sched_domain, during
7617 * load balancing.
cd96891d 7618 * @env: The load balancing environment.
1e3c88bd 7619 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7620 */
bd939f45
PZ
7621static inline
7622void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7623{
63b2ca30 7624 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7625 unsigned int imbn = 2;
dd5feea1 7626 unsigned long scaled_busy_load_per_task;
56cf515b 7627 struct sg_lb_stats *local, *busiest;
1e3c88bd 7628
56cf515b
JK
7629 local = &sds->local_stat;
7630 busiest = &sds->busiest_stat;
1e3c88bd 7631
56cf515b
JK
7632 if (!local->sum_nr_running)
7633 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7634 else if (busiest->load_per_task > local->load_per_task)
7635 imbn = 1;
dd5feea1 7636
56cf515b 7637 scaled_busy_load_per_task =
ca8ce3d0 7638 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7639 busiest->group_capacity;
56cf515b 7640
3029ede3
VD
7641 if (busiest->avg_load + scaled_busy_load_per_task >=
7642 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7643 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7644 return;
7645 }
7646
7647 /*
7648 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7649 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7650 * moving them.
7651 */
7652
63b2ca30 7653 capa_now += busiest->group_capacity *
56cf515b 7654 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7655 capa_now += local->group_capacity *
56cf515b 7656 min(local->load_per_task, local->avg_load);
ca8ce3d0 7657 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7658
7659 /* Amount of load we'd subtract */
a2cd4260 7660 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7661 capa_move += busiest->group_capacity *
56cf515b 7662 min(busiest->load_per_task,
a2cd4260 7663 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7664 }
1e3c88bd
PZ
7665
7666 /* Amount of load we'd add */
63b2ca30 7667 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7668 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7669 tmp = (busiest->avg_load * busiest->group_capacity) /
7670 local->group_capacity;
56cf515b 7671 } else {
ca8ce3d0 7672 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7673 local->group_capacity;
56cf515b 7674 }
63b2ca30 7675 capa_move += local->group_capacity *
3ae11c90 7676 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7677 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7678
7679 /* Move if we gain throughput */
63b2ca30 7680 if (capa_move > capa_now)
56cf515b 7681 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7682}
7683
7684/**
7685 * calculate_imbalance - Calculate the amount of imbalance present within the
7686 * groups of a given sched_domain during load balance.
bd939f45 7687 * @env: load balance environment
1e3c88bd 7688 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7689 */
bd939f45 7690static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7691{
dd5feea1 7692 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7693 struct sg_lb_stats *local, *busiest;
7694
7695 local = &sds->local_stat;
56cf515b 7696 busiest = &sds->busiest_stat;
dd5feea1 7697
caeb178c 7698 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7699 /*
7700 * In the group_imb case we cannot rely on group-wide averages
7701 * to ensure cpu-load equilibrium, look at wider averages. XXX
7702 */
56cf515b
JK
7703 busiest->load_per_task =
7704 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7705 }
7706
1e3c88bd 7707 /*
885e542c
DE
7708 * Avg load of busiest sg can be less and avg load of local sg can
7709 * be greater than avg load across all sgs of sd because avg load
7710 * factors in sg capacity and sgs with smaller group_type are
7711 * skipped when updating the busiest sg:
1e3c88bd 7712 */
b1885550
VD
7713 if (busiest->avg_load <= sds->avg_load ||
7714 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7715 env->imbalance = 0;
7716 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7717 }
7718
9a5d9ba6
PZ
7719 /*
7720 * If there aren't any idle cpus, avoid creating some.
7721 */
7722 if (busiest->group_type == group_overloaded &&
7723 local->group_type == group_overloaded) {
1be0eb2a 7724 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7725 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7726 load_above_capacity -= busiest->group_capacity;
26656215 7727 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7728 load_above_capacity /= busiest->group_capacity;
7729 } else
ea67821b 7730 load_above_capacity = ~0UL;
dd5feea1
SS
7731 }
7732
7733 /*
7734 * We're trying to get all the cpus to the average_load, so we don't
7735 * want to push ourselves above the average load, nor do we wish to
7736 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7737 * we also don't want to reduce the group load below the group
7738 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7739 */
30ce5dab 7740 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7741
7742 /* How much load to actually move to equalise the imbalance */
56cf515b 7743 env->imbalance = min(
63b2ca30
NP
7744 max_pull * busiest->group_capacity,
7745 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7746 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7747
7748 /*
7749 * if *imbalance is less than the average load per runnable task
25985edc 7750 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7751 * a think about bumping its value to force at least one task to be
7752 * moved
7753 */
56cf515b 7754 if (env->imbalance < busiest->load_per_task)
bd939f45 7755 return fix_small_imbalance(env, sds);
1e3c88bd 7756}
fab47622 7757
1e3c88bd
PZ
7758/******* find_busiest_group() helpers end here *********************/
7759
7760/**
7761 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7762 * if there is an imbalance.
1e3c88bd
PZ
7763 *
7764 * Also calculates the amount of weighted load which should be moved
7765 * to restore balance.
7766 *
cd96891d 7767 * @env: The load balancing environment.
1e3c88bd 7768 *
e69f6186 7769 * Return: - The busiest group if imbalance exists.
1e3c88bd 7770 */
56cf515b 7771static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7772{
56cf515b 7773 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7774 struct sd_lb_stats sds;
7775
147c5fc2 7776 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7777
7778 /*
7779 * Compute the various statistics relavent for load balancing at
7780 * this level.
7781 */
23f0d209 7782 update_sd_lb_stats(env, &sds);
56cf515b
JK
7783 local = &sds.local_stat;
7784 busiest = &sds.busiest_stat;
1e3c88bd 7785
ea67821b 7786 /* ASYM feature bypasses nice load balance check */
1f621e02 7787 if (check_asym_packing(env, &sds))
532cb4c4
MN
7788 return sds.busiest;
7789
cc57aa8f 7790 /* There is no busy sibling group to pull tasks from */
56cf515b 7791 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7792 goto out_balanced;
7793
ca8ce3d0
NP
7794 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7795 / sds.total_capacity;
b0432d8f 7796
866ab43e
PZ
7797 /*
7798 * If the busiest group is imbalanced the below checks don't
30ce5dab 7799 * work because they assume all things are equal, which typically
866ab43e
PZ
7800 * isn't true due to cpus_allowed constraints and the like.
7801 */
caeb178c 7802 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7803 goto force_balance;
7804
cc57aa8f 7805 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7806 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7807 busiest->group_no_capacity)
fab47622
NR
7808 goto force_balance;
7809
cc57aa8f 7810 /*
9c58c79a 7811 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7812 * don't try and pull any tasks.
7813 */
56cf515b 7814 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7815 goto out_balanced;
7816
cc57aa8f
PZ
7817 /*
7818 * Don't pull any tasks if this group is already above the domain
7819 * average load.
7820 */
56cf515b 7821 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7822 goto out_balanced;
7823
bd939f45 7824 if (env->idle == CPU_IDLE) {
aae6d3dd 7825 /*
43f4d666
VG
7826 * This cpu is idle. If the busiest group is not overloaded
7827 * and there is no imbalance between this and busiest group
7828 * wrt idle cpus, it is balanced. The imbalance becomes
7829 * significant if the diff is greater than 1 otherwise we
7830 * might end up to just move the imbalance on another group
aae6d3dd 7831 */
43f4d666
VG
7832 if ((busiest->group_type != group_overloaded) &&
7833 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7834 goto out_balanced;
c186fafe
PZ
7835 } else {
7836 /*
7837 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7838 * imbalance_pct to be conservative.
