sched/numa: Update the scan period without holding the numa_group lock
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25
IM
40unsigned int sysctl_sched_latency = 6000000ULL;
41unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
2b4d5b25
IM
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
2b4d5b25
IM
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
97#endif
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
2b4d5b25
IM
108 * (default: 5 msec, units: microseconds)
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
111#endif
112
3273163c
MR
113/*
114 * The margin used when comparing utilization with CPU capacity:
893c5d22 115 * util * margin < capacity * 1024
2b4d5b25
IM
116 *
117 * (default: ~20%)
3273163c 118 */
2b4d5b25 119unsigned int capacity_margin = 1280;
3273163c 120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 251
62160e3f 252/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254{
62160e3f 255 return cfs_rq->rq;
bf0f6f24
IM
256}
257
8f48894f
PZ
258static inline struct task_struct *task_of(struct sched_entity *se)
259{
9148a3a1 260 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
3d4b47b4
PZ
285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286{
287 if (!cfs_rq->on_list) {
9c2791f9
VG
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
67e86250
PT
290 /*
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
67e86250
PT
298 */
299 if (cfs_rq->tg->parent &&
9c2791f9
VG
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 /*
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
306 */
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 /*
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
313 */
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
316 /*
317 * cfs rq without parent should be put
318 * at the tail of the list.
319 */
67e86250 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
321 &rq->leaf_cfs_rq_list);
322 /*
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
325 */
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
328 /*
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
333 */
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
336 /*
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
339 */
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 341 }
3d4b47b4
PZ
342
343 cfs_rq->on_list = 1;
344 }
345}
346
347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348{
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
352 }
353}
354
b758149c 355/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
356#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
358 leaf_cfs_rq_list)
b758149c
PZ
359
360/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 361static inline struct cfs_rq *
b758149c
PZ
362is_same_group(struct sched_entity *se, struct sched_entity *pse)
363{
364 if (se->cfs_rq == pse->cfs_rq)
fed14d45 365 return se->cfs_rq;
b758149c 366
fed14d45 367 return NULL;
b758149c
PZ
368}
369
370static inline struct sched_entity *parent_entity(struct sched_entity *se)
371{
372 return se->parent;
373}
374
464b7527
PZ
375static void
376find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377{
378 int se_depth, pse_depth;
379
380 /*
381 * preemption test can be made between sibling entities who are in the
382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 * both tasks until we find their ancestors who are siblings of common
384 * parent.
385 */
386
387 /* First walk up until both entities are at same depth */
fed14d45
PZ
388 se_depth = (*se)->depth;
389 pse_depth = (*pse)->depth;
464b7527
PZ
390
391 while (se_depth > pse_depth) {
392 se_depth--;
393 *se = parent_entity(*se);
394 }
395
396 while (pse_depth > se_depth) {
397 pse_depth--;
398 *pse = parent_entity(*pse);
399 }
400
401 while (!is_same_group(*se, *pse)) {
402 *se = parent_entity(*se);
403 *pse = parent_entity(*pse);
404 }
405}
406
8f48894f
PZ
407#else /* !CONFIG_FAIR_GROUP_SCHED */
408
409static inline struct task_struct *task_of(struct sched_entity *se)
410{
411 return container_of(se, struct task_struct, se);
412}
bf0f6f24 413
62160e3f
IM
414static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415{
416 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
417}
418
bf0f6f24 419
b758149c
PZ
420#define for_each_sched_entity(se) \
421 for (; se; se = NULL)
bf0f6f24 422
b758149c 423static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 424{
b758149c 425 return &task_rq(p)->cfs;
bf0f6f24
IM
426}
427
b758149c
PZ
428static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429{
430 struct task_struct *p = task_of(se);
431 struct rq *rq = task_rq(p);
432
433 return &rq->cfs;
434}
435
436/* runqueue "owned" by this group */
437static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438{
439 return NULL;
440}
441
3d4b47b4
PZ
442static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443{
444}
445
446static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447{
448}
449
a9e7f654
TH
450#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 452
b758149c
PZ
453static inline struct sched_entity *parent_entity(struct sched_entity *se)
454{
455 return NULL;
456}
457
464b7527
PZ
458static inline void
459find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460{
461}
462
b758149c
PZ
463#endif /* CONFIG_FAIR_GROUP_SCHED */
464
6c16a6dc 465static __always_inline
9dbdb155 466void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
467
468/**************************************************************
469 * Scheduling class tree data structure manipulation methods:
470 */
471
1bf08230 472static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 473{
1bf08230 474 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 475 if (delta > 0)
1bf08230 476 max_vruntime = vruntime;
02e0431a 477
1bf08230 478 return max_vruntime;
02e0431a
PZ
479}
480
0702e3eb 481static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
482{
483 s64 delta = (s64)(vruntime - min_vruntime);
484 if (delta < 0)
485 min_vruntime = vruntime;
486
487 return min_vruntime;
488}
489
54fdc581
FC
490static inline int entity_before(struct sched_entity *a,
491 struct sched_entity *b)
492{
493 return (s64)(a->vruntime - b->vruntime) < 0;
494}
495
1af5f730
PZ
496static void update_min_vruntime(struct cfs_rq *cfs_rq)
497{
b60205c7 498 struct sched_entity *curr = cfs_rq->curr;
bfb06889 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 500
1af5f730
PZ
501 u64 vruntime = cfs_rq->min_vruntime;
502
b60205c7
PZ
503 if (curr) {
504 if (curr->on_rq)
505 vruntime = curr->vruntime;
506 else
507 curr = NULL;
508 }
1af5f730 509
bfb06889
DB
510 if (leftmost) { /* non-empty tree */
511 struct sched_entity *se;
512 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 513
b60205c7 514 if (!curr)
1af5f730
PZ
515 vruntime = se->vruntime;
516 else
517 vruntime = min_vruntime(vruntime, se->vruntime);
518 }
519
1bf08230 520 /* ensure we never gain time by being placed backwards. */
1af5f730 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
522#ifndef CONFIG_64BIT
523 smp_wmb();
524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525#endif
1af5f730
PZ
526}
527
bf0f6f24
IM
528/*
529 * Enqueue an entity into the rb-tree:
530 */
0702e3eb 531static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bfb06889 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
534 struct rb_node *parent = NULL;
535 struct sched_entity *entry;
bfb06889 536 bool leftmost = true;
bf0f6f24
IM
537
538 /*
539 * Find the right place in the rbtree:
540 */
541 while (*link) {
542 parent = *link;
543 entry = rb_entry(parent, struct sched_entity, run_node);
544 /*
545 * We dont care about collisions. Nodes with
546 * the same key stay together.
547 */
2bd2d6f2 548 if (entity_before(se, entry)) {
bf0f6f24
IM
549 link = &parent->rb_left;
550 } else {
551 link = &parent->rb_right;
bfb06889 552 leftmost = false;
bf0f6f24
IM
553 }
554 }
555
bf0f6f24 556 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
557 rb_insert_color_cached(&se->run_node,
558 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
559}
560
0702e3eb 561static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 562{
bfb06889 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
564}
565
029632fb 566struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 567{
bfb06889 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
569
570 if (!left)
571 return NULL;
572
573 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
574}
575
ac53db59
RR
576static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577{
578 struct rb_node *next = rb_next(&se->run_node);
579
580 if (!next)
581 return NULL;
582
583 return rb_entry(next, struct sched_entity, run_node);
584}
585
586#ifdef CONFIG_SCHED_DEBUG
029632fb 587struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 588{
bfb06889 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 590
70eee74b
BS
591 if (!last)
592 return NULL;
7eee3e67
IM
593
594 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
595}
596
bf0f6f24
IM
597/**************************************************************
598 * Scheduling class statistics methods:
599 */
600
acb4a848 601int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 602 void __user *buffer, size_t *lenp,
b2be5e96
PZ
603 loff_t *ppos)
604{
8d65af78 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 606 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
607
608 if (ret || !write)
609 return ret;
610
611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 sysctl_sched_min_granularity);
613
acb4a848
CE
614#define WRT_SYSCTL(name) \
615 (normalized_sysctl_##name = sysctl_##name / (factor))
616 WRT_SYSCTL(sched_min_granularity);
617 WRT_SYSCTL(sched_latency);
618 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
619#undef WRT_SYSCTL
620
b2be5e96
PZ
621 return 0;
622}
623#endif
647e7cac 624
a7be37ac 625/*
f9c0b095 626 * delta /= w
a7be37ac 627 */
9dbdb155 628static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 629{
f9c0b095 630 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
632
633 return delta;
634}
635
647e7cac
IM
636/*
637 * The idea is to set a period in which each task runs once.
638 *
532b1858 639 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
640 * this period because otherwise the slices get too small.
641 *
642 * p = (nr <= nl) ? l : l*nr/nl
643 */
4d78e7b6
PZ
644static u64 __sched_period(unsigned long nr_running)
645{
8e2b0bf3
BF
646 if (unlikely(nr_running > sched_nr_latency))
647 return nr_running * sysctl_sched_min_granularity;
648 else
649 return sysctl_sched_latency;
4d78e7b6
PZ
650}
651
647e7cac
IM
652/*
653 * We calculate the wall-time slice from the period by taking a part
654 * proportional to the weight.
655 *
f9c0b095 656 * s = p*P[w/rw]
647e7cac 657 */
6d0f0ebd 658static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 659{
0a582440 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 661
0a582440 662 for_each_sched_entity(se) {
6272d68c 663 struct load_weight *load;
3104bf03 664 struct load_weight lw;
6272d68c
LM
665
666 cfs_rq = cfs_rq_of(se);
667 load = &cfs_rq->load;
f9c0b095 668
0a582440 669 if (unlikely(!se->on_rq)) {
3104bf03 670 lw = cfs_rq->load;
0a582440
MG
671
672 update_load_add(&lw, se->load.weight);
673 load = &lw;
674 }
9dbdb155 675 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
676 }
677 return slice;
bf0f6f24
IM
678}
679
647e7cac 680/*
660cc00f 681 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 682 *
f9c0b095 683 * vs = s/w
647e7cac 684 */
f9c0b095 685static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 686{
f9c0b095 687 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
688}
689
a75cdaa9 690#ifdef CONFIG_SMP
c0796298 691#include "pelt.h"
283e2ed3
PZ
692#include "sched-pelt.h"
693
772bd008 694static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
695static unsigned long task_h_load(struct task_struct *p);
696
540247fb
YD
697/* Give new sched_entity start runnable values to heavy its load in infant time */
698void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 699{
540247fb 700 struct sched_avg *sa = &se->avg;
a75cdaa9 701
f207934f
PZ
702 memset(sa, 0, sizeof(*sa));
703
b5a9b340
VG
704 /*
705 * Tasks are intialized with full load to be seen as heavy tasks until
706 * they get a chance to stabilize to their real load level.
707 * Group entities are intialized with zero load to reflect the fact that
708 * nothing has been attached to the task group yet.
709 */
710 if (entity_is_task(se))
1ea6c46a 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 712
f207934f
PZ
713 se->runnable_weight = se->load.weight;
714
9d89c257 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 716}
7ea241af 717
7dc603c9 718static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 719static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 720
2b8c41da
YD
721/*
722 * With new tasks being created, their initial util_avgs are extrapolated
723 * based on the cfs_rq's current util_avg:
724 *
725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726 *
727 * However, in many cases, the above util_avg does not give a desired
728 * value. Moreover, the sum of the util_avgs may be divergent, such
729 * as when the series is a harmonic series.
730 *
731 * To solve this problem, we also cap the util_avg of successive tasks to
732 * only 1/2 of the left utilization budget:
733 *
8fe5c5a9 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 735 *
8fe5c5a9 736 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 737 *
8fe5c5a9
QP
738 * For example, for a CPU with 1024 of capacity, a simplest series from
739 * the beginning would be like:
2b8c41da
YD
740 *
741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743 *
744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745 * if util_avg > util_avg_cap.
746 */
747void post_init_entity_util_avg(struct sched_entity *se)
748{
749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
753
754 if (cap > 0) {
755 if (cfs_rq->avg.util_avg != 0) {
756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
757 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758
759 if (sa->util_avg > cap)
760 sa->util_avg = cap;
761 } else {
762 sa->util_avg = cap;
763 }
2b8c41da 764 }
7dc603c9
PZ
765
766 if (entity_is_task(se)) {
767 struct task_struct *p = task_of(se);
768 if (p->sched_class != &fair_sched_class) {
769 /*
770 * For !fair tasks do:
771 *
3a123bbb 772 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 773 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
774 switched_from_fair(rq, p);
775 *
776 * such that the next switched_to_fair() has the
777 * expected state.
778 */
df217913 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
780 return;
781 }
782 }
783
df217913 784 attach_entity_cfs_rq(se);
2b8c41da
YD
785}
786
7dc603c9 787#else /* !CONFIG_SMP */
540247fb 788void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
789{
790}
2b8c41da
YD
791void post_init_entity_util_avg(struct sched_entity *se)
792{
793}
3d30544f
PZ
794static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795{
796}
7dc603c9 797#endif /* CONFIG_SMP */
a75cdaa9 798
bf0f6f24 799/*
9dbdb155 800 * Update the current task's runtime statistics.
bf0f6f24 801 */
b7cc0896 802static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 803{
429d43bc 804 struct sched_entity *curr = cfs_rq->curr;
78becc27 805 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 806 u64 delta_exec;
bf0f6f24
IM
807
808 if (unlikely(!curr))
809 return;
810
9dbdb155
PZ
811 delta_exec = now - curr->exec_start;
812 if (unlikely((s64)delta_exec <= 0))
34f28ecd 813 return;
bf0f6f24 814
8ebc91d9 815 curr->exec_start = now;
d842de87 816
9dbdb155
PZ
817 schedstat_set(curr->statistics.exec_max,
818 max(delta_exec, curr->statistics.exec_max));
819
820 curr->sum_exec_runtime += delta_exec;
ae92882e 821 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
822
823 curr->vruntime += calc_delta_fair(delta_exec, curr);
824 update_min_vruntime(cfs_rq);
825
d842de87
SV
826 if (entity_is_task(curr)) {
827 struct task_struct *curtask = task_of(curr);
828
f977bb49 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 830 cgroup_account_cputime(curtask, delta_exec);
f06febc9 831 account_group_exec_runtime(curtask, delta_exec);
d842de87 832 }
ec12cb7f
PT
833
834 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
835}
836
6e998916
SG
837static void update_curr_fair(struct rq *rq)
838{
839 update_curr(cfs_rq_of(&rq->curr->se));
840}
841
bf0f6f24 842static inline void
5870db5b 843update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 844{
4fa8d299
JP
845 u64 wait_start, prev_wait_start;
846
847 if (!schedstat_enabled())
848 return;
849
850 wait_start = rq_clock(rq_of(cfs_rq));
851 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
852
853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
854 likely(wait_start > prev_wait_start))
855 wait_start -= prev_wait_start;
3ea94de1 856
2ed41a55 857 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
858}
859
4fa8d299 860static inline void
3ea94de1
JP
861update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862{
863 struct task_struct *p;
cb251765
MG
864 u64 delta;
865
4fa8d299
JP
866 if (!schedstat_enabled())
867 return;
868
869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
870
871 if (entity_is_task(se)) {
872 p = task_of(se);
873 if (task_on_rq_migrating(p)) {
874 /*
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
878 */
2ed41a55 879 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
880 return;
881 }
882 trace_sched_stat_wait(p, delta);
883 }
884
2ed41a55 885 __schedstat_set(se->statistics.wait_max,
4fa8d299 886 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 890}
3ea94de1 891
4fa8d299 892static inline void
1a3d027c
JP
893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *tsk = NULL;
4fa8d299
JP
896 u64 sleep_start, block_start;
897
898 if (!schedstat_enabled())
899 return;
900
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
903
904 if (entity_is_task(se))
905 tsk = task_of(se);
906
4fa8d299
JP
907 if (sleep_start) {
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
909
910 if ((s64)delta < 0)
911 delta = 0;
912
4fa8d299 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 914 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 915
2ed41a55
PZ
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
918
919 if (tsk) {
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
922 }
923 }
4fa8d299
JP
924 if (block_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
926
927 if ((s64)delta < 0)
928 delta = 0;
929
4fa8d299 930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 931 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 932
2ed41a55
PZ
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
935
936 if (tsk) {
937 if (tsk->in_iowait) {
2ed41a55
PZ
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
940 trace_sched_stat_iowait(tsk, delta);
941 }
942
943 trace_sched_stat_blocked(tsk, delta);
944
945 /*
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
949 */
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
953 delta >> 20);
954 }
955 account_scheduler_latency(tsk, delta >> 10, 0);
956 }
957 }
3ea94de1 958}
3ea94de1 959
bf0f6f24
IM
960/*
961 * Task is being enqueued - update stats:
962 */
cb251765 963static inline void
1a3d027c 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 965{
4fa8d299
JP
966 if (!schedstat_enabled())
967 return;
968
bf0f6f24
IM
969 /*
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
972 */
429d43bc 973 if (se != cfs_rq->curr)
5870db5b 974 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
975
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
978}
979
bf0f6f24 980static inline void
cb251765 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 982{
4fa8d299
JP
983
984 if (!schedstat_enabled())
985 return;
986
bf0f6f24
IM
987 /*
988 * Mark the end of the wait period if dequeueing a
989 * waiting task:
990 */
429d43bc 991 if (se != cfs_rq->curr)
9ef0a961 992 update_stats_wait_end(cfs_rq, se);
cb251765 993
4fa8d299
JP
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
cb251765 996
4fa8d299 997 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 998 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
999 rq_clock(rq_of(cfs_rq)));
1000 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1001 __schedstat_set(se->statistics.block_start,
4fa8d299 1002 rq_clock(rq_of(cfs_rq)));
cb251765 1003 }
cb251765
MG
1004}
1005
bf0f6f24
IM
1006/*
1007 * We are picking a new current task - update its stats:
1008 */
1009static inline void
79303e9e 1010update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1011{
1012 /*
1013 * We are starting a new run period:
1014 */
78becc27 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1016}
1017
bf0f6f24
IM
1018/**************************************************
1019 * Scheduling class queueing methods:
1020 */
1021
cbee9f88
PZ
1022#ifdef CONFIG_NUMA_BALANCING
1023/*
598f0ec0
MG
1024 * Approximate time to scan a full NUMA task in ms. The task scan period is
1025 * calculated based on the tasks virtual memory size and
1026 * numa_balancing_scan_size.
cbee9f88 1027 */
598f0ec0
MG
1028unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1030
1031/* Portion of address space to scan in MB */
1032unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1033
4b96a29b
PZ
1034/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036
b5dd77c8
RR
1037struct numa_group {
1038 atomic_t refcount;
1039
1040 spinlock_t lock; /* nr_tasks, tasks */
1041 int nr_tasks;
1042 pid_t gid;
1043 int active_nodes;
1044
1045 struct rcu_head rcu;
1046 unsigned long total_faults;
1047 unsigned long max_faults_cpu;
1048 /*
1049 * Faults_cpu is used to decide whether memory should move
1050 * towards the CPU. As a consequence, these stats are weighted
1051 * more by CPU use than by memory faults.
1052 */
1053 unsigned long *faults_cpu;
1054 unsigned long faults[0];
1055};
1056
1057static inline unsigned long group_faults_priv(struct numa_group *ng);
1058static inline unsigned long group_faults_shared(struct numa_group *ng);
1059
598f0ec0
MG
1060static unsigned int task_nr_scan_windows(struct task_struct *p)
1061{
1062 unsigned long rss = 0;
1063 unsigned long nr_scan_pages;
1064
1065 /*
1066 * Calculations based on RSS as non-present and empty pages are skipped
1067 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 * on resident pages
1069 */
1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 rss = get_mm_rss(p->mm);
1072 if (!rss)
1073 rss = nr_scan_pages;
1074
1075 rss = round_up(rss, nr_scan_pages);
1076 return rss / nr_scan_pages;
1077}
1078
1079/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080#define MAX_SCAN_WINDOW 2560
1081
1082static unsigned int task_scan_min(struct task_struct *p)
1083{
316c1608 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1085 unsigned int scan, floor;
1086 unsigned int windows = 1;
1087
64192658
KT
1088 if (scan_size < MAX_SCAN_WINDOW)
1089 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1090 floor = 1000 / windows;
1091
1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 return max_t(unsigned int, floor, scan);
1094}
1095
b5dd77c8
RR
1096static unsigned int task_scan_start(struct task_struct *p)
1097{
1098 unsigned long smin = task_scan_min(p);
1099 unsigned long period = smin;
1100
1101 /* Scale the maximum scan period with the amount of shared memory. */
1102 if (p->numa_group) {
1103 struct numa_group *ng = p->numa_group;
1104 unsigned long shared = group_faults_shared(ng);
1105 unsigned long private = group_faults_priv(ng);
1106
1107 period *= atomic_read(&ng->refcount);
1108 period *= shared + 1;
1109 period /= private + shared + 1;
1110 }
1111
1112 return max(smin, period);
1113}
1114
598f0ec0
MG
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
b5dd77c8
RR
1117 unsigned long smin = task_scan_min(p);
1118 unsigned long smax;
598f0ec0
MG
1119
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1122
1123 /* Scale the maximum scan period with the amount of shared memory. */
1124 if (p->numa_group) {
1125 struct numa_group *ng = p->numa_group;
1126 unsigned long shared = group_faults_shared(ng);
1127 unsigned long private = group_faults_priv(ng);
1128 unsigned long period = smax;
1129
1130 period *= atomic_read(&ng->refcount);
1131 period *= shared + 1;
1132 period /= private + shared + 1;
1133
1134 smax = max(smax, period);
1135 }
1136
598f0ec0
MG
1137 return max(smin, smax);
1138}
1139
13784475
MG
1140void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141{
1142 int mm_users = 0;
1143 struct mm_struct *mm = p->mm;
1144
1145 if (mm) {
1146 mm_users = atomic_read(&mm->mm_users);
1147 if (mm_users == 1) {
1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 mm->numa_scan_seq = 0;
1150 }
1151 }
1152 p->node_stamp = 0;
1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1155 p->numa_work.next = &p->numa_work;
1156 p->numa_faults = NULL;
1157 p->numa_group = NULL;
1158 p->last_task_numa_placement = 0;
1159 p->last_sum_exec_runtime = 0;
1160
1161 /* New address space, reset the preferred nid */
1162 if (!(clone_flags & CLONE_VM)) {
1163 p->numa_preferred_nid = -1;
1164 return;
1165 }
1166
1167 /*
1168 * New thread, keep existing numa_preferred_nid which should be copied
1169 * already by arch_dup_task_struct but stagger when scans start.
1170 */
1171 if (mm) {
1172 unsigned int delay;
1173
1174 delay = min_t(unsigned int, task_scan_max(current),
1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 delay += 2 * TICK_NSEC;
1177 p->node_stamp = delay;
1178 }
1179}
1180
0ec8aa00
PZ
1181static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182{
1183 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185}
1186
1187static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188{
1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191}
1192
be1e4e76
RR
1193/* Shared or private faults. */
1194#define NR_NUMA_HINT_FAULT_TYPES 2
1195
1196/* Memory and CPU locality */
1197#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198
1199/* Averaged statistics, and temporary buffers. */
1200#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201
e29cf08b
MG
1202pid_t task_numa_group_id(struct task_struct *p)
1203{
1204 return p->numa_group ? p->numa_group->gid : 0;
1205}
1206
44dba3d5 1207/*
97fb7a0a 1208 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1209 * occupy the first half of the array. The second half of the
1210 * array is for current counters, which are averaged into the
1211 * first set by task_numa_placement.
1212 */
1213static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1214{
44dba3d5 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1216}
1217
1218static inline unsigned long task_faults(struct task_struct *p, int nid)
1219{
44dba3d5 1220 if (!p->numa_faults)
ac8e895b
MG
1221 return 0;
1222
44dba3d5
IM
1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1225}
1226
83e1d2cd
MG
1227static inline unsigned long group_faults(struct task_struct *p, int nid)
1228{
1229 if (!p->numa_group)
1230 return 0;
1231
44dba3d5
IM
1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1234}
1235
20e07dea
RR
1236static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237{
44dba3d5
IM
1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1240}
1241
b5dd77c8
RR
1242static inline unsigned long group_faults_priv(struct numa_group *ng)
1243{
1244 unsigned long faults = 0;
1245 int node;
1246
1247 for_each_online_node(node) {
1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 }
1250
1251 return faults;
1252}
1253
1254static inline unsigned long group_faults_shared(struct numa_group *ng)
1255{
1256 unsigned long faults = 0;
1257 int node;
1258
1259 for_each_online_node(node) {
1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 }
1262
1263 return faults;
1264}
1265
4142c3eb
RR
1266/*
1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268 * considered part of a numa group's pseudo-interleaving set. Migrations
1269 * between these nodes are slowed down, to allow things to settle down.
1270 */
1271#define ACTIVE_NODE_FRACTION 3
1272
1273static bool numa_is_active_node(int nid, struct numa_group *ng)
1274{
1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276}
1277
6c6b1193
RR
1278/* Handle placement on systems where not all nodes are directly connected. */
1279static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 int maxdist, bool task)
1281{
1282 unsigned long score = 0;
1283 int node;
1284
1285 /*
1286 * All nodes are directly connected, and the same distance
1287 * from each other. No need for fancy placement algorithms.
1288 */
1289 if (sched_numa_topology_type == NUMA_DIRECT)
1290 return 0;
1291
1292 /*
1293 * This code is called for each node, introducing N^2 complexity,
1294 * which should be ok given the number of nodes rarely exceeds 8.
1295 */
1296 for_each_online_node(node) {
1297 unsigned long faults;
1298 int dist = node_distance(nid, node);
1299
1300 /*
1301 * The furthest away nodes in the system are not interesting
1302 * for placement; nid was already counted.
1303 */
1304 if (dist == sched_max_numa_distance || node == nid)
1305 continue;
1306
1307 /*
1308 * On systems with a backplane NUMA topology, compare groups
1309 * of nodes, and move tasks towards the group with the most
1310 * memory accesses. When comparing two nodes at distance
1311 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 * of each group. Skip other nodes.
1313 */
1314 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1315 dist >= maxdist)
6c6b1193
RR
1316 continue;
1317
1318 /* Add up the faults from nearby nodes. */
1319 if (task)
1320 faults = task_faults(p, node);
1321 else
1322 faults = group_faults(p, node);
1323
1324 /*
1325 * On systems with a glueless mesh NUMA topology, there are
1326 * no fixed "groups of nodes". Instead, nodes that are not
1327 * directly connected bounce traffic through intermediate
1328 * nodes; a numa_group can occupy any set of nodes.
1329 * The further away a node is, the less the faults count.
1330 * This seems to result in good task placement.
1331 */
1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 faults *= (sched_max_numa_distance - dist);
1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 }
1336
1337 score += faults;
1338 }
1339
1340 return score;
1341}
1342
83e1d2cd
MG
1343/*
1344 * These return the fraction of accesses done by a particular task, or
1345 * task group, on a particular numa node. The group weight is given a
1346 * larger multiplier, in order to group tasks together that are almost
1347 * evenly spread out between numa nodes.
1348 */
7bd95320
RR
1349static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 int dist)
83e1d2cd 1351{
7bd95320 1352 unsigned long faults, total_faults;
83e1d2cd 1353
44dba3d5 1354 if (!p->numa_faults)
83e1d2cd
MG
1355 return 0;
1356
1357 total_faults = p->total_numa_faults;
1358
1359 if (!total_faults)
1360 return 0;
1361
7bd95320 1362 faults = task_faults(p, nid);
6c6b1193
RR
1363 faults += score_nearby_nodes(p, nid, dist, true);
1364
7bd95320 1365 return 1000 * faults / total_faults;
83e1d2cd
MG
1366}
1367
7bd95320
RR
1368static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 int dist)
83e1d2cd 1370{
7bd95320
RR
1371 unsigned long faults, total_faults;
1372
1373 if (!p->numa_group)
1374 return 0;
1375
1376 total_faults = p->numa_group->total_faults;
1377
1378 if (!total_faults)
83e1d2cd
MG
1379 return 0;
1380
7bd95320 1381 faults = group_faults(p, nid);
6c6b1193
RR
1382 faults += score_nearby_nodes(p, nid, dist, false);
1383
7bd95320 1384 return 1000 * faults / total_faults;
83e1d2cd
MG
1385}
1386
10f39042
RR
1387bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 int src_nid, int dst_cpu)
1389{
1390 struct numa_group *ng = p->numa_group;
1391 int dst_nid = cpu_to_node(dst_cpu);
1392 int last_cpupid, this_cpupid;
1393
1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395
1396 /*
1397 * Multi-stage node selection is used in conjunction with a periodic
1398 * migration fault to build a temporal task<->page relation. By using
1399 * a two-stage filter we remove short/unlikely relations.
1400 *
1401 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1402 * a task's usage of a particular page (n_p) per total usage of this
1403 * page (n_t) (in a given time-span) to a probability.
1404 *
1405 * Our periodic faults will sample this probability and getting the
1406 * same result twice in a row, given these samples are fully
1407 * independent, is then given by P(n)^2, provided our sample period
1408 * is sufficiently short compared to the usage pattern.
1409 *
1410 * This quadric squishes small probabilities, making it less likely we
1411 * act on an unlikely task<->page relation.
1412 */
1413 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1414 if (!cpupid_pid_unset(last_cpupid) &&
1415 cpupid_to_nid(last_cpupid) != dst_nid)
1416 return false;
1417
1418 /* Always allow migrate on private faults */
1419 if (cpupid_match_pid(p, last_cpupid))
1420 return true;
1421
1422 /* A shared fault, but p->numa_group has not been set up yet. */
1423 if (!ng)
1424 return true;
1425
1426 /*
4142c3eb
RR
1427 * Destination node is much more heavily used than the source
1428 * node? Allow migration.
10f39042 1429 */
4142c3eb
RR
1430 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1431 ACTIVE_NODE_FRACTION)
10f39042
RR
1432 return true;
1433
1434 /*
4142c3eb
RR
1435 * Distribute memory according to CPU & memory use on each node,
1436 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1437 *
1438 * faults_cpu(dst) 3 faults_cpu(src)
1439 * --------------- * - > ---------------
1440 * faults_mem(dst) 4 faults_mem(src)
10f39042 1441 */
4142c3eb
RR
1442 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1443 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1444}
1445
c7132dd6 1446static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1447static unsigned long source_load(int cpu, int type);
1448static unsigned long target_load(int cpu, int type);
ced549fa 1449static unsigned long capacity_of(int cpu);
58d081b5 1450
fb13c7ee 1451/* Cached statistics for all CPUs within a node */
58d081b5
MG
1452struct numa_stats {
1453 unsigned long load;
fb13c7ee
MG
1454
1455 /* Total compute capacity of CPUs on a node */
5ef20ca1 1456 unsigned long compute_capacity;
fb13c7ee 1457
10864a9e 1458 unsigned int nr_running;
58d081b5 1459};
e6628d5b 1460
fb13c7ee
MG
1461/*
1462 * XXX borrowed from update_sg_lb_stats
1463 */
1464static void update_numa_stats(struct numa_stats *ns, int nid)
1465{
83d7f242
RR
1466 int smt, cpu, cpus = 0;
1467 unsigned long capacity;
fb13c7ee
MG
1468
1469 memset(ns, 0, sizeof(*ns));
1470 for_each_cpu(cpu, cpumask_of_node(nid)) {
1471 struct rq *rq = cpu_rq(cpu);
1472
1473 ns->nr_running += rq->nr_running;
c7132dd6 1474 ns->load += weighted_cpuload(rq);
ced549fa 1475 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1476
1477 cpus++;
fb13c7ee
MG
1478 }
1479
5eca82a9
PZ
1480 /*
1481 * If we raced with hotplug and there are no CPUs left in our mask
1482 * the @ns structure is NULL'ed and task_numa_compare() will
1483 * not find this node attractive.
1484 *
2d4056fa 1485 * We'll detect a huge imbalance and bail there.
5eca82a9
PZ
1486 */
1487 if (!cpus)
1488 return;
1489
83d7f242
RR
1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 capacity = cpus / smt; /* cores */
1493
10864a9e 1494 capacity = min_t(unsigned, capacity,
83d7f242 1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
fb13c7ee
MG
1496}
1497
58d081b5
MG
1498struct task_numa_env {
1499 struct task_struct *p;
e6628d5b 1500
58d081b5
MG
1501 int src_cpu, src_nid;
1502 int dst_cpu, dst_nid;
e6628d5b 1503
58d081b5 1504 struct numa_stats src_stats, dst_stats;
e6628d5b 1505
40ea2b42 1506 int imbalance_pct;
7bd95320 1507 int dist;
fb13c7ee
MG
1508
1509 struct task_struct *best_task;
1510 long best_imp;
58d081b5
MG
1511 int best_cpu;
1512};
1513
fb13c7ee
MG
1514static void task_numa_assign(struct task_numa_env *env,
1515 struct task_struct *p, long imp)
1516{
1517 if (env->best_task)
1518 put_task_struct(env->best_task);
bac78573
ON
1519 if (p)
1520 get_task_struct(p);
fb13c7ee
MG
1521
1522 env->best_task = p;
1523 env->best_imp = imp;
1524 env->best_cpu = env->dst_cpu;
1525}
1526
28a21745 1527static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1528 struct task_numa_env *env)
1529{
e4991b24
RR
1530 long imb, old_imb;
1531 long orig_src_load, orig_dst_load;
28a21745
RR
1532 long src_capacity, dst_capacity;
1533
1534 /*
1535 * The load is corrected for the CPU capacity available on each node.
1536 *
1537 * src_load dst_load
1538 * ------------ vs ---------
1539 * src_capacity dst_capacity
1540 */
1541 src_capacity = env->src_stats.compute_capacity;
1542 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1543
5f95ba7a 1544 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1545
28a21745 1546 orig_src_load = env->src_stats.load;
e4991b24 1547 orig_dst_load = env->dst_stats.load;
28a21745 1548
5f95ba7a 1549 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1550
1551 /* Would this change make things worse? */
1552 return (imb > old_imb);
e63da036
RR
1553}
1554
fb13c7ee
MG
1555/*
1556 * This checks if the overall compute and NUMA accesses of the system would
1557 * be improved if the source tasks was migrated to the target dst_cpu taking
1558 * into account that it might be best if task running on the dst_cpu should
1559 * be exchanged with the source task
1560 */
887c290e 1561static void task_numa_compare(struct task_numa_env *env,
305c1fac 1562 long taskimp, long groupimp, bool maymove)
fb13c7ee 1563{
fb13c7ee
MG
1564 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1565 struct task_struct *cur;
28a21745 1566 long src_load, dst_load;
fb13c7ee 1567 long load;
1c5d3eb3 1568 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1569 long moveimp = imp;
7bd95320 1570 int dist = env->dist;
fb13c7ee
MG
1571
1572 rcu_read_lock();
bac78573
ON
1573 cur = task_rcu_dereference(&dst_rq->curr);
1574 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1575 cur = NULL;
1576
7af68335
PZ
1577 /*
1578 * Because we have preemption enabled we can get migrated around and
1579 * end try selecting ourselves (current == env->p) as a swap candidate.
1580 */
1581 if (cur == env->p)
1582 goto unlock;
1583
305c1fac
SD
1584 if (!cur) {
1585 if (maymove || imp > env->best_imp)
1586 goto assign;
1587 else
1588 goto unlock;
1589 }
1590
fb13c7ee
MG
1591 /*
1592 * "imp" is the fault differential for the source task between the
1593 * source and destination node. Calculate the total differential for
1594 * the source task and potential destination task. The more negative
305c1fac 1595 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1596 * be incurred if the tasks were swapped.
1597 */
305c1fac
SD
1598 /* Skip this swap candidate if cannot move to the source cpu */
1599 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1600 goto unlock;
fb13c7ee 1601
305c1fac
SD
1602 /*
1603 * If dst and source tasks are in the same NUMA group, or not
1604 * in any group then look only at task weights.
1605 */
1606 if (cur->numa_group == env->p->numa_group) {
1607 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1608 task_weight(cur, env->dst_nid, dist);
887c290e 1609 /*
305c1fac
SD
1610 * Add some hysteresis to prevent swapping the
1611 * tasks within a group over tiny differences.
887c290e 1612 */
305c1fac
SD
1613 if (cur->numa_group)
1614 imp -= imp / 16;
1615 } else {
1616 /*
1617 * Compare the group weights. If a task is all by itself
1618 * (not part of a group), use the task weight instead.
1619 */
1620 if (cur->numa_group && env->p->numa_group)
1621 imp += group_weight(cur, env->src_nid, dist) -
1622 group_weight(cur, env->dst_nid, dist);
1623 else
1624 imp += task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1626 }
1627
305c1fac 1628 if (imp <= env->best_imp)
fb13c7ee
MG
1629 goto unlock;
1630
305c1fac
SD
1631 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1632 imp = moveimp - 1;
1633 cur = NULL;
fb13c7ee 1634 goto assign;
305c1fac 1635 }
fb13c7ee
MG
1636
1637 /*
1638 * In the overloaded case, try and keep the load balanced.
1639 */
305c1fac
SD
1640 load = task_h_load(env->p) - task_h_load(cur);
1641 if (!load)
1642 goto assign;
1643
e720fff6
PZ
1644 dst_load = env->dst_stats.load + load;
1645 src_load = env->src_stats.load - load;
fb13c7ee 1646
28a21745 1647 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1648 goto unlock;
1649
305c1fac 1650assign:
ba7e5a27
RR
1651 /*
1652 * One idle CPU per node is evaluated for a task numa move.
1653 * Call select_idle_sibling to maybe find a better one.
