sched/fair: Fix unthrottle_cfs_rq() for leaf_cfs_rq list
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
05289b90
TG
89int sched_thermal_decay_shift;
90static int __init setup_sched_thermal_decay_shift(char *str)
91{
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99}
100__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
97fb7a0a 104 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
6d101ba6
OJ
110
111/*
60e17f5c 112 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
113 *
114 * (default: ~20%)
115 */
60e17f5c
VK
116#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
afe06efd
TC
118#endif
119
ec12cb7f
PT
120#ifdef CONFIG_CFS_BANDWIDTH
121/*
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
124 *
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
128 *
2b4d5b25
IM
129 * (default: 5 msec, units: microseconds)
130 */
131unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
132#endif
133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
2eeb01a2 245 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 246
9dbdb155
PZ
247 while (fact >> 32) {
248 fact >>= 1;
249 shift--;
250 }
029632fb 251
9dbdb155 252 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
253}
254
255
256const struct sched_class fair_sched_class;
a4c2f00f 257
bf0f6f24
IM
258/**************************************************************
259 * CFS operations on generic schedulable entities:
260 */
261
62160e3f 262#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
9148a3a1 265 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
266 return container_of(se, struct task_struct, se);
267}
268
b758149c
PZ
269/* Walk up scheduling entities hierarchy */
270#define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274{
275 return p->se.cfs_rq;
276}
277
278/* runqueue on which this entity is (to be) queued */
279static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280{
281 return se->cfs_rq;
282}
283
284/* runqueue "owned" by this group */
285static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286{
287 return grp->my_q;
288}
289
3c93a0c0
QY
290static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291{
292 if (!path)
293 return;
294
295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 autogroup_path(cfs_rq->tg, path, len);
297 else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 else
300 strlcpy(path, "(null)", len);
301}
302
f6783319 303static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 304{
5d299eab
PZ
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307
308 if (cfs_rq->on_list)
f6783319 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
310
311 cfs_rq->on_list = 1;
312
313 /*
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
321 */
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 324 /*
5d299eab
PZ
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
67e86250 329 */
5d299eab
PZ
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 /*
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
336 */
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 338 return true;
5d299eab 339 }
3d4b47b4 340
5d299eab
PZ
341 if (!cfs_rq->tg->parent) {
342 /*
343 * cfs rq without parent should be put
344 * at the tail of the list.
345 */
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
348 /*
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
351 */
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 353 return true;
3d4b47b4 354 }
5d299eab
PZ
355
356 /*
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
361 */
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 /*
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
366 */
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 368 return false;
3d4b47b4
PZ
369}
370
371static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372{
373 if (cfs_rq->on_list) {
31bc6aea
VG
374 struct rq *rq = rq_of(cfs_rq);
375
376 /*
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
382 */
383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385
3d4b47b4
PZ
386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 cfs_rq->on_list = 0;
388 }
389}
390
5d299eab
PZ
391static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392{
393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394}
395
039ae8bc
VG
396/* Iterate thr' all leaf cfs_rq's on a runqueue */
397#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 leaf_cfs_rq_list)
b758149c
PZ
400
401/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 402static inline struct cfs_rq *
b758149c
PZ
403is_same_group(struct sched_entity *se, struct sched_entity *pse)
404{
405 if (se->cfs_rq == pse->cfs_rq)
fed14d45 406 return se->cfs_rq;
b758149c 407
fed14d45 408 return NULL;
b758149c
PZ
409}
410
411static inline struct sched_entity *parent_entity(struct sched_entity *se)
412{
413 return se->parent;
414}
415
464b7527
PZ
416static void
417find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418{
419 int se_depth, pse_depth;
420
421 /*
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
425 * parent.
426 */
427
428 /* First walk up until both entities are at same depth */
fed14d45
PZ
429 se_depth = (*se)->depth;
430 pse_depth = (*pse)->depth;
464b7527
PZ
431
432 while (se_depth > pse_depth) {
433 se_depth--;
434 *se = parent_entity(*se);
435 }
436
437 while (pse_depth > se_depth) {
438 pse_depth--;
439 *pse = parent_entity(*pse);
440 }
441
442 while (!is_same_group(*se, *pse)) {
443 *se = parent_entity(*se);
444 *pse = parent_entity(*pse);
445 }
446}
447
8f48894f
PZ
448#else /* !CONFIG_FAIR_GROUP_SCHED */
449
450static inline struct task_struct *task_of(struct sched_entity *se)
451{
452 return container_of(se, struct task_struct, se);
453}
bf0f6f24 454
b758149c
PZ
455#define for_each_sched_entity(se) \
456 for (; se; se = NULL)
bf0f6f24 457
b758149c 458static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 459{
b758149c 460 return &task_rq(p)->cfs;
bf0f6f24
IM
461}
462
b758149c
PZ
463static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464{
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
467
468 return &rq->cfs;
469}
470
471/* runqueue "owned" by this group */
472static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473{
474 return NULL;
475}
476
3c93a0c0
QY
477static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478{
479 if (path)
480 strlcpy(path, "(null)", len);
481}
482
f6783319 483static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 484{
f6783319 485 return true;
3d4b47b4
PZ
486}
487
488static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489{
490}
491
5d299eab
PZ
492static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493{
494}
495
039ae8bc
VG
496#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 498
b758149c
PZ
499static inline struct sched_entity *parent_entity(struct sched_entity *se)
500{
501 return NULL;
502}
503
464b7527
PZ
504static inline void
505find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506{
507}
508
b758149c
PZ
509#endif /* CONFIG_FAIR_GROUP_SCHED */
510
6c16a6dc 511static __always_inline
9dbdb155 512void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
513
514/**************************************************************
515 * Scheduling class tree data structure manipulation methods:
516 */
517
1bf08230 518static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 519{
1bf08230 520 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 521 if (delta > 0)
1bf08230 522 max_vruntime = vruntime;
02e0431a 523
1bf08230 524 return max_vruntime;
02e0431a
PZ
525}
526
0702e3eb 527static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
528{
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
532
533 return min_vruntime;
534}
535
54fdc581
FC
536static inline int entity_before(struct sched_entity *a,
537 struct sched_entity *b)
538{
539 return (s64)(a->vruntime - b->vruntime) < 0;
540}
541
1af5f730
PZ
542static void update_min_vruntime(struct cfs_rq *cfs_rq)
543{
b60205c7 544 struct sched_entity *curr = cfs_rq->curr;
bfb06889 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 546
1af5f730
PZ
547 u64 vruntime = cfs_rq->min_vruntime;
548
b60205c7
PZ
549 if (curr) {
550 if (curr->on_rq)
551 vruntime = curr->vruntime;
552 else
553 curr = NULL;
554 }
1af5f730 555
bfb06889
DB
556 if (leftmost) { /* non-empty tree */
557 struct sched_entity *se;
558 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 559
b60205c7 560 if (!curr)
1af5f730
PZ
561 vruntime = se->vruntime;
562 else
563 vruntime = min_vruntime(vruntime, se->vruntime);
564 }
565
1bf08230 566 /* ensure we never gain time by being placed backwards. */
1af5f730 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
568#ifndef CONFIG_64BIT
569 smp_wmb();
570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571#endif
1af5f730
PZ
572}
573
bf0f6f24
IM
574/*
575 * Enqueue an entity into the rb-tree:
576 */
0702e3eb 577static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 578{
bfb06889 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
580 struct rb_node *parent = NULL;
581 struct sched_entity *entry;
bfb06889 582 bool leftmost = true;
bf0f6f24
IM
583
584 /*
585 * Find the right place in the rbtree:
586 */
587 while (*link) {
588 parent = *link;
589 entry = rb_entry(parent, struct sched_entity, run_node);
590 /*
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
593 */
2bd2d6f2 594 if (entity_before(se, entry)) {
bf0f6f24
IM
595 link = &parent->rb_left;
596 } else {
597 link = &parent->rb_right;
bfb06889 598 leftmost = false;
bf0f6f24
IM
599 }
600 }
601
bf0f6f24 602 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
603 rb_insert_color_cached(&se->run_node,
604 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
605}
606
0702e3eb 607static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
bfb06889 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
610}
611
029632fb 612struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 613{
bfb06889 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
615
616 if (!left)
617 return NULL;
618
619 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
620}
621
ac53db59
RR
622static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623{
624 struct rb_node *next = rb_next(&se->run_node);
625
626 if (!next)
627 return NULL;
628
629 return rb_entry(next, struct sched_entity, run_node);
630}
631
632#ifdef CONFIG_SCHED_DEBUG
029632fb 633struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 634{
bfb06889 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 636
70eee74b
BS
637 if (!last)
638 return NULL;
7eee3e67
IM
639
640 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
641}
642
bf0f6f24
IM
643/**************************************************************
644 * Scheduling class statistics methods:
645 */
646
acb4a848 647int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 648 void __user *buffer, size_t *lenp,
b2be5e96
PZ
649 loff_t *ppos)
650{
8d65af78 651 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 652 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
653
654 if (ret || !write)
655 return ret;
656
657 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
658 sysctl_sched_min_granularity);
659
acb4a848
CE
660#define WRT_SYSCTL(name) \
661 (normalized_sysctl_##name = sysctl_##name / (factor))
662 WRT_SYSCTL(sched_min_granularity);
663 WRT_SYSCTL(sched_latency);
664 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
665#undef WRT_SYSCTL
666
b2be5e96
PZ
667 return 0;
668}
669#endif
647e7cac 670
a7be37ac 671/*
f9c0b095 672 * delta /= w
a7be37ac 673 */
9dbdb155 674static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 675{
f9c0b095 676 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 677 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
678
679 return delta;
680}
681
647e7cac
IM
682/*
683 * The idea is to set a period in which each task runs once.
684 *
532b1858 685 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
686 * this period because otherwise the slices get too small.
687 *
688 * p = (nr <= nl) ? l : l*nr/nl
689 */
4d78e7b6
PZ
690static u64 __sched_period(unsigned long nr_running)
691{
8e2b0bf3
BF
692 if (unlikely(nr_running > sched_nr_latency))
693 return nr_running * sysctl_sched_min_granularity;
694 else
695 return sysctl_sched_latency;
4d78e7b6
PZ
696}
697
647e7cac
IM
698/*
699 * We calculate the wall-time slice from the period by taking a part
700 * proportional to the weight.
701 *
f9c0b095 702 * s = p*P[w/rw]
647e7cac 703 */
6d0f0ebd 704static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 705{
0a582440 706 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 707
0a582440 708 for_each_sched_entity(se) {
6272d68c 709 struct load_weight *load;
3104bf03 710 struct load_weight lw;
6272d68c
LM
711
712 cfs_rq = cfs_rq_of(se);
713 load = &cfs_rq->load;
f9c0b095 714
0a582440 715 if (unlikely(!se->on_rq)) {
3104bf03 716 lw = cfs_rq->load;
0a582440
MG
717
718 update_load_add(&lw, se->load.weight);
719 load = &lw;
720 }
9dbdb155 721 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
722 }
723 return slice;
bf0f6f24
IM
724}
725
647e7cac 726/*
660cc00f 727 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 728 *
f9c0b095 729 * vs = s/w
647e7cac 730 */
f9c0b095 731static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 732{
f9c0b095 733 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
734}
735
c0796298 736#include "pelt.h"
23127296 737#ifdef CONFIG_SMP
283e2ed3 738
772bd008 739static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 740static unsigned long task_h_load(struct task_struct *p);
3b1baa64 741static unsigned long capacity_of(int cpu);
fb13c7ee 742
540247fb
YD
743/* Give new sched_entity start runnable values to heavy its load in infant time */
744void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 745{
540247fb 746 struct sched_avg *sa = &se->avg;
a75cdaa9 747
f207934f
PZ
748 memset(sa, 0, sizeof(*sa));
749
b5a9b340 750 /*
dfcb245e 751 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 752 * they get a chance to stabilize to their real load level.
dfcb245e 753 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
754 * nothing has been attached to the task group yet.
755 */
756 if (entity_is_task(se))
0dacee1b 757 sa->load_avg = scale_load_down(se->load.weight);
f207934f 758
9d89c257 759 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 760}
7ea241af 761
df217913 762static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 763
2b8c41da
YD
764/*
765 * With new tasks being created, their initial util_avgs are extrapolated
766 * based on the cfs_rq's current util_avg:
767 *
768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 *
770 * However, in many cases, the above util_avg does not give a desired
771 * value. Moreover, the sum of the util_avgs may be divergent, such
772 * as when the series is a harmonic series.
773 *
774 * To solve this problem, we also cap the util_avg of successive tasks to
775 * only 1/2 of the left utilization budget:
776 *
8fe5c5a9 777 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 778 *
8fe5c5a9 779 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 780 *
8fe5c5a9
QP
781 * For example, for a CPU with 1024 of capacity, a simplest series from
782 * the beginning would be like:
2b8c41da
YD
783 *
784 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
785 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 *
787 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
788 * if util_avg > util_avg_cap.
789 */
d0fe0b9c 790void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 791{
d0fe0b9c 792 struct sched_entity *se = &p->se;
2b8c41da
YD
793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
794 struct sched_avg *sa = &se->avg;
8ec59c0f 795 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 796 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
797
798 if (cap > 0) {
799 if (cfs_rq->avg.util_avg != 0) {
800 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
801 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
802
803 if (sa->util_avg > cap)
804 sa->util_avg = cap;
805 } else {
806 sa->util_avg = cap;
807 }
2b8c41da 808 }
7dc603c9 809
9f683953
VG
810 sa->runnable_avg = cpu_scale;
811
d0fe0b9c
DE
812 if (p->sched_class != &fair_sched_class) {
813 /*
814 * For !fair tasks do:
815 *
816 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 817 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
818 switched_from_fair(rq, p);
819 *
820 * such that the next switched_to_fair() has the
821 * expected state.
822 */
823 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
824 return;
7dc603c9
PZ
825 }
826
df217913 827 attach_entity_cfs_rq(se);
2b8c41da
YD
828}
829
7dc603c9 830#else /* !CONFIG_SMP */
540247fb 831void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
832{
833}
d0fe0b9c 834void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
835{
836}
3d30544f
PZ
837static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
838{
839}
7dc603c9 840#endif /* CONFIG_SMP */
a75cdaa9 841
bf0f6f24 842/*
9dbdb155 843 * Update the current task's runtime statistics.
bf0f6f24 844 */
b7cc0896 845static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 846{
429d43bc 847 struct sched_entity *curr = cfs_rq->curr;
78becc27 848 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 849 u64 delta_exec;
bf0f6f24
IM
850
851 if (unlikely(!curr))
852 return;
853
9dbdb155
PZ
854 delta_exec = now - curr->exec_start;
855 if (unlikely((s64)delta_exec <= 0))
34f28ecd 856 return;
bf0f6f24 857
8ebc91d9 858 curr->exec_start = now;
d842de87 859
9dbdb155
PZ
860 schedstat_set(curr->statistics.exec_max,
861 max(delta_exec, curr->statistics.exec_max));
862
863 curr->sum_exec_runtime += delta_exec;
ae92882e 864 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
865
866 curr->vruntime += calc_delta_fair(delta_exec, curr);
867 update_min_vruntime(cfs_rq);
868
d842de87
SV
869 if (entity_is_task(curr)) {
870 struct task_struct *curtask = task_of(curr);
871
f977bb49 872 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 873 cgroup_account_cputime(curtask, delta_exec);
f06febc9 874 account_group_exec_runtime(curtask, delta_exec);
d842de87 875 }
ec12cb7f
PT
876
877 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
878}
879
6e998916
SG
880static void update_curr_fair(struct rq *rq)
881{
882 update_curr(cfs_rq_of(&rq->curr->se));
883}
884
bf0f6f24 885static inline void
5870db5b 886update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 887{
4fa8d299
JP
888 u64 wait_start, prev_wait_start;
889
890 if (!schedstat_enabled())
891 return;
892
893 wait_start = rq_clock(rq_of(cfs_rq));
894 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
895
896 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
897 likely(wait_start > prev_wait_start))
898 wait_start -= prev_wait_start;
3ea94de1 899
2ed41a55 900 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
901}
902
4fa8d299 903static inline void
3ea94de1
JP
904update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
905{
906 struct task_struct *p;
cb251765
MG
907 u64 delta;
908
4fa8d299
JP
909 if (!schedstat_enabled())
910 return;
911
912 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
913
914 if (entity_is_task(se)) {
915 p = task_of(se);
916 if (task_on_rq_migrating(p)) {
917 /*
918 * Preserve migrating task's wait time so wait_start
919 * time stamp can be adjusted to accumulate wait time
920 * prior to migration.
921 */
2ed41a55 922 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
923 return;
924 }
925 trace_sched_stat_wait(p, delta);
926 }
927
2ed41a55 928 __schedstat_set(se->statistics.wait_max,
4fa8d299 929 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
930 __schedstat_inc(se->statistics.wait_count);
931 __schedstat_add(se->statistics.wait_sum, delta);
932 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 933}
3ea94de1 934
4fa8d299 935static inline void
1a3d027c
JP
936update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
937{
938 struct task_struct *tsk = NULL;
4fa8d299
JP
939 u64 sleep_start, block_start;
940
941 if (!schedstat_enabled())
942 return;
943
944 sleep_start = schedstat_val(se->statistics.sleep_start);
945 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
946
947 if (entity_is_task(se))
948 tsk = task_of(se);
949
4fa8d299
JP
950 if (sleep_start) {
951 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
952
953 if ((s64)delta < 0)
954 delta = 0;
955
4fa8d299 956 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 957 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 958
2ed41a55
PZ
959 __schedstat_set(se->statistics.sleep_start, 0);
960 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
961
962 if (tsk) {
963 account_scheduler_latency(tsk, delta >> 10, 1);
964 trace_sched_stat_sleep(tsk, delta);
965 }
966 }
4fa8d299
JP
967 if (block_start) {
968 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
969
970 if ((s64)delta < 0)
971 delta = 0;
972
4fa8d299 973 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 974 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 975
2ed41a55
PZ
976 __schedstat_set(se->statistics.block_start, 0);
977 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
978
979 if (tsk) {
980 if (tsk->in_iowait) {
2ed41a55
PZ
981 __schedstat_add(se->statistics.iowait_sum, delta);
982 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
983 trace_sched_stat_iowait(tsk, delta);
984 }
985
986 trace_sched_stat_blocked(tsk, delta);
987
988 /*
989 * Blocking time is in units of nanosecs, so shift by
990 * 20 to get a milliseconds-range estimation of the
991 * amount of time that the task spent sleeping:
992 */
993 if (unlikely(prof_on == SLEEP_PROFILING)) {
994 profile_hits(SLEEP_PROFILING,
995 (void *)get_wchan(tsk),
996 delta >> 20);
997 }
998 account_scheduler_latency(tsk, delta >> 10, 0);
999 }
1000 }
3ea94de1 1001}
3ea94de1 1002
bf0f6f24
IM
1003/*
1004 * Task is being enqueued - update stats:
1005 */
cb251765 1006static inline void
1a3d027c 1007update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1008{
4fa8d299
JP
1009 if (!schedstat_enabled())
1010 return;
1011
bf0f6f24
IM
1012 /*
1013 * Are we enqueueing a waiting task? (for current tasks
1014 * a dequeue/enqueue event is a NOP)
1015 */
429d43bc 1016 if (se != cfs_rq->curr)
5870db5b 1017 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1018
1019 if (flags & ENQUEUE_WAKEUP)
1020 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1021}
1022
bf0f6f24 1023static inline void
cb251765 1024update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1025{
4fa8d299
JP
1026
1027 if (!schedstat_enabled())
1028 return;
1029
bf0f6f24
IM
1030 /*
1031 * Mark the end of the wait period if dequeueing a
1032 * waiting task:
1033 */
429d43bc 1034 if (se != cfs_rq->curr)
9ef0a961 1035 update_stats_wait_end(cfs_rq, se);
cb251765 1036
4fa8d299
JP
1037 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1038 struct task_struct *tsk = task_of(se);
cb251765 1039
4fa8d299 1040 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1041 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1042 rq_clock(rq_of(cfs_rq)));
1043 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1044 __schedstat_set(se->statistics.block_start,
4fa8d299 1045 rq_clock(rq_of(cfs_rq)));
cb251765 1046 }
cb251765
MG
1047}
1048
bf0f6f24
IM
1049/*
1050 * We are picking a new current task - update its stats:
1051 */
1052static inline void
79303e9e 1053update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1054{
1055 /*
1056 * We are starting a new run period:
1057 */
78becc27 1058 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1059}
1060
bf0f6f24
IM
1061/**************************************************
1062 * Scheduling class queueing methods:
1063 */
1064
cbee9f88
PZ
1065#ifdef CONFIG_NUMA_BALANCING
1066/*
598f0ec0
MG
1067 * Approximate time to scan a full NUMA task in ms. The task scan period is
1068 * calculated based on the tasks virtual memory size and
1069 * numa_balancing_scan_size.
cbee9f88 1070 */
598f0ec0
MG
1071unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1072unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1073
1074/* Portion of address space to scan in MB */
1075unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1076
4b96a29b
PZ
1077/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1078unsigned int sysctl_numa_balancing_scan_delay = 1000;
1079
b5dd77c8 1080struct numa_group {
c45a7795 1081 refcount_t refcount;
b5dd77c8
RR
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
1085 pid_t gid;
1086 int active_nodes;
1087
1088 struct rcu_head rcu;
1089 unsigned long total_faults;
1090 unsigned long max_faults_cpu;
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
1096 unsigned long *faults_cpu;
1097 unsigned long faults[0];
1098};
1099
cb361d8c
JH
1100/*
1101 * For functions that can be called in multiple contexts that permit reading
1102 * ->numa_group (see struct task_struct for locking rules).
1103 */
1104static struct numa_group *deref_task_numa_group(struct task_struct *p)
1105{
1106 return rcu_dereference_check(p->numa_group, p == current ||
1107 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1108}
1109
1110static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1111{
1112 return rcu_dereference_protected(p->numa_group, p == current);
1113}
1114
b5dd77c8
RR
1115static inline unsigned long group_faults_priv(struct numa_group *ng);
1116static inline unsigned long group_faults_shared(struct numa_group *ng);
1117
598f0ec0
MG
1118static unsigned int task_nr_scan_windows(struct task_struct *p)
1119{
1120 unsigned long rss = 0;
1121 unsigned long nr_scan_pages;
1122
1123 /*
1124 * Calculations based on RSS as non-present and empty pages are skipped
1125 * by the PTE scanner and NUMA hinting faults should be trapped based
1126 * on resident pages
1127 */
1128 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1129 rss = get_mm_rss(p->mm);
1130 if (!rss)
1131 rss = nr_scan_pages;
1132
1133 rss = round_up(rss, nr_scan_pages);
1134 return rss / nr_scan_pages;
1135}
1136
1137/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1138#define MAX_SCAN_WINDOW 2560
1139
1140static unsigned int task_scan_min(struct task_struct *p)
1141{
316c1608 1142 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1143 unsigned int scan, floor;
1144 unsigned int windows = 1;
1145
64192658
KT
1146 if (scan_size < MAX_SCAN_WINDOW)
1147 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1148 floor = 1000 / windows;
1149
1150 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1151 return max_t(unsigned int, floor, scan);
1152}
1153
b5dd77c8
RR
1154static unsigned int task_scan_start(struct task_struct *p)
1155{
1156 unsigned long smin = task_scan_min(p);
1157 unsigned long period = smin;
cb361d8c 1158 struct numa_group *ng;
b5dd77c8
RR
1159
1160 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1161 rcu_read_lock();
1162 ng = rcu_dereference(p->numa_group);
1163 if (ng) {
b5dd77c8
RR
1164 unsigned long shared = group_faults_shared(ng);
1165 unsigned long private = group_faults_priv(ng);
1166
c45a7795 1167 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1168 period *= shared + 1;
1169 period /= private + shared + 1;
1170 }
cb361d8c 1171 rcu_read_unlock();
b5dd77c8
RR
1172
1173 return max(smin, period);
1174}
1175
598f0ec0
MG
1176static unsigned int task_scan_max(struct task_struct *p)
1177{
b5dd77c8
RR
1178 unsigned long smin = task_scan_min(p);
1179 unsigned long smax;
cb361d8c 1180 struct numa_group *ng;
598f0ec0
MG
1181
1182 /* Watch for min being lower than max due to floor calculations */
1183 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1184
1185 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1186 ng = deref_curr_numa_group(p);
1187 if (ng) {
b5dd77c8
RR
1188 unsigned long shared = group_faults_shared(ng);
1189 unsigned long private = group_faults_priv(ng);
1190 unsigned long period = smax;
1191
c45a7795 1192 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1193 period *= shared + 1;
1194 period /= private + shared + 1;
1195
1196 smax = max(smax, period);
1197 }
1198
598f0ec0
MG
1199 return max(smin, smax);
1200}
1201
0ec8aa00
PZ
1202static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1203{
98fa15f3 1204 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1205 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1206}
1207
1208static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1209{
98fa15f3 1210 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1211 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1212}
1213
be1e4e76
RR
1214/* Shared or private faults. */
1215#define NR_NUMA_HINT_FAULT_TYPES 2
1216
1217/* Memory and CPU locality */
1218#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1219
1220/* Averaged statistics, and temporary buffers. */
1221#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1222
e29cf08b
MG
1223pid_t task_numa_group_id(struct task_struct *p)
1224{
cb361d8c
JH
1225 struct numa_group *ng;
1226 pid_t gid = 0;
1227
1228 rcu_read_lock();
1229 ng = rcu_dereference(p->numa_group);
1230 if (ng)
1231 gid = ng->gid;
1232 rcu_read_unlock();
1233
1234 return gid;
e29cf08b
MG
1235}
1236
44dba3d5 1237/*
97fb7a0a 1238 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1239 * occupy the first half of the array. The second half of the
1240 * array is for current counters, which are averaged into the
1241 * first set by task_numa_placement.
1242 */
1243static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1244{
44dba3d5 1245 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1246}
1247
1248static inline unsigned long task_faults(struct task_struct *p, int nid)
1249{
44dba3d5 1250 if (!p->numa_faults)
ac8e895b
MG
1251 return 0;
1252
44dba3d5
IM
1253 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1255}
1256
83e1d2cd
MG
1257static inline unsigned long group_faults(struct task_struct *p, int nid)
1258{
cb361d8c
JH
1259 struct numa_group *ng = deref_task_numa_group(p);
1260
1261 if (!ng)
83e1d2cd
MG
1262 return 0;
1263
cb361d8c
JH
1264 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1265 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1266}
1267
20e07dea
RR
1268static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1269{
44dba3d5
IM
1270 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1272}
1273
b5dd77c8
RR
1274static inline unsigned long group_faults_priv(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1281 }
1282
1283 return faults;
1284}
1285
1286static inline unsigned long group_faults_shared(struct numa_group *ng)
1287{
1288 unsigned long faults = 0;
1289 int node;
1290
1291 for_each_online_node(node) {
1292 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1293 }
1294
1295 return faults;
1296}
1297
4142c3eb
RR
1298/*
1299 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1300 * considered part of a numa group's pseudo-interleaving set. Migrations
1301 * between these nodes are slowed down, to allow things to settle down.
1302 */
1303#define ACTIVE_NODE_FRACTION 3
1304
1305static bool numa_is_active_node(int nid, struct numa_group *ng)
1306{
1307 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1308}
1309
6c6b1193
RR
1310/* Handle placement on systems where not all nodes are directly connected. */
1311static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1312 int maxdist, bool task)
1313{
1314 unsigned long score = 0;
1315 int node;
1316
1317 /*
1318 * All nodes are directly connected, and the same distance
1319 * from each other. No need for fancy placement algorithms.
1320 */
1321 if (sched_numa_topology_type == NUMA_DIRECT)
1322 return 0;
1323
1324 /*
1325 * This code is called for each node, introducing N^2 complexity,
1326 * which should be ok given the number of nodes rarely exceeds 8.
1327 */
1328 for_each_online_node(node) {
1329 unsigned long faults;
1330 int dist = node_distance(nid, node);
1331
1332 /*
1333 * The furthest away nodes in the system are not interesting
1334 * for placement; nid was already counted.
1335 */
1336 if (dist == sched_max_numa_distance || node == nid)
1337 continue;
1338
1339 /*
1340 * On systems with a backplane NUMA topology, compare groups
1341 * of nodes, and move tasks towards the group with the most
1342 * memory accesses. When comparing two nodes at distance
1343 * "hoplimit", only nodes closer by than "hoplimit" are part
1344 * of each group. Skip other nodes.
1345 */
1346 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1347 dist >= maxdist)
6c6b1193
RR
1348 continue;
1349
1350 /* Add up the faults from nearby nodes. */
1351 if (task)
1352 faults = task_faults(p, node);
1353 else
1354 faults = group_faults(p, node);
1355
1356 /*
1357 * On systems with a glueless mesh NUMA topology, there are
1358 * no fixed "groups of nodes". Instead, nodes that are not
1359 * directly connected bounce traffic through intermediate
1360 * nodes; a numa_group can occupy any set of nodes.
1361 * The further away a node is, the less the faults count.
1362 * This seems to result in good task placement.
1363 */
1364 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1365 faults *= (sched_max_numa_distance - dist);
1366 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1367 }
1368
1369 score += faults;
1370 }
1371
1372 return score;
1373}
1374
83e1d2cd
MG
1375/*
1376 * These return the fraction of accesses done by a particular task, or
1377 * task group, on a particular numa node. The group weight is given a
1378 * larger multiplier, in order to group tasks together that are almost
1379 * evenly spread out between numa nodes.
1380 */
7bd95320
RR
1381static inline unsigned long task_weight(struct task_struct *p, int nid,
1382 int dist)
83e1d2cd 1383{
7bd95320 1384 unsigned long faults, total_faults;
83e1d2cd 1385
44dba3d5 1386 if (!p->numa_faults)
83e1d2cd
MG
1387 return 0;
1388
1389 total_faults = p->total_numa_faults;
1390
1391 if (!total_faults)
1392 return 0;
1393
7bd95320 1394 faults = task_faults(p, nid);
6c6b1193
RR
1395 faults += score_nearby_nodes(p, nid, dist, true);
1396
7bd95320 1397 return 1000 * faults / total_faults;
83e1d2cd
MG
1398}
1399
7bd95320
RR
1400static inline unsigned long group_weight(struct task_struct *p, int nid,
1401 int dist)
83e1d2cd 1402{
cb361d8c 1403 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1404 unsigned long faults, total_faults;
1405
cb361d8c 1406 if (!ng)
7bd95320
RR
1407 return 0;
1408
cb361d8c 1409 total_faults = ng->total_faults;
7bd95320
RR
1410
1411 if (!total_faults)
83e1d2cd
MG
1412 return 0;
1413
7bd95320 1414 faults = group_faults(p, nid);
6c6b1193
RR
1415 faults += score_nearby_nodes(p, nid, dist, false);
1416
7bd95320 1417 return 1000 * faults / total_faults;
83e1d2cd
MG
1418}
1419
10f39042
RR
1420bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1421 int src_nid, int dst_cpu)
1422{
cb361d8c 1423 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1424 int dst_nid = cpu_to_node(dst_cpu);
1425 int last_cpupid, this_cpupid;
1426
1427 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1428 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1429
1430 /*
1431 * Allow first faults or private faults to migrate immediately early in
1432 * the lifetime of a task. The magic number 4 is based on waiting for
1433 * two full passes of the "multi-stage node selection" test that is
1434 * executed below.
1435 */
98fa15f3 1436 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1437 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1438 return true;
10f39042
RR
1439
1440 /*
1441 * Multi-stage node selection is used in conjunction with a periodic
1442 * migration fault to build a temporal task<->page relation. By using
1443 * a two-stage filter we remove short/unlikely relations.
1444 *
1445 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1446 * a task's usage of a particular page (n_p) per total usage of this
1447 * page (n_t) (in a given time-span) to a probability.
1448 *
1449 * Our periodic faults will sample this probability and getting the
1450 * same result twice in a row, given these samples are fully
1451 * independent, is then given by P(n)^2, provided our sample period
1452 * is sufficiently short compared to the usage pattern.
1453 *
1454 * This quadric squishes small probabilities, making it less likely we
1455 * act on an unlikely task<->page relation.
1456 */
10f39042
RR
1457 if (!cpupid_pid_unset(last_cpupid) &&
1458 cpupid_to_nid(last_cpupid) != dst_nid)
1459 return false;
1460
1461 /* Always allow migrate on private faults */
1462 if (cpupid_match_pid(p, last_cpupid))
1463 return true;
1464
1465 /* A shared fault, but p->numa_group has not been set up yet. */
1466 if (!ng)
1467 return true;
1468
1469 /*
4142c3eb
RR
1470 * Destination node is much more heavily used than the source
1471 * node? Allow migration.
10f39042 1472 */
4142c3eb
RR
1473 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1474 ACTIVE_NODE_FRACTION)
10f39042
RR
1475 return true;
1476
1477 /*
4142c3eb
RR
1478 * Distribute memory according to CPU & memory use on each node,
1479 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1480 *
1481 * faults_cpu(dst) 3 faults_cpu(src)
1482 * --------------- * - > ---------------
1483 * faults_mem(dst) 4 faults_mem(src)
10f39042 1484 */
4142c3eb
RR
1485 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1486 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1487}
1488
6499b1b2
VG
1489/*
1490 * 'numa_type' describes the node at the moment of load balancing.
1491 */
1492enum numa_type {
1493 /* The node has spare capacity that can be used to run more tasks. */
1494 node_has_spare = 0,
1495 /*
1496 * The node is fully used and the tasks don't compete for more CPU
1497 * cycles. Nevertheless, some tasks might wait before running.
1498 */
1499 node_fully_busy,
1500 /*
1501 * The node is overloaded and can't provide expected CPU cycles to all
1502 * tasks.
1503 */
1504 node_overloaded
1505};
58d081b5 1506
fb13c7ee 1507/* Cached statistics for all CPUs within a node */
58d081b5
MG
1508struct numa_stats {
1509 unsigned long load;
6499b1b2 1510 unsigned long util;
fb13c7ee 1511 /* Total compute capacity of CPUs on a node */
5ef20ca1 1512 unsigned long compute_capacity;
6499b1b2
VG
1513 unsigned int nr_running;
1514 unsigned int weight;
1515 enum numa_type node_type;
ff7db0bf 1516 int idle_cpu;
58d081b5 1517};
e6628d5b 1518
ff7db0bf
MG
1519static inline bool is_core_idle(int cpu)
1520{
1521#ifdef CONFIG_SCHED_SMT
1522 int sibling;
1523
1524 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1525 if (cpu == sibling)
1526 continue;
1527
1528 if (!idle_cpu(cpu))
1529 return false;
1530 }
1531#endif
1532
1533 return true;
1534}
1535
58d081b5
MG
1536struct task_numa_env {
1537 struct task_struct *p;
e6628d5b 1538
58d081b5
MG
1539 int src_cpu, src_nid;
1540 int dst_cpu, dst_nid;
e6628d5b 1541
58d081b5 1542 struct numa_stats src_stats, dst_stats;
e6628d5b 1543
40ea2b42 1544 int imbalance_pct;
7bd95320 1545 int dist;
fb13c7ee
MG
1546
1547 struct task_struct *best_task;
1548 long best_imp;
58d081b5
MG
1549 int best_cpu;
1550};
1551
6499b1b2
VG
1552static unsigned long cpu_load(struct rq *rq);
1553static unsigned long cpu_util(int cpu);
fb86f5b2 1554static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
6499b1b2
VG
1555
1556static inline enum
1557numa_type numa_classify(unsigned int imbalance_pct,
1558 struct numa_stats *ns)
1559{
1560 if ((ns->nr_running > ns->weight) &&
1561 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1562 return node_overloaded;
1563
1564 if ((ns->nr_running < ns->weight) ||
1565 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1566 return node_has_spare;
1567
1568 return node_fully_busy;
1569}
1570
76c389ab
VS
1571#ifdef CONFIG_SCHED_SMT
1572/* Forward declarations of select_idle_sibling helpers */
1573static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1574static inline int numa_idle_core(int idle_core, int cpu)
1575{
ff7db0bf
MG
1576 if (!static_branch_likely(&sched_smt_present) ||
1577 idle_core >= 0 || !test_idle_cores(cpu, false))
1578 return idle_core;
1579
1580 /*
1581 * Prefer cores instead of packing HT siblings
1582 * and triggering future load balancing.
1583 */
1584 if (is_core_idle(cpu))
1585 idle_core = cpu;
ff7db0bf
MG
1586
1587 return idle_core;
1588}
76c389ab
VS
1589#else
1590static inline int numa_idle_core(int idle_core, int cpu)
1591{
1592 return idle_core;
1593}
1594#endif
ff7db0bf 1595
6499b1b2 1596/*
ff7db0bf
MG
1597 * Gather all necessary information to make NUMA balancing placement
1598 * decisions that are compatible with standard load balancer. This
1599 * borrows code and logic from update_sg_lb_stats but sharing a
1600 * common implementation is impractical.
6499b1b2
VG
1601 */
1602static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1603 struct numa_stats *ns, int nid,
1604 bool find_idle)
6499b1b2 1605{
ff7db0bf 1606 int cpu, idle_core = -1;
6499b1b2
VG
1607
1608 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1609 ns->idle_cpu = -1;
1610
0621df31 1611 rcu_read_lock();
6499b1b2
VG
1612 for_each_cpu(cpu, cpumask_of_node(nid)) {
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 ns->load += cpu_load(rq);
1616 ns->util += cpu_util(cpu);
1617 ns->nr_running += rq->cfs.h_nr_running;
1618 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1619
1620 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1621 if (READ_ONCE(rq->numa_migrate_on) ||
1622 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1623 continue;
1624
1625 if (ns->idle_cpu == -1)
1626 ns->idle_cpu = cpu;
1627
1628 idle_core = numa_idle_core(idle_core, cpu);
1629 }
6499b1b2 1630 }
0621df31 1631 rcu_read_unlock();
6499b1b2
VG
1632
1633 ns->weight = cpumask_weight(cpumask_of_node(nid));
1634
1635 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1636
1637 if (idle_core >= 0)
1638 ns->idle_cpu = idle_core;
6499b1b2
VG
1639}
1640
fb13c7ee
MG
1641static void task_numa_assign(struct task_numa_env *env,
1642 struct task_struct *p, long imp)
1643{
a4739eca
SD
1644 struct rq *rq = cpu_rq(env->dst_cpu);
1645
5fb52dd9
MG
1646 /* Check if run-queue part of active NUMA balance. */
1647 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1648 int cpu;
1649 int start = env->dst_cpu;
1650
1651 /* Find alternative idle CPU. */
1652 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1653 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1654 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1655 continue;
1656 }
1657
1658 env->dst_cpu = cpu;
1659 rq = cpu_rq(env->dst_cpu);
1660 if (!xchg(&rq->numa_migrate_on, 1))
1661 goto assign;
1662 }
1663
1664 /* Failed to find an alternative idle CPU */
a4739eca 1665 return;
5fb52dd9 1666 }
a4739eca 1667
5fb52dd9 1668assign:
a4739eca
SD
1669 /*
1670 * Clear previous best_cpu/rq numa-migrate flag, since task now
1671 * found a better CPU to move/swap.
1672 */
5fb52dd9 1673 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1674 rq = cpu_rq(env->best_cpu);
1675 WRITE_ONCE(rq->numa_migrate_on, 0);
1676 }
1677
fb13c7ee
MG
1678 if (env->best_task)
1679 put_task_struct(env->best_task);
bac78573
ON
1680 if (p)
1681 get_task_struct(p);
fb13c7ee
MG
1682
1683 env->best_task = p;
1684 env->best_imp = imp;
1685 env->best_cpu = env->dst_cpu;
1686}
1687
28a21745 1688static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1689 struct task_numa_env *env)
1690{
e4991b24
RR
1691 long imb, old_imb;
1692 long orig_src_load, orig_dst_load;
28a21745
RR
1693 long src_capacity, dst_capacity;
1694
1695 /*
1696 * The load is corrected for the CPU capacity available on each node.
1697 *
1698 * src_load dst_load
1699 * ------------ vs ---------
1700 * src_capacity dst_capacity
1701 */
1702 src_capacity = env->src_stats.compute_capacity;
1703 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1704
5f95ba7a 1705 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1706
28a21745 1707 orig_src_load = env->src_stats.load;
e4991b24 1708 orig_dst_load = env->dst_stats.load;
28a21745 1709
5f95ba7a 1710 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1711
1712 /* Would this change make things worse? */
1713 return (imb > old_imb);
e63da036
RR
1714}
1715
6fd98e77
SD
1716/*
1717 * Maximum NUMA importance can be 1998 (2*999);
1718 * SMALLIMP @ 30 would be close to 1998/64.
1719 * Used to deter task migration.
1720 */
1721#define SMALLIMP 30
1722
fb13c7ee
MG
1723/*
1724 * This checks if the overall compute and NUMA accesses of the system would
1725 * be improved if the source tasks was migrated to the target dst_cpu taking
1726 * into account that it might be best if task running on the dst_cpu should
1727 * be exchanged with the source task
1728 */
a0f03b61 1729static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1730 long taskimp, long groupimp, bool maymove)
fb13c7ee 1731{
cb361d8c 1732 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1733 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1734 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1735 struct task_struct *cur;
28a21745 1736 long src_load, dst_load;
7bd95320 1737 int dist = env->dist;
cb361d8c
JH
1738 long moveimp = imp;
1739 long load;
a0f03b61 1740 bool stopsearch = false;
fb13c7ee 1741
a4739eca 1742 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1743 return false;
a4739eca 1744
fb13c7ee 1745 rcu_read_lock();
154abafc 1746 cur = rcu_dereference(dst_rq->curr);
bac78573 1747 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1748 cur = NULL;
1749
7af68335
PZ
1750 /*
1751 * Because we have preemption enabled we can get migrated around and
1752 * end try selecting ourselves (current == env->p) as a swap candidate.
