sched: Update rq clock earlier in unthrottle_cfs_rq
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
bf0f6f24
IM
683/*
684 * Update the current task's runtime statistics. Skip current tasks that
685 * are not in our scheduling class.
686 */
687static inline void
8ebc91d9
IM
688__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
689 unsigned long delta_exec)
bf0f6f24 690{
bbdba7c0 691 unsigned long delta_exec_weighted;
bf0f6f24 692
41acab88
LDM
693 schedstat_set(curr->statistics.exec_max,
694 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
695
696 curr->sum_exec_runtime += delta_exec;
7a62eabc 697 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 698 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 699
e9acbff6 700 curr->vruntime += delta_exec_weighted;
1af5f730 701 update_min_vruntime(cfs_rq);
bf0f6f24
IM
702}
703
b7cc0896 704static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 705{
429d43bc 706 struct sched_entity *curr = cfs_rq->curr;
305e6835 707 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
708 unsigned long delta_exec;
709
710 if (unlikely(!curr))
711 return;
712
713 /*
714 * Get the amount of time the current task was running
715 * since the last time we changed load (this cannot
716 * overflow on 32 bits):
717 */
8ebc91d9 718 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
719 if (!delta_exec)
720 return;
bf0f6f24 721
8ebc91d9
IM
722 __update_curr(cfs_rq, curr, delta_exec);
723 curr->exec_start = now;
d842de87
SV
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
736static inline void
5870db5b 737update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
41acab88 739 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
740}
741
bf0f6f24
IM
742/*
743 * Task is being enqueued - update stats:
744 */
d2417e5a 745static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
bf0f6f24
IM
747 /*
748 * Are we enqueueing a waiting task? (for current tasks
749 * a dequeue/enqueue event is a NOP)
750 */
429d43bc 751 if (se != cfs_rq->curr)
5870db5b 752 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
753}
754
bf0f6f24 755static void
9ef0a961 756update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
41acab88
LDM
758 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
759 rq_of(cfs_rq)->clock - se->statistics.wait_start));
760 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
761 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
762 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
763#ifdef CONFIG_SCHEDSTATS
764 if (entity_is_task(se)) {
765 trace_sched_stat_wait(task_of(se),
41acab88 766 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
767 }
768#endif
41acab88 769 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
770}
771
772static inline void
19b6a2e3 773update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 774{
bf0f6f24
IM
775 /*
776 * Mark the end of the wait period if dequeueing a
777 * waiting task:
778 */
429d43bc 779 if (se != cfs_rq->curr)
9ef0a961 780 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
781}
782
783/*
784 * We are picking a new current task - update its stats:
785 */
786static inline void
79303e9e 787update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
788{
789 /*
790 * We are starting a new run period:
791 */
305e6835 792 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
793}
794
bf0f6f24
IM
795/**************************************************
796 * Scheduling class queueing methods:
797 */
798
cbee9f88
PZ
799#ifdef CONFIG_NUMA_BALANCING
800/*
6e5fb223 801 * numa task sample period in ms
cbee9f88 802 */
6e5fb223 803unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
804unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
805unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
cbee9f88
PZ
813static void task_numa_placement(struct task_struct *p)
814{
2832bc19 815 int seq;
cbee9f88 816
2832bc19
HD
817 if (!p->mm) /* for example, ksmd faulting in a user's mm */
818 return;
819 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
820 if (p->numa_scan_seq == seq)
821 return;
822 p->numa_scan_seq = seq;
823
824 /* FIXME: Scheduling placement policy hints go here */
825}
826
827/*
828 * Got a PROT_NONE fault for a page on @node.
829 */
b8593bfd 830void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
831{
832 struct task_struct *p = current;
833
1a687c2e
MG
834 if (!sched_feat_numa(NUMA))
835 return;
836
cbee9f88
PZ
837 /* FIXME: Allocate task-specific structure for placement policy here */
838
fb003b80 839 /*
b8593bfd
MG
840 * If pages are properly placed (did not migrate) then scan slower.
841 * This is reset periodically in case of phase changes
fb003b80 842 */
b8593bfd
MG
843 if (!migrated)
844 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
845 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 846
cbee9f88
PZ
847 task_numa_placement(p);
848}
849
6e5fb223
PZ
850static void reset_ptenuma_scan(struct task_struct *p)
851{
852 ACCESS_ONCE(p->mm->numa_scan_seq)++;
853 p->mm->numa_scan_offset = 0;
854}
855
cbee9f88
PZ
856/*
857 * The expensive part of numa migration is done from task_work context.
858 * Triggered from task_tick_numa().
859 */
860void task_numa_work(struct callback_head *work)
861{
862 unsigned long migrate, next_scan, now = jiffies;
863 struct task_struct *p = current;
864 struct mm_struct *mm = p->mm;
6e5fb223 865 struct vm_area_struct *vma;
9f40604c
MG
866 unsigned long start, end;
867 long pages;
cbee9f88
PZ
868
869 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
870
871 work->next = work; /* protect against double add */
872 /*
873 * Who cares about NUMA placement when they're dying.
874 *
875 * NOTE: make sure not to dereference p->mm before this check,
876 * exit_task_work() happens _after_ exit_mm() so we could be called
877 * without p->mm even though we still had it when we enqueued this
878 * work.
879 */
880 if (p->flags & PF_EXITING)
881 return;
882
5bca2303
MG
883 /*
884 * We do not care about task placement until a task runs on a node
885 * other than the first one used by the address space. This is
886 * largely because migrations are driven by what CPU the task
887 * is running on. If it's never scheduled on another node, it'll
888 * not migrate so why bother trapping the fault.
889 */
890 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
891 mm->first_nid = numa_node_id();
892 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
893 /* Are we running on a new node yet? */
894 if (numa_node_id() == mm->first_nid &&
895 !sched_feat_numa(NUMA_FORCE))
896 return;
897
898 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
899 }
900
b8593bfd
MG
901 /*
902 * Reset the scan period if enough time has gone by. Objective is that
903 * scanning will be reduced if pages are properly placed. As tasks
904 * can enter different phases this needs to be re-examined. Lacking
905 * proper tracking of reference behaviour, this blunt hammer is used.
906 */
907 migrate = mm->numa_next_reset;
908 if (time_after(now, migrate)) {
909 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
910 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
911 xchg(&mm->numa_next_reset, next_scan);
912 }
913
cbee9f88
PZ
914 /*
915 * Enforce maximal scan/migration frequency..
916 */
917 migrate = mm->numa_next_scan;
918 if (time_before(now, migrate))
919 return;
920
921 if (p->numa_scan_period == 0)
922 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
923
fb003b80 924 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
925 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
926 return;
927
e14808b4
MG
928 /*
929 * Do not set pte_numa if the current running node is rate-limited.
930 * This loses statistics on the fault but if we are unwilling to
931 * migrate to this node, it is less likely we can do useful work
932 */
933 if (migrate_ratelimited(numa_node_id()))
934 return;
935
9f40604c
MG
936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
cbee9f88 941
6e5fb223 942 down_read(&mm->mmap_sem);
9f40604c 943 vma = find_vma(mm, start);
6e5fb223
PZ
944 if (!vma) {
945 reset_ptenuma_scan(p);
9f40604c 946 start = 0;
6e5fb223
PZ
947 vma = mm->mmap;
948 }
9f40604c 949 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
955 continue;
956
9f40604c
MG
957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
6e5fb223 962
9f40604c
MG
963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
cbee9f88 967 }
6e5fb223 968
9f40604c 969out:
6e5fb223
PZ
970 /*
971 * It is possible to reach the end of the VMA list but the last few VMAs are
972 * not guaranteed to the vma_migratable. If they are not, we would find the
973 * !migratable VMA on the next scan but not reset the scanner to the start
974 * so check it now.
975 */
976 if (vma)
9f40604c 977 mm->numa_scan_offset = start;
6e5fb223
PZ
978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
cbee9f88
PZ
981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1009 curr->node_stamp = now;
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
30cfdcfc
DA
1023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1027 if (!parent_entity(se))
029632fb 1028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
eb95308e 1031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1032#endif
30cfdcfc 1033 cfs_rq->nr_running++;
30cfdcfc
DA
1034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1040 if (!parent_entity(se))
029632fb 1041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1042 if (entity_is_task(se))
b87f1724 1043 list_del_init(&se->group_node);
30cfdcfc 1044 cfs_rq->nr_running--;
30cfdcfc
DA
1045}
1046
3ff6dcac
YZ
1047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
cf5f0acf
PZ
1049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
82958366
PT
1058 tg_weight = atomic64_read(&tg->load_avg);
1059 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
6d5ab293 1065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1066{
cf5f0acf 1067 long tg_weight, load, shares;
3ff6dcac 1068
cf5f0acf 1069 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1070 load = cfs_rq->load.weight;
3ff6dcac 1071
3ff6dcac 1072 shares = (tg->shares * load);
cf5f0acf
PZ
1073 if (tg_weight)
1074 shares /= tg_weight;
3ff6dcac
YZ
1075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
3ff6dcac 1083# else /* CONFIG_SMP */
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
3ff6dcac 1088# endif /* CONFIG_SMP */
2069dd75
PZ
1089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
19e5eebb
PT
1092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
2069dd75 1096 account_entity_dequeue(cfs_rq, se);
19e5eebb 1097 }
2069dd75
PZ
1098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
82958366
PT
1105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
6d5ab293 1107static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
3ff6dcac 1111 long shares;
2069dd75 1112
2069dd75
PZ
1113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1115 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1116 return;
3ff6dcac
YZ
1117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
6d5ab293 1121 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
f4e26b12
PT
1131/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1132#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1133/*
1134 * We choose a half-life close to 1 scheduling period.
1135 * Note: The tables below are dependent on this value.
1136 */
1137#define LOAD_AVG_PERIOD 32
1138#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1139#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1140
1141/* Precomputed fixed inverse multiplies for multiplication by y^n */
1142static const u32 runnable_avg_yN_inv[] = {
1143 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1144 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1145 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1146 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1147 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1148 0x85aac367, 0x82cd8698,
1149};
1150
1151/*
1152 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1153 * over-estimates when re-combining.
1154 */
1155static const u32 runnable_avg_yN_sum[] = {
1156 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1157 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1158 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1159};
1160
9d85f21c
PT
1161/*
1162 * Approximate:
1163 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1164 */
1165static __always_inline u64 decay_load(u64 val, u64 n)
1166{
5b51f2f8
PT
1167 unsigned int local_n;
1168
1169 if (!n)
1170 return val;
1171 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1172 return 0;
1173
1174 /* after bounds checking we can collapse to 32-bit */
1175 local_n = n;
1176
1177 /*
1178 * As y^PERIOD = 1/2, we can combine
1179 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1180 * With a look-up table which covers k^n (n<PERIOD)
1181 *
1182 * To achieve constant time decay_load.
1183 */
1184 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1185 val >>= local_n / LOAD_AVG_PERIOD;
1186 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1187 }
1188
5b51f2f8
PT
1189 val *= runnable_avg_yN_inv[local_n];
1190 /* We don't use SRR here since we always want to round down. */
1191 return val >> 32;
1192}
1193
1194/*
1195 * For updates fully spanning n periods, the contribution to runnable
1196 * average will be: \Sum 1024*y^n
1197 *
1198 * We can compute this reasonably efficiently by combining:
1199 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1200 */
1201static u32 __compute_runnable_contrib(u64 n)
1202{
1203 u32 contrib = 0;
1204
1205 if (likely(n <= LOAD_AVG_PERIOD))
1206 return runnable_avg_yN_sum[n];
1207 else if (unlikely(n >= LOAD_AVG_MAX_N))
1208 return LOAD_AVG_MAX;
1209
1210 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1211 do {
1212 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1213 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1214
1215 n -= LOAD_AVG_PERIOD;
1216 } while (n > LOAD_AVG_PERIOD);
1217
1218 contrib = decay_load(contrib, n);
1219 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1220}
1221
1222/*
1223 * We can represent the historical contribution to runnable average as the
1224 * coefficients of a geometric series. To do this we sub-divide our runnable
1225 * history into segments of approximately 1ms (1024us); label the segment that
1226 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1227 *
1228 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1229 * p0 p1 p2
1230 * (now) (~1ms ago) (~2ms ago)
1231 *
1232 * Let u_i denote the fraction of p_i that the entity was runnable.
1233 *
1234 * We then designate the fractions u_i as our co-efficients, yielding the
1235 * following representation of historical load:
1236 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1237 *
1238 * We choose y based on the with of a reasonably scheduling period, fixing:
1239 * y^32 = 0.5
1240 *
1241 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1242 * approximately half as much as the contribution to load within the last ms
1243 * (u_0).
1244 *
1245 * When a period "rolls over" and we have new u_0`, multiplying the previous
1246 * sum again by y is sufficient to update:
1247 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1248 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1249 */
1250static __always_inline int __update_entity_runnable_avg(u64 now,
1251 struct sched_avg *sa,
1252 int runnable)
1253{
5b51f2f8
PT
1254 u64 delta, periods;
1255 u32 runnable_contrib;
9d85f21c
PT
1256 int delta_w, decayed = 0;
1257
1258 delta = now - sa->last_runnable_update;
1259 /*
1260 * This should only happen when time goes backwards, which it
1261 * unfortunately does during sched clock init when we swap over to TSC.
1262 */
1263 if ((s64)delta < 0) {
1264 sa->last_runnable_update = now;
1265 return 0;
1266 }
1267
1268 /*
1269 * Use 1024ns as the unit of measurement since it's a reasonable
1270 * approximation of 1us and fast to compute.
1271 */
1272 delta >>= 10;
1273 if (!delta)
1274 return 0;
1275 sa->last_runnable_update = now;
1276
1277 /* delta_w is the amount already accumulated against our next period */
1278 delta_w = sa->runnable_avg_period % 1024;
1279 if (delta + delta_w >= 1024) {
1280 /* period roll-over */
1281 decayed = 1;
1282
1283 /*
1284 * Now that we know we're crossing a period boundary, figure
1285 * out how much from delta we need to complete the current
1286 * period and accrue it.
1287 */
1288 delta_w = 1024 - delta_w;
5b51f2f8
PT
1289 if (runnable)
1290 sa->runnable_avg_sum += delta_w;
1291 sa->runnable_avg_period += delta_w;
1292
1293 delta -= delta_w;
1294
1295 /* Figure out how many additional periods this update spans */
1296 periods = delta / 1024;
1297 delta %= 1024;
1298
1299 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1300 periods + 1);
1301 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1302 periods + 1);
1303
1304 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1305 runnable_contrib = __compute_runnable_contrib(periods);
1306 if (runnable)
1307 sa->runnable_avg_sum += runnable_contrib;
1308 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1309 }
1310
1311 /* Remainder of delta accrued against u_0` */
1312 if (runnable)
1313 sa->runnable_avg_sum += delta;
1314 sa->runnable_avg_period += delta;
1315
1316 return decayed;
1317}
1318
9ee474f5 1319/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1320static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1321{
1322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1323 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1324
1325 decays -= se->avg.decay_count;
1326 if (!decays)
aff3e498 1327 return 0;
9ee474f5
PT
1328
1329 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1330 se->avg.decay_count = 0;
aff3e498
PT
1331
1332 return decays;
9ee474f5
PT
1333}
1334
c566e8e9
PT
1335#ifdef CONFIG_FAIR_GROUP_SCHED
1336static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1337 int force_update)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 s64 tg_contrib;
1341
1342 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1343 tg_contrib -= cfs_rq->tg_load_contrib;
1344
1345 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1346 atomic64_add(tg_contrib, &tg->load_avg);
1347 cfs_rq->tg_load_contrib += tg_contrib;
1348 }
1349}
8165e145 1350
bb17f655
PT
1351/*
1352 * Aggregate cfs_rq runnable averages into an equivalent task_group
1353 * representation for computing load contributions.
1354 */
1355static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1356 struct cfs_rq *cfs_rq)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 long contrib;
1360
1361 /* The fraction of a cpu used by this cfs_rq */
1362 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1363 sa->runnable_avg_period + 1);
1364 contrib -= cfs_rq->tg_runnable_contrib;
1365
1366 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1367 atomic_add(contrib, &tg->runnable_avg);
1368 cfs_rq->tg_runnable_contrib += contrib;
1369 }
1370}
1371
8165e145
PT
1372static inline void __update_group_entity_contrib(struct sched_entity *se)
1373{
1374 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1375 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1376 int runnable_avg;
1377
8165e145
PT
1378 u64 contrib;
1379
1380 contrib = cfs_rq->tg_load_contrib * tg->shares;
1381 se->avg.load_avg_contrib = div64_u64(contrib,
1382 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1383
1384 /*
1385 * For group entities we need to compute a correction term in the case
1386 * that they are consuming <1 cpu so that we would contribute the same
1387 * load as a task of equal weight.
1388 *
1389 * Explicitly co-ordinating this measurement would be expensive, but
1390 * fortunately the sum of each cpus contribution forms a usable
1391 * lower-bound on the true value.
1392 *
1393 * Consider the aggregate of 2 contributions. Either they are disjoint
1394 * (and the sum represents true value) or they are disjoint and we are
1395 * understating by the aggregate of their overlap.
1396 *
1397 * Extending this to N cpus, for a given overlap, the maximum amount we
1398 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1399 * cpus that overlap for this interval and w_i is the interval width.
1400 *
1401 * On a small machine; the first term is well-bounded which bounds the
1402 * total error since w_i is a subset of the period. Whereas on a
1403 * larger machine, while this first term can be larger, if w_i is the
1404 * of consequential size guaranteed to see n_i*w_i quickly converge to
1405 * our upper bound of 1-cpu.
1406 */
1407 runnable_avg = atomic_read(&tg->runnable_avg);
1408 if (runnable_avg < NICE_0_LOAD) {
1409 se->avg.load_avg_contrib *= runnable_avg;
1410 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1411 }
8165e145 1412}
c566e8e9
PT
1413#else
1414static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1415 int force_update) {}
bb17f655
PT
1416static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1417 struct cfs_rq *cfs_rq) {}
8165e145 1418static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1419#endif
1420
8165e145
PT
1421static inline void __update_task_entity_contrib(struct sched_entity *se)
1422{
1423 u32 contrib;
1424
1425 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1426 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1427 contrib /= (se->avg.runnable_avg_period + 1);
1428 se->avg.load_avg_contrib = scale_load(contrib);
1429}
1430
2dac754e
PT
1431/* Compute the current contribution to load_avg by se, return any delta */
1432static long __update_entity_load_avg_contrib(struct sched_entity *se)
1433{
1434 long old_contrib = se->avg.load_avg_contrib;
1435
8165e145
PT
1436 if (entity_is_task(se)) {
1437 __update_task_entity_contrib(se);
1438 } else {
bb17f655 1439 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1440 __update_group_entity_contrib(se);
1441 }
2dac754e
PT
1442
1443 return se->avg.load_avg_contrib - old_contrib;
1444}
1445
9ee474f5
PT
1446static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1447 long load_contrib)
1448{
1449 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1450 cfs_rq->blocked_load_avg -= load_contrib;
1451 else
1452 cfs_rq->blocked_load_avg = 0;
1453}
1454
f1b17280
PT
1455static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1456
9d85f21c 1457/* Update a sched_entity's runnable average */
9ee474f5
PT
1458static inline void update_entity_load_avg(struct sched_entity *se,
1459 int update_cfs_rq)
9d85f21c 1460{
2dac754e
PT
1461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1462 long contrib_delta;
f1b17280 1463 u64 now;
2dac754e 1464
f1b17280
PT
1465 /*
1466 * For a group entity we need to use their owned cfs_rq_clock_task() in
1467 * case they are the parent of a throttled hierarchy.
1468 */
1469 if (entity_is_task(se))
1470 now = cfs_rq_clock_task(cfs_rq);
1471 else
1472 now = cfs_rq_clock_task(group_cfs_rq(se));
1473
1474 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1475 return;
1476
1477 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1478
1479 if (!update_cfs_rq)
1480 return;
1481
2dac754e
PT
1482 if (se->on_rq)
1483 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1484 else
1485 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1486}
1487
1488/*
1489 * Decay the load contributed by all blocked children and account this so that
1490 * their contribution may appropriately discounted when they wake up.
1491 */
aff3e498 1492static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1493{
f1b17280 1494 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1495 u64 decays;
1496
1497 decays = now - cfs_rq->last_decay;
aff3e498 1498 if (!decays && !force_update)
9ee474f5
PT
1499 return;
1500
aff3e498
PT
1501 if (atomic64_read(&cfs_rq->removed_load)) {
1502 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1503 subtract_blocked_load_contrib(cfs_rq, removed_load);
1504 }
9ee474f5 1505
aff3e498
PT
1506 if (decays) {
1507 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1508 decays);
1509 atomic64_add(decays, &cfs_rq->decay_counter);
1510 cfs_rq->last_decay = now;
1511 }
c566e8e9
PT
1512
1513 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1514}
18bf2805
BS
1515
1516static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1517{
1518 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1519 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1520}
2dac754e
PT
1521
1522/* Add the load generated by se into cfs_rq's child load-average */
1523static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1524 struct sched_entity *se,
1525 int wakeup)
2dac754e 1526{
aff3e498
PT
1527 /*
1528 * We track migrations using entity decay_count <= 0, on a wake-up
1529 * migration we use a negative decay count to track the remote decays
1530 * accumulated while sleeping.