7839 */
56cf515b
JK
7840 if (100 * busiest->avg_load <=
7841 env->sd->imbalance_pct * local->avg_load)
c186fafe 7842 goto out_balanced;
aae6d3dd 7843 }
1e3c88bd 7844
fab47622 7845force_balance:
1e3c88bd 7846 /* Looks like there is an imbalance. Compute it */
bd939f45 7847 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7848 return sds.busiest;
7849
7850out_balanced:
bd939f45 7851 env->imbalance = 0;
1e3c88bd
PZ
7852 return NULL;
7853}
7854
7855/*
7856 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7857 */
bd939f45 7858static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7859 struct sched_group *group)
1e3c88bd
PZ
7860{
7861 struct rq *busiest = NULL, *rq;
ced549fa 7862 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7863 int i;
7864
ae4df9d6 7865 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 7866 unsigned long capacity, wl;
0ec8aa00
PZ
7867 enum fbq_type rt;
7868
7869 rq = cpu_rq(i);
7870 rt = fbq_classify_rq(rq);
1e3c88bd 7871
0ec8aa00
PZ
7872 /*
7873 * We classify groups/runqueues into three groups:
7874 * - regular: there are !numa tasks
7875 * - remote: there are numa tasks that run on the 'wrong' node
7876 * - all: there is no distinction
7877 *
7878 * In order to avoid migrating ideally placed numa tasks,
7879 * ignore those when there's better options.
7880 *
7881 * If we ignore the actual busiest queue to migrate another
7882 * task, the next balance pass can still reduce the busiest
7883 * queue by moving tasks around inside the node.
7884 *
7885 * If we cannot move enough load due to this classification
7886 * the next pass will adjust the group classification and
7887 * allow migration of more tasks.
7888 *
7889 * Both cases only affect the total convergence complexity.
7890 */
7891 if (rt > env->fbq_type)
7892 continue;
7893
ced549fa 7894 capacity = capacity_of(i);
9d5efe05 7895
c7132dd6 7896 wl = weighted_cpuload(rq);
1e3c88bd 7897
6e40f5bb
TG
7898 /*
7899 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7900 * which is not scaled with the cpu capacity.
6e40f5bb 7901 */
ea67821b
VG
7902
7903 if (rq->nr_running == 1 && wl > env->imbalance &&
7904 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7905 continue;
7906
6e40f5bb
TG
7907 /*
7908 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7909 * the weighted_cpuload() scaled with the cpu capacity, so
7910 * that the load can be moved away from the cpu that is
7911 * potentially running at a lower capacity.
95a79b80 7912 *
ced549fa 7913 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7914 * multiplication to rid ourselves of the division works out
ced549fa
NP
7915 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7916 * our previous maximum.
6e40f5bb 7917 */
ced549fa 7918 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7919 busiest_load = wl;
ced549fa 7920 busiest_capacity = capacity;
1e3c88bd
PZ
7921 busiest = rq;
7922 }
7923 }
7924
7925 return busiest;
7926}
7927
7928/*
7929 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7930 * so long as it is large enough.
7931 */
7932#define MAX_PINNED_INTERVAL 512
7933
bd939f45 7934static int need_active_balance(struct lb_env *env)
1af3ed3d 7935{
bd939f45
PZ
7936 struct sched_domain *sd = env->sd;
7937
7938 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7939
7940 /*
7941 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7942 * lower priority CPUs in order to pack all tasks in the
7943 * highest priority CPUs.
532cb4c4 7944 */
afe06efd
TC
7945 if ((sd->flags & SD_ASYM_PACKING) &&
7946 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7947 return 1;
1af3ed3d
PZ
7948 }
7949
1aaf90a4
VG
7950 /*
7951 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7952 * It's worth migrating the task if the src_cpu's capacity is reduced
7953 * because of other sched_class or IRQs if more capacity stays
7954 * available on dst_cpu.
7955 */
7956 if ((env->idle != CPU_NOT_IDLE) &&
7957 (env->src_rq->cfs.h_nr_running == 1)) {
7958 if ((check_cpu_capacity(env->src_rq, sd)) &&
7959 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7960 return 1;
7961 }
7962
1af3ed3d
PZ
7963 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7964}
7965
969c7921
TH
7966static int active_load_balance_cpu_stop(void *data);
7967
23f0d209
JK
7968static int should_we_balance(struct lb_env *env)
7969{
7970 struct sched_group *sg = env->sd->groups;
23f0d209
JK
7971 int cpu, balance_cpu = -1;
7972
7973 /*
7974 * In the newly idle case, we will allow all the cpu's
7975 * to do the newly idle load balance.
7976 */
7977 if (env->idle == CPU_NEWLY_IDLE)
7978 return 1;
7979
23f0d209 7980 /* Try to find first idle cpu */
e5c14b1f 7981 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 7982 if (!idle_cpu(cpu))
23f0d209
JK
7983 continue;
7984
7985 balance_cpu = cpu;
7986 break;
7987 }
7988
7989 if (balance_cpu == -1)
7990 balance_cpu = group_balance_cpu(sg);
7991
7992 /*
7993 * First idle cpu or the first cpu(busiest) in this sched group
7994 * is eligible for doing load balancing at this and above domains.
7995 */
b0cff9d8 7996 return balance_cpu == env->dst_cpu;
23f0d209
JK
7997}
7998
1e3c88bd
PZ
7999/*
8000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8001 * tasks if there is an imbalance.
8002 */
8003static int load_balance(int this_cpu, struct rq *this_rq,
8004 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8005 int *continue_balancing)
1e3c88bd 8006{
88b8dac0 8007 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8008 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8009 struct sched_group *group;
1e3c88bd 8010 struct rq *busiest;
8a8c69c3 8011 struct rq_flags rf;
4ba29684 8012 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8013
8e45cb54
PZ
8014 struct lb_env env = {
8015 .sd = sd,
ddcdf6e7
PZ
8016 .dst_cpu = this_cpu,
8017 .dst_rq = this_rq,
ae4df9d6 8018 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8019 .idle = idle,
eb95308e 8020 .loop_break = sched_nr_migrate_break,
b9403130 8021 .cpus = cpus,
0ec8aa00 8022 .fbq_type = all,
163122b7 8023 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8024 };
8025
65a4433a 8026 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8027
ae92882e 8028 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8029
8030redo:
23f0d209
JK
8031 if (!should_we_balance(&env)) {
8032 *continue_balancing = 0;
1e3c88bd 8033 goto out_balanced;
23f0d209 8034 }
1e3c88bd 8035
23f0d209 8036 group = find_busiest_group(&env);
1e3c88bd 8037 if (!group) {
ae92882e 8038 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8039 goto out_balanced;
8040 }
8041
b9403130 8042 busiest = find_busiest_queue(&env, group);
1e3c88bd 8043 if (!busiest) {
ae92882e 8044 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8045 goto out_balanced;
8046 }
8047
78feefc5 8048 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8049
ae92882e 8050 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8051
1aaf90a4
VG
8052 env.src_cpu = busiest->cpu;
8053 env.src_rq = busiest;
8054
1e3c88bd
PZ
8055 ld_moved = 0;
8056 if (busiest->nr_running > 1) {
8057 /*
8058 * Attempt to move tasks. If find_busiest_group has found
8059 * an imbalance but busiest->nr_running <= 1, the group is
8060 * still unbalanced. ld_moved simply stays zero, so it is
8061 * correctly treated as an imbalance.
8062 */
8e45cb54 8063 env.flags |= LBF_ALL_PINNED;
c82513e5 8064 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8065
5d6523eb 8066more_balance:
8a8c69c3 8067 rq_lock_irqsave(busiest, &rf);
3bed5e21 8068 update_rq_clock(busiest);
88b8dac0
SV
8069
8070 /*
8071 * cur_ld_moved - load moved in current iteration
8072 * ld_moved - cumulative load moved across iterations
8073 */
163122b7 8074 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8075
8076 /*
163122b7
KT
8077 * We've detached some tasks from busiest_rq. Every
8078 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8079 * unlock busiest->lock, and we are able to be sure
8080 * that nobody can manipulate the tasks in parallel.
8081 * See task_rq_lock() family for the details.