1753 */
a0f03b61
MG
1754 if (cur == env->p) {
1755 stopsearch = true;
7af68335 1756 goto unlock;
a0f03b61 1757 }
7af68335 1758
305c1fac 1759 if (!cur) {
6fd98e77 1760 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1761 goto assign;
1762 else
1763 goto unlock;
1764 }
1765
88cca72c
MG
1766 /* Skip this swap candidate if cannot move to the source cpu. */
1767 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1768 goto unlock;
1769
1770 /*
1771 * Skip this swap candidate if it is not moving to its preferred
1772 * node and the best task is.
1773 */
1774 if (env->best_task &&
1775 env->best_task->numa_preferred_nid == env->src_nid &&
1776 cur->numa_preferred_nid != env->src_nid) {
1777 goto unlock;
1778 }
1779
fb13c7ee
MG
1780 /*
1781 * "imp" is the fault differential for the source task between the
1782 * source and destination node. Calculate the total differential for
1783 * the source task and potential destination task. The more negative
305c1fac 1784 * the value is, the more remote accesses that would be expected to
fb13c7ee 1785 * be incurred if the tasks were swapped.
88cca72c 1786 *
305c1fac
SD
1787 * If dst and source tasks are in the same NUMA group, or not
1788 * in any group then look only at task weights.
1789 */
cb361d8c
JH
1790 cur_ng = rcu_dereference(cur->numa_group);
1791 if (cur_ng == p_ng) {
305c1fac
SD
1792 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1793 task_weight(cur, env->dst_nid, dist);
887c290e 1794 /*
305c1fac
SD
1795 * Add some hysteresis to prevent swapping the
1796 * tasks within a group over tiny differences.
887c290e 1797 */
cb361d8c 1798 if (cur_ng)
305c1fac
SD
1799 imp -= imp / 16;
1800 } else {
1801 /*
1802 * Compare the group weights. If a task is all by itself
1803 * (not part of a group), use the task weight instead.
1804 */
cb361d8c 1805 if (cur_ng && p_ng)
305c1fac
SD
1806 imp += group_weight(cur, env->src_nid, dist) -
1807 group_weight(cur, env->dst_nid, dist);
1808 else
1809 imp += task_weight(cur, env->src_nid, dist) -
1810 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1811 }
1812
88cca72c
MG
1813 /* Discourage picking a task already on its preferred node */
1814 if (cur->numa_preferred_nid == env->dst_nid)
1815 imp -= imp / 16;
1816
1817 /*
1818 * Encourage picking a task that moves to its preferred node.
1819 * This potentially makes imp larger than it's maximum of
1820 * 1998 (see SMALLIMP and task_weight for why) but in this
1821 * case, it does not matter.
1822 */
1823 if (cur->numa_preferred_nid == env->src_nid)
1824 imp += imp / 8;
1825
305c1fac 1826 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1827 imp = moveimp;
305c1fac 1828 cur = NULL;
fb13c7ee 1829 goto assign;
305c1fac 1830 }
fb13c7ee 1831
88cca72c
MG
1832 /*
1833 * Prefer swapping with a task moving to its preferred node over a
1834 * task that is not.
1835 */
1836 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1837 env->best_task->numa_preferred_nid != env->src_nid) {
1838 goto assign;
1839 }
1840
6fd98e77
SD
1841 /*
1842 * If the NUMA importance is less than SMALLIMP,
1843 * task migration might only result in ping pong
1844 * of tasks and also hurt performance due to cache
1845 * misses.
1846 */
1847 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1848 goto unlock;
1849
fb13c7ee
MG
1850 /*
1851 * In the overloaded case, try and keep the load balanced.
1852 */
305c1fac
SD
1853 load = task_h_load(env->p) - task_h_load(cur);
1854 if (!load)
1855 goto assign;
1856
e720fff6
PZ
1857 dst_load = env->dst_stats.load + load;
1858 src_load = env->src_stats.load - load;
fb13c7ee 1859
28a21745 1860 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1861 goto unlock;
1862
305c1fac 1863assign:
ff7db0bf 1864 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1865 if (!cur) {
ff7db0bf
MG
1866 int cpu = env->dst_stats.idle_cpu;
1867
1868 /* Nothing cached so current CPU went idle since the search. */
1869 if (cpu < 0)
1870 cpu = env->dst_cpu;
1871
10e2f1ac 1872 /*
ff7db0bf
MG
1873 * If the CPU is no longer truly idle and the previous best CPU
1874 * is, keep using it.
10e2f1ac 1875 */
ff7db0bf
MG
1876 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1877 idle_cpu(env->best_cpu)) {
1878 cpu = env->best_cpu;
1879 }
1880
ff7db0bf 1881 env->dst_cpu = cpu;
10e2f1ac 1882 }
ba7e5a27 1883
fb13c7ee 1884 task_numa_assign(env, cur, imp);
a0f03b61
MG
1885
1886 /*
1887 * If a move to idle is allowed because there is capacity or load
1888 * balance improves then stop the search. While a better swap
1889 * candidate may exist, a search is not free.
1890 */
1891 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1892 stopsearch = true;
1893
1894 /*
1895 * If a swap candidate must be identified and the current best task
1896 * moves its preferred node then stop the search.
1897 */
1898 if (!maymove && env->best_task &&
1899 env->best_task->numa_preferred_nid == env->src_nid) {
1900 stopsearch = true;
1901 }
fb13c7ee
MG
1902unlock:
1903 rcu_read_unlock();
a0f03b61
MG
1904
1905 return stopsearch;
fb13c7ee
MG
1906}
1907
887c290e
RR
1908static void task_numa_find_cpu(struct task_numa_env *env,
1909 long taskimp, long groupimp)
2c8a50aa 1910{
305c1fac 1911 bool maymove = false;
2c8a50aa
MG
1912 int cpu;
1913
305c1fac 1914 /*
fb86f5b2
MG
1915 * If dst node has spare capacity, then check if there is an
1916 * imbalance that would be overruled by the load balancer.
305c1fac 1917 */
fb86f5b2
MG
1918 if (env->dst_stats.node_type == node_has_spare) {
1919 unsigned int imbalance;
1920 int src_running, dst_running;
1921
1922 /*
1923 * Would movement cause an imbalance? Note that if src has
1924 * more running tasks that the imbalance is ignored as the
1925 * move improves the imbalance from the perspective of the
1926 * CPU load balancer.
1927 * */
1928 src_running = env->src_stats.nr_running - 1;
1929 dst_running = env->dst_stats.nr_running + 1;
1930 imbalance = max(0, dst_running - src_running);
1931 imbalance = adjust_numa_imbalance(imbalance, src_running);
1932
1933 /* Use idle CPU if there is no imbalance */
ff7db0bf 1934 if (!imbalance) {
fb86f5b2 1935 maymove = true;
ff7db0bf
MG
1936 if (env->dst_stats.idle_cpu >= 0) {
1937 env->dst_cpu = env->dst_stats.idle_cpu;
1938 task_numa_assign(env, NULL, 0);
1939 return;
1940 }
1941 }
fb86f5b2
MG
1942 } else {
1943 long src_load, dst_load, load;
1944 /*
1945 * If the improvement from just moving env->p direction is better
1946 * than swapping tasks around, check if a move is possible.
1947 */
1948 load = task_h_load(env->p);
1949 dst_load = env->dst_stats.load + load;
1950 src_load = env->src_stats.load - load;
1951 maymove = !load_too_imbalanced(src_load, dst_load, env);
1952 }
305c1fac 1953
2c8a50aa
MG
1954 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1955 /* Skip this CPU if the source task cannot migrate */
3bd37062 1956 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1957 continue;
1958
1959 env->dst_cpu = cpu;
a0f03b61
MG
1960 if (task_numa_compare(env, taskimp, groupimp, maymove))
1961 break;
2c8a50aa
MG
1962 }
1963}
1964
58d081b5
MG
1965static int task_numa_migrate(struct task_struct *p)
1966{
58d081b5
MG
1967 struct task_numa_env env = {
1968 .p = p,
fb13c7ee 1969
58d081b5 1970 .src_cpu = task_cpu(p),
b32e86b4 1971 .src_nid = task_node(p),
fb13c7ee
MG
1972
1973 .imbalance_pct = 112,
1974
1975 .best_task = NULL,
1976 .best_imp = 0,
4142c3eb 1977 .best_cpu = -1,
58d081b5 1978 };
cb361d8c 1979 unsigned long taskweight, groupweight;
58d081b5 1980 struct sched_domain *sd;
cb361d8c
JH
1981 long taskimp, groupimp;
1982 struct numa_group *ng;
a4739eca 1983 struct rq *best_rq;
7bd95320 1984 int nid, ret, dist;
e6628d5b 1985
58d081b5 1986 /*
fb13c7ee
MG
1987 * Pick the lowest SD_NUMA domain, as that would have the smallest
1988 * imbalance and would be the first to start moving tasks about.
1989 *
1990 * And we want to avoid any moving of tasks about, as that would create
1991 * random movement of tasks -- counter the numa conditions we're trying
1992 * to satisfy here.
58d081b5
MG
1993 */
1994 rcu_read_lock();
fb13c7ee 1995 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1996 if (sd)
1997 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1998 rcu_read_unlock();
1999
46a73e8a
RR
2000 /*
2001 * Cpusets can break the scheduler domain tree into smaller
2002 * balance domains, some of which do not cross NUMA boundaries.
2003 * Tasks that are "trapped" in such domains cannot be migrated
2004 * elsewhere, so there is no point in (re)trying.
2005 */
2006 if (unlikely(!sd)) {
8cd45eee 2007 sched_setnuma(p, task_node(p));
46a73e8a
RR
2008 return -EINVAL;
2009 }
2010
2c8a50aa 2011 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2012 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2013 taskweight = task_weight(p, env.src_nid, dist);
2014 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2015 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2016 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2017 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2018 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2019
a43455a1 2020 /* Try to find a spot on the preferred nid. */
2d4056fa 2021 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2022
9de05d48
RR
2023 /*
2024 * Look at other nodes in these cases:
2025 * - there is no space available on the preferred_nid
2026 * - the task is part of a numa_group that is interleaved across
2027 * multiple NUMA nodes; in order to better consolidate the group,
2028 * we need to check other locations.
2029 */
cb361d8c
JH
2030 ng = deref_curr_numa_group(p);
2031 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2032 for_each_online_node(nid) {
2033 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2034 continue;
58d081b5 2035
7bd95320 2036 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2037 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2038 dist != env.dist) {
2039 taskweight = task_weight(p, env.src_nid, dist);
2040 groupweight = group_weight(p, env.src_nid, dist);
2041 }
7bd95320 2042
83e1d2cd 2043 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2044 taskimp = task_weight(p, nid, dist) - taskweight;
2045 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2046 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2047 continue;
2048
7bd95320 2049 env.dist = dist;
2c8a50aa 2050 env.dst_nid = nid;
ff7db0bf 2051 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2052 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2053 }
2054 }
2055
68d1b02a
RR
2056 /*
2057 * If the task is part of a workload that spans multiple NUMA nodes,
2058 * and is migrating into one of the workload's active nodes, remember
2059 * this node as the task's preferred numa node, so the workload can
2060 * settle down.
2061 * A task that migrated to a second choice node will be better off
2062 * trying for a better one later. Do not set the preferred node here.
2063 */
cb361d8c 2064 if (ng) {
db015dae
RR
2065 if (env.best_cpu == -1)
2066 nid = env.src_nid;
2067 else
8cd45eee 2068 nid = cpu_to_node(env.best_cpu);
db015dae 2069
8cd45eee
SD
2070 if (nid != p->numa_preferred_nid)
2071 sched_setnuma(p, nid);
db015dae
RR
2072 }
2073
2074 /* No better CPU than the current one was found. */
f22aef4a 2075 if (env.best_cpu == -1) {
b2b2042b 2076 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2077 return -EAGAIN;
f22aef4a 2078 }
0ec8aa00 2079
a4739eca 2080 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2081 if (env.best_task == NULL) {
286549dc 2082 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2083 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2084 if (ret != 0)
b2b2042b 2085 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2086 return ret;
2087 }
2088
0ad4e3df 2089 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2090 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2091
286549dc 2092 if (ret != 0)
b2b2042b 2093 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2094 put_task_struct(env.best_task);
2095 return ret;
e6628d5b
MG
2096}
2097
6b9a7460
MG
2098/* Attempt to migrate a task to a CPU on the preferred node. */
2099static void numa_migrate_preferred(struct task_struct *p)
2100{
5085e2a3
RR
2101 unsigned long interval = HZ;
2102
2739d3ee 2103 /* This task has no NUMA fault statistics yet */
98fa15f3 2104 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2105 return;
2106
2739d3ee 2107 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2108 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2109 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2110
2111 /* Success if task is already running on preferred CPU */
de1b301a 2112 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2113 return;
2114
2115 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2116 task_numa_migrate(p);
6b9a7460
MG
2117}
2118
20e07dea 2119/*
4142c3eb 2120 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2121 * tracking the nodes from which NUMA hinting faults are triggered. This can
2122 * be different from the set of nodes where the workload's memory is currently
2123 * located.
20e07dea 2124 */
4142c3eb 2125static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2126{
2127 unsigned long faults, max_faults = 0;
4142c3eb 2128 int nid, active_nodes = 0;
20e07dea
RR
2129
2130 for_each_online_node(nid) {
2131 faults = group_faults_cpu(numa_group, nid);
2132 if (faults > max_faults)
2133 max_faults = faults;
2134 }
2135
2136 for_each_online_node(nid) {
2137 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2138 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2139 active_nodes++;
20e07dea 2140 }
4142c3eb
RR
2141
2142 numa_group->max_faults_cpu = max_faults;
2143 numa_group->active_nodes = active_nodes;
20e07dea
RR
2144}
2145
04bb2f94
RR
2146/*
2147 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2148 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2149 * period will be for the next scan window. If local/(local+remote) ratio is
2150 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2151 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2152 */
2153#define NUMA_PERIOD_SLOTS 10
a22b4b01 2154#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2155
2156/*
2157 * Increase the scan period (slow down scanning) if the majority of
2158 * our memory is already on our local node, or if the majority of
2159 * the page accesses are shared with other processes.
2160 * Otherwise, decrease the scan period.
2161 */
2162static void update_task_scan_period(struct task_struct *p,
2163 unsigned long shared, unsigned long private)
2164{
2165 unsigned int period_slot;
37ec97de 2166 int lr_ratio, ps_ratio;
04bb2f94
RR
2167 int diff;
2168
2169 unsigned long remote = p->numa_faults_locality[0];
2170 unsigned long local = p->numa_faults_locality[1];
2171
2172 /*
2173 * If there were no record hinting faults then either the task is
2174 * completely idle or all activity is areas that are not of interest
074c2381
MG
2175 * to automatic numa balancing. Related to that, if there were failed
2176 * migration then it implies we are migrating too quickly or the local
2177 * node is overloaded. In either case, scan slower
04bb2f94 2178 */
074c2381 2179 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2180 p->numa_scan_period = min(p->numa_scan_period_max,
2181 p->numa_scan_period << 1);
2182
2183 p->mm->numa_next_scan = jiffies +
2184 msecs_to_jiffies(p->numa_scan_period);
2185
2186 return;
2187 }
2188
2189 /*
2190 * Prepare to scale scan period relative to the current period.
2191 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2192 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2193 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 */
2195 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2196 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2197 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2198
2199 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2200 /*
2201 * Most memory accesses are local. There is no need to
2202 * do fast NUMA scanning, since memory is already local.
2203 */
2204 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2205 if (!slot)
2206 slot = 1;
2207 diff = slot * period_slot;
2208 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2209 /*
2210 * Most memory accesses are shared with other tasks.
2211 * There is no point in continuing fast NUMA scanning,
2212 * since other tasks may just move the memory elsewhere.
2213 */
2214 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2215 if (!slot)
2216 slot = 1;
2217 diff = slot * period_slot;
2218 } else {
04bb2f94 2219 /*
37ec97de
RR
2220 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2221 * yet they are not on the local NUMA node. Speed up
2222 * NUMA scanning to get the memory moved over.
04bb2f94 2223 */
37ec97de
RR
2224 int ratio = max(lr_ratio, ps_ratio);
2225 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2226 }
2227
2228 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2229 task_scan_min(p), task_scan_max(p));
2230 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2231}
2232
7e2703e6
RR
2233/*
2234 * Get the fraction of time the task has been running since the last
2235 * NUMA placement cycle. The scheduler keeps similar statistics, but
2236 * decays those on a 32ms period, which is orders of magnitude off
2237 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2238 * stats only if the task is so new there are no NUMA statistics yet.
2239 */
2240static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2241{
2242 u64 runtime, delta, now;
2243 /* Use the start of this time slice to avoid calculations. */
2244 now = p->se.exec_start;
2245 runtime = p->se.sum_exec_runtime;
2246
2247 if (p->last_task_numa_placement) {
2248 delta = runtime - p->last_sum_exec_runtime;
2249 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2250
2251 /* Avoid time going backwards, prevent potential divide error: */
2252 if (unlikely((s64)*period < 0))
2253 *period = 0;
7e2703e6 2254 } else {
c7b50216 2255 delta = p->se.avg.load_sum;
9d89c257 2256 *period = LOAD_AVG_MAX;
7e2703e6
RR
2257 }
2258
2259 p->last_sum_exec_runtime = runtime;
2260 p->last_task_numa_placement = now;
2261
2262 return delta;
2263}
2264
54009416
RR
2265/*
2266 * Determine the preferred nid for a task in a numa_group. This needs to
2267 * be done in a way that produces consistent results with group_weight,
2268 * otherwise workloads might not converge.
2269 */
2270static int preferred_group_nid(struct task_struct *p, int nid)
2271{
2272 nodemask_t nodes;
2273 int dist;
2274
2275 /* Direct connections between all NUMA nodes. */
2276 if (sched_numa_topology_type == NUMA_DIRECT)
2277 return nid;
2278
2279 /*
2280 * On a system with glueless mesh NUMA topology, group_weight
2281 * scores nodes according to the number of NUMA hinting faults on
2282 * both the node itself, and on nearby nodes.
2283 */
2284 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2285 unsigned long score, max_score = 0;
2286 int node, max_node = nid;
2287
2288 dist = sched_max_numa_distance;
2289
2290 for_each_online_node(node) {
2291 score = group_weight(p, node, dist);
2292 if (score > max_score) {
2293 max_score = score;
2294 max_node = node;
2295 }
2296 }
2297 return max_node;
2298 }
2299
2300 /*
2301 * Finding the preferred nid in a system with NUMA backplane
2302 * interconnect topology is more involved. The goal is to locate
2303 * tasks from numa_groups near each other in the system, and
2304 * untangle workloads from different sides of the system. This requires
2305 * searching down the hierarchy of node groups, recursively searching
2306 * inside the highest scoring group of nodes. The nodemask tricks
2307 * keep the complexity of the search down.
2308 */
2309 nodes = node_online_map;
2310 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2311 unsigned long max_faults = 0;
81907478 2312 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2313 int a, b;
2314
2315 /* Are there nodes at this distance from each other? */
2316 if (!find_numa_distance(dist))
2317 continue;
2318
2319 for_each_node_mask(a, nodes) {
2320 unsigned long faults = 0;
2321 nodemask_t this_group;
2322 nodes_clear(this_group);
2323
2324 /* Sum group's NUMA faults; includes a==b case. */
2325 for_each_node_mask(b, nodes) {
2326 if (node_distance(a, b) < dist) {
2327 faults += group_faults(p, b);
2328 node_set(b, this_group);
2329 node_clear(b, nodes);
2330 }
2331 }
2332
2333 /* Remember the top group. */
2334 if (faults > max_faults) {
2335 max_faults = faults;
2336 max_group = this_group;
2337 /*
2338 * subtle: at the smallest distance there is
2339 * just one node left in each "group", the
2340 * winner is the preferred nid.
2341 */
2342 nid = a;
2343 }
2344 }
2345 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2346 if (!max_faults)
2347 break;
54009416
RR
2348 nodes = max_group;
2349 }
2350 return nid;
2351}
2352
cbee9f88
PZ
2353static void task_numa_placement(struct task_struct *p)
2354{
98fa15f3 2355 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2356 unsigned long max_faults = 0;
04bb2f94 2357 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2358 unsigned long total_faults;
2359 u64 runtime, period;
7dbd13ed 2360 spinlock_t *group_lock = NULL;
cb361d8c 2361 struct numa_group *ng;
cbee9f88 2362
7e5a2c17
JL
2363 /*
2364 * The p->mm->numa_scan_seq field gets updated without
2365 * exclusive access. Use READ_ONCE() here to ensure
2366 * that the field is read in a single access:
2367 */
316c1608 2368 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2369 if (p->numa_scan_seq == seq)
2370 return;
2371 p->numa_scan_seq = seq;
598f0ec0 2372 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2373
7e2703e6
RR
2374 total_faults = p->numa_faults_locality[0] +
2375 p->numa_faults_locality[1];
2376 runtime = numa_get_avg_runtime(p, &period);
2377
7dbd13ed 2378 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2379 ng = deref_curr_numa_group(p);
2380 if (ng) {
2381 group_lock = &ng->lock;
60e69eed 2382 spin_lock_irq(group_lock);
7dbd13ed
MG
2383 }
2384
688b7585
MG
2385 /* Find the node with the highest number of faults */
2386 for_each_online_node(nid) {
44dba3d5
IM
2387 /* Keep track of the offsets in numa_faults array */
2388 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2389 unsigned long faults = 0, group_faults = 0;
44dba3d5 2390 int priv;
745d6147 2391
be1e4e76 2392 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2393 long diff, f_diff, f_weight;
8c8a743c 2394
44dba3d5
IM
2395 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2396 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2397 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2398 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2399
ac8e895b 2400 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2401 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2402 fault_types[priv] += p->numa_faults[membuf_idx];
2403 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2404
7e2703e6
RR
2405 /*
2406 * Normalize the faults_from, so all tasks in a group
2407 * count according to CPU use, instead of by the raw
2408 * number of faults. Tasks with little runtime have
2409 * little over-all impact on throughput, and thus their
2410 * faults are less important.
2411 */
2412 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2413 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2414 (total_faults + 1);
44dba3d5
IM
2415 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2416 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2417
44dba3d5
IM
2418 p->numa_faults[mem_idx] += diff;
2419 p->numa_faults[cpu_idx] += f_diff;
2420 faults += p->numa_faults[mem_idx];
83e1d2cd 2421 p->total_numa_faults += diff;
cb361d8c 2422 if (ng) {
44dba3d5
IM
2423 /*
2424 * safe because we can only change our own group
2425 *
2426 * mem_idx represents the offset for a given
2427 * nid and priv in a specific region because it
2428 * is at the beginning of the numa_faults array.
2429 */
cb361d8c
JH
2430 ng->faults[mem_idx] += diff;
2431 ng->faults_cpu[mem_idx] += f_diff;
2432 ng->total_faults += diff;
2433 group_faults += ng->faults[mem_idx];
8c8a743c 2434 }
ac8e895b
MG
2435 }
2436
cb361d8c 2437 if (!ng) {
f03bb676
SD
2438 if (faults > max_faults) {
2439 max_faults = faults;
2440 max_nid = nid;
2441 }
2442 } else if (group_faults > max_faults) {
2443 max_faults = group_faults;
688b7585
MG
2444 max_nid = nid;
2445 }
83e1d2cd
MG
2446 }
2447
cb361d8c
JH
2448 if (ng) {
2449 numa_group_count_active_nodes(ng);
60e69eed 2450 spin_unlock_irq(group_lock);
f03bb676 2451 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2452 }
2453
bb97fc31
RR
2454 if (max_faults) {
2455 /* Set the new preferred node */
2456 if (max_nid != p->numa_preferred_nid)
2457 sched_setnuma(p, max_nid);
3a7053b3 2458 }
30619c89
SD
2459
2460 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2461}
2462
8c8a743c
PZ
2463static inline int get_numa_group(struct numa_group *grp)
2464{
c45a7795 2465 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2466}
2467
2468static inline void put_numa_group(struct numa_group *grp)
2469{
c45a7795 2470 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2471 kfree_rcu(grp, rcu);
2472}
2473
3e6a9418
MG
2474static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2475 int *priv)
8c8a743c
PZ
2476{
2477 struct numa_group *grp, *my_grp;
2478 struct task_struct *tsk;
2479 bool join = false;
2480 int cpu = cpupid_to_cpu(cpupid);
2481 int i;
2482
cb361d8c 2483 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2484 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2485 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2486
2487 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2488 if (!grp)
2489 return;
2490
c45a7795 2491 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2492 grp->active_nodes = 1;
2493 grp->max_faults_cpu = 0;
8c8a743c 2494 spin_lock_init(&grp->lock);
e29cf08b 2495 grp->gid = p->pid;
50ec8a40 2496 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2497 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2498 nr_node_ids;
8c8a743c 2499
be1e4e76 2500 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2501 grp->faults[i] = p->numa_faults[i];
8c8a743c 2502
989348b5 2503 grp->total_faults = p->total_numa_faults;
83e1d2cd 2504
8c8a743c
PZ
2505 grp->nr_tasks++;
2506 rcu_assign_pointer(p->numa_group, grp);
2507 }
2508
2509 rcu_read_lock();
316c1608 2510 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2511
2512 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2513 goto no_join;
8c8a743c
PZ
2514
2515 grp = rcu_dereference(tsk->numa_group);
2516 if (!grp)
3354781a 2517 goto no_join;
8c8a743c 2518
cb361d8c 2519 my_grp = deref_curr_numa_group(p);
8c8a743c 2520 if (grp == my_grp)
3354781a 2521 goto no_join;
8c8a743c
PZ
2522
2523 /*
2524 * Only join the other group if its bigger; if we're the bigger group,
2525 * the other task will join us.
2526 */
2527 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2528 goto no_join;
8c8a743c
PZ
2529
2530 /*
2531 * Tie-break on the grp address.
2532 */
2533 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2534 goto no_join;
8c8a743c 2535
dabe1d99
RR
2536 /* Always join threads in the same process. */
2537 if (tsk->mm == current->mm)
2538 join = true;
2539
2540 /* Simple filter to avoid false positives due to PID collisions */
2541 if (flags & TNF_SHARED)
2542 join = true;
8c8a743c 2543
3e6a9418
MG
2544 /* Update priv based on whether false sharing was detected */
2545 *priv = !join;
2546
dabe1d99 2547 if (join && !get_numa_group(grp))
3354781a 2548 goto no_join;
8c8a743c 2549
8c8a743c
PZ
2550 rcu_read_unlock();
2551
2552 if (!join)
2553 return;
2554
60e69eed
MG
2555 BUG_ON(irqs_disabled());
2556 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2557
be1e4e76 2558 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2559 my_grp->faults[i] -= p->numa_faults[i];
2560 grp->faults[i] += p->numa_faults[i];
8c8a743c 2561 }
989348b5
MG
2562 my_grp->total_faults -= p->total_numa_faults;
2563 grp->total_faults += p->total_numa_faults;
8c8a743c 2564
8c8a743c
PZ
2565 my_grp->nr_tasks--;
2566 grp->nr_tasks++;
2567
2568 spin_unlock(&my_grp->lock);
60e69eed 2569 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2570
2571 rcu_assign_pointer(p->numa_group, grp);
2572
2573 put_numa_group(my_grp);
3354781a
PZ
2574 return;
2575
2576no_join:
2577 rcu_read_unlock();
2578 return;
8c8a743c
PZ
2579}
2580
16d51a59
JH
2581/*
2582 * Get rid of NUMA staticstics associated with a task (either current or dead).
2583 * If @final is set, the task is dead and has reached refcount zero, so we can
2584 * safely free all relevant data structures. Otherwise, there might be
2585 * concurrent reads from places like load balancing and procfs, and we should
2586 * reset the data back to default state without freeing ->numa_faults.
2587 */
2588void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2589{
cb361d8c
JH
2590 /* safe: p either is current or is being freed by current */
2591 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2592 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2593 unsigned long flags;
2594 int i;
8c8a743c 2595
16d51a59
JH
2596 if (!numa_faults)
2597 return;
2598
8c8a743c 2599 if (grp) {
e9dd685c 2600 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2601 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2602 grp->faults[i] -= p->numa_faults[i];
989348b5 2603 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2604
8c8a743c 2605 grp->nr_tasks--;
e9dd685c 2606 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2607 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2608 put_numa_group(grp);
2609 }
2610
16d51a59
JH
2611 if (final) {
2612 p->numa_faults = NULL;
2613 kfree(numa_faults);
2614 } else {
2615 p->total_numa_faults = 0;
2616 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2617 numa_faults[i] = 0;
2618 }
8c8a743c
PZ
2619}
2620
cbee9f88
PZ
2621/*
2622 * Got a PROT_NONE fault for a page on @node.
2623 */
58b46da3 2624void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2625{
2626 struct task_struct *p = current;
6688cc05 2627 bool migrated = flags & TNF_MIGRATED;
58b46da3 2628 int cpu_node = task_node(current);
792568ec 2629 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2630 struct numa_group *ng;
ac8e895b 2631 int priv;
cbee9f88 2632
2a595721 2633 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2634 return;
2635
9ff1d9ff
MG
2636 /* for example, ksmd faulting in a user's mm */
2637 if (!p->mm)
2638 return;
2639
f809ca9a 2640 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2641 if (unlikely(!p->numa_faults)) {
2642 int size = sizeof(*p->numa_faults) *
be1e4e76 2643 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2644
44dba3d5
IM
2645 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2646 if (!p->numa_faults)
f809ca9a 2647 return;
745d6147 2648
83e1d2cd 2649 p->total_numa_faults = 0;
04bb2f94 2650 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2651 }
cbee9f88 2652
8c8a743c
PZ
2653 /*
2654 * First accesses are treated as private, otherwise consider accesses
2655 * to be private if the accessing pid has not changed
2656 */
2657 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2658 priv = 1;
2659 } else {
2660 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2661 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2662 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2663 }
2664
792568ec
RR
2665 /*
2666 * If a workload spans multiple NUMA nodes, a shared fault that
2667 * occurs wholly within the set of nodes that the workload is
2668 * actively using should be counted as local. This allows the
2669 * scan rate to slow down when a workload has settled down.
2670 */
cb361d8c 2671 ng = deref_curr_numa_group(p);
4142c3eb
RR
2672 if (!priv && !local && ng && ng->active_nodes > 1 &&
2673 numa_is_active_node(cpu_node, ng) &&
2674 numa_is_active_node(mem_node, ng))
792568ec
RR
2675 local = 1;
2676
2739d3ee 2677 /*
e1ff516a
YW
2678 * Retry to migrate task to preferred node periodically, in case it
2679 * previously failed, or the scheduler moved us.
2739d3ee 2680 */
b6a60cf3
SD
2681 if (time_after(jiffies, p->numa_migrate_retry)) {
2682 task_numa_placement(p);
6b9a7460 2683 numa_migrate_preferred(p);
b6a60cf3 2684 }
6b9a7460 2685
b32e86b4
IM
2686 if (migrated)
2687 p->numa_pages_migrated += pages;
074c2381
MG
2688 if (flags & TNF_MIGRATE_FAIL)
2689 p->numa_faults_locality[2] += pages;
b32e86b4 2690
44dba3d5
IM
2691 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2692 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2693 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2694}
2695
6e5fb223
PZ
2696static void reset_ptenuma_scan(struct task_struct *p)
2697{
7e5a2c17
JL
2698 /*
2699 * We only did a read acquisition of the mmap sem, so
2700 * p->mm->numa_scan_seq is written to without exclusive access
2701 * and the update is not guaranteed to be atomic. That's not
2702 * much of an issue though, since this is just used for
2703 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2704 * expensive, to avoid any form of compiler optimizations:
2705 */
316c1608 2706 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2707 p->mm->numa_scan_offset = 0;
2708}
2709
cbee9f88
PZ
2710/*
2711 * The expensive part of numa migration is done from task_work context.
2712 * Triggered from task_tick_numa().
2713 */
9434f9f5 2714static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2715{
2716 unsigned long migrate, next_scan, now = jiffies;
2717 struct task_struct *p = current;
2718 struct mm_struct *mm = p->mm;
51170840 2719 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2720 struct vm_area_struct *vma;
9f40604c 2721 unsigned long start, end;
598f0ec0 2722 unsigned long nr_pte_updates = 0;
4620f8c1 2723 long pages, virtpages;
cbee9f88 2724
9148a3a1 2725 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2726
b34920d4 2727 work->next = work;
cbee9f88
PZ
2728 /*
2729 * Who cares about NUMA placement when they're dying.
2730 *
2731 * NOTE: make sure not to dereference p->mm before this check,
2732 * exit_task_work() happens _after_ exit_mm() so we could be called
2733 * without p->mm even though we still had it when we enqueued this
2734 * work.
2735 */
2736 if (p->flags & PF_EXITING)
2737 return;
2738
930aa174 2739 if (!mm->numa_next_scan) {
7e8d16b6
MG
2740 mm->numa_next_scan = now +
2741 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2742 }
2743
cbee9f88
PZ
2744 /*
2745 * Enforce maximal scan/migration frequency..
2746 */
2747 migrate = mm->numa_next_scan;
2748 if (time_before(now, migrate))
2749 return;
2750
598f0ec0
MG
2751 if (p->numa_scan_period == 0) {
2752 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2753 p->numa_scan_period = task_scan_start(p);
598f0ec0 2754 }
cbee9f88 2755
fb003b80 2756 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2757 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2758 return;
2759
19a78d11
PZ
2760 /*
2761 * Delay this task enough that another task of this mm will likely win
2762 * the next time around.
2763 */
2764 p->node_stamp += 2 * TICK_NSEC;
2765
9f40604c
MG
2766 start = mm->numa_scan_offset;
2767 pages = sysctl_numa_balancing_scan_size;
2768 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2769 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2770 if (!pages)
2771 return;
cbee9f88 2772
4620f8c1 2773
8655d549
VB
2774 if (!down_read_trylock(&mm->mmap_sem))
2775 return;
9f40604c 2776 vma = find_vma(mm, start);
6e5fb223
PZ
2777 if (!vma) {
2778 reset_ptenuma_scan(p);
9f40604c 2779 start = 0;
6e5fb223
PZ
2780 vma = mm->mmap;
2781 }
9f40604c 2782 for (; vma; vma = vma->vm_next) {
6b79c57b 2783 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2784 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2785 continue;
6b79c57b 2786 }
6e5fb223 2787
4591ce4f
MG
2788 /*
2789 * Shared library pages mapped by multiple processes are not
2790 * migrated as it is expected they are cache replicated. Avoid
2791 * hinting faults in read-only file-backed mappings or the vdso
2792 * as migrating the pages will be of marginal benefit.
2793 */
2794 if (!vma->vm_mm ||
2795 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2796 continue;
2797
3c67f474
MG
2798 /*
2799 * Skip inaccessible VMAs to avoid any confusion between
2800 * PROT_NONE and NUMA hinting ptes
2801 */
3122e80e 2802 if (!vma_is_accessible(vma))
3c67f474 2803 continue;
4591ce4f 2804
9f40604c
MG
2805 do {
2806 start = max(start, vma->vm_start);
2807 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2808 end = min(end, vma->vm_end);
4620f8c1 2809 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2810
2811 /*
4620f8c1
RR
2812 * Try to scan sysctl_numa_balancing_size worth of
2813 * hpages that have at least one present PTE that
2814 * is not already pte-numa. If the VMA contains
2815 * areas that are unused or already full of prot_numa
2816 * PTEs, scan up to virtpages, to skip through those
2817 * areas faster.
598f0ec0
MG
2818 */
2819 if (nr_pte_updates)
2820 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2821 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2822
9f40604c 2823 start = end;
4620f8c1 2824 if (pages <= 0 || virtpages <= 0)
9f40604c 2825 goto out;
3cf1962c
RR
2826
2827 cond_resched();
9f40604c 2828 } while (end != vma->vm_end);
cbee9f88 2829 }
6e5fb223 2830
9f40604c 2831out:
6e5fb223 2832 /*
c69307d5
PZ
2833 * It is possible to reach the end of the VMA list but the last few
2834 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2835 * would find the !migratable VMA on the next scan but not reset the
2836 * scanner to the start so check it now.
6e5fb223
PZ
2837 */
2838 if (vma)
9f40604c 2839 mm->numa_scan_offset = start;
6e5fb223
PZ
2840 else
2841 reset_ptenuma_scan(p);
2842 up_read(&mm->mmap_sem);
51170840
RR
2843
2844 /*
2845 * Make sure tasks use at least 32x as much time to run other code
2846 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2847 * Usually update_task_scan_period slows down scanning enough; on an
2848 * overloaded system we need to limit overhead on a per task basis.
2849 */
2850 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2851 u64 diff = p->se.sum_exec_runtime - runtime;
2852 p->node_stamp += 32 * diff;
2853 }
cbee9f88
PZ
2854}
2855
d35927a1
VS
2856void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2857{
2858 int mm_users = 0;
2859 struct mm_struct *mm = p->mm;
2860
2861 if (mm) {
2862 mm_users = atomic_read(&mm->mm_users);
2863 if (mm_users == 1) {
2864 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2865 mm->numa_scan_seq = 0;
2866 }
2867 }
2868 p->node_stamp = 0;
2869 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2870 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2871 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2872 p->numa_work.next = &p->numa_work;
2873 p->numa_faults = NULL;
2874 RCU_INIT_POINTER(p->numa_group, NULL);
2875 p->last_task_numa_placement = 0;
2876 p->last_sum_exec_runtime = 0;
2877
b34920d4
VS
2878 init_task_work(&p->numa_work, task_numa_work);
2879
d35927a1
VS
2880 /* New address space, reset the preferred nid */
2881 if (!(clone_flags & CLONE_VM)) {
2882 p->numa_preferred_nid = NUMA_NO_NODE;
2883 return;
2884 }
2885
2886 /*
2887 * New thread, keep existing numa_preferred_nid which should be copied
2888 * already by arch_dup_task_struct but stagger when scans start.
2889 */
2890 if (mm) {
2891 unsigned int delay;
2892
2893 delay = min_t(unsigned int, task_scan_max(current),
2894 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2895 delay += 2 * TICK_NSEC;
2896 p->node_stamp = delay;
2897 }
2898}
2899
cbee9f88
PZ
2900/*
2901 * Drive the periodic memory faults..
2902 */
b1546edc 2903static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2904{
2905 struct callback_head *work = &curr->numa_work;
2906 u64 period, now;
2907
2908 /*
2909 * We don't care about NUMA placement if we don't have memory.
2910 */
2911 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2912 return;
2913
2914 /*
2915 * Using runtime rather than walltime has the dual advantage that
2916 * we (mostly) drive the selection from busy threads and that the
2917 * task needs to have done some actual work before we bother with
2918 * NUMA placement.
2919 */
2920 now = curr->se.sum_exec_runtime;
2921 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2922
25b3e5a3 2923 if (now > curr->node_stamp + period) {
4b96a29b 2924 if (!curr->node_stamp)
b5dd77c8 2925 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2926 curr->node_stamp += period;
cbee9f88 2927
b34920d4 2928 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2929 task_work_add(curr, work, true);
cbee9f88
PZ
2930 }
2931}
3fed382b 2932
3f9672ba
SD
2933static void update_scan_period(struct task_struct *p, int new_cpu)
2934{
2935 int src_nid = cpu_to_node(task_cpu(p));
2936 int dst_nid = cpu_to_node(new_cpu);
2937
05cbdf4f
MG
2938 if (!static_branch_likely(&sched_numa_balancing))
2939 return;
2940
3f9672ba
SD
2941 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2942 return;
2943
05cbdf4f
MG
2944 if (src_nid == dst_nid)
2945 return;
2946
2947 /*
2948 * Allow resets if faults have been trapped before one scan
2949 * has completed. This is most likely due to a new task that
2950 * is pulled cross-node due to wakeups or load balancing.
2951 */
2952 if (p->numa_scan_seq) {
2953 /*
2954 * Avoid scan adjustments if moving to the preferred
2955 * node or if the task was not previously running on
2956 * the preferred node.
2957 */
2958 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2959 (p->numa_preferred_nid != NUMA_NO_NODE &&
2960 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2961 return;
2962 }
2963
2964 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2965}
2966
cbee9f88
PZ
2967#else
2968static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2969{
2970}
0ec8aa00
PZ
2971
2972static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2973{
2974}
2975
2976static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2977{
2978}
3fed382b 2979
3f9672ba
SD
2980static inline void update_scan_period(struct task_struct *p, int new_cpu)
2981{
2982}
2983
cbee9f88
PZ
2984#endif /* CONFIG_NUMA_BALANCING */
2985
30cfdcfc
DA
2986static void
2987account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2988{
2989 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2990#ifdef CONFIG_SMP
0ec8aa00
PZ
2991 if (entity_is_task(se)) {
2992 struct rq *rq = rq_of(cfs_rq);
2993
2994 account_numa_enqueue(rq, task_of(se));
2995 list_add(&se->group_node, &rq->cfs_tasks);
2996 }
367456c7 2997#endif
30cfdcfc 2998 cfs_rq->nr_running++;
30cfdcfc
DA
2999}
3000
3001static void
3002account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3003{
3004 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3005#ifdef CONFIG_SMP
0ec8aa00
PZ
3006 if (entity_is_task(se)) {
3007 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3008 list_del_init(&se->group_node);
0ec8aa00 3009 }
bfdb198c 3010#endif
30cfdcfc 3011 cfs_rq->nr_running--;
30cfdcfc
DA
3012}
3013
8d5b9025
PZ
3014/*
3015 * Signed add and clamp on underflow.
3016 *
3017 * Explicitly do a load-store to ensure the intermediate value never hits
3018 * memory. This allows lockless observations without ever seeing the negative
3019 * values.
3020 */
3021#define add_positive(_ptr, _val) do { \
3022 typeof(_ptr) ptr = (_ptr); \
3023 typeof(_val) val = (_val); \
3024 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3025 \
3026 res = var + val; \
3027 \
3028 if (val < 0 && res > var) \
3029 res = 0; \
3030 \
3031 WRITE_ONCE(*ptr, res); \
3032} while (0)
3033
3034/*
3035 * Unsigned subtract and clamp on underflow.
3036 *
3037 * Explicitly do a load-store to ensure the intermediate value never hits
3038 * memory. This allows lockless observations without ever seeing the negative
3039 * values.