1531 */
1532 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1533 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1534 if (se->avg.decay_count) {
1535 /*
1536 * In a wake-up migration we have to approximate the
1537 * time sleeping. This is because we can't synchronize
1538 * clock_task between the two cpus, and it is not
1539 * guaranteed to be read-safe. Instead, we can
1540 * approximate this using our carried decays, which are
1541 * explicitly atomically readable.
1542 */
1543 se->avg.last_runnable_update -= (-se->avg.decay_count)
1544 << 20;
1545 update_entity_load_avg(se, 0);
1546 /* Indicate that we're now synchronized and on-rq */
1547 se->avg.decay_count = 0;
1548 }
9ee474f5
PT
1549 wakeup = 0;
1550 } else {
1551 __synchronize_entity_decay(se);
1552 }
1553
aff3e498
PT
1554 /* migrated tasks did not contribute to our blocked load */
1555 if (wakeup) {
9ee474f5 1556 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1557 update_entity_load_avg(se, 0);
1558 }
9ee474f5 1559
2dac754e 1560 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1561 /* we force update consideration on load-balancer moves */
1562 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1563}
1564
9ee474f5
PT
1565/*
1566 * Remove se's load from this cfs_rq child load-average, if the entity is
1567 * transitioning to a blocked state we track its projected decay using
1568 * blocked_load_avg.
1569 */
2dac754e 1570static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1571 struct sched_entity *se,
1572 int sleep)
2dac754e 1573{
9ee474f5 1574 update_entity_load_avg(se, 1);
aff3e498
PT
1575 /* we force update consideration on load-balancer moves */
1576 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1577
2dac754e 1578 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1579 if (sleep) {
1580 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1581 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1582 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1583}
642dbc39
VG
1584
1585/*
1586 * Update the rq's load with the elapsed running time before entering
1587 * idle. if the last scheduled task is not a CFS task, idle_enter will
1588 * be the only way to update the runnable statistic.
1589 */
1590void idle_enter_fair(struct rq *this_rq)
1591{
1592 update_rq_runnable_avg(this_rq, 1);
1593}
1594
1595/*
1596 * Update the rq's load with the elapsed idle time before a task is
1597 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1598 * be the only way to update the runnable statistic.
1599 */
1600void idle_exit_fair(struct rq *this_rq)
1601{
1602 update_rq_runnable_avg(this_rq, 0);
1603}
1604
9d85f21c 1605#else
9ee474f5
PT
1606static inline void update_entity_load_avg(struct sched_entity *se,
1607 int update_cfs_rq) {}
18bf2805 1608static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1609static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1610 struct sched_entity *se,
1611 int wakeup) {}
2dac754e 1612static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1613 struct sched_entity *se,
1614 int sleep) {}
aff3e498
PT
1615static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1616 int force_update) {}
9d85f21c
PT
1617#endif
1618
2396af69 1619static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1620{
bf0f6f24 1621#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1622 struct task_struct *tsk = NULL;
1623
1624 if (entity_is_task(se))
1625 tsk = task_of(se);
1626
41acab88
LDM
1627 if (se->statistics.sleep_start) {
1628 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1629
1630 if ((s64)delta < 0)
1631 delta = 0;
1632
41acab88
LDM
1633 if (unlikely(delta > se->statistics.sleep_max))
1634 se->statistics.sleep_max = delta;
bf0f6f24 1635
8c79a045 1636 se->statistics.sleep_start = 0;
41acab88 1637 se->statistics.sum_sleep_runtime += delta;
9745512c 1638
768d0c27 1639 if (tsk) {
e414314c 1640 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1641 trace_sched_stat_sleep(tsk, delta);
1642 }
bf0f6f24 1643 }
41acab88
LDM
1644 if (se->statistics.block_start) {
1645 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1646
1647 if ((s64)delta < 0)
1648 delta = 0;
1649
41acab88
LDM
1650 if (unlikely(delta > se->statistics.block_max))
1651 se->statistics.block_max = delta;
bf0f6f24 1652
8c79a045 1653 se->statistics.block_start = 0;
41acab88 1654 se->statistics.sum_sleep_runtime += delta;
30084fbd 1655
e414314c 1656 if (tsk) {
8f0dfc34 1657 if (tsk->in_iowait) {
41acab88
LDM
1658 se->statistics.iowait_sum += delta;
1659 se->statistics.iowait_count++;
768d0c27 1660 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1661 }
1662
b781a602
AV
1663 trace_sched_stat_blocked(tsk, delta);
1664
e414314c
PZ
1665 /*
1666 * Blocking time is in units of nanosecs, so shift by
1667 * 20 to get a milliseconds-range estimation of the
1668 * amount of time that the task spent sleeping:
1669 */
1670 if (unlikely(prof_on == SLEEP_PROFILING)) {
1671 profile_hits(SLEEP_PROFILING,
1672 (void *)get_wchan(tsk),
1673 delta >> 20);
1674 }
1675 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1676 }
bf0f6f24
IM
1677 }
1678#endif
1679}
1680
ddc97297
PZ
1681static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1682{
1683#ifdef CONFIG_SCHED_DEBUG
1684 s64 d = se->vruntime - cfs_rq->min_vruntime;
1685
1686 if (d < 0)
1687 d = -d;
1688
1689 if (d > 3*sysctl_sched_latency)
1690 schedstat_inc(cfs_rq, nr_spread_over);
1691#endif
1692}
1693
aeb73b04
PZ
1694static void
1695place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1696{
1af5f730 1697 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1698
2cb8600e
PZ
1699 /*
1700 * The 'current' period is already promised to the current tasks,
1701 * however the extra weight of the new task will slow them down a
1702 * little, place the new task so that it fits in the slot that
1703 * stays open at the end.
1704 */
94dfb5e7 1705 if (initial && sched_feat(START_DEBIT))
f9c0b095 1706 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1707
a2e7a7eb 1708 /* sleeps up to a single latency don't count. */
5ca9880c 1709 if (!initial) {
a2e7a7eb 1710 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1711
a2e7a7eb
MG
1712 /*
1713 * Halve their sleep time's effect, to allow
1714 * for a gentler effect of sleepers:
1715 */
1716 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1717 thresh >>= 1;
51e0304c 1718
a2e7a7eb 1719 vruntime -= thresh;
aeb73b04
PZ
1720 }
1721
b5d9d734 1722 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1723 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1724}
1725
d3d9dc33
PT
1726static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1727
bf0f6f24 1728static void
88ec22d3 1729enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1730{
88ec22d3
PZ
1731 /*
1732 * Update the normalized vruntime before updating min_vruntime
1733 * through callig update_curr().
1734 */
371fd7e7 1735 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1736 se->vruntime += cfs_rq->min_vruntime;
1737
bf0f6f24 1738 /*
a2a2d680 1739 * Update run-time statistics of the 'current'.
bf0f6f24 1740 */
b7cc0896 1741 update_curr(cfs_rq);
f269ae04 1742 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1743 account_entity_enqueue(cfs_rq, se);
1744 update_cfs_shares(cfs_rq);
bf0f6f24 1745
88ec22d3 1746 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1747 place_entity(cfs_rq, se, 0);
2396af69 1748 enqueue_sleeper(cfs_rq, se);
e9acbff6 1749 }
bf0f6f24 1750
d2417e5a 1751 update_stats_enqueue(cfs_rq, se);
ddc97297 1752 check_spread(cfs_rq, se);
83b699ed
SV
1753 if (se != cfs_rq->curr)
1754 __enqueue_entity(cfs_rq, se);
2069dd75 1755 se->on_rq = 1;
3d4b47b4 1756
d3d9dc33 1757 if (cfs_rq->nr_running == 1) {
3d4b47b4 1758 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1759 check_enqueue_throttle(cfs_rq);
1760 }
bf0f6f24
IM
1761}
1762
2c13c919 1763static void __clear_buddies_last(struct sched_entity *se)
2002c695 1764{
2c13c919
RR
1765 for_each_sched_entity(se) {
1766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1767 if (cfs_rq->last == se)
1768 cfs_rq->last = NULL;
1769 else
1770 break;
1771 }
1772}
2002c695 1773
2c13c919
RR
1774static void __clear_buddies_next(struct sched_entity *se)
1775{
1776 for_each_sched_entity(se) {
1777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1778 if (cfs_rq->next == se)
1779 cfs_rq->next = NULL;
1780 else
1781 break;
1782 }
2002c695
PZ
1783}
1784
ac53db59
RR
1785static void __clear_buddies_skip(struct sched_entity *se)
1786{
1787 for_each_sched_entity(se) {
1788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1789 if (cfs_rq->skip == se)
1790 cfs_rq->skip = NULL;
1791 else
1792 break;
1793 }
1794}
1795
a571bbea
PZ
1796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1797{
2c13c919
RR
1798 if (cfs_rq->last == se)
1799 __clear_buddies_last(se);
1800
1801 if (cfs_rq->next == se)
1802 __clear_buddies_next(se);
ac53db59
RR
1803
1804 if (cfs_rq->skip == se)
1805 __clear_buddies_skip(se);
a571bbea
PZ
1806}
1807
6c16a6dc 1808static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1809
bf0f6f24 1810static void
371fd7e7 1811dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1812{
a2a2d680
DA
1813 /*
1814 * Update run-time statistics of the 'current'.
1815 */
1816 update_curr(cfs_rq);
17bc14b7 1817 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1818
19b6a2e3 1819 update_stats_dequeue(cfs_rq, se);
371fd7e7 1820 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1821#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1822 if (entity_is_task(se)) {
1823 struct task_struct *tsk = task_of(se);
1824
1825 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1826 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1827 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1828 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1829 }
db36cc7d 1830#endif
67e9fb2a
PZ
1831 }
1832
2002c695 1833 clear_buddies(cfs_rq, se);
4793241b 1834
83b699ed 1835 if (se != cfs_rq->curr)
30cfdcfc 1836 __dequeue_entity(cfs_rq, se);
17bc14b7 1837 se->on_rq = 0;
30cfdcfc 1838 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1839
1840 /*
1841 * Normalize the entity after updating the min_vruntime because the
1842 * update can refer to the ->curr item and we need to reflect this
1843 * movement in our normalized position.
1844 */
371fd7e7 1845 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1846 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1847
d8b4986d
PT
1848 /* return excess runtime on last dequeue */
1849 return_cfs_rq_runtime(cfs_rq);
1850
1e876231 1851 update_min_vruntime(cfs_rq);
17bc14b7 1852 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1853}
1854
1855/*
1856 * Preempt the current task with a newly woken task if needed:
1857 */
7c92e54f 1858static void
2e09bf55 1859check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1860{
11697830 1861 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1862 struct sched_entity *se;
1863 s64 delta;
11697830 1864
6d0f0ebd 1865 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1866 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1867 if (delta_exec > ideal_runtime) {
bf0f6f24 1868 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1869 /*
1870 * The current task ran long enough, ensure it doesn't get
1871 * re-elected due to buddy favours.
1872 */
1873 clear_buddies(cfs_rq, curr);
f685ceac
MG
1874 return;
1875 }
1876
1877 /*
1878 * Ensure that a task that missed wakeup preemption by a
1879 * narrow margin doesn't have to wait for a full slice.
1880 * This also mitigates buddy induced latencies under load.
1881 */
f685ceac
MG
1882 if (delta_exec < sysctl_sched_min_granularity)
1883 return;
1884
f4cfb33e
WX
1885 se = __pick_first_entity(cfs_rq);
1886 delta = curr->vruntime - se->vruntime;
f685ceac 1887
f4cfb33e
WX
1888 if (delta < 0)
1889 return;
d7d82944 1890
f4cfb33e
WX
1891 if (delta > ideal_runtime)
1892 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1893}
1894
83b699ed 1895static void
8494f412 1896set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1897{
83b699ed
SV
1898 /* 'current' is not kept within the tree. */
1899 if (se->on_rq) {
1900 /*
1901 * Any task has to be enqueued before it get to execute on
1902 * a CPU. So account for the time it spent waiting on the
1903 * runqueue.
1904 */
1905 update_stats_wait_end(cfs_rq, se);
1906 __dequeue_entity(cfs_rq, se);
1907 }
1908
79303e9e 1909 update_stats_curr_start(cfs_rq, se);
429d43bc 1910 cfs_rq->curr = se;
eba1ed4b
IM
1911#ifdef CONFIG_SCHEDSTATS
1912 /*
1913 * Track our maximum slice length, if the CPU's load is at
1914 * least twice that of our own weight (i.e. dont track it
1915 * when there are only lesser-weight tasks around):
1916 */
495eca49 1917 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1918 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1919 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1920 }
1921#endif
4a55b450 1922 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1923}
1924
3f3a4904
PZ
1925static int
1926wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1927
ac53db59
RR
1928/*
1929 * Pick the next process, keeping these things in mind, in this order:
1930 * 1) keep things fair between processes/task groups
1931 * 2) pick the "next" process, since someone really wants that to run
1932 * 3) pick the "last" process, for cache locality
1933 * 4) do not run the "skip" process, if something else is available
1934 */
f4b6755f 1935static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1936{
ac53db59 1937 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1938 struct sched_entity *left = se;
f4b6755f 1939
ac53db59
RR
1940 /*
1941 * Avoid running the skip buddy, if running something else can
1942 * be done without getting too unfair.
1943 */
1944 if (cfs_rq->skip == se) {
1945 struct sched_entity *second = __pick_next_entity(se);
1946 if (second && wakeup_preempt_entity(second, left) < 1)
1947 se = second;
1948 }
aa2ac252 1949
f685ceac
MG
1950 /*
1951 * Prefer last buddy, try to return the CPU to a preempted task.
1952 */
1953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1954 se = cfs_rq->last;
1955
ac53db59
RR
1956 /*
1957 * Someone really wants this to run. If it's not unfair, run it.
1958 */
1959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1960 se = cfs_rq->next;
1961
f685ceac 1962 clear_buddies(cfs_rq, se);
4793241b
PZ
1963
1964 return se;
aa2ac252
PZ
1965}
1966
d3d9dc33
PT
1967static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1968
ab6cde26 1969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1970{
1971 /*
1972 * If still on the runqueue then deactivate_task()
1973 * was not called and update_curr() has to be done:
1974 */
1975 if (prev->on_rq)
b7cc0896 1976 update_curr(cfs_rq);
bf0f6f24 1977
d3d9dc33
PT
1978 /* throttle cfs_rqs exceeding runtime */
1979 check_cfs_rq_runtime(cfs_rq);
1980
ddc97297 1981 check_spread(cfs_rq, prev);
30cfdcfc 1982 if (prev->on_rq) {
5870db5b 1983 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1984 /* Put 'current' back into the tree. */
1985 __enqueue_entity(cfs_rq, prev);
9d85f21c 1986 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1987 update_entity_load_avg(prev, 1);
30cfdcfc 1988 }
429d43bc 1989 cfs_rq->curr = NULL;
bf0f6f24
IM
1990}
1991
8f4d37ec
PZ
1992static void
1993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1994{
bf0f6f24 1995 /*
30cfdcfc 1996 * Update run-time statistics of the 'current'.
bf0f6f24 1997 */
30cfdcfc 1998 update_curr(cfs_rq);
bf0f6f24 1999
9d85f21c
PT
2000 /*
2001 * Ensure that runnable average is periodically updated.
2002 */
9ee474f5 2003 update_entity_load_avg(curr, 1);
aff3e498 2004 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2005
8f4d37ec
PZ
2006#ifdef CONFIG_SCHED_HRTICK
2007 /*
2008 * queued ticks are scheduled to match the slice, so don't bother
2009 * validating it and just reschedule.
2010 */
983ed7a6
HH
2011 if (queued) {
2012 resched_task(rq_of(cfs_rq)->curr);
2013 return;
2014 }
8f4d37ec
PZ
2015 /*
2016 * don't let the period tick interfere with the hrtick preemption
2017 */
2018 if (!sched_feat(DOUBLE_TICK) &&
2019 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2020 return;
2021#endif
2022
2c2efaed 2023 if (cfs_rq->nr_running > 1)
2e09bf55 2024 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2025}
2026
ab84d31e
PT
2027
2028/**************************************************
2029 * CFS bandwidth control machinery
2030 */
2031
2032#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2033
2034#ifdef HAVE_JUMP_LABEL
c5905afb 2035static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2036
2037static inline bool cfs_bandwidth_used(void)
2038{
c5905afb 2039 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2040}
2041
2042void account_cfs_bandwidth_used(int enabled, int was_enabled)
2043{
2044 /* only need to count groups transitioning between enabled/!enabled */
2045 if (enabled && !was_enabled)
c5905afb 2046 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2047 else if (!enabled && was_enabled)
c5905afb 2048 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2049}
2050#else /* HAVE_JUMP_LABEL */
2051static bool cfs_bandwidth_used(void)
2052{
2053 return true;
2054}
2055
2056void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2057#endif /* HAVE_JUMP_LABEL */
2058
ab84d31e
PT
2059/*
2060 * default period for cfs group bandwidth.
2061 * default: 0.1s, units: nanoseconds
2062 */
2063static inline u64 default_cfs_period(void)
2064{
2065 return 100000000ULL;
2066}
ec12cb7f
PT
2067
2068static inline u64 sched_cfs_bandwidth_slice(void)
2069{
2070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2071}
2072
a9cf55b2
PT
2073/*
2074 * Replenish runtime according to assigned quota and update expiration time.
2075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2076 * additional synchronization around rq->lock.
2077 *
2078 * requires cfs_b->lock
2079 */
029632fb 2080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2081{
2082 u64 now;
2083
2084 if (cfs_b->quota == RUNTIME_INF)
2085 return;
2086
2087 now = sched_clock_cpu(smp_processor_id());
2088 cfs_b->runtime = cfs_b->quota;
2089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2090}
2091
029632fb
PZ
2092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2093{
2094 return &tg->cfs_bandwidth;
2095}
2096
f1b17280
PT
2097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2099{
2100 if (unlikely(cfs_rq->throttle_count))
2101 return cfs_rq->throttled_clock_task;
2102
2103 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2104}
2105
85dac906
PT
2106/* returns 0 on failure to allocate runtime */
2107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2108{
2109 struct task_group *tg = cfs_rq->tg;
2110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2111 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2112
2113 /* note: this is a positive sum as runtime_remaining <= 0 */
2114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2115
2116 raw_spin_lock(&cfs_b->lock);
2117 if (cfs_b->quota == RUNTIME_INF)
2118 amount = min_amount;
58088ad0 2119 else {
a9cf55b2
PT
2120 /*
2121 * If the bandwidth pool has become inactive, then at least one
2122 * period must have elapsed since the last consumption.
2123 * Refresh the global state and ensure bandwidth timer becomes
2124 * active.
2125 */
2126 if (!cfs_b->timer_active) {
2127 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2128 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2129 }
58088ad0
PT
2130
2131 if (cfs_b->runtime > 0) {
2132 amount = min(cfs_b->runtime, min_amount);
2133 cfs_b->runtime -= amount;
2134 cfs_b->idle = 0;
2135 }
ec12cb7f 2136 }
a9cf55b2 2137 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2138 raw_spin_unlock(&cfs_b->lock);
2139
2140 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2141 /*
2142 * we may have advanced our local expiration to account for allowed
2143 * spread between our sched_clock and the one on which runtime was
2144 * issued.
2145 */
2146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2147 cfs_rq->runtime_expires = expires;
85dac906
PT
2148
2149 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2150}
2151
a9cf55b2
PT
2152/*
2153 * Note: This depends on the synchronization provided by sched_clock and the
2154 * fact that rq->clock snapshots this value.
2155 */
2156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2157{
a9cf55b2
PT
2158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2159 struct rq *rq = rq_of(cfs_rq);
2160
2161 /* if the deadline is ahead of our clock, nothing to do */
2162 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2163 return;
2164
a9cf55b2
PT
2165 if (cfs_rq->runtime_remaining < 0)
2166 return;
2167
2168 /*
2169 * If the local deadline has passed we have to consider the
2170 * possibility that our sched_clock is 'fast' and the global deadline
2171 * has not truly expired.
2172 *
2173 * Fortunately we can check determine whether this the case by checking
2174 * whether the global deadline has advanced.