1654 */
10e2f1ac
PZ
1655 if (!cur) {
1656 /*
97fb7a0a 1657 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1658 * can be used from IRQ context.
1659 */
1660 local_irq_disable();
772bd008
MR
1661 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1662 env->dst_cpu);
10e2f1ac
PZ
1663 local_irq_enable();
1664 }
ba7e5a27 1665
fb13c7ee
MG
1666 task_numa_assign(env, cur, imp);
1667unlock:
1668 rcu_read_unlock();
1669}
1670
887c290e
RR
1671static void task_numa_find_cpu(struct task_numa_env *env,
1672 long taskimp, long groupimp)
2c8a50aa 1673{
305c1fac
SD
1674 long src_load, dst_load, load;
1675 bool maymove = false;
2c8a50aa
MG
1676 int cpu;
1677
305c1fac
SD
1678 load = task_h_load(env->p);
1679 dst_load = env->dst_stats.load + load;
1680 src_load = env->src_stats.load - load;
1681
1682 /*
1683 * If the improvement from just moving env->p direction is better
1684 * than swapping tasks around, check if a move is possible.
1685 */
1686 maymove = !load_too_imbalanced(src_load, dst_load, env);
1687
2c8a50aa
MG
1688 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1689 /* Skip this CPU if the source task cannot migrate */
0c98d344 1690 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1691 continue;
1692
1693 env->dst_cpu = cpu;
305c1fac 1694 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1695 }
1696}
1697
58d081b5
MG
1698static int task_numa_migrate(struct task_struct *p)
1699{
58d081b5
MG
1700 struct task_numa_env env = {
1701 .p = p,
fb13c7ee 1702
58d081b5 1703 .src_cpu = task_cpu(p),
b32e86b4 1704 .src_nid = task_node(p),
fb13c7ee
MG
1705
1706 .imbalance_pct = 112,
1707
1708 .best_task = NULL,
1709 .best_imp = 0,
4142c3eb 1710 .best_cpu = -1,
58d081b5
MG
1711 };
1712 struct sched_domain *sd;
887c290e 1713 unsigned long taskweight, groupweight;
7bd95320 1714 int nid, ret, dist;
887c290e 1715 long taskimp, groupimp;
e6628d5b 1716
58d081b5 1717 /*
fb13c7ee
MG
1718 * Pick the lowest SD_NUMA domain, as that would have the smallest
1719 * imbalance and would be the first to start moving tasks about.
1720 *
1721 * And we want to avoid any moving of tasks about, as that would create
1722 * random movement of tasks -- counter the numa conditions we're trying
1723 * to satisfy here.
58d081b5
MG
1724 */
1725 rcu_read_lock();
fb13c7ee 1726 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1727 if (sd)
1728 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1729 rcu_read_unlock();
1730
46a73e8a
RR
1731 /*
1732 * Cpusets can break the scheduler domain tree into smaller
1733 * balance domains, some of which do not cross NUMA boundaries.
1734 * Tasks that are "trapped" in such domains cannot be migrated
1735 * elsewhere, so there is no point in (re)trying.
1736 */
1737 if (unlikely(!sd)) {
8cd45eee 1738 sched_setnuma(p, task_node(p));
46a73e8a
RR
1739 return -EINVAL;
1740 }
1741
2c8a50aa 1742 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1743 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1744 taskweight = task_weight(p, env.src_nid, dist);
1745 groupweight = group_weight(p, env.src_nid, dist);
1746 update_numa_stats(&env.src_stats, env.src_nid);
1747 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1748 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1749 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1750
a43455a1 1751 /* Try to find a spot on the preferred nid. */
2d4056fa 1752 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1753
9de05d48
RR
1754 /*
1755 * Look at other nodes in these cases:
1756 * - there is no space available on the preferred_nid
1757 * - the task is part of a numa_group that is interleaved across
1758 * multiple NUMA nodes; in order to better consolidate the group,
1759 * we need to check other locations.
1760 */
4142c3eb 1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1762 for_each_online_node(nid) {
1763 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 continue;
58d081b5 1765
7bd95320 1766 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1767 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 dist != env.dist) {
1769 taskweight = task_weight(p, env.src_nid, dist);
1770 groupweight = group_weight(p, env.src_nid, dist);
1771 }
7bd95320 1772
83e1d2cd 1773 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1774 taskimp = task_weight(p, nid, dist) - taskweight;
1775 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1776 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1777 continue;
1778
7bd95320 1779 env.dist = dist;
2c8a50aa
MG
1780 env.dst_nid = nid;
1781 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1782 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1783 }
1784 }
1785
68d1b02a
RR
1786 /*
1787 * If the task is part of a workload that spans multiple NUMA nodes,
1788 * and is migrating into one of the workload's active nodes, remember
1789 * this node as the task's preferred numa node, so the workload can
1790 * settle down.
1791 * A task that migrated to a second choice node will be better off
1792 * trying for a better one later. Do not set the preferred node here.
1793 */
db015dae
RR
1794 if (p->numa_group) {
1795 if (env.best_cpu == -1)
1796 nid = env.src_nid;
1797 else
8cd45eee 1798 nid = cpu_to_node(env.best_cpu);
db015dae 1799
8cd45eee
SD
1800 if (nid != p->numa_preferred_nid)
1801 sched_setnuma(p, nid);
db015dae
RR
1802 }
1803
1804 /* No better CPU than the current one was found. */
1805 if (env.best_cpu == -1)
1806 return -EAGAIN;
0ec8aa00 1807
04bb2f94
RR
1808 /*
1809 * Reset the scan period if the task is being rescheduled on an
1810 * alternative node to recheck if the tasks is now properly placed.
1811 */
b5dd77c8 1812 p->numa_scan_period = task_scan_start(p);
04bb2f94 1813
fb13c7ee 1814 if (env.best_task == NULL) {
286549dc
MG
1815 ret = migrate_task_to(p, env.best_cpu);
1816 if (ret != 0)
1817 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1818 return ret;
1819 }
1820
0ad4e3df
SD
1821 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1822
286549dc
MG
1823 if (ret != 0)
1824 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1825 put_task_struct(env.best_task);
1826 return ret;
e6628d5b
MG
1827}
1828
6b9a7460
MG
1829/* Attempt to migrate a task to a CPU on the preferred node. */
1830static void numa_migrate_preferred(struct task_struct *p)
1831{
5085e2a3
RR
1832 unsigned long interval = HZ;
1833
2739d3ee 1834 /* This task has no NUMA fault statistics yet */
44dba3d5 1835 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1836 return;
1837
2739d3ee 1838 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1839 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1840 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1841
1842 /* Success if task is already running on preferred CPU */
de1b301a 1843 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1844 return;
1845
1846 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1847 task_numa_migrate(p);
6b9a7460
MG
1848}
1849
20e07dea 1850/*
4142c3eb 1851 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1852 * tracking the nodes from which NUMA hinting faults are triggered. This can
1853 * be different from the set of nodes where the workload's memory is currently
1854 * located.
20e07dea 1855 */
4142c3eb 1856static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1857{
1858 unsigned long faults, max_faults = 0;
4142c3eb 1859 int nid, active_nodes = 0;
20e07dea
RR
1860
1861 for_each_online_node(nid) {
1862 faults = group_faults_cpu(numa_group, nid);
1863 if (faults > max_faults)
1864 max_faults = faults;
1865 }
1866
1867 for_each_online_node(nid) {
1868 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1869 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1870 active_nodes++;
20e07dea 1871 }
4142c3eb
RR
1872
1873 numa_group->max_faults_cpu = max_faults;
1874 numa_group->active_nodes = active_nodes;
20e07dea
RR
1875}
1876
04bb2f94
RR
1877/*
1878 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1879 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1880 * period will be for the next scan window. If local/(local+remote) ratio is
1881 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1882 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1883 */
1884#define NUMA_PERIOD_SLOTS 10
a22b4b01 1885#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1886
1887/*
1888 * Increase the scan period (slow down scanning) if the majority of
1889 * our memory is already on our local node, or if the majority of
1890 * the page accesses are shared with other processes.
1891 * Otherwise, decrease the scan period.
1892 */
1893static void update_task_scan_period(struct task_struct *p,
1894 unsigned long shared, unsigned long private)
1895{
1896 unsigned int period_slot;
37ec97de 1897 int lr_ratio, ps_ratio;
04bb2f94
RR
1898 int diff;
1899
1900 unsigned long remote = p->numa_faults_locality[0];
1901 unsigned long local = p->numa_faults_locality[1];
1902
1903 /*
1904 * If there were no record hinting faults then either the task is
1905 * completely idle or all activity is areas that are not of interest
074c2381
MG
1906 * to automatic numa balancing. Related to that, if there were failed
1907 * migration then it implies we are migrating too quickly or the local
1908 * node is overloaded. In either case, scan slower
04bb2f94 1909 */
074c2381 1910 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1911 p->numa_scan_period = min(p->numa_scan_period_max,
1912 p->numa_scan_period << 1);
1913
1914 p->mm->numa_next_scan = jiffies +
1915 msecs_to_jiffies(p->numa_scan_period);
1916
1917 return;
1918 }
1919
1920 /*
1921 * Prepare to scale scan period relative to the current period.
1922 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1923 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1924 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1925 */
1926 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1927 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1928 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1929
1930 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1931 /*
1932 * Most memory accesses are local. There is no need to
1933 * do fast NUMA scanning, since memory is already local.
1934 */
1935 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1936 if (!slot)
1937 slot = 1;
1938 diff = slot * period_slot;
1939 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1940 /*
1941 * Most memory accesses are shared with other tasks.
1942 * There is no point in continuing fast NUMA scanning,
1943 * since other tasks may just move the memory elsewhere.
1944 */
1945 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1946 if (!slot)
1947 slot = 1;
1948 diff = slot * period_slot;
1949 } else {
04bb2f94 1950 /*
37ec97de
RR
1951 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1952 * yet they are not on the local NUMA node. Speed up
1953 * NUMA scanning to get the memory moved over.
04bb2f94 1954 */
37ec97de
RR
1955 int ratio = max(lr_ratio, ps_ratio);
1956 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1957 }
1958
1959 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1960 task_scan_min(p), task_scan_max(p));
1961 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1962}
1963
7e2703e6
RR
1964/*
1965 * Get the fraction of time the task has been running since the last
1966 * NUMA placement cycle. The scheduler keeps similar statistics, but
1967 * decays those on a 32ms period, which is orders of magnitude off
1968 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1969 * stats only if the task is so new there are no NUMA statistics yet.
1970 */
1971static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1972{
1973 u64 runtime, delta, now;
1974 /* Use the start of this time slice to avoid calculations. */
1975 now = p->se.exec_start;
1976 runtime = p->se.sum_exec_runtime;
1977
1978 if (p->last_task_numa_placement) {
1979 delta = runtime - p->last_sum_exec_runtime;
1980 *period = now - p->last_task_numa_placement;
1981 } else {
c7b50216 1982 delta = p->se.avg.load_sum;
9d89c257 1983 *period = LOAD_AVG_MAX;
7e2703e6
RR
1984 }
1985
1986 p->last_sum_exec_runtime = runtime;
1987 p->last_task_numa_placement = now;
1988
1989 return delta;
1990}
1991
54009416
RR
1992/*
1993 * Determine the preferred nid for a task in a numa_group. This needs to
1994 * be done in a way that produces consistent results with group_weight,
1995 * otherwise workloads might not converge.
1996 */
1997static int preferred_group_nid(struct task_struct *p, int nid)
1998{
1999 nodemask_t nodes;
2000 int dist;
2001
2002 /* Direct connections between all NUMA nodes. */
2003 if (sched_numa_topology_type == NUMA_DIRECT)
2004 return nid;
2005
2006 /*
2007 * On a system with glueless mesh NUMA topology, group_weight
2008 * scores nodes according to the number of NUMA hinting faults on
2009 * both the node itself, and on nearby nodes.
2010 */
2011 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2012 unsigned long score, max_score = 0;
2013 int node, max_node = nid;
2014
2015 dist = sched_max_numa_distance;
2016
2017 for_each_online_node(node) {
2018 score = group_weight(p, node, dist);
2019 if (score > max_score) {
2020 max_score = score;
2021 max_node = node;
2022 }
2023 }
2024 return max_node;
2025 }
2026
2027 /*
2028 * Finding the preferred nid in a system with NUMA backplane
2029 * interconnect topology is more involved. The goal is to locate
2030 * tasks from numa_groups near each other in the system, and
2031 * untangle workloads from different sides of the system. This requires
2032 * searching down the hierarchy of node groups, recursively searching
2033 * inside the highest scoring group of nodes. The nodemask tricks
2034 * keep the complexity of the search down.
2035 */
2036 nodes = node_online_map;
2037 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2038 unsigned long max_faults = 0;
81907478 2039 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2040 int a, b;
2041
2042 /* Are there nodes at this distance from each other? */
2043 if (!find_numa_distance(dist))
2044 continue;
2045
2046 for_each_node_mask(a, nodes) {
2047 unsigned long faults = 0;
2048 nodemask_t this_group;
2049 nodes_clear(this_group);
2050
2051 /* Sum group's NUMA faults; includes a==b case. */
2052 for_each_node_mask(b, nodes) {
2053 if (node_distance(a, b) < dist) {
2054 faults += group_faults(p, b);
2055 node_set(b, this_group);
2056 node_clear(b, nodes);
2057 }
2058 }
2059
2060 /* Remember the top group. */
2061 if (faults > max_faults) {
2062 max_faults = faults;
2063 max_group = this_group;
2064 /*
2065 * subtle: at the smallest distance there is
2066 * just one node left in each "group", the
2067 * winner is the preferred nid.
2068 */
2069 nid = a;
2070 }
2071 }
2072 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2073 if (!max_faults)
2074 break;
54009416
RR
2075 nodes = max_group;
2076 }
2077 return nid;
2078}
2079
cbee9f88
PZ
2080static void task_numa_placement(struct task_struct *p)
2081{
f03bb676
SD
2082 int seq, nid, max_nid = -1;
2083 unsigned long max_faults = 0;
04bb2f94 2084 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2085 unsigned long total_faults;
2086 u64 runtime, period;
7dbd13ed 2087 spinlock_t *group_lock = NULL;
cbee9f88 2088
7e5a2c17
JL
2089 /*
2090 * The p->mm->numa_scan_seq field gets updated without
2091 * exclusive access. Use READ_ONCE() here to ensure
2092 * that the field is read in a single access:
2093 */
316c1608 2094 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2095 if (p->numa_scan_seq == seq)
2096 return;
2097 p->numa_scan_seq = seq;
598f0ec0 2098 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2099
7e2703e6
RR
2100 total_faults = p->numa_faults_locality[0] +
2101 p->numa_faults_locality[1];
2102 runtime = numa_get_avg_runtime(p, &period);
2103
7dbd13ed
MG
2104 /* If the task is part of a group prevent parallel updates to group stats */
2105 if (p->numa_group) {
2106 group_lock = &p->numa_group->lock;
60e69eed 2107 spin_lock_irq(group_lock);
7dbd13ed
MG
2108 }
2109
688b7585
MG
2110 /* Find the node with the highest number of faults */
2111 for_each_online_node(nid) {
44dba3d5
IM
2112 /* Keep track of the offsets in numa_faults array */
2113 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2114 unsigned long faults = 0, group_faults = 0;
44dba3d5 2115 int priv;
745d6147 2116
be1e4e76 2117 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2118 long diff, f_diff, f_weight;
8c8a743c 2119
44dba3d5
IM
2120 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2121 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2122 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2123 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2124
ac8e895b 2125 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2126 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2127 fault_types[priv] += p->numa_faults[membuf_idx];
2128 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2129
7e2703e6
RR
2130 /*
2131 * Normalize the faults_from, so all tasks in a group
2132 * count according to CPU use, instead of by the raw
2133 * number of faults. Tasks with little runtime have
2134 * little over-all impact on throughput, and thus their
2135 * faults are less important.
2136 */
2137 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2138 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2139 (total_faults + 1);
44dba3d5
IM
2140 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2141 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2142
44dba3d5
IM
2143 p->numa_faults[mem_idx] += diff;
2144 p->numa_faults[cpu_idx] += f_diff;
2145 faults += p->numa_faults[mem_idx];
83e1d2cd 2146 p->total_numa_faults += diff;
8c8a743c 2147 if (p->numa_group) {
44dba3d5
IM
2148 /*
2149 * safe because we can only change our own group
2150 *
2151 * mem_idx represents the offset for a given
2152 * nid and priv in a specific region because it
2153 * is at the beginning of the numa_faults array.
2154 */
2155 p->numa_group->faults[mem_idx] += diff;
2156 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2157 p->numa_group->total_faults += diff;
44dba3d5 2158 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2159 }
ac8e895b
MG
2160 }
2161
f03bb676
SD
2162 if (!p->numa_group) {
2163 if (faults > max_faults) {
2164 max_faults = faults;
2165 max_nid = nid;
2166 }
2167 } else if (group_faults > max_faults) {
2168 max_faults = group_faults;
688b7585
MG
2169 max_nid = nid;
2170 }
83e1d2cd
MG
2171 }
2172
7dbd13ed 2173 if (p->numa_group) {
4142c3eb 2174 numa_group_count_active_nodes(p->numa_group);
60e69eed 2175 spin_unlock_irq(group_lock);
f03bb676 2176 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2177 }
2178
bb97fc31
RR
2179 if (max_faults) {
2180 /* Set the new preferred node */
2181 if (max_nid != p->numa_preferred_nid)
2182 sched_setnuma(p, max_nid);
2183
2184 if (task_node(p) != p->numa_preferred_nid)
2185 numa_migrate_preferred(p);
3a7053b3 2186 }
30619c89
SD
2187
2188 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2189}
2190
8c8a743c
PZ
2191static inline int get_numa_group(struct numa_group *grp)
2192{
2193 return atomic_inc_not_zero(&grp->refcount);
2194}
2195
2196static inline void put_numa_group(struct numa_group *grp)
2197{
2198 if (atomic_dec_and_test(&grp->refcount))
2199 kfree_rcu(grp, rcu);
2200}
2201
3e6a9418
MG
2202static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2203 int *priv)
8c8a743c
PZ
2204{
2205 struct numa_group *grp, *my_grp;
2206 struct task_struct *tsk;
2207 bool join = false;
2208 int cpu = cpupid_to_cpu(cpupid);
2209 int i;
2210
2211 if (unlikely(!p->numa_group)) {
2212 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2213 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2214
2215 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2216 if (!grp)
2217 return;
2218
2219 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2220 grp->active_nodes = 1;
2221 grp->max_faults_cpu = 0;
8c8a743c 2222 spin_lock_init(&grp->lock);
e29cf08b 2223 grp->gid = p->pid;
50ec8a40 2224 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2225 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2226 nr_node_ids;
8c8a743c 2227
be1e4e76 2228 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2229 grp->faults[i] = p->numa_faults[i];
8c8a743c 2230
989348b5 2231 grp->total_faults = p->total_numa_faults;
83e1d2cd 2232
8c8a743c
PZ
2233 grp->nr_tasks++;
2234 rcu_assign_pointer(p->numa_group, grp);
2235 }
2236
2237 rcu_read_lock();
316c1608 2238 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2239
2240 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2241 goto no_join;
8c8a743c
PZ
2242
2243 grp = rcu_dereference(tsk->numa_group);
2244 if (!grp)
3354781a 2245 goto no_join;
8c8a743c
PZ
2246
2247 my_grp = p->numa_group;
2248 if (grp == my_grp)
3354781a 2249 goto no_join;
8c8a743c
PZ
2250
2251 /*
2252 * Only join the other group if its bigger; if we're the bigger group,
2253 * the other task will join us.
2254 */
2255 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2256 goto no_join;
8c8a743c
PZ
2257
2258 /*
2259 * Tie-break on the grp address.
2260 */
2261 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2262 goto no_join;
8c8a743c 2263
dabe1d99
RR
2264 /* Always join threads in the same process. */
2265 if (tsk->mm == current->mm)
2266 join = true;
2267
2268 /* Simple filter to avoid false positives due to PID collisions */
2269 if (flags & TNF_SHARED)
2270 join = true;
8c8a743c 2271
3e6a9418
MG
2272 /* Update priv based on whether false sharing was detected */
2273 *priv = !join;
2274
dabe1d99 2275 if (join && !get_numa_group(grp))
3354781a 2276 goto no_join;
8c8a743c 2277
8c8a743c
PZ
2278 rcu_read_unlock();
2279
2280 if (!join)
2281 return;
2282
60e69eed
MG
2283 BUG_ON(irqs_disabled());
2284 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2285
be1e4e76 2286 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2287 my_grp->faults[i] -= p->numa_faults[i];
2288 grp->faults[i] += p->numa_faults[i];
8c8a743c 2289 }
989348b5
MG
2290 my_grp->total_faults -= p->total_numa_faults;
2291 grp->total_faults += p->total_numa_faults;
8c8a743c 2292
8c8a743c
PZ
2293 my_grp->nr_tasks--;
2294 grp->nr_tasks++;
2295
2296 spin_unlock(&my_grp->lock);
60e69eed 2297 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2298
2299 rcu_assign_pointer(p->numa_group, grp);
2300
2301 put_numa_group(my_grp);
3354781a
PZ
2302 return;
2303
2304no_join:
2305 rcu_read_unlock();
2306 return;
8c8a743c
PZ
2307}
2308
2309void task_numa_free(struct task_struct *p)
2310{
2311 struct numa_group *grp = p->numa_group;
44dba3d5 2312 void *numa_faults = p->numa_faults;
e9dd685c
SR
2313 unsigned long flags;
2314 int i;
8c8a743c
PZ
2315
2316 if (grp) {
e9dd685c 2317 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2318 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2319 grp->faults[i] -= p->numa_faults[i];
989348b5 2320 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2321
8c8a743c 2322 grp->nr_tasks--;
e9dd685c 2323 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2324 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2325 put_numa_group(grp);
2326 }
2327
44dba3d5 2328 p->numa_faults = NULL;
82727018 2329 kfree(numa_faults);
8c8a743c
PZ
2330}
2331
cbee9f88
PZ
2332/*
2333 * Got a PROT_NONE fault for a page on @node.
2334 */
58b46da3 2335void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2336{
2337 struct task_struct *p = current;
6688cc05 2338 bool migrated = flags & TNF_MIGRATED;
58b46da3 2339 int cpu_node = task_node(current);
792568ec 2340 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2341 struct numa_group *ng;
ac8e895b 2342 int priv;
cbee9f88 2343
2a595721 2344 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2345 return;
2346
9ff1d9ff
MG
2347 /* for example, ksmd faulting in a user's mm */
2348 if (!p->mm)
2349 return;
2350
f809ca9a 2351 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2352 if (unlikely(!p->numa_faults)) {
2353 int size = sizeof(*p->numa_faults) *
be1e4e76 2354 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2355
44dba3d5
IM
2356 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2357 if (!p->numa_faults)
f809ca9a 2358 return;
745d6147 2359
83e1d2cd 2360 p->total_numa_faults = 0;
04bb2f94 2361 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2362 }
cbee9f88 2363
8c8a743c
PZ
2364 /*
2365 * First accesses are treated as private, otherwise consider accesses
2366 * to be private if the accessing pid has not changed
2367 */
2368 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2369 priv = 1;
2370 } else {
2371 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2372 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2373 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2374 }
2375
792568ec
RR
2376 /*
2377 * If a workload spans multiple NUMA nodes, a shared fault that
2378 * occurs wholly within the set of nodes that the workload is
2379 * actively using should be counted as local. This allows the
2380 * scan rate to slow down when a workload has settled down.
2381 */
4142c3eb
RR
2382 ng = p->numa_group;
2383 if (!priv && !local && ng && ng->active_nodes > 1 &&
2384 numa_is_active_node(cpu_node, ng) &&
2385 numa_is_active_node(mem_node, ng))
792568ec
RR
2386 local = 1;
2387
cbee9f88 2388 task_numa_placement(p);
f809ca9a 2389
2739d3ee
RR
2390 /*
2391 * Retry task to preferred node migration periodically, in case it
2392 * case it previously failed, or the scheduler moved us.
2393 */
2394 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2395 numa_migrate_preferred(p);
2396
b32e86b4
IM
2397 if (migrated)
2398 p->numa_pages_migrated += pages;
074c2381
MG
2399 if (flags & TNF_MIGRATE_FAIL)
2400 p->numa_faults_locality[2] += pages;
b32e86b4 2401
44dba3d5
IM
2402 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2403 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2404 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2405}
2406
6e5fb223
PZ
2407static void reset_ptenuma_scan(struct task_struct *p)
2408{
7e5a2c17
JL
2409 /*
2410 * We only did a read acquisition of the mmap sem, so
2411 * p->mm->numa_scan_seq is written to without exclusive access
2412 * and the update is not guaranteed to be atomic. That's not
2413 * much of an issue though, since this is just used for
2414 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2415 * expensive, to avoid any form of compiler optimizations:
2416 */
316c1608 2417 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2418 p->mm->numa_scan_offset = 0;
2419}
2420
cbee9f88
PZ
2421/*
2422 * The expensive part of numa migration is done from task_work context.
2423 * Triggered from task_tick_numa().
2424 */
2425void task_numa_work(struct callback_head *work)
2426{
2427 unsigned long migrate, next_scan, now = jiffies;
2428 struct task_struct *p = current;
2429 struct mm_struct *mm = p->mm;
51170840 2430 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2431 struct vm_area_struct *vma;
9f40604c 2432 unsigned long start, end;
598f0ec0 2433 unsigned long nr_pte_updates = 0;
4620f8c1 2434 long pages, virtpages;
cbee9f88 2435
9148a3a1 2436 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2437
2438 work->next = work; /* protect against double add */
2439 /*
2440 * Who cares about NUMA placement when they're dying.
2441 *
2442 * NOTE: make sure not to dereference p->mm before this check,
2443 * exit_task_work() happens _after_ exit_mm() so we could be called
2444 * without p->mm even though we still had it when we enqueued this
2445 * work.
2446 */
2447 if (p->flags & PF_EXITING)
2448 return;
2449
930aa174 2450 if (!mm->numa_next_scan) {
7e8d16b6
MG
2451 mm->numa_next_scan = now +
2452 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2453 }
2454
cbee9f88
PZ
2455 /*
2456 * Enforce maximal scan/migration frequency..
2457 */
2458 migrate = mm->numa_next_scan;
2459 if (time_before(now, migrate))
2460 return;
2461
598f0ec0
MG
2462 if (p->numa_scan_period == 0) {
2463 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2464 p->numa_scan_period = task_scan_start(p);
598f0ec0 2465 }
cbee9f88 2466
fb003b80 2467 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2468 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2469 return;
2470
19a78d11
PZ
2471 /*
2472 * Delay this task enough that another task of this mm will likely win
2473 * the next time around.
2474 */
2475 p->node_stamp += 2 * TICK_NSEC;
2476
9f40604c
MG
2477 start = mm->numa_scan_offset;
2478 pages = sysctl_numa_balancing_scan_size;
2479 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2480 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2481 if (!pages)
2482 return;
cbee9f88 2483
4620f8c1 2484
8655d549
VB
2485 if (!down_read_trylock(&mm->mmap_sem))
2486 return;
9f40604c 2487 vma = find_vma(mm, start);
6e5fb223
PZ
2488 if (!vma) {
2489 reset_ptenuma_scan(p);
9f40604c 2490 start = 0;
6e5fb223
PZ
2491 vma = mm->mmap;
2492 }
9f40604c 2493 for (; vma; vma = vma->vm_next) {
6b79c57b 2494 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2495 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2496 continue;
6b79c57b 2497 }
6e5fb223 2498
4591ce4f
MG
2499 /*
2500 * Shared library pages mapped by multiple processes are not
2501 * migrated as it is expected they are cache replicated. Avoid
2502 * hinting faults in read-only file-backed mappings or the vdso
2503 * as migrating the pages will be of marginal benefit.
2504 */
2505 if (!vma->vm_mm ||
2506 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2507 continue;
2508
3c67f474
MG
2509 /*
2510 * Skip inaccessible VMAs to avoid any confusion between
2511 * PROT_NONE and NUMA hinting ptes
2512 */
2513 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2514 continue;
4591ce4f 2515
9f40604c
MG
2516 do {
2517 start = max(start, vma->vm_start);
2518 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2519 end = min(end, vma->vm_end);
4620f8c1 2520 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2521
2522 /*
4620f8c1
RR
2523 * Try to scan sysctl_numa_balancing_size worth of
2524 * hpages that have at least one present PTE that
2525 * is not already pte-numa. If the VMA contains
2526 * areas that are unused or already full of prot_numa
2527 * PTEs, scan up to virtpages, to skip through those
2528 * areas faster.
598f0ec0
MG
2529 */
2530 if (nr_pte_updates)
2531 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2532 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2533
9f40604c 2534 start = end;
4620f8c1 2535 if (pages <= 0 || virtpages <= 0)
9f40604c 2536 goto out;
3cf1962c
RR
2537
2538 cond_resched();
9f40604c 2539 } while (end != vma->vm_end);
cbee9f88 2540 }
6e5fb223 2541
9f40604c 2542out:
6e5fb223 2543 /*
c69307d5
PZ
2544 * It is possible to reach the end of the VMA list but the last few
2545 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2546 * would find the !migratable VMA on the next scan but not reset the
2547 * scanner to the start so check it now.
6e5fb223
PZ
2548 */
2549 if (vma)
9f40604c 2550 mm->numa_scan_offset = start;
6e5fb223
PZ
2551 else
2552 reset_ptenuma_scan(p);
2553 up_read(&mm->mmap_sem);
51170840
RR
2554
2555 /*
2556 * Make sure tasks use at least 32x as much time to run other code
2557 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2558 * Usually update_task_scan_period slows down scanning enough; on an
2559 * overloaded system we need to limit overhead on a per task basis.
2560 */
2561 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2562 u64 diff = p->se.sum_exec_runtime - runtime;
2563 p->node_stamp += 32 * diff;
2564 }
cbee9f88
PZ
2565}
2566
2567/*
2568 * Drive the periodic memory faults..
2569 */
2570void task_tick_numa(struct rq *rq, struct task_struct *curr)
2571{
2572 struct callback_head *work = &curr->numa_work;
2573 u64 period, now;
2574
2575 /*
2576 * We don't care about NUMA placement if we don't have memory.
2577 */
2578 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2579 return;
2580
2581 /*
2582 * Using runtime rather than walltime has the dual advantage that
2583 * we (mostly) drive the selection from busy threads and that the
2584 * task needs to have done some actual work before we bother with
2585 * NUMA placement.
2586 */
2587 now = curr->se.sum_exec_runtime;
2588 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2589
25b3e5a3 2590 if (now > curr->node_stamp + period) {
4b96a29b 2591 if (!curr->node_stamp)
b5dd77c8 2592 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2593 curr->node_stamp += period;
cbee9f88
PZ
2594
2595 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2596 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2597 task_work_add(curr, work, true);
2598 }
2599 }
2600}
3fed382b 2601
cbee9f88
PZ
2602#else
2603static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2604{
2605}
0ec8aa00
PZ
2606
2607static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2608{
2609}
2610
2611static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2612{
2613}
3fed382b 2614
cbee9f88
PZ
2615#endif /* CONFIG_NUMA_BALANCING */
2616
30cfdcfc
DA
2617static void
2618account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2619{
2620 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2621 if (!parent_entity(se))
029632fb 2622 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2623#ifdef CONFIG_SMP
0ec8aa00
PZ
2624 if (entity_is_task(se)) {
2625 struct rq *rq = rq_of(cfs_rq);
2626
2627 account_numa_enqueue(rq, task_of(se));
2628 list_add(&se->group_node, &rq->cfs_tasks);
2629 }
367456c7 2630#endif
30cfdcfc 2631 cfs_rq->nr_running++;
30cfdcfc
DA
2632}
2633
2634static void
2635account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2636{
2637 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2638 if (!parent_entity(se))
029632fb 2639 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2640#ifdef CONFIG_SMP
0ec8aa00
PZ
2641 if (entity_is_task(se)) {
2642 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2643 list_del_init(&se->group_node);
0ec8aa00 2644 }
bfdb198c 2645#endif
30cfdcfc 2646 cfs_rq->nr_running--;
30cfdcfc
DA
2647}
2648
8d5b9025
PZ
2649/*
2650 * Signed add and clamp on underflow.
2651 *
2652 * Explicitly do a load-store to ensure the intermediate value never hits
2653 * memory. This allows lockless observations without ever seeing the negative
2654 * values.
2655 */
2656#define add_positive(_ptr, _val) do { \
2657 typeof(_ptr) ptr = (_ptr); \
2658 typeof(_val) val = (_val); \
2659 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2660 \
2661 res = var + val; \
2662 \
2663 if (val < 0 && res > var) \
2664 res = 0; \
2665 \
2666 WRITE_ONCE(*ptr, res); \
2667} while (0)
2668
2669/*
2670 * Unsigned subtract and clamp on underflow.
2671 *
2672 * Explicitly do a load-store to ensure the intermediate value never hits
2673 * memory. This allows lockless observations without ever seeing the negative
2674 * values.
2675 */
2676#define sub_positive(_ptr, _val) do { \
2677 typeof(_ptr) ptr = (_ptr); \
2678 typeof(*ptr) val = (_val); \
2679 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2680 res = var - val; \
2681 if (res > var) \
2682 res = 0; \
2683 WRITE_ONCE(*ptr, res); \
2684} while (0)
2685
2686#ifdef CONFIG_SMP
8d5b9025
PZ
2687static inline void
2688enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2689{
1ea6c46a
PZ
2690 cfs_rq->runnable_weight += se->runnable_weight;
2691
2692 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2693 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2694}
2695
2696static inline void
2697dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2698{
1ea6c46a
PZ
2699 cfs_rq->runnable_weight -= se->runnable_weight;
2700
2701 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2702 sub_positive(&cfs_rq->avg.runnable_load_sum,
2703 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2704}
2705
2706static inline void
2707enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2708{
2709 cfs_rq->avg.load_avg += se->avg.load_avg;
2710 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2711}
2712
2713static inline void
2714dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2715{
2716 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2717 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2718}
2719#else
2720static inline void
2721enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2722static inline void
2723dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2724static inline void
2725enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2726static inline void
2727dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2728#endif
2729
9059393e 2730static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2731 unsigned long weight, unsigned long runnable)
9059393e
VG
2732{
2733 if (se->on_rq) {
2734 /* commit outstanding execution time */
2735 if (cfs_rq->curr == se)
2736 update_curr(cfs_rq);
2737 account_entity_dequeue(cfs_rq, se);
2738 dequeue_runnable_load_avg(cfs_rq, se);
2739 }
2740 dequeue_load_avg(cfs_rq, se);
2741
1ea6c46a 2742 se->runnable_weight = runnable;
9059393e
VG
2743 update_load_set(&se->load, weight);
2744
2745#ifdef CONFIG_SMP
1ea6c46a
PZ
2746 do {
2747 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2748
2749 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2750 se->avg.runnable_load_avg =
2751 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2752 } while (0);
9059393e
VG
2753#endif
2754
2755 enqueue_load_avg(cfs_rq, se);
2756 if (se->on_rq) {
2757 account_entity_enqueue(cfs_rq, se);
2758 enqueue_runnable_load_avg(cfs_rq, se);
2759 }
2760}
2761
2762void reweight_task(struct task_struct *p, int prio)
2763{
2764 struct sched_entity *se = &p->se;
2765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2766 struct load_weight *load = &se->load;
2767 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2768
1ea6c46a 2769 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2770 load->inv_weight = sched_prio_to_wmult[prio];
2771}
2772
3ff6dcac 2773#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2774#ifdef CONFIG_SMP
cef27403
PZ
2775/*
2776 * All this does is approximate the hierarchical proportion which includes that
2777 * global sum we all love to hate.
2778 *
2779 * That is, the weight of a group entity, is the proportional share of the
2780 * group weight based on the group runqueue weights. That is:
2781 *
2782 * tg->weight * grq->load.weight
2783 * ge->load.weight = ----------------------------- (1)
2784 * \Sum grq->load.weight
2785 *
2786 * Now, because computing that sum is prohibitively expensive to compute (been
2787 * there, done that) we approximate it with this average stuff. The average
2788 * moves slower and therefore the approximation is cheaper and more stable.
2789 *
2790 * So instead of the above, we substitute:
2791 *
2792 * grq->load.weight -> grq->avg.load_avg (2)
2793 *
2794 * which yields the following:
2795 *
2796 * tg->weight * grq->avg.load_avg
2797 * ge->load.weight = ------------------------------ (3)
2798 * tg->load_avg
2799 *
2800 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2801 *
2802 * That is shares_avg, and it is right (given the approximation (2)).
2803 *
2804 * The problem with it is that because the average is slow -- it was designed
2805 * to be exactly that of course -- this leads to transients in boundary
2806 * conditions. In specific, the case where the group was idle and we start the
2807 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2808 * yielding bad latency etc..
2809 *
2810 * Now, in that special case (1) reduces to:
2811 *
2812 * tg->weight * grq->load.weight
17de4ee0 2813 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2814 * grp->load.weight
2815 *
2816 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2817 *
2818 * So what we do is modify our approximation (3) to approach (4) in the (near)
2819 * UP case, like:
2820 *
2821 * ge->load.weight =
2822 *
2823 * tg->weight * grq->load.weight
2824 * --------------------------------------------------- (5)
2825 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2826 *
17de4ee0
PZ
2827 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2828 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2829 *
2830 *
2831 * tg->weight * grq->load.weight
2832 * ge->load.weight = ----------------------------- (6)
2833 * tg_load_avg'
2834 *
2835 * Where:
2836 *
2837 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2838 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2839 *
2840 * And that is shares_weight and is icky. In the (near) UP case it approaches
2841 * (4) while in the normal case it approaches (3). It consistently
2842 * overestimates the ge->load.weight and therefore:
2843 *
2844 * \Sum ge->load.weight >= tg->weight
2845 *
2846 * hence icky!
