Merge tag 'media/v5.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
8a99b683 52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
4aed8aa4
VS
116/*
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
119 *
120 * (default: ~5%)
121 */
122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
123#endif
124
ec12cb7f
PT
125#ifdef CONFIG_CFS_BANDWIDTH
126/*
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
129 *
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
133 *
2b4d5b25
IM
134 * (default: 5 msec, units: microseconds)
135 */
136unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
137#endif
138
8527632d
PG
139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140{
141 lw->weight += inc;
142 lw->inv_weight = 0;
143}
144
145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146{
147 lw->weight -= dec;
148 lw->inv_weight = 0;
149}
150
151static inline void update_load_set(struct load_weight *lw, unsigned long w)
152{
153 lw->weight = w;
154 lw->inv_weight = 0;
155}
156
029632fb
PZ
157/*
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
162 * number of CPUs.
163 *
164 * This idea comes from the SD scheduler of Con Kolivas:
165 */
58ac93e4 166static unsigned int get_update_sysctl_factor(void)
029632fb 167{
58ac93e4 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
169 unsigned int factor;
170
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
173 factor = 1;
174 break;
175 case SCHED_TUNABLESCALING_LINEAR:
176 factor = cpus;
177 break;
178 case SCHED_TUNABLESCALING_LOG:
179 default:
180 factor = 1 + ilog2(cpus);
181 break;
182 }
183
184 return factor;
185}
186
187static void update_sysctl(void)
188{
189 unsigned int factor = get_update_sysctl_factor();
190
191#define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
196#undef SET_SYSCTL
197}
198
f38f12d1 199void __init sched_init_granularity(void)
029632fb
PZ
200{
201 update_sysctl();
202}
203
9dbdb155 204#define WMULT_CONST (~0U)
029632fb
PZ
205#define WMULT_SHIFT 32
206
9dbdb155
PZ
207static void __update_inv_weight(struct load_weight *lw)
208{
209 unsigned long w;
210
211 if (likely(lw->inv_weight))
212 return;
213
214 w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222}
029632fb
PZ
223
224/*
9dbdb155
PZ
225 * delta_exec * weight / lw.weight
226 * OR
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228 *
1c3de5e1 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232 *
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 235 */
9dbdb155 236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 237{
9dbdb155 238 u64 fact = scale_load_down(weight);
1e17fb8e 239 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 240 int shift = WMULT_SHIFT;
1e17fb8e 241 int fs;
029632fb 242
9dbdb155 243 __update_inv_weight(lw);
029632fb 244
1e17fb8e
CC
245 if (unlikely(fact_hi)) {
246 fs = fls(fact_hi);
247 shift -= fs;
248 fact >>= fs;
029632fb
PZ
249 }
250
2eeb01a2 251 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 252
1e17fb8e
CC
253 fact_hi = (u32)(fact >> 32);
254 if (fact_hi) {
255 fs = fls(fact_hi);
256 shift -= fs;
257 fact >>= fs;
9dbdb155 258 }
029632fb 259
9dbdb155 260 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
261}
262
263
264const struct sched_class fair_sched_class;
a4c2f00f 265
bf0f6f24
IM
266/**************************************************************
267 * CFS operations on generic schedulable entities:
268 */
269
62160e3f 270#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 271
b758149c
PZ
272/* Walk up scheduling entities hierarchy */
273#define for_each_sched_entity(se) \
274 for (; se; se = se->parent)
275
3c93a0c0
QY
276static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
277{
278 if (!path)
279 return;
280
281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 autogroup_path(cfs_rq->tg, path, len);
283 else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
285 else
286 strlcpy(path, "(null)", len);
287}
288
f6783319 289static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 290{
5d299eab
PZ
291 struct rq *rq = rq_of(cfs_rq);
292 int cpu = cpu_of(rq);
293
294 if (cfs_rq->on_list)
f6783319 295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
296
297 cfs_rq->on_list = 1;
298
299 /*
300 * Ensure we either appear before our parent (if already
301 * enqueued) or force our parent to appear after us when it is
302 * enqueued. The fact that we always enqueue bottom-up
303 * reduces this to two cases and a special case for the root
304 * cfs_rq. Furthermore, it also means that we will always reset
305 * tmp_alone_branch either when the branch is connected
306 * to a tree or when we reach the top of the tree
307 */
308 if (cfs_rq->tg->parent &&
309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 310 /*
5d299eab
PZ
311 * If parent is already on the list, we add the child
312 * just before. Thanks to circular linked property of
313 * the list, this means to put the child at the tail
314 * of the list that starts by parent.
67e86250 315 */
5d299eab
PZ
316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
318 /*
319 * The branch is now connected to its tree so we can
320 * reset tmp_alone_branch to the beginning of the
321 * list.
322 */
323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 324 return true;
5d299eab 325 }
3d4b47b4 326
5d299eab
PZ
327 if (!cfs_rq->tg->parent) {
328 /*
329 * cfs rq without parent should be put
330 * at the tail of the list.
331 */
332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 &rq->leaf_cfs_rq_list);
334 /*
335 * We have reach the top of a tree so we can reset
336 * tmp_alone_branch to the beginning of the list.
337 */
338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 339 return true;
3d4b47b4 340 }
5d299eab
PZ
341
342 /*
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the begin of the branch
346 * where we will add parent.
347 */
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
349 /*
350 * update tmp_alone_branch to points to the new begin
351 * of the branch
352 */
353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 354 return false;
3d4b47b4
PZ
355}
356
357static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
358{
359 if (cfs_rq->on_list) {
31bc6aea
VG
360 struct rq *rq = rq_of(cfs_rq);
361
362 /*
363 * With cfs_rq being unthrottled/throttled during an enqueue,
364 * it can happen the tmp_alone_branch points the a leaf that
365 * we finally want to del. In this case, tmp_alone_branch moves
366 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 * at the end of the enqueue.
368 */
369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
371
3d4b47b4
PZ
372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
373 cfs_rq->on_list = 0;
374 }
375}
376
5d299eab
PZ
377static inline void assert_list_leaf_cfs_rq(struct rq *rq)
378{
379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
380}
381
039ae8bc
VG
382/* Iterate thr' all leaf cfs_rq's on a runqueue */
383#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
385 leaf_cfs_rq_list)
b758149c
PZ
386
387/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 388static inline struct cfs_rq *
b758149c
PZ
389is_same_group(struct sched_entity *se, struct sched_entity *pse)
390{
391 if (se->cfs_rq == pse->cfs_rq)
fed14d45 392 return se->cfs_rq;
b758149c 393
fed14d45 394 return NULL;
b758149c
PZ
395}
396
397static inline struct sched_entity *parent_entity(struct sched_entity *se)
398{
399 return se->parent;
400}
401
464b7527
PZ
402static void
403find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404{
405 int se_depth, pse_depth;
406
407 /*
408 * preemption test can be made between sibling entities who are in the
409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 * both tasks until we find their ancestors who are siblings of common
411 * parent.
412 */
413
414 /* First walk up until both entities are at same depth */
fed14d45
PZ
415 se_depth = (*se)->depth;
416 pse_depth = (*pse)->depth;
464b7527
PZ
417
418 while (se_depth > pse_depth) {
419 se_depth--;
420 *se = parent_entity(*se);
421 }
422
423 while (pse_depth > se_depth) {
424 pse_depth--;
425 *pse = parent_entity(*pse);
426 }
427
428 while (!is_same_group(*se, *pse)) {
429 *se = parent_entity(*se);
430 *pse = parent_entity(*pse);
431 }
432}
433
8f48894f
PZ
434#else /* !CONFIG_FAIR_GROUP_SCHED */
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
3c93a0c0
QY
439static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
440{
441 if (path)
442 strlcpy(path, "(null)", len);
443}
444
f6783319 445static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 446{
f6783319 447 return true;
3d4b47b4
PZ
448}
449
450static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451{
452}
453
5d299eab
PZ
454static inline void assert_list_leaf_cfs_rq(struct rq *rq)
455{
456}
457
039ae8bc
VG
458#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
459 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 460
b758149c
PZ
461static inline struct sched_entity *parent_entity(struct sched_entity *se)
462{
463 return NULL;
464}
465
464b7527
PZ
466static inline void
467find_matching_se(struct sched_entity **se, struct sched_entity **pse)
468{
469}
470
b758149c
PZ
471#endif /* CONFIG_FAIR_GROUP_SCHED */
472
6c16a6dc 473static __always_inline
9dbdb155 474void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
475
476/**************************************************************
477 * Scheduling class tree data structure manipulation methods:
478 */
479
1bf08230 480static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 481{
1bf08230 482 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 483 if (delta > 0)
1bf08230 484 max_vruntime = vruntime;
02e0431a 485
1bf08230 486 return max_vruntime;
02e0431a
PZ
487}
488
0702e3eb 489static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
490{
491 s64 delta = (s64)(vruntime - min_vruntime);
492 if (delta < 0)
493 min_vruntime = vruntime;
494
495 return min_vruntime;
496}
497
bf9be9a1 498static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
499 struct sched_entity *b)
500{
501 return (s64)(a->vruntime - b->vruntime) < 0;
502}
503
bf9be9a1
PZ
504#define __node_2_se(node) \
505 rb_entry((node), struct sched_entity, run_node)
506
1af5f730
PZ
507static void update_min_vruntime(struct cfs_rq *cfs_rq)
508{
b60205c7 509 struct sched_entity *curr = cfs_rq->curr;
bfb06889 510 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 511
1af5f730
PZ
512 u64 vruntime = cfs_rq->min_vruntime;
513
b60205c7
PZ
514 if (curr) {
515 if (curr->on_rq)
516 vruntime = curr->vruntime;
517 else
518 curr = NULL;
519 }
1af5f730 520
bfb06889 521 if (leftmost) { /* non-empty tree */
bf9be9a1 522 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 523
b60205c7 524 if (!curr)
1af5f730
PZ
525 vruntime = se->vruntime;
526 else
527 vruntime = min_vruntime(vruntime, se->vruntime);
528 }
529
1bf08230 530 /* ensure we never gain time by being placed backwards. */
1af5f730 531 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
532#ifndef CONFIG_64BIT
533 smp_wmb();
534 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
535#endif
1af5f730
PZ
536}
537
bf9be9a1
PZ
538static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
539{
540 return entity_before(__node_2_se(a), __node_2_se(b));
541}
542
bf0f6f24
IM
543/*
544 * Enqueue an entity into the rb-tree:
545 */
0702e3eb 546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 547{
bf9be9a1 548 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
549}
550
0702e3eb 551static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 552{
bfb06889 553 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
554}
555
029632fb 556struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 557{
bfb06889 558 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
559
560 if (!left)
561 return NULL;
562
bf9be9a1 563 return __node_2_se(left);
bf0f6f24
IM
564}
565
ac53db59
RR
566static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567{
568 struct rb_node *next = rb_next(&se->run_node);
569
570 if (!next)
571 return NULL;
572
bf9be9a1 573 return __node_2_se(next);
ac53db59
RR
574}
575
576#ifdef CONFIG_SCHED_DEBUG
029632fb 577struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 578{
bfb06889 579 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 580
70eee74b
BS
581 if (!last)
582 return NULL;
7eee3e67 583
bf9be9a1 584 return __node_2_se(last);
aeb73b04
PZ
585}
586
bf0f6f24
IM
587/**************************************************************
588 * Scheduling class statistics methods:
589 */
590
8a99b683 591int sched_update_scaling(void)
b2be5e96 592{
58ac93e4 593 unsigned int factor = get_update_sysctl_factor();
b2be5e96 594
b2be5e96
PZ
595 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
596 sysctl_sched_min_granularity);
597
acb4a848
CE
598#define WRT_SYSCTL(name) \
599 (normalized_sysctl_##name = sysctl_##name / (factor))
600 WRT_SYSCTL(sched_min_granularity);
601 WRT_SYSCTL(sched_latency);
602 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
603#undef WRT_SYSCTL
604
b2be5e96
PZ
605 return 0;
606}
607#endif
647e7cac 608
a7be37ac 609/*
f9c0b095 610 * delta /= w
a7be37ac 611 */
9dbdb155 612static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 613{
f9c0b095 614 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 615 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
616
617 return delta;
618}
619
647e7cac
IM
620/*
621 * The idea is to set a period in which each task runs once.
622 *
532b1858 623 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
624 * this period because otherwise the slices get too small.
625 *
626 * p = (nr <= nl) ? l : l*nr/nl
627 */
4d78e7b6
PZ
628static u64 __sched_period(unsigned long nr_running)
629{
8e2b0bf3
BF
630 if (unlikely(nr_running > sched_nr_latency))
631 return nr_running * sysctl_sched_min_granularity;
632 else
633 return sysctl_sched_latency;
4d78e7b6
PZ
634}
635
647e7cac
IM
636/*
637 * We calculate the wall-time slice from the period by taking a part
638 * proportional to the weight.
639 *
f9c0b095 640 * s = p*P[w/rw]
647e7cac 641 */
6d0f0ebd 642static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 643{
0c2de3f0
PZ
644 unsigned int nr_running = cfs_rq->nr_running;
645 u64 slice;
646
647 if (sched_feat(ALT_PERIOD))
648 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
649
650 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 651
0a582440 652 for_each_sched_entity(se) {
6272d68c 653 struct load_weight *load;
3104bf03 654 struct load_weight lw;
6272d68c
LM
655
656 cfs_rq = cfs_rq_of(se);
657 load = &cfs_rq->load;
f9c0b095 658
0a582440 659 if (unlikely(!se->on_rq)) {
3104bf03 660 lw = cfs_rq->load;
0a582440
MG
661
662 update_load_add(&lw, se->load.weight);
663 load = &lw;
664 }
9dbdb155 665 slice = __calc_delta(slice, se->load.weight, load);
0a582440 666 }
0c2de3f0
PZ
667
668 if (sched_feat(BASE_SLICE))
669 slice = max(slice, (u64)sysctl_sched_min_granularity);
670
0a582440 671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
c0796298 684#include "pelt.h"
23127296 685#ifdef CONFIG_SMP
283e2ed3 686
772bd008 687static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 688static unsigned long task_h_load(struct task_struct *p);
3b1baa64 689static unsigned long capacity_of(int cpu);
fb13c7ee 690
540247fb
YD
691/* Give new sched_entity start runnable values to heavy its load in infant time */
692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 693{
540247fb 694 struct sched_avg *sa = &se->avg;
a75cdaa9 695
f207934f
PZ
696 memset(sa, 0, sizeof(*sa));
697
b5a9b340 698 /*
dfcb245e 699 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 700 * they get a chance to stabilize to their real load level.
dfcb245e 701 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
702 * nothing has been attached to the task group yet.
703 */
704 if (entity_is_task(se))
0dacee1b 705 sa->load_avg = scale_load_down(se->load.weight);
f207934f 706
9d89c257 707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 708}
7ea241af 709
df217913 710static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 711
2b8c41da
YD
712/*
713 * With new tasks being created, their initial util_avgs are extrapolated
714 * based on the cfs_rq's current util_avg:
715 *
716 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
717 *
718 * However, in many cases, the above util_avg does not give a desired
719 * value. Moreover, the sum of the util_avgs may be divergent, such
720 * as when the series is a harmonic series.
721 *
722 * To solve this problem, we also cap the util_avg of successive tasks to
723 * only 1/2 of the left utilization budget:
724 *
8fe5c5a9 725 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 726 *
8fe5c5a9 727 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 728 *
8fe5c5a9
QP
729 * For example, for a CPU with 1024 of capacity, a simplest series from
730 * the beginning would be like:
2b8c41da
YD
731 *
732 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
733 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
734 *
735 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
736 * if util_avg > util_avg_cap.
737 */
d0fe0b9c 738void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 739{
d0fe0b9c 740 struct sched_entity *se = &p->se;
2b8c41da
YD
741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
742 struct sched_avg *sa = &se->avg;
8ec59c0f 743 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 744 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
745
746 if (cap > 0) {
747 if (cfs_rq->avg.util_avg != 0) {
748 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
749 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
750
751 if (sa->util_avg > cap)
752 sa->util_avg = cap;
753 } else {
754 sa->util_avg = cap;
755 }
2b8c41da 756 }
7dc603c9 757
e21cf434 758 sa->runnable_avg = sa->util_avg;
9f683953 759
d0fe0b9c
DE
760 if (p->sched_class != &fair_sched_class) {
761 /*
762 * For !fair tasks do:
763 *
764 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 765 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
766 switched_from_fair(rq, p);
767 *
768 * such that the next switched_to_fair() has the
769 * expected state.
770 */
771 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
772 return;
7dc603c9
PZ
773 }
774
df217913 775 attach_entity_cfs_rq(se);
2b8c41da
YD
776}
777
7dc603c9 778#else /* !CONFIG_SMP */
540247fb 779void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
780{
781}
d0fe0b9c 782void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
783{
784}
fe749158 785static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
786{
787}
7dc603c9 788#endif /* CONFIG_SMP */
a75cdaa9 789
bf0f6f24 790/*
9dbdb155 791 * Update the current task's runtime statistics.
bf0f6f24 792 */
b7cc0896 793static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 794{
429d43bc 795 struct sched_entity *curr = cfs_rq->curr;
78becc27 796 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 797 u64 delta_exec;
bf0f6f24
IM
798
799 if (unlikely(!curr))
800 return;
801
9dbdb155
PZ
802 delta_exec = now - curr->exec_start;
803 if (unlikely((s64)delta_exec <= 0))
34f28ecd 804 return;
bf0f6f24 805
8ebc91d9 806 curr->exec_start = now;
d842de87 807
9dbdb155
PZ
808 schedstat_set(curr->statistics.exec_max,
809 max(delta_exec, curr->statistics.exec_max));
810
811 curr->sum_exec_runtime += delta_exec;
ae92882e 812 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
813
814 curr->vruntime += calc_delta_fair(delta_exec, curr);
815 update_min_vruntime(cfs_rq);
816
d842de87
SV
817 if (entity_is_task(curr)) {
818 struct task_struct *curtask = task_of(curr);
819
f977bb49 820 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 821 cgroup_account_cputime(curtask, delta_exec);
f06febc9 822 account_group_exec_runtime(curtask, delta_exec);
d842de87 823 }
ec12cb7f
PT
824
825 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
826}
827
6e998916
SG
828static void update_curr_fair(struct rq *rq)
829{
830 update_curr(cfs_rq_of(&rq->curr->se));
831}
832
bf0f6f24 833static inline void
5870db5b 834update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 835{
4fa8d299
JP
836 u64 wait_start, prev_wait_start;
837
838 if (!schedstat_enabled())
839 return;
840
841 wait_start = rq_clock(rq_of(cfs_rq));
842 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
843
844 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
845 likely(wait_start > prev_wait_start))
846 wait_start -= prev_wait_start;
3ea94de1 847
2ed41a55 848 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
849}
850
4fa8d299 851static inline void
3ea94de1
JP
852update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
853{
854 struct task_struct *p;
cb251765
MG
855 u64 delta;
856
4fa8d299
JP
857 if (!schedstat_enabled())
858 return;
859
b9c88f75 860 /*
861 * When the sched_schedstat changes from 0 to 1, some sched se
862 * maybe already in the runqueue, the se->statistics.wait_start
863 * will be 0.So it will let the delta wrong. We need to avoid this
864 * scenario.
865 */
866 if (unlikely(!schedstat_val(se->statistics.wait_start)))
867 return;
868
4fa8d299 869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
870
871 if (entity_is_task(se)) {
872 p = task_of(se);
873 if (task_on_rq_migrating(p)) {
874 /*
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
878 */
2ed41a55 879 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
880 return;
881 }
882 trace_sched_stat_wait(p, delta);
883 }
884
2ed41a55 885 __schedstat_set(se->statistics.wait_max,
4fa8d299 886 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 890}
3ea94de1 891
4fa8d299 892static inline void
1a3d027c
JP
893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *tsk = NULL;
4fa8d299
JP
896 u64 sleep_start, block_start;
897
898 if (!schedstat_enabled())
899 return;
900
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
903
904 if (entity_is_task(se))
905 tsk = task_of(se);
906
4fa8d299
JP
907 if (sleep_start) {
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
909
910 if ((s64)delta < 0)
911 delta = 0;
912
4fa8d299 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 914 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 915
2ed41a55
PZ
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
918
919 if (tsk) {
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
922 }
923 }
4fa8d299
JP
924 if (block_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
926
927 if ((s64)delta < 0)
928 delta = 0;
929
4fa8d299 930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 931 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 932
2ed41a55
PZ
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
935
936 if (tsk) {
937 if (tsk->in_iowait) {
2ed41a55
PZ
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
940 trace_sched_stat_iowait(tsk, delta);
941 }
942
943 trace_sched_stat_blocked(tsk, delta);
944
945 /*
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
949 */
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
953 delta >> 20);
954 }
955 account_scheduler_latency(tsk, delta >> 10, 0);
956 }
957 }
3ea94de1 958}
3ea94de1 959
bf0f6f24
IM
960/*
961 * Task is being enqueued - update stats:
962 */
cb251765 963static inline void
1a3d027c 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 965{
4fa8d299
JP
966 if (!schedstat_enabled())
967 return;
968
bf0f6f24
IM
969 /*
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
972 */
429d43bc 973 if (se != cfs_rq->curr)
5870db5b 974 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
975
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
978}
979
bf0f6f24 980static inline void
cb251765 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 982{
4fa8d299
JP
983
984 if (!schedstat_enabled())
985 return;
986
bf0f6f24
IM
987 /*
988 * Mark the end of the wait period if dequeueing a
989 * waiting task:
990 */
429d43bc 991 if (se != cfs_rq->curr)
9ef0a961 992 update_stats_wait_end(cfs_rq, se);
cb251765 993
4fa8d299
JP
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
2f064a59 996 unsigned int state;
cb251765 997
2f064a59
PZ
998 /* XXX racy against TTWU */
999 state = READ_ONCE(tsk->__state);
1000 if (state & TASK_INTERRUPTIBLE)
2ed41a55 1001 __schedstat_set(se->statistics.sleep_start,
4fa8d299 1002 rq_clock(rq_of(cfs_rq)));
2f064a59 1003 if (state & TASK_UNINTERRUPTIBLE)
2ed41a55 1004 __schedstat_set(se->statistics.block_start,
4fa8d299 1005 rq_clock(rq_of(cfs_rq)));
cb251765 1006 }
cb251765
MG
1007}
1008
bf0f6f24
IM
1009/*
1010 * We are picking a new current task - update its stats:
1011 */
1012static inline void
79303e9e 1013update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1014{
1015 /*
1016 * We are starting a new run period:
1017 */
78becc27 1018 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1019}
1020
bf0f6f24
IM
1021/**************************************************
1022 * Scheduling class queueing methods:
1023 */
1024
cbee9f88
PZ
1025#ifdef CONFIG_NUMA_BALANCING
1026/*
598f0ec0
MG
1027 * Approximate time to scan a full NUMA task in ms. The task scan period is
1028 * calculated based on the tasks virtual memory size and
1029 * numa_balancing_scan_size.
cbee9f88 1030 */
598f0ec0
MG
1031unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1032unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1033
1034/* Portion of address space to scan in MB */
1035unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1036
4b96a29b
PZ
1037/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1038unsigned int sysctl_numa_balancing_scan_delay = 1000;
1039
b5dd77c8 1040struct numa_group {
c45a7795 1041 refcount_t refcount;
b5dd77c8
RR
1042
1043 spinlock_t lock; /* nr_tasks, tasks */
1044 int nr_tasks;
1045 pid_t gid;
1046 int active_nodes;
1047
1048 struct rcu_head rcu;
1049 unsigned long total_faults;
1050 unsigned long max_faults_cpu;
1051 /*
1052 * Faults_cpu is used to decide whether memory should move
1053 * towards the CPU. As a consequence, these stats are weighted
1054 * more by CPU use than by memory faults.
1055 */
1056 unsigned long *faults_cpu;
04f5c362 1057 unsigned long faults[];
b5dd77c8
RR
1058};
1059
cb361d8c
JH
1060/*
1061 * For functions that can be called in multiple contexts that permit reading
1062 * ->numa_group (see struct task_struct for locking rules).
1063 */
1064static struct numa_group *deref_task_numa_group(struct task_struct *p)
1065{
1066 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1067 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1068}
1069
1070static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1071{
1072 return rcu_dereference_protected(p->numa_group, p == current);
1073}
1074
b5dd77c8
RR
1075static inline unsigned long group_faults_priv(struct numa_group *ng);
1076static inline unsigned long group_faults_shared(struct numa_group *ng);
1077
598f0ec0
MG
1078static unsigned int task_nr_scan_windows(struct task_struct *p)
1079{
1080 unsigned long rss = 0;
1081 unsigned long nr_scan_pages;
1082
1083 /*
1084 * Calculations based on RSS as non-present and empty pages are skipped
1085 * by the PTE scanner and NUMA hinting faults should be trapped based
1086 * on resident pages
1087 */
1088 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 rss = get_mm_rss(p->mm);
1090 if (!rss)
1091 rss = nr_scan_pages;
1092
1093 rss = round_up(rss, nr_scan_pages);
1094 return rss / nr_scan_pages;
1095}
1096
3b03706f 1097/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1098#define MAX_SCAN_WINDOW 2560
1099
1100static unsigned int task_scan_min(struct task_struct *p)
1101{
316c1608 1102 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1103 unsigned int scan, floor;
1104 unsigned int windows = 1;
1105
64192658
KT
1106 if (scan_size < MAX_SCAN_WINDOW)
1107 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1108 floor = 1000 / windows;
1109
1110 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 return max_t(unsigned int, floor, scan);
1112}
1113
b5dd77c8
RR
1114static unsigned int task_scan_start(struct task_struct *p)
1115{
1116 unsigned long smin = task_scan_min(p);
1117 unsigned long period = smin;
cb361d8c 1118 struct numa_group *ng;
b5dd77c8
RR
1119
1120 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1121 rcu_read_lock();
1122 ng = rcu_dereference(p->numa_group);
1123 if (ng) {
b5dd77c8
RR
1124 unsigned long shared = group_faults_shared(ng);
1125 unsigned long private = group_faults_priv(ng);
1126
c45a7795 1127 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1128 period *= shared + 1;
1129 period /= private + shared + 1;
1130 }
cb361d8c 1131 rcu_read_unlock();
b5dd77c8
RR
1132
1133 return max(smin, period);
1134}
1135
598f0ec0
MG
1136static unsigned int task_scan_max(struct task_struct *p)
1137{
b5dd77c8
RR
1138 unsigned long smin = task_scan_min(p);
1139 unsigned long smax;
cb361d8c 1140 struct numa_group *ng;
598f0ec0
MG
1141
1142 /* Watch for min being lower than max due to floor calculations */
1143 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1144
1145 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1146 ng = deref_curr_numa_group(p);
1147 if (ng) {
b5dd77c8
RR
1148 unsigned long shared = group_faults_shared(ng);
1149 unsigned long private = group_faults_priv(ng);
1150 unsigned long period = smax;
1151
c45a7795 1152 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1153 period *= shared + 1;
1154 period /= private + shared + 1;
1155
1156 smax = max(smax, period);
1157 }
1158
598f0ec0
MG
1159 return max(smin, smax);
1160}
1161
0ec8aa00
PZ
1162static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1163{
98fa15f3 1164 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1165 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1166}
1167
1168static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1169{
98fa15f3 1170 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1171 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1172}
1173
be1e4e76
RR
1174/* Shared or private faults. */
1175#define NR_NUMA_HINT_FAULT_TYPES 2
1176
1177/* Memory and CPU locality */
1178#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1179
1180/* Averaged statistics, and temporary buffers. */
1181#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1182
e29cf08b
MG
1183pid_t task_numa_group_id(struct task_struct *p)
1184{
cb361d8c
JH
1185 struct numa_group *ng;
1186 pid_t gid = 0;
1187
1188 rcu_read_lock();
1189 ng = rcu_dereference(p->numa_group);
1190 if (ng)
1191 gid = ng->gid;
1192 rcu_read_unlock();
1193
1194 return gid;
e29cf08b
MG
1195}
1196
44dba3d5 1197/*
97fb7a0a 1198 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1199 * occupy the first half of the array. The second half of the
1200 * array is for current counters, which are averaged into the
1201 * first set by task_numa_placement.
