Merge tag 'usb-4.3-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
10e84b97 2072 if (!numabalancing_enabled)
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2366 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2376 load = cfs_rq->load.weight;
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
2518/*
2519 * We can represent the historical contribution to runnable average as the
2520 * coefficients of a geometric series. To do this we sub-divide our runnable
2521 * history into segments of approximately 1ms (1024us); label the segment that
2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523 *
2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525 * p0 p1 p2
2526 * (now) (~1ms ago) (~2ms ago)
2527 *
2528 * Let u_i denote the fraction of p_i that the entity was runnable.
2529 *
2530 * We then designate the fractions u_i as our co-efficients, yielding the
2531 * following representation of historical load:
2532 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533 *
2534 * We choose y based on the with of a reasonably scheduling period, fixing:
2535 * y^32 = 0.5
2536 *
2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538 * approximately half as much as the contribution to load within the last ms
2539 * (u_0).
2540 *
2541 * When a period "rolls over" and we have new u_0`, multiplying the previous
2542 * sum again by y is sufficient to update:
2543 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545 */
9d89c257
YD
2546static __always_inline int
2547__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2548 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2549{
5b51f2f8 2550 u64 delta, periods;
9d89c257 2551 u32 contrib;
9d85f21c 2552 int delta_w, decayed = 0;
0c1dc6b2 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2554
9d89c257 2555 delta = now - sa->last_update_time;
9d85f21c
PT
2556 /*
2557 * This should only happen when time goes backwards, which it
2558 * unfortunately does during sched clock init when we swap over to TSC.
2559 */
2560 if ((s64)delta < 0) {
9d89c257 2561 sa->last_update_time = now;
9d85f21c
PT
2562 return 0;
2563 }
2564
2565 /*
2566 * Use 1024ns as the unit of measurement since it's a reasonable
2567 * approximation of 1us and fast to compute.
2568 */
2569 delta >>= 10;
2570 if (!delta)
2571 return 0;
9d89c257 2572 sa->last_update_time = now;
9d85f21c
PT
2573
2574 /* delta_w is the amount already accumulated against our next period */
9d89c257 2575 delta_w = sa->period_contrib;
9d85f21c 2576 if (delta + delta_w >= 1024) {
9d85f21c
PT
2577 decayed = 1;
2578
9d89c257
YD
2579 /* how much left for next period will start over, we don't know yet */
2580 sa->period_contrib = 0;
2581
9d85f21c
PT
2582 /*
2583 * Now that we know we're crossing a period boundary, figure
2584 * out how much from delta we need to complete the current
2585 * period and accrue it.
2586 */
2587 delta_w = 1024 - delta_w;
13962234 2588 if (weight) {
9d89c257 2589 sa->load_sum += weight * delta_w;
13962234
YD
2590 if (cfs_rq)
2591 cfs_rq->runnable_load_sum += weight * delta_w;
2592 }
36ee28e4 2593 if (running)
9d89c257 2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
5b51f2f8
PT
2595
2596 delta -= delta_w;
2597
2598 /* Figure out how many additional periods this update spans */
2599 periods = delta / 1024;
2600 delta %= 1024;
2601
9d89c257 2602 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2603 if (cfs_rq) {
2604 cfs_rq->runnable_load_sum =
2605 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 }
9d89c257 2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2608
2609 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2610 contrib = __compute_runnable_contrib(periods);
13962234 2611 if (weight) {
9d89c257 2612 sa->load_sum += weight * contrib;
13962234
YD
2613 if (cfs_rq)
2614 cfs_rq->runnable_load_sum += weight * contrib;
2615 }
36ee28e4 2616 if (running)
9d89c257 2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
9d85f21c
PT
2618 }
2619
2620 /* Remainder of delta accrued against u_0` */
13962234 2621 if (weight) {
9d89c257 2622 sa->load_sum += weight * delta;
13962234
YD
2623 if (cfs_rq)
2624 cfs_rq->runnable_load_sum += weight * delta;
2625 }
36ee28e4 2626 if (running)
9d89c257 2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
9ee474f5 2628
9d89c257 2629 sa->period_contrib += delta;
9ee474f5 2630
9d89c257
YD
2631 if (decayed) {
2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2633 if (cfs_rq) {
2634 cfs_rq->runnable_load_avg =
2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 }
9d89c257
YD
2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 }
aff3e498 2639
9d89c257 2640 return decayed;
9ee474f5
PT
2641}
2642
c566e8e9 2643#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2644/*
9d89c257
YD
2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646 * and effective_load (which is not done because it is too costly).
bb17f655 2647 */
9d89c257 2648static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2649{
9d89c257 2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2651
9d89c257
YD
2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2655 }
8165e145 2656}
f5f9739d 2657
6e83125c 2658#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2659static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2660#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2661
9d89c257 2662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2663
9d89c257
YD
2664/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2666{
9d89c257 2667 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2668 int decayed, removed = 0;
2dac754e 2669
9d89c257
YD
2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2674 removed = 1;
8165e145 2675 }
2dac754e 2676
9d89c257
YD
2677 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2678 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2679 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2680 sa->util_sum = max_t(s32, sa->util_sum -
2681 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2682 }
36ee28e4 2683
9d89c257 2684 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2685 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2686
9d89c257
YD
2687#ifndef CONFIG_64BIT
2688 smp_wmb();
2689 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2690#endif
36ee28e4 2691
3e386d56 2692 return decayed || removed;
9ee474f5
PT
2693}
2694
9d89c257
YD
2695/* Update task and its cfs_rq load average */
2696static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2697{
2dac754e 2698 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0c1dc6b2 2699 int cpu = cpu_of(rq_of(cfs_rq));
9d89c257 2700 u64 now = cfs_rq_clock_task(cfs_rq);
2dac754e 2701
f1b17280 2702 /*
9d89c257
YD
2703 * Track task load average for carrying it to new CPU after migrated, and
2704 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2705 */
9d89c257 2706 __update_load_avg(now, cpu, &se->avg,
13962234 2707 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
f1b17280 2708
9d89c257
YD
2709 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2710 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2711}
2712
9d89c257
YD
2713/* Add the load generated by se into cfs_rq's load average */
2714static inline void
2715enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2716{
9d89c257
YD
2717 struct sched_avg *sa = &se->avg;
2718 u64 now = cfs_rq_clock_task(cfs_rq);
2719 int migrated = 0, decayed;
9ee474f5 2720
9d89c257
YD
2721 if (sa->last_update_time == 0) {
2722 sa->last_update_time = now;
2723 migrated = 1;
aff3e498 2724 }
9d89c257
YD
2725 else {
2726 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
aff3e498 2729 }
c566e8e9 2730
9d89c257 2731 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2732
13962234
YD
2733 cfs_rq->runnable_load_avg += sa->load_avg;
2734 cfs_rq->runnable_load_sum += sa->load_sum;
2735
9d89c257
YD
2736 if (migrated) {
2737 cfs_rq->avg.load_avg += sa->load_avg;
2738 cfs_rq->avg.load_sum += sa->load_sum;
2739 cfs_rq->avg.util_avg += sa->util_avg;
2740 cfs_rq->avg.util_sum += sa->util_sum;
9ee474f5
PT
2741 }
2742
9d89c257
YD
2743 if (decayed || migrated)
2744 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2745}
2746
13962234
YD
2747/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2748static inline void
2749dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
2751 update_load_avg(se, 1);
2752
2753 cfs_rq->runnable_load_avg =
2754 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2755 cfs_rq->runnable_load_sum =
2756 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2757}
2758
9ee474f5 2759/*
9d89c257
YD
2760 * Task first catches up with cfs_rq, and then subtract
2761 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2762 */
9d89c257 2763void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2764{
9d89c257
YD
2765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2766 u64 last_update_time;
2767
2768#ifndef CONFIG_64BIT
2769 u64 last_update_time_copy;
9ee474f5 2770
9d89c257
YD
2771 do {
2772 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2773 smp_rmb();
2774 last_update_time = cfs_rq->avg.last_update_time;
2775 } while (last_update_time != last_update_time_copy);
2776#else
2777 last_update_time = cfs_rq->avg.last_update_time;
2778#endif
2779
13962234 2780 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2781 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2782 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2783}
642dbc39
VG
2784
2785/*
2786 * Update the rq's load with the elapsed running time before entering
2787 * idle. if the last scheduled task is not a CFS task, idle_enter will
2788 * be the only way to update the runnable statistic.
2789 */
2790void idle_enter_fair(struct rq *this_rq)
2791{
642dbc39
VG
2792}
2793
2794/*
2795 * Update the rq's load with the elapsed idle time before a task is
2796 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2797 * be the only way to update the runnable statistic.
2798 */
2799void idle_exit_fair(struct rq *this_rq)
2800{
642dbc39
VG
2801}
2802
7ea241af
YD
2803static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2804{
2805 return cfs_rq->runnable_load_avg;
2806}
2807
2808static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2809{
2810 return cfs_rq->avg.load_avg;
2811}
2812
6e83125c
PZ
2813static int idle_balance(struct rq *this_rq);
2814
38033c37
PZ
2815#else /* CONFIG_SMP */
2816
9d89c257
YD
2817static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2818static inline void
2819enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2820static inline void
2821dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2822static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c
PZ
2823
2824static inline int idle_balance(struct rq *rq)
2825{
2826 return 0;
2827}
2828
38033c37 2829#endif /* CONFIG_SMP */
9d85f21c 2830
2396af69 2831static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2832{
bf0f6f24 2833#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2834 struct task_struct *tsk = NULL;
2835
2836 if (entity_is_task(se))
2837 tsk = task_of(se);
2838
41acab88 2839 if (se->statistics.sleep_start) {
78becc27 2840 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2841
2842 if ((s64)delta < 0)
2843 delta = 0;
2844
41acab88
LDM
2845 if (unlikely(delta > se->statistics.sleep_max))
2846 se->statistics.sleep_max = delta;
bf0f6f24 2847
8c79a045 2848 se->statistics.sleep_start = 0;
41acab88 2849 se->statistics.sum_sleep_runtime += delta;
9745512c 2850
768d0c27 2851 if (tsk) {
e414314c 2852 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2853 trace_sched_stat_sleep(tsk, delta);
2854 }
bf0f6f24 2855 }
41acab88 2856 if (se->statistics.block_start) {
78becc27 2857 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2858
2859 if ((s64)delta < 0)
2860 delta = 0;
2861
41acab88
LDM
2862 if (unlikely(delta > se->statistics.block_max))
2863 se->statistics.block_max = delta;
bf0f6f24 2864
8c79a045 2865 se->statistics.block_start = 0;
41acab88 2866 se->statistics.sum_sleep_runtime += delta;
30084fbd 2867
e414314c 2868 if (tsk) {
8f0dfc34 2869 if (tsk->in_iowait) {
41acab88
LDM
2870 se->statistics.iowait_sum += delta;
2871 se->statistics.iowait_count++;
768d0c27 2872 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2873 }
2874
b781a602
AV
2875 trace_sched_stat_blocked(tsk, delta);
2876
e414314c
PZ
2877 /*
2878 * Blocking time is in units of nanosecs, so shift by
2879 * 20 to get a milliseconds-range estimation of the
2880 * amount of time that the task spent sleeping:
2881 */
2882 if (unlikely(prof_on == SLEEP_PROFILING)) {
2883 profile_hits(SLEEP_PROFILING,
2884 (void *)get_wchan(tsk),
2885 delta >> 20);
2886 }
2887 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2888 }
bf0f6f24
IM
2889 }
2890#endif
2891}
2892
ddc97297
PZ
2893static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894{
2895#ifdef CONFIG_SCHED_DEBUG
2896 s64 d = se->vruntime - cfs_rq->min_vruntime;
2897
2898 if (d < 0)
2899 d = -d;
2900
2901 if (d > 3*sysctl_sched_latency)
2902 schedstat_inc(cfs_rq, nr_spread_over);
2903#endif
2904}
2905
aeb73b04
PZ
2906static void
2907place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2908{
1af5f730 2909 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2910
2cb8600e
PZ
2911 /*
2912 * The 'current' period is already promised to the current tasks,
2913 * however the extra weight of the new task will slow them down a
2914 * little, place the new task so that it fits in the slot that
2915 * stays open at the end.
2916 */
94dfb5e7 2917 if (initial && sched_feat(START_DEBIT))
f9c0b095 2918 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2919
a2e7a7eb 2920 /* sleeps up to a single latency don't count. */
5ca9880c 2921 if (!initial) {
a2e7a7eb 2922 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2923
a2e7a7eb
MG
2924 /*
2925 * Halve their sleep time's effect, to allow
2926 * for a gentler effect of sleepers:
2927 */
2928 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2929 thresh >>= 1;
51e0304c 2930
a2e7a7eb 2931 vruntime -= thresh;
aeb73b04
PZ
2932 }
2933
b5d9d734 2934 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2935 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2936}
2937
d3d9dc33
PT
2938static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2939
bf0f6f24 2940static void
88ec22d3 2941enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2942{
88ec22d3
PZ
2943 /*
2944 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2945 * through calling update_curr().
88ec22d3 2946 */
371fd7e7 2947 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2948 se->vruntime += cfs_rq->min_vruntime;
2949
bf0f6f24 2950 /*
a2a2d680 2951 * Update run-time statistics of the 'current'.
bf0f6f24 2952 */
b7cc0896 2953 update_curr(cfs_rq);
9d89c257 2954 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2955 account_entity_enqueue(cfs_rq, se);
2956 update_cfs_shares(cfs_rq);
bf0f6f24 2957
88ec22d3 2958 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2959 place_entity(cfs_rq, se, 0);
2396af69 2960 enqueue_sleeper(cfs_rq, se);
e9acbff6 2961 }
bf0f6f24 2962
d2417e5a 2963 update_stats_enqueue(cfs_rq, se);
ddc97297 2964 check_spread(cfs_rq, se);
83b699ed
SV
2965 if (se != cfs_rq->curr)
2966 __enqueue_entity(cfs_rq, se);
2069dd75 2967 se->on_rq = 1;
3d4b47b4 2968
d3d9dc33 2969 if (cfs_rq->nr_running == 1) {
3d4b47b4 2970 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2971 check_enqueue_throttle(cfs_rq);
2972 }
bf0f6f24
IM
2973}
2974
2c13c919 2975static void __clear_buddies_last(struct sched_entity *se)
2002c695 2976{
2c13c919
RR
2977 for_each_sched_entity(se) {
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2979 if (cfs_rq->last != se)
2c13c919 2980 break;
f1044799
PZ
2981
2982 cfs_rq->last = NULL;
2c13c919
RR
2983 }
2984}
2002c695 2985
2c13c919
RR
2986static void __clear_buddies_next(struct sched_entity *se)
2987{
2988 for_each_sched_entity(se) {
2989 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2990 if (cfs_rq->next != se)
2c13c919 2991 break;
f1044799
PZ
2992
2993 cfs_rq->next = NULL;
2c13c919 2994 }
2002c695
PZ
2995}
2996
ac53db59
RR
2997static void __clear_buddies_skip(struct sched_entity *se)
2998{
2999 for_each_sched_entity(se) {
3000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3001 if (cfs_rq->skip != se)
ac53db59 3002 break;
f1044799
PZ
3003
3004 cfs_rq->skip = NULL;
ac53db59
RR
3005 }
3006}
3007
a571bbea
PZ
3008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009{
2c13c919
RR
3010 if (cfs_rq->last == se)
3011 __clear_buddies_last(se);
3012
3013 if (cfs_rq->next == se)
3014 __clear_buddies_next(se);
ac53db59
RR
3015
3016 if (cfs_rq->skip == se)
3017 __clear_buddies_skip(se);
a571bbea
PZ
3018}
3019
6c16a6dc 3020static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3021
bf0f6f24 3022static void
371fd7e7 3023dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3024{
a2a2d680
DA
3025 /*
3026 * Update run-time statistics of the 'current'.
3027 */
3028 update_curr(cfs_rq);
13962234 3029 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3030
19b6a2e3 3031 update_stats_dequeue(cfs_rq, se);
371fd7e7 3032 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3033#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3034 if (entity_is_task(se)) {
3035 struct task_struct *tsk = task_of(se);
3036
3037 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3038 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3039 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3040 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3041 }
db36cc7d 3042#endif
67e9fb2a
PZ
3043 }
3044
2002c695 3045 clear_buddies(cfs_rq, se);
4793241b 3046
83b699ed 3047 if (se != cfs_rq->curr)
30cfdcfc 3048 __dequeue_entity(cfs_rq, se);
17bc14b7 3049 se->on_rq = 0;
30cfdcfc 3050 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3051
3052 /*
3053 * Normalize the entity after updating the min_vruntime because the
3054 * update can refer to the ->curr item and we need to reflect this
3055 * movement in our normalized position.
3056 */
371fd7e7 3057 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3058 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3059
d8b4986d
PT
3060 /* return excess runtime on last dequeue */
3061 return_cfs_rq_runtime(cfs_rq);
3062
1e876231 3063 update_min_vruntime(cfs_rq);
17bc14b7 3064 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3065}
3066
3067/*
3068 * Preempt the current task with a newly woken task if needed:
3069 */
7c92e54f 3070static void
2e09bf55 3071check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3072{
11697830 3073 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3074 struct sched_entity *se;
3075 s64 delta;
11697830 3076
6d0f0ebd 3077 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3078 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3079 if (delta_exec > ideal_runtime) {
8875125e 3080 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3081 /*
3082 * The current task ran long enough, ensure it doesn't get
3083 * re-elected due to buddy favours.
3084 */
3085 clear_buddies(cfs_rq, curr);
f685ceac
MG
3086 return;
3087 }
3088
3089 /*
3090 * Ensure that a task that missed wakeup preemption by a
3091 * narrow margin doesn't have to wait for a full slice.
3092 * This also mitigates buddy induced latencies under load.
3093 */
f685ceac
MG
3094 if (delta_exec < sysctl_sched_min_granularity)
3095 return;
3096
f4cfb33e
WX
3097 se = __pick_first_entity(cfs_rq);
3098 delta = curr->vruntime - se->vruntime;
f685ceac 3099
f4cfb33e
WX
3100 if (delta < 0)
3101 return;
d7d82944 3102
f4cfb33e 3103 if (delta > ideal_runtime)
8875125e 3104 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3105}
3106
83b699ed 3107static void
8494f412 3108set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3109{
83b699ed
SV
3110 /* 'current' is not kept within the tree. */
3111 if (se->on_rq) {
3112 /*
3113 * Any task has to be enqueued before it get to execute on
3114 * a CPU. So account for the time it spent waiting on the
3115 * runqueue.
3116 */
3117 update_stats_wait_end(cfs_rq, se);
3118 __dequeue_entity(cfs_rq, se);
9d89c257 3119 update_load_avg(se, 1);
83b699ed
SV
3120 }
3121
79303e9e 3122 update_stats_curr_start(cfs_rq, se);
429d43bc 3123 cfs_rq->curr = se;
eba1ed4b
IM
3124#ifdef CONFIG_SCHEDSTATS
3125 /*
3126 * Track our maximum slice length, if the CPU's load is at
3127 * least twice that of our own weight (i.e. dont track it
3128 * when there are only lesser-weight tasks around):
3129 */
495eca49 3130 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3131 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3132 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3133 }
3134#endif
4a55b450 3135 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3136}
3137
3f3a4904
PZ
3138static int
3139wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3140
ac53db59
RR
3141/*
3142 * Pick the next process, keeping these things in mind, in this order:
3143 * 1) keep things fair between processes/task groups
3144 * 2) pick the "next" process, since someone really wants that to run
3145 * 3) pick the "last" process, for cache locality
3146 * 4) do not run the "skip" process, if something else is available
3147 */
678d5718
PZ
3148static struct sched_entity *
3149pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3150{
678d5718
PZ
3151 struct sched_entity *left = __pick_first_entity(cfs_rq);
3152 struct sched_entity *se;
3153
3154 /*
3155 * If curr is set we have to see if its left of the leftmost entity
3156 * still in the tree, provided there was anything in the tree at all.
3157 */
3158 if (!left || (curr && entity_before(curr, left)))
3159 left = curr;
3160
3161 se = left; /* ideally we run the leftmost entity */
f4b6755f 3162
ac53db59
RR
3163 /*
3164 * Avoid running the skip buddy, if running something else can
3165 * be done without getting too unfair.
3166 */
3167 if (cfs_rq->skip == se) {
678d5718
PZ
3168 struct sched_entity *second;
3169
3170 if (se == curr) {
3171 second = __pick_first_entity(cfs_rq);
3172 } else {
3173 second = __pick_next_entity(se);
3174 if (!second || (curr && entity_before(curr, second)))
3175 second = curr;
3176 }
3177
ac53db59
RR
3178 if (second && wakeup_preempt_entity(second, left) < 1)
3179 se = second;
3180 }
aa2ac252 3181
f685ceac
MG
3182 /*
3183 * Prefer last buddy, try to return the CPU to a preempted task.
3184 */
3185 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3186 se = cfs_rq->last;
3187
ac53db59
RR
3188 /*
3189 * Someone really wants this to run. If it's not unfair, run it.
3190 */
3191 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3192 se = cfs_rq->next;
3193
f685ceac 3194 clear_buddies(cfs_rq, se);
4793241b
PZ
3195
3196 return se;
aa2ac252
PZ
3197}
3198
678d5718 3199static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3200
ab6cde26 3201static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3202{
3203 /*
3204 * If still on the runqueue then deactivate_task()
3205 * was not called and update_curr() has to be done:
3206 */
3207 if (prev->on_rq)
b7cc0896 3208 update_curr(cfs_rq);
bf0f6f24 3209
d3d9dc33
PT
3210 /* throttle cfs_rqs exceeding runtime */
3211 check_cfs_rq_runtime(cfs_rq);
3212
ddc97297 3213 check_spread(cfs_rq, prev);
30cfdcfc 3214 if (prev->on_rq) {
5870db5b 3215 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3216 /* Put 'current' back into the tree. */
3217 __enqueue_entity(cfs_rq, prev);
9d85f21c 3218 /* in !on_rq case, update occurred at dequeue */
9d89c257 3219 update_load_avg(prev, 0);
30cfdcfc 3220 }
429d43bc 3221 cfs_rq->curr = NULL;
bf0f6f24
IM
3222}
3223
8f4d37ec
PZ
3224static void
3225entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3226{
bf0f6f24 3227 /*
30cfdcfc 3228 * Update run-time statistics of the 'current'.
bf0f6f24 3229 */
30cfdcfc 3230 update_curr(cfs_rq);
bf0f6f24 3231
9d85f21c
PT
3232 /*
3233 * Ensure that runnable average is periodically updated.
3234 */
9d89c257 3235 update_load_avg(curr, 1);
bf0bd948 3236 update_cfs_shares(cfs_rq);
9d85f21c 3237
8f4d37ec
PZ
3238#ifdef CONFIG_SCHED_HRTICK
3239 /*
3240 * queued ticks are scheduled to match the slice, so don't bother
3241 * validating it and just reschedule.