2847 */
2c8e4dce 2848static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2849{
7c80cfc9
PZ
2850 long tg_weight, tg_shares, load, shares;
2851 struct task_group *tg = cfs_rq->tg;
2852
2853 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2854
3d4b60d3 2855 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2856
ea1dc6fc 2857 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2858
ea1dc6fc
PZ
2859 /* Ensure tg_weight >= load */
2860 tg_weight -= cfs_rq->tg_load_avg_contrib;
2861 tg_weight += load;
3ff6dcac 2862
7c80cfc9 2863 shares = (tg_shares * load);
cf5f0acf
PZ
2864 if (tg_weight)
2865 shares /= tg_weight;
3ff6dcac 2866
b8fd8423
DE
2867 /*
2868 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2869 * of a group with small tg->shares value. It is a floor value which is
2870 * assigned as a minimum load.weight to the sched_entity representing
2871 * the group on a CPU.
2872 *
2873 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2874 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2875 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2876 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2877 * instead of 0.
2878 */
7c80cfc9 2879 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2880}
2c8e4dce
JB
2881
2882/*
17de4ee0
PZ
2883 * This calculates the effective runnable weight for a group entity based on
2884 * the group entity weight calculated above.
2885 *
2886 * Because of the above approximation (2), our group entity weight is
2887 * an load_avg based ratio (3). This means that it includes blocked load and
2888 * does not represent the runnable weight.
2889 *
2890 * Approximate the group entity's runnable weight per ratio from the group
2891 * runqueue:
2892 *
2893 * grq->avg.runnable_load_avg
2894 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2895 * grq->avg.load_avg
2896 *
2897 * However, analogous to above, since the avg numbers are slow, this leads to
2898 * transients in the from-idle case. Instead we use:
2899 *
2900 * ge->runnable_weight = ge->load.weight *
2901 *
2902 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2903 * ----------------------------------------------------- (8)
2904 * max(grq->avg.load_avg, grq->load.weight)
2905 *
2906 * Where these max() serve both to use the 'instant' values to fix the slow
2907 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2908 */
2909static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2910{
17de4ee0
PZ
2911 long runnable, load_avg;
2912
2913 load_avg = max(cfs_rq->avg.load_avg,
2914 scale_load_down(cfs_rq->load.weight));
2915
2916 runnable = max(cfs_rq->avg.runnable_load_avg,
2917 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2918
2919 runnable *= shares;
2920 if (load_avg)
2921 runnable /= load_avg;
17de4ee0 2922
2c8e4dce
JB
2923 return clamp_t(long, runnable, MIN_SHARES, shares);
2924}
387f77cc 2925#endif /* CONFIG_SMP */
ea1dc6fc 2926
82958366
PT
2927static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2928
1ea6c46a
PZ
2929/*
2930 * Recomputes the group entity based on the current state of its group
2931 * runqueue.
2932 */
2933static void update_cfs_group(struct sched_entity *se)
2069dd75 2934{
1ea6c46a
PZ
2935 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2936 long shares, runnable;
2069dd75 2937
1ea6c46a 2938 if (!gcfs_rq)
89ee048f
VG
2939 return;
2940
1ea6c46a 2941 if (throttled_hierarchy(gcfs_rq))
2069dd75 2942 return;
89ee048f 2943
3ff6dcac 2944#ifndef CONFIG_SMP
1ea6c46a 2945 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
2946
2947 if (likely(se->load.weight == shares))
3ff6dcac 2948 return;
7c80cfc9 2949#else
2c8e4dce
JB
2950 shares = calc_group_shares(gcfs_rq);
2951 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 2952#endif
2069dd75 2953
1ea6c46a 2954 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 2955}
89ee048f 2956
2069dd75 2957#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 2958static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
2959{
2960}
2961#endif /* CONFIG_FAIR_GROUP_SCHED */
2962
ea14b57e 2963static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 2964{
43964409
LT
2965 struct rq *rq = rq_of(cfs_rq);
2966
ea14b57e 2967 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
2968 /*
2969 * There are a few boundary cases this might miss but it should
2970 * get called often enough that that should (hopefully) not be
9783be2c 2971 * a real problem.
a030d738
VK
2972 *
2973 * It will not get called when we go idle, because the idle
2974 * thread is a different class (!fair), nor will the utilization
2975 * number include things like RT tasks.
2976 *
2977 * As is, the util number is not freq-invariant (we'd have to
2978 * implement arch_scale_freq_capacity() for that).
2979 *
2980 * See cpu_util().
2981 */
ea14b57e 2982 cpufreq_update_util(rq, flags);
a030d738
VK
2983 }
2984}
2985
141965c7 2986#ifdef CONFIG_SMP
c566e8e9 2987#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2988/**
2989 * update_tg_load_avg - update the tg's load avg
2990 * @cfs_rq: the cfs_rq whose avg changed
2991 * @force: update regardless of how small the difference
2992 *
2993 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2994 * However, because tg->load_avg is a global value there are performance
2995 * considerations.
2996 *
2997 * In order to avoid having to look at the other cfs_rq's, we use a
2998 * differential update where we store the last value we propagated. This in
2999 * turn allows skipping updates if the differential is 'small'.
3000 *
815abf5a 3001 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3002 */
9d89c257 3003static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3004{
9d89c257 3005 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3006
aa0b7ae0
WL
3007 /*
3008 * No need to update load_avg for root_task_group as it is not used.
3009 */
3010 if (cfs_rq->tg == &root_task_group)
3011 return;
3012
9d89c257
YD
3013 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3014 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3015 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3016 }
8165e145 3017}
f5f9739d 3018
ad936d86 3019/*
97fb7a0a 3020 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3021 * caller only guarantees p->pi_lock is held; no other assumptions,
3022 * including the state of rq->lock, should be made.
3023 */
3024void set_task_rq_fair(struct sched_entity *se,
3025 struct cfs_rq *prev, struct cfs_rq *next)
3026{
0ccb977f
PZ
3027 u64 p_last_update_time;
3028 u64 n_last_update_time;
3029
ad936d86
BP
3030 if (!sched_feat(ATTACH_AGE_LOAD))
3031 return;
3032
3033 /*
3034 * We are supposed to update the task to "current" time, then its up to
3035 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3036 * getting what current time is, so simply throw away the out-of-date
3037 * time. This will result in the wakee task is less decayed, but giving
3038 * the wakee more load sounds not bad.
3039 */
0ccb977f
PZ
3040 if (!(se->avg.last_update_time && prev))
3041 return;
ad936d86
BP
3042
3043#ifndef CONFIG_64BIT
0ccb977f 3044 {
ad936d86
BP
3045 u64 p_last_update_time_copy;
3046 u64 n_last_update_time_copy;
3047
3048 do {
3049 p_last_update_time_copy = prev->load_last_update_time_copy;
3050 n_last_update_time_copy = next->load_last_update_time_copy;
3051
3052 smp_rmb();
3053
3054 p_last_update_time = prev->avg.last_update_time;
3055 n_last_update_time = next->avg.last_update_time;
3056
3057 } while (p_last_update_time != p_last_update_time_copy ||
3058 n_last_update_time != n_last_update_time_copy);
0ccb977f 3059 }
ad936d86 3060#else
0ccb977f
PZ
3061 p_last_update_time = prev->avg.last_update_time;
3062 n_last_update_time = next->avg.last_update_time;
ad936d86 3063#endif
0ccb977f
PZ
3064 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3065 se->avg.last_update_time = n_last_update_time;
ad936d86 3066}
09a43ace 3067
0e2d2aaa
PZ
3068
3069/*
3070 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3071 * propagate its contribution. The key to this propagation is the invariant
3072 * that for each group:
3073 *
3074 * ge->avg == grq->avg (1)
3075 *
3076 * _IFF_ we look at the pure running and runnable sums. Because they
3077 * represent the very same entity, just at different points in the hierarchy.
3078 *
a4c3c049
VG
3079 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3080 * sum over (but still wrong, because the group entity and group rq do not have
3081 * their PELT windows aligned).
0e2d2aaa
PZ
3082 *
3083 * However, update_tg_cfs_runnable() is more complex. So we have:
3084 *
3085 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3086 *
3087 * And since, like util, the runnable part should be directly transferable,
3088 * the following would _appear_ to be the straight forward approach:
3089 *
a4c3c049 3090 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3091 *
3092 * And per (1) we have:
3093 *
a4c3c049 3094 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3095 *
3096 * Which gives:
3097 *
3098 * ge->load.weight * grq->avg.load_avg
3099 * ge->avg.load_avg = ----------------------------------- (4)
3100 * grq->load.weight
3101 *
3102 * Except that is wrong!
3103 *
3104 * Because while for entities historical weight is not important and we
3105 * really only care about our future and therefore can consider a pure
3106 * runnable sum, runqueues can NOT do this.
3107 *
3108 * We specifically want runqueues to have a load_avg that includes
3109 * historical weights. Those represent the blocked load, the load we expect
3110 * to (shortly) return to us. This only works by keeping the weights as
3111 * integral part of the sum. We therefore cannot decompose as per (3).
3112 *
a4c3c049
VG
3113 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3114 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3115 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3116 * runnable section of these tasks overlap (or not). If they were to perfectly
3117 * align the rq as a whole would be runnable 2/3 of the time. If however we
3118 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3119 *
a4c3c049 3120 * So we'll have to approximate.. :/
0e2d2aaa 3121 *
a4c3c049 3122 * Given the constraint:
0e2d2aaa 3123 *
a4c3c049 3124 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3125 *
a4c3c049
VG
3126 * We can construct a rule that adds runnable to a rq by assuming minimal
3127 * overlap.
0e2d2aaa 3128 *
a4c3c049 3129 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3130 *
a4c3c049 3131 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3132 *
a4c3c049 3133 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3134 *
0e2d2aaa
PZ
3135 */
3136
09a43ace 3137static inline void
0e2d2aaa 3138update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3139{
09a43ace
VG
3140 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3141
3142 /* Nothing to update */
3143 if (!delta)
3144 return;
3145
a4c3c049
VG
3146 /*
3147 * The relation between sum and avg is:
3148 *
3149 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3150 *
3151 * however, the PELT windows are not aligned between grq and gse.
3152 */
3153
09a43ace
VG
3154 /* Set new sched_entity's utilization */
3155 se->avg.util_avg = gcfs_rq->avg.util_avg;
3156 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3157
3158 /* Update parent cfs_rq utilization */
3159 add_positive(&cfs_rq->avg.util_avg, delta);
3160 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3161}
3162
09a43ace 3163static inline void
0e2d2aaa 3164update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3165{
a4c3c049
VG
3166 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3167 unsigned long runnable_load_avg, load_avg;
3168 u64 runnable_load_sum, load_sum = 0;
3169 s64 delta_sum;
09a43ace 3170
0e2d2aaa
PZ
3171 if (!runnable_sum)
3172 return;
09a43ace 3173
0e2d2aaa 3174 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3175
a4c3c049
VG
3176 if (runnable_sum >= 0) {
3177 /*
3178 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3179 * the CPU is saturated running == runnable.
3180 */
3181 runnable_sum += se->avg.load_sum;
3182 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3183 } else {
3184 /*
3185 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3186 * assuming all tasks are equally runnable.
3187 */
3188 if (scale_load_down(gcfs_rq->load.weight)) {
3189 load_sum = div_s64(gcfs_rq->avg.load_sum,
3190 scale_load_down(gcfs_rq->load.weight));
3191 }
3192
3193 /* But make sure to not inflate se's runnable */
3194 runnable_sum = min(se->avg.load_sum, load_sum);
3195 }
3196
3197 /*
3198 * runnable_sum can't be lower than running_sum
97fb7a0a 3199 * As running sum is scale with CPU capacity wehreas the runnable sum
a4c3c049
VG
3200 * is not we rescale running_sum 1st
3201 */
3202 running_sum = se->avg.util_sum /
3203 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3204 runnable_sum = max(runnable_sum, running_sum);
3205
0e2d2aaa
PZ
3206 load_sum = (s64)se_weight(se) * runnable_sum;
3207 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3208
a4c3c049
VG
3209 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3210 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3211
a4c3c049
VG
3212 se->avg.load_sum = runnable_sum;
3213 se->avg.load_avg = load_avg;
3214 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3215 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3216
1ea6c46a
PZ
3217 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3218 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3219 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3220 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3221
a4c3c049
VG
3222 se->avg.runnable_load_sum = runnable_sum;
3223 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3224
09a43ace 3225 if (se->on_rq) {
a4c3c049
VG
3226 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3227 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3228 }
3229}
3230
0e2d2aaa 3231static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3232{
0e2d2aaa
PZ
3233 cfs_rq->propagate = 1;
3234 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3235}
3236
3237/* Update task and its cfs_rq load average */
3238static inline int propagate_entity_load_avg(struct sched_entity *se)
3239{
0e2d2aaa 3240 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3241
3242 if (entity_is_task(se))
3243 return 0;
3244
0e2d2aaa
PZ
3245 gcfs_rq = group_cfs_rq(se);
3246 if (!gcfs_rq->propagate)
09a43ace
VG
3247 return 0;
3248
0e2d2aaa
PZ
3249 gcfs_rq->propagate = 0;
3250
09a43ace
VG
3251 cfs_rq = cfs_rq_of(se);
3252
0e2d2aaa 3253 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3254
0e2d2aaa
PZ
3255 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3256 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3257
3258 return 1;
3259}
3260
bc427898
VG
3261/*
3262 * Check if we need to update the load and the utilization of a blocked
3263 * group_entity:
3264 */
3265static inline bool skip_blocked_update(struct sched_entity *se)
3266{
3267 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3268
3269 /*
3270 * If sched_entity still have not zero load or utilization, we have to
3271 * decay it:
3272 */
3273 if (se->avg.load_avg || se->avg.util_avg)
3274 return false;
3275
3276 /*
3277 * If there is a pending propagation, we have to update the load and
3278 * the utilization of the sched_entity:
3279 */
0e2d2aaa 3280 if (gcfs_rq->propagate)
bc427898
VG
3281 return false;
3282
3283 /*
3284 * Otherwise, the load and the utilization of the sched_entity is
3285 * already zero and there is no pending propagation, so it will be a
3286 * waste of time to try to decay it:
3287 */
3288 return true;
3289}
3290
6e83125c 3291#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3292
9d89c257 3293static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3294
3295static inline int propagate_entity_load_avg(struct sched_entity *se)
3296{
3297 return 0;
3298}
3299
0e2d2aaa 3300static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3301
6e83125c 3302#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3303
3d30544f
PZ
3304/**
3305 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3306 * @now: current time, as per cfs_rq_clock_task()
3307 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3308 *
3309 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3310 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3311 * post_init_entity_util_avg().
3312 *
3313 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3314 *
7c3edd2c
PZ
3315 * Returns true if the load decayed or we removed load.
3316 *
3317 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3318 * call update_tg_load_avg() when this function returns true.
3d30544f 3319 */
a2c6c91f 3320static inline int
3a123bbb 3321update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3322{
0e2d2aaa 3323 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3324 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3325 int decayed = 0;
2dac754e 3326
2a2f5d4e
PZ
3327 if (cfs_rq->removed.nr) {
3328 unsigned long r;
9a2dd585 3329 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3330
3331 raw_spin_lock(&cfs_rq->removed.lock);
3332 swap(cfs_rq->removed.util_avg, removed_util);
3333 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3334 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3335 cfs_rq->removed.nr = 0;
3336 raw_spin_unlock(&cfs_rq->removed.lock);
3337
2a2f5d4e 3338 r = removed_load;
89741892 3339 sub_positive(&sa->load_avg, r);
9a2dd585 3340 sub_positive(&sa->load_sum, r * divider);
2dac754e 3341
2a2f5d4e 3342 r = removed_util;
89741892 3343 sub_positive(&sa->util_avg, r);
9a2dd585 3344 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3345
0e2d2aaa 3346 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3347
3348 decayed = 1;
9d89c257 3349 }
36ee28e4 3350
2a2f5d4e 3351 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3352
9d89c257
YD
3353#ifndef CONFIG_64BIT
3354 smp_wmb();
3355 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3356#endif
36ee28e4 3357
2a2f5d4e 3358 if (decayed)
ea14b57e 3359 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3360
2a2f5d4e 3361 return decayed;
21e96f88
SM
3362}
3363
3d30544f
PZ
3364/**
3365 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3366 * @cfs_rq: cfs_rq to attach to
3367 * @se: sched_entity to attach
3368 *
3369 * Must call update_cfs_rq_load_avg() before this, since we rely on
3370 * cfs_rq->avg.last_update_time being current.
3371 */
ea14b57e 3372static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3373{
f207934f
PZ
3374 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3375
3376 /*
3377 * When we attach the @se to the @cfs_rq, we must align the decay
3378 * window because without that, really weird and wonderful things can
3379 * happen.
3380 *
3381 * XXX illustrate
3382 */
a05e8c51 3383 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3384 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3385
3386 /*
3387 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3388 * period_contrib. This isn't strictly correct, but since we're
3389 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3390 * _sum a little.
3391 */
3392 se->avg.util_sum = se->avg.util_avg * divider;
3393
3394 se->avg.load_sum = divider;
3395 if (se_weight(se)) {
3396 se->avg.load_sum =
3397 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3398 }
3399
3400 se->avg.runnable_load_sum = se->avg.load_sum;
3401
8d5b9025 3402 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3403 cfs_rq->avg.util_avg += se->avg.util_avg;
3404 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3405
3406 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3407
ea14b57e 3408 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3409}
3410
3d30544f
PZ
3411/**
3412 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3413 * @cfs_rq: cfs_rq to detach from
3414 * @se: sched_entity to detach
3415 *
3416 * Must call update_cfs_rq_load_avg() before this, since we rely on
3417 * cfs_rq->avg.last_update_time being current.
3418 */
a05e8c51
BP
3419static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420{
8d5b9025 3421 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3422 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3423 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3424
3425 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3426
ea14b57e 3427 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3428}
3429
b382a531
PZ
3430/*
3431 * Optional action to be done while updating the load average
3432 */
3433#define UPDATE_TG 0x1
3434#define SKIP_AGE_LOAD 0x2
3435#define DO_ATTACH 0x4
3436
3437/* Update task and its cfs_rq load average */
3438static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3439{
3440 u64 now = cfs_rq_clock_task(cfs_rq);
3441 struct rq *rq = rq_of(cfs_rq);
3442 int cpu = cpu_of(rq);
3443 int decayed;
3444
3445 /*
3446 * Track task load average for carrying it to new CPU after migrated, and
3447 * track group sched_entity load average for task_h_load calc in migration
3448 */
3449 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3450 __update_load_avg_se(now, cpu, cfs_rq, se);
3451
3452 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3453 decayed |= propagate_entity_load_avg(se);
3454
3455 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3456
ea14b57e
PZ
3457 /*
3458 * DO_ATTACH means we're here from enqueue_entity().
3459 * !last_update_time means we've passed through
3460 * migrate_task_rq_fair() indicating we migrated.
3461 *
3462 * IOW we're enqueueing a task on a new CPU.
3463 */
3464 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3465 update_tg_load_avg(cfs_rq, 0);
3466
3467 } else if (decayed && (flags & UPDATE_TG))
3468 update_tg_load_avg(cfs_rq, 0);
3469}
3470
9d89c257 3471#ifndef CONFIG_64BIT
0905f04e
YD
3472static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3473{
9d89c257 3474 u64 last_update_time_copy;
0905f04e 3475 u64 last_update_time;
9ee474f5 3476
9d89c257
YD
3477 do {
3478 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3479 smp_rmb();
3480 last_update_time = cfs_rq->avg.last_update_time;
3481 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3482
3483 return last_update_time;
3484}
9d89c257 3485#else
0905f04e
YD
3486static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3487{
3488 return cfs_rq->avg.last_update_time;
3489}
9d89c257
YD
3490#endif
3491
104cb16d
MR
3492/*
3493 * Synchronize entity load avg of dequeued entity without locking
3494 * the previous rq.
3495 */
3496void sync_entity_load_avg(struct sched_entity *se)
3497{
3498 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3499 u64 last_update_time;
3500
3501 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3502 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3503}
3504
0905f04e
YD
3505/*
3506 * Task first catches up with cfs_rq, and then subtract
3507 * itself from the cfs_rq (task must be off the queue now).
3508 */
3509void remove_entity_load_avg(struct sched_entity *se)
3510{
3511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3512 unsigned long flags;
0905f04e
YD
3513
3514 /*
7dc603c9
PZ
3515 * tasks cannot exit without having gone through wake_up_new_task() ->
3516 * post_init_entity_util_avg() which will have added things to the
3517 * cfs_rq, so we can remove unconditionally.
3518 *
3519 * Similarly for groups, they will have passed through
3520 * post_init_entity_util_avg() before unregister_sched_fair_group()
3521 * calls this.
0905f04e 3522 */
0905f04e 3523
104cb16d 3524 sync_entity_load_avg(se);
2a2f5d4e
PZ
3525
3526 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3527 ++cfs_rq->removed.nr;
3528 cfs_rq->removed.util_avg += se->avg.util_avg;
3529 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3530 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3531 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3532}
642dbc39 3533
7ea241af
YD
3534static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3535{
1ea6c46a 3536 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3537}
3538
3539static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3540{
3541 return cfs_rq->avg.load_avg;
3542}
3543
46f69fa3 3544static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3545
7f65ea42
PB
3546static inline unsigned long task_util(struct task_struct *p)
3547{
3548 return READ_ONCE(p->se.avg.util_avg);
3549}
3550
3551static inline unsigned long _task_util_est(struct task_struct *p)
3552{
3553 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3554
3555 return max(ue.ewma, ue.enqueued);
3556}
3557
3558static inline unsigned long task_util_est(struct task_struct *p)
3559{
3560 return max(task_util(p), _task_util_est(p));
3561}
3562
3563static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3564 struct task_struct *p)
3565{
3566 unsigned int enqueued;
3567
3568 if (!sched_feat(UTIL_EST))
3569 return;
3570
3571 /* Update root cfs_rq's estimated utilization */
3572 enqueued = cfs_rq->avg.util_est.enqueued;
d519329f 3573 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3574 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3575}
3576
3577/*
3578 * Check if a (signed) value is within a specified (unsigned) margin,
3579 * based on the observation that:
3580 *
3581 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3582 *
3583 * NOTE: this only works when value + maring < INT_MAX.
3584 */
3585static inline bool within_margin(int value, int margin)
3586{
3587 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3588}
3589
3590static void
3591util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3592{
3593 long last_ewma_diff;
3594 struct util_est ue;
3595
3596 if (!sched_feat(UTIL_EST))
3597 return;
3598
3482d98b
VG
3599 /* Update root cfs_rq's estimated utilization */
3600 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3601 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3602 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
7f65ea42
PB
3603 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3604
3605 /*
3606 * Skip update of task's estimated utilization when the task has not
3607 * yet completed an activation, e.g. being migrated.
3608 */
3609 if (!task_sleep)
3610 return;
3611
d519329f
PB
3612 /*
3613 * If the PELT values haven't changed since enqueue time,
3614 * skip the util_est update.
3615 */
3616 ue = p->se.avg.util_est;
3617 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3618 return;
3619
7f65ea42
PB
3620 /*
3621 * Skip update of task's estimated utilization when its EWMA is
3622 * already ~1% close to its last activation value.
3623 */
d519329f 3624 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3625 last_ewma_diff = ue.enqueued - ue.ewma;
3626 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3627 return;
3628
3629 /*
3630 * Update Task's estimated utilization
3631 *
3632 * When *p completes an activation we can consolidate another sample
3633 * of the task size. This is done by storing the current PELT value
3634 * as ue.enqueued and by using this value to update the Exponential
3635 * Weighted Moving Average (EWMA):
3636 *
3637 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3638 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3639 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3640 * = w * ( last_ewma_diff ) + ewma(t-1)
3641 * = w * (last_ewma_diff + ewma(t-1) / w)
3642 *
3643 * Where 'w' is the weight of new samples, which is configured to be
3644 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3645 */
3646 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3647 ue.ewma += last_ewma_diff;
3648 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3649 WRITE_ONCE(p->se.avg.util_est, ue);
3650}
3651
38033c37
PZ
3652#else /* CONFIG_SMP */
3653
d31b1a66
VG
3654#define UPDATE_TG 0x0
3655#define SKIP_AGE_LOAD 0x0
b382a531 3656#define DO_ATTACH 0x0
d31b1a66 3657
88c0616e 3658static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3659{
ea14b57e 3660 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3661}
3662
9d89c257 3663static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3664
a05e8c51 3665static inline void
ea14b57e 3666attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3667static inline void
3668detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3669
46f69fa3 3670static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3671{
3672 return 0;
3673}
3674
7f65ea42
PB
3675static inline void
3676util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3677
3678static inline void
3679util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3680 bool task_sleep) {}
3681
38033c37 3682#endif /* CONFIG_SMP */
9d85f21c 3683
ddc97297
PZ
3684static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3685{
3686#ifdef CONFIG_SCHED_DEBUG
3687 s64 d = se->vruntime - cfs_rq->min_vruntime;
3688
3689 if (d < 0)
3690 d = -d;
3691
3692 if (d > 3*sysctl_sched_latency)
ae92882e 3693 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3694#endif
3695}
3696
aeb73b04
PZ
3697static void
3698place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3699{
1af5f730 3700 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3701
2cb8600e
PZ
3702 /*
3703 * The 'current' period is already promised to the current tasks,
3704 * however the extra weight of the new task will slow them down a
3705 * little, place the new task so that it fits in the slot that
3706 * stays open at the end.
3707 */
94dfb5e7 3708 if (initial && sched_feat(START_DEBIT))
f9c0b095 3709 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3710
a2e7a7eb 3711 /* sleeps up to a single latency don't count. */
5ca9880c 3712 if (!initial) {
a2e7a7eb 3713 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3714
a2e7a7eb
MG
3715 /*
3716 * Halve their sleep time's effect, to allow
3717 * for a gentler effect of sleepers:
3718 */
3719 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3720 thresh >>= 1;
51e0304c 3721
a2e7a7eb 3722 vruntime -= thresh;
aeb73b04
PZ
3723 }
3724
b5d9d734 3725 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3726 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3727}
3728
d3d9dc33
PT
3729static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3730
cb251765
MG
3731static inline void check_schedstat_required(void)
3732{
3733#ifdef CONFIG_SCHEDSTATS
3734 if (schedstat_enabled())
3735 return;
3736
3737 /* Force schedstat enabled if a dependent tracepoint is active */
3738 if (trace_sched_stat_wait_enabled() ||
3739 trace_sched_stat_sleep_enabled() ||
3740 trace_sched_stat_iowait_enabled() ||
3741 trace_sched_stat_blocked_enabled() ||
3742 trace_sched_stat_runtime_enabled()) {
eda8dca5 3743 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3744 "stat_blocked and stat_runtime require the "
f67abed5 3745 "kernel parameter schedstats=enable or "
cb251765
MG
3746 "kernel.sched_schedstats=1\n");
3747 }
3748#endif
3749}
3750
b5179ac7
PZ
3751
3752/*
3753 * MIGRATION
3754 *
3755 * dequeue
3756 * update_curr()
3757 * update_min_vruntime()
3758 * vruntime -= min_vruntime
3759 *
3760 * enqueue
3761 * update_curr()
3762 * update_min_vruntime()
3763 * vruntime += min_vruntime
3764 *
3765 * this way the vruntime transition between RQs is done when both
3766 * min_vruntime are up-to-date.
3767 *
3768 * WAKEUP (remote)
3769 *
59efa0ba 3770 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3771 * vruntime -= min_vruntime
3772 *
3773 * enqueue
3774 * update_curr()
3775 * update_min_vruntime()
3776 * vruntime += min_vruntime
3777 *
3778 * this way we don't have the most up-to-date min_vruntime on the originating
3779 * CPU and an up-to-date min_vruntime on the destination CPU.
3780 */
3781
bf0f6f24 3782static void
88ec22d3 3783enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3784{
2f950354
PZ
3785 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3786 bool curr = cfs_rq->curr == se;
3787
88ec22d3 3788 /*
2f950354
PZ
3789 * If we're the current task, we must renormalise before calling
3790 * update_curr().
88ec22d3 3791 */
2f950354 3792 if (renorm && curr)
88ec22d3
PZ
3793 se->vruntime += cfs_rq->min_vruntime;
3794
2f950354
PZ
3795 update_curr(cfs_rq);
3796
bf0f6f24 3797 /*
2f950354
PZ
3798 * Otherwise, renormalise after, such that we're placed at the current
3799 * moment in time, instead of some random moment in the past. Being
3800 * placed in the past could significantly boost this task to the
3801 * fairness detriment of existing tasks.
bf0f6f24 3802 */
2f950354
PZ
3803 if (renorm && !curr)
3804 se->vruntime += cfs_rq->min_vruntime;
3805
89ee048f
VG
3806 /*
3807 * When enqueuing a sched_entity, we must:
3808 * - Update loads to have both entity and cfs_rq synced with now.
3809 * - Add its load to cfs_rq->runnable_avg
3810 * - For group_entity, update its weight to reflect the new share of
3811 * its group cfs_rq
3812 * - Add its new weight to cfs_rq->load.weight
3813 */
b382a531 3814 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3815 update_cfs_group(se);
b5b3e35f 3816 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3817 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3818
1a3d027c 3819 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3820 place_entity(cfs_rq, se, 0);
bf0f6f24 3821
cb251765 3822 check_schedstat_required();
4fa8d299
JP
3823 update_stats_enqueue(cfs_rq, se, flags);
3824 check_spread(cfs_rq, se);
2f950354 3825 if (!curr)
83b699ed 3826 __enqueue_entity(cfs_rq, se);
2069dd75 3827 se->on_rq = 1;
3d4b47b4 3828
d3d9dc33 3829 if (cfs_rq->nr_running == 1) {
3d4b47b4 3830 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3831 check_enqueue_throttle(cfs_rq);
3832 }
bf0f6f24
IM
3833}
3834
2c13c919 3835static void __clear_buddies_last(struct sched_entity *se)
2002c695 3836{
2c13c919
RR
3837 for_each_sched_entity(se) {
3838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3839 if (cfs_rq->last != se)
2c13c919 3840 break;
f1044799
PZ
3841
3842 cfs_rq->last = NULL;
2c13c919
RR
3843 }
3844}
2002c695 3845
2c13c919
RR
3846static void __clear_buddies_next(struct sched_entity *se)
3847{
3848 for_each_sched_entity(se) {
3849 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3850 if (cfs_rq->next != se)
2c13c919 3851 break;
f1044799
PZ
3852
3853 cfs_rq->next = NULL;
2c13c919 3854 }
2002c695
PZ
3855}
3856
ac53db59
RR
3857static void __clear_buddies_skip(struct sched_entity *se)
3858{
3859 for_each_sched_entity(se) {
3860 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3861 if (cfs_rq->skip != se)
ac53db59 3862 break;
f1044799
PZ
3863
3864 cfs_rq->skip = NULL;
ac53db59
RR
3865 }
3866}
3867
a571bbea
PZ
3868static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3869{
2c13c919
RR
3870 if (cfs_rq->last == se)
3871 __clear_buddies_last(se);
3872
3873 if (cfs_rq->next == se)
3874 __clear_buddies_next(se);
ac53db59
RR
3875
3876 if (cfs_rq->skip == se)
3877 __clear_buddies_skip(se);
a571bbea
PZ
3878}
3879
6c16a6dc 3880static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3881
bf0f6f24 3882static void
371fd7e7 3883dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3884{
a2a2d680
DA
3885 /*
3886 * Update run-time statistics of the 'current'.
3887 */
3888 update_curr(cfs_rq);
89ee048f
VG
3889
3890 /*
3891 * When dequeuing a sched_entity, we must:
3892 * - Update loads to have both entity and cfs_rq synced with now.
3893 * - Substract its load from the cfs_rq->runnable_avg.
3894 * - Substract its previous weight from cfs_rq->load.weight.
3895 * - For group entity, update its weight to reflect the new share
3896 * of its group cfs_rq.
3897 */
88c0616e 3898 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3899 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3900
4fa8d299 3901 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3902
2002c695 3903 clear_buddies(cfs_rq, se);
4793241b 3904
83b699ed 3905 if (se != cfs_rq->curr)
30cfdcfc 3906 __dequeue_entity(cfs_rq, se);
17bc14b7 3907 se->on_rq = 0;
30cfdcfc 3908 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3909
3910 /*
b60205c7
PZ
3911 * Normalize after update_curr(); which will also have moved
3912 * min_vruntime if @se is the one holding it back. But before doing
3913 * update_min_vruntime() again, which will discount @se's position and
3914 * can move min_vruntime forward still more.
88ec22d3 3915 */
371fd7e7 3916 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3917 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3918
d8b4986d
PT
3919 /* return excess runtime on last dequeue */
3920 return_cfs_rq_runtime(cfs_rq);
3921
1ea6c46a 3922 update_cfs_group(se);
b60205c7
PZ
3923
3924 /*
3925 * Now advance min_vruntime if @se was the entity holding it back,
3926 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3927 * put back on, and if we advance min_vruntime, we'll be placed back
3928 * further than we started -- ie. we'll be penalized.
3929 */
3930 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3931 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3932}
3933
3934/*
3935 * Preempt the current task with a newly woken task if needed:
3936 */
7c92e54f 3937static void
2e09bf55 3938check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3939{
11697830 3940 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3941 struct sched_entity *se;
3942 s64 delta;
11697830 3943
6d0f0ebd 3944 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3945 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3946 if (delta_exec > ideal_runtime) {
8875125e 3947 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3948 /*
3949 * The current task ran long enough, ensure it doesn't get
3950 * re-elected due to buddy favours.
3951 */
3952 clear_buddies(cfs_rq, curr);
f685ceac
MG
3953 return;
3954 }
3955
3956 /*
3957 * Ensure that a task that missed wakeup preemption by a
3958 * narrow margin doesn't have to wait for a full slice.
3959 * This also mitigates buddy induced latencies under load.
3960 */
f685ceac
MG
3961 if (delta_exec < sysctl_sched_min_granularity)
3962 return;
3963
f4cfb33e
WX
3964 se = __pick_first_entity(cfs_rq);
3965 delta = curr->vruntime - se->vruntime;
f685ceac 3966
f4cfb33e
WX
3967 if (delta < 0)
3968 return;
d7d82944 3969
f4cfb33e 3970 if (delta > ideal_runtime)
8875125e 3971 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3972}
3973
83b699ed 3974static void
8494f412 3975set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3976{
83b699ed
SV
3977 /* 'current' is not kept within the tree. */
3978 if (se->on_rq) {
3979 /*
3980 * Any task has to be enqueued before it get to execute on
3981 * a CPU. So account for the time it spent waiting on the
3982 * runqueue.
3983 */
4fa8d299 3984 update_stats_wait_end(cfs_rq, se);
83b699ed 3985 __dequeue_entity(cfs_rq, se);
88c0616e 3986 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
3987 }
3988
79303e9e 3989 update_stats_curr_start(cfs_rq, se);
429d43bc 3990 cfs_rq->curr = se;
4fa8d299 3991
eba1ed4b
IM
3992 /*
3993 * Track our maximum slice length, if the CPU's load is at
3994 * least twice that of our own weight (i.e. dont track it
3995 * when there are only lesser-weight tasks around):
3996 */
cb251765 3997 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3998 schedstat_set(se->statistics.slice_max,
3999 max((u64)schedstat_val(se->statistics.slice_max),
4000 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4001 }
4fa8d299 4002
4a55b450 4003 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4004}
4005
3f3a4904
PZ
4006static int
4007wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4008
ac53db59
RR
4009/*
4010 * Pick the next process, keeping these things in mind, in this order:
4011 * 1) keep things fair between processes/task groups
4012 * 2) pick the "next" process, since someone really wants that to run
4013 * 3) pick the "last" process, for cache locality
4014 * 4) do not run the "skip" process, if something else is available
4015 */
678d5718
PZ
4016static struct sched_entity *
4017pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4018{
678d5718
PZ
4019 struct sched_entity *left = __pick_first_entity(cfs_rq);
4020 struct sched_entity *se;
4021
4022 /*
4023 * If curr is set we have to see if its left of the leftmost entity
4024 * still in the tree, provided there was anything in the tree at all.
4025 */
4026 if (!left || (curr && entity_before(curr, left)))
4027 left = curr;
4028
4029 se = left; /* ideally we run the leftmost entity */
f4b6755f 4030
ac53db59
RR
4031 /*
4032 * Avoid running the skip buddy, if running something else can
4033 * be done without getting too unfair.
4034 */
4035 if (cfs_rq->skip == se) {
678d5718
PZ
4036 struct sched_entity *second;
4037
4038 if (se == curr) {
4039 second = __pick_first_entity(cfs_rq);
4040 } else {
4041 second = __pick_next_entity(se);
4042 if (!second || (curr && entity_before(curr, second)))
4043 second = curr;
4044 }
4045
ac53db59
RR
4046 if (second && wakeup_preempt_entity(second, left) < 1)
4047 se = second;
4048 }
aa2ac252 4049
f685ceac
MG
4050 /*
4051 * Prefer last buddy, try to return the CPU to a preempted task.
4052 */
4053 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4054 se = cfs_rq->last;
4055
ac53db59
RR
4056 /*
4057 * Someone really wants this to run. If it's not unfair, run it.