1202 */
1203static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1204{
44dba3d5 1205 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1206}
1207
1208static inline unsigned long task_faults(struct task_struct *p, int nid)
1209{
44dba3d5 1210 if (!p->numa_faults)
ac8e895b
MG
1211 return 0;
1212
44dba3d5
IM
1213 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1215}
1216
83e1d2cd
MG
1217static inline unsigned long group_faults(struct task_struct *p, int nid)
1218{
cb361d8c
JH
1219 struct numa_group *ng = deref_task_numa_group(p);
1220
1221 if (!ng)
83e1d2cd
MG
1222 return 0;
1223
cb361d8c
JH
1224 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1226}
1227
20e07dea
RR
1228static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1229{
44dba3d5
IM
1230 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1231 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1232}
1233
b5dd77c8
RR
1234static inline unsigned long group_faults_priv(struct numa_group *ng)
1235{
1236 unsigned long faults = 0;
1237 int node;
1238
1239 for_each_online_node(node) {
1240 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1241 }
1242
1243 return faults;
1244}
1245
1246static inline unsigned long group_faults_shared(struct numa_group *ng)
1247{
1248 unsigned long faults = 0;
1249 int node;
1250
1251 for_each_online_node(node) {
1252 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1253 }
1254
1255 return faults;
1256}
1257
4142c3eb
RR
1258/*
1259 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1260 * considered part of a numa group's pseudo-interleaving set. Migrations
1261 * between these nodes are slowed down, to allow things to settle down.
1262 */
1263#define ACTIVE_NODE_FRACTION 3
1264
1265static bool numa_is_active_node(int nid, struct numa_group *ng)
1266{
1267 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1268}
1269
6c6b1193
RR
1270/* Handle placement on systems where not all nodes are directly connected. */
1271static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1272 int maxdist, bool task)
1273{
1274 unsigned long score = 0;
1275 int node;
1276
1277 /*
1278 * All nodes are directly connected, and the same distance
1279 * from each other. No need for fancy placement algorithms.
1280 */
1281 if (sched_numa_topology_type == NUMA_DIRECT)
1282 return 0;
1283
1284 /*
1285 * This code is called for each node, introducing N^2 complexity,
1286 * which should be ok given the number of nodes rarely exceeds 8.
1287 */
1288 for_each_online_node(node) {
1289 unsigned long faults;
1290 int dist = node_distance(nid, node);
1291
1292 /*
1293 * The furthest away nodes in the system are not interesting
1294 * for placement; nid was already counted.
1295 */
1296 if (dist == sched_max_numa_distance || node == nid)
1297 continue;
1298
1299 /*
1300 * On systems with a backplane NUMA topology, compare groups
1301 * of nodes, and move tasks towards the group with the most
1302 * memory accesses. When comparing two nodes at distance
1303 * "hoplimit", only nodes closer by than "hoplimit" are part
1304 * of each group. Skip other nodes.
1305 */
1306 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1307 dist >= maxdist)
6c6b1193
RR
1308 continue;
1309
1310 /* Add up the faults from nearby nodes. */
1311 if (task)
1312 faults = task_faults(p, node);
1313 else
1314 faults = group_faults(p, node);
1315
1316 /*
1317 * On systems with a glueless mesh NUMA topology, there are
1318 * no fixed "groups of nodes". Instead, nodes that are not
1319 * directly connected bounce traffic through intermediate
1320 * nodes; a numa_group can occupy any set of nodes.
1321 * The further away a node is, the less the faults count.
1322 * This seems to result in good task placement.
1323 */
1324 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1325 faults *= (sched_max_numa_distance - dist);
1326 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1327 }
1328
1329 score += faults;
1330 }
1331
1332 return score;
1333}
1334
83e1d2cd
MG
1335/*
1336 * These return the fraction of accesses done by a particular task, or
1337 * task group, on a particular numa node. The group weight is given a
1338 * larger multiplier, in order to group tasks together that are almost
1339 * evenly spread out between numa nodes.
1340 */
7bd95320
RR
1341static inline unsigned long task_weight(struct task_struct *p, int nid,
1342 int dist)
83e1d2cd 1343{
7bd95320 1344 unsigned long faults, total_faults;
83e1d2cd 1345
44dba3d5 1346 if (!p->numa_faults)
83e1d2cd
MG
1347 return 0;
1348
1349 total_faults = p->total_numa_faults;
1350
1351 if (!total_faults)
1352 return 0;
1353
7bd95320 1354 faults = task_faults(p, nid);
6c6b1193
RR
1355 faults += score_nearby_nodes(p, nid, dist, true);
1356
7bd95320 1357 return 1000 * faults / total_faults;
83e1d2cd
MG
1358}
1359
7bd95320
RR
1360static inline unsigned long group_weight(struct task_struct *p, int nid,
1361 int dist)
83e1d2cd 1362{
cb361d8c 1363 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1364 unsigned long faults, total_faults;
1365
cb361d8c 1366 if (!ng)
7bd95320
RR
1367 return 0;
1368
cb361d8c 1369 total_faults = ng->total_faults;
7bd95320
RR
1370
1371 if (!total_faults)
83e1d2cd
MG
1372 return 0;
1373
7bd95320 1374 faults = group_faults(p, nid);
6c6b1193
RR
1375 faults += score_nearby_nodes(p, nid, dist, false);
1376
7bd95320 1377 return 1000 * faults / total_faults;
83e1d2cd
MG
1378}
1379
10f39042
RR
1380bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1381 int src_nid, int dst_cpu)
1382{
cb361d8c 1383 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1384 int dst_nid = cpu_to_node(dst_cpu);
1385 int last_cpupid, this_cpupid;
1386
1387 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1388 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1389
1390 /*
1391 * Allow first faults or private faults to migrate immediately early in
1392 * the lifetime of a task. The magic number 4 is based on waiting for
1393 * two full passes of the "multi-stage node selection" test that is
1394 * executed below.
1395 */
98fa15f3 1396 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1397 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1398 return true;
10f39042
RR
1399
1400 /*
1401 * Multi-stage node selection is used in conjunction with a periodic
1402 * migration fault to build a temporal task<->page relation. By using
1403 * a two-stage filter we remove short/unlikely relations.
1404 *
1405 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1406 * a task's usage of a particular page (n_p) per total usage of this
1407 * page (n_t) (in a given time-span) to a probability.
1408 *
1409 * Our periodic faults will sample this probability and getting the
1410 * same result twice in a row, given these samples are fully
1411 * independent, is then given by P(n)^2, provided our sample period
1412 * is sufficiently short compared to the usage pattern.
1413 *
1414 * This quadric squishes small probabilities, making it less likely we
1415 * act on an unlikely task<->page relation.
1416 */
10f39042
RR
1417 if (!cpupid_pid_unset(last_cpupid) &&
1418 cpupid_to_nid(last_cpupid) != dst_nid)
1419 return false;
1420
1421 /* Always allow migrate on private faults */
1422 if (cpupid_match_pid(p, last_cpupid))
1423 return true;
1424
1425 /* A shared fault, but p->numa_group has not been set up yet. */
1426 if (!ng)
1427 return true;
1428
1429 /*
4142c3eb
RR
1430 * Destination node is much more heavily used than the source
1431 * node? Allow migration.
10f39042 1432 */
4142c3eb
RR
1433 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1434 ACTIVE_NODE_FRACTION)
10f39042
RR
1435 return true;
1436
1437 /*
4142c3eb
RR
1438 * Distribute memory according to CPU & memory use on each node,
1439 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1440 *
1441 * faults_cpu(dst) 3 faults_cpu(src)
1442 * --------------- * - > ---------------
1443 * faults_mem(dst) 4 faults_mem(src)
10f39042 1444 */
4142c3eb
RR
1445 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1446 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1447}
1448
6499b1b2
VG
1449/*
1450 * 'numa_type' describes the node at the moment of load balancing.
1451 */
1452enum numa_type {
1453 /* The node has spare capacity that can be used to run more tasks. */
1454 node_has_spare = 0,
1455 /*
1456 * The node is fully used and the tasks don't compete for more CPU
1457 * cycles. Nevertheless, some tasks might wait before running.
1458 */
1459 node_fully_busy,
1460 /*
1461 * The node is overloaded and can't provide expected CPU cycles to all
1462 * tasks.
1463 */
1464 node_overloaded
1465};
58d081b5 1466
fb13c7ee 1467/* Cached statistics for all CPUs within a node */
58d081b5
MG
1468struct numa_stats {
1469 unsigned long load;
8e0e0eda 1470 unsigned long runnable;
6499b1b2 1471 unsigned long util;
fb13c7ee 1472 /* Total compute capacity of CPUs on a node */
5ef20ca1 1473 unsigned long compute_capacity;
6499b1b2
VG
1474 unsigned int nr_running;
1475 unsigned int weight;
1476 enum numa_type node_type;
ff7db0bf 1477 int idle_cpu;
58d081b5 1478};
e6628d5b 1479
ff7db0bf
MG
1480static inline bool is_core_idle(int cpu)
1481{
1482#ifdef CONFIG_SCHED_SMT
1483 int sibling;
1484
1485 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1486 if (cpu == sibling)
1487 continue;
1488
1489 if (!idle_cpu(cpu))
1490 return false;
1491 }
1492#endif
1493
1494 return true;
1495}
1496
58d081b5
MG
1497struct task_numa_env {
1498 struct task_struct *p;
e6628d5b 1499
58d081b5
MG
1500 int src_cpu, src_nid;
1501 int dst_cpu, dst_nid;
e6628d5b 1502
58d081b5 1503 struct numa_stats src_stats, dst_stats;
e6628d5b 1504
40ea2b42 1505 int imbalance_pct;
7bd95320 1506 int dist;
fb13c7ee
MG
1507
1508 struct task_struct *best_task;
1509 long best_imp;
58d081b5
MG
1510 int best_cpu;
1511};
1512
6499b1b2 1513static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1514static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1515static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1516static inline long adjust_numa_imbalance(int imbalance,
1517 int dst_running, int dst_weight);
6499b1b2
VG
1518
1519static inline enum
1520numa_type numa_classify(unsigned int imbalance_pct,
1521 struct numa_stats *ns)
1522{
1523 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1524 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1525 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1526 return node_overloaded;
1527
1528 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1529 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1530 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1531 return node_has_spare;
1532
1533 return node_fully_busy;
1534}
1535
76c389ab
VS
1536#ifdef CONFIG_SCHED_SMT
1537/* Forward declarations of select_idle_sibling helpers */
1538static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1539static inline int numa_idle_core(int idle_core, int cpu)
1540{
ff7db0bf
MG
1541 if (!static_branch_likely(&sched_smt_present) ||
1542 idle_core >= 0 || !test_idle_cores(cpu, false))
1543 return idle_core;
1544
1545 /*
1546 * Prefer cores instead of packing HT siblings
1547 * and triggering future load balancing.
1548 */
1549 if (is_core_idle(cpu))
1550 idle_core = cpu;
ff7db0bf
MG
1551
1552 return idle_core;
1553}
76c389ab
VS
1554#else
1555static inline int numa_idle_core(int idle_core, int cpu)
1556{
1557 return idle_core;
1558}
1559#endif
ff7db0bf 1560
6499b1b2 1561/*
ff7db0bf
MG
1562 * Gather all necessary information to make NUMA balancing placement
1563 * decisions that are compatible with standard load balancer. This
1564 * borrows code and logic from update_sg_lb_stats but sharing a
1565 * common implementation is impractical.
6499b1b2
VG
1566 */
1567static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1568 struct numa_stats *ns, int nid,
1569 bool find_idle)
6499b1b2 1570{
ff7db0bf 1571 int cpu, idle_core = -1;
6499b1b2
VG
1572
1573 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1574 ns->idle_cpu = -1;
1575
0621df31 1576 rcu_read_lock();
6499b1b2
VG
1577 for_each_cpu(cpu, cpumask_of_node(nid)) {
1578 struct rq *rq = cpu_rq(cpu);
1579
1580 ns->load += cpu_load(rq);
8e0e0eda 1581 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1582 ns->util += cpu_util(cpu);
1583 ns->nr_running += rq->cfs.h_nr_running;
1584 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1585
1586 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1587 if (READ_ONCE(rq->numa_migrate_on) ||
1588 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1589 continue;
1590
1591 if (ns->idle_cpu == -1)
1592 ns->idle_cpu = cpu;
1593
1594 idle_core = numa_idle_core(idle_core, cpu);
1595 }
6499b1b2 1596 }
0621df31 1597 rcu_read_unlock();
6499b1b2
VG
1598
1599 ns->weight = cpumask_weight(cpumask_of_node(nid));
1600
1601 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1602
1603 if (idle_core >= 0)
1604 ns->idle_cpu = idle_core;
6499b1b2
VG
1605}
1606
fb13c7ee
MG
1607static void task_numa_assign(struct task_numa_env *env,
1608 struct task_struct *p, long imp)
1609{
a4739eca
SD
1610 struct rq *rq = cpu_rq(env->dst_cpu);
1611
5fb52dd9
MG
1612 /* Check if run-queue part of active NUMA balance. */
1613 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1614 int cpu;
1615 int start = env->dst_cpu;
1616
1617 /* Find alternative idle CPU. */
1618 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1619 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1621 continue;
1622 }
1623
1624 env->dst_cpu = cpu;
1625 rq = cpu_rq(env->dst_cpu);
1626 if (!xchg(&rq->numa_migrate_on, 1))
1627 goto assign;
1628 }
1629
1630 /* Failed to find an alternative idle CPU */
a4739eca 1631 return;
5fb52dd9 1632 }
a4739eca 1633
5fb52dd9 1634assign:
a4739eca
SD
1635 /*
1636 * Clear previous best_cpu/rq numa-migrate flag, since task now
1637 * found a better CPU to move/swap.
1638 */
5fb52dd9 1639 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1640 rq = cpu_rq(env->best_cpu);
1641 WRITE_ONCE(rq->numa_migrate_on, 0);
1642 }
1643
fb13c7ee
MG
1644 if (env->best_task)
1645 put_task_struct(env->best_task);
bac78573
ON
1646 if (p)
1647 get_task_struct(p);
fb13c7ee
MG
1648
1649 env->best_task = p;
1650 env->best_imp = imp;
1651 env->best_cpu = env->dst_cpu;
1652}
1653
28a21745 1654static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1655 struct task_numa_env *env)
1656{
e4991b24
RR
1657 long imb, old_imb;
1658 long orig_src_load, orig_dst_load;
28a21745
RR
1659 long src_capacity, dst_capacity;
1660
1661 /*
1662 * The load is corrected for the CPU capacity available on each node.
1663 *
1664 * src_load dst_load
1665 * ------------ vs ---------
1666 * src_capacity dst_capacity
1667 */
1668 src_capacity = env->src_stats.compute_capacity;
1669 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1670
5f95ba7a 1671 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1672
28a21745 1673 orig_src_load = env->src_stats.load;
e4991b24 1674 orig_dst_load = env->dst_stats.load;
28a21745 1675
5f95ba7a 1676 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1677
1678 /* Would this change make things worse? */
1679 return (imb > old_imb);
e63da036
RR
1680}
1681
6fd98e77
SD
1682/*
1683 * Maximum NUMA importance can be 1998 (2*999);
1684 * SMALLIMP @ 30 would be close to 1998/64.
1685 * Used to deter task migration.
1686 */
1687#define SMALLIMP 30
1688
fb13c7ee
MG
1689/*
1690 * This checks if the overall compute and NUMA accesses of the system would
1691 * be improved if the source tasks was migrated to the target dst_cpu taking
1692 * into account that it might be best if task running on the dst_cpu should
1693 * be exchanged with the source task
1694 */
a0f03b61 1695static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1696 long taskimp, long groupimp, bool maymove)
fb13c7ee 1697{
cb361d8c 1698 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1699 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1700 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1701 struct task_struct *cur;
28a21745 1702 long src_load, dst_load;
7bd95320 1703 int dist = env->dist;
cb361d8c
JH
1704 long moveimp = imp;
1705 long load;
a0f03b61 1706 bool stopsearch = false;
fb13c7ee 1707
a4739eca 1708 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1709 return false;
a4739eca 1710
fb13c7ee 1711 rcu_read_lock();
154abafc 1712 cur = rcu_dereference(dst_rq->curr);
bac78573 1713 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1714 cur = NULL;
1715
7af68335
PZ
1716 /*
1717 * Because we have preemption enabled we can get migrated around and
1718 * end try selecting ourselves (current == env->p) as a swap candidate.
1719 */
a0f03b61
MG
1720 if (cur == env->p) {
1721 stopsearch = true;
7af68335 1722 goto unlock;
a0f03b61 1723 }
7af68335 1724
305c1fac 1725 if (!cur) {
6fd98e77 1726 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1727 goto assign;
1728 else
1729 goto unlock;
1730 }
1731
88cca72c
MG
1732 /* Skip this swap candidate if cannot move to the source cpu. */
1733 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1734 goto unlock;
1735
1736 /*
1737 * Skip this swap candidate if it is not moving to its preferred
1738 * node and the best task is.
1739 */
1740 if (env->best_task &&
1741 env->best_task->numa_preferred_nid == env->src_nid &&
1742 cur->numa_preferred_nid != env->src_nid) {
1743 goto unlock;
1744 }
1745
fb13c7ee
MG
1746 /*
1747 * "imp" is the fault differential for the source task between the
1748 * source and destination node. Calculate the total differential for
1749 * the source task and potential destination task. The more negative
305c1fac 1750 * the value is, the more remote accesses that would be expected to
fb13c7ee 1751 * be incurred if the tasks were swapped.
88cca72c 1752 *
305c1fac
SD
1753 * If dst and source tasks are in the same NUMA group, or not
1754 * in any group then look only at task weights.
1755 */
cb361d8c
JH
1756 cur_ng = rcu_dereference(cur->numa_group);
1757 if (cur_ng == p_ng) {
305c1fac
SD
1758 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1759 task_weight(cur, env->dst_nid, dist);
887c290e 1760 /*
305c1fac
SD
1761 * Add some hysteresis to prevent swapping the
1762 * tasks within a group over tiny differences.
887c290e 1763 */
cb361d8c 1764 if (cur_ng)
305c1fac
SD
1765 imp -= imp / 16;
1766 } else {
1767 /*
1768 * Compare the group weights. If a task is all by itself
1769 * (not part of a group), use the task weight instead.
1770 */
cb361d8c 1771 if (cur_ng && p_ng)
305c1fac
SD
1772 imp += group_weight(cur, env->src_nid, dist) -
1773 group_weight(cur, env->dst_nid, dist);
1774 else
1775 imp += task_weight(cur, env->src_nid, dist) -
1776 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1777 }
1778
88cca72c
MG
1779 /* Discourage picking a task already on its preferred node */
1780 if (cur->numa_preferred_nid == env->dst_nid)
1781 imp -= imp / 16;
1782
1783 /*
1784 * Encourage picking a task that moves to its preferred node.
1785 * This potentially makes imp larger than it's maximum of
1786 * 1998 (see SMALLIMP and task_weight for why) but in this
1787 * case, it does not matter.
1788 */
1789 if (cur->numa_preferred_nid == env->src_nid)
1790 imp += imp / 8;
1791
305c1fac 1792 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1793 imp = moveimp;
305c1fac 1794 cur = NULL;
fb13c7ee 1795 goto assign;
305c1fac 1796 }
fb13c7ee 1797
88cca72c
MG
1798 /*
1799 * Prefer swapping with a task moving to its preferred node over a
1800 * task that is not.
1801 */
1802 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1803 env->best_task->numa_preferred_nid != env->src_nid) {
1804 goto assign;
1805 }
1806
6fd98e77
SD
1807 /*
1808 * If the NUMA importance is less than SMALLIMP,
1809 * task migration might only result in ping pong
1810 * of tasks and also hurt performance due to cache
1811 * misses.
1812 */
1813 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1814 goto unlock;
1815
fb13c7ee
MG
1816 /*
1817 * In the overloaded case, try and keep the load balanced.
1818 */
305c1fac
SD
1819 load = task_h_load(env->p) - task_h_load(cur);
1820 if (!load)
1821 goto assign;
1822
e720fff6
PZ
1823 dst_load = env->dst_stats.load + load;
1824 src_load = env->src_stats.load - load;
fb13c7ee 1825
28a21745 1826 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1827 goto unlock;
1828
305c1fac 1829assign:
ff7db0bf 1830 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1831 if (!cur) {
ff7db0bf
MG
1832 int cpu = env->dst_stats.idle_cpu;
1833
1834 /* Nothing cached so current CPU went idle since the search. */
1835 if (cpu < 0)
1836 cpu = env->dst_cpu;
1837
10e2f1ac 1838 /*
ff7db0bf
MG
1839 * If the CPU is no longer truly idle and the previous best CPU
1840 * is, keep using it.
10e2f1ac 1841 */
ff7db0bf
MG
1842 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1843 idle_cpu(env->best_cpu)) {
1844 cpu = env->best_cpu;
1845 }
1846
ff7db0bf 1847 env->dst_cpu = cpu;
10e2f1ac 1848 }
ba7e5a27 1849
fb13c7ee 1850 task_numa_assign(env, cur, imp);
a0f03b61
MG
1851
1852 /*
1853 * If a move to idle is allowed because there is capacity or load
1854 * balance improves then stop the search. While a better swap
1855 * candidate may exist, a search is not free.
1856 */
1857 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1858 stopsearch = true;
1859
1860 /*
1861 * If a swap candidate must be identified and the current best task
1862 * moves its preferred node then stop the search.
1863 */
1864 if (!maymove && env->best_task &&
1865 env->best_task->numa_preferred_nid == env->src_nid) {
1866 stopsearch = true;
1867 }
fb13c7ee
MG
1868unlock:
1869 rcu_read_unlock();
a0f03b61
MG
1870
1871 return stopsearch;
fb13c7ee
MG
1872}
1873
887c290e
RR
1874static void task_numa_find_cpu(struct task_numa_env *env,
1875 long taskimp, long groupimp)
2c8a50aa 1876{
305c1fac 1877 bool maymove = false;
2c8a50aa
MG
1878 int cpu;
1879
305c1fac 1880 /*
fb86f5b2
MG
1881 * If dst node has spare capacity, then check if there is an
1882 * imbalance that would be overruled by the load balancer.
305c1fac 1883 */
fb86f5b2
MG
1884 if (env->dst_stats.node_type == node_has_spare) {
1885 unsigned int imbalance;
1886 int src_running, dst_running;
1887
1888 /*
1889 * Would movement cause an imbalance? Note that if src has
1890 * more running tasks that the imbalance is ignored as the
1891 * move improves the imbalance from the perspective of the
1892 * CPU load balancer.
1893 * */
1894 src_running = env->src_stats.nr_running - 1;
1895 dst_running = env->dst_stats.nr_running + 1;
1896 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1897 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1898 env->dst_stats.weight);
fb86f5b2
MG
1899
1900 /* Use idle CPU if there is no imbalance */
ff7db0bf 1901 if (!imbalance) {
fb86f5b2 1902 maymove = true;
ff7db0bf
MG
1903 if (env->dst_stats.idle_cpu >= 0) {
1904 env->dst_cpu = env->dst_stats.idle_cpu;
1905 task_numa_assign(env, NULL, 0);
1906 return;
1907 }
1908 }
fb86f5b2
MG
1909 } else {
1910 long src_load, dst_load, load;
1911 /*
1912 * If the improvement from just moving env->p direction is better
1913 * than swapping tasks around, check if a move is possible.
1914 */
1915 load = task_h_load(env->p);
1916 dst_load = env->dst_stats.load + load;
1917 src_load = env->src_stats.load - load;
1918 maymove = !load_too_imbalanced(src_load, dst_load, env);
1919 }
305c1fac 1920
2c8a50aa
MG
1921 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1922 /* Skip this CPU if the source task cannot migrate */
3bd37062 1923 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1924 continue;
1925
1926 env->dst_cpu = cpu;
a0f03b61
MG
1927 if (task_numa_compare(env, taskimp, groupimp, maymove))
1928 break;
2c8a50aa
MG
1929 }
1930}
1931
58d081b5
MG
1932static int task_numa_migrate(struct task_struct *p)
1933{
58d081b5
MG
1934 struct task_numa_env env = {
1935 .p = p,
fb13c7ee 1936
58d081b5 1937 .src_cpu = task_cpu(p),
b32e86b4 1938 .src_nid = task_node(p),
fb13c7ee
MG
1939
1940 .imbalance_pct = 112,
1941
1942 .best_task = NULL,
1943 .best_imp = 0,
4142c3eb 1944 .best_cpu = -1,
58d081b5 1945 };
cb361d8c 1946 unsigned long taskweight, groupweight;
58d081b5 1947 struct sched_domain *sd;
cb361d8c
JH
1948 long taskimp, groupimp;
1949 struct numa_group *ng;
a4739eca 1950 struct rq *best_rq;
7bd95320 1951 int nid, ret, dist;
e6628d5b 1952
58d081b5 1953 /*
fb13c7ee
MG
1954 * Pick the lowest SD_NUMA domain, as that would have the smallest
1955 * imbalance and would be the first to start moving tasks about.
1956 *
1957 * And we want to avoid any moving of tasks about, as that would create
1958 * random movement of tasks -- counter the numa conditions we're trying
1959 * to satisfy here.
58d081b5
MG
1960 */
1961 rcu_read_lock();
fb13c7ee 1962 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1963 if (sd)
1964 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1965 rcu_read_unlock();
1966
46a73e8a
RR
1967 /*
1968 * Cpusets can break the scheduler domain tree into smaller
1969 * balance domains, some of which do not cross NUMA boundaries.