1e3c88bd 8082 */
163122b7 8083
8a8c69c3 8084 rq_unlock(busiest, &rf);
163122b7
KT
8085
8086 if (cur_ld_moved) {
8087 attach_tasks(&env);
8088 ld_moved += cur_ld_moved;
8089 }
8090
8a8c69c3 8091 local_irq_restore(rf.flags);
88b8dac0 8092
f1cd0858
JK
8093 if (env.flags & LBF_NEED_BREAK) {
8094 env.flags &= ~LBF_NEED_BREAK;
8095 goto more_balance;
8096 }
8097
88b8dac0
SV
8098 /*
8099 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8100 * us and move them to an alternate dst_cpu in our sched_group
8101 * where they can run. The upper limit on how many times we
8102 * iterate on same src_cpu is dependent on number of cpus in our
8103 * sched_group.
8104 *
8105 * This changes load balance semantics a bit on who can move
8106 * load to a given_cpu. In addition to the given_cpu itself
8107 * (or a ilb_cpu acting on its behalf where given_cpu is
8108 * nohz-idle), we now have balance_cpu in a position to move
8109 * load to given_cpu. In rare situations, this may cause
8110 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8111 * _independently_ and at _same_ time to move some load to
8112 * given_cpu) causing exceess load to be moved to given_cpu.
8113 * This however should not happen so much in practice and
8114 * moreover subsequent load balance cycles should correct the
8115 * excess load moved.
8116 */
6263322c 8117 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8118
7aff2e3a
VD
8119 /* Prevent to re-select dst_cpu via env's cpus */
8120 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8121
78feefc5 8122 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8123 env.dst_cpu = env.new_dst_cpu;
6263322c 8124 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8125 env.loop = 0;
8126 env.loop_break = sched_nr_migrate_break;
e02e60c1 8127
88b8dac0
SV
8128 /*
8129 * Go back to "more_balance" rather than "redo" since we
8130 * need to continue with same src_cpu.
8131 */
8132 goto more_balance;
8133 }
1e3c88bd 8134
6263322c
PZ
8135 /*
8136 * We failed to reach balance because of affinity.
8137 */
8138 if (sd_parent) {
63b2ca30 8139 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8140
afdeee05 8141 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8142 *group_imbalance = 1;
6263322c
PZ
8143 }
8144
1e3c88bd 8145 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8146 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8147 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8148 /*
8149 * Attempting to continue load balancing at the current
8150 * sched_domain level only makes sense if there are
8151 * active CPUs remaining as possible busiest CPUs to
8152 * pull load from which are not contained within the
8153 * destination group that is receiving any migrated
8154 * load.
8155 */
8156 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8157 env.loop = 0;
8158 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8159 goto redo;
bbf18b19 8160 }
afdeee05 8161 goto out_all_pinned;
1e3c88bd
PZ
8162 }
8163 }
8164
8165 if (!ld_moved) {
ae92882e 8166 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8167 /*
8168 * Increment the failure counter only on periodic balance.
8169 * We do not want newidle balance, which can be very
8170 * frequent, pollute the failure counter causing
8171 * excessive cache_hot migrations and active balances.
8172 */
8173 if (idle != CPU_NEWLY_IDLE)
8174 sd->nr_balance_failed++;
1e3c88bd 8175
bd939f45 8176 if (need_active_balance(&env)) {
8a8c69c3
PZ
8177 unsigned long flags;
8178
1e3c88bd
PZ
8179 raw_spin_lock_irqsave(&busiest->lock, flags);
8180
969c7921
TH
8181 /* don't kick the active_load_balance_cpu_stop,
8182 * if the curr task on busiest cpu can't be
8183 * moved to this_cpu
1e3c88bd 8184 */
0c98d344 8185 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8186 raw_spin_unlock_irqrestore(&busiest->lock,
8187 flags);
8e45cb54 8188 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8189 goto out_one_pinned;
8190 }
8191
969c7921
TH
8192 /*
8193 * ->active_balance synchronizes accesses to
8194 * ->active_balance_work. Once set, it's cleared
8195 * only after active load balance is finished.
8196 */
1e3c88bd
PZ
8197 if (!busiest->active_balance) {
8198 busiest->active_balance = 1;
8199 busiest->push_cpu = this_cpu;
8200 active_balance = 1;
8201 }
8202 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8203
bd939f45 8204 if (active_balance) {
969c7921
TH
8205 stop_one_cpu_nowait(cpu_of(busiest),
8206 active_load_balance_cpu_stop, busiest,
8207 &busiest->active_balance_work);
bd939f45 8208 }
1e3c88bd 8209
d02c0711 8210 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8211 sd->nr_balance_failed = sd->cache_nice_tries+1;
8212 }
8213 } else
8214 sd->nr_balance_failed = 0;
8215
8216 if (likely(!active_balance)) {
8217 /* We were unbalanced, so reset the balancing interval */
8218 sd->balance_interval = sd->min_interval;
8219 } else {
8220 /*
8221 * If we've begun active balancing, start to back off. This
8222 * case may not be covered by the all_pinned logic if there
8223 * is only 1 task on the busy runqueue (because we don't call
163122b7 8224 * detach_tasks).
1e3c88bd
PZ
8225 */
8226 if (sd->balance_interval < sd->max_interval)
8227 sd->balance_interval *= 2;
8228 }
8229
1e3c88bd
PZ
8230 goto out;
8231
8232out_balanced:
afdeee05
VG
8233 /*
8234 * We reach balance although we may have faced some affinity
8235 * constraints. Clear the imbalance flag if it was set.
8236 */
8237 if (sd_parent) {
8238 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8239
8240 if (*group_imbalance)
8241 *group_imbalance = 0;
8242 }
8243
8244out_all_pinned:
8245 /*
8246 * We reach balance because all tasks are pinned at this level so
8247 * we can't migrate them. Let the imbalance flag set so parent level
8248 * can try to migrate them.
8249 */
ae92882e 8250 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8251
8252 sd->nr_balance_failed = 0;
8253
8254out_one_pinned:
8255 /* tune up the balancing interval */
8e45cb54 8256 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8257 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8258 (sd->balance_interval < sd->max_interval))
8259 sd->balance_interval *= 2;
8260
46e49b38 8261 ld_moved = 0;
1e3c88bd 8262out:
1e3c88bd
PZ
8263 return ld_moved;
8264}
8265
52a08ef1
JL
8266static inline unsigned long
8267get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8268{
8269 unsigned long interval = sd->balance_interval;
8270
8271 if (cpu_busy)
8272 interval *= sd->busy_factor;
8273
8274 /* scale ms to jiffies */
8275 interval = msecs_to_jiffies(interval);
8276 interval = clamp(interval, 1UL, max_load_balance_interval);
8277
8278 return interval;
8279}
8280
8281static inline void
31851a98 8282update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8283{
8284 unsigned long interval, next;
8285
31851a98
LY
8286 /* used by idle balance, so cpu_busy = 0 */
8287 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8288 next = sd->last_balance + interval;
8289
8290 if (time_after(*next_balance, next))
8291 *next_balance = next;
8292}
8293
1e3c88bd
PZ
8294/*
8295 * idle_balance is called by schedule() if this_cpu is about to become
8296 * idle. Attempts to pull tasks from other CPUs.
8297 */
46f69fa3 8298static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8299{
52a08ef1
JL
8300 unsigned long next_balance = jiffies + HZ;
8301 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8302 struct sched_domain *sd;
8303 int pulled_task = 0;
9bd721c5 8304 u64 curr_cost = 0;
1e3c88bd 8305
6e83125c
PZ
8306 /*
8307 * We must set idle_stamp _before_ calling idle_balance(), such that we
8308 * measure the duration of idle_balance() as idle time.
8309 */
8310 this_rq->idle_stamp = rq_clock(this_rq);
8311
46f69fa3
MF
8312 /*
8313 * This is OK, because current is on_cpu, which avoids it being picked
8314 * for load-balance and preemption/IRQs are still disabled avoiding
8315 * further scheduler activity on it and we're being very careful to
8316 * re-start the picking loop.