2175 */
2176
2177 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2178 /* extend local deadline, drift is bounded above by 2 ticks */
2179 cfs_rq->runtime_expires += TICK_NSEC;
2180 } else {
2181 /* global deadline is ahead, expiration has passed */
2182 cfs_rq->runtime_remaining = 0;
2183 }
2184}
2185
2186static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2187 unsigned long delta_exec)
2188{
2189 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2190 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2191 expire_cfs_rq_runtime(cfs_rq);
2192
2193 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2194 return;
2195
85dac906
PT
2196 /*
2197 * if we're unable to extend our runtime we resched so that the active
2198 * hierarchy can be throttled
2199 */
2200 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2201 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2202}
2203
6c16a6dc
PZ
2204static __always_inline
2205void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2206{
56f570e5 2207 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2208 return;
2209
2210 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2211}
2212
85dac906
PT
2213static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2214{
56f570e5 2215 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2216}
2217
64660c86
PT
2218/* check whether cfs_rq, or any parent, is throttled */
2219static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2220{
56f570e5 2221 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2222}
2223
2224/*
2225 * Ensure that neither of the group entities corresponding to src_cpu or
2226 * dest_cpu are members of a throttled hierarchy when performing group
2227 * load-balance operations.
2228 */
2229static inline int throttled_lb_pair(struct task_group *tg,
2230 int src_cpu, int dest_cpu)
2231{
2232 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2233
2234 src_cfs_rq = tg->cfs_rq[src_cpu];
2235 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2236
2237 return throttled_hierarchy(src_cfs_rq) ||
2238 throttled_hierarchy(dest_cfs_rq);
2239}
2240
2241/* updated child weight may affect parent so we have to do this bottom up */
2242static int tg_unthrottle_up(struct task_group *tg, void *data)
2243{
2244 struct rq *rq = data;
2245 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2246
2247 cfs_rq->throttle_count--;
2248#ifdef CONFIG_SMP
2249 if (!cfs_rq->throttle_count) {
f1b17280
PT
2250 /* adjust cfs_rq_clock_task() */
2251 cfs_rq->throttled_clock_task_time += rq->clock_task -
2252 cfs_rq->throttled_clock_task;
64660c86
PT
2253 }
2254#endif
2255
2256 return 0;
2257}
2258
2259static int tg_throttle_down(struct task_group *tg, void *data)
2260{
2261 struct rq *rq = data;
2262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2263
82958366
PT
2264 /* group is entering throttled state, stop time */
2265 if (!cfs_rq->throttle_count)
f1b17280 2266 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2267 cfs_rq->throttle_count++;
2268
2269 return 0;
2270}
2271
d3d9dc33 2272static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2273{
2274 struct rq *rq = rq_of(cfs_rq);
2275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2276 struct sched_entity *se;
2277 long task_delta, dequeue = 1;
2278
2279 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2280
f1b17280 2281 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2282 rcu_read_lock();
2283 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2284 rcu_read_unlock();
85dac906
PT
2285
2286 task_delta = cfs_rq->h_nr_running;
2287 for_each_sched_entity(se) {
2288 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2289 /* throttled entity or throttle-on-deactivate */
2290 if (!se->on_rq)
2291 break;
2292
2293 if (dequeue)
2294 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2295 qcfs_rq->h_nr_running -= task_delta;
2296
2297 if (qcfs_rq->load.weight)
2298 dequeue = 0;
2299 }
2300
2301 if (!se)
2302 rq->nr_running -= task_delta;
2303
2304 cfs_rq->throttled = 1;
f1b17280 2305 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2306 raw_spin_lock(&cfs_b->lock);
2307 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2308 raw_spin_unlock(&cfs_b->lock);
2309}
2310
029632fb 2311void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2312{
2313 struct rq *rq = rq_of(cfs_rq);
2314 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2315 struct sched_entity *se;
2316 int enqueue = 1;
2317 long task_delta;
2318
2319 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2320
2321 cfs_rq->throttled = 0;
1a55af2e
FW
2322
2323 update_rq_clock(rq);
2324
671fd9da 2325 raw_spin_lock(&cfs_b->lock);
f1b17280 2326 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2327 list_del_rcu(&cfs_rq->throttled_list);
2328 raw_spin_unlock(&cfs_b->lock);
2329
64660c86
PT
2330 /* update hierarchical throttle state */
2331 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2332
671fd9da
PT
2333 if (!cfs_rq->load.weight)
2334 return;
2335
2336 task_delta = cfs_rq->h_nr_running;
2337 for_each_sched_entity(se) {
2338 if (se->on_rq)
2339 enqueue = 0;
2340
2341 cfs_rq = cfs_rq_of(se);
2342 if (enqueue)
2343 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2344 cfs_rq->h_nr_running += task_delta;
2345
2346 if (cfs_rq_throttled(cfs_rq))
2347 break;
2348 }
2349
2350 if (!se)
2351 rq->nr_running += task_delta;
2352
2353 /* determine whether we need to wake up potentially idle cpu */
2354 if (rq->curr == rq->idle && rq->cfs.nr_running)
2355 resched_task(rq->curr);
2356}
2357
2358static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2359 u64 remaining, u64 expires)
2360{
2361 struct cfs_rq *cfs_rq;
2362 u64 runtime = remaining;
2363
2364 rcu_read_lock();
2365 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2366 throttled_list) {
2367 struct rq *rq = rq_of(cfs_rq);
2368
2369 raw_spin_lock(&rq->lock);
2370 if (!cfs_rq_throttled(cfs_rq))
2371 goto next;
2372
2373 runtime = -cfs_rq->runtime_remaining + 1;
2374 if (runtime > remaining)
2375 runtime = remaining;
2376 remaining -= runtime;
2377
2378 cfs_rq->runtime_remaining += runtime;
2379 cfs_rq->runtime_expires = expires;
2380
2381 /* we check whether we're throttled above */
2382 if (cfs_rq->runtime_remaining > 0)
2383 unthrottle_cfs_rq(cfs_rq);
2384
2385next:
2386 raw_spin_unlock(&rq->lock);
2387
2388 if (!remaining)
2389 break;
2390 }
2391 rcu_read_unlock();
2392
2393 return remaining;
2394}
2395
58088ad0
PT
2396/*
2397 * Responsible for refilling a task_group's bandwidth and unthrottling its
2398 * cfs_rqs as appropriate. If there has been no activity within the last
2399 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2400 * used to track this state.
2401 */
2402static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2403{
671fd9da
PT
2404 u64 runtime, runtime_expires;
2405 int idle = 1, throttled;
58088ad0
PT
2406
2407 raw_spin_lock(&cfs_b->lock);
2408 /* no need to continue the timer with no bandwidth constraint */
2409 if (cfs_b->quota == RUNTIME_INF)
2410 goto out_unlock;
2411
671fd9da
PT
2412 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2413 /* idle depends on !throttled (for the case of a large deficit) */
2414 idle = cfs_b->idle && !throttled;
e8da1b18 2415 cfs_b->nr_periods += overrun;
671fd9da 2416
a9cf55b2
PT
2417 /* if we're going inactive then everything else can be deferred */
2418 if (idle)
2419 goto out_unlock;
2420
2421 __refill_cfs_bandwidth_runtime(cfs_b);
2422
671fd9da
PT
2423 if (!throttled) {
2424 /* mark as potentially idle for the upcoming period */
2425 cfs_b->idle = 1;
2426 goto out_unlock;
2427 }
2428
e8da1b18
NR
2429 /* account preceding periods in which throttling occurred */
2430 cfs_b->nr_throttled += overrun;
2431
671fd9da
PT
2432 /*
2433 * There are throttled entities so we must first use the new bandwidth
2434 * to unthrottle them before making it generally available. This
2435 * ensures that all existing debts will be paid before a new cfs_rq is
2436 * allowed to run.
2437 */
2438 runtime = cfs_b->runtime;
2439 runtime_expires = cfs_b->runtime_expires;
2440 cfs_b->runtime = 0;
2441
2442 /*
2443 * This check is repeated as we are holding onto the new bandwidth
2444 * while we unthrottle. This can potentially race with an unthrottled
2445 * group trying to acquire new bandwidth from the global pool.
2446 */
2447 while (throttled && runtime > 0) {
2448 raw_spin_unlock(&cfs_b->lock);
2449 /* we can't nest cfs_b->lock while distributing bandwidth */
2450 runtime = distribute_cfs_runtime(cfs_b, runtime,
2451 runtime_expires);
2452 raw_spin_lock(&cfs_b->lock);
2453
2454 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2455 }
58088ad0 2456
671fd9da
PT
2457 /* return (any) remaining runtime */
2458 cfs_b->runtime = runtime;
2459 /*
2460 * While we are ensured activity in the period following an
2461 * unthrottle, this also covers the case in which the new bandwidth is
2462 * insufficient to cover the existing bandwidth deficit. (Forcing the
2463 * timer to remain active while there are any throttled entities.)
2464 */
2465 cfs_b->idle = 0;
58088ad0
PT
2466out_unlock:
2467 if (idle)
2468 cfs_b->timer_active = 0;
2469 raw_spin_unlock(&cfs_b->lock);
2470
2471 return idle;
2472}
d3d9dc33 2473
d8b4986d
PT
2474/* a cfs_rq won't donate quota below this amount */
2475static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2476/* minimum remaining period time to redistribute slack quota */
2477static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2478/* how long we wait to gather additional slack before distributing */
2479static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2480
2481/* are we near the end of the current quota period? */
2482static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2483{
2484 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2485 u64 remaining;
2486
2487 /* if the call-back is running a quota refresh is already occurring */
2488 if (hrtimer_callback_running(refresh_timer))
2489 return 1;
2490
2491 /* is a quota refresh about to occur? */
2492 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2493 if (remaining < min_expire)
2494 return 1;
2495
2496 return 0;
2497}
2498
2499static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2500{
2501 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2502
2503 /* if there's a quota refresh soon don't bother with slack */
2504 if (runtime_refresh_within(cfs_b, min_left))
2505 return;
2506
2507 start_bandwidth_timer(&cfs_b->slack_timer,
2508 ns_to_ktime(cfs_bandwidth_slack_period));
2509}
2510
2511/* we know any runtime found here is valid as update_curr() precedes return */
2512static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2513{
2514 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2515 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2516
2517 if (slack_runtime <= 0)
2518 return;
2519
2520 raw_spin_lock(&cfs_b->lock);
2521 if (cfs_b->quota != RUNTIME_INF &&
2522 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2523 cfs_b->runtime += slack_runtime;
2524
2525 /* we are under rq->lock, defer unthrottling using a timer */
2526 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2527 !list_empty(&cfs_b->throttled_cfs_rq))
2528 start_cfs_slack_bandwidth(cfs_b);
2529 }
2530 raw_spin_unlock(&cfs_b->lock);
2531
2532 /* even if it's not valid for return we don't want to try again */
2533 cfs_rq->runtime_remaining -= slack_runtime;
2534}
2535
2536static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2537{
56f570e5
PT
2538 if (!cfs_bandwidth_used())
2539 return;
2540
fccfdc6f 2541 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2542 return;
2543
2544 __return_cfs_rq_runtime(cfs_rq);
2545}
2546
2547/*
2548 * This is done with a timer (instead of inline with bandwidth return) since
2549 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2550 */
2551static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2552{
2553 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2554 u64 expires;
2555
2556 /* confirm we're still not at a refresh boundary */
2557 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2558 return;
2559
2560 raw_spin_lock(&cfs_b->lock);
2561 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2562 runtime = cfs_b->runtime;
2563 cfs_b->runtime = 0;
2564 }
2565 expires = cfs_b->runtime_expires;
2566 raw_spin_unlock(&cfs_b->lock);
2567
2568 if (!runtime)
2569 return;
2570
2571 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2572
2573 raw_spin_lock(&cfs_b->lock);
2574 if (expires == cfs_b->runtime_expires)
2575 cfs_b->runtime = runtime;
2576 raw_spin_unlock(&cfs_b->lock);
2577}
2578
d3d9dc33
PT
2579/*
2580 * When a group wakes up we want to make sure that its quota is not already
2581 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2582 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2583 */
2584static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2585{
56f570e5
PT
2586 if (!cfs_bandwidth_used())
2587 return;
2588
d3d9dc33
PT
2589 /* an active group must be handled by the update_curr()->put() path */
2590 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2591 return;
2592
2593 /* ensure the group is not already throttled */
2594 if (cfs_rq_throttled(cfs_rq))
2595 return;
2596
2597 /* update runtime allocation */
2598 account_cfs_rq_runtime(cfs_rq, 0);
2599 if (cfs_rq->runtime_remaining <= 0)
2600 throttle_cfs_rq(cfs_rq);
2601}
2602
2603/* conditionally throttle active cfs_rq's from put_prev_entity() */
2604static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2605{
56f570e5
PT
2606 if (!cfs_bandwidth_used())
2607 return;
2608
d3d9dc33
PT
2609 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2610 return;
2611
2612 /*
2613 * it's possible for a throttled entity to be forced into a running
2614 * state (e.g. set_curr_task), in this case we're finished.
2615 */
2616 if (cfs_rq_throttled(cfs_rq))
2617 return;
2618
2619 throttle_cfs_rq(cfs_rq);
2620}
029632fb
PZ
2621
2622static inline u64 default_cfs_period(void);
2623static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2624static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2625
2626static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2627{
2628 struct cfs_bandwidth *cfs_b =
2629 container_of(timer, struct cfs_bandwidth, slack_timer);
2630 do_sched_cfs_slack_timer(cfs_b);
2631
2632 return HRTIMER_NORESTART;
2633}
2634
2635static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2636{
2637 struct cfs_bandwidth *cfs_b =
2638 container_of(timer, struct cfs_bandwidth, period_timer);
2639 ktime_t now;
2640 int overrun;
2641 int idle = 0;
2642
2643 for (;;) {
2644 now = hrtimer_cb_get_time(timer);
2645 overrun = hrtimer_forward(timer, now, cfs_b->period);
2646
2647 if (!overrun)
2648 break;
2649
2650 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2651 }
2652
2653 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2654}
2655
2656void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2657{
2658 raw_spin_lock_init(&cfs_b->lock);
2659 cfs_b->runtime = 0;
2660 cfs_b->quota = RUNTIME_INF;
2661 cfs_b->period = ns_to_ktime(default_cfs_period());
2662
2663 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2664 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2665 cfs_b->period_timer.function = sched_cfs_period_timer;
2666 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2667 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2668}
2669
2670static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2671{
2672 cfs_rq->runtime_enabled = 0;
2673 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2674}
2675
2676/* requires cfs_b->lock, may release to reprogram timer */
2677void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2678{
2679 /*
2680 * The timer may be active because we're trying to set a new bandwidth
2681 * period or because we're racing with the tear-down path
2682 * (timer_active==0 becomes visible before the hrtimer call-back
2683 * terminates). In either case we ensure that it's re-programmed
2684 */
2685 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2686 raw_spin_unlock(&cfs_b->lock);
2687 /* ensure cfs_b->lock is available while we wait */
2688 hrtimer_cancel(&cfs_b->period_timer);
2689
2690 raw_spin_lock(&cfs_b->lock);
2691 /* if someone else restarted the timer then we're done */
2692 if (cfs_b->timer_active)
2693 return;
2694 }
2695
2696 cfs_b->timer_active = 1;
2697 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2698}
2699
2700static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2701{
2702 hrtimer_cancel(&cfs_b->period_timer);
2703 hrtimer_cancel(&cfs_b->slack_timer);
2704}
2705
38dc3348 2706static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2707{
2708 struct cfs_rq *cfs_rq;
2709
2710 for_each_leaf_cfs_rq(rq, cfs_rq) {
2711 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2712
2713 if (!cfs_rq->runtime_enabled)
2714 continue;
2715
2716 /*
2717 * clock_task is not advancing so we just need to make sure
2718 * there's some valid quota amount
2719 */
2720 cfs_rq->runtime_remaining = cfs_b->quota;
2721 if (cfs_rq_throttled(cfs_rq))
2722 unthrottle_cfs_rq(cfs_rq);
2723 }
2724}
2725
2726#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2727static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2728{
2729 return rq_of(cfs_rq)->clock_task;
2730}
2731
2732static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2733 unsigned long delta_exec) {}
d3d9dc33
PT
2734static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2735static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2736static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2737
2738static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2739{
2740 return 0;
2741}
64660c86
PT
2742
2743static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2744{
2745 return 0;
2746}
2747
2748static inline int throttled_lb_pair(struct task_group *tg,
2749 int src_cpu, int dest_cpu)
2750{
2751 return 0;
2752}
029632fb
PZ
2753
2754void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2755
2756#ifdef CONFIG_FAIR_GROUP_SCHED
2757static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2758#endif
2759
029632fb
PZ
2760static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2761{
2762 return NULL;
2763}
2764static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2765static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2766
2767#endif /* CONFIG_CFS_BANDWIDTH */
2768
bf0f6f24
IM
2769/**************************************************
2770 * CFS operations on tasks:
2771 */
2772
8f4d37ec
PZ
2773#ifdef CONFIG_SCHED_HRTICK
2774static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2775{
8f4d37ec
PZ
2776 struct sched_entity *se = &p->se;
2777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2778
2779 WARN_ON(task_rq(p) != rq);
2780
b39e66ea 2781 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2782 u64 slice = sched_slice(cfs_rq, se);
2783 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2784 s64 delta = slice - ran;
2785
2786 if (delta < 0) {
2787 if (rq->curr == p)
2788 resched_task(p);
2789 return;
2790 }
2791
2792 /*
2793 * Don't schedule slices shorter than 10000ns, that just
2794 * doesn't make sense. Rely on vruntime for fairness.
2795 */
31656519 2796 if (rq->curr != p)
157124c1 2797 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2798
31656519 2799 hrtick_start(rq, delta);
8f4d37ec
PZ
2800 }
2801}
a4c2f00f
PZ
2802
2803/*
2804 * called from enqueue/dequeue and updates the hrtick when the
2805 * current task is from our class and nr_running is low enough
2806 * to matter.
2807 */
2808static void hrtick_update(struct rq *rq)
2809{
2810 struct task_struct *curr = rq->curr;
2811
b39e66ea 2812 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2813 return;
2814
2815 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2816 hrtick_start_fair(rq, curr);
2817}
55e12e5e 2818#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2819static inline void
2820hrtick_start_fair(struct rq *rq, struct task_struct *p)
2821{
2822}
a4c2f00f
PZ
2823
2824static inline void hrtick_update(struct rq *rq)
2825{
2826}
8f4d37ec
PZ
2827#endif
2828
bf0f6f24
IM
2829/*
2830 * The enqueue_task method is called before nr_running is
2831 * increased. Here we update the fair scheduling stats and
2832 * then put the task into the rbtree:
2833 */
ea87bb78 2834static void
371fd7e7 2835enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2836{
2837 struct cfs_rq *cfs_rq;
62fb1851 2838 struct sched_entity *se = &p->se;
bf0f6f24
IM
2839
2840 for_each_sched_entity(se) {
62fb1851 2841 if (se->on_rq)
bf0f6f24
IM
2842 break;
2843 cfs_rq = cfs_rq_of(se);
88ec22d3 2844 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2845
2846 /*
2847 * end evaluation on encountering a throttled cfs_rq
2848 *
2849 * note: in the case of encountering a throttled cfs_rq we will
2850 * post the final h_nr_running increment below.
2851 */
2852 if (cfs_rq_throttled(cfs_rq))
2853 break;
953bfcd1 2854 cfs_rq->h_nr_running++;
85dac906 2855
88ec22d3 2856 flags = ENQUEUE_WAKEUP;
bf0f6f24 2857 }
8f4d37ec 2858
2069dd75 2859 for_each_sched_entity(se) {
0f317143 2860 cfs_rq = cfs_rq_of(se);
953bfcd1 2861 cfs_rq->h_nr_running++;
2069dd75 2862
85dac906
PT
2863 if (cfs_rq_throttled(cfs_rq))
2864 break;
2865
17bc14b7 2866 update_cfs_shares(cfs_rq);
9ee474f5 2867 update_entity_load_avg(se, 1);
2069dd75
PZ
2868 }
2869
18bf2805
BS
2870 if (!se) {
2871 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2872 inc_nr_running(rq);
18bf2805 2873 }
a4c2f00f 2874 hrtick_update(rq);
bf0f6f24
IM
2875}
2876
2f36825b
VP
2877static void set_next_buddy(struct sched_entity *se);
2878
bf0f6f24
IM
2879/*
2880 * The dequeue_task method is called before nr_running is
2881 * decreased. We remove the task from the rbtree and
2882 * update the fair scheduling stats:
2883 */
371fd7e7 2884static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2885{
2886 struct cfs_rq *cfs_rq;
62fb1851 2887 struct sched_entity *se = &p->se;
2f36825b 2888 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2889
2890 for_each_sched_entity(se) {
2891 cfs_rq = cfs_rq_of(se);
371fd7e7 2892 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2893
2894 /*
2895 * end evaluation on encountering a throttled cfs_rq
2896 *
2897 * note: in the case of encountering a throttled cfs_rq we will
2898 * post the final h_nr_running decrement below.
2899 */
2900 if (cfs_rq_throttled(cfs_rq))
2901 break;
953bfcd1 2902 cfs_rq->h_nr_running--;
2069dd75 2903
bf0f6f24 2904 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2905 if (cfs_rq->load.weight) {
2906 /*
2907 * Bias pick_next to pick a task from this cfs_rq, as
2908 * p is sleeping when it is within its sched_slice.