1970 * Tasks that are "trapped" in such domains cannot be migrated
1971 * elsewhere, so there is no point in (re)trying.
1972 */
1973 if (unlikely(!sd)) {
8cd45eee 1974 sched_setnuma(p, task_node(p));
46a73e8a
RR
1975 return -EINVAL;
1976 }
1977
2c8a50aa 1978 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1979 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1980 taskweight = task_weight(p, env.src_nid, dist);
1981 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 1982 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
1983 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1984 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 1985 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 1986
a43455a1 1987 /* Try to find a spot on the preferred nid. */
2d4056fa 1988 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1989
9de05d48
RR
1990 /*
1991 * Look at other nodes in these cases:
1992 * - there is no space available on the preferred_nid
1993 * - the task is part of a numa_group that is interleaved across
1994 * multiple NUMA nodes; in order to better consolidate the group,
1995 * we need to check other locations.
1996 */
cb361d8c
JH
1997 ng = deref_curr_numa_group(p);
1998 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1999 for_each_online_node(nid) {
2000 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2001 continue;
58d081b5 2002
7bd95320 2003 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2004 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2005 dist != env.dist) {
2006 taskweight = task_weight(p, env.src_nid, dist);
2007 groupweight = group_weight(p, env.src_nid, dist);
2008 }
7bd95320 2009
83e1d2cd 2010 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2011 taskimp = task_weight(p, nid, dist) - taskweight;
2012 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2013 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2014 continue;
2015
7bd95320 2016 env.dist = dist;
2c8a50aa 2017 env.dst_nid = nid;
ff7db0bf 2018 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2019 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2020 }
2021 }
2022
68d1b02a
RR
2023 /*
2024 * If the task is part of a workload that spans multiple NUMA nodes,
2025 * and is migrating into one of the workload's active nodes, remember
2026 * this node as the task's preferred numa node, so the workload can
2027 * settle down.
2028 * A task that migrated to a second choice node will be better off
2029 * trying for a better one later. Do not set the preferred node here.
2030 */
cb361d8c 2031 if (ng) {
db015dae
RR
2032 if (env.best_cpu == -1)
2033 nid = env.src_nid;
2034 else
8cd45eee 2035 nid = cpu_to_node(env.best_cpu);
db015dae 2036
8cd45eee
SD
2037 if (nid != p->numa_preferred_nid)
2038 sched_setnuma(p, nid);
db015dae
RR
2039 }
2040
2041 /* No better CPU than the current one was found. */
f22aef4a 2042 if (env.best_cpu == -1) {
b2b2042b 2043 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2044 return -EAGAIN;
f22aef4a 2045 }
0ec8aa00 2046
a4739eca 2047 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2048 if (env.best_task == NULL) {
286549dc 2049 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2050 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2051 if (ret != 0)
b2b2042b 2052 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2053 return ret;
2054 }
2055
0ad4e3df 2056 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2057 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2058
286549dc 2059 if (ret != 0)
b2b2042b 2060 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2061 put_task_struct(env.best_task);
2062 return ret;
e6628d5b
MG
2063}
2064
6b9a7460
MG
2065/* Attempt to migrate a task to a CPU on the preferred node. */
2066static void numa_migrate_preferred(struct task_struct *p)
2067{
5085e2a3
RR
2068 unsigned long interval = HZ;
2069
2739d3ee 2070 /* This task has no NUMA fault statistics yet */
98fa15f3 2071 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2072 return;
2073
2739d3ee 2074 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2075 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2076 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2077
2078 /* Success if task is already running on preferred CPU */
de1b301a 2079 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2080 return;
2081
2082 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2083 task_numa_migrate(p);
6b9a7460
MG
2084}
2085
20e07dea 2086/*
4142c3eb 2087 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2088 * tracking the nodes from which NUMA hinting faults are triggered. This can
2089 * be different from the set of nodes where the workload's memory is currently
2090 * located.
20e07dea 2091 */
4142c3eb 2092static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2093{
2094 unsigned long faults, max_faults = 0;
4142c3eb 2095 int nid, active_nodes = 0;
20e07dea
RR
2096
2097 for_each_online_node(nid) {
2098 faults = group_faults_cpu(numa_group, nid);
2099 if (faults > max_faults)
2100 max_faults = faults;
2101 }
2102
2103 for_each_online_node(nid) {
2104 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2105 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2106 active_nodes++;
20e07dea 2107 }
4142c3eb
RR
2108
2109 numa_group->max_faults_cpu = max_faults;
2110 numa_group->active_nodes = active_nodes;
20e07dea
RR
2111}
2112
04bb2f94
RR
2113/*
2114 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2115 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2116 * period will be for the next scan window. If local/(local+remote) ratio is
2117 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2118 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2119 */
2120#define NUMA_PERIOD_SLOTS 10
a22b4b01 2121#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2122
2123/*
2124 * Increase the scan period (slow down scanning) if the majority of
2125 * our memory is already on our local node, or if the majority of
2126 * the page accesses are shared with other processes.
2127 * Otherwise, decrease the scan period.
2128 */
2129static void update_task_scan_period(struct task_struct *p,
2130 unsigned long shared, unsigned long private)
2131{
2132 unsigned int period_slot;
37ec97de 2133 int lr_ratio, ps_ratio;
04bb2f94
RR
2134 int diff;
2135
2136 unsigned long remote = p->numa_faults_locality[0];
2137 unsigned long local = p->numa_faults_locality[1];
2138
2139 /*
2140 * If there were no record hinting faults then either the task is
2141 * completely idle or all activity is areas that are not of interest
074c2381
MG
2142 * to automatic numa balancing. Related to that, if there were failed
2143 * migration then it implies we are migrating too quickly or the local
2144 * node is overloaded. In either case, scan slower
04bb2f94 2145 */
074c2381 2146 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2147 p->numa_scan_period = min(p->numa_scan_period_max,
2148 p->numa_scan_period << 1);
2149
2150 p->mm->numa_next_scan = jiffies +
2151 msecs_to_jiffies(p->numa_scan_period);
2152
2153 return;
2154 }
2155
2156 /*
2157 * Prepare to scale scan period relative to the current period.
2158 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2159 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2160 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2161 */
2162 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2163 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2164 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2165
2166 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2167 /*
2168 * Most memory accesses are local. There is no need to
2169 * do fast NUMA scanning, since memory is already local.
2170 */
2171 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2172 if (!slot)
2173 slot = 1;
2174 diff = slot * period_slot;
2175 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2176 /*
2177 * Most memory accesses are shared with other tasks.
2178 * There is no point in continuing fast NUMA scanning,
2179 * since other tasks may just move the memory elsewhere.
2180 */
2181 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2182 if (!slot)
2183 slot = 1;
2184 diff = slot * period_slot;
2185 } else {
04bb2f94 2186 /*
37ec97de
RR
2187 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2188 * yet they are not on the local NUMA node. Speed up
2189 * NUMA scanning to get the memory moved over.
04bb2f94 2190 */
37ec97de
RR
2191 int ratio = max(lr_ratio, ps_ratio);
2192 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2193 }
2194
2195 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2196 task_scan_min(p), task_scan_max(p));
2197 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2198}
2199
7e2703e6
RR
2200/*
2201 * Get the fraction of time the task has been running since the last
2202 * NUMA placement cycle. The scheduler keeps similar statistics, but
2203 * decays those on a 32ms period, which is orders of magnitude off
2204 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2205 * stats only if the task is so new there are no NUMA statistics yet.
2206 */
2207static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2208{
2209 u64 runtime, delta, now;
2210 /* Use the start of this time slice to avoid calculations. */
2211 now = p->se.exec_start;
2212 runtime = p->se.sum_exec_runtime;
2213
2214 if (p->last_task_numa_placement) {
2215 delta = runtime - p->last_sum_exec_runtime;
2216 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2217
2218 /* Avoid time going backwards, prevent potential divide error: */
2219 if (unlikely((s64)*period < 0))
2220 *period = 0;
7e2703e6 2221 } else {
c7b50216 2222 delta = p->se.avg.load_sum;
9d89c257 2223 *period = LOAD_AVG_MAX;
7e2703e6
RR
2224 }
2225
2226 p->last_sum_exec_runtime = runtime;
2227 p->last_task_numa_placement = now;
2228
2229 return delta;
2230}
2231
54009416
RR
2232/*
2233 * Determine the preferred nid for a task in a numa_group. This needs to
2234 * be done in a way that produces consistent results with group_weight,
2235 * otherwise workloads might not converge.
2236 */
2237static int preferred_group_nid(struct task_struct *p, int nid)
2238{
2239 nodemask_t nodes;
2240 int dist;
2241
2242 /* Direct connections between all NUMA nodes. */
2243 if (sched_numa_topology_type == NUMA_DIRECT)
2244 return nid;
2245
2246 /*
2247 * On a system with glueless mesh NUMA topology, group_weight
2248 * scores nodes according to the number of NUMA hinting faults on
2249 * both the node itself, and on nearby nodes.
2250 */
2251 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2252 unsigned long score, max_score = 0;
2253 int node, max_node = nid;
2254
2255 dist = sched_max_numa_distance;
2256
2257 for_each_online_node(node) {
2258 score = group_weight(p, node, dist);
2259 if (score > max_score) {
2260 max_score = score;
2261 max_node = node;
2262 }
2263 }
2264 return max_node;
2265 }
2266
2267 /*
2268 * Finding the preferred nid in a system with NUMA backplane
2269 * interconnect topology is more involved. The goal is to locate
2270 * tasks from numa_groups near each other in the system, and
2271 * untangle workloads from different sides of the system. This requires
2272 * searching down the hierarchy of node groups, recursively searching
2273 * inside the highest scoring group of nodes. The nodemask tricks
2274 * keep the complexity of the search down.
2275 */
2276 nodes = node_online_map;
2277 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2278 unsigned long max_faults = 0;
81907478 2279 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2280 int a, b;
2281
2282 /* Are there nodes at this distance from each other? */
2283 if (!find_numa_distance(dist))
2284 continue;
2285
2286 for_each_node_mask(a, nodes) {
2287 unsigned long faults = 0;
2288 nodemask_t this_group;
2289 nodes_clear(this_group);
2290
2291 /* Sum group's NUMA faults; includes a==b case. */
2292 for_each_node_mask(b, nodes) {
2293 if (node_distance(a, b) < dist) {
2294 faults += group_faults(p, b);
2295 node_set(b, this_group);
2296 node_clear(b, nodes);
2297 }
2298 }
2299
2300 /* Remember the top group. */
2301 if (faults > max_faults) {
2302 max_faults = faults;
2303 max_group = this_group;
2304 /*
2305 * subtle: at the smallest distance there is
2306 * just one node left in each "group", the
2307 * winner is the preferred nid.
2308 */
2309 nid = a;
2310 }
2311 }
2312 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2313 if (!max_faults)
2314 break;
54009416
RR
2315 nodes = max_group;
2316 }
2317 return nid;
2318}
2319
cbee9f88
PZ
2320static void task_numa_placement(struct task_struct *p)
2321{
98fa15f3 2322 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2323 unsigned long max_faults = 0;
04bb2f94 2324 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2325 unsigned long total_faults;
2326 u64 runtime, period;
7dbd13ed 2327 spinlock_t *group_lock = NULL;
cb361d8c 2328 struct numa_group *ng;
cbee9f88 2329
7e5a2c17
JL
2330 /*
2331 * The p->mm->numa_scan_seq field gets updated without
2332 * exclusive access. Use READ_ONCE() here to ensure
2333 * that the field is read in a single access:
2334 */
316c1608 2335 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2336 if (p->numa_scan_seq == seq)
2337 return;
2338 p->numa_scan_seq = seq;
598f0ec0 2339 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2340
7e2703e6
RR
2341 total_faults = p->numa_faults_locality[0] +
2342 p->numa_faults_locality[1];
2343 runtime = numa_get_avg_runtime(p, &period);
2344
7dbd13ed 2345 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2346 ng = deref_curr_numa_group(p);
2347 if (ng) {
2348 group_lock = &ng->lock;
60e69eed 2349 spin_lock_irq(group_lock);
7dbd13ed
MG
2350 }
2351
688b7585
MG
2352 /* Find the node with the highest number of faults */
2353 for_each_online_node(nid) {
44dba3d5
IM
2354 /* Keep track of the offsets in numa_faults array */
2355 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2356 unsigned long faults = 0, group_faults = 0;
44dba3d5 2357 int priv;
745d6147 2358
be1e4e76 2359 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2360 long diff, f_diff, f_weight;
8c8a743c 2361
44dba3d5
IM
2362 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2363 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2364 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2365 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2366
ac8e895b 2367 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2368 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2369 fault_types[priv] += p->numa_faults[membuf_idx];
2370 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2371
7e2703e6
RR
2372 /*
2373 * Normalize the faults_from, so all tasks in a group
2374 * count according to CPU use, instead of by the raw
2375 * number of faults. Tasks with little runtime have
2376 * little over-all impact on throughput, and thus their
2377 * faults are less important.
2378 */
2379 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2380 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2381 (total_faults + 1);
44dba3d5
IM
2382 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2383 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2384
44dba3d5
IM
2385 p->numa_faults[mem_idx] += diff;
2386 p->numa_faults[cpu_idx] += f_diff;
2387 faults += p->numa_faults[mem_idx];
83e1d2cd 2388 p->total_numa_faults += diff;
cb361d8c 2389 if (ng) {
44dba3d5
IM
2390 /*
2391 * safe because we can only change our own group
2392 *
2393 * mem_idx represents the offset for a given
2394 * nid and priv in a specific region because it
2395 * is at the beginning of the numa_faults array.
2396 */
cb361d8c
JH
2397 ng->faults[mem_idx] += diff;
2398 ng->faults_cpu[mem_idx] += f_diff;
2399 ng->total_faults += diff;
2400 group_faults += ng->faults[mem_idx];
8c8a743c 2401 }
ac8e895b
MG
2402 }
2403
cb361d8c 2404 if (!ng) {
f03bb676
SD
2405 if (faults > max_faults) {
2406 max_faults = faults;
2407 max_nid = nid;
2408 }
2409 } else if (group_faults > max_faults) {
2410 max_faults = group_faults;
688b7585
MG
2411 max_nid = nid;
2412 }
83e1d2cd
MG
2413 }
2414
cb361d8c
JH
2415 if (ng) {
2416 numa_group_count_active_nodes(ng);
60e69eed 2417 spin_unlock_irq(group_lock);
f03bb676 2418 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2419 }
2420
bb97fc31
RR
2421 if (max_faults) {
2422 /* Set the new preferred node */
2423 if (max_nid != p->numa_preferred_nid)
2424 sched_setnuma(p, max_nid);
3a7053b3 2425 }
30619c89
SD
2426
2427 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2428}
2429
8c8a743c
PZ
2430static inline int get_numa_group(struct numa_group *grp)
2431{
c45a7795 2432 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2433}
2434
2435static inline void put_numa_group(struct numa_group *grp)
2436{
c45a7795 2437 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2438 kfree_rcu(grp, rcu);
2439}
2440
3e6a9418
MG
2441static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2442 int *priv)
8c8a743c
PZ
2443{
2444 struct numa_group *grp, *my_grp;
2445 struct task_struct *tsk;
2446 bool join = false;
2447 int cpu = cpupid_to_cpu(cpupid);
2448 int i;
2449
cb361d8c 2450 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2451 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2452 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2453
2454 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2455 if (!grp)
2456 return;
2457
c45a7795 2458 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2459 grp->active_nodes = 1;
2460 grp->max_faults_cpu = 0;
8c8a743c 2461 spin_lock_init(&grp->lock);
e29cf08b 2462 grp->gid = p->pid;
50ec8a40 2463 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2464 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2465 nr_node_ids;
8c8a743c 2466
be1e4e76 2467 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2468 grp->faults[i] = p->numa_faults[i];
8c8a743c 2469
989348b5 2470 grp->total_faults = p->total_numa_faults;
83e1d2cd 2471
8c8a743c
PZ
2472 grp->nr_tasks++;
2473 rcu_assign_pointer(p->numa_group, grp);
2474 }
2475
2476 rcu_read_lock();
316c1608 2477 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2478
2479 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2480 goto no_join;
8c8a743c
PZ
2481
2482 grp = rcu_dereference(tsk->numa_group);
2483 if (!grp)
3354781a 2484 goto no_join;
8c8a743c 2485
cb361d8c 2486 my_grp = deref_curr_numa_group(p);
8c8a743c 2487 if (grp == my_grp)
3354781a 2488 goto no_join;
8c8a743c
PZ
2489
2490 /*
2491 * Only join the other group if its bigger; if we're the bigger group,
2492 * the other task will join us.
2493 */
2494 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2495 goto no_join;
8c8a743c
PZ
2496
2497 /*
2498 * Tie-break on the grp address.
2499 */
2500 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2501 goto no_join;
8c8a743c 2502
dabe1d99
RR
2503 /* Always join threads in the same process. */
2504 if (tsk->mm == current->mm)
2505 join = true;
2506
2507 /* Simple filter to avoid false positives due to PID collisions */
2508 if (flags & TNF_SHARED)
2509 join = true;
8c8a743c 2510
3e6a9418
MG
2511 /* Update priv based on whether false sharing was detected */
2512 *priv = !join;
2513
dabe1d99 2514 if (join && !get_numa_group(grp))
3354781a 2515 goto no_join;
8c8a743c 2516
8c8a743c
PZ
2517 rcu_read_unlock();
2518
2519 if (!join)
2520 return;
2521
60e69eed
MG
2522 BUG_ON(irqs_disabled());
2523 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2524
be1e4e76 2525 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2526 my_grp->faults[i] -= p->numa_faults[i];
2527 grp->faults[i] += p->numa_faults[i];
8c8a743c 2528 }
989348b5
MG
2529 my_grp->total_faults -= p->total_numa_faults;
2530 grp->total_faults += p->total_numa_faults;
8c8a743c 2531
8c8a743c
PZ
2532 my_grp->nr_tasks--;
2533 grp->nr_tasks++;
2534
2535 spin_unlock(&my_grp->lock);
60e69eed 2536 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2537
2538 rcu_assign_pointer(p->numa_group, grp);
2539
2540 put_numa_group(my_grp);
3354781a
PZ
2541 return;
2542
2543no_join:
2544 rcu_read_unlock();
2545 return;
8c8a743c
PZ
2546}
2547
16d51a59 2548/*
3b03706f 2549 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2550 * If @final is set, the task is dead and has reached refcount zero, so we can
2551 * safely free all relevant data structures. Otherwise, there might be
2552 * concurrent reads from places like load balancing and procfs, and we should
2553 * reset the data back to default state without freeing ->numa_faults.
2554 */
2555void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2556{
cb361d8c
JH
2557 /* safe: p either is current or is being freed by current */
2558 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2559 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2560 unsigned long flags;
2561 int i;
8c8a743c 2562
16d51a59
JH
2563 if (!numa_faults)
2564 return;
2565
8c8a743c 2566 if (grp) {
e9dd685c 2567 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2569 grp->faults[i] -= p->numa_faults[i];
989348b5 2570 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2571
8c8a743c 2572 grp->nr_tasks--;
e9dd685c 2573 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2574 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2575 put_numa_group(grp);
2576 }
2577
16d51a59
JH
2578 if (final) {
2579 p->numa_faults = NULL;
2580 kfree(numa_faults);
2581 } else {
2582 p->total_numa_faults = 0;
2583 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2584 numa_faults[i] = 0;
2585 }
8c8a743c
PZ
2586}
2587
cbee9f88
PZ
2588/*
2589 * Got a PROT_NONE fault for a page on @node.
2590 */
58b46da3 2591void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2592{
2593 struct task_struct *p = current;
6688cc05 2594 bool migrated = flags & TNF_MIGRATED;
58b46da3 2595 int cpu_node = task_node(current);
792568ec 2596 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2597 struct numa_group *ng;
ac8e895b 2598 int priv;
cbee9f88 2599
2a595721 2600 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2601 return;
2602
9ff1d9ff
MG
2603 /* for example, ksmd faulting in a user's mm */
2604 if (!p->mm)
2605 return;
2606
f809ca9a 2607 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2608 if (unlikely(!p->numa_faults)) {
2609 int size = sizeof(*p->numa_faults) *
be1e4e76 2610 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2611
44dba3d5
IM
2612 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2613 if (!p->numa_faults)
f809ca9a 2614 return;
745d6147 2615
83e1d2cd 2616 p->total_numa_faults = 0;
04bb2f94 2617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2618 }
cbee9f88 2619
8c8a743c
PZ
2620 /*
2621 * First accesses are treated as private, otherwise consider accesses
2622 * to be private if the accessing pid has not changed
2623 */
2624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2625 priv = 1;
2626 } else {
2627 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2628 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2629 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2630 }
2631
792568ec
RR
2632 /*
2633 * If a workload spans multiple NUMA nodes, a shared fault that
2634 * occurs wholly within the set of nodes that the workload is
2635 * actively using should be counted as local. This allows the
2636 * scan rate to slow down when a workload has settled down.
2637 */
cb361d8c 2638 ng = deref_curr_numa_group(p);
4142c3eb
RR
2639 if (!priv && !local && ng && ng->active_nodes > 1 &&
2640 numa_is_active_node(cpu_node, ng) &&
2641 numa_is_active_node(mem_node, ng))
792568ec
RR
2642 local = 1;
2643
2739d3ee 2644 /*
e1ff516a
YW
2645 * Retry to migrate task to preferred node periodically, in case it
2646 * previously failed, or the scheduler moved us.
2739d3ee 2647 */
b6a60cf3
SD
2648 if (time_after(jiffies, p->numa_migrate_retry)) {
2649 task_numa_placement(p);
6b9a7460 2650 numa_migrate_preferred(p);
b6a60cf3 2651 }
6b9a7460 2652
b32e86b4
IM
2653 if (migrated)
2654 p->numa_pages_migrated += pages;
074c2381
MG
2655 if (flags & TNF_MIGRATE_FAIL)
2656 p->numa_faults_locality[2] += pages;
b32e86b4 2657
44dba3d5
IM
2658 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2659 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2660 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2661}
2662
6e5fb223
PZ
2663static void reset_ptenuma_scan(struct task_struct *p)
2664{
7e5a2c17
JL
2665 /*
2666 * We only did a read acquisition of the mmap sem, so
2667 * p->mm->numa_scan_seq is written to without exclusive access
2668 * and the update is not guaranteed to be atomic. That's not
2669 * much of an issue though, since this is just used for
2670 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2671 * expensive, to avoid any form of compiler optimizations:
2672 */
316c1608 2673 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2674 p->mm->numa_scan_offset = 0;
2675}
2676
cbee9f88
PZ
2677/*
2678 * The expensive part of numa migration is done from task_work context.
2679 * Triggered from task_tick_numa().
2680 */
9434f9f5 2681static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2682{
2683 unsigned long migrate, next_scan, now = jiffies;
2684 struct task_struct *p = current;
2685 struct mm_struct *mm = p->mm;
51170840 2686 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2687 struct vm_area_struct *vma;
9f40604c 2688 unsigned long start, end;
598f0ec0 2689 unsigned long nr_pte_updates = 0;
4620f8c1 2690 long pages, virtpages;
cbee9f88 2691
9148a3a1 2692 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2693
b34920d4 2694 work->next = work;
cbee9f88
PZ
2695 /*
2696 * Who cares about NUMA placement when they're dying.
2697 *
2698 * NOTE: make sure not to dereference p->mm before this check,
2699 * exit_task_work() happens _after_ exit_mm() so we could be called
2700 * without p->mm even though we still had it when we enqueued this
2701 * work.
2702 */
2703 if (p->flags & PF_EXITING)
2704 return;
2705
930aa174 2706 if (!mm->numa_next_scan) {
7e8d16b6
MG
2707 mm->numa_next_scan = now +
2708 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2709 }
2710
cbee9f88
PZ
2711 /*
2712 * Enforce maximal scan/migration frequency..
2713 */
2714 migrate = mm->numa_next_scan;
2715 if (time_before(now, migrate))
2716 return;
2717
598f0ec0
MG
2718 if (p->numa_scan_period == 0) {
2719 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2720 p->numa_scan_period = task_scan_start(p);
598f0ec0 2721 }
cbee9f88 2722
fb003b80 2723 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2724 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2725 return;
2726
19a78d11
PZ
2727 /*
2728 * Delay this task enough that another task of this mm will likely win
2729 * the next time around.
2730 */
2731 p->node_stamp += 2 * TICK_NSEC;
2732
9f40604c
MG
2733 start = mm->numa_scan_offset;
2734 pages = sysctl_numa_balancing_scan_size;
2735 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2736 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2737 if (!pages)
2738 return;
cbee9f88 2739
4620f8c1 2740
d8ed45c5 2741 if (!mmap_read_trylock(mm))
8655d549 2742 return;
9f40604c 2743 vma = find_vma(mm, start);
6e5fb223
PZ
2744 if (!vma) {
2745 reset_ptenuma_scan(p);
9f40604c 2746 start = 0;
6e5fb223
PZ
2747 vma = mm->mmap;
2748 }
9f40604c 2749 for (; vma; vma = vma->vm_next) {
6b79c57b 2750 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2751 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2752 continue;
6b79c57b 2753 }
6e5fb223 2754
4591ce4f
MG
2755 /*
2756 * Shared library pages mapped by multiple processes are not
2757 * migrated as it is expected they are cache replicated. Avoid
2758 * hinting faults in read-only file-backed mappings or the vdso
2759 * as migrating the pages will be of marginal benefit.
2760 */
2761 if (!vma->vm_mm ||
2762 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2763 continue;
2764
3c67f474
MG
2765 /*
2766 * Skip inaccessible VMAs to avoid any confusion between
2767 * PROT_NONE and NUMA hinting ptes
2768 */
3122e80e 2769 if (!vma_is_accessible(vma))
3c67f474 2770 continue;
4591ce4f 2771
9f40604c
MG
2772 do {
2773 start = max(start, vma->vm_start);
2774 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2775 end = min(end, vma->vm_end);
4620f8c1 2776 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2777
2778 /*
4620f8c1
RR
2779 * Try to scan sysctl_numa_balancing_size worth of
2780 * hpages that have at least one present PTE that
2781 * is not already pte-numa. If the VMA contains
2782 * areas that are unused or already full of prot_numa
2783 * PTEs, scan up to virtpages, to skip through those
2784 * areas faster.
598f0ec0
MG
2785 */
2786 if (nr_pte_updates)
2787 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2788 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2789
9f40604c 2790 start = end;
4620f8c1 2791 if (pages <= 0 || virtpages <= 0)
9f40604c 2792 goto out;
3cf1962c
RR
2793
2794 cond_resched();
9f40604c 2795 } while (end != vma->vm_end);
cbee9f88 2796 }
6e5fb223 2797
9f40604c 2798out:
6e5fb223 2799 /*
c69307d5
PZ
2800 * It is possible to reach the end of the VMA list but the last few
2801 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2802 * would find the !migratable VMA on the next scan but not reset the
2803 * scanner to the start so check it now.
