sched/topology: Introduce NUMA identity node sched domain
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7 515 struct sched_entity *curr = cfs_rq->curr;
bfb06889 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 517
1af5f730
PZ
518 u64 vruntime = cfs_rq->min_vruntime;
519
b60205c7
PZ
520 if (curr) {
521 if (curr->on_rq)
522 vruntime = curr->vruntime;
523 else
524 curr = NULL;
525 }
1af5f730 526
bfb06889
DB
527 if (leftmost) { /* non-empty tree */
528 struct sched_entity *se;
529 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 549{
bfb06889 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bfb06889 553 bool leftmost = true;
bf0f6f24
IM
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
bfb06889 569 leftmost = false;
bf0f6f24
IM
570 }
571 }
572
bf0f6f24 573 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
574 rb_insert_color_cached(&se->run_node,
575 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
576}
577
0702e3eb 578static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bfb06889 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
029632fb 583struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 584{
bfb06889 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
586
587 if (!left)
588 return NULL;
589
590 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
591}
592
ac53db59
RR
593static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594{
595 struct rb_node *next = rb_next(&se->run_node);
596
597 if (!next)
598 return NULL;
599
600 return rb_entry(next, struct sched_entity, run_node);
601}
602
603#ifdef CONFIG_SCHED_DEBUG
029632fb 604struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 605{
bfb06889 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 607
70eee74b
BS
608 if (!last)
609 return NULL;
7eee3e67
IM
610
611 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
612}
613
bf0f6f24
IM
614/**************************************************************
615 * Scheduling class statistics methods:
616 */
617
acb4a848 618int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 619 void __user *buffer, size_t *lenp,
b2be5e96
PZ
620 loff_t *ppos)
621{
8d65af78 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 623 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
624
625 if (ret || !write)
626 return ret;
627
628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 sysctl_sched_min_granularity);
630
acb4a848
CE
631#define WRT_SYSCTL(name) \
632 (normalized_sysctl_##name = sysctl_##name / (factor))
633 WRT_SYSCTL(sched_min_granularity);
634 WRT_SYSCTL(sched_latency);
635 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
636#undef WRT_SYSCTL
637
b2be5e96
PZ
638 return 0;
639}
640#endif
647e7cac 641
a7be37ac 642/*
f9c0b095 643 * delta /= w
a7be37ac 644 */
9dbdb155 645static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 646{
f9c0b095 647 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
649
650 return delta;
651}
652
647e7cac
IM
653/*
654 * The idea is to set a period in which each task runs once.
655 *
532b1858 656 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
657 * this period because otherwise the slices get too small.
658 *
659 * p = (nr <= nl) ? l : l*nr/nl
660 */
4d78e7b6
PZ
661static u64 __sched_period(unsigned long nr_running)
662{
8e2b0bf3
BF
663 if (unlikely(nr_running > sched_nr_latency))
664 return nr_running * sysctl_sched_min_granularity;
665 else
666 return sysctl_sched_latency;
4d78e7b6
PZ
667}
668
647e7cac
IM
669/*
670 * We calculate the wall-time slice from the period by taking a part
671 * proportional to the weight.
672 *
f9c0b095 673 * s = p*P[w/rw]
647e7cac 674 */
6d0f0ebd 675static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 676{
0a582440 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 678
0a582440 679 for_each_sched_entity(se) {
6272d68c 680 struct load_weight *load;
3104bf03 681 struct load_weight lw;
6272d68c
LM
682
683 cfs_rq = cfs_rq_of(se);
684 load = &cfs_rq->load;
f9c0b095 685
0a582440 686 if (unlikely(!se->on_rq)) {
3104bf03 687 lw = cfs_rq->load;
0a582440
MG
688
689 update_load_add(&lw, se->load.weight);
690 load = &lw;
691 }
9dbdb155 692 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
693 }
694 return slice;
bf0f6f24
IM
695}
696
647e7cac 697/*
660cc00f 698 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 699 *
f9c0b095 700 * vs = s/w
647e7cac 701 */
f9c0b095 702static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 703{
f9c0b095 704 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
705}
706
a75cdaa9 707#ifdef CONFIG_SMP
283e2ed3
PZ
708
709#include "sched-pelt.h"
710
772bd008 711static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
712static unsigned long task_h_load(struct task_struct *p);
713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
f207934f
PZ
719 memset(sa, 0, sizeof(*sa));
720
b5a9b340
VG
721 /*
722 * Tasks are intialized with full load to be seen as heavy tasks until
723 * they get a chance to stabilize to their real load level.
724 * Group entities are intialized with zero load to reflect the fact that
725 * nothing has been attached to the task group yet.
726 */
727 if (entity_is_task(se))
1ea6c46a 728 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 729
f207934f
PZ
730 se->runnable_weight = se->load.weight;
731
9d89c257 732 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 733}
7ea241af 734
7dc603c9 735static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 736static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 737
2b8c41da
YD
738/*
739 * With new tasks being created, their initial util_avgs are extrapolated
740 * based on the cfs_rq's current util_avg:
741 *
742 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
743 *
744 * However, in many cases, the above util_avg does not give a desired
745 * value. Moreover, the sum of the util_avgs may be divergent, such
746 * as when the series is a harmonic series.
747 *
748 * To solve this problem, we also cap the util_avg of successive tasks to
749 * only 1/2 of the left utilization budget:
750 *
751 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
752 *
753 * where n denotes the nth task.
754 *
755 * For example, a simplest series from the beginning would be like:
756 *
757 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
758 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
759 *
760 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
761 * if util_avg > util_avg_cap.
762 */
763void post_init_entity_util_avg(struct sched_entity *se)
764{
765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 struct sched_avg *sa = &se->avg;
172895e6 767 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
768
769 if (cap > 0) {
770 if (cfs_rq->avg.util_avg != 0) {
771 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
772 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
773
774 if (sa->util_avg > cap)
775 sa->util_avg = cap;
776 } else {
777 sa->util_avg = cap;
778 }
2b8c41da 779 }
7dc603c9
PZ
780
781 if (entity_is_task(se)) {
782 struct task_struct *p = task_of(se);
783 if (p->sched_class != &fair_sched_class) {
784 /*
785 * For !fair tasks do:
786 *
3a123bbb 787 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
788 attach_entity_load_avg(cfs_rq, se);
789 switched_from_fair(rq, p);
790 *
791 * such that the next switched_to_fair() has the
792 * expected state.
793 */
df217913 794 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
795 return;
796 }
797 }
798
df217913 799 attach_entity_cfs_rq(se);
2b8c41da
YD
800}
801
7dc603c9 802#else /* !CONFIG_SMP */
540247fb 803void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
804{
805}
2b8c41da
YD
806void post_init_entity_util_avg(struct sched_entity *se)
807{
808}
3d30544f
PZ
809static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
810{
811}
7dc603c9 812#endif /* CONFIG_SMP */
a75cdaa9 813
bf0f6f24 814/*
9dbdb155 815 * Update the current task's runtime statistics.
bf0f6f24 816 */
b7cc0896 817static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 818{
429d43bc 819 struct sched_entity *curr = cfs_rq->curr;
78becc27 820 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 821 u64 delta_exec;
bf0f6f24
IM
822
823 if (unlikely(!curr))
824 return;
825
9dbdb155
PZ
826 delta_exec = now - curr->exec_start;
827 if (unlikely((s64)delta_exec <= 0))
34f28ecd 828 return;
bf0f6f24 829
8ebc91d9 830 curr->exec_start = now;
d842de87 831
9dbdb155
PZ
832 schedstat_set(curr->statistics.exec_max,
833 max(delta_exec, curr->statistics.exec_max));
834
835 curr->sum_exec_runtime += delta_exec;
ae92882e 836 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
837
838 curr->vruntime += calc_delta_fair(delta_exec, curr);
839 update_min_vruntime(cfs_rq);
840
d842de87
SV
841 if (entity_is_task(curr)) {
842 struct task_struct *curtask = task_of(curr);
843
f977bb49 844 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 845 cpuacct_charge(curtask, delta_exec);
f06febc9 846 account_group_exec_runtime(curtask, delta_exec);
d842de87 847 }
ec12cb7f
PT
848
849 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
850}
851
6e998916
SG
852static void update_curr_fair(struct rq *rq)
853{
854 update_curr(cfs_rq_of(&rq->curr->se));
855}
856
bf0f6f24 857static inline void
5870db5b 858update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 859{
4fa8d299
JP
860 u64 wait_start, prev_wait_start;
861
862 if (!schedstat_enabled())
863 return;
864
865 wait_start = rq_clock(rq_of(cfs_rq));
866 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
867
868 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
869 likely(wait_start > prev_wait_start))
870 wait_start -= prev_wait_start;
3ea94de1 871
4fa8d299 872 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
873}
874
4fa8d299 875static inline void
3ea94de1
JP
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878 struct task_struct *p;
cb251765
MG
879 u64 delta;
880
4fa8d299
JP
881 if (!schedstat_enabled())
882 return;
883
884 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
885
886 if (entity_is_task(se)) {
887 p = task_of(se);
888 if (task_on_rq_migrating(p)) {
889 /*
890 * Preserve migrating task's wait time so wait_start
891 * time stamp can be adjusted to accumulate wait time
892 * prior to migration.
893 */
4fa8d299 894 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
895 return;
896 }
897 trace_sched_stat_wait(p, delta);
898 }
899
4fa8d299
JP
900 schedstat_set(se->statistics.wait_max,
901 max(schedstat_val(se->statistics.wait_max), delta));
902 schedstat_inc(se->statistics.wait_count);
903 schedstat_add(se->statistics.wait_sum, delta);
904 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 905}
3ea94de1 906
4fa8d299 907static inline void
1a3d027c
JP
908update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
909{
910 struct task_struct *tsk = NULL;
4fa8d299
JP
911 u64 sleep_start, block_start;
912
913 if (!schedstat_enabled())
914 return;
915
916 sleep_start = schedstat_val(se->statistics.sleep_start);
917 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
918
919 if (entity_is_task(se))
920 tsk = task_of(se);
921
4fa8d299
JP
922 if (sleep_start) {
923 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
924
925 if ((s64)delta < 0)
926 delta = 0;
927
4fa8d299
JP
928 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
929 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 930
4fa8d299
JP
931 schedstat_set(se->statistics.sleep_start, 0);
932 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
933
934 if (tsk) {
935 account_scheduler_latency(tsk, delta >> 10, 1);
936 trace_sched_stat_sleep(tsk, delta);
937 }
938 }
4fa8d299
JP
939 if (block_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299
JP
945 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
946 schedstat_set(se->statistics.block_max, delta);
1a3d027c 947
4fa8d299
JP
948 schedstat_set(se->statistics.block_start, 0);
949 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 if (tsk->in_iowait) {
4fa8d299
JP
953 schedstat_add(se->statistics.iowait_sum, delta);
954 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
955 trace_sched_stat_iowait(tsk, delta);
956 }
957
958 trace_sched_stat_blocked(tsk, delta);
959
960 /*
961 * Blocking time is in units of nanosecs, so shift by
962 * 20 to get a milliseconds-range estimation of the
963 * amount of time that the task spent sleeping:
964 */
965 if (unlikely(prof_on == SLEEP_PROFILING)) {
966 profile_hits(SLEEP_PROFILING,
967 (void *)get_wchan(tsk),
968 delta >> 20);
969 }
970 account_scheduler_latency(tsk, delta >> 10, 0);
971 }
972 }
3ea94de1 973}
3ea94de1 974
bf0f6f24
IM
975/*
976 * Task is being enqueued - update stats:
977 */
cb251765 978static inline void
1a3d027c 979update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 980{
4fa8d299
JP
981 if (!schedstat_enabled())
982 return;
983
bf0f6f24
IM
984 /*
985 * Are we enqueueing a waiting task? (for current tasks
986 * a dequeue/enqueue event is a NOP)
987 */
429d43bc 988 if (se != cfs_rq->curr)
5870db5b 989 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
990
991 if (flags & ENQUEUE_WAKEUP)
992 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
993}
994
bf0f6f24 995static inline void
cb251765 996update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998
999 if (!schedstat_enabled())
1000 return;
1001
bf0f6f24
IM
1002 /*
1003 * Mark the end of the wait period if dequeueing a
1004 * waiting task:
1005 */
429d43bc 1006 if (se != cfs_rq->curr)
9ef0a961 1007 update_stats_wait_end(cfs_rq, se);
cb251765 1008
4fa8d299
JP
1009 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1010 struct task_struct *tsk = task_of(se);
cb251765 1011
4fa8d299
JP
1012 if (tsk->state & TASK_INTERRUPTIBLE)
1013 schedstat_set(se->statistics.sleep_start,
1014 rq_clock(rq_of(cfs_rq)));
1015 if (tsk->state & TASK_UNINTERRUPTIBLE)
1016 schedstat_set(se->statistics.block_start,
1017 rq_clock(rq_of(cfs_rq)));
cb251765 1018 }
cb251765
MG
1019}
1020
bf0f6f24
IM
1021/*
1022 * We are picking a new current task - update its stats:
1023 */
1024static inline void
79303e9e 1025update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1026{
1027 /*
1028 * We are starting a new run period:
1029 */
78becc27 1030 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1031}
1032
bf0f6f24
IM
1033/**************************************************
1034 * Scheduling class queueing methods:
1035 */
1036
cbee9f88
PZ
1037#ifdef CONFIG_NUMA_BALANCING
1038/*
598f0ec0
MG
1039 * Approximate time to scan a full NUMA task in ms. The task scan period is
1040 * calculated based on the tasks virtual memory size and
1041 * numa_balancing_scan_size.
cbee9f88 1042 */
598f0ec0
MG
1043unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1044unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1045
1046/* Portion of address space to scan in MB */
1047unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1048
4b96a29b
PZ
1049/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1050unsigned int sysctl_numa_balancing_scan_delay = 1000;
1051
b5dd77c8
RR
1052struct numa_group {
1053 atomic_t refcount;
1054
1055 spinlock_t lock; /* nr_tasks, tasks */
1056 int nr_tasks;
1057 pid_t gid;
1058 int active_nodes;
1059
1060 struct rcu_head rcu;
1061 unsigned long total_faults;
1062 unsigned long max_faults_cpu;
1063 /*
1064 * Faults_cpu is used to decide whether memory should move
1065 * towards the CPU. As a consequence, these stats are weighted
1066 * more by CPU use than by memory faults.
1067 */
1068 unsigned long *faults_cpu;
1069 unsigned long faults[0];
1070};
1071
1072static inline unsigned long group_faults_priv(struct numa_group *ng);
1073static inline unsigned long group_faults_shared(struct numa_group *ng);
1074
598f0ec0
MG
1075static unsigned int task_nr_scan_windows(struct task_struct *p)
1076{
1077 unsigned long rss = 0;
1078 unsigned long nr_scan_pages;
1079
1080 /*
1081 * Calculations based on RSS as non-present and empty pages are skipped
1082 * by the PTE scanner and NUMA hinting faults should be trapped based
1083 * on resident pages
1084 */
1085 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1086 rss = get_mm_rss(p->mm);
1087 if (!rss)
1088 rss = nr_scan_pages;
1089
1090 rss = round_up(rss, nr_scan_pages);
1091 return rss / nr_scan_pages;
1092}
1093
1094/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1095#define MAX_SCAN_WINDOW 2560
1096
1097static unsigned int task_scan_min(struct task_struct *p)
1098{
316c1608 1099 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1100 unsigned int scan, floor;
1101 unsigned int windows = 1;
1102
64192658
KT
1103 if (scan_size < MAX_SCAN_WINDOW)
1104 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1105 floor = 1000 / windows;
1106
1107 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1108 return max_t(unsigned int, floor, scan);
1109}
1110
b5dd77c8
RR
1111static unsigned int task_scan_start(struct task_struct *p)
1112{
1113 unsigned long smin = task_scan_min(p);
1114 unsigned long period = smin;
1115
1116 /* Scale the maximum scan period with the amount of shared memory. */
1117 if (p->numa_group) {
1118 struct numa_group *ng = p->numa_group;
1119 unsigned long shared = group_faults_shared(ng);
1120 unsigned long private = group_faults_priv(ng);
1121
1122 period *= atomic_read(&ng->refcount);
1123 period *= shared + 1;
1124 period /= private + shared + 1;
1125 }
1126
1127 return max(smin, period);
1128}
1129
598f0ec0
MG
1130static unsigned int task_scan_max(struct task_struct *p)
1131{
b5dd77c8
RR
1132 unsigned long smin = task_scan_min(p);
1133 unsigned long smax;
598f0ec0
MG
1134
1135 /* Watch for min being lower than max due to floor calculations */
1136 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1137
1138 /* Scale the maximum scan period with the amount of shared memory. */
1139 if (p->numa_group) {
1140 struct numa_group *ng = p->numa_group;
1141 unsigned long shared = group_faults_shared(ng);
1142 unsigned long private = group_faults_priv(ng);
1143 unsigned long period = smax;
1144
1145 period *= atomic_read(&ng->refcount);
1146 period *= shared + 1;
1147 period /= private + shared + 1;
1148
1149 smax = max(smax, period);
1150 }
1151
598f0ec0
MG
1152 return max(smin, smax);
1153}
1154
0ec8aa00
PZ
1155static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1156{
1157 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1158 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1159}
1160
1161static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1162{
1163 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1164 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1165}
1166
be1e4e76
RR
1167/* Shared or private faults. */
1168#define NR_NUMA_HINT_FAULT_TYPES 2
1169
1170/* Memory and CPU locality */
1171#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1172
1173/* Averaged statistics, and temporary buffers. */
1174#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1175
e29cf08b
MG
1176pid_t task_numa_group_id(struct task_struct *p)
1177{
1178 return p->numa_group ? p->numa_group->gid : 0;
1179}
1180
44dba3d5
IM
1181/*
1182 * The averaged statistics, shared & private, memory & cpu,
1183 * occupy the first half of the array. The second half of the
1184 * array is for current counters, which are averaged into the
1185 * first set by task_numa_placement.
1186 */
1187static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1188{
44dba3d5 1189 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1190}
1191
1192static inline unsigned long task_faults(struct task_struct *p, int nid)
1193{
44dba3d5 1194 if (!p->numa_faults)
ac8e895b
MG
1195 return 0;
1196
44dba3d5
IM
1197 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1199}
1200
83e1d2cd
MG
1201static inline unsigned long group_faults(struct task_struct *p, int nid)
1202{
1203 if (!p->numa_group)
1204 return 0;
1205
44dba3d5
IM
1206 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1208}
1209
20e07dea
RR
1210static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1211{
44dba3d5
IM
1212 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1213 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1214}
1215
b5dd77c8
RR
1216static inline unsigned long group_faults_priv(struct numa_group *ng)
1217{
1218 unsigned long faults = 0;
1219 int node;
1220
1221 for_each_online_node(node) {
1222 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1223 }
1224
1225 return faults;
1226}
1227
1228static inline unsigned long group_faults_shared(struct numa_group *ng)
1229{
1230 unsigned long faults = 0;
1231 int node;
1232
1233 for_each_online_node(node) {
1234 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1235 }
1236
1237 return faults;
1238}
1239
4142c3eb
RR
1240/*
1241 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1242 * considered part of a numa group's pseudo-interleaving set. Migrations
1243 * between these nodes are slowed down, to allow things to settle down.
1244 */
1245#define ACTIVE_NODE_FRACTION 3
1246
1247static bool numa_is_active_node(int nid, struct numa_group *ng)
1248{
1249 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1250}
1251
6c6b1193
RR
1252/* Handle placement on systems where not all nodes are directly connected. */
1253static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1254 int maxdist, bool task)
1255{
1256 unsigned long score = 0;
1257 int node;
1258
1259 /*
1260 * All nodes are directly connected, and the same distance
1261 * from each other. No need for fancy placement algorithms.
1262 */
1263 if (sched_numa_topology_type == NUMA_DIRECT)
1264 return 0;
1265
1266 /*
1267 * This code is called for each node, introducing N^2 complexity,
1268 * which should be ok given the number of nodes rarely exceeds 8.
1269 */
1270 for_each_online_node(node) {
1271 unsigned long faults;
1272 int dist = node_distance(nid, node);
1273
1274 /*
1275 * The furthest away nodes in the system are not interesting
1276 * for placement; nid was already counted.
1277 */
1278 if (dist == sched_max_numa_distance || node == nid)
1279 continue;
1280
1281 /*
1282 * On systems with a backplane NUMA topology, compare groups
1283 * of nodes, and move tasks towards the group with the most
1284 * memory accesses. When comparing two nodes at distance
1285 * "hoplimit", only nodes closer by than "hoplimit" are part
1286 * of each group. Skip other nodes.
1287 */
1288 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1289 dist > maxdist)
1290 continue;
1291
1292 /* Add up the faults from nearby nodes. */
1293 if (task)
1294 faults = task_faults(p, node);
1295 else
1296 faults = group_faults(p, node);
1297
1298 /*
1299 * On systems with a glueless mesh NUMA topology, there are
1300 * no fixed "groups of nodes". Instead, nodes that are not
1301 * directly connected bounce traffic through intermediate
1302 * nodes; a numa_group can occupy any set of nodes.
1303 * The further away a node is, the less the faults count.
1304 * This seems to result in good task placement.
1305 */
1306 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1307 faults *= (sched_max_numa_distance - dist);
1308 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1309 }
1310
1311 score += faults;
1312 }
1313
1314 return score;
1315}
1316
83e1d2cd
MG
1317/*
1318 * These return the fraction of accesses done by a particular task, or
1319 * task group, on a particular numa node. The group weight is given a
1320 * larger multiplier, in order to group tasks together that are almost
1321 * evenly spread out between numa nodes.
1322 */
7bd95320
RR
1323static inline unsigned long task_weight(struct task_struct *p, int nid,
1324 int dist)
83e1d2cd 1325{
7bd95320 1326 unsigned long faults, total_faults;
83e1d2cd 1327
44dba3d5 1328 if (!p->numa_faults)
83e1d2cd
MG
1329 return 0;
1330
1331 total_faults = p->total_numa_faults;
1332
1333 if (!total_faults)
1334 return 0;
1335
7bd95320 1336 faults = task_faults(p, nid);
6c6b1193
RR
1337 faults += score_nearby_nodes(p, nid, dist, true);
1338
7bd95320 1339 return 1000 * faults / total_faults;
83e1d2cd
MG
1340}
1341
7bd95320
RR
1342static inline unsigned long group_weight(struct task_struct *p, int nid,
1343 int dist)
83e1d2cd 1344{
7bd95320
RR
1345 unsigned long faults, total_faults;
1346
1347 if (!p->numa_group)
1348 return 0;
1349
1350 total_faults = p->numa_group->total_faults;
1351
1352 if (!total_faults)
83e1d2cd
MG
1353 return 0;
1354
7bd95320 1355 faults = group_faults(p, nid);
6c6b1193
RR
1356 faults += score_nearby_nodes(p, nid, dist, false);
1357
7bd95320 1358 return 1000 * faults / total_faults;
83e1d2cd
MG
1359}
1360
10f39042
RR
1361bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1362 int src_nid, int dst_cpu)
1363{
1364 struct numa_group *ng = p->numa_group;
1365 int dst_nid = cpu_to_node(dst_cpu);
1366 int last_cpupid, this_cpupid;
1367
1368 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1369
1370 /*
1371 * Multi-stage node selection is used in conjunction with a periodic
1372 * migration fault to build a temporal task<->page relation. By using
1373 * a two-stage filter we remove short/unlikely relations.
1374 *
1375 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1376 * a task's usage of a particular page (n_p) per total usage of this
1377 * page (n_t) (in a given time-span) to a probability.
1378 *
1379 * Our periodic faults will sample this probability and getting the
1380 * same result twice in a row, given these samples are fully
1381 * independent, is then given by P(n)^2, provided our sample period
1382 * is sufficiently short compared to the usage pattern.
1383 *
1384 * This quadric squishes small probabilities, making it less likely we
1385 * act on an unlikely task<->page relation.
1386 */
1387 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1388 if (!cpupid_pid_unset(last_cpupid) &&
1389 cpupid_to_nid(last_cpupid) != dst_nid)
1390 return false;
1391
1392 /* Always allow migrate on private faults */
1393 if (cpupid_match_pid(p, last_cpupid))
1394 return true;
1395
1396 /* A shared fault, but p->numa_group has not been set up yet. */
1397 if (!ng)
1398 return true;
1399
1400 /*
4142c3eb
RR
1401 * Destination node is much more heavily used than the source
1402 * node? Allow migration.
10f39042 1403 */
4142c3eb
RR
1404 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1405 ACTIVE_NODE_FRACTION)
10f39042
RR
1406 return true;
1407
1408 /*
4142c3eb
RR
1409 * Distribute memory according to CPU & memory use on each node,
1410 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1411 *
1412 * faults_cpu(dst) 3 faults_cpu(src)
1413 * --------------- * - > ---------------
1414 * faults_mem(dst) 4 faults_mem(src)
10f39042 1415 */
4142c3eb
RR
1416 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1417 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1418}
1419
c7132dd6 1420static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1421static unsigned long source_load(int cpu, int type);
1422static unsigned long target_load(int cpu, int type);
ced549fa 1423static unsigned long capacity_of(int cpu);
58d081b5 1424
fb13c7ee 1425/* Cached statistics for all CPUs within a node */
58d081b5 1426struct numa_stats {
fb13c7ee 1427 unsigned long nr_running;
58d081b5 1428 unsigned long load;
fb13c7ee
MG
1429
1430 /* Total compute capacity of CPUs on a node */
5ef20ca1 1431 unsigned long compute_capacity;
fb13c7ee
MG
1432
1433 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1434 unsigned long task_capacity;
1b6a7495 1435 int has_free_capacity;
58d081b5 1436};
e6628d5b 1437
fb13c7ee
MG
1438/*
1439 * XXX borrowed from update_sg_lb_stats
1440 */
1441static void update_numa_stats(struct numa_stats *ns, int nid)
1442{
83d7f242
RR
1443 int smt, cpu, cpus = 0;
1444 unsigned long capacity;
fb13c7ee
MG
1445
1446 memset(ns, 0, sizeof(*ns));
1447 for_each_cpu(cpu, cpumask_of_node(nid)) {
1448 struct rq *rq = cpu_rq(cpu);
1449
1450 ns->nr_running += rq->nr_running;
c7132dd6 1451 ns->load += weighted_cpuload(rq);
ced549fa 1452 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1453
1454 cpus++;
fb13c7ee
MG
1455 }
1456
5eca82a9
PZ
1457 /*
1458 * If we raced with hotplug and there are no CPUs left in our mask
1459 * the @ns structure is NULL'ed and task_numa_compare() will
1460 * not find this node attractive.
1461 *
1b6a7495
NP
1462 * We'll either bail at !has_free_capacity, or we'll detect a huge
1463 * imbalance and bail there.
5eca82a9
PZ
1464 */
1465 if (!cpus)
1466 return;
1467
83d7f242
RR
1468 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1469 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1470 capacity = cpus / smt; /* cores */
1471
1472 ns->task_capacity = min_t(unsigned, capacity,
1473 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1474 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1475}
1476
58d081b5
MG
1477struct task_numa_env {
1478 struct task_struct *p;
e6628d5b 1479
58d081b5
MG
1480 int src_cpu, src_nid;
1481 int dst_cpu, dst_nid;
e6628d5b 1482
58d081b5 1483 struct numa_stats src_stats, dst_stats;
e6628d5b 1484
40ea2b42 1485 int imbalance_pct;
7bd95320 1486 int dist;
fb13c7ee
MG
1487
1488 struct task_struct *best_task;
1489 long best_imp;
58d081b5
MG
1490 int best_cpu;
1491};
1492
fb13c7ee
MG
1493static void task_numa_assign(struct task_numa_env *env,
1494 struct task_struct *p, long imp)
1495{
1496 if (env->best_task)
1497 put_task_struct(env->best_task);
bac78573
ON
1498 if (p)
1499 get_task_struct(p);
fb13c7ee
MG
1500
1501 env->best_task = p;
1502 env->best_imp = imp;
1503 env->best_cpu = env->dst_cpu;
1504}
1505
28a21745 1506static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1507 struct task_numa_env *env)
1508{
e4991b24
RR
1509 long imb, old_imb;
1510 long orig_src_load, orig_dst_load;
28a21745
RR
1511 long src_capacity, dst_capacity;
1512
1513 /*
1514 * The load is corrected for the CPU capacity available on each node.
1515 *
1516 * src_load dst_load
1517 * ------------ vs ---------
1518 * src_capacity dst_capacity
1519 */
1520 src_capacity = env->src_stats.compute_capacity;
1521 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1522
1523 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1524 if (dst_load < src_load)
1525 swap(dst_load, src_load);
e63da036
RR
1526
1527 /* Is the difference below the threshold? */
e4991b24
RR
1528 imb = dst_load * src_capacity * 100 -
1529 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1530 if (imb <= 0)
1531 return false;
1532
1533 /*
1534 * The imbalance is above the allowed threshold.
e4991b24 1535 * Compare it with the old imbalance.
e63da036 1536 */
28a21745 1537 orig_src_load = env->src_stats.load;
e4991b24 1538 orig_dst_load = env->dst_stats.load;
28a21745 1539
e4991b24
RR
1540 if (orig_dst_load < orig_src_load)
1541 swap(orig_dst_load, orig_src_load);
e63da036 1542
e4991b24
RR
1543 old_imb = orig_dst_load * src_capacity * 100 -
1544 orig_src_load * dst_capacity * env->imbalance_pct;
1545
1546 /* Would this change make things worse? */
1547 return (imb > old_imb);
e63da036
RR
1548}
1549
fb13c7ee
MG
1550/*
1551 * This checks if the overall compute and NUMA accesses of the system would
1552 * be improved if the source tasks was migrated to the target dst_cpu taking
1553 * into account that it might be best if task running on the dst_cpu should
1554 * be exchanged with the source task
1555 */
887c290e
RR
1556static void task_numa_compare(struct task_numa_env *env,
1557 long taskimp, long groupimp)
fb13c7ee
MG
1558{
1559 struct rq *src_rq = cpu_rq(env->src_cpu);
1560 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1561 struct task_struct *cur;
28a21745 1562 long src_load, dst_load;
fb13c7ee 1563 long load;
1c5d3eb3 1564 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1565 long moveimp = imp;
7bd95320 1566 int dist = env->dist;
fb13c7ee
MG
1567
1568 rcu_read_lock();
bac78573
ON
1569 cur = task_rcu_dereference(&dst_rq->curr);
1570 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1571 cur = NULL;
1572
7af68335
PZ
1573 /*
1574 * Because we have preemption enabled we can get migrated around and
1575 * end try selecting ourselves (current == env->p) as a swap candidate.
1576 */
1577 if (cur == env->p)
1578 goto unlock;
1579
fb13c7ee
MG
1580 /*
1581 * "imp" is the fault differential for the source task between the
1582 * source and destination node. Calculate the total differential for
1583 * the source task and potential destination task. The more negative
1584 * the value is, the more rmeote accesses that would be expected to
1585 * be incurred if the tasks were swapped.
1586 */
1587 if (cur) {
1588 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1589 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1590 goto unlock;
1591
887c290e
RR
1592 /*
1593 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1594 * in any group then look only at task weights.
887c290e 1595 */
ca28aa53 1596 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1597 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1598 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1599 /*
1600 * Add some hysteresis to prevent swapping the
1601 * tasks within a group over tiny differences.
1602 */
1603 if (cur->numa_group)
1604 imp -= imp/16;
887c290e 1605 } else {
ca28aa53
RR
1606 /*
1607 * Compare the group weights. If a task is all by
1608 * itself (not part of a group), use the task weight
1609 * instead.
1610 */
ca28aa53 1611 if (cur->numa_group)
7bd95320
RR
1612 imp += group_weight(cur, env->src_nid, dist) -
1613 group_weight(cur, env->dst_nid, dist);
ca28aa53 1614 else
7bd95320
RR
1615 imp += task_weight(cur, env->src_nid, dist) -
1616 task_weight(cur, env->dst_nid, dist);
887c290e 1617 }
fb13c7ee
MG
1618 }
1619
0132c3e1 1620 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1621 goto unlock;
1622
1623 if (!cur) {
1624 /* Is there capacity at our destination? */
b932c03c 1625 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1626 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1627 goto unlock;
1628
1629 goto balance;
1630 }
1631
1632 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1633 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1634 dst_rq->nr_running == 1)
fb13c7ee
MG
1635 goto assign;
1636
1637 /*
1638 * In the overloaded case, try and keep the load balanced.
1639 */
1640balance:
e720fff6
PZ
1641 load = task_h_load(env->p);
1642 dst_load = env->dst_stats.load + load;
1643 src_load = env->src_stats.load - load;
fb13c7ee 1644
0132c3e1
RR
1645 if (moveimp > imp && moveimp > env->best_imp) {
1646 /*
1647 * If the improvement from just moving env->p direction is
1648 * better than swapping tasks around, check if a move is
1649 * possible. Store a slightly smaller score than moveimp,
1650 * so an actually idle CPU will win.
1651 */
1652 if (!load_too_imbalanced(src_load, dst_load, env)) {
1653 imp = moveimp - 1;
1654 cur = NULL;
1655 goto assign;
1656 }
1657 }
1658
1659 if (imp <= env->best_imp)
1660 goto unlock;
1661
fb13c7ee 1662 if (cur) {
e720fff6
PZ
1663 load = task_h_load(cur);
1664 dst_load -= load;
1665 src_load += load;
fb13c7ee
MG
1666 }
1667
28a21745 1668 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1669 goto unlock;
1670
ba7e5a27
RR
1671 /*
1672 * One idle CPU per node is evaluated for a task numa move.
1673 * Call select_idle_sibling to maybe find a better one.
1674 */
10e2f1ac
PZ
1675 if (!cur) {
1676 /*
1677 * select_idle_siblings() uses an per-cpu cpumask that
1678 * can be used from IRQ context.
1679 */
1680 local_irq_disable();
772bd008
MR
1681 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1682 env->dst_cpu);
10e2f1ac
PZ
1683 local_irq_enable();
1684 }
ba7e5a27 1685
fb13c7ee
MG
1686assign:
1687 task_numa_assign(env, cur, imp);
1688unlock:
1689 rcu_read_unlock();
1690}
1691
887c290e
RR
1692static void task_numa_find_cpu(struct task_numa_env *env,
1693 long taskimp, long groupimp)
2c8a50aa
MG
1694{
1695 int cpu;
1696
1697 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1698 /* Skip this CPU if the source task cannot migrate */
0c98d344 1699 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1700 continue;
1701
1702 env->dst_cpu = cpu;
887c290e 1703 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1704 }
1705}
1706
6f9aad0b
RR
1707/* Only move tasks to a NUMA node less busy than the current node. */
1708static bool numa_has_capacity(struct task_numa_env *env)
1709{
1710 struct numa_stats *src = &env->src_stats;
1711 struct numa_stats *dst = &env->dst_stats;
1712
1713 if (src->has_free_capacity && !dst->has_free_capacity)
1714 return false;
1715
1716 /*
1717 * Only consider a task move if the source has a higher load
1718 * than the destination, corrected for CPU capacity on each node.
1719 *
1720 * src->load dst->load
1721 * --------------------- vs ---------------------
1722 * src->compute_capacity dst->compute_capacity
1723 */
44dcb04f
SD
1724 if (src->load * dst->compute_capacity * env->imbalance_pct >
1725
1726 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1727 return true;
1728
1729 return false;
1730}
1731
58d081b5
MG
1732static int task_numa_migrate(struct task_struct *p)
1733{
58d081b5
MG
1734 struct task_numa_env env = {
1735 .p = p,
fb13c7ee 1736
58d081b5 1737 .src_cpu = task_cpu(p),
b32e86b4 1738 .src_nid = task_node(p),
fb13c7ee
MG
1739
1740 .imbalance_pct = 112,
1741
1742 .best_task = NULL,
1743 .best_imp = 0,
4142c3eb 1744 .best_cpu = -1,
58d081b5
MG
1745 };
1746 struct sched_domain *sd;
887c290e 1747 unsigned long taskweight, groupweight;
7bd95320 1748 int nid, ret, dist;
887c290e 1749 long taskimp, groupimp;
e6628d5b 1750
58d081b5 1751 /*
fb13c7ee
MG
1752 * Pick the lowest SD_NUMA domain, as that would have the smallest
1753 * imbalance and would be the first to start moving tasks about.
1754 *
1755 * And we want to avoid any moving of tasks about, as that would create
1756 * random movement of tasks -- counter the numa conditions we're trying
1757 * to satisfy here.