4058 */
4059 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4060 se = cfs_rq->next;
4061
f685ceac 4062 clear_buddies(cfs_rq, se);
4793241b
PZ
4063
4064 return se;
aa2ac252
PZ
4065}
4066
678d5718 4067static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4068
ab6cde26 4069static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4070{
4071 /*
4072 * If still on the runqueue then deactivate_task()
4073 * was not called and update_curr() has to be done:
4074 */
4075 if (prev->on_rq)
b7cc0896 4076 update_curr(cfs_rq);
bf0f6f24 4077
d3d9dc33
PT
4078 /* throttle cfs_rqs exceeding runtime */
4079 check_cfs_rq_runtime(cfs_rq);
4080
4fa8d299 4081 check_spread(cfs_rq, prev);
cb251765 4082
30cfdcfc 4083 if (prev->on_rq) {
4fa8d299 4084 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4085 /* Put 'current' back into the tree. */
4086 __enqueue_entity(cfs_rq, prev);
9d85f21c 4087 /* in !on_rq case, update occurred at dequeue */
88c0616e 4088 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4089 }
429d43bc 4090 cfs_rq->curr = NULL;
bf0f6f24
IM
4091}
4092
8f4d37ec
PZ
4093static void
4094entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4095{
bf0f6f24 4096 /*
30cfdcfc 4097 * Update run-time statistics of the 'current'.
bf0f6f24 4098 */
30cfdcfc 4099 update_curr(cfs_rq);
bf0f6f24 4100
9d85f21c
PT
4101 /*
4102 * Ensure that runnable average is periodically updated.
4103 */
88c0616e 4104 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4105 update_cfs_group(curr);
9d85f21c 4106
8f4d37ec
PZ
4107#ifdef CONFIG_SCHED_HRTICK
4108 /*
4109 * queued ticks are scheduled to match the slice, so don't bother
4110 * validating it and just reschedule.
4111 */
983ed7a6 4112 if (queued) {
8875125e 4113 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4114 return;
4115 }
8f4d37ec
PZ
4116 /*
4117 * don't let the period tick interfere with the hrtick preemption
4118 */
4119 if (!sched_feat(DOUBLE_TICK) &&
4120 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4121 return;
4122#endif
4123
2c2efaed 4124 if (cfs_rq->nr_running > 1)
2e09bf55 4125 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4126}
4127
ab84d31e
PT
4128
4129/**************************************************
4130 * CFS bandwidth control machinery
4131 */
4132
4133#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4134
4135#ifdef HAVE_JUMP_LABEL
c5905afb 4136static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4137
4138static inline bool cfs_bandwidth_used(void)
4139{
c5905afb 4140 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4141}
4142
1ee14e6c 4143void cfs_bandwidth_usage_inc(void)
029632fb 4144{
ce48c146 4145 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4146}
4147
4148void cfs_bandwidth_usage_dec(void)
4149{
ce48c146 4150 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb
PZ
4151}
4152#else /* HAVE_JUMP_LABEL */
4153static bool cfs_bandwidth_used(void)
4154{
4155 return true;
4156}
4157
1ee14e6c
BS
4158void cfs_bandwidth_usage_inc(void) {}
4159void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4160#endif /* HAVE_JUMP_LABEL */
4161
ab84d31e
PT
4162/*
4163 * default period for cfs group bandwidth.
4164 * default: 0.1s, units: nanoseconds
4165 */
4166static inline u64 default_cfs_period(void)
4167{
4168 return 100000000ULL;
4169}
ec12cb7f
PT
4170
4171static inline u64 sched_cfs_bandwidth_slice(void)
4172{
4173 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4174}
4175
a9cf55b2
PT
4176/*
4177 * Replenish runtime according to assigned quota and update expiration time.
4178 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4179 * additional synchronization around rq->lock.
4180 *
4181 * requires cfs_b->lock
4182 */
029632fb 4183void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4184{
4185 u64 now;
4186
4187 if (cfs_b->quota == RUNTIME_INF)
4188 return;
4189
4190 now = sched_clock_cpu(smp_processor_id());
4191 cfs_b->runtime = cfs_b->quota;
4192 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4193 cfs_b->expires_seq++;
a9cf55b2
PT
4194}
4195
029632fb
PZ
4196static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4197{
4198 return &tg->cfs_bandwidth;
4199}
4200
f1b17280
PT
4201/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4202static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4203{
4204 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4205 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4206
78becc27 4207 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4208}
4209
85dac906
PT
4210/* returns 0 on failure to allocate runtime */
4211static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4212{
4213 struct task_group *tg = cfs_rq->tg;
4214 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4215 u64 amount = 0, min_amount, expires;
512ac999 4216 int expires_seq;
ec12cb7f
PT
4217
4218 /* note: this is a positive sum as runtime_remaining <= 0 */
4219 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4220
4221 raw_spin_lock(&cfs_b->lock);
4222 if (cfs_b->quota == RUNTIME_INF)
4223 amount = min_amount;
58088ad0 4224 else {
77a4d1a1 4225 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4226
4227 if (cfs_b->runtime > 0) {
4228 amount = min(cfs_b->runtime, min_amount);
4229 cfs_b->runtime -= amount;
4230 cfs_b->idle = 0;
4231 }
ec12cb7f 4232 }
512ac999 4233 expires_seq = cfs_b->expires_seq;
a9cf55b2 4234 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4235 raw_spin_unlock(&cfs_b->lock);
4236
4237 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4238 /*
4239 * we may have advanced our local expiration to account for allowed
4240 * spread between our sched_clock and the one on which runtime was
4241 * issued.
4242 */
512ac999
XP
4243 if (cfs_rq->expires_seq != expires_seq) {
4244 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4245 cfs_rq->runtime_expires = expires;
512ac999 4246 }
85dac906
PT
4247
4248 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4249}
4250
a9cf55b2
PT
4251/*
4252 * Note: This depends on the synchronization provided by sched_clock and the
4253 * fact that rq->clock snapshots this value.
4254 */
4255static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4256{
a9cf55b2 4257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4258
4259 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4260 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4261 return;
4262
a9cf55b2
PT
4263 if (cfs_rq->runtime_remaining < 0)
4264 return;
4265
4266 /*
4267 * If the local deadline has passed we have to consider the
4268 * possibility that our sched_clock is 'fast' and the global deadline
4269 * has not truly expired.
4270 *
4271 * Fortunately we can check determine whether this the case by checking
512ac999 4272 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4273 */
512ac999 4274 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4275 /* extend local deadline, drift is bounded above by 2 ticks */
4276 cfs_rq->runtime_expires += TICK_NSEC;
4277 } else {
4278 /* global deadline is ahead, expiration has passed */
4279 cfs_rq->runtime_remaining = 0;
4280 }
4281}
4282
9dbdb155 4283static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4284{
4285 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4286 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4287 expire_cfs_rq_runtime(cfs_rq);
4288
4289 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4290 return;
4291
85dac906
PT
4292 /*
4293 * if we're unable to extend our runtime we resched so that the active
4294 * hierarchy can be throttled
4295 */
4296 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4297 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4298}
4299
6c16a6dc 4300static __always_inline
9dbdb155 4301void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4302{
56f570e5 4303 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4304 return;
4305
4306 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4307}
4308
85dac906
PT
4309static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4310{
56f570e5 4311 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4312}
4313
64660c86
PT
4314/* check whether cfs_rq, or any parent, is throttled */
4315static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4316{
56f570e5 4317 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4318}
4319
4320/*
4321 * Ensure that neither of the group entities corresponding to src_cpu or
4322 * dest_cpu are members of a throttled hierarchy when performing group
4323 * load-balance operations.
4324 */
4325static inline int throttled_lb_pair(struct task_group *tg,
4326 int src_cpu, int dest_cpu)
4327{
4328 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4329
4330 src_cfs_rq = tg->cfs_rq[src_cpu];
4331 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4332
4333 return throttled_hierarchy(src_cfs_rq) ||
4334 throttled_hierarchy(dest_cfs_rq);
4335}
4336
64660c86
PT
4337static int tg_unthrottle_up(struct task_group *tg, void *data)
4338{
4339 struct rq *rq = data;
4340 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4341
4342 cfs_rq->throttle_count--;
64660c86 4343 if (!cfs_rq->throttle_count) {
f1b17280 4344 /* adjust cfs_rq_clock_task() */
78becc27 4345 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4346 cfs_rq->throttled_clock_task;
64660c86 4347 }
64660c86
PT
4348
4349 return 0;
4350}
4351
4352static int tg_throttle_down(struct task_group *tg, void *data)
4353{
4354 struct rq *rq = data;
4355 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4356
82958366
PT
4357 /* group is entering throttled state, stop time */
4358 if (!cfs_rq->throttle_count)
78becc27 4359 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4360 cfs_rq->throttle_count++;
4361
4362 return 0;
4363}
4364
d3d9dc33 4365static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4366{
4367 struct rq *rq = rq_of(cfs_rq);
4368 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4369 struct sched_entity *se;
4370 long task_delta, dequeue = 1;
77a4d1a1 4371 bool empty;
85dac906
PT
4372
4373 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4374
f1b17280 4375 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4376 rcu_read_lock();
4377 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4378 rcu_read_unlock();
85dac906
PT
4379
4380 task_delta = cfs_rq->h_nr_running;
4381 for_each_sched_entity(se) {
4382 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4383 /* throttled entity or throttle-on-deactivate */
4384 if (!se->on_rq)
4385 break;
4386
4387 if (dequeue)
4388 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4389 qcfs_rq->h_nr_running -= task_delta;
4390
4391 if (qcfs_rq->load.weight)
4392 dequeue = 0;
4393 }
4394
4395 if (!se)
72465447 4396 sub_nr_running(rq, task_delta);
85dac906
PT
4397
4398 cfs_rq->throttled = 1;
78becc27 4399 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4400 raw_spin_lock(&cfs_b->lock);
d49db342 4401 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4402
c06f04c7
BS
4403 /*
4404 * Add to the _head_ of the list, so that an already-started
4405 * distribute_cfs_runtime will not see us
4406 */
4407 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4408
4409 /*
4410 * If we're the first throttled task, make sure the bandwidth
4411 * timer is running.
4412 */
4413 if (empty)
4414 start_cfs_bandwidth(cfs_b);
4415
85dac906
PT
4416 raw_spin_unlock(&cfs_b->lock);
4417}
4418
029632fb 4419void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4420{
4421 struct rq *rq = rq_of(cfs_rq);
4422 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4423 struct sched_entity *se;
4424 int enqueue = 1;
4425 long task_delta;
4426
22b958d8 4427 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4428
4429 cfs_rq->throttled = 0;
1a55af2e
FW
4430
4431 update_rq_clock(rq);
4432
671fd9da 4433 raw_spin_lock(&cfs_b->lock);
78becc27 4434 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4435 list_del_rcu(&cfs_rq->throttled_list);
4436 raw_spin_unlock(&cfs_b->lock);
4437
64660c86
PT
4438 /* update hierarchical throttle state */
4439 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4440
671fd9da
PT
4441 if (!cfs_rq->load.weight)
4442 return;
4443
4444 task_delta = cfs_rq->h_nr_running;
4445 for_each_sched_entity(se) {
4446 if (se->on_rq)
4447 enqueue = 0;
4448
4449 cfs_rq = cfs_rq_of(se);
4450 if (enqueue)
4451 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4452 cfs_rq->h_nr_running += task_delta;
4453
4454 if (cfs_rq_throttled(cfs_rq))
4455 break;
4456 }
4457
4458 if (!se)
72465447 4459 add_nr_running(rq, task_delta);
671fd9da 4460
97fb7a0a 4461 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4462 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4463 resched_curr(rq);
671fd9da
PT
4464}
4465
4466static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4467 u64 remaining, u64 expires)
4468{
4469 struct cfs_rq *cfs_rq;
c06f04c7
BS
4470 u64 runtime;
4471 u64 starting_runtime = remaining;
671fd9da
PT
4472
4473 rcu_read_lock();
4474 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4475 throttled_list) {
4476 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4477 struct rq_flags rf;
671fd9da 4478
8a8c69c3 4479 rq_lock(rq, &rf);
671fd9da
PT
4480 if (!cfs_rq_throttled(cfs_rq))
4481 goto next;
4482
4483 runtime = -cfs_rq->runtime_remaining + 1;
4484 if (runtime > remaining)
4485 runtime = remaining;
4486 remaining -= runtime;
4487
4488 cfs_rq->runtime_remaining += runtime;
4489 cfs_rq->runtime_expires = expires;
4490
4491 /* we check whether we're throttled above */
4492 if (cfs_rq->runtime_remaining > 0)
4493 unthrottle_cfs_rq(cfs_rq);
4494
4495next:
8a8c69c3 4496 rq_unlock(rq, &rf);
671fd9da
PT
4497
4498 if (!remaining)
4499 break;
4500 }
4501 rcu_read_unlock();
4502
c06f04c7 4503 return starting_runtime - remaining;
671fd9da
PT
4504}
4505
58088ad0
PT
4506/*
4507 * Responsible for refilling a task_group's bandwidth and unthrottling its
4508 * cfs_rqs as appropriate. If there has been no activity within the last
4509 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4510 * used to track this state.
4511 */
4512static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4513{
671fd9da 4514 u64 runtime, runtime_expires;
51f2176d 4515 int throttled;
58088ad0 4516
58088ad0
PT
4517 /* no need to continue the timer with no bandwidth constraint */
4518 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4519 goto out_deactivate;
58088ad0 4520
671fd9da 4521 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4522 cfs_b->nr_periods += overrun;
671fd9da 4523
51f2176d
BS
4524 /*
4525 * idle depends on !throttled (for the case of a large deficit), and if
4526 * we're going inactive then everything else can be deferred
4527 */
4528 if (cfs_b->idle && !throttled)
4529 goto out_deactivate;
a9cf55b2
PT
4530
4531 __refill_cfs_bandwidth_runtime(cfs_b);
4532
671fd9da
PT
4533 if (!throttled) {
4534 /* mark as potentially idle for the upcoming period */
4535 cfs_b->idle = 1;
51f2176d 4536 return 0;
671fd9da
PT
4537 }
4538
e8da1b18
NR
4539 /* account preceding periods in which throttling occurred */
4540 cfs_b->nr_throttled += overrun;
4541
671fd9da 4542 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4543
4544 /*
c06f04c7
BS
4545 * This check is repeated as we are holding onto the new bandwidth while
4546 * we unthrottle. This can potentially race with an unthrottled group
4547 * trying to acquire new bandwidth from the global pool. This can result
4548 * in us over-using our runtime if it is all used during this loop, but
4549 * only by limited amounts in that extreme case.
671fd9da 4550 */
c06f04c7
BS
4551 while (throttled && cfs_b->runtime > 0) {
4552 runtime = cfs_b->runtime;
671fd9da
PT
4553 raw_spin_unlock(&cfs_b->lock);
4554 /* we can't nest cfs_b->lock while distributing bandwidth */
4555 runtime = distribute_cfs_runtime(cfs_b, runtime,
4556 runtime_expires);
4557 raw_spin_lock(&cfs_b->lock);
4558
4559 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4560
4561 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4562 }
58088ad0 4563
671fd9da
PT
4564 /*
4565 * While we are ensured activity in the period following an
4566 * unthrottle, this also covers the case in which the new bandwidth is
4567 * insufficient to cover the existing bandwidth deficit. (Forcing the
4568 * timer to remain active while there are any throttled entities.)
4569 */
4570 cfs_b->idle = 0;
58088ad0 4571
51f2176d
BS
4572 return 0;
4573
4574out_deactivate:
51f2176d 4575 return 1;
58088ad0 4576}
d3d9dc33 4577
d8b4986d
PT
4578/* a cfs_rq won't donate quota below this amount */
4579static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4580/* minimum remaining period time to redistribute slack quota */
4581static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4582/* how long we wait to gather additional slack before distributing */
4583static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4584
db06e78c
BS
4585/*
4586 * Are we near the end of the current quota period?
4587 *
4588 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4589 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4590 * migrate_hrtimers, base is never cleared, so we are fine.
4591 */
d8b4986d
PT
4592static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4593{
4594 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4595 u64 remaining;
4596
4597 /* if the call-back is running a quota refresh is already occurring */
4598 if (hrtimer_callback_running(refresh_timer))
4599 return 1;
4600
4601 /* is a quota refresh about to occur? */
4602 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4603 if (remaining < min_expire)
4604 return 1;
4605
4606 return 0;
4607}
4608
4609static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4610{
4611 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4612
4613 /* if there's a quota refresh soon don't bother with slack */
4614 if (runtime_refresh_within(cfs_b, min_left))
4615 return;
4616
4cfafd30
PZ
4617 hrtimer_start(&cfs_b->slack_timer,
4618 ns_to_ktime(cfs_bandwidth_slack_period),
4619 HRTIMER_MODE_REL);
d8b4986d
PT
4620}
4621
4622/* we know any runtime found here is valid as update_curr() precedes return */
4623static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4624{
4625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4626 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4627
4628 if (slack_runtime <= 0)
4629 return;
4630
4631 raw_spin_lock(&cfs_b->lock);
4632 if (cfs_b->quota != RUNTIME_INF &&
4633 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4634 cfs_b->runtime += slack_runtime;
4635
4636 /* we are under rq->lock, defer unthrottling using a timer */
4637 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4638 !list_empty(&cfs_b->throttled_cfs_rq))
4639 start_cfs_slack_bandwidth(cfs_b);
4640 }
4641 raw_spin_unlock(&cfs_b->lock);
4642
4643 /* even if it's not valid for return we don't want to try again */
4644 cfs_rq->runtime_remaining -= slack_runtime;
4645}
4646
4647static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4648{
56f570e5
PT
4649 if (!cfs_bandwidth_used())
4650 return;
4651
fccfdc6f 4652 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4653 return;
4654
4655 __return_cfs_rq_runtime(cfs_rq);
4656}
4657
4658/*
4659 * This is done with a timer (instead of inline with bandwidth return) since
4660 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4661 */
4662static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4663{
4664 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4665 u64 expires;
4666
4667 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4668 raw_spin_lock(&cfs_b->lock);
4669 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4670 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4671 return;
db06e78c 4672 }
d8b4986d 4673
c06f04c7 4674 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4675 runtime = cfs_b->runtime;
c06f04c7 4676
d8b4986d
PT
4677 expires = cfs_b->runtime_expires;
4678 raw_spin_unlock(&cfs_b->lock);
4679
4680 if (!runtime)
4681 return;
4682
4683 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4684
4685 raw_spin_lock(&cfs_b->lock);
4686 if (expires == cfs_b->runtime_expires)
c06f04c7 4687 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4688 raw_spin_unlock(&cfs_b->lock);
4689}
4690
d3d9dc33
PT
4691/*
4692 * When a group wakes up we want to make sure that its quota is not already
4693 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4694 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4695 */
4696static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4697{
56f570e5
PT
4698 if (!cfs_bandwidth_used())
4699 return;
4700
d3d9dc33
PT
4701 /* an active group must be handled by the update_curr()->put() path */
4702 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4703 return;
4704
4705 /* ensure the group is not already throttled */
4706 if (cfs_rq_throttled(cfs_rq))
4707 return;
4708
4709 /* update runtime allocation */
4710 account_cfs_rq_runtime(cfs_rq, 0);
4711 if (cfs_rq->runtime_remaining <= 0)
4712 throttle_cfs_rq(cfs_rq);
4713}
4714
55e16d30
PZ
4715static void sync_throttle(struct task_group *tg, int cpu)
4716{
4717 struct cfs_rq *pcfs_rq, *cfs_rq;
4718
4719 if (!cfs_bandwidth_used())
4720 return;
4721
4722 if (!tg->parent)
4723 return;
4724
4725 cfs_rq = tg->cfs_rq[cpu];
4726 pcfs_rq = tg->parent->cfs_rq[cpu];
4727
4728 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4729 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4730}
4731
d3d9dc33 4732/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4733static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4734{
56f570e5 4735 if (!cfs_bandwidth_used())
678d5718 4736 return false;
56f570e5 4737
d3d9dc33 4738 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4739 return false;
d3d9dc33
PT
4740
4741 /*
4742 * it's possible for a throttled entity to be forced into a running
4743 * state (e.g. set_curr_task), in this case we're finished.
4744 */
4745 if (cfs_rq_throttled(cfs_rq))
678d5718 4746 return true;
d3d9dc33
PT
4747
4748 throttle_cfs_rq(cfs_rq);
678d5718 4749 return true;
d3d9dc33 4750}
029632fb 4751
029632fb
PZ
4752static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4753{
4754 struct cfs_bandwidth *cfs_b =
4755 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4756
029632fb
PZ
4757 do_sched_cfs_slack_timer(cfs_b);
4758
4759 return HRTIMER_NORESTART;
4760}
4761
4762static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4763{
4764 struct cfs_bandwidth *cfs_b =
4765 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4766 int overrun;
4767 int idle = 0;
4768
51f2176d 4769 raw_spin_lock(&cfs_b->lock);
029632fb 4770 for (;;) {
77a4d1a1 4771 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4772 if (!overrun)
4773 break;
4774
4775 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4776 }
4cfafd30
PZ
4777 if (idle)
4778 cfs_b->period_active = 0;
51f2176d 4779 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4780
4781 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4782}
4783
4784void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4785{
4786 raw_spin_lock_init(&cfs_b->lock);
4787 cfs_b->runtime = 0;
4788 cfs_b->quota = RUNTIME_INF;
4789 cfs_b->period = ns_to_ktime(default_cfs_period());
4790
4791 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4792 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4793 cfs_b->period_timer.function = sched_cfs_period_timer;
4794 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4795 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4796}
4797
4798static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4799{
4800 cfs_rq->runtime_enabled = 0;
4801 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4802}
4803
77a4d1a1 4804void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4805{
f1d1be8a
XP
4806 u64 overrun;
4807
4cfafd30 4808 lockdep_assert_held(&cfs_b->lock);
029632fb 4809
f1d1be8a
XP
4810 if (cfs_b->period_active)
4811 return;
4812
4813 cfs_b->period_active = 1;
4814 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4815 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4816 cfs_b->expires_seq++;
4817 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4818}
4819
4820static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4821{
7f1a169b
TH
4822 /* init_cfs_bandwidth() was not called */
4823 if (!cfs_b->throttled_cfs_rq.next)
4824 return;
4825
029632fb
PZ
4826 hrtimer_cancel(&cfs_b->period_timer);
4827 hrtimer_cancel(&cfs_b->slack_timer);
4828}
4829
502ce005 4830/*
97fb7a0a 4831 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4832 *
4833 * The race is harmless, since modifying bandwidth settings of unhooked group
4834 * bits doesn't do much.
4835 */
4836
4837/* cpu online calback */
0e59bdae
KT
4838static void __maybe_unused update_runtime_enabled(struct rq *rq)
4839{
502ce005 4840 struct task_group *tg;
0e59bdae 4841
502ce005
PZ
4842 lockdep_assert_held(&rq->lock);
4843
4844 rcu_read_lock();
4845 list_for_each_entry_rcu(tg, &task_groups, list) {
4846 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4847 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4848
4849 raw_spin_lock(&cfs_b->lock);
4850 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4851 raw_spin_unlock(&cfs_b->lock);
4852 }
502ce005 4853 rcu_read_unlock();
0e59bdae
KT
4854}
4855
502ce005 4856/* cpu offline callback */
38dc3348 4857static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4858{
502ce005
PZ
4859 struct task_group *tg;
4860
4861 lockdep_assert_held(&rq->lock);
4862
4863 rcu_read_lock();
4864 list_for_each_entry_rcu(tg, &task_groups, list) {
4865 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4866
029632fb
PZ
4867 if (!cfs_rq->runtime_enabled)
4868 continue;
4869
4870 /*
4871 * clock_task is not advancing so we just need to make sure
4872 * there's some valid quota amount
4873 */
51f2176d 4874 cfs_rq->runtime_remaining = 1;
0e59bdae 4875 /*
97fb7a0a 4876 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
4877 * in take_cpu_down(), so we prevent new cfs throttling here.
4878 */
4879 cfs_rq->runtime_enabled = 0;
4880
029632fb
PZ
4881 if (cfs_rq_throttled(cfs_rq))
4882 unthrottle_cfs_rq(cfs_rq);
4883 }
502ce005 4884 rcu_read_unlock();
029632fb
PZ
4885}
4886
4887#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4888static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4889{
78becc27 4890 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4891}
4892
9dbdb155 4893static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4894static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4895static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4896static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4897static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4898
4899static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4900{
4901 return 0;
4902}
64660c86
PT
4903
4904static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4905{
4906 return 0;
4907}
4908
4909static inline int throttled_lb_pair(struct task_group *tg,
4910 int src_cpu, int dest_cpu)
4911{
4912 return 0;
4913}
029632fb
PZ
4914
4915void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4916
4917#ifdef CONFIG_FAIR_GROUP_SCHED
4918static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4919#endif
4920
029632fb
PZ
4921static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4922{
4923 return NULL;
4924}
4925static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4926static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4927static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4928
4929#endif /* CONFIG_CFS_BANDWIDTH */
4930
bf0f6f24
IM
4931/**************************************************
4932 * CFS operations on tasks:
4933 */
4934
8f4d37ec
PZ
4935#ifdef CONFIG_SCHED_HRTICK
4936static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4937{
8f4d37ec
PZ
4938 struct sched_entity *se = &p->se;
4939 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4940
9148a3a1 4941 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4942
8bf46a39 4943 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4944 u64 slice = sched_slice(cfs_rq, se);
4945 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4946 s64 delta = slice - ran;
4947
4948 if (delta < 0) {
4949 if (rq->curr == p)
8875125e 4950 resched_curr(rq);
8f4d37ec
PZ
4951 return;
4952 }
31656519 4953 hrtick_start(rq, delta);
8f4d37ec
PZ
4954 }
4955}
a4c2f00f
PZ
4956
4957/*
4958 * called from enqueue/dequeue and updates the hrtick when the
4959 * current task is from our class and nr_running is low enough
4960 * to matter.
4961 */
4962static void hrtick_update(struct rq *rq)
4963{
4964 struct task_struct *curr = rq->curr;
4965
b39e66ea 4966 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4967 return;
4968
4969 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4970 hrtick_start_fair(rq, curr);
4971}
55e12e5e 4972#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4973static inline void
4974hrtick_start_fair(struct rq *rq, struct task_struct *p)
4975{
4976}
a4c2f00f
PZ
4977
4978static inline void hrtick_update(struct rq *rq)
4979{
4980}
8f4d37ec
PZ
4981#endif
4982
bf0f6f24
IM
4983/*
4984 * The enqueue_task method is called before nr_running is
4985 * increased. Here we update the fair scheduling stats and
4986 * then put the task into the rbtree:
4987 */
ea87bb78 4988static void
371fd7e7 4989enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4990{
4991 struct cfs_rq *cfs_rq;
62fb1851 4992 struct sched_entity *se = &p->se;
bf0f6f24 4993
2539fc82
PB
4994 /*
4995 * The code below (indirectly) updates schedutil which looks at
4996 * the cfs_rq utilization to select a frequency.
4997 * Let's add the task's estimated utilization to the cfs_rq's
4998 * estimated utilization, before we update schedutil.
4999 */
5000 util_est_enqueue(&rq->cfs, p);
5001
8c34ab19
RW
5002 /*
5003 * If in_iowait is set, the code below may not trigger any cpufreq
5004 * utilization updates, so do it here explicitly with the IOWAIT flag
5005 * passed.
5006 */
5007 if (p->in_iowait)
674e7541 5008 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5009
bf0f6f24 5010 for_each_sched_entity(se) {
62fb1851 5011 if (se->on_rq)
bf0f6f24
IM
5012 break;
5013 cfs_rq = cfs_rq_of(se);
88ec22d3 5014 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5015
5016 /*
5017 * end evaluation on encountering a throttled cfs_rq
5018 *
5019 * note: in the case of encountering a throttled cfs_rq we will
5020 * post the final h_nr_running increment below.
e210bffd 5021 */
85dac906
PT
5022 if (cfs_rq_throttled(cfs_rq))
5023 break;
953bfcd1 5024 cfs_rq->h_nr_running++;
85dac906 5025
88ec22d3 5026 flags = ENQUEUE_WAKEUP;
bf0f6f24 5027 }
8f4d37ec 5028
2069dd75 5029 for_each_sched_entity(se) {
0f317143 5030 cfs_rq = cfs_rq_of(se);
953bfcd1 5031 cfs_rq->h_nr_running++;
2069dd75 5032
85dac906
PT
5033 if (cfs_rq_throttled(cfs_rq))
5034 break;
5035
88c0616e 5036 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5037 update_cfs_group(se);
2069dd75
PZ
5038 }
5039
cd126afe 5040 if (!se)
72465447 5041 add_nr_running(rq, 1);
cd126afe 5042
a4c2f00f 5043 hrtick_update(rq);
bf0f6f24
IM
5044}
5045
2f36825b
VP
5046static void set_next_buddy(struct sched_entity *se);
5047
bf0f6f24
IM
5048/*
5049 * The dequeue_task method is called before nr_running is
5050 * decreased. We remove the task from the rbtree and
5051 * update the fair scheduling stats:
5052 */
371fd7e7 5053static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5054{
5055 struct cfs_rq *cfs_rq;
62fb1851 5056 struct sched_entity *se = &p->se;
2f36825b 5057 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5058
5059 for_each_sched_entity(se) {
5060 cfs_rq = cfs_rq_of(se);
371fd7e7 5061 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5062
5063 /*
5064 * end evaluation on encountering a throttled cfs_rq
5065 *
5066 * note: in the case of encountering a throttled cfs_rq we will
5067 * post the final h_nr_running decrement below.
5068 */
5069 if (cfs_rq_throttled(cfs_rq))
5070 break;
953bfcd1 5071 cfs_rq->h_nr_running--;
2069dd75 5072
bf0f6f24 5073 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5074 if (cfs_rq->load.weight) {
754bd598
KK
5075 /* Avoid re-evaluating load for this entity: */
5076 se = parent_entity(se);
2f36825b
VP
5077 /*
5078 * Bias pick_next to pick a task from this cfs_rq, as
5079 * p is sleeping when it is within its sched_slice.
5080 */
754bd598
KK
5081 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5082 set_next_buddy(se);
bf0f6f24 5083 break;
2f36825b 5084 }
371fd7e7 5085 flags |= DEQUEUE_SLEEP;
bf0f6f24 5086 }
8f4d37ec 5087
2069dd75 5088 for_each_sched_entity(se) {
0f317143 5089 cfs_rq = cfs_rq_of(se);
953bfcd1 5090 cfs_rq->h_nr_running--;
2069dd75 5091
85dac906
PT
5092 if (cfs_rq_throttled(cfs_rq))
5093 break;
5094
88c0616e 5095 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5096 update_cfs_group(se);
2069dd75
PZ
5097 }
5098
cd126afe 5099 if (!se)
72465447 5100 sub_nr_running(rq, 1);
cd126afe 5101
7f65ea42 5102 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5103 hrtick_update(rq);
bf0f6f24
IM
5104}
5105
e7693a36 5106#ifdef CONFIG_SMP
10e2f1ac
PZ
5107
5108/* Working cpumask for: load_balance, load_balance_newidle. */
5109DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5110DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5111
9fd81dd5 5112#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5113/*
5114 * per rq 'load' arrray crap; XXX kill this.
5115 */
5116
5117/*
d937cdc5 5118 * The exact cpuload calculated at every tick would be:
3289bdb4 5119 *
d937cdc5
PZ
5120 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5121 *
97fb7a0a
IM
5122 * If a CPU misses updates for n ticks (as it was idle) and update gets
5123 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5124 *
5125 * load_n = (1 - 1/2^i)^n * load_0
5126 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5127 *
5128 * decay_load_missed() below does efficient calculation of
3289bdb4 5129 *
d937cdc5
PZ
5130 * load' = (1 - 1/2^i)^n * load
5131 *
5132 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5133 * This allows us to precompute the above in said factors, thereby allowing the
5134 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5135 * fixed_power_int())
3289bdb4 5136 *
d937cdc5 5137 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5138 */
5139#define DEGRADE_SHIFT 7
d937cdc5
PZ
5140
5141static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5142static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5143 { 0, 0, 0, 0, 0, 0, 0, 0 },
5144 { 64, 32, 8, 0, 0, 0, 0, 0 },
5145 { 96, 72, 40, 12, 1, 0, 0, 0 },
5146 { 112, 98, 75, 43, 15, 1, 0, 0 },
5147 { 120, 112, 98, 76, 45, 16, 2, 0 }
5148};
3289bdb4
PZ
5149
5150/*
5151 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5152 * would be when CPU is idle and so we just decay the old load without
5153 * adding any new load.
5154 */
5155static unsigned long
5156decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5157{
5158 int j = 0;
5159
5160 if (!missed_updates)
5161 return load;
5162
5163 if (missed_updates >= degrade_zero_ticks[idx])
5164 return 0;
5165
5166 if (idx == 1)
5167 return load >> missed_updates;
5168
5169 while (missed_updates) {
5170 if (missed_updates % 2)
5171 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5172
5173 missed_updates >>= 1;
5174 j++;
5175 }
5176 return load;
5177}
e022e0d3
PZ
5178
5179static struct {
5180 cpumask_var_t idle_cpus_mask;
5181 atomic_t nr_cpus;
f643ea22 5182 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5183 unsigned long next_balance; /* in jiffy units */
f643ea22 5184 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5185} nohz ____cacheline_aligned;
5186
9fd81dd5 5187#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5188
59543275 5189/**
cee1afce 5190 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5191 * @this_rq: The rq to update statistics for
5192 * @this_load: The current load
5193 * @pending_updates: The number of missed updates
59543275 5194 *
3289bdb4 5195 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5196 * scheduler tick (TICK_NSEC).
5197 *
5198 * This function computes a decaying average:
5199 *
5200 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5201 *
5202 * Because of NOHZ it might not get called on every tick which gives need for
5203 * the @pending_updates argument.
5204 *
5205 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5206 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5207 * = A * (A * load[i]_n-2 + B) + B
5208 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5209 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5210 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5211 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5212 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5213 *
5214 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5215 * any change in load would have resulted in the tick being turned back on.
5216 *
5217 * For regular NOHZ, this reduces to:
5218 *
5219 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5220 *
5221 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5222 * term.
3289bdb4 5223 */
1f41906a
FW
5224static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5225 unsigned long pending_updates)
3289bdb4 5226{
9fd81dd5 5227 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5228 int i, scale;
5229
5230 this_rq->nr_load_updates++;
5231
5232 /* Update our load: */
5233 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5234 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5235 unsigned long old_load, new_load;
5236
5237 /* scale is effectively 1 << i now, and >> i divides by scale */
5238
7400d3bb 5239 old_load = this_rq->cpu_load[i];
9fd81dd5 5240#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5241 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5242 if (tickless_load) {
5243 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5244 /*
5245 * old_load can never be a negative value because a
5246 * decayed tickless_load cannot be greater than the
5247 * original tickless_load.
5248 */
5249 old_load += tickless_load;
5250 }
9fd81dd5 5251#endif
3289bdb4
PZ
5252 new_load = this_load;
5253 /*
5254 * Round up the averaging division if load is increasing. This
5255 * prevents us from getting stuck on 9 if the load is 10, for
5256 * example.
5257 */
5258 if (new_load > old_load)
5259 new_load += scale - 1;
5260
5261 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5262 }
3289bdb4
PZ
5263}
5264
7ea241af 5265/* Used instead of source_load when we know the type == 0 */
c7132dd6 5266static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5267{
c7132dd6 5268 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5269}
5270
3289bdb4 5271#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5272/*
5273 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5274 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5275 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5276 *
5277 * Therefore we need to avoid the delta approach from the regular tick when
5278 * possible since that would seriously skew the load calculation. This is why we
5279 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5280 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5281 * loop exit, nohz_idle_balance, nohz full exit...)
5282 *
5283 * This means we might still be one tick off for nohz periods.
5284 */
5285
5286static void cpu_load_update_nohz(struct rq *this_rq,
5287 unsigned long curr_jiffies,
5288 unsigned long load)
be68a682
FW
5289{
5290 unsigned long pending_updates;
5291
5292 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5293 if (pending_updates) {
5294 this_rq->last_load_update_tick = curr_jiffies;
5295 /*
5296 * In the regular NOHZ case, we were idle, this means load 0.
5297 * In the NOHZ_FULL case, we were non-idle, we should consider
5298 * its weighted load.
5299 */
1f41906a 5300 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5301 }
5302}
5303
3289bdb4
PZ
5304/*
5305 * Called from nohz_idle_balance() to update the load ratings before doing the
5306 * idle balance.
5307 */
cee1afce 5308static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5309{
3289bdb4
PZ
5310 /*
5311 * bail if there's load or we're actually up-to-date.
5312 */
c7132dd6 5313 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5314 return;
5315
1f41906a 5316 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5317}
5318
5319/*
1f41906a
FW
5320 * Record CPU load on nohz entry so we know the tickless load to account
5321 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5322 * than other cpu_load[idx] but it should be fine as cpu_load readers
5323 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5324 */
1f41906a 5325void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5326{
5327 struct rq *this_rq = this_rq();
1f41906a
FW
5328
5329 /*
5330 * This is all lockless but should be fine. If weighted_cpuload changes
5331 * concurrently we'll exit nohz. And cpu_load write can race with
5332 * cpu_load_update_idle() but both updater would be writing the same.
5333 */
c7132dd6 5334 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5335}
5336
5337/*
5338 * Account the tickless load in the end of a nohz frame.