6e5fb223
PZ
2804 */
2805 if (vma)
9f40604c 2806 mm->numa_scan_offset = start;
6e5fb223
PZ
2807 else
2808 reset_ptenuma_scan(p);
d8ed45c5 2809 mmap_read_unlock(mm);
51170840
RR
2810
2811 /*
2812 * Make sure tasks use at least 32x as much time to run other code
2813 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2814 * Usually update_task_scan_period slows down scanning enough; on an
2815 * overloaded system we need to limit overhead on a per task basis.
2816 */
2817 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2818 u64 diff = p->se.sum_exec_runtime - runtime;
2819 p->node_stamp += 32 * diff;
2820 }
cbee9f88
PZ
2821}
2822
d35927a1
VS
2823void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2824{
2825 int mm_users = 0;
2826 struct mm_struct *mm = p->mm;
2827
2828 if (mm) {
2829 mm_users = atomic_read(&mm->mm_users);
2830 if (mm_users == 1) {
2831 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2832 mm->numa_scan_seq = 0;
2833 }
2834 }
2835 p->node_stamp = 0;
2836 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2837 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2838 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2839 p->numa_work.next = &p->numa_work;
2840 p->numa_faults = NULL;
2841 RCU_INIT_POINTER(p->numa_group, NULL);
2842 p->last_task_numa_placement = 0;
2843 p->last_sum_exec_runtime = 0;
2844
b34920d4
VS
2845 init_task_work(&p->numa_work, task_numa_work);
2846
d35927a1
VS
2847 /* New address space, reset the preferred nid */
2848 if (!(clone_flags & CLONE_VM)) {
2849 p->numa_preferred_nid = NUMA_NO_NODE;
2850 return;
2851 }
2852
2853 /*
2854 * New thread, keep existing numa_preferred_nid which should be copied
2855 * already by arch_dup_task_struct but stagger when scans start.
2856 */
2857 if (mm) {
2858 unsigned int delay;
2859
2860 delay = min_t(unsigned int, task_scan_max(current),
2861 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2862 delay += 2 * TICK_NSEC;
2863 p->node_stamp = delay;
2864 }
2865}
2866
cbee9f88
PZ
2867/*
2868 * Drive the periodic memory faults..
2869 */
b1546edc 2870static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2871{
2872 struct callback_head *work = &curr->numa_work;
2873 u64 period, now;
2874
2875 /*
2876 * We don't care about NUMA placement if we don't have memory.
2877 */
18f855e5 2878 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2879 return;
2880
2881 /*
2882 * Using runtime rather than walltime has the dual advantage that
2883 * we (mostly) drive the selection from busy threads and that the
2884 * task needs to have done some actual work before we bother with
2885 * NUMA placement.
2886 */
2887 now = curr->se.sum_exec_runtime;
2888 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2889
25b3e5a3 2890 if (now > curr->node_stamp + period) {
4b96a29b 2891 if (!curr->node_stamp)
b5dd77c8 2892 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2893 curr->node_stamp += period;
cbee9f88 2894
b34920d4 2895 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2896 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2897 }
2898}
3fed382b 2899
3f9672ba
SD
2900static void update_scan_period(struct task_struct *p, int new_cpu)
2901{
2902 int src_nid = cpu_to_node(task_cpu(p));
2903 int dst_nid = cpu_to_node(new_cpu);
2904
05cbdf4f
MG
2905 if (!static_branch_likely(&sched_numa_balancing))
2906 return;
2907
3f9672ba
SD
2908 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2909 return;
2910
05cbdf4f
MG
2911 if (src_nid == dst_nid)
2912 return;
2913
2914 /*
2915 * Allow resets if faults have been trapped before one scan
2916 * has completed. This is most likely due to a new task that
2917 * is pulled cross-node due to wakeups or load balancing.
2918 */
2919 if (p->numa_scan_seq) {
2920 /*
2921 * Avoid scan adjustments if moving to the preferred
2922 * node or if the task was not previously running on
2923 * the preferred node.
2924 */
2925 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2926 (p->numa_preferred_nid != NUMA_NO_NODE &&
2927 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2928 return;
2929 }
2930
2931 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2932}
2933
cbee9f88
PZ
2934#else
2935static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2936{
2937}
0ec8aa00
PZ
2938
2939static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2940{
2941}
2942
2943static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2944{
2945}
3fed382b 2946
3f9672ba
SD
2947static inline void update_scan_period(struct task_struct *p, int new_cpu)
2948{
2949}
2950
cbee9f88
PZ
2951#endif /* CONFIG_NUMA_BALANCING */
2952
30cfdcfc
DA
2953static void
2954account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955{
2956 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2957#ifdef CONFIG_SMP
0ec8aa00
PZ
2958 if (entity_is_task(se)) {
2959 struct rq *rq = rq_of(cfs_rq);
2960
2961 account_numa_enqueue(rq, task_of(se));
2962 list_add(&se->group_node, &rq->cfs_tasks);
2963 }
367456c7 2964#endif
30cfdcfc 2965 cfs_rq->nr_running++;
30cfdcfc
DA
2966}
2967
2968static void
2969account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2970{
2971 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2972#ifdef CONFIG_SMP
0ec8aa00
PZ
2973 if (entity_is_task(se)) {
2974 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2975 list_del_init(&se->group_node);
0ec8aa00 2976 }
bfdb198c 2977#endif
30cfdcfc 2978 cfs_rq->nr_running--;
30cfdcfc
DA
2979}
2980
8d5b9025
PZ
2981/*
2982 * Signed add and clamp on underflow.
2983 *
2984 * Explicitly do a load-store to ensure the intermediate value never hits
2985 * memory. This allows lockless observations without ever seeing the negative
2986 * values.
2987 */
2988#define add_positive(_ptr, _val) do { \
2989 typeof(_ptr) ptr = (_ptr); \
2990 typeof(_val) val = (_val); \
2991 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2992 \
2993 res = var + val; \
2994 \
2995 if (val < 0 && res > var) \
2996 res = 0; \
2997 \
2998 WRITE_ONCE(*ptr, res); \
2999} while (0)
3000
3001/*
3002 * Unsigned subtract and clamp on underflow.
3003 *
3004 * Explicitly do a load-store to ensure the intermediate value never hits
3005 * memory. This allows lockless observations without ever seeing the negative
3006 * values.
3007 */
3008#define sub_positive(_ptr, _val) do { \
3009 typeof(_ptr) ptr = (_ptr); \
3010 typeof(*ptr) val = (_val); \
3011 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3012 res = var - val; \
3013 if (res > var) \
3014 res = 0; \
3015 WRITE_ONCE(*ptr, res); \
3016} while (0)
3017
b5c0ce7b
PB
3018/*
3019 * Remove and clamp on negative, from a local variable.
3020 *
3021 * A variant of sub_positive(), which does not use explicit load-store
3022 * and is thus optimized for local variable updates.
3023 */
3024#define lsub_positive(_ptr, _val) do { \
3025 typeof(_ptr) ptr = (_ptr); \
3026 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3027} while (0)
3028
8d5b9025 3029#ifdef CONFIG_SMP
8d5b9025
PZ
3030static inline void
3031enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3032{
3033 cfs_rq->avg.load_avg += se->avg.load_avg;
3034 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3035}
3036
3037static inline void
3038dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3039{
3040 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3041 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3042}
3043#else
3044static inline void
8d5b9025
PZ
3045enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3046static inline void
3047dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3048#endif
3049
9059393e 3050static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3051 unsigned long weight)
9059393e
VG
3052{
3053 if (se->on_rq) {
3054 /* commit outstanding execution time */
3055 if (cfs_rq->curr == se)
3056 update_curr(cfs_rq);
1724b95b 3057 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3058 }
3059 dequeue_load_avg(cfs_rq, se);
3060
3061 update_load_set(&se->load, weight);
3062
3063#ifdef CONFIG_SMP
1ea6c46a 3064 do {
87e867b4 3065 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3066
3067 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3068 } while (0);
9059393e
VG
3069#endif
3070
3071 enqueue_load_avg(cfs_rq, se);
0dacee1b 3072 if (se->on_rq)
1724b95b 3073 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3074
9059393e
VG
3075}
3076
3077void reweight_task(struct task_struct *p, int prio)
3078{
3079 struct sched_entity *se = &p->se;
3080 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3081 struct load_weight *load = &se->load;
3082 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3083
0dacee1b 3084 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3085 load->inv_weight = sched_prio_to_wmult[prio];
3086}
3087
3ff6dcac 3088#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3089#ifdef CONFIG_SMP
cef27403
PZ
3090/*
3091 * All this does is approximate the hierarchical proportion which includes that
3092 * global sum we all love to hate.
3093 *
3094 * That is, the weight of a group entity, is the proportional share of the
3095 * group weight based on the group runqueue weights. That is:
3096 *
3097 * tg->weight * grq->load.weight
3098 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3099 * \Sum grq->load.weight
cef27403
PZ
3100 *
3101 * Now, because computing that sum is prohibitively expensive to compute (been
3102 * there, done that) we approximate it with this average stuff. The average
3103 * moves slower and therefore the approximation is cheaper and more stable.
3104 *
3105 * So instead of the above, we substitute:
3106 *
3107 * grq->load.weight -> grq->avg.load_avg (2)
3108 *
3109 * which yields the following:
3110 *
3111 * tg->weight * grq->avg.load_avg
3112 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3113 * tg->load_avg
cef27403
PZ
3114 *
3115 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3116 *
3117 * That is shares_avg, and it is right (given the approximation (2)).
3118 *
3119 * The problem with it is that because the average is slow -- it was designed
3120 * to be exactly that of course -- this leads to transients in boundary
3121 * conditions. In specific, the case where the group was idle and we start the
3122 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3123 * yielding bad latency etc..
3124 *
3125 * Now, in that special case (1) reduces to:
3126 *
3127 * tg->weight * grq->load.weight
17de4ee0 3128 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3129 * grp->load.weight
cef27403
PZ
3130 *
3131 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3132 *
3133 * So what we do is modify our approximation (3) to approach (4) in the (near)
3134 * UP case, like:
3135 *
3136 * ge->load.weight =
3137 *
3138 * tg->weight * grq->load.weight
3139 * --------------------------------------------------- (5)
3140 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3141 *
17de4ee0
PZ
3142 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3143 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3144 *
3145 *
3146 * tg->weight * grq->load.weight
3147 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3148 * tg_load_avg'
17de4ee0
PZ
3149 *
3150 * Where:
3151 *
3152 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3153 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3154 *
3155 * And that is shares_weight and is icky. In the (near) UP case it approaches
3156 * (4) while in the normal case it approaches (3). It consistently
3157 * overestimates the ge->load.weight and therefore:
3158 *
3159 * \Sum ge->load.weight >= tg->weight
3160 *
3161 * hence icky!
3162 */
2c8e4dce 3163static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3164{
7c80cfc9
PZ
3165 long tg_weight, tg_shares, load, shares;
3166 struct task_group *tg = cfs_rq->tg;
3167
3168 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3169
3d4b60d3 3170 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3171
ea1dc6fc 3172 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3173
ea1dc6fc
PZ
3174 /* Ensure tg_weight >= load */
3175 tg_weight -= cfs_rq->tg_load_avg_contrib;
3176 tg_weight += load;
3ff6dcac 3177
7c80cfc9 3178 shares = (tg_shares * load);
cf5f0acf
PZ
3179 if (tg_weight)
3180 shares /= tg_weight;
3ff6dcac 3181
b8fd8423
DE
3182 /*
3183 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3184 * of a group with small tg->shares value. It is a floor value which is
3185 * assigned as a minimum load.weight to the sched_entity representing
3186 * the group on a CPU.
3187 *
3188 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3189 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3190 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3191 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3192 * instead of 0.
3193 */
7c80cfc9 3194 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3195}
387f77cc 3196#endif /* CONFIG_SMP */
ea1dc6fc 3197
82958366
PT
3198static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3199
1ea6c46a
PZ
3200/*
3201 * Recomputes the group entity based on the current state of its group
3202 * runqueue.
3203 */
3204static void update_cfs_group(struct sched_entity *se)
2069dd75 3205{
1ea6c46a 3206 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3207 long shares;
2069dd75 3208
1ea6c46a 3209 if (!gcfs_rq)
89ee048f
VG
3210 return;
3211
1ea6c46a 3212 if (throttled_hierarchy(gcfs_rq))
2069dd75 3213 return;
89ee048f 3214
3ff6dcac 3215#ifndef CONFIG_SMP
0dacee1b 3216 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3217
3218 if (likely(se->load.weight == shares))
3ff6dcac 3219 return;
7c80cfc9 3220#else
2c8e4dce 3221 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3222#endif
2069dd75 3223
0dacee1b 3224 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3225}
89ee048f 3226
2069dd75 3227#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3228static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3229{
3230}
3231#endif /* CONFIG_FAIR_GROUP_SCHED */
3232
ea14b57e 3233static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3234{
43964409
LT
3235 struct rq *rq = rq_of(cfs_rq);
3236
a4f9a0e5 3237 if (&rq->cfs == cfs_rq) {
a030d738
VK
3238 /*
3239 * There are a few boundary cases this might miss but it should
3240 * get called often enough that that should (hopefully) not be
9783be2c 3241 * a real problem.
a030d738
VK
3242 *
3243 * It will not get called when we go idle, because the idle
3244 * thread is a different class (!fair), nor will the utilization
3245 * number include things like RT tasks.
3246 *
3247 * As is, the util number is not freq-invariant (we'd have to
3248 * implement arch_scale_freq_capacity() for that).
3249 *
3250 * See cpu_util().
3251 */
ea14b57e 3252 cpufreq_update_util(rq, flags);
a030d738
VK
3253 }
3254}
3255
141965c7 3256#ifdef CONFIG_SMP
c566e8e9 3257#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
3258/*
3259 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3260 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3261 * bottom-up, we only have to test whether the cfs_rq before us on the list
3262 * is our child.
3263 * If cfs_rq is not on the list, test whether a child needs its to be added to
3264 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3265 */
3266static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3267{
3268 struct cfs_rq *prev_cfs_rq;
3269 struct list_head *prev;
3270
3271 if (cfs_rq->on_list) {
3272 prev = cfs_rq->leaf_cfs_rq_list.prev;
3273 } else {
3274 struct rq *rq = rq_of(cfs_rq);
3275
3276 prev = rq->tmp_alone_branch;
3277 }
3278
3279 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3280
3281 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3282}
a7b359fc
OU
3283
3284static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3285{
3286 if (cfs_rq->load.weight)
3287 return false;
3288
3289 if (cfs_rq->avg.load_sum)
3290 return false;
3291
3292 if (cfs_rq->avg.util_sum)
3293 return false;
3294
3295 if (cfs_rq->avg.runnable_sum)
3296 return false;
3297
fdaba61e
RR
3298 if (child_cfs_rq_on_list(cfs_rq))
3299 return false;
3300
b2c0931a
IM
3301 /*
3302 * _avg must be null when _sum are null because _avg = _sum / divider
3303 * Make sure that rounding and/or propagation of PELT values never
3304 * break this.
3305 */
3306 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3307 cfs_rq->avg.util_avg ||
3308 cfs_rq->avg.runnable_avg);
3309
a7b359fc
OU
3310 return true;
3311}
3312
7c3edd2c
PZ
3313/**
3314 * update_tg_load_avg - update the tg's load avg
3315 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3316 *
3317 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3318 * However, because tg->load_avg is a global value there are performance
3319 * considerations.
3320 *
3321 * In order to avoid having to look at the other cfs_rq's, we use a
3322 * differential update where we store the last value we propagated. This in
3323 * turn allows skipping updates if the differential is 'small'.
3324 *
815abf5a 3325 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3326 */
fe749158 3327static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3328{
9d89c257 3329 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3330
aa0b7ae0
WL
3331 /*
3332 * No need to update load_avg for root_task_group as it is not used.
3333 */
3334 if (cfs_rq->tg == &root_task_group)
3335 return;
3336
fe749158 3337 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3338 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3339 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3340 }
8165e145 3341}
f5f9739d 3342
ad936d86 3343/*
97fb7a0a 3344 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3345 * caller only guarantees p->pi_lock is held; no other assumptions,
3346 * including the state of rq->lock, should be made.
3347 */
3348void set_task_rq_fair(struct sched_entity *se,
3349 struct cfs_rq *prev, struct cfs_rq *next)
3350{
0ccb977f
PZ
3351 u64 p_last_update_time;
3352 u64 n_last_update_time;
3353
ad936d86
BP
3354 if (!sched_feat(ATTACH_AGE_LOAD))
3355 return;
3356
3357 /*
3358 * We are supposed to update the task to "current" time, then its up to
3359 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3360 * getting what current time is, so simply throw away the out-of-date
3361 * time. This will result in the wakee task is less decayed, but giving
3362 * the wakee more load sounds not bad.
3363 */
0ccb977f
PZ
3364 if (!(se->avg.last_update_time && prev))
3365 return;
ad936d86
BP
3366
3367#ifndef CONFIG_64BIT
0ccb977f 3368 {
ad936d86
BP
3369 u64 p_last_update_time_copy;
3370 u64 n_last_update_time_copy;
3371
3372 do {
3373 p_last_update_time_copy = prev->load_last_update_time_copy;
3374 n_last_update_time_copy = next->load_last_update_time_copy;
3375
3376 smp_rmb();
3377
3378 p_last_update_time = prev->avg.last_update_time;
3379 n_last_update_time = next->avg.last_update_time;
3380
3381 } while (p_last_update_time != p_last_update_time_copy ||
3382 n_last_update_time != n_last_update_time_copy);
0ccb977f 3383 }
ad936d86 3384#else
0ccb977f
PZ
3385 p_last_update_time = prev->avg.last_update_time;
3386 n_last_update_time = next->avg.last_update_time;
ad936d86 3387#endif
23127296 3388 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3389 se->avg.last_update_time = n_last_update_time;
ad936d86 3390}
09a43ace 3391
0e2d2aaa
PZ
3392
3393/*
3394 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3395 * propagate its contribution. The key to this propagation is the invariant
3396 * that for each group:
3397 *
3398 * ge->avg == grq->avg (1)
3399 *
3400 * _IFF_ we look at the pure running and runnable sums. Because they
3401 * represent the very same entity, just at different points in the hierarchy.
3402 *
9f683953
VG
3403 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3404 * and simply copies the running/runnable sum over (but still wrong, because
3405 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3406 *
0dacee1b 3407 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3408 *
3409 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3410 *
3411 * And since, like util, the runnable part should be directly transferable,
3412 * the following would _appear_ to be the straight forward approach:
3413 *
a4c3c049 3414 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3415 *
3416 * And per (1) we have:
3417 *
a4c3c049 3418 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3419 *
3420 * Which gives:
3421 *
3422 * ge->load.weight * grq->avg.load_avg
3423 * ge->avg.load_avg = ----------------------------------- (4)
3424 * grq->load.weight
3425 *
3426 * Except that is wrong!
3427 *
3428 * Because while for entities historical weight is not important and we
3429 * really only care about our future and therefore can consider a pure
3430 * runnable sum, runqueues can NOT do this.
3431 *
3432 * We specifically want runqueues to have a load_avg that includes
3433 * historical weights. Those represent the blocked load, the load we expect
3434 * to (shortly) return to us. This only works by keeping the weights as
3435 * integral part of the sum. We therefore cannot decompose as per (3).
3436 *
a4c3c049
VG
3437 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3438 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3439 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3440 * runnable section of these tasks overlap (or not). If they were to perfectly
3441 * align the rq as a whole would be runnable 2/3 of the time. If however we
3442 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3443 *
a4c3c049 3444 * So we'll have to approximate.. :/
0e2d2aaa 3445 *
a4c3c049 3446 * Given the constraint:
0e2d2aaa 3447 *
a4c3c049 3448 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3449 *
a4c3c049
VG
3450 * We can construct a rule that adds runnable to a rq by assuming minimal
3451 * overlap.
0e2d2aaa 3452 *
a4c3c049 3453 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3454 *
a4c3c049 3455 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3456 *
a4c3c049 3457 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3458 *
0e2d2aaa
PZ
3459 */
3460
09a43ace 3461static inline void
0e2d2aaa 3462update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3463{
09a43ace 3464 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3465 u32 divider;
09a43ace
VG
3466
3467 /* Nothing to update */
3468 if (!delta)
3469 return;
3470
87e867b4
VG
3471 /*
3472 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3473 * See ___update_load_avg() for details.
3474 */
3475 divider = get_pelt_divider(&cfs_rq->avg);
3476
09a43ace
VG
3477 /* Set new sched_entity's utilization */
3478 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3479 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3480
3481 /* Update parent cfs_rq utilization */
3482 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3483 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3484}
3485
9f683953
VG
3486static inline void
3487update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3488{
3489 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3490 u32 divider;
9f683953
VG
3491
3492 /* Nothing to update */
3493 if (!delta)
3494 return;
3495
87e867b4
VG
3496 /*
3497 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3498 * See ___update_load_avg() for details.
3499 */
3500 divider = get_pelt_divider(&cfs_rq->avg);
3501
9f683953
VG
3502 /* Set new sched_entity's runnable */
3503 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3504 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3505
3506 /* Update parent cfs_rq runnable */
3507 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3508 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3509}
3510
09a43ace 3511static inline void
0dacee1b 3512update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3513{
7c7ad626 3514 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3515 unsigned long load_avg;
3516 u64 load_sum = 0;
95d68593 3517 u32 divider;
09a43ace 3518
0e2d2aaa
PZ
3519 if (!runnable_sum)
3520 return;
09a43ace 3521
0e2d2aaa 3522 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3523
95d68593
VG
3524 /*
3525 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3526 * See ___update_load_avg() for details.
3527 */
87e867b4 3528 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3529
a4c3c049
VG
3530 if (runnable_sum >= 0) {
3531 /*
3532 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3533 * the CPU is saturated running == runnable.
3534 */
3535 runnable_sum += se->avg.load_sum;
95d68593 3536 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3537 } else {
3538 /*
3539 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3540 * assuming all tasks are equally runnable.
3541 */
3542 if (scale_load_down(gcfs_rq->load.weight)) {
3543 load_sum = div_s64(gcfs_rq->avg.load_sum,
3544 scale_load_down(gcfs_rq->load.weight));
3545 }
3546
3547 /* But make sure to not inflate se's runnable */
3548 runnable_sum = min(se->avg.load_sum, load_sum);
3549 }
3550
3551 /*
3552 * runnable_sum can't be lower than running_sum
23127296
VG
3553 * Rescale running sum to be in the same range as runnable sum
3554 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3555 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3556 */
23127296 3557 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3558 runnable_sum = max(runnable_sum, running_sum);
3559
0e2d2aaa 3560 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3561 load_avg = div_s64(load_sum, divider);
09a43ace 3562
83c5e9d5
DE
3563 se->avg.load_sum = runnable_sum;
3564
7c7ad626 3565 delta = load_avg - se->avg.load_avg;
83c5e9d5
DE
3566 if (!delta)
3567 return;
09a43ace 3568
a4c3c049 3569 se->avg.load_avg = load_avg;
7c7ad626
VG
3570
3571 add_positive(&cfs_rq->avg.load_avg, delta);
3572 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
09a43ace
VG
3573}
3574
0e2d2aaa 3575static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3576{
0e2d2aaa
PZ
3577 cfs_rq->propagate = 1;
3578 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3579}
3580
3581/* Update task and its cfs_rq load average */
3582static inline int propagate_entity_load_avg(struct sched_entity *se)
3583{
0e2d2aaa 3584 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3585
3586 if (entity_is_task(se))
3587 return 0;
3588
0e2d2aaa
PZ
3589 gcfs_rq = group_cfs_rq(se);
3590 if (!gcfs_rq->propagate)
09a43ace
VG
3591 return 0;
3592
0e2d2aaa
PZ
3593 gcfs_rq->propagate = 0;
3594
09a43ace
VG
3595 cfs_rq = cfs_rq_of(se);
3596
0e2d2aaa 3597 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3598
0e2d2aaa 3599 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3600 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3601 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3602
ba19f51f 3603 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3604 trace_pelt_se_tp(se);
ba19f51f 3605
09a43ace
VG
3606 return 1;
3607}
3608
bc427898
VG
3609/*
3610 * Check if we need to update the load and the utilization of a blocked
3611 * group_entity:
3612 */
3613static inline bool skip_blocked_update(struct sched_entity *se)
3614{
3615 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3616
3617 /*
3618 * If sched_entity still have not zero load or utilization, we have to
3619 * decay it:
3620 */
3621 if (se->avg.load_avg || se->avg.util_avg)
3622 return false;
3623
3624 /*
3625 * If there is a pending propagation, we have to update the load and
3626 * the utilization of the sched_entity:
3627 */
0e2d2aaa 3628 if (gcfs_rq->propagate)
bc427898
VG
3629 return false;
3630
3631 /*
3632 * Otherwise, the load and the utilization of the sched_entity is
3633 * already zero and there is no pending propagation, so it will be a
3634 * waste of time to try to decay it:
3635 */
3636 return true;
3637}
3638
6e83125c 3639#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3640
fe749158 3641static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3642
3643static inline int propagate_entity_load_avg(struct sched_entity *se)
3644{
3645 return 0;
3646}
3647
0e2d2aaa 3648static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3649
6e83125c 3650#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3651
3d30544f
PZ
3652/**
3653 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3654 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3655 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3656 *
3657 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3658 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3659 * post_init_entity_util_avg().
3660 *
3661 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3662 *
7c3edd2c
PZ
3663 * Returns true if the load decayed or we removed load.
3664 *
3665 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3666 * call update_tg_load_avg() when this function returns true.
3d30544f 3667 */
a2c6c91f 3668static inline int
3a123bbb 3669update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3670{
9f683953 3671 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3672 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3673 int decayed = 0;
2dac754e 3674
2a2f5d4e
PZ
3675 if (cfs_rq->removed.nr) {
3676 unsigned long r;
87e867b4 3677 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3678
3679 raw_spin_lock(&cfs_rq->removed.lock);
3680 swap(cfs_rq->removed.util_avg, removed_util);
3681 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3682 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3683 cfs_rq->removed.nr = 0;
3684 raw_spin_unlock(&cfs_rq->removed.lock);
3685
2a2f5d4e 3686 r = removed_load;
89741892 3687 sub_positive(&sa->load_avg, r);
9a2dd585 3688 sub_positive(&sa->load_sum, r * divider);
2dac754e 3689
2a2f5d4e 3690 r = removed_util;
89741892 3691 sub_positive(&sa->util_avg, r);
9a2dd585 3692 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3693
9f683953
VG
3694 r = removed_runnable;
3695 sub_positive(&sa->runnable_avg, r);
3696 sub_positive(&sa->runnable_sum, r * divider);
3697
3698 /*
3699 * removed_runnable is the unweighted version of removed_load so we
3700 * can use it to estimate removed_load_sum.