58d081b5
MG
1758 */
1759 rcu_read_lock();
fb13c7ee 1760 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1761 if (sd)
1762 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1763 rcu_read_unlock();
1764
46a73e8a
RR
1765 /*
1766 * Cpusets can break the scheduler domain tree into smaller
1767 * balance domains, some of which do not cross NUMA boundaries.
1768 * Tasks that are "trapped" in such domains cannot be migrated
1769 * elsewhere, so there is no point in (re)trying.
1770 */
1771 if (unlikely(!sd)) {
de1b301a 1772 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1773 return -EINVAL;
1774 }
1775
2c8a50aa 1776 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1777 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1778 taskweight = task_weight(p, env.src_nid, dist);
1779 groupweight = group_weight(p, env.src_nid, dist);
1780 update_numa_stats(&env.src_stats, env.src_nid);
1781 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1782 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1783 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1784
a43455a1 1785 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1786 if (numa_has_capacity(&env))
1787 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1788
9de05d48
RR
1789 /*
1790 * Look at other nodes in these cases:
1791 * - there is no space available on the preferred_nid
1792 * - the task is part of a numa_group that is interleaved across
1793 * multiple NUMA nodes; in order to better consolidate the group,
1794 * we need to check other locations.
1795 */
4142c3eb 1796 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1797 for_each_online_node(nid) {
1798 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1799 continue;
58d081b5 1800
7bd95320 1801 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1802 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1803 dist != env.dist) {
1804 taskweight = task_weight(p, env.src_nid, dist);
1805 groupweight = group_weight(p, env.src_nid, dist);
1806 }
7bd95320 1807
83e1d2cd 1808 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1809 taskimp = task_weight(p, nid, dist) - taskweight;
1810 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1811 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1812 continue;
1813
7bd95320 1814 env.dist = dist;
2c8a50aa
MG
1815 env.dst_nid = nid;
1816 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1817 if (numa_has_capacity(&env))
1818 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1819 }
1820 }
1821
68d1b02a
RR
1822 /*
1823 * If the task is part of a workload that spans multiple NUMA nodes,
1824 * and is migrating into one of the workload's active nodes, remember
1825 * this node as the task's preferred numa node, so the workload can
1826 * settle down.
1827 * A task that migrated to a second choice node will be better off
1828 * trying for a better one later. Do not set the preferred node here.
1829 */
db015dae 1830 if (p->numa_group) {
4142c3eb
RR
1831 struct numa_group *ng = p->numa_group;
1832
db015dae
RR
1833 if (env.best_cpu == -1)
1834 nid = env.src_nid;
1835 else
1836 nid = env.dst_nid;
1837
4142c3eb 1838 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1839 sched_setnuma(p, env.dst_nid);
1840 }
1841
1842 /* No better CPU than the current one was found. */
1843 if (env.best_cpu == -1)
1844 return -EAGAIN;
0ec8aa00 1845
04bb2f94
RR
1846 /*
1847 * Reset the scan period if the task is being rescheduled on an
1848 * alternative node to recheck if the tasks is now properly placed.
1849 */
b5dd77c8 1850 p->numa_scan_period = task_scan_start(p);
04bb2f94 1851
fb13c7ee 1852 if (env.best_task == NULL) {
286549dc
MG
1853 ret = migrate_task_to(p, env.best_cpu);
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1856 return ret;
1857 }
1858
1859 ret = migrate_swap(p, env.best_task);
286549dc
MG
1860 if (ret != 0)
1861 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1862 put_task_struct(env.best_task);
1863 return ret;
e6628d5b
MG
1864}
1865
6b9a7460
MG
1866/* Attempt to migrate a task to a CPU on the preferred node. */
1867static void numa_migrate_preferred(struct task_struct *p)
1868{
5085e2a3
RR
1869 unsigned long interval = HZ;
1870
2739d3ee 1871 /* This task has no NUMA fault statistics yet */
44dba3d5 1872 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1873 return;
1874
2739d3ee 1875 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1876 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1877 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1878
1879 /* Success if task is already running on preferred CPU */
de1b301a 1880 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1881 return;
1882
1883 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1884 task_numa_migrate(p);
6b9a7460
MG
1885}
1886
20e07dea 1887/*
4142c3eb 1888 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1889 * tracking the nodes from which NUMA hinting faults are triggered. This can
1890 * be different from the set of nodes where the workload's memory is currently
1891 * located.
20e07dea 1892 */
4142c3eb 1893static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1894{
1895 unsigned long faults, max_faults = 0;
4142c3eb 1896 int nid, active_nodes = 0;
20e07dea
RR
1897
1898 for_each_online_node(nid) {
1899 faults = group_faults_cpu(numa_group, nid);
1900 if (faults > max_faults)
1901 max_faults = faults;
1902 }
1903
1904 for_each_online_node(nid) {
1905 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1906 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1907 active_nodes++;
20e07dea 1908 }
4142c3eb
RR
1909
1910 numa_group->max_faults_cpu = max_faults;
1911 numa_group->active_nodes = active_nodes;
20e07dea
RR
1912}
1913
04bb2f94
RR
1914/*
1915 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1916 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1917 * period will be for the next scan window. If local/(local+remote) ratio is
1918 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1919 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1920 */
1921#define NUMA_PERIOD_SLOTS 10
a22b4b01 1922#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1923
1924/*
1925 * Increase the scan period (slow down scanning) if the majority of
1926 * our memory is already on our local node, or if the majority of
1927 * the page accesses are shared with other processes.
1928 * Otherwise, decrease the scan period.
1929 */
1930static void update_task_scan_period(struct task_struct *p,
1931 unsigned long shared, unsigned long private)
1932{
1933 unsigned int period_slot;
37ec97de 1934 int lr_ratio, ps_ratio;
04bb2f94
RR
1935 int diff;
1936
1937 unsigned long remote = p->numa_faults_locality[0];
1938 unsigned long local = p->numa_faults_locality[1];
1939
1940 /*
1941 * If there were no record hinting faults then either the task is
1942 * completely idle or all activity is areas that are not of interest
074c2381
MG
1943 * to automatic numa balancing. Related to that, if there were failed
1944 * migration then it implies we are migrating too quickly or the local
1945 * node is overloaded. In either case, scan slower
04bb2f94 1946 */
074c2381 1947 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1948 p->numa_scan_period = min(p->numa_scan_period_max,
1949 p->numa_scan_period << 1);
1950
1951 p->mm->numa_next_scan = jiffies +
1952 msecs_to_jiffies(p->numa_scan_period);
1953
1954 return;
1955 }
1956
1957 /*
1958 * Prepare to scale scan period relative to the current period.
1959 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1960 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1961 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1962 */
1963 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1964 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1965 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1966
1967 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1968 /*
1969 * Most memory accesses are local. There is no need to
1970 * do fast NUMA scanning, since memory is already local.
1971 */
1972 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1973 if (!slot)
1974 slot = 1;
1975 diff = slot * period_slot;
1976 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are shared with other tasks.
1979 * There is no point in continuing fast NUMA scanning,
1980 * since other tasks may just move the memory elsewhere.
1981 */
1982 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1983 if (!slot)
1984 slot = 1;
1985 diff = slot * period_slot;
1986 } else {
04bb2f94 1987 /*
37ec97de
RR
1988 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1989 * yet they are not on the local NUMA node. Speed up
1990 * NUMA scanning to get the memory moved over.
04bb2f94 1991 */
37ec97de
RR
1992 int ratio = max(lr_ratio, ps_ratio);
1993 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1994 }
1995
1996 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1997 task_scan_min(p), task_scan_max(p));
1998 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1999}
2000
7e2703e6
RR
2001/*
2002 * Get the fraction of time the task has been running since the last
2003 * NUMA placement cycle. The scheduler keeps similar statistics, but
2004 * decays those on a 32ms period, which is orders of magnitude off
2005 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2006 * stats only if the task is so new there are no NUMA statistics yet.
2007 */
2008static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2009{
2010 u64 runtime, delta, now;
2011 /* Use the start of this time slice to avoid calculations. */
2012 now = p->se.exec_start;
2013 runtime = p->se.sum_exec_runtime;
2014
2015 if (p->last_task_numa_placement) {
2016 delta = runtime - p->last_sum_exec_runtime;
2017 *period = now - p->last_task_numa_placement;
2018 } else {
c7b50216 2019 delta = p->se.avg.load_sum;
9d89c257 2020 *period = LOAD_AVG_MAX;
7e2703e6
RR
2021 }
2022
2023 p->last_sum_exec_runtime = runtime;
2024 p->last_task_numa_placement = now;
2025
2026 return delta;
2027}
2028
54009416
RR
2029/*
2030 * Determine the preferred nid for a task in a numa_group. This needs to
2031 * be done in a way that produces consistent results with group_weight,
2032 * otherwise workloads might not converge.
2033 */
2034static int preferred_group_nid(struct task_struct *p, int nid)
2035{
2036 nodemask_t nodes;
2037 int dist;
2038
2039 /* Direct connections between all NUMA nodes. */
2040 if (sched_numa_topology_type == NUMA_DIRECT)
2041 return nid;
2042
2043 /*
2044 * On a system with glueless mesh NUMA topology, group_weight
2045 * scores nodes according to the number of NUMA hinting faults on
2046 * both the node itself, and on nearby nodes.
2047 */
2048 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2049 unsigned long score, max_score = 0;
2050 int node, max_node = nid;
2051
2052 dist = sched_max_numa_distance;
2053
2054 for_each_online_node(node) {
2055 score = group_weight(p, node, dist);
2056 if (score > max_score) {
2057 max_score = score;
2058 max_node = node;
2059 }
2060 }
2061 return max_node;
2062 }
2063
2064 /*
2065 * Finding the preferred nid in a system with NUMA backplane
2066 * interconnect topology is more involved. The goal is to locate
2067 * tasks from numa_groups near each other in the system, and
2068 * untangle workloads from different sides of the system. This requires
2069 * searching down the hierarchy of node groups, recursively searching
2070 * inside the highest scoring group of nodes. The nodemask tricks
2071 * keep the complexity of the search down.
2072 */
2073 nodes = node_online_map;
2074 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2075 unsigned long max_faults = 0;
81907478 2076 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2077 int a, b;
2078
2079 /* Are there nodes at this distance from each other? */
2080 if (!find_numa_distance(dist))
2081 continue;
2082
2083 for_each_node_mask(a, nodes) {
2084 unsigned long faults = 0;
2085 nodemask_t this_group;
2086 nodes_clear(this_group);
2087
2088 /* Sum group's NUMA faults; includes a==b case. */
2089 for_each_node_mask(b, nodes) {
2090 if (node_distance(a, b) < dist) {
2091 faults += group_faults(p, b);
2092 node_set(b, this_group);
2093 node_clear(b, nodes);
2094 }
2095 }
2096
2097 /* Remember the top group. */
2098 if (faults > max_faults) {
2099 max_faults = faults;
2100 max_group = this_group;
2101 /*
2102 * subtle: at the smallest distance there is
2103 * just one node left in each "group", the
2104 * winner is the preferred nid.
2105 */
2106 nid = a;
2107 }
2108 }
2109 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2110 if (!max_faults)
2111 break;
54009416
RR
2112 nodes = max_group;
2113 }
2114 return nid;
2115}
2116
cbee9f88
PZ
2117static void task_numa_placement(struct task_struct *p)
2118{
83e1d2cd
MG
2119 int seq, nid, max_nid = -1, max_group_nid = -1;
2120 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2121 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2122 unsigned long total_faults;
2123 u64 runtime, period;
7dbd13ed 2124 spinlock_t *group_lock = NULL;
cbee9f88 2125
7e5a2c17
JL
2126 /*
2127 * The p->mm->numa_scan_seq field gets updated without
2128 * exclusive access. Use READ_ONCE() here to ensure
2129 * that the field is read in a single access:
2130 */
316c1608 2131 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2132 if (p->numa_scan_seq == seq)
2133 return;
2134 p->numa_scan_seq = seq;
598f0ec0 2135 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2136
7e2703e6
RR
2137 total_faults = p->numa_faults_locality[0] +
2138 p->numa_faults_locality[1];
2139 runtime = numa_get_avg_runtime(p, &period);
2140
7dbd13ed
MG
2141 /* If the task is part of a group prevent parallel updates to group stats */
2142 if (p->numa_group) {
2143 group_lock = &p->numa_group->lock;
60e69eed 2144 spin_lock_irq(group_lock);
7dbd13ed
MG
2145 }
2146
688b7585
MG
2147 /* Find the node with the highest number of faults */
2148 for_each_online_node(nid) {
44dba3d5
IM
2149 /* Keep track of the offsets in numa_faults array */
2150 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2151 unsigned long faults = 0, group_faults = 0;
44dba3d5 2152 int priv;
745d6147 2153
be1e4e76 2154 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2155 long diff, f_diff, f_weight;
8c8a743c 2156
44dba3d5
IM
2157 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2158 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2159 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2160 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2161
ac8e895b 2162 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2163 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2164 fault_types[priv] += p->numa_faults[membuf_idx];
2165 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2166
7e2703e6
RR
2167 /*
2168 * Normalize the faults_from, so all tasks in a group
2169 * count according to CPU use, instead of by the raw
2170 * number of faults. Tasks with little runtime have
2171 * little over-all impact on throughput, and thus their
2172 * faults are less important.
2173 */
2174 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2175 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2176 (total_faults + 1);
44dba3d5
IM
2177 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2178 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2179
44dba3d5
IM
2180 p->numa_faults[mem_idx] += diff;
2181 p->numa_faults[cpu_idx] += f_diff;
2182 faults += p->numa_faults[mem_idx];
83e1d2cd 2183 p->total_numa_faults += diff;
8c8a743c 2184 if (p->numa_group) {
44dba3d5
IM
2185 /*
2186 * safe because we can only change our own group
2187 *
2188 * mem_idx represents the offset for a given
2189 * nid and priv in a specific region because it
2190 * is at the beginning of the numa_faults array.
2191 */
2192 p->numa_group->faults[mem_idx] += diff;
2193 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2194 p->numa_group->total_faults += diff;
44dba3d5 2195 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2196 }
ac8e895b
MG
2197 }
2198
688b7585
MG
2199 if (faults > max_faults) {
2200 max_faults = faults;
2201 max_nid = nid;
2202 }
83e1d2cd
MG
2203
2204 if (group_faults > max_group_faults) {
2205 max_group_faults = group_faults;
2206 max_group_nid = nid;
2207 }
2208 }
2209
04bb2f94
RR
2210 update_task_scan_period(p, fault_types[0], fault_types[1]);
2211
7dbd13ed 2212 if (p->numa_group) {
4142c3eb 2213 numa_group_count_active_nodes(p->numa_group);
60e69eed 2214 spin_unlock_irq(group_lock);
54009416 2215 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2216 }
2217
bb97fc31
RR
2218 if (max_faults) {
2219 /* Set the new preferred node */
2220 if (max_nid != p->numa_preferred_nid)
2221 sched_setnuma(p, max_nid);
2222
2223 if (task_node(p) != p->numa_preferred_nid)
2224 numa_migrate_preferred(p);
3a7053b3 2225 }
cbee9f88
PZ
2226}
2227
8c8a743c
PZ
2228static inline int get_numa_group(struct numa_group *grp)
2229{
2230 return atomic_inc_not_zero(&grp->refcount);
2231}
2232
2233static inline void put_numa_group(struct numa_group *grp)
2234{
2235 if (atomic_dec_and_test(&grp->refcount))
2236 kfree_rcu(grp, rcu);
2237}
2238
3e6a9418
MG
2239static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2240 int *priv)
8c8a743c
PZ
2241{
2242 struct numa_group *grp, *my_grp;
2243 struct task_struct *tsk;
2244 bool join = false;
2245 int cpu = cpupid_to_cpu(cpupid);
2246 int i;
2247
2248 if (unlikely(!p->numa_group)) {
2249 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2250 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2251
2252 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2253 if (!grp)
2254 return;
2255
2256 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2257 grp->active_nodes = 1;
2258 grp->max_faults_cpu = 0;
8c8a743c 2259 spin_lock_init(&grp->lock);
e29cf08b 2260 grp->gid = p->pid;
50ec8a40 2261 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2262 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2263 nr_node_ids;
8c8a743c 2264
be1e4e76 2265 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2266 grp->faults[i] = p->numa_faults[i];
8c8a743c 2267
989348b5 2268 grp->total_faults = p->total_numa_faults;
83e1d2cd 2269
8c8a743c
PZ
2270 grp->nr_tasks++;
2271 rcu_assign_pointer(p->numa_group, grp);
2272 }
2273
2274 rcu_read_lock();
316c1608 2275 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2276
2277 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2278 goto no_join;
8c8a743c
PZ
2279
2280 grp = rcu_dereference(tsk->numa_group);
2281 if (!grp)
3354781a 2282 goto no_join;
8c8a743c
PZ
2283
2284 my_grp = p->numa_group;
2285 if (grp == my_grp)
3354781a 2286 goto no_join;
8c8a743c
PZ
2287
2288 /*
2289 * Only join the other group if its bigger; if we're the bigger group,
2290 * the other task will join us.
2291 */
2292 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2293 goto no_join;
8c8a743c
PZ
2294
2295 /*
2296 * Tie-break on the grp address.
2297 */
2298 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2299 goto no_join;
8c8a743c 2300
dabe1d99
RR
2301 /* Always join threads in the same process. */
2302 if (tsk->mm == current->mm)
2303 join = true;
2304
2305 /* Simple filter to avoid false positives due to PID collisions */
2306 if (flags & TNF_SHARED)
2307 join = true;
8c8a743c 2308
3e6a9418
MG
2309 /* Update priv based on whether false sharing was detected */
2310 *priv = !join;
2311
dabe1d99 2312 if (join && !get_numa_group(grp))
3354781a 2313 goto no_join;
8c8a743c 2314
8c8a743c
PZ
2315 rcu_read_unlock();
2316
2317 if (!join)
2318 return;
2319
60e69eed
MG
2320 BUG_ON(irqs_disabled());
2321 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2322
be1e4e76 2323 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2324 my_grp->faults[i] -= p->numa_faults[i];
2325 grp->faults[i] += p->numa_faults[i];
8c8a743c 2326 }
989348b5
MG
2327 my_grp->total_faults -= p->total_numa_faults;
2328 grp->total_faults += p->total_numa_faults;
8c8a743c 2329
8c8a743c
PZ
2330 my_grp->nr_tasks--;
2331 grp->nr_tasks++;
2332
2333 spin_unlock(&my_grp->lock);
60e69eed 2334 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2335
2336 rcu_assign_pointer(p->numa_group, grp);
2337
2338 put_numa_group(my_grp);
3354781a
PZ
2339 return;
2340
2341no_join:
2342 rcu_read_unlock();
2343 return;
8c8a743c
PZ
2344}
2345
2346void task_numa_free(struct task_struct *p)
2347{
2348 struct numa_group *grp = p->numa_group;
44dba3d5 2349 void *numa_faults = p->numa_faults;
e9dd685c
SR
2350 unsigned long flags;
2351 int i;
8c8a743c
PZ
2352
2353 if (grp) {
e9dd685c 2354 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2355 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2356 grp->faults[i] -= p->numa_faults[i];
989348b5 2357 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2358
8c8a743c 2359 grp->nr_tasks--;
e9dd685c 2360 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2361 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2362 put_numa_group(grp);
2363 }
2364
44dba3d5 2365 p->numa_faults = NULL;
82727018 2366 kfree(numa_faults);
8c8a743c
PZ
2367}
2368
cbee9f88
PZ
2369/*
2370 * Got a PROT_NONE fault for a page on @node.
2371 */
58b46da3 2372void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2373{
2374 struct task_struct *p = current;
6688cc05 2375 bool migrated = flags & TNF_MIGRATED;
58b46da3 2376 int cpu_node = task_node(current);
792568ec 2377 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2378 struct numa_group *ng;
ac8e895b 2379 int priv;
cbee9f88 2380
2a595721 2381 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2382 return;
2383
9ff1d9ff
MG
2384 /* for example, ksmd faulting in a user's mm */
2385 if (!p->mm)
2386 return;
2387
f809ca9a 2388 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2389 if (unlikely(!p->numa_faults)) {
2390 int size = sizeof(*p->numa_faults) *
be1e4e76 2391 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2392
44dba3d5
IM
2393 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2394 if (!p->numa_faults)
f809ca9a 2395 return;
745d6147 2396
83e1d2cd 2397 p->total_numa_faults = 0;
04bb2f94 2398 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2399 }
cbee9f88 2400
8c8a743c
PZ
2401 /*
2402 * First accesses are treated as private, otherwise consider accesses
2403 * to be private if the accessing pid has not changed
2404 */
2405 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2406 priv = 1;
2407 } else {
2408 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2409 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2410 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2411 }
2412
792568ec
RR
2413 /*
2414 * If a workload spans multiple NUMA nodes, a shared fault that
2415 * occurs wholly within the set of nodes that the workload is
2416 * actively using should be counted as local. This allows the
2417 * scan rate to slow down when a workload has settled down.
2418 */
4142c3eb
RR
2419 ng = p->numa_group;
2420 if (!priv && !local && ng && ng->active_nodes > 1 &&
2421 numa_is_active_node(cpu_node, ng) &&
2422 numa_is_active_node(mem_node, ng))
792568ec
RR
2423 local = 1;
2424
cbee9f88 2425 task_numa_placement(p);
f809ca9a 2426
2739d3ee
RR
2427 /*
2428 * Retry task to preferred node migration periodically, in case it
2429 * case it previously failed, or the scheduler moved us.
2430 */
2431 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2432 numa_migrate_preferred(p);
2433
b32e86b4
IM
2434 if (migrated)
2435 p->numa_pages_migrated += pages;
074c2381
MG
2436 if (flags & TNF_MIGRATE_FAIL)
2437 p->numa_faults_locality[2] += pages;
b32e86b4 2438
44dba3d5
IM
2439 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2440 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2441 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2442}
2443
6e5fb223
PZ
2444static void reset_ptenuma_scan(struct task_struct *p)
2445{
7e5a2c17
JL
2446 /*
2447 * We only did a read acquisition of the mmap sem, so
2448 * p->mm->numa_scan_seq is written to without exclusive access
2449 * and the update is not guaranteed to be atomic. That's not
2450 * much of an issue though, since this is just used for
2451 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2452 * expensive, to avoid any form of compiler optimizations:
2453 */
316c1608 2454 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2455 p->mm->numa_scan_offset = 0;
2456}
2457
cbee9f88
PZ
2458/*
2459 * The expensive part of numa migration is done from task_work context.
2460 * Triggered from task_tick_numa().
2461 */
2462void task_numa_work(struct callback_head *work)
2463{
2464 unsigned long migrate, next_scan, now = jiffies;
2465 struct task_struct *p = current;
2466 struct mm_struct *mm = p->mm;
51170840 2467 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2468 struct vm_area_struct *vma;
9f40604c 2469 unsigned long start, end;
598f0ec0 2470 unsigned long nr_pte_updates = 0;
4620f8c1 2471 long pages, virtpages;
cbee9f88 2472
9148a3a1 2473 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2474
2475 work->next = work; /* protect against double add */
2476 /*
2477 * Who cares about NUMA placement when they're dying.
2478 *
2479 * NOTE: make sure not to dereference p->mm before this check,
2480 * exit_task_work() happens _after_ exit_mm() so we could be called
2481 * without p->mm even though we still had it when we enqueued this
2482 * work.
2483 */
2484 if (p->flags & PF_EXITING)
2485 return;
2486
930aa174 2487 if (!mm->numa_next_scan) {
7e8d16b6
MG
2488 mm->numa_next_scan = now +
2489 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2490 }
2491
cbee9f88
PZ
2492 /*
2493 * Enforce maximal scan/migration frequency..
2494 */
2495 migrate = mm->numa_next_scan;
2496 if (time_before(now, migrate))
2497 return;
2498
598f0ec0
MG
2499 if (p->numa_scan_period == 0) {
2500 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2501 p->numa_scan_period = task_scan_start(p);
598f0ec0 2502 }
cbee9f88 2503
fb003b80 2504 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2505 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2506 return;
2507
19a78d11
PZ
2508 /*
2509 * Delay this task enough that another task of this mm will likely win
2510 * the next time around.
2511 */
2512 p->node_stamp += 2 * TICK_NSEC;
2513
9f40604c
MG
2514 start = mm->numa_scan_offset;
2515 pages = sysctl_numa_balancing_scan_size;
2516 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2517 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2518 if (!pages)
2519 return;
cbee9f88 2520
4620f8c1 2521
8655d549
VB
2522 if (!down_read_trylock(&mm->mmap_sem))
2523 return;
9f40604c 2524 vma = find_vma(mm, start);
6e5fb223
PZ
2525 if (!vma) {
2526 reset_ptenuma_scan(p);
9f40604c 2527 start = 0;
6e5fb223
PZ
2528 vma = mm->mmap;
2529 }
9f40604c 2530 for (; vma; vma = vma->vm_next) {
6b79c57b 2531 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2532 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2533 continue;
6b79c57b 2534 }
6e5fb223 2535
4591ce4f
MG
2536 /*
2537 * Shared library pages mapped by multiple processes are not
2538 * migrated as it is expected they are cache replicated. Avoid
2539 * hinting faults in read-only file-backed mappings or the vdso
2540 * as migrating the pages will be of marginal benefit.
2541 */
2542 if (!vma->vm_mm ||
2543 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2544 continue;
2545
3c67f474
MG
2546 /*
2547 * Skip inaccessible VMAs to avoid any confusion between
2548 * PROT_NONE and NUMA hinting ptes
2549 */
2550 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2551 continue;
4591ce4f 2552
9f40604c
MG
2553 do {
2554 start = max(start, vma->vm_start);
2555 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2556 end = min(end, vma->vm_end);
4620f8c1 2557 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2558
2559 /*
4620f8c1
RR
2560 * Try to scan sysctl_numa_balancing_size worth of
2561 * hpages that have at least one present PTE that
2562 * is not already pte-numa. If the VMA contains
2563 * areas that are unused or already full of prot_numa
2564 * PTEs, scan up to virtpages, to skip through those
2565 * areas faster.
598f0ec0
MG
2566 */
2567 if (nr_pte_updates)
2568 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2569 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2570
9f40604c 2571 start = end;
4620f8c1 2572 if (pages <= 0 || virtpages <= 0)
9f40604c 2573 goto out;
3cf1962c
RR
2574
2575 cond_resched();
9f40604c 2576 } while (end != vma->vm_end);
cbee9f88 2577 }
6e5fb223 2578
9f40604c 2579out:
6e5fb223 2580 /*
c69307d5
PZ
2581 * It is possible to reach the end of the VMA list but the last few
2582 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2583 * would find the !migratable VMA on the next scan but not reset the
2584 * scanner to the start so check it now.
6e5fb223
PZ
2585 */
2586 if (vma)
9f40604c 2587 mm->numa_scan_offset = start;
6e5fb223
PZ
2588 else
2589 reset_ptenuma_scan(p);
2590 up_read(&mm->mmap_sem);
51170840
RR
2591
2592 /*
2593 * Make sure tasks use at least 32x as much time to run other code
2594 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2595 * Usually update_task_scan_period slows down scanning enough; on an
2596 * overloaded system we need to limit overhead on a per task basis.
2597 */
2598 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2599 u64 diff = p->se.sum_exec_runtime - runtime;
2600 p->node_stamp += 32 * diff;
2601 }
cbee9f88
PZ
2602}
2603
2604/*
2605 * Drive the periodic memory faults..
2606 */
2607void task_tick_numa(struct rq *rq, struct task_struct *curr)
2608{
2609 struct callback_head *work = &curr->numa_work;
2610 u64 period, now;
2611
2612 /*
2613 * We don't care about NUMA placement if we don't have memory.
2614 */
2615 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2616 return;
2617
2618 /*
2619 * Using runtime rather than walltime has the dual advantage that
2620 * we (mostly) drive the selection from busy threads and that the
2621 * task needs to have done some actual work before we bother with
2622 * NUMA placement.
2623 */
2624 now = curr->se.sum_exec_runtime;
2625 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2626
25b3e5a3 2627 if (now > curr->node_stamp + period) {
4b96a29b 2628 if (!curr->node_stamp)
b5dd77c8 2629 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2630 curr->node_stamp += period;
cbee9f88
PZ
2631
2632 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2633 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2634 task_work_add(curr, work, true);
2635 }
2636 }
2637}
3fed382b 2638
cbee9f88
PZ
2639#else
2640static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2641{
2642}
0ec8aa00
PZ
2643
2644static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2645{
2646}
2647
2648static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2649{
2650}
3fed382b 2651
cbee9f88
PZ
2652#endif /* CONFIG_NUMA_BALANCING */
2653
30cfdcfc
DA
2654static void
2655account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2656{
2657 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2658 if (!parent_entity(se))
029632fb 2659 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2660#ifdef CONFIG_SMP
0ec8aa00
PZ
2661 if (entity_is_task(se)) {
2662 struct rq *rq = rq_of(cfs_rq);
2663
2664 account_numa_enqueue(rq, task_of(se));
2665 list_add(&se->group_node, &rq->cfs_tasks);
2666 }
367456c7 2667#endif
30cfdcfc 2668 cfs_rq->nr_running++;
30cfdcfc
DA
2669}
2670
2671static void
2672account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2673{
2674 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2675 if (!parent_entity(se))
029632fb 2676 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2677#ifdef CONFIG_SMP
0ec8aa00
PZ
2678 if (entity_is_task(se)) {
2679 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2680 list_del_init(&se->group_node);
0ec8aa00 2681 }
bfdb198c 2682#endif
30cfdcfc 2683 cfs_rq->nr_running--;
30cfdcfc
DA
2684}
2685
8d5b9025
PZ
2686/*
2687 * Signed add and clamp on underflow.
2688 *
2689 * Explicitly do a load-store to ensure the intermediate value never hits
2690 * memory. This allows lockless observations without ever seeing the negative
2691 * values.
2692 */
2693#define add_positive(_ptr, _val) do { \
2694 typeof(_ptr) ptr = (_ptr); \
2695 typeof(_val) val = (_val); \
2696 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2697 \
2698 res = var + val; \
2699 \
2700 if (val < 0 && res > var) \
2701 res = 0; \
2702 \
2703 WRITE_ONCE(*ptr, res); \
2704} while (0)
2705
2706/*
2707 * Unsigned subtract and clamp on underflow.
2708 *
2709 * Explicitly do a load-store to ensure the intermediate value never hits
2710 * memory. This allows lockless observations without ever seeing the negative
2711 * values.
2712 */
2713#define sub_positive(_ptr, _val) do { \
2714 typeof(_ptr) ptr = (_ptr); \
2715 typeof(*ptr) val = (_val); \
2716 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2717 res = var - val; \
2718 if (res > var) \
2719 res = 0; \
2720 WRITE_ONCE(*ptr, res); \
2721} while (0)
2722
2723#ifdef CONFIG_SMP
2724/*
1ea6c46a 2725 * XXX we want to get rid of these helpers and use the full load resolution.
8d5b9025
PZ
2726 */
2727static inline long se_weight(struct sched_entity *se)
2728{
2729 return scale_load_down(se->load.weight);
2730}
2731
1ea6c46a
PZ
2732static inline long se_runnable(struct sched_entity *se)
2733{
2734 return scale_load_down(se->runnable_weight);
2735}
2736
8d5b9025
PZ
2737static inline void
2738enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2739{
1ea6c46a
PZ
2740 cfs_rq->runnable_weight += se->runnable_weight;
2741
2742 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2743 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2744}
2745
2746static inline void
2747dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2748{
1ea6c46a
PZ
2749 cfs_rq->runnable_weight -= se->runnable_weight;
2750
2751 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2752 sub_positive(&cfs_rq->avg.runnable_load_sum,
2753 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2754}
2755
2756static inline void
2757enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758{
2759 cfs_rq->avg.load_avg += se->avg.load_avg;
2760 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2761}
2762
2763static inline void
2764dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2765{
2766 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2767 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2768}
2769#else
2770static inline void
2771enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2772static inline void
2773dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774static inline void
2775enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776static inline void
2777dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778#endif
2779
9059393e 2780static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2781 unsigned long weight, unsigned long runnable)
9059393e
VG
2782{
2783 if (se->on_rq) {
2784 /* commit outstanding execution time */
2785 if (cfs_rq->curr == se)
2786 update_curr(cfs_rq);
2787 account_entity_dequeue(cfs_rq, se);
2788 dequeue_runnable_load_avg(cfs_rq, se);
2789 }
2790 dequeue_load_avg(cfs_rq, se);
2791
1ea6c46a 2792 se->runnable_weight = runnable;
9059393e
VG
2793 update_load_set(&se->load, weight);
2794
2795#ifdef CONFIG_SMP
1ea6c46a
PZ
2796 do {
2797 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2798
2799 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2800 se->avg.runnable_load_avg =
2801 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2802 } while (0);
9059393e
VG
2803#endif
2804
2805 enqueue_load_avg(cfs_rq, se);
2806 if (se->on_rq) {
2807 account_entity_enqueue(cfs_rq, se);
2808 enqueue_runnable_load_avg(cfs_rq, se);
2809 }
2810}
2811
2812void reweight_task(struct task_struct *p, int prio)
2813{
2814 struct sched_entity *se = &p->se;
2815 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2816 struct load_weight *load = &se->load;
2817 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2818
1ea6c46a 2819 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2820 load->inv_weight = sched_prio_to_wmult[prio];
2821}
2822
3ff6dcac
YZ
2823#ifdef CONFIG_FAIR_GROUP_SCHED
2824# ifdef CONFIG_SMP
cef27403
PZ
2825/*
2826 * All this does is approximate the hierarchical proportion which includes that
2827 * global sum we all love to hate.
2828 *
2829 * That is, the weight of a group entity, is the proportional share of the
2830 * group weight based on the group runqueue weights. That is:
2831 *
2832 * tg->weight * grq->load.weight
2833 * ge->load.weight = ----------------------------- (1)
2834 * \Sum grq->load.weight
2835 *
2836 * Now, because computing that sum is prohibitively expensive to compute (been
2837 * there, done that) we approximate it with this average stuff. The average
2838 * moves slower and therefore the approximation is cheaper and more stable.
2839 *
2840 * So instead of the above, we substitute:
2841 *
2842 * grq->load.weight -> grq->avg.load_avg (2)
2843 *
2844 * which yields the following:
2845 *
2846 * tg->weight * grq->avg.load_avg
2847 * ge->load.weight = ------------------------------ (3)
2848 * tg->load_avg
2849 *
2850 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2851 *
2852 * That is shares_avg, and it is right (given the approximation (2)).
2853 *
2854 * The problem with it is that because the average is slow -- it was designed
2855 * to be exactly that of course -- this leads to transients in boundary
2856 * conditions. In specific, the case where the group was idle and we start the
2857 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2858 * yielding bad latency etc..
2859 *
2860 * Now, in that special case (1) reduces to:
2861 *
2862 * tg->weight * grq->load.weight
17de4ee0 2863 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2864 * grp->load.weight
2865 *
2866 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2867 *
2868 * So what we do is modify our approximation (3) to approach (4) in the (near)
2869 * UP case, like:
2870 *
2871 * ge->load.weight =
2872 *
2873 * tg->weight * grq->load.weight
2874 * --------------------------------------------------- (5)
2875 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2876 *
17de4ee0
PZ
2877 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2878 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2879 *
2880 *
2881 * tg->weight * grq->load.weight
2882 * ge->load.weight = ----------------------------- (6)
2883 * tg_load_avg'
2884 *
2885 * Where:
2886 *
2887 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2888 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2889 *
2890 * And that is shares_weight and is icky. In the (near) UP case it approaches
2891 * (4) while in the normal case it approaches (3). It consistently
2892 * overestimates the ge->load.weight and therefore:
2893 *
2894 * \Sum ge->load.weight >= tg->weight
2895 *
2896 * hence icky!
2897 */
2c8e4dce 2898static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2899{
7c80cfc9
PZ
2900 long tg_weight, tg_shares, load, shares;
2901 struct task_group *tg = cfs_rq->tg;
2902
2903 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2904
3d4b60d3 2905 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2906
ea1dc6fc 2907 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2908
ea1dc6fc
PZ
2909 /* Ensure tg_weight >= load */
2910 tg_weight -= cfs_rq->tg_load_avg_contrib;
2911 tg_weight += load;
3ff6dcac 2912
7c80cfc9 2913 shares = (tg_shares * load);
cf5f0acf
PZ
2914 if (tg_weight)
2915 shares /= tg_weight;
3ff6dcac 2916
b8fd8423
DE
2917 /*
2918 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2919 * of a group with small tg->shares value. It is a floor value which is
2920 * assigned as a minimum load.weight to the sched_entity representing
2921 * the group on a CPU.