3040 */
3041#define sub_positive(_ptr, _val) do { \
3042 typeof(_ptr) ptr = (_ptr); \
3043 typeof(*ptr) val = (_val); \
3044 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3045 res = var - val; \
3046 if (res > var) \
3047 res = 0; \
3048 WRITE_ONCE(*ptr, res); \
3049} while (0)
3050
b5c0ce7b
PB
3051/*
3052 * Remove and clamp on negative, from a local variable.
3053 *
3054 * A variant of sub_positive(), which does not use explicit load-store
3055 * and is thus optimized for local variable updates.
3056 */
3057#define lsub_positive(_ptr, _val) do { \
3058 typeof(_ptr) ptr = (_ptr); \
3059 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3060} while (0)
3061
8d5b9025 3062#ifdef CONFIG_SMP
8d5b9025
PZ
3063static inline void
3064enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065{
3066 cfs_rq->avg.load_avg += se->avg.load_avg;
3067 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3068}
3069
3070static inline void
3071dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3072{
3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3074 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3075}
3076#else
3077static inline void
8d5b9025
PZ
3078enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079static inline void
3080dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081#endif
3082
9059393e 3083static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3084 unsigned long weight)
9059393e
VG
3085{
3086 if (se->on_rq) {
3087 /* commit outstanding execution time */
3088 if (cfs_rq->curr == se)
3089 update_curr(cfs_rq);
3090 account_entity_dequeue(cfs_rq, se);
9059393e
VG
3091 }
3092 dequeue_load_avg(cfs_rq, se);
3093
3094 update_load_set(&se->load, weight);
3095
3096#ifdef CONFIG_SMP
1ea6c46a
PZ
3097 do {
3098 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3099
3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3101 } while (0);
9059393e
VG
3102#endif
3103
3104 enqueue_load_avg(cfs_rq, se);
0dacee1b 3105 if (se->on_rq)
9059393e 3106 account_entity_enqueue(cfs_rq, se);
0dacee1b 3107
9059393e
VG
3108}
3109
3110void reweight_task(struct task_struct *p, int prio)
3111{
3112 struct sched_entity *se = &p->se;
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 struct load_weight *load = &se->load;
3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116
0dacee1b 3117 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3118 load->inv_weight = sched_prio_to_wmult[prio];
3119}
3120
3ff6dcac 3121#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3122#ifdef CONFIG_SMP
cef27403
PZ
3123/*
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3126 *
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3129 *
3130 * tg->weight * grq->load.weight
3131 * ge->load.weight = ----------------------------- (1)
3132 * \Sum grq->load.weight
3133 *
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3137 *
3138 * So instead of the above, we substitute:
3139 *
3140 * grq->load.weight -> grq->avg.load_avg (2)
3141 *
3142 * which yields the following:
3143 *
3144 * tg->weight * grq->avg.load_avg
3145 * ge->load.weight = ------------------------------ (3)
3146 * tg->load_avg
3147 *
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 *
3150 * That is shares_avg, and it is right (given the approximation (2)).
3151 *
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3157 *
3158 * Now, in that special case (1) reduces to:
3159 *
3160 * tg->weight * grq->load.weight
17de4ee0 3161 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3162 * grp->load.weight
3163 *
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 *
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3167 * UP case, like:
3168 *
3169 * ge->load.weight =
3170 *
3171 * tg->weight * grq->load.weight
3172 * --------------------------------------------------- (5)
3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 *
17de4ee0
PZ
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3177 *
3178 *
3179 * tg->weight * grq->load.weight
3180 * ge->load.weight = ----------------------------- (6)
3181 * tg_load_avg'
3182 *
3183 * Where:
3184 *
3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3187 *
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3191 *
3192 * \Sum ge->load.weight >= tg->weight
3193 *
3194 * hence icky!
3195 */
2c8e4dce 3196static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3197{
7c80cfc9
PZ
3198 long tg_weight, tg_shares, load, shares;
3199 struct task_group *tg = cfs_rq->tg;
3200
3201 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3202
3d4b60d3 3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3204
ea1dc6fc 3205 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3206
ea1dc6fc
PZ
3207 /* Ensure tg_weight >= load */
3208 tg_weight -= cfs_rq->tg_load_avg_contrib;
3209 tg_weight += load;
3ff6dcac 3210
7c80cfc9 3211 shares = (tg_shares * load);
cf5f0acf
PZ
3212 if (tg_weight)
3213 shares /= tg_weight;
3ff6dcac 3214
b8fd8423
DE
3215 /*
3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 * of a group with small tg->shares value. It is a floor value which is
3218 * assigned as a minimum load.weight to the sched_entity representing
3219 * the group on a CPU.
3220 *
3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3225 * instead of 0.
3226 */
7c80cfc9 3227 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3228}
387f77cc 3229#endif /* CONFIG_SMP */
ea1dc6fc 3230
82958366
PT
3231static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3232
1ea6c46a
PZ
3233/*
3234 * Recomputes the group entity based on the current state of its group
3235 * runqueue.
3236 */
3237static void update_cfs_group(struct sched_entity *se)
2069dd75 3238{
1ea6c46a 3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3240 long shares;
2069dd75 3241
1ea6c46a 3242 if (!gcfs_rq)
89ee048f
VG
3243 return;
3244
1ea6c46a 3245 if (throttled_hierarchy(gcfs_rq))
2069dd75 3246 return;
89ee048f 3247
3ff6dcac 3248#ifndef CONFIG_SMP
0dacee1b 3249 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3250
3251 if (likely(se->load.weight == shares))
3ff6dcac 3252 return;
7c80cfc9 3253#else
2c8e4dce 3254 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3255#endif
2069dd75 3256
0dacee1b 3257 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3258}
89ee048f 3259
2069dd75 3260#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3261static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3262{
3263}
3264#endif /* CONFIG_FAIR_GROUP_SCHED */
3265
ea14b57e 3266static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3267{
43964409
LT
3268 struct rq *rq = rq_of(cfs_rq);
3269
a4f9a0e5 3270 if (&rq->cfs == cfs_rq) {
a030d738
VK
3271 /*
3272 * There are a few boundary cases this might miss but it should
3273 * get called often enough that that should (hopefully) not be
9783be2c 3274 * a real problem.
a030d738
VK
3275 *
3276 * It will not get called when we go idle, because the idle
3277 * thread is a different class (!fair), nor will the utilization
3278 * number include things like RT tasks.
3279 *
3280 * As is, the util number is not freq-invariant (we'd have to
3281 * implement arch_scale_freq_capacity() for that).
3282 *
3283 * See cpu_util().
3284 */
ea14b57e 3285 cpufreq_update_util(rq, flags);
a030d738
VK
3286 }
3287}
3288
141965c7 3289#ifdef CONFIG_SMP
c566e8e9 3290#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3291/**
3292 * update_tg_load_avg - update the tg's load avg
3293 * @cfs_rq: the cfs_rq whose avg changed
3294 * @force: update regardless of how small the difference
3295 *
3296 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3297 * However, because tg->load_avg is a global value there are performance
3298 * considerations.
3299 *
3300 * In order to avoid having to look at the other cfs_rq's, we use a
3301 * differential update where we store the last value we propagated. This in
3302 * turn allows skipping updates if the differential is 'small'.
3303 *
815abf5a 3304 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3305 */
9d89c257 3306static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3307{
9d89c257 3308 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3309
aa0b7ae0
WL
3310 /*
3311 * No need to update load_avg for root_task_group as it is not used.
3312 */
3313 if (cfs_rq->tg == &root_task_group)
3314 return;
3315
9d89c257
YD
3316 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3317 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3318 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3319 }
8165e145 3320}
f5f9739d 3321
ad936d86 3322/*
97fb7a0a 3323 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3324 * caller only guarantees p->pi_lock is held; no other assumptions,
3325 * including the state of rq->lock, should be made.
3326 */
3327void set_task_rq_fair(struct sched_entity *se,
3328 struct cfs_rq *prev, struct cfs_rq *next)
3329{
0ccb977f
PZ
3330 u64 p_last_update_time;
3331 u64 n_last_update_time;
3332
ad936d86
BP
3333 if (!sched_feat(ATTACH_AGE_LOAD))
3334 return;
3335
3336 /*
3337 * We are supposed to update the task to "current" time, then its up to
3338 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3339 * getting what current time is, so simply throw away the out-of-date
3340 * time. This will result in the wakee task is less decayed, but giving
3341 * the wakee more load sounds not bad.
3342 */
0ccb977f
PZ
3343 if (!(se->avg.last_update_time && prev))
3344 return;
ad936d86
BP
3345
3346#ifndef CONFIG_64BIT
0ccb977f 3347 {
ad936d86
BP
3348 u64 p_last_update_time_copy;
3349 u64 n_last_update_time_copy;
3350
3351 do {
3352 p_last_update_time_copy = prev->load_last_update_time_copy;
3353 n_last_update_time_copy = next->load_last_update_time_copy;
3354
3355 smp_rmb();
3356
3357 p_last_update_time = prev->avg.last_update_time;
3358 n_last_update_time = next->avg.last_update_time;
3359
3360 } while (p_last_update_time != p_last_update_time_copy ||
3361 n_last_update_time != n_last_update_time_copy);
0ccb977f 3362 }
ad936d86 3363#else
0ccb977f
PZ
3364 p_last_update_time = prev->avg.last_update_time;
3365 n_last_update_time = next->avg.last_update_time;
ad936d86 3366#endif
23127296 3367 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3368 se->avg.last_update_time = n_last_update_time;
ad936d86 3369}
09a43ace 3370
0e2d2aaa
PZ
3371
3372/*
3373 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3374 * propagate its contribution. The key to this propagation is the invariant
3375 * that for each group:
3376 *
3377 * ge->avg == grq->avg (1)
3378 *
3379 * _IFF_ we look at the pure running and runnable sums. Because they
3380 * represent the very same entity, just at different points in the hierarchy.
3381 *
9f683953
VG
3382 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3383 * and simply copies the running/runnable sum over (but still wrong, because
3384 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3385 *
0dacee1b 3386 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3387 *
3388 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3389 *
3390 * And since, like util, the runnable part should be directly transferable,
3391 * the following would _appear_ to be the straight forward approach:
3392 *
a4c3c049 3393 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3394 *
3395 * And per (1) we have:
3396 *
a4c3c049 3397 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3398 *
3399 * Which gives:
3400 *
3401 * ge->load.weight * grq->avg.load_avg
3402 * ge->avg.load_avg = ----------------------------------- (4)
3403 * grq->load.weight
3404 *
3405 * Except that is wrong!
3406 *
3407 * Because while for entities historical weight is not important and we
3408 * really only care about our future and therefore can consider a pure
3409 * runnable sum, runqueues can NOT do this.
3410 *
3411 * We specifically want runqueues to have a load_avg that includes
3412 * historical weights. Those represent the blocked load, the load we expect
3413 * to (shortly) return to us. This only works by keeping the weights as
3414 * integral part of the sum. We therefore cannot decompose as per (3).
3415 *
a4c3c049
VG
3416 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3417 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3418 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3419 * runnable section of these tasks overlap (or not). If they were to perfectly
3420 * align the rq as a whole would be runnable 2/3 of the time. If however we
3421 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3422 *
a4c3c049 3423 * So we'll have to approximate.. :/
0e2d2aaa 3424 *
a4c3c049 3425 * Given the constraint:
0e2d2aaa 3426 *
a4c3c049 3427 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3428 *
a4c3c049
VG
3429 * We can construct a rule that adds runnable to a rq by assuming minimal
3430 * overlap.
0e2d2aaa 3431 *
a4c3c049 3432 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3433 *
a4c3c049 3434 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3435 *
a4c3c049 3436 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3437 *
0e2d2aaa
PZ
3438 */
3439
09a43ace 3440static inline void
0e2d2aaa 3441update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3442{
09a43ace
VG
3443 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3444
3445 /* Nothing to update */
3446 if (!delta)
3447 return;
3448
a4c3c049
VG
3449 /*
3450 * The relation between sum and avg is:
3451 *
3452 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3453 *
3454 * however, the PELT windows are not aligned between grq and gse.
3455 */
3456
09a43ace
VG
3457 /* Set new sched_entity's utilization */
3458 se->avg.util_avg = gcfs_rq->avg.util_avg;
3459 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3460
3461 /* Update parent cfs_rq utilization */
3462 add_positive(&cfs_rq->avg.util_avg, delta);
3463 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3464}
3465
9f683953
VG
3466static inline void
3467update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3468{
3469 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3470
3471 /* Nothing to update */
3472 if (!delta)
3473 return;
3474
3475 /*
3476 * The relation between sum and avg is:
3477 *
3478 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3479 *
3480 * however, the PELT windows are not aligned between grq and gse.
3481 */
3482
3483 /* Set new sched_entity's runnable */
3484 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3485 se->avg.runnable_sum = se->avg.runnable_avg * LOAD_AVG_MAX;
3486
3487 /* Update parent cfs_rq runnable */
3488 add_positive(&cfs_rq->avg.runnable_avg, delta);
3489 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * LOAD_AVG_MAX;
3490}
3491
09a43ace 3492static inline void
0dacee1b 3493update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3494{
a4c3c049 3495 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3496 unsigned long load_avg;
3497 u64 load_sum = 0;
a4c3c049 3498 s64 delta_sum;
09a43ace 3499
0e2d2aaa
PZ
3500 if (!runnable_sum)
3501 return;
09a43ace 3502
0e2d2aaa 3503 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3504
a4c3c049
VG
3505 if (runnable_sum >= 0) {
3506 /*
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3509 */
3510 runnable_sum += se->avg.load_sum;
3511 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3512 } else {
3513 /*
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3516 */
3517 if (scale_load_down(gcfs_rq->load.weight)) {
3518 load_sum = div_s64(gcfs_rq->avg.load_sum,
3519 scale_load_down(gcfs_rq->load.weight));
3520 }
3521
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum = min(se->avg.load_sum, load_sum);
3524 }
3525
3526 /*
3527 * runnable_sum can't be lower than running_sum
23127296
VG
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3531 */
23127296 3532 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3533 runnable_sum = max(runnable_sum, running_sum);
3534
0e2d2aaa
PZ
3535 load_sum = (s64)se_weight(se) * runnable_sum;
3536 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3537
a4c3c049
VG
3538 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3539 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3540
a4c3c049
VG
3541 se->avg.load_sum = runnable_sum;
3542 se->avg.load_avg = load_avg;
3543 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3544 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3545}
3546
0e2d2aaa 3547static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3548{
0e2d2aaa
PZ
3549 cfs_rq->propagate = 1;
3550 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3551}
3552
3553/* Update task and its cfs_rq load average */
3554static inline int propagate_entity_load_avg(struct sched_entity *se)
3555{
0e2d2aaa 3556 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3557
3558 if (entity_is_task(se))
3559 return 0;
3560
0e2d2aaa
PZ
3561 gcfs_rq = group_cfs_rq(se);
3562 if (!gcfs_rq->propagate)
09a43ace
VG
3563 return 0;
3564
0e2d2aaa
PZ
3565 gcfs_rq->propagate = 0;
3566
09a43ace
VG
3567 cfs_rq = cfs_rq_of(se);
3568
0e2d2aaa 3569 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3570
0e2d2aaa 3571 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3572 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3573 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3574
ba19f51f 3575 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3576 trace_pelt_se_tp(se);
ba19f51f 3577
09a43ace
VG
3578 return 1;
3579}
3580
bc427898
VG
3581/*
3582 * Check if we need to update the load and the utilization of a blocked
3583 * group_entity:
3584 */
3585static inline bool skip_blocked_update(struct sched_entity *se)
3586{
3587 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3588
3589 /*
3590 * If sched_entity still have not zero load or utilization, we have to
3591 * decay it:
3592 */
3593 if (se->avg.load_avg || se->avg.util_avg)
3594 return false;
3595
3596 /*
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3599 */
0e2d2aaa 3600 if (gcfs_rq->propagate)
bc427898
VG
3601 return false;
3602
3603 /*
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3607 */
3608 return true;
3609}
3610
6e83125c 3611#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3612
9d89c257 3613static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3614
3615static inline int propagate_entity_load_avg(struct sched_entity *se)
3616{
3617 return 0;
3618}
3619
0e2d2aaa 3620static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3621
6e83125c 3622#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3623
3d30544f
PZ
3624/**
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3626 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3627 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3628 *
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3632 *
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3634 *
7c3edd2c
PZ
3635 * Returns true if the load decayed or we removed load.
3636 *
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3d30544f 3639 */
a2c6c91f 3640static inline int
3a123bbb 3641update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3642{
9f683953 3643 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3644 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3645 int decayed = 0;
2dac754e 3646
2a2f5d4e
PZ
3647 if (cfs_rq->removed.nr) {
3648 unsigned long r;
9a2dd585 3649 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3650
3651 raw_spin_lock(&cfs_rq->removed.lock);
3652 swap(cfs_rq->removed.util_avg, removed_util);
3653 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3654 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3655 cfs_rq->removed.nr = 0;
3656 raw_spin_unlock(&cfs_rq->removed.lock);
3657
2a2f5d4e 3658 r = removed_load;
89741892 3659 sub_positive(&sa->load_avg, r);
9a2dd585 3660 sub_positive(&sa->load_sum, r * divider);
2dac754e 3661
2a2f5d4e 3662 r = removed_util;
89741892 3663 sub_positive(&sa->util_avg, r);
9a2dd585 3664 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3665
9f683953
VG
3666 r = removed_runnable;
3667 sub_positive(&sa->runnable_avg, r);
3668 sub_positive(&sa->runnable_sum, r * divider);
3669
3670 /*
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3673 */
3674 add_tg_cfs_propagate(cfs_rq,
3675 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3676
3677 decayed = 1;
9d89c257 3678 }
36ee28e4 3679
23127296 3680 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3681
9d89c257
YD
3682#ifndef CONFIG_64BIT
3683 smp_wmb();
3684 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3685#endif
36ee28e4 3686
2a2f5d4e 3687 return decayed;
21e96f88
SM
3688}
3689
3d30544f
PZ
3690/**
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3694 *
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3697 */
a4f9a0e5 3698static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3699{
f207934f
PZ
3700 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3701
3702 /*
3703 * When we attach the @se to the @cfs_rq, we must align the decay
3704 * window because without that, really weird and wonderful things can
3705 * happen.
3706 *
3707 * XXX illustrate
3708 */
a05e8c51 3709 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3710 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3711
3712 /*
3713 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3714 * period_contrib. This isn't strictly correct, but since we're
3715 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3716 * _sum a little.
3717 */
3718 se->avg.util_sum = se->avg.util_avg * divider;
3719
9f683953
VG
3720 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3721
f207934f
PZ
3722 se->avg.load_sum = divider;
3723 if (se_weight(se)) {
3724 se->avg.load_sum =
3725 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3726 }
3727
8d5b9025 3728 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3729 cfs_rq->avg.util_avg += se->avg.util_avg;
3730 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3731 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3732 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3733
3734 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3735
a4f9a0e5 3736 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3737
3738 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3739}
3740
3d30544f
PZ
3741/**
3742 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3743 * @cfs_rq: cfs_rq to detach from
3744 * @se: sched_entity to detach
3745 *
3746 * Must call update_cfs_rq_load_avg() before this, since we rely on
3747 * cfs_rq->avg.last_update_time being current.
3748 */
a05e8c51
BP
3749static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3750{
8d5b9025 3751 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3752 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3753 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3754 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3755 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3756
3757 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3758
ea14b57e 3759 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3760
3761 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3762}
3763
b382a531
PZ
3764/*
3765 * Optional action to be done while updating the load average
3766 */
3767#define UPDATE_TG 0x1
3768#define SKIP_AGE_LOAD 0x2
3769#define DO_ATTACH 0x4
3770
3771/* Update task and its cfs_rq load average */
3772static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3773{
23127296 3774 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3775 int decayed;
3776
3777 /*
3778 * Track task load average for carrying it to new CPU after migrated, and
3779 * track group sched_entity load average for task_h_load calc in migration
3780 */
3781 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3782 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3783
3784 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3785 decayed |= propagate_entity_load_avg(se);
3786
3787 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3788
ea14b57e
PZ
3789 /*
3790 * DO_ATTACH means we're here from enqueue_entity().
3791 * !last_update_time means we've passed through
3792 * migrate_task_rq_fair() indicating we migrated.
3793 *
3794 * IOW we're enqueueing a task on a new CPU.
3795 */
a4f9a0e5 3796 attach_entity_load_avg(cfs_rq, se);
b382a531
PZ
3797 update_tg_load_avg(cfs_rq, 0);
3798
bef69dd8
VG
3799 } else if (decayed) {
3800 cfs_rq_util_change(cfs_rq, 0);
3801
3802 if (flags & UPDATE_TG)
3803 update_tg_load_avg(cfs_rq, 0);
3804 }
b382a531
PZ
3805}
3806
9d89c257 3807#ifndef CONFIG_64BIT
0905f04e
YD
3808static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3809{
9d89c257 3810 u64 last_update_time_copy;
0905f04e 3811 u64 last_update_time;
9ee474f5 3812
9d89c257
YD
3813 do {
3814 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3815 smp_rmb();
3816 last_update_time = cfs_rq->avg.last_update_time;
3817 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3818
3819 return last_update_time;
3820}
9d89c257 3821#else
0905f04e
YD
3822static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3823{
3824 return cfs_rq->avg.last_update_time;
3825}
9d89c257
YD
3826#endif
3827
104cb16d
MR
3828/*
3829 * Synchronize entity load avg of dequeued entity without locking
3830 * the previous rq.
3831 */
71b47eaf 3832static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3833{
3834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3835 u64 last_update_time;
3836
3837 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3838 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3839}
3840
0905f04e
YD
3841/*
3842 * Task first catches up with cfs_rq, and then subtract
3843 * itself from the cfs_rq (task must be off the queue now).
3844 */
71b47eaf 3845static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3846{
3847 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3848 unsigned long flags;
0905f04e
YD
3849
3850 /*
7dc603c9
PZ
3851 * tasks cannot exit without having gone through wake_up_new_task() ->
3852 * post_init_entity_util_avg() which will have added things to the
3853 * cfs_rq, so we can remove unconditionally.
0905f04e 3854 */
0905f04e 3855
104cb16d 3856 sync_entity_load_avg(se);
2a2f5d4e
PZ
3857
3858 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3859 ++cfs_rq->removed.nr;
3860 cfs_rq->removed.util_avg += se->avg.util_avg;
3861 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3862 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3863 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3864}
642dbc39 3865
9f683953
VG
3866static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3867{
3868 return cfs_rq->avg.runnable_avg;
3869}
3870
7ea241af
YD
3871static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3872{
3873 return cfs_rq->avg.load_avg;
3874}
3875
7f65ea42
PB
3876static inline unsigned long task_util(struct task_struct *p)
3877{
3878 return READ_ONCE(p->se.avg.util_avg);
3879}
3880
3881static inline unsigned long _task_util_est(struct task_struct *p)
3882{
3883 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3884
92a801e5 3885 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3886}
3887
3888static inline unsigned long task_util_est(struct task_struct *p)
3889{
3890 return max(task_util(p), _task_util_est(p));
3891}
3892
a7008c07
VS
3893#ifdef CONFIG_UCLAMP_TASK
3894static inline unsigned long uclamp_task_util(struct task_struct *p)
3895{
3896 return clamp(task_util_est(p),
3897 uclamp_eff_value(p, UCLAMP_MIN),
3898 uclamp_eff_value(p, UCLAMP_MAX));
3899}
3900#else
3901static inline unsigned long uclamp_task_util(struct task_struct *p)
3902{
3903 return task_util_est(p);
3904}
3905#endif
3906
7f65ea42
PB
3907static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3908 struct task_struct *p)
3909{
3910 unsigned int enqueued;
3911
3912 if (!sched_feat(UTIL_EST))
3913 return;
3914
3915 /* Update root cfs_rq's estimated utilization */
3916 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3917 enqueued += _task_util_est(p);
7f65ea42
PB
3918 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3919}
3920
3921/*
3922 * Check if a (signed) value is within a specified (unsigned) margin,
3923 * based on the observation that:
3924 *
3925 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3926 *
3927 * NOTE: this only works when value + maring < INT_MAX.
3928 */
3929static inline bool within_margin(int value, int margin)
3930{
3931 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3932}
3933
3934static void
3935util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3936{
3937 long last_ewma_diff;
3938 struct util_est ue;
10a35e68 3939 int cpu;
7f65ea42
PB
3940
3941 if (!sched_feat(UTIL_EST))
3942 return;
3943
3482d98b
VG
3944 /* Update root cfs_rq's estimated utilization */
3945 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3946 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3947 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3948
3949 /*
3950 * Skip update of task's estimated utilization when the task has not
3951 * yet completed an activation, e.g. being migrated.
3952 */
3953 if (!task_sleep)
3954 return;
3955
d519329f
PB
3956 /*
3957 * If the PELT values haven't changed since enqueue time,
3958 * skip the util_est update.
3959 */
3960 ue = p->se.avg.util_est;
3961 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3962 return;
3963
b8c96361
PB
3964 /*
3965 * Reset EWMA on utilization increases, the moving average is used only
3966 * to smooth utilization decreases.
3967 */
3968 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3969 if (sched_feat(UTIL_EST_FASTUP)) {
3970 if (ue.ewma < ue.enqueued) {
3971 ue.ewma = ue.enqueued;
3972 goto done;
3973 }
3974 }
3975
7f65ea42
PB
3976 /*
3977 * Skip update of task's estimated utilization when its EWMA is
3978 * already ~1% close to its last activation value.
3979 */
7f65ea42
PB
3980 last_ewma_diff = ue.enqueued - ue.ewma;
3981 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3982 return;
3983
10a35e68
VG
3984 /*
3985 * To avoid overestimation of actual task utilization, skip updates if
3986 * we cannot grant there is idle time in this CPU.
3987 */
3988 cpu = cpu_of(rq_of(cfs_rq));
3989 if (task_util(p) > capacity_orig_of(cpu))
3990 return;
3991
7f65ea42
PB
3992 /*
3993 * Update Task's estimated utilization
3994 *
3995 * When *p completes an activation we can consolidate another sample
3996 * of the task size. This is done by storing the current PELT value
3997 * as ue.enqueued and by using this value to update the Exponential
3998 * Weighted Moving Average (EWMA):
3999 *
4000 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4001 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4002 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4003 * = w * ( last_ewma_diff ) + ewma(t-1)
4004 * = w * (last_ewma_diff + ewma(t-1) / w)
4005 *
4006 * Where 'w' is the weight of new samples, which is configured to be
4007 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4008 */
4009 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4010 ue.ewma += last_ewma_diff;
4011 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4012done:
7f65ea42
PB
4013 WRITE_ONCE(p->se.avg.util_est, ue);
4014}
4015
3b1baa64
MR
4016static inline int task_fits_capacity(struct task_struct *p, long capacity)
4017{
a7008c07 4018 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4019}
4020
4021static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4022{
4023 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4024 return;
4025
4026 if (!p) {
4027 rq->misfit_task_load = 0;
4028 return;
4029 }
4030
4031 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4032 rq->misfit_task_load = 0;
4033 return;
4034 }
4035
4036 rq->misfit_task_load = task_h_load(p);
4037}
4038
38033c37
PZ
4039#else /* CONFIG_SMP */
4040
d31b1a66
VG
4041#define UPDATE_TG 0x0
4042#define SKIP_AGE_LOAD 0x0
b382a531 4043#define DO_ATTACH 0x0
d31b1a66 4044
88c0616e 4045static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4046{
ea14b57e 4047 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4048}
4049
9d89c257 4050static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4051
a05e8c51 4052static inline void
a4f9a0e5 4053attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4054static inline void
4055detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4056
46f69fa3 4057static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4058{
4059 return 0;
4060}
4061
7f65ea42
PB
4062static inline void
4063util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4064
4065static inline void
4066util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4067 bool task_sleep) {}
3b1baa64 4068static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4069
38033c37 4070#endif /* CONFIG_SMP */
9d85f21c 4071
ddc97297
PZ
4072static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4073{
4074#ifdef CONFIG_SCHED_DEBUG
4075 s64 d = se->vruntime - cfs_rq->min_vruntime;
4076
4077 if (d < 0)
4078 d = -d;
4079
4080 if (d > 3*sysctl_sched_latency)
ae92882e 4081 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4082#endif
4083}
4084
aeb73b04
PZ
4085static void
4086place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4087{
1af5f730 4088 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4089
2cb8600e
PZ
4090 /*
4091 * The 'current' period is already promised to the current tasks,
4092 * however the extra weight of the new task will slow them down a
4093 * little, place the new task so that it fits in the slot that
4094 * stays open at the end.
4095 */
94dfb5e7 4096 if (initial && sched_feat(START_DEBIT))
f9c0b095 4097 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4098
a2e7a7eb 4099 /* sleeps up to a single latency don't count. */
5ca9880c 4100 if (!initial) {
a2e7a7eb 4101 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4102
a2e7a7eb
MG
4103 /*
4104 * Halve their sleep time's effect, to allow
4105 * for a gentler effect of sleepers:
4106 */
4107 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4108 thresh >>= 1;
51e0304c 4109
a2e7a7eb 4110 vruntime -= thresh;
aeb73b04
PZ
4111 }
4112
b5d9d734 4113 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4114 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4115}
4116
d3d9dc33
PT
4117static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4118
cb251765
MG
4119static inline void check_schedstat_required(void)
4120{
4121#ifdef CONFIG_SCHEDSTATS
4122 if (schedstat_enabled())
4123 return;
4124
4125 /* Force schedstat enabled if a dependent tracepoint is active */
4126 if (trace_sched_stat_wait_enabled() ||
4127 trace_sched_stat_sleep_enabled() ||
4128 trace_sched_stat_iowait_enabled() ||
4129 trace_sched_stat_blocked_enabled() ||
4130 trace_sched_stat_runtime_enabled()) {
eda8dca5 4131 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4132 "stat_blocked and stat_runtime require the "
f67abed5 4133 "kernel parameter schedstats=enable or "
cb251765
MG
4134 "kernel.sched_schedstats=1\n");
4135 }
4136#endif
4137}
4138
fe61468b 4139static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4140
4141/*
4142 * MIGRATION
4143 *
4144 * dequeue
4145 * update_curr()
4146 * update_min_vruntime()
4147 * vruntime -= min_vruntime
4148 *
4149 * enqueue
4150 * update_curr()
4151 * update_min_vruntime()
4152 * vruntime += min_vruntime
4153 *
4154 * this way the vruntime transition between RQs is done when both
4155 * min_vruntime are up-to-date.
4156 *
4157 * WAKEUP (remote)
4158 *
59efa0ba 4159 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4160 * vruntime -= min_vruntime
4161 *
4162 * enqueue
4163 * update_curr()
4164 * update_min_vruntime()
4165 * vruntime += min_vruntime
4166 *
4167 * this way we don't have the most up-to-date min_vruntime on the originating
4168 * CPU and an up-to-date min_vruntime on the destination CPU.
4169 */
4170
bf0f6f24 4171static void
88ec22d3 4172enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4173{
2f950354
PZ
4174 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4175 bool curr = cfs_rq->curr == se;
4176
88ec22d3 4177 /*
2f950354
PZ
4178 * If we're the current task, we must renormalise before calling
4179 * update_curr().
88ec22d3 4180 */
2f950354 4181 if (renorm && curr)
88ec22d3
PZ
4182 se->vruntime += cfs_rq->min_vruntime;
4183
2f950354
PZ
4184 update_curr(cfs_rq);
4185
bf0f6f24 4186 /*
2f950354
PZ
4187 * Otherwise, renormalise after, such that we're placed at the current
4188 * moment in time, instead of some random moment in the past. Being
4189 * placed in the past could significantly boost this task to the
4190 * fairness detriment of existing tasks.
bf0f6f24 4191 */
2f950354
PZ
4192 if (renorm && !curr)
4193 se->vruntime += cfs_rq->min_vruntime;
4194
89ee048f
VG
4195 /*
4196 * When enqueuing a sched_entity, we must:
4197 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4198 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4199 * - For group_entity, update its weight to reflect the new share of
4200 * its group cfs_rq
4201 * - Add its new weight to cfs_rq->load.weight
4202 */
b382a531 4203 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4204 se_update_runnable(se);
1ea6c46a 4205 update_cfs_group(se);
17bc14b7 4206 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4207
1a3d027c 4208 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4209 place_entity(cfs_rq, se, 0);
bf0f6f24 4210
cb251765 4211 check_schedstat_required();
4fa8d299
JP
4212 update_stats_enqueue(cfs_rq, se, flags);
4213 check_spread(cfs_rq, se);
2f950354 4214 if (!curr)
83b699ed 4215 __enqueue_entity(cfs_rq, se);
2069dd75 4216 se->on_rq = 1;
3d4b47b4 4217
fe61468b
VG
4218 /*
4219 * When bandwidth control is enabled, cfs might have been removed
4220 * because of a parent been throttled but cfs->nr_running > 1. Try to
4221 * add it unconditionnally.
4222 */
4223 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4224 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4225
4226 if (cfs_rq->nr_running == 1)
d3d9dc33 4227 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4228}
4229
2c13c919 4230static void __clear_buddies_last(struct sched_entity *se)
2002c695 4231{
2c13c919
RR
4232 for_each_sched_entity(se) {
4233 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4234 if (cfs_rq->last != se)
2c13c919 4235 break;
f1044799
PZ
4236
4237 cfs_rq->last = NULL;
2c13c919
RR
4238 }
4239}
2002c695 4240
2c13c919
RR
4241static void __clear_buddies_next(struct sched_entity *se)
4242{
4243 for_each_sched_entity(se) {
4244 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4245 if (cfs_rq->next != se)
2c13c919 4246 break;
f1044799
PZ
4247
4248 cfs_rq->next = NULL;
2c13c919 4249 }
2002c695
PZ
4250}
4251
ac53db59
RR
4252static void __clear_buddies_skip(struct sched_entity *se)
4253{
4254 for_each_sched_entity(se) {
4255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4256 if (cfs_rq->skip != se)
ac53db59 4257 break;
f1044799
PZ
4258
4259 cfs_rq->skip = NULL;
ac53db59
RR
4260 }
4261}
4262
a571bbea
PZ
4263static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4264{
2c13c919
RR
4265 if (cfs_rq->last == se)
4266 __clear_buddies_last(se);
4267
4268 if (cfs_rq->next == se)
4269 __clear_buddies_next(se);
ac53db59
RR
4270
4271 if (cfs_rq->skip == se)
4272 __clear_buddies_skip(se);
a571bbea
PZ
4273}
4274
6c16a6dc 4275static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4276
bf0f6f24 4277static void
371fd7e7 4278dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4279{
a2a2d680
DA
4280 /*
4281 * Update run-time statistics of the 'current'.
4282 */
4283 update_curr(cfs_rq);
89ee048f
VG
4284
4285 /*
4286 * When dequeuing a sched_entity, we must:
4287 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4288 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4289 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4290 * - For group entity, update its weight to reflect the new share
4291 * of its group cfs_rq.
4292 */
88c0616e 4293 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4294 se_update_runnable(se);
a2a2d680 4295
4fa8d299 4296 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4297
2002c695 4298 clear_buddies(cfs_rq, se);
4793241b 4299
83b699ed 4300 if (se != cfs_rq->curr)
30cfdcfc 4301 __dequeue_entity(cfs_rq, se);
17bc14b7 4302 se->on_rq = 0;
30cfdcfc 4303 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4304
4305 /*
b60205c7
PZ
4306 * Normalize after update_curr(); which will also have moved
4307 * min_vruntime if @se is the one holding it back. But before doing
4308 * update_min_vruntime() again, which will discount @se's position and
4309 * can move min_vruntime forward still more.
88ec22d3 4310 */
371fd7e7 4311 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4312 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4313
d8b4986d
PT
4314 /* return excess runtime on last dequeue */
4315 return_cfs_rq_runtime(cfs_rq);
4316
1ea6c46a 4317 update_cfs_group(se);
b60205c7
PZ
4318
4319 /*
4320 * Now advance min_vruntime if @se was the entity holding it back,
4321 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4322 * put back on, and if we advance min_vruntime, we'll be placed back
4323 * further than we started -- ie. we'll be penalized.
4324 */
9845c49c 4325 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4326 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4327}
4328
4329/*
4330 * Preempt the current task with a newly woken task if needed:
4331 */
7c92e54f 4332static void
2e09bf55 4333check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4334{
11697830 4335 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4336 struct sched_entity *se;
4337 s64 delta;
11697830 4338
6d0f0ebd 4339 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4340 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4341 if (delta_exec > ideal_runtime) {
8875125e 4342 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4343 /*
4344 * The current task ran long enough, ensure it doesn't get
4345 * re-elected due to buddy favours.
4346 */
4347 clear_buddies(cfs_rq, curr);
f685ceac
MG
4348 return;
4349 }
4350
4351 /*
4352 * Ensure that a task that missed wakeup preemption by a
4353 * narrow margin doesn't have to wait for a full slice.
4354 * This also mitigates buddy induced latencies under load.
4355 */
f685ceac
MG
4356 if (delta_exec < sysctl_sched_min_granularity)
4357 return;
4358
f4cfb33e
WX
4359 se = __pick_first_entity(cfs_rq);
4360 delta = curr->vruntime - se->vruntime;
f685ceac 4361
f4cfb33e
WX
4362 if (delta < 0)
4363 return;
d7d82944 4364
f4cfb33e 4365 if (delta > ideal_runtime)
8875125e 4366 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4367}
4368
83b699ed 4369static void
8494f412 4370set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4371{
83b699ed
SV
4372 /* 'current' is not kept within the tree. */
4373 if (se->on_rq) {
4374 /*
4375 * Any task has to be enqueued before it get to execute on
4376 * a CPU. So account for the time it spent waiting on the
4377 * runqueue.
4378 */
4fa8d299 4379 update_stats_wait_end(cfs_rq, se);
83b699ed 4380 __dequeue_entity(cfs_rq, se);
88c0616e 4381 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4382 }
4383
79303e9e 4384 update_stats_curr_start(cfs_rq, se);
429d43bc 4385 cfs_rq->curr = se;
4fa8d299 4386
eba1ed4b
IM
4387 /*
4388 * Track our maximum slice length, if the CPU's load is at
4389 * least twice that of our own weight (i.e. dont track it
4390 * when there are only lesser-weight tasks around):
4391 */
f2bedc47
DE
4392 if (schedstat_enabled() &&
4393 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4394 schedstat_set(se->statistics.slice_max,
4395 max((u64)schedstat_val(se->statistics.slice_max),
4396 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4397 }
4fa8d299 4398
4a55b450 4399 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4400}
4401
3f3a4904
PZ
4402static int
4403wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4404
ac53db59
RR
4405/*
4406 * Pick the next process, keeping these things in mind, in this order:
4407 * 1) keep things fair between processes/task groups
4408 * 2) pick the "next" process, since someone really wants that to run
4409 * 3) pick the "last" process, for cache locality
4410 * 4) do not run the "skip" process, if something else is available
4411 */
678d5718
PZ
4412static struct sched_entity *
4413pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4414{
678d5718
PZ
4415 struct sched_entity *left = __pick_first_entity(cfs_rq);
4416 struct sched_entity *se;
4417
4418 /*
4419 * If curr is set we have to see if its left of the leftmost entity
4420 * still in the tree, provided there was anything in the tree at all.
4421 */
4422 if (!left || (curr && entity_before(curr, left)))
4423 left = curr;
4424
4425 se = left; /* ideally we run the leftmost entity */
f4b6755f 4426
ac53db59
RR
4427 /*
4428 * Avoid running the skip buddy, if running something else can
4429 * be done without getting too unfair.
4430 */
4431 if (cfs_rq->skip == se) {
678d5718
PZ
4432 struct sched_entity *second;
4433
4434 if (se == curr) {
4435 second = __pick_first_entity(cfs_rq);
4436 } else {
4437 second = __pick_next_entity(se);
4438 if (!second || (curr && entity_before(curr, second)))
4439 second = curr;
4440 }
4441
ac53db59
RR
4442 if (second && wakeup_preempt_entity(second, left) < 1)
4443 se = second;
4444 }
aa2ac252 4445
f685ceac
MG
4446 /*
4447 * Prefer last buddy, try to return the CPU to a preempted task.
4448 */
4449 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4450 se = cfs_rq->last;
4451
ac53db59
RR
4452 /*
4453 * Someone really wants this to run. If it's not unfair, run it.
4454 */
4455 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4456 se = cfs_rq->next;
4457
f685ceac 4458 clear_buddies(cfs_rq, se);
4793241b
PZ
4459
4460 return se;
aa2ac252
PZ
4461}
4462
678d5718 4463static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4464
ab6cde26 4465static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4466{
4467 /*
4468 * If still on the runqueue then deactivate_task()
4469 * was not called and update_curr() has to be done:
4470 */
4471 if (prev->on_rq)
b7cc0896 4472 update_curr(cfs_rq);
bf0f6f24 4473
d3d9dc33
PT
4474 /* throttle cfs_rqs exceeding runtime */
4475 check_cfs_rq_runtime(cfs_rq);
4476
4fa8d299 4477 check_spread(cfs_rq, prev);
cb251765 4478
30cfdcfc 4479 if (prev->on_rq) {
4fa8d299 4480 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4481 /* Put 'current' back into the tree. */
4482 __enqueue_entity(cfs_rq, prev);
9d85f21c 4483 /* in !on_rq case, update occurred at dequeue */
88c0616e 4484 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4485 }
429d43bc 4486 cfs_rq->curr = NULL;
bf0f6f24
IM
4487}
4488
8f4d37ec
PZ
4489static void
4490entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4491{
bf0f6f24 4492 /*
30cfdcfc 4493 * Update run-time statistics of the 'current'.
bf0f6f24 4494 */
30cfdcfc 4495 update_curr(cfs_rq);
bf0f6f24 4496
9d85f21c
PT
4497 /*
4498 * Ensure that runnable average is periodically updated.
4499 */
88c0616e 4500 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4501 update_cfs_group(curr);
9d85f21c 4502
8f4d37ec
PZ
4503#ifdef CONFIG_SCHED_HRTICK
4504 /*
4505 * queued ticks are scheduled to match the slice, so don't bother
4506 * validating it and just reschedule.