3242 */
983ed7a6 3243 if (queued) {
8875125e 3244 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3245 return;
3246 }
8f4d37ec
PZ
3247 /*
3248 * don't let the period tick interfere with the hrtick preemption
3249 */
3250 if (!sched_feat(DOUBLE_TICK) &&
3251 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3252 return;
3253#endif
3254
2c2efaed 3255 if (cfs_rq->nr_running > 1)
2e09bf55 3256 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3257}
3258
ab84d31e
PT
3259
3260/**************************************************
3261 * CFS bandwidth control machinery
3262 */
3263
3264#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3265
3266#ifdef HAVE_JUMP_LABEL
c5905afb 3267static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3268
3269static inline bool cfs_bandwidth_used(void)
3270{
c5905afb 3271 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3272}
3273
1ee14e6c 3274void cfs_bandwidth_usage_inc(void)
029632fb 3275{
1ee14e6c
BS
3276 static_key_slow_inc(&__cfs_bandwidth_used);
3277}
3278
3279void cfs_bandwidth_usage_dec(void)
3280{
3281 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3282}
3283#else /* HAVE_JUMP_LABEL */
3284static bool cfs_bandwidth_used(void)
3285{
3286 return true;
3287}
3288
1ee14e6c
BS
3289void cfs_bandwidth_usage_inc(void) {}
3290void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3291#endif /* HAVE_JUMP_LABEL */
3292
ab84d31e
PT
3293/*
3294 * default period for cfs group bandwidth.
3295 * default: 0.1s, units: nanoseconds
3296 */
3297static inline u64 default_cfs_period(void)
3298{
3299 return 100000000ULL;
3300}
ec12cb7f
PT
3301
3302static inline u64 sched_cfs_bandwidth_slice(void)
3303{
3304 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3305}
3306
a9cf55b2
PT
3307/*
3308 * Replenish runtime according to assigned quota and update expiration time.
3309 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3310 * additional synchronization around rq->lock.
3311 *
3312 * requires cfs_b->lock
3313 */
029632fb 3314void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3315{
3316 u64 now;
3317
3318 if (cfs_b->quota == RUNTIME_INF)
3319 return;
3320
3321 now = sched_clock_cpu(smp_processor_id());
3322 cfs_b->runtime = cfs_b->quota;
3323 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3324}
3325
029632fb
PZ
3326static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3327{
3328 return &tg->cfs_bandwidth;
3329}
3330
f1b17280
PT
3331/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3332static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3333{
3334 if (unlikely(cfs_rq->throttle_count))
3335 return cfs_rq->throttled_clock_task;
3336
78becc27 3337 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3338}
3339
85dac906
PT
3340/* returns 0 on failure to allocate runtime */
3341static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3342{
3343 struct task_group *tg = cfs_rq->tg;
3344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3345 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3346
3347 /* note: this is a positive sum as runtime_remaining <= 0 */
3348 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3349
3350 raw_spin_lock(&cfs_b->lock);
3351 if (cfs_b->quota == RUNTIME_INF)
3352 amount = min_amount;
58088ad0 3353 else {
77a4d1a1 3354 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3355
3356 if (cfs_b->runtime > 0) {
3357 amount = min(cfs_b->runtime, min_amount);
3358 cfs_b->runtime -= amount;
3359 cfs_b->idle = 0;
3360 }
ec12cb7f 3361 }
a9cf55b2 3362 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3363 raw_spin_unlock(&cfs_b->lock);
3364
3365 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3366 /*
3367 * we may have advanced our local expiration to account for allowed
3368 * spread between our sched_clock and the one on which runtime was
3369 * issued.
3370 */
3371 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3372 cfs_rq->runtime_expires = expires;
85dac906
PT
3373
3374 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3375}
3376
a9cf55b2
PT
3377/*
3378 * Note: This depends on the synchronization provided by sched_clock and the
3379 * fact that rq->clock snapshots this value.
3380 */
3381static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3382{
a9cf55b2 3383 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3384
3385 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3386 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3387 return;
3388
a9cf55b2
PT
3389 if (cfs_rq->runtime_remaining < 0)
3390 return;
3391
3392 /*
3393 * If the local deadline has passed we have to consider the
3394 * possibility that our sched_clock is 'fast' and the global deadline
3395 * has not truly expired.
3396 *
3397 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3398 * whether the global deadline has advanced. It is valid to compare
3399 * cfs_b->runtime_expires without any locks since we only care about
3400 * exact equality, so a partial write will still work.
a9cf55b2
PT
3401 */
3402
51f2176d 3403 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3404 /* extend local deadline, drift is bounded above by 2 ticks */
3405 cfs_rq->runtime_expires += TICK_NSEC;
3406 } else {
3407 /* global deadline is ahead, expiration has passed */
3408 cfs_rq->runtime_remaining = 0;
3409 }
3410}
3411
9dbdb155 3412static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3413{
3414 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3415 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3416 expire_cfs_rq_runtime(cfs_rq);
3417
3418 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3419 return;
3420
85dac906
PT
3421 /*
3422 * if we're unable to extend our runtime we resched so that the active
3423 * hierarchy can be throttled
3424 */
3425 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3426 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3427}
3428
6c16a6dc 3429static __always_inline
9dbdb155 3430void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3431{
56f570e5 3432 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3433 return;
3434
3435 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3436}
3437
85dac906
PT
3438static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3439{
56f570e5 3440 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3441}
3442
64660c86
PT
3443/* check whether cfs_rq, or any parent, is throttled */
3444static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3445{
56f570e5 3446 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3447}
3448
3449/*
3450 * Ensure that neither of the group entities corresponding to src_cpu or
3451 * dest_cpu are members of a throttled hierarchy when performing group
3452 * load-balance operations.
3453 */
3454static inline int throttled_lb_pair(struct task_group *tg,
3455 int src_cpu, int dest_cpu)
3456{
3457 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3458
3459 src_cfs_rq = tg->cfs_rq[src_cpu];
3460 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3461
3462 return throttled_hierarchy(src_cfs_rq) ||
3463 throttled_hierarchy(dest_cfs_rq);
3464}
3465
3466/* updated child weight may affect parent so we have to do this bottom up */
3467static int tg_unthrottle_up(struct task_group *tg, void *data)
3468{
3469 struct rq *rq = data;
3470 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3471
3472 cfs_rq->throttle_count--;
3473#ifdef CONFIG_SMP
3474 if (!cfs_rq->throttle_count) {
f1b17280 3475 /* adjust cfs_rq_clock_task() */
78becc27 3476 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3477 cfs_rq->throttled_clock_task;
64660c86
PT
3478 }
3479#endif
3480
3481 return 0;
3482}
3483
3484static int tg_throttle_down(struct task_group *tg, void *data)
3485{
3486 struct rq *rq = data;
3487 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3488
82958366
PT
3489 /* group is entering throttled state, stop time */
3490 if (!cfs_rq->throttle_count)
78becc27 3491 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3492 cfs_rq->throttle_count++;
3493
3494 return 0;
3495}
3496
d3d9dc33 3497static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3498{
3499 struct rq *rq = rq_of(cfs_rq);
3500 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3501 struct sched_entity *se;
3502 long task_delta, dequeue = 1;
77a4d1a1 3503 bool empty;
85dac906
PT
3504
3505 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3506
f1b17280 3507 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3508 rcu_read_lock();
3509 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3510 rcu_read_unlock();
85dac906
PT
3511
3512 task_delta = cfs_rq->h_nr_running;
3513 for_each_sched_entity(se) {
3514 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3515 /* throttled entity or throttle-on-deactivate */
3516 if (!se->on_rq)
3517 break;
3518
3519 if (dequeue)
3520 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3521 qcfs_rq->h_nr_running -= task_delta;
3522
3523 if (qcfs_rq->load.weight)
3524 dequeue = 0;
3525 }
3526
3527 if (!se)
72465447 3528 sub_nr_running(rq, task_delta);
85dac906
PT
3529
3530 cfs_rq->throttled = 1;
78becc27 3531 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3532 raw_spin_lock(&cfs_b->lock);
d49db342 3533 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3534
c06f04c7
BS
3535 /*
3536 * Add to the _head_ of the list, so that an already-started
3537 * distribute_cfs_runtime will not see us
3538 */
3539 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3540
3541 /*
3542 * If we're the first throttled task, make sure the bandwidth
3543 * timer is running.
3544 */
3545 if (empty)
3546 start_cfs_bandwidth(cfs_b);
3547
85dac906
PT
3548 raw_spin_unlock(&cfs_b->lock);
3549}
3550
029632fb 3551void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3552{
3553 struct rq *rq = rq_of(cfs_rq);
3554 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3555 struct sched_entity *se;
3556 int enqueue = 1;
3557 long task_delta;
3558
22b958d8 3559 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3560
3561 cfs_rq->throttled = 0;
1a55af2e
FW
3562
3563 update_rq_clock(rq);
3564
671fd9da 3565 raw_spin_lock(&cfs_b->lock);
78becc27 3566 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3567 list_del_rcu(&cfs_rq->throttled_list);
3568 raw_spin_unlock(&cfs_b->lock);
3569
64660c86
PT
3570 /* update hierarchical throttle state */
3571 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3572
671fd9da
PT
3573 if (!cfs_rq->load.weight)
3574 return;
3575
3576 task_delta = cfs_rq->h_nr_running;
3577 for_each_sched_entity(se) {
3578 if (se->on_rq)
3579 enqueue = 0;
3580
3581 cfs_rq = cfs_rq_of(se);
3582 if (enqueue)
3583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3584 cfs_rq->h_nr_running += task_delta;
3585
3586 if (cfs_rq_throttled(cfs_rq))
3587 break;
3588 }
3589
3590 if (!se)
72465447 3591 add_nr_running(rq, task_delta);
671fd9da
PT
3592
3593 /* determine whether we need to wake up potentially idle cpu */
3594 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3595 resched_curr(rq);
671fd9da
PT
3596}
3597
3598static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3599 u64 remaining, u64 expires)
3600{
3601 struct cfs_rq *cfs_rq;
c06f04c7
BS
3602 u64 runtime;
3603 u64 starting_runtime = remaining;
671fd9da
PT
3604
3605 rcu_read_lock();
3606 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3607 throttled_list) {
3608 struct rq *rq = rq_of(cfs_rq);
3609
3610 raw_spin_lock(&rq->lock);
3611 if (!cfs_rq_throttled(cfs_rq))
3612 goto next;
3613
3614 runtime = -cfs_rq->runtime_remaining + 1;
3615 if (runtime > remaining)
3616 runtime = remaining;
3617 remaining -= runtime;
3618
3619 cfs_rq->runtime_remaining += runtime;
3620 cfs_rq->runtime_expires = expires;
3621
3622 /* we check whether we're throttled above */
3623 if (cfs_rq->runtime_remaining > 0)
3624 unthrottle_cfs_rq(cfs_rq);
3625
3626next:
3627 raw_spin_unlock(&rq->lock);
3628
3629 if (!remaining)
3630 break;
3631 }
3632 rcu_read_unlock();
3633
c06f04c7 3634 return starting_runtime - remaining;
671fd9da
PT
3635}
3636
58088ad0
PT
3637/*
3638 * Responsible for refilling a task_group's bandwidth and unthrottling its
3639 * cfs_rqs as appropriate. If there has been no activity within the last
3640 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3641 * used to track this state.
3642 */
3643static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3644{
671fd9da 3645 u64 runtime, runtime_expires;
51f2176d 3646 int throttled;
58088ad0 3647
58088ad0
PT
3648 /* no need to continue the timer with no bandwidth constraint */
3649 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3650 goto out_deactivate;
58088ad0 3651
671fd9da 3652 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3653 cfs_b->nr_periods += overrun;
671fd9da 3654
51f2176d
BS
3655 /*
3656 * idle depends on !throttled (for the case of a large deficit), and if
3657 * we're going inactive then everything else can be deferred
3658 */
3659 if (cfs_b->idle && !throttled)
3660 goto out_deactivate;
a9cf55b2
PT
3661
3662 __refill_cfs_bandwidth_runtime(cfs_b);
3663
671fd9da
PT
3664 if (!throttled) {
3665 /* mark as potentially idle for the upcoming period */
3666 cfs_b->idle = 1;
51f2176d 3667 return 0;
671fd9da
PT
3668 }
3669
e8da1b18
NR
3670 /* account preceding periods in which throttling occurred */
3671 cfs_b->nr_throttled += overrun;
3672
671fd9da 3673 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3674
3675 /*
c06f04c7
BS
3676 * This check is repeated as we are holding onto the new bandwidth while
3677 * we unthrottle. This can potentially race with an unthrottled group
3678 * trying to acquire new bandwidth from the global pool. This can result
3679 * in us over-using our runtime if it is all used during this loop, but
3680 * only by limited amounts in that extreme case.
671fd9da 3681 */
c06f04c7
BS
3682 while (throttled && cfs_b->runtime > 0) {
3683 runtime = cfs_b->runtime;
671fd9da
PT
3684 raw_spin_unlock(&cfs_b->lock);
3685 /* we can't nest cfs_b->lock while distributing bandwidth */
3686 runtime = distribute_cfs_runtime(cfs_b, runtime,
3687 runtime_expires);
3688 raw_spin_lock(&cfs_b->lock);
3689
3690 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3691
3692 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3693 }
58088ad0 3694
671fd9da
PT
3695 /*
3696 * While we are ensured activity in the period following an
3697 * unthrottle, this also covers the case in which the new bandwidth is
3698 * insufficient to cover the existing bandwidth deficit. (Forcing the
3699 * timer to remain active while there are any throttled entities.)
3700 */
3701 cfs_b->idle = 0;
58088ad0 3702
51f2176d
BS
3703 return 0;
3704
3705out_deactivate:
51f2176d 3706 return 1;
58088ad0 3707}
d3d9dc33 3708
d8b4986d
PT
3709/* a cfs_rq won't donate quota below this amount */
3710static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3711/* minimum remaining period time to redistribute slack quota */
3712static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3713/* how long we wait to gather additional slack before distributing */
3714static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3715
db06e78c
BS
3716/*
3717 * Are we near the end of the current quota period?
3718 *
3719 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3720 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3721 * migrate_hrtimers, base is never cleared, so we are fine.
3722 */
d8b4986d
PT
3723static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3724{
3725 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3726 u64 remaining;
3727
3728 /* if the call-back is running a quota refresh is already occurring */
3729 if (hrtimer_callback_running(refresh_timer))
3730 return 1;
3731
3732 /* is a quota refresh about to occur? */
3733 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3734 if (remaining < min_expire)
3735 return 1;
3736
3737 return 0;
3738}
3739
3740static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3741{
3742 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3743
3744 /* if there's a quota refresh soon don't bother with slack */
3745 if (runtime_refresh_within(cfs_b, min_left))
3746 return;
3747
4cfafd30
PZ
3748 hrtimer_start(&cfs_b->slack_timer,
3749 ns_to_ktime(cfs_bandwidth_slack_period),
3750 HRTIMER_MODE_REL);
d8b4986d
PT
3751}
3752
3753/* we know any runtime found here is valid as update_curr() precedes return */
3754static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3755{
3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3757 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3758
3759 if (slack_runtime <= 0)
3760 return;
3761
3762 raw_spin_lock(&cfs_b->lock);
3763 if (cfs_b->quota != RUNTIME_INF &&
3764 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3765 cfs_b->runtime += slack_runtime;
3766
3767 /* we are under rq->lock, defer unthrottling using a timer */
3768 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3769 !list_empty(&cfs_b->throttled_cfs_rq))
3770 start_cfs_slack_bandwidth(cfs_b);
3771 }
3772 raw_spin_unlock(&cfs_b->lock);
3773
3774 /* even if it's not valid for return we don't want to try again */
3775 cfs_rq->runtime_remaining -= slack_runtime;
3776}
3777
3778static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3779{
56f570e5
PT
3780 if (!cfs_bandwidth_used())
3781 return;
3782
fccfdc6f 3783 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3784 return;
3785
3786 __return_cfs_rq_runtime(cfs_rq);
3787}
3788
3789/*
3790 * This is done with a timer (instead of inline with bandwidth return) since
3791 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3792 */
3793static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3794{
3795 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3796 u64 expires;
3797
3798 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3799 raw_spin_lock(&cfs_b->lock);
3800 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3801 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3802 return;
db06e78c 3803 }
d8b4986d 3804
c06f04c7 3805 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3806 runtime = cfs_b->runtime;
c06f04c7 3807
d8b4986d
PT
3808 expires = cfs_b->runtime_expires;
3809 raw_spin_unlock(&cfs_b->lock);
3810
3811 if (!runtime)
3812 return;
3813
3814 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3815
3816 raw_spin_lock(&cfs_b->lock);
3817 if (expires == cfs_b->runtime_expires)
c06f04c7 3818 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3819 raw_spin_unlock(&cfs_b->lock);
3820}
3821
d3d9dc33
PT
3822/*
3823 * When a group wakes up we want to make sure that its quota is not already
3824 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3825 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3826 */
3827static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3828{
56f570e5
PT
3829 if (!cfs_bandwidth_used())
3830 return;
3831
d3d9dc33
PT
3832 /* an active group must be handled by the update_curr()->put() path */
3833 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3834 return;
3835
3836 /* ensure the group is not already throttled */
3837 if (cfs_rq_throttled(cfs_rq))
3838 return;
3839
3840 /* update runtime allocation */
3841 account_cfs_rq_runtime(cfs_rq, 0);
3842 if (cfs_rq->runtime_remaining <= 0)
3843 throttle_cfs_rq(cfs_rq);
3844}
3845
3846/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3847static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3848{
56f570e5 3849 if (!cfs_bandwidth_used())
678d5718 3850 return false;
56f570e5 3851
d3d9dc33 3852 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3853 return false;
d3d9dc33
PT
3854
3855 /*
3856 * it's possible for a throttled entity to be forced into a running
3857 * state (e.g. set_curr_task), in this case we're finished.
3858 */
3859 if (cfs_rq_throttled(cfs_rq))
678d5718 3860 return true;
d3d9dc33
PT
3861
3862 throttle_cfs_rq(cfs_rq);
678d5718 3863 return true;
d3d9dc33 3864}
029632fb 3865
029632fb
PZ
3866static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3867{
3868 struct cfs_bandwidth *cfs_b =
3869 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3870
029632fb
PZ
3871 do_sched_cfs_slack_timer(cfs_b);
3872
3873 return HRTIMER_NORESTART;
3874}
3875
3876static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3877{
3878 struct cfs_bandwidth *cfs_b =
3879 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3880 int overrun;
3881 int idle = 0;
3882
51f2176d 3883 raw_spin_lock(&cfs_b->lock);
029632fb 3884 for (;;) {
77a4d1a1 3885 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3886 if (!overrun)
3887 break;
3888
3889 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3890 }
4cfafd30
PZ
3891 if (idle)
3892 cfs_b->period_active = 0;
51f2176d 3893 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3894
3895 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3896}
3897
3898void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3899{
3900 raw_spin_lock_init(&cfs_b->lock);
3901 cfs_b->runtime = 0;
3902 cfs_b->quota = RUNTIME_INF;
3903 cfs_b->period = ns_to_ktime(default_cfs_period());
3904
3905 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3906 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3907 cfs_b->period_timer.function = sched_cfs_period_timer;
3908 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3909 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3910}
3911
3912static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3913{
3914 cfs_rq->runtime_enabled = 0;
3915 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3916}
3917
77a4d1a1 3918void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3919{
4cfafd30 3920 lockdep_assert_held(&cfs_b->lock);
029632fb 3921
4cfafd30
PZ
3922 if (!cfs_b->period_active) {
3923 cfs_b->period_active = 1;
3924 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3925 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3926 }
029632fb
PZ
3927}
3928
3929static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3930{
7f1a169b
TH
3931 /* init_cfs_bandwidth() was not called */
3932 if (!cfs_b->throttled_cfs_rq.next)
3933 return;
3934
029632fb
PZ
3935 hrtimer_cancel(&cfs_b->period_timer);
3936 hrtimer_cancel(&cfs_b->slack_timer);
3937}
3938
0e59bdae
KT
3939static void __maybe_unused update_runtime_enabled(struct rq *rq)
3940{
3941 struct cfs_rq *cfs_rq;
3942
3943 for_each_leaf_cfs_rq(rq, cfs_rq) {
3944 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3945
3946 raw_spin_lock(&cfs_b->lock);
3947 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3948 raw_spin_unlock(&cfs_b->lock);
3949 }
3950}
3951
38dc3348 3952static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3953{
3954 struct cfs_rq *cfs_rq;
3955
3956 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3957 if (!cfs_rq->runtime_enabled)
3958 continue;
3959
3960 /*
3961 * clock_task is not advancing so we just need to make sure
3962 * there's some valid quota amount
3963 */
51f2176d 3964 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3965 /*
3966 * Offline rq is schedulable till cpu is completely disabled
3967 * in take_cpu_down(), so we prevent new cfs throttling here.
3968 */
3969 cfs_rq->runtime_enabled = 0;
3970
029632fb
PZ
3971 if (cfs_rq_throttled(cfs_rq))
3972 unthrottle_cfs_rq(cfs_rq);
3973 }
3974}
3975
3976#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3977static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3978{
78becc27 3979 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3980}
3981
9dbdb155 3982static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3983static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3984static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3985static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3986
3987static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3988{
3989 return 0;
3990}
64660c86
PT
3991
3992static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3993{
3994 return 0;
3995}
3996
3997static inline int throttled_lb_pair(struct task_group *tg,
3998 int src_cpu, int dest_cpu)
3999{
4000 return 0;
4001}
029632fb
PZ
4002
4003void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4004
4005#ifdef CONFIG_FAIR_GROUP_SCHED
4006static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4007#endif
4008
029632fb
PZ
4009static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4010{
4011 return NULL;
4012}
4013static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4014static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4015static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4016
4017#endif /* CONFIG_CFS_BANDWIDTH */
4018
bf0f6f24
IM
4019/**************************************************
4020 * CFS operations on tasks:
4021 */
4022
8f4d37ec
PZ
4023#ifdef CONFIG_SCHED_HRTICK
4024static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4025{
8f4d37ec
PZ
4026 struct sched_entity *se = &p->se;
4027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4028
4029 WARN_ON(task_rq(p) != rq);
4030
b39e66ea 4031 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4032 u64 slice = sched_slice(cfs_rq, se);
4033 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4034 s64 delta = slice - ran;
4035
4036 if (delta < 0) {
4037 if (rq->curr == p)
8875125e 4038 resched_curr(rq);
8f4d37ec
PZ
4039 return;
4040 }
31656519 4041 hrtick_start(rq, delta);
8f4d37ec
PZ
4042 }
4043}
a4c2f00f
PZ
4044
4045/*
4046 * called from enqueue/dequeue and updates the hrtick when the
4047 * current task is from our class and nr_running is low enough
4048 * to matter.