2922 *
2923 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2924 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2925 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2926 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2927 * instead of 0.
2928 */
7c80cfc9 2929 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2930}
2c8e4dce
JB
2931
2932/*
17de4ee0
PZ
2933 * This calculates the effective runnable weight for a group entity based on
2934 * the group entity weight calculated above.
2935 *
2936 * Because of the above approximation (2), our group entity weight is
2937 * an load_avg based ratio (3). This means that it includes blocked load and
2938 * does not represent the runnable weight.
2939 *
2940 * Approximate the group entity's runnable weight per ratio from the group
2941 * runqueue:
2942 *
2943 * grq->avg.runnable_load_avg
2944 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2945 * grq->avg.load_avg
2946 *
2947 * However, analogous to above, since the avg numbers are slow, this leads to
2948 * transients in the from-idle case. Instead we use:
2949 *
2950 * ge->runnable_weight = ge->load.weight *
2951 *
2952 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2953 * ----------------------------------------------------- (8)
2954 * max(grq->avg.load_avg, grq->load.weight)
2955 *
2956 * Where these max() serve both to use the 'instant' values to fix the slow
2957 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2958 */
2959static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2960{
17de4ee0
PZ
2961 long runnable, load_avg;
2962
2963 load_avg = max(cfs_rq->avg.load_avg,
2964 scale_load_down(cfs_rq->load.weight));
2965
2966 runnable = max(cfs_rq->avg.runnable_load_avg,
2967 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2968
2969 runnable *= shares;
2970 if (load_avg)
2971 runnable /= load_avg;
17de4ee0 2972
2c8e4dce
JB
2973 return clamp_t(long, runnable, MIN_SHARES, shares);
2974}
3ff6dcac 2975# endif /* CONFIG_SMP */
ea1dc6fc 2976
82958366
PT
2977static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2978
1ea6c46a
PZ
2979/*
2980 * Recomputes the group entity based on the current state of its group
2981 * runqueue.
2982 */
2983static void update_cfs_group(struct sched_entity *se)
2069dd75 2984{
1ea6c46a
PZ
2985 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2986 long shares, runnable;
2069dd75 2987
1ea6c46a 2988 if (!gcfs_rq)
89ee048f
VG
2989 return;
2990
1ea6c46a 2991 if (throttled_hierarchy(gcfs_rq))
2069dd75 2992 return;
89ee048f 2993
3ff6dcac 2994#ifndef CONFIG_SMP
1ea6c46a 2995 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
2996
2997 if (likely(se->load.weight == shares))
3ff6dcac 2998 return;
7c80cfc9 2999#else
2c8e4dce
JB
3000 shares = calc_group_shares(gcfs_rq);
3001 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3002#endif
2069dd75 3003
1ea6c46a 3004 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3005}
89ee048f 3006
2069dd75 3007#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3008static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3009{
3010}
3011#endif /* CONFIG_FAIR_GROUP_SCHED */
3012
a030d738
VK
3013static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3014{
43964409
LT
3015 struct rq *rq = rq_of(cfs_rq);
3016
3017 if (&rq->cfs == cfs_rq) {
a030d738
VK
3018 /*
3019 * There are a few boundary cases this might miss but it should
3020 * get called often enough that that should (hopefully) not be
3021 * a real problem -- added to that it only calls on the local
3022 * CPU, so if we enqueue remotely we'll miss an update, but
3023 * the next tick/schedule should update.
3024 *
3025 * It will not get called when we go idle, because the idle
3026 * thread is a different class (!fair), nor will the utilization
3027 * number include things like RT tasks.
3028 *
3029 * As is, the util number is not freq-invariant (we'd have to
3030 * implement arch_scale_freq_capacity() for that).
3031 *
3032 * See cpu_util().
3033 */
43964409 3034 cpufreq_update_util(rq, 0);
a030d738
VK
3035 }
3036}
3037
141965c7 3038#ifdef CONFIG_SMP
9d85f21c
PT
3039/*
3040 * Approximate:
3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3042 */
a481db34 3043static u64 decay_load(u64 val, u64 n)
9d85f21c 3044{
5b51f2f8
PT
3045 unsigned int local_n;
3046
05296e75 3047 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
3048 return 0;
3049
3050 /* after bounds checking we can collapse to 32-bit */
3051 local_n = n;
3052
3053 /*
3054 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3056 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
3057 *
3058 * To achieve constant time decay_load.
3059 */
3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3061 val >>= local_n / LOAD_AVG_PERIOD;
3062 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
3063 }
3064
9d89c257
YD
3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3066 return val;
5b51f2f8
PT
3067}
3068
05296e75 3069static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 3070{
05296e75 3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 3072
a481db34 3073 /*
3841cdc3 3074 * c1 = d1 y^p
a481db34 3075 */
05296e75 3076 c1 = decay_load((u64)d1, periods);
a481db34 3077
a481db34 3078 /*
3841cdc3 3079 * p-1
05296e75
PZ
3080 * c2 = 1024 \Sum y^n
3081 * n=1
a481db34 3082 *
05296e75
PZ
3083 * inf inf
3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 3085 * n=0 n=p
a481db34 3086 */
05296e75 3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
3088
3089 return c1 + c2 + c3;
9d85f21c
PT
3090}
3091
54a21385 3092#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 3093
a481db34
YD
3094/*
3095 * Accumulate the three separate parts of the sum; d1 the remainder
3096 * of the last (incomplete) period, d2 the span of full periods and d3
3097 * the remainder of the (incomplete) current period.
3098 *
3099 * d1 d2 d3
3100 * ^ ^ ^
3101 * | | |
3102 * |<->|<----------------->|<--->|
3103 * ... |---x---|------| ... |------|-----x (now)
3104 *
3841cdc3
PZ
3105 * p-1
3106 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3107 * n=1
a481db34 3108 *
3841cdc3 3109 * = u y^p + (Step 1)
a481db34 3110 *
3841cdc3
PZ
3111 * p-1
3112 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3113 * n=1
a481db34
YD
3114 */
3115static __always_inline u32
3116accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
1ea6c46a 3117 unsigned long load, unsigned long runnable, int running)
a481db34
YD
3118{
3119 unsigned long scale_freq, scale_cpu;
05296e75 3120 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 3121 u64 periods;
a481db34
YD
3122
3123 scale_freq = arch_scale_freq_capacity(NULL, cpu);
3124 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3125
3126 delta += sa->period_contrib;
3127 periods = delta / 1024; /* A period is 1024us (~1ms) */
3128
3129 /*
3130 * Step 1: decay old *_sum if we crossed period boundaries.
3131 */
3132 if (periods) {
3133 sa->load_sum = decay_load(sa->load_sum, periods);
1ea6c46a
PZ
3134 sa->runnable_load_sum =
3135 decay_load(sa->runnable_load_sum, periods);
a481db34 3136 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 3137
05296e75
PZ
3138 /*
3139 * Step 2
3140 */
3141 delta %= 1024;
3142 contrib = __accumulate_pelt_segments(periods,
3143 1024 - sa->period_contrib, delta);
3144 }
a481db34
YD
3145 sa->period_contrib = delta;
3146
3147 contrib = cap_scale(contrib, scale_freq);
1ea6c46a
PZ
3148 if (load)
3149 sa->load_sum += load * contrib;
3150 if (runnable)
3151 sa->runnable_load_sum += runnable * contrib;
a481db34
YD
3152 if (running)
3153 sa->util_sum += contrib * scale_cpu;
3154
3155 return periods;
3156}
3157
9d85f21c
PT
3158/*
3159 * We can represent the historical contribution to runnable average as the
3160 * coefficients of a geometric series. To do this we sub-divide our runnable
3161 * history into segments of approximately 1ms (1024us); label the segment that
3162 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3163 *
3164 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3165 * p0 p1 p2
3166 * (now) (~1ms ago) (~2ms ago)
3167 *
3168 * Let u_i denote the fraction of p_i that the entity was runnable.
3169 *
3170 * We then designate the fractions u_i as our co-efficients, yielding the
3171 * following representation of historical load:
3172 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3173 *
3174 * We choose y based on the with of a reasonably scheduling period, fixing:
3175 * y^32 = 0.5
3176 *
3177 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3178 * approximately half as much as the contribution to load within the last ms
3179 * (u_0).
3180 *
3181 * When a period "rolls over" and we have new u_0`, multiplying the previous
3182 * sum again by y is sufficient to update:
3183 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3184 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3185 */
9d89c257 3186static __always_inline int
c7b50216 3187___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
1ea6c46a 3188 unsigned long load, unsigned long runnable, int running)
9d85f21c 3189{
a481db34 3190 u64 delta;
9d85f21c 3191
9d89c257 3192 delta = now - sa->last_update_time;
9d85f21c
PT
3193 /*
3194 * This should only happen when time goes backwards, which it
3195 * unfortunately does during sched clock init when we swap over to TSC.
3196 */
3197 if ((s64)delta < 0) {
9d89c257 3198 sa->last_update_time = now;
9d85f21c
PT
3199 return 0;
3200 }
3201
3202 /*
3203 * Use 1024ns as the unit of measurement since it's a reasonable
3204 * approximation of 1us and fast to compute.
3205 */
3206 delta >>= 10;
3207 if (!delta)
3208 return 0;
bb0bd044
PZ
3209
3210 sa->last_update_time += delta << 10;
9d85f21c 3211
f235a54f
VG
3212 /*
3213 * running is a subset of runnable (weight) so running can't be set if
3214 * runnable is clear. But there are some corner cases where the current
3215 * se has been already dequeued but cfs_rq->curr still points to it.
3216 * This means that weight will be 0 but not running for a sched_entity
3217 * but also for a cfs_rq if the latter becomes idle. As an example,
3218 * this happens during idle_balance() which calls
3219 * update_blocked_averages()
3220 */
1ea6c46a
PZ
3221 if (!load)
3222 runnable = running = 0;
f235a54f 3223
a481db34
YD
3224 /*
3225 * Now we know we crossed measurement unit boundaries. The *_avg
3226 * accrues by two steps:
3227 *
3228 * Step 1: accumulate *_sum since last_update_time. If we haven't
3229 * crossed period boundaries, finish.
3230 */
1ea6c46a 3231 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
a481db34 3232 return 0;
9ee474f5 3233
c7b50216
PZ
3234 return 1;
3235}
3236
3237static __always_inline void
1ea6c46a 3238___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
c7b50216
PZ
3239{
3240 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3241
a481db34
YD
3242 /*
3243 * Step 2: update *_avg.
3244 */
1ea6c46a
PZ
3245 sa->load_avg = div_u64(load * sa->load_sum, divider);
3246 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
c7b50216
PZ
3247 sa->util_avg = sa->util_sum / divider;
3248}
aff3e498 3249
c7b50216
PZ
3250/*
3251 * sched_entity:
3252 *
1ea6c46a
PZ
3253 * task:
3254 * se_runnable() == se_weight()
3255 *
3256 * group: [ see update_cfs_group() ]
3257 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3258 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3259 *
c7b50216
PZ
3260 * load_sum := runnable_sum
3261 * load_avg = se_weight(se) * runnable_avg
3262 *
1ea6c46a
PZ
3263 * runnable_load_sum := runnable_sum
3264 * runnable_load_avg = se_runnable(se) * runnable_avg
3265 *
3266 * XXX collapse load_sum and runnable_load_sum
3267 *
c7b50216
PZ
3268 * cfq_rs:
3269 *
3270 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3271 * load_avg = \Sum se->avg.load_avg
1ea6c46a
PZ
3272 *
3273 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3274 * runnable_load_avg = \Sum se->avg.runable_load_avg
c7b50216
PZ
3275 */
3276
0ccb977f
PZ
3277static int
3278__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3279{
1ea6c46a
PZ
3280 if (entity_is_task(se))
3281 se->runnable_weight = se->load.weight;
3282
3283 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3284 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
c7b50216
PZ
3285 return 1;
3286 }
3287
3288 return 0;
0ccb977f
PZ
3289}
3290
3291static int
3292__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3293{
1ea6c46a
PZ
3294 if (entity_is_task(se))
3295 se->runnable_weight = se->load.weight;
3296
3297 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3298 cfs_rq->curr == se)) {
c7b50216 3299
1ea6c46a 3300 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
c7b50216
PZ
3301 return 1;
3302 }
3303
3304 return 0;
0ccb977f
PZ
3305}
3306
3307static int
3308__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3309{
c7b50216
PZ
3310 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3311 scale_load_down(cfs_rq->load.weight),
1ea6c46a
PZ
3312 scale_load_down(cfs_rq->runnable_weight),
3313 cfs_rq->curr != NULL)) {
3314
3315 ___update_load_avg(&cfs_rq->avg, 1, 1);
c7b50216
PZ
3316 return 1;
3317 }
3318
3319 return 0;
0ccb977f
PZ
3320}
3321
c566e8e9 3322#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3323/**
3324 * update_tg_load_avg - update the tg's load avg
3325 * @cfs_rq: the cfs_rq whose avg changed
3326 * @force: update regardless of how small the difference
3327 *
3328 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3329 * However, because tg->load_avg is a global value there are performance
3330 * considerations.
3331 *
3332 * In order to avoid having to look at the other cfs_rq's, we use a
3333 * differential update where we store the last value we propagated. This in
3334 * turn allows skipping updates if the differential is 'small'.
3335 *
815abf5a 3336 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3337 */
9d89c257 3338static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3339{
9d89c257 3340 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3341
aa0b7ae0
WL
3342 /*
3343 * No need to update load_avg for root_task_group as it is not used.
3344 */
3345 if (cfs_rq->tg == &root_task_group)
3346 return;
3347
9d89c257
YD
3348 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3349 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3350 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3351 }
8165e145 3352}
f5f9739d 3353
ad936d86
BP
3354/*
3355 * Called within set_task_rq() right before setting a task's cpu. The
3356 * caller only guarantees p->pi_lock is held; no other assumptions,
3357 * including the state of rq->lock, should be made.
3358 */
3359void set_task_rq_fair(struct sched_entity *se,
3360 struct cfs_rq *prev, struct cfs_rq *next)
3361{
0ccb977f
PZ
3362 u64 p_last_update_time;
3363 u64 n_last_update_time;
3364
ad936d86
BP
3365 if (!sched_feat(ATTACH_AGE_LOAD))
3366 return;
3367
3368 /*
3369 * We are supposed to update the task to "current" time, then its up to
3370 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3371 * getting what current time is, so simply throw away the out-of-date
3372 * time. This will result in the wakee task is less decayed, but giving
3373 * the wakee more load sounds not bad.
3374 */
0ccb977f
PZ
3375 if (!(se->avg.last_update_time && prev))
3376 return;
ad936d86
BP
3377
3378#ifndef CONFIG_64BIT
0ccb977f 3379 {
ad936d86
BP
3380 u64 p_last_update_time_copy;
3381 u64 n_last_update_time_copy;
3382
3383 do {
3384 p_last_update_time_copy = prev->load_last_update_time_copy;
3385 n_last_update_time_copy = next->load_last_update_time_copy;
3386
3387 smp_rmb();
3388
3389 p_last_update_time = prev->avg.last_update_time;
3390 n_last_update_time = next->avg.last_update_time;
3391
3392 } while (p_last_update_time != p_last_update_time_copy ||
3393 n_last_update_time != n_last_update_time_copy);
0ccb977f 3394 }
ad936d86 3395#else
0ccb977f
PZ
3396 p_last_update_time = prev->avg.last_update_time;
3397 n_last_update_time = next->avg.last_update_time;
ad936d86 3398#endif
0ccb977f
PZ
3399 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3400 se->avg.last_update_time = n_last_update_time;
ad936d86 3401}
09a43ace 3402
0e2d2aaa
PZ
3403
3404/*
3405 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3406 * propagate its contribution. The key to this propagation is the invariant
3407 * that for each group:
3408 *
3409 * ge->avg == grq->avg (1)
3410 *
3411 * _IFF_ we look at the pure running and runnable sums. Because they
3412 * represent the very same entity, just at different points in the hierarchy.
3413 *
3414 *
3415 * Per the above update_tg_cfs_util() is trivial (and still 'wrong') and
3416 * simply copies the running sum over.
3417 *
3418 * However, update_tg_cfs_runnable() is more complex. So we have:
3419 *
3420 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3421 *
3422 * And since, like util, the runnable part should be directly transferable,
3423 * the following would _appear_ to be the straight forward approach:
3424 *
3425 * grq->avg.load_avg = grq->load.weight * grq->avg.running_avg (3)
3426 *
3427 * And per (1) we have:
3428 *
3429 * ge->avg.running_avg == grq->avg.running_avg
3430 *
3431 * Which gives:
3432 *
3433 * ge->load.weight * grq->avg.load_avg
3434 * ge->avg.load_avg = ----------------------------------- (4)
3435 * grq->load.weight
3436 *
3437 * Except that is wrong!
3438 *
3439 * Because while for entities historical weight is not important and we
3440 * really only care about our future and therefore can consider a pure
3441 * runnable sum, runqueues can NOT do this.
3442 *
3443 * We specifically want runqueues to have a load_avg that includes
3444 * historical weights. Those represent the blocked load, the load we expect
3445 * to (shortly) return to us. This only works by keeping the weights as
3446 * integral part of the sum. We therefore cannot decompose as per (3).
3447 *
3448 * OK, so what then?
3449 *
3450 *
3451 * Another way to look at things is:
3452 *
3453 * grq->avg.load_avg = \Sum se->avg.load_avg
3454 *
3455 * Therefore, per (2):
3456 *
3457 * grq->avg.load_avg = \Sum se->load.weight * se->avg.runnable_avg
3458 *
3459 * And the very thing we're propagating is a change in that sum (someone
3460 * joined/left). So we can easily know the runnable change, which would be, per
3461 * (2) the already tracked se->load_avg divided by the corresponding
3462 * se->weight.
3463 *
3464 * Basically (4) but in differential form:
3465 *
3466 * d(runnable_avg) += se->avg.load_avg / se->load.weight
3467 * (5)
3468 * ge->avg.load_avg += ge->load.weight * d(runnable_avg)
3469 */
3470
09a43ace 3471static inline void
0e2d2aaa 3472update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3473{
09a43ace
VG
3474 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3475
3476 /* Nothing to update */
3477 if (!delta)
3478 return;
3479
3480 /* Set new sched_entity's utilization */
3481 se->avg.util_avg = gcfs_rq->avg.util_avg;
3482 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3483
3484 /* Update parent cfs_rq utilization */
3485 add_positive(&cfs_rq->avg.util_avg, delta);
3486 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3487}
3488
09a43ace 3489static inline void
0e2d2aaa 3490update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3491{
0e2d2aaa 3492 long runnable_sum = gcfs_rq->prop_runnable_sum;
1ea6c46a
PZ
3493 long runnable_load_avg, load_avg;
3494 s64 runnable_load_sum, load_sum;
09a43ace 3495
0e2d2aaa
PZ
3496 if (!runnable_sum)
3497 return;
09a43ace 3498
0e2d2aaa 3499 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3500
0e2d2aaa
PZ
3501 load_sum = (s64)se_weight(se) * runnable_sum;
3502 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3503
0e2d2aaa
PZ
3504 add_positive(&se->avg.load_sum, runnable_sum);
3505 add_positive(&se->avg.load_avg, load_avg);
09a43ace 3506
0e2d2aaa
PZ
3507 add_positive(&cfs_rq->avg.load_avg, load_avg);
3508 add_positive(&cfs_rq->avg.load_sum, load_sum);
09a43ace 3509
1ea6c46a
PZ
3510 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3511 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3512
3513 add_positive(&se->avg.runnable_load_sum, runnable_sum);
3514 add_positive(&se->avg.runnable_load_avg, runnable_load_avg);
3515
09a43ace 3516 if (se->on_rq) {
1ea6c46a
PZ
3517 add_positive(&cfs_rq->avg.runnable_load_avg, runnable_load_avg);
3518 add_positive(&cfs_rq->avg.runnable_load_sum, runnable_load_sum);
09a43ace
VG
3519 }
3520}
3521
0e2d2aaa 3522static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3523{
0e2d2aaa
PZ
3524 cfs_rq->propagate = 1;
3525 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3526}
3527
3528/* Update task and its cfs_rq load average */
3529static inline int propagate_entity_load_avg(struct sched_entity *se)
3530{
0e2d2aaa 3531 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3532
3533 if (entity_is_task(se))
3534 return 0;
3535
0e2d2aaa
PZ
3536 gcfs_rq = group_cfs_rq(se);
3537 if (!gcfs_rq->propagate)
09a43ace
VG
3538 return 0;
3539
0e2d2aaa
PZ
3540 gcfs_rq->propagate = 0;
3541
09a43ace
VG
3542 cfs_rq = cfs_rq_of(se);
3543
0e2d2aaa 3544 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3545
0e2d2aaa
PZ
3546 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3547 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3548
3549 return 1;
3550}
3551
bc427898
VG
3552/*
3553 * Check if we need to update the load and the utilization of a blocked
3554 * group_entity:
3555 */
3556static inline bool skip_blocked_update(struct sched_entity *se)
3557{
3558 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3559
3560 /*
3561 * If sched_entity still have not zero load or utilization, we have to
3562 * decay it:
3563 */
3564 if (se->avg.load_avg || se->avg.util_avg)
3565 return false;
3566
3567 /*
3568 * If there is a pending propagation, we have to update the load and
3569 * the utilization of the sched_entity:
3570 */
0e2d2aaa 3571 if (gcfs_rq->propagate)
bc427898
VG
3572 return false;
3573
3574 /*
3575 * Otherwise, the load and the utilization of the sched_entity is
3576 * already zero and there is no pending propagation, so it will be a
3577 * waste of time to try to decay it:
3578 */
3579 return true;
3580}
3581
6e83125c 3582#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3583
9d89c257 3584static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3585
3586static inline int propagate_entity_load_avg(struct sched_entity *se)
3587{
3588 return 0;
3589}
3590
0e2d2aaa 3591static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3592
6e83125c 3593#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3594
3d30544f
PZ
3595/**
3596 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3597 * @now: current time, as per cfs_rq_clock_task()
3598 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3599 *
3600 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3601 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3602 * post_init_entity_util_avg().
3603 *
3604 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3605 *
7c3edd2c
PZ
3606 * Returns true if the load decayed or we removed load.
3607 *
3608 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3609 * call update_tg_load_avg() when this function returns true.
3d30544f 3610 */
a2c6c91f 3611static inline int
3a123bbb 3612update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3613{
0e2d2aaa 3614 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3615 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3616 int decayed = 0;
2dac754e 3617
2a2f5d4e
PZ
3618 if (cfs_rq->removed.nr) {
3619 unsigned long r;
9a2dd585 3620 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3621
3622 raw_spin_lock(&cfs_rq->removed.lock);
3623 swap(cfs_rq->removed.util_avg, removed_util);
3624 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3625 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3626 cfs_rq->removed.nr = 0;
3627 raw_spin_unlock(&cfs_rq->removed.lock);
3628
2a2f5d4e 3629 r = removed_load;
89741892 3630 sub_positive(&sa->load_avg, r);
9a2dd585 3631 sub_positive(&sa->load_sum, r * divider);
2dac754e 3632
2a2f5d4e 3633 r = removed_util;
89741892 3634 sub_positive(&sa->util_avg, r);
9a2dd585 3635 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3636
0e2d2aaa 3637 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3638
3639 decayed = 1;
9d89c257 3640 }
36ee28e4 3641
2a2f5d4e 3642 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3643
9d89c257
YD
3644#ifndef CONFIG_64BIT
3645 smp_wmb();
3646 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3647#endif
36ee28e4 3648
2a2f5d4e 3649 if (decayed)
a2c6c91f 3650 cfs_rq_util_change(cfs_rq);
21e96f88 3651
2a2f5d4e 3652 return decayed;
21e96f88
SM
3653}
3654
3d30544f
PZ
3655/**
3656 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3657 * @cfs_rq: cfs_rq to attach to
3658 * @se: sched_entity to attach
3659 *
3660 * Must call update_cfs_rq_load_avg() before this, since we rely on
3661 * cfs_rq->avg.last_update_time being current.
3662 */
a05e8c51
BP
3663static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3664{
f207934f
PZ
3665 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3666
3667 /*
3668 * When we attach the @se to the @cfs_rq, we must align the decay
3669 * window because without that, really weird and wonderful things can
3670 * happen.
3671 *
3672 * XXX illustrate
3673 */
a05e8c51 3674 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3675 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3676
3677 /*
3678 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3679 * period_contrib. This isn't strictly correct, but since we're
3680 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3681 * _sum a little.
3682 */
3683 se->avg.util_sum = se->avg.util_avg * divider;
3684
3685 se->avg.load_sum = divider;
3686 if (se_weight(se)) {
3687 se->avg.load_sum =
3688 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3689 }
3690
3691 se->avg.runnable_load_sum = se->avg.load_sum;
3692
8d5b9025 3693 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3694 cfs_rq->avg.util_avg += se->avg.util_avg;
3695 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3696
3697 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f
SM
3698
3699 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3700}
3701
3d30544f
PZ
3702/**
3703 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3704 * @cfs_rq: cfs_rq to detach from
3705 * @se: sched_entity to detach
3706 *
3707 * Must call update_cfs_rq_load_avg() before this, since we rely on
3708 * cfs_rq->avg.last_update_time being current.
3709 */
a05e8c51
BP
3710static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3711{
8d5b9025 3712 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3713 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3714 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3715
3716 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f
SM
3717
3718 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3719}
3720
b382a531
PZ
3721/*
3722 * Optional action to be done while updating the load average
3723 */
3724#define UPDATE_TG 0x1
3725#define SKIP_AGE_LOAD 0x2
3726#define DO_ATTACH 0x4
3727
3728/* Update task and its cfs_rq load average */
3729static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3730{
3731 u64 now = cfs_rq_clock_task(cfs_rq);
3732 struct rq *rq = rq_of(cfs_rq);
3733 int cpu = cpu_of(rq);
3734 int decayed;
3735
3736 /*
3737 * Track task load average for carrying it to new CPU after migrated, and
3738 * track group sched_entity load average for task_h_load calc in migration
3739 */
3740 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3741 __update_load_avg_se(now, cpu, cfs_rq, se);
3742
3743 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3744 decayed |= propagate_entity_load_avg(se);
3745
3746 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3747
3748 attach_entity_load_avg(cfs_rq, se);
3749 update_tg_load_avg(cfs_rq, 0);
3750
3751 } else if (decayed && (flags & UPDATE_TG))
3752 update_tg_load_avg(cfs_rq, 0);
3753}
3754
9d89c257 3755#ifndef CONFIG_64BIT
0905f04e
YD
3756static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3757{
9d89c257 3758 u64 last_update_time_copy;
0905f04e 3759 u64 last_update_time;
9ee474f5 3760
9d89c257
YD
3761 do {
3762 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3763 smp_rmb();
3764 last_update_time = cfs_rq->avg.last_update_time;
3765 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3766
3767 return last_update_time;
3768}
9d89c257 3769#else
0905f04e
YD
3770static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3771{
3772 return cfs_rq->avg.last_update_time;
3773}
9d89c257
YD
3774#endif
3775
104cb16d
MR
3776/*
3777 * Synchronize entity load avg of dequeued entity without locking
3778 * the previous rq.
3779 */
3780void sync_entity_load_avg(struct sched_entity *se)
3781{
3782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3783 u64 last_update_time;
3784
3785 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3786 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3787}
3788
0905f04e
YD
3789/*
3790 * Task first catches up with cfs_rq, and then subtract
3791 * itself from the cfs_rq (task must be off the queue now).
3792 */
3793void remove_entity_load_avg(struct sched_entity *se)
3794{
3795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3796 unsigned long flags;
0905f04e
YD
3797
3798 /*
7dc603c9
PZ
3799 * tasks cannot exit without having gone through wake_up_new_task() ->
3800 * post_init_entity_util_avg() which will have added things to the
3801 * cfs_rq, so we can remove unconditionally.
3802 *
3803 * Similarly for groups, they will have passed through
3804 * post_init_entity_util_avg() before unregister_sched_fair_group()
3805 * calls this.
0905f04e 3806 */
0905f04e 3807
104cb16d 3808 sync_entity_load_avg(se);
2a2f5d4e
PZ
3809
3810 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3811 ++cfs_rq->removed.nr;
3812 cfs_rq->removed.util_avg += se->avg.util_avg;
3813 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3814 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3815 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3816}
642dbc39 3817
7ea241af
YD
3818static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3819{
1ea6c46a 3820 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3821}
3822
3823static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3824{
3825 return cfs_rq->avg.load_avg;
3826}
3827
46f69fa3 3828static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3829
38033c37
PZ
3830#else /* CONFIG_SMP */
3831
01011473 3832static inline int
3a123bbb 3833update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3834{
3835 return 0;
3836}
3837
d31b1a66
VG
3838#define UPDATE_TG 0x0
3839#define SKIP_AGE_LOAD 0x0
b382a531 3840#define DO_ATTACH 0x0
d31b1a66 3841
88c0616e 3842static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3843{
88c0616e 3844 cfs_rq_util_change(cfs_rq);
536bd00c
RW
3845}
3846
9d89c257 3847static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3848
a05e8c51
BP
3849static inline void
3850attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3851static inline void
3852detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3853
46f69fa3 3854static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3855{
3856 return 0;
3857}
3858
38033c37 3859#endif /* CONFIG_SMP */
9d85f21c 3860
ddc97297
PZ
3861static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3862{
3863#ifdef CONFIG_SCHED_DEBUG
3864 s64 d = se->vruntime - cfs_rq->min_vruntime;
3865
3866 if (d < 0)
3867 d = -d;
3868
3869 if (d > 3*sysctl_sched_latency)
ae92882e 3870 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3871#endif
3872}
3873
aeb73b04
PZ
3874static void
3875place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3876{
1af5f730 3877 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3878
2cb8600e
PZ
3879 /*
3880 * The 'current' period is already promised to the current tasks,
3881 * however the extra weight of the new task will slow them down a
3882 * little, place the new task so that it fits in the slot that
3883 * stays open at the end.
3884 */
94dfb5e7 3885 if (initial && sched_feat(START_DEBIT))
f9c0b095 3886 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3887
a2e7a7eb 3888 /* sleeps up to a single latency don't count. */
5ca9880c 3889 if (!initial) {
a2e7a7eb 3890 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3891
a2e7a7eb
MG
3892 /*
3893 * Halve their sleep time's effect, to allow
3894 * for a gentler effect of sleepers:
3895 */
3896 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3897 thresh >>= 1;
51e0304c 3898
a2e7a7eb 3899 vruntime -= thresh;
aeb73b04
PZ
3900 }
3901
b5d9d734 3902 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3903 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3904}
3905
d3d9dc33
PT
3906static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3907
cb251765
MG
3908static inline void check_schedstat_required(void)
3909{
3910#ifdef CONFIG_SCHEDSTATS
3911 if (schedstat_enabled())
3912 return;
3913
3914 /* Force schedstat enabled if a dependent tracepoint is active */
3915 if (trace_sched_stat_wait_enabled() ||
3916 trace_sched_stat_sleep_enabled() ||
3917 trace_sched_stat_iowait_enabled() ||
3918 trace_sched_stat_blocked_enabled() ||
3919 trace_sched_stat_runtime_enabled()) {
eda8dca5 3920 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3921 "stat_blocked and stat_runtime require the "
f67abed5 3922 "kernel parameter schedstats=enable or "
cb251765
MG
3923 "kernel.sched_schedstats=1\n");
3924 }
3925#endif
3926}
3927
b5179ac7
PZ
3928
3929/*
3930 * MIGRATION
3931 *
3932 * dequeue
3933 * update_curr()
3934 * update_min_vruntime()
3935 * vruntime -= min_vruntime
3936 *
3937 * enqueue
3938 * update_curr()
3939 * update_min_vruntime()
3940 * vruntime += min_vruntime
3941 *
3942 * this way the vruntime transition between RQs is done when both
3943 * min_vruntime are up-to-date.
3944 *
3945 * WAKEUP (remote)
3946 *
59efa0ba 3947 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3948 * vruntime -= min_vruntime
3949 *
3950 * enqueue
3951 * update_curr()
3952 * update_min_vruntime()
3953 * vruntime += min_vruntime
3954 *
3955 * this way we don't have the most up-to-date min_vruntime on the originating
3956 * CPU and an up-to-date min_vruntime on the destination CPU.
3957 */
3958
bf0f6f24 3959static void
88ec22d3 3960enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3961{
2f950354
PZ
3962 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3963 bool curr = cfs_rq->curr == se;
3964
88ec22d3 3965 /*
2f950354
PZ
3966 * If we're the current task, we must renormalise before calling
3967 * update_curr().
88ec22d3 3968 */
2f950354 3969 if (renorm && curr)
88ec22d3
PZ
3970 se->vruntime += cfs_rq->min_vruntime;
3971
2f950354
PZ
3972 update_curr(cfs_rq);
3973
bf0f6f24 3974 /*
2f950354
PZ
3975 * Otherwise, renormalise after, such that we're placed at the current
3976 * moment in time, instead of some random moment in the past. Being
3977 * placed in the past could significantly boost this task to the
3978 * fairness detriment of existing tasks.
bf0f6f24 3979 */
2f950354
PZ
3980 if (renorm && !curr)
3981 se->vruntime += cfs_rq->min_vruntime;
3982
89ee048f
VG
3983 /*
3984 * When enqueuing a sched_entity, we must:
3985 * - Update loads to have both entity and cfs_rq synced with now.
3986 * - Add its load to cfs_rq->runnable_avg
3987 * - For group_entity, update its weight to reflect the new share of
3988 * its group cfs_rq
3989 * - Add its new weight to cfs_rq->load.weight
3990 */
b382a531 3991 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3992 update_cfs_group(se);
b5b3e35f 3993 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3994 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3995
1a3d027c 3996 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3997 place_entity(cfs_rq, se, 0);
bf0f6f24 3998
cb251765 3999 check_schedstat_required();
4fa8d299
JP
4000 update_stats_enqueue(cfs_rq, se, flags);
4001 check_spread(cfs_rq, se);
2f950354 4002 if (!curr)
83b699ed 4003 __enqueue_entity(cfs_rq, se);
2069dd75 4004 se->on_rq = 1;
3d4b47b4 4005
d3d9dc33 4006 if (cfs_rq->nr_running == 1) {
3d4b47b4 4007 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4008 check_enqueue_throttle(cfs_rq);
4009 }
bf0f6f24
IM
4010}
4011
2c13c919 4012static void __clear_buddies_last(struct sched_entity *se)
2002c695 4013{
2c13c919
RR
4014 for_each_sched_entity(se) {
4015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4016 if (cfs_rq->last != se)
2c13c919 4017 break;
f1044799
PZ
4018
4019 cfs_rq->last = NULL;
2c13c919
RR
4020 }
4021}
2002c695 4022
2c13c919
RR
4023static void __clear_buddies_next(struct sched_entity *se)
4024{
4025 for_each_sched_entity(se) {
4026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4027 if (cfs_rq->next != se)
2c13c919 4028 break;
f1044799
PZ
4029
4030 cfs_rq->next = NULL;
2c13c919 4031 }
2002c695
PZ
4032}
4033
ac53db59
RR
4034static void __clear_buddies_skip(struct sched_entity *se)
4035{
4036 for_each_sched_entity(se) {
4037 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4038 if (cfs_rq->skip != se)
ac53db59 4039 break;
f1044799
PZ
4040
4041 cfs_rq->skip = NULL;
ac53db59
RR
4042 }
4043}
4044
a571bbea
PZ
4045static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4046{
2c13c919
RR
4047 if (cfs_rq->last == se)
4048 __clear_buddies_last(se);
4049
4050 if (cfs_rq->next == se)
4051 __clear_buddies_next(se);
ac53db59
RR
4052
4053 if (cfs_rq->skip == se)
4054 __clear_buddies_skip(se);
a571bbea
PZ
4055}
4056
6c16a6dc 4057static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4058
bf0f6f24 4059static void
371fd7e7 4060dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4061{
a2a2d680
DA
4062 /*
4063 * Update run-time statistics of the 'current'.
4064 */
4065 update_curr(cfs_rq);
89ee048f
VG
4066
4067 /*
4068 * When dequeuing a sched_entity, we must:
4069 * - Update loads to have both entity and cfs_rq synced with now.
4070 * - Substract its load from the cfs_rq->runnable_avg.
4071 * - Substract its previous weight from cfs_rq->load.weight.
4072 * - For group entity, update its weight to reflect the new share
4073 * of its group cfs_rq.