8317 */
8318 rq_unpin_lock(this_rq, rf);
8319
4486edd1
TC
8320 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8321 !this_rq->rd->overload) {
52a08ef1
JL
8322 rcu_read_lock();
8323 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8324 if (sd)
31851a98 8325 update_next_balance(sd, &next_balance);
52a08ef1
JL
8326 rcu_read_unlock();
8327
6e83125c 8328 goto out;
52a08ef1 8329 }
1e3c88bd 8330
f492e12e
PZ
8331 raw_spin_unlock(&this_rq->lock);
8332
48a16753 8333 update_blocked_averages(this_cpu);
dce840a0 8334 rcu_read_lock();
1e3c88bd 8335 for_each_domain(this_cpu, sd) {
23f0d209 8336 int continue_balancing = 1;
9bd721c5 8337 u64 t0, domain_cost;
1e3c88bd
PZ
8338
8339 if (!(sd->flags & SD_LOAD_BALANCE))
8340 continue;
8341
52a08ef1 8342 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8343 update_next_balance(sd, &next_balance);
9bd721c5 8344 break;
52a08ef1 8345 }
9bd721c5 8346
f492e12e 8347 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8348 t0 = sched_clock_cpu(this_cpu);
8349
f492e12e 8350 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8351 sd, CPU_NEWLY_IDLE,
8352 &continue_balancing);
9bd721c5
JL
8353
8354 domain_cost = sched_clock_cpu(this_cpu) - t0;
8355 if (domain_cost > sd->max_newidle_lb_cost)
8356 sd->max_newidle_lb_cost = domain_cost;
8357
8358 curr_cost += domain_cost;
f492e12e 8359 }
1e3c88bd 8360
31851a98 8361 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8362
8363 /*
8364 * Stop searching for tasks to pull if there are
8365 * now runnable tasks on this rq.
8366 */
8367 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8368 break;
1e3c88bd 8369 }
dce840a0 8370 rcu_read_unlock();
f492e12e
PZ
8371
8372 raw_spin_lock(&this_rq->lock);
8373
0e5b5337
JL
8374 if (curr_cost > this_rq->max_idle_balance_cost)
8375 this_rq->max_idle_balance_cost = curr_cost;
8376
e5fc6611 8377 /*
0e5b5337
JL
8378 * While browsing the domains, we released the rq lock, a task could
8379 * have been enqueued in the meantime. Since we're not going idle,
8380 * pretend we pulled a task.
e5fc6611 8381 */
0e5b5337 8382 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8383 pulled_task = 1;
e5fc6611 8384
52a08ef1
JL
8385out:
8386 /* Move the next balance forward */
8387 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8388 this_rq->next_balance = next_balance;
9bd721c5 8389
e4aa358b 8390 /* Is there a task of a high priority class? */
46383648 8391 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8392 pulled_task = -1;
8393
38c6ade2 8394 if (pulled_task)
6e83125c
PZ
8395 this_rq->idle_stamp = 0;
8396
46f69fa3
MF
8397 rq_repin_lock(this_rq, rf);
8398
3c4017c1 8399 return pulled_task;
1e3c88bd
PZ
8400}
8401
8402/*
969c7921
TH
8403 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8404 * running tasks off the busiest CPU onto idle CPUs. It requires at
8405 * least 1 task to be running on each physical CPU where possible, and
8406 * avoids physical / logical imbalances.
1e3c88bd 8407 */
969c7921 8408static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8409{
969c7921
TH
8410 struct rq *busiest_rq = data;
8411 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8412 int target_cpu = busiest_rq->push_cpu;
969c7921 8413 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8414 struct sched_domain *sd;
e5673f28 8415 struct task_struct *p = NULL;
8a8c69c3 8416 struct rq_flags rf;
969c7921 8417
8a8c69c3 8418 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8419
8420 /* make sure the requested cpu hasn't gone down in the meantime */
8421 if (unlikely(busiest_cpu != smp_processor_id() ||
8422 !busiest_rq->active_balance))
8423 goto out_unlock;
1e3c88bd
PZ
8424
8425 /* Is there any task to move? */
8426 if (busiest_rq->nr_running <= 1)
969c7921 8427 goto out_unlock;
1e3c88bd
PZ
8428
8429 /*
8430 * This condition is "impossible", if it occurs
8431 * we need to fix it. Originally reported by
8432 * Bjorn Helgaas on a 128-cpu setup.
8433 */
8434 BUG_ON(busiest_rq == target_rq);
8435
1e3c88bd 8436 /* Search for an sd spanning us and the target CPU. */
dce840a0 8437 rcu_read_lock();
1e3c88bd
PZ
8438 for_each_domain(target_cpu, sd) {
8439 if ((sd->flags & SD_LOAD_BALANCE) &&
8440 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8441 break;
8442 }
8443
8444 if (likely(sd)) {
8e45cb54
PZ
8445 struct lb_env env = {
8446 .sd = sd,
ddcdf6e7
PZ
8447 .dst_cpu = target_cpu,
8448 .dst_rq = target_rq,
8449 .src_cpu = busiest_rq->cpu,
8450 .src_rq = busiest_rq,
8e45cb54 8451 .idle = CPU_IDLE,
65a4433a
JH
8452 /*
8453 * can_migrate_task() doesn't need to compute new_dst_cpu
8454 * for active balancing. Since we have CPU_IDLE, but no
8455 * @dst_grpmask we need to make that test go away with lying
8456 * about DST_PINNED.
8457 */
8458 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8459 };
8460
ae92882e 8461 schedstat_inc(sd->alb_count);
3bed5e21 8462 update_rq_clock(busiest_rq);
1e3c88bd 8463
e5673f28 8464 p = detach_one_task(&env);
d02c0711 8465 if (p) {
ae92882e 8466 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8467 /* Active balancing done, reset the failure counter. */
8468 sd->nr_balance_failed = 0;
8469 } else {
ae92882e 8470 schedstat_inc(sd->alb_failed);
d02c0711 8471 }
1e3c88bd 8472 }
dce840a0 8473 rcu_read_unlock();
969c7921
TH
8474out_unlock:
8475 busiest_rq->active_balance = 0;
8a8c69c3 8476 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8477
8478 if (p)
8479 attach_one_task(target_rq, p);
8480
8481 local_irq_enable();
8482
969c7921 8483 return 0;
1e3c88bd
PZ
8484}
8485
d987fc7f
MG
8486static inline int on_null_domain(struct rq *rq)
8487{
8488 return unlikely(!rcu_dereference_sched(rq->sd));
8489}
8490
3451d024 8491#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8492/*
8493 * idle load balancing details
83cd4fe2
VP
8494 * - When one of the busy CPUs notice that there may be an idle rebalancing
8495 * needed, they will kick the idle load balancer, which then does idle
8496 * load balancing for all the idle CPUs.
8497 */
1e3c88bd 8498static struct {
83cd4fe2 8499 cpumask_var_t idle_cpus_mask;
0b005cf5 8500 atomic_t nr_cpus;
83cd4fe2
VP
8501 unsigned long next_balance; /* in jiffy units */
8502} nohz ____cacheline_aligned;
1e3c88bd 8503
3dd0337d 8504static inline int find_new_ilb(void)
1e3c88bd 8505{
0b005cf5 8506 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8507
786d6dc7
SS
8508 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8509 return ilb;
8510
8511 return nr_cpu_ids;
1e3c88bd 8512}
1e3c88bd 8513
83cd4fe2
VP
8514/*
8515 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8516 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8517 * CPU (if there is one).
8518 */
0aeeeeba 8519static void nohz_balancer_kick(void)
83cd4fe2
VP
8520{
8521 int ilb_cpu;
8522
8523 nohz.next_balance++;
8524
3dd0337d 8525 ilb_cpu = find_new_ilb();
83cd4fe2 8526
0b005cf5
SS
8527 if (ilb_cpu >= nr_cpu_ids)
8528 return;
83cd4fe2 8529
cd490c5b 8530 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8531 return;
8532 /*
8533 * Use smp_send_reschedule() instead of resched_cpu().