2909 */
2910 if (task_sleep && parent_entity(se))
2911 set_next_buddy(parent_entity(se));
9598c82d
PT
2912
2913 /* avoid re-evaluating load for this entity */
2914 se = parent_entity(se);
bf0f6f24 2915 break;
2f36825b 2916 }
371fd7e7 2917 flags |= DEQUEUE_SLEEP;
bf0f6f24 2918 }
8f4d37ec 2919
2069dd75 2920 for_each_sched_entity(se) {
0f317143 2921 cfs_rq = cfs_rq_of(se);
953bfcd1 2922 cfs_rq->h_nr_running--;
2069dd75 2923
85dac906
PT
2924 if (cfs_rq_throttled(cfs_rq))
2925 break;
2926
17bc14b7 2927 update_cfs_shares(cfs_rq);
9ee474f5 2928 update_entity_load_avg(se, 1);
2069dd75
PZ
2929 }
2930
18bf2805 2931 if (!se) {
85dac906 2932 dec_nr_running(rq);
18bf2805
BS
2933 update_rq_runnable_avg(rq, 1);
2934 }
a4c2f00f 2935 hrtick_update(rq);
bf0f6f24
IM
2936}
2937
e7693a36 2938#ifdef CONFIG_SMP
029632fb
PZ
2939/* Used instead of source_load when we know the type == 0 */
2940static unsigned long weighted_cpuload(const int cpu)
2941{
2942 return cpu_rq(cpu)->load.weight;
2943}
2944
2945/*
2946 * Return a low guess at the load of a migration-source cpu weighted
2947 * according to the scheduling class and "nice" value.
2948 *
2949 * We want to under-estimate the load of migration sources, to
2950 * balance conservatively.
2951 */
2952static unsigned long source_load(int cpu, int type)
2953{
2954 struct rq *rq = cpu_rq(cpu);
2955 unsigned long total = weighted_cpuload(cpu);
2956
2957 if (type == 0 || !sched_feat(LB_BIAS))
2958 return total;
2959
2960 return min(rq->cpu_load[type-1], total);
2961}
2962
2963/*
2964 * Return a high guess at the load of a migration-target cpu weighted
2965 * according to the scheduling class and "nice" value.
2966 */
2967static unsigned long target_load(int cpu, int type)
2968{
2969 struct rq *rq = cpu_rq(cpu);
2970 unsigned long total = weighted_cpuload(cpu);
2971
2972 if (type == 0 || !sched_feat(LB_BIAS))
2973 return total;
2974
2975 return max(rq->cpu_load[type-1], total);
2976}
2977
2978static unsigned long power_of(int cpu)
2979{
2980 return cpu_rq(cpu)->cpu_power;
2981}
2982
2983static unsigned long cpu_avg_load_per_task(int cpu)
2984{
2985 struct rq *rq = cpu_rq(cpu);
2986 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2987
2988 if (nr_running)
2989 return rq->load.weight / nr_running;
2990
2991 return 0;
2992}
2993
098fb9db 2994
74f8e4b2 2995static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2996{
2997 struct sched_entity *se = &p->se;
2998 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2999 u64 min_vruntime;
3000
3001#ifndef CONFIG_64BIT
3002 u64 min_vruntime_copy;
88ec22d3 3003
3fe1698b
PZ
3004 do {
3005 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3006 smp_rmb();
3007 min_vruntime = cfs_rq->min_vruntime;
3008 } while (min_vruntime != min_vruntime_copy);
3009#else
3010 min_vruntime = cfs_rq->min_vruntime;
3011#endif
88ec22d3 3012
3fe1698b 3013 se->vruntime -= min_vruntime;
88ec22d3
PZ
3014}
3015
bb3469ac 3016#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3017/*
3018 * effective_load() calculates the load change as seen from the root_task_group
3019 *
3020 * Adding load to a group doesn't make a group heavier, but can cause movement
3021 * of group shares between cpus. Assuming the shares were perfectly aligned one
3022 * can calculate the shift in shares.
cf5f0acf
PZ
3023 *
3024 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3025 * on this @cpu and results in a total addition (subtraction) of @wg to the
3026 * total group weight.
3027 *
3028 * Given a runqueue weight distribution (rw_i) we can compute a shares
3029 * distribution (s_i) using:
3030 *
3031 * s_i = rw_i / \Sum rw_j (1)
3032 *
3033 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3034 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3035 * shares distribution (s_i):
3036 *
3037 * rw_i = { 2, 4, 1, 0 }
3038 * s_i = { 2/7, 4/7, 1/7, 0 }
3039 *
3040 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3041 * task used to run on and the CPU the waker is running on), we need to
3042 * compute the effect of waking a task on either CPU and, in case of a sync
3043 * wakeup, compute the effect of the current task going to sleep.
3044 *
3045 * So for a change of @wl to the local @cpu with an overall group weight change
3046 * of @wl we can compute the new shares distribution (s'_i) using:
3047 *
3048 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3049 *
3050 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3051 * differences in waking a task to CPU 0. The additional task changes the
3052 * weight and shares distributions like:
3053 *
3054 * rw'_i = { 3, 4, 1, 0 }
3055 * s'_i = { 3/8, 4/8, 1/8, 0 }
3056 *
3057 * We can then compute the difference in effective weight by using:
3058 *
3059 * dw_i = S * (s'_i - s_i) (3)
3060 *
3061 * Where 'S' is the group weight as seen by its parent.
3062 *
3063 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3064 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3065 * 4/7) times the weight of the group.
f5bfb7d9 3066 */
2069dd75 3067static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3068{
4be9daaa 3069 struct sched_entity *se = tg->se[cpu];
f1d239f7 3070
cf5f0acf 3071 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3072 return wl;
3073
4be9daaa 3074 for_each_sched_entity(se) {
cf5f0acf 3075 long w, W;
4be9daaa 3076
977dda7c 3077 tg = se->my_q->tg;
bb3469ac 3078
cf5f0acf
PZ
3079 /*
3080 * W = @wg + \Sum rw_j
3081 */
3082 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3083
cf5f0acf
PZ
3084 /*
3085 * w = rw_i + @wl
3086 */
3087 w = se->my_q->load.weight + wl;
940959e9 3088
cf5f0acf
PZ
3089 /*
3090 * wl = S * s'_i; see (2)
3091 */
3092 if (W > 0 && w < W)
3093 wl = (w * tg->shares) / W;
977dda7c
PT
3094 else
3095 wl = tg->shares;
940959e9 3096
cf5f0acf
PZ
3097 /*
3098 * Per the above, wl is the new se->load.weight value; since
3099 * those are clipped to [MIN_SHARES, ...) do so now. See
3100 * calc_cfs_shares().
3101 */
977dda7c
PT
3102 if (wl < MIN_SHARES)
3103 wl = MIN_SHARES;
cf5f0acf
PZ
3104
3105 /*
3106 * wl = dw_i = S * (s'_i - s_i); see (3)
3107 */
977dda7c 3108 wl -= se->load.weight;
cf5f0acf
PZ
3109
3110 /*
3111 * Recursively apply this logic to all parent groups to compute
3112 * the final effective load change on the root group. Since
3113 * only the @tg group gets extra weight, all parent groups can
3114 * only redistribute existing shares. @wl is the shift in shares
3115 * resulting from this level per the above.
3116 */
4be9daaa 3117 wg = 0;
4be9daaa 3118 }
bb3469ac 3119
4be9daaa 3120 return wl;
bb3469ac
PZ
3121}
3122#else
4be9daaa 3123
83378269
PZ
3124static inline unsigned long effective_load(struct task_group *tg, int cpu,
3125 unsigned long wl, unsigned long wg)
4be9daaa 3126{
83378269 3127 return wl;
bb3469ac 3128}
4be9daaa 3129
bb3469ac
PZ
3130#endif
3131
c88d5910 3132static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3133{
e37b6a7b 3134 s64 this_load, load;
c88d5910 3135 int idx, this_cpu, prev_cpu;
098fb9db 3136 unsigned long tl_per_task;
c88d5910 3137 struct task_group *tg;
83378269 3138 unsigned long weight;
b3137bc8 3139 int balanced;
098fb9db 3140
c88d5910
PZ
3141 idx = sd->wake_idx;
3142 this_cpu = smp_processor_id();
3143 prev_cpu = task_cpu(p);
3144 load = source_load(prev_cpu, idx);
3145 this_load = target_load(this_cpu, idx);
098fb9db 3146
b3137bc8
MG
3147 /*
3148 * If sync wakeup then subtract the (maximum possible)
3149 * effect of the currently running task from the load
3150 * of the current CPU:
3151 */
83378269
PZ
3152 if (sync) {
3153 tg = task_group(current);
3154 weight = current->se.load.weight;
3155
c88d5910 3156 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3157 load += effective_load(tg, prev_cpu, 0, -weight);
3158 }
b3137bc8 3159
83378269
PZ
3160 tg = task_group(p);
3161 weight = p->se.load.weight;
b3137bc8 3162
71a29aa7
PZ
3163 /*
3164 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3165 * due to the sync cause above having dropped this_load to 0, we'll
3166 * always have an imbalance, but there's really nothing you can do
3167 * about that, so that's good too.
71a29aa7
PZ
3168 *
3169 * Otherwise check if either cpus are near enough in load to allow this
3170 * task to be woken on this_cpu.
3171 */
e37b6a7b
PT
3172 if (this_load > 0) {
3173 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3174
3175 this_eff_load = 100;
3176 this_eff_load *= power_of(prev_cpu);
3177 this_eff_load *= this_load +
3178 effective_load(tg, this_cpu, weight, weight);
3179
3180 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3181 prev_eff_load *= power_of(this_cpu);
3182 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3183
3184 balanced = this_eff_load <= prev_eff_load;
3185 } else
3186 balanced = true;
b3137bc8 3187
098fb9db 3188 /*
4ae7d5ce
IM
3189 * If the currently running task will sleep within
3190 * a reasonable amount of time then attract this newly
3191 * woken task:
098fb9db 3192 */
2fb7635c
PZ
3193 if (sync && balanced)
3194 return 1;
098fb9db 3195
41acab88 3196 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3197 tl_per_task = cpu_avg_load_per_task(this_cpu);
3198
c88d5910
PZ
3199 if (balanced ||
3200 (this_load <= load &&
3201 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3202 /*
3203 * This domain has SD_WAKE_AFFINE and
3204 * p is cache cold in this domain, and
3205 * there is no bad imbalance.
3206 */
c88d5910 3207 schedstat_inc(sd, ttwu_move_affine);
41acab88 3208 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3209
3210 return 1;
3211 }
3212 return 0;
3213}
3214
aaee1203
PZ
3215/*
3216 * find_idlest_group finds and returns the least busy CPU group within the
3217 * domain.
3218 */
3219static struct sched_group *
78e7ed53 3220find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3221 int this_cpu, int load_idx)
e7693a36 3222{
b3bd3de6 3223 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3224 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3226
aaee1203
PZ
3227 do {
3228 unsigned long load, avg_load;
3229 int local_group;
3230 int i;
e7693a36 3231
aaee1203
PZ
3232 /* Skip over this group if it has no CPUs allowed */
3233 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3234 tsk_cpus_allowed(p)))
aaee1203
PZ
3235 continue;
3236
3237 local_group = cpumask_test_cpu(this_cpu,
3238 sched_group_cpus(group));
3239
3240 /* Tally up the load of all CPUs in the group */
3241 avg_load = 0;
3242
3243 for_each_cpu(i, sched_group_cpus(group)) {
3244 /* Bias balancing toward cpus of our domain */
3245 if (local_group)
3246 load = source_load(i, load_idx);
3247 else
3248 load = target_load(i, load_idx);
3249
3250 avg_load += load;
3251 }
3252
3253 /* Adjust by relative CPU power of the group */
9c3f75cb 3254 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3255
3256 if (local_group) {
3257 this_load = avg_load;
aaee1203
PZ
3258 } else if (avg_load < min_load) {
3259 min_load = avg_load;
3260 idlest = group;
3261 }
3262 } while (group = group->next, group != sd->groups);
3263
3264 if (!idlest || 100*this_load < imbalance*min_load)
3265 return NULL;
3266 return idlest;
3267}
3268
3269/*
3270 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3271 */
3272static int
3273find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3274{
3275 unsigned long load, min_load = ULONG_MAX;
3276 int idlest = -1;
3277 int i;
3278
3279 /* Traverse only the allowed CPUs */
fa17b507 3280 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3281 load = weighted_cpuload(i);
3282
3283 if (load < min_load || (load == min_load && i == this_cpu)) {
3284 min_load = load;
3285 idlest = i;
e7693a36
GH
3286 }
3287 }
3288
aaee1203
PZ
3289 return idlest;
3290}
e7693a36 3291
a50bde51
PZ
3292/*
3293 * Try and locate an idle CPU in the sched_domain.
3294 */
99bd5e2f 3295static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3296{
99bd5e2f 3297 struct sched_domain *sd;
37407ea7 3298 struct sched_group *sg;
e0a79f52 3299 int i = task_cpu(p);
a50bde51 3300
e0a79f52
MG
3301 if (idle_cpu(target))
3302 return target;
99bd5e2f
SS
3303
3304 /*
e0a79f52 3305 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3306 */
e0a79f52
MG
3307 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3308 return i;
a50bde51
PZ
3309
3310 /*
37407ea7 3311 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3312 */
518cd623 3313 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3314 for_each_lower_domain(sd) {
37407ea7
LT
3315 sg = sd->groups;
3316 do {
3317 if (!cpumask_intersects(sched_group_cpus(sg),
3318 tsk_cpus_allowed(p)))
3319 goto next;
3320
3321 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3322 if (i == target || !idle_cpu(i))
37407ea7
LT
3323 goto next;
3324 }
970e1789 3325
37407ea7
LT
3326 target = cpumask_first_and(sched_group_cpus(sg),
3327 tsk_cpus_allowed(p));
3328 goto done;
3329next:
3330 sg = sg->next;
3331 } while (sg != sd->groups);
3332 }
3333done:
a50bde51
PZ
3334 return target;
3335}
3336
aaee1203
PZ
3337/*
3338 * sched_balance_self: balance the current task (running on cpu) in domains
3339 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3340 * SD_BALANCE_EXEC.
3341 *
3342 * Balance, ie. select the least loaded group.
3343 *
3344 * Returns the target CPU number, or the same CPU if no balancing is needed.
3345 *
3346 * preempt must be disabled.
3347 */
0017d735 3348static int
7608dec2 3349select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3350{
29cd8bae 3351 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3352 int cpu = smp_processor_id();
3353 int prev_cpu = task_cpu(p);
3354 int new_cpu = cpu;
99bd5e2f 3355 int want_affine = 0;
5158f4e4 3356 int sync = wake_flags & WF_SYNC;
c88d5910 3357
29baa747 3358 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3359 return prev_cpu;
3360
0763a660 3361 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3362 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3363 want_affine = 1;
3364 new_cpu = prev_cpu;
3365 }
aaee1203 3366
dce840a0 3367 rcu_read_lock();
aaee1203 3368 for_each_domain(cpu, tmp) {
e4f42888
PZ
3369 if (!(tmp->flags & SD_LOAD_BALANCE))
3370 continue;
3371
fe3bcfe1 3372 /*
99bd5e2f
SS
3373 * If both cpu and prev_cpu are part of this domain,
3374 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3375 */
99bd5e2f
SS
3376 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3377 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3378 affine_sd = tmp;
29cd8bae 3379 break;
f03542a7 3380 }
29cd8bae 3381
f03542a7 3382 if (tmp->flags & sd_flag)
29cd8bae
PZ
3383 sd = tmp;
3384 }
3385
8b911acd 3386 if (affine_sd) {
f03542a7 3387 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3388 prev_cpu = cpu;
3389
3390 new_cpu = select_idle_sibling(p, prev_cpu);
3391 goto unlock;
8b911acd 3392 }
e7693a36 3393
aaee1203 3394 while (sd) {
5158f4e4 3395 int load_idx = sd->forkexec_idx;
aaee1203 3396 struct sched_group *group;
c88d5910 3397 int weight;
098fb9db 3398
0763a660 3399 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3400 sd = sd->child;
3401 continue;
3402 }
098fb9db 3403
5158f4e4
PZ
3404 if (sd_flag & SD_BALANCE_WAKE)
3405 load_idx = sd->wake_idx;
098fb9db 3406
5158f4e4 3407 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3408 if (!group) {
3409 sd = sd->child;
3410 continue;
3411 }
4ae7d5ce 3412
d7c33c49 3413 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3414 if (new_cpu == -1 || new_cpu == cpu) {
3415 /* Now try balancing at a lower domain level of cpu */
3416 sd = sd->child;
3417 continue;
e7693a36 3418 }
aaee1203
PZ
3419
3420 /* Now try balancing at a lower domain level of new_cpu */
3421 cpu = new_cpu;
669c55e9 3422 weight = sd->span_weight;
aaee1203
PZ
3423 sd = NULL;
3424 for_each_domain(cpu, tmp) {
669c55e9 3425 if (weight <= tmp->span_weight)
aaee1203 3426 break;
0763a660 3427 if (tmp->flags & sd_flag)
aaee1203
PZ
3428 sd = tmp;
3429 }
3430 /* while loop will break here if sd == NULL */
e7693a36 3431 }
dce840a0
PZ
3432unlock:
3433 rcu_read_unlock();
e7693a36 3434
c88d5910 3435 return new_cpu;
e7693a36 3436}
0a74bef8 3437
f4e26b12
PT
3438/*
3439 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3440 * removed when useful for applications beyond shares distribution (e.g.
3441 * load-balance).
3442 */
3443#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3444/*
3445 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3446 * cfs_rq_of(p) references at time of call are still valid and identify the
3447 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3448 * other assumptions, including the state of rq->lock, should be made.
3449 */
3450static void
3451migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3452{
aff3e498
PT
3453 struct sched_entity *se = &p->se;
3454 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3455
3456 /*
3457 * Load tracking: accumulate removed load so that it can be processed
3458 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3459 * to blocked load iff they have a positive decay-count. It can never
3460 * be negative here since on-rq tasks have decay-count == 0.
3461 */
3462 if (se->avg.decay_count) {
3463 se->avg.decay_count = -__synchronize_entity_decay(se);
3464 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3465 }
0a74bef8 3466}
f4e26b12 3467#endif
e7693a36
GH
3468#endif /* CONFIG_SMP */
3469
e52fb7c0
PZ
3470static unsigned long
3471wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3472{
3473 unsigned long gran = sysctl_sched_wakeup_granularity;
3474
3475 /*
e52fb7c0
PZ
3476 * Since its curr running now, convert the gran from real-time
3477 * to virtual-time in his units.
13814d42
MG
3478 *
3479 * By using 'se' instead of 'curr' we penalize light tasks, so
3480 * they get preempted easier. That is, if 'se' < 'curr' then
3481 * the resulting gran will be larger, therefore penalizing the
3482 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3483 * be smaller, again penalizing the lighter task.
3484 *
3485 * This is especially important for buddies when the leftmost
3486 * task is higher priority than the buddy.
0bbd3336 3487 */
f4ad9bd2 3488 return calc_delta_fair(gran, se);
0bbd3336
PZ
3489}
3490
464b7527
PZ
3491/*
3492 * Should 'se' preempt 'curr'.
3493 *
3494 * |s1
3495 * |s2
3496 * |s3
3497 * g
3498 * |<--->|c
3499 *
3500 * w(c, s1) = -1
3501 * w(c, s2) = 0
3502 * w(c, s3) = 1
3503 *
3504 */
3505static int
3506wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3507{
3508 s64 gran, vdiff = curr->vruntime - se->vruntime;
3509
3510 if (vdiff <= 0)
3511 return -1;
3512
e52fb7c0 3513 gran = wakeup_gran(curr, se);
464b7527
PZ
3514 if (vdiff > gran)
3515 return 1;
3516
3517 return 0;
3518}
3519
02479099
PZ
3520static void set_last_buddy(struct sched_entity *se)
3521{
69c80f3e
VP
3522 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3523 return;
3524
3525 for_each_sched_entity(se)
3526 cfs_rq_of(se)->last = se;
02479099
PZ
3527}
3528
3529static void set_next_buddy(struct sched_entity *se)
3530{
69c80f3e
VP
3531 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3532 return;
3533
3534 for_each_sched_entity(se)
3535 cfs_rq_of(se)->next = se;
02479099
PZ
3536}
3537
ac53db59
RR
3538static void set_skip_buddy(struct sched_entity *se)
3539{
69c80f3e
VP
3540 for_each_sched_entity(se)
3541 cfs_rq_of(se)->skip = se;
ac53db59
RR
3542}
3543
bf0f6f24
IM
3544/*
3545 * Preempt the current task with a newly woken task if needed:
3546 */
5a9b86f6 3547static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3548{
3549 struct task_struct *curr = rq->curr;
8651a86c 3550 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3551 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3552 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3553 int next_buddy_marked = 0;
bf0f6f24 3554
4ae7d5ce
IM
3555 if (unlikely(se == pse))
3556 return;
3557
5238cdd3 3558 /*
ddcdf6e7 3559 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3560 * unconditionally check_prempt_curr() after an enqueue (which may have
3561 * lead to a throttle). This both saves work and prevents false
3562 * next-buddy nomination below.