4074 */
88c0616e 4075 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4076 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4077
4fa8d299 4078 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4079
2002c695 4080 clear_buddies(cfs_rq, se);
4793241b 4081
83b699ed 4082 if (se != cfs_rq->curr)
30cfdcfc 4083 __dequeue_entity(cfs_rq, se);
17bc14b7 4084 se->on_rq = 0;
30cfdcfc 4085 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4086
4087 /*
b60205c7
PZ
4088 * Normalize after update_curr(); which will also have moved
4089 * min_vruntime if @se is the one holding it back. But before doing
4090 * update_min_vruntime() again, which will discount @se's position and
4091 * can move min_vruntime forward still more.
88ec22d3 4092 */
371fd7e7 4093 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4094 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4095
d8b4986d
PT
4096 /* return excess runtime on last dequeue */
4097 return_cfs_rq_runtime(cfs_rq);
4098
1ea6c46a 4099 update_cfs_group(se);
b60205c7
PZ
4100
4101 /*
4102 * Now advance min_vruntime if @se was the entity holding it back,
4103 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4104 * put back on, and if we advance min_vruntime, we'll be placed back
4105 * further than we started -- ie. we'll be penalized.
4106 */
4107 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4108 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4109}
4110
4111/*
4112 * Preempt the current task with a newly woken task if needed:
4113 */
7c92e54f 4114static void
2e09bf55 4115check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4116{
11697830 4117 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4118 struct sched_entity *se;
4119 s64 delta;
11697830 4120
6d0f0ebd 4121 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4122 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4123 if (delta_exec > ideal_runtime) {
8875125e 4124 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4125 /*
4126 * The current task ran long enough, ensure it doesn't get
4127 * re-elected due to buddy favours.
4128 */
4129 clear_buddies(cfs_rq, curr);
f685ceac
MG
4130 return;
4131 }
4132
4133 /*
4134 * Ensure that a task that missed wakeup preemption by a
4135 * narrow margin doesn't have to wait for a full slice.
4136 * This also mitigates buddy induced latencies under load.
4137 */
f685ceac
MG
4138 if (delta_exec < sysctl_sched_min_granularity)
4139 return;
4140
f4cfb33e
WX
4141 se = __pick_first_entity(cfs_rq);
4142 delta = curr->vruntime - se->vruntime;
f685ceac 4143
f4cfb33e
WX
4144 if (delta < 0)
4145 return;
d7d82944 4146
f4cfb33e 4147 if (delta > ideal_runtime)
8875125e 4148 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4149}
4150
83b699ed 4151static void
8494f412 4152set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4153{
83b699ed
SV
4154 /* 'current' is not kept within the tree. */
4155 if (se->on_rq) {
4156 /*
4157 * Any task has to be enqueued before it get to execute on
4158 * a CPU. So account for the time it spent waiting on the
4159 * runqueue.
4160 */
4fa8d299 4161 update_stats_wait_end(cfs_rq, se);
83b699ed 4162 __dequeue_entity(cfs_rq, se);
88c0616e 4163 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4164 }
4165
79303e9e 4166 update_stats_curr_start(cfs_rq, se);
429d43bc 4167 cfs_rq->curr = se;
4fa8d299 4168
eba1ed4b
IM
4169 /*
4170 * Track our maximum slice length, if the CPU's load is at
4171 * least twice that of our own weight (i.e. dont track it
4172 * when there are only lesser-weight tasks around):
4173 */
cb251765 4174 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4175 schedstat_set(se->statistics.slice_max,
4176 max((u64)schedstat_val(se->statistics.slice_max),
4177 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4178 }
4fa8d299 4179
4a55b450 4180 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4181}
4182
3f3a4904
PZ
4183static int
4184wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4185
ac53db59
RR
4186/*
4187 * Pick the next process, keeping these things in mind, in this order:
4188 * 1) keep things fair between processes/task groups
4189 * 2) pick the "next" process, since someone really wants that to run
4190 * 3) pick the "last" process, for cache locality
4191 * 4) do not run the "skip" process, if something else is available
4192 */
678d5718
PZ
4193static struct sched_entity *
4194pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4195{
678d5718
PZ
4196 struct sched_entity *left = __pick_first_entity(cfs_rq);
4197 struct sched_entity *se;
4198
4199 /*
4200 * If curr is set we have to see if its left of the leftmost entity
4201 * still in the tree, provided there was anything in the tree at all.
4202 */
4203 if (!left || (curr && entity_before(curr, left)))
4204 left = curr;
4205
4206 se = left; /* ideally we run the leftmost entity */
f4b6755f 4207
ac53db59
RR
4208 /*
4209 * Avoid running the skip buddy, if running something else can
4210 * be done without getting too unfair.
4211 */
4212 if (cfs_rq->skip == se) {
678d5718
PZ
4213 struct sched_entity *second;
4214
4215 if (se == curr) {
4216 second = __pick_first_entity(cfs_rq);
4217 } else {
4218 second = __pick_next_entity(se);
4219 if (!second || (curr && entity_before(curr, second)))
4220 second = curr;
4221 }
4222
ac53db59
RR
4223 if (second && wakeup_preempt_entity(second, left) < 1)
4224 se = second;
4225 }
aa2ac252 4226
f685ceac
MG
4227 /*
4228 * Prefer last buddy, try to return the CPU to a preempted task.
4229 */
4230 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4231 se = cfs_rq->last;
4232
ac53db59
RR
4233 /*
4234 * Someone really wants this to run. If it's not unfair, run it.
4235 */
4236 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4237 se = cfs_rq->next;
4238
f685ceac 4239 clear_buddies(cfs_rq, se);
4793241b
PZ
4240
4241 return se;
aa2ac252
PZ
4242}
4243
678d5718 4244static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4245
ab6cde26 4246static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4247{
4248 /*
4249 * If still on the runqueue then deactivate_task()
4250 * was not called and update_curr() has to be done:
4251 */
4252 if (prev->on_rq)
b7cc0896 4253 update_curr(cfs_rq);
bf0f6f24 4254
d3d9dc33
PT
4255 /* throttle cfs_rqs exceeding runtime */
4256 check_cfs_rq_runtime(cfs_rq);
4257
4fa8d299 4258 check_spread(cfs_rq, prev);
cb251765 4259
30cfdcfc 4260 if (prev->on_rq) {
4fa8d299 4261 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4262 /* Put 'current' back into the tree. */
4263 __enqueue_entity(cfs_rq, prev);
9d85f21c 4264 /* in !on_rq case, update occurred at dequeue */
88c0616e 4265 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4266 }
429d43bc 4267 cfs_rq->curr = NULL;
bf0f6f24
IM
4268}
4269
8f4d37ec
PZ
4270static void
4271entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4272{
bf0f6f24 4273 /*
30cfdcfc 4274 * Update run-time statistics of the 'current'.
bf0f6f24 4275 */
30cfdcfc 4276 update_curr(cfs_rq);
bf0f6f24 4277
9d85f21c
PT
4278 /*
4279 * Ensure that runnable average is periodically updated.
4280 */
88c0616e 4281 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4282 update_cfs_group(curr);
9d85f21c 4283
8f4d37ec
PZ
4284#ifdef CONFIG_SCHED_HRTICK
4285 /*
4286 * queued ticks are scheduled to match the slice, so don't bother
4287 * validating it and just reschedule.
4288 */
983ed7a6 4289 if (queued) {
8875125e 4290 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4291 return;
4292 }
8f4d37ec
PZ
4293 /*
4294 * don't let the period tick interfere with the hrtick preemption
4295 */
4296 if (!sched_feat(DOUBLE_TICK) &&
4297 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4298 return;
4299#endif
4300
2c2efaed 4301 if (cfs_rq->nr_running > 1)
2e09bf55 4302 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4303}
4304
ab84d31e
PT
4305
4306/**************************************************
4307 * CFS bandwidth control machinery
4308 */
4309
4310#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4311
4312#ifdef HAVE_JUMP_LABEL
c5905afb 4313static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4314
4315static inline bool cfs_bandwidth_used(void)
4316{
c5905afb 4317 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4318}
4319
1ee14e6c 4320void cfs_bandwidth_usage_inc(void)
029632fb 4321{
1ee14e6c
BS
4322 static_key_slow_inc(&__cfs_bandwidth_used);
4323}
4324
4325void cfs_bandwidth_usage_dec(void)
4326{
4327 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4328}
4329#else /* HAVE_JUMP_LABEL */
4330static bool cfs_bandwidth_used(void)
4331{
4332 return true;
4333}
4334
1ee14e6c
BS
4335void cfs_bandwidth_usage_inc(void) {}
4336void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4337#endif /* HAVE_JUMP_LABEL */
4338
ab84d31e
PT
4339/*
4340 * default period for cfs group bandwidth.
4341 * default: 0.1s, units: nanoseconds
4342 */
4343static inline u64 default_cfs_period(void)
4344{
4345 return 100000000ULL;
4346}
ec12cb7f
PT
4347
4348static inline u64 sched_cfs_bandwidth_slice(void)
4349{
4350 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4351}
4352
a9cf55b2
PT
4353/*
4354 * Replenish runtime according to assigned quota and update expiration time.
4355 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4356 * additional synchronization around rq->lock.
4357 *
4358 * requires cfs_b->lock
4359 */
029632fb 4360void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4361{
4362 u64 now;
4363
4364 if (cfs_b->quota == RUNTIME_INF)
4365 return;
4366
4367 now = sched_clock_cpu(smp_processor_id());
4368 cfs_b->runtime = cfs_b->quota;
4369 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4370}
4371
029632fb
PZ
4372static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4373{
4374 return &tg->cfs_bandwidth;
4375}
4376
f1b17280
PT
4377/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4378static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4379{
4380 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4381 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4382
78becc27 4383 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4384}
4385
85dac906
PT
4386/* returns 0 on failure to allocate runtime */
4387static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4388{
4389 struct task_group *tg = cfs_rq->tg;
4390 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4391 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4392
4393 /* note: this is a positive sum as runtime_remaining <= 0 */
4394 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4395
4396 raw_spin_lock(&cfs_b->lock);
4397 if (cfs_b->quota == RUNTIME_INF)
4398 amount = min_amount;
58088ad0 4399 else {
77a4d1a1 4400 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4401
4402 if (cfs_b->runtime > 0) {
4403 amount = min(cfs_b->runtime, min_amount);
4404 cfs_b->runtime -= amount;
4405 cfs_b->idle = 0;
4406 }
ec12cb7f 4407 }
a9cf55b2 4408 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4409 raw_spin_unlock(&cfs_b->lock);
4410
4411 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4412 /*
4413 * we may have advanced our local expiration to account for allowed
4414 * spread between our sched_clock and the one on which runtime was
4415 * issued.
4416 */
4417 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4418 cfs_rq->runtime_expires = expires;
85dac906
PT
4419
4420 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4421}
4422
a9cf55b2
PT
4423/*
4424 * Note: This depends on the synchronization provided by sched_clock and the
4425 * fact that rq->clock snapshots this value.
4426 */
4427static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4428{
a9cf55b2 4429 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4430
4431 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4432 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4433 return;
4434
a9cf55b2
PT
4435 if (cfs_rq->runtime_remaining < 0)
4436 return;
4437
4438 /*
4439 * If the local deadline has passed we have to consider the
4440 * possibility that our sched_clock is 'fast' and the global deadline
4441 * has not truly expired.
4442 *
4443 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4444 * whether the global deadline has advanced. It is valid to compare
4445 * cfs_b->runtime_expires without any locks since we only care about
4446 * exact equality, so a partial write will still work.
a9cf55b2
PT
4447 */
4448
51f2176d 4449 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4450 /* extend local deadline, drift is bounded above by 2 ticks */
4451 cfs_rq->runtime_expires += TICK_NSEC;
4452 } else {
4453 /* global deadline is ahead, expiration has passed */
4454 cfs_rq->runtime_remaining = 0;
4455 }
4456}
4457
9dbdb155 4458static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4459{
4460 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4461 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4462 expire_cfs_rq_runtime(cfs_rq);
4463
4464 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4465 return;
4466
85dac906
PT
4467 /*
4468 * if we're unable to extend our runtime we resched so that the active
4469 * hierarchy can be throttled
4470 */
4471 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4472 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4473}
4474
6c16a6dc 4475static __always_inline
9dbdb155 4476void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4477{
56f570e5 4478 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4479 return;
4480
4481 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4482}
4483
85dac906
PT
4484static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4485{
56f570e5 4486 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4487}
4488
64660c86
PT
4489/* check whether cfs_rq, or any parent, is throttled */
4490static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4491{
56f570e5 4492 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4493}
4494
4495/*
4496 * Ensure that neither of the group entities corresponding to src_cpu or
4497 * dest_cpu are members of a throttled hierarchy when performing group
4498 * load-balance operations.
4499 */
4500static inline int throttled_lb_pair(struct task_group *tg,
4501 int src_cpu, int dest_cpu)
4502{
4503 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4504
4505 src_cfs_rq = tg->cfs_rq[src_cpu];
4506 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4507
4508 return throttled_hierarchy(src_cfs_rq) ||
4509 throttled_hierarchy(dest_cfs_rq);
4510}
4511
4512/* updated child weight may affect parent so we have to do this bottom up */
4513static int tg_unthrottle_up(struct task_group *tg, void *data)
4514{
4515 struct rq *rq = data;
4516 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4517
4518 cfs_rq->throttle_count--;
64660c86 4519 if (!cfs_rq->throttle_count) {
f1b17280 4520 /* adjust cfs_rq_clock_task() */
78becc27 4521 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4522 cfs_rq->throttled_clock_task;
64660c86 4523 }
64660c86
PT
4524
4525 return 0;
4526}
4527
4528static int tg_throttle_down(struct task_group *tg, void *data)
4529{
4530 struct rq *rq = data;
4531 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4532
82958366
PT
4533 /* group is entering throttled state, stop time */
4534 if (!cfs_rq->throttle_count)
78becc27 4535 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4536 cfs_rq->throttle_count++;
4537
4538 return 0;
4539}
4540
d3d9dc33 4541static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4542{
4543 struct rq *rq = rq_of(cfs_rq);
4544 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4545 struct sched_entity *se;
4546 long task_delta, dequeue = 1;
77a4d1a1 4547 bool empty;
85dac906
PT
4548
4549 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4550
f1b17280 4551 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4552 rcu_read_lock();
4553 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4554 rcu_read_unlock();
85dac906
PT
4555
4556 task_delta = cfs_rq->h_nr_running;
4557 for_each_sched_entity(se) {
4558 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4559 /* throttled entity or throttle-on-deactivate */
4560 if (!se->on_rq)
4561 break;
4562
4563 if (dequeue)
4564 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4565 qcfs_rq->h_nr_running -= task_delta;
4566
4567 if (qcfs_rq->load.weight)
4568 dequeue = 0;
4569 }
4570
4571 if (!se)
72465447 4572 sub_nr_running(rq, task_delta);
85dac906
PT
4573
4574 cfs_rq->throttled = 1;
78becc27 4575 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4576 raw_spin_lock(&cfs_b->lock);
d49db342 4577 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4578
c06f04c7
BS
4579 /*
4580 * Add to the _head_ of the list, so that an already-started
4581 * distribute_cfs_runtime will not see us
4582 */
4583 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4584
4585 /*
4586 * If we're the first throttled task, make sure the bandwidth
4587 * timer is running.
4588 */
4589 if (empty)
4590 start_cfs_bandwidth(cfs_b);
4591
85dac906
PT
4592 raw_spin_unlock(&cfs_b->lock);
4593}
4594
029632fb 4595void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4596{
4597 struct rq *rq = rq_of(cfs_rq);
4598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4599 struct sched_entity *se;
4600 int enqueue = 1;
4601 long task_delta;
4602
22b958d8 4603 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4604
4605 cfs_rq->throttled = 0;
1a55af2e
FW
4606
4607 update_rq_clock(rq);
4608
671fd9da 4609 raw_spin_lock(&cfs_b->lock);
78becc27 4610 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4611 list_del_rcu(&cfs_rq->throttled_list);
4612 raw_spin_unlock(&cfs_b->lock);
4613
64660c86
PT
4614 /* update hierarchical throttle state */
4615 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4616
671fd9da
PT
4617 if (!cfs_rq->load.weight)
4618 return;
4619
4620 task_delta = cfs_rq->h_nr_running;
4621 for_each_sched_entity(se) {
4622 if (se->on_rq)
4623 enqueue = 0;
4624
4625 cfs_rq = cfs_rq_of(se);
4626 if (enqueue)
4627 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4628 cfs_rq->h_nr_running += task_delta;
4629
4630 if (cfs_rq_throttled(cfs_rq))
4631 break;
4632 }
4633
4634 if (!se)
72465447 4635 add_nr_running(rq, task_delta);
671fd9da
PT
4636
4637 /* determine whether we need to wake up potentially idle cpu */
4638 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4639 resched_curr(rq);
671fd9da
PT
4640}
4641
4642static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4643 u64 remaining, u64 expires)
4644{
4645 struct cfs_rq *cfs_rq;
c06f04c7
BS
4646 u64 runtime;
4647 u64 starting_runtime = remaining;
671fd9da
PT
4648
4649 rcu_read_lock();
4650 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4651 throttled_list) {
4652 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4653 struct rq_flags rf;
671fd9da 4654
8a8c69c3 4655 rq_lock(rq, &rf);
671fd9da
PT
4656 if (!cfs_rq_throttled(cfs_rq))
4657 goto next;
4658
4659 runtime = -cfs_rq->runtime_remaining + 1;
4660 if (runtime > remaining)
4661 runtime = remaining;
4662 remaining -= runtime;
4663
4664 cfs_rq->runtime_remaining += runtime;
4665 cfs_rq->runtime_expires = expires;
4666
4667 /* we check whether we're throttled above */
4668 if (cfs_rq->runtime_remaining > 0)
4669 unthrottle_cfs_rq(cfs_rq);
4670
4671next:
8a8c69c3 4672 rq_unlock(rq, &rf);
671fd9da
PT
4673
4674 if (!remaining)
4675 break;
4676 }
4677 rcu_read_unlock();
4678
c06f04c7 4679 return starting_runtime - remaining;
671fd9da
PT
4680}
4681
58088ad0
PT
4682/*
4683 * Responsible for refilling a task_group's bandwidth and unthrottling its
4684 * cfs_rqs as appropriate. If there has been no activity within the last
4685 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4686 * used to track this state.
4687 */
4688static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4689{
671fd9da 4690 u64 runtime, runtime_expires;
51f2176d 4691 int throttled;
58088ad0 4692
58088ad0
PT
4693 /* no need to continue the timer with no bandwidth constraint */
4694 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4695 goto out_deactivate;
58088ad0 4696
671fd9da 4697 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4698 cfs_b->nr_periods += overrun;
671fd9da 4699
51f2176d
BS
4700 /*
4701 * idle depends on !throttled (for the case of a large deficit), and if
4702 * we're going inactive then everything else can be deferred
4703 */
4704 if (cfs_b->idle && !throttled)
4705 goto out_deactivate;
a9cf55b2
PT
4706
4707 __refill_cfs_bandwidth_runtime(cfs_b);
4708
671fd9da
PT
4709 if (!throttled) {
4710 /* mark as potentially idle for the upcoming period */
4711 cfs_b->idle = 1;
51f2176d 4712 return 0;
671fd9da
PT
4713 }
4714
e8da1b18
NR
4715 /* account preceding periods in which throttling occurred */
4716 cfs_b->nr_throttled += overrun;
4717
671fd9da 4718 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4719
4720 /*
c06f04c7
BS
4721 * This check is repeated as we are holding onto the new bandwidth while
4722 * we unthrottle. This can potentially race with an unthrottled group
4723 * trying to acquire new bandwidth from the global pool. This can result
4724 * in us over-using our runtime if it is all used during this loop, but
4725 * only by limited amounts in that extreme case.
671fd9da 4726 */
c06f04c7
BS
4727 while (throttled && cfs_b->runtime > 0) {
4728 runtime = cfs_b->runtime;
671fd9da
PT
4729 raw_spin_unlock(&cfs_b->lock);
4730 /* we can't nest cfs_b->lock while distributing bandwidth */
4731 runtime = distribute_cfs_runtime(cfs_b, runtime,
4732 runtime_expires);
4733 raw_spin_lock(&cfs_b->lock);
4734
4735 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4736
4737 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4738 }
58088ad0 4739
671fd9da
PT
4740 /*
4741 * While we are ensured activity in the period following an
4742 * unthrottle, this also covers the case in which the new bandwidth is
4743 * insufficient to cover the existing bandwidth deficit. (Forcing the
4744 * timer to remain active while there are any throttled entities.)
4745 */
4746 cfs_b->idle = 0;
58088ad0 4747
51f2176d
BS
4748 return 0;
4749
4750out_deactivate:
51f2176d 4751 return 1;
58088ad0 4752}
d3d9dc33 4753
d8b4986d
PT
4754/* a cfs_rq won't donate quota below this amount */
4755static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4756/* minimum remaining period time to redistribute slack quota */
4757static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4758/* how long we wait to gather additional slack before distributing */
4759static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4760
db06e78c
BS
4761/*
4762 * Are we near the end of the current quota period?
4763 *
4764 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4765 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4766 * migrate_hrtimers, base is never cleared, so we are fine.
4767 */
d8b4986d
PT
4768static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4769{
4770 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4771 u64 remaining;
4772
4773 /* if the call-back is running a quota refresh is already occurring */
4774 if (hrtimer_callback_running(refresh_timer))
4775 return 1;
4776
4777 /* is a quota refresh about to occur? */
4778 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4779 if (remaining < min_expire)
4780 return 1;
4781
4782 return 0;
4783}
4784
4785static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4786{
4787 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4788
4789 /* if there's a quota refresh soon don't bother with slack */
4790 if (runtime_refresh_within(cfs_b, min_left))
4791 return;
4792
4cfafd30
PZ
4793 hrtimer_start(&cfs_b->slack_timer,
4794 ns_to_ktime(cfs_bandwidth_slack_period),
4795 HRTIMER_MODE_REL);
d8b4986d
PT
4796}
4797
4798/* we know any runtime found here is valid as update_curr() precedes return */
4799static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4800{
4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4802 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4803
4804 if (slack_runtime <= 0)
4805 return;
4806
4807 raw_spin_lock(&cfs_b->lock);
4808 if (cfs_b->quota != RUNTIME_INF &&
4809 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4810 cfs_b->runtime += slack_runtime;
4811
4812 /* we are under rq->lock, defer unthrottling using a timer */
4813 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4814 !list_empty(&cfs_b->throttled_cfs_rq))
4815 start_cfs_slack_bandwidth(cfs_b);
4816 }
4817 raw_spin_unlock(&cfs_b->lock);
4818
4819 /* even if it's not valid for return we don't want to try again */
4820 cfs_rq->runtime_remaining -= slack_runtime;
4821}
4822
4823static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4824{
56f570e5
PT
4825 if (!cfs_bandwidth_used())
4826 return;
4827
fccfdc6f 4828 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4829 return;
4830
4831 __return_cfs_rq_runtime(cfs_rq);
4832}
4833
4834/*
4835 * This is done with a timer (instead of inline with bandwidth return) since
4836 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4837 */
4838static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4839{
4840 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4841 u64 expires;
4842
4843 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4844 raw_spin_lock(&cfs_b->lock);
4845 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4846 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4847 return;
db06e78c 4848 }
d8b4986d 4849
c06f04c7 4850 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4851 runtime = cfs_b->runtime;
c06f04c7 4852
d8b4986d
PT
4853 expires = cfs_b->runtime_expires;
4854 raw_spin_unlock(&cfs_b->lock);
4855
4856 if (!runtime)
4857 return;
4858
4859 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4860
4861 raw_spin_lock(&cfs_b->lock);
4862 if (expires == cfs_b->runtime_expires)
c06f04c7 4863 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4864 raw_spin_unlock(&cfs_b->lock);
4865}
4866
d3d9dc33
PT
4867/*
4868 * When a group wakes up we want to make sure that its quota is not already
4869 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4870 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4871 */
4872static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4873{
56f570e5
PT
4874 if (!cfs_bandwidth_used())
4875 return;
4876
d3d9dc33
PT
4877 /* an active group must be handled by the update_curr()->put() path */
4878 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4879 return;
4880
4881 /* ensure the group is not already throttled */
4882 if (cfs_rq_throttled(cfs_rq))
4883 return;
4884
4885 /* update runtime allocation */
4886 account_cfs_rq_runtime(cfs_rq, 0);
4887 if (cfs_rq->runtime_remaining <= 0)
4888 throttle_cfs_rq(cfs_rq);
4889}
4890
55e16d30
PZ
4891static void sync_throttle(struct task_group *tg, int cpu)
4892{
4893 struct cfs_rq *pcfs_rq, *cfs_rq;
4894
4895 if (!cfs_bandwidth_used())
4896 return;
4897
4898 if (!tg->parent)
4899 return;
4900
4901 cfs_rq = tg->cfs_rq[cpu];
4902 pcfs_rq = tg->parent->cfs_rq[cpu];
4903
4904 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4905 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4906}
4907
d3d9dc33 4908/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4909static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4910{
56f570e5 4911 if (!cfs_bandwidth_used())
678d5718 4912 return false;
56f570e5 4913
d3d9dc33 4914 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4915 return false;
d3d9dc33
PT
4916
4917 /*
4918 * it's possible for a throttled entity to be forced into a running
4919 * state (e.g. set_curr_task), in this case we're finished.
4920 */
4921 if (cfs_rq_throttled(cfs_rq))
678d5718 4922 return true;
d3d9dc33
PT
4923
4924 throttle_cfs_rq(cfs_rq);
678d5718 4925 return true;
d3d9dc33 4926}
029632fb 4927
029632fb
PZ
4928static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4929{
4930 struct cfs_bandwidth *cfs_b =
4931 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4932
029632fb
PZ
4933 do_sched_cfs_slack_timer(cfs_b);
4934
4935 return HRTIMER_NORESTART;
4936}
4937
4938static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4939{
4940 struct cfs_bandwidth *cfs_b =
4941 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4942 int overrun;
4943 int idle = 0;
4944
51f2176d 4945 raw_spin_lock(&cfs_b->lock);
029632fb 4946 for (;;) {
77a4d1a1 4947 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4948 if (!overrun)
4949 break;
4950
4951 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4952 }
4cfafd30
PZ
4953 if (idle)
4954 cfs_b->period_active = 0;
51f2176d 4955 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4956
4957 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4958}
4959
4960void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4961{
4962 raw_spin_lock_init(&cfs_b->lock);
4963 cfs_b->runtime = 0;
4964 cfs_b->quota = RUNTIME_INF;
4965 cfs_b->period = ns_to_ktime(default_cfs_period());
4966
4967 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4968 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4969 cfs_b->period_timer.function = sched_cfs_period_timer;
4970 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4971 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4972}
4973
4974static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4975{
4976 cfs_rq->runtime_enabled = 0;
4977 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4978}
4979
77a4d1a1 4980void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4981{
4cfafd30 4982 lockdep_assert_held(&cfs_b->lock);
029632fb 4983
4cfafd30
PZ
4984 if (!cfs_b->period_active) {
4985 cfs_b->period_active = 1;
4986 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4987 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4988 }
029632fb
PZ
4989}
4990
4991static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4992{
7f1a169b
TH
4993 /* init_cfs_bandwidth() was not called */
4994 if (!cfs_b->throttled_cfs_rq.next)
4995 return;
4996
029632fb
PZ
4997 hrtimer_cancel(&cfs_b->period_timer);
4998 hrtimer_cancel(&cfs_b->slack_timer);
4999}
5000
502ce005
PZ
5001/*
5002 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5003 *
5004 * The race is harmless, since modifying bandwidth settings of unhooked group
5005 * bits doesn't do much.
5006 */
5007
5008/* cpu online calback */
0e59bdae
KT
5009static void __maybe_unused update_runtime_enabled(struct rq *rq)
5010{
502ce005 5011 struct task_group *tg;
0e59bdae 5012
502ce005
PZ
5013 lockdep_assert_held(&rq->lock);
5014
5015 rcu_read_lock();
5016 list_for_each_entry_rcu(tg, &task_groups, list) {
5017 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5019
5020 raw_spin_lock(&cfs_b->lock);
5021 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5022 raw_spin_unlock(&cfs_b->lock);
5023 }
502ce005 5024 rcu_read_unlock();
0e59bdae
KT
5025}
5026
502ce005 5027/* cpu offline callback */
38dc3348 5028static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5029{
502ce005
PZ
5030 struct task_group *tg;
5031
5032 lockdep_assert_held(&rq->lock);
5033
5034 rcu_read_lock();
5035 list_for_each_entry_rcu(tg, &task_groups, list) {
5036 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5037
029632fb
PZ
5038 if (!cfs_rq->runtime_enabled)
5039 continue;
5040
5041 /*
5042 * clock_task is not advancing so we just need to make sure
5043 * there's some valid quota amount
5044 */
51f2176d 5045 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
5046 /*
5047 * Offline rq is schedulable till cpu is completely disabled
5048 * in take_cpu_down(), so we prevent new cfs throttling here.
5049 */
5050 cfs_rq->runtime_enabled = 0;
5051
029632fb
PZ
5052 if (cfs_rq_throttled(cfs_rq))
5053 unthrottle_cfs_rq(cfs_rq);
5054 }
502ce005 5055 rcu_read_unlock();
029632fb
PZ
5056}
5057
5058#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
5059static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5060{
78becc27 5061 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5062}
5063
9dbdb155 5064static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5065static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5066static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5067static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5068static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5069
5070static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5071{
5072 return 0;
5073}
64660c86
PT
5074
5075static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5076{
5077 return 0;
5078}
5079
5080static inline int throttled_lb_pair(struct task_group *tg,
5081 int src_cpu, int dest_cpu)
5082{
5083 return 0;
5084}
029632fb
PZ
5085
5086void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5087
5088#ifdef CONFIG_FAIR_GROUP_SCHED
5089static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5090#endif
5091
029632fb
PZ
5092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5093{
5094 return NULL;
5095}
5096static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5097static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5098static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5099
5100#endif /* CONFIG_CFS_BANDWIDTH */
5101
bf0f6f24
IM
5102/**************************************************
5103 * CFS operations on tasks:
5104 */
5105
8f4d37ec
PZ
5106#ifdef CONFIG_SCHED_HRTICK
5107static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5108{
8f4d37ec
PZ
5109 struct sched_entity *se = &p->se;
5110 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5111
9148a3a1 5112 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5113
8bf46a39 5114 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5115 u64 slice = sched_slice(cfs_rq, se);
5116 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5117 s64 delta = slice - ran;
5118
5119 if (delta < 0) {
5120 if (rq->curr == p)
8875125e 5121 resched_curr(rq);
8f4d37ec
PZ
5122 return;
5123 }
31656519 5124 hrtick_start(rq, delta);
8f4d37ec
PZ
5125 }
5126}
a4c2f00f
PZ
5127
5128/*
5129 * called from enqueue/dequeue and updates the hrtick when the
5130 * current task is from our class and nr_running is low enough
5131 * to matter.
5132 */
5133static void hrtick_update(struct rq *rq)
5134{
5135 struct task_struct *curr = rq->curr;
5136
b39e66ea 5137 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5138 return;
5139
5140 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5141 hrtick_start_fair(rq, curr);
5142}
55e12e5e 5143#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5144static inline void
5145hrtick_start_fair(struct rq *rq, struct task_struct *p)
5146{
5147}
a4c2f00f
PZ
5148
5149static inline void hrtick_update(struct rq *rq)
5150{
5151}
8f4d37ec
PZ
5152#endif
5153
bf0f6f24
IM
5154/*
5155 * The enqueue_task method is called before nr_running is
5156 * increased. Here we update the fair scheduling stats and
5157 * then put the task into the rbtree:
5158 */
ea87bb78 5159static void
371fd7e7 5160enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5161{
5162 struct cfs_rq *cfs_rq;
62fb1851 5163 struct sched_entity *se = &p->se;
bf0f6f24 5164
8c34ab19
RW
5165 /*
5166 * If in_iowait is set, the code below may not trigger any cpufreq
5167 * utilization updates, so do it here explicitly with the IOWAIT flag
5168 * passed.
5169 */
5170 if (p->in_iowait)
674e7541 5171 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5172
bf0f6f24 5173 for_each_sched_entity(se) {
62fb1851 5174 if (se->on_rq)
bf0f6f24
IM
5175 break;
5176 cfs_rq = cfs_rq_of(se);
88ec22d3 5177 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5178
5179 /*
5180 * end evaluation on encountering a throttled cfs_rq
5181 *
5182 * note: in the case of encountering a throttled cfs_rq we will
5183 * post the final h_nr_running increment below.
e210bffd 5184 */
85dac906
PT
5185 if (cfs_rq_throttled(cfs_rq))
5186 break;
953bfcd1 5187 cfs_rq->h_nr_running++;
85dac906 5188
88ec22d3 5189 flags = ENQUEUE_WAKEUP;
bf0f6f24 5190 }
8f4d37ec 5191
2069dd75 5192 for_each_sched_entity(se) {
0f317143 5193 cfs_rq = cfs_rq_of(se);
953bfcd1 5194 cfs_rq->h_nr_running++;
2069dd75 5195
85dac906
PT
5196 if (cfs_rq_throttled(cfs_rq))
5197 break;
5198
88c0616e 5199 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5200 update_cfs_group(se);
2069dd75
PZ
5201 }
5202
cd126afe 5203 if (!se)
72465447 5204 add_nr_running(rq, 1);
cd126afe 5205
a4c2f00f 5206 hrtick_update(rq);
bf0f6f24
IM
5207}
5208
2f36825b
VP
5209static void set_next_buddy(struct sched_entity *se);
5210
bf0f6f24
IM
5211/*
5212 * The dequeue_task method is called before nr_running is
5213 * decreased. We remove the task from the rbtree and
5214 * update the fair scheduling stats:
5215 */
371fd7e7 5216static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5217{
5218 struct cfs_rq *cfs_rq;
62fb1851 5219 struct sched_entity *se = &p->se;
2f36825b 5220 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5221
5222 for_each_sched_entity(se) {
5223 cfs_rq = cfs_rq_of(se);
371fd7e7 5224 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5225
5226 /*
5227 * end evaluation on encountering a throttled cfs_rq
5228 *
5229 * note: in the case of encountering a throttled cfs_rq we will
5230 * post the final h_nr_running decrement below.
5231 */
5232 if (cfs_rq_throttled(cfs_rq))
5233 break;
953bfcd1 5234 cfs_rq->h_nr_running--;
2069dd75 5235
bf0f6f24 5236 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5237 if (cfs_rq->load.weight) {
754bd598
KK
5238 /* Avoid re-evaluating load for this entity: */
5239 se = parent_entity(se);
2f36825b
VP
5240 /*
5241 * Bias pick_next to pick a task from this cfs_rq, as
5242 * p is sleeping when it is within its sched_slice.
5243 */
754bd598
KK
5244 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5245 set_next_buddy(se);
bf0f6f24 5246 break;
2f36825b 5247 }
371fd7e7 5248 flags |= DEQUEUE_SLEEP;
bf0f6f24 5249 }
8f4d37ec 5250
2069dd75 5251 for_each_sched_entity(se) {
0f317143 5252 cfs_rq = cfs_rq_of(se);
953bfcd1 5253 cfs_rq->h_nr_running--;
2069dd75 5254
85dac906
PT
5255 if (cfs_rq_throttled(cfs_rq))
5256 break;
5257
88c0616e 5258 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5259 update_cfs_group(se);
2069dd75
PZ
5260 }
5261
cd126afe 5262 if (!se)
72465447 5263 sub_nr_running(rq, 1);
cd126afe 5264
a4c2f00f 5265 hrtick_update(rq);
bf0f6f24
IM
5266}
5267
e7693a36 5268#ifdef CONFIG_SMP
10e2f1ac
PZ
5269
5270/* Working cpumask for: load_balance, load_balance_newidle. */
5271DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5272DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5273
9fd81dd5 5274#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5275/*
5276 * per rq 'load' arrray crap; XXX kill this.