8534 * This way we generate a sched IPI on the target cpu which
8535 * is idle. And the softirq performing nohz idle load balance
8536 * will be run before returning from the IPI.
8537 */
8538 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8539 return;
8540}
8541
20a5c8cc 8542void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8543{
8544 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8545 /*
8546 * Completely isolated CPUs don't ever set, so we must test.
8547 */
8548 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8549 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8550 atomic_dec(&nohz.nr_cpus);
8551 }
71325960
SS
8552 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8553 }
8554}
8555
69e1e811
SS
8556static inline void set_cpu_sd_state_busy(void)
8557{
8558 struct sched_domain *sd;
37dc6b50 8559 int cpu = smp_processor_id();
69e1e811 8560
69e1e811 8561 rcu_read_lock();
0e369d75 8562 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8563
8564 if (!sd || !sd->nohz_idle)
8565 goto unlock;
8566 sd->nohz_idle = 0;
8567
0e369d75 8568 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8569unlock:
69e1e811
SS
8570 rcu_read_unlock();
8571}
8572
8573void set_cpu_sd_state_idle(void)
8574{
8575 struct sched_domain *sd;
37dc6b50 8576 int cpu = smp_processor_id();
69e1e811 8577
69e1e811 8578 rcu_read_lock();
0e369d75 8579 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8580
8581 if (!sd || sd->nohz_idle)
8582 goto unlock;
8583 sd->nohz_idle = 1;
8584
0e369d75 8585 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8586unlock:
69e1e811
SS
8587 rcu_read_unlock();
8588}
8589
1e3c88bd 8590/*
c1cc017c 8591 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8592 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8593 */
c1cc017c 8594void nohz_balance_enter_idle(int cpu)
1e3c88bd 8595{
71325960
SS
8596 /*
8597 * If this cpu is going down, then nothing needs to be done.
8598 */
8599 if (!cpu_active(cpu))
8600 return;
8601
387bc8b5
FW
8602 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8603 if (!is_housekeeping_cpu(cpu))
8604 return;
8605
c1cc017c
AS
8606 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8607 return;
1e3c88bd 8608
d987fc7f
MG
8609 /*
8610 * If we're a completely isolated CPU, we don't play.
8611 */
8612 if (on_null_domain(cpu_rq(cpu)))
8613 return;
8614
c1cc017c
AS
8615 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8616 atomic_inc(&nohz.nr_cpus);
8617 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8618}
8619#endif
8620
8621static DEFINE_SPINLOCK(balancing);
8622
49c022e6
PZ
8623/*
8624 * Scale the max load_balance interval with the number of CPUs in the system.
8625 * This trades load-balance latency on larger machines for less cross talk.
8626 */
029632fb 8627void update_max_interval(void)
49c022e6
PZ
8628{
8629 max_load_balance_interval = HZ*num_online_cpus()/10;
8630}
8631
1e3c88bd
PZ
8632/*
8633 * It checks each scheduling domain to see if it is due to be balanced,
8634 * and initiates a balancing operation if so.
8635 *
b9b0853a 8636 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8637 */
f7ed0a89 8638static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8639{
23f0d209 8640 int continue_balancing = 1;
f7ed0a89 8641 int cpu = rq->cpu;
1e3c88bd 8642 unsigned long interval;
04f733b4 8643 struct sched_domain *sd;
1e3c88bd
PZ
8644 /* Earliest time when we have to do rebalance again */
8645 unsigned long next_balance = jiffies + 60*HZ;
8646 int update_next_balance = 0;
f48627e6
JL
8647 int need_serialize, need_decay = 0;
8648 u64 max_cost = 0;
1e3c88bd 8649
48a16753 8650 update_blocked_averages(cpu);
2069dd75 8651
dce840a0 8652 rcu_read_lock();
1e3c88bd 8653 for_each_domain(cpu, sd) {
f48627e6
JL
8654 /*
8655 * Decay the newidle max times here because this is a regular
8656 * visit to all the domains. Decay ~1% per second.
8657 */
8658 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8659 sd->max_newidle_lb_cost =
8660 (sd->max_newidle_lb_cost * 253) / 256;
8661 sd->next_decay_max_lb_cost = jiffies + HZ;
8662 need_decay = 1;
8663 }
8664 max_cost += sd->max_newidle_lb_cost;
8665
1e3c88bd
PZ
8666 if (!(sd->flags & SD_LOAD_BALANCE))
8667 continue;
8668
f48627e6
JL
8669 /*
8670 * Stop the load balance at this level. There is another
8671 * CPU in our sched group which is doing load balancing more
8672 * actively.
8673 */
8674 if (!continue_balancing) {
8675 if (need_decay)
8676 continue;
8677 break;
8678 }
8679
52a08ef1 8680 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8681
8682 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8683 if (need_serialize) {
8684 if (!spin_trylock(&balancing))
8685 goto out;
8686 }
8687
8688 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8689 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8690 /*
6263322c 8691 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8692 * env->dst_cpu, so we can't know our idle
8693 * state even if we migrated tasks. Update it.
1e3c88bd 8694 */
de5eb2dd 8695 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8696 }
8697 sd->last_balance = jiffies;
52a08ef1 8698 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8699 }
8700 if (need_serialize)
8701 spin_unlock(&balancing);
8702out:
8703 if (time_after(next_balance, sd->last_balance + interval)) {
8704 next_balance = sd->last_balance + interval;
8705 update_next_balance = 1;
8706 }
f48627e6
JL
8707 }
8708 if (need_decay) {
1e3c88bd 8709 /*
f48627e6
JL
8710 * Ensure the rq-wide value also decays but keep it at a
8711 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8712 */
f48627e6
JL
8713 rq->max_idle_balance_cost =
8714 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8715 }
dce840a0 8716 rcu_read_unlock();
1e3c88bd
PZ
8717
8718 /*
8719 * next_balance will be updated only when there is a need.
8720 * When the cpu is attached to null domain for ex, it will not be
8721 * updated.
8722 */
c5afb6a8 8723 if (likely(update_next_balance)) {
1e3c88bd 8724 rq->next_balance = next_balance;
c5afb6a8
VG
8725
8726#ifdef CONFIG_NO_HZ_COMMON
8727 /*
8728 * If this CPU has been elected to perform the nohz idle
8729 * balance. Other idle CPUs have already rebalanced with
8730 * nohz_idle_balance() and nohz.next_balance has been
8731 * updated accordingly. This CPU is now running the idle load
8732 * balance for itself and we need to update the
8733 * nohz.next_balance accordingly.
8734 */
8735 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8736 nohz.next_balance = rq->next_balance;
8737#endif
8738 }
1e3c88bd
PZ
8739}
8740
3451d024 8741#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8742/*
3451d024 8743 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8744 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8745 */
208cb16b 8746static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8747{
208cb16b 8748 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8749 struct rq *rq;
8750 int balance_cpu;
c5afb6a8
VG
8751 /* Earliest time when we have to do rebalance again */
8752 unsigned long next_balance = jiffies + 60*HZ;
8753 int update_next_balance = 0;
83cd4fe2 8754
1c792db7
SS
8755 if (idle != CPU_IDLE ||
8756 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8757 goto end;
83cd4fe2
VP
8758
8759 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8760 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8761 continue;
8762
8763 /*
8764 * If this cpu gets work to do, stop the load balancing
8765 * work being done for other cpus. Next load
8766 * balancing owner will pick it up.
8767 */
1c792db7 8768 if (need_resched())
83cd4fe2 8769 break;
83cd4fe2 8770
5ed4f1d9
VG
8771 rq = cpu_rq(balance_cpu);
8772
ed61bbc6
TC
8773 /*
8774 * If time for next balance is due,
8775 * do the balance.