5339 */
5340void cpu_load_update_nohz_stop(void)
5341{
316c1608 5342 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5343 struct rq *this_rq = this_rq();
5344 unsigned long load;
8a8c69c3 5345 struct rq_flags rf;
3289bdb4
PZ
5346
5347 if (curr_jiffies == this_rq->last_load_update_tick)
5348 return;
5349
c7132dd6 5350 load = weighted_cpuload(this_rq);
8a8c69c3 5351 rq_lock(this_rq, &rf);
b52fad2d 5352 update_rq_clock(this_rq);
1f41906a 5353 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5354 rq_unlock(this_rq, &rf);
3289bdb4 5355}
1f41906a
FW
5356#else /* !CONFIG_NO_HZ_COMMON */
5357static inline void cpu_load_update_nohz(struct rq *this_rq,
5358 unsigned long curr_jiffies,
5359 unsigned long load) { }
5360#endif /* CONFIG_NO_HZ_COMMON */
5361
5362static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5363{
9fd81dd5 5364#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5365 /* See the mess around cpu_load_update_nohz(). */
5366 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5367#endif
1f41906a
FW
5368 cpu_load_update(this_rq, load, 1);
5369}
3289bdb4
PZ
5370
5371/*
5372 * Called from scheduler_tick()
5373 */
cee1afce 5374void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5375{
c7132dd6 5376 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5377
5378 if (tick_nohz_tick_stopped())
5379 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5380 else
5381 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5382}
5383
029632fb 5384/*
97fb7a0a 5385 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5386 * according to the scheduling class and "nice" value.
5387 *
5388 * We want to under-estimate the load of migration sources, to
5389 * balance conservatively.
5390 */
5391static unsigned long source_load(int cpu, int type)
5392{
5393 struct rq *rq = cpu_rq(cpu);
c7132dd6 5394 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5395
5396 if (type == 0 || !sched_feat(LB_BIAS))
5397 return total;
5398
5399 return min(rq->cpu_load[type-1], total);
5400}
5401
5402/*
97fb7a0a 5403 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5404 * according to the scheduling class and "nice" value.
5405 */
5406static unsigned long target_load(int cpu, int type)
5407{
5408 struct rq *rq = cpu_rq(cpu);
c7132dd6 5409 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5410
5411 if (type == 0 || !sched_feat(LB_BIAS))
5412 return total;
5413
5414 return max(rq->cpu_load[type-1], total);
5415}
5416
ced549fa 5417static unsigned long capacity_of(int cpu)
029632fb 5418{
ced549fa 5419 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5420}
5421
ca6d75e6
VG
5422static unsigned long capacity_orig_of(int cpu)
5423{
5424 return cpu_rq(cpu)->cpu_capacity_orig;
5425}
5426
029632fb
PZ
5427static unsigned long cpu_avg_load_per_task(int cpu)
5428{
5429 struct rq *rq = cpu_rq(cpu);
316c1608 5430 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5431 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5432
5433 if (nr_running)
b92486cb 5434 return load_avg / nr_running;
029632fb
PZ
5435
5436 return 0;
5437}
5438
c58d25f3
PZ
5439static void record_wakee(struct task_struct *p)
5440{
5441 /*
5442 * Only decay a single time; tasks that have less then 1 wakeup per
5443 * jiffy will not have built up many flips.
5444 */
5445 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5446 current->wakee_flips >>= 1;
5447 current->wakee_flip_decay_ts = jiffies;
5448 }
5449
5450 if (current->last_wakee != p) {
5451 current->last_wakee = p;
5452 current->wakee_flips++;
5453 }
5454}
5455
63b0e9ed
MG
5456/*
5457 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5458 *
63b0e9ed 5459 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5460 * at a frequency roughly N times higher than one of its wakees.
5461 *
5462 * In order to determine whether we should let the load spread vs consolidating
5463 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5464 * partner, and a factor of lls_size higher frequency in the other.
5465 *
5466 * With both conditions met, we can be relatively sure that the relationship is
5467 * non-monogamous, with partner count exceeding socket size.
5468 *
5469 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5470 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5471 * socket size.
63b0e9ed 5472 */
62470419
MW
5473static int wake_wide(struct task_struct *p)
5474{
63b0e9ed
MG
5475 unsigned int master = current->wakee_flips;
5476 unsigned int slave = p->wakee_flips;
7d9ffa89 5477 int factor = this_cpu_read(sd_llc_size);
62470419 5478
63b0e9ed
MG
5479 if (master < slave)
5480 swap(master, slave);
5481 if (slave < factor || master < slave * factor)
5482 return 0;
5483 return 1;
62470419
MW
5484}
5485
90001d67 5486/*
d153b153
PZ
5487 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5488 * soonest. For the purpose of speed we only consider the waking and previous
5489 * CPU.
90001d67 5490 *
7332dec0
MG
5491 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5492 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5493 *
5494 * wake_affine_weight() - considers the weight to reflect the average
5495 * scheduling latency of the CPUs. This seems to work
5496 * for the overloaded case.
90001d67 5497 */
3b76c4a3 5498static int
89a55f56 5499wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5500{
7332dec0
MG
5501 /*
5502 * If this_cpu is idle, it implies the wakeup is from interrupt
5503 * context. Only allow the move if cache is shared. Otherwise an
5504 * interrupt intensive workload could force all tasks onto one
5505 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5506 *
5507 * If the prev_cpu is idle and cache affine then avoid a migration.
5508 * There is no guarantee that the cache hot data from an interrupt
5509 * is more important than cache hot data on the prev_cpu and from
5510 * a cpufreq perspective, it's better to have higher utilisation
5511 * on one CPU.
7332dec0 5512 */
943d355d
RJ
5513 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5514 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5515
d153b153 5516 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5517 return this_cpu;
90001d67 5518
3b76c4a3 5519 return nr_cpumask_bits;
90001d67
PZ
5520}
5521
3b76c4a3 5522static int
f2cdd9cc
PZ
5523wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5524 int this_cpu, int prev_cpu, int sync)
90001d67 5525{
90001d67
PZ
5526 s64 this_eff_load, prev_eff_load;
5527 unsigned long task_load;
5528
f2cdd9cc 5529 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5530
90001d67
PZ
5531 if (sync) {
5532 unsigned long current_load = task_h_load(current);
5533
f2cdd9cc 5534 if (current_load > this_eff_load)
3b76c4a3 5535 return this_cpu;
90001d67 5536
f2cdd9cc 5537 this_eff_load -= current_load;
90001d67
PZ
5538 }
5539
90001d67
PZ
5540 task_load = task_h_load(p);
5541
f2cdd9cc
PZ
5542 this_eff_load += task_load;
5543 if (sched_feat(WA_BIAS))
5544 this_eff_load *= 100;
5545 this_eff_load *= capacity_of(prev_cpu);
90001d67 5546
eeb60398 5547 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5548 prev_eff_load -= task_load;
5549 if (sched_feat(WA_BIAS))
5550 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5551 prev_eff_load *= capacity_of(this_cpu);
90001d67 5552
082f764a
MG
5553 /*
5554 * If sync, adjust the weight of prev_eff_load such that if
5555 * prev_eff == this_eff that select_idle_sibling() will consider
5556 * stacking the wakee on top of the waker if no other CPU is
5557 * idle.
5558 */
5559 if (sync)
5560 prev_eff_load += 1;
5561
5562 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5563}
5564
772bd008 5565static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5566 int this_cpu, int prev_cpu, int sync)
098fb9db 5567{
3b76c4a3 5568 int target = nr_cpumask_bits;
098fb9db 5569
89a55f56 5570 if (sched_feat(WA_IDLE))
3b76c4a3 5571 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5572
3b76c4a3
MG
5573 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5574 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5575
ae92882e 5576 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5577 if (target == nr_cpumask_bits)
5578 return prev_cpu;
098fb9db 5579
3b76c4a3
MG
5580 schedstat_inc(sd->ttwu_move_affine);
5581 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5582 return target;
098fb9db
IM
5583}
5584
f01415fd 5585static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
6a0b19c0
MR
5586
5587static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5588{
f453ae22 5589 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
6a0b19c0
MR
5590}
5591
aaee1203
PZ
5592/*
5593 * find_idlest_group finds and returns the least busy CPU group within the
5594 * domain.
6fee85cc
BJ
5595 *
5596 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5597 */
5598static struct sched_group *
78e7ed53 5599find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5600 int this_cpu, int sd_flag)
e7693a36 5601{
b3bd3de6 5602 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5603 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5604 unsigned long min_runnable_load = ULONG_MAX;
5605 unsigned long this_runnable_load = ULONG_MAX;
5606 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5607 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5608 int load_idx = sd->forkexec_idx;
6b94780e
VG
5609 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5610 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5611 (sd->imbalance_pct-100) / 100;
e7693a36 5612
c44f2a02
VG
5613 if (sd_flag & SD_BALANCE_WAKE)
5614 load_idx = sd->wake_idx;
5615
aaee1203 5616 do {
6b94780e
VG
5617 unsigned long load, avg_load, runnable_load;
5618 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5619 int local_group;
5620 int i;
e7693a36 5621
aaee1203 5622 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5623 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5624 &p->cpus_allowed))
aaee1203
PZ
5625 continue;
5626
5627 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5628 sched_group_span(group));
aaee1203 5629
6a0b19c0
MR
5630 /*
5631 * Tally up the load of all CPUs in the group and find
5632 * the group containing the CPU with most spare capacity.
5633 */
aaee1203 5634 avg_load = 0;
6b94780e 5635 runnable_load = 0;
6a0b19c0 5636 max_spare_cap = 0;
aaee1203 5637
ae4df9d6 5638 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5639 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5640 if (local_group)
5641 load = source_load(i, load_idx);
5642 else
5643 load = target_load(i, load_idx);
5644
6b94780e
VG
5645 runnable_load += load;
5646
5647 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5648
5649 spare_cap = capacity_spare_wake(i, p);
5650
5651 if (spare_cap > max_spare_cap)
5652 max_spare_cap = spare_cap;
aaee1203
PZ
5653 }
5654
63b2ca30 5655 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5656 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5657 group->sgc->capacity;
5658 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5659 group->sgc->capacity;
aaee1203
PZ
5660
5661 if (local_group) {
6b94780e
VG
5662 this_runnable_load = runnable_load;
5663 this_avg_load = avg_load;
6a0b19c0
MR
5664 this_spare = max_spare_cap;
5665 } else {
6b94780e
VG
5666 if (min_runnable_load > (runnable_load + imbalance)) {
5667 /*
5668 * The runnable load is significantly smaller
97fb7a0a 5669 * so we can pick this new CPU:
6b94780e
VG
5670 */
5671 min_runnable_load = runnable_load;
5672 min_avg_load = avg_load;
5673 idlest = group;
5674 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5675 (100*min_avg_load > imbalance_scale*avg_load)) {
5676 /*
5677 * The runnable loads are close so take the
97fb7a0a 5678 * blocked load into account through avg_load:
6b94780e
VG
5679 */
5680 min_avg_load = avg_load;
6a0b19c0
MR
5681 idlest = group;
5682 }
5683
5684 if (most_spare < max_spare_cap) {
5685 most_spare = max_spare_cap;
5686 most_spare_sg = group;
5687 }
aaee1203
PZ
5688 }
5689 } while (group = group->next, group != sd->groups);
5690
6a0b19c0
MR
5691 /*
5692 * The cross-over point between using spare capacity or least load
5693 * is too conservative for high utilization tasks on partially
5694 * utilized systems if we require spare_capacity > task_util(p),
5695 * so we allow for some task stuffing by using
5696 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5697 *
5698 * Spare capacity can't be used for fork because the utilization has
5699 * not been set yet, we must first select a rq to compute the initial
5700 * utilization.
6a0b19c0 5701 */
f519a3f1
VG
5702 if (sd_flag & SD_BALANCE_FORK)
5703 goto skip_spare;
5704
6a0b19c0 5705 if (this_spare > task_util(p) / 2 &&
6b94780e 5706 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5707 return NULL;
6b94780e
VG
5708
5709 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5710 return most_spare_sg;
5711
f519a3f1 5712skip_spare:
6b94780e
VG
5713 if (!idlest)
5714 return NULL;
5715
2c833627
MG
5716 /*
5717 * When comparing groups across NUMA domains, it's possible for the
5718 * local domain to be very lightly loaded relative to the remote
5719 * domains but "imbalance" skews the comparison making remote CPUs
5720 * look much more favourable. When considering cross-domain, add
5721 * imbalance to the runnable load on the remote node and consider
5722 * staying local.
5723 */
5724 if ((sd->flags & SD_NUMA) &&
5725 min_runnable_load + imbalance >= this_runnable_load)
5726 return NULL;
5727
6b94780e 5728 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5729 return NULL;
6b94780e
VG
5730
5731 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5732 (100*this_avg_load < imbalance_scale*min_avg_load))
5733 return NULL;
5734
aaee1203
PZ
5735 return idlest;
5736}
5737
5738/*
97fb7a0a 5739 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5740 */
5741static int
18bd1b4b 5742find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5743{
5744 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5745 unsigned int min_exit_latency = UINT_MAX;
5746 u64 latest_idle_timestamp = 0;
5747 int least_loaded_cpu = this_cpu;
5748 int shallowest_idle_cpu = -1;
aaee1203
PZ
5749 int i;
5750
eaecf41f
MR
5751 /* Check if we have any choice: */
5752 if (group->group_weight == 1)
ae4df9d6 5753 return cpumask_first(sched_group_span(group));
eaecf41f 5754
aaee1203 5755 /* Traverse only the allowed CPUs */
ae4df9d6 5756 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5757 if (available_idle_cpu(i)) {
83a0a96a
NP
5758 struct rq *rq = cpu_rq(i);
5759 struct cpuidle_state *idle = idle_get_state(rq);
5760 if (idle && idle->exit_latency < min_exit_latency) {
5761 /*
5762 * We give priority to a CPU whose idle state
5763 * has the smallest exit latency irrespective
5764 * of any idle timestamp.
5765 */
5766 min_exit_latency = idle->exit_latency;
5767 latest_idle_timestamp = rq->idle_stamp;
5768 shallowest_idle_cpu = i;
5769 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5770 rq->idle_stamp > latest_idle_timestamp) {
5771 /*
5772 * If equal or no active idle state, then
5773 * the most recently idled CPU might have
5774 * a warmer cache.
5775 */
5776 latest_idle_timestamp = rq->idle_stamp;
5777 shallowest_idle_cpu = i;
5778 }
9f96742a 5779 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5780 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5781 if (load < min_load) {
83a0a96a
NP
5782 min_load = load;
5783 least_loaded_cpu = i;
5784 }
e7693a36
GH
5785 }
5786 }
5787
83a0a96a 5788 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5789}
e7693a36 5790
18bd1b4b
BJ
5791static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5792 int cpu, int prev_cpu, int sd_flag)
5793{
93f50f90 5794 int new_cpu = cpu;
18bd1b4b 5795
6fee85cc
BJ
5796 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5797 return prev_cpu;
5798
c976a862
VK
5799 /*
5800 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5801 * last_update_time.
5802 */
5803 if (!(sd_flag & SD_BALANCE_FORK))
5804 sync_entity_load_avg(&p->se);
5805
18bd1b4b
BJ
5806 while (sd) {
5807 struct sched_group *group;
5808 struct sched_domain *tmp;
5809 int weight;
5810
5811 if (!(sd->flags & sd_flag)) {
5812 sd = sd->child;
5813 continue;
5814 }
5815
5816 group = find_idlest_group(sd, p, cpu, sd_flag);
5817 if (!group) {
5818 sd = sd->child;
5819 continue;
5820 }
5821
5822 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5823 if (new_cpu == cpu) {
97fb7a0a 5824 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5825 sd = sd->child;
5826 continue;
5827 }
5828
97fb7a0a 5829 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5830 cpu = new_cpu;
5831 weight = sd->span_weight;
5832 sd = NULL;
5833 for_each_domain(cpu, tmp) {
5834 if (weight <= tmp->span_weight)
5835 break;
5836 if (tmp->flags & sd_flag)
5837 sd = tmp;
5838 }
18bd1b4b
BJ
5839 }
5840
5841 return new_cpu;
5842}
5843
10e2f1ac
PZ
5844#ifdef CONFIG_SCHED_SMT
5845
5846static inline void set_idle_cores(int cpu, int val)
5847{
5848 struct sched_domain_shared *sds;
5849
5850 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5851 if (sds)
5852 WRITE_ONCE(sds->has_idle_cores, val);
5853}
5854
5855static inline bool test_idle_cores(int cpu, bool def)
5856{
5857 struct sched_domain_shared *sds;
5858
5859 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5860 if (sds)
5861 return READ_ONCE(sds->has_idle_cores);
5862
5863 return def;
5864}
5865
5866/*
5867 * Scans the local SMT mask to see if the entire core is idle, and records this
5868 * information in sd_llc_shared->has_idle_cores.
5869 *
5870 * Since SMT siblings share all cache levels, inspecting this limited remote
5871 * state should be fairly cheap.
5872 */
1b568f0a 5873void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5874{
5875 int core = cpu_of(rq);
5876 int cpu;
5877
5878 rcu_read_lock();
5879 if (test_idle_cores(core, true))
5880 goto unlock;
5881
5882 for_each_cpu(cpu, cpu_smt_mask(core)) {
5883 if (cpu == core)
5884 continue;
5885
943d355d 5886 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5887 goto unlock;
5888 }
5889
5890 set_idle_cores(core, 1);
5891unlock:
5892 rcu_read_unlock();
5893}
5894
5895/*
5896 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5897 * there are no idle cores left in the system; tracked through
5898 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5899 */
5900static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5901{
5902 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5903 int core, cpu;
10e2f1ac 5904
1b568f0a
PZ
5905 if (!static_branch_likely(&sched_smt_present))
5906 return -1;
5907
10e2f1ac
PZ
5908 if (!test_idle_cores(target, false))
5909 return -1;
5910
0c98d344 5911 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5912
c743f0a5 5913 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5914 bool idle = true;
5915
5916 for_each_cpu(cpu, cpu_smt_mask(core)) {
5917 cpumask_clear_cpu(cpu, cpus);
943d355d 5918 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5919 idle = false;
5920 }
5921
5922 if (idle)
5923 return core;
5924 }
5925
5926 /*
5927 * Failed to find an idle core; stop looking for one.
5928 */
5929 set_idle_cores(target, 0);
5930
5931 return -1;
5932}
5933
5934/*
5935 * Scan the local SMT mask for idle CPUs.
5936 */
5937static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5938{
5939 int cpu;
5940
1b568f0a
PZ
5941 if (!static_branch_likely(&sched_smt_present))
5942 return -1;
5943
10e2f1ac 5944 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5945 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 5946 continue;
943d355d 5947 if (available_idle_cpu(cpu))
10e2f1ac
PZ
5948 return cpu;
5949 }
5950
5951 return -1;
5952}
5953
5954#else /* CONFIG_SCHED_SMT */
5955
5956static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5957{
5958 return -1;
5959}
5960
5961static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5962{
5963 return -1;
5964}
5965
5966#endif /* CONFIG_SCHED_SMT */
5967
5968/*
5969 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5970 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5971 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5972 */
10e2f1ac
PZ
5973static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5974{
9cfb38a7 5975 struct sched_domain *this_sd;
1ad3aaf3 5976 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5977 u64 time, cost;
5978 s64 delta;
1ad3aaf3 5979 int cpu, nr = INT_MAX;
10e2f1ac 5980
9cfb38a7
WL
5981 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5982 if (!this_sd)
5983 return -1;
5984
10e2f1ac
PZ
5985 /*
5986 * Due to large variance we need a large fuzz factor; hackbench in
5987 * particularly is sensitive here.
5988 */
1ad3aaf3
PZ
5989 avg_idle = this_rq()->avg_idle / 512;
5990 avg_cost = this_sd->avg_scan_cost + 1;
5991
5992 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5993 return -1;
5994
1ad3aaf3
PZ
5995 if (sched_feat(SIS_PROP)) {
5996 u64 span_avg = sd->span_weight * avg_idle;
5997 if (span_avg > 4*avg_cost)
5998 nr = div_u64(span_avg, avg_cost);
5999 else
6000 nr = 4;
6001 }
6002
10e2f1ac
PZ
6003 time = local_clock();
6004
c743f0a5 6005 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6006 if (!--nr)
6007 return -1;
0c98d344 6008 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6009 continue;
943d355d 6010 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6011 break;
6012 }
6013
6014 time = local_clock() - time;
6015 cost = this_sd->avg_scan_cost;
6016 delta = (s64)(time - cost) / 8;
6017 this_sd->avg_scan_cost += delta;
6018
6019 return cpu;
6020}
6021
6022/*
6023 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6024 */
772bd008 6025static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6026{
99bd5e2f 6027 struct sched_domain *sd;
32e839dd 6028 int i, recent_used_cpu;
a50bde51 6029
943d355d 6030 if (available_idle_cpu(target))
e0a79f52 6031 return target;
99bd5e2f
SS
6032
6033 /*
97fb7a0a 6034 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6035 */
943d355d 6036 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6037 return prev;
a50bde51 6038
97fb7a0a 6039 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6040 recent_used_cpu = p->recent_used_cpu;
6041 if (recent_used_cpu != prev &&
6042 recent_used_cpu != target &&
6043 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6044 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6045 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6046 /*
6047 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6048 * candidate for the next wake:
32e839dd
MG
6049 */
6050 p->recent_used_cpu = prev;
6051 return recent_used_cpu;
6052 }
6053
518cd623 6054 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6055 if (!sd)
6056 return target;
772bd008 6057
10e2f1ac
PZ
6058 i = select_idle_core(p, sd, target);
6059 if ((unsigned)i < nr_cpumask_bits)
6060 return i;
37407ea7 6061
10e2f1ac
PZ
6062 i = select_idle_cpu(p, sd, target);
6063 if ((unsigned)i < nr_cpumask_bits)
6064 return i;
6065
6066 i = select_idle_smt(p, sd, target);
6067 if ((unsigned)i < nr_cpumask_bits)
6068 return i;
970e1789 6069
a50bde51
PZ
6070 return target;
6071}
231678b7 6072
f9be3e59
PB
6073/**
6074 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6075 * @cpu: the CPU to get the utilization of
6076 *
6077 * The unit of the return value must be the one of capacity so we can compare
6078 * the utilization with the capacity of the CPU that is available for CFS task
6079 * (ie cpu_capacity).
231678b7
DE
6080 *
6081 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6082 * recent utilization of currently non-runnable tasks on a CPU. It represents
6083 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6084 * capacity_orig is the cpu_capacity available at the highest frequency
6085 * (arch_scale_freq_capacity()).
6086 * The utilization of a CPU converges towards a sum equal to or less than the
6087 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6088 * the running time on this CPU scaled by capacity_curr.
6089 *
f9be3e59
PB
6090 * The estimated utilization of a CPU is defined to be the maximum between its
6091 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6092 * currently RUNNABLE on that CPU.
6093 * This allows to properly represent the expected utilization of a CPU which
6094 * has just got a big task running since a long sleep period. At the same time
6095 * however it preserves the benefits of the "blocked utilization" in
6096 * describing the potential for other tasks waking up on the same CPU.
6097 *
231678b7
DE
6098 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6099 * higher than capacity_orig because of unfortunate rounding in
6100 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6101 * the average stabilizes with the new running time. We need to check that the
6102 * utilization stays within the range of [0..capacity_orig] and cap it if
6103 * necessary. Without utilization capping, a group could be seen as overloaded
6104 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6105 * available capacity. We allow utilization to overshoot capacity_curr (but not
6106 * capacity_orig) as it useful for predicting the capacity required after task
6107 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6108 *
6109 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6110 */
f9be3e59 6111static inline unsigned long cpu_util(int cpu)
8bb5b00c 6112{
f9be3e59
PB
6113 struct cfs_rq *cfs_rq;
6114 unsigned int util;
6115
6116 cfs_rq = &cpu_rq(cpu)->cfs;
6117 util = READ_ONCE(cfs_rq->avg.util_avg);
6118
6119 if (sched_feat(UTIL_EST))
6120 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6121
f9be3e59 6122 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6123}
a50bde51 6124
104cb16d 6125/*
97fb7a0a 6126 * cpu_util_wake: Compute CPU utilization with any contributions from
104cb16d
MR
6127 * the waking task p removed.
6128 */
f01415fd 6129static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
104cb16d 6130{
f9be3e59
PB
6131 struct cfs_rq *cfs_rq;
6132 unsigned int util;
104cb16d
MR
6133
6134 /* Task has no contribution or is new */
f9be3e59 6135 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6136 return cpu_util(cpu);
6137
f9be3e59
PB
6138 cfs_rq = &cpu_rq(cpu)->cfs;
6139 util = READ_ONCE(cfs_rq->avg.util_avg);
6140
6141 /* Discount task's blocked util from CPU's util */
6142 util -= min_t(unsigned int, util, task_util(p));
104cb16d 6143
f9be3e59
PB
6144 /*
6145 * Covered cases:
6146 *
6147 * a) if *p is the only task sleeping on this CPU, then:
6148 * cpu_util (== task_util) > util_est (== 0)
6149 * and thus we return:
6150 * cpu_util_wake = (cpu_util - task_util) = 0
6151 *
6152 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6153 * IDLE, then:
6154 * cpu_util >= task_util
6155 * cpu_util > util_est (== 0)
6156 * and thus we discount *p's blocked utilization to return:
6157 * cpu_util_wake = (cpu_util - task_util) >= 0
6158 *
6159 * c) if other tasks are RUNNABLE on that CPU and
6160 * util_est > cpu_util
6161 * then we use util_est since it returns a more restrictive
6162 * estimation of the spare capacity on that CPU, by just
6163 * considering the expected utilization of tasks already
6164 * runnable on that CPU.
6165 *
6166 * Cases a) and b) are covered by the above code, while case c) is
6167 * covered by the following code when estimated utilization is
6168 * enabled.
6169 */
6170 if (sched_feat(UTIL_EST))
6171 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6172
6173 /*
6174 * Utilization (estimated) can exceed the CPU capacity, thus let's
6175 * clamp to the maximum CPU capacity to ensure consistency with
6176 * the cpu_util call.
6177 */
6178 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6179}
6180
3273163c
MR
6181/*
6182 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6183 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6184 *
6185 * In that case WAKE_AFFINE doesn't make sense and we'll let
6186 * BALANCE_WAKE sort things out.
6187 */
6188static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6189{
6190 long min_cap, max_cap;
6191
6192 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6193 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6194
6195 /* Minimum capacity is close to max, no need to abort wake_affine */
6196 if (max_cap - min_cap < max_cap >> 3)
6197 return 0;
6198
104cb16d
MR
6199 /* Bring task utilization in sync with prev_cpu */
6200 sync_entity_load_avg(&p->se);
6201
3273163c
MR
6202 return min_cap * 1024 < task_util(p) * capacity_margin;
6203}
6204
aaee1203 6205/*
de91b9cb
MR
6206 * select_task_rq_fair: Select target runqueue for the waking task in domains
6207 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6208 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6209 *
97fb7a0a
IM
6210 * Balances load by selecting the idlest CPU in the idlest group, or under
6211 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6212 *
97fb7a0a 6213 * Returns the target CPU number.
aaee1203
PZ
6214 *
6215 * preempt must be disabled.
6216 */
0017d735 6217static int
ac66f547 6218select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6219{
f1d88b44 6220 struct sched_domain *tmp, *sd = NULL;
c88d5910 6221 int cpu = smp_processor_id();
63b0e9ed 6222 int new_cpu = prev_cpu;
99bd5e2f 6223 int want_affine = 0;
24d0c1d6 6224 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6225
c58d25f3
PZ
6226 if (sd_flag & SD_BALANCE_WAKE) {
6227 record_wakee(p);
3273163c 6228 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6229 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6230 }
aaee1203 6231
dce840a0 6232 rcu_read_lock();
aaee1203 6233 for_each_domain(cpu, tmp) {
e4f42888 6234 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6235 break;
e4f42888 6236
fe3bcfe1 6237 /*
97fb7a0a 6238 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6239 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6240 */
99bd5e2f
SS
6241 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6242 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6243 if (cpu != prev_cpu)
6244 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6245
6246 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6247 break;
f03542a7 6248 }
29cd8bae 6249
f03542a7 6250 if (tmp->flags & sd_flag)
29cd8bae 6251 sd = tmp;
63b0e9ed
MG
6252 else if (!want_affine)
6253 break;
29cd8bae
PZ
6254 }
6255
f1d88b44
VK
6256 if (unlikely(sd)) {
6257 /* Slow path */
18bd1b4b 6258 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6259 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6260 /* Fast path */
6261
6262 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6263
6264 if (want_affine)
6265 current->recent_used_cpu = cpu;
e7693a36 6266 }
dce840a0 6267 rcu_read_unlock();
e7693a36 6268
c88d5910 6269 return new_cpu;
e7693a36 6270}
0a74bef8 6271
144d8487
PZ
6272static void detach_entity_cfs_rq(struct sched_entity *se);
6273
0a74bef8 6274/*
97fb7a0a 6275 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6276 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6277 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6278 */
5a4fd036 6279static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6280{
59efa0ba
PZ
6281 /*
6282 * As blocked tasks retain absolute vruntime the migration needs to
6283 * deal with this by subtracting the old and adding the new
6284 * min_vruntime -- the latter is done by enqueue_entity() when placing
6285 * the task on the new runqueue.
6286 */
6287 if (p->state == TASK_WAKING) {
6288 struct sched_entity *se = &p->se;
6289 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6290 u64 min_vruntime;
6291
6292#ifndef CONFIG_64BIT
6293 u64 min_vruntime_copy;
6294
6295 do {
6296 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6297 smp_rmb();
6298 min_vruntime = cfs_rq->min_vruntime;
6299 } while (min_vruntime != min_vruntime_copy);
6300#else
6301 min_vruntime = cfs_rq->min_vruntime;
6302#endif
6303
6304 se->vruntime -= min_vruntime;
6305 }
6306
144d8487
PZ
6307 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6308 /*
6309 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6310 * rq->lock and can modify state directly.
6311 */
6312 lockdep_assert_held(&task_rq(p)->lock);
6313 detach_entity_cfs_rq(&p->se);
6314
6315 } else {
6316 /*
6317 * We are supposed to update the task to "current" time, then
6318 * its up to date and ready to go to new CPU/cfs_rq. But we
6319 * have difficulty in getting what current time is, so simply
6320 * throw away the out-of-date time. This will result in the
6321 * wakee task is less decayed, but giving the wakee more load
6322 * sounds not bad.
6323 */
6324 remove_entity_load_avg(&p->se);
6325 }
9d89c257
YD
6326
6327 /* Tell new CPU we are migrated */
6328 p->se.avg.last_update_time = 0;
3944a927
BS
6329
6330 /* We have migrated, no longer consider this task hot */
9d89c257 6331 p->se.exec_start = 0;
0a74bef8 6332}
12695578
YD
6333
6334static void task_dead_fair(struct task_struct *p)
6335{
6336 remove_entity_load_avg(&p->se);
6337}
e7693a36
GH
6338#endif /* CONFIG_SMP */
6339
a555e9d8 6340static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6341{
6342 unsigned long gran = sysctl_sched_wakeup_granularity;
6343
6344 /*
e52fb7c0
PZ
6345 * Since its curr running now, convert the gran from real-time
6346 * to virtual-time in his units.
13814d42
MG
6347 *
6348 * By using 'se' instead of 'curr' we penalize light tasks, so
6349 * they get preempted easier. That is, if 'se' < 'curr' then
6350 * the resulting gran will be larger, therefore penalizing the
6351 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6352 * be smaller, again penalizing the lighter task.
6353 *
6354 * This is especially important for buddies when the leftmost
6355 * task is higher priority than the buddy.
0bbd3336 6356 */
f4ad9bd2 6357 return calc_delta_fair(gran, se);
0bbd3336
PZ
6358}
6359
464b7527
PZ
6360/*
6361 * Should 'se' preempt 'curr'.
6362 *
6363 * |s1
6364 * |s2
6365 * |s3
6366 * g
6367 * |<--->|c
6368 *
6369 * w(c, s1) = -1
6370 * w(c, s2) = 0
6371 * w(c, s3) = 1
6372 *
6373 */
6374static int
6375wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6376{
6377 s64 gran, vdiff = curr->vruntime - se->vruntime;
6378
6379 if (vdiff <= 0)
6380 return -1;
6381
a555e9d8 6382 gran = wakeup_gran(se);
464b7527
PZ
6383 if (vdiff > gran)
6384 return 1;
6385
6386 return 0;
6387}
6388
02479099
PZ
6389static void set_last_buddy(struct sched_entity *se)
6390{
69c80f3e
VP
6391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6392 return;
6393
c5ae366e
DA
6394 for_each_sched_entity(se) {
6395 if (SCHED_WARN_ON(!se->on_rq))
6396 return;
69c80f3e 6397 cfs_rq_of(se)->last = se;
c5ae366e 6398 }
02479099
PZ
6399}
6400
6401static void set_next_buddy(struct sched_entity *se)
6402{
69c80f3e
VP
6403 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6404 return;
6405
c5ae366e
DA
6406 for_each_sched_entity(se) {
6407 if (SCHED_WARN_ON(!se->on_rq))
6408 return;
69c80f3e 6409 cfs_rq_of(se)->next = se;
c5ae366e 6410 }
02479099
PZ
6411}
6412
ac53db59
RR
6413static void set_skip_buddy(struct sched_entity *se)
6414{
69c80f3e
VP
6415 for_each_sched_entity(se)
6416 cfs_rq_of(se)->skip = se;
ac53db59
RR
6417}
6418
bf0f6f24
IM
6419/*
6420 * Preempt the current task with a newly woken task if needed:
6421 */
5a9b86f6 6422static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6423{
6424 struct task_struct *curr = rq->curr;
8651a86c 6425 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6426 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6427 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6428 int next_buddy_marked = 0;
bf0f6f24 6429
4ae7d5ce
IM
6430 if (unlikely(se == pse))
6431 return;
6432
5238cdd3 6433 /*
163122b7 6434 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6435 * unconditionally check_prempt_curr() after an enqueue (which may have
6436 * lead to a throttle). This both saves work and prevents false
6437 * next-buddy nomination below.
6438 */
6439 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6440 return;
6441
2f36825b 6442 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6443 set_next_buddy(pse);
2f36825b
VP
6444 next_buddy_marked = 1;
6445 }
57fdc26d 6446
aec0a514
BR
6447 /*
6448 * We can come here with TIF_NEED_RESCHED already set from new task
6449 * wake up path.
5238cdd3
PT
6450 *
6451 * Note: this also catches the edge-case of curr being in a throttled
6452 * group (e.g. via set_curr_task), since update_curr() (in the
6453 * enqueue of curr) will have resulted in resched being set. This
6454 * prevents us from potentially nominating it as a false LAST_BUDDY
6455 * below.
aec0a514
BR
6456 */
6457 if (test_tsk_need_resched(curr))
6458 return;
6459
a2f5c9ab
DH
6460 /* Idle tasks are by definition preempted by non-idle tasks. */
6461 if (unlikely(curr->policy == SCHED_IDLE) &&
6462 likely(p->policy != SCHED_IDLE))
6463 goto preempt;
6464
91c234b4 6465 /*
a2f5c9ab
DH
6466 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6467 * is driven by the tick):
91c234b4 6468 */
8ed92e51 6469 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6470 return;
bf0f6f24 6471
464b7527 6472 find_matching_se(&se, &pse);
9bbd7374 6473 update_curr(cfs_rq_of(se));
002f128b 6474 BUG_ON(!pse);
2f36825b
VP
6475 if (wakeup_preempt_entity(se, pse) == 1) {
6476 /*
6477 * Bias pick_next to pick the sched entity that is
6478 * triggering this preemption.
6479 */
6480 if (!next_buddy_marked)
6481 set_next_buddy(pse);
3a7e73a2 6482 goto preempt;
2f36825b 6483 }
464b7527 6484
3a7e73a2 6485 return;
a65ac745 6486
3a7e73a2 6487preempt:
8875125e 6488 resched_curr(rq);
3a7e73a2
PZ
6489 /*
6490 * Only set the backward buddy when the current task is still
6491 * on the rq. This can happen when a wakeup gets interleaved
6492 * with schedule on the ->pre_schedule() or idle_balance()
6493 * point, either of which can * drop the rq lock.
6494 *
6495 * Also, during early boot the idle thread is in the fair class,
6496 * for obvious reasons its a bad idea to schedule back to it.
6497 */
6498 if (unlikely(!se->on_rq || curr == rq->idle))
6499 return;
6500
6501 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6502 set_last_buddy(se);
bf0f6f24
IM
6503}
6504
606dba2e 6505static struct task_struct *
d8ac8971 6506pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6507{
6508 struct cfs_rq *cfs_rq = &rq->cfs;
6509 struct sched_entity *se;
678d5718 6510 struct task_struct *p;
37e117c0 6511 int new_tasks;
678d5718 6512
6e83125c 6513again:
678d5718 6514 if (!cfs_rq->nr_running)
38033c37 6515 goto idle;
678d5718 6516
9674f5ca 6517#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6518 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6519 goto simple;
6520
6521 /*
6522 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6523 * likely that a next task is from the same cgroup as the current.
6524 *
6525 * Therefore attempt to avoid putting and setting the entire cgroup
6526 * hierarchy, only change the part that actually changes.
6527 */
6528
6529 do {
6530 struct sched_entity *curr = cfs_rq->curr;
6531
6532 /*
6533 * Since we got here without doing put_prev_entity() we also
6534 * have to consider cfs_rq->curr. If it is still a runnable
6535 * entity, update_curr() will update its vruntime, otherwise
6536 * forget we've ever seen it.