5277 */
5278
5279/*
d937cdc5 5280 * The exact cpuload calculated at every tick would be:
3289bdb4 5281 *
d937cdc5
PZ
5282 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5283 *
5284 * If a cpu misses updates for n ticks (as it was idle) and update gets
5285 * called on the n+1-th tick when cpu may be busy, then we have:
5286 *
5287 * load_n = (1 - 1/2^i)^n * load_0
5288 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5289 *
5290 * decay_load_missed() below does efficient calculation of
3289bdb4 5291 *
d937cdc5
PZ
5292 * load' = (1 - 1/2^i)^n * load
5293 *
5294 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5295 * This allows us to precompute the above in said factors, thereby allowing the
5296 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5297 * fixed_power_int())
3289bdb4 5298 *
d937cdc5 5299 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5300 */
5301#define DEGRADE_SHIFT 7
d937cdc5
PZ
5302
5303static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5304static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5305 { 0, 0, 0, 0, 0, 0, 0, 0 },
5306 { 64, 32, 8, 0, 0, 0, 0, 0 },
5307 { 96, 72, 40, 12, 1, 0, 0, 0 },
5308 { 112, 98, 75, 43, 15, 1, 0, 0 },
5309 { 120, 112, 98, 76, 45, 16, 2, 0 }
5310};
3289bdb4
PZ
5311
5312/*
5313 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5314 * would be when CPU is idle and so we just decay the old load without
5315 * adding any new load.
5316 */
5317static unsigned long
5318decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5319{
5320 int j = 0;
5321
5322 if (!missed_updates)
5323 return load;
5324
5325 if (missed_updates >= degrade_zero_ticks[idx])
5326 return 0;
5327
5328 if (idx == 1)
5329 return load >> missed_updates;
5330
5331 while (missed_updates) {
5332 if (missed_updates % 2)
5333 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5334
5335 missed_updates >>= 1;
5336 j++;
5337 }
5338 return load;
5339}
9fd81dd5 5340#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5341
59543275 5342/**
cee1afce 5343 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5344 * @this_rq: The rq to update statistics for
5345 * @this_load: The current load
5346 * @pending_updates: The number of missed updates
59543275 5347 *
3289bdb4 5348 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5349 * scheduler tick (TICK_NSEC).
5350 *
5351 * This function computes a decaying average:
5352 *
5353 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5354 *
5355 * Because of NOHZ it might not get called on every tick which gives need for
5356 * the @pending_updates argument.
5357 *
5358 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5359 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5360 * = A * (A * load[i]_n-2 + B) + B
5361 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5362 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5363 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5364 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5365 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5366 *
5367 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5368 * any change in load would have resulted in the tick being turned back on.
5369 *
5370 * For regular NOHZ, this reduces to:
5371 *
5372 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5373 *
5374 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5375 * term.
3289bdb4 5376 */
1f41906a
FW
5377static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5378 unsigned long pending_updates)
3289bdb4 5379{
9fd81dd5 5380 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5381 int i, scale;
5382
5383 this_rq->nr_load_updates++;
5384
5385 /* Update our load: */
5386 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5387 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5388 unsigned long old_load, new_load;
5389
5390 /* scale is effectively 1 << i now, and >> i divides by scale */
5391
7400d3bb 5392 old_load = this_rq->cpu_load[i];
9fd81dd5 5393#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5394 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5395 if (tickless_load) {
5396 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5397 /*
5398 * old_load can never be a negative value because a
5399 * decayed tickless_load cannot be greater than the
5400 * original tickless_load.
5401 */
5402 old_load += tickless_load;
5403 }
9fd81dd5 5404#endif
3289bdb4
PZ
5405 new_load = this_load;
5406 /*
5407 * Round up the averaging division if load is increasing. This
5408 * prevents us from getting stuck on 9 if the load is 10, for
5409 * example.
5410 */
5411 if (new_load > old_load)
5412 new_load += scale - 1;
5413
5414 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5415 }
5416
5417 sched_avg_update(this_rq);
5418}
5419
7ea241af 5420/* Used instead of source_load when we know the type == 0 */
c7132dd6 5421static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5422{
c7132dd6 5423 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5424}
5425
3289bdb4 5426#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5427/*
5428 * There is no sane way to deal with nohz on smp when using jiffies because the
5429 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5430 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5431 *
5432 * Therefore we need to avoid the delta approach from the regular tick when
5433 * possible since that would seriously skew the load calculation. This is why we
5434 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5435 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5436 * loop exit, nohz_idle_balance, nohz full exit...)
5437 *
5438 * This means we might still be one tick off for nohz periods.
5439 */
5440
5441static void cpu_load_update_nohz(struct rq *this_rq,
5442 unsigned long curr_jiffies,
5443 unsigned long load)
be68a682
FW
5444{
5445 unsigned long pending_updates;
5446
5447 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5448 if (pending_updates) {
5449 this_rq->last_load_update_tick = curr_jiffies;
5450 /*
5451 * In the regular NOHZ case, we were idle, this means load 0.
5452 * In the NOHZ_FULL case, we were non-idle, we should consider
5453 * its weighted load.
5454 */
1f41906a 5455 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5456 }
5457}
5458
3289bdb4
PZ
5459/*
5460 * Called from nohz_idle_balance() to update the load ratings before doing the
5461 * idle balance.
5462 */
cee1afce 5463static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5464{
3289bdb4
PZ
5465 /*
5466 * bail if there's load or we're actually up-to-date.
5467 */
c7132dd6 5468 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5469 return;
5470
1f41906a 5471 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5472}
5473
5474/*
1f41906a
FW
5475 * Record CPU load on nohz entry so we know the tickless load to account
5476 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5477 * than other cpu_load[idx] but it should be fine as cpu_load readers
5478 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5479 */
1f41906a 5480void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5481{
5482 struct rq *this_rq = this_rq();
1f41906a
FW
5483
5484 /*
5485 * This is all lockless but should be fine. If weighted_cpuload changes
5486 * concurrently we'll exit nohz. And cpu_load write can race with
5487 * cpu_load_update_idle() but both updater would be writing the same.
5488 */
c7132dd6 5489 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5490}
5491
5492/*
5493 * Account the tickless load in the end of a nohz frame.
5494 */
5495void cpu_load_update_nohz_stop(void)
5496{
316c1608 5497 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5498 struct rq *this_rq = this_rq();
5499 unsigned long load;
8a8c69c3 5500 struct rq_flags rf;
3289bdb4
PZ
5501
5502 if (curr_jiffies == this_rq->last_load_update_tick)
5503 return;
5504
c7132dd6 5505 load = weighted_cpuload(this_rq);
8a8c69c3 5506 rq_lock(this_rq, &rf);
b52fad2d 5507 update_rq_clock(this_rq);
1f41906a 5508 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5509 rq_unlock(this_rq, &rf);
3289bdb4 5510}
1f41906a
FW
5511#else /* !CONFIG_NO_HZ_COMMON */
5512static inline void cpu_load_update_nohz(struct rq *this_rq,
5513 unsigned long curr_jiffies,
5514 unsigned long load) { }
5515#endif /* CONFIG_NO_HZ_COMMON */
5516
5517static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5518{
9fd81dd5 5519#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5520 /* See the mess around cpu_load_update_nohz(). */
5521 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5522#endif
1f41906a
FW
5523 cpu_load_update(this_rq, load, 1);
5524}
3289bdb4
PZ
5525
5526/*
5527 * Called from scheduler_tick()
5528 */
cee1afce 5529void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5530{
c7132dd6 5531 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5532
5533 if (tick_nohz_tick_stopped())
5534 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5535 else
5536 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5537}
5538
029632fb
PZ
5539/*
5540 * Return a low guess at the load of a migration-source cpu weighted
5541 * according to the scheduling class and "nice" value.
5542 *
5543 * We want to under-estimate the load of migration sources, to
5544 * balance conservatively.
5545 */
5546static unsigned long source_load(int cpu, int type)
5547{
5548 struct rq *rq = cpu_rq(cpu);
c7132dd6 5549 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5550
5551 if (type == 0 || !sched_feat(LB_BIAS))
5552 return total;
5553
5554 return min(rq->cpu_load[type-1], total);
5555}
5556
5557/*
5558 * Return a high guess at the load of a migration-target cpu weighted
5559 * according to the scheduling class and "nice" value.
5560 */
5561static unsigned long target_load(int cpu, int type)
5562{
5563 struct rq *rq = cpu_rq(cpu);
c7132dd6 5564 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5565
5566 if (type == 0 || !sched_feat(LB_BIAS))
5567 return total;
5568
5569 return max(rq->cpu_load[type-1], total);
5570}
5571
ced549fa 5572static unsigned long capacity_of(int cpu)
029632fb 5573{
ced549fa 5574 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5575}
5576
ca6d75e6
VG
5577static unsigned long capacity_orig_of(int cpu)
5578{
5579 return cpu_rq(cpu)->cpu_capacity_orig;
5580}
5581
029632fb
PZ
5582static unsigned long cpu_avg_load_per_task(int cpu)
5583{
5584 struct rq *rq = cpu_rq(cpu);
316c1608 5585 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5586 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5587
5588 if (nr_running)
b92486cb 5589 return load_avg / nr_running;
029632fb
PZ
5590
5591 return 0;
5592}
5593
c58d25f3
PZ
5594static void record_wakee(struct task_struct *p)
5595{
5596 /*
5597 * Only decay a single time; tasks that have less then 1 wakeup per
5598 * jiffy will not have built up many flips.
5599 */
5600 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5601 current->wakee_flips >>= 1;
5602 current->wakee_flip_decay_ts = jiffies;
5603 }
5604
5605 if (current->last_wakee != p) {
5606 current->last_wakee = p;
5607 current->wakee_flips++;
5608 }
5609}
5610
63b0e9ed
MG
5611/*
5612 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5613 *
63b0e9ed 5614 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5615 * at a frequency roughly N times higher than one of its wakees.
5616 *
5617 * In order to determine whether we should let the load spread vs consolidating
5618 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5619 * partner, and a factor of lls_size higher frequency in the other.
5620 *
5621 * With both conditions met, we can be relatively sure that the relationship is
5622 * non-monogamous, with partner count exceeding socket size.
5623 *
5624 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5625 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5626 * socket size.
63b0e9ed 5627 */
62470419
MW
5628static int wake_wide(struct task_struct *p)
5629{
63b0e9ed
MG
5630 unsigned int master = current->wakee_flips;
5631 unsigned int slave = p->wakee_flips;
7d9ffa89 5632 int factor = this_cpu_read(sd_llc_size);
62470419 5633
63b0e9ed
MG
5634 if (master < slave)
5635 swap(master, slave);
5636 if (slave < factor || master < slave * factor)
5637 return 0;
5638 return 1;
62470419
MW
5639}
5640
90001d67 5641/*
d153b153
PZ
5642 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5643 * soonest. For the purpose of speed we only consider the waking and previous
5644 * CPU.
90001d67 5645 *
d153b153
PZ
5646 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5647 * will be) idle.
f2cdd9cc
PZ
5648 *
5649 * wake_affine_weight() - considers the weight to reflect the average
5650 * scheduling latency of the CPUs. This seems to work
5651 * for the overloaded case.
90001d67 5652 */
90001d67 5653
90001d67 5654static bool
d153b153
PZ
5655wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
5656 int this_cpu, int prev_cpu, int sync)
90001d67 5657{
d153b153 5658 if (idle_cpu(this_cpu))
90001d67 5659 return true;
90001d67 5660
d153b153
PZ
5661 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5662 return true;
90001d67 5663
d153b153 5664 return false;
90001d67
PZ
5665}
5666
90001d67 5667static bool
f2cdd9cc
PZ
5668wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5669 int this_cpu, int prev_cpu, int sync)
90001d67 5670{
90001d67
PZ
5671 s64 this_eff_load, prev_eff_load;
5672 unsigned long task_load;
5673
f2cdd9cc
PZ
5674 this_eff_load = target_load(this_cpu, sd->wake_idx);
5675 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
90001d67 5676
90001d67
PZ
5677 if (sync) {
5678 unsigned long current_load = task_h_load(current);
5679
f2cdd9cc 5680 if (current_load > this_eff_load)
90001d67
PZ
5681 return true;
5682
f2cdd9cc 5683 this_eff_load -= current_load;
90001d67
PZ
5684 }
5685
90001d67
PZ
5686 task_load = task_h_load(p);
5687
f2cdd9cc
PZ
5688 this_eff_load += task_load;
5689 if (sched_feat(WA_BIAS))
5690 this_eff_load *= 100;
5691 this_eff_load *= capacity_of(prev_cpu);
90001d67 5692
f2cdd9cc
PZ
5693 prev_eff_load -= task_load;
5694 if (sched_feat(WA_BIAS))
5695 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5696 prev_eff_load *= capacity_of(this_cpu);
90001d67
PZ
5697
5698 return this_eff_load <= prev_eff_load;
5699}
5700
772bd008
MR
5701static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5702 int prev_cpu, int sync)
098fb9db 5703{
3fed382b 5704 int this_cpu = smp_processor_id();
d153b153 5705 bool affine = false;
098fb9db 5706
d153b153
PZ
5707 if (sched_feat(WA_IDLE) && !affine)
5708 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
90001d67 5709
f2cdd9cc
PZ
5710 if (sched_feat(WA_WEIGHT) && !affine)
5711 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5712
ae92882e 5713 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5714 if (affine) {
5715 schedstat_inc(sd->ttwu_move_affine);
5716 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5717 }
098fb9db 5718
3fed382b 5719 return affine;
098fb9db
IM
5720}
5721
6a0b19c0
MR
5722static inline int task_util(struct task_struct *p);
5723static int cpu_util_wake(int cpu, struct task_struct *p);
5724
5725static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5726{
5727 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5728}
5729
aaee1203
PZ
5730/*
5731 * find_idlest_group finds and returns the least busy CPU group within the
5732 * domain.
5733 */
5734static struct sched_group *
78e7ed53 5735find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5736 int this_cpu, int sd_flag)
e7693a36 5737{
b3bd3de6 5738 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5739 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5740 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5741 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5742 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5743 int load_idx = sd->forkexec_idx;
6b94780e
VG
5744 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5745 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5746 (sd->imbalance_pct-100) / 100;
e7693a36 5747
c44f2a02
VG
5748 if (sd_flag & SD_BALANCE_WAKE)
5749 load_idx = sd->wake_idx;
5750
aaee1203 5751 do {
6b94780e
VG
5752 unsigned long load, avg_load, runnable_load;
5753 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5754 int local_group;
5755 int i;
e7693a36 5756
aaee1203 5757 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5758 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5759 &p->cpus_allowed))
aaee1203
PZ
5760 continue;
5761
5762 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5763 sched_group_span(group));
aaee1203 5764
6a0b19c0
MR
5765 /*
5766 * Tally up the load of all CPUs in the group and find
5767 * the group containing the CPU with most spare capacity.
5768 */
aaee1203 5769 avg_load = 0;
6b94780e 5770 runnable_load = 0;
6a0b19c0 5771 max_spare_cap = 0;
aaee1203 5772
ae4df9d6 5773 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5774 /* Bias balancing toward cpus of our domain */
5775 if (local_group)
5776 load = source_load(i, load_idx);
5777 else
5778 load = target_load(i, load_idx);
5779
6b94780e
VG
5780 runnable_load += load;
5781
5782 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5783
5784 spare_cap = capacity_spare_wake(i, p);
5785
5786 if (spare_cap > max_spare_cap)
5787 max_spare_cap = spare_cap;
aaee1203
PZ
5788 }
5789
63b2ca30 5790 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5791 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5792 group->sgc->capacity;
5793 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5794 group->sgc->capacity;
aaee1203
PZ
5795
5796 if (local_group) {
6b94780e
VG
5797 this_runnable_load = runnable_load;
5798 this_avg_load = avg_load;
6a0b19c0
MR
5799 this_spare = max_spare_cap;
5800 } else {
6b94780e
VG
5801 if (min_runnable_load > (runnable_load + imbalance)) {
5802 /*
5803 * The runnable load is significantly smaller
5804 * so we can pick this new cpu
5805 */
5806 min_runnable_load = runnable_load;
5807 min_avg_load = avg_load;
5808 idlest = group;
5809 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5810 (100*min_avg_load > imbalance_scale*avg_load)) {
5811 /*
5812 * The runnable loads are close so take the
5813 * blocked load into account through avg_load.
5814 */
5815 min_avg_load = avg_load;
6a0b19c0
MR
5816 idlest = group;
5817 }
5818
5819 if (most_spare < max_spare_cap) {
5820 most_spare = max_spare_cap;
5821 most_spare_sg = group;
5822 }
aaee1203
PZ
5823 }
5824 } while (group = group->next, group != sd->groups);
5825
6a0b19c0
MR
5826 /*
5827 * The cross-over point between using spare capacity or least load
5828 * is too conservative for high utilization tasks on partially
5829 * utilized systems if we require spare_capacity > task_util(p),
5830 * so we allow for some task stuffing by using
5831 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5832 *
5833 * Spare capacity can't be used for fork because the utilization has
5834 * not been set yet, we must first select a rq to compute the initial
5835 * utilization.
6a0b19c0 5836 */
f519a3f1
VG
5837 if (sd_flag & SD_BALANCE_FORK)
5838 goto skip_spare;
5839
6a0b19c0 5840 if (this_spare > task_util(p) / 2 &&
6b94780e 5841 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5842 return NULL;
6b94780e
VG
5843
5844 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5845 return most_spare_sg;
5846
f519a3f1 5847skip_spare:
6b94780e
VG
5848 if (!idlest)
5849 return NULL;
5850
5851 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5852 return NULL;
6b94780e
VG
5853
5854 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5855 (100*this_avg_load < imbalance_scale*min_avg_load))
5856 return NULL;
5857
aaee1203
PZ
5858 return idlest;
5859}
5860
5861/*
5862 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5863 */
5864static int
5865find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5866{
5867 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5868 unsigned int min_exit_latency = UINT_MAX;
5869 u64 latest_idle_timestamp = 0;
5870 int least_loaded_cpu = this_cpu;
5871 int shallowest_idle_cpu = -1;
aaee1203
PZ
5872 int i;
5873
eaecf41f
MR
5874 /* Check if we have any choice: */
5875 if (group->group_weight == 1)
ae4df9d6 5876 return cpumask_first(sched_group_span(group));
eaecf41f 5877
aaee1203 5878 /* Traverse only the allowed CPUs */
ae4df9d6 5879 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5880 if (idle_cpu(i)) {
5881 struct rq *rq = cpu_rq(i);
5882 struct cpuidle_state *idle = idle_get_state(rq);
5883 if (idle && idle->exit_latency < min_exit_latency) {
5884 /*
5885 * We give priority to a CPU whose idle state
5886 * has the smallest exit latency irrespective
5887 * of any idle timestamp.
5888 */
5889 min_exit_latency = idle->exit_latency;
5890 latest_idle_timestamp = rq->idle_stamp;
5891 shallowest_idle_cpu = i;
5892 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5893 rq->idle_stamp > latest_idle_timestamp) {
5894 /*
5895 * If equal or no active idle state, then
5896 * the most recently idled CPU might have
5897 * a warmer cache.
5898 */
5899 latest_idle_timestamp = rq->idle_stamp;
5900 shallowest_idle_cpu = i;
5901 }
9f96742a 5902 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5903 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5904 if (load < min_load || (load == min_load && i == this_cpu)) {
5905 min_load = load;
5906 least_loaded_cpu = i;
5907 }
e7693a36
GH
5908 }
5909 }
5910
83a0a96a 5911 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5912}
e7693a36 5913
10e2f1ac
PZ
5914#ifdef CONFIG_SCHED_SMT
5915
5916static inline void set_idle_cores(int cpu, int val)
5917{
5918 struct sched_domain_shared *sds;
5919
5920 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5921 if (sds)
5922 WRITE_ONCE(sds->has_idle_cores, val);
5923}
5924
5925static inline bool test_idle_cores(int cpu, bool def)
5926{
5927 struct sched_domain_shared *sds;
5928
5929 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5930 if (sds)
5931 return READ_ONCE(sds->has_idle_cores);
5932
5933 return def;
5934}
5935
5936/*
5937 * Scans the local SMT mask to see if the entire core is idle, and records this
5938 * information in sd_llc_shared->has_idle_cores.
5939 *
5940 * Since SMT siblings share all cache levels, inspecting this limited remote
5941 * state should be fairly cheap.
5942 */
1b568f0a 5943void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5944{
5945 int core = cpu_of(rq);
5946 int cpu;
5947
5948 rcu_read_lock();
5949 if (test_idle_cores(core, true))
5950 goto unlock;
5951
5952 for_each_cpu(cpu, cpu_smt_mask(core)) {
5953 if (cpu == core)
5954 continue;
5955
5956 if (!idle_cpu(cpu))
5957 goto unlock;
5958 }
5959
5960 set_idle_cores(core, 1);
5961unlock:
5962 rcu_read_unlock();
5963}
5964
5965/*
5966 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5967 * there are no idle cores left in the system; tracked through
5968 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5969 */
5970static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5971{
5972 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5973 int core, cpu;
10e2f1ac 5974
1b568f0a
PZ
5975 if (!static_branch_likely(&sched_smt_present))
5976 return -1;
5977
10e2f1ac
PZ
5978 if (!test_idle_cores(target, false))
5979 return -1;
5980
0c98d344 5981 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5982
c743f0a5 5983 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5984 bool idle = true;
5985
5986 for_each_cpu(cpu, cpu_smt_mask(core)) {
5987 cpumask_clear_cpu(cpu, cpus);
5988 if (!idle_cpu(cpu))
5989 idle = false;
5990 }
5991
5992 if (idle)
5993 return core;
5994 }
5995
5996 /*
5997 * Failed to find an idle core; stop looking for one.
5998 */
5999 set_idle_cores(target, 0);
6000
6001 return -1;
6002}
6003
6004/*
6005 * Scan the local SMT mask for idle CPUs.
6006 */
6007static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6008{
6009 int cpu;
6010
1b568f0a
PZ
6011 if (!static_branch_likely(&sched_smt_present))
6012 return -1;
6013
10e2f1ac 6014 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6015 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
6016 continue;
6017 if (idle_cpu(cpu))
6018 return cpu;
6019 }
6020
6021 return -1;
6022}
6023
6024#else /* CONFIG_SCHED_SMT */
6025
6026static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6027{
6028 return -1;
6029}
6030
6031static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6032{
6033 return -1;
6034}
6035
6036#endif /* CONFIG_SCHED_SMT */
6037
6038/*
6039 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6040 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6041 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6042 */
10e2f1ac
PZ
6043static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6044{
9cfb38a7 6045 struct sched_domain *this_sd;
1ad3aaf3 6046 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6047 u64 time, cost;
6048 s64 delta;
1ad3aaf3 6049 int cpu, nr = INT_MAX;
10e2f1ac 6050
9cfb38a7
WL
6051 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6052 if (!this_sd)
6053 return -1;
6054
10e2f1ac
PZ
6055 /*
6056 * Due to large variance we need a large fuzz factor; hackbench in
6057 * particularly is sensitive here.
6058 */
1ad3aaf3
PZ
6059 avg_idle = this_rq()->avg_idle / 512;
6060 avg_cost = this_sd->avg_scan_cost + 1;
6061
6062 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6063 return -1;
6064
1ad3aaf3
PZ
6065 if (sched_feat(SIS_PROP)) {
6066 u64 span_avg = sd->span_weight * avg_idle;
6067 if (span_avg > 4*avg_cost)
6068 nr = div_u64(span_avg, avg_cost);
6069 else
6070 nr = 4;
6071 }
6072
10e2f1ac
PZ
6073 time = local_clock();
6074
c743f0a5 6075 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6076 if (!--nr)
6077 return -1;
0c98d344 6078 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
6079 continue;
6080 if (idle_cpu(cpu))
6081 break;
6082 }
6083
6084 time = local_clock() - time;
6085 cost = this_sd->avg_scan_cost;
6086 delta = (s64)(time - cost) / 8;
6087 this_sd->avg_scan_cost += delta;
6088
6089 return cpu;
6090}
6091
6092/*
6093 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6094 */
772bd008 6095static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6096{
99bd5e2f 6097 struct sched_domain *sd;
10e2f1ac 6098 int i;
a50bde51 6099
e0a79f52
MG
6100 if (idle_cpu(target))
6101 return target;
99bd5e2f
SS
6102
6103 /*
10e2f1ac 6104 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 6105 */
772bd008
MR
6106 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6107 return prev;
a50bde51 6108
518cd623 6109 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6110 if (!sd)
6111 return target;
772bd008 6112
10e2f1ac
PZ
6113 i = select_idle_core(p, sd, target);
6114 if ((unsigned)i < nr_cpumask_bits)
6115 return i;
37407ea7 6116
10e2f1ac
PZ
6117 i = select_idle_cpu(p, sd, target);
6118 if ((unsigned)i < nr_cpumask_bits)
6119 return i;
6120
6121 i = select_idle_smt(p, sd, target);
6122 if ((unsigned)i < nr_cpumask_bits)
6123 return i;
970e1789 6124
a50bde51
PZ
6125 return target;
6126}
231678b7 6127
8bb5b00c 6128/*
9e91d61d 6129 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 6130 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
6131 * compare the utilization with the capacity of the CPU that is available for
6132 * CFS task (ie cpu_capacity).
231678b7
DE
6133 *
6134 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6135 * recent utilization of currently non-runnable tasks on a CPU. It represents
6136 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6137 * capacity_orig is the cpu_capacity available at the highest frequency
6138 * (arch_scale_freq_capacity()).
6139 * The utilization of a CPU converges towards a sum equal to or less than the
6140 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6141 * the running time on this CPU scaled by capacity_curr.
6142 *
6143 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6144 * higher than capacity_orig because of unfortunate rounding in
6145 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6146 * the average stabilizes with the new running time. We need to check that the
6147 * utilization stays within the range of [0..capacity_orig] and cap it if
6148 * necessary. Without utilization capping, a group could be seen as overloaded
6149 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6150 * available capacity. We allow utilization to overshoot capacity_curr (but not
6151 * capacity_orig) as it useful for predicting the capacity required after task
6152 * migrations (scheduler-driven DVFS).
8bb5b00c 6153 */
9e91d61d 6154static int cpu_util(int cpu)
8bb5b00c 6155{
9e91d61d 6156 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
6157 unsigned long capacity = capacity_orig_of(cpu);
6158
231678b7 6159 return (util >= capacity) ? capacity : util;
8bb5b00c 6160}
a50bde51 6161
3273163c
MR
6162static inline int task_util(struct task_struct *p)
6163{
6164 return p->se.avg.util_avg;
6165}
6166
104cb16d
MR
6167/*
6168 * cpu_util_wake: Compute cpu utilization with any contributions from
6169 * the waking task p removed.
6170 */
6171static int cpu_util_wake(int cpu, struct task_struct *p)
6172{
6173 unsigned long util, capacity;
6174
6175 /* Task has no contribution or is new */
6176 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6177 return cpu_util(cpu);
6178
6179 capacity = capacity_orig_of(cpu);
6180 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6181
6182 return (util >= capacity) ? capacity : util;
6183}
6184
3273163c
MR
6185/*
6186 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6187 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6188 *
6189 * In that case WAKE_AFFINE doesn't make sense and we'll let
6190 * BALANCE_WAKE sort things out.
6191 */
6192static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6193{
6194 long min_cap, max_cap;
6195
6196 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6197 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6198
6199 /* Minimum capacity is close to max, no need to abort wake_affine */
6200 if (max_cap - min_cap < max_cap >> 3)
6201 return 0;
6202
104cb16d
MR
6203 /* Bring task utilization in sync with prev_cpu */
6204 sync_entity_load_avg(&p->se);
6205
3273163c
MR
6206 return min_cap * 1024 < task_util(p) * capacity_margin;
6207}
6208
aaee1203 6209/*
de91b9cb
MR
6210 * select_task_rq_fair: Select target runqueue for the waking task in domains
6211 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6212 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6213 *
de91b9cb
MR
6214 * Balances load by selecting the idlest cpu in the idlest group, or under
6215 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 6216 *
de91b9cb 6217 * Returns the target cpu number.
aaee1203
PZ
6218 *
6219 * preempt must be disabled.
6220 */
0017d735 6221static int
ac66f547 6222select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6223{
29cd8bae 6224 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 6225 int cpu = smp_processor_id();
63b0e9ed 6226 int new_cpu = prev_cpu;
99bd5e2f 6227 int want_affine = 0;
5158f4e4 6228 int sync = wake_flags & WF_SYNC;
c88d5910 6229
c58d25f3
PZ
6230 if (sd_flag & SD_BALANCE_WAKE) {
6231 record_wakee(p);
3273163c 6232 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6233 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6234 }
aaee1203 6235
dce840a0 6236 rcu_read_lock();
aaee1203 6237 for_each_domain(cpu, tmp) {
e4f42888 6238 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6239 break;
e4f42888 6240
fe3bcfe1 6241 /*
99bd5e2f
SS
6242 * If both cpu and prev_cpu are part of this domain,
6243 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6244 */
99bd5e2f
SS
6245 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6246 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6247 affine_sd = tmp;
29cd8bae 6248 break;
f03542a7 6249 }
29cd8bae 6250
f03542a7 6251 if (tmp->flags & sd_flag)
29cd8bae 6252 sd = tmp;
63b0e9ed
MG
6253 else if (!want_affine)
6254 break;
29cd8bae
PZ
6255 }
6256
63b0e9ed
MG
6257 if (affine_sd) {
6258 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6259 if (cpu == prev_cpu)
6260 goto pick_cpu;
6261
6262 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6263 new_cpu = cpu;
8b911acd 6264 }
e7693a36 6265
63b0e9ed 6266 if (!sd) {
7d894e6e 6267 pick_cpu:
63b0e9ed 6268 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6269 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6270
6271 } else while (sd) {
aaee1203 6272 struct sched_group *group;
c88d5910 6273 int weight;
098fb9db 6274
0763a660 6275 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6276 sd = sd->child;
6277 continue;
6278 }
098fb9db 6279
c44f2a02 6280 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6281 if (!group) {
6282 sd = sd->child;
6283 continue;
6284 }
4ae7d5ce 6285
d7c33c49 6286 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6287 if (new_cpu == -1 || new_cpu == cpu) {
6288 /* Now try balancing at a lower domain level of cpu */
6289 sd = sd->child;
6290 continue;
e7693a36 6291 }
aaee1203
PZ
6292
6293 /* Now try balancing at a lower domain level of new_cpu */
6294 cpu = new_cpu;
669c55e9 6295 weight = sd->span_weight;
aaee1203
PZ
6296 sd = NULL;
6297 for_each_domain(cpu, tmp) {
669c55e9 6298 if (weight <= tmp->span_weight)
aaee1203 6299 break;
0763a660 6300 if (tmp->flags & sd_flag)
aaee1203
PZ
6301 sd = tmp;
6302 }
6303 /* while loop will break here if sd == NULL */
e7693a36 6304 }
dce840a0 6305 rcu_read_unlock();
e7693a36 6306
c88d5910 6307 return new_cpu;
e7693a36 6308}
0a74bef8 6309
144d8487
PZ
6310static void detach_entity_cfs_rq(struct sched_entity *se);
6311
0a74bef8
PT
6312/*
6313 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6314 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6315 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6316 */
5a4fd036 6317static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6318{
59efa0ba
PZ
6319 /*
6320 * As blocked tasks retain absolute vruntime the migration needs to
6321 * deal with this by subtracting the old and adding the new
6322 * min_vruntime -- the latter is done by enqueue_entity() when placing
6323 * the task on the new runqueue.
6324 */
6325 if (p->state == TASK_WAKING) {
6326 struct sched_entity *se = &p->se;
6327 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6328 u64 min_vruntime;
6329
6330#ifndef CONFIG_64BIT
6331 u64 min_vruntime_copy;
6332
6333 do {
6334 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6335 smp_rmb();
6336 min_vruntime = cfs_rq->min_vruntime;
6337 } while (min_vruntime != min_vruntime_copy);
6338#else
6339 min_vruntime = cfs_rq->min_vruntime;
6340#endif
6341
6342 se->vruntime -= min_vruntime;
6343 }
6344
144d8487
PZ
6345 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6346 /*
6347 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6348 * rq->lock and can modify state directly.
6349 */
6350 lockdep_assert_held(&task_rq(p)->lock);
6351 detach_entity_cfs_rq(&p->se);
6352
6353 } else {
6354 /*
6355 * We are supposed to update the task to "current" time, then
6356 * its up to date and ready to go to new CPU/cfs_rq. But we
6357 * have difficulty in getting what current time is, so simply
6358 * throw away the out-of-date time. This will result in the
6359 * wakee task is less decayed, but giving the wakee more load
6360 * sounds not bad.
6361 */
6362 remove_entity_load_avg(&p->se);
6363 }
9d89c257
YD
6364
6365 /* Tell new CPU we are migrated */
6366 p->se.avg.last_update_time = 0;
3944a927
BS
6367
6368 /* We have migrated, no longer consider this task hot */
9d89c257 6369 p->se.exec_start = 0;
0a74bef8 6370}
12695578
YD
6371
6372static void task_dead_fair(struct task_struct *p)
6373{
6374 remove_entity_load_avg(&p->se);
6375}
e7693a36
GH
6376#endif /* CONFIG_SMP */
6377
e52fb7c0
PZ
6378static unsigned long
6379wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6380{
6381 unsigned long gran = sysctl_sched_wakeup_granularity;
6382
6383 /*
e52fb7c0
PZ
6384 * Since its curr running now, convert the gran from real-time
6385 * to virtual-time in his units.
13814d42
MG
6386 *
6387 * By using 'se' instead of 'curr' we penalize light tasks, so
6388 * they get preempted easier. That is, if 'se' < 'curr' then
6389 * the resulting gran will be larger, therefore penalizing the
6390 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6391 * be smaller, again penalizing the lighter task.
6392 *
6393 * This is especially important for buddies when the leftmost
6394 * task is higher priority than the buddy.
0bbd3336 6395 */
f4ad9bd2 6396 return calc_delta_fair(gran, se);
0bbd3336
PZ
6397}
6398
464b7527
PZ
6399/*
6400 * Should 'se' preempt 'curr'.
6401 *
6402 * |s1
6403 * |s2
6404 * |s3
6405 * g
6406 * |<--->|c
6407 *
6408 * w(c, s1) = -1
6409 * w(c, s2) = 0
6410 * w(c, s3) = 1
6411 *
6412 */
6413static int
6414wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6415{
6416 s64 gran, vdiff = curr->vruntime - se->vruntime;
6417
6418 if (vdiff <= 0)
6419 return -1;
6420
e52fb7c0 6421 gran = wakeup_gran(curr, se);
464b7527
PZ
6422 if (vdiff > gran)
6423 return 1;
6424
6425 return 0;
6426}
6427
02479099
PZ
6428static void set_last_buddy(struct sched_entity *se)
6429{
69c80f3e
VP
6430 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6431 return;
6432
c5ae366e
DA
6433 for_each_sched_entity(se) {
6434 if (SCHED_WARN_ON(!se->on_rq))
6435 return;
69c80f3e 6436 cfs_rq_of(se)->last = se;
c5ae366e 6437 }
02479099
PZ
6438}
6439
6440static void set_next_buddy(struct sched_entity *se)
6441{
69c80f3e
VP
6442 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6443 return;
6444
c5ae366e
DA
6445 for_each_sched_entity(se) {
6446 if (SCHED_WARN_ON(!se->on_rq))
6447 return;
69c80f3e 6448 cfs_rq_of(se)->next = se;
c5ae366e 6449 }
02479099
PZ
6450}
6451
ac53db59
RR
6452static void set_skip_buddy(struct sched_entity *se)
6453{
69c80f3e
VP
6454 for_each_sched_entity(se)
6455 cfs_rq_of(se)->skip = se;
ac53db59
RR
6456}
6457
bf0f6f24
IM
6458/*
6459 * Preempt the current task with a newly woken task if needed:
6460 */
5a9b86f6 6461static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6462{
6463 struct task_struct *curr = rq->curr;
8651a86c 6464 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6465 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6466 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6467 int next_buddy_marked = 0;
bf0f6f24 6468
4ae7d5ce
IM
6469 if (unlikely(se == pse))
6470 return;
6471
5238cdd3 6472 /*
163122b7 6473 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6474 * unconditionally check_prempt_curr() after an enqueue (which may have
6475 * lead to a throttle). This both saves work and prevents false
6476 * next-buddy nomination below.
6477 */
6478 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6479 return;
6480
2f36825b 6481 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6482 set_next_buddy(pse);
2f36825b
VP
6483 next_buddy_marked = 1;
6484 }
57fdc26d 6485
aec0a514
BR
6486 /*
6487 * We can come here with TIF_NEED_RESCHED already set from new task
6488 * wake up path.