3563 */
3564 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3565 return;
3566
2f36825b 3567 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3568 set_next_buddy(pse);
2f36825b
VP
3569 next_buddy_marked = 1;
3570 }
57fdc26d 3571
aec0a514
BR
3572 /*
3573 * We can come here with TIF_NEED_RESCHED already set from new task
3574 * wake up path.
5238cdd3
PT
3575 *
3576 * Note: this also catches the edge-case of curr being in a throttled
3577 * group (e.g. via set_curr_task), since update_curr() (in the
3578 * enqueue of curr) will have resulted in resched being set. This
3579 * prevents us from potentially nominating it as a false LAST_BUDDY
3580 * below.
aec0a514
BR
3581 */
3582 if (test_tsk_need_resched(curr))
3583 return;
3584
a2f5c9ab
DH
3585 /* Idle tasks are by definition preempted by non-idle tasks. */
3586 if (unlikely(curr->policy == SCHED_IDLE) &&
3587 likely(p->policy != SCHED_IDLE))
3588 goto preempt;
3589
91c234b4 3590 /*
a2f5c9ab
DH
3591 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3592 * is driven by the tick):
91c234b4 3593 */
8ed92e51 3594 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3595 return;
bf0f6f24 3596
464b7527 3597 find_matching_se(&se, &pse);
9bbd7374 3598 update_curr(cfs_rq_of(se));
002f128b 3599 BUG_ON(!pse);
2f36825b
VP
3600 if (wakeup_preempt_entity(se, pse) == 1) {
3601 /*
3602 * Bias pick_next to pick the sched entity that is
3603 * triggering this preemption.
3604 */
3605 if (!next_buddy_marked)
3606 set_next_buddy(pse);
3a7e73a2 3607 goto preempt;
2f36825b 3608 }
464b7527 3609
3a7e73a2 3610 return;
a65ac745 3611
3a7e73a2
PZ
3612preempt:
3613 resched_task(curr);
3614 /*
3615 * Only set the backward buddy when the current task is still
3616 * on the rq. This can happen when a wakeup gets interleaved
3617 * with schedule on the ->pre_schedule() or idle_balance()
3618 * point, either of which can * drop the rq lock.
3619 *
3620 * Also, during early boot the idle thread is in the fair class,
3621 * for obvious reasons its a bad idea to schedule back to it.
3622 */
3623 if (unlikely(!se->on_rq || curr == rq->idle))
3624 return;
3625
3626 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3627 set_last_buddy(se);
bf0f6f24
IM
3628}
3629
fb8d4724 3630static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3631{
8f4d37ec 3632 struct task_struct *p;
bf0f6f24
IM
3633 struct cfs_rq *cfs_rq = &rq->cfs;
3634 struct sched_entity *se;
3635
36ace27e 3636 if (!cfs_rq->nr_running)
bf0f6f24
IM
3637 return NULL;
3638
3639 do {
9948f4b2 3640 se = pick_next_entity(cfs_rq);
f4b6755f 3641 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3642 cfs_rq = group_cfs_rq(se);
3643 } while (cfs_rq);
3644
8f4d37ec 3645 p = task_of(se);
b39e66ea
MG
3646 if (hrtick_enabled(rq))
3647 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3648
3649 return p;
bf0f6f24
IM
3650}
3651
3652/*
3653 * Account for a descheduled task:
3654 */
31ee529c 3655static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3656{
3657 struct sched_entity *se = &prev->se;
3658 struct cfs_rq *cfs_rq;
3659
3660 for_each_sched_entity(se) {
3661 cfs_rq = cfs_rq_of(se);
ab6cde26 3662 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3663 }
3664}
3665
ac53db59
RR
3666/*
3667 * sched_yield() is very simple
3668 *
3669 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3670 */
3671static void yield_task_fair(struct rq *rq)
3672{
3673 struct task_struct *curr = rq->curr;
3674 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3675 struct sched_entity *se = &curr->se;
3676
3677 /*
3678 * Are we the only task in the tree?
3679 */
3680 if (unlikely(rq->nr_running == 1))
3681 return;
3682
3683 clear_buddies(cfs_rq, se);
3684
3685 if (curr->policy != SCHED_BATCH) {
3686 update_rq_clock(rq);
3687 /*
3688 * Update run-time statistics of the 'current'.
3689 */
3690 update_curr(cfs_rq);
916671c0
MG
3691 /*
3692 * Tell update_rq_clock() that we've just updated,
3693 * so we don't do microscopic update in schedule()
3694 * and double the fastpath cost.
3695 */
3696 rq->skip_clock_update = 1;
ac53db59
RR
3697 }
3698
3699 set_skip_buddy(se);
3700}
3701
d95f4122
MG
3702static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3703{
3704 struct sched_entity *se = &p->se;
3705
5238cdd3
PT
3706 /* throttled hierarchies are not runnable */
3707 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3708 return false;
3709
3710 /* Tell the scheduler that we'd really like pse to run next. */
3711 set_next_buddy(se);
3712
d95f4122
MG
3713 yield_task_fair(rq);
3714
3715 return true;
3716}
3717
681f3e68 3718#ifdef CONFIG_SMP
bf0f6f24 3719/**************************************************
e9c84cb8
PZ
3720 * Fair scheduling class load-balancing methods.
3721 *
3722 * BASICS
3723 *
3724 * The purpose of load-balancing is to achieve the same basic fairness the
3725 * per-cpu scheduler provides, namely provide a proportional amount of compute
3726 * time to each task. This is expressed in the following equation:
3727 *
3728 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3729 *
3730 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3731 * W_i,0 is defined as:
3732 *
3733 * W_i,0 = \Sum_j w_i,j (2)
3734 *
3735 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3736 * is derived from the nice value as per prio_to_weight[].
3737 *
3738 * The weight average is an exponential decay average of the instantaneous
3739 * weight:
3740 *
3741 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3742 *
3743 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3744 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3745 * can also include other factors [XXX].
3746 *
3747 * To achieve this balance we define a measure of imbalance which follows
3748 * directly from (1):
3749 *
3750 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3751 *
3752 * We them move tasks around to minimize the imbalance. In the continuous
3753 * function space it is obvious this converges, in the discrete case we get
3754 * a few fun cases generally called infeasible weight scenarios.
3755 *
3756 * [XXX expand on:
3757 * - infeasible weights;
3758 * - local vs global optima in the discrete case. ]
3759 *
3760 *
3761 * SCHED DOMAINS
3762 *
3763 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3764 * for all i,j solution, we create a tree of cpus that follows the hardware
3765 * topology where each level pairs two lower groups (or better). This results
3766 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3767 * tree to only the first of the previous level and we decrease the frequency
3768 * of load-balance at each level inv. proportional to the number of cpus in
3769 * the groups.
3770 *
3771 * This yields:
3772 *
3773 * log_2 n 1 n
3774 * \Sum { --- * --- * 2^i } = O(n) (5)
3775 * i = 0 2^i 2^i
3776 * `- size of each group
3777 * | | `- number of cpus doing load-balance
3778 * | `- freq
3779 * `- sum over all levels
3780 *
3781 * Coupled with a limit on how many tasks we can migrate every balance pass,
3782 * this makes (5) the runtime complexity of the balancer.
3783 *
3784 * An important property here is that each CPU is still (indirectly) connected
3785 * to every other cpu in at most O(log n) steps:
3786 *
3787 * The adjacency matrix of the resulting graph is given by:
3788 *
3789 * log_2 n
3790 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3791 * k = 0
3792 *
3793 * And you'll find that:
3794 *
3795 * A^(log_2 n)_i,j != 0 for all i,j (7)
3796 *
3797 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3798 * The task movement gives a factor of O(m), giving a convergence complexity
3799 * of:
3800 *
3801 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3802 *
3803 *
3804 * WORK CONSERVING
3805 *
3806 * In order to avoid CPUs going idle while there's still work to do, new idle
3807 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3808 * tree itself instead of relying on other CPUs to bring it work.
3809 *
3810 * This adds some complexity to both (5) and (8) but it reduces the total idle
3811 * time.
3812 *
3813 * [XXX more?]
3814 *
3815 *
3816 * CGROUPS
3817 *
3818 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3819 *
3820 * s_k,i
3821 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3822 * S_k
3823 *
3824 * Where
3825 *
3826 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3827 *
3828 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3829 *
3830 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3831 * property.
3832 *
3833 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3834 * rewrite all of this once again.]
3835 */
bf0f6f24 3836
ed387b78
HS
3837static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3838
ddcdf6e7 3839#define LBF_ALL_PINNED 0x01
367456c7 3840#define LBF_NEED_BREAK 0x02
88b8dac0 3841#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3842
3843struct lb_env {
3844 struct sched_domain *sd;
3845
ddcdf6e7 3846 struct rq *src_rq;
85c1e7da 3847 int src_cpu;
ddcdf6e7
PZ
3848
3849 int dst_cpu;
3850 struct rq *dst_rq;
3851
88b8dac0
SV
3852 struct cpumask *dst_grpmask;
3853 int new_dst_cpu;
ddcdf6e7 3854 enum cpu_idle_type idle;
bd939f45 3855 long imbalance;
b9403130
MW
3856 /* The set of CPUs under consideration for load-balancing */
3857 struct cpumask *cpus;
3858
ddcdf6e7 3859 unsigned int flags;
367456c7
PZ
3860
3861 unsigned int loop;
3862 unsigned int loop_break;
3863 unsigned int loop_max;
ddcdf6e7
PZ
3864};
3865
1e3c88bd 3866/*
ddcdf6e7 3867 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3868 * Both runqueues must be locked.
3869 */
ddcdf6e7 3870static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3871{
ddcdf6e7
PZ
3872 deactivate_task(env->src_rq, p, 0);
3873 set_task_cpu(p, env->dst_cpu);
3874 activate_task(env->dst_rq, p, 0);
3875 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3876}
3877
029632fb
PZ
3878/*
3879 * Is this task likely cache-hot:
3880 */
3881static int
3882task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3883{
3884 s64 delta;
3885
3886 if (p->sched_class != &fair_sched_class)
3887 return 0;
3888
3889 if (unlikely(p->policy == SCHED_IDLE))
3890 return 0;
3891
3892 /*
3893 * Buddy candidates are cache hot:
3894 */
3895 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3896 (&p->se == cfs_rq_of(&p->se)->next ||
3897 &p->se == cfs_rq_of(&p->se)->last))
3898 return 1;
3899
3900 if (sysctl_sched_migration_cost == -1)
3901 return 1;
3902 if (sysctl_sched_migration_cost == 0)
3903 return 0;
3904
3905 delta = now - p->se.exec_start;
3906
3907 return delta < (s64)sysctl_sched_migration_cost;
3908}
3909
1e3c88bd
PZ
3910/*
3911 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3912 */
3913static
8e45cb54 3914int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3915{
3916 int tsk_cache_hot = 0;
3917 /*
3918 * We do not migrate tasks that are:
d3198084 3919 * 1) throttled_lb_pair, or
1e3c88bd 3920 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3921 * 3) running (obviously), or
3922 * 4) are cache-hot on their current CPU.
1e3c88bd 3923 */
d3198084
JK
3924 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3925 return 0;
3926
ddcdf6e7 3927 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3928 int cpu;
88b8dac0 3929
41acab88 3930 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3931
3932 /*
3933 * Remember if this task can be migrated to any other cpu in
3934 * our sched_group. We may want to revisit it if we couldn't
3935 * meet load balance goals by pulling other tasks on src_cpu.
3936 *
3937 * Also avoid computing new_dst_cpu if we have already computed
3938 * one in current iteration.
3939 */
3940 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3941 return 0;
3942
e02e60c1
JK
3943 /* Prevent to re-select dst_cpu via env's cpus */
3944 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3945 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3946 env->flags |= LBF_SOME_PINNED;
3947 env->new_dst_cpu = cpu;
3948 break;
3949 }
88b8dac0 3950 }
e02e60c1 3951
1e3c88bd
PZ
3952 return 0;
3953 }
88b8dac0
SV
3954
3955 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3956 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3957
ddcdf6e7 3958 if (task_running(env->src_rq, p)) {
41acab88 3959 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3960 return 0;
3961 }
3962
3963 /*
3964 * Aggressive migration if:
3965 * 1) task is cache cold, or
3966 * 2) too many balance attempts have failed.
3967 */
3968
ddcdf6e7 3969 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3970 if (!tsk_cache_hot ||
8e45cb54 3971 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3972
1e3c88bd 3973 if (tsk_cache_hot) {
8e45cb54 3974 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3975 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3976 }
4e2dcb73 3977
1e3c88bd
PZ
3978 return 1;
3979 }
3980
4e2dcb73
ZH
3981 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3982 return 0;
1e3c88bd
PZ
3983}
3984
897c395f
PZ
3985/*
3986 * move_one_task tries to move exactly one task from busiest to this_rq, as
3987 * part of active balancing operations within "domain".
3988 * Returns 1 if successful and 0 otherwise.
3989 *
3990 * Called with both runqueues locked.
3991 */
8e45cb54 3992static int move_one_task(struct lb_env *env)
897c395f
PZ
3993{
3994 struct task_struct *p, *n;
897c395f 3995
367456c7 3996 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
3997 if (!can_migrate_task(p, env))
3998 continue;
897c395f 3999
367456c7
PZ
4000 move_task(p, env);
4001 /*
4002 * Right now, this is only the second place move_task()
4003 * is called, so we can safely collect move_task()
4004 * stats here rather than inside move_task().
4005 */
4006 schedstat_inc(env->sd, lb_gained[env->idle]);
4007 return 1;
897c395f 4008 }
897c395f
PZ
4009 return 0;
4010}
4011
367456c7
PZ
4012static unsigned long task_h_load(struct task_struct *p);
4013
eb95308e
PZ
4014static const unsigned int sched_nr_migrate_break = 32;
4015
5d6523eb 4016/*
bd939f45 4017 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4018 * this_rq, as part of a balancing operation within domain "sd".
4019 * Returns 1 if successful and 0 otherwise.
4020 *
4021 * Called with both runqueues locked.
4022 */
4023static int move_tasks(struct lb_env *env)
1e3c88bd 4024{
5d6523eb
PZ
4025 struct list_head *tasks = &env->src_rq->cfs_tasks;
4026 struct task_struct *p;
367456c7
PZ
4027 unsigned long load;
4028 int pulled = 0;
1e3c88bd 4029
bd939f45 4030 if (env->imbalance <= 0)
5d6523eb 4031 return 0;
1e3c88bd 4032
5d6523eb
PZ
4033 while (!list_empty(tasks)) {
4034 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4035
367456c7
PZ
4036 env->loop++;
4037 /* We've more or less seen every task there is, call it quits */
5d6523eb 4038 if (env->loop > env->loop_max)
367456c7 4039 break;
5d6523eb
PZ
4040
4041 /* take a breather every nr_migrate tasks */
367456c7 4042 if (env->loop > env->loop_break) {
eb95308e 4043 env->loop_break += sched_nr_migrate_break;
8e45cb54 4044 env->flags |= LBF_NEED_BREAK;
ee00e66f 4045 break;
a195f004 4046 }
1e3c88bd 4047
d3198084 4048 if (!can_migrate_task(p, env))
367456c7
PZ
4049 goto next;
4050
4051 load = task_h_load(p);
5d6523eb 4052
eb95308e 4053 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4054 goto next;
4055
bd939f45 4056 if ((load / 2) > env->imbalance)
367456c7 4057 goto next;
1e3c88bd 4058
ddcdf6e7 4059 move_task(p, env);
ee00e66f 4060 pulled++;
bd939f45 4061 env->imbalance -= load;
1e3c88bd
PZ
4062
4063#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4064 /*
4065 * NEWIDLE balancing is a source of latency, so preemptible
4066 * kernels will stop after the first task is pulled to minimize
4067 * the critical section.
4068 */
5d6523eb 4069 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4070 break;
1e3c88bd
PZ
4071#endif
4072
ee00e66f
PZ
4073 /*
4074 * We only want to steal up to the prescribed amount of
4075 * weighted load.
4076 */
bd939f45 4077 if (env->imbalance <= 0)
ee00e66f 4078 break;
367456c7
PZ
4079
4080 continue;
4081next:
5d6523eb 4082 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4083 }
5d6523eb 4084
1e3c88bd 4085 /*
ddcdf6e7
PZ
4086 * Right now, this is one of only two places move_task() is called,
4087 * so we can safely collect move_task() stats here rather than
4088 * inside move_task().
1e3c88bd 4089 */
8e45cb54 4090 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4091
5d6523eb 4092 return pulled;
1e3c88bd
PZ
4093}
4094
230059de 4095#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4096/*
4097 * update tg->load_weight by folding this cpu's load_avg
4098 */
48a16753 4099static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4100{
48a16753
PT
4101 struct sched_entity *se = tg->se[cpu];
4102 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4103
48a16753
PT
4104 /* throttled entities do not contribute to load */
4105 if (throttled_hierarchy(cfs_rq))
4106 return;
9e3081ca 4107
aff3e498 4108 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4109
82958366
PT
4110 if (se) {
4111 update_entity_load_avg(se, 1);
4112 /*
4113 * We pivot on our runnable average having decayed to zero for
4114 * list removal. This generally implies that all our children
4115 * have also been removed (modulo rounding error or bandwidth
4116 * control); however, such cases are rare and we can fix these
4117 * at enqueue.
4118 *
4119 * TODO: fix up out-of-order children on enqueue.
4120 */
4121 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4122 list_del_leaf_cfs_rq(cfs_rq);
4123 } else {
48a16753 4124 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4125 update_rq_runnable_avg(rq, rq->nr_running);
4126 }
9e3081ca
PZ
4127}
4128
48a16753 4129static void update_blocked_averages(int cpu)
9e3081ca 4130{
9e3081ca 4131 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4132 struct cfs_rq *cfs_rq;
4133 unsigned long flags;
9e3081ca 4134
48a16753
PT
4135 raw_spin_lock_irqsave(&rq->lock, flags);
4136 update_rq_clock(rq);
9763b67f
PZ
4137 /*
4138 * Iterates the task_group tree in a bottom up fashion, see
4139 * list_add_leaf_cfs_rq() for details.
4140 */
64660c86 4141 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4142 /*
4143 * Note: We may want to consider periodically releasing
4144 * rq->lock about these updates so that creating many task
4145 * groups does not result in continually extending hold time.
4146 */
4147 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4148 }
48a16753
PT
4149
4150 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4151}
4152
9763b67f
PZ
4153/*
4154 * Compute the cpu's hierarchical load factor for each task group.
4155 * This needs to be done in a top-down fashion because the load of a child
4156 * group is a fraction of its parents load.
4157 */
4158static int tg_load_down(struct task_group *tg, void *data)
4159{
4160 unsigned long load;
4161 long cpu = (long)data;
4162
4163 if (!tg->parent) {
4164 load = cpu_rq(cpu)->load.weight;
4165 } else {
4166 load = tg->parent->cfs_rq[cpu]->h_load;
4167 load *= tg->se[cpu]->load.weight;
4168 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4169 }
4170
4171 tg->cfs_rq[cpu]->h_load = load;
4172
4173 return 0;
4174}
4175
4176static void update_h_load(long cpu)
4177{
a35b6466
PZ
4178 struct rq *rq = cpu_rq(cpu);
4179 unsigned long now = jiffies;
4180
4181 if (rq->h_load_throttle == now)
4182 return;
4183
4184 rq->h_load_throttle = now;
4185
367456c7 4186 rcu_read_lock();
9763b67f 4187 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4188 rcu_read_unlock();
9763b67f
PZ
4189}
4190
367456c7 4191static unsigned long task_h_load(struct task_struct *p)
230059de 4192{
367456c7
PZ
4193 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4194 unsigned long load;
230059de 4195
367456c7
PZ
4196 load = p->se.load.weight;
4197 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4198
367456c7 4199 return load;
230059de
PZ
4200}
4201#else
48a16753 4202static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4203{
4204}
4205
367456c7 4206static inline void update_h_load(long cpu)
230059de 4207{
230059de 4208}
230059de 4209
367456c7 4210static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4211{
367456c7 4212 return p->se.load.weight;
1e3c88bd 4213}
230059de 4214#endif
1e3c88bd 4215
1e3c88bd
PZ
4216/********** Helpers for find_busiest_group ************************/
4217/*
4218 * sd_lb_stats - Structure to store the statistics of a sched_domain
4219 * during load balancing.