4507 */
983ed7a6 4508 if (queued) {
8875125e 4509 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4510 return;
4511 }
8f4d37ec
PZ
4512 /*
4513 * don't let the period tick interfere with the hrtick preemption
4514 */
4515 if (!sched_feat(DOUBLE_TICK) &&
4516 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4517 return;
4518#endif
4519
2c2efaed 4520 if (cfs_rq->nr_running > 1)
2e09bf55 4521 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4522}
4523
ab84d31e
PT
4524
4525/**************************************************
4526 * CFS bandwidth control machinery
4527 */
4528
4529#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4530
e9666d10 4531#ifdef CONFIG_JUMP_LABEL
c5905afb 4532static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4533
4534static inline bool cfs_bandwidth_used(void)
4535{
c5905afb 4536 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4537}
4538
1ee14e6c 4539void cfs_bandwidth_usage_inc(void)
029632fb 4540{
ce48c146 4541 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4542}
4543
4544void cfs_bandwidth_usage_dec(void)
4545{
ce48c146 4546 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4547}
e9666d10 4548#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4549static bool cfs_bandwidth_used(void)
4550{
4551 return true;
4552}
4553
1ee14e6c
BS
4554void cfs_bandwidth_usage_inc(void) {}
4555void cfs_bandwidth_usage_dec(void) {}
e9666d10 4556#endif /* CONFIG_JUMP_LABEL */
029632fb 4557
ab84d31e
PT
4558/*
4559 * default period for cfs group bandwidth.
4560 * default: 0.1s, units: nanoseconds
4561 */
4562static inline u64 default_cfs_period(void)
4563{
4564 return 100000000ULL;
4565}
ec12cb7f
PT
4566
4567static inline u64 sched_cfs_bandwidth_slice(void)
4568{
4569 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4570}
4571
a9cf55b2 4572/*
763a9ec0
QC
4573 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4574 * directly instead of rq->clock to avoid adding additional synchronization
4575 * around rq->lock.
a9cf55b2
PT
4576 *
4577 * requires cfs_b->lock
4578 */
029632fb 4579void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4580{
763a9ec0
QC
4581 if (cfs_b->quota != RUNTIME_INF)
4582 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4583}
4584
029632fb
PZ
4585static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4586{
4587 return &tg->cfs_bandwidth;
4588}
4589
85dac906
PT
4590/* returns 0 on failure to allocate runtime */
4591static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4592{
4593 struct task_group *tg = cfs_rq->tg;
4594 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
de53fd7a 4595 u64 amount = 0, min_amount;
ec12cb7f
PT
4596
4597 /* note: this is a positive sum as runtime_remaining <= 0 */
4598 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4599
4600 raw_spin_lock(&cfs_b->lock);
4601 if (cfs_b->quota == RUNTIME_INF)
4602 amount = min_amount;
58088ad0 4603 else {
77a4d1a1 4604 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4605
4606 if (cfs_b->runtime > 0) {
4607 amount = min(cfs_b->runtime, min_amount);
4608 cfs_b->runtime -= amount;
4609 cfs_b->idle = 0;
4610 }
ec12cb7f
PT
4611 }
4612 raw_spin_unlock(&cfs_b->lock);
4613
4614 cfs_rq->runtime_remaining += amount;
85dac906
PT
4615
4616 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4617}
4618
9dbdb155 4619static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4620{
4621 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4622 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4623
4624 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4625 return;
4626
5e2d2cc2
L
4627 if (cfs_rq->throttled)
4628 return;
85dac906
PT
4629 /*
4630 * if we're unable to extend our runtime we resched so that the active
4631 * hierarchy can be throttled
4632 */
4633 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4634 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4635}
4636
6c16a6dc 4637static __always_inline
9dbdb155 4638void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4639{
56f570e5 4640 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4641 return;
4642
4643 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4644}
4645
85dac906
PT
4646static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4647{
56f570e5 4648 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4649}
4650
64660c86
PT
4651/* check whether cfs_rq, or any parent, is throttled */
4652static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4653{
56f570e5 4654 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4655}
4656
4657/*
4658 * Ensure that neither of the group entities corresponding to src_cpu or
4659 * dest_cpu are members of a throttled hierarchy when performing group
4660 * load-balance operations.
4661 */
4662static inline int throttled_lb_pair(struct task_group *tg,
4663 int src_cpu, int dest_cpu)
4664{
4665 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4666
4667 src_cfs_rq = tg->cfs_rq[src_cpu];
4668 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4669
4670 return throttled_hierarchy(src_cfs_rq) ||
4671 throttled_hierarchy(dest_cfs_rq);
4672}
4673
64660c86
PT
4674static int tg_unthrottle_up(struct task_group *tg, void *data)
4675{
4676 struct rq *rq = data;
4677 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4678
4679 cfs_rq->throttle_count--;
64660c86 4680 if (!cfs_rq->throttle_count) {
78becc27 4681 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4682 cfs_rq->throttled_clock_task;
31bc6aea
VG
4683
4684 /* Add cfs_rq with already running entity in the list */
4685 if (cfs_rq->nr_running >= 1)
4686 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4687 }
64660c86
PT
4688
4689 return 0;
4690}
4691
4692static int tg_throttle_down(struct task_group *tg, void *data)
4693{
4694 struct rq *rq = data;
4695 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4696
82958366 4697 /* group is entering throttled state, stop time */
31bc6aea 4698 if (!cfs_rq->throttle_count) {
78becc27 4699 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4700 list_del_leaf_cfs_rq(cfs_rq);
4701 }
64660c86
PT
4702 cfs_rq->throttle_count++;
4703
4704 return 0;
4705}
4706
d3d9dc33 4707static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4708{
4709 struct rq *rq = rq_of(cfs_rq);
4710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4711 struct sched_entity *se;
43e9f7f2 4712 long task_delta, idle_task_delta, dequeue = 1;
77a4d1a1 4713 bool empty;
85dac906
PT
4714
4715 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4716
f1b17280 4717 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4718 rcu_read_lock();
4719 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4720 rcu_read_unlock();
85dac906
PT
4721
4722 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4723 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4724 for_each_sched_entity(se) {
4725 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4726 /* throttled entity or throttle-on-deactivate */
4727 if (!se->on_rq)
4728 break;
4729
6212437f 4730 if (dequeue) {
85dac906 4731 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f
VG
4732 } else {
4733 update_load_avg(qcfs_rq, se, 0);
4734 se_update_runnable(se);
4735 }
4736
85dac906 4737 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4738 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4739
4740 if (qcfs_rq->load.weight)
4741 dequeue = 0;
4742 }
4743
4744 if (!se)
72465447 4745 sub_nr_running(rq, task_delta);
85dac906
PT
4746
4747 cfs_rq->throttled = 1;
78becc27 4748 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4749 raw_spin_lock(&cfs_b->lock);
d49db342 4750 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4751
c06f04c7
BS
4752 /*
4753 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4754 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4755 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4756 */
baa9be4f
PA
4757 if (cfs_b->distribute_running)
4758 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4759 else
4760 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4761
4762 /*
4763 * If we're the first throttled task, make sure the bandwidth
4764 * timer is running.
4765 */
4766 if (empty)
4767 start_cfs_bandwidth(cfs_b);
4768
85dac906
PT
4769 raw_spin_unlock(&cfs_b->lock);
4770}
4771
029632fb 4772void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4773{
4774 struct rq *rq = rq_of(cfs_rq);
4775 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4776 struct sched_entity *se;
43e9f7f2 4777 long task_delta, idle_task_delta;
671fd9da 4778
22b958d8 4779 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4780
4781 cfs_rq->throttled = 0;
1a55af2e
FW
4782
4783 update_rq_clock(rq);
4784
671fd9da 4785 raw_spin_lock(&cfs_b->lock);
78becc27 4786 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4787 list_del_rcu(&cfs_rq->throttled_list);
4788 raw_spin_unlock(&cfs_b->lock);
4789
64660c86
PT
4790 /* update hierarchical throttle state */
4791 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4792
671fd9da
PT
4793 if (!cfs_rq->load.weight)
4794 return;
4795
4796 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4797 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4798 for_each_sched_entity(se) {
4799 if (se->on_rq)
39f23ce0
VG
4800 break;
4801 cfs_rq = cfs_rq_of(se);
4802 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4803
4804 cfs_rq->h_nr_running += task_delta;
4805 cfs_rq->idle_h_nr_running += idle_task_delta;
4806
4807 /* end evaluation on encountering a throttled cfs_rq */
4808 if (cfs_rq_throttled(cfs_rq))
4809 goto unthrottle_throttle;
4810 }
671fd9da 4811
39f23ce0 4812 for_each_sched_entity(se) {
671fd9da 4813 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4814
4815 update_load_avg(cfs_rq, se, UPDATE_TG);
4816 se_update_runnable(se);
6212437f 4817
671fd9da 4818 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4819 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4820
39f23ce0
VG
4821
4822 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4823 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4824 goto unthrottle_throttle;
4825
4826 /*
4827 * One parent has been throttled and cfs_rq removed from the
4828 * list. Add it back to not break the leaf list.
4829 */
4830 if (throttled_hierarchy(cfs_rq))
4831 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4832 }
4833
39f23ce0
VG
4834 /* At this point se is NULL and we are at root level*/
4835 add_nr_running(rq, task_delta);
671fd9da 4836
39f23ce0 4837unthrottle_throttle:
fe61468b
VG
4838 /*
4839 * The cfs_rq_throttled() breaks in the above iteration can result in
4840 * incomplete leaf list maintenance, resulting in triggering the
4841 * assertion below.
4842 */
4843 for_each_sched_entity(se) {
4844 cfs_rq = cfs_rq_of(se);
4845
39f23ce0
VG
4846 if (list_add_leaf_cfs_rq(cfs_rq))
4847 break;
fe61468b
VG
4848 }
4849
4850 assert_list_leaf_cfs_rq(rq);
4851
97fb7a0a 4852 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4853 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4854 resched_curr(rq);
671fd9da
PT
4855}
4856
26a8b127 4857static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4858{
4859 struct cfs_rq *cfs_rq;
26a8b127 4860 u64 runtime, remaining = 1;
671fd9da
PT
4861
4862 rcu_read_lock();
4863 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4864 throttled_list) {
4865 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4866 struct rq_flags rf;
671fd9da 4867
c0ad4aa4 4868 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4869 if (!cfs_rq_throttled(cfs_rq))
4870 goto next;
4871
5e2d2cc2
L
4872 /* By the above check, this should never be true */
4873 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4874
26a8b127 4875 raw_spin_lock(&cfs_b->lock);
671fd9da 4876 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4877 if (runtime > cfs_b->runtime)
4878 runtime = cfs_b->runtime;
4879 cfs_b->runtime -= runtime;
4880 remaining = cfs_b->runtime;
4881 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4882
4883 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4884
4885 /* we check whether we're throttled above */
4886 if (cfs_rq->runtime_remaining > 0)
4887 unthrottle_cfs_rq(cfs_rq);
4888
4889next:
c0ad4aa4 4890 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4891
4892 if (!remaining)
4893 break;
4894 }
4895 rcu_read_unlock();
671fd9da
PT
4896}
4897
58088ad0
PT
4898/*
4899 * Responsible for refilling a task_group's bandwidth and unthrottling its
4900 * cfs_rqs as appropriate. If there has been no activity within the last
4901 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4902 * used to track this state.
4903 */
c0ad4aa4 4904static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4905{
51f2176d 4906 int throttled;
58088ad0 4907
58088ad0
PT
4908 /* no need to continue the timer with no bandwidth constraint */
4909 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4910 goto out_deactivate;
58088ad0 4911
671fd9da 4912 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4913 cfs_b->nr_periods += overrun;
671fd9da 4914
51f2176d
BS
4915 /*
4916 * idle depends on !throttled (for the case of a large deficit), and if
4917 * we're going inactive then everything else can be deferred
4918 */
4919 if (cfs_b->idle && !throttled)
4920 goto out_deactivate;
a9cf55b2
PT
4921
4922 __refill_cfs_bandwidth_runtime(cfs_b);
4923
671fd9da
PT
4924 if (!throttled) {
4925 /* mark as potentially idle for the upcoming period */
4926 cfs_b->idle = 1;
51f2176d 4927 return 0;
671fd9da
PT
4928 }
4929
e8da1b18
NR
4930 /* account preceding periods in which throttling occurred */
4931 cfs_b->nr_throttled += overrun;
4932
671fd9da 4933 /*
26a8b127 4934 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4935 */
baa9be4f 4936 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
baa9be4f 4937 cfs_b->distribute_running = 1;
c0ad4aa4 4938 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4939 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 4940 distribute_cfs_runtime(cfs_b);
c0ad4aa4 4941 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4942
baa9be4f 4943 cfs_b->distribute_running = 0;
671fd9da
PT
4944 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4945 }
58088ad0 4946
671fd9da
PT
4947 /*
4948 * While we are ensured activity in the period following an
4949 * unthrottle, this also covers the case in which the new bandwidth is
4950 * insufficient to cover the existing bandwidth deficit. (Forcing the
4951 * timer to remain active while there are any throttled entities.)
4952 */
4953 cfs_b->idle = 0;
58088ad0 4954
51f2176d
BS
4955 return 0;
4956
4957out_deactivate:
51f2176d 4958 return 1;
58088ad0 4959}
d3d9dc33 4960
d8b4986d
PT
4961/* a cfs_rq won't donate quota below this amount */
4962static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4963/* minimum remaining period time to redistribute slack quota */
4964static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4965/* how long we wait to gather additional slack before distributing */
4966static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4967
db06e78c
BS
4968/*
4969 * Are we near the end of the current quota period?
4970 *
4971 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4972 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4973 * migrate_hrtimers, base is never cleared, so we are fine.
4974 */
d8b4986d
PT
4975static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4976{
4977 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4978 u64 remaining;
4979
4980 /* if the call-back is running a quota refresh is already occurring */
4981 if (hrtimer_callback_running(refresh_timer))
4982 return 1;
4983
4984 /* is a quota refresh about to occur? */
4985 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4986 if (remaining < min_expire)
4987 return 1;
4988
4989 return 0;
4990}
4991
4992static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4993{
4994 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4995
4996 /* if there's a quota refresh soon don't bother with slack */
4997 if (runtime_refresh_within(cfs_b, min_left))
4998 return;
4999
66567fcb 5000 /* don't push forwards an existing deferred unthrottle */
5001 if (cfs_b->slack_started)
5002 return;
5003 cfs_b->slack_started = true;
5004
4cfafd30
PZ
5005 hrtimer_start(&cfs_b->slack_timer,
5006 ns_to_ktime(cfs_bandwidth_slack_period),
5007 HRTIMER_MODE_REL);
d8b4986d
PT
5008}
5009
5010/* we know any runtime found here is valid as update_curr() precedes return */
5011static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5012{
5013 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5014 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5015
5016 if (slack_runtime <= 0)
5017 return;
5018
5019 raw_spin_lock(&cfs_b->lock);
de53fd7a 5020 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5021 cfs_b->runtime += slack_runtime;
5022
5023 /* we are under rq->lock, defer unthrottling using a timer */
5024 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5025 !list_empty(&cfs_b->throttled_cfs_rq))
5026 start_cfs_slack_bandwidth(cfs_b);
5027 }
5028 raw_spin_unlock(&cfs_b->lock);
5029
5030 /* even if it's not valid for return we don't want to try again */
5031 cfs_rq->runtime_remaining -= slack_runtime;
5032}
5033
5034static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5035{
56f570e5
PT
5036 if (!cfs_bandwidth_used())
5037 return;
5038
fccfdc6f 5039 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5040 return;
5041
5042 __return_cfs_rq_runtime(cfs_rq);
5043}
5044
5045/*
5046 * This is done with a timer (instead of inline with bandwidth return) since
5047 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5048 */
5049static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5050{
5051 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5052 unsigned long flags;
d8b4986d
PT
5053
5054 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5055 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5056 cfs_b->slack_started = false;
baa9be4f 5057 if (cfs_b->distribute_running) {
c0ad4aa4 5058 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
5059 return;
5060 }
5061
db06e78c 5062 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5063 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5064 return;
db06e78c 5065 }
d8b4986d 5066
c06f04c7 5067 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5068 runtime = cfs_b->runtime;
c06f04c7 5069
baa9be4f
PA
5070 if (runtime)
5071 cfs_b->distribute_running = 1;
5072
c0ad4aa4 5073 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5074
5075 if (!runtime)
5076 return;
5077
26a8b127 5078 distribute_cfs_runtime(cfs_b);
d8b4986d 5079
c0ad4aa4 5080 raw_spin_lock_irqsave(&cfs_b->lock, flags);
baa9be4f 5081 cfs_b->distribute_running = 0;
c0ad4aa4 5082 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5083}
5084
d3d9dc33
PT
5085/*
5086 * When a group wakes up we want to make sure that its quota is not already
5087 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5088 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5089 */
5090static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5091{
56f570e5
PT
5092 if (!cfs_bandwidth_used())
5093 return;
5094
d3d9dc33
PT
5095 /* an active group must be handled by the update_curr()->put() path */
5096 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5097 return;
5098
5099 /* ensure the group is not already throttled */
5100 if (cfs_rq_throttled(cfs_rq))
5101 return;
5102
5103 /* update runtime allocation */
5104 account_cfs_rq_runtime(cfs_rq, 0);
5105 if (cfs_rq->runtime_remaining <= 0)
5106 throttle_cfs_rq(cfs_rq);
5107}
5108
55e16d30
PZ
5109static void sync_throttle(struct task_group *tg, int cpu)
5110{
5111 struct cfs_rq *pcfs_rq, *cfs_rq;
5112
5113 if (!cfs_bandwidth_used())
5114 return;
5115
5116 if (!tg->parent)
5117 return;
5118
5119 cfs_rq = tg->cfs_rq[cpu];
5120 pcfs_rq = tg->parent->cfs_rq[cpu];
5121
5122 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5123 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5124}
5125
d3d9dc33 5126/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5127static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5128{
56f570e5 5129 if (!cfs_bandwidth_used())
678d5718 5130 return false;
56f570e5 5131
d3d9dc33 5132 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5133 return false;
d3d9dc33
PT
5134
5135 /*
5136 * it's possible for a throttled entity to be forced into a running
5137 * state (e.g. set_curr_task), in this case we're finished.
5138 */
5139 if (cfs_rq_throttled(cfs_rq))
678d5718 5140 return true;
d3d9dc33
PT
5141
5142 throttle_cfs_rq(cfs_rq);
678d5718 5143 return true;
d3d9dc33 5144}
029632fb 5145
029632fb
PZ
5146static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5147{
5148 struct cfs_bandwidth *cfs_b =
5149 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5150
029632fb
PZ
5151 do_sched_cfs_slack_timer(cfs_b);
5152
5153 return HRTIMER_NORESTART;
5154}
5155
2e8e1922
PA
5156extern const u64 max_cfs_quota_period;
5157
029632fb
PZ
5158static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5159{
5160 struct cfs_bandwidth *cfs_b =
5161 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5162 unsigned long flags;
029632fb
PZ
5163 int overrun;
5164 int idle = 0;
2e8e1922 5165 int count = 0;
029632fb 5166
c0ad4aa4 5167 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5168 for (;;) {
77a4d1a1 5169 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5170 if (!overrun)
5171 break;
5172
2e8e1922
PA
5173 if (++count > 3) {
5174 u64 new, old = ktime_to_ns(cfs_b->period);
5175
4929a4e6
XZ
5176 /*
5177 * Grow period by a factor of 2 to avoid losing precision.
5178 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5179 * to fail.
5180 */
5181 new = old * 2;
5182 if (new < max_cfs_quota_period) {
5183 cfs_b->period = ns_to_ktime(new);
5184 cfs_b->quota *= 2;
5185
5186 pr_warn_ratelimited(
5187 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5188 smp_processor_id(),
5189 div_u64(new, NSEC_PER_USEC),
5190 div_u64(cfs_b->quota, NSEC_PER_USEC));
5191 } else {
5192 pr_warn_ratelimited(
5193 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5194 smp_processor_id(),
5195 div_u64(old, NSEC_PER_USEC),
5196 div_u64(cfs_b->quota, NSEC_PER_USEC));
5197 }
2e8e1922
PA
5198
5199 /* reset count so we don't come right back in here */
5200 count = 0;
5201 }
5202
c0ad4aa4 5203 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 5204 }
4cfafd30
PZ
5205 if (idle)
5206 cfs_b->period_active = 0;
c0ad4aa4 5207 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5208
5209 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5210}
5211
5212void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5213{
5214 raw_spin_lock_init(&cfs_b->lock);
5215 cfs_b->runtime = 0;
5216 cfs_b->quota = RUNTIME_INF;
5217 cfs_b->period = ns_to_ktime(default_cfs_period());
5218
5219 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5220 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5221 cfs_b->period_timer.function = sched_cfs_period_timer;
5222 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5223 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 5224 cfs_b->distribute_running = 0;
66567fcb 5225 cfs_b->slack_started = false;
029632fb
PZ
5226}
5227
5228static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5229{
5230 cfs_rq->runtime_enabled = 0;
5231 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5232}
5233
77a4d1a1 5234void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5235{
4cfafd30 5236 lockdep_assert_held(&cfs_b->lock);
029632fb 5237
f1d1be8a
XP
5238 if (cfs_b->period_active)
5239 return;
5240
5241 cfs_b->period_active = 1;
763a9ec0 5242 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5243 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5244}
5245
5246static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5247{
7f1a169b
TH
5248 /* init_cfs_bandwidth() was not called */
5249 if (!cfs_b->throttled_cfs_rq.next)
5250 return;
5251
029632fb
PZ
5252 hrtimer_cancel(&cfs_b->period_timer);
5253 hrtimer_cancel(&cfs_b->slack_timer);
5254}
5255
502ce005 5256/*
97fb7a0a 5257 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5258 *
5259 * The race is harmless, since modifying bandwidth settings of unhooked group
5260 * bits doesn't do much.
5261 */
5262
5263/* cpu online calback */
0e59bdae
KT
5264static void __maybe_unused update_runtime_enabled(struct rq *rq)
5265{
502ce005 5266 struct task_group *tg;
0e59bdae 5267
502ce005
PZ
5268 lockdep_assert_held(&rq->lock);
5269
5270 rcu_read_lock();
5271 list_for_each_entry_rcu(tg, &task_groups, list) {
5272 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5273 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5274
5275 raw_spin_lock(&cfs_b->lock);
5276 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5277 raw_spin_unlock(&cfs_b->lock);
5278 }
502ce005 5279 rcu_read_unlock();
0e59bdae
KT
5280}
5281
502ce005 5282/* cpu offline callback */
38dc3348 5283static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5284{
502ce005
PZ
5285 struct task_group *tg;
5286
5287 lockdep_assert_held(&rq->lock);
5288
5289 rcu_read_lock();
5290 list_for_each_entry_rcu(tg, &task_groups, list) {
5291 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5292
029632fb
PZ
5293 if (!cfs_rq->runtime_enabled)
5294 continue;
5295
5296 /*
5297 * clock_task is not advancing so we just need to make sure
5298 * there's some valid quota amount
5299 */
51f2176d 5300 cfs_rq->runtime_remaining = 1;
0e59bdae 5301 /*
97fb7a0a 5302 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5303 * in take_cpu_down(), so we prevent new cfs throttling here.
5304 */
5305 cfs_rq->runtime_enabled = 0;
5306
029632fb
PZ
5307 if (cfs_rq_throttled(cfs_rq))
5308 unthrottle_cfs_rq(cfs_rq);
5309 }
502ce005 5310 rcu_read_unlock();
029632fb
PZ
5311}
5312
5313#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5314
5315static inline bool cfs_bandwidth_used(void)
5316{
5317 return false;
5318}
5319
9dbdb155 5320static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5321static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5322static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5323static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5324static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5325
5326static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5327{
5328 return 0;
5329}
64660c86
PT
5330
5331static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5332{
5333 return 0;
5334}
5335
5336static inline int throttled_lb_pair(struct task_group *tg,
5337 int src_cpu, int dest_cpu)
5338{
5339 return 0;
5340}
029632fb
PZ
5341
5342void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5343
5344#ifdef CONFIG_FAIR_GROUP_SCHED
5345static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5346#endif
5347
029632fb
PZ
5348static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5349{
5350 return NULL;
5351}
5352static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5353static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5354static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5355
5356#endif /* CONFIG_CFS_BANDWIDTH */
5357
bf0f6f24
IM
5358/**************************************************
5359 * CFS operations on tasks:
5360 */
5361
8f4d37ec
PZ
5362#ifdef CONFIG_SCHED_HRTICK
5363static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5364{
8f4d37ec
PZ
5365 struct sched_entity *se = &p->se;
5366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5367
9148a3a1 5368 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5369
8bf46a39 5370 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5371 u64 slice = sched_slice(cfs_rq, se);
5372 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5373 s64 delta = slice - ran;
5374
5375 if (delta < 0) {
5376 if (rq->curr == p)
8875125e 5377 resched_curr(rq);
8f4d37ec
PZ
5378 return;
5379 }
31656519 5380 hrtick_start(rq, delta);
8f4d37ec
PZ
5381 }
5382}
a4c2f00f
PZ
5383
5384/*
5385 * called from enqueue/dequeue and updates the hrtick when the
5386 * current task is from our class and nr_running is low enough
5387 * to matter.
5388 */
5389static void hrtick_update(struct rq *rq)
5390{
5391 struct task_struct *curr = rq->curr;
5392
b39e66ea 5393 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5394 return;
5395
5396 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5397 hrtick_start_fair(rq, curr);
5398}
55e12e5e 5399#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5400static inline void
5401hrtick_start_fair(struct rq *rq, struct task_struct *p)
5402{
5403}
a4c2f00f
PZ
5404
5405static inline void hrtick_update(struct rq *rq)
5406{
5407}
8f4d37ec
PZ
5408#endif
5409
2802bf3c
MR
5410#ifdef CONFIG_SMP
5411static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5412
5413static inline bool cpu_overutilized(int cpu)
5414{
60e17f5c 5415 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5416}
5417
5418static inline void update_overutilized_status(struct rq *rq)
5419{
f9f240f9 5420 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5421 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5422 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5423 }
2802bf3c
MR
5424}
5425#else
5426static inline void update_overutilized_status(struct rq *rq) { }
5427#endif
5428
323af6de
VK
5429/* Runqueue only has SCHED_IDLE tasks enqueued */
5430static int sched_idle_rq(struct rq *rq)
5431{
5432 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5433 rq->nr_running);
5434}
5435
afa70d94 5436#ifdef CONFIG_SMP
323af6de
VK
5437static int sched_idle_cpu(int cpu)
5438{
5439 return sched_idle_rq(cpu_rq(cpu));
5440}
afa70d94 5441#endif
323af6de 5442
bf0f6f24
IM
5443/*
5444 * The enqueue_task method is called before nr_running is
5445 * increased. Here we update the fair scheduling stats and
5446 * then put the task into the rbtree:
5447 */
ea87bb78 5448static void
371fd7e7 5449enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5450{
5451 struct cfs_rq *cfs_rq;
62fb1851 5452 struct sched_entity *se = &p->se;
43e9f7f2 5453 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5454
2539fc82
PB
5455 /*
5456 * The code below (indirectly) updates schedutil which looks at
5457 * the cfs_rq utilization to select a frequency.
5458 * Let's add the task's estimated utilization to the cfs_rq's
5459 * estimated utilization, before we update schedutil.
5460 */
5461 util_est_enqueue(&rq->cfs, p);
5462
8c34ab19
RW
5463 /*
5464 * If in_iowait is set, the code below may not trigger any cpufreq
5465 * utilization updates, so do it here explicitly with the IOWAIT flag
5466 * passed.
5467 */
5468 if (p->in_iowait)
674e7541 5469 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5470
bf0f6f24 5471 for_each_sched_entity(se) {
62fb1851 5472 if (se->on_rq)
bf0f6f24
IM
5473 break;
5474 cfs_rq = cfs_rq_of(se);
88ec22d3 5475 enqueue_entity(cfs_rq, se, flags);
85dac906 5476
953bfcd1 5477 cfs_rq->h_nr_running++;
43e9f7f2 5478 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5479
6d4d2246
VG
5480 /* end evaluation on encountering a throttled cfs_rq */
5481 if (cfs_rq_throttled(cfs_rq))
5482 goto enqueue_throttle;
5483
88ec22d3 5484 flags = ENQUEUE_WAKEUP;
bf0f6f24 5485 }
8f4d37ec 5486
2069dd75 5487 for_each_sched_entity(se) {
0f317143 5488 cfs_rq = cfs_rq_of(se);
2069dd75 5489
88c0616e 5490 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5491 se_update_runnable(se);
1ea6c46a 5492 update_cfs_group(se);
6d4d2246
VG
5493
5494 cfs_rq->h_nr_running++;
5495 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5496
5497 /* end evaluation on encountering a throttled cfs_rq */
5498 if (cfs_rq_throttled(cfs_rq))
5499 goto enqueue_throttle;
b34cb07d
PA
5500
5501 /*
5502 * One parent has been throttled and cfs_rq removed from the
5503 * list. Add it back to not break the leaf list.
5504 */
5505 if (throttled_hierarchy(cfs_rq))
5506 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5507 }
5508
6d4d2246 5509enqueue_throttle:
2802bf3c 5510 if (!se) {
72465447 5511 add_nr_running(rq, 1);
2802bf3c
MR
5512 /*
5513 * Since new tasks are assigned an initial util_avg equal to
5514 * half of the spare capacity of their CPU, tiny tasks have the
5515 * ability to cross the overutilized threshold, which will
5516 * result in the load balancer ruining all the task placement
5517 * done by EAS. As a way to mitigate that effect, do not account
5518 * for the first enqueue operation of new tasks during the
5519 * overutilized flag detection.
5520 *
5521 * A better way of solving this problem would be to wait for
5522 * the PELT signals of tasks to converge before taking them
5523 * into account, but that is not straightforward to implement,
5524 * and the following generally works well enough in practice.
5525 */
5526 if (flags & ENQUEUE_WAKEUP)
5527 update_overutilized_status(rq);
5528
5529 }
cd126afe 5530
f6783319
VG
5531 if (cfs_bandwidth_used()) {
5532 /*
5533 * When bandwidth control is enabled; the cfs_rq_throttled()
5534 * breaks in the above iteration can result in incomplete
5535 * leaf list maintenance, resulting in triggering the assertion
5536 * below.
5537 */
5538 for_each_sched_entity(se) {
5539 cfs_rq = cfs_rq_of(se);
5540
5541 if (list_add_leaf_cfs_rq(cfs_rq))
5542 break;
5543 }
5544 }
5545
5d299eab
PZ
5546 assert_list_leaf_cfs_rq(rq);
5547
a4c2f00f 5548 hrtick_update(rq);
bf0f6f24
IM
5549}
5550
2f36825b
VP
5551static void set_next_buddy(struct sched_entity *se);
5552
bf0f6f24
IM
5553/*
5554 * The dequeue_task method is called before nr_running is
5555 * decreased. We remove the task from the rbtree and
5556 * update the fair scheduling stats:
5557 */
371fd7e7 5558static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5559{
5560 struct cfs_rq *cfs_rq;
62fb1851 5561 struct sched_entity *se = &p->se;
2f36825b 5562 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5563 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5564 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5565
5566 for_each_sched_entity(se) {
5567 cfs_rq = cfs_rq_of(se);
371fd7e7 5568 dequeue_entity(cfs_rq, se, flags);
85dac906 5569
953bfcd1 5570 cfs_rq->h_nr_running--;
43e9f7f2 5571 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5572
6d4d2246
VG
5573 /* end evaluation on encountering a throttled cfs_rq */
5574 if (cfs_rq_throttled(cfs_rq))
5575 goto dequeue_throttle;
5576
bf0f6f24 5577 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5578 if (cfs_rq->load.weight) {
754bd598
KK
5579 /* Avoid re-evaluating load for this entity: */
5580 se = parent_entity(se);
2f36825b
VP
5581 /*
5582 * Bias pick_next to pick a task from this cfs_rq, as
5583 * p is sleeping when it is within its sched_slice.
5584 */
754bd598
KK
5585 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5586 set_next_buddy(se);
bf0f6f24 5587 break;
2f36825b 5588 }
371fd7e7 5589 flags |= DEQUEUE_SLEEP;
bf0f6f24 5590 }
8f4d37ec 5591
2069dd75 5592 for_each_sched_entity(se) {
0f317143 5593 cfs_rq = cfs_rq_of(se);
2069dd75 5594
88c0616e 5595 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5596 se_update_runnable(se);
1ea6c46a 5597 update_cfs_group(se);
6d4d2246
VG
5598
5599 cfs_rq->h_nr_running--;
5600 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5601
5602 /* end evaluation on encountering a throttled cfs_rq */
5603 if (cfs_rq_throttled(cfs_rq))
5604 goto dequeue_throttle;
5605
2069dd75
PZ
5606 }
5607
6d4d2246 5608dequeue_throttle:
cd126afe 5609 if (!se)
72465447 5610 sub_nr_running(rq, 1);
cd126afe 5611
323af6de
VK
5612 /* balance early to pull high priority tasks */
5613 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5614 rq->next_balance = jiffies;
5615
7f65ea42 5616 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5617 hrtick_update(rq);
bf0f6f24
IM
5618}
5619
e7693a36 5620#ifdef CONFIG_SMP
10e2f1ac
PZ
5621
5622/* Working cpumask for: load_balance, load_balance_newidle. */
5623DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5624DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5625
9fd81dd5 5626#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5627
5628static struct {
5629 cpumask_var_t idle_cpus_mask;
5630 atomic_t nr_cpus;
f643ea22 5631 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5632 unsigned long next_balance; /* in jiffy units */
f643ea22 5633 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5634} nohz ____cacheline_aligned;
5635
9fd81dd5 5636#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5637
b0fb1eb4
VG
5638static unsigned long cpu_load(struct rq *rq)
5639{
5640 return cfs_rq_load_avg(&rq->cfs);
5641}
5642
3318544b
VG
5643/*
5644 * cpu_load_without - compute CPU load without any contributions from *p
5645 * @cpu: the CPU which load is requested
5646 * @p: the task which load should be discounted
5647 *
5648 * The load of a CPU is defined by the load of tasks currently enqueued on that
5649 * CPU as well as tasks which are currently sleeping after an execution on that
5650 * CPU.
5651 *
5652 * This method returns the load of the specified CPU by discounting the load of
5653 * the specified task, whenever the task is currently contributing to the CPU
5654 * load.
5655 */
5656static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5657{
5658 struct cfs_rq *cfs_rq;
5659 unsigned int load;
5660
5661 /* Task has no contribution or is new */
5662 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5663 return cpu_load(rq);
5664
5665 cfs_rq = &rq->cfs;
5666 load = READ_ONCE(cfs_rq->avg.load_avg);
5667
5668 /* Discount task's util from CPU's util */
5669 lsub_positive(&load, task_h_load(p));
5670
5671 return load;
5672}
5673
9f683953
VG
5674static unsigned long cpu_runnable(struct rq *rq)
5675{
5676 return cfs_rq_runnable_avg(&rq->cfs);
5677}
5678
070f5e86
VG
5679static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5680{
5681 struct cfs_rq *cfs_rq;
5682 unsigned int runnable;
5683
5684 /* Task has no contribution or is new */
5685 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5686 return cpu_runnable(rq);
5687
5688 cfs_rq = &rq->cfs;
5689 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5690
5691 /* Discount task's runnable from CPU's runnable */
5692 lsub_positive(&runnable, p->se.avg.runnable_avg);
5693
5694 return runnable;
5695}
5696
ced549fa 5697static unsigned long capacity_of(int cpu)
029632fb 5698{
ced549fa 5699 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5700}
5701
c58d25f3
PZ
5702static void record_wakee(struct task_struct *p)
5703{
5704 /*
5705 * Only decay a single time; tasks that have less then 1 wakeup per
5706 * jiffy will not have built up many flips.
5707 */
5708 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5709 current->wakee_flips >>= 1;
5710 current->wakee_flip_decay_ts = jiffies;
5711 }
5712
5713 if (current->last_wakee != p) {
5714 current->last_wakee = p;
5715 current->wakee_flips++;
5716 }
5717}
5718
63b0e9ed
MG
5719/*
5720 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5721 *
63b0e9ed 5722 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5723 * at a frequency roughly N times higher than one of its wakees.
5724 *
5725 * In order to determine whether we should let the load spread vs consolidating
5726 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5727 * partner, and a factor of lls_size higher frequency in the other.
5728 *
5729 * With both conditions met, we can be relatively sure that the relationship is
5730 * non-monogamous, with partner count exceeding socket size.
5731 *
5732 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5733 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5734 * socket size.
63b0e9ed 5735 */
62470419
MW
5736static int wake_wide(struct task_struct *p)
5737{
63b0e9ed
MG
5738 unsigned int master = current->wakee_flips;
5739 unsigned int slave = p->wakee_flips;
7d9ffa89 5740 int factor = this_cpu_read(sd_llc_size);
62470419 5741
63b0e9ed
MG
5742 if (master < slave)
5743 swap(master, slave);
5744 if (slave < factor || master < slave * factor)
5745 return 0;
5746 return 1;
62470419
MW
5747}
5748
90001d67 5749/*
d153b153
PZ
5750 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5751 * soonest. For the purpose of speed we only consider the waking and previous
5752 * CPU.
90001d67 5753 *
7332dec0
MG
5754 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5755 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5756 *
5757 * wake_affine_weight() - considers the weight to reflect the average
5758 * scheduling latency of the CPUs. This seems to work
5759 * for the overloaded case.
90001d67 5760 */
3b76c4a3 5761static int
89a55f56 5762wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5763{
7332dec0
MG
5764 /*
5765 * If this_cpu is idle, it implies the wakeup is from interrupt
5766 * context. Only allow the move if cache is shared. Otherwise an
5767 * interrupt intensive workload could force all tasks onto one
5768 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5769 *
5770 * If the prev_cpu is idle and cache affine then avoid a migration.
5771 * There is no guarantee that the cache hot data from an interrupt
5772 * is more important than cache hot data on the prev_cpu and from
5773 * a cpufreq perspective, it's better to have higher utilisation
5774 * on one CPU.
7332dec0 5775 */
943d355d
RJ
5776 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5777 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5778
d153b153 5779 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5780 return this_cpu;
90001d67 5781
3b76c4a3 5782 return nr_cpumask_bits;
90001d67
PZ
5783}
5784
3b76c4a3 5785static int
f2cdd9cc
PZ
5786wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5787 int this_cpu, int prev_cpu, int sync)
90001d67 5788{
90001d67
PZ
5789 s64 this_eff_load, prev_eff_load;
5790 unsigned long task_load;
5791
11f10e54 5792 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5793
90001d67
PZ
5794 if (sync) {
5795 unsigned long current_load = task_h_load(current);
5796
f2cdd9cc 5797 if (current_load > this_eff_load)
3b76c4a3 5798 return this_cpu;
90001d67 5799
f2cdd9cc 5800 this_eff_load -= current_load;
90001d67
PZ
5801 }
5802
90001d67
PZ
5803 task_load = task_h_load(p);
5804
f2cdd9cc
PZ
5805 this_eff_load += task_load;
5806 if (sched_feat(WA_BIAS))
5807 this_eff_load *= 100;
5808 this_eff_load *= capacity_of(prev_cpu);
90001d67 5809
11f10e54 5810 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5811 prev_eff_load -= task_load;
5812 if (sched_feat(WA_BIAS))
5813 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5814 prev_eff_load *= capacity_of(this_cpu);
90001d67 5815
082f764a
MG
5816 /*
5817 * If sync, adjust the weight of prev_eff_load such that if
5818 * prev_eff == this_eff that select_idle_sibling() will consider
5819 * stacking the wakee on top of the waker if no other CPU is
5820 * idle.
5821 */
5822 if (sync)
5823 prev_eff_load += 1;
5824
5825 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5826}
5827
772bd008 5828static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5829 int this_cpu, int prev_cpu, int sync)
098fb9db 5830{
3b76c4a3 5831 int target = nr_cpumask_bits;
098fb9db 5832
89a55f56 5833 if (sched_feat(WA_IDLE))
3b76c4a3 5834 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5835
3b76c4a3
MG
5836 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5837 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5838
ae92882e 5839 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5840 if (target == nr_cpumask_bits)
5841 return prev_cpu;
098fb9db 5842
3b76c4a3
MG
5843 schedstat_inc(sd->ttwu_move_affine);
5844 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5845 return target;
098fb9db
IM
5846}
5847
aaee1203 5848static struct sched_group *
78e7ed53 5849find_idlest_group(struct sched_domain *sd, struct task_struct *p,
57abff06 5850 int this_cpu, int sd_flag);
aaee1203
PZ
5851
5852/*
97fb7a0a 5853 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5854 */
5855static int
18bd1b4b 5856find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5857{
5858 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5859 unsigned int min_exit_latency = UINT_MAX;
5860 u64 latest_idle_timestamp = 0;
5861 int least_loaded_cpu = this_cpu;
17346452 5862 int shallowest_idle_cpu = -1;
aaee1203
PZ
5863 int i;
5864
eaecf41f
MR
5865 /* Check if we have any choice: */
5866 if (group->group_weight == 1)
ae4df9d6 5867 return cpumask_first(sched_group_span(group));
eaecf41f 5868
aaee1203 5869 /* Traverse only the allowed CPUs */
3bd37062 5870 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5871 if (sched_idle_cpu(i))
5872 return i;
5873
943d355d 5874 if (available_idle_cpu(i)) {
83a0a96a
NP
5875 struct rq *rq = cpu_rq(i);
5876 struct cpuidle_state *idle = idle_get_state(rq);
5877 if (idle && idle->exit_latency < min_exit_latency) {
5878 /*
5879 * We give priority to a CPU whose idle state
5880 * has the smallest exit latency irrespective
5881 * of any idle timestamp.
5882 */
5883 min_exit_latency = idle->exit_latency;
5884 latest_idle_timestamp = rq->idle_stamp;
5885 shallowest_idle_cpu = i;
5886 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5887 rq->idle_stamp > latest_idle_timestamp) {
5888 /*
5889 * If equal or no active idle state, then
5890 * the most recently idled CPU might have
5891 * a warmer cache.