8776 */
8777 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8778 struct rq_flags rf;
8779
8780 rq_lock_irq(rq, &rf);
ed61bbc6 8781 update_rq_clock(rq);
cee1afce 8782 cpu_load_update_idle(rq);
8a8c69c3
PZ
8783 rq_unlock_irq(rq, &rf);
8784
ed61bbc6
TC
8785 rebalance_domains(rq, CPU_IDLE);
8786 }
83cd4fe2 8787
c5afb6a8
VG
8788 if (time_after(next_balance, rq->next_balance)) {
8789 next_balance = rq->next_balance;
8790 update_next_balance = 1;
8791 }
83cd4fe2 8792 }
c5afb6a8
VG
8793
8794 /*
8795 * next_balance will be updated only when there is a need.
8796 * When the CPU is attached to null domain for ex, it will not be
8797 * updated.
8798 */
8799 if (likely(update_next_balance))
8800 nohz.next_balance = next_balance;
1c792db7
SS
8801end:
8802 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8803}
8804
8805/*
0b005cf5 8806 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8807 * of an idle cpu in the system.
0b005cf5 8808 * - This rq has more than one task.
1aaf90a4
VG
8809 * - This rq has at least one CFS task and the capacity of the CPU is
8810 * significantly reduced because of RT tasks or IRQs.
8811 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8812 * multiple busy cpu.
0b005cf5
SS
8813 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8814 * domain span are idle.
83cd4fe2 8815 */
1aaf90a4 8816static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8817{
8818 unsigned long now = jiffies;
0e369d75 8819 struct sched_domain_shared *sds;
0b005cf5 8820 struct sched_domain *sd;
afe06efd 8821 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8822 bool kick = false;
83cd4fe2 8823
4a725627 8824 if (unlikely(rq->idle_balance))
1aaf90a4 8825 return false;
83cd4fe2 8826
1c792db7
SS
8827 /*
8828 * We may be recently in ticked or tickless idle mode. At the first
8829 * busy tick after returning from idle, we will update the busy stats.
8830 */
69e1e811 8831 set_cpu_sd_state_busy();
c1cc017c 8832 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8833
8834 /*
8835 * None are in tickless mode and hence no need for NOHZ idle load
8836 * balancing.
8837 */
8838 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8839 return false;
1c792db7
SS
8840
8841 if (time_before(now, nohz.next_balance))
1aaf90a4 8842 return false;
83cd4fe2 8843
0b005cf5 8844 if (rq->nr_running >= 2)
1aaf90a4 8845 return true;
83cd4fe2 8846
067491b7 8847 rcu_read_lock();
0e369d75
PZ
8848 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8849 if (sds) {
8850 /*
8851 * XXX: write a coherent comment on why we do this.
8852 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8853 */
8854 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8855 if (nr_busy > 1) {
8856 kick = true;
8857 goto unlock;
8858 }
8859
83cd4fe2 8860 }
37dc6b50 8861
1aaf90a4
VG
8862 sd = rcu_dereference(rq->sd);
8863 if (sd) {
8864 if ((rq->cfs.h_nr_running >= 1) &&
8865 check_cpu_capacity(rq, sd)) {
8866 kick = true;
8867 goto unlock;
8868 }
8869 }
37dc6b50 8870
1aaf90a4 8871 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8872 if (sd) {
8873 for_each_cpu(i, sched_domain_span(sd)) {
8874 if (i == cpu ||
8875 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8876 continue;
067491b7 8877
afe06efd
TC
8878 if (sched_asym_prefer(i, cpu)) {
8879 kick = true;
8880 goto unlock;
8881 }
8882 }
8883 }
1aaf90a4 8884unlock:
067491b7 8885 rcu_read_unlock();
1aaf90a4 8886 return kick;
83cd4fe2
VP
8887}
8888#else
208cb16b 8889static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8890#endif
8891
8892/*
8893 * run_rebalance_domains is triggered when needed from the scheduler tick.
8894 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8895 */
0766f788 8896static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8897{
208cb16b 8898 struct rq *this_rq = this_rq();
6eb57e0d 8899 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8900 CPU_IDLE : CPU_NOT_IDLE;
8901
1e3c88bd 8902 /*
83cd4fe2 8903 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8904 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8905 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8906 * give the idle cpus a chance to load balance. Else we may
8907 * load balance only within the local sched_domain hierarchy
8908 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8909 */
208cb16b 8910 nohz_idle_balance(this_rq, idle);
d4573c3e 8911 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8912}
8913
1e3c88bd
PZ
8914/*
8915 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8916 */
7caff66f 8917void trigger_load_balance(struct rq *rq)
1e3c88bd 8918{
1e3c88bd 8919 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8920 if (unlikely(on_null_domain(rq)))
8921 return;
8922
8923 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8924 raise_softirq(SCHED_SOFTIRQ);
3451d024 8925#ifdef CONFIG_NO_HZ_COMMON
c726099e 8926 if (nohz_kick_needed(rq))
0aeeeeba 8927 nohz_balancer_kick();
83cd4fe2 8928#endif
1e3c88bd
PZ
8929}
8930
0bcdcf28
CE
8931static void rq_online_fair(struct rq *rq)
8932{
8933 update_sysctl();
0e59bdae
KT
8934
8935 update_runtime_enabled(rq);
0bcdcf28
CE
8936}
8937
8938static void rq_offline_fair(struct rq *rq)
8939{
8940 update_sysctl();
a4c96ae3
PB
8941
8942 /* Ensure any throttled groups are reachable by pick_next_task */
8943 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8944}
8945
55e12e5e 8946#endif /* CONFIG_SMP */
e1d1484f 8947
bf0f6f24
IM
8948/*
8949 * scheduler tick hitting a task of our scheduling class:
8950 */
8f4d37ec 8951static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8952{
8953 struct cfs_rq *cfs_rq;
8954 struct sched_entity *se = &curr->se;
8955
8956 for_each_sched_entity(se) {
8957 cfs_rq = cfs_rq_of(se);
8f4d37ec 8958 entity_tick(cfs_rq, se, queued);
bf0f6f24 8959 }
18bf2805 8960
b52da86e 8961 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8962 task_tick_numa(rq, curr);
bf0f6f24
IM
8963}
8964
8965/*
cd29fe6f
PZ
8966 * called on fork with the child task as argument from the parent's context
8967 * - child not yet on the tasklist
8968 * - preemption disabled
bf0f6f24 8969 */
cd29fe6f 8970static void task_fork_fair(struct task_struct *p)
bf0f6f24 8971{
4fc420c9
DN
8972 struct cfs_rq *cfs_rq;
8973 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8974 struct rq *rq = this_rq();
8a8c69c3 8975 struct rq_flags rf;
bf0f6f24 8976
8a8c69c3 8977 rq_lock(rq, &rf);
861d034e
PZ
8978 update_rq_clock(rq);
8979
4fc420c9
DN
8980 cfs_rq = task_cfs_rq(current);
8981 curr = cfs_rq->curr;
e210bffd
PZ
8982 if (curr) {
8983 update_curr(cfs_rq);
b5d9d734 8984 se->vruntime = curr->vruntime;
e210bffd 8985 }
aeb73b04 8986 place_entity(cfs_rq, se, 1);
4d78e7b6 8987
cd29fe6f 8988 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8989 /*
edcb60a3
IM
8990 * Upon rescheduling, sched_class::put_prev_task() will place
8991 * 'current' within the tree based on its new key value.
8992 */
4d78e7b6 8993 swap(curr->vruntime, se->vruntime);
8875125e 8994 resched_curr(rq);
4d78e7b6 8995 }
bf0f6f24 8996
88ec22d3 8997 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 8998 rq_unlock(rq, &rf);
bf0f6f24
IM
8999}
9000
cb469845
SR
9001/*
9002 * Priority of the task has changed. Check to see if we preempt
9003 * the current task.