4049 */
4050static void hrtick_update(struct rq *rq)
4051{
4052 struct task_struct *curr = rq->curr;
4053
b39e66ea 4054 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4055 return;
4056
4057 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4058 hrtick_start_fair(rq, curr);
4059}
55e12e5e 4060#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4061static inline void
4062hrtick_start_fair(struct rq *rq, struct task_struct *p)
4063{
4064}
a4c2f00f
PZ
4065
4066static inline void hrtick_update(struct rq *rq)
4067{
4068}
8f4d37ec
PZ
4069#endif
4070
bf0f6f24
IM
4071/*
4072 * The enqueue_task method is called before nr_running is
4073 * increased. Here we update the fair scheduling stats and
4074 * then put the task into the rbtree:
4075 */
ea87bb78 4076static void
371fd7e7 4077enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4078{
4079 struct cfs_rq *cfs_rq;
62fb1851 4080 struct sched_entity *se = &p->se;
bf0f6f24
IM
4081
4082 for_each_sched_entity(se) {
62fb1851 4083 if (se->on_rq)
bf0f6f24
IM
4084 break;
4085 cfs_rq = cfs_rq_of(se);
88ec22d3 4086 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4087
4088 /*
4089 * end evaluation on encountering a throttled cfs_rq
4090 *
4091 * note: in the case of encountering a throttled cfs_rq we will
4092 * post the final h_nr_running increment below.
4093 */
4094 if (cfs_rq_throttled(cfs_rq))
4095 break;
953bfcd1 4096 cfs_rq->h_nr_running++;
85dac906 4097
88ec22d3 4098 flags = ENQUEUE_WAKEUP;
bf0f6f24 4099 }
8f4d37ec 4100
2069dd75 4101 for_each_sched_entity(se) {
0f317143 4102 cfs_rq = cfs_rq_of(se);
953bfcd1 4103 cfs_rq->h_nr_running++;
2069dd75 4104
85dac906
PT
4105 if (cfs_rq_throttled(cfs_rq))
4106 break;
4107
9d89c257 4108 update_load_avg(se, 1);
17bc14b7 4109 update_cfs_shares(cfs_rq);
2069dd75
PZ
4110 }
4111
cd126afe 4112 if (!se)
72465447 4113 add_nr_running(rq, 1);
cd126afe 4114
a4c2f00f 4115 hrtick_update(rq);
bf0f6f24
IM
4116}
4117
2f36825b
VP
4118static void set_next_buddy(struct sched_entity *se);
4119
bf0f6f24
IM
4120/*
4121 * The dequeue_task method is called before nr_running is
4122 * decreased. We remove the task from the rbtree and
4123 * update the fair scheduling stats:
4124 */
371fd7e7 4125static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4126{
4127 struct cfs_rq *cfs_rq;
62fb1851 4128 struct sched_entity *se = &p->se;
2f36825b 4129 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4130
4131 for_each_sched_entity(se) {
4132 cfs_rq = cfs_rq_of(se);
371fd7e7 4133 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4134
4135 /*
4136 * end evaluation on encountering a throttled cfs_rq
4137 *
4138 * note: in the case of encountering a throttled cfs_rq we will
4139 * post the final h_nr_running decrement below.
4140 */
4141 if (cfs_rq_throttled(cfs_rq))
4142 break;
953bfcd1 4143 cfs_rq->h_nr_running--;
2069dd75 4144
bf0f6f24 4145 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4146 if (cfs_rq->load.weight) {
4147 /*
4148 * Bias pick_next to pick a task from this cfs_rq, as
4149 * p is sleeping when it is within its sched_slice.
4150 */
4151 if (task_sleep && parent_entity(se))
4152 set_next_buddy(parent_entity(se));
9598c82d
PT
4153
4154 /* avoid re-evaluating load for this entity */
4155 se = parent_entity(se);
bf0f6f24 4156 break;
2f36825b 4157 }
371fd7e7 4158 flags |= DEQUEUE_SLEEP;
bf0f6f24 4159 }
8f4d37ec 4160
2069dd75 4161 for_each_sched_entity(se) {
0f317143 4162 cfs_rq = cfs_rq_of(se);
953bfcd1 4163 cfs_rq->h_nr_running--;
2069dd75 4164
85dac906
PT
4165 if (cfs_rq_throttled(cfs_rq))
4166 break;
4167
9d89c257 4168 update_load_avg(se, 1);
17bc14b7 4169 update_cfs_shares(cfs_rq);
2069dd75
PZ
4170 }
4171
cd126afe 4172 if (!se)
72465447 4173 sub_nr_running(rq, 1);
cd126afe 4174
a4c2f00f 4175 hrtick_update(rq);
bf0f6f24
IM
4176}
4177
e7693a36 4178#ifdef CONFIG_SMP
3289bdb4
PZ
4179
4180/*
4181 * per rq 'load' arrray crap; XXX kill this.
4182 */
4183
4184/*
4185 * The exact cpuload at various idx values, calculated at every tick would be
4186 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4187 *
4188 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4189 * on nth tick when cpu may be busy, then we have:
4190 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4191 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4192 *
4193 * decay_load_missed() below does efficient calculation of
4194 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4195 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4196 *
4197 * The calculation is approximated on a 128 point scale.
4198 * degrade_zero_ticks is the number of ticks after which load at any
4199 * particular idx is approximated to be zero.
4200 * degrade_factor is a precomputed table, a row for each load idx.
4201 * Each column corresponds to degradation factor for a power of two ticks,
4202 * based on 128 point scale.
4203 * Example:
4204 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4205 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4206 *
4207 * With this power of 2 load factors, we can degrade the load n times
4208 * by looking at 1 bits in n and doing as many mult/shift instead of
4209 * n mult/shifts needed by the exact degradation.
4210 */
4211#define DEGRADE_SHIFT 7
4212static const unsigned char
4213 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4214static const unsigned char
4215 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4216 {0, 0, 0, 0, 0, 0, 0, 0},
4217 {64, 32, 8, 0, 0, 0, 0, 0},
4218 {96, 72, 40, 12, 1, 0, 0},
4219 {112, 98, 75, 43, 15, 1, 0},
4220 {120, 112, 98, 76, 45, 16, 2} };
4221
4222/*
4223 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4224 * would be when CPU is idle and so we just decay the old load without
4225 * adding any new load.
4226 */
4227static unsigned long
4228decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4229{
4230 int j = 0;
4231
4232 if (!missed_updates)
4233 return load;
4234
4235 if (missed_updates >= degrade_zero_ticks[idx])
4236 return 0;
4237
4238 if (idx == 1)
4239 return load >> missed_updates;
4240
4241 while (missed_updates) {
4242 if (missed_updates % 2)
4243 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4244
4245 missed_updates >>= 1;
4246 j++;
4247 }
4248 return load;
4249}
4250
4251/*
4252 * Update rq->cpu_load[] statistics. This function is usually called every
4253 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4254 * every tick. We fix it up based on jiffies.
4255 */
4256static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4257 unsigned long pending_updates)
4258{
4259 int i, scale;
4260
4261 this_rq->nr_load_updates++;
4262
4263 /* Update our load: */
4264 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4265 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4266 unsigned long old_load, new_load;
4267
4268 /* scale is effectively 1 << i now, and >> i divides by scale */
4269
4270 old_load = this_rq->cpu_load[i];
4271 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4272 new_load = this_load;
4273 /*
4274 * Round up the averaging division if load is increasing. This
4275 * prevents us from getting stuck on 9 if the load is 10, for
4276 * example.
4277 */
4278 if (new_load > old_load)
4279 new_load += scale - 1;
4280
4281 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4282 }
4283
4284 sched_avg_update(this_rq);
4285}
4286
7ea241af
YD
4287/* Used instead of source_load when we know the type == 0 */
4288static unsigned long weighted_cpuload(const int cpu)
4289{
4290 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4291}
4292
3289bdb4
PZ
4293#ifdef CONFIG_NO_HZ_COMMON
4294/*
4295 * There is no sane way to deal with nohz on smp when using jiffies because the
4296 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4297 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4298 *
4299 * Therefore we cannot use the delta approach from the regular tick since that
4300 * would seriously skew the load calculation. However we'll make do for those
4301 * updates happening while idle (nohz_idle_balance) or coming out of idle
4302 * (tick_nohz_idle_exit).
4303 *
4304 * This means we might still be one tick off for nohz periods.
4305 */
4306
4307/*
4308 * Called from nohz_idle_balance() to update the load ratings before doing the
4309 * idle balance.
4310 */
4311static void update_idle_cpu_load(struct rq *this_rq)
4312{
316c1608 4313 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4314 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4315 unsigned long pending_updates;
4316
4317 /*
4318 * bail if there's load or we're actually up-to-date.
4319 */
4320 if (load || curr_jiffies == this_rq->last_load_update_tick)
4321 return;
4322
4323 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4324 this_rq->last_load_update_tick = curr_jiffies;
4325
4326 __update_cpu_load(this_rq, load, pending_updates);
4327}
4328
4329/*
4330 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4331 */
4332void update_cpu_load_nohz(void)
4333{
4334 struct rq *this_rq = this_rq();
316c1608 4335 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4336 unsigned long pending_updates;
4337
4338 if (curr_jiffies == this_rq->last_load_update_tick)
4339 return;
4340
4341 raw_spin_lock(&this_rq->lock);
4342 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4343 if (pending_updates) {
4344 this_rq->last_load_update_tick = curr_jiffies;
4345 /*
4346 * We were idle, this means load 0, the current load might be
4347 * !0 due to remote wakeups and the sort.
4348 */
4349 __update_cpu_load(this_rq, 0, pending_updates);
4350 }
4351 raw_spin_unlock(&this_rq->lock);
4352}
4353#endif /* CONFIG_NO_HZ */
4354
4355/*
4356 * Called from scheduler_tick()
4357 */
4358void update_cpu_load_active(struct rq *this_rq)
4359{
7ea241af 4360 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4361 /*
4362 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4363 */
4364 this_rq->last_load_update_tick = jiffies;
4365 __update_cpu_load(this_rq, load, 1);
4366}
4367
029632fb
PZ
4368/*
4369 * Return a low guess at the load of a migration-source cpu weighted
4370 * according to the scheduling class and "nice" value.
4371 *
4372 * We want to under-estimate the load of migration sources, to
4373 * balance conservatively.
4374 */
4375static unsigned long source_load(int cpu, int type)
4376{
4377 struct rq *rq = cpu_rq(cpu);
4378 unsigned long total = weighted_cpuload(cpu);
4379
4380 if (type == 0 || !sched_feat(LB_BIAS))
4381 return total;
4382
4383 return min(rq->cpu_load[type-1], total);
4384}
4385
4386/*
4387 * Return a high guess at the load of a migration-target cpu weighted
4388 * according to the scheduling class and "nice" value.
4389 */
4390static unsigned long target_load(int cpu, int type)
4391{
4392 struct rq *rq = cpu_rq(cpu);
4393 unsigned long total = weighted_cpuload(cpu);
4394
4395 if (type == 0 || !sched_feat(LB_BIAS))
4396 return total;
4397
4398 return max(rq->cpu_load[type-1], total);
4399}
4400
ced549fa 4401static unsigned long capacity_of(int cpu)
029632fb 4402{
ced549fa 4403 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4404}
4405
ca6d75e6
VG
4406static unsigned long capacity_orig_of(int cpu)
4407{
4408 return cpu_rq(cpu)->cpu_capacity_orig;
4409}
4410
029632fb
PZ
4411static unsigned long cpu_avg_load_per_task(int cpu)
4412{
4413 struct rq *rq = cpu_rq(cpu);
316c1608 4414 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4415 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4416
4417 if (nr_running)
b92486cb 4418 return load_avg / nr_running;
029632fb
PZ
4419
4420 return 0;
4421}
4422
62470419
MW
4423static void record_wakee(struct task_struct *p)
4424{
4425 /*
4426 * Rough decay (wiping) for cost saving, don't worry
4427 * about the boundary, really active task won't care
4428 * about the loss.
4429 */
2538d960 4430 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4431 current->wakee_flips >>= 1;
62470419
MW
4432 current->wakee_flip_decay_ts = jiffies;
4433 }
4434
4435 if (current->last_wakee != p) {
4436 current->last_wakee = p;
4437 current->wakee_flips++;
4438 }
4439}
098fb9db 4440
74f8e4b2 4441static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4442{
4443 struct sched_entity *se = &p->se;
4444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4445 u64 min_vruntime;
4446
4447#ifndef CONFIG_64BIT
4448 u64 min_vruntime_copy;
88ec22d3 4449
3fe1698b
PZ
4450 do {
4451 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4452 smp_rmb();
4453 min_vruntime = cfs_rq->min_vruntime;
4454 } while (min_vruntime != min_vruntime_copy);
4455#else
4456 min_vruntime = cfs_rq->min_vruntime;
4457#endif
88ec22d3 4458
3fe1698b 4459 se->vruntime -= min_vruntime;
62470419 4460 record_wakee(p);
88ec22d3
PZ
4461}
4462
bb3469ac 4463#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4464/*
4465 * effective_load() calculates the load change as seen from the root_task_group
4466 *
4467 * Adding load to a group doesn't make a group heavier, but can cause movement
4468 * of group shares between cpus. Assuming the shares were perfectly aligned one
4469 * can calculate the shift in shares.
cf5f0acf
PZ
4470 *
4471 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4472 * on this @cpu and results in a total addition (subtraction) of @wg to the
4473 * total group weight.
4474 *
4475 * Given a runqueue weight distribution (rw_i) we can compute a shares
4476 * distribution (s_i) using:
4477 *
4478 * s_i = rw_i / \Sum rw_j (1)
4479 *
4480 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4481 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4482 * shares distribution (s_i):
4483 *
4484 * rw_i = { 2, 4, 1, 0 }
4485 * s_i = { 2/7, 4/7, 1/7, 0 }
4486 *
4487 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4488 * task used to run on and the CPU the waker is running on), we need to
4489 * compute the effect of waking a task on either CPU and, in case of a sync
4490 * wakeup, compute the effect of the current task going to sleep.
4491 *
4492 * So for a change of @wl to the local @cpu with an overall group weight change
4493 * of @wl we can compute the new shares distribution (s'_i) using:
4494 *
4495 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4496 *
4497 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4498 * differences in waking a task to CPU 0. The additional task changes the
4499 * weight and shares distributions like:
4500 *
4501 * rw'_i = { 3, 4, 1, 0 }
4502 * s'_i = { 3/8, 4/8, 1/8, 0 }
4503 *
4504 * We can then compute the difference in effective weight by using:
4505 *
4506 * dw_i = S * (s'_i - s_i) (3)
4507 *
4508 * Where 'S' is the group weight as seen by its parent.
4509 *
4510 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4511 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4512 * 4/7) times the weight of the group.
f5bfb7d9 4513 */
2069dd75 4514static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4515{
4be9daaa 4516 struct sched_entity *se = tg->se[cpu];
f1d239f7 4517
9722c2da 4518 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4519 return wl;
4520
4be9daaa 4521 for_each_sched_entity(se) {
cf5f0acf 4522 long w, W;
4be9daaa 4523
977dda7c 4524 tg = se->my_q->tg;
bb3469ac 4525
cf5f0acf
PZ
4526 /*
4527 * W = @wg + \Sum rw_j
4528 */
4529 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4530
cf5f0acf
PZ
4531 /*
4532 * w = rw_i + @wl
4533 */
7ea241af 4534 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4535
cf5f0acf
PZ
4536 /*
4537 * wl = S * s'_i; see (2)
4538 */
4539 if (W > 0 && w < W)
32a8df4e 4540 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4541 else
4542 wl = tg->shares;
940959e9 4543
cf5f0acf
PZ
4544 /*
4545 * Per the above, wl is the new se->load.weight value; since
4546 * those are clipped to [MIN_SHARES, ...) do so now. See
4547 * calc_cfs_shares().
4548 */
977dda7c
PT
4549 if (wl < MIN_SHARES)
4550 wl = MIN_SHARES;
cf5f0acf
PZ
4551
4552 /*
4553 * wl = dw_i = S * (s'_i - s_i); see (3)
4554 */
9d89c257 4555 wl -= se->avg.load_avg;
cf5f0acf
PZ
4556
4557 /*
4558 * Recursively apply this logic to all parent groups to compute
4559 * the final effective load change on the root group. Since
4560 * only the @tg group gets extra weight, all parent groups can
4561 * only redistribute existing shares. @wl is the shift in shares
4562 * resulting from this level per the above.
4563 */
4be9daaa 4564 wg = 0;
4be9daaa 4565 }
bb3469ac 4566
4be9daaa 4567 return wl;
bb3469ac
PZ
4568}
4569#else
4be9daaa 4570
58d081b5 4571static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4572{
83378269 4573 return wl;
bb3469ac 4574}
4be9daaa 4575
bb3469ac
PZ
4576#endif
4577
63b0e9ed
MG
4578/*
4579 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4580 * A waker of many should wake a different task than the one last awakened
4581 * at a frequency roughly N times higher than one of its wakees. In order
4582 * to determine whether we should let the load spread vs consolodating to
4583 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4584 * partner, and a factor of lls_size higher frequency in the other. With
4585 * both conditions met, we can be relatively sure that the relationship is
4586 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4587 * being client/server, worker/dispatcher, interrupt source or whatever is
4588 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4589 */
62470419
MW
4590static int wake_wide(struct task_struct *p)
4591{
63b0e9ed
MG
4592 unsigned int master = current->wakee_flips;
4593 unsigned int slave = p->wakee_flips;
7d9ffa89 4594 int factor = this_cpu_read(sd_llc_size);
62470419 4595
63b0e9ed
MG
4596 if (master < slave)
4597 swap(master, slave);
4598 if (slave < factor || master < slave * factor)
4599 return 0;
4600 return 1;
62470419
MW
4601}
4602
c88d5910 4603static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4604{
e37b6a7b 4605 s64 this_load, load;
bd61c98f 4606 s64 this_eff_load, prev_eff_load;
c88d5910 4607 int idx, this_cpu, prev_cpu;
c88d5910 4608 struct task_group *tg;
83378269 4609 unsigned long weight;
b3137bc8 4610 int balanced;
098fb9db 4611
c88d5910
PZ
4612 idx = sd->wake_idx;
4613 this_cpu = smp_processor_id();
4614 prev_cpu = task_cpu(p);
4615 load = source_load(prev_cpu, idx);
4616 this_load = target_load(this_cpu, idx);
098fb9db 4617
b3137bc8
MG
4618 /*
4619 * If sync wakeup then subtract the (maximum possible)
4620 * effect of the currently running task from the load
4621 * of the current CPU:
4622 */
83378269
PZ
4623 if (sync) {
4624 tg = task_group(current);
9d89c257 4625 weight = current->se.avg.load_avg;
83378269 4626
c88d5910 4627 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4628 load += effective_load(tg, prev_cpu, 0, -weight);
4629 }
b3137bc8 4630
83378269 4631 tg = task_group(p);
9d89c257 4632 weight = p->se.avg.load_avg;
b3137bc8 4633
71a29aa7
PZ
4634 /*
4635 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4636 * due to the sync cause above having dropped this_load to 0, we'll
4637 * always have an imbalance, but there's really nothing you can do
4638 * about that, so that's good too.
71a29aa7
PZ
4639 *
4640 * Otherwise check if either cpus are near enough in load to allow this
4641 * task to be woken on this_cpu.
4642 */
bd61c98f
VG
4643 this_eff_load = 100;
4644 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4645
bd61c98f
VG
4646 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4647 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4648
bd61c98f 4649 if (this_load > 0) {
e51fd5e2
PZ
4650 this_eff_load *= this_load +
4651 effective_load(tg, this_cpu, weight, weight);
4652
e51fd5e2 4653 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4654 }
e51fd5e2 4655
bd61c98f 4656 balanced = this_eff_load <= prev_eff_load;
098fb9db 4657
41acab88 4658 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4659
05bfb65f
VG
4660 if (!balanced)
4661 return 0;
098fb9db 4662
05bfb65f
VG
4663 schedstat_inc(sd, ttwu_move_affine);
4664 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4665
4666 return 1;
098fb9db
IM
4667}
4668
aaee1203
PZ
4669/*
4670 * find_idlest_group finds and returns the least busy CPU group within the
4671 * domain.
4672 */
4673static struct sched_group *
78e7ed53 4674find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4675 int this_cpu, int sd_flag)
e7693a36 4676{
b3bd3de6 4677 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4678 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4679 int load_idx = sd->forkexec_idx;
aaee1203 4680 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4681
c44f2a02
VG
4682 if (sd_flag & SD_BALANCE_WAKE)
4683 load_idx = sd->wake_idx;
4684
aaee1203
PZ
4685 do {
4686 unsigned long load, avg_load;
4687 int local_group;
4688 int i;
e7693a36 4689
aaee1203
PZ
4690 /* Skip over this group if it has no CPUs allowed */
4691 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4692 tsk_cpus_allowed(p)))
aaee1203
PZ
4693 continue;
4694
4695 local_group = cpumask_test_cpu(this_cpu,
4696 sched_group_cpus(group));
4697
4698 /* Tally up the load of all CPUs in the group */
4699 avg_load = 0;
4700
4701 for_each_cpu(i, sched_group_cpus(group)) {
4702 /* Bias balancing toward cpus of our domain */
4703 if (local_group)
4704 load = source_load(i, load_idx);
4705 else
4706 load = target_load(i, load_idx);
4707
4708 avg_load += load;
4709 }
4710
63b2ca30 4711 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4712 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4713
4714 if (local_group) {
4715 this_load = avg_load;
aaee1203
PZ
4716 } else if (avg_load < min_load) {
4717 min_load = avg_load;
4718 idlest = group;
4719 }
4720 } while (group = group->next, group != sd->groups);
4721
4722 if (!idlest || 100*this_load < imbalance*min_load)
4723 return NULL;
4724 return idlest;
4725}
4726
4727/*
4728 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4729 */
4730static int
4731find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4732{
4733 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4734 unsigned int min_exit_latency = UINT_MAX;
4735 u64 latest_idle_timestamp = 0;
4736 int least_loaded_cpu = this_cpu;
4737 int shallowest_idle_cpu = -1;
aaee1203
PZ
4738 int i;
4739
4740 /* Traverse only the allowed CPUs */
fa17b507 4741 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4742 if (idle_cpu(i)) {
4743 struct rq *rq = cpu_rq(i);
4744 struct cpuidle_state *idle = idle_get_state(rq);
4745 if (idle && idle->exit_latency < min_exit_latency) {
4746 /*
4747 * We give priority to a CPU whose idle state
4748 * has the smallest exit latency irrespective
4749 * of any idle timestamp.
4750 */
4751 min_exit_latency = idle->exit_latency;
4752 latest_idle_timestamp = rq->idle_stamp;
4753 shallowest_idle_cpu = i;
4754 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4755 rq->idle_stamp > latest_idle_timestamp) {
4756 /*
4757 * If equal or no active idle state, then
4758 * the most recently idled CPU might have
4759 * a warmer cache.
4760 */
4761 latest_idle_timestamp = rq->idle_stamp;
4762 shallowest_idle_cpu = i;
4763 }
9f96742a 4764 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4765 load = weighted_cpuload(i);
4766 if (load < min_load || (load == min_load && i == this_cpu)) {
4767 min_load = load;
4768 least_loaded_cpu = i;
4769 }
e7693a36
GH
4770 }
4771 }
4772
83a0a96a 4773 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4774}
e7693a36 4775
a50bde51
PZ
4776/*
4777 * Try and locate an idle CPU in the sched_domain.