5238cdd3
PT
6489 *
6490 * Note: this also catches the edge-case of curr being in a throttled
6491 * group (e.g. via set_curr_task), since update_curr() (in the
6492 * enqueue of curr) will have resulted in resched being set. This
6493 * prevents us from potentially nominating it as a false LAST_BUDDY
6494 * below.
aec0a514
BR
6495 */
6496 if (test_tsk_need_resched(curr))
6497 return;
6498
a2f5c9ab
DH
6499 /* Idle tasks are by definition preempted by non-idle tasks. */
6500 if (unlikely(curr->policy == SCHED_IDLE) &&
6501 likely(p->policy != SCHED_IDLE))
6502 goto preempt;
6503
91c234b4 6504 /*
a2f5c9ab
DH
6505 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6506 * is driven by the tick):
91c234b4 6507 */
8ed92e51 6508 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6509 return;
bf0f6f24 6510
464b7527 6511 find_matching_se(&se, &pse);
9bbd7374 6512 update_curr(cfs_rq_of(se));
002f128b 6513 BUG_ON(!pse);
2f36825b
VP
6514 if (wakeup_preempt_entity(se, pse) == 1) {
6515 /*
6516 * Bias pick_next to pick the sched entity that is
6517 * triggering this preemption.
6518 */
6519 if (!next_buddy_marked)
6520 set_next_buddy(pse);
3a7e73a2 6521 goto preempt;
2f36825b 6522 }
464b7527 6523
3a7e73a2 6524 return;
a65ac745 6525
3a7e73a2 6526preempt:
8875125e 6527 resched_curr(rq);
3a7e73a2
PZ
6528 /*
6529 * Only set the backward buddy when the current task is still
6530 * on the rq. This can happen when a wakeup gets interleaved
6531 * with schedule on the ->pre_schedule() or idle_balance()
6532 * point, either of which can * drop the rq lock.
6533 *
6534 * Also, during early boot the idle thread is in the fair class,
6535 * for obvious reasons its a bad idea to schedule back to it.
6536 */
6537 if (unlikely(!se->on_rq || curr == rq->idle))
6538 return;
6539
6540 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6541 set_last_buddy(se);
bf0f6f24
IM
6542}
6543
606dba2e 6544static struct task_struct *
d8ac8971 6545pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6546{
6547 struct cfs_rq *cfs_rq = &rq->cfs;
6548 struct sched_entity *se;
678d5718 6549 struct task_struct *p;
37e117c0 6550 int new_tasks;
678d5718 6551
6e83125c 6552again:
678d5718 6553 if (!cfs_rq->nr_running)
38033c37 6554 goto idle;
678d5718 6555
9674f5ca 6556#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6557 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6558 goto simple;
6559
6560 /*
6561 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6562 * likely that a next task is from the same cgroup as the current.
6563 *
6564 * Therefore attempt to avoid putting and setting the entire cgroup
6565 * hierarchy, only change the part that actually changes.
6566 */
6567
6568 do {
6569 struct sched_entity *curr = cfs_rq->curr;
6570
6571 /*
6572 * Since we got here without doing put_prev_entity() we also
6573 * have to consider cfs_rq->curr. If it is still a runnable
6574 * entity, update_curr() will update its vruntime, otherwise
6575 * forget we've ever seen it.
6576 */
54d27365
BS
6577 if (curr) {
6578 if (curr->on_rq)
6579 update_curr(cfs_rq);
6580 else
6581 curr = NULL;
678d5718 6582
54d27365
BS
6583 /*
6584 * This call to check_cfs_rq_runtime() will do the
6585 * throttle and dequeue its entity in the parent(s).
9674f5ca 6586 * Therefore the nr_running test will indeed
54d27365
BS
6587 * be correct.
6588 */
9674f5ca
VK
6589 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6590 cfs_rq = &rq->cfs;
6591
6592 if (!cfs_rq->nr_running)
6593 goto idle;
6594
54d27365 6595 goto simple;
9674f5ca 6596 }
54d27365 6597 }
678d5718
PZ
6598
6599 se = pick_next_entity(cfs_rq, curr);
6600 cfs_rq = group_cfs_rq(se);
6601 } while (cfs_rq);
6602
6603 p = task_of(se);
6604
6605 /*
6606 * Since we haven't yet done put_prev_entity and if the selected task
6607 * is a different task than we started out with, try and touch the
6608 * least amount of cfs_rqs.
6609 */
6610 if (prev != p) {
6611 struct sched_entity *pse = &prev->se;
6612
6613 while (!(cfs_rq = is_same_group(se, pse))) {
6614 int se_depth = se->depth;
6615 int pse_depth = pse->depth;
6616
6617 if (se_depth <= pse_depth) {
6618 put_prev_entity(cfs_rq_of(pse), pse);
6619 pse = parent_entity(pse);
6620 }
6621 if (se_depth >= pse_depth) {
6622 set_next_entity(cfs_rq_of(se), se);
6623 se = parent_entity(se);
6624 }
6625 }
6626
6627 put_prev_entity(cfs_rq, pse);
6628 set_next_entity(cfs_rq, se);
6629 }
6630
6631 if (hrtick_enabled(rq))
6632 hrtick_start_fair(rq, p);
6633
6634 return p;
6635simple:
678d5718 6636#endif
bf0f6f24 6637
3f1d2a31 6638 put_prev_task(rq, prev);
606dba2e 6639
bf0f6f24 6640 do {
678d5718 6641 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6642 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6643 cfs_rq = group_cfs_rq(se);
6644 } while (cfs_rq);
6645
8f4d37ec 6646 p = task_of(se);
678d5718 6647
b39e66ea
MG
6648 if (hrtick_enabled(rq))
6649 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6650
6651 return p;
38033c37
PZ
6652
6653idle:
46f69fa3
MF
6654 new_tasks = idle_balance(rq, rf);
6655
37e117c0
PZ
6656 /*
6657 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6658 * possible for any higher priority task to appear. In that case we
6659 * must re-start the pick_next_entity() loop.
6660 */
e4aa358b 6661 if (new_tasks < 0)
37e117c0
PZ
6662 return RETRY_TASK;
6663
e4aa358b 6664 if (new_tasks > 0)
38033c37 6665 goto again;
38033c37
PZ
6666
6667 return NULL;
bf0f6f24
IM
6668}
6669
6670/*
6671 * Account for a descheduled task:
6672 */
31ee529c 6673static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6674{
6675 struct sched_entity *se = &prev->se;
6676 struct cfs_rq *cfs_rq;
6677
6678 for_each_sched_entity(se) {
6679 cfs_rq = cfs_rq_of(se);
ab6cde26 6680 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6681 }
6682}
6683
ac53db59
RR
6684/*
6685 * sched_yield() is very simple
6686 *
6687 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6688 */
6689static void yield_task_fair(struct rq *rq)
6690{
6691 struct task_struct *curr = rq->curr;
6692 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6693 struct sched_entity *se = &curr->se;
6694
6695 /*
6696 * Are we the only task in the tree?
6697 */
6698 if (unlikely(rq->nr_running == 1))
6699 return;
6700
6701 clear_buddies(cfs_rq, se);
6702
6703 if (curr->policy != SCHED_BATCH) {
6704 update_rq_clock(rq);
6705 /*
6706 * Update run-time statistics of the 'current'.
6707 */
6708 update_curr(cfs_rq);
916671c0
MG
6709 /*
6710 * Tell update_rq_clock() that we've just updated,
6711 * so we don't do microscopic update in schedule()
6712 * and double the fastpath cost.
6713 */
9edfbfed 6714 rq_clock_skip_update(rq, true);
ac53db59
RR
6715 }
6716
6717 set_skip_buddy(se);
6718}
6719
d95f4122
MG
6720static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6721{
6722 struct sched_entity *se = &p->se;
6723
5238cdd3
PT
6724 /* throttled hierarchies are not runnable */
6725 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6726 return false;
6727
6728 /* Tell the scheduler that we'd really like pse to run next. */
6729 set_next_buddy(se);
6730
d95f4122
MG
6731 yield_task_fair(rq);
6732
6733 return true;
6734}
6735
681f3e68 6736#ifdef CONFIG_SMP
bf0f6f24 6737/**************************************************
e9c84cb8
PZ
6738 * Fair scheduling class load-balancing methods.
6739 *
6740 * BASICS
6741 *
6742 * The purpose of load-balancing is to achieve the same basic fairness the
6743 * per-cpu scheduler provides, namely provide a proportional amount of compute
6744 * time to each task. This is expressed in the following equation:
6745 *
6746 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6747 *
6748 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6749 * W_i,0 is defined as:
6750 *
6751 * W_i,0 = \Sum_j w_i,j (2)
6752 *
6753 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6754 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6755 *
6756 * The weight average is an exponential decay average of the instantaneous
6757 * weight:
6758 *
6759 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6760 *
ced549fa 6761 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6762 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6763 * can also include other factors [XXX].
6764 *
6765 * To achieve this balance we define a measure of imbalance which follows
6766 * directly from (1):
6767 *
ced549fa 6768 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6769 *
6770 * We them move tasks around to minimize the imbalance. In the continuous
6771 * function space it is obvious this converges, in the discrete case we get
6772 * a few fun cases generally called infeasible weight scenarios.
6773 *
6774 * [XXX expand on:
6775 * - infeasible weights;
6776 * - local vs global optima in the discrete case. ]
6777 *
6778 *
6779 * SCHED DOMAINS
6780 *
6781 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6782 * for all i,j solution, we create a tree of cpus that follows the hardware
6783 * topology where each level pairs two lower groups (or better). This results
6784 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6785 * tree to only the first of the previous level and we decrease the frequency
6786 * of load-balance at each level inv. proportional to the number of cpus in
6787 * the groups.
6788 *
6789 * This yields:
6790 *
6791 * log_2 n 1 n
6792 * \Sum { --- * --- * 2^i } = O(n) (5)
6793 * i = 0 2^i 2^i
6794 * `- size of each group
6795 * | | `- number of cpus doing load-balance
6796 * | `- freq
6797 * `- sum over all levels
6798 *
6799 * Coupled with a limit on how many tasks we can migrate every balance pass,
6800 * this makes (5) the runtime complexity of the balancer.
6801 *
6802 * An important property here is that each CPU is still (indirectly) connected
6803 * to every other cpu in at most O(log n) steps:
6804 *
6805 * The adjacency matrix of the resulting graph is given by:
6806 *
97a7142f 6807 * log_2 n
e9c84cb8
PZ
6808 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6809 * k = 0
6810 *
6811 * And you'll find that:
6812 *
6813 * A^(log_2 n)_i,j != 0 for all i,j (7)
6814 *
6815 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6816 * The task movement gives a factor of O(m), giving a convergence complexity
6817 * of:
6818 *
6819 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6820 *
6821 *
6822 * WORK CONSERVING
6823 *
6824 * In order to avoid CPUs going idle while there's still work to do, new idle
6825 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6826 * tree itself instead of relying on other CPUs to bring it work.
6827 *
6828 * This adds some complexity to both (5) and (8) but it reduces the total idle
6829 * time.
6830 *
6831 * [XXX more?]
6832 *
6833 *
6834 * CGROUPS
6835 *
6836 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6837 *
6838 * s_k,i
6839 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6840 * S_k
6841 *
6842 * Where
6843 *
6844 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6845 *
6846 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6847 *
6848 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6849 * property.
6850 *
6851 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6852 * rewrite all of this once again.]
97a7142f 6853 */
bf0f6f24 6854
ed387b78
HS
6855static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6856
0ec8aa00
PZ
6857enum fbq_type { regular, remote, all };
6858
ddcdf6e7 6859#define LBF_ALL_PINNED 0x01
367456c7 6860#define LBF_NEED_BREAK 0x02
6263322c
PZ
6861#define LBF_DST_PINNED 0x04
6862#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6863
6864struct lb_env {
6865 struct sched_domain *sd;
6866
ddcdf6e7 6867 struct rq *src_rq;
85c1e7da 6868 int src_cpu;
ddcdf6e7
PZ
6869
6870 int dst_cpu;
6871 struct rq *dst_rq;
6872
88b8dac0
SV
6873 struct cpumask *dst_grpmask;
6874 int new_dst_cpu;
ddcdf6e7 6875 enum cpu_idle_type idle;
bd939f45 6876 long imbalance;
b9403130
MW
6877 /* The set of CPUs under consideration for load-balancing */
6878 struct cpumask *cpus;
6879
ddcdf6e7 6880 unsigned int flags;
367456c7
PZ
6881
6882 unsigned int loop;
6883 unsigned int loop_break;
6884 unsigned int loop_max;
0ec8aa00
PZ
6885
6886 enum fbq_type fbq_type;
163122b7 6887 struct list_head tasks;
ddcdf6e7
PZ
6888};
6889
029632fb
PZ
6890/*
6891 * Is this task likely cache-hot:
6892 */
5d5e2b1b 6893static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6894{
6895 s64 delta;
6896
e5673f28
KT
6897 lockdep_assert_held(&env->src_rq->lock);
6898
029632fb
PZ
6899 if (p->sched_class != &fair_sched_class)
6900 return 0;
6901
6902 if (unlikely(p->policy == SCHED_IDLE))
6903 return 0;
6904
6905 /*
6906 * Buddy candidates are cache hot:
6907 */
5d5e2b1b 6908 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6909 (&p->se == cfs_rq_of(&p->se)->next ||
6910 &p->se == cfs_rq_of(&p->se)->last))
6911 return 1;
6912
6913 if (sysctl_sched_migration_cost == -1)
6914 return 1;
6915 if (sysctl_sched_migration_cost == 0)
6916 return 0;
6917
5d5e2b1b 6918 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6919
6920 return delta < (s64)sysctl_sched_migration_cost;
6921}
6922
3a7053b3 6923#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6924/*
2a1ed24c
SD
6925 * Returns 1, if task migration degrades locality
6926 * Returns 0, if task migration improves locality i.e migration preferred.
6927 * Returns -1, if task migration is not affected by locality.
c1ceac62 6928 */
2a1ed24c 6929static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6930{
b1ad065e 6931 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6932 unsigned long src_faults, dst_faults;
3a7053b3
MG
6933 int src_nid, dst_nid;
6934
2a595721 6935 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6936 return -1;
6937
c3b9bc5b 6938 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6939 return -1;
7a0f3083
MG
6940
6941 src_nid = cpu_to_node(env->src_cpu);
6942 dst_nid = cpu_to_node(env->dst_cpu);
6943
83e1d2cd 6944 if (src_nid == dst_nid)
2a1ed24c 6945 return -1;
7a0f3083 6946
2a1ed24c
SD
6947 /* Migrating away from the preferred node is always bad. */
6948 if (src_nid == p->numa_preferred_nid) {
6949 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6950 return 1;
6951 else
6952 return -1;
6953 }
b1ad065e 6954
c1ceac62
RR
6955 /* Encourage migration to the preferred node. */
6956 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6957 return 0;
b1ad065e 6958
739294fb
RR
6959 /* Leaving a core idle is often worse than degrading locality. */
6960 if (env->idle != CPU_NOT_IDLE)
6961 return -1;
6962
c1ceac62
RR
6963 if (numa_group) {
6964 src_faults = group_faults(p, src_nid);
6965 dst_faults = group_faults(p, dst_nid);
6966 } else {
6967 src_faults = task_faults(p, src_nid);
6968 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6969 }
6970
c1ceac62 6971 return dst_faults < src_faults;
7a0f3083
MG
6972}
6973
3a7053b3 6974#else
2a1ed24c 6975static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6976 struct lb_env *env)
6977{
2a1ed24c 6978 return -1;
7a0f3083 6979}
3a7053b3
MG
6980#endif
6981
1e3c88bd
PZ
6982/*
6983 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6984 */
6985static
8e45cb54 6986int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6987{
2a1ed24c 6988 int tsk_cache_hot;
e5673f28
KT
6989
6990 lockdep_assert_held(&env->src_rq->lock);
6991
1e3c88bd
PZ
6992 /*
6993 * We do not migrate tasks that are:
d3198084 6994 * 1) throttled_lb_pair, or
1e3c88bd 6995 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6996 * 3) running (obviously), or
6997 * 4) are cache-hot on their current CPU.
1e3c88bd 6998 */
d3198084
JK
6999 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7000 return 0;
7001
0c98d344 7002 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7003 int cpu;
88b8dac0 7004
ae92882e 7005 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7006
6263322c
PZ
7007 env->flags |= LBF_SOME_PINNED;
7008
88b8dac0
SV
7009 /*
7010 * Remember if this task can be migrated to any other cpu in
7011 * our sched_group. We may want to revisit it if we couldn't
7012 * meet load balance goals by pulling other tasks on src_cpu.
7013 *
65a4433a
JH
7014 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7015 * already computed one in current iteration.
88b8dac0 7016 */
65a4433a 7017 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7018 return 0;
7019
e02e60c1
JK
7020 /* Prevent to re-select dst_cpu via env's cpus */
7021 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7022 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7023 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7024 env->new_dst_cpu = cpu;
7025 break;
7026 }
88b8dac0 7027 }
e02e60c1 7028
1e3c88bd
PZ
7029 return 0;
7030 }
88b8dac0
SV
7031
7032 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7033 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7034
ddcdf6e7 7035 if (task_running(env->src_rq, p)) {
ae92882e 7036 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7037 return 0;
7038 }
7039
7040 /*
7041 * Aggressive migration if:
3a7053b3
MG
7042 * 1) destination numa is preferred
7043 * 2) task is cache cold, or
7044 * 3) too many balance attempts have failed.
1e3c88bd 7045 */
2a1ed24c
SD
7046 tsk_cache_hot = migrate_degrades_locality(p, env);
7047 if (tsk_cache_hot == -1)
7048 tsk_cache_hot = task_hot(p, env);
3a7053b3 7049
2a1ed24c 7050 if (tsk_cache_hot <= 0 ||
7a96c231 7051 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7052 if (tsk_cache_hot == 1) {
ae92882e
JP
7053 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7054 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7055 }
1e3c88bd
PZ
7056 return 1;
7057 }
7058
ae92882e 7059 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7060 return 0;
1e3c88bd
PZ
7061}
7062
897c395f 7063/*
163122b7
KT
7064 * detach_task() -- detach the task for the migration specified in env
7065 */
7066static void detach_task(struct task_struct *p, struct lb_env *env)
7067{
7068 lockdep_assert_held(&env->src_rq->lock);
7069
163122b7 7070 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7071 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7072 set_task_cpu(p, env->dst_cpu);
7073}
7074
897c395f 7075/*
e5673f28 7076 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7077 * part of active balancing operations within "domain".
897c395f 7078 *
e5673f28 7079 * Returns a task if successful and NULL otherwise.
897c395f 7080 */
e5673f28 7081static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
7082{
7083 struct task_struct *p, *n;
897c395f 7084
e5673f28
KT
7085 lockdep_assert_held(&env->src_rq->lock);
7086
367456c7 7087 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7088 if (!can_migrate_task(p, env))
7089 continue;
897c395f 7090
163122b7 7091 detach_task(p, env);
e5673f28 7092
367456c7 7093 /*
e5673f28 7094 * Right now, this is only the second place where
163122b7 7095 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7096 * so we can safely collect stats here rather than
163122b7 7097 * inside detach_tasks().
367456c7 7098 */
ae92882e 7099 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7100 return p;
897c395f 7101 }
e5673f28 7102 return NULL;
897c395f
PZ
7103}
7104
eb95308e
PZ
7105static const unsigned int sched_nr_migrate_break = 32;
7106
5d6523eb 7107/*
163122b7
KT
7108 * detach_tasks() -- tries to detach up to imbalance weighted load from
7109 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7110 *
163122b7 7111 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7112 */
163122b7 7113static int detach_tasks(struct lb_env *env)
1e3c88bd 7114{
5d6523eb
PZ
7115 struct list_head *tasks = &env->src_rq->cfs_tasks;
7116 struct task_struct *p;
367456c7 7117 unsigned long load;
163122b7
KT
7118 int detached = 0;
7119
7120 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7121
bd939f45 7122 if (env->imbalance <= 0)
5d6523eb 7123 return 0;
1e3c88bd 7124
5d6523eb 7125 while (!list_empty(tasks)) {
985d3a4c
YD
7126 /*
7127 * We don't want to steal all, otherwise we may be treated likewise,
7128 * which could at worst lead to a livelock crash.
7129 */
7130 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7131 break;
7132
5d6523eb 7133 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7134
367456c7
PZ
7135 env->loop++;
7136 /* We've more or less seen every task there is, call it quits */
5d6523eb 7137 if (env->loop > env->loop_max)
367456c7 7138 break;
5d6523eb
PZ
7139
7140 /* take a breather every nr_migrate tasks */
367456c7 7141 if (env->loop > env->loop_break) {
eb95308e 7142 env->loop_break += sched_nr_migrate_break;
8e45cb54 7143 env->flags |= LBF_NEED_BREAK;
ee00e66f 7144 break;
a195f004 7145 }
1e3c88bd 7146
d3198084 7147 if (!can_migrate_task(p, env))
367456c7
PZ
7148 goto next;
7149
7150 load = task_h_load(p);
5d6523eb 7151
eb95308e 7152 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7153 goto next;
7154
bd939f45 7155 if ((load / 2) > env->imbalance)
367456c7 7156 goto next;
1e3c88bd 7157
163122b7
KT
7158 detach_task(p, env);
7159 list_add(&p->se.group_node, &env->tasks);
7160
7161 detached++;
bd939f45 7162 env->imbalance -= load;
1e3c88bd
PZ
7163
7164#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7165 /*
7166 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7167 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7168 * the critical section.
7169 */
5d6523eb 7170 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7171 break;
1e3c88bd
PZ
7172#endif
7173
ee00e66f
PZ
7174 /*
7175 * We only want to steal up to the prescribed amount of
7176 * weighted load.
7177 */
bd939f45 7178 if (env->imbalance <= 0)
ee00e66f 7179 break;
367456c7
PZ
7180
7181 continue;
7182next:
5d6523eb 7183 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 7184 }
5d6523eb 7185
1e3c88bd 7186 /*
163122b7
KT
7187 * Right now, this is one of only two places we collect this stat
7188 * so we can safely collect detach_one_task() stats here rather
7189 * than inside detach_one_task().
1e3c88bd 7190 */
ae92882e 7191 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7192
163122b7
KT
7193 return detached;
7194}
7195
7196/*
7197 * attach_task() -- attach the task detached by detach_task() to its new rq.
7198 */
7199static void attach_task(struct rq *rq, struct task_struct *p)
7200{
7201 lockdep_assert_held(&rq->lock);
7202
7203 BUG_ON(task_rq(p) != rq);
5704ac0a 7204 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7205 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7206 check_preempt_curr(rq, p, 0);
7207}
7208
7209/*
7210 * attach_one_task() -- attaches the task returned from detach_one_task() to
7211 * its new rq.
7212 */
7213static void attach_one_task(struct rq *rq, struct task_struct *p)
7214{
8a8c69c3
PZ
7215 struct rq_flags rf;
7216
7217 rq_lock(rq, &rf);
5704ac0a 7218 update_rq_clock(rq);
163122b7 7219 attach_task(rq, p);
8a8c69c3 7220 rq_unlock(rq, &rf);
163122b7
KT
7221}
7222
7223/*
7224 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7225 * new rq.
7226 */
7227static void attach_tasks(struct lb_env *env)
7228{
7229 struct list_head *tasks = &env->tasks;
7230 struct task_struct *p;
8a8c69c3 7231 struct rq_flags rf;
163122b7 7232
8a8c69c3 7233 rq_lock(env->dst_rq, &rf);
5704ac0a 7234 update_rq_clock(env->dst_rq);
163122b7
KT
7235
7236 while (!list_empty(tasks)) {
7237 p = list_first_entry(tasks, struct task_struct, se.group_node);
7238 list_del_init(&p->se.group_node);
1e3c88bd 7239
163122b7
KT
7240 attach_task(env->dst_rq, p);
7241 }
7242
8a8c69c3 7243 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7244}
7245
230059de 7246#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7247
7248static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7249{
7250 if (cfs_rq->load.weight)
7251 return false;
7252
7253 if (cfs_rq->avg.load_sum)
7254 return false;
7255
7256 if (cfs_rq->avg.util_sum)
7257 return false;
7258
1ea6c46a 7259 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7260 return false;
7261
7262 return true;
7263}
7264
48a16753 7265static void update_blocked_averages(int cpu)
9e3081ca 7266{
9e3081ca 7267 struct rq *rq = cpu_rq(cpu);
a9e7f654 7268 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7269 struct rq_flags rf;
9e3081ca 7270
8a8c69c3 7271 rq_lock_irqsave(rq, &rf);
48a16753 7272 update_rq_clock(rq);
9d89c257 7273
9763b67f
PZ
7274 /*
7275 * Iterates the task_group tree in a bottom up fashion, see
7276 * list_add_leaf_cfs_rq() for details.
7277 */
a9e7f654 7278 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7279 struct sched_entity *se;
7280
9d89c257
YD
7281 /* throttled entities do not contribute to load */
7282 if (throttled_hierarchy(cfs_rq))
7283 continue;
48a16753 7284
3a123bbb 7285 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7286 update_tg_load_avg(cfs_rq, 0);
4e516076 7287
bc427898
VG
7288 /* Propagate pending load changes to the parent, if any: */
7289 se = cfs_rq->tg->se[cpu];
7290 if (se && !skip_blocked_update(se))
88c0616e 7291 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7292
7293 /*
7294 * There can be a lot of idle CPU cgroups. Don't let fully
7295 * decayed cfs_rqs linger on the list.
7296 */
7297 if (cfs_rq_is_decayed(cfs_rq))
7298 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7299 }
8a8c69c3 7300 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7301}
7302
9763b67f 7303/*
68520796 7304 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7305 * This needs to be done in a top-down fashion because the load of a child
7306 * group is a fraction of its parents load.
7307 */
68520796 7308static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7309{
68520796
VD
7310 struct rq *rq = rq_of(cfs_rq);
7311 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7312 unsigned long now = jiffies;
68520796 7313 unsigned long load;
a35b6466 7314
68520796 7315 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7316 return;
7317
68520796
VD
7318 cfs_rq->h_load_next = NULL;
7319 for_each_sched_entity(se) {
7320 cfs_rq = cfs_rq_of(se);
7321 cfs_rq->h_load_next = se;
7322 if (cfs_rq->last_h_load_update == now)
7323 break;
7324 }
a35b6466 7325
68520796 7326 if (!se) {
7ea241af 7327 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7328 cfs_rq->last_h_load_update = now;
7329 }
7330
7331 while ((se = cfs_rq->h_load_next) != NULL) {
7332 load = cfs_rq->h_load;
7ea241af
YD
7333 load = div64_ul(load * se->avg.load_avg,
7334 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7335 cfs_rq = group_cfs_rq(se);
7336 cfs_rq->h_load = load;
7337 cfs_rq->last_h_load_update = now;
7338 }
9763b67f
PZ
7339}
7340
367456c7 7341static unsigned long task_h_load(struct task_struct *p)
230059de 7342{
367456c7 7343 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7344
68520796 7345 update_cfs_rq_h_load(cfs_rq);
9d89c257 7346 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7347 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7348}
7349#else
48a16753 7350static inline void update_blocked_averages(int cpu)
9e3081ca 7351{
6c1d47c0
VG
7352 struct rq *rq = cpu_rq(cpu);
7353 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7354 struct rq_flags rf;
6c1d47c0 7355
8a8c69c3 7356 rq_lock_irqsave(rq, &rf);
6c1d47c0 7357 update_rq_clock(rq);
3a123bbb 7358 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7359 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7360}
7361
367456c7 7362static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7363{
9d89c257 7364 return p->se.avg.load_avg;
1e3c88bd 7365}
230059de 7366#endif
1e3c88bd 7367
1e3c88bd 7368/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7369
7370enum group_type {
7371 group_other = 0,
7372 group_imbalanced,
7373 group_overloaded,
7374};
7375
1e3c88bd
PZ
7376/*
7377 * sg_lb_stats - stats of a sched_group required for load_balancing
7378 */
7379struct sg_lb_stats {
7380 unsigned long avg_load; /*Avg load across the CPUs of the group */
7381 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7382 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7383 unsigned long load_per_task;
63b2ca30 7384 unsigned long group_capacity;
9e91d61d 7385 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7386 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7387 unsigned int idle_cpus;
7388 unsigned int group_weight;
caeb178c 7389 enum group_type group_type;
ea67821b 7390 int group_no_capacity;
0ec8aa00
PZ
7391#ifdef CONFIG_NUMA_BALANCING
7392 unsigned int nr_numa_running;
7393 unsigned int nr_preferred_running;
7394#endif
1e3c88bd
PZ
7395};
7396
56cf515b
JK
7397/*
7398 * sd_lb_stats - Structure to store the statistics of a sched_domain
7399 * during load balancing.
7400 */
7401struct sd_lb_stats {
7402 struct sched_group *busiest; /* Busiest group in this sd */
7403 struct sched_group *local; /* Local group in this sd */
90001d67 7404 unsigned long total_running;
56cf515b 7405 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7406 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7407 unsigned long avg_load; /* Average load across all groups in sd */
7408
56cf515b 7409 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7410 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7411};
7412
147c5fc2
PZ
7413static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7414{
7415 /*
7416 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7417 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7418 * We must however clear busiest_stat::avg_load because
7419 * update_sd_pick_busiest() reads this before assignment.
7420 */
7421 *sds = (struct sd_lb_stats){
7422 .busiest = NULL,
7423 .local = NULL,
90001d67 7424 .total_running = 0UL,
147c5fc2 7425 .total_load = 0UL,
63b2ca30 7426 .total_capacity = 0UL,
147c5fc2
PZ
7427 .busiest_stat = {
7428 .avg_load = 0UL,
caeb178c
RR
7429 .sum_nr_running = 0,
7430 .group_type = group_other,
147c5fc2
PZ
7431 },
7432 };
7433}
7434
1e3c88bd
PZ
7435/**
7436 * get_sd_load_idx - Obtain the load index for a given sched domain.
7437 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7438 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7439 *
7440 * Return: The load index.
1e3c88bd
PZ
7441 */
7442static inline int get_sd_load_idx(struct sched_domain *sd,
7443 enum cpu_idle_type idle)
7444{
7445 int load_idx;
7446
7447 switch (idle) {
7448 case CPU_NOT_IDLE:
7449 load_idx = sd->busy_idx;
7450 break;
7451
7452 case CPU_NEWLY_IDLE:
7453 load_idx = sd->newidle_idx;
7454 break;
7455 default:
7456 load_idx = sd->idle_idx;
7457 break;
7458 }
7459
7460 return load_idx;
7461}
7462
ced549fa 7463static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7464{
7465 struct rq *rq = cpu_rq(cpu);
b5b4860d 7466 u64 total, used, age_stamp, avg;
cadefd3d 7467 s64 delta;
1e3c88bd 7468
b654f7de
PZ
7469 /*
7470 * Since we're reading these variables without serialization make sure
7471 * we read them once before doing sanity checks on them.
7472 */
316c1608
JL
7473 age_stamp = READ_ONCE(rq->age_stamp);
7474 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7475 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7476
cadefd3d
PZ
7477 if (unlikely(delta < 0))
7478 delta = 0;
7479
7480 total = sched_avg_period() + delta;
aa483808 7481
b5b4860d 7482 used = div_u64(avg, total);
1e3c88bd 7483
b5b4860d
VG
7484 if (likely(used < SCHED_CAPACITY_SCALE))
7485 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7486
b5b4860d 7487 return 1;
1e3c88bd
PZ
7488}
7489
ced549fa 7490static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7491{
8cd5601c 7492 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7493 struct sched_group *sdg = sd->groups;
7494
ca6d75e6 7495 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7496
ced549fa 7497 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7498 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7499
ced549fa
NP
7500 if (!capacity)
7501 capacity = 1;
1e3c88bd 7502
ced549fa
NP
7503 cpu_rq(cpu)->cpu_capacity = capacity;
7504 sdg->sgc->capacity = capacity;
bf475ce0 7505 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7506}
7507
63b2ca30 7508void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7509{
7510 struct sched_domain *child = sd->child;
7511 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7512 unsigned long capacity, min_capacity;
4ec4412e
VG
7513 unsigned long interval;
7514
7515 interval = msecs_to_jiffies(sd->balance_interval);
7516 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7517 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7518
7519 if (!child) {
ced549fa 7520 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7521 return;
7522 }
7523
dc7ff76e 7524 capacity = 0;
bf475ce0 7525 min_capacity = ULONG_MAX;
1e3c88bd 7526
74a5ce20
PZ
7527 if (child->flags & SD_OVERLAP) {
7528 /*
7529 * SD_OVERLAP domains cannot assume that child groups
7530 * span the current group.
7531 */
7532
ae4df9d6 7533 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7534 struct sched_group_capacity *sgc;
9abf24d4 7535 struct rq *rq = cpu_rq(cpu);
863bffc8 7536
9abf24d4 7537 /*
63b2ca30 7538 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7539 * gets here before we've attached the domains to the
7540 * runqueues.
7541 *
ced549fa
NP
7542 * Use capacity_of(), which is set irrespective of domains
7543 * in update_cpu_capacity().
9abf24d4 7544 *
dc7ff76e 7545 * This avoids capacity from being 0 and
9abf24d4 7546 * causing divide-by-zero issues on boot.
9abf24d4
SD
7547 */
7548 if (unlikely(!rq->sd)) {
ced549fa 7549 capacity += capacity_of(cpu);
bf475ce0
MR
7550 } else {
7551 sgc = rq->sd->groups->sgc;
7552 capacity += sgc->capacity;
9abf24d4 7553 }
863bffc8 7554
bf475ce0 7555 min_capacity = min(capacity, min_capacity);
863bffc8 7556 }
74a5ce20
PZ
7557 } else {
7558 /*
7559 * !SD_OVERLAP domains can assume that child groups
7560 * span the current group.
97a7142f 7561 */
74a5ce20
PZ
7562
7563 group = child->groups;
7564 do {
bf475ce0
MR
7565 struct sched_group_capacity *sgc = group->sgc;
7566
7567 capacity += sgc->capacity;
7568 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7569 group = group->next;
7570 } while (group != child->groups);
7571 }
1e3c88bd 7572
63b2ca30 7573 sdg->sgc->capacity = capacity;
bf475ce0 7574 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7575}
7576
9d5efe05 7577/*
ea67821b
VG
7578 * Check whether the capacity of the rq has been noticeably reduced by side
7579 * activity. The imbalance_pct is used for the threshold.
7580 * Return true is the capacity is reduced
9d5efe05
SV
7581 */
7582static inline int
ea67821b 7583check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7584{
ea67821b
VG
7585 return ((rq->cpu_capacity * sd->imbalance_pct) <
7586 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7587}
7588
30ce5dab
PZ
7589/*
7590 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7591 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7592 *
7593 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7594 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7595 * Something like:
7596 *
2b4d5b25
IM
7597 * { 0 1 2 3 } { 4 5 6 7 }
7598 * * * * *
30ce5dab
PZ
7599 *
7600 * If we were to balance group-wise we'd place two tasks in the first group and
7601 * two tasks in the second group. Clearly this is undesired as it will overload
7602 * cpu 3 and leave one of the cpus in the second group unused.
7603 *
7604 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7605 * by noticing the lower domain failed to reach balance and had difficulty
7606 * moving tasks due to affinity constraints.
30ce5dab
PZ
7607 *
7608 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7609 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7610 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7611 * to create an effective group imbalance.
7612 *
7613 * This is a somewhat tricky proposition since the next run might not find the
7614 * group imbalance and decide the groups need to be balanced again. A most
7615 * subtle and fragile situation.
7616 */
7617
6263322c 7618static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7619{
63b2ca30 7620 return group->sgc->imbalance;
30ce5dab
PZ
7621}
7622
b37d9316 7623/*
ea67821b
VG
7624 * group_has_capacity returns true if the group has spare capacity that could
7625 * be used by some tasks.
7626 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7627 * smaller than the number of CPUs or if the utilization is lower than the
7628 * available capacity for CFS tasks.
ea67821b
VG
7629 * For the latter, we use a threshold to stabilize the state, to take into
7630 * account the variance of the tasks' load and to return true if the available
7631 * capacity in meaningful for the load balancer.
7632 * As an example, an available capacity of 1% can appear but it doesn't make
7633 * any benefit for the load balance.
b37d9316 7634 */
ea67821b
VG
7635static inline bool
7636group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7637{
ea67821b
VG
7638 if (sgs->sum_nr_running < sgs->group_weight)
7639 return true;
c61037e9 7640
ea67821b 7641 if ((sgs->group_capacity * 100) >
9e91d61d 7642 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7643 return true;
b37d9316 7644
ea67821b
VG
7645 return false;
7646}
7647
7648/*
7649 * group_is_overloaded returns true if the group has more tasks than it can
7650 * handle.
7651 * group_is_overloaded is not equals to !group_has_capacity because a group
7652 * with the exact right number of tasks, has no more spare capacity but is not
7653 * overloaded so both group_has_capacity and group_is_overloaded return
7654 * false.