9004 */
da7a735e
PZ
9005static void
9006prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9007{
da0c1e65 9008 if (!task_on_rq_queued(p))
da7a735e
PZ
9009 return;
9010
cb469845
SR
9011 /*
9012 * Reschedule if we are currently running on this runqueue and
9013 * our priority decreased, or if we are not currently running on
9014 * this runqueue and our priority is higher than the current's
9015 */
da7a735e 9016 if (rq->curr == p) {
cb469845 9017 if (p->prio > oldprio)
8875125e 9018 resched_curr(rq);
cb469845 9019 } else
15afe09b 9020 check_preempt_curr(rq, p, 0);
cb469845
SR
9021}
9022
daa59407 9023static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9024{
9025 struct sched_entity *se = &p->se;
da7a735e
PZ
9026
9027 /*
daa59407
BP
9028 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9029 * the dequeue_entity(.flags=0) will already have normalized the
9030 * vruntime.
9031 */
9032 if (p->on_rq)
9033 return true;
9034
9035 /*
9036 * When !on_rq, vruntime of the task has usually NOT been normalized.
9037 * But there are some cases where it has already been normalized:
da7a735e 9038 *
daa59407
BP
9039 * - A forked child which is waiting for being woken up by
9040 * wake_up_new_task().
9041 * - A task which has been woken up by try_to_wake_up() and
9042 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9043 */
daa59407
BP
9044 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9045 return true;
9046
9047 return false;
9048}
9049
09a43ace
VG
9050#ifdef CONFIG_FAIR_GROUP_SCHED
9051/*
9052 * Propagate the changes of the sched_entity across the tg tree to make it
9053 * visible to the root
9054 */
9055static void propagate_entity_cfs_rq(struct sched_entity *se)
9056{
9057 struct cfs_rq *cfs_rq;
9058
9059 /* Start to propagate at parent */
9060 se = se->parent;
9061
9062 for_each_sched_entity(se) {
9063 cfs_rq = cfs_rq_of(se);
9064
9065 if (cfs_rq_throttled(cfs_rq))
9066 break;
9067
9068 update_load_avg(se, UPDATE_TG);
9069 }
9070}
9071#else
9072static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9073#endif
9074
df217913 9075static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9076{
daa59407
BP
9077 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9078
9d89c257 9079 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9080 update_load_avg(se, 0);
a05e8c51 9081 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9082 update_tg_load_avg(cfs_rq, false);
09a43ace 9083 propagate_entity_cfs_rq(se);
da7a735e
PZ
9084}
9085
df217913 9086static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9087{
daa59407 9088 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9089
9090#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9091 /*
9092 * Since the real-depth could have been changed (only FAIR
9093 * class maintain depth value), reset depth properly.
9094 */
9095 se->depth = se->parent ? se->parent->depth + 1 : 0;
9096#endif
7855a35a 9097
df217913 9098 /* Synchronize entity with its cfs_rq */
d31b1a66 9099 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9100 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9101 update_tg_load_avg(cfs_rq, false);
09a43ace 9102 propagate_entity_cfs_rq(se);
df217913
VG
9103}
9104
9105static void detach_task_cfs_rq(struct task_struct *p)
9106{
9107 struct sched_entity *se = &p->se;
9108 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9109
9110 if (!vruntime_normalized(p)) {
9111 /*
9112 * Fix up our vruntime so that the current sleep doesn't
9113 * cause 'unlimited' sleep bonus.
9114 */
9115 place_entity(cfs_rq, se, 0);
9116 se->vruntime -= cfs_rq->min_vruntime;
9117 }
9118
9119 detach_entity_cfs_rq(se);
9120}
9121
9122static void attach_task_cfs_rq(struct task_struct *p)
9123{
9124 struct sched_entity *se = &p->se;
9125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9126
9127 attach_entity_cfs_rq(se);
daa59407
BP
9128
9129 if (!vruntime_normalized(p))
9130 se->vruntime += cfs_rq->min_vruntime;
9131}
6efdb105 9132
daa59407
BP
9133static void switched_from_fair(struct rq *rq, struct task_struct *p)
9134{
9135 detach_task_cfs_rq(p);
9136}
9137
9138static void switched_to_fair(struct rq *rq, struct task_struct *p)
9139{
9140 attach_task_cfs_rq(p);
7855a35a 9141
daa59407 9142 if (task_on_rq_queued(p)) {
7855a35a 9143 /*
daa59407
BP
9144 * We were most likely switched from sched_rt, so
9145 * kick off the schedule if running, otherwise just see
9146 * if we can still preempt the current task.
7855a35a 9147 */
daa59407
BP
9148 if (rq->curr == p)
9149 resched_curr(rq);
9150 else
9151 check_preempt_curr(rq, p, 0);
7855a35a 9152 }
cb469845
SR
9153}
9154
83b699ed
SV
9155/* Account for a task changing its policy or group.
9156 *
9157 * This routine is mostly called to set cfs_rq->curr field when a task
9158 * migrates between groups/classes.
9159 */
9160static void set_curr_task_fair(struct rq *rq)
9161{
9162 struct sched_entity *se = &rq->curr->se;
9163
ec12cb7f
PT
9164 for_each_sched_entity(se) {
9165 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9166
9167 set_next_entity(cfs_rq, se);
9168 /* ensure bandwidth has been allocated on our new cfs_rq */
9169 account_cfs_rq_runtime(cfs_rq, 0);
9170 }
83b699ed
SV
9171}
9172
029632fb
PZ
9173void init_cfs_rq(struct cfs_rq *cfs_rq)
9174{
9175 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9176 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9177#ifndef CONFIG_64BIT
9178 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9179#endif
141965c7 9180#ifdef CONFIG_SMP
09a43ace
VG
9181#ifdef CONFIG_FAIR_GROUP_SCHED
9182 cfs_rq->propagate_avg = 0;
9183#endif
9d89c257
YD
9184 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9185 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9186#endif
029632fb
PZ
9187}
9188
810b3817 9189#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9190static void task_set_group_fair(struct task_struct *p)
9191{
9192 struct sched_entity *se = &p->se;
9193
9194 set_task_rq(p, task_cpu(p));
9195 se->depth = se->parent ? se->parent->depth + 1 : 0;
9196}
9197
bc54da21 9198static void task_move_group_fair(struct task_struct *p)
810b3817 9199{
daa59407 9200 detach_task_cfs_rq(p);
b2b5ce02 9201 set_task_rq(p, task_cpu(p));
6efdb105
BP
9202
9203#ifdef CONFIG_SMP
9204 /* Tell se's cfs_rq has been changed -- migrated */
9205 p->se.avg.last_update_time = 0;
9206#endif
daa59407 9207 attach_task_cfs_rq(p);
810b3817 9208}
029632fb 9209
ea86cb4b
VG
9210static void task_change_group_fair(struct task_struct *p, int type)
9211{
9212 switch (type) {
9213 case TASK_SET_GROUP:
9214 task_set_group_fair(p);
9215 break;
9216
9217 case TASK_MOVE_GROUP:
9218 task_move_group_fair(p);
9219 break;
9220 }
9221}
9222
029632fb
PZ
9223void free_fair_sched_group(struct task_group *tg)
9224{
9225 int i;
9226
9227 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9228
9229 for_each_possible_cpu(i) {
9230 if (tg->cfs_rq)
9231 kfree(tg->cfs_rq[i]);
6fe1f348 9232 if (tg->se)
029632fb
PZ
9233 kfree(tg->se[i]);
9234 }
9235
9236 kfree(tg->cfs_rq);
9237 kfree(tg->se);
9238}
9239
9240int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9241{
029632fb 9242 struct sched_entity *se;
b7fa30c9 9243 struct cfs_rq *cfs_rq;
029632fb
PZ
9244 int i;
9245
9246 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9247 if (!tg->cfs_rq)
9248 goto err;
9249 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9250 if (!tg->se)
9251 goto err;
9252
9253 tg->shares = NICE_0_LOAD;
9254
9255 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9256
9257 for_each_possible_cpu(i) {
9258 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9259 GFP_KERNEL, cpu_to_node(i));
9260 if (!cfs_rq)
9261 goto err;
9262
9263 se = kzalloc_node(sizeof(struct sched_entity),
9264 GFP_KERNEL, cpu_to_node(i));
9265 if (!se)
9266 goto err_free_rq;
9267
9268 init_cfs_rq(cfs_rq);
9269 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9270 init_entity_runnable_average(se);
029632fb
PZ
9271 }
9272
9273 return 1;
9274
9275err_free_rq:
9276 kfree(cfs_rq);
9277err:
9278 return 0;
9279}
9280
8663e24d
PZ
9281void online_fair_sched_group(struct task_group *tg)
9282{
9283 struct sched_entity *se;
9284 struct rq *rq;
9285 int i;
9286
9287 for_each_possible_cpu(i) {
9288 rq = cpu_rq(i);
9289 se = tg->se[i];
9290
9291 raw_spin_lock_irq(&rq->lock);
4126bad6 9292 update_rq_clock(rq);
d0326691 9293 attach_entity_cfs_rq(se);
55e16d30 9294 sync_throttle(tg, i);
8663e24d
PZ
9295 raw_spin_unlock_irq(&rq->lock);
9296 }
9297}
9298
6fe1f348 9299void unregister_fair_sched_group(struct task_group *tg)
029632fb 9300{
029632fb 9301 unsigned long flags;
6fe1f348
PZ
9302 struct rq *rq;
9303 int cpu;
029632fb 9304
6fe1f348
PZ
9305 for_each_possible_cpu(cpu) {
9306 if (tg->se[cpu])
9307 remove_entity_load_avg(tg->se[cpu]);
029632fb 9308
6fe1f348
PZ
9309 /*
9310 * Only empty task groups can be destroyed; so we can speculatively
9311 * check on_list without danger of it being re-added.