4778 */
99bd5e2f 4779static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4780{
99bd5e2f 4781 struct sched_domain *sd;
37407ea7 4782 struct sched_group *sg;
e0a79f52 4783 int i = task_cpu(p);
a50bde51 4784
e0a79f52
MG
4785 if (idle_cpu(target))
4786 return target;
99bd5e2f
SS
4787
4788 /*
e0a79f52 4789 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4790 */
e0a79f52
MG
4791 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4792 return i;
a50bde51
PZ
4793
4794 /*
37407ea7 4795 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4796 */
518cd623 4797 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4798 for_each_lower_domain(sd) {
37407ea7
LT
4799 sg = sd->groups;
4800 do {
4801 if (!cpumask_intersects(sched_group_cpus(sg),
4802 tsk_cpus_allowed(p)))
4803 goto next;
4804
4805 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4806 if (i == target || !idle_cpu(i))
37407ea7
LT
4807 goto next;
4808 }
970e1789 4809
37407ea7
LT
4810 target = cpumask_first_and(sched_group_cpus(sg),
4811 tsk_cpus_allowed(p));
4812 goto done;
4813next:
4814 sg = sg->next;
4815 } while (sg != sd->groups);
4816 }
4817done:
a50bde51
PZ
4818 return target;
4819}
8bb5b00c
VG
4820/*
4821 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4822 * tasks. The unit of the return value must be the one of capacity so we can
4823 * compare the usage with the capacity of the CPU that is available for CFS
4824 * task (ie cpu_capacity).
9d89c257 4825 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4826 * CPU. It represents the amount of utilization of a CPU in the range
4827 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4828 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4829 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4830 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4831 * after migrating tasks until the average stabilizes with the new running
4832 * time. So we need to check that the usage stays into the range
4833 * [0..cpu_capacity_orig] and cap if necessary.
4834 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4835 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4836 */
4837static int get_cpu_usage(int cpu)
4838{
9d89c257 4839 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4840 unsigned long capacity = capacity_orig_of(cpu);
4841
4842 if (usage >= SCHED_LOAD_SCALE)
4843 return capacity;
4844
4845 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4846}
a50bde51 4847
aaee1203 4848/*
de91b9cb
MR
4849 * select_task_rq_fair: Select target runqueue for the waking task in domains
4850 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4851 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4852 *
de91b9cb
MR
4853 * Balances load by selecting the idlest cpu in the idlest group, or under
4854 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4855 *
de91b9cb 4856 * Returns the target cpu number.
aaee1203
PZ
4857 *
4858 * preempt must be disabled.
4859 */
0017d735 4860static int
ac66f547 4861select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4862{
29cd8bae 4863 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4864 int cpu = smp_processor_id();
63b0e9ed 4865 int new_cpu = prev_cpu;
99bd5e2f 4866 int want_affine = 0;
5158f4e4 4867 int sync = wake_flags & WF_SYNC;
c88d5910 4868
a8edd075 4869 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4870 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4871
dce840a0 4872 rcu_read_lock();
aaee1203 4873 for_each_domain(cpu, tmp) {
e4f42888 4874 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4875 break;
e4f42888 4876
fe3bcfe1 4877 /*
99bd5e2f
SS
4878 * If both cpu and prev_cpu are part of this domain,
4879 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4880 */
99bd5e2f
SS
4881 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4882 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4883 affine_sd = tmp;
29cd8bae 4884 break;
f03542a7 4885 }
29cd8bae 4886
f03542a7 4887 if (tmp->flags & sd_flag)
29cd8bae 4888 sd = tmp;
63b0e9ed
MG
4889 else if (!want_affine)
4890 break;
29cd8bae
PZ
4891 }
4892
63b0e9ed
MG
4893 if (affine_sd) {
4894 sd = NULL; /* Prefer wake_affine over balance flags */
4895 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4896 new_cpu = cpu;
8b911acd 4897 }
e7693a36 4898
63b0e9ed
MG
4899 if (!sd) {
4900 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4901 new_cpu = select_idle_sibling(p, new_cpu);
4902
4903 } else while (sd) {
aaee1203 4904 struct sched_group *group;
c88d5910 4905 int weight;
098fb9db 4906
0763a660 4907 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4908 sd = sd->child;
4909 continue;
4910 }
098fb9db 4911
c44f2a02 4912 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4913 if (!group) {
4914 sd = sd->child;
4915 continue;
4916 }
4ae7d5ce 4917
d7c33c49 4918 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4919 if (new_cpu == -1 || new_cpu == cpu) {
4920 /* Now try balancing at a lower domain level of cpu */
4921 sd = sd->child;
4922 continue;
e7693a36 4923 }
aaee1203
PZ
4924
4925 /* Now try balancing at a lower domain level of new_cpu */
4926 cpu = new_cpu;
669c55e9 4927 weight = sd->span_weight;
aaee1203
PZ
4928 sd = NULL;
4929 for_each_domain(cpu, tmp) {
669c55e9 4930 if (weight <= tmp->span_weight)
aaee1203 4931 break;
0763a660 4932 if (tmp->flags & sd_flag)
aaee1203
PZ
4933 sd = tmp;
4934 }
4935 /* while loop will break here if sd == NULL */
e7693a36 4936 }
dce840a0 4937 rcu_read_unlock();
e7693a36 4938
c88d5910 4939 return new_cpu;
e7693a36 4940}
0a74bef8
PT
4941
4942/*
4943 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4944 * cfs_rq_of(p) references at time of call are still valid and identify the
4945 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4946 * other assumptions, including the state of rq->lock, should be made.
4947 */
9d89c257 4948static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4949{
aff3e498 4950 /*
9d89c257
YD
4951 * We are supposed to update the task to "current" time, then its up to date
4952 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4953 * what current time is, so simply throw away the out-of-date time. This
4954 * will result in the wakee task is less decayed, but giving the wakee more
4955 * load sounds not bad.
aff3e498 4956 */
9d89c257
YD
4957 remove_entity_load_avg(&p->se);
4958
4959 /* Tell new CPU we are migrated */
4960 p->se.avg.last_update_time = 0;
3944a927
BS
4961
4962 /* We have migrated, no longer consider this task hot */
9d89c257 4963 p->se.exec_start = 0;
0a74bef8 4964}
12695578
YD
4965
4966static void task_dead_fair(struct task_struct *p)
4967{
4968 remove_entity_load_avg(&p->se);
4969}
e7693a36
GH
4970#endif /* CONFIG_SMP */
4971
e52fb7c0
PZ
4972static unsigned long
4973wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4974{
4975 unsigned long gran = sysctl_sched_wakeup_granularity;
4976
4977 /*
e52fb7c0
PZ
4978 * Since its curr running now, convert the gran from real-time
4979 * to virtual-time in his units.
13814d42
MG
4980 *
4981 * By using 'se' instead of 'curr' we penalize light tasks, so
4982 * they get preempted easier. That is, if 'se' < 'curr' then
4983 * the resulting gran will be larger, therefore penalizing the
4984 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4985 * be smaller, again penalizing the lighter task.
4986 *
4987 * This is especially important for buddies when the leftmost
4988 * task is higher priority than the buddy.
0bbd3336 4989 */
f4ad9bd2 4990 return calc_delta_fair(gran, se);
0bbd3336
PZ
4991}
4992
464b7527
PZ
4993/*
4994 * Should 'se' preempt 'curr'.
4995 *
4996 * |s1
4997 * |s2
4998 * |s3
4999 * g
5000 * |<--->|c
5001 *
5002 * w(c, s1) = -1
5003 * w(c, s2) = 0
5004 * w(c, s3) = 1
5005 *
5006 */
5007static int
5008wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5009{
5010 s64 gran, vdiff = curr->vruntime - se->vruntime;
5011
5012 if (vdiff <= 0)
5013 return -1;
5014
e52fb7c0 5015 gran = wakeup_gran(curr, se);
464b7527
PZ
5016 if (vdiff > gran)
5017 return 1;
5018
5019 return 0;
5020}
5021
02479099
PZ
5022static void set_last_buddy(struct sched_entity *se)
5023{
69c80f3e
VP
5024 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5025 return;
5026
5027 for_each_sched_entity(se)
5028 cfs_rq_of(se)->last = se;
02479099
PZ
5029}
5030
5031static void set_next_buddy(struct sched_entity *se)
5032{
69c80f3e
VP
5033 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5034 return;
5035
5036 for_each_sched_entity(se)
5037 cfs_rq_of(se)->next = se;
02479099
PZ
5038}
5039
ac53db59
RR
5040static void set_skip_buddy(struct sched_entity *se)
5041{
69c80f3e
VP
5042 for_each_sched_entity(se)
5043 cfs_rq_of(se)->skip = se;
ac53db59
RR
5044}
5045
bf0f6f24
IM
5046/*
5047 * Preempt the current task with a newly woken task if needed:
5048 */
5a9b86f6 5049static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5050{
5051 struct task_struct *curr = rq->curr;
8651a86c 5052 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5053 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5054 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5055 int next_buddy_marked = 0;
bf0f6f24 5056
4ae7d5ce
IM
5057 if (unlikely(se == pse))
5058 return;
5059
5238cdd3 5060 /*
163122b7 5061 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5062 * unconditionally check_prempt_curr() after an enqueue (which may have
5063 * lead to a throttle). This both saves work and prevents false
5064 * next-buddy nomination below.
5065 */
5066 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5067 return;
5068
2f36825b 5069 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5070 set_next_buddy(pse);
2f36825b
VP
5071 next_buddy_marked = 1;
5072 }
57fdc26d 5073
aec0a514
BR
5074 /*
5075 * We can come here with TIF_NEED_RESCHED already set from new task
5076 * wake up path.
5238cdd3
PT
5077 *
5078 * Note: this also catches the edge-case of curr being in a throttled
5079 * group (e.g. via set_curr_task), since update_curr() (in the
5080 * enqueue of curr) will have resulted in resched being set. This
5081 * prevents us from potentially nominating it as a false LAST_BUDDY
5082 * below.
aec0a514
BR
5083 */
5084 if (test_tsk_need_resched(curr))
5085 return;
5086
a2f5c9ab
DH
5087 /* Idle tasks are by definition preempted by non-idle tasks. */
5088 if (unlikely(curr->policy == SCHED_IDLE) &&
5089 likely(p->policy != SCHED_IDLE))
5090 goto preempt;
5091
91c234b4 5092 /*
a2f5c9ab
DH
5093 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5094 * is driven by the tick):
91c234b4 5095 */
8ed92e51 5096 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5097 return;
bf0f6f24 5098
464b7527 5099 find_matching_se(&se, &pse);
9bbd7374 5100 update_curr(cfs_rq_of(se));
002f128b 5101 BUG_ON(!pse);
2f36825b
VP
5102 if (wakeup_preempt_entity(se, pse) == 1) {
5103 /*
5104 * Bias pick_next to pick the sched entity that is
5105 * triggering this preemption.
5106 */
5107 if (!next_buddy_marked)
5108 set_next_buddy(pse);
3a7e73a2 5109 goto preempt;
2f36825b 5110 }
464b7527 5111
3a7e73a2 5112 return;
a65ac745 5113
3a7e73a2 5114preempt:
8875125e 5115 resched_curr(rq);
3a7e73a2
PZ
5116 /*
5117 * Only set the backward buddy when the current task is still
5118 * on the rq. This can happen when a wakeup gets interleaved
5119 * with schedule on the ->pre_schedule() or idle_balance()
5120 * point, either of which can * drop the rq lock.
5121 *
5122 * Also, during early boot the idle thread is in the fair class,
5123 * for obvious reasons its a bad idea to schedule back to it.
5124 */
5125 if (unlikely(!se->on_rq || curr == rq->idle))
5126 return;
5127
5128 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5129 set_last_buddy(se);
bf0f6f24
IM
5130}
5131
606dba2e
PZ
5132static struct task_struct *
5133pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5134{
5135 struct cfs_rq *cfs_rq = &rq->cfs;
5136 struct sched_entity *se;
678d5718 5137 struct task_struct *p;
37e117c0 5138 int new_tasks;
678d5718 5139
6e83125c 5140again:
678d5718
PZ
5141#ifdef CONFIG_FAIR_GROUP_SCHED
5142 if (!cfs_rq->nr_running)
38033c37 5143 goto idle;
678d5718 5144
3f1d2a31 5145 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5146 goto simple;
5147
5148 /*
5149 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5150 * likely that a next task is from the same cgroup as the current.
5151 *
5152 * Therefore attempt to avoid putting and setting the entire cgroup
5153 * hierarchy, only change the part that actually changes.
5154 */
5155
5156 do {
5157 struct sched_entity *curr = cfs_rq->curr;
5158
5159 /*
5160 * Since we got here without doing put_prev_entity() we also
5161 * have to consider cfs_rq->curr. If it is still a runnable
5162 * entity, update_curr() will update its vruntime, otherwise
5163 * forget we've ever seen it.
5164 */
54d27365
BS
5165 if (curr) {
5166 if (curr->on_rq)
5167 update_curr(cfs_rq);
5168 else
5169 curr = NULL;
678d5718 5170
54d27365
BS
5171 /*
5172 * This call to check_cfs_rq_runtime() will do the
5173 * throttle and dequeue its entity in the parent(s).
5174 * Therefore the 'simple' nr_running test will indeed
5175 * be correct.
5176 */
5177 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5178 goto simple;
5179 }
678d5718
PZ
5180
5181 se = pick_next_entity(cfs_rq, curr);
5182 cfs_rq = group_cfs_rq(se);
5183 } while (cfs_rq);
5184
5185 p = task_of(se);
5186
5187 /*
5188 * Since we haven't yet done put_prev_entity and if the selected task
5189 * is a different task than we started out with, try and touch the
5190 * least amount of cfs_rqs.
5191 */
5192 if (prev != p) {
5193 struct sched_entity *pse = &prev->se;
5194
5195 while (!(cfs_rq = is_same_group(se, pse))) {
5196 int se_depth = se->depth;
5197 int pse_depth = pse->depth;
5198
5199 if (se_depth <= pse_depth) {
5200 put_prev_entity(cfs_rq_of(pse), pse);
5201 pse = parent_entity(pse);
5202 }
5203 if (se_depth >= pse_depth) {
5204 set_next_entity(cfs_rq_of(se), se);
5205 se = parent_entity(se);
5206 }
5207 }
5208
5209 put_prev_entity(cfs_rq, pse);
5210 set_next_entity(cfs_rq, se);
5211 }
5212
5213 if (hrtick_enabled(rq))
5214 hrtick_start_fair(rq, p);
5215
5216 return p;
5217simple:
5218 cfs_rq = &rq->cfs;
5219#endif
bf0f6f24 5220
36ace27e 5221 if (!cfs_rq->nr_running)
38033c37 5222 goto idle;
bf0f6f24 5223
3f1d2a31 5224 put_prev_task(rq, prev);
606dba2e 5225
bf0f6f24 5226 do {
678d5718 5227 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5228 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5229 cfs_rq = group_cfs_rq(se);
5230 } while (cfs_rq);
5231
8f4d37ec 5232 p = task_of(se);
678d5718 5233
b39e66ea
MG
5234 if (hrtick_enabled(rq))
5235 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5236
5237 return p;
38033c37
PZ
5238
5239idle:
cbce1a68
PZ
5240 /*
5241 * This is OK, because current is on_cpu, which avoids it being picked
5242 * for load-balance and preemption/IRQs are still disabled avoiding
5243 * further scheduler activity on it and we're being very careful to
5244 * re-start the picking loop.
5245 */
5246 lockdep_unpin_lock(&rq->lock);
e4aa358b 5247 new_tasks = idle_balance(rq);
cbce1a68 5248 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5249 /*
5250 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5251 * possible for any higher priority task to appear. In that case we
5252 * must re-start the pick_next_entity() loop.
5253 */
e4aa358b 5254 if (new_tasks < 0)
37e117c0
PZ
5255 return RETRY_TASK;
5256
e4aa358b 5257 if (new_tasks > 0)
38033c37 5258 goto again;
38033c37
PZ
5259
5260 return NULL;
bf0f6f24
IM
5261}
5262
5263/*
5264 * Account for a descheduled task:
5265 */
31ee529c 5266static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5267{
5268 struct sched_entity *se = &prev->se;
5269 struct cfs_rq *cfs_rq;
5270
5271 for_each_sched_entity(se) {
5272 cfs_rq = cfs_rq_of(se);
ab6cde26 5273 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5274 }
5275}
5276
ac53db59
RR
5277/*
5278 * sched_yield() is very simple
5279 *
5280 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5281 */
5282static void yield_task_fair(struct rq *rq)
5283{
5284 struct task_struct *curr = rq->curr;
5285 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5286 struct sched_entity *se = &curr->se;
5287
5288 /*
5289 * Are we the only task in the tree?
5290 */
5291 if (unlikely(rq->nr_running == 1))
5292 return;
5293
5294 clear_buddies(cfs_rq, se);
5295
5296 if (curr->policy != SCHED_BATCH) {
5297 update_rq_clock(rq);
5298 /*
5299 * Update run-time statistics of the 'current'.
5300 */
5301 update_curr(cfs_rq);
916671c0
MG
5302 /*
5303 * Tell update_rq_clock() that we've just updated,
5304 * so we don't do microscopic update in schedule()
5305 * and double the fastpath cost.
5306 */
9edfbfed 5307 rq_clock_skip_update(rq, true);
ac53db59
RR
5308 }
5309
5310 set_skip_buddy(se);
5311}
5312
d95f4122
MG
5313static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5314{
5315 struct sched_entity *se = &p->se;
5316
5238cdd3
PT
5317 /* throttled hierarchies are not runnable */
5318 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5319 return false;
5320
5321 /* Tell the scheduler that we'd really like pse to run next. */
5322 set_next_buddy(se);
5323
d95f4122
MG
5324 yield_task_fair(rq);
5325
5326 return true;
5327}
5328
681f3e68 5329#ifdef CONFIG_SMP
bf0f6f24 5330/**************************************************
e9c84cb8
PZ
5331 * Fair scheduling class load-balancing methods.
5332 *
5333 * BASICS
5334 *
5335 * The purpose of load-balancing is to achieve the same basic fairness the
5336 * per-cpu scheduler provides, namely provide a proportional amount of compute
5337 * time to each task. This is expressed in the following equation:
5338 *
5339 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5340 *
5341 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5342 * W_i,0 is defined as:
5343 *
5344 * W_i,0 = \Sum_j w_i,j (2)
5345 *
5346 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5347 * is derived from the nice value as per prio_to_weight[].
5348 *
5349 * The weight average is an exponential decay average of the instantaneous
5350 * weight:
5351 *
5352 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5353 *
ced549fa 5354 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5355 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5356 * can also include other factors [XXX].
5357 *
5358 * To achieve this balance we define a measure of imbalance which follows
5359 * directly from (1):
5360 *
ced549fa 5361 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5362 *
5363 * We them move tasks around to minimize the imbalance. In the continuous
5364 * function space it is obvious this converges, in the discrete case we get
5365 * a few fun cases generally called infeasible weight scenarios.
5366 *
5367 * [XXX expand on:
5368 * - infeasible weights;
5369 * - local vs global optima in the discrete case. ]
5370 *
5371 *
5372 * SCHED DOMAINS
5373 *
5374 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5375 * for all i,j solution, we create a tree of cpus that follows the hardware
5376 * topology where each level pairs two lower groups (or better). This results
5377 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5378 * tree to only the first of the previous level and we decrease the frequency
5379 * of load-balance at each level inv. proportional to the number of cpus in
5380 * the groups.
5381 *
5382 * This yields:
5383 *
5384 * log_2 n 1 n
5385 * \Sum { --- * --- * 2^i } = O(n) (5)
5386 * i = 0 2^i 2^i
5387 * `- size of each group
5388 * | | `- number of cpus doing load-balance
5389 * | `- freq
5390 * `- sum over all levels
5391 *
5392 * Coupled with a limit on how many tasks we can migrate every balance pass,
5393 * this makes (5) the runtime complexity of the balancer.
5394 *
5395 * An important property here is that each CPU is still (indirectly) connected
5396 * to every other cpu in at most O(log n) steps:
5397 *
5398 * The adjacency matrix of the resulting graph is given by:
5399 *
5400 * log_2 n
5401 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5402 * k = 0
5403 *
5404 * And you'll find that:
5405 *
5406 * A^(log_2 n)_i,j != 0 for all i,j (7)
5407 *
5408 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5409 * The task movement gives a factor of O(m), giving a convergence complexity
5410 * of:
5411 *
5412 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5413 *
5414 *
5415 * WORK CONSERVING
5416 *
5417 * In order to avoid CPUs going idle while there's still work to do, new idle
5418 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5419 * tree itself instead of relying on other CPUs to bring it work.
5420 *
5421 * This adds some complexity to both (5) and (8) but it reduces the total idle
5422 * time.
5423 *
5424 * [XXX more?]
5425 *
5426 *
5427 * CGROUPS
5428 *
5429 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5430 *
5431 * s_k,i
5432 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5433 * S_k
5434 *
5435 * Where
5436 *
5437 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5438 *
5439 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5440 *
5441 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5442 * property.
5443 *
5444 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5445 * rewrite all of this once again.]
5446 */
bf0f6f24 5447
ed387b78
HS
5448static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5449
0ec8aa00
PZ
5450enum fbq_type { regular, remote, all };
5451
ddcdf6e7 5452#define LBF_ALL_PINNED 0x01
367456c7 5453#define LBF_NEED_BREAK 0x02
6263322c
PZ
5454#define LBF_DST_PINNED 0x04
5455#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5456
5457struct lb_env {
5458 struct sched_domain *sd;
5459
ddcdf6e7 5460 struct rq *src_rq;
85c1e7da 5461 int src_cpu;
ddcdf6e7
PZ
5462
5463 int dst_cpu;
5464 struct rq *dst_rq;
5465
88b8dac0
SV
5466 struct cpumask *dst_grpmask;
5467 int new_dst_cpu;
ddcdf6e7 5468 enum cpu_idle_type idle;
bd939f45 5469 long imbalance;
b9403130
MW
5470 /* The set of CPUs under consideration for load-balancing */
5471 struct cpumask *cpus;
5472
ddcdf6e7 5473 unsigned int flags;
367456c7
PZ
5474
5475 unsigned int loop;
5476 unsigned int loop_break;
5477 unsigned int loop_max;
0ec8aa00
PZ
5478
5479 enum fbq_type fbq_type;
163122b7 5480 struct list_head tasks;
ddcdf6e7
PZ
5481};
5482
029632fb
PZ
5483/*
5484 * Is this task likely cache-hot:
5485 */
5d5e2b1b 5486static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5487{
5488 s64 delta;
5489
e5673f28
KT
5490 lockdep_assert_held(&env->src_rq->lock);
5491
029632fb
PZ
5492 if (p->sched_class != &fair_sched_class)
5493 return 0;
5494
5495 if (unlikely(p->policy == SCHED_IDLE))
5496 return 0;
5497
5498 /*
5499 * Buddy candidates are cache hot:
5500 */
5d5e2b1b 5501 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5502 (&p->se == cfs_rq_of(&p->se)->next ||
5503 &p->se == cfs_rq_of(&p->se)->last))
5504 return 1;
5505
5506 if (sysctl_sched_migration_cost == -1)
5507 return 1;
5508 if (sysctl_sched_migration_cost == 0)
5509 return 0;
5510
5d5e2b1b 5511 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5512
5513 return delta < (s64)sysctl_sched_migration_cost;
5514}
5515
3a7053b3 5516#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5517/*
2a1ed24c
SD
5518 * Returns 1, if task migration degrades locality
5519 * Returns 0, if task migration improves locality i.e migration preferred.