4220 */
4221struct sd_lb_stats {
4222 struct sched_group *busiest; /* Busiest group in this sd */
4223 struct sched_group *this; /* Local group in this sd */
4224 unsigned long total_load; /* Total load of all groups in sd */
4225 unsigned long total_pwr; /* Total power of all groups in sd */
4226 unsigned long avg_load; /* Average load across all groups in sd */
4227
4228 /** Statistics of this group */
4229 unsigned long this_load;
4230 unsigned long this_load_per_task;
4231 unsigned long this_nr_running;
fab47622 4232 unsigned long this_has_capacity;
aae6d3dd 4233 unsigned int this_idle_cpus;
1e3c88bd
PZ
4234
4235 /* Statistics of the busiest group */
aae6d3dd 4236 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4237 unsigned long max_load;
4238 unsigned long busiest_load_per_task;
4239 unsigned long busiest_nr_running;
dd5feea1 4240 unsigned long busiest_group_capacity;
fab47622 4241 unsigned long busiest_has_capacity;
aae6d3dd 4242 unsigned int busiest_group_weight;
1e3c88bd
PZ
4243
4244 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4245};
4246
4247/*
4248 * sg_lb_stats - stats of a sched_group required for load_balancing
4249 */
4250struct sg_lb_stats {
4251 unsigned long avg_load; /*Avg load across the CPUs of the group */
4252 unsigned long group_load; /* Total load over the CPUs of the group */
4253 unsigned long sum_nr_running; /* Nr tasks running in the group */
4254 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4255 unsigned long group_capacity;
aae6d3dd
SS
4256 unsigned long idle_cpus;
4257 unsigned long group_weight;
1e3c88bd 4258 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4259 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4260};
4261
1e3c88bd
PZ
4262/**
4263 * get_sd_load_idx - Obtain the load index for a given sched domain.
4264 * @sd: The sched_domain whose load_idx is to be obtained.
4265 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4266 */
4267static inline int get_sd_load_idx(struct sched_domain *sd,
4268 enum cpu_idle_type idle)
4269{
4270 int load_idx;
4271
4272 switch (idle) {
4273 case CPU_NOT_IDLE:
4274 load_idx = sd->busy_idx;
4275 break;
4276
4277 case CPU_NEWLY_IDLE:
4278 load_idx = sd->newidle_idx;
4279 break;
4280 default:
4281 load_idx = sd->idle_idx;
4282 break;
4283 }
4284
4285 return load_idx;
4286}
4287
15f803c9 4288static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4289{
1399fa78 4290 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4291}
4292
4293unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4294{
4295 return default_scale_freq_power(sd, cpu);
4296}
4297
15f803c9 4298static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4299{
669c55e9 4300 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4301 unsigned long smt_gain = sd->smt_gain;
4302
4303 smt_gain /= weight;
4304
4305 return smt_gain;
4306}
4307
4308unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4309{
4310 return default_scale_smt_power(sd, cpu);
4311}
4312
15f803c9 4313static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4314{
4315 struct rq *rq = cpu_rq(cpu);
b654f7de 4316 u64 total, available, age_stamp, avg;
1e3c88bd 4317
b654f7de
PZ
4318 /*
4319 * Since we're reading these variables without serialization make sure
4320 * we read them once before doing sanity checks on them.
4321 */
4322 age_stamp = ACCESS_ONCE(rq->age_stamp);
4323 avg = ACCESS_ONCE(rq->rt_avg);
4324
4325 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4326
b654f7de 4327 if (unlikely(total < avg)) {
aa483808
VP
4328 /* Ensures that power won't end up being negative */
4329 available = 0;
4330 } else {
b654f7de 4331 available = total - avg;
aa483808 4332 }
1e3c88bd 4333
1399fa78
NR
4334 if (unlikely((s64)total < SCHED_POWER_SCALE))
4335 total = SCHED_POWER_SCALE;
1e3c88bd 4336
1399fa78 4337 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4338
4339 return div_u64(available, total);
4340}
4341
4342static void update_cpu_power(struct sched_domain *sd, int cpu)
4343{
669c55e9 4344 unsigned long weight = sd->span_weight;
1399fa78 4345 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4346 struct sched_group *sdg = sd->groups;
4347
1e3c88bd
PZ
4348 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4349 if (sched_feat(ARCH_POWER))
4350 power *= arch_scale_smt_power(sd, cpu);
4351 else
4352 power *= default_scale_smt_power(sd, cpu);
4353
1399fa78 4354 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4355 }
4356
9c3f75cb 4357 sdg->sgp->power_orig = power;
9d5efe05
SV
4358
4359 if (sched_feat(ARCH_POWER))
4360 power *= arch_scale_freq_power(sd, cpu);
4361 else
4362 power *= default_scale_freq_power(sd, cpu);
4363
1399fa78 4364 power >>= SCHED_POWER_SHIFT;
9d5efe05 4365
1e3c88bd 4366 power *= scale_rt_power(cpu);
1399fa78 4367 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4368
4369 if (!power)
4370 power = 1;
4371
e51fd5e2 4372 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4373 sdg->sgp->power = power;
1e3c88bd
PZ
4374}
4375
029632fb 4376void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4377{
4378 struct sched_domain *child = sd->child;
4379 struct sched_group *group, *sdg = sd->groups;
4380 unsigned long power;
4ec4412e
VG
4381 unsigned long interval;
4382
4383 interval = msecs_to_jiffies(sd->balance_interval);
4384 interval = clamp(interval, 1UL, max_load_balance_interval);
4385 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4386
4387 if (!child) {
4388 update_cpu_power(sd, cpu);
4389 return;
4390 }
4391
4392 power = 0;
4393
74a5ce20
PZ
4394 if (child->flags & SD_OVERLAP) {
4395 /*
4396 * SD_OVERLAP domains cannot assume that child groups
4397 * span the current group.
4398 */
4399
4400 for_each_cpu(cpu, sched_group_cpus(sdg))
4401 power += power_of(cpu);
4402 } else {
4403 /*
4404 * !SD_OVERLAP domains can assume that child groups
4405 * span the current group.
4406 */
4407
4408 group = child->groups;
4409 do {
4410 power += group->sgp->power;
4411 group = group->next;
4412 } while (group != child->groups);
4413 }
1e3c88bd 4414
c3decf0d 4415 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4416}
4417
9d5efe05
SV
4418/*
4419 * Try and fix up capacity for tiny siblings, this is needed when
4420 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4421 * which on its own isn't powerful enough.
4422 *
4423 * See update_sd_pick_busiest() and check_asym_packing().
4424 */
4425static inline int
4426fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4427{
4428 /*
1399fa78 4429 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4430 */
a6c75f2f 4431 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4432 return 0;
4433
4434 /*
4435 * If ~90% of the cpu_power is still there, we're good.
4436 */
9c3f75cb 4437 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4438 return 1;
4439
4440 return 0;
4441}
4442
1e3c88bd
PZ
4443/**
4444 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4445 * @env: The load balancing environment.
1e3c88bd 4446 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4447 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4448 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4449 * @balance: Should we balance.
4450 * @sgs: variable to hold the statistics for this group.
4451 */
bd939f45
PZ
4452static inline void update_sg_lb_stats(struct lb_env *env,
4453 struct sched_group *group, int load_idx,
b9403130 4454 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4455{
e44bc5c5
PZ
4456 unsigned long nr_running, max_nr_running, min_nr_running;
4457 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4459 unsigned long avg_load_per_task = 0;
bd939f45 4460 int i;
1e3c88bd 4461
871e35bc 4462 if (local_group)
c1174876 4463 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4464
4465 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4466 max_cpu_load = 0;
4467 min_cpu_load = ~0UL;
2582f0eb 4468 max_nr_running = 0;
e44bc5c5 4469 min_nr_running = ~0UL;
1e3c88bd 4470
b9403130 4471 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4472 struct rq *rq = cpu_rq(i);
4473
e44bc5c5
PZ
4474 nr_running = rq->nr_running;
4475
1e3c88bd
PZ
4476 /* Bias balancing toward cpus of our domain */
4477 if (local_group) {
c1174876
PZ
4478 if (idle_cpu(i) && !first_idle_cpu &&
4479 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4480 first_idle_cpu = 1;
1e3c88bd
PZ
4481 balance_cpu = i;
4482 }
04f733b4
PZ
4483
4484 load = target_load(i, load_idx);
1e3c88bd
PZ
4485 } else {
4486 load = source_load(i, load_idx);
e44bc5c5 4487 if (load > max_cpu_load)
1e3c88bd
PZ
4488 max_cpu_load = load;
4489 if (min_cpu_load > load)
4490 min_cpu_load = load;
e44bc5c5
PZ
4491
4492 if (nr_running > max_nr_running)
4493 max_nr_running = nr_running;
4494 if (min_nr_running > nr_running)
4495 min_nr_running = nr_running;
1e3c88bd
PZ
4496 }
4497
4498 sgs->group_load += load;
e44bc5c5 4499 sgs->sum_nr_running += nr_running;
1e3c88bd 4500 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4501 if (idle_cpu(i))
4502 sgs->idle_cpus++;
1e3c88bd
PZ
4503 }
4504
4505 /*
4506 * First idle cpu or the first cpu(busiest) in this sched group
4507 * is eligible for doing load balancing at this and above
4508 * domains. In the newly idle case, we will allow all the cpu's
4509 * to do the newly idle load balance.
4510 */
4ec4412e 4511 if (local_group) {
bd939f45 4512 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4513 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4514 *balance = 0;
4515 return;
4516 }
bd939f45 4517 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4518 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4519 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4520 }
4521
4522 /* Adjust by relative CPU power of the group */
9c3f75cb 4523 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4524
1e3c88bd
PZ
4525 /*
4526 * Consider the group unbalanced when the imbalance is larger
866ab43e 4527 * than the average weight of a task.
1e3c88bd
PZ
4528 *
4529 * APZ: with cgroup the avg task weight can vary wildly and
4530 * might not be a suitable number - should we keep a
4531 * normalized nr_running number somewhere that negates
4532 * the hierarchy?
4533 */
dd5feea1
SS
4534 if (sgs->sum_nr_running)
4535 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4536
e44bc5c5
PZ
4537 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4538 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4539 sgs->group_imb = 1;
4540
9c3f75cb 4541 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4542 SCHED_POWER_SCALE);
9d5efe05 4543 if (!sgs->group_capacity)
bd939f45 4544 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4545 sgs->group_weight = group->group_weight;
fab47622
NR
4546
4547 if (sgs->group_capacity > sgs->sum_nr_running)
4548 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4549}
4550
532cb4c4
MN
4551/**
4552 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4553 * @env: The load balancing environment.
532cb4c4
MN
4554 * @sds: sched_domain statistics
4555 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4556 * @sgs: sched_group statistics
532cb4c4
MN
4557 *
4558 * Determine if @sg is a busier group than the previously selected
4559 * busiest group.
4560 */
bd939f45 4561static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4562 struct sd_lb_stats *sds,
4563 struct sched_group *sg,
bd939f45 4564 struct sg_lb_stats *sgs)
532cb4c4
MN
4565{
4566 if (sgs->avg_load <= sds->max_load)
4567 return false;
4568
4569 if (sgs->sum_nr_running > sgs->group_capacity)
4570 return true;
4571
4572 if (sgs->group_imb)
4573 return true;
4574
4575 /*
4576 * ASYM_PACKING needs to move all the work to the lowest
4577 * numbered CPUs in the group, therefore mark all groups
4578 * higher than ourself as busy.
4579 */
bd939f45
PZ
4580 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4581 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4582 if (!sds->busiest)
4583 return true;
4584
4585 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4586 return true;
4587 }
4588
4589 return false;
4590}
4591
1e3c88bd 4592/**
461819ac 4593 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4594 * @env: The load balancing environment.
1e3c88bd
PZ
4595 * @balance: Should we balance.
4596 * @sds: variable to hold the statistics for this sched_domain.
4597 */
bd939f45 4598static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4599 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4600{
bd939f45
PZ
4601 struct sched_domain *child = env->sd->child;
4602 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4603 struct sg_lb_stats sgs;
4604 int load_idx, prefer_sibling = 0;
4605
4606 if (child && child->flags & SD_PREFER_SIBLING)
4607 prefer_sibling = 1;
4608
bd939f45 4609 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4610
4611 do {
4612 int local_group;
4613
bd939f45 4614 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4615 memset(&sgs, 0, sizeof(sgs));
b9403130 4616 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4617
8f190fb3 4618 if (local_group && !(*balance))
1e3c88bd
PZ
4619 return;
4620
4621 sds->total_load += sgs.group_load;
9c3f75cb 4622 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4623
4624 /*
4625 * In case the child domain prefers tasks go to siblings
532cb4c4 4626 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4627 * and move all the excess tasks away. We lower the capacity
4628 * of a group only if the local group has the capacity to fit
4629 * these excess tasks, i.e. nr_running < group_capacity. The
4630 * extra check prevents the case where you always pull from the
4631 * heaviest group when it is already under-utilized (possible
4632 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4633 */
75dd321d 4634 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4635 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4636
4637 if (local_group) {
4638 sds->this_load = sgs.avg_load;
532cb4c4 4639 sds->this = sg;
1e3c88bd
PZ
4640 sds->this_nr_running = sgs.sum_nr_running;
4641 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4642 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4643 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4644 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4645 sds->max_load = sgs.avg_load;
532cb4c4 4646 sds->busiest = sg;
1e3c88bd 4647 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4648 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4649 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4650 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4651 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4652 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4653 sds->group_imb = sgs.group_imb;
4654 }
4655
532cb4c4 4656 sg = sg->next;
bd939f45 4657 } while (sg != env->sd->groups);
532cb4c4
MN
4658}
4659
532cb4c4
MN
4660/**
4661 * check_asym_packing - Check to see if the group is packed into the
4662 * sched doman.
4663 *
4664 * This is primarily intended to used at the sibling level. Some
4665 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4666 * case of POWER7, it can move to lower SMT modes only when higher
4667 * threads are idle. When in lower SMT modes, the threads will
4668 * perform better since they share less core resources. Hence when we
4669 * have idle threads, we want them to be the higher ones.
4670 *
4671 * This packing function is run on idle threads. It checks to see if
4672 * the busiest CPU in this domain (core in the P7 case) has a higher
4673 * CPU number than the packing function is being run on. Here we are
4674 * assuming lower CPU number will be equivalent to lower a SMT thread
4675 * number.
4676 *
b6b12294
MN
4677 * Returns 1 when packing is required and a task should be moved to
4678 * this CPU. The amount of the imbalance is returned in *imbalance.
4679 *
cd96891d 4680 * @env: The load balancing environment.
532cb4c4 4681 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4682 */
bd939f45 4683static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4684{
4685 int busiest_cpu;
4686
bd939f45 4687 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4688 return 0;
4689
4690 if (!sds->busiest)
4691 return 0;
4692
4693 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4694 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4695 return 0;
4696
bd939f45
PZ
4697 env->imbalance = DIV_ROUND_CLOSEST(
4698 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4699
532cb4c4 4700 return 1;
1e3c88bd
PZ
4701}
4702
4703/**
4704 * fix_small_imbalance - Calculate the minor imbalance that exists
4705 * amongst the groups of a sched_domain, during
4706 * load balancing.
cd96891d 4707 * @env: The load balancing environment.
1e3c88bd 4708 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4709 */
bd939f45
PZ
4710static inline
4711void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4712{
4713 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4714 unsigned int imbn = 2;
dd5feea1 4715 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4716
4717 if (sds->this_nr_running) {
4718 sds->this_load_per_task /= sds->this_nr_running;
4719 if (sds->busiest_load_per_task >
4720 sds->this_load_per_task)
4721 imbn = 1;
bd939f45 4722 } else {
1e3c88bd 4723 sds->this_load_per_task =
bd939f45
PZ
4724 cpu_avg_load_per_task(env->dst_cpu);
4725 }
1e3c88bd 4726
dd5feea1 4727 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4728 * SCHED_POWER_SCALE;
9c3f75cb 4729 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4730
4731 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4732 (scaled_busy_load_per_task * imbn)) {
bd939f45 4733 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4734 return;
4735 }
4736
4737 /*
4738 * OK, we don't have enough imbalance to justify moving tasks,
4739 * however we may be able to increase total CPU power used by
4740 * moving them.
4741 */
4742
9c3f75cb 4743 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4744 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4745 pwr_now += sds->this->sgp->power *
1e3c88bd 4746 min(sds->this_load_per_task, sds->this_load);
1399fa78 4747 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4748
4749 /* Amount of load we'd subtract */
1399fa78 4750 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4751 sds->busiest->sgp->power;
1e3c88bd 4752 if (sds->max_load > tmp)
9c3f75cb 4753 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4754 min(sds->busiest_load_per_task, sds->max_load - tmp);
4755
4756 /* Amount of load we'd add */
9c3f75cb 4757 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4758 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4759 tmp = (sds->max_load * sds->busiest->sgp->power) /
4760 sds->this->sgp->power;
1e3c88bd 4761 else
1399fa78 4762 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4763 sds->this->sgp->power;
4764 pwr_move += sds->this->sgp->power *
1e3c88bd 4765 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4766 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4767
4768 /* Move if we gain throughput */
4769 if (pwr_move > pwr_now)
bd939f45 4770 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4771}
4772
4773/**
4774 * calculate_imbalance - Calculate the amount of imbalance present within the
4775 * groups of a given sched_domain during load balance.
bd939f45 4776 * @env: load balance environment
1e3c88bd 4777 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4778 */
bd939f45 4779static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4780{
dd5feea1
SS
4781 unsigned long max_pull, load_above_capacity = ~0UL;
4782
4783 sds->busiest_load_per_task /= sds->busiest_nr_running;
4784 if (sds->group_imb) {
4785 sds->busiest_load_per_task =
4786 min(sds->busiest_load_per_task, sds->avg_load);
4787 }
4788
1e3c88bd
PZ
4789 /*
4790 * In the presence of smp nice balancing, certain scenarios can have
4791 * max load less than avg load(as we skip the groups at or below
4792 * its cpu_power, while calculating max_load..)
4793 */
4794 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4795 env->imbalance = 0;
4796 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4797 }
4798
dd5feea1
SS
4799 if (!sds->group_imb) {
4800 /*
4801 * Don't want to pull so many tasks that a group would go idle.
4802 */
4803 load_above_capacity = (sds->busiest_nr_running -
4804 sds->busiest_group_capacity);
4805
1399fa78 4806 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4807
9c3f75cb 4808 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4809 }
4810
4811 /*
4812 * We're trying to get all the cpus to the average_load, so we don't
4813 * want to push ourselves above the average load, nor do we wish to
4814 * reduce the max loaded cpu below the average load. At the same time,
4815 * we also don't want to reduce the group load below the group capacity
4816 * (so that we can implement power-savings policies etc). Thus we look
4817 * for the minimum possible imbalance.
4818 * Be careful of negative numbers as they'll appear as very large values
4819 * with unsigned longs.
4820 */
4821 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4822
4823 /* How much load to actually move to equalise the imbalance */
bd939f45 4824 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4825 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4826 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4827
4828 /*
4829 * if *imbalance is less than the average load per runnable task
25985edc 4830 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4831 * a think about bumping its value to force at least one task to be
4832 * moved
4833 */
bd939f45
PZ
4834 if (env->imbalance < sds->busiest_load_per_task)
4835 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4836
4837}
fab47622 4838
1e3c88bd
PZ
4839/******* find_busiest_group() helpers end here *********************/
4840
4841/**
4842 * find_busiest_group - Returns the busiest group within the sched_domain
4843 * if there is an imbalance. If there isn't an imbalance, and
4844 * the user has opted for power-savings, it returns a group whose
4845 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4846 * such a group exists.
4847 *
4848 * Also calculates the amount of weighted load which should be moved
4849 * to restore balance.
4850 *
cd96891d 4851 * @env: The load balancing environment.
1e3c88bd
PZ
4852 * @balance: Pointer to a variable indicating if this_cpu
4853 * is the appropriate cpu to perform load balancing at this_level.
4854 *
4855 * Returns: - the busiest group if imbalance exists.
4856 * - If no imbalance and user has opted for power-savings balance,
4857 * return the least loaded group whose CPUs can be
4858 * put to idle by rebalancing its tasks onto our group.
4859 */
4860static struct sched_group *
b9403130 4861find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4862{
4863 struct sd_lb_stats sds;
4864
4865 memset(&sds, 0, sizeof(sds));
4866
4867 /*
4868 * Compute the various statistics relavent for load balancing at
4869 * this level.
4870 */
b9403130 4871 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4872
cc57aa8f
PZ
4873 /*
4874 * this_cpu is not the appropriate cpu to perform load balancing at
4875 * this level.
1e3c88bd 4876 */
8f190fb3 4877 if (!(*balance))
1e3c88bd
PZ
4878 goto ret;
4879
bd939f45
PZ
4880 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4881 check_asym_packing(env, &sds))
532cb4c4
MN
4882 return sds.busiest;
4883
cc57aa8f 4884 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4885 if (!sds.busiest || sds.busiest_nr_running == 0)
4886 goto out_balanced;
4887
1399fa78 4888 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4889
866ab43e
PZ
4890 /*
4891 * If the busiest group is imbalanced the below checks don't
4892 * work because they assumes all things are equal, which typically
4893 * isn't true due to cpus_allowed constraints and the like.
4894 */
4895 if (sds.group_imb)
4896 goto force_balance;
4897
cc57aa8f 4898 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4899 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4900 !sds.busiest_has_capacity)
4901 goto force_balance;
4902
cc57aa8f
PZ
4903 /*
4904 * If the local group is more busy than the selected busiest group
4905 * don't try and pull any tasks.