3701 */
3702 add_tg_cfs_propagate(cfs_rq,
3703 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3704
3705 decayed = 1;
9d89c257 3706 }
36ee28e4 3707
23127296 3708 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3709
9d89c257
YD
3710#ifndef CONFIG_64BIT
3711 smp_wmb();
3712 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3713#endif
36ee28e4 3714
2a2f5d4e 3715 return decayed;
21e96f88
SM
3716}
3717
3d30544f
PZ
3718/**
3719 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3720 * @cfs_rq: cfs_rq to attach to
3721 * @se: sched_entity to attach
3722 *
3723 * Must call update_cfs_rq_load_avg() before this, since we rely on
3724 * cfs_rq->avg.last_update_time being current.
3725 */
a4f9a0e5 3726static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3727{
95d68593
VG
3728 /*
3729 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3730 * See ___update_load_avg() for details.
3731 */
87e867b4 3732 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3733
3734 /*
3735 * When we attach the @se to the @cfs_rq, we must align the decay
3736 * window because without that, really weird and wonderful things can
3737 * happen.
3738 *
3739 * XXX illustrate
3740 */
a05e8c51 3741 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3742 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3743
3744 /*
3745 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3746 * period_contrib. This isn't strictly correct, but since we're
3747 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3748 * _sum a little.
3749 */
3750 se->avg.util_sum = se->avg.util_avg * divider;
3751
9f683953
VG
3752 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3753
f207934f
PZ
3754 se->avg.load_sum = divider;
3755 if (se_weight(se)) {
3756 se->avg.load_sum =
3757 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3758 }
3759
8d5b9025 3760 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3761 cfs_rq->avg.util_avg += se->avg.util_avg;
3762 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3763 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3764 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3765
3766 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3767
a4f9a0e5 3768 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3769
3770 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3771}
3772
3d30544f
PZ
3773/**
3774 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3775 * @cfs_rq: cfs_rq to detach from
3776 * @se: sched_entity to detach
3777 *
3778 * Must call update_cfs_rq_load_avg() before this, since we rely on
3779 * cfs_rq->avg.last_update_time being current.
3780 */
a05e8c51
BP
3781static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3782{
fcf6631f
VG
3783 /*
3784 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3785 * See ___update_load_avg() for details.
3786 */
3787 u32 divider = get_pelt_divider(&cfs_rq->avg);
3788
8d5b9025 3789 dequeue_load_avg(cfs_rq, se);
89741892 3790 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
fcf6631f 3791 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
9f683953 3792 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
fcf6631f 3793 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
0e2d2aaa
PZ
3794
3795 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3796
ea14b57e 3797 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3798
3799 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3800}
3801
b382a531
PZ
3802/*
3803 * Optional action to be done while updating the load average
3804 */
3805#define UPDATE_TG 0x1
3806#define SKIP_AGE_LOAD 0x2
3807#define DO_ATTACH 0x4
3808
3809/* Update task and its cfs_rq load average */
3810static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3811{
23127296 3812 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3813 int decayed;
3814
3815 /*
3816 * Track task load average for carrying it to new CPU after migrated, and
3817 * track group sched_entity load average for task_h_load calc in migration
3818 */
3819 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3820 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3821
3822 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3823 decayed |= propagate_entity_load_avg(se);
3824
3825 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3826
ea14b57e
PZ
3827 /*
3828 * DO_ATTACH means we're here from enqueue_entity().
3829 * !last_update_time means we've passed through
3830 * migrate_task_rq_fair() indicating we migrated.
3831 *
3832 * IOW we're enqueueing a task on a new CPU.
3833 */
a4f9a0e5 3834 attach_entity_load_avg(cfs_rq, se);
fe749158 3835 update_tg_load_avg(cfs_rq);
b382a531 3836
bef69dd8
VG
3837 } else if (decayed) {
3838 cfs_rq_util_change(cfs_rq, 0);
3839
3840 if (flags & UPDATE_TG)
fe749158 3841 update_tg_load_avg(cfs_rq);
bef69dd8 3842 }
b382a531
PZ
3843}
3844
9d89c257 3845#ifndef CONFIG_64BIT
0905f04e
YD
3846static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3847{
9d89c257 3848 u64 last_update_time_copy;
0905f04e 3849 u64 last_update_time;
9ee474f5 3850
9d89c257
YD
3851 do {
3852 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3853 smp_rmb();
3854 last_update_time = cfs_rq->avg.last_update_time;
3855 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3856
3857 return last_update_time;
3858}
9d89c257 3859#else
0905f04e
YD
3860static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3861{
3862 return cfs_rq->avg.last_update_time;
3863}
9d89c257
YD
3864#endif
3865
104cb16d
MR
3866/*
3867 * Synchronize entity load avg of dequeued entity without locking
3868 * the previous rq.
3869 */
71b47eaf 3870static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3871{
3872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3873 u64 last_update_time;
3874
3875 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3876 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3877}
3878
0905f04e
YD
3879/*
3880 * Task first catches up with cfs_rq, and then subtract
3881 * itself from the cfs_rq (task must be off the queue now).
3882 */
71b47eaf 3883static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3884{
3885 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3886 unsigned long flags;
0905f04e
YD
3887
3888 /*
7dc603c9
PZ
3889 * tasks cannot exit without having gone through wake_up_new_task() ->
3890 * post_init_entity_util_avg() which will have added things to the
3891 * cfs_rq, so we can remove unconditionally.
0905f04e 3892 */
0905f04e 3893
104cb16d 3894 sync_entity_load_avg(se);
2a2f5d4e
PZ
3895
3896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3897 ++cfs_rq->removed.nr;
3898 cfs_rq->removed.util_avg += se->avg.util_avg;
3899 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3902}
642dbc39 3903
9f683953
VG
3904static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3905{
3906 return cfs_rq->avg.runnable_avg;
3907}
3908
7ea241af
YD
3909static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3910{
3911 return cfs_rq->avg.load_avg;
3912}
3913
d91cecc1
CY
3914static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3915
7f65ea42
PB
3916static inline unsigned long task_util(struct task_struct *p)
3917{
3918 return READ_ONCE(p->se.avg.util_avg);
3919}
3920
3921static inline unsigned long _task_util_est(struct task_struct *p)
3922{
3923 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3924
68d7a190 3925 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
3926}
3927
3928static inline unsigned long task_util_est(struct task_struct *p)
3929{
3930 return max(task_util(p), _task_util_est(p));
3931}
3932
a7008c07
VS
3933#ifdef CONFIG_UCLAMP_TASK
3934static inline unsigned long uclamp_task_util(struct task_struct *p)
3935{
3936 return clamp(task_util_est(p),
3937 uclamp_eff_value(p, UCLAMP_MIN),
3938 uclamp_eff_value(p, UCLAMP_MAX));
3939}
3940#else
3941static inline unsigned long uclamp_task_util(struct task_struct *p)
3942{
3943 return task_util_est(p);
3944}
3945#endif
3946
7f65ea42
PB
3947static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3948 struct task_struct *p)
3949{
3950 unsigned int enqueued;
3951
3952 if (!sched_feat(UTIL_EST))
3953 return;
3954
3955 /* Update root cfs_rq's estimated utilization */
3956 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3957 enqueued += _task_util_est(p);
7f65ea42 3958 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3959
3960 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3961}
3962
8c1f560c
XY
3963static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3964 struct task_struct *p)
3965{
3966 unsigned int enqueued;
3967
3968 if (!sched_feat(UTIL_EST))
3969 return;
3970
3971 /* Update root cfs_rq's estimated utilization */
3972 enqueued = cfs_rq->avg.util_est.enqueued;
3973 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3974 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3975
3976 trace_sched_util_est_cfs_tp(cfs_rq);
3977}
3978
b89997aa
VD
3979#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3980
7f65ea42
PB
3981/*
3982 * Check if a (signed) value is within a specified (unsigned) margin,
3983 * based on the observation that:
3984 *
3985 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3986 *
3b03706f 3987 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
3988 */
3989static inline bool within_margin(int value, int margin)
3990{
3991 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3992}
3993
8c1f560c
XY
3994static inline void util_est_update(struct cfs_rq *cfs_rq,
3995 struct task_struct *p,
3996 bool task_sleep)
7f65ea42 3997{
b89997aa 3998 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
3999 struct util_est ue;
4000
4001 if (!sched_feat(UTIL_EST))
4002 return;
4003
7f65ea42
PB
4004 /*
4005 * Skip update of task's estimated utilization when the task has not
4006 * yet completed an activation, e.g. being migrated.
4007 */
4008 if (!task_sleep)
4009 return;
4010
d519329f
PB
4011 /*
4012 * If the PELT values haven't changed since enqueue time,
4013 * skip the util_est update.
4014 */
4015 ue = p->se.avg.util_est;
4016 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4017 return;
4018
b89997aa
VD
4019 last_enqueued_diff = ue.enqueued;
4020
b8c96361
PB
4021 /*
4022 * Reset EWMA on utilization increases, the moving average is used only
4023 * to smooth utilization decreases.
4024 */
68d7a190 4025 ue.enqueued = task_util(p);
b8c96361
PB
4026 if (sched_feat(UTIL_EST_FASTUP)) {
4027 if (ue.ewma < ue.enqueued) {
4028 ue.ewma = ue.enqueued;
4029 goto done;
4030 }
4031 }
4032
7f65ea42 4033 /*
b89997aa 4034 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4035 * already ~1% close to its last activation value.
4036 */
7f65ea42 4037 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4038 last_enqueued_diff -= ue.enqueued;
4039 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4040 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4041 goto done;
4042
7f65ea42 4043 return;
b89997aa 4044 }
7f65ea42 4045
10a35e68
VG
4046 /*
4047 * To avoid overestimation of actual task utilization, skip updates if
4048 * we cannot grant there is idle time in this CPU.
4049 */
8c1f560c 4050 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4051 return;
4052
7f65ea42
PB
4053 /*
4054 * Update Task's estimated utilization
4055 *
4056 * When *p completes an activation we can consolidate another sample
4057 * of the task size. This is done by storing the current PELT value
4058 * as ue.enqueued and by using this value to update the Exponential
4059 * Weighted Moving Average (EWMA):
4060 *
4061 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4062 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4063 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4064 * = w * ( last_ewma_diff ) + ewma(t-1)
4065 * = w * (last_ewma_diff + ewma(t-1) / w)
4066 *
4067 * Where 'w' is the weight of new samples, which is configured to be
4068 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4069 */
4070 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4071 ue.ewma += last_ewma_diff;
4072 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4073done:
68d7a190 4074 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4075 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4076
4077 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4078}
4079
3b1baa64
MR
4080static inline int task_fits_capacity(struct task_struct *p, long capacity)
4081{
a7008c07 4082 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4083}
4084
4085static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4086{
4087 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4088 return;
4089
0ae78eec 4090 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4091 rq->misfit_task_load = 0;
4092 return;
4093 }
4094
4095 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4096 rq->misfit_task_load = 0;
4097 return;
4098 }
4099
01cfcde9
VG
4100 /*
4101 * Make sure that misfit_task_load will not be null even if
4102 * task_h_load() returns 0.
4103 */
4104 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4105}
4106
38033c37
PZ
4107#else /* CONFIG_SMP */
4108
a7b359fc
OU
4109static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4110{
4111 return true;
4112}
4113
d31b1a66
VG
4114#define UPDATE_TG 0x0
4115#define SKIP_AGE_LOAD 0x0
b382a531 4116#define DO_ATTACH 0x0
d31b1a66 4117
88c0616e 4118static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4119{
ea14b57e 4120 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4121}
4122
9d89c257 4123static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4124
a05e8c51 4125static inline void
a4f9a0e5 4126attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4127static inline void
4128detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4129
d91cecc1 4130static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4131{
4132 return 0;
4133}
4134
7f65ea42
PB
4135static inline void
4136util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4137
4138static inline void
8c1f560c
XY
4139util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4140
4141static inline void
4142util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4143 bool task_sleep) {}
3b1baa64 4144static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4145
38033c37 4146#endif /* CONFIG_SMP */
9d85f21c 4147
ddc97297
PZ
4148static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4149{
4150#ifdef CONFIG_SCHED_DEBUG
4151 s64 d = se->vruntime - cfs_rq->min_vruntime;
4152
4153 if (d < 0)
4154 d = -d;
4155
4156 if (d > 3*sysctl_sched_latency)
ae92882e 4157 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4158#endif
4159}
4160
aeb73b04
PZ
4161static void
4162place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4163{
1af5f730 4164 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4165
2cb8600e
PZ
4166 /*
4167 * The 'current' period is already promised to the current tasks,
4168 * however the extra weight of the new task will slow them down a
4169 * little, place the new task so that it fits in the slot that
4170 * stays open at the end.
4171 */
94dfb5e7 4172 if (initial && sched_feat(START_DEBIT))
f9c0b095 4173 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4174
a2e7a7eb 4175 /* sleeps up to a single latency don't count. */
5ca9880c 4176 if (!initial) {
a2e7a7eb 4177 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4178
a2e7a7eb
MG
4179 /*
4180 * Halve their sleep time's effect, to allow
4181 * for a gentler effect of sleepers:
4182 */
4183 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4184 thresh >>= 1;
51e0304c 4185
a2e7a7eb 4186 vruntime -= thresh;
aeb73b04
PZ
4187 }
4188
b5d9d734 4189 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4190 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4191}
4192
d3d9dc33
PT
4193static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4194
cb251765
MG
4195static inline void check_schedstat_required(void)
4196{
4197#ifdef CONFIG_SCHEDSTATS
4198 if (schedstat_enabled())
4199 return;
4200
4201 /* Force schedstat enabled if a dependent tracepoint is active */
4202 if (trace_sched_stat_wait_enabled() ||
4203 trace_sched_stat_sleep_enabled() ||
4204 trace_sched_stat_iowait_enabled() ||
4205 trace_sched_stat_blocked_enabled() ||
4206 trace_sched_stat_runtime_enabled()) {
eda8dca5 4207 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4208 "stat_blocked and stat_runtime require the "
f67abed5 4209 "kernel parameter schedstats=enable or "
cb251765
MG
4210 "kernel.sched_schedstats=1\n");
4211 }
4212#endif
4213}
4214
fe61468b 4215static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4216
4217/*
4218 * MIGRATION
4219 *
4220 * dequeue
4221 * update_curr()
4222 * update_min_vruntime()
4223 * vruntime -= min_vruntime
4224 *
4225 * enqueue
4226 * update_curr()
4227 * update_min_vruntime()
4228 * vruntime += min_vruntime
4229 *
4230 * this way the vruntime transition between RQs is done when both
4231 * min_vruntime are up-to-date.
4232 *
4233 * WAKEUP (remote)
4234 *
59efa0ba 4235 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4236 * vruntime -= min_vruntime
4237 *
4238 * enqueue
4239 * update_curr()
4240 * update_min_vruntime()
4241 * vruntime += min_vruntime
4242 *
4243 * this way we don't have the most up-to-date min_vruntime on the originating
4244 * CPU and an up-to-date min_vruntime on the destination CPU.
4245 */
4246
bf0f6f24 4247static void
88ec22d3 4248enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4249{
2f950354
PZ
4250 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4251 bool curr = cfs_rq->curr == se;
4252
88ec22d3 4253 /*
2f950354
PZ
4254 * If we're the current task, we must renormalise before calling
4255 * update_curr().
88ec22d3 4256 */
2f950354 4257 if (renorm && curr)
88ec22d3
PZ
4258 se->vruntime += cfs_rq->min_vruntime;
4259
2f950354
PZ
4260 update_curr(cfs_rq);
4261
bf0f6f24 4262 /*
2f950354
PZ
4263 * Otherwise, renormalise after, such that we're placed at the current
4264 * moment in time, instead of some random moment in the past. Being
4265 * placed in the past could significantly boost this task to the
4266 * fairness detriment of existing tasks.
bf0f6f24 4267 */
2f950354
PZ
4268 if (renorm && !curr)
4269 se->vruntime += cfs_rq->min_vruntime;
4270
89ee048f
VG
4271 /*
4272 * When enqueuing a sched_entity, we must:
4273 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4274 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4275 * - For group_entity, update its weight to reflect the new share of
4276 * its group cfs_rq
4277 * - Add its new weight to cfs_rq->load.weight
4278 */
b382a531 4279 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4280 se_update_runnable(se);
1ea6c46a 4281 update_cfs_group(se);
17bc14b7 4282 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4283
1a3d027c 4284 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4285 place_entity(cfs_rq, se, 0);
bf0f6f24 4286
cb251765 4287 check_schedstat_required();
4fa8d299
JP
4288 update_stats_enqueue(cfs_rq, se, flags);
4289 check_spread(cfs_rq, se);
2f950354 4290 if (!curr)
83b699ed 4291 __enqueue_entity(cfs_rq, se);
2069dd75 4292 se->on_rq = 1;
3d4b47b4 4293
fe61468b
VG
4294 /*
4295 * When bandwidth control is enabled, cfs might have been removed
4296 * because of a parent been throttled but cfs->nr_running > 1. Try to
3b03706f 4297 * add it unconditionally.
fe61468b
VG
4298 */
4299 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4300 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4301
4302 if (cfs_rq->nr_running == 1)
d3d9dc33 4303 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4304}
4305
2c13c919 4306static void __clear_buddies_last(struct sched_entity *se)
2002c695 4307{
2c13c919
RR
4308 for_each_sched_entity(se) {
4309 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4310 if (cfs_rq->last != se)
2c13c919 4311 break;
f1044799
PZ
4312
4313 cfs_rq->last = NULL;
2c13c919
RR
4314 }
4315}
2002c695 4316
2c13c919
RR
4317static void __clear_buddies_next(struct sched_entity *se)
4318{
4319 for_each_sched_entity(se) {
4320 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4321 if (cfs_rq->next != se)
2c13c919 4322 break;
f1044799
PZ
4323
4324 cfs_rq->next = NULL;
2c13c919 4325 }
2002c695
PZ
4326}
4327
ac53db59
RR
4328static void __clear_buddies_skip(struct sched_entity *se)
4329{
4330 for_each_sched_entity(se) {
4331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4332 if (cfs_rq->skip != se)
ac53db59 4333 break;
f1044799
PZ
4334
4335 cfs_rq->skip = NULL;
ac53db59
RR
4336 }
4337}
4338
a571bbea
PZ
4339static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4340{
2c13c919
RR
4341 if (cfs_rq->last == se)
4342 __clear_buddies_last(se);
4343
4344 if (cfs_rq->next == se)
4345 __clear_buddies_next(se);
ac53db59
RR
4346
4347 if (cfs_rq->skip == se)
4348 __clear_buddies_skip(se);
a571bbea
PZ
4349}
4350
6c16a6dc 4351static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4352
bf0f6f24 4353static void
371fd7e7 4354dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4355{
a2a2d680
DA
4356 /*
4357 * Update run-time statistics of the 'current'.
4358 */
4359 update_curr(cfs_rq);
89ee048f
VG
4360
4361 /*
4362 * When dequeuing a sched_entity, we must:
4363 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4364 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4365 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4366 * - For group entity, update its weight to reflect the new share
4367 * of its group cfs_rq.
4368 */
88c0616e 4369 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4370 se_update_runnable(se);
a2a2d680 4371
4fa8d299 4372 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4373
2002c695 4374 clear_buddies(cfs_rq, se);
4793241b 4375
83b699ed 4376 if (se != cfs_rq->curr)
30cfdcfc 4377 __dequeue_entity(cfs_rq, se);
17bc14b7 4378 se->on_rq = 0;
30cfdcfc 4379 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4380
4381 /*
b60205c7
PZ
4382 * Normalize after update_curr(); which will also have moved
4383 * min_vruntime if @se is the one holding it back. But before doing
4384 * update_min_vruntime() again, which will discount @se's position and
4385 * can move min_vruntime forward still more.
88ec22d3 4386 */
371fd7e7 4387 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4388 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4389
d8b4986d
PT
4390 /* return excess runtime on last dequeue */
4391 return_cfs_rq_runtime(cfs_rq);
4392
1ea6c46a 4393 update_cfs_group(se);
b60205c7
PZ
4394
4395 /*
4396 * Now advance min_vruntime if @se was the entity holding it back,
4397 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4398 * put back on, and if we advance min_vruntime, we'll be placed back
4399 * further than we started -- ie. we'll be penalized.
4400 */
9845c49c 4401 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4402 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4403}
4404
4405/*
4406 * Preempt the current task with a newly woken task if needed:
4407 */
7c92e54f 4408static void
2e09bf55 4409check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4410{
11697830 4411 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4412 struct sched_entity *se;
4413 s64 delta;
11697830 4414
6d0f0ebd 4415 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4416 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4417 if (delta_exec > ideal_runtime) {
8875125e 4418 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4419 /*
4420 * The current task ran long enough, ensure it doesn't get
4421 * re-elected due to buddy favours.
4422 */
4423 clear_buddies(cfs_rq, curr);
f685ceac
MG
4424 return;
4425 }
4426
4427 /*
4428 * Ensure that a task that missed wakeup preemption by a
4429 * narrow margin doesn't have to wait for a full slice.
4430 * This also mitigates buddy induced latencies under load.
4431 */
f685ceac
MG
4432 if (delta_exec < sysctl_sched_min_granularity)
4433 return;
4434
f4cfb33e
WX
4435 se = __pick_first_entity(cfs_rq);
4436 delta = curr->vruntime - se->vruntime;
f685ceac 4437
f4cfb33e
WX
4438 if (delta < 0)
4439 return;
d7d82944 4440
f4cfb33e 4441 if (delta > ideal_runtime)
8875125e 4442 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4443}
4444
83b699ed 4445static void
8494f412 4446set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4447{
21f56ffe
PZ
4448 clear_buddies(cfs_rq, se);
4449
83b699ed
SV
4450 /* 'current' is not kept within the tree. */
4451 if (se->on_rq) {
4452 /*
4453 * Any task has to be enqueued before it get to execute on
4454 * a CPU. So account for the time it spent waiting on the
4455 * runqueue.
4456 */
4fa8d299 4457 update_stats_wait_end(cfs_rq, se);
83b699ed 4458 __dequeue_entity(cfs_rq, se);
88c0616e 4459 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4460 }
4461
79303e9e 4462 update_stats_curr_start(cfs_rq, se);
429d43bc 4463 cfs_rq->curr = se;
4fa8d299 4464
eba1ed4b
IM
4465 /*
4466 * Track our maximum slice length, if the CPU's load is at
4467 * least twice that of our own weight (i.e. dont track it
4468 * when there are only lesser-weight tasks around):
4469 */
f2bedc47
DE
4470 if (schedstat_enabled() &&
4471 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4472 schedstat_set(se->statistics.slice_max,
4473 max((u64)schedstat_val(se->statistics.slice_max),
4474 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4475 }
4fa8d299 4476
4a55b450 4477 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4478}
4479
3f3a4904
PZ
4480static int
4481wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4482
ac53db59
RR
4483/*
4484 * Pick the next process, keeping these things in mind, in this order:
4485 * 1) keep things fair between processes/task groups
4486 * 2) pick the "next" process, since someone really wants that to run
4487 * 3) pick the "last" process, for cache locality
4488 * 4) do not run the "skip" process, if something else is available
4489 */
678d5718
PZ
4490static struct sched_entity *
4491pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4492{
678d5718
PZ
4493 struct sched_entity *left = __pick_first_entity(cfs_rq);
4494 struct sched_entity *se;
4495
4496 /*
4497 * If curr is set we have to see if its left of the leftmost entity
4498 * still in the tree, provided there was anything in the tree at all.
4499 */
4500 if (!left || (curr && entity_before(curr, left)))
4501 left = curr;
4502
4503 se = left; /* ideally we run the leftmost entity */
f4b6755f 4504
ac53db59
RR
4505 /*
4506 * Avoid running the skip buddy, if running something else can
4507 * be done without getting too unfair.
4508 */
21f56ffe 4509 if (cfs_rq->skip && cfs_rq->skip == se) {
678d5718
PZ
4510 struct sched_entity *second;
4511
4512 if (se == curr) {
4513 second = __pick_first_entity(cfs_rq);
4514 } else {
4515 second = __pick_next_entity(se);
4516 if (!second || (curr && entity_before(curr, second)))
4517 second = curr;
4518 }
4519
ac53db59
RR
4520 if (second && wakeup_preempt_entity(second, left) < 1)
4521 se = second;
4522 }
aa2ac252 4523
9abb8973
PO
4524 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4525 /*
4526 * Someone really wants this to run. If it's not unfair, run it.
4527 */
ac53db59 4528 se = cfs_rq->next;
9abb8973
PO
4529 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4530 /*
4531 * Prefer last buddy, try to return the CPU to a preempted task.
4532 */
4533 se = cfs_rq->last;
4534 }
ac53db59 4535
4793241b 4536 return se;
aa2ac252
PZ
4537}
4538
678d5718 4539static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4540
ab6cde26 4541static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4542{
4543 /*
4544 * If still on the runqueue then deactivate_task()
4545 * was not called and update_curr() has to be done:
4546 */
4547 if (prev->on_rq)
b7cc0896 4548 update_curr(cfs_rq);
bf0f6f24 4549
d3d9dc33
PT
4550 /* throttle cfs_rqs exceeding runtime */
4551 check_cfs_rq_runtime(cfs_rq);
4552
4fa8d299 4553 check_spread(cfs_rq, prev);
cb251765 4554
30cfdcfc 4555 if (prev->on_rq) {
4fa8d299 4556 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4557 /* Put 'current' back into the tree. */
4558 __enqueue_entity(cfs_rq, prev);
9d85f21c 4559 /* in !on_rq case, update occurred at dequeue */
88c0616e 4560 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4561 }
429d43bc 4562 cfs_rq->curr = NULL;
bf0f6f24
IM
4563}
4564
8f4d37ec
PZ
4565static void
4566entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4567{
bf0f6f24 4568 /*
30cfdcfc 4569 * Update run-time statistics of the 'current'.
bf0f6f24 4570 */
30cfdcfc 4571 update_curr(cfs_rq);
bf0f6f24 4572
9d85f21c
PT
4573 /*
4574 * Ensure that runnable average is periodically updated.
4575 */
88c0616e 4576 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4577 update_cfs_group(curr);
9d85f21c 4578
8f4d37ec
PZ
4579#ifdef CONFIG_SCHED_HRTICK
4580 /*
4581 * queued ticks are scheduled to match the slice, so don't bother
4582 * validating it and just reschedule.