5892 */
5893 latest_idle_timestamp = rq->idle_stamp;
5894 shallowest_idle_cpu = i;
5895 }
17346452 5896 } else if (shallowest_idle_cpu == -1) {
11f10e54 5897 load = cpu_load(cpu_rq(i));
18cec7e0 5898 if (load < min_load) {
83a0a96a
NP
5899 min_load = load;
5900 least_loaded_cpu = i;
5901 }
e7693a36
GH
5902 }
5903 }
5904
17346452 5905 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5906}
e7693a36 5907
18bd1b4b
BJ
5908static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5909 int cpu, int prev_cpu, int sd_flag)
5910{
93f50f90 5911 int new_cpu = cpu;
18bd1b4b 5912
3bd37062 5913 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5914 return prev_cpu;
5915
c976a862 5916 /*
57abff06 5917 * We need task's util for cpu_util_without, sync it up to
c469933e 5918 * prev_cpu's last_update_time.
c976a862
VK
5919 */
5920 if (!(sd_flag & SD_BALANCE_FORK))
5921 sync_entity_load_avg(&p->se);
5922
18bd1b4b
BJ
5923 while (sd) {
5924 struct sched_group *group;
5925 struct sched_domain *tmp;
5926 int weight;
5927
5928 if (!(sd->flags & sd_flag)) {
5929 sd = sd->child;
5930 continue;
5931 }
5932
5933 group = find_idlest_group(sd, p, cpu, sd_flag);
5934 if (!group) {
5935 sd = sd->child;
5936 continue;
5937 }
5938
5939 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5940 if (new_cpu == cpu) {
97fb7a0a 5941 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5942 sd = sd->child;
5943 continue;
5944 }
5945
97fb7a0a 5946 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5947 cpu = new_cpu;
5948 weight = sd->span_weight;
5949 sd = NULL;
5950 for_each_domain(cpu, tmp) {
5951 if (weight <= tmp->span_weight)
5952 break;
5953 if (tmp->flags & sd_flag)
5954 sd = tmp;
5955 }
18bd1b4b
BJ
5956 }
5957
5958 return new_cpu;
5959}
5960
10e2f1ac 5961#ifdef CONFIG_SCHED_SMT
ba2591a5 5962DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5963EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5964
5965static inline void set_idle_cores(int cpu, int val)
5966{
5967 struct sched_domain_shared *sds;
5968
5969 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5970 if (sds)
5971 WRITE_ONCE(sds->has_idle_cores, val);
5972}
5973
5974static inline bool test_idle_cores(int cpu, bool def)
5975{
5976 struct sched_domain_shared *sds;
5977
5978 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5979 if (sds)
5980 return READ_ONCE(sds->has_idle_cores);
5981
5982 return def;
5983}
5984
5985/*
5986 * Scans the local SMT mask to see if the entire core is idle, and records this
5987 * information in sd_llc_shared->has_idle_cores.
5988 *
5989 * Since SMT siblings share all cache levels, inspecting this limited remote
5990 * state should be fairly cheap.
5991 */
1b568f0a 5992void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5993{
5994 int core = cpu_of(rq);
5995 int cpu;
5996
5997 rcu_read_lock();
5998 if (test_idle_cores(core, true))
5999 goto unlock;
6000
6001 for_each_cpu(cpu, cpu_smt_mask(core)) {
6002 if (cpu == core)
6003 continue;
6004
943d355d 6005 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6006 goto unlock;
6007 }
6008
6009 set_idle_cores(core, 1);
6010unlock:
6011 rcu_read_unlock();
6012}
6013
6014/*
6015 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6016 * there are no idle cores left in the system; tracked through
6017 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6018 */
6019static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6020{
6021 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6022 int core, cpu;
10e2f1ac 6023
1b568f0a
PZ
6024 if (!static_branch_likely(&sched_smt_present))
6025 return -1;
6026
10e2f1ac
PZ
6027 if (!test_idle_cores(target, false))
6028 return -1;
6029
3bd37062 6030 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6031
c743f0a5 6032 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6033 bool idle = true;
6034
6035 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6036 if (!available_idle_cpu(cpu)) {
10e2f1ac 6037 idle = false;
bec2860a
SD
6038 break;
6039 }
10e2f1ac 6040 }
bec2860a 6041 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6042
6043 if (idle)
6044 return core;
6045 }
6046
6047 /*
6048 * Failed to find an idle core; stop looking for one.
6049 */
6050 set_idle_cores(target, 0);
6051
6052 return -1;
6053}
6054
6055/*
6056 * Scan the local SMT mask for idle CPUs.
6057 */
1b5500d7 6058static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 6059{
17346452 6060 int cpu;
10e2f1ac 6061
1b568f0a
PZ
6062 if (!static_branch_likely(&sched_smt_present))
6063 return -1;
6064
10e2f1ac 6065 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 6066 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 6067 continue;
17346452 6068 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6069 return cpu;
6070 }
6071
17346452 6072 return -1;
10e2f1ac
PZ
6073}
6074
6075#else /* CONFIG_SCHED_SMT */
6076
6077static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6078{
6079 return -1;
6080}
6081
1b5500d7 6082static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
6083{
6084 return -1;
6085}
6086
6087#endif /* CONFIG_SCHED_SMT */
6088
6089/*
6090 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6091 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6092 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6093 */
10e2f1ac
PZ
6094static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6095{
60588bfa 6096 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6097 struct sched_domain *this_sd;
1ad3aaf3 6098 u64 avg_cost, avg_idle;
d76343c6 6099 u64 time;
8dc2d993 6100 int this = smp_processor_id();
17346452 6101 int cpu, nr = INT_MAX;
10e2f1ac 6102
9cfb38a7
WL
6103 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6104 if (!this_sd)
6105 return -1;
6106
10e2f1ac
PZ
6107 /*
6108 * Due to large variance we need a large fuzz factor; hackbench in
6109 * particularly is sensitive here.
6110 */
1ad3aaf3
PZ
6111 avg_idle = this_rq()->avg_idle / 512;
6112 avg_cost = this_sd->avg_scan_cost + 1;
6113
6114 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6115 return -1;
6116
1ad3aaf3
PZ
6117 if (sched_feat(SIS_PROP)) {
6118 u64 span_avg = sd->span_weight * avg_idle;
6119 if (span_avg > 4*avg_cost)
6120 nr = div_u64(span_avg, avg_cost);
6121 else
6122 nr = 4;
6123 }
6124
8dc2d993 6125 time = cpu_clock(this);
10e2f1ac 6126
60588bfa
CJ
6127 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6128
6129 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6130 if (!--nr)
17346452
VK
6131 return -1;
6132 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6133 break;
6134 }
6135
8dc2d993 6136 time = cpu_clock(this) - time;
d76343c6 6137 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6138
6139 return cpu;
6140}
6141
b7a33161
MR
6142/*
6143 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6144 * the task fits. If no CPU is big enough, but there are idle ones, try to
6145 * maximize capacity.
6146 */
6147static int
6148select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6149{
6150 unsigned long best_cap = 0;
6151 int cpu, best_cpu = -1;
6152 struct cpumask *cpus;
6153
6154 sync_entity_load_avg(&p->se);
6155
6156 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6157 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6158
6159 for_each_cpu_wrap(cpu, cpus, target) {
6160 unsigned long cpu_cap = capacity_of(cpu);
6161
6162 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6163 continue;
6164 if (task_fits_capacity(p, cpu_cap))
6165 return cpu;
6166
6167 if (cpu_cap > best_cap) {
6168 best_cap = cpu_cap;
6169 best_cpu = cpu;
6170 }
6171 }
6172
6173 return best_cpu;
6174}
6175
10e2f1ac
PZ
6176/*
6177 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6178 */
772bd008 6179static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6180{
99bd5e2f 6181 struct sched_domain *sd;
32e839dd 6182 int i, recent_used_cpu;
a50bde51 6183
b7a33161
MR
6184 /*
6185 * For asymmetric CPU capacity systems, our domain of interest is
6186 * sd_asym_cpucapacity rather than sd_llc.
6187 */
6188 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6189 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6190 /*
6191 * On an asymmetric CPU capacity system where an exclusive
6192 * cpuset defines a symmetric island (i.e. one unique
6193 * capacity_orig value through the cpuset), the key will be set
6194 * but the CPUs within that cpuset will not have a domain with
6195 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6196 * capacity path.
6197 */
6198 if (!sd)
6199 goto symmetric;
6200
6201 i = select_idle_capacity(p, sd, target);
6202 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6203 }
6204
6205symmetric:
3c29e651 6206 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 6207 return target;
99bd5e2f
SS
6208
6209 /*
97fb7a0a 6210 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6211 */
3c29e651
VK
6212 if (prev != target && cpus_share_cache(prev, target) &&
6213 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6214 return prev;
a50bde51 6215
52262ee5
MG
6216 /*
6217 * Allow a per-cpu kthread to stack with the wakee if the
6218 * kworker thread and the tasks previous CPUs are the same.
6219 * The assumption is that the wakee queued work for the
6220 * per-cpu kthread that is now complete and the wakeup is
6221 * essentially a sync wakeup. An obvious example of this
6222 * pattern is IO completions.
6223 */
6224 if (is_per_cpu_kthread(current) &&
6225 prev == smp_processor_id() &&
6226 this_rq()->nr_running <= 1) {
6227 return prev;
6228 }
6229
97fb7a0a 6230 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6231 recent_used_cpu = p->recent_used_cpu;
6232 if (recent_used_cpu != prev &&
6233 recent_used_cpu != target &&
6234 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6235 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6236 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6237 /*
6238 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6239 * candidate for the next wake:
32e839dd
MG
6240 */
6241 p->recent_used_cpu = prev;
6242 return recent_used_cpu;
6243 }
6244
518cd623 6245 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6246 if (!sd)
6247 return target;
772bd008 6248
10e2f1ac
PZ
6249 i = select_idle_core(p, sd, target);
6250 if ((unsigned)i < nr_cpumask_bits)
6251 return i;
37407ea7 6252
10e2f1ac
PZ
6253 i = select_idle_cpu(p, sd, target);
6254 if ((unsigned)i < nr_cpumask_bits)
6255 return i;
6256
1b5500d7 6257 i = select_idle_smt(p, target);
10e2f1ac
PZ
6258 if ((unsigned)i < nr_cpumask_bits)
6259 return i;
970e1789 6260
a50bde51
PZ
6261 return target;
6262}
231678b7 6263
f9be3e59
PB
6264/**
6265 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6266 * @cpu: the CPU to get the utilization of
6267 *
6268 * The unit of the return value must be the one of capacity so we can compare
6269 * the utilization with the capacity of the CPU that is available for CFS task
6270 * (ie cpu_capacity).
231678b7
DE
6271 *
6272 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6273 * recent utilization of currently non-runnable tasks on a CPU. It represents
6274 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6275 * capacity_orig is the cpu_capacity available at the highest frequency
6276 * (arch_scale_freq_capacity()).
6277 * The utilization of a CPU converges towards a sum equal to or less than the
6278 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6279 * the running time on this CPU scaled by capacity_curr.
6280 *
f9be3e59
PB
6281 * The estimated utilization of a CPU is defined to be the maximum between its
6282 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6283 * currently RUNNABLE on that CPU.
6284 * This allows to properly represent the expected utilization of a CPU which
6285 * has just got a big task running since a long sleep period. At the same time
6286 * however it preserves the benefits of the "blocked utilization" in
6287 * describing the potential for other tasks waking up on the same CPU.
6288 *
231678b7
DE
6289 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6290 * higher than capacity_orig because of unfortunate rounding in
6291 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6292 * the average stabilizes with the new running time. We need to check that the
6293 * utilization stays within the range of [0..capacity_orig] and cap it if
6294 * necessary. Without utilization capping, a group could be seen as overloaded
6295 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6296 * available capacity. We allow utilization to overshoot capacity_curr (but not
6297 * capacity_orig) as it useful for predicting the capacity required after task
6298 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6299 *
6300 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6301 */
f9be3e59 6302static inline unsigned long cpu_util(int cpu)
8bb5b00c 6303{
f9be3e59
PB
6304 struct cfs_rq *cfs_rq;
6305 unsigned int util;
6306
6307 cfs_rq = &cpu_rq(cpu)->cfs;
6308 util = READ_ONCE(cfs_rq->avg.util_avg);
6309
6310 if (sched_feat(UTIL_EST))
6311 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6312
f9be3e59 6313 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6314}
a50bde51 6315
104cb16d 6316/*
c469933e
PB
6317 * cpu_util_without: compute cpu utilization without any contributions from *p
6318 * @cpu: the CPU which utilization is requested
6319 * @p: the task which utilization should be discounted
6320 *
6321 * The utilization of a CPU is defined by the utilization of tasks currently
6322 * enqueued on that CPU as well as tasks which are currently sleeping after an
6323 * execution on that CPU.
6324 *
6325 * This method returns the utilization of the specified CPU by discounting the
6326 * utilization of the specified task, whenever the task is currently
6327 * contributing to the CPU utilization.
104cb16d 6328 */
c469933e 6329static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6330{
f9be3e59
PB
6331 struct cfs_rq *cfs_rq;
6332 unsigned int util;
104cb16d
MR
6333
6334 /* Task has no contribution or is new */
f9be3e59 6335 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6336 return cpu_util(cpu);
6337
f9be3e59
PB
6338 cfs_rq = &cpu_rq(cpu)->cfs;
6339 util = READ_ONCE(cfs_rq->avg.util_avg);
6340
c469933e 6341 /* Discount task's util from CPU's util */
b5c0ce7b 6342 lsub_positive(&util, task_util(p));
104cb16d 6343
f9be3e59
PB
6344 /*
6345 * Covered cases:
6346 *
6347 * a) if *p is the only task sleeping on this CPU, then:
6348 * cpu_util (== task_util) > util_est (== 0)
6349 * and thus we return:
c469933e 6350 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6351 *
6352 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6353 * IDLE, then:
6354 * cpu_util >= task_util
6355 * cpu_util > util_est (== 0)
6356 * and thus we discount *p's blocked utilization to return:
c469933e 6357 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6358 *
6359 * c) if other tasks are RUNNABLE on that CPU and
6360 * util_est > cpu_util
6361 * then we use util_est since it returns a more restrictive
6362 * estimation of the spare capacity on that CPU, by just
6363 * considering the expected utilization of tasks already
6364 * runnable on that CPU.
6365 *
6366 * Cases a) and b) are covered by the above code, while case c) is
6367 * covered by the following code when estimated utilization is
6368 * enabled.
6369 */
c469933e
PB
6370 if (sched_feat(UTIL_EST)) {
6371 unsigned int estimated =
6372 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6373
6374 /*
6375 * Despite the following checks we still have a small window
6376 * for a possible race, when an execl's select_task_rq_fair()
6377 * races with LB's detach_task():
6378 *
6379 * detach_task()
6380 * p->on_rq = TASK_ON_RQ_MIGRATING;
6381 * ---------------------------------- A
6382 * deactivate_task() \
6383 * dequeue_task() + RaceTime
6384 * util_est_dequeue() /
6385 * ---------------------------------- B
6386 *
6387 * The additional check on "current == p" it's required to
6388 * properly fix the execl regression and it helps in further
6389 * reducing the chances for the above race.
6390 */
b5c0ce7b
PB
6391 if (unlikely(task_on_rq_queued(p) || current == p))
6392 lsub_positive(&estimated, _task_util_est(p));
6393
c469933e
PB
6394 util = max(util, estimated);
6395 }
f9be3e59
PB
6396
6397 /*
6398 * Utilization (estimated) can exceed the CPU capacity, thus let's
6399 * clamp to the maximum CPU capacity to ensure consistency with
6400 * the cpu_util call.
6401 */
6402 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6403}
6404
390031e4
QP
6405/*
6406 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6407 * to @dst_cpu.
6408 */
6409static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6410{
6411 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6412 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6413
6414 /*
6415 * If @p migrates from @cpu to another, remove its contribution. Or,
6416 * if @p migrates from another CPU to @cpu, add its contribution. In
6417 * the other cases, @cpu is not impacted by the migration, so the
6418 * util_avg should already be correct.
6419 */
6420 if (task_cpu(p) == cpu && dst_cpu != cpu)
6421 sub_positive(&util, task_util(p));
6422 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6423 util += task_util(p);
6424
6425 if (sched_feat(UTIL_EST)) {
6426 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6427
6428 /*
6429 * During wake-up, the task isn't enqueued yet and doesn't
6430 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6431 * so just add it (if needed) to "simulate" what will be
6432 * cpu_util() after the task has been enqueued.
6433 */
6434 if (dst_cpu == cpu)
6435 util_est += _task_util_est(p);
6436
6437 util = max(util, util_est);
6438 }
6439
6440 return min(util, capacity_orig_of(cpu));
6441}
6442
6443/*
eb92692b 6444 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6445 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6446 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6447 * to compute what would be the energy if we decided to actually migrate that
6448 * task.
6449 */
6450static long
6451compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6452{
eb92692b
QP
6453 struct cpumask *pd_mask = perf_domain_span(pd);
6454 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6455 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6456 int cpu;
6457
eb92692b
QP
6458 /*
6459 * The capacity state of CPUs of the current rd can be driven by CPUs
6460 * of another rd if they belong to the same pd. So, account for the
6461 * utilization of these CPUs too by masking pd with cpu_online_mask
6462 * instead of the rd span.
6463 *
6464 * If an entire pd is outside of the current rd, it will not appear in
6465 * its pd list and will not be accounted by compute_energy().
6466 */
6467 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6468 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6469 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6470
6471 /*
eb92692b
QP
6472 * Busy time computation: utilization clamping is not
6473 * required since the ratio (sum_util / cpu_capacity)
6474 * is already enough to scale the EM reported power
6475 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6476 */
eb92692b
QP
6477 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6478 ENERGY_UTIL, NULL);
af24bde8 6479
390031e4 6480 /*
eb92692b
QP
6481 * Performance domain frequency: utilization clamping
6482 * must be considered since it affects the selection
6483 * of the performance domain frequency.
6484 * NOTE: in case RT tasks are running, by default the
6485 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6486 */
eb92692b
QP
6487 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6488 FREQUENCY_UTIL, tsk);
6489 max_util = max(max_util, cpu_util);
390031e4
QP
6490 }
6491
eb92692b 6492 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6493}
6494
732cd75b
QP
6495/*
6496 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6497 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6498 * spare capacity in each performance domain and uses it as a potential
6499 * candidate to execute the task. Then, it uses the Energy Model to figure
6500 * out which of the CPU candidates is the most energy-efficient.
6501 *
6502 * The rationale for this heuristic is as follows. In a performance domain,
6503 * all the most energy efficient CPU candidates (according to the Energy
6504 * Model) are those for which we'll request a low frequency. When there are
6505 * several CPUs for which the frequency request will be the same, we don't
6506 * have enough data to break the tie between them, because the Energy Model
6507 * only includes active power costs. With this model, if we assume that
6508 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6509 * the maximum spare capacity in a performance domain is guaranteed to be among
6510 * the best candidates of the performance domain.
6511 *
6512 * In practice, it could be preferable from an energy standpoint to pack
6513 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6514 * but that could also hurt our chances to go cluster idle, and we have no
6515 * ways to tell with the current Energy Model if this is actually a good
6516 * idea or not. So, find_energy_efficient_cpu() basically favors
6517 * cluster-packing, and spreading inside a cluster. That should at least be
6518 * a good thing for latency, and this is consistent with the idea that most
6519 * of the energy savings of EAS come from the asymmetry of the system, and
6520 * not so much from breaking the tie between identical CPUs. That's also the
6521 * reason why EAS is enabled in the topology code only for systems where
6522 * SD_ASYM_CPUCAPACITY is set.
6523 *
6524 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6525 * they don't have any useful utilization data yet and it's not possible to
6526 * forecast their impact on energy consumption. Consequently, they will be
6527 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6528 * to be energy-inefficient in some use-cases. The alternative would be to
6529 * bias new tasks towards specific types of CPUs first, or to try to infer
6530 * their util_avg from the parent task, but those heuristics could hurt
6531 * other use-cases too. So, until someone finds a better way to solve this,
6532 * let's keep things simple by re-using the existing slow path.
6533 */
732cd75b
QP
6534static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6535{
eb92692b 6536 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6537 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6538 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6539 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6540 struct sched_domain *sd;
eb92692b 6541 struct perf_domain *pd;
732cd75b
QP
6542
6543 rcu_read_lock();
6544 pd = rcu_dereference(rd->pd);
6545 if (!pd || READ_ONCE(rd->overutilized))
6546 goto fail;
732cd75b
QP
6547
6548 /*
6549 * Energy-aware wake-up happens on the lowest sched_domain starting
6550 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6551 */
6552 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6553 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6554 sd = sd->parent;
6555 if (!sd)
6556 goto fail;
6557
6558 sync_entity_load_avg(&p->se);
6559 if (!task_util_est(p))
6560 goto unlock;
6561
6562 for (; pd; pd = pd->next) {
eb92692b
QP
6563 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6564 unsigned long base_energy_pd;
732cd75b
QP
6565 int max_spare_cap_cpu = -1;
6566
eb92692b
QP
6567 /* Compute the 'base' energy of the pd, without @p */
6568 base_energy_pd = compute_energy(p, -1, pd);
6569 base_energy += base_energy_pd;
6570
732cd75b 6571 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6572 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6573 continue;
6574
732cd75b
QP
6575 util = cpu_util_next(cpu, p, cpu);
6576 cpu_cap = capacity_of(cpu);
1d42509e
VS
6577 spare_cap = cpu_cap - util;
6578
6579 /*
6580 * Skip CPUs that cannot satisfy the capacity request.
6581 * IOW, placing the task there would make the CPU
6582 * overutilized. Take uclamp into account to see how
6583 * much capacity we can get out of the CPU; this is
6584 * aligned with schedutil_cpu_util().
6585 */
6586 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6587 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6588 continue;
6589
6590 /* Always use prev_cpu as a candidate. */
6591 if (cpu == prev_cpu) {
eb92692b
QP
6592 prev_delta = compute_energy(p, prev_cpu, pd);
6593 prev_delta -= base_energy_pd;
6594 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6595 }
6596
6597 /*
6598 * Find the CPU with the maximum spare capacity in
6599 * the performance domain
6600 */
732cd75b
QP
6601 if (spare_cap > max_spare_cap) {
6602 max_spare_cap = spare_cap;
6603 max_spare_cap_cpu = cpu;
6604 }
6605 }
6606
6607 /* Evaluate the energy impact of using this CPU. */
4892f51a 6608 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6609 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6610 cur_delta -= base_energy_pd;
6611 if (cur_delta < best_delta) {
6612 best_delta = cur_delta;
732cd75b
QP
6613 best_energy_cpu = max_spare_cap_cpu;
6614 }
6615 }
6616 }
6617unlock:
6618 rcu_read_unlock();
6619
6620 /*
6621 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6622 * least 6% of the energy used by prev_cpu.
6623 */
eb92692b 6624 if (prev_delta == ULONG_MAX)
732cd75b
QP
6625 return best_energy_cpu;
6626
eb92692b 6627 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6628 return best_energy_cpu;
6629
6630 return prev_cpu;
6631
6632fail:
6633 rcu_read_unlock();
6634
6635 return -1;
6636}
6637
aaee1203 6638/*
de91b9cb
MR
6639 * select_task_rq_fair: Select target runqueue for the waking task in domains
6640 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6641 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6642 *
97fb7a0a
IM
6643 * Balances load by selecting the idlest CPU in the idlest group, or under
6644 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6645 *
97fb7a0a 6646 * Returns the target CPU number.
aaee1203
PZ
6647 *
6648 * preempt must be disabled.
6649 */
0017d735 6650static int
ac66f547 6651select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6652{
f1d88b44 6653 struct sched_domain *tmp, *sd = NULL;
c88d5910 6654 int cpu = smp_processor_id();
63b0e9ed 6655 int new_cpu = prev_cpu;
99bd5e2f 6656 int want_affine = 0;
24d0c1d6 6657 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6658
c58d25f3
PZ
6659 if (sd_flag & SD_BALANCE_WAKE) {
6660 record_wakee(p);
732cd75b 6661
f8a696f2 6662 if (sched_energy_enabled()) {
732cd75b
QP
6663 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6664 if (new_cpu >= 0)
6665 return new_cpu;
6666 new_cpu = prev_cpu;
6667 }
6668
00061968 6669 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6670 }
aaee1203 6671
dce840a0 6672 rcu_read_lock();
aaee1203 6673 for_each_domain(cpu, tmp) {
e4f42888 6674 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6675 break;
e4f42888 6676
fe3bcfe1 6677 /*
97fb7a0a 6678 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6679 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6680 */
99bd5e2f
SS
6681 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6682 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6683 if (cpu != prev_cpu)
6684 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6685
6686 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6687 break;
f03542a7 6688 }
29cd8bae 6689
f03542a7 6690 if (tmp->flags & sd_flag)
29cd8bae 6691 sd = tmp;
63b0e9ed
MG
6692 else if (!want_affine)
6693 break;
29cd8bae
PZ
6694 }
6695
f1d88b44
VK
6696 if (unlikely(sd)) {
6697 /* Slow path */
18bd1b4b 6698 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6699 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6700 /* Fast path */
6701
6702 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6703
6704 if (want_affine)
6705 current->recent_used_cpu = cpu;
e7693a36 6706 }
dce840a0 6707 rcu_read_unlock();
e7693a36 6708
c88d5910 6709 return new_cpu;
e7693a36 6710}
0a74bef8 6711
144d8487
PZ
6712static void detach_entity_cfs_rq(struct sched_entity *se);
6713
0a74bef8 6714/*
97fb7a0a 6715 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6716 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6717 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6718 */
3f9672ba 6719static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6720{
59efa0ba
PZ
6721 /*
6722 * As blocked tasks retain absolute vruntime the migration needs to
6723 * deal with this by subtracting the old and adding the new
6724 * min_vruntime -- the latter is done by enqueue_entity() when placing
6725 * the task on the new runqueue.
6726 */
6727 if (p->state == TASK_WAKING) {
6728 struct sched_entity *se = &p->se;
6729 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6730 u64 min_vruntime;
6731
6732#ifndef CONFIG_64BIT
6733 u64 min_vruntime_copy;
6734
6735 do {
6736 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6737 smp_rmb();
6738 min_vruntime = cfs_rq->min_vruntime;
6739 } while (min_vruntime != min_vruntime_copy);
6740#else
6741 min_vruntime = cfs_rq->min_vruntime;
6742#endif
6743
6744 se->vruntime -= min_vruntime;
6745 }
6746
144d8487
PZ
6747 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6748 /*
6749 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6750 * rq->lock and can modify state directly.
6751 */
6752 lockdep_assert_held(&task_rq(p)->lock);
6753 detach_entity_cfs_rq(&p->se);
6754
6755 } else {
6756 /*
6757 * We are supposed to update the task to "current" time, then
6758 * its up to date and ready to go to new CPU/cfs_rq. But we
6759 * have difficulty in getting what current time is, so simply
6760 * throw away the out-of-date time. This will result in the
6761 * wakee task is less decayed, but giving the wakee more load
6762 * sounds not bad.
6763 */
6764 remove_entity_load_avg(&p->se);
6765 }
9d89c257
YD
6766
6767 /* Tell new CPU we are migrated */
6768 p->se.avg.last_update_time = 0;
3944a927
BS
6769
6770 /* We have migrated, no longer consider this task hot */
9d89c257 6771 p->se.exec_start = 0;
3f9672ba
SD
6772
6773 update_scan_period(p, new_cpu);
0a74bef8 6774}
12695578
YD
6775
6776static void task_dead_fair(struct task_struct *p)
6777{
6778 remove_entity_load_avg(&p->se);
6779}
6e2df058
PZ
6780
6781static int
6782balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6783{
6784 if (rq->nr_running)
6785 return 1;
6786
6787 return newidle_balance(rq, rf) != 0;
6788}
e7693a36
GH
6789#endif /* CONFIG_SMP */
6790
a555e9d8 6791static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6792{
6793 unsigned long gran = sysctl_sched_wakeup_granularity;
6794
6795 /*
e52fb7c0
PZ
6796 * Since its curr running now, convert the gran from real-time
6797 * to virtual-time in his units.
13814d42
MG
6798 *
6799 * By using 'se' instead of 'curr' we penalize light tasks, so
6800 * they get preempted easier. That is, if 'se' < 'curr' then
6801 * the resulting gran will be larger, therefore penalizing the
6802 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6803 * be smaller, again penalizing the lighter task.
6804 *
6805 * This is especially important for buddies when the leftmost
6806 * task is higher priority than the buddy.
0bbd3336 6807 */
f4ad9bd2 6808 return calc_delta_fair(gran, se);
0bbd3336
PZ
6809}
6810
464b7527
PZ
6811/*
6812 * Should 'se' preempt 'curr'.
6813 *
6814 * |s1
6815 * |s2
6816 * |s3
6817 * g
6818 * |<--->|c
6819 *
6820 * w(c, s1) = -1
6821 * w(c, s2) = 0
6822 * w(c, s3) = 1
6823 *
6824 */
6825static int
6826wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6827{
6828 s64 gran, vdiff = curr->vruntime - se->vruntime;
6829
6830 if (vdiff <= 0)
6831 return -1;
6832
a555e9d8 6833 gran = wakeup_gran(se);
464b7527
PZ
6834 if (vdiff > gran)
6835 return 1;
6836
6837 return 0;
6838}
6839
02479099
PZ
6840static void set_last_buddy(struct sched_entity *se)
6841{
1da1843f 6842 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6843 return;
6844
c5ae366e
DA
6845 for_each_sched_entity(se) {
6846 if (SCHED_WARN_ON(!se->on_rq))
6847 return;
69c80f3e 6848 cfs_rq_of(se)->last = se;
c5ae366e 6849 }
02479099
PZ
6850}
6851
6852static void set_next_buddy(struct sched_entity *se)
6853{
1da1843f 6854 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6855 return;
6856
c5ae366e
DA
6857 for_each_sched_entity(se) {
6858 if (SCHED_WARN_ON(!se->on_rq))
6859 return;
69c80f3e 6860 cfs_rq_of(se)->next = se;
c5ae366e 6861 }
02479099
PZ
6862}
6863
ac53db59
RR
6864static void set_skip_buddy(struct sched_entity *se)
6865{
69c80f3e
VP
6866 for_each_sched_entity(se)
6867 cfs_rq_of(se)->skip = se;
ac53db59
RR
6868}
6869
bf0f6f24
IM
6870/*
6871 * Preempt the current task with a newly woken task if needed:
6872 */
5a9b86f6 6873static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6874{
6875 struct task_struct *curr = rq->curr;
8651a86c 6876 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6877 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6878 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6879 int next_buddy_marked = 0;
bf0f6f24 6880
4ae7d5ce
IM
6881 if (unlikely(se == pse))
6882 return;
6883
5238cdd3 6884 /*
163122b7 6885 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6886 * unconditionally check_prempt_curr() after an enqueue (which may have
6887 * lead to a throttle). This both saves work and prevents false
6888 * next-buddy nomination below.
6889 */
6890 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6891 return;
6892
2f36825b 6893 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6894 set_next_buddy(pse);
2f36825b
VP
6895 next_buddy_marked = 1;
6896 }
57fdc26d 6897
aec0a514
BR
6898 /*
6899 * We can come here with TIF_NEED_RESCHED already set from new task
6900 * wake up path.
5238cdd3
PT
6901 *
6902 * Note: this also catches the edge-case of curr being in a throttled
6903 * group (e.g. via set_curr_task), since update_curr() (in the
6904 * enqueue of curr) will have resulted in resched being set. This
6905 * prevents us from potentially nominating it as a false LAST_BUDDY
6906 * below.
aec0a514
BR
6907 */
6908 if (test_tsk_need_resched(curr))
6909 return;
6910
a2f5c9ab 6911 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6912 if (unlikely(task_has_idle_policy(curr)) &&
6913 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6914 goto preempt;
6915
91c234b4 6916 /*
a2f5c9ab
DH
6917 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6918 * is driven by the tick):
91c234b4 6919 */
8ed92e51 6920 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6921 return;
bf0f6f24 6922
464b7527 6923 find_matching_se(&se, &pse);
9bbd7374 6924 update_curr(cfs_rq_of(se));
002f128b 6925 BUG_ON(!pse);
2f36825b
VP
6926 if (wakeup_preempt_entity(se, pse) == 1) {
6927 /*
6928 * Bias pick_next to pick the sched entity that is
6929 * triggering this preemption.
6930 */
6931 if (!next_buddy_marked)
6932 set_next_buddy(pse);
3a7e73a2 6933 goto preempt;
2f36825b 6934 }
464b7527 6935
3a7e73a2 6936 return;
a65ac745 6937
3a7e73a2 6938preempt:
8875125e 6939 resched_curr(rq);
3a7e73a2
PZ
6940 /*
6941 * Only set the backward buddy when the current task is still
6942 * on the rq. This can happen when a wakeup gets interleaved
6943 * with schedule on the ->pre_schedule() or idle_balance()
6944 * point, either of which can * drop the rq lock.
6945 *
6946 * Also, during early boot the idle thread is in the fair class,
6947 * for obvious reasons its a bad idea to schedule back to it.
6948 */
6949 if (unlikely(!se->on_rq || curr == rq->idle))
6950 return;
6951
6952 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6953 set_last_buddy(se);
bf0f6f24
IM
6954}
6955
5d7d6056 6956struct task_struct *
d8ac8971 6957pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6958{
6959 struct cfs_rq *cfs_rq = &rq->cfs;
6960 struct sched_entity *se;
678d5718 6961 struct task_struct *p;
37e117c0 6962 int new_tasks;
678d5718 6963
6e83125c 6964again:
6e2df058 6965 if (!sched_fair_runnable(rq))
38033c37 6966 goto idle;
678d5718 6967
9674f5ca 6968#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6969 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6970 goto simple;
6971
6972 /*
6973 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6974 * likely that a next task is from the same cgroup as the current.
6975 *
6976 * Therefore attempt to avoid putting and setting the entire cgroup
6977 * hierarchy, only change the part that actually changes.
6978 */
6979
6980 do {
6981 struct sched_entity *curr = cfs_rq->curr;
6982
6983 /*
6984 * Since we got here without doing put_prev_entity() we also
6985 * have to consider cfs_rq->curr. If it is still a runnable
6986 * entity, update_curr() will update its vruntime, otherwise
6987 * forget we've ever seen it.
6988 */
54d27365
BS
6989 if (curr) {
6990 if (curr->on_rq)
6991 update_curr(cfs_rq);
6992 else
6993 curr = NULL;
678d5718 6994
54d27365
BS
6995 /*
6996 * This call to check_cfs_rq_runtime() will do the
6997 * throttle and dequeue its entity in the parent(s).
9674f5ca 6998 * Therefore the nr_running test will indeed
54d27365
BS
6999 * be correct.
7000 */
9674f5ca
VK
7001 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7002 cfs_rq = &rq->cfs;
7003
7004 if (!cfs_rq->nr_running)
7005 goto idle;
7006
54d27365 7007 goto simple;
9674f5ca 7008 }
54d27365 7009 }
678d5718
PZ
7010
7011 se = pick_next_entity(cfs_rq, curr);
7012 cfs_rq = group_cfs_rq(se);
7013 } while (cfs_rq);
7014
7015 p = task_of(se);
7016
7017 /*
7018 * Since we haven't yet done put_prev_entity and if the selected task
7019 * is a different task than we started out with, try and touch the
7020 * least amount of cfs_rqs.
7021 */
7022 if (prev != p) {
7023 struct sched_entity *pse = &prev->se;
7024
7025 while (!(cfs_rq = is_same_group(se, pse))) {
7026 int se_depth = se->depth;
7027 int pse_depth = pse->depth;
7028
7029 if (se_depth <= pse_depth) {
7030 put_prev_entity(cfs_rq_of(pse), pse);
7031 pse = parent_entity(pse);
7032 }
7033 if (se_depth >= pse_depth) {
7034 set_next_entity(cfs_rq_of(se), se);
7035 se = parent_entity(se);
7036 }
7037 }
7038
7039 put_prev_entity(cfs_rq, pse);
7040 set_next_entity(cfs_rq, se);
7041 }
7042
93824900 7043 goto done;
678d5718 7044simple:
678d5718 7045#endif
67692435
PZ
7046 if (prev)
7047 put_prev_task(rq, prev);
606dba2e 7048
bf0f6f24 7049 do {
678d5718 7050 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7051 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7052 cfs_rq = group_cfs_rq(se);
7053 } while (cfs_rq);
7054
8f4d37ec 7055 p = task_of(se);
678d5718 7056
13a453c2 7057done: __maybe_unused;
93824900
UR
7058#ifdef CONFIG_SMP
7059 /*
7060 * Move the next running task to the front of
7061 * the list, so our cfs_tasks list becomes MRU
7062 * one.
7063 */
7064 list_move(&p->se.group_node, &rq->cfs_tasks);
7065#endif
7066
b39e66ea
MG
7067 if (hrtick_enabled(rq))
7068 hrtick_start_fair(rq, p);
8f4d37ec 7069
3b1baa64
MR
7070 update_misfit_status(p, rq);
7071
8f4d37ec 7072 return p;
38033c37
PZ
7073
7074idle:
67692435
PZ
7075 if (!rf)
7076 return NULL;
7077
5ba553ef 7078 new_tasks = newidle_balance(rq, rf);
46f69fa3 7079
37e117c0 7080 /*
5ba553ef 7081 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7082 * possible for any higher priority task to appear. In that case we
7083 * must re-start the pick_next_entity() loop.
7084 */
e4aa358b 7085 if (new_tasks < 0)
37e117c0
PZ
7086 return RETRY_TASK;
7087
e4aa358b 7088 if (new_tasks > 0)
38033c37 7089 goto again;
38033c37 7090
23127296
VG
7091 /*
7092 * rq is about to be idle, check if we need to update the
7093 * lost_idle_time of clock_pelt
7094 */
7095 update_idle_rq_clock_pelt(rq);
7096
38033c37 7097 return NULL;
bf0f6f24
IM
7098}
7099
98c2f700
PZ
7100static struct task_struct *__pick_next_task_fair(struct rq *rq)
7101{
7102 return pick_next_task_fair(rq, NULL, NULL);
7103}
7104
bf0f6f24
IM
7105/*
7106 * Account for a descheduled task:
7107 */
6e2df058 7108static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7109{
7110 struct sched_entity *se = &prev->se;
7111 struct cfs_rq *cfs_rq;
7112
7113 for_each_sched_entity(se) {
7114 cfs_rq = cfs_rq_of(se);
ab6cde26 7115 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7116 }
7117}
7118
ac53db59
RR
7119/*
7120 * sched_yield() is very simple
7121 *
7122 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7123 */
7124static void yield_task_fair(struct rq *rq)
7125{
7126 struct task_struct *curr = rq->curr;
7127 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7128 struct sched_entity *se = &curr->se;
7129
7130 /*
7131 * Are we the only task in the tree?
7132 */
7133 if (unlikely(rq->nr_running == 1))
7134 return;
7135
7136 clear_buddies(cfs_rq, se);
7137
7138 if (curr->policy != SCHED_BATCH) {
7139 update_rq_clock(rq);
7140 /*
7141 * Update run-time statistics of the 'current'.
7142 */
7143 update_curr(cfs_rq);
916671c0
MG
7144 /*
7145 * Tell update_rq_clock() that we've just updated,
7146 * so we don't do microscopic update in schedule()
7147 * and double the fastpath cost.
7148 */
adcc8da8 7149 rq_clock_skip_update(rq);
ac53db59
RR
7150 }
7151
7152 set_skip_buddy(se);
7153}
7154
d95f4122
MG
7155static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7156{
7157 struct sched_entity *se = &p->se;
7158
5238cdd3
PT
7159 /* throttled hierarchies are not runnable */
7160 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7161 return false;
7162
7163 /* Tell the scheduler that we'd really like pse to run next. */
7164 set_next_buddy(se);
7165
d95f4122
MG
7166 yield_task_fair(rq);
7167
7168 return true;
7169}
7170
681f3e68 7171#ifdef CONFIG_SMP
bf0f6f24 7172/**************************************************
e9c84cb8
PZ
7173 * Fair scheduling class load-balancing methods.
7174 *
7175 * BASICS
7176 *
7177 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7178 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7179 * time to each task. This is expressed in the following equation:
7180 *
7181 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7182 *
97fb7a0a 7183 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7184 * W_i,0 is defined as:
7185 *
7186 * W_i,0 = \Sum_j w_i,j (2)
7187 *
97fb7a0a 7188 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7189 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7190 *
7191 * The weight average is an exponential decay average of the instantaneous
7192 * weight:
7193 *
7194 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7195 *
97fb7a0a 7196 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7197 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7198 * can also include other factors [XXX].
7199 *
7200 * To achieve this balance we define a measure of imbalance which follows
7201 * directly from (1):
7202 *
ced549fa 7203 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7204 *
7205 * We them move tasks around to minimize the imbalance. In the continuous
7206 * function space it is obvious this converges, in the discrete case we get
7207 * a few fun cases generally called infeasible weight scenarios.
7208 *
7209 * [XXX expand on:
7210 * - infeasible weights;
7211 * - local vs global optima in the discrete case. ]
7212 *
7213 *
7214 * SCHED DOMAINS
7215 *
7216 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7217 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7218 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7219 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7220 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7221 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7222 * the groups.
7223 *
7224 * This yields:
7225 *
7226 * log_2 n 1 n
7227 * \Sum { --- * --- * 2^i } = O(n) (5)
7228 * i = 0 2^i 2^i
7229 * `- size of each group
97fb7a0a 7230 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7231 * | `- freq
7232 * `- sum over all levels
7233 *
7234 * Coupled with a limit on how many tasks we can migrate every balance pass,
7235 * this makes (5) the runtime complexity of the balancer.
7236 *
7237 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7238 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7239 *
7240 * The adjacency matrix of the resulting graph is given by:
7241 *
97a7142f 7242 * log_2 n
e9c84cb8
PZ
7243 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7244 * k = 0
7245 *
7246 * And you'll find that:
7247 *
7248 * A^(log_2 n)_i,j != 0 for all i,j (7)
7249 *
97fb7a0a 7250 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7251 * The task movement gives a factor of O(m), giving a convergence complexity
7252 * of:
7253 *
7254 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7255 *
7256 *
7257 * WORK CONSERVING
7258 *
7259 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7260 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7261 * tree itself instead of relying on other CPUs to bring it work.