4906 */
1e3c88bd
PZ
4907 if (sds.this_load >= sds.max_load)
4908 goto out_balanced;
4909
cc57aa8f
PZ
4910 /*
4911 * Don't pull any tasks if this group is already above the domain
4912 * average load.
4913 */
1e3c88bd
PZ
4914 if (sds.this_load >= sds.avg_load)
4915 goto out_balanced;
4916
bd939f45 4917 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4918 /*
4919 * This cpu is idle. If the busiest group load doesn't
4920 * have more tasks than the number of available cpu's and
4921 * there is no imbalance between this and busiest group
4922 * wrt to idle cpu's, it is balanced.
4923 */
c186fafe 4924 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4925 sds.busiest_nr_running <= sds.busiest_group_weight)
4926 goto out_balanced;
c186fafe
PZ
4927 } else {
4928 /*
4929 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4930 * imbalance_pct to be conservative.
4931 */
bd939f45 4932 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4933 goto out_balanced;
aae6d3dd 4934 }
1e3c88bd 4935
fab47622 4936force_balance:
1e3c88bd 4937 /* Looks like there is an imbalance. Compute it */
bd939f45 4938 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4939 return sds.busiest;
4940
4941out_balanced:
1e3c88bd 4942ret:
bd939f45 4943 env->imbalance = 0;
1e3c88bd
PZ
4944 return NULL;
4945}
4946
4947/*
4948 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4949 */
bd939f45 4950static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4951 struct sched_group *group)
1e3c88bd
PZ
4952{
4953 struct rq *busiest = NULL, *rq;
4954 unsigned long max_load = 0;
4955 int i;
4956
4957 for_each_cpu(i, sched_group_cpus(group)) {
4958 unsigned long power = power_of(i);
1399fa78
NR
4959 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4960 SCHED_POWER_SCALE);
1e3c88bd
PZ
4961 unsigned long wl;
4962
9d5efe05 4963 if (!capacity)
bd939f45 4964 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4965
b9403130 4966 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4967 continue;
4968
4969 rq = cpu_rq(i);
6e40f5bb 4970 wl = weighted_cpuload(i);
1e3c88bd 4971
6e40f5bb
TG
4972 /*
4973 * When comparing with imbalance, use weighted_cpuload()
4974 * which is not scaled with the cpu power.
4975 */
bd939f45 4976 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4977 continue;
4978
6e40f5bb
TG
4979 /*
4980 * For the load comparisons with the other cpu's, consider
4981 * the weighted_cpuload() scaled with the cpu power, so that
4982 * the load can be moved away from the cpu that is potentially
4983 * running at a lower capacity.
4984 */
1399fa78 4985 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4986
1e3c88bd
PZ
4987 if (wl > max_load) {
4988 max_load = wl;
4989 busiest = rq;
4990 }
4991 }
4992
4993 return busiest;
4994}
4995
4996/*
4997 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4998 * so long as it is large enough.
4999 */
5000#define MAX_PINNED_INTERVAL 512
5001
5002/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5003DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5004
bd939f45 5005static int need_active_balance(struct lb_env *env)
1af3ed3d 5006{
bd939f45
PZ
5007 struct sched_domain *sd = env->sd;
5008
5009 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5010
5011 /*
5012 * ASYM_PACKING needs to force migrate tasks from busy but
5013 * higher numbered CPUs in order to pack all tasks in the
5014 * lowest numbered CPUs.
5015 */
bd939f45 5016 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5017 return 1;
1af3ed3d
PZ
5018 }
5019
5020 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5021}
5022
969c7921
TH
5023static int active_load_balance_cpu_stop(void *data);
5024
1e3c88bd
PZ
5025/*
5026 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5027 * tasks if there is an imbalance.
5028 */
5029static int load_balance(int this_cpu, struct rq *this_rq,
5030 struct sched_domain *sd, enum cpu_idle_type idle,
5031 int *balance)
5032{
88b8dac0 5033 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5034 struct sched_group *group;
1e3c88bd
PZ
5035 struct rq *busiest;
5036 unsigned long flags;
e6252c3e 5037 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5038
8e45cb54
PZ
5039 struct lb_env env = {
5040 .sd = sd,
ddcdf6e7
PZ
5041 .dst_cpu = this_cpu,
5042 .dst_rq = this_rq,
88b8dac0 5043 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5044 .idle = idle,
eb95308e 5045 .loop_break = sched_nr_migrate_break,
b9403130 5046 .cpus = cpus,
8e45cb54
PZ
5047 };
5048
cfc03118
JK
5049 /*
5050 * For NEWLY_IDLE load_balancing, we don't need to consider
5051 * other cpus in our group
5052 */
e02e60c1 5053 if (idle == CPU_NEWLY_IDLE)
cfc03118 5054 env.dst_grpmask = NULL;
cfc03118 5055
1e3c88bd
PZ
5056 cpumask_copy(cpus, cpu_active_mask);
5057
1e3c88bd
PZ
5058 schedstat_inc(sd, lb_count[idle]);
5059
5060redo:
b9403130 5061 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5062
5063 if (*balance == 0)
5064 goto out_balanced;
5065
5066 if (!group) {
5067 schedstat_inc(sd, lb_nobusyg[idle]);
5068 goto out_balanced;
5069 }
5070
b9403130 5071 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5072 if (!busiest) {
5073 schedstat_inc(sd, lb_nobusyq[idle]);
5074 goto out_balanced;
5075 }
5076
78feefc5 5077 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5078
bd939f45 5079 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5080
5081 ld_moved = 0;
5082 if (busiest->nr_running > 1) {
5083 /*
5084 * Attempt to move tasks. If find_busiest_group has found
5085 * an imbalance but busiest->nr_running <= 1, the group is
5086 * still unbalanced. ld_moved simply stays zero, so it is
5087 * correctly treated as an imbalance.
5088 */
8e45cb54 5089 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5090 env.src_cpu = busiest->cpu;
5091 env.src_rq = busiest;
5092 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5093
a35b6466 5094 update_h_load(env.src_cpu);
5d6523eb 5095more_balance:
1e3c88bd 5096 local_irq_save(flags);
78feefc5 5097 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5098
5099 /*
5100 * cur_ld_moved - load moved in current iteration
5101 * ld_moved - cumulative load moved across iterations
5102 */
5103 cur_ld_moved = move_tasks(&env);
5104 ld_moved += cur_ld_moved;
78feefc5 5105 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5106 local_irq_restore(flags);
5107
5108 /*
5109 * some other cpu did the load balance for us.
5110 */
88b8dac0
SV
5111 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5112 resched_cpu(env.dst_cpu);
5113
f1cd0858
JK
5114 if (env.flags & LBF_NEED_BREAK) {
5115 env.flags &= ~LBF_NEED_BREAK;
5116 goto more_balance;
5117 }
5118
88b8dac0
SV
5119 /*
5120 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5121 * us and move them to an alternate dst_cpu in our sched_group
5122 * where they can run. The upper limit on how many times we
5123 * iterate on same src_cpu is dependent on number of cpus in our
5124 * sched_group.
5125 *
5126 * This changes load balance semantics a bit on who can move
5127 * load to a given_cpu. In addition to the given_cpu itself
5128 * (or a ilb_cpu acting on its behalf where given_cpu is
5129 * nohz-idle), we now have balance_cpu in a position to move
5130 * load to given_cpu. In rare situations, this may cause
5131 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5132 * _independently_ and at _same_ time to move some load to
5133 * given_cpu) causing exceess load to be moved to given_cpu.
5134 * This however should not happen so much in practice and
5135 * moreover subsequent load balance cycles should correct the
5136 * excess load moved.
5137 */
e02e60c1 5138 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5139
78feefc5 5140 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5141 env.dst_cpu = env.new_dst_cpu;
5142 env.flags &= ~LBF_SOME_PINNED;
5143 env.loop = 0;
5144 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5145
5146 /* Prevent to re-select dst_cpu via env's cpus */
5147 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5148
88b8dac0
SV
5149 /*
5150 * Go back to "more_balance" rather than "redo" since we
5151 * need to continue with same src_cpu.
5152 */
5153 goto more_balance;
5154 }
1e3c88bd
PZ
5155
5156 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5157 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5158 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5159 if (!cpumask_empty(cpus)) {
5160 env.loop = 0;
5161 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5162 goto redo;
bbf18b19 5163 }
1e3c88bd
PZ
5164 goto out_balanced;
5165 }
5166 }
5167
5168 if (!ld_moved) {
5169 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5170 /*
5171 * Increment the failure counter only on periodic balance.
5172 * We do not want newidle balance, which can be very
5173 * frequent, pollute the failure counter causing
5174 * excessive cache_hot migrations and active balances.
5175 */
5176 if (idle != CPU_NEWLY_IDLE)
5177 sd->nr_balance_failed++;
1e3c88bd 5178
bd939f45 5179 if (need_active_balance(&env)) {
1e3c88bd
PZ
5180 raw_spin_lock_irqsave(&busiest->lock, flags);
5181
969c7921
TH
5182 /* don't kick the active_load_balance_cpu_stop,
5183 * if the curr task on busiest cpu can't be
5184 * moved to this_cpu
1e3c88bd
PZ
5185 */
5186 if (!cpumask_test_cpu(this_cpu,
fa17b507 5187 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5188 raw_spin_unlock_irqrestore(&busiest->lock,
5189 flags);
8e45cb54 5190 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5191 goto out_one_pinned;
5192 }
5193
969c7921
TH
5194 /*
5195 * ->active_balance synchronizes accesses to
5196 * ->active_balance_work. Once set, it's cleared
5197 * only after active load balance is finished.
5198 */
1e3c88bd
PZ
5199 if (!busiest->active_balance) {
5200 busiest->active_balance = 1;
5201 busiest->push_cpu = this_cpu;
5202 active_balance = 1;
5203 }
5204 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5205
bd939f45 5206 if (active_balance) {
969c7921
TH
5207 stop_one_cpu_nowait(cpu_of(busiest),
5208 active_load_balance_cpu_stop, busiest,
5209 &busiest->active_balance_work);
bd939f45 5210 }
1e3c88bd
PZ
5211
5212 /*
5213 * We've kicked active balancing, reset the failure
5214 * counter.
5215 */
5216 sd->nr_balance_failed = sd->cache_nice_tries+1;
5217 }
5218 } else
5219 sd->nr_balance_failed = 0;
5220
5221 if (likely(!active_balance)) {
5222 /* We were unbalanced, so reset the balancing interval */
5223 sd->balance_interval = sd->min_interval;
5224 } else {
5225 /*
5226 * If we've begun active balancing, start to back off. This
5227 * case may not be covered by the all_pinned logic if there
5228 * is only 1 task on the busy runqueue (because we don't call
5229 * move_tasks).
5230 */
5231 if (sd->balance_interval < sd->max_interval)
5232 sd->balance_interval *= 2;
5233 }
5234
1e3c88bd
PZ
5235 goto out;
5236
5237out_balanced:
5238 schedstat_inc(sd, lb_balanced[idle]);
5239
5240 sd->nr_balance_failed = 0;
5241
5242out_one_pinned:
5243 /* tune up the balancing interval */
8e45cb54 5244 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5245 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5246 (sd->balance_interval < sd->max_interval))
5247 sd->balance_interval *= 2;
5248
46e49b38 5249 ld_moved = 0;
1e3c88bd 5250out:
1e3c88bd
PZ
5251 return ld_moved;
5252}
5253
1e3c88bd
PZ
5254/*
5255 * idle_balance is called by schedule() if this_cpu is about to become
5256 * idle. Attempts to pull tasks from other CPUs.
5257 */
029632fb 5258void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5259{
5260 struct sched_domain *sd;
5261 int pulled_task = 0;
5262 unsigned long next_balance = jiffies + HZ;
5263
5264 this_rq->idle_stamp = this_rq->clock;
5265
5266 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5267 return;
5268
f492e12e
PZ
5269 /*
5270 * Drop the rq->lock, but keep IRQ/preempt disabled.
5271 */
5272 raw_spin_unlock(&this_rq->lock);
5273
48a16753 5274 update_blocked_averages(this_cpu);
dce840a0 5275 rcu_read_lock();
1e3c88bd
PZ
5276 for_each_domain(this_cpu, sd) {
5277 unsigned long interval;
f492e12e 5278 int balance = 1;
1e3c88bd
PZ
5279
5280 if (!(sd->flags & SD_LOAD_BALANCE))
5281 continue;
5282
f492e12e 5283 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5284 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5285 pulled_task = load_balance(this_cpu, this_rq,
5286 sd, CPU_NEWLY_IDLE, &balance);
5287 }
1e3c88bd
PZ
5288
5289 interval = msecs_to_jiffies(sd->balance_interval);
5290 if (time_after(next_balance, sd->last_balance + interval))
5291 next_balance = sd->last_balance + interval;
d5ad140b
NR
5292 if (pulled_task) {
5293 this_rq->idle_stamp = 0;
1e3c88bd 5294 break;
d5ad140b 5295 }
1e3c88bd 5296 }
dce840a0 5297 rcu_read_unlock();
f492e12e
PZ
5298
5299 raw_spin_lock(&this_rq->lock);
5300
1e3c88bd
PZ
5301 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5302 /*
5303 * We are going idle. next_balance may be set based on
5304 * a busy processor. So reset next_balance.
5305 */
5306 this_rq->next_balance = next_balance;
5307 }
5308}
5309
5310/*
969c7921
TH
5311 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5312 * running tasks off the busiest CPU onto idle CPUs. It requires at
5313 * least 1 task to be running on each physical CPU where possible, and
5314 * avoids physical / logical imbalances.
1e3c88bd 5315 */
969c7921 5316static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5317{
969c7921
TH
5318 struct rq *busiest_rq = data;
5319 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5320 int target_cpu = busiest_rq->push_cpu;
969c7921 5321 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5322 struct sched_domain *sd;
969c7921
TH
5323
5324 raw_spin_lock_irq(&busiest_rq->lock);
5325
5326 /* make sure the requested cpu hasn't gone down in the meantime */
5327 if (unlikely(busiest_cpu != smp_processor_id() ||
5328 !busiest_rq->active_balance))
5329 goto out_unlock;
1e3c88bd
PZ
5330
5331 /* Is there any task to move? */
5332 if (busiest_rq->nr_running <= 1)
969c7921 5333 goto out_unlock;
1e3c88bd
PZ
5334
5335 /*
5336 * This condition is "impossible", if it occurs
5337 * we need to fix it. Originally reported by
5338 * Bjorn Helgaas on a 128-cpu setup.
5339 */
5340 BUG_ON(busiest_rq == target_rq);
5341
5342 /* move a task from busiest_rq to target_rq */
5343 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5344
5345 /* Search for an sd spanning us and the target CPU. */
dce840a0 5346 rcu_read_lock();
1e3c88bd
PZ
5347 for_each_domain(target_cpu, sd) {
5348 if ((sd->flags & SD_LOAD_BALANCE) &&
5349 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5350 break;
5351 }
5352
5353 if (likely(sd)) {
8e45cb54
PZ
5354 struct lb_env env = {
5355 .sd = sd,
ddcdf6e7
PZ
5356 .dst_cpu = target_cpu,
5357 .dst_rq = target_rq,
5358 .src_cpu = busiest_rq->cpu,
5359 .src_rq = busiest_rq,
8e45cb54
PZ
5360 .idle = CPU_IDLE,
5361 };
5362
1e3c88bd
PZ
5363 schedstat_inc(sd, alb_count);
5364
8e45cb54 5365 if (move_one_task(&env))
1e3c88bd
PZ
5366 schedstat_inc(sd, alb_pushed);
5367 else
5368 schedstat_inc(sd, alb_failed);
5369 }
dce840a0 5370 rcu_read_unlock();
1e3c88bd 5371 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5372out_unlock:
5373 busiest_rq->active_balance = 0;
5374 raw_spin_unlock_irq(&busiest_rq->lock);
5375 return 0;
1e3c88bd
PZ
5376}
5377
3451d024 5378#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5379/*
5380 * idle load balancing details
83cd4fe2
VP
5381 * - When one of the busy CPUs notice that there may be an idle rebalancing
5382 * needed, they will kick the idle load balancer, which then does idle
5383 * load balancing for all the idle CPUs.
5384 */
1e3c88bd 5385static struct {
83cd4fe2 5386 cpumask_var_t idle_cpus_mask;
0b005cf5 5387 atomic_t nr_cpus;
83cd4fe2
VP
5388 unsigned long next_balance; /* in jiffy units */
5389} nohz ____cacheline_aligned;
1e3c88bd 5390
8e7fbcbc 5391static inline int find_new_ilb(int call_cpu)
1e3c88bd 5392{
0b005cf5 5393 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5394
786d6dc7
SS
5395 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5396 return ilb;
5397
5398 return nr_cpu_ids;
1e3c88bd 5399}
1e3c88bd 5400
83cd4fe2
VP
5401/*
5402 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5403 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5404 * CPU (if there is one).
5405 */
5406static void nohz_balancer_kick(int cpu)
5407{
5408 int ilb_cpu;
5409
5410 nohz.next_balance++;
5411
0b005cf5 5412 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5413
0b005cf5
SS
5414 if (ilb_cpu >= nr_cpu_ids)
5415 return;
83cd4fe2 5416
cd490c5b 5417 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5418 return;
5419 /*
5420 * Use smp_send_reschedule() instead of resched_cpu().
5421 * This way we generate a sched IPI on the target cpu which
5422 * is idle. And the softirq performing nohz idle load balance
5423 * will be run before returning from the IPI.
5424 */
5425 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5426 return;
5427}
5428
c1cc017c 5429static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5430{
5431 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5432 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5433 atomic_dec(&nohz.nr_cpus);
5434 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5435 }
5436}
5437
69e1e811
SS
5438static inline void set_cpu_sd_state_busy(void)
5439{
5440 struct sched_domain *sd;
69e1e811 5441
69e1e811 5442 rcu_read_lock();
424c93fe 5443 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5444
5445 if (!sd || !sd->nohz_idle)
5446 goto unlock;
5447 sd->nohz_idle = 0;
5448
5449 for (; sd; sd = sd->parent)
69e1e811 5450 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5451unlock:
69e1e811
SS
5452 rcu_read_unlock();
5453}
5454
5455void set_cpu_sd_state_idle(void)
5456{
5457 struct sched_domain *sd;
69e1e811 5458
69e1e811 5459 rcu_read_lock();
424c93fe 5460 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5461
5462 if (!sd || sd->nohz_idle)
5463 goto unlock;
5464 sd->nohz_idle = 1;
5465
5466 for (; sd; sd = sd->parent)
69e1e811 5467 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5468unlock:
69e1e811
SS
5469 rcu_read_unlock();
5470}
5471
1e3c88bd 5472/*
c1cc017c 5473 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5474 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5475 */
c1cc017c 5476void nohz_balance_enter_idle(int cpu)
1e3c88bd 5477{
71325960
SS
5478 /*
5479 * If this cpu is going down, then nothing needs to be done.
5480 */
5481 if (!cpu_active(cpu))
5482 return;
5483
c1cc017c
AS
5484 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5485 return;
1e3c88bd 5486
c1cc017c
AS
5487 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5488 atomic_inc(&nohz.nr_cpus);
5489 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5490}
71325960
SS
5491
5492static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5493 unsigned long action, void *hcpu)
5494{
5495 switch (action & ~CPU_TASKS_FROZEN) {
5496 case CPU_DYING:
c1cc017c 5497 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5498 return NOTIFY_OK;
5499 default:
5500 return NOTIFY_DONE;
5501 }
5502}
1e3c88bd
PZ
5503#endif
5504
5505static DEFINE_SPINLOCK(balancing);
5506
49c022e6
PZ
5507/*
5508 * Scale the max load_balance interval with the number of CPUs in the system.
5509 * This trades load-balance latency on larger machines for less cross talk.
5510 */
029632fb 5511void update_max_interval(void)
49c022e6
PZ
5512{
5513 max_load_balance_interval = HZ*num_online_cpus()/10;
5514}
5515
1e3c88bd
PZ
5516/*
5517 * It checks each scheduling domain to see if it is due to be balanced,
5518 * and initiates a balancing operation if so.
5519 *
b9b0853a 5520 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5521 */
5522static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5523{
5524 int balance = 1;
5525 struct rq *rq = cpu_rq(cpu);
5526 unsigned long interval;
04f733b4 5527 struct sched_domain *sd;
1e3c88bd
PZ
5528 /* Earliest time when we have to do rebalance again */
5529 unsigned long next_balance = jiffies + 60*HZ;
5530 int update_next_balance = 0;
5531 int need_serialize;
5532
48a16753 5533 update_blocked_averages(cpu);
2069dd75 5534
dce840a0 5535 rcu_read_lock();
1e3c88bd
PZ
5536 for_each_domain(cpu, sd) {
5537 if (!(sd->flags & SD_LOAD_BALANCE))
5538 continue;
5539
5540 interval = sd->balance_interval;
5541 if (idle != CPU_IDLE)
5542 interval *= sd->busy_factor;
5543
5544 /* scale ms to jiffies */
5545 interval = msecs_to_jiffies(interval);
49c022e6 5546 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5547
5548 need_serialize = sd->flags & SD_SERIALIZE;
5549
5550 if (need_serialize) {
5551 if (!spin_trylock(&balancing))
5552 goto out;
5553 }
5554
5555 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5556 if (load_balance(cpu, rq, sd, idle, &balance)) {
5557 /*
de5eb2dd
JK
5558 * The LBF_SOME_PINNED logic could have changed
5559 * env->dst_cpu, so we can't know our idle
5560 * state even if we migrated tasks. Update it.