4583 */
983ed7a6 4584 if (queued) {
8875125e 4585 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4586 return;
4587 }
8f4d37ec
PZ
4588 /*
4589 * don't let the period tick interfere with the hrtick preemption
4590 */
4591 if (!sched_feat(DOUBLE_TICK) &&
4592 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4593 return;
4594#endif
4595
2c2efaed 4596 if (cfs_rq->nr_running > 1)
2e09bf55 4597 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4598}
4599
ab84d31e
PT
4600
4601/**************************************************
4602 * CFS bandwidth control machinery
4603 */
4604
4605#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4606
e9666d10 4607#ifdef CONFIG_JUMP_LABEL
c5905afb 4608static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4609
4610static inline bool cfs_bandwidth_used(void)
4611{
c5905afb 4612 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4613}
4614
1ee14e6c 4615void cfs_bandwidth_usage_inc(void)
029632fb 4616{
ce48c146 4617 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4618}
4619
4620void cfs_bandwidth_usage_dec(void)
4621{
ce48c146 4622 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4623}
e9666d10 4624#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4625static bool cfs_bandwidth_used(void)
4626{
4627 return true;
4628}
4629
1ee14e6c
BS
4630void cfs_bandwidth_usage_inc(void) {}
4631void cfs_bandwidth_usage_dec(void) {}
e9666d10 4632#endif /* CONFIG_JUMP_LABEL */
029632fb 4633
ab84d31e
PT
4634/*
4635 * default period for cfs group bandwidth.
4636 * default: 0.1s, units: nanoseconds
4637 */
4638static inline u64 default_cfs_period(void)
4639{
4640 return 100000000ULL;
4641}
ec12cb7f
PT
4642
4643static inline u64 sched_cfs_bandwidth_slice(void)
4644{
4645 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4646}
4647
a9cf55b2 4648/*
763a9ec0
QC
4649 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4650 * directly instead of rq->clock to avoid adding additional synchronization
4651 * around rq->lock.
a9cf55b2
PT
4652 *
4653 * requires cfs_b->lock
4654 */
029632fb 4655void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4656{
f4183717
HC
4657 if (unlikely(cfs_b->quota == RUNTIME_INF))
4658 return;
4659
4660 cfs_b->runtime += cfs_b->quota;
4661 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
a9cf55b2
PT
4662}
4663
029632fb
PZ
4664static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4665{
4666 return &tg->cfs_bandwidth;
4667}
4668
85dac906 4669/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4670static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4671 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4672{
e98fa02c
PT
4673 u64 min_amount, amount = 0;
4674
4675 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4676
4677 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4678 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4679
ec12cb7f
PT
4680 if (cfs_b->quota == RUNTIME_INF)
4681 amount = min_amount;
58088ad0 4682 else {
77a4d1a1 4683 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4684
4685 if (cfs_b->runtime > 0) {
4686 amount = min(cfs_b->runtime, min_amount);
4687 cfs_b->runtime -= amount;
4688 cfs_b->idle = 0;
4689 }
ec12cb7f 4690 }
ec12cb7f
PT
4691
4692 cfs_rq->runtime_remaining += amount;
85dac906
PT
4693
4694 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4695}
4696
e98fa02c
PT
4697/* returns 0 on failure to allocate runtime */
4698static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4699{
4700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4701 int ret;
4702
4703 raw_spin_lock(&cfs_b->lock);
4704 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4705 raw_spin_unlock(&cfs_b->lock);
4706
4707 return ret;
4708}
4709
9dbdb155 4710static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4711{
4712 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4713 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4714
4715 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4716 return;
4717
5e2d2cc2
L
4718 if (cfs_rq->throttled)
4719 return;
85dac906
PT
4720 /*
4721 * if we're unable to extend our runtime we resched so that the active
4722 * hierarchy can be throttled
4723 */
4724 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4725 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4726}
4727
6c16a6dc 4728static __always_inline
9dbdb155 4729void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4730{
56f570e5 4731 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4732 return;
4733
4734 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4735}
4736
85dac906
PT
4737static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4738{
56f570e5 4739 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4740}
4741
64660c86
PT
4742/* check whether cfs_rq, or any parent, is throttled */
4743static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4744{
56f570e5 4745 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4746}
4747
4748/*
4749 * Ensure that neither of the group entities corresponding to src_cpu or
4750 * dest_cpu are members of a throttled hierarchy when performing group
4751 * load-balance operations.
4752 */
4753static inline int throttled_lb_pair(struct task_group *tg,
4754 int src_cpu, int dest_cpu)
4755{
4756 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4757
4758 src_cfs_rq = tg->cfs_rq[src_cpu];
4759 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4760
4761 return throttled_hierarchy(src_cfs_rq) ||
4762 throttled_hierarchy(dest_cfs_rq);
4763}
4764
64660c86
PT
4765static int tg_unthrottle_up(struct task_group *tg, void *data)
4766{
4767 struct rq *rq = data;
4768 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4769
4770 cfs_rq->throttle_count--;
64660c86 4771 if (!cfs_rq->throttle_count) {
78becc27 4772 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4773 cfs_rq->throttled_clock_task;
31bc6aea 4774
a7b359fc
OU
4775 /* Add cfs_rq with load or one or more already running entities to the list */
4776 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
31bc6aea 4777 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4778 }
64660c86
PT
4779
4780 return 0;
4781}
4782
4783static int tg_throttle_down(struct task_group *tg, void *data)
4784{
4785 struct rq *rq = data;
4786 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4787
82958366 4788 /* group is entering throttled state, stop time */
31bc6aea 4789 if (!cfs_rq->throttle_count) {
78becc27 4790 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4791 list_del_leaf_cfs_rq(cfs_rq);
4792 }
64660c86
PT
4793 cfs_rq->throttle_count++;
4794
4795 return 0;
4796}
4797
e98fa02c 4798static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4799{
4800 struct rq *rq = rq_of(cfs_rq);
4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4802 struct sched_entity *se;
43e9f7f2 4803 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4804
4805 raw_spin_lock(&cfs_b->lock);
4806 /* This will start the period timer if necessary */
4807 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4808 /*
4809 * We have raced with bandwidth becoming available, and if we
4810 * actually throttled the timer might not unthrottle us for an
4811 * entire period. We additionally needed to make sure that any
4812 * subsequent check_cfs_rq_runtime calls agree not to throttle
4813 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4814 * for 1ns of runtime rather than just check cfs_b.
4815 */
4816 dequeue = 0;
4817 } else {
4818 list_add_tail_rcu(&cfs_rq->throttled_list,
4819 &cfs_b->throttled_cfs_rq);
4820 }
4821 raw_spin_unlock(&cfs_b->lock);
4822
4823 if (!dequeue)
4824 return false; /* Throttle no longer required. */
85dac906
PT
4825
4826 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4827
f1b17280 4828 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4829 rcu_read_lock();
4830 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4831 rcu_read_unlock();
85dac906
PT
4832
4833 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4834 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4835 for_each_sched_entity(se) {
4836 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4837 /* throttled entity or throttle-on-deactivate */
4838 if (!se->on_rq)
b6d37a76 4839 goto done;
85dac906 4840
b6d37a76 4841 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4842
85dac906 4843 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4844 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4845
b6d37a76
PW
4846 if (qcfs_rq->load.weight) {
4847 /* Avoid re-evaluating load for this entity: */
4848 se = parent_entity(se);
4849 break;
4850 }
4851 }
4852
4853 for_each_sched_entity(se) {
4854 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4855 /* throttled entity or throttle-on-deactivate */
4856 if (!se->on_rq)
4857 goto done;
4858
4859 update_load_avg(qcfs_rq, se, 0);
4860 se_update_runnable(se);
4861
4862 qcfs_rq->h_nr_running -= task_delta;
4863 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4864 }
4865
b6d37a76
PW
4866 /* At this point se is NULL and we are at root level*/
4867 sub_nr_running(rq, task_delta);
85dac906 4868
b6d37a76 4869done:
c06f04c7 4870 /*
e98fa02c
PT
4871 * Note: distribution will already see us throttled via the
4872 * throttled-list. rq->lock protects completion.
c06f04c7 4873 */
e98fa02c
PT
4874 cfs_rq->throttled = 1;
4875 cfs_rq->throttled_clock = rq_clock(rq);
4876 return true;
85dac906
PT
4877}
4878
029632fb 4879void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4880{
4881 struct rq *rq = rq_of(cfs_rq);
4882 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4883 struct sched_entity *se;
43e9f7f2 4884 long task_delta, idle_task_delta;
671fd9da 4885
22b958d8 4886 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4887
4888 cfs_rq->throttled = 0;
1a55af2e
FW
4889
4890 update_rq_clock(rq);
4891
671fd9da 4892 raw_spin_lock(&cfs_b->lock);
78becc27 4893 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4894 list_del_rcu(&cfs_rq->throttled_list);
4895 raw_spin_unlock(&cfs_b->lock);
4896
64660c86
PT
4897 /* update hierarchical throttle state */
4898 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4899
671fd9da
PT
4900 if (!cfs_rq->load.weight)
4901 return;
4902
4903 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4904 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4905 for_each_sched_entity(se) {
4906 if (se->on_rq)
39f23ce0
VG
4907 break;
4908 cfs_rq = cfs_rq_of(se);
4909 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4910
4911 cfs_rq->h_nr_running += task_delta;
4912 cfs_rq->idle_h_nr_running += idle_task_delta;
4913
4914 /* end evaluation on encountering a throttled cfs_rq */
4915 if (cfs_rq_throttled(cfs_rq))
4916 goto unthrottle_throttle;
4917 }
671fd9da 4918
39f23ce0 4919 for_each_sched_entity(se) {
671fd9da 4920 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4921
4922 update_load_avg(cfs_rq, se, UPDATE_TG);
4923 se_update_runnable(se);
6212437f 4924
671fd9da 4925 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4926 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4927
39f23ce0
VG
4928
4929 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4930 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4931 goto unthrottle_throttle;
4932
4933 /*
4934 * One parent has been throttled and cfs_rq removed from the
4935 * list. Add it back to not break the leaf list.
4936 */
4937 if (throttled_hierarchy(cfs_rq))
4938 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4939 }
4940
39f23ce0
VG
4941 /* At this point se is NULL and we are at root level*/
4942 add_nr_running(rq, task_delta);
671fd9da 4943
39f23ce0 4944unthrottle_throttle:
fe61468b
VG
4945 /*
4946 * The cfs_rq_throttled() breaks in the above iteration can result in
4947 * incomplete leaf list maintenance, resulting in triggering the
4948 * assertion below.
4949 */
4950 for_each_sched_entity(se) {
4951 cfs_rq = cfs_rq_of(se);
4952
39f23ce0
VG
4953 if (list_add_leaf_cfs_rq(cfs_rq))
4954 break;
fe61468b
VG
4955 }
4956
4957 assert_list_leaf_cfs_rq(rq);
4958
97fb7a0a 4959 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4960 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4961 resched_curr(rq);
671fd9da
PT
4962}
4963
26a8b127 4964static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4965{
4966 struct cfs_rq *cfs_rq;
26a8b127 4967 u64 runtime, remaining = 1;
671fd9da
PT
4968
4969 rcu_read_lock();
4970 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4971 throttled_list) {
4972 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4973 struct rq_flags rf;
671fd9da 4974
c0ad4aa4 4975 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4976 if (!cfs_rq_throttled(cfs_rq))
4977 goto next;
4978
5e2d2cc2
L
4979 /* By the above check, this should never be true */
4980 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4981
26a8b127 4982 raw_spin_lock(&cfs_b->lock);
671fd9da 4983 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4984 if (runtime > cfs_b->runtime)
4985 runtime = cfs_b->runtime;
4986 cfs_b->runtime -= runtime;
4987 remaining = cfs_b->runtime;
4988 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4989
4990 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4991
4992 /* we check whether we're throttled above */
4993 if (cfs_rq->runtime_remaining > 0)
4994 unthrottle_cfs_rq(cfs_rq);
4995
4996next:
c0ad4aa4 4997 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4998
4999 if (!remaining)
5000 break;
5001 }
5002 rcu_read_unlock();
671fd9da
PT
5003}
5004
58088ad0
PT
5005/*
5006 * Responsible for refilling a task_group's bandwidth and unthrottling its
5007 * cfs_rqs as appropriate. If there has been no activity within the last
5008 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5009 * used to track this state.
5010 */
c0ad4aa4 5011static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 5012{
51f2176d 5013 int throttled;
58088ad0 5014
58088ad0
PT
5015 /* no need to continue the timer with no bandwidth constraint */
5016 if (cfs_b->quota == RUNTIME_INF)
51f2176d 5017 goto out_deactivate;
58088ad0 5018
671fd9da 5019 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 5020 cfs_b->nr_periods += overrun;
671fd9da 5021
f4183717
HC
5022 /* Refill extra burst quota even if cfs_b->idle */
5023 __refill_cfs_bandwidth_runtime(cfs_b);
5024
51f2176d
BS
5025 /*
5026 * idle depends on !throttled (for the case of a large deficit), and if
5027 * we're going inactive then everything else can be deferred
5028 */
5029 if (cfs_b->idle && !throttled)
5030 goto out_deactivate;
a9cf55b2 5031
671fd9da
PT
5032 if (!throttled) {
5033 /* mark as potentially idle for the upcoming period */
5034 cfs_b->idle = 1;
51f2176d 5035 return 0;
671fd9da
PT
5036 }
5037
e8da1b18
NR
5038 /* account preceding periods in which throttling occurred */
5039 cfs_b->nr_throttled += overrun;
5040
671fd9da 5041 /*
26a8b127 5042 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5043 */
ab93a4bc 5044 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5045 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5046 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5047 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5048 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5049
5050 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5051 }
58088ad0 5052
671fd9da
PT
5053 /*
5054 * While we are ensured activity in the period following an
5055 * unthrottle, this also covers the case in which the new bandwidth is
5056 * insufficient to cover the existing bandwidth deficit. (Forcing the
5057 * timer to remain active while there are any throttled entities.)
5058 */
5059 cfs_b->idle = 0;
58088ad0 5060
51f2176d
BS
5061 return 0;
5062
5063out_deactivate:
51f2176d 5064 return 1;
58088ad0 5065}
d3d9dc33 5066
d8b4986d
PT
5067/* a cfs_rq won't donate quota below this amount */
5068static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5069/* minimum remaining period time to redistribute slack quota */
5070static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5071/* how long we wait to gather additional slack before distributing */
5072static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5073
db06e78c
BS
5074/*
5075 * Are we near the end of the current quota period?
5076 *
5077 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5078 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5079 * migrate_hrtimers, base is never cleared, so we are fine.
5080 */
d8b4986d
PT
5081static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5082{
5083 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5084 u64 remaining;
5085
5086 /* if the call-back is running a quota refresh is already occurring */
5087 if (hrtimer_callback_running(refresh_timer))
5088 return 1;
5089
5090 /* is a quota refresh about to occur? */
5091 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5092 if (remaining < min_expire)
5093 return 1;
5094
5095 return 0;
5096}
5097
5098static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5099{
5100 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5101
5102 /* if there's a quota refresh soon don't bother with slack */
5103 if (runtime_refresh_within(cfs_b, min_left))
5104 return;
5105
66567fcb 5106 /* don't push forwards an existing deferred unthrottle */
5107 if (cfs_b->slack_started)
5108 return;
5109 cfs_b->slack_started = true;
5110
4cfafd30
PZ
5111 hrtimer_start(&cfs_b->slack_timer,
5112 ns_to_ktime(cfs_bandwidth_slack_period),
5113 HRTIMER_MODE_REL);
d8b4986d
PT
5114}
5115
5116/* we know any runtime found here is valid as update_curr() precedes return */
5117static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5118{
5119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5120 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5121
5122 if (slack_runtime <= 0)
5123 return;
5124
5125 raw_spin_lock(&cfs_b->lock);
de53fd7a 5126 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5127 cfs_b->runtime += slack_runtime;
5128
5129 /* we are under rq->lock, defer unthrottling using a timer */
5130 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5131 !list_empty(&cfs_b->throttled_cfs_rq))
5132 start_cfs_slack_bandwidth(cfs_b);
5133 }
5134 raw_spin_unlock(&cfs_b->lock);
5135
5136 /* even if it's not valid for return we don't want to try again */
5137 cfs_rq->runtime_remaining -= slack_runtime;
5138}
5139
5140static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5141{
56f570e5
PT
5142 if (!cfs_bandwidth_used())
5143 return;
5144
fccfdc6f 5145 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5146 return;
5147
5148 __return_cfs_rq_runtime(cfs_rq);
5149}
5150
5151/*
5152 * This is done with a timer (instead of inline with bandwidth return) since
5153 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5154 */
5155static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5156{
5157 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5158 unsigned long flags;
d8b4986d
PT
5159
5160 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5161 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5162 cfs_b->slack_started = false;
baa9be4f 5163
db06e78c 5164 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5165 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5166 return;
db06e78c 5167 }
d8b4986d 5168
c06f04c7 5169 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5170 runtime = cfs_b->runtime;
c06f04c7 5171
c0ad4aa4 5172 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5173
5174 if (!runtime)
5175 return;
5176
26a8b127 5177 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5178}
5179
d3d9dc33
PT
5180/*
5181 * When a group wakes up we want to make sure that its quota is not already
5182 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5183 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5184 */
5185static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5186{
56f570e5
PT
5187 if (!cfs_bandwidth_used())
5188 return;
5189
d3d9dc33
PT
5190 /* an active group must be handled by the update_curr()->put() path */
5191 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5192 return;
5193
5194 /* ensure the group is not already throttled */
5195 if (cfs_rq_throttled(cfs_rq))
5196 return;
5197
5198 /* update runtime allocation */
5199 account_cfs_rq_runtime(cfs_rq, 0);
5200 if (cfs_rq->runtime_remaining <= 0)
5201 throttle_cfs_rq(cfs_rq);
5202}
5203
55e16d30
PZ
5204static void sync_throttle(struct task_group *tg, int cpu)
5205{
5206 struct cfs_rq *pcfs_rq, *cfs_rq;
5207
5208 if (!cfs_bandwidth_used())
5209 return;
5210
5211 if (!tg->parent)
5212 return;
5213
5214 cfs_rq = tg->cfs_rq[cpu];
5215 pcfs_rq = tg->parent->cfs_rq[cpu];
5216
5217 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5218 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5219}
5220
d3d9dc33 5221/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5222static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5223{
56f570e5 5224 if (!cfs_bandwidth_used())
678d5718 5225 return false;
56f570e5 5226
d3d9dc33 5227 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5228 return false;
d3d9dc33
PT
5229
5230 /*
5231 * it's possible for a throttled entity to be forced into a running
5232 * state (e.g. set_curr_task), in this case we're finished.
5233 */
5234 if (cfs_rq_throttled(cfs_rq))
678d5718 5235 return true;
d3d9dc33 5236
e98fa02c 5237 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5238}
029632fb 5239
029632fb
PZ
5240static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5241{
5242 struct cfs_bandwidth *cfs_b =
5243 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5244
029632fb
PZ
5245 do_sched_cfs_slack_timer(cfs_b);
5246
5247 return HRTIMER_NORESTART;
5248}
5249
2e8e1922
PA
5250extern const u64 max_cfs_quota_period;
5251
029632fb
PZ
5252static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5253{
5254 struct cfs_bandwidth *cfs_b =
5255 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5256 unsigned long flags;
029632fb
PZ
5257 int overrun;
5258 int idle = 0;
2e8e1922 5259 int count = 0;
029632fb 5260
c0ad4aa4 5261 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5262 for (;;) {
77a4d1a1 5263 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5264 if (!overrun)
5265 break;
5266
5a6d6a6c
HC
5267 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5268
2e8e1922
PA
5269 if (++count > 3) {
5270 u64 new, old = ktime_to_ns(cfs_b->period);
5271
4929a4e6
XZ
5272 /*
5273 * Grow period by a factor of 2 to avoid losing precision.
5274 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5275 * to fail.
5276 */
5277 new = old * 2;
5278 if (new < max_cfs_quota_period) {
5279 cfs_b->period = ns_to_ktime(new);
5280 cfs_b->quota *= 2;
f4183717 5281 cfs_b->burst *= 2;
4929a4e6
XZ
5282
5283 pr_warn_ratelimited(
5284 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5285 smp_processor_id(),
5286 div_u64(new, NSEC_PER_USEC),
5287 div_u64(cfs_b->quota, NSEC_PER_USEC));
5288 } else {
5289 pr_warn_ratelimited(
5290 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 smp_processor_id(),
5292 div_u64(old, NSEC_PER_USEC),
5293 div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 }
2e8e1922
PA
5295
5296 /* reset count so we don't come right back in here */
5297 count = 0;
5298 }
029632fb 5299 }
4cfafd30
PZ
5300 if (idle)
5301 cfs_b->period_active = 0;
c0ad4aa4 5302 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5303
5304 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5305}
5306
5307void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5308{
5309 raw_spin_lock_init(&cfs_b->lock);
5310 cfs_b->runtime = 0;
5311 cfs_b->quota = RUNTIME_INF;
5312 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 5313 cfs_b->burst = 0;
029632fb
PZ
5314
5315 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5316 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5317 cfs_b->period_timer.function = sched_cfs_period_timer;
5318 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5319 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5320 cfs_b->slack_started = false;
029632fb
PZ
5321}
5322
5323static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5324{
5325 cfs_rq->runtime_enabled = 0;
5326 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5327}
5328
77a4d1a1 5329void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5330{
4cfafd30 5331 lockdep_assert_held(&cfs_b->lock);
029632fb 5332
f1d1be8a
XP
5333 if (cfs_b->period_active)
5334 return;
5335
5336 cfs_b->period_active = 1;
763a9ec0 5337 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5338 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5339}
5340
5341static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5342{
7f1a169b
TH
5343 /* init_cfs_bandwidth() was not called */
5344 if (!cfs_b->throttled_cfs_rq.next)
5345 return;
5346
029632fb
PZ
5347 hrtimer_cancel(&cfs_b->period_timer);
5348 hrtimer_cancel(&cfs_b->slack_timer);
5349}
5350
502ce005 5351/*
97fb7a0a 5352 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5353 *
5354 * The race is harmless, since modifying bandwidth settings of unhooked group
5355 * bits doesn't do much.
5356 */
5357
3b03706f 5358/* cpu online callback */
0e59bdae
KT
5359static void __maybe_unused update_runtime_enabled(struct rq *rq)
5360{
502ce005 5361 struct task_group *tg;
0e59bdae 5362
5cb9eaa3 5363 lockdep_assert_rq_held(rq);
502ce005
PZ
5364
5365 rcu_read_lock();
5366 list_for_each_entry_rcu(tg, &task_groups, list) {
5367 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5368 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5369
5370 raw_spin_lock(&cfs_b->lock);
5371 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5372 raw_spin_unlock(&cfs_b->lock);
5373 }
502ce005 5374 rcu_read_unlock();
0e59bdae
KT
5375}
5376
502ce005 5377/* cpu offline callback */
38dc3348 5378static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5379{
502ce005
PZ
5380 struct task_group *tg;
5381
5cb9eaa3 5382 lockdep_assert_rq_held(rq);
502ce005
PZ
5383
5384 rcu_read_lock();
5385 list_for_each_entry_rcu(tg, &task_groups, list) {
5386 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5387
029632fb
PZ
5388 if (!cfs_rq->runtime_enabled)
5389 continue;
5390
5391 /*
5392 * clock_task is not advancing so we just need to make sure
5393 * there's some valid quota amount
5394 */
51f2176d 5395 cfs_rq->runtime_remaining = 1;
0e59bdae 5396 /*
97fb7a0a 5397 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5398 * in take_cpu_down(), so we prevent new cfs throttling here.
5399 */
5400 cfs_rq->runtime_enabled = 0;
5401
029632fb
PZ
5402 if (cfs_rq_throttled(cfs_rq))
5403 unthrottle_cfs_rq(cfs_rq);
5404 }
502ce005 5405 rcu_read_unlock();
029632fb
PZ
5406}
5407
5408#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5409
5410static inline bool cfs_bandwidth_used(void)
5411{
5412 return false;
5413}
5414
9dbdb155 5415static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5416static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5417static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5418static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5419static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5420
5421static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5422{
5423 return 0;
5424}
64660c86
PT
5425
5426static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5427{
5428 return 0;
5429}
5430
5431static inline int throttled_lb_pair(struct task_group *tg,
5432 int src_cpu, int dest_cpu)
5433{
5434 return 0;
5435}
029632fb
PZ
5436
5437void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5438
5439#ifdef CONFIG_FAIR_GROUP_SCHED
5440static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5441#endif
5442
029632fb
PZ
5443static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5444{
5445 return NULL;
5446}
5447static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5448static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5449static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5450
5451#endif /* CONFIG_CFS_BANDWIDTH */
5452
bf0f6f24
IM
5453/**************************************************
5454 * CFS operations on tasks:
5455 */
5456
8f4d37ec
PZ
5457#ifdef CONFIG_SCHED_HRTICK
5458static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5459{
8f4d37ec
PZ
5460 struct sched_entity *se = &p->se;
5461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5462
9148a3a1 5463 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5464
8bf46a39 5465 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5466 u64 slice = sched_slice(cfs_rq, se);
5467 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5468 s64 delta = slice - ran;
5469
5470 if (delta < 0) {
65bcf072 5471 if (task_current(rq, p))
8875125e 5472 resched_curr(rq);
8f4d37ec
PZ
5473 return;
5474 }
31656519 5475 hrtick_start(rq, delta);
8f4d37ec
PZ
5476 }
5477}
a4c2f00f
PZ
5478
5479/*
5480 * called from enqueue/dequeue and updates the hrtick when the
5481 * current task is from our class and nr_running is low enough
5482 * to matter.
5483 */
5484static void hrtick_update(struct rq *rq)
5485{
5486 struct task_struct *curr = rq->curr;
5487
e0ee463c 5488 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5489 return;
5490
5491 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5492 hrtick_start_fair(rq, curr);
5493}
55e12e5e 5494#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5495static inline void
5496hrtick_start_fair(struct rq *rq, struct task_struct *p)
5497{
5498}
a4c2f00f
PZ
5499
5500static inline void hrtick_update(struct rq *rq)
5501{
5502}
8f4d37ec
PZ
5503#endif
5504
2802bf3c
MR
5505#ifdef CONFIG_SMP
5506static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5507
5508static inline bool cpu_overutilized(int cpu)
5509{
60e17f5c 5510 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5511}
5512
5513static inline void update_overutilized_status(struct rq *rq)
5514{
f9f240f9 5515 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5516 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5517 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5518 }
2802bf3c
MR
5519}
5520#else
5521static inline void update_overutilized_status(struct rq *rq) { }
5522#endif
5523
323af6de
VK
5524/* Runqueue only has SCHED_IDLE tasks enqueued */
5525static int sched_idle_rq(struct rq *rq)
5526{
5527 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5528 rq->nr_running);
5529}
5530
afa70d94 5531#ifdef CONFIG_SMP
323af6de
VK
5532static int sched_idle_cpu(int cpu)
5533{
5534 return sched_idle_rq(cpu_rq(cpu));
5535}
afa70d94 5536#endif
323af6de 5537
bf0f6f24
IM
5538/*
5539 * The enqueue_task method is called before nr_running is
5540 * increased. Here we update the fair scheduling stats and
5541 * then put the task into the rbtree:
5542 */
ea87bb78 5543static void
371fd7e7 5544enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5545{
5546 struct cfs_rq *cfs_rq;
62fb1851 5547 struct sched_entity *se = &p->se;
43e9f7f2 5548 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5549 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5550
2539fc82
PB
5551 /*
5552 * The code below (indirectly) updates schedutil which looks at
5553 * the cfs_rq utilization to select a frequency.