9312 */
9313 if (!tg->cfs_rq[cpu]->on_list)
9314 continue;
9315
9316 rq = cpu_rq(cpu);
9317
9318 raw_spin_lock_irqsave(&rq->lock, flags);
9319 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9320 raw_spin_unlock_irqrestore(&rq->lock, flags);
9321 }
029632fb
PZ
9322}
9323
9324void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9325 struct sched_entity *se, int cpu,
9326 struct sched_entity *parent)
9327{
9328 struct rq *rq = cpu_rq(cpu);
9329
9330 cfs_rq->tg = tg;
9331 cfs_rq->rq = rq;
029632fb
PZ
9332 init_cfs_rq_runtime(cfs_rq);
9333
9334 tg->cfs_rq[cpu] = cfs_rq;
9335 tg->se[cpu] = se;
9336
9337 /* se could be NULL for root_task_group */
9338 if (!se)
9339 return;
9340
fed14d45 9341 if (!parent) {
029632fb 9342 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9343 se->depth = 0;
9344 } else {
029632fb 9345 se->cfs_rq = parent->my_q;
fed14d45
PZ
9346 se->depth = parent->depth + 1;
9347 }
029632fb
PZ
9348
9349 se->my_q = cfs_rq;
0ac9b1c2
PT
9350 /* guarantee group entities always have weight */
9351 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9352 se->parent = parent;
9353}
9354
9355static DEFINE_MUTEX(shares_mutex);
9356
9357int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9358{
9359 int i;
029632fb
PZ
9360
9361 /*
9362 * We can't change the weight of the root cgroup.
9363 */
9364 if (!tg->se[0])
9365 return -EINVAL;
9366
9367 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9368
9369 mutex_lock(&shares_mutex);
9370 if (tg->shares == shares)
9371 goto done;
9372
9373 tg->shares = shares;
9374 for_each_possible_cpu(i) {
9375 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9376 struct sched_entity *se = tg->se[i];
9377 struct rq_flags rf;
029632fb 9378
029632fb 9379 /* Propagate contribution to hierarchy */
8a8c69c3 9380 rq_lock_irqsave(rq, &rf);
71b1da46 9381 update_rq_clock(rq);
89ee048f
VG
9382 for_each_sched_entity(se) {
9383 update_load_avg(se, UPDATE_TG);
9384 update_cfs_shares(se);
9385 }
8a8c69c3 9386 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9387 }
9388
9389done:
9390 mutex_unlock(&shares_mutex);
9391 return 0;
9392}
9393#else /* CONFIG_FAIR_GROUP_SCHED */
9394
9395void free_fair_sched_group(struct task_group *tg) { }
9396
9397int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9398{
9399 return 1;
9400}
9401
8663e24d
PZ
9402void online_fair_sched_group(struct task_group *tg) { }
9403
6fe1f348 9404void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9405
9406#endif /* CONFIG_FAIR_GROUP_SCHED */
9407
810b3817 9408
6d686f45 9409static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9410{
9411 struct sched_entity *se = &task->se;
0d721cea
PW
9412 unsigned int rr_interval = 0;
9413
9414 /*
9415 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9416 * idle runqueue:
9417 */
0d721cea 9418 if (rq->cfs.load.weight)
a59f4e07 9419 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9420
9421 return rr_interval;
9422}
9423
bf0f6f24
IM
9424/*
9425 * All the scheduling class methods:
9426 */
029632fb 9427const struct sched_class fair_sched_class = {
5522d5d5 9428 .next = &idle_sched_class,
bf0f6f24
IM
9429 .enqueue_task = enqueue_task_fair,
9430 .dequeue_task = dequeue_task_fair,
9431 .yield_task = yield_task_fair,
d95f4122 9432 .yield_to_task = yield_to_task_fair,
bf0f6f24 9433
2e09bf55 9434 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9435
9436 .pick_next_task = pick_next_task_fair,
9437 .put_prev_task = put_prev_task_fair,
9438
681f3e68 9439#ifdef CONFIG_SMP
4ce72a2c 9440 .select_task_rq = select_task_rq_fair,
0a74bef8 9441 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9442
0bcdcf28
CE
9443 .rq_online = rq_online_fair,
9444 .rq_offline = rq_offline_fair,
88ec22d3 9445
12695578 9446 .task_dead = task_dead_fair,
c5b28038 9447 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9448#endif
bf0f6f24 9449
83b699ed 9450 .set_curr_task = set_curr_task_fair,
bf0f6f24 9451 .task_tick = task_tick_fair,
cd29fe6f 9452 .task_fork = task_fork_fair,
cb469845
SR
9453
9454 .prio_changed = prio_changed_fair,
da7a735e 9455 .switched_from = switched_from_fair,
cb469845 9456 .switched_to = switched_to_fair,
810b3817 9457
0d721cea
PW
9458 .get_rr_interval = get_rr_interval_fair,
9459
6e998916
SG
9460 .update_curr = update_curr_fair,
9461
810b3817 9462#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9463 .task_change_group = task_change_group_fair,
810b3817 9464#endif
bf0f6f24
IM
9465};
9466
9467#ifdef CONFIG_SCHED_DEBUG
029632fb 9468void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9469{
a9e7f654 9470 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9471
5973e5b9 9472 rcu_read_lock();
a9e7f654 9473 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9474 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9475 rcu_read_unlock();
bf0f6f24 9476}
397f2378
SD
9477
9478#ifdef CONFIG_NUMA_BALANCING
9479void show_numa_stats(struct task_struct *p, struct seq_file *m)
9480{
9481 int node;
9482 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9483
9484 for_each_online_node(node) {
9485 if (p->numa_faults) {
9486 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9487 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9488 }
9489 if (p->numa_group) {
9490 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9491 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9492 }
9493 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9494 }
9495}
9496#endif /* CONFIG_NUMA_BALANCING */
9497#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9498
9499__init void init_sched_fair_class(void)
9500{
9501#ifdef CONFIG_SMP
9502 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9503
3451d024 9504#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9505 nohz.next_balance = jiffies;
029632fb 9506 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9507#endif
9508#endif /* SMP */
9509
9510}