7655 */
7656static inline bool
7657group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7658{
7659 if (sgs->sum_nr_running <= sgs->group_weight)
7660 return false;
b37d9316 7661
ea67821b 7662 if ((sgs->group_capacity * 100) <
9e91d61d 7663 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7664 return true;
b37d9316 7665
ea67821b 7666 return false;
b37d9316
PZ
7667}
7668
9e0994c0
MR
7669/*
7670 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7671 * per-CPU capacity than sched_group ref.
7672 */
7673static inline bool
7674group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7675{
7676 return sg->sgc->min_capacity * capacity_margin <
7677 ref->sgc->min_capacity * 1024;
7678}
7679
79a89f92
LY
7680static inline enum
7681group_type group_classify(struct sched_group *group,
7682 struct sg_lb_stats *sgs)
caeb178c 7683{
ea67821b 7684 if (sgs->group_no_capacity)
caeb178c
RR
7685 return group_overloaded;
7686
7687 if (sg_imbalanced(group))
7688 return group_imbalanced;
7689
7690 return group_other;
7691}
7692
1e3c88bd
PZ
7693/**
7694 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7695 * @env: The load balancing environment.
1e3c88bd 7696 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7697 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7698 * @local_group: Does group contain this_cpu.
1e3c88bd 7699 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7700 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7701 */
bd939f45
PZ
7702static inline void update_sg_lb_stats(struct lb_env *env,
7703 struct sched_group *group, int load_idx,
4486edd1
TC
7704 int local_group, struct sg_lb_stats *sgs,
7705 bool *overload)
1e3c88bd 7706{
30ce5dab 7707 unsigned long load;
a426f99c 7708 int i, nr_running;
1e3c88bd 7709
b72ff13c
PZ
7710 memset(sgs, 0, sizeof(*sgs));
7711
ae4df9d6 7712 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7713 struct rq *rq = cpu_rq(i);
7714
1e3c88bd 7715 /* Bias balancing toward cpus of our domain */
6263322c 7716 if (local_group)
04f733b4 7717 load = target_load(i, load_idx);
6263322c 7718 else
1e3c88bd 7719 load = source_load(i, load_idx);
1e3c88bd
PZ
7720
7721 sgs->group_load += load;
9e91d61d 7722 sgs->group_util += cpu_util(i);
65fdac08 7723 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7724
a426f99c
WL
7725 nr_running = rq->nr_running;
7726 if (nr_running > 1)
4486edd1
TC
7727 *overload = true;
7728
0ec8aa00
PZ
7729#ifdef CONFIG_NUMA_BALANCING
7730 sgs->nr_numa_running += rq->nr_numa_running;
7731 sgs->nr_preferred_running += rq->nr_preferred_running;
7732#endif
c7132dd6 7733 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7734 /*
7735 * No need to call idle_cpu() if nr_running is not 0
7736 */
7737 if (!nr_running && idle_cpu(i))
aae6d3dd 7738 sgs->idle_cpus++;
1e3c88bd
PZ
7739 }
7740
63b2ca30
NP
7741 /* Adjust by relative CPU capacity of the group */
7742 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7743 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7744
dd5feea1 7745 if (sgs->sum_nr_running)
38d0f770 7746 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7747
aae6d3dd 7748 sgs->group_weight = group->group_weight;
b37d9316 7749
ea67821b 7750 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7751 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7752}
7753
532cb4c4
MN
7754/**
7755 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7756 * @env: The load balancing environment.
532cb4c4
MN
7757 * @sds: sched_domain statistics
7758 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7759 * @sgs: sched_group statistics
532cb4c4
MN
7760 *
7761 * Determine if @sg is a busier group than the previously selected
7762 * busiest group.
e69f6186
YB
7763 *
7764 * Return: %true if @sg is a busier group than the previously selected
7765 * busiest group. %false otherwise.
532cb4c4 7766 */
bd939f45 7767static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7768 struct sd_lb_stats *sds,
7769 struct sched_group *sg,
bd939f45 7770 struct sg_lb_stats *sgs)
532cb4c4 7771{
caeb178c 7772 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7773
caeb178c 7774 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7775 return true;
7776
caeb178c
RR
7777 if (sgs->group_type < busiest->group_type)
7778 return false;
7779
7780 if (sgs->avg_load <= busiest->avg_load)
7781 return false;
7782
9e0994c0
MR
7783 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7784 goto asym_packing;
7785
7786 /*
7787 * Candidate sg has no more than one task per CPU and
7788 * has higher per-CPU capacity. Migrating tasks to less
7789 * capable CPUs may harm throughput. Maximize throughput,
7790 * power/energy consequences are not considered.
7791 */
7792 if (sgs->sum_nr_running <= sgs->group_weight &&
7793 group_smaller_cpu_capacity(sds->local, sg))
7794 return false;
7795
7796asym_packing:
caeb178c
RR
7797 /* This is the busiest node in its class. */
7798 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7799 return true;
7800
1f621e02
SD
7801 /* No ASYM_PACKING if target cpu is already busy */
7802 if (env->idle == CPU_NOT_IDLE)
7803 return true;
532cb4c4 7804 /*
afe06efd
TC
7805 * ASYM_PACKING needs to move all the work to the highest
7806 * prority CPUs in the group, therefore mark all groups
7807 * of lower priority than ourself as busy.
532cb4c4 7808 */
afe06efd
TC
7809 if (sgs->sum_nr_running &&
7810 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7811 if (!sds->busiest)
7812 return true;
7813
afe06efd
TC
7814 /* Prefer to move from lowest priority cpu's work */
7815 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7816 sg->asym_prefer_cpu))
532cb4c4
MN
7817 return true;
7818 }
7819
7820 return false;
7821}
7822
0ec8aa00
PZ
7823#ifdef CONFIG_NUMA_BALANCING
7824static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7825{
7826 if (sgs->sum_nr_running > sgs->nr_numa_running)
7827 return regular;
7828 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7829 return remote;
7830 return all;
7831}
7832
7833static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7834{
7835 if (rq->nr_running > rq->nr_numa_running)
7836 return regular;
7837 if (rq->nr_running > rq->nr_preferred_running)
7838 return remote;
7839 return all;
7840}
7841#else
7842static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7843{
7844 return all;
7845}
7846
7847static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7848{
7849 return regular;
7850}
7851#endif /* CONFIG_NUMA_BALANCING */
7852
1e3c88bd 7853/**
461819ac 7854 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7855 * @env: The load balancing environment.
1e3c88bd
PZ
7856 * @sds: variable to hold the statistics for this sched_domain.
7857 */
0ec8aa00 7858static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7859{
bd939f45
PZ
7860 struct sched_domain *child = env->sd->child;
7861 struct sched_group *sg = env->sd->groups;
05b40e05 7862 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7863 struct sg_lb_stats tmp_sgs;
1e3c88bd 7864 int load_idx, prefer_sibling = 0;
4486edd1 7865 bool overload = false;
1e3c88bd
PZ
7866
7867 if (child && child->flags & SD_PREFER_SIBLING)
7868 prefer_sibling = 1;
7869
bd939f45 7870 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7871
7872 do {
56cf515b 7873 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7874 int local_group;
7875
ae4df9d6 7876 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7877 if (local_group) {
7878 sds->local = sg;
05b40e05 7879 sgs = local;
b72ff13c
PZ
7880
7881 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7882 time_after_eq(jiffies, sg->sgc->next_update))
7883 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7884 }
1e3c88bd 7885
4486edd1
TC
7886 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7887 &overload);
1e3c88bd 7888
b72ff13c
PZ
7889 if (local_group)
7890 goto next_group;
7891
1e3c88bd
PZ
7892 /*
7893 * In case the child domain prefers tasks go to siblings
ea67821b 7894 * first, lower the sg capacity so that we'll try
75dd321d
NR
7895 * and move all the excess tasks away. We lower the capacity
7896 * of a group only if the local group has the capacity to fit
ea67821b
VG
7897 * these excess tasks. The extra check prevents the case where
7898 * you always pull from the heaviest group when it is already
7899 * under-utilized (possible with a large weight task outweighs
7900 * the tasks on the system).
1e3c88bd 7901 */
b72ff13c 7902 if (prefer_sibling && sds->local &&
05b40e05
SD
7903 group_has_capacity(env, local) &&
7904 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7905 sgs->group_no_capacity = 1;
79a89f92 7906 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7907 }
1e3c88bd 7908
b72ff13c 7909 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7910 sds->busiest = sg;
56cf515b 7911 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7912 }
7913
b72ff13c
PZ
7914next_group:
7915 /* Now, start updating sd_lb_stats */
90001d67 7916 sds->total_running += sgs->sum_nr_running;
b72ff13c 7917 sds->total_load += sgs->group_load;
63b2ca30 7918 sds->total_capacity += sgs->group_capacity;
b72ff13c 7919
532cb4c4 7920 sg = sg->next;
bd939f45 7921 } while (sg != env->sd->groups);
0ec8aa00
PZ
7922
7923 if (env->sd->flags & SD_NUMA)
7924 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7925
7926 if (!env->sd->parent) {
7927 /* update overload indicator if we are at root domain */
7928 if (env->dst_rq->rd->overload != overload)
7929 env->dst_rq->rd->overload = overload;
7930 }
532cb4c4
MN
7931}
7932
532cb4c4
MN
7933/**
7934 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7935 * sched domain.
532cb4c4
MN
7936 *
7937 * This is primarily intended to used at the sibling level. Some
7938 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7939 * case of POWER7, it can move to lower SMT modes only when higher
7940 * threads are idle. When in lower SMT modes, the threads will
7941 * perform better since they share less core resources. Hence when we
7942 * have idle threads, we want them to be the higher ones.
7943 *
7944 * This packing function is run on idle threads. It checks to see if
7945 * the busiest CPU in this domain (core in the P7 case) has a higher
7946 * CPU number than the packing function is being run on. Here we are
7947 * assuming lower CPU number will be equivalent to lower a SMT thread
7948 * number.
7949 *
e69f6186 7950 * Return: 1 when packing is required and a task should be moved to
46123355 7951 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 7952 *
cd96891d 7953 * @env: The load balancing environment.
532cb4c4 7954 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7955 */
bd939f45 7956static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7957{
7958 int busiest_cpu;
7959
bd939f45 7960 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7961 return 0;
7962
1f621e02
SD
7963 if (env->idle == CPU_NOT_IDLE)
7964 return 0;
7965
532cb4c4
MN
7966 if (!sds->busiest)
7967 return 0;
7968
afe06efd
TC
7969 busiest_cpu = sds->busiest->asym_prefer_cpu;
7970 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7971 return 0;
7972
bd939f45 7973 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7974 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7975 SCHED_CAPACITY_SCALE);
bd939f45 7976
532cb4c4 7977 return 1;
1e3c88bd
PZ
7978}
7979
7980/**
7981 * fix_small_imbalance - Calculate the minor imbalance that exists
7982 * amongst the groups of a sched_domain, during
7983 * load balancing.
cd96891d 7984 * @env: The load balancing environment.
1e3c88bd 7985 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7986 */
bd939f45
PZ
7987static inline
7988void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7989{
63b2ca30 7990 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7991 unsigned int imbn = 2;
dd5feea1 7992 unsigned long scaled_busy_load_per_task;
56cf515b 7993 struct sg_lb_stats *local, *busiest;
1e3c88bd 7994
56cf515b
JK
7995 local = &sds->local_stat;
7996 busiest = &sds->busiest_stat;
1e3c88bd 7997
56cf515b
JK
7998 if (!local->sum_nr_running)
7999 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8000 else if (busiest->load_per_task > local->load_per_task)
8001 imbn = 1;
dd5feea1 8002
56cf515b 8003 scaled_busy_load_per_task =
ca8ce3d0 8004 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8005 busiest->group_capacity;
56cf515b 8006
3029ede3
VD
8007 if (busiest->avg_load + scaled_busy_load_per_task >=
8008 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8009 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8010 return;
8011 }
8012
8013 /*
8014 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8015 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8016 * moving them.
8017 */
8018
63b2ca30 8019 capa_now += busiest->group_capacity *
56cf515b 8020 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8021 capa_now += local->group_capacity *
56cf515b 8022 min(local->load_per_task, local->avg_load);
ca8ce3d0 8023 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8024
8025 /* Amount of load we'd subtract */
a2cd4260 8026 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8027 capa_move += busiest->group_capacity *
56cf515b 8028 min(busiest->load_per_task,
a2cd4260 8029 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8030 }
1e3c88bd
PZ
8031
8032 /* Amount of load we'd add */
63b2ca30 8033 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8034 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8035 tmp = (busiest->avg_load * busiest->group_capacity) /
8036 local->group_capacity;
56cf515b 8037 } else {
ca8ce3d0 8038 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8039 local->group_capacity;
56cf515b 8040 }
63b2ca30 8041 capa_move += local->group_capacity *
3ae11c90 8042 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8043 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8044
8045 /* Move if we gain throughput */
63b2ca30 8046 if (capa_move > capa_now)
56cf515b 8047 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8048}
8049
8050/**
8051 * calculate_imbalance - Calculate the amount of imbalance present within the
8052 * groups of a given sched_domain during load balance.
bd939f45 8053 * @env: load balance environment
1e3c88bd 8054 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8055 */
bd939f45 8056static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8057{
dd5feea1 8058 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8059 struct sg_lb_stats *local, *busiest;
8060
8061 local = &sds->local_stat;
56cf515b 8062 busiest = &sds->busiest_stat;
dd5feea1 8063
caeb178c 8064 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8065 /*
8066 * In the group_imb case we cannot rely on group-wide averages
8067 * to ensure cpu-load equilibrium, look at wider averages. XXX
8068 */
56cf515b
JK
8069 busiest->load_per_task =
8070 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8071 }
8072
1e3c88bd 8073 /*
885e542c
DE
8074 * Avg load of busiest sg can be less and avg load of local sg can
8075 * be greater than avg load across all sgs of sd because avg load
8076 * factors in sg capacity and sgs with smaller group_type are
8077 * skipped when updating the busiest sg:
1e3c88bd 8078 */
b1885550
VD
8079 if (busiest->avg_load <= sds->avg_load ||
8080 local->avg_load >= sds->avg_load) {
bd939f45
PZ
8081 env->imbalance = 0;
8082 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8083 }
8084
9a5d9ba6
PZ
8085 /*
8086 * If there aren't any idle cpus, avoid creating some.
8087 */
8088 if (busiest->group_type == group_overloaded &&
8089 local->group_type == group_overloaded) {
1be0eb2a 8090 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8091 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8092 load_above_capacity -= busiest->group_capacity;
26656215 8093 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8094 load_above_capacity /= busiest->group_capacity;
8095 } else
ea67821b 8096 load_above_capacity = ~0UL;
dd5feea1
SS
8097 }
8098
8099 /*
8100 * We're trying to get all the cpus to the average_load, so we don't
8101 * want to push ourselves above the average load, nor do we wish to
8102 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
8103 * we also don't want to reduce the group load below the group
8104 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8105 */
30ce5dab 8106 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8107
8108 /* How much load to actually move to equalise the imbalance */
56cf515b 8109 env->imbalance = min(
63b2ca30
NP
8110 max_pull * busiest->group_capacity,
8111 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8112 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8113
8114 /*
8115 * if *imbalance is less than the average load per runnable task
25985edc 8116 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8117 * a think about bumping its value to force at least one task to be
8118 * moved
8119 */
56cf515b 8120 if (env->imbalance < busiest->load_per_task)
bd939f45 8121 return fix_small_imbalance(env, sds);
1e3c88bd 8122}
fab47622 8123
1e3c88bd
PZ
8124/******* find_busiest_group() helpers end here *********************/
8125
8126/**
8127 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8128 * if there is an imbalance.
1e3c88bd
PZ
8129 *
8130 * Also calculates the amount of weighted load which should be moved
8131 * to restore balance.
8132 *
cd96891d 8133 * @env: The load balancing environment.
1e3c88bd 8134 *
e69f6186 8135 * Return: - The busiest group if imbalance exists.
1e3c88bd 8136 */
56cf515b 8137static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8138{
56cf515b 8139 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8140 struct sd_lb_stats sds;
8141
147c5fc2 8142 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8143
8144 /*
8145 * Compute the various statistics relavent for load balancing at
8146 * this level.
8147 */
23f0d209 8148 update_sd_lb_stats(env, &sds);
56cf515b
JK
8149 local = &sds.local_stat;
8150 busiest = &sds.busiest_stat;
1e3c88bd 8151
ea67821b 8152 /* ASYM feature bypasses nice load balance check */
1f621e02 8153 if (check_asym_packing(env, &sds))
532cb4c4
MN
8154 return sds.busiest;
8155
cc57aa8f 8156 /* There is no busy sibling group to pull tasks from */
56cf515b 8157 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8158 goto out_balanced;
8159
90001d67 8160 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8161 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8162 / sds.total_capacity;
b0432d8f 8163
866ab43e
PZ
8164 /*
8165 * If the busiest group is imbalanced the below checks don't
30ce5dab 8166 * work because they assume all things are equal, which typically
866ab43e
PZ
8167 * isn't true due to cpus_allowed constraints and the like.
8168 */
caeb178c 8169 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8170 goto force_balance;
8171
cc57aa8f 8172 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
8173 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
8174 busiest->group_no_capacity)
fab47622
NR
8175 goto force_balance;
8176
cc57aa8f 8177 /*
9c58c79a 8178 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8179 * don't try and pull any tasks.
8180 */
56cf515b 8181 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8182 goto out_balanced;
8183
cc57aa8f
PZ
8184 /*
8185 * Don't pull any tasks if this group is already above the domain
8186 * average load.
8187 */
56cf515b 8188 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8189 goto out_balanced;
8190
bd939f45 8191 if (env->idle == CPU_IDLE) {
aae6d3dd 8192 /*
43f4d666
VG
8193 * This cpu is idle. If the busiest group is not overloaded
8194 * and there is no imbalance between this and busiest group
8195 * wrt idle cpus, it is balanced. The imbalance becomes
8196 * significant if the diff is greater than 1 otherwise we
8197 * might end up to just move the imbalance on another group
aae6d3dd 8198 */
43f4d666
VG
8199 if ((busiest->group_type != group_overloaded) &&
8200 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8201 goto out_balanced;
c186fafe
PZ
8202 } else {
8203 /*
8204 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8205 * imbalance_pct to be conservative.
8206 */
56cf515b
JK
8207 if (100 * busiest->avg_load <=
8208 env->sd->imbalance_pct * local->avg_load)
c186fafe 8209 goto out_balanced;
aae6d3dd 8210 }
1e3c88bd 8211
fab47622 8212force_balance:
1e3c88bd 8213 /* Looks like there is an imbalance. Compute it */
bd939f45 8214 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8215 return sds.busiest;
8216
8217out_balanced:
bd939f45 8218 env->imbalance = 0;
1e3c88bd
PZ
8219 return NULL;
8220}
8221
8222/*
8223 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8224 */
bd939f45 8225static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8226 struct sched_group *group)
1e3c88bd
PZ
8227{
8228 struct rq *busiest = NULL, *rq;
ced549fa 8229 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8230 int i;
8231
ae4df9d6 8232 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8233 unsigned long capacity, wl;
0ec8aa00
PZ
8234 enum fbq_type rt;
8235
8236 rq = cpu_rq(i);
8237 rt = fbq_classify_rq(rq);
1e3c88bd 8238
0ec8aa00
PZ
8239 /*
8240 * We classify groups/runqueues into three groups:
8241 * - regular: there are !numa tasks
8242 * - remote: there are numa tasks that run on the 'wrong' node
8243 * - all: there is no distinction
8244 *
8245 * In order to avoid migrating ideally placed numa tasks,
8246 * ignore those when there's better options.
8247 *
8248 * If we ignore the actual busiest queue to migrate another
8249 * task, the next balance pass can still reduce the busiest
8250 * queue by moving tasks around inside the node.
8251 *
8252 * If we cannot move enough load due to this classification
8253 * the next pass will adjust the group classification and
8254 * allow migration of more tasks.
8255 *
8256 * Both cases only affect the total convergence complexity.
8257 */
8258 if (rt > env->fbq_type)
8259 continue;
8260
ced549fa 8261 capacity = capacity_of(i);
9d5efe05 8262
c7132dd6 8263 wl = weighted_cpuload(rq);
1e3c88bd 8264
6e40f5bb
TG
8265 /*
8266 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8267 * which is not scaled with the cpu capacity.
6e40f5bb 8268 */
ea67821b
VG
8269
8270 if (rq->nr_running == 1 && wl > env->imbalance &&
8271 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8272 continue;
8273
6e40f5bb
TG
8274 /*
8275 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8276 * the weighted_cpuload() scaled with the cpu capacity, so
8277 * that the load can be moved away from the cpu that is
8278 * potentially running at a lower capacity.
95a79b80 8279 *
ced549fa 8280 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8281 * multiplication to rid ourselves of the division works out
ced549fa
NP
8282 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8283 * our previous maximum.
6e40f5bb 8284 */
ced549fa 8285 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8286 busiest_load = wl;
ced549fa 8287 busiest_capacity = capacity;
1e3c88bd
PZ
8288 busiest = rq;
8289 }
8290 }
8291
8292 return busiest;
8293}
8294
8295/*
8296 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8297 * so long as it is large enough.
8298 */
8299#define MAX_PINNED_INTERVAL 512
8300
bd939f45 8301static int need_active_balance(struct lb_env *env)
1af3ed3d 8302{
bd939f45
PZ
8303 struct sched_domain *sd = env->sd;
8304
8305 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8306
8307 /*
8308 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8309 * lower priority CPUs in order to pack all tasks in the
8310 * highest priority CPUs.
532cb4c4 8311 */
afe06efd
TC
8312 if ((sd->flags & SD_ASYM_PACKING) &&
8313 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8314 return 1;
1af3ed3d
PZ
8315 }
8316
1aaf90a4
VG
8317 /*
8318 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8319 * It's worth migrating the task if the src_cpu's capacity is reduced
8320 * because of other sched_class or IRQs if more capacity stays
8321 * available on dst_cpu.
8322 */
8323 if ((env->idle != CPU_NOT_IDLE) &&
8324 (env->src_rq->cfs.h_nr_running == 1)) {
8325 if ((check_cpu_capacity(env->src_rq, sd)) &&
8326 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8327 return 1;
8328 }
8329
1af3ed3d
PZ
8330 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8331}
8332
969c7921
TH
8333static int active_load_balance_cpu_stop(void *data);
8334
23f0d209
JK
8335static int should_we_balance(struct lb_env *env)
8336{
8337 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8338 int cpu, balance_cpu = -1;
8339
024c9d2f
PZ
8340 /*
8341 * Ensure the balancing environment is consistent; can happen
8342 * when the softirq triggers 'during' hotplug.
8343 */
8344 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8345 return 0;
8346
23f0d209
JK
8347 /*
8348 * In the newly idle case, we will allow all the cpu's
8349 * to do the newly idle load balance.
8350 */
8351 if (env->idle == CPU_NEWLY_IDLE)
8352 return 1;
8353
23f0d209 8354 /* Try to find first idle cpu */
e5c14b1f 8355 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8356 if (!idle_cpu(cpu))
23f0d209
JK
8357 continue;
8358
8359 balance_cpu = cpu;
8360 break;
8361 }
8362
8363 if (balance_cpu == -1)
8364 balance_cpu = group_balance_cpu(sg);
8365
8366 /*
8367 * First idle cpu or the first cpu(busiest) in this sched group
8368 * is eligible for doing load balancing at this and above domains.
8369 */
b0cff9d8 8370 return balance_cpu == env->dst_cpu;
23f0d209
JK
8371}
8372
1e3c88bd
PZ
8373/*
8374 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8375 * tasks if there is an imbalance.
8376 */
8377static int load_balance(int this_cpu, struct rq *this_rq,
8378 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8379 int *continue_balancing)
1e3c88bd 8380{
88b8dac0 8381 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8382 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8383 struct sched_group *group;
1e3c88bd 8384 struct rq *busiest;
8a8c69c3 8385 struct rq_flags rf;
4ba29684 8386 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8387
8e45cb54
PZ
8388 struct lb_env env = {
8389 .sd = sd,
ddcdf6e7
PZ
8390 .dst_cpu = this_cpu,
8391 .dst_rq = this_rq,
ae4df9d6 8392 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8393 .idle = idle,
eb95308e 8394 .loop_break = sched_nr_migrate_break,
b9403130 8395 .cpus = cpus,
0ec8aa00 8396 .fbq_type = all,
163122b7 8397 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8398 };
8399
65a4433a 8400 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8401
ae92882e 8402 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8403
8404redo:
23f0d209
JK
8405 if (!should_we_balance(&env)) {
8406 *continue_balancing = 0;
1e3c88bd 8407 goto out_balanced;
23f0d209 8408 }
1e3c88bd 8409
23f0d209 8410 group = find_busiest_group(&env);
1e3c88bd 8411 if (!group) {
ae92882e 8412 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8413 goto out_balanced;
8414 }
8415
b9403130 8416 busiest = find_busiest_queue(&env, group);
1e3c88bd 8417 if (!busiest) {
ae92882e 8418 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8419 goto out_balanced;
8420 }
8421
78feefc5 8422 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8423
ae92882e 8424 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8425
1aaf90a4
VG
8426 env.src_cpu = busiest->cpu;
8427 env.src_rq = busiest;
8428
1e3c88bd
PZ
8429 ld_moved = 0;
8430 if (busiest->nr_running > 1) {
8431 /*
8432 * Attempt to move tasks. If find_busiest_group has found
8433 * an imbalance but busiest->nr_running <= 1, the group is
8434 * still unbalanced. ld_moved simply stays zero, so it is
8435 * correctly treated as an imbalance.
8436 */
8e45cb54 8437 env.flags |= LBF_ALL_PINNED;
c82513e5 8438 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8439
5d6523eb 8440more_balance:
8a8c69c3 8441 rq_lock_irqsave(busiest, &rf);
3bed5e21 8442 update_rq_clock(busiest);
88b8dac0
SV
8443
8444 /*
8445 * cur_ld_moved - load moved in current iteration
8446 * ld_moved - cumulative load moved across iterations
8447 */
163122b7 8448 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8449
8450 /*
163122b7
KT
8451 * We've detached some tasks from busiest_rq. Every
8452 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8453 * unlock busiest->lock, and we are able to be sure
8454 * that nobody can manipulate the tasks in parallel.
8455 * See task_rq_lock() family for the details.
1e3c88bd 8456 */
163122b7 8457
8a8c69c3 8458 rq_unlock(busiest, &rf);
163122b7
KT
8459
8460 if (cur_ld_moved) {
8461 attach_tasks(&env);
8462 ld_moved += cur_ld_moved;
8463 }
8464
8a8c69c3 8465 local_irq_restore(rf.flags);
88b8dac0 8466
f1cd0858
JK
8467 if (env.flags & LBF_NEED_BREAK) {
8468 env.flags &= ~LBF_NEED_BREAK;
8469 goto more_balance;
8470 }
8471
88b8dac0
SV
8472 /*
8473 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8474 * us and move them to an alternate dst_cpu in our sched_group
8475 * where they can run. The upper limit on how many times we
8476 * iterate on same src_cpu is dependent on number of cpus in our
8477 * sched_group.
8478 *
8479 * This changes load balance semantics a bit on who can move
8480 * load to a given_cpu. In addition to the given_cpu itself
8481 * (or a ilb_cpu acting on its behalf where given_cpu is
8482 * nohz-idle), we now have balance_cpu in a position to move
8483 * load to given_cpu. In rare situations, this may cause
8484 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8485 * _independently_ and at _same_ time to move some load to
8486 * given_cpu) causing exceess load to be moved to given_cpu.
8487 * This however should not happen so much in practice and
8488 * moreover subsequent load balance cycles should correct the
8489 * excess load moved.
8490 */
6263322c 8491 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8492
7aff2e3a
VD
8493 /* Prevent to re-select dst_cpu via env's cpus */
8494 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8495
78feefc5 8496 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8497 env.dst_cpu = env.new_dst_cpu;
6263322c 8498 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8499 env.loop = 0;
8500 env.loop_break = sched_nr_migrate_break;
e02e60c1 8501
88b8dac0
SV
8502 /*
8503 * Go back to "more_balance" rather than "redo" since we
8504 * need to continue with same src_cpu.
8505 */
8506 goto more_balance;
8507 }
1e3c88bd 8508
6263322c
PZ
8509 /*
8510 * We failed to reach balance because of affinity.
8511 */
8512 if (sd_parent) {
63b2ca30 8513 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8514
afdeee05 8515 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8516 *group_imbalance = 1;
6263322c
PZ
8517 }
8518
1e3c88bd 8519 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8520 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8521 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8522 /*
8523 * Attempting to continue load balancing at the current
8524 * sched_domain level only makes sense if there are
8525 * active CPUs remaining as possible busiest CPUs to
8526 * pull load from which are not contained within the
8527 * destination group that is receiving any migrated
8528 * load.
8529 */
8530 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8531 env.loop = 0;
8532 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8533 goto redo;
bbf18b19 8534 }
afdeee05 8535 goto out_all_pinned;
1e3c88bd
PZ
8536 }
8537 }
8538
8539 if (!ld_moved) {
ae92882e 8540 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8541 /*
8542 * Increment the failure counter only on periodic balance.
8543 * We do not want newidle balance, which can be very
8544 * frequent, pollute the failure counter causing
8545 * excessive cache_hot migrations and active balances.
8546 */
8547 if (idle != CPU_NEWLY_IDLE)
8548 sd->nr_balance_failed++;
1e3c88bd 8549
bd939f45 8550 if (need_active_balance(&env)) {
8a8c69c3
PZ
8551 unsigned long flags;
8552
1e3c88bd
PZ
8553 raw_spin_lock_irqsave(&busiest->lock, flags);
8554
969c7921
TH
8555 /* don't kick the active_load_balance_cpu_stop,
8556 * if the curr task on busiest cpu can't be
8557 * moved to this_cpu
1e3c88bd 8558 */
0c98d344 8559 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8560 raw_spin_unlock_irqrestore(&busiest->lock,
8561 flags);
8e45cb54 8562 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8563 goto out_one_pinned;
8564 }
8565
969c7921
TH
8566 /*
8567 * ->active_balance synchronizes accesses to
8568 * ->active_balance_work. Once set, it's cleared
8569 * only after active load balance is finished.
8570 */
1e3c88bd
PZ
8571 if (!busiest->active_balance) {
8572 busiest->active_balance = 1;
8573 busiest->push_cpu = this_cpu;
8574 active_balance = 1;
8575 }
8576 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8577
bd939f45 8578 if (active_balance) {
969c7921
TH
8579 stop_one_cpu_nowait(cpu_of(busiest),
8580 active_load_balance_cpu_stop, busiest,
8581 &busiest->active_balance_work);
bd939f45 8582 }
1e3c88bd 8583
d02c0711 8584 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8585 sd->nr_balance_failed = sd->cache_nice_tries+1;
8586 }
8587 } else
8588 sd->nr_balance_failed = 0;
8589
8590 if (likely(!active_balance)) {
8591 /* We were unbalanced, so reset the balancing interval */
8592 sd->balance_interval = sd->min_interval;
8593 } else {
8594 /*
8595 * If we've begun active balancing, start to back off. This
8596 * case may not be covered by the all_pinned logic if there
8597 * is only 1 task on the busy runqueue (because we don't call
163122b7 8598 * detach_tasks).
1e3c88bd
PZ
8599 */
8600 if (sd->balance_interval < sd->max_interval)
8601 sd->balance_interval *= 2;
8602 }
8603
1e3c88bd
PZ
8604 goto out;
8605
8606out_balanced:
afdeee05
VG
8607 /*
8608 * We reach balance although we may have faced some affinity
8609 * constraints. Clear the imbalance flag if it was set.
8610 */
8611 if (sd_parent) {
8612 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8613
8614 if (*group_imbalance)
8615 *group_imbalance = 0;
8616 }
8617
8618out_all_pinned:
8619 /*
8620 * We reach balance because all tasks are pinned at this level so
8621 * we can't migrate them. Let the imbalance flag set so parent level
8622 * can try to migrate them.
8623 */
ae92882e 8624 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8625
8626 sd->nr_balance_failed = 0;
8627
8628out_one_pinned:
8629 /* tune up the balancing interval */
8e45cb54 8630 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8631 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8632 (sd->balance_interval < sd->max_interval))
8633 sd->balance_interval *= 2;
8634
46e49b38 8635 ld_moved = 0;
1e3c88bd 8636out:
1e3c88bd
PZ
8637 return ld_moved;
8638}
8639
52a08ef1
JL
8640static inline unsigned long
8641get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8642{
8643 unsigned long interval = sd->balance_interval;
8644
8645 if (cpu_busy)
8646 interval *= sd->busy_factor;
8647
8648 /* scale ms to jiffies */
8649 interval = msecs_to_jiffies(interval);
8650 interval = clamp(interval, 1UL, max_load_balance_interval);
8651
8652 return interval;
8653}
8654
8655static inline void
31851a98 8656update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8657{
8658 unsigned long interval, next;
8659
31851a98
LY
8660 /* used by idle balance, so cpu_busy = 0 */
8661 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8662 next = sd->last_balance + interval;
8663
8664 if (time_after(*next_balance, next))
8665 *next_balance = next;
8666}
8667
1e3c88bd
PZ
8668/*
8669 * idle_balance is called by schedule() if this_cpu is about to become
8670 * idle. Attempts to pull tasks from other CPUs.
8671 */
46f69fa3 8672static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8673{
52a08ef1
JL
8674 unsigned long next_balance = jiffies + HZ;
8675 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8676 struct sched_domain *sd;
8677 int pulled_task = 0;
9bd721c5 8678 u64 curr_cost = 0;
1e3c88bd 8679
6e83125c
PZ
8680 /*
8681 * We must set idle_stamp _before_ calling idle_balance(), such that we
8682 * measure the duration of idle_balance() as idle time.
8683 */
8684 this_rq->idle_stamp = rq_clock(this_rq);
8685
2800486e
PZ
8686 /*
8687 * Do not pull tasks towards !active CPUs...
8688 */
8689 if (!cpu_active(this_cpu))
8690 return 0;
8691
46f69fa3
MF
8692 /*
8693 * This is OK, because current is on_cpu, which avoids it being picked
8694 * for load-balance and preemption/IRQs are still disabled avoiding
8695 * further scheduler activity on it and we're being very careful to
8696 * re-start the picking loop.
8697 */
8698 rq_unpin_lock(this_rq, rf);
8699
4486edd1
TC
8700 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8701 !this_rq->rd->overload) {
52a08ef1
JL
8702 rcu_read_lock();
8703 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8704 if (sd)
31851a98 8705 update_next_balance(sd, &next_balance);
52a08ef1
JL
8706 rcu_read_unlock();
8707
6e83125c 8708 goto out;
52a08ef1 8709 }
1e3c88bd 8710
f492e12e
PZ
8711 raw_spin_unlock(&this_rq->lock);
8712
48a16753 8713 update_blocked_averages(this_cpu);
dce840a0 8714 rcu_read_lock();
1e3c88bd 8715 for_each_domain(this_cpu, sd) {
23f0d209 8716 int continue_balancing = 1;
9bd721c5 8717 u64 t0, domain_cost;
1e3c88bd
PZ
8718
8719 if (!(sd->flags & SD_LOAD_BALANCE))
8720 continue;
8721
52a08ef1 8722 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8723 update_next_balance(sd, &next_balance);
9bd721c5 8724 break;
52a08ef1 8725 }
9bd721c5 8726
f492e12e 8727 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8728 t0 = sched_clock_cpu(this_cpu);
8729
f492e12e 8730 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8731 sd, CPU_NEWLY_IDLE,
8732 &continue_balancing);
9bd721c5
JL
8733
8734 domain_cost = sched_clock_cpu(this_cpu) - t0;
8735 if (domain_cost > sd->max_newidle_lb_cost)
8736 sd->max_newidle_lb_cost = domain_cost;
8737
8738 curr_cost += domain_cost;
f492e12e 8739 }
1e3c88bd 8740
31851a98 8741 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8742
8743 /*
8744 * Stop searching for tasks to pull if there are
8745 * now runnable tasks on this rq.