5520 * Returns -1, if task migration is not affected by locality.
c1ceac62 5521 */
2a1ed24c 5522static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5523{
b1ad065e 5524 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5525 unsigned long src_faults, dst_faults;
3a7053b3
MG
5526 int src_nid, dst_nid;
5527
44dba3d5 5528 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5529 return -1;
5530
5531 if (!sched_feat(NUMA))
5532 return -1;
7a0f3083
MG
5533
5534 src_nid = cpu_to_node(env->src_cpu);
5535 dst_nid = cpu_to_node(env->dst_cpu);
5536
83e1d2cd 5537 if (src_nid == dst_nid)
2a1ed24c 5538 return -1;
7a0f3083 5539
2a1ed24c
SD
5540 /* Migrating away from the preferred node is always bad. */
5541 if (src_nid == p->numa_preferred_nid) {
5542 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5543 return 1;
5544 else
5545 return -1;
5546 }
b1ad065e 5547
c1ceac62
RR
5548 /* Encourage migration to the preferred node. */
5549 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5550 return 0;
b1ad065e 5551
c1ceac62
RR
5552 if (numa_group) {
5553 src_faults = group_faults(p, src_nid);
5554 dst_faults = group_faults(p, dst_nid);
5555 } else {
5556 src_faults = task_faults(p, src_nid);
5557 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5558 }
5559
c1ceac62 5560 return dst_faults < src_faults;
7a0f3083
MG
5561}
5562
3a7053b3 5563#else
2a1ed24c 5564static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5565 struct lb_env *env)
5566{
2a1ed24c 5567 return -1;
7a0f3083 5568}
3a7053b3
MG
5569#endif
5570
1e3c88bd
PZ
5571/*
5572 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5573 */
5574static
8e45cb54 5575int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5576{
2a1ed24c 5577 int tsk_cache_hot;
e5673f28
KT
5578
5579 lockdep_assert_held(&env->src_rq->lock);
5580
1e3c88bd
PZ
5581 /*
5582 * We do not migrate tasks that are:
d3198084 5583 * 1) throttled_lb_pair, or
1e3c88bd 5584 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5585 * 3) running (obviously), or
5586 * 4) are cache-hot on their current CPU.
1e3c88bd 5587 */
d3198084
JK
5588 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5589 return 0;
5590
ddcdf6e7 5591 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5592 int cpu;
88b8dac0 5593
41acab88 5594 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5595
6263322c
PZ
5596 env->flags |= LBF_SOME_PINNED;
5597
88b8dac0
SV
5598 /*
5599 * Remember if this task can be migrated to any other cpu in
5600 * our sched_group. We may want to revisit it if we couldn't
5601 * meet load balance goals by pulling other tasks on src_cpu.
5602 *
5603 * Also avoid computing new_dst_cpu if we have already computed
5604 * one in current iteration.
5605 */
6263322c 5606 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5607 return 0;
5608
e02e60c1
JK
5609 /* Prevent to re-select dst_cpu via env's cpus */
5610 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5611 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5612 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5613 env->new_dst_cpu = cpu;
5614 break;
5615 }
88b8dac0 5616 }
e02e60c1 5617
1e3c88bd
PZ
5618 return 0;
5619 }
88b8dac0
SV
5620
5621 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5622 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5623
ddcdf6e7 5624 if (task_running(env->src_rq, p)) {
41acab88 5625 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5626 return 0;
5627 }
5628
5629 /*
5630 * Aggressive migration if:
3a7053b3
MG
5631 * 1) destination numa is preferred
5632 * 2) task is cache cold, or
5633 * 3) too many balance attempts have failed.
1e3c88bd 5634 */
2a1ed24c
SD
5635 tsk_cache_hot = migrate_degrades_locality(p, env);
5636 if (tsk_cache_hot == -1)
5637 tsk_cache_hot = task_hot(p, env);
3a7053b3 5638
2a1ed24c 5639 if (tsk_cache_hot <= 0 ||
7a96c231 5640 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5641 if (tsk_cache_hot == 1) {
3a7053b3
MG
5642 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5643 schedstat_inc(p, se.statistics.nr_forced_migrations);
5644 }
1e3c88bd
PZ
5645 return 1;
5646 }
5647
4e2dcb73
ZH
5648 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5649 return 0;
1e3c88bd
PZ
5650}
5651
897c395f 5652/*
163122b7
KT
5653 * detach_task() -- detach the task for the migration specified in env
5654 */
5655static void detach_task(struct task_struct *p, struct lb_env *env)
5656{
5657 lockdep_assert_held(&env->src_rq->lock);
5658
5659 deactivate_task(env->src_rq, p, 0);
5660 p->on_rq = TASK_ON_RQ_MIGRATING;
5661 set_task_cpu(p, env->dst_cpu);
5662}
5663
897c395f 5664/*
e5673f28 5665 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5666 * part of active balancing operations within "domain".
897c395f 5667 *
e5673f28 5668 * Returns a task if successful and NULL otherwise.
897c395f 5669 */
e5673f28 5670static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5671{
5672 struct task_struct *p, *n;
897c395f 5673
e5673f28
KT
5674 lockdep_assert_held(&env->src_rq->lock);
5675
367456c7 5676 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5677 if (!can_migrate_task(p, env))
5678 continue;
897c395f 5679
163122b7 5680 detach_task(p, env);
e5673f28 5681
367456c7 5682 /*
e5673f28 5683 * Right now, this is only the second place where
163122b7 5684 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5685 * so we can safely collect stats here rather than
163122b7 5686 * inside detach_tasks().
367456c7
PZ
5687 */
5688 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5689 return p;
897c395f 5690 }
e5673f28 5691 return NULL;
897c395f
PZ
5692}
5693
eb95308e
PZ
5694static const unsigned int sched_nr_migrate_break = 32;
5695
5d6523eb 5696/*
163122b7
KT
5697 * detach_tasks() -- tries to detach up to imbalance weighted load from
5698 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5699 *
163122b7 5700 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5701 */
163122b7 5702static int detach_tasks(struct lb_env *env)
1e3c88bd 5703{
5d6523eb
PZ
5704 struct list_head *tasks = &env->src_rq->cfs_tasks;
5705 struct task_struct *p;
367456c7 5706 unsigned long load;
163122b7
KT
5707 int detached = 0;
5708
5709 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5710
bd939f45 5711 if (env->imbalance <= 0)
5d6523eb 5712 return 0;
1e3c88bd 5713
5d6523eb 5714 while (!list_empty(tasks)) {
985d3a4c
YD
5715 /*
5716 * We don't want to steal all, otherwise we may be treated likewise,
5717 * which could at worst lead to a livelock crash.
5718 */
5719 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5720 break;
5721
5d6523eb 5722 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5723
367456c7
PZ
5724 env->loop++;
5725 /* We've more or less seen every task there is, call it quits */
5d6523eb 5726 if (env->loop > env->loop_max)
367456c7 5727 break;
5d6523eb
PZ
5728
5729 /* take a breather every nr_migrate tasks */
367456c7 5730 if (env->loop > env->loop_break) {
eb95308e 5731 env->loop_break += sched_nr_migrate_break;
8e45cb54 5732 env->flags |= LBF_NEED_BREAK;
ee00e66f 5733 break;
a195f004 5734 }
1e3c88bd 5735
d3198084 5736 if (!can_migrate_task(p, env))
367456c7
PZ
5737 goto next;
5738
5739 load = task_h_load(p);
5d6523eb 5740
eb95308e 5741 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5742 goto next;
5743
bd939f45 5744 if ((load / 2) > env->imbalance)
367456c7 5745 goto next;
1e3c88bd 5746
163122b7
KT
5747 detach_task(p, env);
5748 list_add(&p->se.group_node, &env->tasks);
5749
5750 detached++;
bd939f45 5751 env->imbalance -= load;
1e3c88bd
PZ
5752
5753#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5754 /*
5755 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5756 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5757 * the critical section.
5758 */
5d6523eb 5759 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5760 break;
1e3c88bd
PZ
5761#endif
5762
ee00e66f
PZ
5763 /*
5764 * We only want to steal up to the prescribed amount of
5765 * weighted load.
5766 */
bd939f45 5767 if (env->imbalance <= 0)
ee00e66f 5768 break;
367456c7
PZ
5769
5770 continue;
5771next:
5d6523eb 5772 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5773 }
5d6523eb 5774
1e3c88bd 5775 /*
163122b7
KT
5776 * Right now, this is one of only two places we collect this stat
5777 * so we can safely collect detach_one_task() stats here rather
5778 * than inside detach_one_task().
1e3c88bd 5779 */
163122b7 5780 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5781
163122b7
KT
5782 return detached;
5783}
5784
5785/*
5786 * attach_task() -- attach the task detached by detach_task() to its new rq.
5787 */
5788static void attach_task(struct rq *rq, struct task_struct *p)
5789{
5790 lockdep_assert_held(&rq->lock);
5791
5792 BUG_ON(task_rq(p) != rq);
5793 p->on_rq = TASK_ON_RQ_QUEUED;
5794 activate_task(rq, p, 0);
5795 check_preempt_curr(rq, p, 0);
5796}
5797
5798/*
5799 * attach_one_task() -- attaches the task returned from detach_one_task() to
5800 * its new rq.
5801 */
5802static void attach_one_task(struct rq *rq, struct task_struct *p)
5803{
5804 raw_spin_lock(&rq->lock);
5805 attach_task(rq, p);
5806 raw_spin_unlock(&rq->lock);
5807}
5808
5809/*
5810 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5811 * new rq.
5812 */
5813static void attach_tasks(struct lb_env *env)
5814{
5815 struct list_head *tasks = &env->tasks;
5816 struct task_struct *p;
5817
5818 raw_spin_lock(&env->dst_rq->lock);
5819
5820 while (!list_empty(tasks)) {
5821 p = list_first_entry(tasks, struct task_struct, se.group_node);
5822 list_del_init(&p->se.group_node);
1e3c88bd 5823
163122b7
KT
5824 attach_task(env->dst_rq, p);
5825 }
5826
5827 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5828}
5829
230059de 5830#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5831static void update_blocked_averages(int cpu)
9e3081ca 5832{
9e3081ca 5833 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5834 struct cfs_rq *cfs_rq;
5835 unsigned long flags;
9e3081ca 5836
48a16753
PT
5837 raw_spin_lock_irqsave(&rq->lock, flags);
5838 update_rq_clock(rq);
9d89c257 5839
9763b67f
PZ
5840 /*
5841 * Iterates the task_group tree in a bottom up fashion, see
5842 * list_add_leaf_cfs_rq() for details.
5843 */
64660c86 5844 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5845 /* throttled entities do not contribute to load */
5846 if (throttled_hierarchy(cfs_rq))
5847 continue;
48a16753 5848
9d89c257
YD
5849 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5850 update_tg_load_avg(cfs_rq, 0);
5851 }
48a16753 5852 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5853}
5854
9763b67f 5855/*
68520796 5856 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5857 * This needs to be done in a top-down fashion because the load of a child
5858 * group is a fraction of its parents load.
5859 */
68520796 5860static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5861{
68520796
VD
5862 struct rq *rq = rq_of(cfs_rq);
5863 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5864 unsigned long now = jiffies;
68520796 5865 unsigned long load;
a35b6466 5866
68520796 5867 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5868 return;
5869
68520796
VD
5870 cfs_rq->h_load_next = NULL;
5871 for_each_sched_entity(se) {
5872 cfs_rq = cfs_rq_of(se);
5873 cfs_rq->h_load_next = se;
5874 if (cfs_rq->last_h_load_update == now)
5875 break;
5876 }
a35b6466 5877
68520796 5878 if (!se) {
7ea241af 5879 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5880 cfs_rq->last_h_load_update = now;
5881 }
5882
5883 while ((se = cfs_rq->h_load_next) != NULL) {
5884 load = cfs_rq->h_load;
7ea241af
YD
5885 load = div64_ul(load * se->avg.load_avg,
5886 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5887 cfs_rq = group_cfs_rq(se);
5888 cfs_rq->h_load = load;
5889 cfs_rq->last_h_load_update = now;
5890 }
9763b67f
PZ
5891}
5892
367456c7 5893static unsigned long task_h_load(struct task_struct *p)
230059de 5894{
367456c7 5895 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5896
68520796 5897 update_cfs_rq_h_load(cfs_rq);
9d89c257 5898 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5899 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5900}
5901#else
48a16753 5902static inline void update_blocked_averages(int cpu)
9e3081ca 5903{
6c1d47c0
VG
5904 struct rq *rq = cpu_rq(cpu);
5905 struct cfs_rq *cfs_rq = &rq->cfs;
5906 unsigned long flags;
5907
5908 raw_spin_lock_irqsave(&rq->lock, flags);
5909 update_rq_clock(rq);
5910 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5911 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5912}
5913
367456c7 5914static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5915{
9d89c257 5916 return p->se.avg.load_avg;
1e3c88bd 5917}
230059de 5918#endif
1e3c88bd 5919
1e3c88bd 5920/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5921
5922enum group_type {
5923 group_other = 0,
5924 group_imbalanced,
5925 group_overloaded,
5926};
5927
1e3c88bd
PZ
5928/*
5929 * sg_lb_stats - stats of a sched_group required for load_balancing
5930 */
5931struct sg_lb_stats {
5932 unsigned long avg_load; /*Avg load across the CPUs of the group */
5933 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5934 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5935 unsigned long load_per_task;
63b2ca30 5936 unsigned long group_capacity;
8bb5b00c 5937 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5938 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5939 unsigned int idle_cpus;
5940 unsigned int group_weight;
caeb178c 5941 enum group_type group_type;
ea67821b 5942 int group_no_capacity;
0ec8aa00
PZ
5943#ifdef CONFIG_NUMA_BALANCING
5944 unsigned int nr_numa_running;
5945 unsigned int nr_preferred_running;
5946#endif
1e3c88bd
PZ
5947};
5948
56cf515b
JK
5949/*
5950 * sd_lb_stats - Structure to store the statistics of a sched_domain
5951 * during load balancing.
5952 */
5953struct sd_lb_stats {
5954 struct sched_group *busiest; /* Busiest group in this sd */
5955 struct sched_group *local; /* Local group in this sd */
5956 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5957 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5958 unsigned long avg_load; /* Average load across all groups in sd */
5959
56cf515b 5960 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5961 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5962};
5963
147c5fc2
PZ
5964static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5965{
5966 /*
5967 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5968 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5969 * We must however clear busiest_stat::avg_load because
5970 * update_sd_pick_busiest() reads this before assignment.
5971 */
5972 *sds = (struct sd_lb_stats){
5973 .busiest = NULL,
5974 .local = NULL,
5975 .total_load = 0UL,
63b2ca30 5976 .total_capacity = 0UL,
147c5fc2
PZ
5977 .busiest_stat = {
5978 .avg_load = 0UL,
caeb178c
RR
5979 .sum_nr_running = 0,
5980 .group_type = group_other,
147c5fc2
PZ
5981 },
5982 };
5983}
5984
1e3c88bd
PZ
5985/**
5986 * get_sd_load_idx - Obtain the load index for a given sched domain.
5987 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5988 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5989 *
5990 * Return: The load index.
1e3c88bd
PZ
5991 */
5992static inline int get_sd_load_idx(struct sched_domain *sd,
5993 enum cpu_idle_type idle)
5994{
5995 int load_idx;
5996
5997 switch (idle) {
5998 case CPU_NOT_IDLE:
5999 load_idx = sd->busy_idx;
6000 break;
6001
6002 case CPU_NEWLY_IDLE:
6003 load_idx = sd->newidle_idx;
6004 break;
6005 default:
6006 load_idx = sd->idle_idx;
6007 break;
6008 }
6009
6010 return load_idx;
6011}
6012
26bc3c50 6013static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6014{
26bc3c50
VG
6015 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6016 return sd->smt_gain / sd->span_weight;
1e3c88bd 6017
26bc3c50 6018 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6019}
6020
26bc3c50 6021unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6022{
26bc3c50 6023 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6024}
6025
ced549fa 6026static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6027{
6028 struct rq *rq = cpu_rq(cpu);
b5b4860d 6029 u64 total, used, age_stamp, avg;
cadefd3d 6030 s64 delta;
1e3c88bd 6031
b654f7de
PZ
6032 /*
6033 * Since we're reading these variables without serialization make sure
6034 * we read them once before doing sanity checks on them.
6035 */
316c1608
JL
6036 age_stamp = READ_ONCE(rq->age_stamp);
6037 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6038 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6039
cadefd3d
PZ
6040 if (unlikely(delta < 0))
6041 delta = 0;
6042
6043 total = sched_avg_period() + delta;
aa483808 6044
b5b4860d 6045 used = div_u64(avg, total);
1e3c88bd 6046
b5b4860d
VG
6047 if (likely(used < SCHED_CAPACITY_SCALE))
6048 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6049
b5b4860d 6050 return 1;
1e3c88bd
PZ
6051}
6052
ced549fa 6053static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6054{
ca8ce3d0 6055 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6056 struct sched_group *sdg = sd->groups;
6057
26bc3c50
VG
6058 if (sched_feat(ARCH_CAPACITY))
6059 capacity *= arch_scale_cpu_capacity(sd, cpu);
6060 else
6061 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6062
26bc3c50 6063 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6064
ca6d75e6 6065 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6066
ced549fa 6067 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6068 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6069
ced549fa
NP
6070 if (!capacity)
6071 capacity = 1;
1e3c88bd 6072
ced549fa
NP
6073 cpu_rq(cpu)->cpu_capacity = capacity;
6074 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6075}
6076
63b2ca30 6077void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6078{
6079 struct sched_domain *child = sd->child;
6080 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6081 unsigned long capacity;
4ec4412e
VG
6082 unsigned long interval;
6083
6084 interval = msecs_to_jiffies(sd->balance_interval);
6085 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6086 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6087
6088 if (!child) {
ced549fa 6089 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6090 return;
6091 }
6092
dc7ff76e 6093 capacity = 0;
1e3c88bd 6094
74a5ce20
PZ
6095 if (child->flags & SD_OVERLAP) {
6096 /*
6097 * SD_OVERLAP domains cannot assume that child groups
6098 * span the current group.
6099 */
6100
863bffc8 6101 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6102 struct sched_group_capacity *sgc;
9abf24d4 6103 struct rq *rq = cpu_rq(cpu);
863bffc8 6104
9abf24d4 6105 /*
63b2ca30 6106 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6107 * gets here before we've attached the domains to the
6108 * runqueues.
6109 *
ced549fa
NP
6110 * Use capacity_of(), which is set irrespective of domains
6111 * in update_cpu_capacity().
9abf24d4 6112 *
dc7ff76e 6113 * This avoids capacity from being 0 and
9abf24d4 6114 * causing divide-by-zero issues on boot.
9abf24d4
SD
6115 */
6116 if (unlikely(!rq->sd)) {
ced549fa 6117 capacity += capacity_of(cpu);
9abf24d4
SD
6118 continue;
6119 }
863bffc8 6120
63b2ca30 6121 sgc = rq->sd->groups->sgc;
63b2ca30 6122 capacity += sgc->capacity;
863bffc8 6123 }
74a5ce20
PZ
6124 } else {
6125 /*
6126 * !SD_OVERLAP domains can assume that child groups
6127 * span the current group.
6128 */
6129
6130 group = child->groups;
6131 do {
63b2ca30 6132 capacity += group->sgc->capacity;
74a5ce20
PZ
6133 group = group->next;
6134 } while (group != child->groups);
6135 }
1e3c88bd 6136
63b2ca30 6137 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6138}
6139
9d5efe05 6140/*
ea67821b
VG
6141 * Check whether the capacity of the rq has been noticeably reduced by side
6142 * activity. The imbalance_pct is used for the threshold.
6143 * Return true is the capacity is reduced
9d5efe05
SV
6144 */
6145static inline int
ea67821b 6146check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6147{
ea67821b
VG
6148 return ((rq->cpu_capacity * sd->imbalance_pct) <
6149 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6150}
6151
30ce5dab
PZ
6152/*
6153 * Group imbalance indicates (and tries to solve) the problem where balancing
6154 * groups is inadequate due to tsk_cpus_allowed() constraints.
6155 *
6156 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6157 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6158 * Something like:
6159 *
6160 * { 0 1 2 3 } { 4 5 6 7 }
6161 * * * * *
6162 *
6163 * If we were to balance group-wise we'd place two tasks in the first group and
6164 * two tasks in the second group. Clearly this is undesired as it will overload
6165 * cpu 3 and leave one of the cpus in the second group unused.
6166 *
6167 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6168 * by noticing the lower domain failed to reach balance and had difficulty
6169 * moving tasks due to affinity constraints.
30ce5dab
PZ
6170 *
6171 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6172 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6173 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6174 * to create an effective group imbalance.
6175 *
6176 * This is a somewhat tricky proposition since the next run might not find the
6177 * group imbalance and decide the groups need to be balanced again. A most
6178 * subtle and fragile situation.
6179 */
6180
6263322c 6181static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6182{
63b2ca30 6183 return group->sgc->imbalance;
30ce5dab
PZ
6184}
6185
b37d9316 6186/*
ea67821b
VG
6187 * group_has_capacity returns true if the group has spare capacity that could
6188 * be used by some tasks.
6189 * We consider that a group has spare capacity if the * number of task is
6190 * smaller than the number of CPUs or if the usage is lower than the available
6191 * capacity for CFS tasks.
6192 * For the latter, we use a threshold to stabilize the state, to take into
6193 * account the variance of the tasks' load and to return true if the available
6194 * capacity in meaningful for the load balancer.
6195 * As an example, an available capacity of 1% can appear but it doesn't make
6196 * any benefit for the load balance.
b37d9316 6197 */
ea67821b
VG
6198static inline bool
6199group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6200{
ea67821b
VG
6201 if (sgs->sum_nr_running < sgs->group_weight)
6202 return true;
c61037e9 6203
ea67821b
VG
6204 if ((sgs->group_capacity * 100) >
6205 (sgs->group_usage * env->sd->imbalance_pct))
6206 return true;
b37d9316 6207
ea67821b
VG
6208 return false;
6209}
6210
6211/*
6212 * group_is_overloaded returns true if the group has more tasks than it can
6213 * handle.
6214 * group_is_overloaded is not equals to !group_has_capacity because a group
6215 * with the exact right number of tasks, has no more spare capacity but is not
6216 * overloaded so both group_has_capacity and group_is_overloaded return
6217 * false.