5554 * Let's add the task's estimated utilization to the cfs_rq's
5555 * estimated utilization, before we update schedutil.
5556 */
5557 util_est_enqueue(&rq->cfs, p);
5558
8c34ab19
RW
5559 /*
5560 * If in_iowait is set, the code below may not trigger any cpufreq
5561 * utilization updates, so do it here explicitly with the IOWAIT flag
5562 * passed.
5563 */
5564 if (p->in_iowait)
674e7541 5565 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5566
bf0f6f24 5567 for_each_sched_entity(se) {
62fb1851 5568 if (se->on_rq)
bf0f6f24
IM
5569 break;
5570 cfs_rq = cfs_rq_of(se);
88ec22d3 5571 enqueue_entity(cfs_rq, se, flags);
85dac906 5572
953bfcd1 5573 cfs_rq->h_nr_running++;
43e9f7f2 5574 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5575
6d4d2246
VG
5576 /* end evaluation on encountering a throttled cfs_rq */
5577 if (cfs_rq_throttled(cfs_rq))
5578 goto enqueue_throttle;
5579
88ec22d3 5580 flags = ENQUEUE_WAKEUP;
bf0f6f24 5581 }
8f4d37ec 5582
2069dd75 5583 for_each_sched_entity(se) {
0f317143 5584 cfs_rq = cfs_rq_of(se);
2069dd75 5585
88c0616e 5586 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5587 se_update_runnable(se);
1ea6c46a 5588 update_cfs_group(se);
6d4d2246
VG
5589
5590 cfs_rq->h_nr_running++;
5591 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5592
5593 /* end evaluation on encountering a throttled cfs_rq */
5594 if (cfs_rq_throttled(cfs_rq))
5595 goto enqueue_throttle;
b34cb07d
PA
5596
5597 /*
5598 * One parent has been throttled and cfs_rq removed from the
5599 * list. Add it back to not break the leaf list.
5600 */
5601 if (throttled_hierarchy(cfs_rq))
5602 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5603 }
5604
7d148be6
VG
5605 /* At this point se is NULL and we are at root level*/
5606 add_nr_running(rq, 1);
2802bf3c 5607
7d148be6
VG
5608 /*
5609 * Since new tasks are assigned an initial util_avg equal to
5610 * half of the spare capacity of their CPU, tiny tasks have the
5611 * ability to cross the overutilized threshold, which will
5612 * result in the load balancer ruining all the task placement
5613 * done by EAS. As a way to mitigate that effect, do not account
5614 * for the first enqueue operation of new tasks during the
5615 * overutilized flag detection.
5616 *
5617 * A better way of solving this problem would be to wait for
5618 * the PELT signals of tasks to converge before taking them
5619 * into account, but that is not straightforward to implement,
5620 * and the following generally works well enough in practice.
5621 */
8e1ac429 5622 if (!task_new)
7d148be6 5623 update_overutilized_status(rq);
cd126afe 5624
7d148be6 5625enqueue_throttle:
f6783319
VG
5626 if (cfs_bandwidth_used()) {
5627 /*
5628 * When bandwidth control is enabled; the cfs_rq_throttled()
5629 * breaks in the above iteration can result in incomplete
5630 * leaf list maintenance, resulting in triggering the assertion
5631 * below.
5632 */
5633 for_each_sched_entity(se) {
5634 cfs_rq = cfs_rq_of(se);
5635
5636 if (list_add_leaf_cfs_rq(cfs_rq))
5637 break;
5638 }
5639 }
5640
5d299eab
PZ
5641 assert_list_leaf_cfs_rq(rq);
5642
a4c2f00f 5643 hrtick_update(rq);
bf0f6f24
IM
5644}
5645
2f36825b
VP
5646static void set_next_buddy(struct sched_entity *se);
5647
bf0f6f24
IM
5648/*
5649 * The dequeue_task method is called before nr_running is
5650 * decreased. We remove the task from the rbtree and
5651 * update the fair scheduling stats:
5652 */
371fd7e7 5653static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5654{
5655 struct cfs_rq *cfs_rq;
62fb1851 5656 struct sched_entity *se = &p->se;
2f36825b 5657 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5658 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5659 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5660
8c1f560c
XY
5661 util_est_dequeue(&rq->cfs, p);
5662
bf0f6f24
IM
5663 for_each_sched_entity(se) {
5664 cfs_rq = cfs_rq_of(se);
371fd7e7 5665 dequeue_entity(cfs_rq, se, flags);
85dac906 5666
953bfcd1 5667 cfs_rq->h_nr_running--;
43e9f7f2 5668 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5669
6d4d2246
VG
5670 /* end evaluation on encountering a throttled cfs_rq */
5671 if (cfs_rq_throttled(cfs_rq))
5672 goto dequeue_throttle;
5673
bf0f6f24 5674 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5675 if (cfs_rq->load.weight) {
754bd598
KK
5676 /* Avoid re-evaluating load for this entity: */
5677 se = parent_entity(se);
2f36825b
VP
5678 /*
5679 * Bias pick_next to pick a task from this cfs_rq, as
5680 * p is sleeping when it is within its sched_slice.
5681 */
754bd598
KK
5682 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5683 set_next_buddy(se);
bf0f6f24 5684 break;
2f36825b 5685 }
371fd7e7 5686 flags |= DEQUEUE_SLEEP;
bf0f6f24 5687 }
8f4d37ec 5688
2069dd75 5689 for_each_sched_entity(se) {
0f317143 5690 cfs_rq = cfs_rq_of(se);
2069dd75 5691
88c0616e 5692 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5693 se_update_runnable(se);
1ea6c46a 5694 update_cfs_group(se);
6d4d2246
VG
5695
5696 cfs_rq->h_nr_running--;
5697 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5698
5699 /* end evaluation on encountering a throttled cfs_rq */
5700 if (cfs_rq_throttled(cfs_rq))
5701 goto dequeue_throttle;
5702
2069dd75
PZ
5703 }
5704
423d02e1
PW
5705 /* At this point se is NULL and we are at root level*/
5706 sub_nr_running(rq, 1);
cd126afe 5707
323af6de
VK
5708 /* balance early to pull high priority tasks */
5709 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5710 rq->next_balance = jiffies;
5711
423d02e1 5712dequeue_throttle:
8c1f560c 5713 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5714 hrtick_update(rq);
bf0f6f24
IM
5715}
5716
e7693a36 5717#ifdef CONFIG_SMP
10e2f1ac
PZ
5718
5719/* Working cpumask for: load_balance, load_balance_newidle. */
5720DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5721DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5722
9fd81dd5 5723#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5724
5725static struct {
5726 cpumask_var_t idle_cpus_mask;
5727 atomic_t nr_cpus;
f643ea22 5728 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5729 unsigned long next_balance; /* in jiffy units */
f643ea22 5730 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5731} nohz ____cacheline_aligned;
5732
9fd81dd5 5733#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5734
b0fb1eb4
VG
5735static unsigned long cpu_load(struct rq *rq)
5736{
5737 return cfs_rq_load_avg(&rq->cfs);
5738}
5739
3318544b
VG
5740/*
5741 * cpu_load_without - compute CPU load without any contributions from *p
5742 * @cpu: the CPU which load is requested
5743 * @p: the task which load should be discounted
5744 *
5745 * The load of a CPU is defined by the load of tasks currently enqueued on that
5746 * CPU as well as tasks which are currently sleeping after an execution on that
5747 * CPU.
5748 *
5749 * This method returns the load of the specified CPU by discounting the load of
5750 * the specified task, whenever the task is currently contributing to the CPU
5751 * load.
5752 */
5753static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5754{
5755 struct cfs_rq *cfs_rq;
5756 unsigned int load;
5757
5758 /* Task has no contribution or is new */
5759 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5760 return cpu_load(rq);
5761
5762 cfs_rq = &rq->cfs;
5763 load = READ_ONCE(cfs_rq->avg.load_avg);
5764
5765 /* Discount task's util from CPU's util */
5766 lsub_positive(&load, task_h_load(p));
5767
5768 return load;
5769}
5770
9f683953
VG
5771static unsigned long cpu_runnable(struct rq *rq)
5772{
5773 return cfs_rq_runnable_avg(&rq->cfs);
5774}
5775
070f5e86
VG
5776static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5777{
5778 struct cfs_rq *cfs_rq;
5779 unsigned int runnable;
5780
5781 /* Task has no contribution or is new */
5782 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5783 return cpu_runnable(rq);
5784
5785 cfs_rq = &rq->cfs;
5786 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5787
5788 /* Discount task's runnable from CPU's runnable */
5789 lsub_positive(&runnable, p->se.avg.runnable_avg);
5790
5791 return runnable;
5792}
5793
ced549fa 5794static unsigned long capacity_of(int cpu)
029632fb 5795{
ced549fa 5796 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5797}
5798
c58d25f3
PZ
5799static void record_wakee(struct task_struct *p)
5800{
5801 /*
5802 * Only decay a single time; tasks that have less then 1 wakeup per
5803 * jiffy will not have built up many flips.
5804 */
5805 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5806 current->wakee_flips >>= 1;
5807 current->wakee_flip_decay_ts = jiffies;
5808 }
5809
5810 if (current->last_wakee != p) {
5811 current->last_wakee = p;
5812 current->wakee_flips++;
5813 }
5814}
5815
63b0e9ed
MG
5816/*
5817 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5818 *
63b0e9ed 5819 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5820 * at a frequency roughly N times higher than one of its wakees.
5821 *
5822 * In order to determine whether we should let the load spread vs consolidating
5823 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5824 * partner, and a factor of lls_size higher frequency in the other.
5825 *
5826 * With both conditions met, we can be relatively sure that the relationship is
5827 * non-monogamous, with partner count exceeding socket size.
5828 *
5829 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5830 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5831 * socket size.
63b0e9ed 5832 */
62470419
MW
5833static int wake_wide(struct task_struct *p)
5834{
63b0e9ed
MG
5835 unsigned int master = current->wakee_flips;
5836 unsigned int slave = p->wakee_flips;
17c891ab 5837 int factor = __this_cpu_read(sd_llc_size);
62470419 5838
63b0e9ed
MG
5839 if (master < slave)
5840 swap(master, slave);
5841 if (slave < factor || master < slave * factor)
5842 return 0;
5843 return 1;
62470419
MW
5844}
5845
90001d67 5846/*
d153b153
PZ
5847 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5848 * soonest. For the purpose of speed we only consider the waking and previous
5849 * CPU.
90001d67 5850 *
7332dec0
MG
5851 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5852 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5853 *
5854 * wake_affine_weight() - considers the weight to reflect the average
5855 * scheduling latency of the CPUs. This seems to work
5856 * for the overloaded case.
90001d67 5857 */
3b76c4a3 5858static int
89a55f56 5859wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5860{
7332dec0
MG
5861 /*
5862 * If this_cpu is idle, it implies the wakeup is from interrupt
5863 * context. Only allow the move if cache is shared. Otherwise an
5864 * interrupt intensive workload could force all tasks onto one
5865 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5866 *
5867 * If the prev_cpu is idle and cache affine then avoid a migration.
5868 * There is no guarantee that the cache hot data from an interrupt
5869 * is more important than cache hot data on the prev_cpu and from
5870 * a cpufreq perspective, it's better to have higher utilisation
5871 * on one CPU.
7332dec0 5872 */
943d355d
RJ
5873 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5874 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5875
d153b153 5876 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5877 return this_cpu;
90001d67 5878
d8fcb81f
JL
5879 if (available_idle_cpu(prev_cpu))
5880 return prev_cpu;
5881
3b76c4a3 5882 return nr_cpumask_bits;
90001d67
PZ
5883}
5884
3b76c4a3 5885static int
f2cdd9cc
PZ
5886wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5887 int this_cpu, int prev_cpu, int sync)
90001d67 5888{
90001d67
PZ
5889 s64 this_eff_load, prev_eff_load;
5890 unsigned long task_load;
5891
11f10e54 5892 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5893
90001d67
PZ
5894 if (sync) {
5895 unsigned long current_load = task_h_load(current);
5896
f2cdd9cc 5897 if (current_load > this_eff_load)
3b76c4a3 5898 return this_cpu;
90001d67 5899
f2cdd9cc 5900 this_eff_load -= current_load;
90001d67
PZ
5901 }
5902
90001d67
PZ
5903 task_load = task_h_load(p);
5904
f2cdd9cc
PZ
5905 this_eff_load += task_load;
5906 if (sched_feat(WA_BIAS))
5907 this_eff_load *= 100;
5908 this_eff_load *= capacity_of(prev_cpu);
90001d67 5909
11f10e54 5910 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5911 prev_eff_load -= task_load;
5912 if (sched_feat(WA_BIAS))
5913 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5914 prev_eff_load *= capacity_of(this_cpu);
90001d67 5915
082f764a
MG
5916 /*
5917 * If sync, adjust the weight of prev_eff_load such that if
5918 * prev_eff == this_eff that select_idle_sibling() will consider
5919 * stacking the wakee on top of the waker if no other CPU is
5920 * idle.
5921 */
5922 if (sync)
5923 prev_eff_load += 1;
5924
5925 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5926}
5927
772bd008 5928static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5929 int this_cpu, int prev_cpu, int sync)
098fb9db 5930{
3b76c4a3 5931 int target = nr_cpumask_bits;
098fb9db 5932
89a55f56 5933 if (sched_feat(WA_IDLE))
3b76c4a3 5934 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5935
3b76c4a3
MG
5936 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5937 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5938
ae92882e 5939 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5940 if (target == nr_cpumask_bits)
5941 return prev_cpu;
098fb9db 5942
3b76c4a3
MG
5943 schedstat_inc(sd->ttwu_move_affine);
5944 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5945 return target;
098fb9db
IM
5946}
5947
aaee1203 5948static struct sched_group *
45da2773 5949find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5950
5951/*
97fb7a0a 5952 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5953 */
5954static int
18bd1b4b 5955find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5956{
5957 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5958 unsigned int min_exit_latency = UINT_MAX;
5959 u64 latest_idle_timestamp = 0;
5960 int least_loaded_cpu = this_cpu;
17346452 5961 int shallowest_idle_cpu = -1;
aaee1203
PZ
5962 int i;
5963
eaecf41f
MR
5964 /* Check if we have any choice: */
5965 if (group->group_weight == 1)
ae4df9d6 5966 return cpumask_first(sched_group_span(group));
eaecf41f 5967
aaee1203 5968 /* Traverse only the allowed CPUs */
3bd37062 5969 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
5970 struct rq *rq = cpu_rq(i);
5971
5972 if (!sched_core_cookie_match(rq, p))
5973 continue;
5974
17346452
VK
5975 if (sched_idle_cpu(i))
5976 return i;
5977
943d355d 5978 if (available_idle_cpu(i)) {
83a0a96a
NP
5979 struct cpuidle_state *idle = idle_get_state(rq);
5980 if (idle && idle->exit_latency < min_exit_latency) {
5981 /*
5982 * We give priority to a CPU whose idle state
5983 * has the smallest exit latency irrespective
5984 * of any idle timestamp.
5985 */
5986 min_exit_latency = idle->exit_latency;
5987 latest_idle_timestamp = rq->idle_stamp;
5988 shallowest_idle_cpu = i;
5989 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5990 rq->idle_stamp > latest_idle_timestamp) {
5991 /*
5992 * If equal or no active idle state, then
5993 * the most recently idled CPU might have
5994 * a warmer cache.
5995 */
5996 latest_idle_timestamp = rq->idle_stamp;
5997 shallowest_idle_cpu = i;
5998 }
17346452 5999 } else if (shallowest_idle_cpu == -1) {
11f10e54 6000 load = cpu_load(cpu_rq(i));
18cec7e0 6001 if (load < min_load) {
83a0a96a
NP
6002 min_load = load;
6003 least_loaded_cpu = i;
6004 }
e7693a36
GH
6005 }
6006 }
6007
17346452 6008 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 6009}
e7693a36 6010
18bd1b4b
BJ
6011static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6012 int cpu, int prev_cpu, int sd_flag)
6013{
93f50f90 6014 int new_cpu = cpu;
18bd1b4b 6015
3bd37062 6016 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
6017 return prev_cpu;
6018
c976a862 6019 /*
57abff06 6020 * We need task's util for cpu_util_without, sync it up to
c469933e 6021 * prev_cpu's last_update_time.
c976a862
VK
6022 */
6023 if (!(sd_flag & SD_BALANCE_FORK))
6024 sync_entity_load_avg(&p->se);
6025
18bd1b4b
BJ
6026 while (sd) {
6027 struct sched_group *group;
6028 struct sched_domain *tmp;
6029 int weight;
6030
6031 if (!(sd->flags & sd_flag)) {
6032 sd = sd->child;
6033 continue;
6034 }
6035
45da2773 6036 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6037 if (!group) {
6038 sd = sd->child;
6039 continue;
6040 }
6041
6042 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6043 if (new_cpu == cpu) {
97fb7a0a 6044 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6045 sd = sd->child;
6046 continue;
6047 }
6048
97fb7a0a 6049 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6050 cpu = new_cpu;
6051 weight = sd->span_weight;
6052 sd = NULL;
6053 for_each_domain(cpu, tmp) {
6054 if (weight <= tmp->span_weight)
6055 break;
6056 if (tmp->flags & sd_flag)
6057 sd = tmp;
6058 }
18bd1b4b
BJ
6059 }
6060
6061 return new_cpu;
6062}
6063
97886d9d 6064static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 6065{
97886d9d
AL
6066 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6067 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
6068 return cpu;
6069
6070 return -1;
6071}
6072
10e2f1ac 6073#ifdef CONFIG_SCHED_SMT
ba2591a5 6074DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6075EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6076
6077static inline void set_idle_cores(int cpu, int val)
6078{
6079 struct sched_domain_shared *sds;
6080
6081 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6082 if (sds)
6083 WRITE_ONCE(sds->has_idle_cores, val);
6084}
6085
6086static inline bool test_idle_cores(int cpu, bool def)
6087{
6088 struct sched_domain_shared *sds;
6089
c722f35b
RR
6090 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6091 if (sds)
6092 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6093
6094 return def;
6095}
6096
6097/*
6098 * Scans the local SMT mask to see if the entire core is idle, and records this
6099 * information in sd_llc_shared->has_idle_cores.
6100 *
6101 * Since SMT siblings share all cache levels, inspecting this limited remote
6102 * state should be fairly cheap.
6103 */
1b568f0a 6104void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6105{
6106 int core = cpu_of(rq);
6107 int cpu;
6108
6109 rcu_read_lock();
6110 if (test_idle_cores(core, true))
6111 goto unlock;
6112
6113 for_each_cpu(cpu, cpu_smt_mask(core)) {
6114 if (cpu == core)
6115 continue;
6116
943d355d 6117 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6118 goto unlock;
6119 }
6120
6121 set_idle_cores(core, 1);
6122unlock:
6123 rcu_read_unlock();
6124}
6125
6126/*
6127 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6128 * there are no idle cores left in the system; tracked through
6129 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6130 */
9fe1f127 6131static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6132{
9fe1f127
MG
6133 bool idle = true;
6134 int cpu;
10e2f1ac 6135
1b568f0a 6136 if (!static_branch_likely(&sched_smt_present))
97886d9d 6137 return __select_idle_cpu(core, p);
10e2f1ac 6138
9fe1f127
MG
6139 for_each_cpu(cpu, cpu_smt_mask(core)) {
6140 if (!available_idle_cpu(cpu)) {
6141 idle = false;
6142 if (*idle_cpu == -1) {
6143 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6144 *idle_cpu = cpu;
6145 break;
6146 }
6147 continue;
bec2860a 6148 }
9fe1f127 6149 break;
10e2f1ac 6150 }
9fe1f127
MG
6151 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6152 *idle_cpu = cpu;
10e2f1ac
PZ
6153 }
6154
9fe1f127
MG
6155 if (idle)
6156 return core;
10e2f1ac 6157
9fe1f127 6158 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6159 return -1;
6160}
6161
c722f35b
RR
6162/*
6163 * Scan the local SMT mask for idle CPUs.
6164 */
6165static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6166{
6167 int cpu;
6168
6169 for_each_cpu(cpu, cpu_smt_mask(target)) {
6170 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6171 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6172 continue;
6173 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6174 return cpu;
6175 }
6176
6177 return -1;
6178}
6179
10e2f1ac
PZ
6180#else /* CONFIG_SCHED_SMT */
6181
9fe1f127 6182static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6183{
9fe1f127
MG
6184}
6185
6186static inline bool test_idle_cores(int cpu, bool def)
6187{
6188 return def;
6189}
6190
6191static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6192{
97886d9d 6193 return __select_idle_cpu(core, p);
10e2f1ac
PZ
6194}
6195
c722f35b
RR
6196static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6197{
6198 return -1;
6199}
6200
10e2f1ac
PZ
6201#endif /* CONFIG_SCHED_SMT */
6202
6203/*
6204 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6205 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6206 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6207 */
c722f35b 6208static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6209{
60588bfa 6210 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127 6211 int i, cpu, idle_cpu = -1, nr = INT_MAX;
94aafc3e 6212 struct rq *this_rq = this_rq();
9fe1f127 6213 int this = smp_processor_id();
9cfb38a7 6214 struct sched_domain *this_sd;
94aafc3e 6215 u64 time = 0;
10e2f1ac 6216
9cfb38a7
WL
6217 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6218 if (!this_sd)
6219 return -1;
6220
bae4ec13
MG
6221 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6222
c722f35b 6223 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6224 u64 avg_cost, avg_idle, span_avg;
94aafc3e 6225 unsigned long now = jiffies;
1ad3aaf3 6226
e6e0dc2d 6227 /*
94aafc3e
PZ
6228 * If we're busy, the assumption that the last idle period
6229 * predicts the future is flawed; age away the remaining
6230 * predicted idle time.
e6e0dc2d 6231 */
94aafc3e
PZ
6232 if (unlikely(this_rq->wake_stamp < now)) {
6233 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6234 this_rq->wake_stamp++;
6235 this_rq->wake_avg_idle >>= 1;
6236 }
6237 }
6238
6239 avg_idle = this_rq->wake_avg_idle;
e6e0dc2d 6240 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6241
e6e0dc2d 6242 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6243 if (span_avg > 4*avg_cost)
6244 nr = div_u64(span_avg, avg_cost);
6245 else
6246 nr = 4;
10e2f1ac 6247
bae4ec13
MG
6248 time = cpu_clock(this);
6249 }
60588bfa
CJ
6250
6251 for_each_cpu_wrap(cpu, cpus, target) {
c722f35b 6252 if (has_idle_core) {
9fe1f127
MG
6253 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6254 if ((unsigned int)i < nr_cpumask_bits)
6255 return i;
6256
6257 } else {
6258 if (!--nr)
6259 return -1;
97886d9d 6260 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
6261 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6262 break;
6263 }
10e2f1ac
PZ
6264 }
6265
c722f35b 6266 if (has_idle_core)
02dbb724 6267 set_idle_cores(target, false);
9fe1f127 6268
c722f35b 6269 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13 6270 time = cpu_clock(this) - time;
94aafc3e
PZ
6271
6272 /*
6273 * Account for the scan cost of wakeups against the average
6274 * idle time.
6275 */
6276 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6277
bae4ec13
MG
6278 update_avg(&this_sd->avg_scan_cost, time);
6279 }
10e2f1ac 6280
9fe1f127 6281 return idle_cpu;
10e2f1ac
PZ
6282}
6283
b7a33161
MR
6284/*
6285 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6286 * the task fits. If no CPU is big enough, but there are idle ones, try to
6287 * maximize capacity.
6288 */
6289static int
6290select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6291{
b4c9c9f1 6292 unsigned long task_util, best_cap = 0;
b7a33161
MR
6293 int cpu, best_cpu = -1;
6294 struct cpumask *cpus;
6295
b7a33161
MR
6296 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6297 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6298
b4c9c9f1
VG
6299 task_util = uclamp_task_util(p);
6300
b7a33161
MR
6301 for_each_cpu_wrap(cpu, cpus, target) {
6302 unsigned long cpu_cap = capacity_of(cpu);
6303
6304 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6305 continue;
b4c9c9f1 6306 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6307 return cpu;
6308
6309 if (cpu_cap > best_cap) {
6310 best_cap = cpu_cap;
6311 best_cpu = cpu;
6312 }
6313 }
6314
6315 return best_cpu;
6316}
6317
b4c9c9f1
VG
6318static inline bool asym_fits_capacity(int task_util, int cpu)
6319{
6320 if (static_branch_unlikely(&sched_asym_cpucapacity))
6321 return fits_capacity(task_util, capacity_of(cpu));
6322
6323 return true;
6324}
6325
10e2f1ac
PZ
6326/*
6327 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6328 */
772bd008 6329static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6330{
c722f35b 6331 bool has_idle_core = false;
99bd5e2f 6332 struct sched_domain *sd;
b4c9c9f1 6333 unsigned long task_util;
32e839dd 6334 int i, recent_used_cpu;
a50bde51 6335
b7a33161 6336 /*
b4c9c9f1
VG
6337 * On asymmetric system, update task utilization because we will check
6338 * that the task fits with cpu's capacity.
b7a33161
MR
6339 */
6340 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6341 sync_entity_load_avg(&p->se);
6342 task_util = uclamp_task_util(p);
b7a33161
MR
6343 }
6344
9099a147
PZ
6345 /*
6346 * per-cpu select_idle_mask usage
6347 */
6348 lockdep_assert_irqs_disabled();
6349
b4c9c9f1
VG
6350 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6351 asym_fits_capacity(task_util, target))
e0a79f52 6352 return target;
99bd5e2f
SS
6353
6354 /*
97fb7a0a 6355 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6356 */
3c29e651 6357 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6358 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6359 asym_fits_capacity(task_util, prev))
772bd008 6360 return prev;
a50bde51 6361
52262ee5
MG
6362 /*
6363 * Allow a per-cpu kthread to stack with the wakee if the
6364 * kworker thread and the tasks previous CPUs are the same.
6365 * The assumption is that the wakee queued work for the
6366 * per-cpu kthread that is now complete and the wakeup is
6367 * essentially a sync wakeup. An obvious example of this
6368 * pattern is IO completions.
6369 */
6370 if (is_per_cpu_kthread(current) &&
6371 prev == smp_processor_id() &&
6372 this_rq()->nr_running <= 1) {
6373 return prev;
6374 }
6375
97fb7a0a 6376 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6377 recent_used_cpu = p->recent_used_cpu;
6378 if (recent_used_cpu != prev &&
6379 recent_used_cpu != target &&
6380 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6381 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6382 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6383 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6384 /*
6385 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6386 * candidate for the next wake:
32e839dd
MG
6387 */
6388 p->recent_used_cpu = prev;
6389 return recent_used_cpu;
6390 }
6391
b4c9c9f1
VG
6392 /*
6393 * For asymmetric CPU capacity systems, our domain of interest is
6394 * sd_asym_cpucapacity rather than sd_llc.