1e3c88bd 5561 */
de5eb2dd 5562 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5563 }
5564 sd->last_balance = jiffies;
5565 }
5566 if (need_serialize)
5567 spin_unlock(&balancing);
5568out:
5569 if (time_after(next_balance, sd->last_balance + interval)) {
5570 next_balance = sd->last_balance + interval;
5571 update_next_balance = 1;
5572 }
5573
5574 /*
5575 * Stop the load balance at this level. There is another
5576 * CPU in our sched group which is doing load balancing more
5577 * actively.
5578 */
5579 if (!balance)
5580 break;
5581 }
dce840a0 5582 rcu_read_unlock();
1e3c88bd
PZ
5583
5584 /*
5585 * next_balance will be updated only when there is a need.
5586 * When the cpu is attached to null domain for ex, it will not be
5587 * updated.
5588 */
5589 if (likely(update_next_balance))
5590 rq->next_balance = next_balance;
5591}
5592
3451d024 5593#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5594/*
3451d024 5595 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5596 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5597 */
83cd4fe2
VP
5598static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5599{
5600 struct rq *this_rq = cpu_rq(this_cpu);
5601 struct rq *rq;
5602 int balance_cpu;
5603
1c792db7
SS
5604 if (idle != CPU_IDLE ||
5605 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5606 goto end;
83cd4fe2
VP
5607
5608 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5609 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5610 continue;
5611
5612 /*
5613 * If this cpu gets work to do, stop the load balancing
5614 * work being done for other cpus. Next load
5615 * balancing owner will pick it up.
5616 */
1c792db7 5617 if (need_resched())
83cd4fe2 5618 break;
83cd4fe2 5619
5ed4f1d9
VG
5620 rq = cpu_rq(balance_cpu);
5621
5622 raw_spin_lock_irq(&rq->lock);
5623 update_rq_clock(rq);
5624 update_idle_cpu_load(rq);
5625 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5626
5627 rebalance_domains(balance_cpu, CPU_IDLE);
5628
83cd4fe2
VP
5629 if (time_after(this_rq->next_balance, rq->next_balance))
5630 this_rq->next_balance = rq->next_balance;
5631 }
5632 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5633end:
5634 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5635}
5636
5637/*
0b005cf5
SS
5638 * Current heuristic for kicking the idle load balancer in the presence
5639 * of an idle cpu is the system.
5640 * - This rq has more than one task.
5641 * - At any scheduler domain level, this cpu's scheduler group has multiple
5642 * busy cpu's exceeding the group's power.
5643 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5644 * domain span are idle.
83cd4fe2
VP
5645 */
5646static inline int nohz_kick_needed(struct rq *rq, int cpu)
5647{
5648 unsigned long now = jiffies;
0b005cf5 5649 struct sched_domain *sd;
83cd4fe2 5650
1c792db7 5651 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5652 return 0;
5653
1c792db7
SS
5654 /*
5655 * We may be recently in ticked or tickless idle mode. At the first
5656 * busy tick after returning from idle, we will update the busy stats.
5657 */
69e1e811 5658 set_cpu_sd_state_busy();
c1cc017c 5659 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5660
5661 /*
5662 * None are in tickless mode and hence no need for NOHZ idle load
5663 * balancing.
5664 */
5665 if (likely(!atomic_read(&nohz.nr_cpus)))
5666 return 0;
1c792db7
SS
5667
5668 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5669 return 0;
5670
0b005cf5
SS
5671 if (rq->nr_running >= 2)
5672 goto need_kick;
83cd4fe2 5673
067491b7 5674 rcu_read_lock();
0b005cf5
SS
5675 for_each_domain(cpu, sd) {
5676 struct sched_group *sg = sd->groups;
5677 struct sched_group_power *sgp = sg->sgp;
5678 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5679
0b005cf5 5680 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5681 goto need_kick_unlock;
0b005cf5
SS
5682
5683 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5684 && (cpumask_first_and(nohz.idle_cpus_mask,
5685 sched_domain_span(sd)) < cpu))
067491b7 5686 goto need_kick_unlock;
0b005cf5
SS
5687
5688 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5689 break;
83cd4fe2 5690 }
067491b7 5691 rcu_read_unlock();
83cd4fe2 5692 return 0;
067491b7
PZ
5693
5694need_kick_unlock:
5695 rcu_read_unlock();
0b005cf5
SS
5696need_kick:
5697 return 1;
83cd4fe2
VP
5698}
5699#else
5700static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5701#endif
5702
5703/*
5704 * run_rebalance_domains is triggered when needed from the scheduler tick.
5705 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5706 */
1e3c88bd
PZ
5707static void run_rebalance_domains(struct softirq_action *h)
5708{
5709 int this_cpu = smp_processor_id();
5710 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5711 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5712 CPU_IDLE : CPU_NOT_IDLE;
5713
5714 rebalance_domains(this_cpu, idle);
5715
1e3c88bd 5716 /*
83cd4fe2 5717 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5718 * balancing on behalf of the other idle cpus whose ticks are
5719 * stopped.
5720 */
83cd4fe2 5721 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5722}
5723
5724static inline int on_null_domain(int cpu)
5725{
90a6501f 5726 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5727}
5728
5729/*
5730 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5731 */
029632fb 5732void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5733{
1e3c88bd
PZ
5734 /* Don't need to rebalance while attached to NULL domain */
5735 if (time_after_eq(jiffies, rq->next_balance) &&
5736 likely(!on_null_domain(cpu)))
5737 raise_softirq(SCHED_SOFTIRQ);
3451d024 5738#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5739 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5740 nohz_balancer_kick(cpu);
5741#endif
1e3c88bd
PZ
5742}
5743
0bcdcf28
CE
5744static void rq_online_fair(struct rq *rq)
5745{
5746 update_sysctl();
5747}
5748
5749static void rq_offline_fair(struct rq *rq)
5750{
5751 update_sysctl();
a4c96ae3
PB
5752
5753 /* Ensure any throttled groups are reachable by pick_next_task */
5754 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5755}
5756
55e12e5e 5757#endif /* CONFIG_SMP */
e1d1484f 5758
bf0f6f24
IM
5759/*
5760 * scheduler tick hitting a task of our scheduling class:
5761 */
8f4d37ec 5762static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5763{
5764 struct cfs_rq *cfs_rq;
5765 struct sched_entity *se = &curr->se;
5766
5767 for_each_sched_entity(se) {
5768 cfs_rq = cfs_rq_of(se);
8f4d37ec 5769 entity_tick(cfs_rq, se, queued);
bf0f6f24 5770 }
18bf2805 5771
cbee9f88
PZ
5772 if (sched_feat_numa(NUMA))
5773 task_tick_numa(rq, curr);
3d59eebc 5774
18bf2805 5775 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5776}
5777
5778/*
cd29fe6f
PZ
5779 * called on fork with the child task as argument from the parent's context
5780 * - child not yet on the tasklist
5781 * - preemption disabled
bf0f6f24 5782 */
cd29fe6f 5783static void task_fork_fair(struct task_struct *p)
bf0f6f24 5784{
4fc420c9
DN
5785 struct cfs_rq *cfs_rq;
5786 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5787 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5788 struct rq *rq = this_rq();
5789 unsigned long flags;
5790
05fa785c 5791 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5792
861d034e
PZ
5793 update_rq_clock(rq);
5794
4fc420c9
DN
5795 cfs_rq = task_cfs_rq(current);
5796 curr = cfs_rq->curr;
5797
b0a0f667
PM
5798 if (unlikely(task_cpu(p) != this_cpu)) {
5799 rcu_read_lock();
cd29fe6f 5800 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5801 rcu_read_unlock();
5802 }
bf0f6f24 5803
7109c442 5804 update_curr(cfs_rq);
cd29fe6f 5805
b5d9d734
MG
5806 if (curr)
5807 se->vruntime = curr->vruntime;
aeb73b04 5808 place_entity(cfs_rq, se, 1);
4d78e7b6 5809
cd29fe6f 5810 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5811 /*
edcb60a3
IM
5812 * Upon rescheduling, sched_class::put_prev_task() will place
5813 * 'current' within the tree based on its new key value.
5814 */
4d78e7b6 5815 swap(curr->vruntime, se->vruntime);
aec0a514 5816 resched_task(rq->curr);
4d78e7b6 5817 }
bf0f6f24 5818
88ec22d3
PZ
5819 se->vruntime -= cfs_rq->min_vruntime;
5820
05fa785c 5821 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5822}
5823
cb469845
SR
5824/*
5825 * Priority of the task has changed. Check to see if we preempt
5826 * the current task.
5827 */
da7a735e
PZ
5828static void
5829prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5830{
da7a735e
PZ
5831 if (!p->se.on_rq)
5832 return;
5833
cb469845
SR
5834 /*
5835 * Reschedule if we are currently running on this runqueue and
5836 * our priority decreased, or if we are not currently running on
5837 * this runqueue and our priority is higher than the current's
5838 */
da7a735e 5839 if (rq->curr == p) {
cb469845
SR
5840 if (p->prio > oldprio)
5841 resched_task(rq->curr);
5842 } else
15afe09b 5843 check_preempt_curr(rq, p, 0);
cb469845
SR
5844}
5845
da7a735e
PZ
5846static void switched_from_fair(struct rq *rq, struct task_struct *p)
5847{
5848 struct sched_entity *se = &p->se;
5849 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5850
5851 /*
5852 * Ensure the task's vruntime is normalized, so that when its
5853 * switched back to the fair class the enqueue_entity(.flags=0) will
5854 * do the right thing.
5855 *
5856 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5857 * have normalized the vruntime, if it was !on_rq, then only when
5858 * the task is sleeping will it still have non-normalized vruntime.
5859 */
5860 if (!se->on_rq && p->state != TASK_RUNNING) {
5861 /*
5862 * Fix up our vruntime so that the current sleep doesn't
5863 * cause 'unlimited' sleep bonus.
5864 */
5865 place_entity(cfs_rq, se, 0);
5866 se->vruntime -= cfs_rq->min_vruntime;
5867 }
9ee474f5
PT
5868
5869#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5870 /*
5871 * Remove our load from contribution when we leave sched_fair
5872 * and ensure we don't carry in an old decay_count if we
5873 * switch back.
5874 */
5875 if (p->se.avg.decay_count) {
5876 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5877 __synchronize_entity_decay(&p->se);
5878 subtract_blocked_load_contrib(cfs_rq,
5879 p->se.avg.load_avg_contrib);
5880 }
5881#endif
da7a735e
PZ
5882}
5883
cb469845
SR
5884/*
5885 * We switched to the sched_fair class.
5886 */
da7a735e 5887static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5888{
da7a735e
PZ
5889 if (!p->se.on_rq)
5890 return;
5891
cb469845
SR
5892 /*
5893 * We were most likely switched from sched_rt, so
5894 * kick off the schedule if running, otherwise just see
5895 * if we can still preempt the current task.
5896 */
da7a735e 5897 if (rq->curr == p)
cb469845
SR
5898 resched_task(rq->curr);
5899 else
15afe09b 5900 check_preempt_curr(rq, p, 0);
cb469845
SR
5901}
5902
83b699ed
SV
5903/* Account for a task changing its policy or group.
5904 *
5905 * This routine is mostly called to set cfs_rq->curr field when a task
5906 * migrates between groups/classes.
5907 */
5908static void set_curr_task_fair(struct rq *rq)
5909{
5910 struct sched_entity *se = &rq->curr->se;
5911
ec12cb7f
PT
5912 for_each_sched_entity(se) {
5913 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5914
5915 set_next_entity(cfs_rq, se);
5916 /* ensure bandwidth has been allocated on our new cfs_rq */
5917 account_cfs_rq_runtime(cfs_rq, 0);
5918 }
83b699ed
SV
5919}
5920
029632fb
PZ
5921void init_cfs_rq(struct cfs_rq *cfs_rq)
5922{
5923 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5924 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5925#ifndef CONFIG_64BIT
5926 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5927#endif
9ee474f5
PT
5928#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5929 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5930 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5931#endif
029632fb
PZ
5932}
5933
810b3817 5934#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5935static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5936{
aff3e498 5937 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5938 /*
5939 * If the task was not on the rq at the time of this cgroup movement
5940 * it must have been asleep, sleeping tasks keep their ->vruntime
5941 * absolute on their old rq until wakeup (needed for the fair sleeper
5942 * bonus in place_entity()).
5943 *
5944 * If it was on the rq, we've just 'preempted' it, which does convert
5945 * ->vruntime to a relative base.
5946 *
5947 * Make sure both cases convert their relative position when migrating
5948 * to another cgroup's rq. This does somewhat interfere with the
5949 * fair sleeper stuff for the first placement, but who cares.
5950 */
7ceff013
DN
5951 /*
5952 * When !on_rq, vruntime of the task has usually NOT been normalized.
5953 * But there are some cases where it has already been normalized:
5954 *
5955 * - Moving a forked child which is waiting for being woken up by
5956 * wake_up_new_task().
62af3783
DN
5957 * - Moving a task which has been woken up by try_to_wake_up() and
5958 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5959 *
5960 * To prevent boost or penalty in the new cfs_rq caused by delta
5961 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5962 */
62af3783 5963 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5964 on_rq = 1;
5965
b2b5ce02
PZ
5966 if (!on_rq)
5967 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5968 set_task_rq(p, task_cpu(p));
aff3e498
PT
5969 if (!on_rq) {
5970 cfs_rq = cfs_rq_of(&p->se);
5971 p->se.vruntime += cfs_rq->min_vruntime;
5972#ifdef CONFIG_SMP
5973 /*
5974 * migrate_task_rq_fair() will have removed our previous
5975 * contribution, but we must synchronize for ongoing future
5976 * decay.
5977 */
5978 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5979 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5980#endif
5981 }
810b3817 5982}
029632fb
PZ
5983
5984void free_fair_sched_group(struct task_group *tg)
5985{
5986 int i;
5987
5988 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5989
5990 for_each_possible_cpu(i) {
5991 if (tg->cfs_rq)
5992 kfree(tg->cfs_rq[i]);
5993 if (tg->se)
5994 kfree(tg->se[i]);
5995 }
5996
5997 kfree(tg->cfs_rq);
5998 kfree(tg->se);
5999}
6000
6001int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6002{
6003 struct cfs_rq *cfs_rq;
6004 struct sched_entity *se;
6005 int i;
6006
6007 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6008 if (!tg->cfs_rq)
6009 goto err;
6010 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6011 if (!tg->se)
6012 goto err;
6013
6014 tg->shares = NICE_0_LOAD;
6015
6016 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6017
6018 for_each_possible_cpu(i) {
6019 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6020 GFP_KERNEL, cpu_to_node(i));
6021 if (!cfs_rq)
6022 goto err;
6023
6024 se = kzalloc_node(sizeof(struct sched_entity),
6025 GFP_KERNEL, cpu_to_node(i));
6026 if (!se)
6027 goto err_free_rq;
6028
6029 init_cfs_rq(cfs_rq);
6030 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6031 }
6032
6033 return 1;
6034
6035err_free_rq:
6036 kfree(cfs_rq);
6037err:
6038 return 0;
6039}
6040
6041void unregister_fair_sched_group(struct task_group *tg, int cpu)
6042{
6043 struct rq *rq = cpu_rq(cpu);
6044 unsigned long flags;
6045
6046 /*
6047 * Only empty task groups can be destroyed; so we can speculatively
6048 * check on_list without danger of it being re-added.
6049 */
6050 if (!tg->cfs_rq[cpu]->on_list)
6051 return;
6052
6053 raw_spin_lock_irqsave(&rq->lock, flags);
6054 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6055 raw_spin_unlock_irqrestore(&rq->lock, flags);
6056}
6057
6058void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6059 struct sched_entity *se, int cpu,
6060 struct sched_entity *parent)
6061{
6062 struct rq *rq = cpu_rq(cpu);
6063
6064 cfs_rq->tg = tg;
6065 cfs_rq->rq = rq;
029632fb
PZ
6066 init_cfs_rq_runtime(cfs_rq);
6067
6068 tg->cfs_rq[cpu] = cfs_rq;
6069 tg->se[cpu] = se;
6070
6071 /* se could be NULL for root_task_group */
6072 if (!se)
6073 return;
6074
6075 if (!parent)
6076 se->cfs_rq = &rq->cfs;
6077 else
6078 se->cfs_rq = parent->my_q;
6079
6080 se->my_q = cfs_rq;
6081 update_load_set(&se->load, 0);
6082 se->parent = parent;
6083}
6084
6085static DEFINE_MUTEX(shares_mutex);
6086
6087int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6088{
6089 int i;
6090 unsigned long flags;
6091
6092 /*
6093 * We can't change the weight of the root cgroup.
6094 */
6095 if (!tg->se[0])
6096 return -EINVAL;
6097
6098 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6099
6100 mutex_lock(&shares_mutex);
6101 if (tg->shares == shares)
6102 goto done;
6103
6104 tg->shares = shares;
6105 for_each_possible_cpu(i) {
6106 struct rq *rq = cpu_rq(i);
6107 struct sched_entity *se;
6108
6109 se = tg->se[i];
6110 /* Propagate contribution to hierarchy */
6111 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6112
6113 /* Possible calls to update_curr() need rq clock */
6114 update_rq_clock(rq);
17bc14b7 6115 for_each_sched_entity(se)
029632fb
PZ
6116 update_cfs_shares(group_cfs_rq(se));
6117 raw_spin_unlock_irqrestore(&rq->lock, flags);
6118 }
6119
6120done:
6121 mutex_unlock(&shares_mutex);
6122 return 0;
6123}
6124#else /* CONFIG_FAIR_GROUP_SCHED */
6125
6126void free_fair_sched_group(struct task_group *tg) { }
6127
6128int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6129{
6130 return 1;
6131}
6132
6133void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6134
6135#endif /* CONFIG_FAIR_GROUP_SCHED */
6136
810b3817 6137
6d686f45 6138static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6139{
6140 struct sched_entity *se = &task->se;
0d721cea
PW
6141 unsigned int rr_interval = 0;
6142
6143 /*
6144 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6145 * idle runqueue:
6146 */
0d721cea 6147 if (rq->cfs.load.weight)
a59f4e07 6148 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6149
6150 return rr_interval;
6151}
6152
bf0f6f24
IM
6153/*
6154 * All the scheduling class methods:
6155 */
029632fb 6156const struct sched_class fair_sched_class = {
5522d5d5 6157 .next = &idle_sched_class,
bf0f6f24
IM
6158 .enqueue_task = enqueue_task_fair,
6159 .dequeue_task = dequeue_task_fair,
6160 .yield_task = yield_task_fair,
d95f4122 6161 .yield_to_task = yield_to_task_fair,
bf0f6f24 6162
2e09bf55 6163 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6164
6165 .pick_next_task = pick_next_task_fair,
6166 .put_prev_task = put_prev_task_fair,
6167
681f3e68 6168#ifdef CONFIG_SMP
4ce72a2c 6169 .select_task_rq = select_task_rq_fair,
f4e26b12 6170#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6171 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6172#endif
0bcdcf28
CE
6173 .rq_online = rq_online_fair,
6174 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6175
6176 .task_waking = task_waking_fair,
681f3e68 6177#endif
bf0f6f24 6178
83b699ed 6179 .set_curr_task = set_curr_task_fair,
bf0f6f24 6180 .task_tick = task_tick_fair,
cd29fe6f 6181 .task_fork = task_fork_fair,
cb469845
SR
6182
6183 .prio_changed = prio_changed_fair,
da7a735e 6184 .switched_from = switched_from_fair,
cb469845 6185 .switched_to = switched_to_fair,
810b3817 6186
0d721cea
PW
6187 .get_rr_interval = get_rr_interval_fair,
6188
810b3817 6189#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6190 .task_move_group = task_move_group_fair,
810b3817 6191#endif
bf0f6f24
IM
6192};
6193
6194#ifdef CONFIG_SCHED_DEBUG
029632fb 6195void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6196{
bf0f6f24
IM
6197 struct cfs_rq *cfs_rq;
6198
5973e5b9 6199 rcu_read_lock();
c3b64f1e 6200 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6201 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6202 rcu_read_unlock();
bf0f6f24
IM
6203}
6204#endif
029632fb
PZ
6205
6206__init void init_sched_fair_class(void)
6207{
6208#ifdef CONFIG_SMP
6209 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6210
3451d024 6211#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6212 nohz.next_balance = jiffies;
029632fb 6213 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6214 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6215#endif
6216#endif /* SMP */
6217
6218}