7262 *
7263 * This adds some complexity to both (5) and (8) but it reduces the total idle
7264 * time.
7265 *
7266 * [XXX more?]
7267 *
7268 *
7269 * CGROUPS
7270 *
7271 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7272 *
7273 * s_k,i
7274 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7275 * S_k
7276 *
7277 * Where
7278 *
7279 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7280 *
97fb7a0a 7281 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7282 *
7283 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7284 * property.
7285 *
7286 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7287 * rewrite all of this once again.]
97a7142f 7288 */
bf0f6f24 7289
ed387b78
HS
7290static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7291
0ec8aa00
PZ
7292enum fbq_type { regular, remote, all };
7293
0b0695f2 7294/*
a9723389
VG
7295 * 'group_type' describes the group of CPUs at the moment of load balancing.
7296 *
0b0695f2 7297 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7298 * first so the group_type can simply be compared when selecting the busiest
7299 * group. See update_sd_pick_busiest().
0b0695f2 7300 */
3b1baa64 7301enum group_type {
a9723389 7302 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7303 group_has_spare = 0,
a9723389
VG
7304 /*
7305 * The group is fully used and the tasks don't compete for more CPU
7306 * cycles. Nevertheless, some tasks might wait before running.
7307 */
0b0695f2 7308 group_fully_busy,
a9723389
VG
7309 /*
7310 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7311 * and must be migrated to a more powerful CPU.
7312 */
3b1baa64 7313 group_misfit_task,
a9723389
VG
7314 /*
7315 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7316 * and the task should be migrated to it instead of running on the
7317 * current CPU.
7318 */
0b0695f2 7319 group_asym_packing,
a9723389
VG
7320 /*
7321 * The tasks' affinity constraints previously prevented the scheduler
7322 * from balancing the load across the system.
7323 */
3b1baa64 7324 group_imbalanced,
a9723389
VG
7325 /*
7326 * The CPU is overloaded and can't provide expected CPU cycles to all
7327 * tasks.
7328 */
0b0695f2
VG
7329 group_overloaded
7330};
7331
7332enum migration_type {
7333 migrate_load = 0,
7334 migrate_util,
7335 migrate_task,
7336 migrate_misfit
3b1baa64
MR
7337};
7338
ddcdf6e7 7339#define LBF_ALL_PINNED 0x01
367456c7 7340#define LBF_NEED_BREAK 0x02
6263322c
PZ
7341#define LBF_DST_PINNED 0x04
7342#define LBF_SOME_PINNED 0x08
e022e0d3 7343#define LBF_NOHZ_STATS 0x10
f643ea22 7344#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7345
7346struct lb_env {
7347 struct sched_domain *sd;
7348
ddcdf6e7 7349 struct rq *src_rq;
85c1e7da 7350 int src_cpu;
ddcdf6e7
PZ
7351
7352 int dst_cpu;
7353 struct rq *dst_rq;
7354
88b8dac0
SV
7355 struct cpumask *dst_grpmask;
7356 int new_dst_cpu;
ddcdf6e7 7357 enum cpu_idle_type idle;
bd939f45 7358 long imbalance;
b9403130
MW
7359 /* The set of CPUs under consideration for load-balancing */
7360 struct cpumask *cpus;
7361
ddcdf6e7 7362 unsigned int flags;
367456c7
PZ
7363
7364 unsigned int loop;
7365 unsigned int loop_break;
7366 unsigned int loop_max;
0ec8aa00
PZ
7367
7368 enum fbq_type fbq_type;
0b0695f2 7369 enum migration_type migration_type;
163122b7 7370 struct list_head tasks;
ddcdf6e7
PZ
7371};
7372
029632fb
PZ
7373/*
7374 * Is this task likely cache-hot:
7375 */
5d5e2b1b 7376static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7377{
7378 s64 delta;
7379
e5673f28
KT
7380 lockdep_assert_held(&env->src_rq->lock);
7381
029632fb
PZ
7382 if (p->sched_class != &fair_sched_class)
7383 return 0;
7384
1da1843f 7385 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7386 return 0;
7387
7388 /*
7389 * Buddy candidates are cache hot:
7390 */
5d5e2b1b 7391 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7392 (&p->se == cfs_rq_of(&p->se)->next ||
7393 &p->se == cfs_rq_of(&p->se)->last))
7394 return 1;
7395
7396 if (sysctl_sched_migration_cost == -1)
7397 return 1;
7398 if (sysctl_sched_migration_cost == 0)
7399 return 0;
7400
5d5e2b1b 7401 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7402
7403 return delta < (s64)sysctl_sched_migration_cost;
7404}
7405
3a7053b3 7406#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7407/*
2a1ed24c
SD
7408 * Returns 1, if task migration degrades locality
7409 * Returns 0, if task migration improves locality i.e migration preferred.
7410 * Returns -1, if task migration is not affected by locality.
c1ceac62 7411 */
2a1ed24c 7412static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7413{
b1ad065e 7414 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7415 unsigned long src_weight, dst_weight;
7416 int src_nid, dst_nid, dist;
3a7053b3 7417
2a595721 7418 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7419 return -1;
7420
c3b9bc5b 7421 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7422 return -1;
7a0f3083
MG
7423
7424 src_nid = cpu_to_node(env->src_cpu);
7425 dst_nid = cpu_to_node(env->dst_cpu);
7426
83e1d2cd 7427 if (src_nid == dst_nid)
2a1ed24c 7428 return -1;
7a0f3083 7429
2a1ed24c
SD
7430 /* Migrating away from the preferred node is always bad. */
7431 if (src_nid == p->numa_preferred_nid) {
7432 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7433 return 1;
7434 else
7435 return -1;
7436 }
b1ad065e 7437
c1ceac62
RR
7438 /* Encourage migration to the preferred node. */
7439 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7440 return 0;
b1ad065e 7441
739294fb 7442 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7443 if (env->idle == CPU_IDLE)
739294fb
RR
7444 return -1;
7445
f35678b6 7446 dist = node_distance(src_nid, dst_nid);
c1ceac62 7447 if (numa_group) {
f35678b6
SD
7448 src_weight = group_weight(p, src_nid, dist);
7449 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7450 } else {
f35678b6
SD
7451 src_weight = task_weight(p, src_nid, dist);
7452 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7453 }
7454
f35678b6 7455 return dst_weight < src_weight;
7a0f3083
MG
7456}
7457
3a7053b3 7458#else
2a1ed24c 7459static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7460 struct lb_env *env)
7461{
2a1ed24c 7462 return -1;
7a0f3083 7463}
3a7053b3
MG
7464#endif
7465
1e3c88bd
PZ
7466/*
7467 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7468 */
7469static
8e45cb54 7470int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7471{
2a1ed24c 7472 int tsk_cache_hot;
e5673f28
KT
7473
7474 lockdep_assert_held(&env->src_rq->lock);
7475
1e3c88bd
PZ
7476 /*
7477 * We do not migrate tasks that are:
d3198084 7478 * 1) throttled_lb_pair, or
3bd37062 7479 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7480 * 3) running (obviously), or
7481 * 4) are cache-hot on their current CPU.
1e3c88bd 7482 */
d3198084
JK
7483 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7484 return 0;
7485
3bd37062 7486 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7487 int cpu;
88b8dac0 7488
ae92882e 7489 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7490
6263322c
PZ
7491 env->flags |= LBF_SOME_PINNED;
7492
88b8dac0 7493 /*
97fb7a0a 7494 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7495 * our sched_group. We may want to revisit it if we couldn't
7496 * meet load balance goals by pulling other tasks on src_cpu.
7497 *
65a4433a
JH
7498 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7499 * already computed one in current iteration.
88b8dac0 7500 */
65a4433a 7501 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7502 return 0;
7503
97fb7a0a 7504 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7505 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7506 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7507 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7508 env->new_dst_cpu = cpu;
7509 break;
7510 }
88b8dac0 7511 }
e02e60c1 7512
1e3c88bd
PZ
7513 return 0;
7514 }
88b8dac0
SV
7515
7516 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7517 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7518
ddcdf6e7 7519 if (task_running(env->src_rq, p)) {
ae92882e 7520 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7521 return 0;
7522 }
7523
7524 /*
7525 * Aggressive migration if:
3a7053b3
MG
7526 * 1) destination numa is preferred
7527 * 2) task is cache cold, or
7528 * 3) too many balance attempts have failed.
1e3c88bd 7529 */
2a1ed24c
SD
7530 tsk_cache_hot = migrate_degrades_locality(p, env);
7531 if (tsk_cache_hot == -1)
7532 tsk_cache_hot = task_hot(p, env);
3a7053b3 7533
2a1ed24c 7534 if (tsk_cache_hot <= 0 ||
7a96c231 7535 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7536 if (tsk_cache_hot == 1) {
ae92882e
JP
7537 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7538 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7539 }
1e3c88bd
PZ
7540 return 1;
7541 }
7542
ae92882e 7543 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7544 return 0;
1e3c88bd
PZ
7545}
7546
897c395f 7547/*
163122b7
KT
7548 * detach_task() -- detach the task for the migration specified in env
7549 */
7550static void detach_task(struct task_struct *p, struct lb_env *env)
7551{
7552 lockdep_assert_held(&env->src_rq->lock);
7553
5704ac0a 7554 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7555 set_task_cpu(p, env->dst_cpu);
7556}
7557
897c395f 7558/*
e5673f28 7559 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7560 * part of active balancing operations within "domain".
897c395f 7561 *
e5673f28 7562 * Returns a task if successful and NULL otherwise.
897c395f 7563 */
e5673f28 7564static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7565{
93824900 7566 struct task_struct *p;
897c395f 7567
e5673f28
KT
7568 lockdep_assert_held(&env->src_rq->lock);
7569
93824900
UR
7570 list_for_each_entry_reverse(p,
7571 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7572 if (!can_migrate_task(p, env))
7573 continue;
897c395f 7574
163122b7 7575 detach_task(p, env);
e5673f28 7576
367456c7 7577 /*
e5673f28 7578 * Right now, this is only the second place where
163122b7 7579 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7580 * so we can safely collect stats here rather than
163122b7 7581 * inside detach_tasks().
367456c7 7582 */
ae92882e 7583 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7584 return p;
897c395f 7585 }
e5673f28 7586 return NULL;
897c395f
PZ
7587}
7588
eb95308e
PZ
7589static const unsigned int sched_nr_migrate_break = 32;
7590
5d6523eb 7591/*
0b0695f2 7592 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7593 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7594 *
163122b7 7595 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7596 */
163122b7 7597static int detach_tasks(struct lb_env *env)
1e3c88bd 7598{
5d6523eb 7599 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7600 unsigned long util, load;
5d6523eb 7601 struct task_struct *p;
163122b7
KT
7602 int detached = 0;
7603
7604 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7605
bd939f45 7606 if (env->imbalance <= 0)
5d6523eb 7607 return 0;
1e3c88bd 7608
5d6523eb 7609 while (!list_empty(tasks)) {
985d3a4c
YD
7610 /*
7611 * We don't want to steal all, otherwise we may be treated likewise,
7612 * which could at worst lead to a livelock crash.
7613 */
7614 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7615 break;
7616
93824900 7617 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7618
367456c7
PZ
7619 env->loop++;
7620 /* We've more or less seen every task there is, call it quits */
5d6523eb 7621 if (env->loop > env->loop_max)
367456c7 7622 break;
5d6523eb
PZ
7623
7624 /* take a breather every nr_migrate tasks */
367456c7 7625 if (env->loop > env->loop_break) {
eb95308e 7626 env->loop_break += sched_nr_migrate_break;
8e45cb54 7627 env->flags |= LBF_NEED_BREAK;
ee00e66f 7628 break;
a195f004 7629 }
1e3c88bd 7630
d3198084 7631 if (!can_migrate_task(p, env))
367456c7
PZ
7632 goto next;
7633
0b0695f2
VG
7634 switch (env->migration_type) {
7635 case migrate_load:
7636 load = task_h_load(p);
5d6523eb 7637
0b0695f2
VG
7638 if (sched_feat(LB_MIN) &&
7639 load < 16 && !env->sd->nr_balance_failed)
7640 goto next;
367456c7 7641
6cf82d55
VG
7642 /*
7643 * Make sure that we don't migrate too much load.
7644 * Nevertheless, let relax the constraint if
7645 * scheduler fails to find a good waiting task to
7646 * migrate.
7647 */
7648 if (load/2 > env->imbalance &&
7649 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
0b0695f2
VG
7650 goto next;
7651
7652 env->imbalance -= load;
7653 break;
7654
7655 case migrate_util:
7656 util = task_util_est(p);
7657
7658 if (util > env->imbalance)
7659 goto next;
7660
7661 env->imbalance -= util;
7662 break;
7663
7664 case migrate_task:
7665 env->imbalance--;
7666 break;
7667
7668 case migrate_misfit:
c63be7be
VG
7669 /* This is not a misfit task */
7670 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7671 goto next;
7672
7673 env->imbalance = 0;
7674 break;
7675 }
1e3c88bd 7676
163122b7
KT
7677 detach_task(p, env);
7678 list_add(&p->se.group_node, &env->tasks);
7679
7680 detached++;
1e3c88bd 7681
c1a280b6 7682#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7683 /*
7684 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7685 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7686 * the critical section.
7687 */
5d6523eb 7688 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7689 break;
1e3c88bd
PZ
7690#endif
7691
ee00e66f
PZ
7692 /*
7693 * We only want to steal up to the prescribed amount of
0b0695f2 7694 * load/util/tasks.
ee00e66f 7695 */
bd939f45 7696 if (env->imbalance <= 0)
ee00e66f 7697 break;
367456c7
PZ
7698
7699 continue;
7700next:
93824900 7701 list_move(&p->se.group_node, tasks);
1e3c88bd 7702 }
5d6523eb 7703
1e3c88bd 7704 /*
163122b7
KT
7705 * Right now, this is one of only two places we collect this stat
7706 * so we can safely collect detach_one_task() stats here rather
7707 * than inside detach_one_task().
1e3c88bd 7708 */
ae92882e 7709 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7710
163122b7
KT
7711 return detached;
7712}
7713
7714/*
7715 * attach_task() -- attach the task detached by detach_task() to its new rq.
7716 */
7717static void attach_task(struct rq *rq, struct task_struct *p)
7718{
7719 lockdep_assert_held(&rq->lock);
7720
7721 BUG_ON(task_rq(p) != rq);
5704ac0a 7722 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7723 check_preempt_curr(rq, p, 0);
7724}
7725
7726/*
7727 * attach_one_task() -- attaches the task returned from detach_one_task() to
7728 * its new rq.
7729 */
7730static void attach_one_task(struct rq *rq, struct task_struct *p)
7731{
8a8c69c3
PZ
7732 struct rq_flags rf;
7733
7734 rq_lock(rq, &rf);
5704ac0a 7735 update_rq_clock(rq);
163122b7 7736 attach_task(rq, p);
8a8c69c3 7737 rq_unlock(rq, &rf);
163122b7
KT
7738}
7739
7740/*
7741 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7742 * new rq.
7743 */
7744static void attach_tasks(struct lb_env *env)
7745{
7746 struct list_head *tasks = &env->tasks;
7747 struct task_struct *p;
8a8c69c3 7748 struct rq_flags rf;
163122b7 7749
8a8c69c3 7750 rq_lock(env->dst_rq, &rf);
5704ac0a 7751 update_rq_clock(env->dst_rq);
163122b7
KT
7752
7753 while (!list_empty(tasks)) {
7754 p = list_first_entry(tasks, struct task_struct, se.group_node);
7755 list_del_init(&p->se.group_node);
1e3c88bd 7756
163122b7
KT
7757 attach_task(env->dst_rq, p);
7758 }
7759
8a8c69c3 7760 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7761}
7762
b0c79224 7763#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7764static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7765{
7766 if (cfs_rq->avg.load_avg)
7767 return true;
7768
7769 if (cfs_rq->avg.util_avg)
7770 return true;
7771
7772 return false;
7773}
7774
91c27493 7775static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7776{
7777 if (READ_ONCE(rq->avg_rt.util_avg))
7778 return true;
7779
3727e0e1
VG
7780 if (READ_ONCE(rq->avg_dl.util_avg))
7781 return true;
7782
b4eccf5f
TG
7783 if (thermal_load_avg(rq))
7784 return true;
7785
11d4afd4 7786#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7787 if (READ_ONCE(rq->avg_irq.util_avg))
7788 return true;
7789#endif
7790
371bf427
VG
7791 return false;
7792}
7793
b0c79224
VS
7794static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7795{
7796 rq->last_blocked_load_update_tick = jiffies;
7797
7798 if (!has_blocked)
7799 rq->has_blocked_load = 0;
7800}
7801#else
7802static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7803static inline bool others_have_blocked(struct rq *rq) { return false; }
7804static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7805#endif
7806
bef69dd8
VG
7807static bool __update_blocked_others(struct rq *rq, bool *done)
7808{
7809 const struct sched_class *curr_class;
7810 u64 now = rq_clock_pelt(rq);
b4eccf5f 7811 unsigned long thermal_pressure;
bef69dd8
VG
7812 bool decayed;
7813
7814 /*
7815 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7816 * DL and IRQ signals have been updated before updating CFS.
7817 */
7818 curr_class = rq->curr->sched_class;
7819
b4eccf5f
TG
7820 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7821
bef69dd8
VG
7822 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7823 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7824 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7825 update_irq_load_avg(rq, 0);
7826
7827 if (others_have_blocked(rq))
7828 *done = false;
7829
7830 return decayed;
7831}
7832
1936c53c
VG
7833#ifdef CONFIG_FAIR_GROUP_SCHED
7834
039ae8bc
VG
7835static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7836{
7837 if (cfs_rq->load.weight)
7838 return false;
7839
7840 if (cfs_rq->avg.load_sum)
7841 return false;
7842
7843 if (cfs_rq->avg.util_sum)
7844 return false;
7845
9f683953
VG
7846 if (cfs_rq->avg.runnable_sum)
7847 return false;
7848
039ae8bc
VG
7849 return true;
7850}
7851
bef69dd8 7852static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7853{
039ae8bc 7854 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7855 bool decayed = false;
7856 int cpu = cpu_of(rq);
b90f7c9d 7857
9763b67f
PZ
7858 /*
7859 * Iterates the task_group tree in a bottom up fashion, see
7860 * list_add_leaf_cfs_rq() for details.
7861 */
039ae8bc 7862 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7863 struct sched_entity *se;
7864
bef69dd8 7865 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9d89c257 7866 update_tg_load_avg(cfs_rq, 0);
4e516076 7867
bef69dd8
VG
7868 if (cfs_rq == &rq->cfs)
7869 decayed = true;
7870 }
7871
bc427898
VG
7872 /* Propagate pending load changes to the parent, if any: */
7873 se = cfs_rq->tg->se[cpu];
7874 if (se && !skip_blocked_update(se))
88c0616e 7875 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7876
039ae8bc
VG
7877 /*
7878 * There can be a lot of idle CPU cgroups. Don't let fully
7879 * decayed cfs_rqs linger on the list.
7880 */
7881 if (cfs_rq_is_decayed(cfs_rq))
7882 list_del_leaf_cfs_rq(cfs_rq);
7883
1936c53c
VG
7884 /* Don't need periodic decay once load/util_avg are null */
7885 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7886 *done = false;
9d89c257 7887 }
12b04875 7888
bef69dd8 7889 return decayed;
9e3081ca
PZ
7890}
7891
9763b67f 7892/*
68520796 7893 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7894 * This needs to be done in a top-down fashion because the load of a child
7895 * group is a fraction of its parents load.
7896 */
68520796 7897static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7898{
68520796
VD
7899 struct rq *rq = rq_of(cfs_rq);
7900 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7901 unsigned long now = jiffies;
68520796 7902 unsigned long load;
a35b6466 7903
68520796 7904 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7905 return;
7906
0e9f0245 7907 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7908 for_each_sched_entity(se) {
7909 cfs_rq = cfs_rq_of(se);
0e9f0245 7910 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7911 if (cfs_rq->last_h_load_update == now)
7912 break;
7913 }
a35b6466 7914
68520796 7915 if (!se) {
7ea241af 7916 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7917 cfs_rq->last_h_load_update = now;
7918 }
7919
0e9f0245 7920 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7921 load = cfs_rq->h_load;
7ea241af
YD
7922 load = div64_ul(load * se->avg.load_avg,
7923 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7924 cfs_rq = group_cfs_rq(se);
7925 cfs_rq->h_load = load;
7926 cfs_rq->last_h_load_update = now;
7927 }
9763b67f
PZ
7928}
7929
367456c7 7930static unsigned long task_h_load(struct task_struct *p)
230059de 7931{
367456c7 7932 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7933
68520796 7934 update_cfs_rq_h_load(cfs_rq);
9d89c257 7935 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7936 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7937}
7938#else
bef69dd8 7939static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7940{
6c1d47c0 7941 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7942 bool decayed;
b90f7c9d 7943
bef69dd8
VG
7944 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7945 if (cfs_rq_has_blocked(cfs_rq))
7946 *done = false;
b90f7c9d 7947
bef69dd8 7948 return decayed;
9e3081ca
PZ
7949}
7950
367456c7 7951static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7952{
9d89c257 7953 return p->se.avg.load_avg;
1e3c88bd 7954}
230059de 7955#endif
1e3c88bd 7956
bef69dd8
VG
7957static void update_blocked_averages(int cpu)
7958{
7959 bool decayed = false, done = true;
7960 struct rq *rq = cpu_rq(cpu);
7961 struct rq_flags rf;
7962
7963 rq_lock_irqsave(rq, &rf);
7964 update_rq_clock(rq);
7965
7966 decayed |= __update_blocked_others(rq, &done);
7967 decayed |= __update_blocked_fair(rq, &done);
7968
7969 update_blocked_load_status(rq, !done);
7970 if (decayed)
7971 cpufreq_update_util(rq, 0);
7972 rq_unlock_irqrestore(rq, &rf);
7973}
7974
1e3c88bd 7975/********** Helpers for find_busiest_group ************************/
caeb178c 7976
1e3c88bd
PZ
7977/*
7978 * sg_lb_stats - stats of a sched_group required for load_balancing
7979 */
7980struct sg_lb_stats {
7981 unsigned long avg_load; /*Avg load across the CPUs of the group */
7982 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 7983 unsigned long group_capacity;
070f5e86
VG
7984 unsigned long group_util; /* Total utilization over the CPUs of the group */
7985 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 7986 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 7987 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
7988 unsigned int idle_cpus;
7989 unsigned int group_weight;
caeb178c 7990 enum group_type group_type;
490ba971 7991 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 7992 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7993#ifdef CONFIG_NUMA_BALANCING
7994 unsigned int nr_numa_running;
7995 unsigned int nr_preferred_running;
7996#endif
1e3c88bd
PZ
7997};
7998
56cf515b
JK
7999/*
8000 * sd_lb_stats - Structure to store the statistics of a sched_domain
8001 * during load balancing.
8002 */
8003struct sd_lb_stats {
8004 struct sched_group *busiest; /* Busiest group in this sd */
8005 struct sched_group *local; /* Local group in this sd */
8006 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8007 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8008 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8009 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8010
56cf515b 8011 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8012 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8013};
8014
147c5fc2
PZ
8015static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8016{
8017 /*
8018 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8019 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8020 * We must however set busiest_stat::group_type and
8021 * busiest_stat::idle_cpus to the worst busiest group because
8022 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8023 */
8024 *sds = (struct sd_lb_stats){
8025 .busiest = NULL,
8026 .local = NULL,
8027 .total_load = 0UL,
63b2ca30 8028 .total_capacity = 0UL,
147c5fc2 8029 .busiest_stat = {
0b0695f2
VG
8030 .idle_cpus = UINT_MAX,
8031 .group_type = group_has_spare,
147c5fc2
PZ
8032 },
8033 };
8034}
8035
287cdaac 8036static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8037{
8038 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8039 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8040 unsigned long used, free;
523e979d 8041 unsigned long irq;
b654f7de 8042
2e62c474 8043 irq = cpu_util_irq(rq);
cadefd3d 8044
523e979d
VG
8045 if (unlikely(irq >= max))
8046 return 1;
aa483808 8047
467b7d01
TG
8048 /*
8049 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8050 * (running and not running) with weights 0 and 1024 respectively.
8051 * avg_thermal.load_avg tracks thermal pressure and the weighted
8052 * average uses the actual delta max capacity(load).
8053 */
523e979d
VG
8054 used = READ_ONCE(rq->avg_rt.util_avg);
8055 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8056 used += thermal_load_avg(rq);
1e3c88bd 8057
523e979d
VG
8058 if (unlikely(used >= max))
8059 return 1;
1e3c88bd 8060
523e979d 8061 free = max - used;
2e62c474
VG
8062
8063 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8064}
8065
ced549fa 8066static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8067{
287cdaac 8068 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
8069 struct sched_group *sdg = sd->groups;
8070
8ec59c0f 8071 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8072
ced549fa
NP
8073 if (!capacity)
8074 capacity = 1;
1e3c88bd 8075
ced549fa
NP
8076 cpu_rq(cpu)->cpu_capacity = capacity;
8077 sdg->sgc->capacity = capacity;
bf475ce0 8078 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8079 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8080}
8081
63b2ca30 8082void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8083{
8084 struct sched_domain *child = sd->child;
8085 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8086 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8087 unsigned long interval;
8088
8089 interval = msecs_to_jiffies(sd->balance_interval);
8090 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8091 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8092
8093 if (!child) {
ced549fa 8094 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8095 return;
8096 }
8097
dc7ff76e 8098 capacity = 0;
bf475ce0 8099 min_capacity = ULONG_MAX;
e3d6d0cb 8100 max_capacity = 0;
1e3c88bd 8101
74a5ce20
PZ
8102 if (child->flags & SD_OVERLAP) {
8103 /*
8104 * SD_OVERLAP domains cannot assume that child groups
8105 * span the current group.
8106 */
8107
ae4df9d6 8108 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8109 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8110
4c58f57f
PL
8111 capacity += cpu_cap;
8112 min_capacity = min(cpu_cap, min_capacity);
8113 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8114 }
74a5ce20
PZ
8115 } else {
8116 /*
8117 * !SD_OVERLAP domains can assume that child groups
8118 * span the current group.
97a7142f 8119 */
74a5ce20
PZ
8120
8121 group = child->groups;
8122 do {
bf475ce0
MR
8123 struct sched_group_capacity *sgc = group->sgc;
8124
8125 capacity += sgc->capacity;
8126 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8127 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8128 group = group->next;
8129 } while (group != child->groups);
8130 }
1e3c88bd 8131
63b2ca30 8132 sdg->sgc->capacity = capacity;
bf475ce0 8133 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8134 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8135}
8136
9d5efe05 8137/*
ea67821b
VG
8138 * Check whether the capacity of the rq has been noticeably reduced by side
8139 * activity. The imbalance_pct is used for the threshold.
8140 * Return true is the capacity is reduced
9d5efe05
SV
8141 */
8142static inline int
ea67821b 8143check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8144{
ea67821b
VG
8145 return ((rq->cpu_capacity * sd->imbalance_pct) <
8146 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8147}
8148
a0fe2cf0
VS
8149/*
8150 * Check whether a rq has a misfit task and if it looks like we can actually
8151 * help that task: we can migrate the task to a CPU of higher capacity, or
8152 * the task's current CPU is heavily pressured.
8153 */
8154static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8155{
8156 return rq->misfit_task_load &&
8157 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8158 check_cpu_capacity(rq, sd));
8159}
8160
30ce5dab
PZ
8161/*
8162 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8163 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8164 *
97fb7a0a
IM
8165 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8166 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8167 * Something like:
8168 *
2b4d5b25
IM
8169 * { 0 1 2 3 } { 4 5 6 7 }
8170 * * * * *
30ce5dab
PZ
8171 *
8172 * If we were to balance group-wise we'd place two tasks in the first group and
8173 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8174 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8175 *
8176 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8177 * by noticing the lower domain failed to reach balance and had difficulty
8178 * moving tasks due to affinity constraints.
30ce5dab
PZ
8179 *
8180 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8181 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8182 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8183 * to create an effective group imbalance.
8184 *
8185 * This is a somewhat tricky proposition since the next run might not find the
8186 * group imbalance and decide the groups need to be balanced again. A most
8187 * subtle and fragile situation.
8188 */
8189
6263322c 8190static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8191{
63b2ca30 8192 return group->sgc->imbalance;
30ce5dab
PZ
8193}
8194
b37d9316 8195/*
ea67821b
VG
8196 * group_has_capacity returns true if the group has spare capacity that could
8197 * be used by some tasks.
8198 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8199 * smaller than the number of CPUs or if the utilization is lower than the
8200 * available capacity for CFS tasks.
ea67821b
VG
8201 * For the latter, we use a threshold to stabilize the state, to take into
8202 * account the variance of the tasks' load and to return true if the available
8203 * capacity in meaningful for the load balancer.
8204 * As an example, an available capacity of 1% can appear but it doesn't make
8205 * any benefit for the load balance.
b37d9316 8206 */
ea67821b 8207static inline bool
57abff06 8208group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8209{
5e23e474 8210 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8211 return true;
c61037e9 8212
070f5e86
VG
8213 if ((sgs->group_capacity * imbalance_pct) <
8214 (sgs->group_runnable * 100))
8215 return false;
8216
ea67821b 8217 if ((sgs->group_capacity * 100) >
57abff06 8218 (sgs->group_util * imbalance_pct))
ea67821b 8219 return true;
b37d9316 8220
ea67821b
VG
8221 return false;
8222}
8223
8224/*
8225 * group_is_overloaded returns true if the group has more tasks than it can
8226 * handle.
8227 * group_is_overloaded is not equals to !group_has_capacity because a group
8228 * with the exact right number of tasks, has no more spare capacity but is not
8229 * overloaded so both group_has_capacity and group_is_overloaded return
8230 * false.
8231 */
8232static inline bool
57abff06 8233group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8234{
5e23e474 8235 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8236 return false;
b37d9316 8237
ea67821b 8238 if ((sgs->group_capacity * 100) <
57abff06 8239 (sgs->group_util * imbalance_pct))
ea67821b 8240 return true;
b37d9316 8241
070f5e86
VG
8242 if ((sgs->group_capacity * imbalance_pct) <
8243 (sgs->group_runnable * 100))
8244 return true;
8245
ea67821b 8246 return false;
b37d9316
PZ
8247}
8248
9e0994c0 8249/*
e3d6d0cb 8250 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8251 * per-CPU capacity than sched_group ref.
8252 */
8253static inline bool
e3d6d0cb 8254group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8255{
60e17f5c 8256 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8257}
8258
e3d6d0cb
MR
8259/*
8260 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8261 * per-CPU capacity_orig than sched_group ref.
8262 */
8263static inline bool
8264group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8265{
60e17f5c 8266 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8267}
8268
79a89f92 8269static inline enum
57abff06 8270group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8271 struct sched_group *group,
79a89f92 8272 struct sg_lb_stats *sgs)
caeb178c 8273{
57abff06 8274 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8275 return group_overloaded;
8276
8277 if (sg_imbalanced(group))
8278 return group_imbalanced;
8279
0b0695f2
VG
8280 if (sgs->group_asym_packing)
8281 return group_asym_packing;
8282
3b1baa64
MR
8283 if (sgs->group_misfit_task_load)
8284 return group_misfit_task;
8285
57abff06 8286 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8287 return group_fully_busy;
8288
8289 return group_has_spare;
caeb178c
RR
8290}
8291
63928384 8292static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8293{
8294#ifdef CONFIG_NO_HZ_COMMON
8295 unsigned int cpu = rq->cpu;
8296
f643ea22
VG
8297 if (!rq->has_blocked_load)
8298 return false;
8299
e022e0d3 8300 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8301 return false;
e022e0d3 8302
63928384 8303 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8304 return true;
e022e0d3
PZ
8305
8306 update_blocked_averages(cpu);
f643ea22
VG
8307
8308 return rq->has_blocked_load;
8309#else
8310 return false;
e022e0d3
PZ
8311#endif
8312}
8313
1e3c88bd
PZ
8314/**
8315 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8316 * @env: The load balancing environment.
1e3c88bd 8317 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8318 * @sgs: variable to hold the statistics for this group.
630246a0 8319 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8320 */
bd939f45 8321static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8322 struct sched_group *group,
8323 struct sg_lb_stats *sgs,
8324 int *sg_status)
1e3c88bd 8325{
0b0695f2 8326 int i, nr_running, local_group;
1e3c88bd 8327
b72ff13c
PZ
8328 memset(sgs, 0, sizeof(*sgs));
8329
0b0695f2
VG
8330 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8331
ae4df9d6 8332 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8333 struct rq *rq = cpu_rq(i);
8334
63928384 8335 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8336 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8337
b0fb1eb4 8338 sgs->group_load += cpu_load(rq);
9e91d61d 8339 sgs->group_util += cpu_util(i);
070f5e86 8340 sgs->group_runnable += cpu_runnable(rq);
a3498347 8341 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8342
a426f99c 8343 nr_running = rq->nr_running;
5e23e474
VG
8344 sgs->sum_nr_running += nr_running;
8345
a426f99c 8346 if (nr_running > 1)
630246a0 8347 *sg_status |= SG_OVERLOAD;
4486edd1 8348
2802bf3c
MR
8349 if (cpu_overutilized(i))
8350 *sg_status |= SG_OVERUTILIZED;
4486edd1 8351
0ec8aa00
PZ
8352#ifdef CONFIG_NUMA_BALANCING
8353 sgs->nr_numa_running += rq->nr_numa_running;
8354 sgs->nr_preferred_running += rq->nr_preferred_running;
8355#endif
a426f99c
WL
8356 /*
8357 * No need to call idle_cpu() if nr_running is not 0
8358 */
0b0695f2 8359 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8360 sgs->idle_cpus++;
0b0695f2
VG
8361 /* Idle cpu can't have misfit task */
8362 continue;
8363 }
8364
8365 if (local_group)
8366 continue;
3b1baa64 8367
0b0695f2 8368 /* Check for a misfit task on the cpu */
3b1baa64 8369 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8370 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8371 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8372 *sg_status |= SG_OVERLOAD;
757ffdd7 8373 }
1e3c88bd
PZ
8374 }
8375
0b0695f2
VG
8376 /* Check if dst CPU is idle and preferred to this group */
8377 if (env->sd->flags & SD_ASYM_PACKING &&
8378 env->idle != CPU_NOT_IDLE &&
8379 sgs->sum_h_nr_running &&
8380 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8381 sgs->group_asym_packing = 1;
8382 }
8383
63b2ca30 8384 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8385
aae6d3dd 8386 sgs->group_weight = group->group_weight;
b37d9316 8387
57abff06 8388 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8389
8390 /* Computing avg_load makes sense only when group is overloaded */
8391 if (sgs->group_type == group_overloaded)
8392 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8393 sgs->group_capacity;
1e3c88bd
PZ
8394}
8395
532cb4c4
MN
8396/**
8397 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8398 * @env: The load balancing environment.
532cb4c4
MN
8399 * @sds: sched_domain statistics
8400 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8401 * @sgs: sched_group statistics
532cb4c4
MN
8402 *
8403 * Determine if @sg is a busier group than the previously selected
8404 * busiest group.
e69f6186
YB
8405 *
8406 * Return: %true if @sg is a busier group than the previously selected
8407 * busiest group. %false otherwise.
532cb4c4 8408 */
bd939f45 8409static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8410 struct sd_lb_stats *sds,
8411 struct sched_group *sg,
bd939f45 8412 struct sg_lb_stats *sgs)
532cb4c4 8413{
caeb178c 8414 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8415
0b0695f2
VG
8416 /* Make sure that there is at least one task to pull */
8417 if (!sgs->sum_h_nr_running)
8418 return false;
8419
cad68e55
MR
8420 /*
8421 * Don't try to pull misfit tasks we can't help.
8422 * We can use max_capacity here as reduction in capacity on some
8423 * CPUs in the group should either be possible to resolve
8424 * internally or be covered by avg_load imbalance (eventually).
8425 */
8426 if (sgs->group_type == group_misfit_task &&
8427 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8428 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8429 return false;
8430
caeb178c 8431 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8432 return true;
8433
caeb178c
RR
8434 if (sgs->group_type < busiest->group_type)
8435 return false;
8436
9e0994c0 8437 /*
0b0695f2
VG
8438 * The candidate and the current busiest group are the same type of
8439 * group. Let check which one is the busiest according to the type.
9e0994c0 8440 */
9e0994c0 8441
0b0695f2
VG
8442 switch (sgs->group_type) {
8443 case group_overloaded:
8444 /* Select the overloaded group with highest avg_load. */
8445 if (sgs->avg_load <= busiest->avg_load)
8446 return false;
8447 break;
8448
8449 case group_imbalanced:
8450 /*
8451 * Select the 1st imbalanced group as we don't have any way to
8452 * choose one more than another.
8453 */
9e0994c0
MR
8454 return false;
8455
0b0695f2
VG
8456 case group_asym_packing:
8457 /* Prefer to move from lowest priority CPU's work */
8458 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8459 return false;
8460 break;
532cb4c4 8461
0b0695f2
VG
8462 case group_misfit_task:
8463 /*
8464 * If we have more than one misfit sg go with the biggest
8465 * misfit.
8466 */
8467 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8468 return false;
8469 break;
532cb4c4 8470
0b0695f2
VG
8471 case group_fully_busy:
8472 /*
8473 * Select the fully busy group with highest avg_load. In
8474 * theory, there is no need to pull task from such kind of
8475 * group because tasks have all compute capacity that they need
8476 * but we can still improve the overall throughput by reducing
8477 * contention when accessing shared HW resources.
8478 *
8479 * XXX for now avg_load is not computed and always 0 so we
8480 * select the 1st one.
8481 */
8482 if (sgs->avg_load <= busiest->avg_load)
8483 return false;
8484 break;
8485
8486 case group_has_spare:
8487 /*
5f68eb19
VG
8488 * Select not overloaded group with lowest number of idle cpus
8489 * and highest number of running tasks. We could also compare
8490 * the spare capacity which is more stable but it can end up
8491 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8492 * CPUs which means less opportunity to pull tasks.
8493 */
5f68eb19 8494 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8495 return false;
5f68eb19
VG
8496 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8497 (sgs->sum_nr_running <= busiest->sum_nr_running))
8498 return false;
8499
0b0695f2 8500 break;
532cb4c4
MN
8501 }
8502
0b0695f2
VG
8503 /*
8504 * Candidate sg has no more than one task per CPU and has higher
8505 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8506 * throughput. Maximize throughput, power/energy consequences are not
8507 * considered.
8508 */
8509 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8510 (sgs->group_type <= group_fully_busy) &&
8511 (group_smaller_min_cpu_capacity(sds->local, sg)))
8512 return false;
8513
8514 return true;
532cb4c4
MN
8515}
8516
0ec8aa00
PZ
8517#ifdef CONFIG_NUMA_BALANCING
8518static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8519{
a3498347 8520 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8521 return regular;
a3498347 8522 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8523 return remote;
8524 return all;
8525}
8526
8527static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8528{
8529 if (rq->nr_running > rq->nr_numa_running)
8530 return regular;
8531 if (rq->nr_running > rq->nr_preferred_running)
8532 return remote;
8533 return all;
8534}
8535#else
8536static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8537{
8538 return all;
8539}
8540
8541static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8542{
8543 return regular;
8544}
8545#endif /* CONFIG_NUMA_BALANCING */
8546
57abff06
VG
8547
8548struct sg_lb_stats;
8549
3318544b
VG
8550/*
8551 * task_running_on_cpu - return 1 if @p is running on @cpu.
8552 */
8553
8554static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8555{
8556 /* Task has no contribution or is new */
8557 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8558 return 0;
8559
8560 if (task_on_rq_queued(p))
8561 return 1;
8562
8563 return 0;
8564}
8565
8566/**
8567 * idle_cpu_without - would a given CPU be idle without p ?
8568 * @cpu: the processor on which idleness is tested.
8569 * @p: task which should be ignored.
8570 *
8571 * Return: 1 if the CPU would be idle. 0 otherwise.
8572 */
8573static int idle_cpu_without(int cpu, struct task_struct *p)
8574{
8575 struct rq *rq = cpu_rq(cpu);
8576
8577 if (rq->curr != rq->idle && rq->curr != p)
8578 return 0;
8579
8580 /*
8581 * rq->nr_running can't be used but an updated version without the
8582 * impact of p on cpu must be used instead. The updated nr_running
8583 * be computed and tested before calling idle_cpu_without().
8584 */
8585
8586#ifdef CONFIG_SMP
8587 if (!llist_empty(&rq->wake_list))
8588 return 0;
8589#endif
8590
8591 return 1;
8592}
8593
57abff06
VG
8594/*
8595 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8596 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8597 * @group: sched_group whose statistics are to be updated.
8598 * @sgs: variable to hold the statistics for this group.
3318544b 8599 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8600 */
8601static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8602 struct sched_group *group,
8603 struct sg_lb_stats *sgs,
8604 struct task_struct *p)
8605{
8606 int i, nr_running;
8607
8608 memset(sgs, 0, sizeof(*sgs));
8609
8610 for_each_cpu(i, sched_group_span(group)) {
8611 struct rq *rq = cpu_rq(i);
3318544b 8612 unsigned int local;
57abff06 8613
3318544b 8614 sgs->group_load += cpu_load_without(rq, p);
57abff06 8615 sgs->group_util += cpu_util_without(i, p);
070f5e86 8616 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8617 local = task_running_on_cpu(i, p);
8618 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8619
3318544b 8620 nr_running = rq->nr_running - local;
57abff06
VG
8621 sgs->sum_nr_running += nr_running;
8622
8623 /*
3318544b 8624 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8625 */
3318544b 8626 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8627 sgs->idle_cpus++;
8628
57abff06
VG
8629 }
8630
8631 /* Check if task fits in the group */
8632 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8633 !task_fits_capacity(p, group->sgc->max_capacity)) {
8634 sgs->group_misfit_task_load = 1;
8635 }
8636
8637 sgs->group_capacity = group->sgc->capacity;
8638
289de359
VG
8639 sgs->group_weight = group->group_weight;
8640
57abff06
VG
8641 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8642
8643 /*
8644 * Computing avg_load makes sense only when group is fully busy or
8645 * overloaded
8646 */
6c8116c9
TZ
8647 if (sgs->group_type == group_fully_busy ||
8648 sgs->group_type == group_overloaded)
57abff06
VG
8649 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8650 sgs->group_capacity;
8651}
8652
8653static bool update_pick_idlest(struct sched_group *idlest,
8654 struct sg_lb_stats *idlest_sgs,
8655 struct sched_group *group,
8656 struct sg_lb_stats *sgs)
8657{
8658 if (sgs->group_type < idlest_sgs->group_type)
8659 return true;
8660
8661 if (sgs->group_type > idlest_sgs->group_type)
8662 return false;
8663
8664 /*
8665 * The candidate and the current idlest group are the same type of
8666 * group. Let check which one is the idlest according to the type.