6537 */
54d27365
BS
6538 if (curr) {
6539 if (curr->on_rq)
6540 update_curr(cfs_rq);
6541 else
6542 curr = NULL;
678d5718 6543
54d27365
BS
6544 /*
6545 * This call to check_cfs_rq_runtime() will do the
6546 * throttle and dequeue its entity in the parent(s).
9674f5ca 6547 * Therefore the nr_running test will indeed
54d27365
BS
6548 * be correct.
6549 */
9674f5ca
VK
6550 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6551 cfs_rq = &rq->cfs;
6552
6553 if (!cfs_rq->nr_running)
6554 goto idle;
6555
54d27365 6556 goto simple;
9674f5ca 6557 }
54d27365 6558 }
678d5718
PZ
6559
6560 se = pick_next_entity(cfs_rq, curr);
6561 cfs_rq = group_cfs_rq(se);
6562 } while (cfs_rq);
6563
6564 p = task_of(se);
6565
6566 /*
6567 * Since we haven't yet done put_prev_entity and if the selected task
6568 * is a different task than we started out with, try and touch the
6569 * least amount of cfs_rqs.
6570 */
6571 if (prev != p) {
6572 struct sched_entity *pse = &prev->se;
6573
6574 while (!(cfs_rq = is_same_group(se, pse))) {
6575 int se_depth = se->depth;
6576 int pse_depth = pse->depth;
6577
6578 if (se_depth <= pse_depth) {
6579 put_prev_entity(cfs_rq_of(pse), pse);
6580 pse = parent_entity(pse);
6581 }
6582 if (se_depth >= pse_depth) {
6583 set_next_entity(cfs_rq_of(se), se);
6584 se = parent_entity(se);
6585 }
6586 }
6587
6588 put_prev_entity(cfs_rq, pse);
6589 set_next_entity(cfs_rq, se);
6590 }
6591
93824900 6592 goto done;
678d5718 6593simple:
678d5718 6594#endif
bf0f6f24 6595
3f1d2a31 6596 put_prev_task(rq, prev);
606dba2e 6597
bf0f6f24 6598 do {
678d5718 6599 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6600 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6601 cfs_rq = group_cfs_rq(se);
6602 } while (cfs_rq);
6603
8f4d37ec 6604 p = task_of(se);
678d5718 6605
13a453c2 6606done: __maybe_unused;
93824900
UR
6607#ifdef CONFIG_SMP
6608 /*
6609 * Move the next running task to the front of
6610 * the list, so our cfs_tasks list becomes MRU
6611 * one.
6612 */
6613 list_move(&p->se.group_node, &rq->cfs_tasks);
6614#endif
6615
b39e66ea
MG
6616 if (hrtick_enabled(rq))
6617 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6618
6619 return p;
38033c37
PZ
6620
6621idle:
46f69fa3
MF
6622 new_tasks = idle_balance(rq, rf);
6623
37e117c0
PZ
6624 /*
6625 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6626 * possible for any higher priority task to appear. In that case we
6627 * must re-start the pick_next_entity() loop.
6628 */
e4aa358b 6629 if (new_tasks < 0)
37e117c0
PZ
6630 return RETRY_TASK;
6631
e4aa358b 6632 if (new_tasks > 0)
38033c37 6633 goto again;
38033c37
PZ
6634
6635 return NULL;
bf0f6f24
IM
6636}
6637
6638/*
6639 * Account for a descheduled task:
6640 */
31ee529c 6641static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6642{
6643 struct sched_entity *se = &prev->se;
6644 struct cfs_rq *cfs_rq;
6645
6646 for_each_sched_entity(se) {
6647 cfs_rq = cfs_rq_of(se);
ab6cde26 6648 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6649 }
6650}
6651
ac53db59
RR
6652/*
6653 * sched_yield() is very simple
6654 *
6655 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6656 */
6657static void yield_task_fair(struct rq *rq)
6658{
6659 struct task_struct *curr = rq->curr;
6660 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6661 struct sched_entity *se = &curr->se;
6662
6663 /*
6664 * Are we the only task in the tree?
6665 */
6666 if (unlikely(rq->nr_running == 1))
6667 return;
6668
6669 clear_buddies(cfs_rq, se);
6670
6671 if (curr->policy != SCHED_BATCH) {
6672 update_rq_clock(rq);
6673 /*
6674 * Update run-time statistics of the 'current'.
6675 */
6676 update_curr(cfs_rq);
916671c0
MG
6677 /*
6678 * Tell update_rq_clock() that we've just updated,
6679 * so we don't do microscopic update in schedule()
6680 * and double the fastpath cost.
6681 */
adcc8da8 6682 rq_clock_skip_update(rq);
ac53db59
RR
6683 }
6684
6685 set_skip_buddy(se);
6686}
6687
d95f4122
MG
6688static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6689{
6690 struct sched_entity *se = &p->se;
6691
5238cdd3
PT
6692 /* throttled hierarchies are not runnable */
6693 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6694 return false;
6695
6696 /* Tell the scheduler that we'd really like pse to run next. */
6697 set_next_buddy(se);
6698
d95f4122
MG
6699 yield_task_fair(rq);
6700
6701 return true;
6702}
6703
681f3e68 6704#ifdef CONFIG_SMP
bf0f6f24 6705/**************************************************
e9c84cb8
PZ
6706 * Fair scheduling class load-balancing methods.
6707 *
6708 * BASICS
6709 *
6710 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6711 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6712 * time to each task. This is expressed in the following equation:
6713 *
6714 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6715 *
97fb7a0a 6716 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6717 * W_i,0 is defined as:
6718 *
6719 * W_i,0 = \Sum_j w_i,j (2)
6720 *
97fb7a0a 6721 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6722 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6723 *
6724 * The weight average is an exponential decay average of the instantaneous
6725 * weight:
6726 *
6727 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6728 *
97fb7a0a 6729 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6730 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6731 * can also include other factors [XXX].
6732 *
6733 * To achieve this balance we define a measure of imbalance which follows
6734 * directly from (1):
6735 *
ced549fa 6736 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6737 *
6738 * We them move tasks around to minimize the imbalance. In the continuous
6739 * function space it is obvious this converges, in the discrete case we get
6740 * a few fun cases generally called infeasible weight scenarios.
6741 *
6742 * [XXX expand on:
6743 * - infeasible weights;
6744 * - local vs global optima in the discrete case. ]
6745 *
6746 *
6747 * SCHED DOMAINS
6748 *
6749 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6750 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6751 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6752 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6753 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 6754 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
6755 * the groups.
6756 *
6757 * This yields:
6758 *
6759 * log_2 n 1 n
6760 * \Sum { --- * --- * 2^i } = O(n) (5)
6761 * i = 0 2^i 2^i
6762 * `- size of each group
97fb7a0a 6763 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
6764 * | `- freq
6765 * `- sum over all levels
6766 *
6767 * Coupled with a limit on how many tasks we can migrate every balance pass,
6768 * this makes (5) the runtime complexity of the balancer.
6769 *
6770 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 6771 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
6772 *
6773 * The adjacency matrix of the resulting graph is given by:
6774 *
97a7142f 6775 * log_2 n
e9c84cb8
PZ
6776 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6777 * k = 0
6778 *
6779 * And you'll find that:
6780 *
6781 * A^(log_2 n)_i,j != 0 for all i,j (7)
6782 *
97fb7a0a 6783 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
6784 * The task movement gives a factor of O(m), giving a convergence complexity
6785 * of:
6786 *
6787 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6788 *
6789 *
6790 * WORK CONSERVING
6791 *
6792 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 6793 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
6794 * tree itself instead of relying on other CPUs to bring it work.
6795 *
6796 * This adds some complexity to both (5) and (8) but it reduces the total idle
6797 * time.
6798 *
6799 * [XXX more?]
6800 *
6801 *
6802 * CGROUPS
6803 *
6804 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6805 *
6806 * s_k,i
6807 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6808 * S_k
6809 *
6810 * Where
6811 *
6812 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6813 *
97fb7a0a 6814 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
6815 *
6816 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6817 * property.
6818 *
6819 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6820 * rewrite all of this once again.]
97a7142f 6821 */
bf0f6f24 6822
ed387b78
HS
6823static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6824
0ec8aa00
PZ
6825enum fbq_type { regular, remote, all };
6826
ddcdf6e7 6827#define LBF_ALL_PINNED 0x01
367456c7 6828#define LBF_NEED_BREAK 0x02
6263322c
PZ
6829#define LBF_DST_PINNED 0x04
6830#define LBF_SOME_PINNED 0x08
e022e0d3 6831#define LBF_NOHZ_STATS 0x10
f643ea22 6832#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
6833
6834struct lb_env {
6835 struct sched_domain *sd;
6836
ddcdf6e7 6837 struct rq *src_rq;
85c1e7da 6838 int src_cpu;
ddcdf6e7
PZ
6839
6840 int dst_cpu;
6841 struct rq *dst_rq;
6842
88b8dac0
SV
6843 struct cpumask *dst_grpmask;
6844 int new_dst_cpu;
ddcdf6e7 6845 enum cpu_idle_type idle;
bd939f45 6846 long imbalance;
b9403130
MW
6847 /* The set of CPUs under consideration for load-balancing */
6848 struct cpumask *cpus;
6849
ddcdf6e7 6850 unsigned int flags;
367456c7
PZ
6851
6852 unsigned int loop;
6853 unsigned int loop_break;
6854 unsigned int loop_max;
0ec8aa00
PZ
6855
6856 enum fbq_type fbq_type;
163122b7 6857 struct list_head tasks;
ddcdf6e7
PZ
6858};
6859
029632fb
PZ
6860/*
6861 * Is this task likely cache-hot:
6862 */
5d5e2b1b 6863static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6864{
6865 s64 delta;
6866
e5673f28
KT
6867 lockdep_assert_held(&env->src_rq->lock);
6868
029632fb
PZ
6869 if (p->sched_class != &fair_sched_class)
6870 return 0;
6871
6872 if (unlikely(p->policy == SCHED_IDLE))
6873 return 0;
6874
6875 /*
6876 * Buddy candidates are cache hot:
6877 */
5d5e2b1b 6878 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6879 (&p->se == cfs_rq_of(&p->se)->next ||
6880 &p->se == cfs_rq_of(&p->se)->last))
6881 return 1;
6882
6883 if (sysctl_sched_migration_cost == -1)
6884 return 1;
6885 if (sysctl_sched_migration_cost == 0)
6886 return 0;
6887
5d5e2b1b 6888 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6889
6890 return delta < (s64)sysctl_sched_migration_cost;
6891}
6892
3a7053b3 6893#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6894/*
2a1ed24c
SD
6895 * Returns 1, if task migration degrades locality
6896 * Returns 0, if task migration improves locality i.e migration preferred.
6897 * Returns -1, if task migration is not affected by locality.
c1ceac62 6898 */
2a1ed24c 6899static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6900{
b1ad065e 6901 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6902 unsigned long src_faults, dst_faults;
3a7053b3
MG
6903 int src_nid, dst_nid;
6904
2a595721 6905 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6906 return -1;
6907
c3b9bc5b 6908 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6909 return -1;
7a0f3083
MG
6910
6911 src_nid = cpu_to_node(env->src_cpu);
6912 dst_nid = cpu_to_node(env->dst_cpu);
6913
83e1d2cd 6914 if (src_nid == dst_nid)
2a1ed24c 6915 return -1;
7a0f3083 6916
2a1ed24c
SD
6917 /* Migrating away from the preferred node is always bad. */
6918 if (src_nid == p->numa_preferred_nid) {
6919 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6920 return 1;
6921 else
6922 return -1;
6923 }
b1ad065e 6924
c1ceac62
RR
6925 /* Encourage migration to the preferred node. */
6926 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6927 return 0;
b1ad065e 6928
739294fb
RR
6929 /* Leaving a core idle is often worse than degrading locality. */
6930 if (env->idle != CPU_NOT_IDLE)
6931 return -1;
6932
c1ceac62
RR
6933 if (numa_group) {
6934 src_faults = group_faults(p, src_nid);
6935 dst_faults = group_faults(p, dst_nid);
6936 } else {
6937 src_faults = task_faults(p, src_nid);
6938 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6939 }
6940
c1ceac62 6941 return dst_faults < src_faults;
7a0f3083
MG
6942}
6943
3a7053b3 6944#else
2a1ed24c 6945static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6946 struct lb_env *env)
6947{
2a1ed24c 6948 return -1;
7a0f3083 6949}
3a7053b3
MG
6950#endif
6951
1e3c88bd
PZ
6952/*
6953 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6954 */
6955static
8e45cb54 6956int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6957{
2a1ed24c 6958 int tsk_cache_hot;
e5673f28
KT
6959
6960 lockdep_assert_held(&env->src_rq->lock);
6961
1e3c88bd
PZ
6962 /*
6963 * We do not migrate tasks that are:
d3198084 6964 * 1) throttled_lb_pair, or
1e3c88bd 6965 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6966 * 3) running (obviously), or
6967 * 4) are cache-hot on their current CPU.
1e3c88bd 6968 */
d3198084
JK
6969 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6970 return 0;
6971
0c98d344 6972 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6973 int cpu;
88b8dac0 6974
ae92882e 6975 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6976
6263322c
PZ
6977 env->flags |= LBF_SOME_PINNED;
6978
88b8dac0 6979 /*
97fb7a0a 6980 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
6981 * our sched_group. We may want to revisit it if we couldn't
6982 * meet load balance goals by pulling other tasks on src_cpu.
6983 *
65a4433a
JH
6984 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6985 * already computed one in current iteration.
88b8dac0 6986 */
65a4433a 6987 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6988 return 0;
6989
97fb7a0a 6990 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 6991 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6992 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6993 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6994 env->new_dst_cpu = cpu;
6995 break;
6996 }
88b8dac0 6997 }
e02e60c1 6998
1e3c88bd
PZ
6999 return 0;
7000 }
88b8dac0
SV
7001
7002 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7003 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7004
ddcdf6e7 7005 if (task_running(env->src_rq, p)) {
ae92882e 7006 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7007 return 0;
7008 }
7009
7010 /*
7011 * Aggressive migration if:
3a7053b3
MG
7012 * 1) destination numa is preferred
7013 * 2) task is cache cold, or
7014 * 3) too many balance attempts have failed.
1e3c88bd 7015 */
2a1ed24c
SD
7016 tsk_cache_hot = migrate_degrades_locality(p, env);
7017 if (tsk_cache_hot == -1)
7018 tsk_cache_hot = task_hot(p, env);
3a7053b3 7019
2a1ed24c 7020 if (tsk_cache_hot <= 0 ||
7a96c231 7021 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7022 if (tsk_cache_hot == 1) {
ae92882e
JP
7023 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7024 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7025 }
1e3c88bd
PZ
7026 return 1;
7027 }
7028
ae92882e 7029 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7030 return 0;
1e3c88bd
PZ
7031}
7032
897c395f 7033/*
163122b7
KT
7034 * detach_task() -- detach the task for the migration specified in env
7035 */
7036static void detach_task(struct task_struct *p, struct lb_env *env)
7037{
7038 lockdep_assert_held(&env->src_rq->lock);
7039
163122b7 7040 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7041 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7042 set_task_cpu(p, env->dst_cpu);
7043}
7044
897c395f 7045/*
e5673f28 7046 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7047 * part of active balancing operations within "domain".
897c395f 7048 *
e5673f28 7049 * Returns a task if successful and NULL otherwise.
897c395f 7050 */
e5673f28 7051static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7052{
93824900 7053 struct task_struct *p;
897c395f 7054
e5673f28
KT
7055 lockdep_assert_held(&env->src_rq->lock);
7056
93824900
UR
7057 list_for_each_entry_reverse(p,
7058 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7059 if (!can_migrate_task(p, env))
7060 continue;
897c395f 7061
163122b7 7062 detach_task(p, env);
e5673f28 7063
367456c7 7064 /*
e5673f28 7065 * Right now, this is only the second place where
163122b7 7066 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7067 * so we can safely collect stats here rather than
163122b7 7068 * inside detach_tasks().
367456c7 7069 */
ae92882e 7070 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7071 return p;
897c395f 7072 }
e5673f28 7073 return NULL;
897c395f
PZ
7074}
7075
eb95308e
PZ
7076static const unsigned int sched_nr_migrate_break = 32;
7077
5d6523eb 7078/*
163122b7
KT
7079 * detach_tasks() -- tries to detach up to imbalance weighted load from
7080 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7081 *
163122b7 7082 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7083 */
163122b7 7084static int detach_tasks(struct lb_env *env)
1e3c88bd 7085{
5d6523eb
PZ
7086 struct list_head *tasks = &env->src_rq->cfs_tasks;
7087 struct task_struct *p;
367456c7 7088 unsigned long load;
163122b7
KT
7089 int detached = 0;
7090
7091 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7092
bd939f45 7093 if (env->imbalance <= 0)
5d6523eb 7094 return 0;
1e3c88bd 7095
5d6523eb 7096 while (!list_empty(tasks)) {
985d3a4c
YD
7097 /*
7098 * We don't want to steal all, otherwise we may be treated likewise,
7099 * which could at worst lead to a livelock crash.
7100 */
7101 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7102 break;
7103
93824900 7104 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7105
367456c7
PZ
7106 env->loop++;
7107 /* We've more or less seen every task there is, call it quits */
5d6523eb 7108 if (env->loop > env->loop_max)
367456c7 7109 break;
5d6523eb
PZ
7110
7111 /* take a breather every nr_migrate tasks */
367456c7 7112 if (env->loop > env->loop_break) {
eb95308e 7113 env->loop_break += sched_nr_migrate_break;
8e45cb54 7114 env->flags |= LBF_NEED_BREAK;
ee00e66f 7115 break;
a195f004 7116 }
1e3c88bd 7117
d3198084 7118 if (!can_migrate_task(p, env))
367456c7
PZ
7119 goto next;
7120
7121 load = task_h_load(p);
5d6523eb 7122
eb95308e 7123 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7124 goto next;
7125
bd939f45 7126 if ((load / 2) > env->imbalance)
367456c7 7127 goto next;
1e3c88bd 7128
163122b7
KT
7129 detach_task(p, env);
7130 list_add(&p->se.group_node, &env->tasks);
7131
7132 detached++;
bd939f45 7133 env->imbalance -= load;
1e3c88bd
PZ
7134
7135#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7136 /*
7137 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7138 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7139 * the critical section.
7140 */
5d6523eb 7141 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7142 break;
1e3c88bd
PZ
7143#endif
7144
ee00e66f
PZ
7145 /*
7146 * We only want to steal up to the prescribed amount of
7147 * weighted load.
7148 */
bd939f45 7149 if (env->imbalance <= 0)
ee00e66f 7150 break;
367456c7
PZ
7151
7152 continue;
7153next:
93824900 7154 list_move(&p->se.group_node, tasks);
1e3c88bd 7155 }
5d6523eb 7156
1e3c88bd 7157 /*
163122b7
KT
7158 * Right now, this is one of only two places we collect this stat
7159 * so we can safely collect detach_one_task() stats here rather
7160 * than inside detach_one_task().
1e3c88bd 7161 */
ae92882e 7162 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7163
163122b7
KT
7164 return detached;
7165}
7166
7167/*
7168 * attach_task() -- attach the task detached by detach_task() to its new rq.
7169 */
7170static void attach_task(struct rq *rq, struct task_struct *p)
7171{
7172 lockdep_assert_held(&rq->lock);
7173
7174 BUG_ON(task_rq(p) != rq);
5704ac0a 7175 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7176 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7177 check_preempt_curr(rq, p, 0);
7178}
7179
7180/*
7181 * attach_one_task() -- attaches the task returned from detach_one_task() to
7182 * its new rq.
7183 */
7184static void attach_one_task(struct rq *rq, struct task_struct *p)
7185{
8a8c69c3
PZ
7186 struct rq_flags rf;
7187
7188 rq_lock(rq, &rf);
5704ac0a 7189 update_rq_clock(rq);
163122b7 7190 attach_task(rq, p);
8a8c69c3 7191 rq_unlock(rq, &rf);
163122b7
KT
7192}
7193
7194/*
7195 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7196 * new rq.
7197 */
7198static void attach_tasks(struct lb_env *env)
7199{
7200 struct list_head *tasks = &env->tasks;
7201 struct task_struct *p;
8a8c69c3 7202 struct rq_flags rf;
163122b7 7203
8a8c69c3 7204 rq_lock(env->dst_rq, &rf);
5704ac0a 7205 update_rq_clock(env->dst_rq);
163122b7
KT
7206
7207 while (!list_empty(tasks)) {
7208 p = list_first_entry(tasks, struct task_struct, se.group_node);
7209 list_del_init(&p->se.group_node);
1e3c88bd 7210
163122b7
KT
7211 attach_task(env->dst_rq, p);
7212 }
7213
8a8c69c3 7214 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7215}
7216
1936c53c
VG
7217static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7218{
7219 if (cfs_rq->avg.load_avg)
7220 return true;
7221
7222 if (cfs_rq->avg.util_avg)
7223 return true;
7224
7225 return false;
7226}
7227
91c27493 7228static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7229{
7230 if (READ_ONCE(rq->avg_rt.util_avg))
7231 return true;
7232
3727e0e1
VG
7233 if (READ_ONCE(rq->avg_dl.util_avg))
7234 return true;
7235
91c27493
VG
7236#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
7237 if (READ_ONCE(rq->avg_irq.util_avg))
7238 return true;
7239#endif
7240
371bf427
VG
7241 return false;
7242}
7243
1936c53c
VG
7244#ifdef CONFIG_FAIR_GROUP_SCHED
7245
a9e7f654
TH
7246static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7247{
7248 if (cfs_rq->load.weight)
7249 return false;
7250
7251 if (cfs_rq->avg.load_sum)
7252 return false;
7253
7254 if (cfs_rq->avg.util_sum)
7255 return false;
7256
1ea6c46a 7257 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7258 return false;
7259
7260 return true;
7261}
7262
48a16753 7263static void update_blocked_averages(int cpu)
9e3081ca 7264{
9e3081ca 7265 struct rq *rq = cpu_rq(cpu);
a9e7f654 7266 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7267 struct rq_flags rf;
f643ea22 7268 bool done = true;
9e3081ca 7269
8a8c69c3 7270 rq_lock_irqsave(rq, &rf);
48a16753 7271 update_rq_clock(rq);
9d89c257 7272
9763b67f
PZ
7273 /*
7274 * Iterates the task_group tree in a bottom up fashion, see
7275 * list_add_leaf_cfs_rq() for details.
7276 */
a9e7f654 7277 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7278 struct sched_entity *se;
7279
9d89c257
YD
7280 /* throttled entities do not contribute to load */
7281 if (throttled_hierarchy(cfs_rq))
7282 continue;
48a16753 7283
3a123bbb 7284 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7285 update_tg_load_avg(cfs_rq, 0);
4e516076 7286
bc427898
VG
7287 /* Propagate pending load changes to the parent, if any: */
7288 se = cfs_rq->tg->se[cpu];
7289 if (se && !skip_blocked_update(se))
88c0616e 7290 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7291
7292 /*
7293 * There can be a lot of idle CPU cgroups. Don't let fully
7294 * decayed cfs_rqs linger on the list.
7295 */
7296 if (cfs_rq_is_decayed(cfs_rq))
7297 list_del_leaf_cfs_rq(cfs_rq);
1936c53c
VG
7298
7299 /* Don't need periodic decay once load/util_avg are null */
7300 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7301 done = false;
9d89c257 7302 }
371bf427 7303 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
3727e0e1 7304 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
91c27493 7305 update_irq_load_avg(rq, 0);
371bf427 7306 /* Don't need periodic decay once load/util_avg are null */
91c27493 7307 if (others_have_blocked(rq))
371bf427 7308 done = false;
e022e0d3
PZ
7309
7310#ifdef CONFIG_NO_HZ_COMMON
7311 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7312 if (done)
7313 rq->has_blocked_load = 0;
e022e0d3 7314#endif
8a8c69c3 7315 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7316}
7317
9763b67f 7318/*
68520796 7319 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7320 * This needs to be done in a top-down fashion because the load of a child
7321 * group is a fraction of its parents load.
7322 */
68520796 7323static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7324{
68520796
VD
7325 struct rq *rq = rq_of(cfs_rq);
7326 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7327 unsigned long now = jiffies;
68520796 7328 unsigned long load;
a35b6466 7329
68520796 7330 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7331 return;
7332
68520796
VD
7333 cfs_rq->h_load_next = NULL;
7334 for_each_sched_entity(se) {
7335 cfs_rq = cfs_rq_of(se);
7336 cfs_rq->h_load_next = se;
7337 if (cfs_rq->last_h_load_update == now)
7338 break;
7339 }
a35b6466 7340
68520796 7341 if (!se) {
7ea241af 7342 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7343 cfs_rq->last_h_load_update = now;
7344 }
7345
7346 while ((se = cfs_rq->h_load_next) != NULL) {
7347 load = cfs_rq->h_load;
7ea241af
YD
7348 load = div64_ul(load * se->avg.load_avg,
7349 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7350 cfs_rq = group_cfs_rq(se);
7351 cfs_rq->h_load = load;
7352 cfs_rq->last_h_load_update = now;
7353 }
9763b67f
PZ
7354}
7355
367456c7 7356static unsigned long task_h_load(struct task_struct *p)
230059de 7357{
367456c7 7358 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7359
68520796 7360 update_cfs_rq_h_load(cfs_rq);
9d89c257 7361 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7362 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7363}
7364#else
48a16753 7365static inline void update_blocked_averages(int cpu)
9e3081ca 7366{
6c1d47c0
VG
7367 struct rq *rq = cpu_rq(cpu);
7368 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7369 struct rq_flags rf;
6c1d47c0 7370
8a8c69c3 7371 rq_lock_irqsave(rq, &rf);
6c1d47c0 7372 update_rq_clock(rq);
3a123bbb 7373 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
371bf427 7374 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
3727e0e1 7375 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
91c27493 7376 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7377#ifdef CONFIG_NO_HZ_COMMON
7378 rq->last_blocked_load_update_tick = jiffies;
91c27493 7379 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7380 rq->has_blocked_load = 0;
e022e0d3 7381#endif
8a8c69c3 7382 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7383}
7384
367456c7 7385static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7386{
9d89c257 7387 return p->se.avg.load_avg;
1e3c88bd 7388}
230059de 7389#endif
1e3c88bd 7390
1e3c88bd 7391/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7392
7393enum group_type {
7394 group_other = 0,
7395 group_imbalanced,
7396 group_overloaded,
7397};
7398
1e3c88bd
PZ
7399/*
7400 * sg_lb_stats - stats of a sched_group required for load_balancing
7401 */
7402struct sg_lb_stats {
7403 unsigned long avg_load; /*Avg load across the CPUs of the group */
7404 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7405 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7406 unsigned long load_per_task;
63b2ca30 7407 unsigned long group_capacity;
9e91d61d 7408 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7409 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7410 unsigned int idle_cpus;
7411 unsigned int group_weight;
caeb178c 7412 enum group_type group_type;
ea67821b 7413 int group_no_capacity;
0ec8aa00
PZ
7414#ifdef CONFIG_NUMA_BALANCING
7415 unsigned int nr_numa_running;
7416 unsigned int nr_preferred_running;
7417#endif
1e3c88bd
PZ
7418};
7419
56cf515b
JK
7420/*
7421 * sd_lb_stats - Structure to store the statistics of a sched_domain
7422 * during load balancing.
7423 */
7424struct sd_lb_stats {
7425 struct sched_group *busiest; /* Busiest group in this sd */
7426 struct sched_group *local; /* Local group in this sd */
90001d67 7427 unsigned long total_running;
56cf515b 7428 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7429 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7430 unsigned long avg_load; /* Average load across all groups in sd */
7431
56cf515b 7432 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7433 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7434};
7435
147c5fc2
PZ
7436static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7437{
7438 /*
7439 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7440 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7441 * We must however clear busiest_stat::avg_load because
7442 * update_sd_pick_busiest() reads this before assignment.
7443 */
7444 *sds = (struct sd_lb_stats){
7445 .busiest = NULL,
7446 .local = NULL,
90001d67 7447 .total_running = 0UL,
147c5fc2 7448 .total_load = 0UL,
63b2ca30 7449 .total_capacity = 0UL,
147c5fc2
PZ
7450 .busiest_stat = {
7451 .avg_load = 0UL,
caeb178c
RR
7452 .sum_nr_running = 0,
7453 .group_type = group_other,
147c5fc2
PZ
7454 },
7455 };
7456}
7457
1e3c88bd
PZ
7458/**
7459 * get_sd_load_idx - Obtain the load index for a given sched domain.
7460 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7461 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7462 *
7463 * Return: The load index.
1e3c88bd
PZ
7464 */
7465static inline int get_sd_load_idx(struct sched_domain *sd,
7466 enum cpu_idle_type idle)
7467{
7468 int load_idx;
7469
7470 switch (idle) {
7471 case CPU_NOT_IDLE:
7472 load_idx = sd->busy_idx;
7473 break;
7474
7475 case CPU_NEWLY_IDLE:
7476 load_idx = sd->newidle_idx;
7477 break;
7478 default:
7479 load_idx = sd->idle_idx;
7480 break;
7481 }
7482
7483 return load_idx;
7484}
7485
ced549fa 7486static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7487{
7488 struct rq *rq = cpu_rq(cpu);
523e979d
VG
7489 unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
7490 unsigned long used, free;
523e979d 7491 unsigned long irq;
b654f7de 7492
2e62c474 7493 irq = cpu_util_irq(rq);
cadefd3d 7494
523e979d
VG
7495 if (unlikely(irq >= max))
7496 return 1;
aa483808 7497
523e979d
VG
7498 used = READ_ONCE(rq->avg_rt.util_avg);
7499 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7500
523e979d
VG
7501 if (unlikely(used >= max))
7502 return 1;
1e3c88bd 7503
523e979d 7504 free = max - used;
2e62c474
VG
7505
7506 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7507}
7508
ced549fa 7509static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7510{
523e979d 7511 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
7512 struct sched_group *sdg = sd->groups;
7513
523e979d 7514 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7515
ced549fa
NP
7516 if (!capacity)
7517 capacity = 1;
1e3c88bd 7518
ced549fa
NP
7519 cpu_rq(cpu)->cpu_capacity = capacity;
7520 sdg->sgc->capacity = capacity;
bf475ce0 7521 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7522}
7523
63b2ca30 7524void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7525{
7526 struct sched_domain *child = sd->child;
7527 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7528 unsigned long capacity, min_capacity;
4ec4412e
VG
7529 unsigned long interval;
7530
7531 interval = msecs_to_jiffies(sd->balance_interval);
7532 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7533 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7534
7535 if (!child) {
ced549fa 7536 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7537 return;
7538 }
7539
dc7ff76e 7540 capacity = 0;
bf475ce0 7541 min_capacity = ULONG_MAX;
1e3c88bd 7542
74a5ce20
PZ
7543 if (child->flags & SD_OVERLAP) {
7544 /*
7545 * SD_OVERLAP domains cannot assume that child groups
7546 * span the current group.
7547 */
7548
ae4df9d6 7549 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7550 struct sched_group_capacity *sgc;
9abf24d4 7551 struct rq *rq = cpu_rq(cpu);
863bffc8 7552
9abf24d4 7553 /*
63b2ca30 7554 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7555 * gets here before we've attached the domains to the
7556 * runqueues.
7557 *
ced549fa
NP
7558 * Use capacity_of(), which is set irrespective of domains
7559 * in update_cpu_capacity().
9abf24d4 7560 *
dc7ff76e 7561 * This avoids capacity from being 0 and
9abf24d4 7562 * causing divide-by-zero issues on boot.
9abf24d4
SD
7563 */
7564 if (unlikely(!rq->sd)) {
ced549fa 7565 capacity += capacity_of(cpu);
bf475ce0
MR
7566 } else {
7567 sgc = rq->sd->groups->sgc;
7568 capacity += sgc->capacity;
9abf24d4 7569 }
863bffc8 7570
bf475ce0 7571 min_capacity = min(capacity, min_capacity);
863bffc8 7572 }
74a5ce20
PZ
7573 } else {
7574 /*
7575 * !SD_OVERLAP domains can assume that child groups
7576 * span the current group.
97a7142f 7577 */
74a5ce20
PZ
7578
7579 group = child->groups;
7580 do {
bf475ce0
MR
7581 struct sched_group_capacity *sgc = group->sgc;
7582
7583 capacity += sgc->capacity;
7584 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7585 group = group->next;
7586 } while (group != child->groups);
7587 }
1e3c88bd 7588
63b2ca30 7589 sdg->sgc->capacity = capacity;
bf475ce0 7590 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7591}
7592
9d5efe05 7593/*
ea67821b
VG
7594 * Check whether the capacity of the rq has been noticeably reduced by side
7595 * activity. The imbalance_pct is used for the threshold.
7596 * Return true is the capacity is reduced
9d5efe05
SV
7597 */
7598static inline int
ea67821b 7599check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7600{
ea67821b
VG
7601 return ((rq->cpu_capacity * sd->imbalance_pct) <
7602 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7603}
7604
30ce5dab
PZ
7605/*
7606 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7607 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 7608 *
97fb7a0a
IM
7609 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7610 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7611 * Something like:
7612 *
2b4d5b25
IM
7613 * { 0 1 2 3 } { 4 5 6 7 }
7614 * * * * *
30ce5dab
PZ
7615 *
7616 * If we were to balance group-wise we'd place two tasks in the first group and
7617 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7618 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7619 *
7620 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7621 * by noticing the lower domain failed to reach balance and had difficulty
7622 * moving tasks due to affinity constraints.
30ce5dab
PZ
7623 *
7624 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7625 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7626 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7627 * to create an effective group imbalance.
7628 *
7629 * This is a somewhat tricky proposition since the next run might not find the
7630 * group imbalance and decide the groups need to be balanced again. A most
7631 * subtle and fragile situation.
7632 */
7633
6263322c 7634static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7635{
63b2ca30 7636 return group->sgc->imbalance;
30ce5dab
PZ
7637}
7638
b37d9316 7639/*
ea67821b
VG
7640 * group_has_capacity returns true if the group has spare capacity that could
7641 * be used by some tasks.
7642 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7643 * smaller than the number of CPUs or if the utilization is lower than the
7644 * available capacity for CFS tasks.
ea67821b
VG
7645 * For the latter, we use a threshold to stabilize the state, to take into
7646 * account the variance of the tasks' load and to return true if the available
7647 * capacity in meaningful for the load balancer.
7648 * As an example, an available capacity of 1% can appear but it doesn't make
7649 * any benefit for the load balance.
b37d9316 7650 */
ea67821b
VG
7651static inline bool
7652group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7653{
ea67821b
VG
7654 if (sgs->sum_nr_running < sgs->group_weight)
7655 return true;
c61037e9 7656
ea67821b 7657 if ((sgs->group_capacity * 100) >
9e91d61d 7658 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7659 return true;
b37d9316 7660
ea67821b
VG
7661 return false;
7662}
7663
7664/*
7665 * group_is_overloaded returns true if the group has more tasks than it can
7666 * handle.
7667 * group_is_overloaded is not equals to !group_has_capacity because a group
7668 * with the exact right number of tasks, has no more spare capacity but is not
7669 * overloaded so both group_has_capacity and group_is_overloaded return
7670 * false.
7671 */
7672static inline bool
7673group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7674{
7675 if (sgs->sum_nr_running <= sgs->group_weight)
7676 return false;
b37d9316 7677
ea67821b 7678 if ((sgs->group_capacity * 100) <
9e91d61d 7679 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7680 return true;
b37d9316 7681
ea67821b 7682 return false;
b37d9316
PZ
7683}
7684
9e0994c0
MR
7685/*
7686 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7687 * per-CPU capacity than sched_group ref.
7688 */
7689static inline bool
7690group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7691{
7692 return sg->sgc->min_capacity * capacity_margin <
7693 ref->sgc->min_capacity * 1024;
7694}
7695
79a89f92
LY
7696static inline enum
7697group_type group_classify(struct sched_group *group,
7698 struct sg_lb_stats *sgs)
caeb178c 7699{
ea67821b 7700 if (sgs->group_no_capacity)
caeb178c
RR
7701 return group_overloaded;
7702
7703 if (sg_imbalanced(group))
7704 return group_imbalanced;
7705
7706 return group_other;
7707}
7708
63928384 7709static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7710{
7711#ifdef CONFIG_NO_HZ_COMMON
7712 unsigned int cpu = rq->cpu;
7713
f643ea22
VG
7714 if (!rq->has_blocked_load)
7715 return false;
7716
e022e0d3 7717 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7718 return false;
e022e0d3 7719
63928384 7720 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7721 return true;
e022e0d3
PZ
7722
7723 update_blocked_averages(cpu);
f643ea22
VG
7724
7725 return rq->has_blocked_load;
7726#else
7727 return false;
e022e0d3
PZ
7728#endif
7729}
7730
1e3c88bd
PZ
7731/**
7732 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7733 * @env: The load balancing environment.
1e3c88bd 7734 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7735 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7736 * @local_group: Does group contain this_cpu.