8746 */
8747 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8748 break;
1e3c88bd 8749 }
dce840a0 8750 rcu_read_unlock();
f492e12e
PZ
8751
8752 raw_spin_lock(&this_rq->lock);
8753
0e5b5337
JL
8754 if (curr_cost > this_rq->max_idle_balance_cost)
8755 this_rq->max_idle_balance_cost = curr_cost;
8756
e5fc6611 8757 /*
0e5b5337
JL
8758 * While browsing the domains, we released the rq lock, a task could
8759 * have been enqueued in the meantime. Since we're not going idle,
8760 * pretend we pulled a task.
e5fc6611 8761 */
0e5b5337 8762 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8763 pulled_task = 1;
e5fc6611 8764
52a08ef1
JL
8765out:
8766 /* Move the next balance forward */
8767 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8768 this_rq->next_balance = next_balance;
9bd721c5 8769
e4aa358b 8770 /* Is there a task of a high priority class? */
46383648 8771 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8772 pulled_task = -1;
8773
38c6ade2 8774 if (pulled_task)
6e83125c
PZ
8775 this_rq->idle_stamp = 0;
8776
46f69fa3
MF
8777 rq_repin_lock(this_rq, rf);
8778
3c4017c1 8779 return pulled_task;
1e3c88bd
PZ
8780}
8781
8782/*
969c7921
TH
8783 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8784 * running tasks off the busiest CPU onto idle CPUs. It requires at
8785 * least 1 task to be running on each physical CPU where possible, and
8786 * avoids physical / logical imbalances.
1e3c88bd 8787 */
969c7921 8788static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8789{
969c7921
TH
8790 struct rq *busiest_rq = data;
8791 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8792 int target_cpu = busiest_rq->push_cpu;
969c7921 8793 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8794 struct sched_domain *sd;
e5673f28 8795 struct task_struct *p = NULL;
8a8c69c3 8796 struct rq_flags rf;
969c7921 8797
8a8c69c3 8798 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8799 /*
8800 * Between queueing the stop-work and running it is a hole in which
8801 * CPUs can become inactive. We should not move tasks from or to
8802 * inactive CPUs.
8803 */
8804 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8805 goto out_unlock;
969c7921
TH
8806
8807 /* make sure the requested cpu hasn't gone down in the meantime */
8808 if (unlikely(busiest_cpu != smp_processor_id() ||
8809 !busiest_rq->active_balance))
8810 goto out_unlock;
1e3c88bd
PZ
8811
8812 /* Is there any task to move? */
8813 if (busiest_rq->nr_running <= 1)
969c7921 8814 goto out_unlock;
1e3c88bd
PZ
8815
8816 /*
8817 * This condition is "impossible", if it occurs
8818 * we need to fix it. Originally reported by
8819 * Bjorn Helgaas on a 128-cpu setup.
8820 */
8821 BUG_ON(busiest_rq == target_rq);
8822
1e3c88bd 8823 /* Search for an sd spanning us and the target CPU. */
dce840a0 8824 rcu_read_lock();
1e3c88bd
PZ
8825 for_each_domain(target_cpu, sd) {
8826 if ((sd->flags & SD_LOAD_BALANCE) &&
8827 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8828 break;
8829 }
8830
8831 if (likely(sd)) {
8e45cb54
PZ
8832 struct lb_env env = {
8833 .sd = sd,
ddcdf6e7
PZ
8834 .dst_cpu = target_cpu,
8835 .dst_rq = target_rq,
8836 .src_cpu = busiest_rq->cpu,
8837 .src_rq = busiest_rq,
8e45cb54 8838 .idle = CPU_IDLE,
65a4433a
JH
8839 /*
8840 * can_migrate_task() doesn't need to compute new_dst_cpu
8841 * for active balancing. Since we have CPU_IDLE, but no
8842 * @dst_grpmask we need to make that test go away with lying
8843 * about DST_PINNED.
8844 */
8845 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8846 };
8847
ae92882e 8848 schedstat_inc(sd->alb_count);
3bed5e21 8849 update_rq_clock(busiest_rq);
1e3c88bd 8850
e5673f28 8851 p = detach_one_task(&env);
d02c0711 8852 if (p) {
ae92882e 8853 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8854 /* Active balancing done, reset the failure counter. */
8855 sd->nr_balance_failed = 0;
8856 } else {
ae92882e 8857 schedstat_inc(sd->alb_failed);
d02c0711 8858 }
1e3c88bd 8859 }
dce840a0 8860 rcu_read_unlock();
969c7921
TH
8861out_unlock:
8862 busiest_rq->active_balance = 0;
8a8c69c3 8863 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8864
8865 if (p)
8866 attach_one_task(target_rq, p);
8867
8868 local_irq_enable();
8869
969c7921 8870 return 0;
1e3c88bd
PZ
8871}
8872
d987fc7f
MG
8873static inline int on_null_domain(struct rq *rq)
8874{
8875 return unlikely(!rcu_dereference_sched(rq->sd));
8876}
8877
3451d024 8878#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8879/*
8880 * idle load balancing details
83cd4fe2
VP
8881 * - When one of the busy CPUs notice that there may be an idle rebalancing
8882 * needed, they will kick the idle load balancer, which then does idle
8883 * load balancing for all the idle CPUs.
8884 */
1e3c88bd 8885static struct {
83cd4fe2 8886 cpumask_var_t idle_cpus_mask;
0b005cf5 8887 atomic_t nr_cpus;
83cd4fe2
VP
8888 unsigned long next_balance; /* in jiffy units */
8889} nohz ____cacheline_aligned;
1e3c88bd 8890
3dd0337d 8891static inline int find_new_ilb(void)
1e3c88bd 8892{
0b005cf5 8893 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8894
786d6dc7
SS
8895 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8896 return ilb;
8897
8898 return nr_cpu_ids;
1e3c88bd 8899}
1e3c88bd 8900
83cd4fe2
VP
8901/*
8902 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8903 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8904 * CPU (if there is one).
8905 */
0aeeeeba 8906static void nohz_balancer_kick(void)
83cd4fe2
VP
8907{
8908 int ilb_cpu;
8909
8910 nohz.next_balance++;
8911
3dd0337d 8912 ilb_cpu = find_new_ilb();
83cd4fe2 8913
0b005cf5
SS
8914 if (ilb_cpu >= nr_cpu_ids)
8915 return;
83cd4fe2 8916
cd490c5b 8917 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8918 return;
8919 /*
8920 * Use smp_send_reschedule() instead of resched_cpu().
8921 * This way we generate a sched IPI on the target cpu which
8922 * is idle. And the softirq performing nohz idle load balance
8923 * will be run before returning from the IPI.
8924 */
8925 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8926 return;
8927}
8928
20a5c8cc 8929void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8930{
8931 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8932 /*
8933 * Completely isolated CPUs don't ever set, so we must test.
8934 */
8935 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8936 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8937 atomic_dec(&nohz.nr_cpus);
8938 }
71325960
SS
8939 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8940 }
8941}
8942
69e1e811
SS
8943static inline void set_cpu_sd_state_busy(void)
8944{
8945 struct sched_domain *sd;
37dc6b50 8946 int cpu = smp_processor_id();
69e1e811 8947
69e1e811 8948 rcu_read_lock();
0e369d75 8949 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8950
8951 if (!sd || !sd->nohz_idle)
8952 goto unlock;
8953 sd->nohz_idle = 0;
8954
0e369d75 8955 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8956unlock:
69e1e811
SS
8957 rcu_read_unlock();
8958}
8959
8960void set_cpu_sd_state_idle(void)
8961{
8962 struct sched_domain *sd;
37dc6b50 8963 int cpu = smp_processor_id();
69e1e811 8964
69e1e811 8965 rcu_read_lock();
0e369d75 8966 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8967
8968 if (!sd || sd->nohz_idle)
8969 goto unlock;
8970 sd->nohz_idle = 1;
8971
0e369d75 8972 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8973unlock:
69e1e811
SS
8974 rcu_read_unlock();
8975}
8976
1e3c88bd 8977/*
c1cc017c 8978 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8979 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8980 */
c1cc017c 8981void nohz_balance_enter_idle(int cpu)
1e3c88bd 8982{
71325960
SS
8983 /*
8984 * If this cpu is going down, then nothing needs to be done.
8985 */
8986 if (!cpu_active(cpu))
8987 return;
8988
387bc8b5
FW
8989 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8990 if (!is_housekeeping_cpu(cpu))
8991 return;
8992
c1cc017c
AS
8993 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8994 return;
1e3c88bd 8995
d987fc7f
MG
8996 /*
8997 * If we're a completely isolated CPU, we don't play.
8998 */
8999 if (on_null_domain(cpu_rq(cpu)))
9000 return;
9001
c1cc017c
AS
9002 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9003 atomic_inc(&nohz.nr_cpus);
9004 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
9005}
9006#endif
9007
9008static DEFINE_SPINLOCK(balancing);
9009
49c022e6
PZ
9010/*
9011 * Scale the max load_balance interval with the number of CPUs in the system.
9012 * This trades load-balance latency on larger machines for less cross talk.
9013 */
029632fb 9014void update_max_interval(void)
49c022e6
PZ
9015{
9016 max_load_balance_interval = HZ*num_online_cpus()/10;
9017}
9018
1e3c88bd
PZ
9019/*
9020 * It checks each scheduling domain to see if it is due to be balanced,
9021 * and initiates a balancing operation if so.
9022 *
b9b0853a 9023 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 9024 */
f7ed0a89 9025static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 9026{
23f0d209 9027 int continue_balancing = 1;
f7ed0a89 9028 int cpu = rq->cpu;
1e3c88bd 9029 unsigned long interval;
04f733b4 9030 struct sched_domain *sd;
1e3c88bd
PZ
9031 /* Earliest time when we have to do rebalance again */
9032 unsigned long next_balance = jiffies + 60*HZ;
9033 int update_next_balance = 0;
f48627e6
JL
9034 int need_serialize, need_decay = 0;
9035 u64 max_cost = 0;
1e3c88bd 9036
48a16753 9037 update_blocked_averages(cpu);
2069dd75 9038
dce840a0 9039 rcu_read_lock();
1e3c88bd 9040 for_each_domain(cpu, sd) {
f48627e6
JL
9041 /*
9042 * Decay the newidle max times here because this is a regular
9043 * visit to all the domains. Decay ~1% per second.
9044 */
9045 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9046 sd->max_newidle_lb_cost =
9047 (sd->max_newidle_lb_cost * 253) / 256;
9048 sd->next_decay_max_lb_cost = jiffies + HZ;
9049 need_decay = 1;
9050 }
9051 max_cost += sd->max_newidle_lb_cost;
9052
1e3c88bd
PZ
9053 if (!(sd->flags & SD_LOAD_BALANCE))
9054 continue;
9055
f48627e6
JL
9056 /*
9057 * Stop the load balance at this level. There is another
9058 * CPU in our sched group which is doing load balancing more
9059 * actively.
9060 */
9061 if (!continue_balancing) {
9062 if (need_decay)
9063 continue;
9064 break;
9065 }
9066
52a08ef1 9067 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
9068
9069 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
9070 if (need_serialize) {
9071 if (!spin_trylock(&balancing))
9072 goto out;
9073 }
9074
9075 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 9076 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 9077 /*
6263322c 9078 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
9079 * env->dst_cpu, so we can't know our idle
9080 * state even if we migrated tasks. Update it.
1e3c88bd 9081 */
de5eb2dd 9082 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
9083 }
9084 sd->last_balance = jiffies;
52a08ef1 9085 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
9086 }
9087 if (need_serialize)
9088 spin_unlock(&balancing);
9089out:
9090 if (time_after(next_balance, sd->last_balance + interval)) {
9091 next_balance = sd->last_balance + interval;
9092 update_next_balance = 1;
9093 }
f48627e6
JL
9094 }
9095 if (need_decay) {
1e3c88bd 9096 /*
f48627e6
JL
9097 * Ensure the rq-wide value also decays but keep it at a
9098 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 9099 */
f48627e6
JL
9100 rq->max_idle_balance_cost =
9101 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 9102 }
dce840a0 9103 rcu_read_unlock();
1e3c88bd
PZ
9104
9105 /*
9106 * next_balance will be updated only when there is a need.
9107 * When the cpu is attached to null domain for ex, it will not be
9108 * updated.
9109 */
c5afb6a8 9110 if (likely(update_next_balance)) {
1e3c88bd 9111 rq->next_balance = next_balance;
c5afb6a8
VG
9112
9113#ifdef CONFIG_NO_HZ_COMMON
9114 /*
9115 * If this CPU has been elected to perform the nohz idle
9116 * balance. Other idle CPUs have already rebalanced with
9117 * nohz_idle_balance() and nohz.next_balance has been
9118 * updated accordingly. This CPU is now running the idle load
9119 * balance for itself and we need to update the
9120 * nohz.next_balance accordingly.
9121 */
9122 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9123 nohz.next_balance = rq->next_balance;
9124#endif
9125 }
1e3c88bd
PZ
9126}
9127
3451d024 9128#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 9129/*
3451d024 9130 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
9131 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9132 */
208cb16b 9133static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 9134{
208cb16b 9135 int this_cpu = this_rq->cpu;
83cd4fe2
VP
9136 struct rq *rq;
9137 int balance_cpu;
c5afb6a8
VG
9138 /* Earliest time when we have to do rebalance again */
9139 unsigned long next_balance = jiffies + 60*HZ;
9140 int update_next_balance = 0;
83cd4fe2 9141
1c792db7
SS
9142 if (idle != CPU_IDLE ||
9143 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9144 goto end;
83cd4fe2
VP
9145
9146 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9147 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9148 continue;
9149
9150 /*
9151 * If this cpu gets work to do, stop the load balancing
9152 * work being done for other cpus. Next load
9153 * balancing owner will pick it up.
9154 */
1c792db7 9155 if (need_resched())
83cd4fe2 9156 break;
83cd4fe2 9157
5ed4f1d9
VG
9158 rq = cpu_rq(balance_cpu);
9159
ed61bbc6
TC
9160 /*
9161 * If time for next balance is due,
9162 * do the balance.
9163 */
9164 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9165 struct rq_flags rf;
9166
9167 rq_lock_irq(rq, &rf);
ed61bbc6 9168 update_rq_clock(rq);
cee1afce 9169 cpu_load_update_idle(rq);
8a8c69c3
PZ
9170 rq_unlock_irq(rq, &rf);
9171
ed61bbc6
TC
9172 rebalance_domains(rq, CPU_IDLE);
9173 }
83cd4fe2 9174
c5afb6a8
VG
9175 if (time_after(next_balance, rq->next_balance)) {
9176 next_balance = rq->next_balance;
9177 update_next_balance = 1;
9178 }
83cd4fe2 9179 }
c5afb6a8
VG
9180
9181 /*
9182 * next_balance will be updated only when there is a need.
9183 * When the CPU is attached to null domain for ex, it will not be
9184 * updated.
9185 */
9186 if (likely(update_next_balance))
9187 nohz.next_balance = next_balance;
1c792db7
SS
9188end:
9189 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
9190}
9191
9192/*
0b005cf5 9193 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 9194 * of an idle cpu in the system.
0b005cf5 9195 * - This rq has more than one task.
1aaf90a4
VG
9196 * - This rq has at least one CFS task and the capacity of the CPU is
9197 * significantly reduced because of RT tasks or IRQs.
9198 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9199 * multiple busy cpu.
0b005cf5
SS
9200 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9201 * domain span are idle.
83cd4fe2 9202 */
1aaf90a4 9203static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
9204{
9205 unsigned long now = jiffies;
0e369d75 9206 struct sched_domain_shared *sds;
0b005cf5 9207 struct sched_domain *sd;
afe06efd 9208 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 9209 bool kick = false;
83cd4fe2 9210
4a725627 9211 if (unlikely(rq->idle_balance))
1aaf90a4 9212 return false;
83cd4fe2 9213
1c792db7
SS
9214 /*
9215 * We may be recently in ticked or tickless idle mode. At the first
9216 * busy tick after returning from idle, we will update the busy stats.
9217 */
69e1e811 9218 set_cpu_sd_state_busy();
c1cc017c 9219 nohz_balance_exit_idle(cpu);
0b005cf5
SS
9220
9221 /*
9222 * None are in tickless mode and hence no need for NOHZ idle load
9223 * balancing.
9224 */
9225 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 9226 return false;
1c792db7
SS
9227
9228 if (time_before(now, nohz.next_balance))
1aaf90a4 9229 return false;
83cd4fe2 9230
0b005cf5 9231 if (rq->nr_running >= 2)
1aaf90a4 9232 return true;
83cd4fe2 9233
067491b7 9234 rcu_read_lock();
0e369d75
PZ
9235 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9236 if (sds) {
9237 /*
9238 * XXX: write a coherent comment on why we do this.
9239 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9240 */
9241 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
9242 if (nr_busy > 1) {
9243 kick = true;
9244 goto unlock;
9245 }
9246
83cd4fe2 9247 }
37dc6b50 9248
1aaf90a4
VG
9249 sd = rcu_dereference(rq->sd);
9250 if (sd) {
9251 if ((rq->cfs.h_nr_running >= 1) &&
9252 check_cpu_capacity(rq, sd)) {
9253 kick = true;
9254 goto unlock;
9255 }
9256 }
37dc6b50 9257
1aaf90a4 9258 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9259 if (sd) {
9260 for_each_cpu(i, sched_domain_span(sd)) {
9261 if (i == cpu ||
9262 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9263 continue;
067491b7 9264
afe06efd
TC
9265 if (sched_asym_prefer(i, cpu)) {
9266 kick = true;
9267 goto unlock;
9268 }
9269 }
9270 }
1aaf90a4 9271unlock:
067491b7 9272 rcu_read_unlock();
1aaf90a4 9273 return kick;
83cd4fe2
VP
9274}
9275#else
208cb16b 9276static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9277#endif
9278
9279/*
9280 * run_rebalance_domains is triggered when needed from the scheduler tick.
9281 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9282 */
0766f788 9283static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9284{
208cb16b 9285 struct rq *this_rq = this_rq();
6eb57e0d 9286 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9287 CPU_IDLE : CPU_NOT_IDLE;
9288
1e3c88bd 9289 /*
83cd4fe2 9290 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9291 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9292 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9293 * give the idle cpus a chance to load balance. Else we may
9294 * load balance only within the local sched_domain hierarchy
9295 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9296 */
208cb16b 9297 nohz_idle_balance(this_rq, idle);
d4573c3e 9298 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9299}
9300
1e3c88bd
PZ
9301/*
9302 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9303 */
7caff66f 9304void trigger_load_balance(struct rq *rq)
1e3c88bd 9305{
1e3c88bd 9306 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9307 if (unlikely(on_null_domain(rq)))
9308 return;
9309
9310 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9311 raise_softirq(SCHED_SOFTIRQ);
3451d024 9312#ifdef CONFIG_NO_HZ_COMMON
c726099e 9313 if (nohz_kick_needed(rq))
0aeeeeba 9314 nohz_balancer_kick();
83cd4fe2 9315#endif
1e3c88bd
PZ
9316}
9317
0bcdcf28
CE
9318static void rq_online_fair(struct rq *rq)
9319{
9320 update_sysctl();
0e59bdae
KT
9321
9322 update_runtime_enabled(rq);
0bcdcf28
CE
9323}
9324
9325static void rq_offline_fair(struct rq *rq)
9326{
9327 update_sysctl();
a4c96ae3
PB
9328
9329 /* Ensure any throttled groups are reachable by pick_next_task */
9330 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9331}
9332
55e12e5e 9333#endif /* CONFIG_SMP */
e1d1484f 9334
bf0f6f24
IM
9335/*
9336 * scheduler tick hitting a task of our scheduling class:
9337 */
8f4d37ec 9338static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9339{
9340 struct cfs_rq *cfs_rq;
9341 struct sched_entity *se = &curr->se;
9342
9343 for_each_sched_entity(se) {
9344 cfs_rq = cfs_rq_of(se);
8f4d37ec 9345 entity_tick(cfs_rq, se, queued);
bf0f6f24 9346 }
18bf2805 9347
b52da86e 9348 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9349 task_tick_numa(rq, curr);
bf0f6f24
IM
9350}
9351
9352/*
cd29fe6f
PZ
9353 * called on fork with the child task as argument from the parent's context
9354 * - child not yet on the tasklist
9355 * - preemption disabled
bf0f6f24 9356 */
cd29fe6f 9357static void task_fork_fair(struct task_struct *p)
bf0f6f24 9358{
4fc420c9
DN
9359 struct cfs_rq *cfs_rq;
9360 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9361 struct rq *rq = this_rq();
8a8c69c3 9362 struct rq_flags rf;
bf0f6f24 9363
8a8c69c3 9364 rq_lock(rq, &rf);
861d034e
PZ
9365 update_rq_clock(rq);
9366
4fc420c9
DN
9367 cfs_rq = task_cfs_rq(current);
9368 curr = cfs_rq->curr;
e210bffd
PZ
9369 if (curr) {
9370 update_curr(cfs_rq);
b5d9d734 9371 se->vruntime = curr->vruntime;
e210bffd 9372 }
aeb73b04 9373 place_entity(cfs_rq, se, 1);
4d78e7b6 9374
cd29fe6f 9375 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9376 /*
edcb60a3
IM
9377 * Upon rescheduling, sched_class::put_prev_task() will place
9378 * 'current' within the tree based on its new key value.
9379 */
4d78e7b6 9380 swap(curr->vruntime, se->vruntime);
8875125e 9381 resched_curr(rq);
4d78e7b6 9382 }
bf0f6f24 9383
88ec22d3 9384 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9385 rq_unlock(rq, &rf);
bf0f6f24
IM
9386}
9387
cb469845
SR
9388/*
9389 * Priority of the task has changed. Check to see if we preempt
9390 * the current task.
9391 */
da7a735e
PZ
9392static void
9393prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9394{
da0c1e65 9395 if (!task_on_rq_queued(p))
da7a735e
PZ
9396 return;
9397
cb469845
SR
9398 /*
9399 * Reschedule if we are currently running on this runqueue and
9400 * our priority decreased, or if we are not currently running on
9401 * this runqueue and our priority is higher than the current's
9402 */
da7a735e 9403 if (rq->curr == p) {
cb469845 9404 if (p->prio > oldprio)
8875125e 9405 resched_curr(rq);
cb469845 9406 } else
15afe09b 9407 check_preempt_curr(rq, p, 0);
cb469845
SR
9408}
9409
daa59407 9410static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9411{
9412 struct sched_entity *se = &p->se;
da7a735e
PZ
9413
9414 /*
daa59407
BP
9415 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9416 * the dequeue_entity(.flags=0) will already have normalized the
9417 * vruntime.
9418 */
9419 if (p->on_rq)
9420 return true;
9421
9422 /*
9423 * When !on_rq, vruntime of the task has usually NOT been normalized.
9424 * But there are some cases where it has already been normalized:
da7a735e 9425 *
daa59407
BP
9426 * - A forked child which is waiting for being woken up by
9427 * wake_up_new_task().
9428 * - A task which has been woken up by try_to_wake_up() and
9429 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9430 */
daa59407
BP
9431 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9432 return true;
9433
9434 return false;
9435}
9436
09a43ace
VG
9437#ifdef CONFIG_FAIR_GROUP_SCHED
9438/*
9439 * Propagate the changes of the sched_entity across the tg tree to make it
9440 * visible to the root
9441 */
9442static void propagate_entity_cfs_rq(struct sched_entity *se)
9443{
9444 struct cfs_rq *cfs_rq;
9445
9446 /* Start to propagate at parent */
9447 se = se->parent;
9448
9449 for_each_sched_entity(se) {
9450 cfs_rq = cfs_rq_of(se);
9451
9452 if (cfs_rq_throttled(cfs_rq))
9453 break;
9454
88c0616e 9455 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9456 }
9457}
9458#else
9459static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9460#endif
9461
df217913 9462static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9463{
daa59407
BP
9464 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9465
9d89c257 9466 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9467 update_load_avg(cfs_rq, se, 0);
a05e8c51 9468 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9469 update_tg_load_avg(cfs_rq, false);
09a43ace 9470 propagate_entity_cfs_rq(se);
da7a735e
PZ
9471}
9472
df217913 9473static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9474{
daa59407 9475 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9476
9477#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9478 /*
9479 * Since the real-depth could have been changed (only FAIR
9480 * class maintain depth value), reset depth properly.
9481 */
9482 se->depth = se->parent ? se->parent->depth + 1 : 0;
9483#endif
7855a35a 9484
df217913 9485 /* Synchronize entity with its cfs_rq */
88c0616e 9486 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9487 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9488 update_tg_load_avg(cfs_rq, false);
09a43ace 9489 propagate_entity_cfs_rq(se);
df217913
VG
9490}
9491
9492static void detach_task_cfs_rq(struct task_struct *p)
9493{
9494 struct sched_entity *se = &p->se;
9495 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9496
9497 if (!vruntime_normalized(p)) {
9498 /*
9499 * Fix up our vruntime so that the current sleep doesn't
9500 * cause 'unlimited' sleep bonus.
9501 */
9502 place_entity(cfs_rq, se, 0);
9503 se->vruntime -= cfs_rq->min_vruntime;
9504 }
9505
9506 detach_entity_cfs_rq(se);
9507}
9508
9509static void attach_task_cfs_rq(struct task_struct *p)
9510{
9511 struct sched_entity *se = &p->se;
9512 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9513
9514 attach_entity_cfs_rq(se);
daa59407
BP
9515
9516 if (!vruntime_normalized(p))
9517 se->vruntime += cfs_rq->min_vruntime;
9518}
6efdb105 9519
daa59407
BP
9520static void switched_from_fair(struct rq *rq, struct task_struct *p)
9521{
9522 detach_task_cfs_rq(p);
9523}
9524
9525static void switched_to_fair(struct rq *rq, struct task_struct *p)
9526{
9527 attach_task_cfs_rq(p);
7855a35a 9528
daa59407 9529 if (task_on_rq_queued(p)) {
7855a35a 9530 /*
daa59407
BP
9531 * We were most likely switched from sched_rt, so
9532 * kick off the schedule if running, otherwise just see
9533 * if we can still preempt the current task.
7855a35a 9534 */
daa59407
BP
9535 if (rq->curr == p)
9536 resched_curr(rq);
9537 else
9538 check_preempt_curr(rq, p, 0);
7855a35a 9539 }
cb469845
SR
9540}
9541
83b699ed
SV
9542/* Account for a task changing its policy or group.
9543 *
9544 * This routine is mostly called to set cfs_rq->curr field when a task
9545 * migrates between groups/classes.
9546 */
9547static void set_curr_task_fair(struct rq *rq)
9548{
9549 struct sched_entity *se = &rq->curr->se;
9550
ec12cb7f
PT
9551 for_each_sched_entity(se) {
9552 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9553
9554 set_next_entity(cfs_rq, se);
9555 /* ensure bandwidth has been allocated on our new cfs_rq */
9556 account_cfs_rq_runtime(cfs_rq, 0);
9557 }
83b699ed
SV
9558}
9559
029632fb
PZ
9560void init_cfs_rq(struct cfs_rq *cfs_rq)
9561{
bfb06889 9562 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9563 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9564#ifndef CONFIG_64BIT
9565 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9566#endif
141965c7 9567#ifdef CONFIG_SMP
2a2f5d4e 9568 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9569#endif
029632fb
PZ
9570}
9571
810b3817 9572#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9573static void task_set_group_fair(struct task_struct *p)
9574{
9575 struct sched_entity *se = &p->se;
9576
9577 set_task_rq(p, task_cpu(p));
9578 se->depth = se->parent ? se->parent->depth + 1 : 0;
9579}
9580
bc54da21 9581static void task_move_group_fair(struct task_struct *p)
810b3817 9582{
daa59407 9583 detach_task_cfs_rq(p);
b2b5ce02 9584 set_task_rq(p, task_cpu(p));
6efdb105
BP
9585
9586#ifdef CONFIG_SMP
9587 /* Tell se's cfs_rq has been changed -- migrated */
9588 p->se.avg.last_update_time = 0;
9589#endif
daa59407 9590 attach_task_cfs_rq(p);
810b3817 9591}
029632fb 9592
ea86cb4b
VG
9593static void task_change_group_fair(struct task_struct *p, int type)
9594{
9595 switch (type) {
9596 case TASK_SET_GROUP:
9597 task_set_group_fair(p);
9598 break;
9599
9600 case TASK_MOVE_GROUP:
9601 task_move_group_fair(p);
9602 break;
9603 }
9604}
9605
029632fb
PZ
9606void free_fair_sched_group(struct task_group *tg)
9607{
9608 int i;
9609
9610 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9611
9612 for_each_possible_cpu(i) {
9613 if (tg->cfs_rq)
9614 kfree(tg->cfs_rq[i]);
6fe1f348 9615 if (tg->se)
029632fb
PZ
9616 kfree(tg->se[i]);
9617 }
9618
9619 kfree(tg->cfs_rq);
9620 kfree(tg->se);
9621}
9622
9623int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9624{
029632fb 9625 struct sched_entity *se;
b7fa30c9 9626 struct cfs_rq *cfs_rq;
029632fb
PZ
9627 int i;
9628
9629 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9630 if (!tg->cfs_rq)
9631 goto err;
9632 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9633 if (!tg->se)
9634 goto err;
9635
9636 tg->shares = NICE_0_LOAD;
9637
9638 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9639
9640 for_each_possible_cpu(i) {
9641 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9642 GFP_KERNEL, cpu_to_node(i));
9643 if (!cfs_rq)
9644 goto err;
9645
9646 se = kzalloc_node(sizeof(struct sched_entity),
9647 GFP_KERNEL, cpu_to_node(i));
9648 if (!se)
9649 goto err_free_rq;
9650
9651 init_cfs_rq(cfs_rq);
9652 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9653 init_entity_runnable_average(se);
029632fb
PZ
9654 }
9655
9656 return 1;
9657
9658err_free_rq:
9659 kfree(cfs_rq);
9660err:
9661 return 0;
9662}
9663
8663e24d
PZ
9664void online_fair_sched_group(struct task_group *tg)
9665{
9666 struct sched_entity *se;
9667 struct rq *rq;
9668 int i;
9669
9670 for_each_possible_cpu(i) {
9671 rq = cpu_rq(i);
9672 se = tg->se[i];
9673
9674 raw_spin_lock_irq(&rq->lock);
4126bad6 9675 update_rq_clock(rq);
d0326691 9676 attach_entity_cfs_rq(se);
55e16d30 9677 sync_throttle(tg, i);
8663e24d
PZ
9678 raw_spin_unlock_irq(&rq->lock);
9679 }
9680}
9681
6fe1f348 9682void unregister_fair_sched_group(struct task_group *tg)
029632fb 9683{
029632fb 9684 unsigned long flags;
6fe1f348
PZ
9685 struct rq *rq;
9686 int cpu;
029632fb 9687
6fe1f348
PZ
9688 for_each_possible_cpu(cpu) {
9689 if (tg->se[cpu])
9690 remove_entity_load_avg(tg->se[cpu]);
029632fb 9691
6fe1f348
PZ
9692 /*
9693 * Only empty task groups can be destroyed; so we can speculatively
9694 * check on_list without danger of it being re-added.
9695 */
9696 if (!tg->cfs_rq[cpu]->on_list)
9697 continue;
9698
9699 rq = cpu_rq(cpu);
9700
9701 raw_spin_lock_irqsave(&rq->lock, flags);
9702 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9703 raw_spin_unlock_irqrestore(&rq->lock, flags);
9704 }
029632fb
PZ
9705}
9706
9707void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9708 struct sched_entity *se, int cpu,
9709 struct sched_entity *parent)
9710{
9711 struct rq *rq = cpu_rq(cpu);
9712
9713 cfs_rq->tg = tg;
9714 cfs_rq->rq = rq;
029632fb
PZ
9715 init_cfs_rq_runtime(cfs_rq);
9716
9717 tg->cfs_rq[cpu] = cfs_rq;
9718 tg->se[cpu] = se;
9719
9720 /* se could be NULL for root_task_group */
9721 if (!se)
9722 return;
9723
fed14d45 9724 if (!parent) {
029632fb 9725 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9726 se->depth = 0;
9727 } else {
029632fb 9728 se->cfs_rq = parent->my_q;
fed14d45
PZ
9729 se->depth = parent->depth + 1;
9730 }
029632fb
PZ
9731
9732 se->my_q = cfs_rq;
0ac9b1c2
PT
9733 /* guarantee group entities always have weight */
9734 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9735 se->parent = parent;
9736}
9737
9738static DEFINE_MUTEX(shares_mutex);
9739
9740int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9741{
9742 int i;
029632fb
PZ
9743
9744 /*
9745 * We can't change the weight of the root cgroup.
9746 */
9747 if (!tg->se[0])
9748 return -EINVAL;
9749
9750 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9751
9752 mutex_lock(&shares_mutex);
9753 if (tg->shares == shares)
9754 goto done;
9755
9756 tg->shares = shares;
9757 for_each_possible_cpu(i) {
9758 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9759 struct sched_entity *se = tg->se[i];
9760 struct rq_flags rf;
029632fb 9761
029632fb 9762 /* Propagate contribution to hierarchy */
8a8c69c3 9763 rq_lock_irqsave(rq, &rf);
71b1da46 9764 update_rq_clock(rq);
89ee048f 9765 for_each_sched_entity(se) {
88c0616e 9766 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 9767 update_cfs_group(se);
89ee048f 9768 }
8a8c69c3 9769 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9770 }
9771
9772done:
9773 mutex_unlock(&shares_mutex);
9774 return 0;
9775}
9776#else /* CONFIG_FAIR_GROUP_SCHED */
9777
9778void free_fair_sched_group(struct task_group *tg) { }
9779
9780int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9781{
9782 return 1;
9783}
9784
8663e24d
PZ
9785void online_fair_sched_group(struct task_group *tg) { }
9786
6fe1f348 9787void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9788
9789#endif /* CONFIG_FAIR_GROUP_SCHED */
9790
810b3817 9791
6d686f45 9792static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9793{
9794 struct sched_entity *se = &task->se;
0d721cea
PW
9795 unsigned int rr_interval = 0;
9796
9797 /*
9798 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9799 * idle runqueue:
9800 */
0d721cea 9801 if (rq->cfs.load.weight)
a59f4e07 9802 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9803
9804 return rr_interval;
9805}
9806
bf0f6f24
IM
9807/*
9808 * All the scheduling class methods:
9809 */
029632fb 9810const struct sched_class fair_sched_class = {
5522d5d5 9811 .next = &idle_sched_class,
bf0f6f24
IM
9812 .enqueue_task = enqueue_task_fair,
9813 .dequeue_task = dequeue_task_fair,
9814 .yield_task = yield_task_fair,
d95f4122 9815 .yield_to_task = yield_to_task_fair,
bf0f6f24 9816
2e09bf55 9817 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9818
9819 .pick_next_task = pick_next_task_fair,
9820 .put_prev_task = put_prev_task_fair,
9821
681f3e68 9822#ifdef CONFIG_SMP
4ce72a2c 9823 .select_task_rq = select_task_rq_fair,
0a74bef8 9824 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9825
0bcdcf28
CE
9826 .rq_online = rq_online_fair,
9827 .rq_offline = rq_offline_fair,
88ec22d3 9828
12695578 9829 .task_dead = task_dead_fair,
c5b28038 9830 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9831#endif
bf0f6f24 9832
83b699ed 9833 .set_curr_task = set_curr_task_fair,
bf0f6f24 9834 .task_tick = task_tick_fair,
cd29fe6f 9835 .task_fork = task_fork_fair,
cb469845
SR
9836
9837 .prio_changed = prio_changed_fair,
da7a735e 9838 .switched_from = switched_from_fair,
cb469845 9839 .switched_to = switched_to_fair,
810b3817 9840
0d721cea
PW
9841 .get_rr_interval = get_rr_interval_fair,
9842
6e998916
SG
9843 .update_curr = update_curr_fair,
9844
810b3817 9845#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9846 .task_change_group = task_change_group_fair,
810b3817 9847#endif
bf0f6f24
IM
9848};
9849
9850#ifdef CONFIG_SCHED_DEBUG
029632fb 9851void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9852{
a9e7f654 9853 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9854
5973e5b9 9855 rcu_read_lock();
a9e7f654 9856 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9857 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9858 rcu_read_unlock();
bf0f6f24 9859}
397f2378
SD
9860
9861#ifdef CONFIG_NUMA_BALANCING
9862void show_numa_stats(struct task_struct *p, struct seq_file *m)
9863{
9864 int node;
9865 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9866
9867 for_each_online_node(node) {
9868 if (p->numa_faults) {
9869 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9870 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9871 }
9872 if (p->numa_group) {
9873 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9874 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9875 }
9876 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9877 }
9878}
9879#endif /* CONFIG_NUMA_BALANCING */
9880#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9881
9882__init void init_sched_fair_class(void)
9883{
9884#ifdef CONFIG_SMP
9885 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9886
3451d024 9887#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9888 nohz.next_balance = jiffies;
029632fb 9889 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9890#endif
9891#endif /* SMP */
9892
9893}