8667 */
8668
8669 switch (sgs->group_type) {
8670 case group_overloaded:
8671 case group_fully_busy:
8672 /* Select the group with lowest avg_load. */
8673 if (idlest_sgs->avg_load <= sgs->avg_load)
8674 return false;
8675 break;
8676
8677 case group_imbalanced:
8678 case group_asym_packing:
8679 /* Those types are not used in the slow wakeup path */
8680 return false;
8681
8682 case group_misfit_task:
8683 /* Select group with the highest max capacity */
8684 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8685 return false;
8686 break;
8687
8688 case group_has_spare:
8689 /* Select group with most idle CPUs */
8690 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8691 return false;
8692 break;
8693 }
8694
8695 return true;
8696}
8697
8698/*
8699 * find_idlest_group() finds and returns the least busy CPU group within the
8700 * domain.
8701 *
8702 * Assumes p is allowed on at least one CPU in sd.
8703 */
8704static struct sched_group *
8705find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8706 int this_cpu, int sd_flag)
8707{
8708 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8709 struct sg_lb_stats local_sgs, tmp_sgs;
8710 struct sg_lb_stats *sgs;
8711 unsigned long imbalance;
8712 struct sg_lb_stats idlest_sgs = {
8713 .avg_load = UINT_MAX,
8714 .group_type = group_overloaded,
8715 };
8716
8717 imbalance = scale_load_down(NICE_0_LOAD) *
8718 (sd->imbalance_pct-100) / 100;
8719
8720 do {
8721 int local_group;
8722
8723 /* Skip over this group if it has no CPUs allowed */
8724 if (!cpumask_intersects(sched_group_span(group),
8725 p->cpus_ptr))
8726 continue;
8727
8728 local_group = cpumask_test_cpu(this_cpu,
8729 sched_group_span(group));
8730
8731 if (local_group) {
8732 sgs = &local_sgs;
8733 local = group;
8734 } else {
8735 sgs = &tmp_sgs;
8736 }
8737
8738 update_sg_wakeup_stats(sd, group, sgs, p);
8739
8740 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8741 idlest = group;
8742 idlest_sgs = *sgs;
8743 }
8744
8745 } while (group = group->next, group != sd->groups);
8746
8747
8748 /* There is no idlest group to push tasks to */
8749 if (!idlest)
8750 return NULL;
8751
7ed735c3
VG
8752 /* The local group has been skipped because of CPU affinity */
8753 if (!local)
8754 return idlest;
8755
57abff06
VG
8756 /*
8757 * If the local group is idler than the selected idlest group
8758 * don't try and push the task.
8759 */
8760 if (local_sgs.group_type < idlest_sgs.group_type)
8761 return NULL;
8762
8763 /*
8764 * If the local group is busier than the selected idlest group
8765 * try and push the task.
8766 */
8767 if (local_sgs.group_type > idlest_sgs.group_type)
8768 return idlest;
8769
8770 switch (local_sgs.group_type) {
8771 case group_overloaded:
8772 case group_fully_busy:
8773 /*
8774 * When comparing groups across NUMA domains, it's possible for
8775 * the local domain to be very lightly loaded relative to the
8776 * remote domains but "imbalance" skews the comparison making
8777 * remote CPUs look much more favourable. When considering
8778 * cross-domain, add imbalance to the load on the remote node
8779 * and consider staying local.
8780 */
8781
8782 if ((sd->flags & SD_NUMA) &&
8783 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8784 return NULL;
8785
8786 /*
8787 * If the local group is less loaded than the selected
8788 * idlest group don't try and push any tasks.
8789 */
8790 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8791 return NULL;
8792
8793 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8794 return NULL;
8795 break;
8796
8797 case group_imbalanced:
8798 case group_asym_packing:
8799 /* Those type are not used in the slow wakeup path */
8800 return NULL;
8801
8802 case group_misfit_task:
8803 /* Select group with the highest max capacity */
8804 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8805 return NULL;
8806 break;
8807
8808 case group_has_spare:
8809 if (sd->flags & SD_NUMA) {
8810#ifdef CONFIG_NUMA_BALANCING
8811 int idlest_cpu;
8812 /*
8813 * If there is spare capacity at NUMA, try to select
8814 * the preferred node
8815 */
8816 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8817 return NULL;
8818
8819 idlest_cpu = cpumask_first(sched_group_span(idlest));
8820 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8821 return idlest;
8822#endif
8823 /*
8824 * Otherwise, keep the task on this node to stay close
8825 * its wakeup source and improve locality. If there is
8826 * a real need of migration, periodic load balance will
8827 * take care of it.
8828 */
8829 if (local_sgs.idle_cpus)
8830 return NULL;
8831 }
8832
8833 /*
8834 * Select group with highest number of idle CPUs. We could also
8835 * compare the utilization which is more stable but it can end
8836 * up that the group has less spare capacity but finally more
8837 * idle CPUs which means more opportunity to run task.
8838 */
8839 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8840 return NULL;
8841 break;
8842 }
8843
8844 return idlest;
8845}
8846
1e3c88bd 8847/**
461819ac 8848 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8849 * @env: The load balancing environment.
1e3c88bd
PZ
8850 * @sds: variable to hold the statistics for this sched_domain.
8851 */
0b0695f2 8852
0ec8aa00 8853static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8854{
bd939f45
PZ
8855 struct sched_domain *child = env->sd->child;
8856 struct sched_group *sg = env->sd->groups;
05b40e05 8857 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8858 struct sg_lb_stats tmp_sgs;
630246a0 8859 int sg_status = 0;
1e3c88bd 8860
e022e0d3 8861#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8862 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8863 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8864#endif
8865
1e3c88bd 8866 do {
56cf515b 8867 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8868 int local_group;
8869
ae4df9d6 8870 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8871 if (local_group) {
8872 sds->local = sg;
05b40e05 8873 sgs = local;
b72ff13c
PZ
8874
8875 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8876 time_after_eq(jiffies, sg->sgc->next_update))
8877 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8878 }
1e3c88bd 8879
630246a0 8880 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8881
b72ff13c
PZ
8882 if (local_group)
8883 goto next_group;
8884
1e3c88bd 8885
b72ff13c 8886 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8887 sds->busiest = sg;
56cf515b 8888 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8889 }
8890
b72ff13c
PZ
8891next_group:
8892 /* Now, start updating sd_lb_stats */
8893 sds->total_load += sgs->group_load;
63b2ca30 8894 sds->total_capacity += sgs->group_capacity;
b72ff13c 8895
532cb4c4 8896 sg = sg->next;
bd939f45 8897 } while (sg != env->sd->groups);
0ec8aa00 8898
0b0695f2
VG
8899 /* Tag domain that child domain prefers tasks go to siblings first */
8900 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8901
f643ea22
VG
8902#ifdef CONFIG_NO_HZ_COMMON
8903 if ((env->flags & LBF_NOHZ_AGAIN) &&
8904 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8905
8906 WRITE_ONCE(nohz.next_blocked,
8907 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8908 }
8909#endif
8910
0ec8aa00
PZ
8911 if (env->sd->flags & SD_NUMA)
8912 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8913
8914 if (!env->sd->parent) {
2802bf3c
MR
8915 struct root_domain *rd = env->dst_rq->rd;
8916
4486edd1 8917 /* update overload indicator if we are at root domain */
2802bf3c
MR
8918 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8919
8920 /* Update over-utilization (tipping point, U >= 0) indicator */
8921 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8922 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8923 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8924 struct root_domain *rd = env->dst_rq->rd;
8925
8926 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8927 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8928 }
532cb4c4
MN
8929}
8930
fb86f5b2
MG
8931static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8932{
8933 unsigned int imbalance_min;
8934
8935 /*
8936 * Allow a small imbalance based on a simple pair of communicating
8937 * tasks that remain local when the source domain is almost idle.
8938 */
8939 imbalance_min = 2;
8940 if (src_nr_running <= imbalance_min)
8941 return 0;
8942
8943 return imbalance;
8944}
8945
1e3c88bd
PZ
8946/**
8947 * calculate_imbalance - Calculate the amount of imbalance present within the
8948 * groups of a given sched_domain during load balance.
bd939f45 8949 * @env: load balance environment
1e3c88bd 8950 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8951 */
bd939f45 8952static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8953{
56cf515b
JK
8954 struct sg_lb_stats *local, *busiest;
8955
8956 local = &sds->local_stat;
56cf515b 8957 busiest = &sds->busiest_stat;
dd5feea1 8958
0b0695f2
VG
8959 if (busiest->group_type == group_misfit_task) {
8960 /* Set imbalance to allow misfit tasks to be balanced. */
8961 env->migration_type = migrate_misfit;
c63be7be 8962 env->imbalance = 1;
0b0695f2
VG
8963 return;
8964 }
8965
8966 if (busiest->group_type == group_asym_packing) {
8967 /*
8968 * In case of asym capacity, we will try to migrate all load to
8969 * the preferred CPU.
8970 */
8971 env->migration_type = migrate_task;
8972 env->imbalance = busiest->sum_h_nr_running;
8973 return;
8974 }
8975
8976 if (busiest->group_type == group_imbalanced) {
8977 /*
8978 * In the group_imb case we cannot rely on group-wide averages
8979 * to ensure CPU-load equilibrium, try to move any task to fix
8980 * the imbalance. The next load balance will take care of
8981 * balancing back the system.
8982 */
8983 env->migration_type = migrate_task;
8984 env->imbalance = 1;
490ba971
VG
8985 return;
8986 }
8987
1e3c88bd 8988 /*
0b0695f2 8989 * Try to use spare capacity of local group without overloading it or
a9723389 8990 * emptying busiest.
1e3c88bd 8991 */
0b0695f2
VG
8992 if (local->group_type == group_has_spare) {
8993 if (busiest->group_type > group_fully_busy) {
8994 /*
8995 * If busiest is overloaded, try to fill spare
8996 * capacity. This might end up creating spare capacity
8997 * in busiest or busiest still being overloaded but
8998 * there is no simple way to directly compute the
8999 * amount of load to migrate in order to balance the
9000 * system.
9001 */
9002 env->migration_type = migrate_util;
9003 env->imbalance = max(local->group_capacity, local->group_util) -
9004 local->group_util;
9005
9006 /*
9007 * In some cases, the group's utilization is max or even
9008 * higher than capacity because of migrations but the
9009 * local CPU is (newly) idle. There is at least one
9010 * waiting task in this overloaded busiest group. Let's
9011 * try to pull it.
9012 */
9013 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9014 env->migration_type = migrate_task;
9015 env->imbalance = 1;
9016 }
9017
9018 return;
9019 }
9020
9021 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9022 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9023 /*
9024 * When prefer sibling, evenly spread running tasks on
9025 * groups.
9026 */
9027 env->migration_type = migrate_task;
5e23e474 9028 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9029 env->imbalance = nr_diff >> 1;
b396f523 9030 } else {
0b0695f2 9031
b396f523
MG
9032 /*
9033 * If there is no overload, we just want to even the number of
9034 * idle cpus.
9035 */
9036 env->migration_type = migrate_task;
9037 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9038 busiest->idle_cpus) >> 1);
b396f523
MG
9039 }
9040
9041 /* Consider allowing a small imbalance between NUMA groups */
fb86f5b2
MG
9042 if (env->sd->flags & SD_NUMA)
9043 env->imbalance = adjust_numa_imbalance(env->imbalance,
9044 busiest->sum_nr_running);
b396f523 9045
fcf0553d 9046 return;
1e3c88bd
PZ
9047 }
9048
9a5d9ba6 9049 /*
0b0695f2
VG
9050 * Local is fully busy but has to take more load to relieve the
9051 * busiest group
9a5d9ba6 9052 */
0b0695f2
VG
9053 if (local->group_type < group_overloaded) {
9054 /*
9055 * Local will become overloaded so the avg_load metrics are
9056 * finally needed.
9057 */
9058
9059 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9060 local->group_capacity;
9061
9062 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9063 sds->total_capacity;
111688ca
AL
9064 /*
9065 * If the local group is more loaded than the selected
9066 * busiest group don't try to pull any tasks.
9067 */
9068 if (local->avg_load >= busiest->avg_load) {
9069 env->imbalance = 0;
9070 return;
9071 }
dd5feea1
SS
9072 }
9073
9074 /*
0b0695f2
VG
9075 * Both group are or will become overloaded and we're trying to get all
9076 * the CPUs to the average_load, so we don't want to push ourselves
9077 * above the average load, nor do we wish to reduce the max loaded CPU
9078 * below the average load. At the same time, we also don't want to
9079 * reduce the group load below the group capacity. Thus we look for
9080 * the minimum possible imbalance.
dd5feea1 9081 */
0b0695f2 9082 env->migration_type = migrate_load;
56cf515b 9083 env->imbalance = min(
0b0695f2 9084 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9085 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9086 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9087}
fab47622 9088
1e3c88bd
PZ
9089/******* find_busiest_group() helpers end here *********************/
9090
0b0695f2
VG
9091/*
9092 * Decision matrix according to the local and busiest group type:
9093 *
9094 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9095 * has_spare nr_idle balanced N/A N/A balanced balanced
9096 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9097 * misfit_task force N/A N/A N/A force force
9098 * asym_packing force force N/A N/A force force
9099 * imbalanced force force N/A N/A force force
9100 * overloaded force force N/A N/A force avg_load
9101 *
9102 * N/A : Not Applicable because already filtered while updating
9103 * statistics.
9104 * balanced : The system is balanced for these 2 groups.
9105 * force : Calculate the imbalance as load migration is probably needed.
9106 * avg_load : Only if imbalance is significant enough.
9107 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9108 * different in groups.
9109 */
9110
1e3c88bd
PZ
9111/**
9112 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9113 * if there is an imbalance.
1e3c88bd 9114 *
a3df0679 9115 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9116 * to restore balance.
9117 *
cd96891d 9118 * @env: The load balancing environment.
1e3c88bd 9119 *
e69f6186 9120 * Return: - The busiest group if imbalance exists.
1e3c88bd 9121 */
56cf515b 9122static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9123{
56cf515b 9124 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9125 struct sd_lb_stats sds;
9126
147c5fc2 9127 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9128
9129 /*
b0fb1eb4 9130 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9131 * this level.
9132 */
23f0d209 9133 update_sd_lb_stats(env, &sds);
2802bf3c 9134
f8a696f2 9135 if (sched_energy_enabled()) {
2802bf3c
MR
9136 struct root_domain *rd = env->dst_rq->rd;
9137
9138 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9139 goto out_balanced;
9140 }
9141
56cf515b
JK
9142 local = &sds.local_stat;
9143 busiest = &sds.busiest_stat;
1e3c88bd 9144
cc57aa8f 9145 /* There is no busy sibling group to pull tasks from */
0b0695f2 9146 if (!sds.busiest)
1e3c88bd
PZ
9147 goto out_balanced;
9148
0b0695f2
VG
9149 /* Misfit tasks should be dealt with regardless of the avg load */
9150 if (busiest->group_type == group_misfit_task)
9151 goto force_balance;
9152
9153 /* ASYM feature bypasses nice load balance check */
9154 if (busiest->group_type == group_asym_packing)
9155 goto force_balance;
b0432d8f 9156
866ab43e
PZ
9157 /*
9158 * If the busiest group is imbalanced the below checks don't
30ce5dab 9159 * work because they assume all things are equal, which typically
3bd37062 9160 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9161 */
caeb178c 9162 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9163 goto force_balance;
9164
cc57aa8f 9165 /*
9c58c79a 9166 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9167 * don't try and pull any tasks.
9168 */
0b0695f2 9169 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9170 goto out_balanced;
9171
cc57aa8f 9172 /*
0b0695f2
VG
9173 * When groups are overloaded, use the avg_load to ensure fairness
9174 * between tasks.
cc57aa8f 9175 */
0b0695f2
VG
9176 if (local->group_type == group_overloaded) {
9177 /*
9178 * If the local group is more loaded than the selected
9179 * busiest group don't try to pull any tasks.
9180 */
9181 if (local->avg_load >= busiest->avg_load)
9182 goto out_balanced;
9183
9184 /* XXX broken for overlapping NUMA groups */
9185 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9186 sds.total_capacity;
1e3c88bd 9187
aae6d3dd 9188 /*
0b0695f2
VG
9189 * Don't pull any tasks if this group is already above the
9190 * domain average load.
aae6d3dd 9191 */
0b0695f2 9192 if (local->avg_load >= sds.avg_load)
aae6d3dd 9193 goto out_balanced;
0b0695f2 9194
c186fafe 9195 /*
0b0695f2
VG
9196 * If the busiest group is more loaded, use imbalance_pct to be
9197 * conservative.
c186fafe 9198 */
56cf515b
JK
9199 if (100 * busiest->avg_load <=
9200 env->sd->imbalance_pct * local->avg_load)
c186fafe 9201 goto out_balanced;
aae6d3dd 9202 }
1e3c88bd 9203
0b0695f2
VG
9204 /* Try to move all excess tasks to child's sibling domain */
9205 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9206 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9207 goto force_balance;
9208
2ab4092f
VG
9209 if (busiest->group_type != group_overloaded) {
9210 if (env->idle == CPU_NOT_IDLE)
9211 /*
9212 * If the busiest group is not overloaded (and as a
9213 * result the local one too) but this CPU is already
9214 * busy, let another idle CPU try to pull task.
9215 */
9216 goto out_balanced;
9217
9218 if (busiest->group_weight > 1 &&
9219 local->idle_cpus <= (busiest->idle_cpus + 1))
9220 /*
9221 * If the busiest group is not overloaded
9222 * and there is no imbalance between this and busiest
9223 * group wrt idle CPUs, it is balanced. The imbalance
9224 * becomes significant if the diff is greater than 1
9225 * otherwise we might end up to just move the imbalance
9226 * on another group. Of course this applies only if
9227 * there is more than 1 CPU per group.
9228 */
9229 goto out_balanced;
9230
9231 if (busiest->sum_h_nr_running == 1)
9232 /*
9233 * busiest doesn't have any tasks waiting to run
9234 */
9235 goto out_balanced;
9236 }
0b0695f2 9237
fab47622 9238force_balance:
1e3c88bd 9239 /* Looks like there is an imbalance. Compute it */
bd939f45 9240 calculate_imbalance(env, &sds);
bb3485c8 9241 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9242
9243out_balanced:
bd939f45 9244 env->imbalance = 0;
1e3c88bd
PZ
9245 return NULL;
9246}
9247
9248/*
97fb7a0a 9249 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9250 */
bd939f45 9251static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9252 struct sched_group *group)
1e3c88bd
PZ
9253{
9254 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9255 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9256 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9257 int i;
9258
ae4df9d6 9259 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9260 unsigned long capacity, load, util;
9261 unsigned int nr_running;
0ec8aa00
PZ
9262 enum fbq_type rt;
9263
9264 rq = cpu_rq(i);
9265 rt = fbq_classify_rq(rq);
1e3c88bd 9266
0ec8aa00
PZ
9267 /*
9268 * We classify groups/runqueues into three groups:
9269 * - regular: there are !numa tasks
9270 * - remote: there are numa tasks that run on the 'wrong' node
9271 * - all: there is no distinction
9272 *
9273 * In order to avoid migrating ideally placed numa tasks,
9274 * ignore those when there's better options.
9275 *
9276 * If we ignore the actual busiest queue to migrate another
9277 * task, the next balance pass can still reduce the busiest
9278 * queue by moving tasks around inside the node.
9279 *
9280 * If we cannot move enough load due to this classification
9281 * the next pass will adjust the group classification and
9282 * allow migration of more tasks.
9283 *
9284 * Both cases only affect the total convergence complexity.
9285 */
9286 if (rt > env->fbq_type)
9287 continue;
9288
ced549fa 9289 capacity = capacity_of(i);
0b0695f2 9290 nr_running = rq->cfs.h_nr_running;
9d5efe05 9291
4ad3831a
CR
9292 /*
9293 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9294 * eventually lead to active_balancing high->low capacity.
9295 * Higher per-CPU capacity is considered better than balancing
9296 * average load.
9297 */
9298 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9299 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9300 nr_running == 1)
4ad3831a
CR
9301 continue;
9302
0b0695f2
VG
9303 switch (env->migration_type) {
9304 case migrate_load:
9305 /*
b0fb1eb4
VG
9306 * When comparing with load imbalance, use cpu_load()
9307 * which is not scaled with the CPU capacity.
0b0695f2 9308 */
b0fb1eb4 9309 load = cpu_load(rq);
1e3c88bd 9310
0b0695f2
VG
9311 if (nr_running == 1 && load > env->imbalance &&
9312 !check_cpu_capacity(rq, env->sd))
9313 break;
ea67821b 9314
0b0695f2
VG
9315 /*
9316 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9317 * consider the cpu_load() scaled with the CPU
9318 * capacity, so that the load can be moved away
9319 * from the CPU that is potentially running at a
9320 * lower capacity.
0b0695f2
VG
9321 *
9322 * Thus we're looking for max(load_i / capacity_i),
9323 * crosswise multiplication to rid ourselves of the
9324 * division works out to:
9325 * load_i * capacity_j > load_j * capacity_i;
9326 * where j is our previous maximum.
9327 */
9328 if (load * busiest_capacity > busiest_load * capacity) {
9329 busiest_load = load;
9330 busiest_capacity = capacity;
9331 busiest = rq;
9332 }
9333 break;
9334
9335 case migrate_util:
9336 util = cpu_util(cpu_of(rq));
9337
c32b4308
VG
9338 /*
9339 * Don't try to pull utilization from a CPU with one
9340 * running task. Whatever its utilization, we will fail
9341 * detach the task.
9342 */
9343 if (nr_running <= 1)
9344 continue;
9345
0b0695f2
VG
9346 if (busiest_util < util) {
9347 busiest_util = util;
9348 busiest = rq;
9349 }
9350 break;
9351
9352 case migrate_task:
9353 if (busiest_nr < nr_running) {
9354 busiest_nr = nr_running;
9355 busiest = rq;
9356 }
9357 break;
9358
9359 case migrate_misfit:
9360 /*
9361 * For ASYM_CPUCAPACITY domains with misfit tasks we
9362 * simply seek the "biggest" misfit task.
9363 */
9364 if (rq->misfit_task_load > busiest_load) {
9365 busiest_load = rq->misfit_task_load;
9366 busiest = rq;
9367 }
9368
9369 break;
1e3c88bd 9370
1e3c88bd
PZ
9371 }
9372 }
9373
9374 return busiest;
9375}
9376
9377/*
9378 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9379 * so long as it is large enough.
9380 */
9381#define MAX_PINNED_INTERVAL 512
9382
46a745d9
VG
9383static inline bool
9384asym_active_balance(struct lb_env *env)
1af3ed3d 9385{
46a745d9
VG
9386 /*
9387 * ASYM_PACKING needs to force migrate tasks from busy but
9388 * lower priority CPUs in order to pack all tasks in the
9389 * highest priority CPUs.
9390 */
9391 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9392 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9393}
bd939f45 9394
46a745d9
VG
9395static inline bool
9396voluntary_active_balance(struct lb_env *env)
9397{
9398 struct sched_domain *sd = env->sd;
532cb4c4 9399
46a745d9
VG
9400 if (asym_active_balance(env))
9401 return 1;
1af3ed3d 9402
1aaf90a4
VG
9403 /*
9404 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9405 * It's worth migrating the task if the src_cpu's capacity is reduced
9406 * because of other sched_class or IRQs if more capacity stays
9407 * available on dst_cpu.
9408 */
9409 if ((env->idle != CPU_NOT_IDLE) &&
9410 (env->src_rq->cfs.h_nr_running == 1)) {
9411 if ((check_cpu_capacity(env->src_rq, sd)) &&
9412 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9413 return 1;
9414 }
9415
0b0695f2 9416 if (env->migration_type == migrate_misfit)
cad68e55
MR
9417 return 1;
9418
46a745d9
VG
9419 return 0;
9420}
9421
9422static int need_active_balance(struct lb_env *env)
9423{
9424 struct sched_domain *sd = env->sd;
9425
9426 if (voluntary_active_balance(env))
9427 return 1;
9428
1af3ed3d
PZ
9429 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9430}
9431
969c7921
TH
9432static int active_load_balance_cpu_stop(void *data);
9433
23f0d209
JK
9434static int should_we_balance(struct lb_env *env)
9435{
9436 struct sched_group *sg = env->sd->groups;
23f0d209
JK
9437 int cpu, balance_cpu = -1;
9438
024c9d2f
PZ
9439 /*
9440 * Ensure the balancing environment is consistent; can happen
9441 * when the softirq triggers 'during' hotplug.
9442 */
9443 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9444 return 0;
9445
23f0d209 9446 /*
97fb7a0a 9447 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9448 * to do the newly idle load balance.
9449 */
9450 if (env->idle == CPU_NEWLY_IDLE)
9451 return 1;
9452
97fb7a0a 9453 /* Try to find first idle CPU */
e5c14b1f 9454 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9455 if (!idle_cpu(cpu))
23f0d209
JK
9456 continue;
9457
9458 balance_cpu = cpu;
9459 break;
9460 }
9461
9462 if (balance_cpu == -1)
9463 balance_cpu = group_balance_cpu(sg);
9464
9465 /*
97fb7a0a 9466 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
9467 * is eligible for doing load balancing at this and above domains.
9468 */
b0cff9d8 9469 return balance_cpu == env->dst_cpu;
23f0d209
JK
9470}
9471
1e3c88bd
PZ
9472/*
9473 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9474 * tasks if there is an imbalance.
9475 */
9476static int load_balance(int this_cpu, struct rq *this_rq,
9477 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9478 int *continue_balancing)
1e3c88bd 9479{
88b8dac0 9480 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9481 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9482 struct sched_group *group;
1e3c88bd 9483 struct rq *busiest;
8a8c69c3 9484 struct rq_flags rf;
4ba29684 9485 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9486
8e45cb54
PZ
9487 struct lb_env env = {
9488 .sd = sd,
ddcdf6e7
PZ
9489 .dst_cpu = this_cpu,
9490 .dst_rq = this_rq,
ae4df9d6 9491 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9492 .idle = idle,
eb95308e 9493 .loop_break = sched_nr_migrate_break,
b9403130 9494 .cpus = cpus,
0ec8aa00 9495 .fbq_type = all,
163122b7 9496 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9497 };
9498
65a4433a 9499 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9500
ae92882e 9501 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9502
9503redo:
23f0d209
JK
9504 if (!should_we_balance(&env)) {
9505 *continue_balancing = 0;
1e3c88bd 9506 goto out_balanced;
23f0d209 9507 }
1e3c88bd 9508
23f0d209 9509 group = find_busiest_group(&env);
1e3c88bd 9510 if (!group) {
ae92882e 9511 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9512 goto out_balanced;
9513 }
9514
b9403130 9515 busiest = find_busiest_queue(&env, group);
1e3c88bd 9516 if (!busiest) {
ae92882e 9517 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9518 goto out_balanced;
9519 }
9520
78feefc5 9521 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9522
ae92882e 9523 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9524
1aaf90a4
VG
9525 env.src_cpu = busiest->cpu;
9526 env.src_rq = busiest;
9527
1e3c88bd
PZ
9528 ld_moved = 0;
9529 if (busiest->nr_running > 1) {
9530 /*
9531 * Attempt to move tasks. If find_busiest_group has found
9532 * an imbalance but busiest->nr_running <= 1, the group is
9533 * still unbalanced. ld_moved simply stays zero, so it is
9534 * correctly treated as an imbalance.
9535 */
8e45cb54 9536 env.flags |= LBF_ALL_PINNED;
c82513e5 9537 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9538
5d6523eb 9539more_balance:
8a8c69c3 9540 rq_lock_irqsave(busiest, &rf);
3bed5e21 9541 update_rq_clock(busiest);
88b8dac0
SV
9542
9543 /*
9544 * cur_ld_moved - load moved in current iteration
9545 * ld_moved - cumulative load moved across iterations
9546 */
163122b7 9547 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9548
9549 /*
163122b7
KT
9550 * We've detached some tasks from busiest_rq. Every
9551 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9552 * unlock busiest->lock, and we are able to be sure
9553 * that nobody can manipulate the tasks in parallel.
9554 * See task_rq_lock() family for the details.
1e3c88bd 9555 */
163122b7 9556
8a8c69c3 9557 rq_unlock(busiest, &rf);
163122b7
KT
9558
9559 if (cur_ld_moved) {
9560 attach_tasks(&env);
9561 ld_moved += cur_ld_moved;
9562 }
9563
8a8c69c3 9564 local_irq_restore(rf.flags);
88b8dac0 9565
f1cd0858
JK
9566 if (env.flags & LBF_NEED_BREAK) {
9567 env.flags &= ~LBF_NEED_BREAK;
9568 goto more_balance;
9569 }
9570
88b8dac0
SV
9571 /*
9572 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9573 * us and move them to an alternate dst_cpu in our sched_group
9574 * where they can run. The upper limit on how many times we
97fb7a0a 9575 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9576 * sched_group.
9577 *
9578 * This changes load balance semantics a bit on who can move
9579 * load to a given_cpu. In addition to the given_cpu itself
9580 * (or a ilb_cpu acting on its behalf where given_cpu is
9581 * nohz-idle), we now have balance_cpu in a position to move
9582 * load to given_cpu. In rare situations, this may cause
9583 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9584 * _independently_ and at _same_ time to move some load to
9585 * given_cpu) causing exceess load to be moved to given_cpu.
9586 * This however should not happen so much in practice and
9587 * moreover subsequent load balance cycles should correct the
9588 * excess load moved.
9589 */
6263322c 9590 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9591
97fb7a0a 9592 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9593 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9594
78feefc5 9595 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9596 env.dst_cpu = env.new_dst_cpu;
6263322c 9597 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9598 env.loop = 0;
9599 env.loop_break = sched_nr_migrate_break;
e02e60c1 9600
88b8dac0
SV
9601 /*
9602 * Go back to "more_balance" rather than "redo" since we
9603 * need to continue with same src_cpu.
9604 */
9605 goto more_balance;
9606 }
1e3c88bd 9607
6263322c
PZ
9608 /*
9609 * We failed to reach balance because of affinity.
9610 */
9611 if (sd_parent) {
63b2ca30 9612 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9613
afdeee05 9614 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9615 *group_imbalance = 1;
6263322c
PZ
9616 }
9617
1e3c88bd 9618 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9619 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9620 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9621 /*
9622 * Attempting to continue load balancing at the current
9623 * sched_domain level only makes sense if there are
9624 * active CPUs remaining as possible busiest CPUs to
9625 * pull load from which are not contained within the
9626 * destination group that is receiving any migrated
9627 * load.
9628 */
9629 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9630 env.loop = 0;
9631 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9632 goto redo;
bbf18b19 9633 }
afdeee05 9634 goto out_all_pinned;
1e3c88bd
PZ
9635 }
9636 }
9637
9638 if (!ld_moved) {
ae92882e 9639 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9640 /*
9641 * Increment the failure counter only on periodic balance.
9642 * We do not want newidle balance, which can be very
9643 * frequent, pollute the failure counter causing
9644 * excessive cache_hot migrations and active balances.
9645 */
9646 if (idle != CPU_NEWLY_IDLE)
9647 sd->nr_balance_failed++;
1e3c88bd 9648
bd939f45 9649 if (need_active_balance(&env)) {
8a8c69c3
PZ
9650 unsigned long flags;
9651
1e3c88bd
PZ
9652 raw_spin_lock_irqsave(&busiest->lock, flags);
9653
97fb7a0a
IM
9654 /*
9655 * Don't kick the active_load_balance_cpu_stop,
9656 * if the curr task on busiest CPU can't be
9657 * moved to this_cpu:
1e3c88bd 9658 */
3bd37062 9659 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9660 raw_spin_unlock_irqrestore(&busiest->lock,
9661 flags);
8e45cb54 9662 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9663 goto out_one_pinned;
9664 }
9665
969c7921
TH
9666 /*
9667 * ->active_balance synchronizes accesses to
9668 * ->active_balance_work. Once set, it's cleared
9669 * only after active load balance is finished.
9670 */
1e3c88bd
PZ
9671 if (!busiest->active_balance) {
9672 busiest->active_balance = 1;
9673 busiest->push_cpu = this_cpu;
9674 active_balance = 1;
9675 }
9676 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9677
bd939f45 9678 if (active_balance) {
969c7921
TH
9679 stop_one_cpu_nowait(cpu_of(busiest),
9680 active_load_balance_cpu_stop, busiest,
9681 &busiest->active_balance_work);
bd939f45 9682 }
1e3c88bd 9683
d02c0711 9684 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9685 sd->nr_balance_failed = sd->cache_nice_tries+1;
9686 }
9687 } else
9688 sd->nr_balance_failed = 0;
9689
46a745d9 9690 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9691 /* We were unbalanced, so reset the balancing interval */
9692 sd->balance_interval = sd->min_interval;
9693 } else {
9694 /*
9695 * If we've begun active balancing, start to back off. This
9696 * case may not be covered by the all_pinned logic if there
9697 * is only 1 task on the busy runqueue (because we don't call
163122b7 9698 * detach_tasks).
1e3c88bd
PZ
9699 */
9700 if (sd->balance_interval < sd->max_interval)
9701 sd->balance_interval *= 2;
9702 }
9703
1e3c88bd
PZ
9704 goto out;
9705
9706out_balanced:
afdeee05
VG
9707 /*
9708 * We reach balance although we may have faced some affinity
f6cad8df
VG
9709 * constraints. Clear the imbalance flag only if other tasks got
9710 * a chance to move and fix the imbalance.
afdeee05 9711 */
f6cad8df 9712 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9713 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9714
9715 if (*group_imbalance)
9716 *group_imbalance = 0;
9717 }
9718
9719out_all_pinned:
9720 /*
9721 * We reach balance because all tasks are pinned at this level so
9722 * we can't migrate them. Let the imbalance flag set so parent level
9723 * can try to migrate them.
9724 */
ae92882e 9725 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9726
9727 sd->nr_balance_failed = 0;
9728
9729out_one_pinned:
3f130a37
VS
9730 ld_moved = 0;
9731
9732 /*
5ba553ef
PZ
9733 * newidle_balance() disregards balance intervals, so we could
9734 * repeatedly reach this code, which would lead to balance_interval
9735 * skyrocketting in a short amount of time. Skip the balance_interval
9736 * increase logic to avoid that.
3f130a37
VS
9737 */
9738 if (env.idle == CPU_NEWLY_IDLE)
9739 goto out;
9740
1e3c88bd 9741 /* tune up the balancing interval */
47b7aee1
VS
9742 if ((env.flags & LBF_ALL_PINNED &&
9743 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9744 sd->balance_interval < sd->max_interval)
1e3c88bd 9745 sd->balance_interval *= 2;
1e3c88bd 9746out:
1e3c88bd
PZ
9747 return ld_moved;
9748}
9749
52a08ef1
JL
9750static inline unsigned long
9751get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9752{
9753 unsigned long interval = sd->balance_interval;
9754
9755 if (cpu_busy)
9756 interval *= sd->busy_factor;
9757
9758 /* scale ms to jiffies */
9759 interval = msecs_to_jiffies(interval);
9760 interval = clamp(interval, 1UL, max_load_balance_interval);
9761
9762 return interval;
9763}
9764
9765static inline void
31851a98 9766update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9767{
9768 unsigned long interval, next;
9769
31851a98
LY
9770 /* used by idle balance, so cpu_busy = 0 */
9771 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9772 next = sd->last_balance + interval;
9773
9774 if (time_after(*next_balance, next))
9775 *next_balance = next;
9776}
9777
1e3c88bd 9778/*
97fb7a0a 9779 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9780 * running tasks off the busiest CPU onto idle CPUs. It requires at
9781 * least 1 task to be running on each physical CPU where possible, and
9782 * avoids physical / logical imbalances.
1e3c88bd 9783 */
969c7921 9784static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9785{
969c7921
TH
9786 struct rq *busiest_rq = data;
9787 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9788 int target_cpu = busiest_rq->push_cpu;
969c7921 9789 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9790 struct sched_domain *sd;
e5673f28 9791 struct task_struct *p = NULL;
8a8c69c3 9792 struct rq_flags rf;
969c7921 9793
8a8c69c3 9794 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9795 /*
9796 * Between queueing the stop-work and running it is a hole in which
9797 * CPUs can become inactive. We should not move tasks from or to
9798 * inactive CPUs.
9799 */
9800 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9801 goto out_unlock;
969c7921 9802
97fb7a0a 9803 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9804 if (unlikely(busiest_cpu != smp_processor_id() ||
9805 !busiest_rq->active_balance))
9806 goto out_unlock;
1e3c88bd
PZ
9807
9808 /* Is there any task to move? */
9809 if (busiest_rq->nr_running <= 1)
969c7921 9810 goto out_unlock;
1e3c88bd
PZ
9811
9812 /*
9813 * This condition is "impossible", if it occurs
9814 * we need to fix it. Originally reported by
97fb7a0a 9815 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9816 */
9817 BUG_ON(busiest_rq == target_rq);
9818
1e3c88bd 9819 /* Search for an sd spanning us and the target CPU. */
dce840a0 9820 rcu_read_lock();
1e3c88bd
PZ
9821 for_each_domain(target_cpu, sd) {
9822 if ((sd->flags & SD_LOAD_BALANCE) &&
9823 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9824 break;
9825 }
9826
9827 if (likely(sd)) {
8e45cb54
PZ
9828 struct lb_env env = {
9829 .sd = sd,
ddcdf6e7
PZ
9830 .dst_cpu = target_cpu,
9831 .dst_rq = target_rq,
9832 .src_cpu = busiest_rq->cpu,
9833 .src_rq = busiest_rq,
8e45cb54 9834 .idle = CPU_IDLE,
65a4433a
JH
9835 /*
9836 * can_migrate_task() doesn't need to compute new_dst_cpu
9837 * for active balancing. Since we have CPU_IDLE, but no
9838 * @dst_grpmask we need to make that test go away with lying
9839 * about DST_PINNED.
9840 */
9841 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9842 };
9843
ae92882e 9844 schedstat_inc(sd->alb_count);
3bed5e21 9845 update_rq_clock(busiest_rq);
1e3c88bd 9846
e5673f28 9847 p = detach_one_task(&env);
d02c0711 9848 if (p) {
ae92882e 9849 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9850 /* Active balancing done, reset the failure counter. */
9851 sd->nr_balance_failed = 0;
9852 } else {
ae92882e 9853 schedstat_inc(sd->alb_failed);
d02c0711 9854 }
1e3c88bd 9855 }
dce840a0 9856 rcu_read_unlock();
969c7921
TH
9857out_unlock:
9858 busiest_rq->active_balance = 0;
8a8c69c3 9859 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9860
9861 if (p)
9862 attach_one_task(target_rq, p);
9863
9864 local_irq_enable();
9865
969c7921 9866 return 0;
1e3c88bd
PZ
9867}
9868
af3fe03c
PZ
9869static DEFINE_SPINLOCK(balancing);
9870
9871/*
9872 * Scale the max load_balance interval with the number of CPUs in the system.
9873 * This trades load-balance latency on larger machines for less cross talk.
9874 */
9875void update_max_interval(void)
9876{
9877 max_load_balance_interval = HZ*num_online_cpus()/10;
9878}
9879
9880/*
9881 * It checks each scheduling domain to see if it is due to be balanced,
9882 * and initiates a balancing operation if so.
9883 *
9884 * Balancing parameters are set up in init_sched_domains.
9885 */
9886static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9887{
9888 int continue_balancing = 1;
9889 int cpu = rq->cpu;
323af6de 9890 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9891 unsigned long interval;
9892 struct sched_domain *sd;
9893 /* Earliest time when we have to do rebalance again */
9894 unsigned long next_balance = jiffies + 60*HZ;
9895 int update_next_balance = 0;
9896 int need_serialize, need_decay = 0;
9897 u64 max_cost = 0;
9898
9899 rcu_read_lock();
9900 for_each_domain(cpu, sd) {
9901 /*
9902 * Decay the newidle max times here because this is a regular
9903 * visit to all the domains. Decay ~1% per second.
9904 */
9905 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9906 sd->max_newidle_lb_cost =
9907 (sd->max_newidle_lb_cost * 253) / 256;
9908 sd->next_decay_max_lb_cost = jiffies + HZ;
9909 need_decay = 1;
9910 }
9911 max_cost += sd->max_newidle_lb_cost;
9912
9913 if (!(sd->flags & SD_LOAD_BALANCE))
9914 continue;
9915
9916 /*
9917 * Stop the load balance at this level. There is another
9918 * CPU in our sched group which is doing load balancing more
9919 * actively.
9920 */
9921 if (!continue_balancing) {
9922 if (need_decay)
9923 continue;
9924 break;
9925 }
9926
323af6de 9927 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9928
9929 need_serialize = sd->flags & SD_SERIALIZE;
9930 if (need_serialize) {
9931 if (!spin_trylock(&balancing))
9932 goto out;
9933 }
9934
9935 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9936 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9937 /*
9938 * The LBF_DST_PINNED logic could have changed
9939 * env->dst_cpu, so we can't know our idle
9940 * state even if we migrated tasks. Update it.