1e3c88bd 7737 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7738 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7739 */
bd939f45
PZ
7740static inline void update_sg_lb_stats(struct lb_env *env,
7741 struct sched_group *group, int load_idx,
4486edd1
TC
7742 int local_group, struct sg_lb_stats *sgs,
7743 bool *overload)
1e3c88bd 7744{
30ce5dab 7745 unsigned long load;
a426f99c 7746 int i, nr_running;
1e3c88bd 7747
b72ff13c
PZ
7748 memset(sgs, 0, sizeof(*sgs));
7749
ae4df9d6 7750 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7751 struct rq *rq = cpu_rq(i);
7752
63928384 7753 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 7754 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 7755
97fb7a0a 7756 /* Bias balancing toward CPUs of our domain: */
6263322c 7757 if (local_group)
04f733b4 7758 load = target_load(i, load_idx);
6263322c 7759 else
1e3c88bd 7760 load = source_load(i, load_idx);
1e3c88bd
PZ
7761
7762 sgs->group_load += load;
9e91d61d 7763 sgs->group_util += cpu_util(i);
65fdac08 7764 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7765
a426f99c
WL
7766 nr_running = rq->nr_running;
7767 if (nr_running > 1)
4486edd1
TC
7768 *overload = true;
7769
0ec8aa00
PZ
7770#ifdef CONFIG_NUMA_BALANCING
7771 sgs->nr_numa_running += rq->nr_numa_running;
7772 sgs->nr_preferred_running += rq->nr_preferred_running;
7773#endif
c7132dd6 7774 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7775 /*
7776 * No need to call idle_cpu() if nr_running is not 0
7777 */
7778 if (!nr_running && idle_cpu(i))
aae6d3dd 7779 sgs->idle_cpus++;
1e3c88bd
PZ
7780 }
7781
63b2ca30
NP
7782 /* Adjust by relative CPU capacity of the group */
7783 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7784 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7785
dd5feea1 7786 if (sgs->sum_nr_running)
38d0f770 7787 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7788
aae6d3dd 7789 sgs->group_weight = group->group_weight;
b37d9316 7790
ea67821b 7791 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7792 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7793}
7794
532cb4c4
MN
7795/**
7796 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7797 * @env: The load balancing environment.
532cb4c4
MN
7798 * @sds: sched_domain statistics
7799 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7800 * @sgs: sched_group statistics
532cb4c4
MN
7801 *
7802 * Determine if @sg is a busier group than the previously selected
7803 * busiest group.
e69f6186
YB
7804 *
7805 * Return: %true if @sg is a busier group than the previously selected
7806 * busiest group. %false otherwise.
532cb4c4 7807 */
bd939f45 7808static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7809 struct sd_lb_stats *sds,
7810 struct sched_group *sg,
bd939f45 7811 struct sg_lb_stats *sgs)
532cb4c4 7812{
caeb178c 7813 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7814
caeb178c 7815 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7816 return true;
7817
caeb178c
RR
7818 if (sgs->group_type < busiest->group_type)
7819 return false;
7820
7821 if (sgs->avg_load <= busiest->avg_load)
7822 return false;
7823
9e0994c0
MR
7824 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7825 goto asym_packing;
7826
7827 /*
7828 * Candidate sg has no more than one task per CPU and
7829 * has higher per-CPU capacity. Migrating tasks to less
7830 * capable CPUs may harm throughput. Maximize throughput,
7831 * power/energy consequences are not considered.
7832 */
7833 if (sgs->sum_nr_running <= sgs->group_weight &&
7834 group_smaller_cpu_capacity(sds->local, sg))
7835 return false;
7836
7837asym_packing:
caeb178c
RR
7838 /* This is the busiest node in its class. */
7839 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7840 return true;
7841
97fb7a0a 7842 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
7843 if (env->idle == CPU_NOT_IDLE)
7844 return true;
532cb4c4 7845 /*
afe06efd
TC
7846 * ASYM_PACKING needs to move all the work to the highest
7847 * prority CPUs in the group, therefore mark all groups
7848 * of lower priority than ourself as busy.
532cb4c4 7849 */
afe06efd
TC
7850 if (sgs->sum_nr_running &&
7851 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7852 if (!sds->busiest)
7853 return true;
7854
97fb7a0a 7855 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
7856 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7857 sg->asym_prefer_cpu))
532cb4c4
MN
7858 return true;
7859 }
7860
7861 return false;
7862}
7863
0ec8aa00
PZ
7864#ifdef CONFIG_NUMA_BALANCING
7865static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7866{
7867 if (sgs->sum_nr_running > sgs->nr_numa_running)
7868 return regular;
7869 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7870 return remote;
7871 return all;
7872}
7873
7874static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7875{
7876 if (rq->nr_running > rq->nr_numa_running)
7877 return regular;
7878 if (rq->nr_running > rq->nr_preferred_running)
7879 return remote;
7880 return all;
7881}
7882#else
7883static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7884{
7885 return all;
7886}
7887
7888static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7889{
7890 return regular;
7891}
7892#endif /* CONFIG_NUMA_BALANCING */
7893
1e3c88bd 7894/**
461819ac 7895 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7896 * @env: The load balancing environment.
1e3c88bd
PZ
7897 * @sds: variable to hold the statistics for this sched_domain.
7898 */
0ec8aa00 7899static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7900{
bd939f45
PZ
7901 struct sched_domain *child = env->sd->child;
7902 struct sched_group *sg = env->sd->groups;
05b40e05 7903 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7904 struct sg_lb_stats tmp_sgs;
1e3c88bd 7905 int load_idx, prefer_sibling = 0;
4486edd1 7906 bool overload = false;
1e3c88bd
PZ
7907
7908 if (child && child->flags & SD_PREFER_SIBLING)
7909 prefer_sibling = 1;
7910
e022e0d3 7911#ifdef CONFIG_NO_HZ_COMMON
f643ea22 7912 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 7913 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
7914#endif
7915
bd939f45 7916 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7917
7918 do {
56cf515b 7919 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7920 int local_group;
7921
ae4df9d6 7922 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7923 if (local_group) {
7924 sds->local = sg;
05b40e05 7925 sgs = local;
b72ff13c
PZ
7926
7927 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7928 time_after_eq(jiffies, sg->sgc->next_update))
7929 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7930 }
1e3c88bd 7931
4486edd1
TC
7932 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7933 &overload);
1e3c88bd 7934
b72ff13c
PZ
7935 if (local_group)
7936 goto next_group;
7937
1e3c88bd
PZ
7938 /*
7939 * In case the child domain prefers tasks go to siblings
ea67821b 7940 * first, lower the sg capacity so that we'll try
75dd321d
NR
7941 * and move all the excess tasks away. We lower the capacity
7942 * of a group only if the local group has the capacity to fit
ea67821b
VG
7943 * these excess tasks. The extra check prevents the case where
7944 * you always pull from the heaviest group when it is already
7945 * under-utilized (possible with a large weight task outweighs
7946 * the tasks on the system).
1e3c88bd 7947 */
b72ff13c 7948 if (prefer_sibling && sds->local &&
05b40e05
SD
7949 group_has_capacity(env, local) &&
7950 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7951 sgs->group_no_capacity = 1;
79a89f92 7952 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7953 }
1e3c88bd 7954
b72ff13c 7955 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7956 sds->busiest = sg;
56cf515b 7957 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7958 }
7959
b72ff13c
PZ
7960next_group:
7961 /* Now, start updating sd_lb_stats */
90001d67 7962 sds->total_running += sgs->sum_nr_running;
b72ff13c 7963 sds->total_load += sgs->group_load;
63b2ca30 7964 sds->total_capacity += sgs->group_capacity;
b72ff13c 7965
532cb4c4 7966 sg = sg->next;
bd939f45 7967 } while (sg != env->sd->groups);
0ec8aa00 7968
f643ea22
VG
7969#ifdef CONFIG_NO_HZ_COMMON
7970 if ((env->flags & LBF_NOHZ_AGAIN) &&
7971 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
7972
7973 WRITE_ONCE(nohz.next_blocked,
7974 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
7975 }
7976#endif
7977
0ec8aa00
PZ
7978 if (env->sd->flags & SD_NUMA)
7979 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7980
7981 if (!env->sd->parent) {
7982 /* update overload indicator if we are at root domain */
7983 if (env->dst_rq->rd->overload != overload)
7984 env->dst_rq->rd->overload = overload;
7985 }
532cb4c4
MN
7986}
7987
532cb4c4
MN
7988/**
7989 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7990 * sched domain.
532cb4c4
MN
7991 *
7992 * This is primarily intended to used at the sibling level. Some
7993 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7994 * case of POWER7, it can move to lower SMT modes only when higher
7995 * threads are idle. When in lower SMT modes, the threads will
7996 * perform better since they share less core resources. Hence when we
7997 * have idle threads, we want them to be the higher ones.
7998 *
7999 * This packing function is run on idle threads. It checks to see if
8000 * the busiest CPU in this domain (core in the P7 case) has a higher
8001 * CPU number than the packing function is being run on. Here we are
8002 * assuming lower CPU number will be equivalent to lower a SMT thread
8003 * number.
8004 *
e69f6186 8005 * Return: 1 when packing is required and a task should be moved to
46123355 8006 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8007 *
cd96891d 8008 * @env: The load balancing environment.
532cb4c4 8009 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8010 */
bd939f45 8011static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8012{
8013 int busiest_cpu;
8014
bd939f45 8015 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8016 return 0;
8017
1f621e02
SD
8018 if (env->idle == CPU_NOT_IDLE)
8019 return 0;
8020
532cb4c4
MN
8021 if (!sds->busiest)
8022 return 0;
8023
afe06efd
TC
8024 busiest_cpu = sds->busiest->asym_prefer_cpu;
8025 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8026 return 0;
8027
bd939f45 8028 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 8029 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 8030 SCHED_CAPACITY_SCALE);
bd939f45 8031
532cb4c4 8032 return 1;
1e3c88bd
PZ
8033}
8034
8035/**
8036 * fix_small_imbalance - Calculate the minor imbalance that exists
8037 * amongst the groups of a sched_domain, during
8038 * load balancing.
cd96891d 8039 * @env: The load balancing environment.
1e3c88bd 8040 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8041 */
bd939f45
PZ
8042static inline
8043void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8044{
63b2ca30 8045 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8046 unsigned int imbn = 2;
dd5feea1 8047 unsigned long scaled_busy_load_per_task;
56cf515b 8048 struct sg_lb_stats *local, *busiest;
1e3c88bd 8049
56cf515b
JK
8050 local = &sds->local_stat;
8051 busiest = &sds->busiest_stat;
1e3c88bd 8052
56cf515b
JK
8053 if (!local->sum_nr_running)
8054 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8055 else if (busiest->load_per_task > local->load_per_task)
8056 imbn = 1;
dd5feea1 8057
56cf515b 8058 scaled_busy_load_per_task =
ca8ce3d0 8059 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8060 busiest->group_capacity;
56cf515b 8061
3029ede3
VD
8062 if (busiest->avg_load + scaled_busy_load_per_task >=
8063 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8064 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8065 return;
8066 }
8067
8068 /*
8069 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8070 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8071 * moving them.
8072 */
8073
63b2ca30 8074 capa_now += busiest->group_capacity *
56cf515b 8075 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8076 capa_now += local->group_capacity *
56cf515b 8077 min(local->load_per_task, local->avg_load);
ca8ce3d0 8078 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8079
8080 /* Amount of load we'd subtract */
a2cd4260 8081 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8082 capa_move += busiest->group_capacity *
56cf515b 8083 min(busiest->load_per_task,
a2cd4260 8084 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8085 }
1e3c88bd
PZ
8086
8087 /* Amount of load we'd add */
63b2ca30 8088 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8089 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8090 tmp = (busiest->avg_load * busiest->group_capacity) /
8091 local->group_capacity;
56cf515b 8092 } else {
ca8ce3d0 8093 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8094 local->group_capacity;
56cf515b 8095 }
63b2ca30 8096 capa_move += local->group_capacity *
3ae11c90 8097 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8098 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8099
8100 /* Move if we gain throughput */
63b2ca30 8101 if (capa_move > capa_now)
56cf515b 8102 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8103}
8104
8105/**
8106 * calculate_imbalance - Calculate the amount of imbalance present within the
8107 * groups of a given sched_domain during load balance.
bd939f45 8108 * @env: load balance environment
1e3c88bd 8109 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8110 */
bd939f45 8111static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8112{
dd5feea1 8113 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8114 struct sg_lb_stats *local, *busiest;
8115
8116 local = &sds->local_stat;
56cf515b 8117 busiest = &sds->busiest_stat;
dd5feea1 8118
caeb178c 8119 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8120 /*
8121 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8122 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8123 */
56cf515b
JK
8124 busiest->load_per_task =
8125 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8126 }
8127
1e3c88bd 8128 /*
885e542c
DE
8129 * Avg load of busiest sg can be less and avg load of local sg can
8130 * be greater than avg load across all sgs of sd because avg load
8131 * factors in sg capacity and sgs with smaller group_type are
8132 * skipped when updating the busiest sg:
1e3c88bd 8133 */
b1885550
VD
8134 if (busiest->avg_load <= sds->avg_load ||
8135 local->avg_load >= sds->avg_load) {
bd939f45
PZ
8136 env->imbalance = 0;
8137 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8138 }
8139
9a5d9ba6 8140 /*
97fb7a0a 8141 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8142 */
8143 if (busiest->group_type == group_overloaded &&
8144 local->group_type == group_overloaded) {
1be0eb2a 8145 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8146 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8147 load_above_capacity -= busiest->group_capacity;
26656215 8148 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8149 load_above_capacity /= busiest->group_capacity;
8150 } else
ea67821b 8151 load_above_capacity = ~0UL;
dd5feea1
SS
8152 }
8153
8154 /*
97fb7a0a 8155 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8156 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8157 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8158 * we also don't want to reduce the group load below the group
8159 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8160 */
30ce5dab 8161 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8162
8163 /* How much load to actually move to equalise the imbalance */
56cf515b 8164 env->imbalance = min(
63b2ca30
NP
8165 max_pull * busiest->group_capacity,
8166 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8167 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8168
8169 /*
8170 * if *imbalance is less than the average load per runnable task
25985edc 8171 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8172 * a think about bumping its value to force at least one task to be
8173 * moved
8174 */
56cf515b 8175 if (env->imbalance < busiest->load_per_task)
bd939f45 8176 return fix_small_imbalance(env, sds);
1e3c88bd 8177}
fab47622 8178
1e3c88bd
PZ
8179/******* find_busiest_group() helpers end here *********************/
8180
8181/**
8182 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8183 * if there is an imbalance.
1e3c88bd
PZ
8184 *
8185 * Also calculates the amount of weighted load which should be moved
8186 * to restore balance.
8187 *
cd96891d 8188 * @env: The load balancing environment.
1e3c88bd 8189 *
e69f6186 8190 * Return: - The busiest group if imbalance exists.
1e3c88bd 8191 */
56cf515b 8192static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8193{
56cf515b 8194 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8195 struct sd_lb_stats sds;
8196
147c5fc2 8197 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8198
8199 /*
8200 * Compute the various statistics relavent for load balancing at
8201 * this level.
8202 */
23f0d209 8203 update_sd_lb_stats(env, &sds);
56cf515b
JK
8204 local = &sds.local_stat;
8205 busiest = &sds.busiest_stat;
1e3c88bd 8206
ea67821b 8207 /* ASYM feature bypasses nice load balance check */
1f621e02 8208 if (check_asym_packing(env, &sds))
532cb4c4
MN
8209 return sds.busiest;
8210
cc57aa8f 8211 /* There is no busy sibling group to pull tasks from */
56cf515b 8212 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8213 goto out_balanced;
8214
90001d67 8215 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8216 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8217 / sds.total_capacity;
b0432d8f 8218
866ab43e
PZ
8219 /*
8220 * If the busiest group is imbalanced the below checks don't
30ce5dab 8221 * work because they assume all things are equal, which typically
866ab43e
PZ
8222 * isn't true due to cpus_allowed constraints and the like.
8223 */
caeb178c 8224 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8225 goto force_balance;
8226
583ffd99
BJ
8227 /*
8228 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8229 * capacities from resulting in underutilization due to avg_load.
8230 */
8231 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8232 busiest->group_no_capacity)
fab47622
NR
8233 goto force_balance;
8234
cc57aa8f 8235 /*
9c58c79a 8236 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8237 * don't try and pull any tasks.
8238 */
56cf515b 8239 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8240 goto out_balanced;
8241
cc57aa8f
PZ
8242 /*
8243 * Don't pull any tasks if this group is already above the domain
8244 * average load.
8245 */
56cf515b 8246 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8247 goto out_balanced;
8248
bd939f45 8249 if (env->idle == CPU_IDLE) {
aae6d3dd 8250 /*
97fb7a0a 8251 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8252 * and there is no imbalance between this and busiest group
97fb7a0a 8253 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8254 * significant if the diff is greater than 1 otherwise we
8255 * might end up to just move the imbalance on another group
aae6d3dd 8256 */
43f4d666
VG
8257 if ((busiest->group_type != group_overloaded) &&
8258 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8259 goto out_balanced;
c186fafe
PZ
8260 } else {
8261 /*
8262 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8263 * imbalance_pct to be conservative.
8264 */
56cf515b
JK
8265 if (100 * busiest->avg_load <=
8266 env->sd->imbalance_pct * local->avg_load)
c186fafe 8267 goto out_balanced;
aae6d3dd 8268 }
1e3c88bd 8269
fab47622 8270force_balance:
1e3c88bd 8271 /* Looks like there is an imbalance. Compute it */
bd939f45 8272 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8273 return sds.busiest;
8274
8275out_balanced:
bd939f45 8276 env->imbalance = 0;
1e3c88bd
PZ
8277 return NULL;
8278}
8279
8280/*
97fb7a0a 8281 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8282 */
bd939f45 8283static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8284 struct sched_group *group)
1e3c88bd
PZ
8285{
8286 struct rq *busiest = NULL, *rq;
ced549fa 8287 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8288 int i;
8289
ae4df9d6 8290 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8291 unsigned long capacity, wl;
0ec8aa00
PZ
8292 enum fbq_type rt;
8293
8294 rq = cpu_rq(i);
8295 rt = fbq_classify_rq(rq);
1e3c88bd 8296
0ec8aa00
PZ
8297 /*
8298 * We classify groups/runqueues into three groups:
8299 * - regular: there are !numa tasks
8300 * - remote: there are numa tasks that run on the 'wrong' node
8301 * - all: there is no distinction
8302 *
8303 * In order to avoid migrating ideally placed numa tasks,
8304 * ignore those when there's better options.
8305 *
8306 * If we ignore the actual busiest queue to migrate another
8307 * task, the next balance pass can still reduce the busiest
8308 * queue by moving tasks around inside the node.
8309 *
8310 * If we cannot move enough load due to this classification
8311 * the next pass will adjust the group classification and
8312 * allow migration of more tasks.
8313 *
8314 * Both cases only affect the total convergence complexity.
8315 */
8316 if (rt > env->fbq_type)
8317 continue;
8318
ced549fa 8319 capacity = capacity_of(i);
9d5efe05 8320
c7132dd6 8321 wl = weighted_cpuload(rq);
1e3c88bd 8322
6e40f5bb
TG
8323 /*
8324 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8325 * which is not scaled with the CPU capacity.
6e40f5bb 8326 */
ea67821b
VG
8327
8328 if (rq->nr_running == 1 && wl > env->imbalance &&
8329 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8330 continue;
8331
6e40f5bb 8332 /*
97fb7a0a
IM
8333 * For the load comparisons with the other CPU's, consider
8334 * the weighted_cpuload() scaled with the CPU capacity, so
8335 * that the load can be moved away from the CPU that is
ced549fa 8336 * potentially running at a lower capacity.
95a79b80 8337 *
ced549fa 8338 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8339 * multiplication to rid ourselves of the division works out
ced549fa
NP
8340 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8341 * our previous maximum.
6e40f5bb 8342 */
ced549fa 8343 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8344 busiest_load = wl;
ced549fa 8345 busiest_capacity = capacity;
1e3c88bd
PZ
8346 busiest = rq;
8347 }
8348 }
8349
8350 return busiest;
8351}
8352
8353/*
8354 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8355 * so long as it is large enough.
8356 */
8357#define MAX_PINNED_INTERVAL 512
8358
bd939f45 8359static int need_active_balance(struct lb_env *env)
1af3ed3d 8360{
bd939f45
PZ
8361 struct sched_domain *sd = env->sd;
8362
8363 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8364
8365 /*
8366 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8367 * lower priority CPUs in order to pack all tasks in the
8368 * highest priority CPUs.
532cb4c4 8369 */
afe06efd
TC
8370 if ((sd->flags & SD_ASYM_PACKING) &&
8371 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8372 return 1;
1af3ed3d
PZ
8373 }
8374
1aaf90a4
VG
8375 /*
8376 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8377 * It's worth migrating the task if the src_cpu's capacity is reduced
8378 * because of other sched_class or IRQs if more capacity stays
8379 * available on dst_cpu.
8380 */
8381 if ((env->idle != CPU_NOT_IDLE) &&
8382 (env->src_rq->cfs.h_nr_running == 1)) {
8383 if ((check_cpu_capacity(env->src_rq, sd)) &&
8384 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8385 return 1;
8386 }
8387
1af3ed3d
PZ
8388 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8389}
8390
969c7921
TH
8391static int active_load_balance_cpu_stop(void *data);
8392
23f0d209
JK
8393static int should_we_balance(struct lb_env *env)
8394{
8395 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8396 int cpu, balance_cpu = -1;
8397
024c9d2f
PZ
8398 /*
8399 * Ensure the balancing environment is consistent; can happen
8400 * when the softirq triggers 'during' hotplug.
8401 */
8402 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8403 return 0;
8404
23f0d209 8405 /*
97fb7a0a 8406 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8407 * to do the newly idle load balance.
8408 */
8409 if (env->idle == CPU_NEWLY_IDLE)
8410 return 1;
8411
97fb7a0a 8412 /* Try to find first idle CPU */
e5c14b1f 8413 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8414 if (!idle_cpu(cpu))
23f0d209
JK
8415 continue;
8416
8417 balance_cpu = cpu;
8418 break;
8419 }
8420
8421 if (balance_cpu == -1)
8422 balance_cpu = group_balance_cpu(sg);
8423
8424 /*
97fb7a0a 8425 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8426 * is eligible for doing load balancing at this and above domains.
8427 */
b0cff9d8 8428 return balance_cpu == env->dst_cpu;
23f0d209
JK
8429}
8430
1e3c88bd
PZ
8431/*
8432 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8433 * tasks if there is an imbalance.
8434 */
8435static int load_balance(int this_cpu, struct rq *this_rq,
8436 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8437 int *continue_balancing)
1e3c88bd 8438{
88b8dac0 8439 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8440 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8441 struct sched_group *group;
1e3c88bd 8442 struct rq *busiest;
8a8c69c3 8443 struct rq_flags rf;
4ba29684 8444 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8445
8e45cb54
PZ
8446 struct lb_env env = {
8447 .sd = sd,
ddcdf6e7
PZ
8448 .dst_cpu = this_cpu,
8449 .dst_rq = this_rq,
ae4df9d6 8450 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8451 .idle = idle,
eb95308e 8452 .loop_break = sched_nr_migrate_break,
b9403130 8453 .cpus = cpus,
0ec8aa00 8454 .fbq_type = all,
163122b7 8455 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8456 };
8457
65a4433a 8458 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8459
ae92882e 8460 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8461
8462redo:
23f0d209
JK
8463 if (!should_we_balance(&env)) {
8464 *continue_balancing = 0;
1e3c88bd 8465 goto out_balanced;
23f0d209 8466 }
1e3c88bd 8467
23f0d209 8468 group = find_busiest_group(&env);
1e3c88bd 8469 if (!group) {
ae92882e 8470 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8471 goto out_balanced;
8472 }
8473
b9403130 8474 busiest = find_busiest_queue(&env, group);
1e3c88bd 8475 if (!busiest) {
ae92882e 8476 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8477 goto out_balanced;
8478 }
8479
78feefc5 8480 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8481
ae92882e 8482 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8483
1aaf90a4
VG
8484 env.src_cpu = busiest->cpu;
8485 env.src_rq = busiest;
8486
1e3c88bd
PZ
8487 ld_moved = 0;
8488 if (busiest->nr_running > 1) {
8489 /*
8490 * Attempt to move tasks. If find_busiest_group has found
8491 * an imbalance but busiest->nr_running <= 1, the group is
8492 * still unbalanced. ld_moved simply stays zero, so it is
8493 * correctly treated as an imbalance.
8494 */
8e45cb54 8495 env.flags |= LBF_ALL_PINNED;
c82513e5 8496 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8497
5d6523eb 8498more_balance:
8a8c69c3 8499 rq_lock_irqsave(busiest, &rf);
3bed5e21 8500 update_rq_clock(busiest);
88b8dac0
SV
8501
8502 /*
8503 * cur_ld_moved - load moved in current iteration
8504 * ld_moved - cumulative load moved across iterations
8505 */
163122b7 8506 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8507
8508 /*
163122b7
KT
8509 * We've detached some tasks from busiest_rq. Every
8510 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8511 * unlock busiest->lock, and we are able to be sure
8512 * that nobody can manipulate the tasks in parallel.
8513 * See task_rq_lock() family for the details.
1e3c88bd 8514 */
163122b7 8515
8a8c69c3 8516 rq_unlock(busiest, &rf);
163122b7
KT
8517
8518 if (cur_ld_moved) {
8519 attach_tasks(&env);
8520 ld_moved += cur_ld_moved;
8521 }
8522
8a8c69c3 8523 local_irq_restore(rf.flags);
88b8dac0 8524
f1cd0858
JK
8525 if (env.flags & LBF_NEED_BREAK) {
8526 env.flags &= ~LBF_NEED_BREAK;
8527 goto more_balance;
8528 }
8529
88b8dac0
SV
8530 /*
8531 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8532 * us and move them to an alternate dst_cpu in our sched_group
8533 * where they can run. The upper limit on how many times we
97fb7a0a 8534 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8535 * sched_group.
8536 *
8537 * This changes load balance semantics a bit on who can move
8538 * load to a given_cpu. In addition to the given_cpu itself
8539 * (or a ilb_cpu acting on its behalf where given_cpu is
8540 * nohz-idle), we now have balance_cpu in a position to move
8541 * load to given_cpu. In rare situations, this may cause
8542 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8543 * _independently_ and at _same_ time to move some load to
8544 * given_cpu) causing exceess load to be moved to given_cpu.
8545 * This however should not happen so much in practice and
8546 * moreover subsequent load balance cycles should correct the
8547 * excess load moved.
8548 */
6263322c 8549 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8550
97fb7a0a 8551 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
8552 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8553
78feefc5 8554 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8555 env.dst_cpu = env.new_dst_cpu;
6263322c 8556 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8557 env.loop = 0;
8558 env.loop_break = sched_nr_migrate_break;
e02e60c1 8559
88b8dac0
SV
8560 /*
8561 * Go back to "more_balance" rather than "redo" since we
8562 * need to continue with same src_cpu.
8563 */
8564 goto more_balance;
8565 }
1e3c88bd 8566
6263322c
PZ
8567 /*
8568 * We failed to reach balance because of affinity.
8569 */
8570 if (sd_parent) {
63b2ca30 8571 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8572
afdeee05 8573 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8574 *group_imbalance = 1;
6263322c
PZ
8575 }
8576
1e3c88bd 8577 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8578 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8579 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8580 /*
8581 * Attempting to continue load balancing at the current
8582 * sched_domain level only makes sense if there are
8583 * active CPUs remaining as possible busiest CPUs to
8584 * pull load from which are not contained within the
8585 * destination group that is receiving any migrated
8586 * load.
8587 */
8588 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8589 env.loop = 0;
8590 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8591 goto redo;
bbf18b19 8592 }
afdeee05 8593 goto out_all_pinned;
1e3c88bd
PZ
8594 }
8595 }
8596
8597 if (!ld_moved) {
ae92882e 8598 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8599 /*
8600 * Increment the failure counter only on periodic balance.
8601 * We do not want newidle balance, which can be very
8602 * frequent, pollute the failure counter causing
8603 * excessive cache_hot migrations and active balances.
8604 */
8605 if (idle != CPU_NEWLY_IDLE)
8606 sd->nr_balance_failed++;
1e3c88bd 8607
bd939f45 8608 if (need_active_balance(&env)) {
8a8c69c3
PZ
8609 unsigned long flags;
8610
1e3c88bd
PZ
8611 raw_spin_lock_irqsave(&busiest->lock, flags);
8612
97fb7a0a
IM
8613 /*
8614 * Don't kick the active_load_balance_cpu_stop,
8615 * if the curr task on busiest CPU can't be
8616 * moved to this_cpu:
1e3c88bd 8617 */
0c98d344 8618 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8619 raw_spin_unlock_irqrestore(&busiest->lock,
8620 flags);
8e45cb54 8621 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8622 goto out_one_pinned;
8623 }
8624
969c7921
TH
8625 /*
8626 * ->active_balance synchronizes accesses to
8627 * ->active_balance_work. Once set, it's cleared
8628 * only after active load balance is finished.
8629 */
1e3c88bd
PZ
8630 if (!busiest->active_balance) {
8631 busiest->active_balance = 1;
8632 busiest->push_cpu = this_cpu;
8633 active_balance = 1;
8634 }
8635 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8636
bd939f45 8637 if (active_balance) {
969c7921
TH
8638 stop_one_cpu_nowait(cpu_of(busiest),
8639 active_load_balance_cpu_stop, busiest,
8640 &busiest->active_balance_work);
bd939f45 8641 }
1e3c88bd 8642
d02c0711 8643 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8644 sd->nr_balance_failed = sd->cache_nice_tries+1;
8645 }
8646 } else
8647 sd->nr_balance_failed = 0;
8648
8649 if (likely(!active_balance)) {
8650 /* We were unbalanced, so reset the balancing interval */
8651 sd->balance_interval = sd->min_interval;
8652 } else {
8653 /*
8654 * If we've begun active balancing, start to back off. This
8655 * case may not be covered by the all_pinned logic if there
8656 * is only 1 task on the busy runqueue (because we don't call
163122b7 8657 * detach_tasks).
1e3c88bd
PZ
8658 */
8659 if (sd->balance_interval < sd->max_interval)
8660 sd->balance_interval *= 2;
8661 }
8662
1e3c88bd
PZ
8663 goto out;
8664
8665out_balanced:
afdeee05
VG
8666 /*
8667 * We reach balance although we may have faced some affinity
8668 * constraints. Clear the imbalance flag if it was set.
8669 */
8670 if (sd_parent) {
8671 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8672
8673 if (*group_imbalance)
8674 *group_imbalance = 0;
8675 }
8676
8677out_all_pinned:
8678 /*
8679 * We reach balance because all tasks are pinned at this level so
8680 * we can't migrate them. Let the imbalance flag set so parent level
8681 * can try to migrate them.
8682 */
ae92882e 8683 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8684
8685 sd->nr_balance_failed = 0;
8686
8687out_one_pinned:
8688 /* tune up the balancing interval */
8e45cb54 8689 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8690 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8691 (sd->balance_interval < sd->max_interval))
8692 sd->balance_interval *= 2;
8693
46e49b38 8694 ld_moved = 0;
1e3c88bd 8695out:
1e3c88bd
PZ
8696 return ld_moved;
8697}
8698
52a08ef1
JL
8699static inline unsigned long
8700get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8701{
8702 unsigned long interval = sd->balance_interval;
8703
8704 if (cpu_busy)
8705 interval *= sd->busy_factor;
8706
8707 /* scale ms to jiffies */
8708 interval = msecs_to_jiffies(interval);
8709 interval = clamp(interval, 1UL, max_load_balance_interval);
8710
8711 return interval;
8712}
8713
8714static inline void
31851a98 8715update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8716{
8717 unsigned long interval, next;
8718
31851a98
LY
8719 /* used by idle balance, so cpu_busy = 0 */
8720 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8721 next = sd->last_balance + interval;
8722
8723 if (time_after(*next_balance, next))
8724 *next_balance = next;
8725}
8726
1e3c88bd 8727/*
97fb7a0a 8728 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
8729 * running tasks off the busiest CPU onto idle CPUs. It requires at
8730 * least 1 task to be running on each physical CPU where possible, and
8731 * avoids physical / logical imbalances.
1e3c88bd 8732 */
969c7921 8733static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8734{
969c7921
TH
8735 struct rq *busiest_rq = data;
8736 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8737 int target_cpu = busiest_rq->push_cpu;
969c7921 8738 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8739 struct sched_domain *sd;
e5673f28 8740 struct task_struct *p = NULL;
8a8c69c3 8741 struct rq_flags rf;
969c7921 8742
8a8c69c3 8743 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8744 /*
8745 * Between queueing the stop-work and running it is a hole in which
8746 * CPUs can become inactive. We should not move tasks from or to
8747 * inactive CPUs.
8748 */
8749 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8750 goto out_unlock;
969c7921 8751
97fb7a0a 8752 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
8753 if (unlikely(busiest_cpu != smp_processor_id() ||
8754 !busiest_rq->active_balance))
8755 goto out_unlock;
1e3c88bd
PZ
8756
8757 /* Is there any task to move? */
8758 if (busiest_rq->nr_running <= 1)
969c7921 8759 goto out_unlock;
1e3c88bd
PZ
8760
8761 /*
8762 * This condition is "impossible", if it occurs
8763 * we need to fix it. Originally reported by
97fb7a0a 8764 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
8765 */
8766 BUG_ON(busiest_rq == target_rq);
8767
1e3c88bd 8768 /* Search for an sd spanning us and the target CPU. */
dce840a0 8769 rcu_read_lock();
1e3c88bd
PZ
8770 for_each_domain(target_cpu, sd) {
8771 if ((sd->flags & SD_LOAD_BALANCE) &&
8772 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8773 break;
8774 }
8775
8776 if (likely(sd)) {
8e45cb54
PZ
8777 struct lb_env env = {
8778 .sd = sd,
ddcdf6e7
PZ
8779 .dst_cpu = target_cpu,
8780 .dst_rq = target_rq,
8781 .src_cpu = busiest_rq->cpu,
8782 .src_rq = busiest_rq,
8e45cb54 8783 .idle = CPU_IDLE,
65a4433a
JH
8784 /*
8785 * can_migrate_task() doesn't need to compute new_dst_cpu
8786 * for active balancing. Since we have CPU_IDLE, but no
8787 * @dst_grpmask we need to make that test go away with lying
8788 * about DST_PINNED.
8789 */
8790 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8791 };
8792
ae92882e 8793 schedstat_inc(sd->alb_count);
3bed5e21 8794 update_rq_clock(busiest_rq);
1e3c88bd 8795
e5673f28 8796 p = detach_one_task(&env);
d02c0711 8797 if (p) {
ae92882e 8798 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8799 /* Active balancing done, reset the failure counter. */
8800 sd->nr_balance_failed = 0;
8801 } else {
ae92882e 8802 schedstat_inc(sd->alb_failed);
d02c0711 8803 }
1e3c88bd 8804 }
dce840a0 8805 rcu_read_unlock();
969c7921
TH
8806out_unlock:
8807 busiest_rq->active_balance = 0;
8a8c69c3 8808 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8809
8810 if (p)
8811 attach_one_task(target_rq, p);
8812
8813 local_irq_enable();
8814
969c7921 8815 return 0;
1e3c88bd
PZ
8816}
8817
af3fe03c
PZ
8818static DEFINE_SPINLOCK(balancing);
8819
8820/*
8821 * Scale the max load_balance interval with the number of CPUs in the system.
8822 * This trades load-balance latency on larger machines for less cross talk.
8823 */
8824void update_max_interval(void)
8825{
8826 max_load_balance_interval = HZ*num_online_cpus()/10;
8827}
8828
8829/*
8830 * It checks each scheduling domain to see if it is due to be balanced,
8831 * and initiates a balancing operation if so.
8832 *
8833 * Balancing parameters are set up in init_sched_domains.
8834 */
8835static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8836{
8837 int continue_balancing = 1;
8838 int cpu = rq->cpu;
8839 unsigned long interval;
8840 struct sched_domain *sd;
8841 /* Earliest time when we have to do rebalance again */
8842 unsigned long next_balance = jiffies + 60*HZ;
8843 int update_next_balance = 0;
8844 int need_serialize, need_decay = 0;
8845 u64 max_cost = 0;
8846
8847 rcu_read_lock();
8848 for_each_domain(cpu, sd) {
8849 /*
8850 * Decay the newidle max times here because this is a regular
8851 * visit to all the domains. Decay ~1% per second.
8852 */
8853 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8854 sd->max_newidle_lb_cost =
8855 (sd->max_newidle_lb_cost * 253) / 256;
8856 sd->next_decay_max_lb_cost = jiffies + HZ;
8857 need_decay = 1;
8858 }
8859 max_cost += sd->max_newidle_lb_cost;
8860
8861 if (!(sd->flags & SD_LOAD_BALANCE))
8862 continue;
8863
8864 /*
8865 * Stop the load balance at this level. There is another
8866 * CPU in our sched group which is doing load balancing more
8867 * actively.
8868 */
8869 if (!continue_balancing) {
8870 if (need_decay)
8871 continue;
8872 break;
8873 }
8874
8875 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8876
8877 need_serialize = sd->flags & SD_SERIALIZE;
8878 if (need_serialize) {
8879 if (!spin_trylock(&balancing))
8880 goto out;
8881 }
8882
8883 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8884 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8885 /*
8886 * The LBF_DST_PINNED logic could have changed
8887 * env->dst_cpu, so we can't know our idle
8888 * state even if we migrated tasks. Update it.
8889 */
8890 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8891 }
8892 sd->last_balance = jiffies;
8893 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8894 }
8895 if (need_serialize)
8896 spin_unlock(&balancing);
8897out:
8898 if (time_after(next_balance, sd->last_balance + interval)) {
8899 next_balance = sd->last_balance + interval;
8900 update_next_balance = 1;
8901 }
8902 }
8903 if (need_decay) {
8904 /*
8905 * Ensure the rq-wide value also decays but keep it at a
8906 * reasonable floor to avoid funnies with rq->avg_idle.