6218 */
6219static inline bool
6220group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6221{
6222 if (sgs->sum_nr_running <= sgs->group_weight)
6223 return false;
b37d9316 6224
ea67821b
VG
6225 if ((sgs->group_capacity * 100) <
6226 (sgs->group_usage * env->sd->imbalance_pct))
6227 return true;
b37d9316 6228
ea67821b 6229 return false;
b37d9316
PZ
6230}
6231
ea67821b
VG
6232static enum group_type group_classify(struct lb_env *env,
6233 struct sched_group *group,
6234 struct sg_lb_stats *sgs)
caeb178c 6235{
ea67821b 6236 if (sgs->group_no_capacity)
caeb178c
RR
6237 return group_overloaded;
6238
6239 if (sg_imbalanced(group))
6240 return group_imbalanced;
6241
6242 return group_other;
6243}
6244
1e3c88bd
PZ
6245/**
6246 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6247 * @env: The load balancing environment.
1e3c88bd 6248 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6249 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6250 * @local_group: Does group contain this_cpu.
1e3c88bd 6251 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6252 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6253 */
bd939f45
PZ
6254static inline void update_sg_lb_stats(struct lb_env *env,
6255 struct sched_group *group, int load_idx,
4486edd1
TC
6256 int local_group, struct sg_lb_stats *sgs,
6257 bool *overload)
1e3c88bd 6258{
30ce5dab 6259 unsigned long load;
bd939f45 6260 int i;
1e3c88bd 6261
b72ff13c
PZ
6262 memset(sgs, 0, sizeof(*sgs));
6263
b9403130 6264 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6265 struct rq *rq = cpu_rq(i);
6266
1e3c88bd 6267 /* Bias balancing toward cpus of our domain */
6263322c 6268 if (local_group)
04f733b4 6269 load = target_load(i, load_idx);
6263322c 6270 else
1e3c88bd 6271 load = source_load(i, load_idx);
1e3c88bd
PZ
6272
6273 sgs->group_load += load;
8bb5b00c 6274 sgs->group_usage += get_cpu_usage(i);
65fdac08 6275 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6276
6277 if (rq->nr_running > 1)
6278 *overload = true;
6279
0ec8aa00
PZ
6280#ifdef CONFIG_NUMA_BALANCING
6281 sgs->nr_numa_running += rq->nr_numa_running;
6282 sgs->nr_preferred_running += rq->nr_preferred_running;
6283#endif
1e3c88bd 6284 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6285 if (idle_cpu(i))
6286 sgs->idle_cpus++;
1e3c88bd
PZ
6287 }
6288
63b2ca30
NP
6289 /* Adjust by relative CPU capacity of the group */
6290 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6291 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6292
dd5feea1 6293 if (sgs->sum_nr_running)
38d0f770 6294 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6295
aae6d3dd 6296 sgs->group_weight = group->group_weight;
b37d9316 6297
ea67821b
VG
6298 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6299 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6300}
6301
532cb4c4
MN
6302/**
6303 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6304 * @env: The load balancing environment.
532cb4c4
MN
6305 * @sds: sched_domain statistics
6306 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6307 * @sgs: sched_group statistics
532cb4c4
MN
6308 *
6309 * Determine if @sg is a busier group than the previously selected
6310 * busiest group.
e69f6186
YB
6311 *
6312 * Return: %true if @sg is a busier group than the previously selected
6313 * busiest group. %false otherwise.
532cb4c4 6314 */
bd939f45 6315static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6316 struct sd_lb_stats *sds,
6317 struct sched_group *sg,
bd939f45 6318 struct sg_lb_stats *sgs)
532cb4c4 6319{
caeb178c 6320 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6321
caeb178c 6322 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6323 return true;
6324
caeb178c
RR
6325 if (sgs->group_type < busiest->group_type)
6326 return false;
6327
6328 if (sgs->avg_load <= busiest->avg_load)
6329 return false;
6330
6331 /* This is the busiest node in its class. */
6332 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6333 return true;
6334
6335 /*
6336 * ASYM_PACKING needs to move all the work to the lowest
6337 * numbered CPUs in the group, therefore mark all groups
6338 * higher than ourself as busy.
6339 */
caeb178c 6340 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6341 if (!sds->busiest)
6342 return true;
6343
6344 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6345 return true;
6346 }
6347
6348 return false;
6349}
6350
0ec8aa00
PZ
6351#ifdef CONFIG_NUMA_BALANCING
6352static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6353{
6354 if (sgs->sum_nr_running > sgs->nr_numa_running)
6355 return regular;
6356 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6357 return remote;
6358 return all;
6359}
6360
6361static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6362{
6363 if (rq->nr_running > rq->nr_numa_running)
6364 return regular;
6365 if (rq->nr_running > rq->nr_preferred_running)
6366 return remote;
6367 return all;
6368}
6369#else
6370static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6371{
6372 return all;
6373}
6374
6375static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6376{
6377 return regular;
6378}
6379#endif /* CONFIG_NUMA_BALANCING */
6380
1e3c88bd 6381/**
461819ac 6382 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6383 * @env: The load balancing environment.
1e3c88bd
PZ
6384 * @sds: variable to hold the statistics for this sched_domain.
6385 */
0ec8aa00 6386static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6387{
bd939f45
PZ
6388 struct sched_domain *child = env->sd->child;
6389 struct sched_group *sg = env->sd->groups;
56cf515b 6390 struct sg_lb_stats tmp_sgs;
1e3c88bd 6391 int load_idx, prefer_sibling = 0;
4486edd1 6392 bool overload = false;
1e3c88bd
PZ
6393
6394 if (child && child->flags & SD_PREFER_SIBLING)
6395 prefer_sibling = 1;
6396
bd939f45 6397 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6398
6399 do {
56cf515b 6400 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6401 int local_group;
6402
bd939f45 6403 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6404 if (local_group) {
6405 sds->local = sg;
6406 sgs = &sds->local_stat;
b72ff13c
PZ
6407
6408 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6409 time_after_eq(jiffies, sg->sgc->next_update))
6410 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6411 }
1e3c88bd 6412
4486edd1
TC
6413 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6414 &overload);
1e3c88bd 6415
b72ff13c
PZ
6416 if (local_group)
6417 goto next_group;
6418
1e3c88bd
PZ
6419 /*
6420 * In case the child domain prefers tasks go to siblings
ea67821b 6421 * first, lower the sg capacity so that we'll try
75dd321d
NR
6422 * and move all the excess tasks away. We lower the capacity
6423 * of a group only if the local group has the capacity to fit
ea67821b
VG
6424 * these excess tasks. The extra check prevents the case where
6425 * you always pull from the heaviest group when it is already
6426 * under-utilized (possible with a large weight task outweighs
6427 * the tasks on the system).
1e3c88bd 6428 */
b72ff13c 6429 if (prefer_sibling && sds->local &&
ea67821b
VG
6430 group_has_capacity(env, &sds->local_stat) &&
6431 (sgs->sum_nr_running > 1)) {
6432 sgs->group_no_capacity = 1;
6433 sgs->group_type = group_overloaded;
cb0b9f24 6434 }
1e3c88bd 6435
b72ff13c 6436 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6437 sds->busiest = sg;
56cf515b 6438 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6439 }
6440
b72ff13c
PZ
6441next_group:
6442 /* Now, start updating sd_lb_stats */
6443 sds->total_load += sgs->group_load;
63b2ca30 6444 sds->total_capacity += sgs->group_capacity;
b72ff13c 6445
532cb4c4 6446 sg = sg->next;
bd939f45 6447 } while (sg != env->sd->groups);
0ec8aa00
PZ
6448
6449 if (env->sd->flags & SD_NUMA)
6450 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6451
6452 if (!env->sd->parent) {
6453 /* update overload indicator if we are at root domain */
6454 if (env->dst_rq->rd->overload != overload)
6455 env->dst_rq->rd->overload = overload;
6456 }
6457
532cb4c4
MN
6458}
6459
532cb4c4
MN
6460/**
6461 * check_asym_packing - Check to see if the group is packed into the
6462 * sched doman.
6463 *
6464 * This is primarily intended to used at the sibling level. Some
6465 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6466 * case of POWER7, it can move to lower SMT modes only when higher
6467 * threads are idle. When in lower SMT modes, the threads will
6468 * perform better since they share less core resources. Hence when we
6469 * have idle threads, we want them to be the higher ones.
6470 *
6471 * This packing function is run on idle threads. It checks to see if
6472 * the busiest CPU in this domain (core in the P7 case) has a higher
6473 * CPU number than the packing function is being run on. Here we are
6474 * assuming lower CPU number will be equivalent to lower a SMT thread
6475 * number.
6476 *
e69f6186 6477 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6478 * this CPU. The amount of the imbalance is returned in *imbalance.
6479 *
cd96891d 6480 * @env: The load balancing environment.
532cb4c4 6481 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6482 */
bd939f45 6483static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6484{
6485 int busiest_cpu;
6486
bd939f45 6487 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6488 return 0;
6489
6490 if (!sds->busiest)
6491 return 0;
6492
6493 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6494 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6495 return 0;
6496
bd939f45 6497 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6498 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6499 SCHED_CAPACITY_SCALE);
bd939f45 6500
532cb4c4 6501 return 1;
1e3c88bd
PZ
6502}
6503
6504/**
6505 * fix_small_imbalance - Calculate the minor imbalance that exists
6506 * amongst the groups of a sched_domain, during
6507 * load balancing.
cd96891d 6508 * @env: The load balancing environment.
1e3c88bd 6509 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6510 */
bd939f45
PZ
6511static inline
6512void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6513{
63b2ca30 6514 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6515 unsigned int imbn = 2;
dd5feea1 6516 unsigned long scaled_busy_load_per_task;
56cf515b 6517 struct sg_lb_stats *local, *busiest;
1e3c88bd 6518
56cf515b
JK
6519 local = &sds->local_stat;
6520 busiest = &sds->busiest_stat;
1e3c88bd 6521
56cf515b
JK
6522 if (!local->sum_nr_running)
6523 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6524 else if (busiest->load_per_task > local->load_per_task)
6525 imbn = 1;
dd5feea1 6526
56cf515b 6527 scaled_busy_load_per_task =
ca8ce3d0 6528 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6529 busiest->group_capacity;
56cf515b 6530
3029ede3
VD
6531 if (busiest->avg_load + scaled_busy_load_per_task >=
6532 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6533 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6534 return;
6535 }
6536
6537 /*
6538 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6539 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6540 * moving them.
6541 */
6542
63b2ca30 6543 capa_now += busiest->group_capacity *
56cf515b 6544 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6545 capa_now += local->group_capacity *
56cf515b 6546 min(local->load_per_task, local->avg_load);
ca8ce3d0 6547 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6548
6549 /* Amount of load we'd subtract */
a2cd4260 6550 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6551 capa_move += busiest->group_capacity *
56cf515b 6552 min(busiest->load_per_task,
a2cd4260 6553 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6554 }
1e3c88bd
PZ
6555
6556 /* Amount of load we'd add */
63b2ca30 6557 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6558 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6559 tmp = (busiest->avg_load * busiest->group_capacity) /
6560 local->group_capacity;
56cf515b 6561 } else {
ca8ce3d0 6562 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6563 local->group_capacity;
56cf515b 6564 }
63b2ca30 6565 capa_move += local->group_capacity *
3ae11c90 6566 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6567 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6568
6569 /* Move if we gain throughput */
63b2ca30 6570 if (capa_move > capa_now)
56cf515b 6571 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6572}
6573
6574/**
6575 * calculate_imbalance - Calculate the amount of imbalance present within the
6576 * groups of a given sched_domain during load balance.
bd939f45 6577 * @env: load balance environment
1e3c88bd 6578 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6579 */
bd939f45 6580static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6581{
dd5feea1 6582 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6583 struct sg_lb_stats *local, *busiest;
6584
6585 local = &sds->local_stat;
56cf515b 6586 busiest = &sds->busiest_stat;
dd5feea1 6587
caeb178c 6588 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6589 /*
6590 * In the group_imb case we cannot rely on group-wide averages
6591 * to ensure cpu-load equilibrium, look at wider averages. XXX
6592 */
56cf515b
JK
6593 busiest->load_per_task =
6594 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6595 }
6596
1e3c88bd
PZ
6597 /*
6598 * In the presence of smp nice balancing, certain scenarios can have
6599 * max load less than avg load(as we skip the groups at or below
ced549fa 6600 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6601 */
b1885550
VD
6602 if (busiest->avg_load <= sds->avg_load ||
6603 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6604 env->imbalance = 0;
6605 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6606 }
6607
9a5d9ba6
PZ
6608 /*
6609 * If there aren't any idle cpus, avoid creating some.
6610 */
6611 if (busiest->group_type == group_overloaded &&
6612 local->group_type == group_overloaded) {
ea67821b
VG
6613 load_above_capacity = busiest->sum_nr_running *
6614 SCHED_LOAD_SCALE;
6615 if (load_above_capacity > busiest->group_capacity)
6616 load_above_capacity -= busiest->group_capacity;
6617 else
6618 load_above_capacity = ~0UL;
dd5feea1
SS
6619 }
6620
6621 /*
6622 * We're trying to get all the cpus to the average_load, so we don't
6623 * want to push ourselves above the average load, nor do we wish to
6624 * reduce the max loaded cpu below the average load. At the same time,
6625 * we also don't want to reduce the group load below the group capacity
6626 * (so that we can implement power-savings policies etc). Thus we look
6627 * for the minimum possible imbalance.
dd5feea1 6628 */
30ce5dab 6629 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6630
6631 /* How much load to actually move to equalise the imbalance */
56cf515b 6632 env->imbalance = min(
63b2ca30
NP
6633 max_pull * busiest->group_capacity,
6634 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6635 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6636
6637 /*
6638 * if *imbalance is less than the average load per runnable task
25985edc 6639 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6640 * a think about bumping its value to force at least one task to be
6641 * moved
6642 */
56cf515b 6643 if (env->imbalance < busiest->load_per_task)
bd939f45 6644 return fix_small_imbalance(env, sds);
1e3c88bd 6645}
fab47622 6646
1e3c88bd
PZ
6647/******* find_busiest_group() helpers end here *********************/
6648
6649/**
6650 * find_busiest_group - Returns the busiest group within the sched_domain
6651 * if there is an imbalance. If there isn't an imbalance, and
6652 * the user has opted for power-savings, it returns a group whose
6653 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6654 * such a group exists.
6655 *
6656 * Also calculates the amount of weighted load which should be moved
6657 * to restore balance.
6658 *
cd96891d 6659 * @env: The load balancing environment.
1e3c88bd 6660 *
e69f6186 6661 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6662 * - If no imbalance and user has opted for power-savings balance,
6663 * return the least loaded group whose CPUs can be
6664 * put to idle by rebalancing its tasks onto our group.
6665 */
56cf515b 6666static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6667{
56cf515b 6668 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6669 struct sd_lb_stats sds;
6670
147c5fc2 6671 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6672
6673 /*
6674 * Compute the various statistics relavent for load balancing at
6675 * this level.
6676 */
23f0d209 6677 update_sd_lb_stats(env, &sds);
56cf515b
JK
6678 local = &sds.local_stat;
6679 busiest = &sds.busiest_stat;
1e3c88bd 6680
ea67821b 6681 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6682 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6683 check_asym_packing(env, &sds))
532cb4c4
MN
6684 return sds.busiest;
6685
cc57aa8f 6686 /* There is no busy sibling group to pull tasks from */
56cf515b 6687 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6688 goto out_balanced;
6689
ca8ce3d0
NP
6690 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6691 / sds.total_capacity;
b0432d8f 6692
866ab43e
PZ
6693 /*
6694 * If the busiest group is imbalanced the below checks don't
30ce5dab 6695 * work because they assume all things are equal, which typically
866ab43e
PZ
6696 * isn't true due to cpus_allowed constraints and the like.
6697 */
caeb178c 6698 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6699 goto force_balance;
6700
cc57aa8f 6701 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6702 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6703 busiest->group_no_capacity)
fab47622
NR
6704 goto force_balance;
6705
cc57aa8f 6706 /*
9c58c79a 6707 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6708 * don't try and pull any tasks.
6709 */
56cf515b 6710 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6711 goto out_balanced;
6712
cc57aa8f
PZ
6713 /*
6714 * Don't pull any tasks if this group is already above the domain
6715 * average load.
6716 */
56cf515b 6717 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6718 goto out_balanced;
6719
bd939f45 6720 if (env->idle == CPU_IDLE) {
aae6d3dd 6721 /*
43f4d666
VG
6722 * This cpu is idle. If the busiest group is not overloaded
6723 * and there is no imbalance between this and busiest group
6724 * wrt idle cpus, it is balanced. The imbalance becomes
6725 * significant if the diff is greater than 1 otherwise we
6726 * might end up to just move the imbalance on another group
aae6d3dd 6727 */
43f4d666
VG
6728 if ((busiest->group_type != group_overloaded) &&
6729 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6730 goto out_balanced;
c186fafe
PZ
6731 } else {
6732 /*
6733 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6734 * imbalance_pct to be conservative.
6735 */
56cf515b
JK
6736 if (100 * busiest->avg_load <=
6737 env->sd->imbalance_pct * local->avg_load)
c186fafe 6738 goto out_balanced;
aae6d3dd 6739 }
1e3c88bd 6740
fab47622 6741force_balance:
1e3c88bd 6742 /* Looks like there is an imbalance. Compute it */
bd939f45 6743 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6744 return sds.busiest;
6745
6746out_balanced:
bd939f45 6747 env->imbalance = 0;
1e3c88bd
PZ
6748 return NULL;
6749}
6750
6751/*
6752 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6753 */
bd939f45 6754static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6755 struct sched_group *group)
1e3c88bd
PZ
6756{
6757 struct rq *busiest = NULL, *rq;
ced549fa 6758 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6759 int i;
6760
6906a408 6761 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6762 unsigned long capacity, wl;
0ec8aa00
PZ
6763 enum fbq_type rt;
6764
6765 rq = cpu_rq(i);
6766 rt = fbq_classify_rq(rq);
1e3c88bd 6767
0ec8aa00
PZ
6768 /*
6769 * We classify groups/runqueues into three groups:
6770 * - regular: there are !numa tasks
6771 * - remote: there are numa tasks that run on the 'wrong' node
6772 * - all: there is no distinction
6773 *
6774 * In order to avoid migrating ideally placed numa tasks,
6775 * ignore those when there's better options.
6776 *
6777 * If we ignore the actual busiest queue to migrate another
6778 * task, the next balance pass can still reduce the busiest
6779 * queue by moving tasks around inside the node.
6780 *
6781 * If we cannot move enough load due to this classification
6782 * the next pass will adjust the group classification and
6783 * allow migration of more tasks.
6784 *
6785 * Both cases only affect the total convergence complexity.
6786 */
6787 if (rt > env->fbq_type)
6788 continue;
6789
ced549fa 6790 capacity = capacity_of(i);
9d5efe05 6791
6e40f5bb 6792 wl = weighted_cpuload(i);
1e3c88bd 6793
6e40f5bb
TG
6794 /*
6795 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6796 * which is not scaled with the cpu capacity.
6e40f5bb 6797 */
ea67821b
VG
6798
6799 if (rq->nr_running == 1 && wl > env->imbalance &&
6800 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6801 continue;
6802
6e40f5bb
TG
6803 /*
6804 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6805 * the weighted_cpuload() scaled with the cpu capacity, so
6806 * that the load can be moved away from the cpu that is
6807 * potentially running at a lower capacity.
95a79b80 6808 *
ced549fa 6809 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6810 * multiplication to rid ourselves of the division works out
ced549fa
NP
6811 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6812 * our previous maximum.
6e40f5bb 6813 */
ced549fa 6814 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6815 busiest_load = wl;
ced549fa 6816 busiest_capacity = capacity;
1e3c88bd
PZ
6817 busiest = rq;
6818 }
6819 }
6820
6821 return busiest;
6822}
6823
6824/*
6825 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6826 * so long as it is large enough.
6827 */
6828#define MAX_PINNED_INTERVAL 512
6829
6830/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6831DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6832
bd939f45 6833static int need_active_balance(struct lb_env *env)
1af3ed3d 6834{
bd939f45
PZ
6835 struct sched_domain *sd = env->sd;
6836
6837 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6838
6839 /*
6840 * ASYM_PACKING needs to force migrate tasks from busy but
6841 * higher numbered CPUs in order to pack all tasks in the
6842 * lowest numbered CPUs.
6843 */
bd939f45 6844 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6845 return 1;
1af3ed3d
PZ
6846 }
6847
1aaf90a4
VG
6848 /*
6849 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6850 * It's worth migrating the task if the src_cpu's capacity is reduced
6851 * because of other sched_class or IRQs if more capacity stays
6852 * available on dst_cpu.
6853 */
6854 if ((env->idle != CPU_NOT_IDLE) &&
6855 (env->src_rq->cfs.h_nr_running == 1)) {
6856 if ((check_cpu_capacity(env->src_rq, sd)) &&
6857 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6858 return 1;
6859 }
6860
1af3ed3d
PZ
6861 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6862}
6863
969c7921
TH
6864static int active_load_balance_cpu_stop(void *data);
6865
23f0d209
JK
6866static int should_we_balance(struct lb_env *env)
6867{
6868 struct sched_group *sg = env->sd->groups;
6869 struct cpumask *sg_cpus, *sg_mask;
6870 int cpu, balance_cpu = -1;
6871
6872 /*
6873 * In the newly idle case, we will allow all the cpu's
6874 * to do the newly idle load balance.
6875 */
6876 if (env->idle == CPU_NEWLY_IDLE)
6877 return 1;
6878
6879 sg_cpus = sched_group_cpus(sg);
6880 sg_mask = sched_group_mask(sg);
6881 /* Try to find first idle cpu */
6882 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6883 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6884 continue;
6885
6886 balance_cpu = cpu;
6887 break;
6888 }
6889
6890 if (balance_cpu == -1)
6891 balance_cpu = group_balance_cpu(sg);
6892
6893 /*
6894 * First idle cpu or the first cpu(busiest) in this sched group
6895 * is eligible for doing load balancing at this and above domains.
6896 */
b0cff9d8 6897 return balance_cpu == env->dst_cpu;
23f0d209
JK
6898}
6899
1e3c88bd
PZ
6900/*
6901 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6902 * tasks if there is an imbalance.