9941 */
9942 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 9943 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9944 }
9945 sd->last_balance = jiffies;
323af6de 9946 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9947 }
9948 if (need_serialize)
9949 spin_unlock(&balancing);
9950out:
9951 if (time_after(next_balance, sd->last_balance + interval)) {
9952 next_balance = sd->last_balance + interval;
9953 update_next_balance = 1;
9954 }
9955 }
9956 if (need_decay) {
9957 /*
9958 * Ensure the rq-wide value also decays but keep it at a
9959 * reasonable floor to avoid funnies with rq->avg_idle.
9960 */
9961 rq->max_idle_balance_cost =
9962 max((u64)sysctl_sched_migration_cost, max_cost);
9963 }
9964 rcu_read_unlock();
9965
9966 /*
9967 * next_balance will be updated only when there is a need.
9968 * When the cpu is attached to null domain for ex, it will not be
9969 * updated.
9970 */
9971 if (likely(update_next_balance)) {
9972 rq->next_balance = next_balance;
9973
9974#ifdef CONFIG_NO_HZ_COMMON
9975 /*
9976 * If this CPU has been elected to perform the nohz idle
9977 * balance. Other idle CPUs have already rebalanced with
9978 * nohz_idle_balance() and nohz.next_balance has been
9979 * updated accordingly. This CPU is now running the idle load
9980 * balance for itself and we need to update the
9981 * nohz.next_balance accordingly.
9982 */
9983 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9984 nohz.next_balance = rq->next_balance;
9985#endif
9986 }
9987}
9988
d987fc7f
MG
9989static inline int on_null_domain(struct rq *rq)
9990{
9991 return unlikely(!rcu_dereference_sched(rq->sd));
9992}
9993
3451d024 9994#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9995/*
9996 * idle load balancing details
83cd4fe2
VP
9997 * - When one of the busy CPUs notice that there may be an idle rebalancing
9998 * needed, they will kick the idle load balancer, which then does idle
9999 * load balancing for all the idle CPUs.
9b019acb
NP
10000 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10001 * anywhere yet.
83cd4fe2 10002 */
1e3c88bd 10003
3dd0337d 10004static inline int find_new_ilb(void)
1e3c88bd 10005{
9b019acb 10006 int ilb;
1e3c88bd 10007
9b019acb
NP
10008 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10009 housekeeping_cpumask(HK_FLAG_MISC)) {
10010 if (idle_cpu(ilb))
10011 return ilb;
10012 }
786d6dc7
SS
10013
10014 return nr_cpu_ids;
1e3c88bd 10015}
1e3c88bd 10016
83cd4fe2 10017/*
9b019acb
NP
10018 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10019 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10020 */
a4064fb6 10021static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10022{
10023 int ilb_cpu;
10024
10025 nohz.next_balance++;
10026
3dd0337d 10027 ilb_cpu = find_new_ilb();
83cd4fe2 10028
0b005cf5
SS
10029 if (ilb_cpu >= nr_cpu_ids)
10030 return;
83cd4fe2 10031
a4064fb6 10032 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10033 if (flags & NOHZ_KICK_MASK)
1c792db7 10034 return;
4550487a 10035
1c792db7
SS
10036 /*
10037 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 10038 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
10039 * is idle. And the softirq performing nohz idle load balance
10040 * will be run before returning from the IPI.
10041 */
10042 smp_send_reschedule(ilb_cpu);
4550487a
PZ
10043}
10044
10045/*
9f132742
VS
10046 * Current decision point for kicking the idle load balancer in the presence
10047 * of idle CPUs in the system.
4550487a
PZ
10048 */
10049static void nohz_balancer_kick(struct rq *rq)
10050{
10051 unsigned long now = jiffies;
10052 struct sched_domain_shared *sds;
10053 struct sched_domain *sd;
10054 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10055 unsigned int flags = 0;
4550487a
PZ
10056
10057 if (unlikely(rq->idle_balance))
10058 return;
10059
10060 /*
10061 * We may be recently in ticked or tickless idle mode. At the first
10062 * busy tick after returning from idle, we will update the busy stats.
10063 */
00357f5e 10064 nohz_balance_exit_idle(rq);
4550487a
PZ
10065
10066 /*
10067 * None are in tickless mode and hence no need for NOHZ idle load
10068 * balancing.
10069 */
10070 if (likely(!atomic_read(&nohz.nr_cpus)))
10071 return;
10072
f643ea22
VG
10073 if (READ_ONCE(nohz.has_blocked) &&
10074 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10075 flags = NOHZ_STATS_KICK;
10076
4550487a 10077 if (time_before(now, nohz.next_balance))
a4064fb6 10078 goto out;
4550487a 10079
a0fe2cf0 10080 if (rq->nr_running >= 2) {
a4064fb6 10081 flags = NOHZ_KICK_MASK;
4550487a
PZ
10082 goto out;
10083 }
10084
10085 rcu_read_lock();
4550487a
PZ
10086
10087 sd = rcu_dereference(rq->sd);
10088 if (sd) {
e25a7a94
VS
10089 /*
10090 * If there's a CFS task and the current CPU has reduced
10091 * capacity; kick the ILB to see if there's a better CPU to run
10092 * on.
10093 */
10094 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10095 flags = NOHZ_KICK_MASK;
4550487a
PZ
10096 goto unlock;
10097 }
10098 }
10099
011b27bb 10100 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10101 if (sd) {
b9a7b883
VS
10102 /*
10103 * When ASYM_PACKING; see if there's a more preferred CPU
10104 * currently idle; in which case, kick the ILB to move tasks
10105 * around.
10106 */
7edab78d 10107 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10108 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10109 flags = NOHZ_KICK_MASK;
4550487a
PZ
10110 goto unlock;
10111 }
10112 }
10113 }
b9a7b883 10114
a0fe2cf0
VS
10115 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10116 if (sd) {
10117 /*
10118 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10119 * to run the misfit task on.
10120 */
10121 if (check_misfit_status(rq, sd)) {
10122 flags = NOHZ_KICK_MASK;
10123 goto unlock;
10124 }
b9a7b883
VS
10125
10126 /*
10127 * For asymmetric systems, we do not want to nicely balance
10128 * cache use, instead we want to embrace asymmetry and only
10129 * ensure tasks have enough CPU capacity.
10130 *
10131 * Skip the LLC logic because it's not relevant in that case.
10132 */
10133 goto unlock;
a0fe2cf0
VS
10134 }
10135
b9a7b883
VS
10136 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10137 if (sds) {
e25a7a94 10138 /*
b9a7b883
VS
10139 * If there is an imbalance between LLC domains (IOW we could
10140 * increase the overall cache use), we need some less-loaded LLC
10141 * domain to pull some load. Likewise, we may need to spread
10142 * load within the current LLC domain (e.g. packed SMT cores but
10143 * other CPUs are idle). We can't really know from here how busy
10144 * the others are - so just get a nohz balance going if it looks
10145 * like this LLC domain has tasks we could move.
e25a7a94 10146 */
b9a7b883
VS
10147 nr_busy = atomic_read(&sds->nr_busy_cpus);
10148 if (nr_busy > 1) {
10149 flags = NOHZ_KICK_MASK;
10150 goto unlock;
4550487a
PZ
10151 }
10152 }
10153unlock:
10154 rcu_read_unlock();
10155out:
a4064fb6
PZ
10156 if (flags)
10157 kick_ilb(flags);
83cd4fe2
VP
10158}
10159
00357f5e 10160static void set_cpu_sd_state_busy(int cpu)
71325960 10161{
00357f5e 10162 struct sched_domain *sd;
a22e47a4 10163
00357f5e
PZ
10164 rcu_read_lock();
10165 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10166
00357f5e
PZ
10167 if (!sd || !sd->nohz_idle)
10168 goto unlock;
10169 sd->nohz_idle = 0;
10170
10171 atomic_inc(&sd->shared->nr_busy_cpus);
10172unlock:
10173 rcu_read_unlock();
71325960
SS
10174}
10175
00357f5e
PZ
10176void nohz_balance_exit_idle(struct rq *rq)
10177{
10178 SCHED_WARN_ON(rq != this_rq());
10179
10180 if (likely(!rq->nohz_tick_stopped))
10181 return;
10182
10183 rq->nohz_tick_stopped = 0;
10184 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10185 atomic_dec(&nohz.nr_cpus);
10186
10187 set_cpu_sd_state_busy(rq->cpu);
10188}
10189
10190static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10191{
10192 struct sched_domain *sd;
69e1e811 10193
69e1e811 10194 rcu_read_lock();
0e369d75 10195 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10196
10197 if (!sd || sd->nohz_idle)
10198 goto unlock;
10199 sd->nohz_idle = 1;
10200
0e369d75 10201 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10202unlock:
69e1e811
SS
10203 rcu_read_unlock();
10204}
10205
1e3c88bd 10206/*
97fb7a0a 10207 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10208 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10209 */
c1cc017c 10210void nohz_balance_enter_idle(int cpu)
1e3c88bd 10211{
00357f5e
PZ
10212 struct rq *rq = cpu_rq(cpu);
10213
10214 SCHED_WARN_ON(cpu != smp_processor_id());
10215
97fb7a0a 10216 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10217 if (!cpu_active(cpu))
10218 return;
10219
387bc8b5 10220 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10221 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10222 return;
10223
f643ea22
VG
10224 /*
10225 * Can be set safely without rq->lock held
10226 * If a clear happens, it will have evaluated last additions because
10227 * rq->lock is held during the check and the clear
10228 */
10229 rq->has_blocked_load = 1;
10230
10231 /*
10232 * The tick is still stopped but load could have been added in the
10233 * meantime. We set the nohz.has_blocked flag to trig a check of the
10234 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10235 * of nohz.has_blocked can only happen after checking the new load
10236 */
00357f5e 10237 if (rq->nohz_tick_stopped)
f643ea22 10238 goto out;
1e3c88bd 10239
97fb7a0a 10240 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10241 if (on_null_domain(rq))
d987fc7f
MG
10242 return;
10243
00357f5e
PZ
10244 rq->nohz_tick_stopped = 1;
10245
c1cc017c
AS
10246 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10247 atomic_inc(&nohz.nr_cpus);
00357f5e 10248
f643ea22
VG
10249 /*
10250 * Ensures that if nohz_idle_balance() fails to observe our
10251 * @idle_cpus_mask store, it must observe the @has_blocked
10252 * store.
10253 */
10254 smp_mb__after_atomic();
10255
00357f5e 10256 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10257
10258out:
10259 /*
10260 * Each time a cpu enter idle, we assume that it has blocked load and
10261 * enable the periodic update of the load of idle cpus
10262 */
10263 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10264}
1e3c88bd 10265
1e3c88bd 10266/*
31e77c93
VG
10267 * Internal function that runs load balance for all idle cpus. The load balance
10268 * can be a simple update of blocked load or a complete load balance with
10269 * tasks movement depending of flags.
10270 * The function returns false if the loop has stopped before running
10271 * through all idle CPUs.
1e3c88bd 10272 */
31e77c93
VG
10273static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10274 enum cpu_idle_type idle)
83cd4fe2 10275{
c5afb6a8 10276 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10277 unsigned long now = jiffies;
10278 unsigned long next_balance = now + 60*HZ;
f643ea22 10279 bool has_blocked_load = false;
c5afb6a8 10280 int update_next_balance = 0;
b7031a02 10281 int this_cpu = this_rq->cpu;
b7031a02 10282 int balance_cpu;
31e77c93 10283 int ret = false;
b7031a02 10284 struct rq *rq;
83cd4fe2 10285
b7031a02 10286 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10287
f643ea22
VG
10288 /*
10289 * We assume there will be no idle load after this update and clear
10290 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10291 * set the has_blocked flag and trig another update of idle load.
10292 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10293 * setting the flag, we are sure to not clear the state and not
10294 * check the load of an idle cpu.
10295 */
10296 WRITE_ONCE(nohz.has_blocked, 0);
10297
10298 /*
10299 * Ensures that if we miss the CPU, we must see the has_blocked
10300 * store from nohz_balance_enter_idle().
10301 */
10302 smp_mb();
10303
83cd4fe2 10304 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10305 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10306 continue;
10307
10308 /*
97fb7a0a
IM
10309 * If this CPU gets work to do, stop the load balancing
10310 * work being done for other CPUs. Next load
83cd4fe2
VP
10311 * balancing owner will pick it up.
10312 */
f643ea22
VG
10313 if (need_resched()) {
10314 has_blocked_load = true;
10315 goto abort;
10316 }
83cd4fe2 10317
5ed4f1d9
VG
10318 rq = cpu_rq(balance_cpu);
10319
63928384 10320 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10321
ed61bbc6
TC
10322 /*
10323 * If time for next balance is due,
10324 * do the balance.
10325 */
10326 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10327 struct rq_flags rf;
10328
31e77c93 10329 rq_lock_irqsave(rq, &rf);
ed61bbc6 10330 update_rq_clock(rq);
31e77c93 10331 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10332
b7031a02
PZ
10333 if (flags & NOHZ_BALANCE_KICK)
10334 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10335 }
83cd4fe2 10336
c5afb6a8
VG
10337 if (time_after(next_balance, rq->next_balance)) {
10338 next_balance = rq->next_balance;
10339 update_next_balance = 1;
10340 }
83cd4fe2 10341 }
c5afb6a8 10342
31e77c93
VG
10343 /* Newly idle CPU doesn't need an update */
10344 if (idle != CPU_NEWLY_IDLE) {
10345 update_blocked_averages(this_cpu);
10346 has_blocked_load |= this_rq->has_blocked_load;
10347 }
10348
b7031a02
PZ
10349 if (flags & NOHZ_BALANCE_KICK)
10350 rebalance_domains(this_rq, CPU_IDLE);
10351
f643ea22
VG
10352 WRITE_ONCE(nohz.next_blocked,
10353 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10354
31e77c93
VG
10355 /* The full idle balance loop has been done */
10356 ret = true;
10357
f643ea22
VG
10358abort:
10359 /* There is still blocked load, enable periodic update */
10360 if (has_blocked_load)
10361 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10362
c5afb6a8
VG
10363 /*
10364 * next_balance will be updated only when there is a need.
10365 * When the CPU is attached to null domain for ex, it will not be
10366 * updated.
10367 */
10368 if (likely(update_next_balance))
10369 nohz.next_balance = next_balance;
b7031a02 10370
31e77c93
VG
10371 return ret;
10372}
10373
10374/*
10375 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10376 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10377 */
10378static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10379{
10380 int this_cpu = this_rq->cpu;
10381 unsigned int flags;
10382
10383 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10384 return false;
10385
10386 if (idle != CPU_IDLE) {
10387 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10388 return false;
10389 }
10390
80eb8657 10391 /* could be _relaxed() */
31e77c93
VG
10392 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10393 if (!(flags & NOHZ_KICK_MASK))
10394 return false;
10395
10396 _nohz_idle_balance(this_rq, flags, idle);
10397
b7031a02 10398 return true;
83cd4fe2 10399}
31e77c93
VG
10400
10401static void nohz_newidle_balance(struct rq *this_rq)
10402{
10403 int this_cpu = this_rq->cpu;
10404
10405 /*
10406 * This CPU doesn't want to be disturbed by scheduler
10407 * housekeeping
10408 */
10409 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10410 return;
10411
10412 /* Will wake up very soon. No time for doing anything else*/
10413 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10414 return;
10415
10416 /* Don't need to update blocked load of idle CPUs*/
10417 if (!READ_ONCE(nohz.has_blocked) ||
10418 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10419 return;
10420
10421 raw_spin_unlock(&this_rq->lock);
10422 /*
10423 * This CPU is going to be idle and blocked load of idle CPUs
10424 * need to be updated. Run the ilb locally as it is a good
10425 * candidate for ilb instead of waking up another idle CPU.
10426 * Kick an normal ilb if we failed to do the update.
10427 */
10428 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10429 kick_ilb(NOHZ_STATS_KICK);
10430 raw_spin_lock(&this_rq->lock);
10431}
10432
dd707247
PZ
10433#else /* !CONFIG_NO_HZ_COMMON */
10434static inline void nohz_balancer_kick(struct rq *rq) { }
10435
31e77c93 10436static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10437{
10438 return false;
10439}
31e77c93
VG
10440
10441static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10442#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10443
47ea5412
PZ
10444/*
10445 * idle_balance is called by schedule() if this_cpu is about to become
10446 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10447 *
10448 * Returns:
10449 * < 0 - we released the lock and there are !fair tasks present
10450 * 0 - failed, no new tasks
10451 * > 0 - success, new (fair) tasks present
47ea5412 10452 */
5ba553ef 10453int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10454{
10455 unsigned long next_balance = jiffies + HZ;
10456 int this_cpu = this_rq->cpu;
10457 struct sched_domain *sd;
10458 int pulled_task = 0;
10459 u64 curr_cost = 0;
10460
5ba553ef 10461 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10462 /*
10463 * We must set idle_stamp _before_ calling idle_balance(), such that we
10464 * measure the duration of idle_balance() as idle time.
10465 */
10466 this_rq->idle_stamp = rq_clock(this_rq);
10467
10468 /*
10469 * Do not pull tasks towards !active CPUs...
10470 */
10471 if (!cpu_active(this_cpu))
10472 return 0;
10473
10474 /*
10475 * This is OK, because current is on_cpu, which avoids it being picked
10476 * for load-balance and preemption/IRQs are still disabled avoiding
10477 * further scheduler activity on it and we're being very careful to
10478 * re-start the picking loop.
10479 */
10480 rq_unpin_lock(this_rq, rf);
10481
10482 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10483 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10484
47ea5412
PZ
10485 rcu_read_lock();
10486 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10487 if (sd)
10488 update_next_balance(sd, &next_balance);
10489 rcu_read_unlock();
10490
31e77c93
VG
10491 nohz_newidle_balance(this_rq);
10492
47ea5412
PZ
10493 goto out;
10494 }
10495
10496 raw_spin_unlock(&this_rq->lock);
10497
10498 update_blocked_averages(this_cpu);
10499 rcu_read_lock();
10500 for_each_domain(this_cpu, sd) {
10501 int continue_balancing = 1;
10502 u64 t0, domain_cost;
10503
10504 if (!(sd->flags & SD_LOAD_BALANCE))
10505 continue;
10506
10507 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10508 update_next_balance(sd, &next_balance);
10509 break;
10510 }
10511
10512 if (sd->flags & SD_BALANCE_NEWIDLE) {
10513 t0 = sched_clock_cpu(this_cpu);
10514
10515 pulled_task = load_balance(this_cpu, this_rq,
10516 sd, CPU_NEWLY_IDLE,
10517 &continue_balancing);
10518
10519 domain_cost = sched_clock_cpu(this_cpu) - t0;
10520 if (domain_cost > sd->max_newidle_lb_cost)
10521 sd->max_newidle_lb_cost = domain_cost;
10522
10523 curr_cost += domain_cost;
10524 }
10525
10526 update_next_balance(sd, &next_balance);
10527
10528 /*
10529 * Stop searching for tasks to pull if there are
10530 * now runnable tasks on this rq.
10531 */
10532 if (pulled_task || this_rq->nr_running > 0)
10533 break;
10534 }
10535 rcu_read_unlock();
10536
10537 raw_spin_lock(&this_rq->lock);
10538
10539 if (curr_cost > this_rq->max_idle_balance_cost)
10540 this_rq->max_idle_balance_cost = curr_cost;
10541
457be908 10542out:
47ea5412
PZ
10543 /*
10544 * While browsing the domains, we released the rq lock, a task could
10545 * have been enqueued in the meantime. Since we're not going idle,
10546 * pretend we pulled a task.
10547 */
10548 if (this_rq->cfs.h_nr_running && !pulled_task)
10549 pulled_task = 1;
10550
47ea5412
PZ
10551 /* Move the next balance forward */
10552 if (time_after(this_rq->next_balance, next_balance))
10553 this_rq->next_balance = next_balance;
10554
10555 /* Is there a task of a high priority class? */
10556 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10557 pulled_task = -1;
10558
10559 if (pulled_task)
10560 this_rq->idle_stamp = 0;
10561
10562 rq_repin_lock(this_rq, rf);
10563
10564 return pulled_task;
10565}
10566
83cd4fe2
VP
10567/*
10568 * run_rebalance_domains is triggered when needed from the scheduler tick.
10569 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10570 */
0766f788 10571static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10572{
208cb16b 10573 struct rq *this_rq = this_rq();
6eb57e0d 10574 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10575 CPU_IDLE : CPU_NOT_IDLE;
10576
1e3c88bd 10577 /*
97fb7a0a
IM
10578 * If this CPU has a pending nohz_balance_kick, then do the
10579 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10580 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10581 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10582 * load balance only within the local sched_domain hierarchy
10583 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10584 */
b7031a02
PZ
10585 if (nohz_idle_balance(this_rq, idle))
10586 return;
10587
10588 /* normal load balance */
10589 update_blocked_averages(this_rq->cpu);
d4573c3e 10590 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10591}
10592
1e3c88bd
PZ
10593/*
10594 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10595 */
7caff66f 10596void trigger_load_balance(struct rq *rq)
1e3c88bd 10597{
1e3c88bd 10598 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10599 if (unlikely(on_null_domain(rq)))
10600 return;
10601
10602 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10603 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10604
10605 nohz_balancer_kick(rq);
1e3c88bd
PZ
10606}
10607
0bcdcf28
CE
10608static void rq_online_fair(struct rq *rq)
10609{
10610 update_sysctl();
0e59bdae
KT
10611
10612 update_runtime_enabled(rq);
0bcdcf28
CE
10613}
10614
10615static void rq_offline_fair(struct rq *rq)
10616{
10617 update_sysctl();
a4c96ae3
PB
10618
10619 /* Ensure any throttled groups are reachable by pick_next_task */
10620 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10621}
10622
55e12e5e 10623#endif /* CONFIG_SMP */
e1d1484f 10624
bf0f6f24 10625/*
d84b3131
FW
10626 * scheduler tick hitting a task of our scheduling class.
10627 *
10628 * NOTE: This function can be called remotely by the tick offload that
10629 * goes along full dynticks. Therefore no local assumption can be made
10630 * and everything must be accessed through the @rq and @curr passed in
10631 * parameters.
bf0f6f24 10632 */
8f4d37ec 10633static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10634{
10635 struct cfs_rq *cfs_rq;
10636 struct sched_entity *se = &curr->se;
10637
10638 for_each_sched_entity(se) {
10639 cfs_rq = cfs_rq_of(se);
8f4d37ec 10640 entity_tick(cfs_rq, se, queued);
bf0f6f24 10641 }
18bf2805 10642
b52da86e 10643 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10644 task_tick_numa(rq, curr);
3b1baa64
MR
10645
10646 update_misfit_status(curr, rq);
2802bf3c 10647 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10648}
10649
10650/*
cd29fe6f
PZ
10651 * called on fork with the child task as argument from the parent's context
10652 * - child not yet on the tasklist
10653 * - preemption disabled
bf0f6f24 10654 */
cd29fe6f 10655static void task_fork_fair(struct task_struct *p)
bf0f6f24 10656{
4fc420c9
DN
10657 struct cfs_rq *cfs_rq;
10658 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10659 struct rq *rq = this_rq();
8a8c69c3 10660 struct rq_flags rf;
bf0f6f24 10661
8a8c69c3 10662 rq_lock(rq, &rf);
861d034e
PZ
10663 update_rq_clock(rq);
10664
4fc420c9
DN
10665 cfs_rq = task_cfs_rq(current);
10666 curr = cfs_rq->curr;
e210bffd
PZ
10667 if (curr) {
10668 update_curr(cfs_rq);
b5d9d734 10669 se->vruntime = curr->vruntime;
e210bffd 10670 }
aeb73b04 10671 place_entity(cfs_rq, se, 1);
4d78e7b6 10672
cd29fe6f 10673 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10674 /*
edcb60a3
IM
10675 * Upon rescheduling, sched_class::put_prev_task() will place
10676 * 'current' within the tree based on its new key value.
10677 */
4d78e7b6 10678 swap(curr->vruntime, se->vruntime);
8875125e 10679 resched_curr(rq);
4d78e7b6 10680 }
bf0f6f24 10681
88ec22d3 10682 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10683 rq_unlock(rq, &rf);
bf0f6f24
IM
10684}
10685
cb469845
SR
10686/*
10687 * Priority of the task has changed. Check to see if we preempt
10688 * the current task.
10689 */
da7a735e
PZ
10690static void
10691prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10692{
da0c1e65 10693 if (!task_on_rq_queued(p))
da7a735e
PZ
10694 return;
10695
7c2e8bbd
FW
10696 if (rq->cfs.nr_running == 1)
10697 return;
10698
cb469845
SR
10699 /*
10700 * Reschedule if we are currently running on this runqueue and
10701 * our priority decreased, or if we are not currently running on
10702 * this runqueue and our priority is higher than the current's
10703 */
da7a735e 10704 if (rq->curr == p) {
cb469845 10705 if (p->prio > oldprio)
8875125e 10706 resched_curr(rq);
cb469845 10707 } else
15afe09b 10708 check_preempt_curr(rq, p, 0);
cb469845
SR
10709}
10710
daa59407 10711static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10712{
10713 struct sched_entity *se = &p->se;
da7a735e
PZ
10714
10715 /*
daa59407
BP
10716 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10717 * the dequeue_entity(.flags=0) will already have normalized the
10718 * vruntime.
10719 */
10720 if (p->on_rq)
10721 return true;
10722
10723 /*
10724 * When !on_rq, vruntime of the task has usually NOT been normalized.
10725 * But there are some cases where it has already been normalized:
da7a735e 10726 *
daa59407
BP
10727 * - A forked child which is waiting for being woken up by
10728 * wake_up_new_task().
10729 * - A task which has been woken up by try_to_wake_up() and
10730 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10731 */
d0cdb3ce
SM
10732 if (!se->sum_exec_runtime ||
10733 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10734 return true;
10735
10736 return false;
10737}
10738
09a43ace
VG
10739#ifdef CONFIG_FAIR_GROUP_SCHED
10740/*
10741 * Propagate the changes of the sched_entity across the tg tree to make it
10742 * visible to the root
10743 */
10744static void propagate_entity_cfs_rq(struct sched_entity *se)
10745{
10746 struct cfs_rq *cfs_rq;
10747
10748 /* Start to propagate at parent */
10749 se = se->parent;
10750
10751 for_each_sched_entity(se) {
10752 cfs_rq = cfs_rq_of(se);
10753
10754 if (cfs_rq_throttled(cfs_rq))
10755 break;
10756
88c0616e 10757 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10758 }
10759}
10760#else
10761static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10762#endif
10763
df217913 10764static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10765{
daa59407
BP
10766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10767
9d89c257 10768 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10769 update_load_avg(cfs_rq, se, 0);
a05e8c51 10770 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10771 update_tg_load_avg(cfs_rq, false);
09a43ace 10772 propagate_entity_cfs_rq(se);
da7a735e
PZ
10773}
10774
df217913 10775static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10776{
daa59407 10777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10778
10779#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10780 /*
10781 * Since the real-depth could have been changed (only FAIR
10782 * class maintain depth value), reset depth properly.
10783 */
10784 se->depth = se->parent ? se->parent->depth + 1 : 0;
10785#endif
7855a35a 10786
df217913 10787 /* Synchronize entity with its cfs_rq */
88c0616e 10788 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10789 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 10790 update_tg_load_avg(cfs_rq, false);
09a43ace 10791 propagate_entity_cfs_rq(se);
df217913
VG
10792}
10793
10794static void detach_task_cfs_rq(struct task_struct *p)
10795{
10796 struct sched_entity *se = &p->se;
10797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10798
10799 if (!vruntime_normalized(p)) {
10800 /*
10801 * Fix up our vruntime so that the current sleep doesn't
10802 * cause 'unlimited' sleep bonus.
10803 */
10804 place_entity(cfs_rq, se, 0);
10805 se->vruntime -= cfs_rq->min_vruntime;
10806 }
10807
10808 detach_entity_cfs_rq(se);
10809}
10810
10811static void attach_task_cfs_rq(struct task_struct *p)
10812{
10813 struct sched_entity *se = &p->se;
10814 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10815
10816 attach_entity_cfs_rq(se);
daa59407
BP
10817
10818 if (!vruntime_normalized(p))
10819 se->vruntime += cfs_rq->min_vruntime;
10820}
6efdb105 10821
daa59407
BP
10822static void switched_from_fair(struct rq *rq, struct task_struct *p)
10823{
10824 detach_task_cfs_rq(p);
10825}
10826
10827static void switched_to_fair(struct rq *rq, struct task_struct *p)
10828{
10829 attach_task_cfs_rq(p);
7855a35a 10830
daa59407 10831 if (task_on_rq_queued(p)) {
7855a35a 10832 /*
daa59407
BP
10833 * We were most likely switched from sched_rt, so
10834 * kick off the schedule if running, otherwise just see
10835 * if we can still preempt the current task.
7855a35a 10836 */
daa59407
BP
10837 if (rq->curr == p)
10838 resched_curr(rq);
10839 else
10840 check_preempt_curr(rq, p, 0);
7855a35a 10841 }
cb469845
SR
10842}
10843
83b699ed
SV
10844/* Account for a task changing its policy or group.
10845 *
10846 * This routine is mostly called to set cfs_rq->curr field when a task
10847 * migrates between groups/classes.
10848 */
a0e813f2 10849static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10850{
03b7fad1
PZ
10851 struct sched_entity *se = &p->se;
10852
10853#ifdef CONFIG_SMP
10854 if (task_on_rq_queued(p)) {
10855 /*
10856 * Move the next running task to the front of the list, so our
10857 * cfs_tasks list becomes MRU one.
10858 */
10859 list_move(&se->group_node, &rq->cfs_tasks);
10860 }
10861#endif
83b699ed 10862
ec12cb7f
PT
10863 for_each_sched_entity(se) {
10864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10865
10866 set_next_entity(cfs_rq, se);
10867 /* ensure bandwidth has been allocated on our new cfs_rq */
10868 account_cfs_rq_runtime(cfs_rq, 0);
10869 }
83b699ed
SV
10870}
10871
029632fb
PZ
10872void init_cfs_rq(struct cfs_rq *cfs_rq)
10873{
bfb06889 10874 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10875 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10876#ifndef CONFIG_64BIT
10877 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10878#endif
141965c7 10879#ifdef CONFIG_SMP
2a2f5d4e 10880 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10881#endif
029632fb
PZ
10882}
10883
810b3817 10884#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10885static void task_set_group_fair(struct task_struct *p)
10886{
10887 struct sched_entity *se = &p->se;
10888
10889 set_task_rq(p, task_cpu(p));
10890 se->depth = se->parent ? se->parent->depth + 1 : 0;
10891}
10892
bc54da21 10893static void task_move_group_fair(struct task_struct *p)
810b3817 10894{
daa59407 10895 detach_task_cfs_rq(p);
b2b5ce02 10896 set_task_rq(p, task_cpu(p));
6efdb105
BP
10897
10898#ifdef CONFIG_SMP
10899 /* Tell se's cfs_rq has been changed -- migrated */
10900 p->se.avg.last_update_time = 0;
10901#endif
daa59407 10902 attach_task_cfs_rq(p);
810b3817 10903}
029632fb 10904
ea86cb4b
VG
10905static void task_change_group_fair(struct task_struct *p, int type)
10906{
10907 switch (type) {
10908 case TASK_SET_GROUP:
10909 task_set_group_fair(p);
10910 break;
10911
10912 case TASK_MOVE_GROUP:
10913 task_move_group_fair(p);
10914 break;
10915 }
10916}
10917
029632fb
PZ
10918void free_fair_sched_group(struct task_group *tg)
10919{
10920 int i;
10921
10922 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10923
10924 for_each_possible_cpu(i) {
10925 if (tg->cfs_rq)
10926 kfree(tg->cfs_rq[i]);
6fe1f348 10927 if (tg->se)
029632fb
PZ
10928 kfree(tg->se[i]);
10929 }
10930
10931 kfree(tg->cfs_rq);
10932 kfree(tg->se);
10933}
10934
10935int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10936{
029632fb 10937 struct sched_entity *se;
b7fa30c9 10938 struct cfs_rq *cfs_rq;
029632fb
PZ
10939 int i;
10940
6396bb22 10941 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10942 if (!tg->cfs_rq)
10943 goto err;
6396bb22 10944 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10945 if (!tg->se)
10946 goto err;
10947
10948 tg->shares = NICE_0_LOAD;
10949
10950 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10951
10952 for_each_possible_cpu(i) {
10953 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10954 GFP_KERNEL, cpu_to_node(i));
10955 if (!cfs_rq)
10956 goto err;
10957
10958 se = kzalloc_node(sizeof(struct sched_entity),
10959 GFP_KERNEL, cpu_to_node(i));
10960 if (!se)
10961 goto err_free_rq;
10962
10963 init_cfs_rq(cfs_rq);
10964 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10965 init_entity_runnable_average(se);
029632fb
PZ
10966 }
10967
10968 return 1;
10969
10970err_free_rq:
10971 kfree(cfs_rq);
10972err:
10973 return 0;
10974}
10975
8663e24d
PZ
10976void online_fair_sched_group(struct task_group *tg)
10977{
10978 struct sched_entity *se;
a46d14ec 10979 struct rq_flags rf;
8663e24d
PZ
10980 struct rq *rq;
10981 int i;
10982
10983 for_each_possible_cpu(i) {
10984 rq = cpu_rq(i);
10985 se = tg->se[i];
a46d14ec 10986 rq_lock_irq(rq, &rf);
4126bad6 10987 update_rq_clock(rq);
d0326691 10988 attach_entity_cfs_rq(se);
55e16d30 10989 sync_throttle(tg, i);
a46d14ec 10990 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10991 }
10992}
10993
6fe1f348 10994void unregister_fair_sched_group(struct task_group *tg)
029632fb 10995{
029632fb 10996 unsigned long flags;
6fe1f348
PZ
10997 struct rq *rq;
10998 int cpu;
029632fb 10999
6fe1f348
PZ
11000 for_each_possible_cpu(cpu) {
11001 if (tg->se[cpu])
11002 remove_entity_load_avg(tg->se[cpu]);
029632fb 11003
6fe1f348
PZ
11004 /*
11005 * Only empty task groups can be destroyed; so we can speculatively
11006 * check on_list without danger of it being re-added.
11007 */
11008 if (!tg->cfs_rq[cpu]->on_list)
11009 continue;
11010
11011 rq = cpu_rq(cpu);
11012
11013 raw_spin_lock_irqsave(&rq->lock, flags);
11014 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11015 raw_spin_unlock_irqrestore(&rq->lock, flags);
11016 }
029632fb
PZ
11017}
11018
11019void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11020 struct sched_entity *se, int cpu,
11021 struct sched_entity *parent)
11022{
11023 struct rq *rq = cpu_rq(cpu);
11024
11025 cfs_rq->tg = tg;
11026 cfs_rq->rq = rq;
029632fb
PZ
11027 init_cfs_rq_runtime(cfs_rq);
11028
11029 tg->cfs_rq[cpu] = cfs_rq;
11030 tg->se[cpu] = se;
11031
11032 /* se could be NULL for root_task_group */
11033 if (!se)
11034 return;
11035
fed14d45 11036 if (!parent) {
029632fb 11037 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11038 se->depth = 0;
11039 } else {
029632fb 11040 se->cfs_rq = parent->my_q;
fed14d45
PZ
11041 se->depth = parent->depth + 1;
11042 }
029632fb
PZ
11043
11044 se->my_q = cfs_rq;
0ac9b1c2
PT
11045 /* guarantee group entities always have weight */
11046 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11047 se->parent = parent;
11048}
11049
11050static DEFINE_MUTEX(shares_mutex);
11051
11052int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11053{
11054 int i;
029632fb
PZ
11055
11056 /*
11057 * We can't change the weight of the root cgroup.
11058 */
11059 if (!tg->se[0])
11060 return -EINVAL;
11061
11062 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11063
11064 mutex_lock(&shares_mutex);
11065 if (tg->shares == shares)
11066 goto done;
11067
11068 tg->shares = shares;
11069 for_each_possible_cpu(i) {
11070 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11071 struct sched_entity *se = tg->se[i];
11072 struct rq_flags rf;
029632fb 11073
029632fb 11074 /* Propagate contribution to hierarchy */
8a8c69c3 11075 rq_lock_irqsave(rq, &rf);
71b1da46 11076 update_rq_clock(rq);
89ee048f 11077 for_each_sched_entity(se) {
88c0616e 11078 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11079 update_cfs_group(se);
89ee048f 11080 }
8a8c69c3 11081 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11082 }
11083
11084done:
11085 mutex_unlock(&shares_mutex);
11086 return 0;
11087}
11088#else /* CONFIG_FAIR_GROUP_SCHED */
11089
11090void free_fair_sched_group(struct task_group *tg) { }
11091
11092int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11093{
11094 return 1;
11095}
11096
8663e24d
PZ
11097void online_fair_sched_group(struct task_group *tg) { }
11098
6fe1f348 11099void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11100
11101#endif /* CONFIG_FAIR_GROUP_SCHED */
11102
810b3817 11103
6d686f45 11104static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11105{
11106 struct sched_entity *se = &task->se;
0d721cea
PW
11107 unsigned int rr_interval = 0;
11108
11109 /*
11110 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11111 * idle runqueue:
11112 */
0d721cea 11113 if (rq->cfs.load.weight)
a59f4e07 11114 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11115
11116 return rr_interval;
11117}
11118
bf0f6f24
IM
11119/*
11120 * All the scheduling class methods:
11121 */
029632fb 11122const struct sched_class fair_sched_class = {
5522d5d5 11123 .next = &idle_sched_class,
bf0f6f24
IM
11124 .enqueue_task = enqueue_task_fair,
11125 .dequeue_task = dequeue_task_fair,
11126 .yield_task = yield_task_fair,
d95f4122 11127 .yield_to_task = yield_to_task_fair,
bf0f6f24 11128
2e09bf55 11129 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11130
98c2f700 11131 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11132 .put_prev_task = put_prev_task_fair,
03b7fad1 11133 .set_next_task = set_next_task_fair,
bf0f6f24 11134
681f3e68 11135#ifdef CONFIG_SMP
6e2df058 11136 .balance = balance_fair,
4ce72a2c 11137 .select_task_rq = select_task_rq_fair,
0a74bef8 11138 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11139
0bcdcf28
CE
11140 .rq_online = rq_online_fair,
11141 .rq_offline = rq_offline_fair,
88ec22d3 11142
12695578 11143 .task_dead = task_dead_fair,
c5b28038 11144 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11145#endif
bf0f6f24 11146
bf0f6f24 11147 .task_tick = task_tick_fair,
cd29fe6f 11148 .task_fork = task_fork_fair,
cb469845
SR
11149
11150 .prio_changed = prio_changed_fair,
da7a735e 11151 .switched_from = switched_from_fair,
cb469845 11152 .switched_to = switched_to_fair,
810b3817 11153
0d721cea
PW
11154 .get_rr_interval = get_rr_interval_fair,
11155
6e998916
SG
11156 .update_curr = update_curr_fair,
11157
810b3817 11158#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11159 .task_change_group = task_change_group_fair,
810b3817 11160#endif
982d9cdc
PB
11161
11162#ifdef CONFIG_UCLAMP_TASK
11163 .uclamp_enabled = 1,
11164#endif
bf0f6f24
IM
11165};
11166
11167#ifdef CONFIG_SCHED_DEBUG
029632fb 11168void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11169{
039ae8bc 11170 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11171
5973e5b9 11172 rcu_read_lock();
039ae8bc 11173 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11174 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11175 rcu_read_unlock();
bf0f6f24 11176}
397f2378
SD
11177
11178#ifdef CONFIG_NUMA_BALANCING
11179void show_numa_stats(struct task_struct *p, struct seq_file *m)
11180{
11181 int node;
11182 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11183 struct numa_group *ng;
397f2378 11184
cb361d8c
JH
11185 rcu_read_lock();
11186 ng = rcu_dereference(p->numa_group);
397f2378
SD
11187 for_each_online_node(node) {
11188 if (p->numa_faults) {
11189 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11190 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11191 }
cb361d8c
JH
11192 if (ng) {
11193 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11194 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11195 }
11196 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11197 }
cb361d8c 11198 rcu_read_unlock();
397f2378
SD
11199}
11200#endif /* CONFIG_NUMA_BALANCING */
11201#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11202
11203__init void init_sched_fair_class(void)
11204{
11205#ifdef CONFIG_SMP
11206 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11207
3451d024 11208#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11209 nohz.next_balance = jiffies;
f643ea22 11210 nohz.next_blocked = jiffies;
029632fb 11211 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11212#endif
11213#endif /* SMP */
11214
11215}
3c93a0c0
QY
11216
11217/*
11218 * Helper functions to facilitate extracting info from tracepoints.
11219 */
11220
11221const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11222{
11223#ifdef CONFIG_SMP
11224 return cfs_rq ? &cfs_rq->avg : NULL;
11225#else
11226 return NULL;
11227#endif
11228}
11229EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11230
11231char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11232{
11233 if (!cfs_rq) {
11234 if (str)
11235 strlcpy(str, "(null)", len);
11236 else
11237 return NULL;
11238 }
11239
11240 cfs_rq_tg_path(cfs_rq, str, len);
11241 return str;
11242}
11243EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11244
11245int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11246{
11247 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11248}
11249EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11250
11251const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11252{
11253#ifdef CONFIG_SMP
11254 return rq ? &rq->avg_rt : NULL;
11255#else
11256 return NULL;
11257#endif
11258}
11259EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11260
11261const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11262{
11263#ifdef CONFIG_SMP
11264 return rq ? &rq->avg_dl : NULL;
11265#else
11266 return NULL;
11267#endif
11268}
11269EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11270
11271const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11272{
11273#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11274 return rq ? &rq->avg_irq : NULL;
11275#else
11276 return NULL;
11277#endif
11278}
11279EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11280
11281int sched_trace_rq_cpu(struct rq *rq)
11282{
11283 return rq ? cpu_of(rq) : -1;
11284}
11285EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11286
11287const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11288{
11289#ifdef CONFIG_SMP
11290 return rd ? rd->span : NULL;
11291#else
11292 return NULL;
11293#endif
11294}
11295EXPORT_SYMBOL_GPL(sched_trace_rd_span);