8907 */
8908 rq->max_idle_balance_cost =
8909 max((u64)sysctl_sched_migration_cost, max_cost);
8910 }
8911 rcu_read_unlock();
8912
8913 /*
8914 * next_balance will be updated only when there is a need.
8915 * When the cpu is attached to null domain for ex, it will not be
8916 * updated.
8917 */
8918 if (likely(update_next_balance)) {
8919 rq->next_balance = next_balance;
8920
8921#ifdef CONFIG_NO_HZ_COMMON
8922 /*
8923 * If this CPU has been elected to perform the nohz idle
8924 * balance. Other idle CPUs have already rebalanced with
8925 * nohz_idle_balance() and nohz.next_balance has been
8926 * updated accordingly. This CPU is now running the idle load
8927 * balance for itself and we need to update the
8928 * nohz.next_balance accordingly.
8929 */
8930 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8931 nohz.next_balance = rq->next_balance;
8932#endif
8933 }
8934}
8935
d987fc7f
MG
8936static inline int on_null_domain(struct rq *rq)
8937{
8938 return unlikely(!rcu_dereference_sched(rq->sd));
8939}
8940
3451d024 8941#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8942/*
8943 * idle load balancing details
83cd4fe2
VP
8944 * - When one of the busy CPUs notice that there may be an idle rebalancing
8945 * needed, they will kick the idle load balancer, which then does idle
8946 * load balancing for all the idle CPUs.
8947 */
1e3c88bd 8948
3dd0337d 8949static inline int find_new_ilb(void)
1e3c88bd 8950{
0b005cf5 8951 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8952
786d6dc7
SS
8953 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8954 return ilb;
8955
8956 return nr_cpu_ids;
1e3c88bd 8957}
1e3c88bd 8958
83cd4fe2
VP
8959/*
8960 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8961 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8962 * CPU (if there is one).
8963 */
a4064fb6 8964static void kick_ilb(unsigned int flags)
83cd4fe2
VP
8965{
8966 int ilb_cpu;
8967
8968 nohz.next_balance++;
8969
3dd0337d 8970 ilb_cpu = find_new_ilb();
83cd4fe2 8971
0b005cf5
SS
8972 if (ilb_cpu >= nr_cpu_ids)
8973 return;
83cd4fe2 8974
a4064fb6 8975 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 8976 if (flags & NOHZ_KICK_MASK)
1c792db7 8977 return;
4550487a 8978
1c792db7
SS
8979 /*
8980 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 8981 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
8982 * is idle. And the softirq performing nohz idle load balance
8983 * will be run before returning from the IPI.
8984 */
8985 smp_send_reschedule(ilb_cpu);
4550487a
PZ
8986}
8987
8988/*
8989 * Current heuristic for kicking the idle load balancer in the presence
8990 * of an idle cpu in the system.
8991 * - This rq has more than one task.
8992 * - This rq has at least one CFS task and the capacity of the CPU is
8993 * significantly reduced because of RT tasks or IRQs.
8994 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8995 * multiple busy cpu.
8996 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8997 * domain span are idle.
8998 */
8999static void nohz_balancer_kick(struct rq *rq)
9000{
9001 unsigned long now = jiffies;
9002 struct sched_domain_shared *sds;
9003 struct sched_domain *sd;
9004 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9005 unsigned int flags = 0;
4550487a
PZ
9006
9007 if (unlikely(rq->idle_balance))
9008 return;
9009
9010 /*
9011 * We may be recently in ticked or tickless idle mode. At the first
9012 * busy tick after returning from idle, we will update the busy stats.
9013 */
00357f5e 9014 nohz_balance_exit_idle(rq);
4550487a
PZ
9015
9016 /*
9017 * None are in tickless mode and hence no need for NOHZ idle load
9018 * balancing.
9019 */
9020 if (likely(!atomic_read(&nohz.nr_cpus)))
9021 return;
9022
f643ea22
VG
9023 if (READ_ONCE(nohz.has_blocked) &&
9024 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9025 flags = NOHZ_STATS_KICK;
9026
4550487a 9027 if (time_before(now, nohz.next_balance))
a4064fb6 9028 goto out;
4550487a
PZ
9029
9030 if (rq->nr_running >= 2) {
a4064fb6 9031 flags = NOHZ_KICK_MASK;
4550487a
PZ
9032 goto out;
9033 }
9034
9035 rcu_read_lock();
9036 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9037 if (sds) {
9038 /*
9039 * XXX: write a coherent comment on why we do this.
9040 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9041 */
9042 nr_busy = atomic_read(&sds->nr_busy_cpus);
9043 if (nr_busy > 1) {
a4064fb6 9044 flags = NOHZ_KICK_MASK;
4550487a
PZ
9045 goto unlock;
9046 }
9047
9048 }
9049
9050 sd = rcu_dereference(rq->sd);
9051 if (sd) {
9052 if ((rq->cfs.h_nr_running >= 1) &&
9053 check_cpu_capacity(rq, sd)) {
a4064fb6 9054 flags = NOHZ_KICK_MASK;
4550487a
PZ
9055 goto unlock;
9056 }
9057 }
9058
9059 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9060 if (sd) {
9061 for_each_cpu(i, sched_domain_span(sd)) {
9062 if (i == cpu ||
9063 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9064 continue;
9065
9066 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9067 flags = NOHZ_KICK_MASK;
4550487a
PZ
9068 goto unlock;
9069 }
9070 }
9071 }
9072unlock:
9073 rcu_read_unlock();
9074out:
a4064fb6
PZ
9075 if (flags)
9076 kick_ilb(flags);
83cd4fe2
VP
9077}
9078
00357f5e 9079static void set_cpu_sd_state_busy(int cpu)
71325960 9080{
00357f5e 9081 struct sched_domain *sd;
a22e47a4 9082
00357f5e
PZ
9083 rcu_read_lock();
9084 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9085
00357f5e
PZ
9086 if (!sd || !sd->nohz_idle)
9087 goto unlock;
9088 sd->nohz_idle = 0;
9089
9090 atomic_inc(&sd->shared->nr_busy_cpus);
9091unlock:
9092 rcu_read_unlock();
71325960
SS
9093}
9094
00357f5e
PZ
9095void nohz_balance_exit_idle(struct rq *rq)
9096{
9097 SCHED_WARN_ON(rq != this_rq());
9098
9099 if (likely(!rq->nohz_tick_stopped))
9100 return;
9101
9102 rq->nohz_tick_stopped = 0;
9103 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9104 atomic_dec(&nohz.nr_cpus);
9105
9106 set_cpu_sd_state_busy(rq->cpu);
9107}
9108
9109static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9110{
9111 struct sched_domain *sd;
69e1e811 9112
69e1e811 9113 rcu_read_lock();
0e369d75 9114 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9115
9116 if (!sd || sd->nohz_idle)
9117 goto unlock;
9118 sd->nohz_idle = 1;
9119
0e369d75 9120 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9121unlock:
69e1e811
SS
9122 rcu_read_unlock();
9123}
9124
1e3c88bd 9125/*
97fb7a0a 9126 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9127 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9128 */
c1cc017c 9129void nohz_balance_enter_idle(int cpu)
1e3c88bd 9130{
00357f5e
PZ
9131 struct rq *rq = cpu_rq(cpu);
9132
9133 SCHED_WARN_ON(cpu != smp_processor_id());
9134
97fb7a0a 9135 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9136 if (!cpu_active(cpu))
9137 return;
9138
387bc8b5 9139 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9140 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9141 return;
9142
f643ea22
VG
9143 /*
9144 * Can be set safely without rq->lock held
9145 * If a clear happens, it will have evaluated last additions because
9146 * rq->lock is held during the check and the clear
9147 */
9148 rq->has_blocked_load = 1;
9149
9150 /*
9151 * The tick is still stopped but load could have been added in the
9152 * meantime. We set the nohz.has_blocked flag to trig a check of the
9153 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9154 * of nohz.has_blocked can only happen after checking the new load
9155 */
00357f5e 9156 if (rq->nohz_tick_stopped)
f643ea22 9157 goto out;
1e3c88bd 9158
97fb7a0a 9159 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9160 if (on_null_domain(rq))
d987fc7f
MG
9161 return;
9162
00357f5e
PZ
9163 rq->nohz_tick_stopped = 1;
9164
c1cc017c
AS
9165 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9166 atomic_inc(&nohz.nr_cpus);
00357f5e 9167
f643ea22
VG
9168 /*
9169 * Ensures that if nohz_idle_balance() fails to observe our
9170 * @idle_cpus_mask store, it must observe the @has_blocked
9171 * store.
9172 */
9173 smp_mb__after_atomic();
9174
00357f5e 9175 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9176
9177out:
9178 /*
9179 * Each time a cpu enter idle, we assume that it has blocked load and
9180 * enable the periodic update of the load of idle cpus
9181 */
9182 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9183}
1e3c88bd 9184
1e3c88bd 9185/*
31e77c93
VG
9186 * Internal function that runs load balance for all idle cpus. The load balance
9187 * can be a simple update of blocked load or a complete load balance with
9188 * tasks movement depending of flags.
9189 * The function returns false if the loop has stopped before running
9190 * through all idle CPUs.
1e3c88bd 9191 */
31e77c93
VG
9192static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9193 enum cpu_idle_type idle)
83cd4fe2 9194{
c5afb6a8 9195 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9196 unsigned long now = jiffies;
9197 unsigned long next_balance = now + 60*HZ;
f643ea22 9198 bool has_blocked_load = false;
c5afb6a8 9199 int update_next_balance = 0;
b7031a02 9200 int this_cpu = this_rq->cpu;
b7031a02 9201 int balance_cpu;
31e77c93 9202 int ret = false;
b7031a02 9203 struct rq *rq;
83cd4fe2 9204
b7031a02 9205 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9206
f643ea22
VG
9207 /*
9208 * We assume there will be no idle load after this update and clear
9209 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9210 * set the has_blocked flag and trig another update of idle load.
9211 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9212 * setting the flag, we are sure to not clear the state and not
9213 * check the load of an idle cpu.
9214 */
9215 WRITE_ONCE(nohz.has_blocked, 0);
9216
9217 /*
9218 * Ensures that if we miss the CPU, we must see the has_blocked
9219 * store from nohz_balance_enter_idle().
9220 */
9221 smp_mb();
9222
83cd4fe2 9223 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9224 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9225 continue;
9226
9227 /*
97fb7a0a
IM
9228 * If this CPU gets work to do, stop the load balancing
9229 * work being done for other CPUs. Next load
83cd4fe2
VP
9230 * balancing owner will pick it up.
9231 */
f643ea22
VG
9232 if (need_resched()) {
9233 has_blocked_load = true;
9234 goto abort;
9235 }
83cd4fe2 9236
5ed4f1d9
VG
9237 rq = cpu_rq(balance_cpu);
9238
63928384 9239 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9240
ed61bbc6
TC
9241 /*
9242 * If time for next balance is due,
9243 * do the balance.
9244 */
9245 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9246 struct rq_flags rf;
9247
31e77c93 9248 rq_lock_irqsave(rq, &rf);
ed61bbc6 9249 update_rq_clock(rq);
cee1afce 9250 cpu_load_update_idle(rq);
31e77c93 9251 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9252
b7031a02
PZ
9253 if (flags & NOHZ_BALANCE_KICK)
9254 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9255 }
83cd4fe2 9256
c5afb6a8
VG
9257 if (time_after(next_balance, rq->next_balance)) {
9258 next_balance = rq->next_balance;
9259 update_next_balance = 1;
9260 }
83cd4fe2 9261 }
c5afb6a8 9262
31e77c93
VG
9263 /* Newly idle CPU doesn't need an update */
9264 if (idle != CPU_NEWLY_IDLE) {
9265 update_blocked_averages(this_cpu);
9266 has_blocked_load |= this_rq->has_blocked_load;
9267 }
9268
b7031a02
PZ
9269 if (flags & NOHZ_BALANCE_KICK)
9270 rebalance_domains(this_rq, CPU_IDLE);
9271
f643ea22
VG
9272 WRITE_ONCE(nohz.next_blocked,
9273 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9274
31e77c93
VG
9275 /* The full idle balance loop has been done */
9276 ret = true;
9277
f643ea22
VG
9278abort:
9279 /* There is still blocked load, enable periodic update */
9280 if (has_blocked_load)
9281 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9282
c5afb6a8
VG
9283 /*
9284 * next_balance will be updated only when there is a need.
9285 * When the CPU is attached to null domain for ex, it will not be
9286 * updated.
9287 */
9288 if (likely(update_next_balance))
9289 nohz.next_balance = next_balance;
b7031a02 9290
31e77c93
VG
9291 return ret;
9292}
9293
9294/*
9295 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9296 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9297 */
9298static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9299{
9300 int this_cpu = this_rq->cpu;
9301 unsigned int flags;
9302
9303 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9304 return false;
9305
9306 if (idle != CPU_IDLE) {
9307 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9308 return false;
9309 }
9310
9311 /*
9312 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9313 */
9314 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9315 if (!(flags & NOHZ_KICK_MASK))
9316 return false;
9317
9318 _nohz_idle_balance(this_rq, flags, idle);
9319
b7031a02 9320 return true;
83cd4fe2 9321}
31e77c93
VG
9322
9323static void nohz_newidle_balance(struct rq *this_rq)
9324{
9325 int this_cpu = this_rq->cpu;
9326
9327 /*
9328 * This CPU doesn't want to be disturbed by scheduler
9329 * housekeeping
9330 */
9331 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9332 return;
9333
9334 /* Will wake up very soon. No time for doing anything else*/
9335 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9336 return;
9337
9338 /* Don't need to update blocked load of idle CPUs*/
9339 if (!READ_ONCE(nohz.has_blocked) ||
9340 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9341 return;
9342
9343 raw_spin_unlock(&this_rq->lock);
9344 /*
9345 * This CPU is going to be idle and blocked load of idle CPUs
9346 * need to be updated. Run the ilb locally as it is a good
9347 * candidate for ilb instead of waking up another idle CPU.
9348 * Kick an normal ilb if we failed to do the update.
9349 */
9350 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9351 kick_ilb(NOHZ_STATS_KICK);
9352 raw_spin_lock(&this_rq->lock);
9353}
9354
dd707247
PZ
9355#else /* !CONFIG_NO_HZ_COMMON */
9356static inline void nohz_balancer_kick(struct rq *rq) { }
9357
31e77c93 9358static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9359{
9360 return false;
9361}
31e77c93
VG
9362
9363static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9364#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9365
47ea5412
PZ
9366/*
9367 * idle_balance is called by schedule() if this_cpu is about to become
9368 * idle. Attempts to pull tasks from other CPUs.
9369 */
9370static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9371{
9372 unsigned long next_balance = jiffies + HZ;
9373 int this_cpu = this_rq->cpu;
9374 struct sched_domain *sd;
9375 int pulled_task = 0;
9376 u64 curr_cost = 0;
9377
9378 /*
9379 * We must set idle_stamp _before_ calling idle_balance(), such that we
9380 * measure the duration of idle_balance() as idle time.
9381 */
9382 this_rq->idle_stamp = rq_clock(this_rq);
9383
9384 /*
9385 * Do not pull tasks towards !active CPUs...
9386 */
9387 if (!cpu_active(this_cpu))
9388 return 0;
9389
9390 /*
9391 * This is OK, because current is on_cpu, which avoids it being picked
9392 * for load-balance and preemption/IRQs are still disabled avoiding
9393 * further scheduler activity on it and we're being very careful to
9394 * re-start the picking loop.
9395 */
9396 rq_unpin_lock(this_rq, rf);
9397
9398 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9399 !this_rq->rd->overload) {
31e77c93 9400
47ea5412
PZ
9401 rcu_read_lock();
9402 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9403 if (sd)
9404 update_next_balance(sd, &next_balance);
9405 rcu_read_unlock();
9406
31e77c93
VG
9407 nohz_newidle_balance(this_rq);
9408
47ea5412
PZ
9409 goto out;
9410 }
9411
9412 raw_spin_unlock(&this_rq->lock);
9413
9414 update_blocked_averages(this_cpu);
9415 rcu_read_lock();
9416 for_each_domain(this_cpu, sd) {
9417 int continue_balancing = 1;
9418 u64 t0, domain_cost;
9419
9420 if (!(sd->flags & SD_LOAD_BALANCE))
9421 continue;
9422
9423 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9424 update_next_balance(sd, &next_balance);
9425 break;
9426 }
9427
9428 if (sd->flags & SD_BALANCE_NEWIDLE) {
9429 t0 = sched_clock_cpu(this_cpu);
9430
9431 pulled_task = load_balance(this_cpu, this_rq,
9432 sd, CPU_NEWLY_IDLE,
9433 &continue_balancing);
9434
9435 domain_cost = sched_clock_cpu(this_cpu) - t0;
9436 if (domain_cost > sd->max_newidle_lb_cost)
9437 sd->max_newidle_lb_cost = domain_cost;
9438
9439 curr_cost += domain_cost;
9440 }
9441
9442 update_next_balance(sd, &next_balance);
9443
9444 /*
9445 * Stop searching for tasks to pull if there are
9446 * now runnable tasks on this rq.
9447 */
9448 if (pulled_task || this_rq->nr_running > 0)
9449 break;
9450 }
9451 rcu_read_unlock();
9452
9453 raw_spin_lock(&this_rq->lock);
9454
9455 if (curr_cost > this_rq->max_idle_balance_cost)
9456 this_rq->max_idle_balance_cost = curr_cost;
9457
457be908 9458out:
47ea5412
PZ
9459 /*
9460 * While browsing the domains, we released the rq lock, a task could
9461 * have been enqueued in the meantime. Since we're not going idle,
9462 * pretend we pulled a task.
9463 */
9464 if (this_rq->cfs.h_nr_running && !pulled_task)
9465 pulled_task = 1;
9466
47ea5412
PZ
9467 /* Move the next balance forward */
9468 if (time_after(this_rq->next_balance, next_balance))
9469 this_rq->next_balance = next_balance;
9470
9471 /* Is there a task of a high priority class? */
9472 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9473 pulled_task = -1;
9474
9475 if (pulled_task)
9476 this_rq->idle_stamp = 0;
9477
9478 rq_repin_lock(this_rq, rf);
9479
9480 return pulled_task;
9481}
9482
83cd4fe2
VP
9483/*
9484 * run_rebalance_domains is triggered when needed from the scheduler tick.
9485 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9486 */
0766f788 9487static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9488{
208cb16b 9489 struct rq *this_rq = this_rq();
6eb57e0d 9490 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9491 CPU_IDLE : CPU_NOT_IDLE;
9492
1e3c88bd 9493 /*
97fb7a0a
IM
9494 * If this CPU has a pending nohz_balance_kick, then do the
9495 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9496 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9497 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9498 * load balance only within the local sched_domain hierarchy
9499 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9500 */
b7031a02
PZ
9501 if (nohz_idle_balance(this_rq, idle))
9502 return;
9503
9504 /* normal load balance */
9505 update_blocked_averages(this_rq->cpu);
d4573c3e 9506 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9507}
9508
1e3c88bd
PZ
9509/*
9510 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9511 */
7caff66f 9512void trigger_load_balance(struct rq *rq)
1e3c88bd 9513{
1e3c88bd 9514 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9515 if (unlikely(on_null_domain(rq)))
9516 return;
9517
9518 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9519 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9520
9521 nohz_balancer_kick(rq);
1e3c88bd
PZ
9522}
9523
0bcdcf28
CE
9524static void rq_online_fair(struct rq *rq)
9525{
9526 update_sysctl();
0e59bdae
KT
9527
9528 update_runtime_enabled(rq);
0bcdcf28
CE
9529}
9530
9531static void rq_offline_fair(struct rq *rq)
9532{
9533 update_sysctl();
a4c96ae3
PB
9534
9535 /* Ensure any throttled groups are reachable by pick_next_task */
9536 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9537}
9538
55e12e5e 9539#endif /* CONFIG_SMP */
e1d1484f 9540
bf0f6f24 9541/*
d84b3131
FW
9542 * scheduler tick hitting a task of our scheduling class.
9543 *
9544 * NOTE: This function can be called remotely by the tick offload that
9545 * goes along full dynticks. Therefore no local assumption can be made
9546 * and everything must be accessed through the @rq and @curr passed in
9547 * parameters.
bf0f6f24 9548 */
8f4d37ec 9549static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9550{
9551 struct cfs_rq *cfs_rq;
9552 struct sched_entity *se = &curr->se;
9553
9554 for_each_sched_entity(se) {
9555 cfs_rq = cfs_rq_of(se);
8f4d37ec 9556 entity_tick(cfs_rq, se, queued);
bf0f6f24 9557 }
18bf2805 9558
b52da86e 9559 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9560 task_tick_numa(rq, curr);
bf0f6f24
IM
9561}
9562
9563/*
cd29fe6f
PZ
9564 * called on fork with the child task as argument from the parent's context
9565 * - child not yet on the tasklist
9566 * - preemption disabled
bf0f6f24 9567 */
cd29fe6f 9568static void task_fork_fair(struct task_struct *p)
bf0f6f24 9569{
4fc420c9
DN
9570 struct cfs_rq *cfs_rq;
9571 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9572 struct rq *rq = this_rq();
8a8c69c3 9573 struct rq_flags rf;
bf0f6f24 9574
8a8c69c3 9575 rq_lock(rq, &rf);
861d034e
PZ
9576 update_rq_clock(rq);
9577
4fc420c9
DN
9578 cfs_rq = task_cfs_rq(current);
9579 curr = cfs_rq->curr;
e210bffd
PZ
9580 if (curr) {
9581 update_curr(cfs_rq);
b5d9d734 9582 se->vruntime = curr->vruntime;
e210bffd 9583 }
aeb73b04 9584 place_entity(cfs_rq, se, 1);
4d78e7b6 9585
cd29fe6f 9586 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9587 /*
edcb60a3
IM
9588 * Upon rescheduling, sched_class::put_prev_task() will place
9589 * 'current' within the tree based on its new key value.
9590 */
4d78e7b6 9591 swap(curr->vruntime, se->vruntime);
8875125e 9592 resched_curr(rq);
4d78e7b6 9593 }
bf0f6f24 9594
88ec22d3 9595 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9596 rq_unlock(rq, &rf);
bf0f6f24
IM
9597}
9598
cb469845
SR
9599/*
9600 * Priority of the task has changed. Check to see if we preempt
9601 * the current task.
9602 */
da7a735e
PZ
9603static void
9604prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9605{
da0c1e65 9606 if (!task_on_rq_queued(p))
da7a735e
PZ
9607 return;
9608
cb469845
SR
9609 /*
9610 * Reschedule if we are currently running on this runqueue and
9611 * our priority decreased, or if we are not currently running on
9612 * this runqueue and our priority is higher than the current's
9613 */
da7a735e 9614 if (rq->curr == p) {
cb469845 9615 if (p->prio > oldprio)
8875125e 9616 resched_curr(rq);
cb469845 9617 } else
15afe09b 9618 check_preempt_curr(rq, p, 0);
cb469845
SR
9619}
9620
daa59407 9621static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9622{
9623 struct sched_entity *se = &p->se;
da7a735e
PZ
9624
9625 /*
daa59407
BP
9626 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9627 * the dequeue_entity(.flags=0) will already have normalized the
9628 * vruntime.
9629 */
9630 if (p->on_rq)
9631 return true;
9632
9633 /*
9634 * When !on_rq, vruntime of the task has usually NOT been normalized.
9635 * But there are some cases where it has already been normalized:
da7a735e 9636 *
daa59407
BP
9637 * - A forked child which is waiting for being woken up by
9638 * wake_up_new_task().
9639 * - A task which has been woken up by try_to_wake_up() and
9640 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9641 */
daa59407
BP
9642 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9643 return true;
9644
9645 return false;
9646}
9647
09a43ace
VG
9648#ifdef CONFIG_FAIR_GROUP_SCHED
9649/*
9650 * Propagate the changes of the sched_entity across the tg tree to make it
9651 * visible to the root
9652 */
9653static void propagate_entity_cfs_rq(struct sched_entity *se)
9654{
9655 struct cfs_rq *cfs_rq;
9656
9657 /* Start to propagate at parent */
9658 se = se->parent;
9659
9660 for_each_sched_entity(se) {
9661 cfs_rq = cfs_rq_of(se);
9662
9663 if (cfs_rq_throttled(cfs_rq))
9664 break;
9665
88c0616e 9666 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9667 }
9668}
9669#else
9670static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9671#endif
9672
df217913 9673static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9674{
daa59407
BP
9675 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9676
9d89c257 9677 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9678 update_load_avg(cfs_rq, se, 0);
a05e8c51 9679 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9680 update_tg_load_avg(cfs_rq, false);
09a43ace 9681 propagate_entity_cfs_rq(se);
da7a735e
PZ
9682}
9683
df217913 9684static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9685{
daa59407 9686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9687
9688#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9689 /*
9690 * Since the real-depth could have been changed (only FAIR
9691 * class maintain depth value), reset depth properly.
9692 */
9693 se->depth = se->parent ? se->parent->depth + 1 : 0;
9694#endif
7855a35a 9695
df217913 9696 /* Synchronize entity with its cfs_rq */
88c0616e 9697 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 9698 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 9699 update_tg_load_avg(cfs_rq, false);
09a43ace 9700 propagate_entity_cfs_rq(se);
df217913
VG
9701}
9702
9703static void detach_task_cfs_rq(struct task_struct *p)
9704{
9705 struct sched_entity *se = &p->se;
9706 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9707
9708 if (!vruntime_normalized(p)) {
9709 /*
9710 * Fix up our vruntime so that the current sleep doesn't
9711 * cause 'unlimited' sleep bonus.
9712 */
9713 place_entity(cfs_rq, se, 0);
9714 se->vruntime -= cfs_rq->min_vruntime;
9715 }
9716
9717 detach_entity_cfs_rq(se);
9718}
9719
9720static void attach_task_cfs_rq(struct task_struct *p)
9721{
9722 struct sched_entity *se = &p->se;
9723 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9724
9725 attach_entity_cfs_rq(se);
daa59407
BP
9726
9727 if (!vruntime_normalized(p))
9728 se->vruntime += cfs_rq->min_vruntime;
9729}
6efdb105 9730
daa59407
BP
9731static void switched_from_fair(struct rq *rq, struct task_struct *p)
9732{
9733 detach_task_cfs_rq(p);
9734}
9735
9736static void switched_to_fair(struct rq *rq, struct task_struct *p)
9737{
9738 attach_task_cfs_rq(p);
7855a35a 9739
daa59407 9740 if (task_on_rq_queued(p)) {
7855a35a 9741 /*
daa59407
BP
9742 * We were most likely switched from sched_rt, so
9743 * kick off the schedule if running, otherwise just see
9744 * if we can still preempt the current task.
7855a35a 9745 */
daa59407
BP
9746 if (rq->curr == p)
9747 resched_curr(rq);
9748 else
9749 check_preempt_curr(rq, p, 0);
7855a35a 9750 }
cb469845
SR
9751}
9752
83b699ed
SV
9753/* Account for a task changing its policy or group.
9754 *
9755 * This routine is mostly called to set cfs_rq->curr field when a task
9756 * migrates between groups/classes.
9757 */
9758static void set_curr_task_fair(struct rq *rq)
9759{
9760 struct sched_entity *se = &rq->curr->se;
9761
ec12cb7f
PT
9762 for_each_sched_entity(se) {
9763 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9764
9765 set_next_entity(cfs_rq, se);
9766 /* ensure bandwidth has been allocated on our new cfs_rq */
9767 account_cfs_rq_runtime(cfs_rq, 0);
9768 }
83b699ed
SV
9769}
9770
029632fb
PZ
9771void init_cfs_rq(struct cfs_rq *cfs_rq)
9772{
bfb06889 9773 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9774 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9775#ifndef CONFIG_64BIT
9776 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9777#endif
141965c7 9778#ifdef CONFIG_SMP
2a2f5d4e 9779 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9780#endif
029632fb
PZ
9781}
9782
810b3817 9783#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9784static void task_set_group_fair(struct task_struct *p)
9785{
9786 struct sched_entity *se = &p->se;
9787
9788 set_task_rq(p, task_cpu(p));
9789 se->depth = se->parent ? se->parent->depth + 1 : 0;
9790}
9791
bc54da21 9792static void task_move_group_fair(struct task_struct *p)
810b3817 9793{
daa59407 9794 detach_task_cfs_rq(p);
b2b5ce02 9795 set_task_rq(p, task_cpu(p));
6efdb105
BP
9796
9797#ifdef CONFIG_SMP
9798 /* Tell se's cfs_rq has been changed -- migrated */
9799 p->se.avg.last_update_time = 0;
9800#endif
daa59407 9801 attach_task_cfs_rq(p);
810b3817 9802}
029632fb 9803
ea86cb4b
VG
9804static void task_change_group_fair(struct task_struct *p, int type)
9805{
9806 switch (type) {
9807 case TASK_SET_GROUP:
9808 task_set_group_fair(p);
9809 break;
9810
9811 case TASK_MOVE_GROUP:
9812 task_move_group_fair(p);
9813 break;
9814 }
9815}
9816
029632fb
PZ
9817void free_fair_sched_group(struct task_group *tg)
9818{
9819 int i;
9820
9821 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9822
9823 for_each_possible_cpu(i) {
9824 if (tg->cfs_rq)
9825 kfree(tg->cfs_rq[i]);
6fe1f348 9826 if (tg->se)
029632fb
PZ
9827 kfree(tg->se[i]);
9828 }
9829
9830 kfree(tg->cfs_rq);
9831 kfree(tg->se);
9832}
9833
9834int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9835{
029632fb 9836 struct sched_entity *se;
b7fa30c9 9837 struct cfs_rq *cfs_rq;
029632fb
PZ
9838 int i;
9839
6396bb22 9840 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
9841 if (!tg->cfs_rq)
9842 goto err;
6396bb22 9843 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
9844 if (!tg->se)
9845 goto err;
9846
9847 tg->shares = NICE_0_LOAD;
9848
9849 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9850
9851 for_each_possible_cpu(i) {
9852 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9853 GFP_KERNEL, cpu_to_node(i));
9854 if (!cfs_rq)
9855 goto err;
9856
9857 se = kzalloc_node(sizeof(struct sched_entity),
9858 GFP_KERNEL, cpu_to_node(i));
9859 if (!se)
9860 goto err_free_rq;
9861
9862 init_cfs_rq(cfs_rq);
9863 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9864 init_entity_runnable_average(se);
029632fb
PZ
9865 }
9866
9867 return 1;
9868
9869err_free_rq:
9870 kfree(cfs_rq);
9871err:
9872 return 0;
9873}
9874
8663e24d
PZ
9875void online_fair_sched_group(struct task_group *tg)
9876{
9877 struct sched_entity *se;
9878 struct rq *rq;
9879 int i;
9880
9881 for_each_possible_cpu(i) {
9882 rq = cpu_rq(i);
9883 se = tg->se[i];
9884
9885 raw_spin_lock_irq(&rq->lock);
4126bad6 9886 update_rq_clock(rq);
d0326691 9887 attach_entity_cfs_rq(se);
55e16d30 9888 sync_throttle(tg, i);
8663e24d
PZ
9889 raw_spin_unlock_irq(&rq->lock);
9890 }
9891}
9892
6fe1f348 9893void unregister_fair_sched_group(struct task_group *tg)
029632fb 9894{
029632fb 9895 unsigned long flags;
6fe1f348
PZ
9896 struct rq *rq;
9897 int cpu;
029632fb 9898
6fe1f348
PZ
9899 for_each_possible_cpu(cpu) {
9900 if (tg->se[cpu])
9901 remove_entity_load_avg(tg->se[cpu]);
029632fb 9902
6fe1f348
PZ
9903 /*
9904 * Only empty task groups can be destroyed; so we can speculatively
9905 * check on_list without danger of it being re-added.
9906 */
9907 if (!tg->cfs_rq[cpu]->on_list)
9908 continue;
9909
9910 rq = cpu_rq(cpu);
9911
9912 raw_spin_lock_irqsave(&rq->lock, flags);
9913 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9914 raw_spin_unlock_irqrestore(&rq->lock, flags);
9915 }
029632fb
PZ
9916}
9917
9918void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9919 struct sched_entity *se, int cpu,
9920 struct sched_entity *parent)
9921{
9922 struct rq *rq = cpu_rq(cpu);
9923
9924 cfs_rq->tg = tg;
9925 cfs_rq->rq = rq;
029632fb
PZ
9926 init_cfs_rq_runtime(cfs_rq);
9927
9928 tg->cfs_rq[cpu] = cfs_rq;
9929 tg->se[cpu] = se;
9930
9931 /* se could be NULL for root_task_group */
9932 if (!se)
9933 return;
9934
fed14d45 9935 if (!parent) {
029632fb 9936 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9937 se->depth = 0;
9938 } else {
029632fb 9939 se->cfs_rq = parent->my_q;
fed14d45
PZ
9940 se->depth = parent->depth + 1;
9941 }
029632fb
PZ
9942
9943 se->my_q = cfs_rq;
0ac9b1c2
PT
9944 /* guarantee group entities always have weight */
9945 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9946 se->parent = parent;
9947}
9948
9949static DEFINE_MUTEX(shares_mutex);
9950
9951int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9952{
9953 int i;
029632fb
PZ
9954
9955 /*
9956 * We can't change the weight of the root cgroup.
9957 */
9958 if (!tg->se[0])
9959 return -EINVAL;
9960
9961 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9962
9963 mutex_lock(&shares_mutex);
9964 if (tg->shares == shares)
9965 goto done;
9966
9967 tg->shares = shares;
9968 for_each_possible_cpu(i) {
9969 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9970 struct sched_entity *se = tg->se[i];
9971 struct rq_flags rf;
029632fb 9972
029632fb 9973 /* Propagate contribution to hierarchy */
8a8c69c3 9974 rq_lock_irqsave(rq, &rf);
71b1da46 9975 update_rq_clock(rq);
89ee048f 9976 for_each_sched_entity(se) {
88c0616e 9977 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 9978 update_cfs_group(se);
89ee048f 9979 }
8a8c69c3 9980 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9981 }
9982
9983done:
9984 mutex_unlock(&shares_mutex);
9985 return 0;
9986}
9987#else /* CONFIG_FAIR_GROUP_SCHED */
9988
9989void free_fair_sched_group(struct task_group *tg) { }
9990
9991int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9992{
9993 return 1;
9994}
9995
8663e24d
PZ
9996void online_fair_sched_group(struct task_group *tg) { }
9997
6fe1f348 9998void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9999
10000#endif /* CONFIG_FAIR_GROUP_SCHED */
10001
810b3817 10002
6d686f45 10003static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10004{
10005 struct sched_entity *se = &task->se;
0d721cea
PW
10006 unsigned int rr_interval = 0;
10007
10008 /*
10009 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10010 * idle runqueue:
10011 */
0d721cea 10012 if (rq->cfs.load.weight)
a59f4e07 10013 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10014
10015 return rr_interval;
10016}
10017
bf0f6f24
IM
10018/*
10019 * All the scheduling class methods:
10020 */
029632fb 10021const struct sched_class fair_sched_class = {
5522d5d5 10022 .next = &idle_sched_class,
bf0f6f24
IM
10023 .enqueue_task = enqueue_task_fair,
10024 .dequeue_task = dequeue_task_fair,
10025 .yield_task = yield_task_fair,
d95f4122 10026 .yield_to_task = yield_to_task_fair,
bf0f6f24 10027
2e09bf55 10028 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10029
10030 .pick_next_task = pick_next_task_fair,
10031 .put_prev_task = put_prev_task_fair,
10032
681f3e68 10033#ifdef CONFIG_SMP
4ce72a2c 10034 .select_task_rq = select_task_rq_fair,
0a74bef8 10035 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10036
0bcdcf28
CE
10037 .rq_online = rq_online_fair,
10038 .rq_offline = rq_offline_fair,
88ec22d3 10039
12695578 10040 .task_dead = task_dead_fair,
c5b28038 10041 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10042#endif
bf0f6f24 10043
83b699ed 10044 .set_curr_task = set_curr_task_fair,
bf0f6f24 10045 .task_tick = task_tick_fair,
cd29fe6f 10046 .task_fork = task_fork_fair,
cb469845
SR
10047
10048 .prio_changed = prio_changed_fair,
da7a735e 10049 .switched_from = switched_from_fair,
cb469845 10050 .switched_to = switched_to_fair,
810b3817 10051
0d721cea
PW
10052 .get_rr_interval = get_rr_interval_fair,
10053
6e998916
SG
10054 .update_curr = update_curr_fair,
10055
810b3817 10056#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10057 .task_change_group = task_change_group_fair,
810b3817 10058#endif
bf0f6f24
IM
10059};
10060
10061#ifdef CONFIG_SCHED_DEBUG
029632fb 10062void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10063{
a9e7f654 10064 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10065
5973e5b9 10066 rcu_read_lock();
a9e7f654 10067 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10068 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10069 rcu_read_unlock();
bf0f6f24 10070}
397f2378
SD
10071
10072#ifdef CONFIG_NUMA_BALANCING
10073void show_numa_stats(struct task_struct *p, struct seq_file *m)
10074{
10075 int node;
10076 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10077
10078 for_each_online_node(node) {
10079 if (p->numa_faults) {
10080 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10081 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10082 }
10083 if (p->numa_group) {
10084 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10085 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10086 }
10087 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10088 }
10089}
10090#endif /* CONFIG_NUMA_BALANCING */
10091#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10092
10093__init void init_sched_fair_class(void)
10094{
10095#ifdef CONFIG_SMP
10096 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10097
3451d024 10098#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10099 nohz.next_balance = jiffies;
f643ea22 10100 nohz.next_blocked = jiffies;
029632fb 10101 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10102#endif
10103#endif /* SMP */
10104
10105}