6903 */
6904static int load_balance(int this_cpu, struct rq *this_rq,
6905 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6906 int *continue_balancing)
1e3c88bd 6907{
88b8dac0 6908 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6909 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6910 struct sched_group *group;
1e3c88bd
PZ
6911 struct rq *busiest;
6912 unsigned long flags;
4ba29684 6913 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6914
8e45cb54
PZ
6915 struct lb_env env = {
6916 .sd = sd,
ddcdf6e7
PZ
6917 .dst_cpu = this_cpu,
6918 .dst_rq = this_rq,
88b8dac0 6919 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6920 .idle = idle,
eb95308e 6921 .loop_break = sched_nr_migrate_break,
b9403130 6922 .cpus = cpus,
0ec8aa00 6923 .fbq_type = all,
163122b7 6924 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6925 };
6926
cfc03118
JK
6927 /*
6928 * For NEWLY_IDLE load_balancing, we don't need to consider
6929 * other cpus in our group
6930 */
e02e60c1 6931 if (idle == CPU_NEWLY_IDLE)
cfc03118 6932 env.dst_grpmask = NULL;
cfc03118 6933
1e3c88bd
PZ
6934 cpumask_copy(cpus, cpu_active_mask);
6935
1e3c88bd
PZ
6936 schedstat_inc(sd, lb_count[idle]);
6937
6938redo:
23f0d209
JK
6939 if (!should_we_balance(&env)) {
6940 *continue_balancing = 0;
1e3c88bd 6941 goto out_balanced;
23f0d209 6942 }
1e3c88bd 6943
23f0d209 6944 group = find_busiest_group(&env);
1e3c88bd
PZ
6945 if (!group) {
6946 schedstat_inc(sd, lb_nobusyg[idle]);
6947 goto out_balanced;
6948 }
6949
b9403130 6950 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6951 if (!busiest) {
6952 schedstat_inc(sd, lb_nobusyq[idle]);
6953 goto out_balanced;
6954 }
6955
78feefc5 6956 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6957
bd939f45 6958 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6959
1aaf90a4
VG
6960 env.src_cpu = busiest->cpu;
6961 env.src_rq = busiest;
6962
1e3c88bd
PZ
6963 ld_moved = 0;
6964 if (busiest->nr_running > 1) {
6965 /*
6966 * Attempt to move tasks. If find_busiest_group has found
6967 * an imbalance but busiest->nr_running <= 1, the group is
6968 * still unbalanced. ld_moved simply stays zero, so it is
6969 * correctly treated as an imbalance.
6970 */
8e45cb54 6971 env.flags |= LBF_ALL_PINNED;
c82513e5 6972 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6973
5d6523eb 6974more_balance:
163122b7 6975 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6976
6977 /*
6978 * cur_ld_moved - load moved in current iteration
6979 * ld_moved - cumulative load moved across iterations
6980 */
163122b7 6981 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6982
6983 /*
163122b7
KT
6984 * We've detached some tasks from busiest_rq. Every
6985 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6986 * unlock busiest->lock, and we are able to be sure
6987 * that nobody can manipulate the tasks in parallel.
6988 * See task_rq_lock() family for the details.
1e3c88bd 6989 */
163122b7
KT
6990
6991 raw_spin_unlock(&busiest->lock);
6992
6993 if (cur_ld_moved) {
6994 attach_tasks(&env);
6995 ld_moved += cur_ld_moved;
6996 }
6997
1e3c88bd 6998 local_irq_restore(flags);
88b8dac0 6999
f1cd0858
JK
7000 if (env.flags & LBF_NEED_BREAK) {
7001 env.flags &= ~LBF_NEED_BREAK;
7002 goto more_balance;
7003 }
7004
88b8dac0
SV
7005 /*
7006 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7007 * us and move them to an alternate dst_cpu in our sched_group
7008 * where they can run. The upper limit on how many times we
7009 * iterate on same src_cpu is dependent on number of cpus in our
7010 * sched_group.
7011 *
7012 * This changes load balance semantics a bit on who can move
7013 * load to a given_cpu. In addition to the given_cpu itself
7014 * (or a ilb_cpu acting on its behalf where given_cpu is
7015 * nohz-idle), we now have balance_cpu in a position to move
7016 * load to given_cpu. In rare situations, this may cause
7017 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7018 * _independently_ and at _same_ time to move some load to
7019 * given_cpu) causing exceess load to be moved to given_cpu.
7020 * This however should not happen so much in practice and
7021 * moreover subsequent load balance cycles should correct the
7022 * excess load moved.
7023 */
6263322c 7024 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7025
7aff2e3a
VD
7026 /* Prevent to re-select dst_cpu via env's cpus */
7027 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7028
78feefc5 7029 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7030 env.dst_cpu = env.new_dst_cpu;
6263322c 7031 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7032 env.loop = 0;
7033 env.loop_break = sched_nr_migrate_break;
e02e60c1 7034
88b8dac0
SV
7035 /*
7036 * Go back to "more_balance" rather than "redo" since we
7037 * need to continue with same src_cpu.
7038 */
7039 goto more_balance;
7040 }
1e3c88bd 7041
6263322c
PZ
7042 /*
7043 * We failed to reach balance because of affinity.
7044 */
7045 if (sd_parent) {
63b2ca30 7046 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7047
afdeee05 7048 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7049 *group_imbalance = 1;
6263322c
PZ
7050 }
7051
1e3c88bd 7052 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7053 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7054 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7055 if (!cpumask_empty(cpus)) {
7056 env.loop = 0;
7057 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7058 goto redo;
bbf18b19 7059 }
afdeee05 7060 goto out_all_pinned;
1e3c88bd
PZ
7061 }
7062 }
7063
7064 if (!ld_moved) {
7065 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7066 /*
7067 * Increment the failure counter only on periodic balance.
7068 * We do not want newidle balance, which can be very
7069 * frequent, pollute the failure counter causing
7070 * excessive cache_hot migrations and active balances.
7071 */
7072 if (idle != CPU_NEWLY_IDLE)
7073 sd->nr_balance_failed++;
1e3c88bd 7074
bd939f45 7075 if (need_active_balance(&env)) {
1e3c88bd
PZ
7076 raw_spin_lock_irqsave(&busiest->lock, flags);
7077
969c7921
TH
7078 /* don't kick the active_load_balance_cpu_stop,
7079 * if the curr task on busiest cpu can't be
7080 * moved to this_cpu
1e3c88bd
PZ
7081 */
7082 if (!cpumask_test_cpu(this_cpu,
fa17b507 7083 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7084 raw_spin_unlock_irqrestore(&busiest->lock,
7085 flags);
8e45cb54 7086 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7087 goto out_one_pinned;
7088 }
7089
969c7921
TH
7090 /*
7091 * ->active_balance synchronizes accesses to
7092 * ->active_balance_work. Once set, it's cleared
7093 * only after active load balance is finished.
7094 */
1e3c88bd
PZ
7095 if (!busiest->active_balance) {
7096 busiest->active_balance = 1;
7097 busiest->push_cpu = this_cpu;
7098 active_balance = 1;
7099 }
7100 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7101
bd939f45 7102 if (active_balance) {
969c7921
TH
7103 stop_one_cpu_nowait(cpu_of(busiest),
7104 active_load_balance_cpu_stop, busiest,
7105 &busiest->active_balance_work);
bd939f45 7106 }
1e3c88bd
PZ
7107
7108 /*
7109 * We've kicked active balancing, reset the failure
7110 * counter.
7111 */
7112 sd->nr_balance_failed = sd->cache_nice_tries+1;
7113 }
7114 } else
7115 sd->nr_balance_failed = 0;
7116
7117 if (likely(!active_balance)) {
7118 /* We were unbalanced, so reset the balancing interval */
7119 sd->balance_interval = sd->min_interval;
7120 } else {
7121 /*
7122 * If we've begun active balancing, start to back off. This
7123 * case may not be covered by the all_pinned logic if there
7124 * is only 1 task on the busy runqueue (because we don't call
163122b7 7125 * detach_tasks).
1e3c88bd
PZ
7126 */
7127 if (sd->balance_interval < sd->max_interval)
7128 sd->balance_interval *= 2;
7129 }
7130
1e3c88bd
PZ
7131 goto out;
7132
7133out_balanced:
afdeee05
VG
7134 /*
7135 * We reach balance although we may have faced some affinity
7136 * constraints. Clear the imbalance flag if it was set.
7137 */
7138 if (sd_parent) {
7139 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7140
7141 if (*group_imbalance)
7142 *group_imbalance = 0;
7143 }
7144
7145out_all_pinned:
7146 /*
7147 * We reach balance because all tasks are pinned at this level so
7148 * we can't migrate them. Let the imbalance flag set so parent level
7149 * can try to migrate them.
7150 */
1e3c88bd
PZ
7151 schedstat_inc(sd, lb_balanced[idle]);
7152
7153 sd->nr_balance_failed = 0;
7154
7155out_one_pinned:
7156 /* tune up the balancing interval */
8e45cb54 7157 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7158 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7159 (sd->balance_interval < sd->max_interval))
7160 sd->balance_interval *= 2;
7161
46e49b38 7162 ld_moved = 0;
1e3c88bd 7163out:
1e3c88bd
PZ
7164 return ld_moved;
7165}
7166
52a08ef1
JL
7167static inline unsigned long
7168get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7169{
7170 unsigned long interval = sd->balance_interval;
7171
7172 if (cpu_busy)
7173 interval *= sd->busy_factor;
7174
7175 /* scale ms to jiffies */
7176 interval = msecs_to_jiffies(interval);
7177 interval = clamp(interval, 1UL, max_load_balance_interval);
7178
7179 return interval;
7180}
7181
7182static inline void
7183update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7184{
7185 unsigned long interval, next;
7186
7187 interval = get_sd_balance_interval(sd, cpu_busy);
7188 next = sd->last_balance + interval;
7189
7190 if (time_after(*next_balance, next))
7191 *next_balance = next;
7192}
7193
1e3c88bd
PZ
7194/*
7195 * idle_balance is called by schedule() if this_cpu is about to become
7196 * idle. Attempts to pull tasks from other CPUs.
7197 */
6e83125c 7198static int idle_balance(struct rq *this_rq)
1e3c88bd 7199{
52a08ef1
JL
7200 unsigned long next_balance = jiffies + HZ;
7201 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7202 struct sched_domain *sd;
7203 int pulled_task = 0;
9bd721c5 7204 u64 curr_cost = 0;
1e3c88bd 7205
6e83125c 7206 idle_enter_fair(this_rq);
0e5b5337 7207
6e83125c
PZ
7208 /*
7209 * We must set idle_stamp _before_ calling idle_balance(), such that we
7210 * measure the duration of idle_balance() as idle time.
7211 */
7212 this_rq->idle_stamp = rq_clock(this_rq);
7213
4486edd1
TC
7214 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7215 !this_rq->rd->overload) {
52a08ef1
JL
7216 rcu_read_lock();
7217 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7218 if (sd)
7219 update_next_balance(sd, 0, &next_balance);
7220 rcu_read_unlock();
7221
6e83125c 7222 goto out;
52a08ef1 7223 }
1e3c88bd 7224
f492e12e
PZ
7225 raw_spin_unlock(&this_rq->lock);
7226
48a16753 7227 update_blocked_averages(this_cpu);
dce840a0 7228 rcu_read_lock();
1e3c88bd 7229 for_each_domain(this_cpu, sd) {
23f0d209 7230 int continue_balancing = 1;
9bd721c5 7231 u64 t0, domain_cost;
1e3c88bd
PZ
7232
7233 if (!(sd->flags & SD_LOAD_BALANCE))
7234 continue;
7235
52a08ef1
JL
7236 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7237 update_next_balance(sd, 0, &next_balance);
9bd721c5 7238 break;
52a08ef1 7239 }
9bd721c5 7240
f492e12e 7241 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7242 t0 = sched_clock_cpu(this_cpu);
7243
f492e12e 7244 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7245 sd, CPU_NEWLY_IDLE,
7246 &continue_balancing);
9bd721c5
JL
7247
7248 domain_cost = sched_clock_cpu(this_cpu) - t0;
7249 if (domain_cost > sd->max_newidle_lb_cost)
7250 sd->max_newidle_lb_cost = domain_cost;
7251
7252 curr_cost += domain_cost;
f492e12e 7253 }
1e3c88bd 7254
52a08ef1 7255 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7256
7257 /*
7258 * Stop searching for tasks to pull if there are
7259 * now runnable tasks on this rq.
7260 */
7261 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7262 break;
1e3c88bd 7263 }
dce840a0 7264 rcu_read_unlock();
f492e12e
PZ
7265
7266 raw_spin_lock(&this_rq->lock);
7267
0e5b5337
JL
7268 if (curr_cost > this_rq->max_idle_balance_cost)
7269 this_rq->max_idle_balance_cost = curr_cost;
7270
e5fc6611 7271 /*
0e5b5337
JL
7272 * While browsing the domains, we released the rq lock, a task could
7273 * have been enqueued in the meantime. Since we're not going idle,
7274 * pretend we pulled a task.
e5fc6611 7275 */
0e5b5337 7276 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7277 pulled_task = 1;
e5fc6611 7278
52a08ef1
JL
7279out:
7280 /* Move the next balance forward */
7281 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7282 this_rq->next_balance = next_balance;
9bd721c5 7283
e4aa358b 7284 /* Is there a task of a high priority class? */
46383648 7285 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7286 pulled_task = -1;
7287
7288 if (pulled_task) {
7289 idle_exit_fair(this_rq);
6e83125c 7290 this_rq->idle_stamp = 0;
e4aa358b 7291 }
6e83125c 7292
3c4017c1 7293 return pulled_task;
1e3c88bd
PZ
7294}
7295
7296/*
969c7921
TH
7297 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7298 * running tasks off the busiest CPU onto idle CPUs. It requires at
7299 * least 1 task to be running on each physical CPU where possible, and
7300 * avoids physical / logical imbalances.
1e3c88bd 7301 */
969c7921 7302static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7303{
969c7921
TH
7304 struct rq *busiest_rq = data;
7305 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7306 int target_cpu = busiest_rq->push_cpu;
969c7921 7307 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7308 struct sched_domain *sd;
e5673f28 7309 struct task_struct *p = NULL;
969c7921
TH
7310
7311 raw_spin_lock_irq(&busiest_rq->lock);
7312
7313 /* make sure the requested cpu hasn't gone down in the meantime */
7314 if (unlikely(busiest_cpu != smp_processor_id() ||
7315 !busiest_rq->active_balance))
7316 goto out_unlock;
1e3c88bd
PZ
7317
7318 /* Is there any task to move? */
7319 if (busiest_rq->nr_running <= 1)
969c7921 7320 goto out_unlock;
1e3c88bd
PZ
7321
7322 /*
7323 * This condition is "impossible", if it occurs
7324 * we need to fix it. Originally reported by
7325 * Bjorn Helgaas on a 128-cpu setup.
7326 */
7327 BUG_ON(busiest_rq == target_rq);
7328
1e3c88bd 7329 /* Search for an sd spanning us and the target CPU. */
dce840a0 7330 rcu_read_lock();
1e3c88bd
PZ
7331 for_each_domain(target_cpu, sd) {
7332 if ((sd->flags & SD_LOAD_BALANCE) &&
7333 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7334 break;
7335 }
7336
7337 if (likely(sd)) {
8e45cb54
PZ
7338 struct lb_env env = {
7339 .sd = sd,
ddcdf6e7
PZ
7340 .dst_cpu = target_cpu,
7341 .dst_rq = target_rq,
7342 .src_cpu = busiest_rq->cpu,
7343 .src_rq = busiest_rq,
8e45cb54
PZ
7344 .idle = CPU_IDLE,
7345 };
7346
1e3c88bd
PZ
7347 schedstat_inc(sd, alb_count);
7348
e5673f28
KT
7349 p = detach_one_task(&env);
7350 if (p)
1e3c88bd
PZ
7351 schedstat_inc(sd, alb_pushed);
7352 else
7353 schedstat_inc(sd, alb_failed);
7354 }
dce840a0 7355 rcu_read_unlock();
969c7921
TH
7356out_unlock:
7357 busiest_rq->active_balance = 0;
e5673f28
KT
7358 raw_spin_unlock(&busiest_rq->lock);
7359
7360 if (p)
7361 attach_one_task(target_rq, p);
7362
7363 local_irq_enable();
7364
969c7921 7365 return 0;
1e3c88bd
PZ
7366}
7367
d987fc7f
MG
7368static inline int on_null_domain(struct rq *rq)
7369{
7370 return unlikely(!rcu_dereference_sched(rq->sd));
7371}
7372
3451d024 7373#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7374/*
7375 * idle load balancing details
83cd4fe2
VP
7376 * - When one of the busy CPUs notice that there may be an idle rebalancing
7377 * needed, they will kick the idle load balancer, which then does idle
7378 * load balancing for all the idle CPUs.
7379 */
1e3c88bd 7380static struct {
83cd4fe2 7381 cpumask_var_t idle_cpus_mask;
0b005cf5 7382 atomic_t nr_cpus;
83cd4fe2
VP
7383 unsigned long next_balance; /* in jiffy units */
7384} nohz ____cacheline_aligned;
1e3c88bd 7385
3dd0337d 7386static inline int find_new_ilb(void)
1e3c88bd 7387{
0b005cf5 7388 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7389
786d6dc7
SS
7390 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7391 return ilb;
7392
7393 return nr_cpu_ids;
1e3c88bd 7394}
1e3c88bd 7395
83cd4fe2
VP
7396/*
7397 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7398 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7399 * CPU (if there is one).
7400 */
0aeeeeba 7401static void nohz_balancer_kick(void)
83cd4fe2
VP
7402{
7403 int ilb_cpu;
7404
7405 nohz.next_balance++;
7406
3dd0337d 7407 ilb_cpu = find_new_ilb();
83cd4fe2 7408
0b005cf5
SS
7409 if (ilb_cpu >= nr_cpu_ids)
7410 return;
83cd4fe2 7411
cd490c5b 7412 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7413 return;
7414 /*
7415 * Use smp_send_reschedule() instead of resched_cpu().
7416 * This way we generate a sched IPI on the target cpu which
7417 * is idle. And the softirq performing nohz idle load balance
7418 * will be run before returning from the IPI.
7419 */
7420 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7421 return;
7422}
7423
c1cc017c 7424static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7425{
7426 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7427 /*
7428 * Completely isolated CPUs don't ever set, so we must test.
7429 */
7430 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7431 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7432 atomic_dec(&nohz.nr_cpus);
7433 }
71325960
SS
7434 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7435 }
7436}
7437
69e1e811
SS
7438static inline void set_cpu_sd_state_busy(void)
7439{
7440 struct sched_domain *sd;
37dc6b50 7441 int cpu = smp_processor_id();
69e1e811 7442
69e1e811 7443 rcu_read_lock();
37dc6b50 7444 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7445
7446 if (!sd || !sd->nohz_idle)
7447 goto unlock;
7448 sd->nohz_idle = 0;
7449
63b2ca30 7450 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7451unlock:
69e1e811
SS
7452 rcu_read_unlock();
7453}
7454
7455void set_cpu_sd_state_idle(void)
7456{
7457 struct sched_domain *sd;
37dc6b50 7458 int cpu = smp_processor_id();
69e1e811 7459
69e1e811 7460 rcu_read_lock();
37dc6b50 7461 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7462
7463 if (!sd || sd->nohz_idle)
7464 goto unlock;
7465 sd->nohz_idle = 1;
7466
63b2ca30 7467 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7468unlock:
69e1e811
SS
7469 rcu_read_unlock();
7470}
7471
1e3c88bd 7472/*
c1cc017c 7473 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7474 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7475 */
c1cc017c 7476void nohz_balance_enter_idle(int cpu)
1e3c88bd 7477{
71325960
SS
7478 /*
7479 * If this cpu is going down, then nothing needs to be done.
7480 */
7481 if (!cpu_active(cpu))
7482 return;
7483
c1cc017c
AS
7484 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7485 return;
1e3c88bd 7486
d987fc7f
MG
7487 /*
7488 * If we're a completely isolated CPU, we don't play.
7489 */
7490 if (on_null_domain(cpu_rq(cpu)))
7491 return;
7492
c1cc017c
AS
7493 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7494 atomic_inc(&nohz.nr_cpus);
7495 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7496}
71325960 7497
0db0628d 7498static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7499 unsigned long action, void *hcpu)
7500{
7501 switch (action & ~CPU_TASKS_FROZEN) {
7502 case CPU_DYING:
c1cc017c 7503 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7504 return NOTIFY_OK;
7505 default:
7506 return NOTIFY_DONE;
7507 }
7508}
1e3c88bd
PZ
7509#endif
7510
7511static DEFINE_SPINLOCK(balancing);
7512
49c022e6
PZ
7513/*
7514 * Scale the max load_balance interval with the number of CPUs in the system.
7515 * This trades load-balance latency on larger machines for less cross talk.
7516 */
029632fb 7517void update_max_interval(void)
49c022e6
PZ
7518{
7519 max_load_balance_interval = HZ*num_online_cpus()/10;
7520}
7521
1e3c88bd
PZ
7522/*
7523 * It checks each scheduling domain to see if it is due to be balanced,
7524 * and initiates a balancing operation if so.
7525 *
b9b0853a 7526 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7527 */
f7ed0a89 7528static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7529{
23f0d209 7530 int continue_balancing = 1;
f7ed0a89 7531 int cpu = rq->cpu;
1e3c88bd 7532 unsigned long interval;
04f733b4 7533 struct sched_domain *sd;
1e3c88bd
PZ
7534 /* Earliest time when we have to do rebalance again */
7535 unsigned long next_balance = jiffies + 60*HZ;
7536 int update_next_balance = 0;
f48627e6
JL
7537 int need_serialize, need_decay = 0;
7538 u64 max_cost = 0;
1e3c88bd 7539
48a16753 7540 update_blocked_averages(cpu);
2069dd75 7541
dce840a0 7542 rcu_read_lock();
1e3c88bd 7543 for_each_domain(cpu, sd) {
f48627e6
JL
7544 /*
7545 * Decay the newidle max times here because this is a regular
7546 * visit to all the domains. Decay ~1% per second.
7547 */
7548 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7549 sd->max_newidle_lb_cost =
7550 (sd->max_newidle_lb_cost * 253) / 256;
7551 sd->next_decay_max_lb_cost = jiffies + HZ;
7552 need_decay = 1;
7553 }
7554 max_cost += sd->max_newidle_lb_cost;
7555
1e3c88bd
PZ
7556 if (!(sd->flags & SD_LOAD_BALANCE))
7557 continue;
7558
f48627e6
JL
7559 /*
7560 * Stop the load balance at this level. There is another
7561 * CPU in our sched group which is doing load balancing more
7562 * actively.
7563 */
7564 if (!continue_balancing) {
7565 if (need_decay)
7566 continue;
7567 break;
7568 }
7569
52a08ef1 7570 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7571
7572 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7573 if (need_serialize) {
7574 if (!spin_trylock(&balancing))
7575 goto out;
7576 }
7577
7578 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7579 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7580 /*
6263322c 7581 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7582 * env->dst_cpu, so we can't know our idle
7583 * state even if we migrated tasks. Update it.
1e3c88bd 7584 */
de5eb2dd 7585 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7586 }
7587 sd->last_balance = jiffies;
52a08ef1 7588 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7589 }
7590 if (need_serialize)
7591 spin_unlock(&balancing);
7592out:
7593 if (time_after(next_balance, sd->last_balance + interval)) {
7594 next_balance = sd->last_balance + interval;
7595 update_next_balance = 1;
7596 }
f48627e6
JL
7597 }
7598 if (need_decay) {
1e3c88bd 7599 /*
f48627e6
JL
7600 * Ensure the rq-wide value also decays but keep it at a
7601 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7602 */
f48627e6
JL
7603 rq->max_idle_balance_cost =
7604 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7605 }
dce840a0 7606 rcu_read_unlock();
1e3c88bd
PZ
7607
7608 /*
7609 * next_balance will be updated only when there is a need.
7610 * When the cpu is attached to null domain for ex, it will not be
7611 * updated.
7612 */
7613 if (likely(update_next_balance))
7614 rq->next_balance = next_balance;
7615}
7616
3451d024 7617#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7618/*
3451d024 7619 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7620 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7621 */
208cb16b 7622static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7623{
208cb16b 7624 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7625 struct rq *rq;
7626 int balance_cpu;
7627
1c792db7
SS
7628 if (idle != CPU_IDLE ||
7629 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7630 goto end;
83cd4fe2
VP
7631
7632 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7633 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7634 continue;
7635
7636 /*
7637 * If this cpu gets work to do, stop the load balancing
7638 * work being done for other cpus. Next load
7639 * balancing owner will pick it up.
7640 */
1c792db7 7641 if (need_resched())
83cd4fe2 7642 break;
83cd4fe2 7643
5ed4f1d9
VG
7644 rq = cpu_rq(balance_cpu);
7645
ed61bbc6
TC
7646 /*
7647 * If time for next balance is due,
7648 * do the balance.
7649 */
7650 if (time_after_eq(jiffies, rq->next_balance)) {
7651 raw_spin_lock_irq(&rq->lock);
7652 update_rq_clock(rq);
7653 update_idle_cpu_load(rq);
7654 raw_spin_unlock_irq(&rq->lock);
7655 rebalance_domains(rq, CPU_IDLE);
7656 }
83cd4fe2 7657
83cd4fe2
VP
7658 if (time_after(this_rq->next_balance, rq->next_balance))
7659 this_rq->next_balance = rq->next_balance;
7660 }
7661 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7662end:
7663 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7664}
7665
7666/*
0b005cf5 7667 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7668 * of an idle cpu in the system.
0b005cf5 7669 * - This rq has more than one task.
1aaf90a4
VG
7670 * - This rq has at least one CFS task and the capacity of the CPU is
7671 * significantly reduced because of RT tasks or IRQs.
7672 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7673 * multiple busy cpu.
0b005cf5
SS
7674 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7675 * domain span are idle.
83cd4fe2 7676 */
1aaf90a4 7677static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7678{
7679 unsigned long now = jiffies;
0b005cf5 7680 struct sched_domain *sd;
63b2ca30 7681 struct sched_group_capacity *sgc;
4a725627 7682 int nr_busy, cpu = rq->cpu;
1aaf90a4 7683 bool kick = false;
83cd4fe2 7684
4a725627 7685 if (unlikely(rq->idle_balance))
1aaf90a4 7686 return false;
83cd4fe2 7687
1c792db7
SS
7688 /*
7689 * We may be recently in ticked or tickless idle mode. At the first
7690 * busy tick after returning from idle, we will update the busy stats.
7691 */
69e1e811 7692 set_cpu_sd_state_busy();
c1cc017c 7693 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7694
7695 /*
7696 * None are in tickless mode and hence no need for NOHZ idle load
7697 * balancing.
7698 */
7699 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7700 return false;
1c792db7
SS
7701
7702 if (time_before(now, nohz.next_balance))
1aaf90a4 7703 return false;
83cd4fe2 7704
0b005cf5 7705 if (rq->nr_running >= 2)
1aaf90a4 7706 return true;
83cd4fe2 7707
067491b7 7708 rcu_read_lock();
37dc6b50 7709 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7710 if (sd) {
63b2ca30
NP
7711 sgc = sd->groups->sgc;
7712 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7713
1aaf90a4
VG
7714 if (nr_busy > 1) {
7715 kick = true;
7716 goto unlock;
7717 }
7718
83cd4fe2 7719 }
37dc6b50 7720
1aaf90a4
VG
7721 sd = rcu_dereference(rq->sd);
7722 if (sd) {
7723 if ((rq->cfs.h_nr_running >= 1) &&
7724 check_cpu_capacity(rq, sd)) {
7725 kick = true;
7726 goto unlock;
7727 }
7728 }
37dc6b50 7729
1aaf90a4 7730 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7731 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7732 sched_domain_span(sd)) < cpu)) {
7733 kick = true;
7734 goto unlock;
7735 }
067491b7 7736
1aaf90a4 7737unlock:
067491b7 7738 rcu_read_unlock();
1aaf90a4 7739 return kick;
83cd4fe2
VP
7740}
7741#else
208cb16b 7742static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7743#endif
7744
7745/*
7746 * run_rebalance_domains is triggered when needed from the scheduler tick.
7747 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7748 */
1e3c88bd
PZ
7749static void run_rebalance_domains(struct softirq_action *h)
7750{
208cb16b 7751 struct rq *this_rq = this_rq();
6eb57e0d 7752 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7753 CPU_IDLE : CPU_NOT_IDLE;
7754
1e3c88bd 7755 /*
83cd4fe2 7756 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7757 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7758 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7759 * give the idle cpus a chance to load balance. Else we may
7760 * load balance only within the local sched_domain hierarchy
7761 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7762 */
208cb16b 7763 nohz_idle_balance(this_rq, idle);
d4573c3e 7764 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7765}
7766
1e3c88bd
PZ
7767/*
7768 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7769 */
7caff66f 7770void trigger_load_balance(struct rq *rq)
1e3c88bd 7771{
1e3c88bd 7772 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7773 if (unlikely(on_null_domain(rq)))
7774 return;
7775
7776 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7777 raise_softirq(SCHED_SOFTIRQ);
3451d024 7778#ifdef CONFIG_NO_HZ_COMMON
c726099e 7779 if (nohz_kick_needed(rq))
0aeeeeba 7780 nohz_balancer_kick();
83cd4fe2 7781#endif
1e3c88bd
PZ
7782}
7783
0bcdcf28
CE
7784static void rq_online_fair(struct rq *rq)
7785{
7786 update_sysctl();
0e59bdae
KT
7787
7788 update_runtime_enabled(rq);
0bcdcf28
CE
7789}
7790
7791static void rq_offline_fair(struct rq *rq)
7792{
7793 update_sysctl();
a4c96ae3
PB
7794
7795 /* Ensure any throttled groups are reachable by pick_next_task */
7796 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7797}
7798
55e12e5e 7799#endif /* CONFIG_SMP */
e1d1484f 7800
bf0f6f24
IM
7801/*
7802 * scheduler tick hitting a task of our scheduling class:
7803 */
8f4d37ec 7804static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7805{
7806 struct cfs_rq *cfs_rq;
7807 struct sched_entity *se = &curr->se;
7808
7809 for_each_sched_entity(se) {
7810 cfs_rq = cfs_rq_of(se);
8f4d37ec 7811 entity_tick(cfs_rq, se, queued);
bf0f6f24 7812 }
18bf2805 7813
10e84b97 7814 if (numabalancing_enabled)
cbee9f88 7815 task_tick_numa(rq, curr);
bf0f6f24
IM
7816}
7817
7818/*
cd29fe6f
PZ
7819 * called on fork with the child task as argument from the parent's context
7820 * - child not yet on the tasklist
7821 * - preemption disabled
bf0f6f24 7822 */
cd29fe6f 7823static void task_fork_fair(struct task_struct *p)
bf0f6f24 7824{
4fc420c9
DN
7825 struct cfs_rq *cfs_rq;
7826 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7827 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7828 struct rq *rq = this_rq();
7829 unsigned long flags;
7830
05fa785c 7831 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7832
861d034e
PZ
7833 update_rq_clock(rq);
7834
4fc420c9
DN
7835 cfs_rq = task_cfs_rq(current);
7836 curr = cfs_rq->curr;
7837
6c9a27f5
DN
7838 /*
7839 * Not only the cpu but also the task_group of the parent might have
7840 * been changed after parent->se.parent,cfs_rq were copied to
7841 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7842 * of child point to valid ones.
7843 */
7844 rcu_read_lock();
7845 __set_task_cpu(p, this_cpu);
7846 rcu_read_unlock();
bf0f6f24 7847
7109c442 7848 update_curr(cfs_rq);
cd29fe6f 7849
b5d9d734
MG
7850 if (curr)
7851 se->vruntime = curr->vruntime;
aeb73b04 7852 place_entity(cfs_rq, se, 1);
4d78e7b6 7853
cd29fe6f 7854 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7855 /*
edcb60a3
IM
7856 * Upon rescheduling, sched_class::put_prev_task() will place
7857 * 'current' within the tree based on its new key value.
7858 */
4d78e7b6 7859 swap(curr->vruntime, se->vruntime);
8875125e 7860 resched_curr(rq);
4d78e7b6 7861 }
bf0f6f24 7862
88ec22d3
PZ
7863 se->vruntime -= cfs_rq->min_vruntime;
7864
05fa785c 7865 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7866}
7867
cb469845
SR
7868/*
7869 * Priority of the task has changed. Check to see if we preempt
7870 * the current task.
7871 */
da7a735e
PZ
7872static void
7873prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7874{
da0c1e65 7875 if (!task_on_rq_queued(p))
da7a735e
PZ
7876 return;
7877
cb469845
SR
7878 /*
7879 * Reschedule if we are currently running on this runqueue and
7880 * our priority decreased, or if we are not currently running on
7881 * this runqueue and our priority is higher than the current's
7882 */
da7a735e 7883 if (rq->curr == p) {
cb469845 7884 if (p->prio > oldprio)
8875125e 7885 resched_curr(rq);
cb469845 7886 } else
15afe09b 7887 check_preempt_curr(rq, p, 0);
cb469845
SR
7888}
7889
da7a735e
PZ
7890static void switched_from_fair(struct rq *rq, struct task_struct *p)
7891{
7892 struct sched_entity *se = &p->se;
7893 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7894
7895 /*
791c9e02 7896 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7897 * switched back to the fair class the enqueue_entity(.flags=0) will
7898 * do the right thing.
7899 *
da0c1e65
KT
7900 * If it's queued, then the dequeue_entity(.flags=0) will already
7901 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7902 * the task is sleeping will it still have non-normalized vruntime.
7903 */
da0c1e65 7904 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7905 /*
7906 * Fix up our vruntime so that the current sleep doesn't
7907 * cause 'unlimited' sleep bonus.
7908 */
7909 place_entity(cfs_rq, se, 0);
7910 se->vruntime -= cfs_rq->min_vruntime;
7911 }
9ee474f5 7912
141965c7 7913#ifdef CONFIG_SMP
9d89c257
YD
7914 /* Catch up with the cfs_rq and remove our load when we leave */
7915 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
13962234 7916 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
9d89c257
YD
7917
7918 cfs_rq->avg.load_avg =
7919 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7920 cfs_rq->avg.load_sum =
7921 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7922 cfs_rq->avg.util_avg =
7923 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7924 cfs_rq->avg.util_sum =
7925 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
9ee474f5 7926#endif
da7a735e
PZ
7927}
7928
cb469845
SR
7929/*
7930 * We switched to the sched_fair class.
7931 */
da7a735e 7932static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7933{
f36c019c 7934 struct sched_entity *se = &p->se;
7855a35a
BP
7935
7936#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
7937 /*
7938 * Since the real-depth could have been changed (only FAIR
7939 * class maintain depth value), reset depth properly.
7940 */
7941 se->depth = se->parent ? se->parent->depth + 1 : 0;
7942#endif
7855a35a
BP
7943
7944 if (!task_on_rq_queued(p)) {
7945
7946 /*
7947 * Ensure the task has a non-normalized vruntime when it is switched
7948 * back to the fair class with !queued, so that enqueue_entity() at
7949 * wake-up time will do the right thing.
7950 *
7951 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7952 * has non-normalized vruntime, if it's !queued, then it still has
7953 * normalized vruntime.
7954 */
7955 if (p->state != TASK_RUNNING)
7956 se->vruntime += cfs_rq_of(se)->min_vruntime;
da7a735e 7957 return;
7855a35a 7958 }
da7a735e 7959
cb469845
SR
7960 /*
7961 * We were most likely switched from sched_rt, so
7962 * kick off the schedule if running, otherwise just see
7963 * if we can still preempt the current task.
7964 */
da7a735e 7965 if (rq->curr == p)
8875125e 7966 resched_curr(rq);
cb469845 7967 else
15afe09b 7968 check_preempt_curr(rq, p, 0);
cb469845
SR
7969}
7970
83b699ed
SV
7971/* Account for a task changing its policy or group.
7972 *
7973 * This routine is mostly called to set cfs_rq->curr field when a task
7974 * migrates between groups/classes.
7975 */
7976static void set_curr_task_fair(struct rq *rq)
7977{
7978 struct sched_entity *se = &rq->curr->se;
7979
ec12cb7f
PT
7980 for_each_sched_entity(se) {
7981 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7982
7983 set_next_entity(cfs_rq, se);
7984 /* ensure bandwidth has been allocated on our new cfs_rq */
7985 account_cfs_rq_runtime(cfs_rq, 0);
7986 }
83b699ed
SV
7987}
7988
029632fb
PZ
7989void init_cfs_rq(struct cfs_rq *cfs_rq)
7990{
7991 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7992 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7993#ifndef CONFIG_64BIT
7994 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7995#endif
141965c7 7996#ifdef CONFIG_SMP
9d89c257
YD
7997 atomic_long_set(&cfs_rq->removed_load_avg, 0);
7998 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 7999#endif
029632fb
PZ
8000}
8001
810b3817 8002#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8003static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8004{
fed14d45 8005 struct sched_entity *se = &p->se;
aff3e498 8006 struct cfs_rq *cfs_rq;
fed14d45 8007
b2b5ce02
PZ
8008 /*
8009 * If the task was not on the rq at the time of this cgroup movement
8010 * it must have been asleep, sleeping tasks keep their ->vruntime
8011 * absolute on their old rq until wakeup (needed for the fair sleeper
8012 * bonus in place_entity()).
8013 *
8014 * If it was on the rq, we've just 'preempted' it, which does convert
8015 * ->vruntime to a relative base.
8016 *
8017 * Make sure both cases convert their relative position when migrating
8018 * to another cgroup's rq. This does somewhat interfere with the
8019 * fair sleeper stuff for the first placement, but who cares.
8020 */
7ceff013 8021 /*
da0c1e65 8022 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8023 * But there are some cases where it has already been normalized:
8024 *
8025 * - Moving a forked child which is waiting for being woken up by
8026 * wake_up_new_task().
62af3783
DN
8027 * - Moving a task which has been woken up by try_to_wake_up() and
8028 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8029 *
8030 * To prevent boost or penalty in the new cfs_rq caused by delta
8031 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8032 */
da0c1e65
KT
8033 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8034 queued = 1;
7ceff013 8035
da0c1e65 8036 if (!queued)
fed14d45 8037 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8038 set_task_rq(p, task_cpu(p));
fed14d45 8039 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8040 if (!queued) {
fed14d45
PZ
8041 cfs_rq = cfs_rq_of(se);
8042 se->vruntime += cfs_rq->min_vruntime;
9d89c257 8043
aff3e498 8044#ifdef CONFIG_SMP
9d89c257
YD
8045 /* Virtually synchronize task with its new cfs_rq */
8046 p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8047 cfs_rq->avg.load_avg += p->se.avg.load_avg;
8048 cfs_rq->avg.load_sum += p->se.avg.load_sum;
8049 cfs_rq->avg.util_avg += p->se.avg.util_avg;
8050 cfs_rq->avg.util_sum += p->se.avg.util_sum;
aff3e498
PT
8051#endif
8052 }
810b3817 8053}
029632fb
PZ
8054
8055void free_fair_sched_group(struct task_group *tg)
8056{
8057 int i;
8058
8059 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8060
8061 for_each_possible_cpu(i) {
8062 if (tg->cfs_rq)
8063 kfree(tg->cfs_rq[i]);
12695578
YD
8064 if (tg->se) {
8065 if (tg->se[i])
8066 remove_entity_load_avg(tg->se[i]);
029632fb 8067 kfree(tg->se[i]);
12695578 8068 }
029632fb
PZ
8069 }
8070
8071 kfree(tg->cfs_rq);
8072 kfree(tg->se);
8073}
8074
8075int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8076{
8077 struct cfs_rq *cfs_rq;
8078 struct sched_entity *se;
8079 int i;
8080
8081 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8082 if (!tg->cfs_rq)
8083 goto err;
8084 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8085 if (!tg->se)
8086 goto err;
8087
8088 tg->shares = NICE_0_LOAD;
8089
8090 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8091
8092 for_each_possible_cpu(i) {
8093 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8094 GFP_KERNEL, cpu_to_node(i));
8095 if (!cfs_rq)
8096 goto err;
8097
8098 se = kzalloc_node(sizeof(struct sched_entity),
8099 GFP_KERNEL, cpu_to_node(i));
8100 if (!se)
8101 goto err_free_rq;
8102
8103 init_cfs_rq(cfs_rq);
8104 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8105 init_entity_runnable_average(se);
029632fb
PZ
8106 }
8107
8108 return 1;
8109
8110err_free_rq:
8111 kfree(cfs_rq);
8112err:
8113 return 0;
8114}
8115
8116void unregister_fair_sched_group(struct task_group *tg, int cpu)
8117{
8118 struct rq *rq = cpu_rq(cpu);
8119 unsigned long flags;
8120
8121 /*
8122 * Only empty task groups can be destroyed; so we can speculatively
8123 * check on_list without danger of it being re-added.
8124 */
8125 if (!tg->cfs_rq[cpu]->on_list)
8126 return;
8127
8128 raw_spin_lock_irqsave(&rq->lock, flags);
8129 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8130 raw_spin_unlock_irqrestore(&rq->lock, flags);
8131}
8132
8133void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8134 struct sched_entity *se, int cpu,
8135 struct sched_entity *parent)
8136{
8137 struct rq *rq = cpu_rq(cpu);
8138
8139 cfs_rq->tg = tg;
8140 cfs_rq->rq = rq;
029632fb
PZ
8141 init_cfs_rq_runtime(cfs_rq);
8142
8143 tg->cfs_rq[cpu] = cfs_rq;
8144 tg->se[cpu] = se;
8145
8146 /* se could be NULL for root_task_group */
8147 if (!se)
8148 return;
8149
fed14d45 8150 if (!parent) {
029632fb 8151 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8152 se->depth = 0;
8153 } else {
029632fb 8154 se->cfs_rq = parent->my_q;
fed14d45
PZ
8155 se->depth = parent->depth + 1;
8156 }
029632fb
PZ
8157
8158 se->my_q = cfs_rq;
0ac9b1c2
PT
8159 /* guarantee group entities always have weight */
8160 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8161 se->parent = parent;
8162}
8163
8164static DEFINE_MUTEX(shares_mutex);
8165
8166int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8167{
8168 int i;
8169 unsigned long flags;
8170
8171 /*
8172 * We can't change the weight of the root cgroup.
8173 */
8174 if (!tg->se[0])
8175 return -EINVAL;
8176
8177 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8178
8179 mutex_lock(&shares_mutex);
8180 if (tg->shares == shares)
8181 goto done;
8182
8183 tg->shares = shares;
8184 for_each_possible_cpu(i) {
8185 struct rq *rq = cpu_rq(i);
8186 struct sched_entity *se;
8187
8188 se = tg->se[i];
8189 /* Propagate contribution to hierarchy */
8190 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8191
8192 /* Possible calls to update_curr() need rq clock */
8193 update_rq_clock(rq);
17bc14b7 8194 for_each_sched_entity(se)
029632fb
PZ
8195 update_cfs_shares(group_cfs_rq(se));
8196 raw_spin_unlock_irqrestore(&rq->lock, flags);
8197 }
8198
8199done:
8200 mutex_unlock(&shares_mutex);
8201 return 0;
8202}
8203#else /* CONFIG_FAIR_GROUP_SCHED */
8204
8205void free_fair_sched_group(struct task_group *tg) { }
8206
8207int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8208{
8209 return 1;
8210}
8211
8212void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8213
8214#endif /* CONFIG_FAIR_GROUP_SCHED */
8215
810b3817 8216
6d686f45 8217static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8218{
8219 struct sched_entity *se = &task->se;
0d721cea
PW
8220 unsigned int rr_interval = 0;
8221
8222 /*
8223 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8224 * idle runqueue:
8225 */
0d721cea 8226 if (rq->cfs.load.weight)
a59f4e07 8227 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8228
8229 return rr_interval;
8230}
8231
bf0f6f24
IM
8232/*
8233 * All the scheduling class methods:
8234 */
029632fb 8235const struct sched_class fair_sched_class = {
5522d5d5 8236 .next = &idle_sched_class,
bf0f6f24
IM
8237 .enqueue_task = enqueue_task_fair,
8238 .dequeue_task = dequeue_task_fair,
8239 .yield_task = yield_task_fair,
d95f4122 8240 .yield_to_task = yield_to_task_fair,
bf0f6f24 8241
2e09bf55 8242 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8243
8244 .pick_next_task = pick_next_task_fair,
8245 .put_prev_task = put_prev_task_fair,
8246
681f3e68 8247#ifdef CONFIG_SMP
4ce72a2c 8248 .select_task_rq = select_task_rq_fair,
0a74bef8 8249 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8250
0bcdcf28
CE
8251 .rq_online = rq_online_fair,
8252 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8253
8254 .task_waking = task_waking_fair,
12695578 8255 .task_dead = task_dead_fair,
c5b28038 8256 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8257#endif
bf0f6f24 8258
83b699ed 8259 .set_curr_task = set_curr_task_fair,
bf0f6f24 8260 .task_tick = task_tick_fair,
cd29fe6f 8261 .task_fork = task_fork_fair,
cb469845
SR
8262
8263 .prio_changed = prio_changed_fair,
da7a735e 8264 .switched_from = switched_from_fair,
cb469845 8265 .switched_to = switched_to_fair,
810b3817 8266
0d721cea
PW
8267 .get_rr_interval = get_rr_interval_fair,
8268
6e998916
SG
8269 .update_curr = update_curr_fair,
8270
810b3817 8271#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8272 .task_move_group = task_move_group_fair,
810b3817 8273#endif
bf0f6f24
IM
8274};
8275
8276#ifdef CONFIG_SCHED_DEBUG
029632fb 8277void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8278{
bf0f6f24
IM
8279 struct cfs_rq *cfs_rq;
8280
5973e5b9 8281 rcu_read_lock();
c3b64f1e 8282 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8283 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8284 rcu_read_unlock();
bf0f6f24 8285}
397f2378
SD
8286
8287#ifdef CONFIG_NUMA_BALANCING
8288void show_numa_stats(struct task_struct *p, struct seq_file *m)
8289{
8290 int node;
8291 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8292
8293 for_each_online_node(node) {
8294 if (p->numa_faults) {
8295 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8296 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8297 }
8298 if (p->numa_group) {
8299 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8300 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8301 }
8302 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8303 }
8304}
8305#endif /* CONFIG_NUMA_BALANCING */
8306#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8307
8308__init void init_sched_fair_class(void)
8309{
8310#ifdef CONFIG_SMP
8311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8312
3451d024 8313#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8314 nohz.next_balance = jiffies;
029632fb 8315 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8316 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8317#endif
8318#endif /* SMP */
8319
8320}