6395 */
6396 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6397 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6398 /*
6399 * On an asymmetric CPU capacity system where an exclusive
6400 * cpuset defines a symmetric island (i.e. one unique
6401 * capacity_orig value through the cpuset), the key will be set
6402 * but the CPUs within that cpuset will not have a domain with
6403 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6404 * capacity path.
6405 */
6406 if (sd) {
6407 i = select_idle_capacity(p, sd, target);
6408 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6409 }
6410 }
6411
518cd623 6412 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6413 if (!sd)
6414 return target;
772bd008 6415
c722f35b
RR
6416 if (sched_smt_active()) {
6417 has_idle_core = test_idle_cores(target, false);
6418
6419 if (!has_idle_core && cpus_share_cache(prev, target)) {
6420 i = select_idle_smt(p, sd, prev);
6421 if ((unsigned int)i < nr_cpumask_bits)
6422 return i;
6423 }
6424 }
6425
6426 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6427 if ((unsigned)i < nr_cpumask_bits)
6428 return i;
6429
a50bde51
PZ
6430 return target;
6431}
231678b7 6432
f9be3e59 6433/**
59a74b15 6434 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6435 * @cpu: the CPU to get the utilization of
6436 *
6437 * The unit of the return value must be the one of capacity so we can compare
6438 * the utilization with the capacity of the CPU that is available for CFS task
6439 * (ie cpu_capacity).
231678b7
DE
6440 *
6441 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6442 * recent utilization of currently non-runnable tasks on a CPU. It represents
6443 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6444 * capacity_orig is the cpu_capacity available at the highest frequency
6445 * (arch_scale_freq_capacity()).
6446 * The utilization of a CPU converges towards a sum equal to or less than the
6447 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6448 * the running time on this CPU scaled by capacity_curr.
6449 *
f9be3e59
PB
6450 * The estimated utilization of a CPU is defined to be the maximum between its
6451 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6452 * currently RUNNABLE on that CPU.
6453 * This allows to properly represent the expected utilization of a CPU which
6454 * has just got a big task running since a long sleep period. At the same time
6455 * however it preserves the benefits of the "blocked utilization" in
6456 * describing the potential for other tasks waking up on the same CPU.
6457 *
231678b7
DE
6458 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6459 * higher than capacity_orig because of unfortunate rounding in
6460 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6461 * the average stabilizes with the new running time. We need to check that the
6462 * utilization stays within the range of [0..capacity_orig] and cap it if
6463 * necessary. Without utilization capping, a group could be seen as overloaded
6464 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6465 * available capacity. We allow utilization to overshoot capacity_curr (but not
6466 * capacity_orig) as it useful for predicting the capacity required after task
6467 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6468 *
6469 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6470 */
f9be3e59 6471static inline unsigned long cpu_util(int cpu)
8bb5b00c 6472{
f9be3e59
PB
6473 struct cfs_rq *cfs_rq;
6474 unsigned int util;
6475
6476 cfs_rq = &cpu_rq(cpu)->cfs;
6477 util = READ_ONCE(cfs_rq->avg.util_avg);
6478
6479 if (sched_feat(UTIL_EST))
6480 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6481
f9be3e59 6482 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6483}
a50bde51 6484
104cb16d 6485/*
c469933e
PB
6486 * cpu_util_without: compute cpu utilization without any contributions from *p
6487 * @cpu: the CPU which utilization is requested
6488 * @p: the task which utilization should be discounted
6489 *
6490 * The utilization of a CPU is defined by the utilization of tasks currently
6491 * enqueued on that CPU as well as tasks which are currently sleeping after an
6492 * execution on that CPU.
6493 *
6494 * This method returns the utilization of the specified CPU by discounting the
6495 * utilization of the specified task, whenever the task is currently
6496 * contributing to the CPU utilization.
104cb16d 6497 */
c469933e 6498static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6499{
f9be3e59
PB
6500 struct cfs_rq *cfs_rq;
6501 unsigned int util;
104cb16d
MR
6502
6503 /* Task has no contribution or is new */
f9be3e59 6504 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6505 return cpu_util(cpu);
6506
f9be3e59
PB
6507 cfs_rq = &cpu_rq(cpu)->cfs;
6508 util = READ_ONCE(cfs_rq->avg.util_avg);
6509
c469933e 6510 /* Discount task's util from CPU's util */
b5c0ce7b 6511 lsub_positive(&util, task_util(p));
104cb16d 6512
f9be3e59
PB
6513 /*
6514 * Covered cases:
6515 *
6516 * a) if *p is the only task sleeping on this CPU, then:
6517 * cpu_util (== task_util) > util_est (== 0)
6518 * and thus we return:
c469933e 6519 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6520 *
6521 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6522 * IDLE, then:
6523 * cpu_util >= task_util
6524 * cpu_util > util_est (== 0)
6525 * and thus we discount *p's blocked utilization to return:
c469933e 6526 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6527 *
6528 * c) if other tasks are RUNNABLE on that CPU and
6529 * util_est > cpu_util
6530 * then we use util_est since it returns a more restrictive
6531 * estimation of the spare capacity on that CPU, by just
6532 * considering the expected utilization of tasks already
6533 * runnable on that CPU.
6534 *
6535 * Cases a) and b) are covered by the above code, while case c) is
6536 * covered by the following code when estimated utilization is
6537 * enabled.
6538 */
c469933e
PB
6539 if (sched_feat(UTIL_EST)) {
6540 unsigned int estimated =
6541 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6542
6543 /*
6544 * Despite the following checks we still have a small window
6545 * for a possible race, when an execl's select_task_rq_fair()
6546 * races with LB's detach_task():
6547 *
6548 * detach_task()
6549 * p->on_rq = TASK_ON_RQ_MIGRATING;
6550 * ---------------------------------- A
6551 * deactivate_task() \
6552 * dequeue_task() + RaceTime
6553 * util_est_dequeue() /
6554 * ---------------------------------- B
6555 *
6556 * The additional check on "current == p" it's required to
6557 * properly fix the execl regression and it helps in further
6558 * reducing the chances for the above race.
6559 */
b5c0ce7b
PB
6560 if (unlikely(task_on_rq_queued(p) || current == p))
6561 lsub_positive(&estimated, _task_util_est(p));
6562
c469933e
PB
6563 util = max(util, estimated);
6564 }
f9be3e59
PB
6565
6566 /*
6567 * Utilization (estimated) can exceed the CPU capacity, thus let's
6568 * clamp to the maximum CPU capacity to ensure consistency with
6569 * the cpu_util call.
6570 */
6571 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6572}
6573
390031e4
QP
6574/*
6575 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6576 * to @dst_cpu.
6577 */
6578static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6579{
6580 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6581 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6582
6583 /*
6584 * If @p migrates from @cpu to another, remove its contribution. Or,
6585 * if @p migrates from another CPU to @cpu, add its contribution. In
6586 * the other cases, @cpu is not impacted by the migration, so the
6587 * util_avg should already be correct.
6588 */
6589 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6590 lsub_positive(&util, task_util(p));
390031e4
QP
6591 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6592 util += task_util(p);
6593
6594 if (sched_feat(UTIL_EST)) {
6595 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6596
6597 /*
6598 * During wake-up, the task isn't enqueued yet and doesn't
6599 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6600 * so just add it (if needed) to "simulate" what will be
6601 * cpu_util() after the task has been enqueued.
6602 */
6603 if (dst_cpu == cpu)
6604 util_est += _task_util_est(p);
6605
6606 util = max(util, util_est);
6607 }
6608
6609 return min(util, capacity_orig_of(cpu));
6610}
6611
6612/*
eb92692b 6613 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6614 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6615 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6616 * to compute what would be the energy if we decided to actually migrate that
6617 * task.
6618 */
6619static long
6620compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6621{
eb92692b
QP
6622 struct cpumask *pd_mask = perf_domain_span(pd);
6623 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6624 unsigned long max_util = 0, sum_util = 0;
489f1645 6625 unsigned long _cpu_cap = cpu_cap;
390031e4
QP
6626 int cpu;
6627
489f1645
LL
6628 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6629
eb92692b
QP
6630 /*
6631 * The capacity state of CPUs of the current rd can be driven by CPUs
6632 * of another rd if they belong to the same pd. So, account for the
6633 * utilization of these CPUs too by masking pd with cpu_online_mask
6634 * instead of the rd span.
6635 *
6636 * If an entire pd is outside of the current rd, it will not appear in
6637 * its pd list and will not be accounted by compute_energy().
6638 */
6639 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6640 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6641 unsigned long cpu_util, util_running = util_freq;
6642 struct task_struct *tsk = NULL;
6643
6644 /*
6645 * When @p is placed on @cpu:
6646 *
6647 * util_running = max(cpu_util, cpu_util_est) +
6648 * max(task_util, _task_util_est)
6649 *
6650 * while cpu_util_next is: max(cpu_util + task_util,
6651 * cpu_util_est + _task_util_est)
6652 */
6653 if (cpu == dst_cpu) {
6654 tsk = p;
6655 util_running =
6656 cpu_util_next(cpu, p, -1) + task_util_est(p);
6657 }
af24bde8
PB
6658
6659 /*
eb92692b
QP
6660 * Busy time computation: utilization clamping is not
6661 * required since the ratio (sum_util / cpu_capacity)
6662 * is already enough to scale the EM reported power
6663 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6664 */
489f1645
LL
6665 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6666 ENERGY_UTIL, NULL);
6667
6668 sum_util += min(cpu_util, _cpu_cap);
af24bde8 6669
390031e4 6670 /*
eb92692b
QP
6671 * Performance domain frequency: utilization clamping
6672 * must be considered since it affects the selection
6673 * of the performance domain frequency.
6674 * NOTE: in case RT tasks are running, by default the
6675 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6676 */
0372e1cf 6677 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b 6678 FREQUENCY_UTIL, tsk);
489f1645 6679 max_util = max(max_util, min(cpu_util, _cpu_cap));
390031e4
QP
6680 }
6681
8f1b971b 6682 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
390031e4
QP
6683}
6684
732cd75b
QP
6685/*
6686 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6687 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6688 * spare capacity in each performance domain and uses it as a potential
6689 * candidate to execute the task. Then, it uses the Energy Model to figure
6690 * out which of the CPU candidates is the most energy-efficient.
6691 *
6692 * The rationale for this heuristic is as follows. In a performance domain,
6693 * all the most energy efficient CPU candidates (according to the Energy
6694 * Model) are those for which we'll request a low frequency. When there are
6695 * several CPUs for which the frequency request will be the same, we don't
6696 * have enough data to break the tie between them, because the Energy Model
6697 * only includes active power costs. With this model, if we assume that
6698 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6699 * the maximum spare capacity in a performance domain is guaranteed to be among
6700 * the best candidates of the performance domain.
6701 *
6702 * In practice, it could be preferable from an energy standpoint to pack
6703 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6704 * but that could also hurt our chances to go cluster idle, and we have no
6705 * ways to tell with the current Energy Model if this is actually a good
6706 * idea or not. So, find_energy_efficient_cpu() basically favors
6707 * cluster-packing, and spreading inside a cluster. That should at least be
6708 * a good thing for latency, and this is consistent with the idea that most
6709 * of the energy savings of EAS come from the asymmetry of the system, and
6710 * not so much from breaking the tie between identical CPUs. That's also the
6711 * reason why EAS is enabled in the topology code only for systems where
6712 * SD_ASYM_CPUCAPACITY is set.
6713 *
6714 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6715 * they don't have any useful utilization data yet and it's not possible to
6716 * forecast their impact on energy consumption. Consequently, they will be
6717 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6718 * to be energy-inefficient in some use-cases. The alternative would be to
6719 * bias new tasks towards specific types of CPUs first, or to try to infer
6720 * their util_avg from the parent task, but those heuristics could hurt
6721 * other use-cases too. So, until someone finds a better way to solve this,
6722 * let's keep things simple by re-using the existing slow path.
6723 */
732cd75b
QP
6724static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6725{
eb92692b 6726 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6727 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
619e090c 6728 int cpu, best_energy_cpu = prev_cpu, target = -1;
eb92692b 6729 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6730 struct sched_domain *sd;
eb92692b 6731 struct perf_domain *pd;
732cd75b
QP
6732
6733 rcu_read_lock();
6734 pd = rcu_dereference(rd->pd);
6735 if (!pd || READ_ONCE(rd->overutilized))
619e090c 6736 goto unlock;
732cd75b
QP
6737
6738 /*
6739 * Energy-aware wake-up happens on the lowest sched_domain starting
6740 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6741 */
6742 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6743 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6744 sd = sd->parent;
6745 if (!sd)
619e090c
PG
6746 goto unlock;
6747
6748 target = prev_cpu;
732cd75b
QP
6749
6750 sync_entity_load_avg(&p->se);
6751 if (!task_util_est(p))
6752 goto unlock;
6753
6754 for (; pd; pd = pd->next) {
eb92692b 6755 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
8d4c97c1 6756 bool compute_prev_delta = false;
eb92692b 6757 unsigned long base_energy_pd;
732cd75b
QP
6758 int max_spare_cap_cpu = -1;
6759
6760 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6761 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6762 continue;
6763
732cd75b
QP
6764 util = cpu_util_next(cpu, p, cpu);
6765 cpu_cap = capacity_of(cpu);
da0777d3
LL
6766 spare_cap = cpu_cap;
6767 lsub_positive(&spare_cap, util);
1d42509e
VS
6768
6769 /*
6770 * Skip CPUs that cannot satisfy the capacity request.
6771 * IOW, placing the task there would make the CPU
6772 * overutilized. Take uclamp into account to see how
6773 * much capacity we can get out of the CPU; this is
a5418be9 6774 * aligned with sched_cpu_util().
1d42509e
VS
6775 */
6776 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6777 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6778 continue;
6779
732cd75b 6780 if (cpu == prev_cpu) {
8d4c97c1
PG
6781 /* Always use prev_cpu as a candidate. */
6782 compute_prev_delta = true;
6783 } else if (spare_cap > max_spare_cap) {
6784 /*
6785 * Find the CPU with the maximum spare capacity
6786 * in the performance domain.
6787 */
732cd75b
QP
6788 max_spare_cap = spare_cap;
6789 max_spare_cap_cpu = cpu;
6790 }
6791 }
6792
8d4c97c1
PG
6793 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6794 continue;
6795
6796 /* Compute the 'base' energy of the pd, without @p */
6797 base_energy_pd = compute_energy(p, -1, pd);
6798 base_energy += base_energy_pd;
6799
6800 /* Evaluate the energy impact of using prev_cpu. */
6801 if (compute_prev_delta) {
6802 prev_delta = compute_energy(p, prev_cpu, pd);
619e090c
PG
6803 if (prev_delta < base_energy_pd)
6804 goto unlock;
8d4c97c1
PG
6805 prev_delta -= base_energy_pd;
6806 best_delta = min(best_delta, prev_delta);
6807 }
6808
6809 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6810 if (max_spare_cap_cpu >= 0) {
eb92692b 6811 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
619e090c
PG
6812 if (cur_delta < base_energy_pd)
6813 goto unlock;
eb92692b
QP
6814 cur_delta -= base_energy_pd;
6815 if (cur_delta < best_delta) {
6816 best_delta = cur_delta;
732cd75b
QP
6817 best_energy_cpu = max_spare_cap_cpu;
6818 }
6819 }
6820 }
732cd75b
QP
6821 rcu_read_unlock();
6822
6823 /*
6824 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6825 * least 6% of the energy used by prev_cpu.
6826 */
619e090c
PG
6827 if ((prev_delta == ULONG_MAX) ||
6828 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6829 target = best_energy_cpu;
732cd75b 6830
619e090c 6831 return target;
732cd75b 6832
619e090c 6833unlock:
732cd75b
QP
6834 rcu_read_unlock();
6835
619e090c 6836 return target;
732cd75b
QP
6837}
6838
aaee1203 6839/*
de91b9cb 6840 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6841 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6842 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6843 *
97fb7a0a
IM
6844 * Balances load by selecting the idlest CPU in the idlest group, or under
6845 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6846 *
97fb7a0a 6847 * Returns the target CPU number.
aaee1203 6848 */
0017d735 6849static int
3aef1551 6850select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6851{
3aef1551 6852 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6853 struct sched_domain *tmp, *sd = NULL;
c88d5910 6854 int cpu = smp_processor_id();
63b0e9ed 6855 int new_cpu = prev_cpu;
99bd5e2f 6856 int want_affine = 0;
3aef1551
VS
6857 /* SD_flags and WF_flags share the first nibble */
6858 int sd_flag = wake_flags & 0xF;
c88d5910 6859
9099a147
PZ
6860 /*
6861 * required for stable ->cpus_allowed
6862 */
6863 lockdep_assert_held(&p->pi_lock);
dc824eb8 6864 if (wake_flags & WF_TTWU) {
c58d25f3 6865 record_wakee(p);
732cd75b 6866
f8a696f2 6867 if (sched_energy_enabled()) {
732cd75b
QP
6868 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6869 if (new_cpu >= 0)
6870 return new_cpu;
6871 new_cpu = prev_cpu;
6872 }
6873
00061968 6874 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6875 }
aaee1203 6876
dce840a0 6877 rcu_read_lock();
aaee1203 6878 for_each_domain(cpu, tmp) {
fe3bcfe1 6879 /*
97fb7a0a 6880 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6881 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6882 */
99bd5e2f
SS
6883 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6884 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6885 if (cpu != prev_cpu)
6886 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6887
6888 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6889 break;
f03542a7 6890 }
29cd8bae 6891
f03542a7 6892 if (tmp->flags & sd_flag)
29cd8bae 6893 sd = tmp;
63b0e9ed
MG
6894 else if (!want_affine)
6895 break;
29cd8bae
PZ
6896 }
6897
f1d88b44
VK
6898 if (unlikely(sd)) {
6899 /* Slow path */
18bd1b4b 6900 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6901 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6902 /* Fast path */
f1d88b44
VK
6903 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6904
6905 if (want_affine)
6906 current->recent_used_cpu = cpu;
e7693a36 6907 }
dce840a0 6908 rcu_read_unlock();
e7693a36 6909
c88d5910 6910 return new_cpu;
e7693a36 6911}
0a74bef8 6912
144d8487
PZ
6913static void detach_entity_cfs_rq(struct sched_entity *se);
6914
0a74bef8 6915/*
97fb7a0a 6916 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6917 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6918 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6919 */
3f9672ba 6920static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6921{
59efa0ba
PZ
6922 /*
6923 * As blocked tasks retain absolute vruntime the migration needs to
6924 * deal with this by subtracting the old and adding the new
6925 * min_vruntime -- the latter is done by enqueue_entity() when placing
6926 * the task on the new runqueue.
6927 */
2f064a59 6928 if (READ_ONCE(p->__state) == TASK_WAKING) {
59efa0ba
PZ
6929 struct sched_entity *se = &p->se;
6930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6931 u64 min_vruntime;
6932
6933#ifndef CONFIG_64BIT
6934 u64 min_vruntime_copy;
6935
6936 do {
6937 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6938 smp_rmb();
6939 min_vruntime = cfs_rq->min_vruntime;
6940 } while (min_vruntime != min_vruntime_copy);
6941#else
6942 min_vruntime = cfs_rq->min_vruntime;
6943#endif
6944
6945 se->vruntime -= min_vruntime;
6946 }
6947
144d8487
PZ
6948 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6949 /*
6950 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6951 * rq->lock and can modify state directly.
6952 */
5cb9eaa3 6953 lockdep_assert_rq_held(task_rq(p));
144d8487
PZ
6954 detach_entity_cfs_rq(&p->se);
6955
6956 } else {
6957 /*
6958 * We are supposed to update the task to "current" time, then
6959 * its up to date and ready to go to new CPU/cfs_rq. But we
6960 * have difficulty in getting what current time is, so simply
6961 * throw away the out-of-date time. This will result in the
6962 * wakee task is less decayed, but giving the wakee more load
6963 * sounds not bad.
6964 */
6965 remove_entity_load_avg(&p->se);
6966 }
9d89c257
YD
6967
6968 /* Tell new CPU we are migrated */
6969 p->se.avg.last_update_time = 0;
3944a927
BS
6970
6971 /* We have migrated, no longer consider this task hot */
9d89c257 6972 p->se.exec_start = 0;
3f9672ba
SD
6973
6974 update_scan_period(p, new_cpu);
0a74bef8 6975}
12695578
YD
6976
6977static void task_dead_fair(struct task_struct *p)
6978{
6979 remove_entity_load_avg(&p->se);
6980}
6e2df058
PZ
6981
6982static int
6983balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6984{
6985 if (rq->nr_running)
6986 return 1;
6987
6988 return newidle_balance(rq, rf) != 0;
6989}
e7693a36
GH
6990#endif /* CONFIG_SMP */
6991
a555e9d8 6992static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6993{
6994 unsigned long gran = sysctl_sched_wakeup_granularity;
6995
6996 /*
e52fb7c0
PZ
6997 * Since its curr running now, convert the gran from real-time
6998 * to virtual-time in his units.
13814d42
MG
6999 *
7000 * By using 'se' instead of 'curr' we penalize light tasks, so
7001 * they get preempted easier. That is, if 'se' < 'curr' then
7002 * the resulting gran will be larger, therefore penalizing the
7003 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7004 * be smaller, again penalizing the lighter task.
7005 *
7006 * This is especially important for buddies when the leftmost
7007 * task is higher priority than the buddy.
0bbd3336 7008 */
f4ad9bd2 7009 return calc_delta_fair(gran, se);
0bbd3336
PZ
7010}
7011
464b7527
PZ
7012/*
7013 * Should 'se' preempt 'curr'.
7014 *
7015 * |s1
7016 * |s2
7017 * |s3
7018 * g
7019 * |<--->|c
7020 *
7021 * w(c, s1) = -1
7022 * w(c, s2) = 0
7023 * w(c, s3) = 1
7024 *
7025 */
7026static int
7027wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7028{
7029 s64 gran, vdiff = curr->vruntime - se->vruntime;
7030
7031 if (vdiff <= 0)
7032 return -1;
7033
a555e9d8 7034 gran = wakeup_gran(se);
464b7527
PZ
7035 if (vdiff > gran)
7036 return 1;
7037
7038 return 0;
7039}
7040
02479099
PZ
7041static void set_last_buddy(struct sched_entity *se)
7042{
1da1843f 7043 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
7044 return;
7045
c5ae366e
DA
7046 for_each_sched_entity(se) {
7047 if (SCHED_WARN_ON(!se->on_rq))
7048 return;
69c80f3e 7049 cfs_rq_of(se)->last = se;
c5ae366e 7050 }
02479099
PZ
7051}
7052
7053static void set_next_buddy(struct sched_entity *se)
7054{
1da1843f 7055 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
7056 return;
7057
c5ae366e
DA
7058 for_each_sched_entity(se) {
7059 if (SCHED_WARN_ON(!se->on_rq))
7060 return;
69c80f3e 7061 cfs_rq_of(se)->next = se;
c5ae366e 7062 }
02479099
PZ
7063}
7064
ac53db59
RR
7065static void set_skip_buddy(struct sched_entity *se)
7066{
69c80f3e
VP
7067 for_each_sched_entity(se)
7068 cfs_rq_of(se)->skip = se;
ac53db59
RR
7069}
7070
bf0f6f24
IM
7071/*
7072 * Preempt the current task with a newly woken task if needed:
7073 */
5a9b86f6 7074static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7075{
7076 struct task_struct *curr = rq->curr;
8651a86c 7077 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7078 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7079 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7080 int next_buddy_marked = 0;
bf0f6f24 7081
4ae7d5ce
IM
7082 if (unlikely(se == pse))
7083 return;
7084
5238cdd3 7085 /*
163122b7 7086 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7087 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7088 * lead to a throttle). This both saves work and prevents false
7089 * next-buddy nomination below.
7090 */
7091 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7092 return;
7093
2f36825b 7094 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7095 set_next_buddy(pse);
2f36825b
VP
7096 next_buddy_marked = 1;
7097 }
57fdc26d 7098
aec0a514
BR
7099 /*
7100 * We can come here with TIF_NEED_RESCHED already set from new task
7101 * wake up path.
5238cdd3
PT
7102 *
7103 * Note: this also catches the edge-case of curr being in a throttled
7104 * group (e.g. via set_curr_task), since update_curr() (in the
7105 * enqueue of curr) will have resulted in resched being set. This
7106 * prevents us from potentially nominating it as a false LAST_BUDDY
7107 * below.
aec0a514
BR
7108 */
7109 if (test_tsk_need_resched(curr))
7110 return;
7111
a2f5c9ab 7112 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7113 if (unlikely(task_has_idle_policy(curr)) &&
7114 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7115 goto preempt;
7116
91c234b4 7117 /*
a2f5c9ab
DH
7118 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7119 * is driven by the tick):
91c234b4 7120 */
8ed92e51 7121 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7122 return;
bf0f6f24 7123
464b7527 7124 find_matching_se(&se, &pse);
9bbd7374 7125 update_curr(cfs_rq_of(se));
002f128b 7126 BUG_ON(!pse);
2f36825b
VP
7127 if (wakeup_preempt_entity(se, pse) == 1) {
7128 /*
7129 * Bias pick_next to pick the sched entity that is
7130 * triggering this preemption.
7131 */
7132 if (!next_buddy_marked)
7133 set_next_buddy(pse);
3a7e73a2 7134 goto preempt;
2f36825b 7135 }
464b7527 7136
3a7e73a2 7137 return;
a65ac745 7138
3a7e73a2 7139preempt:
8875125e 7140 resched_curr(rq);
3a7e73a2
PZ
7141 /*
7142 * Only set the backward buddy when the current task is still
7143 * on the rq. This can happen when a wakeup gets interleaved
7144 * with schedule on the ->pre_schedule() or idle_balance()
7145 * point, either of which can * drop the rq lock.
7146 *
7147 * Also, during early boot the idle thread is in the fair class,
7148 * for obvious reasons its a bad idea to schedule back to it.
7149 */
7150 if (unlikely(!se->on_rq || curr == rq->idle))
7151 return;
7152
7153 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7154 set_last_buddy(se);
bf0f6f24
IM
7155}
7156
21f56ffe
PZ
7157#ifdef CONFIG_SMP
7158static struct task_struct *pick_task_fair(struct rq *rq)
7159{
7160 struct sched_entity *se;
7161 struct cfs_rq *cfs_rq;
7162
7163again:
7164 cfs_rq = &rq->cfs;
7165 if (!cfs_rq->nr_running)
7166 return NULL;
7167
7168 do {
7169 struct sched_entity *curr = cfs_rq->curr;
7170
7171 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7172 if (curr) {
7173 if (curr->on_rq)
7174 update_curr(cfs_rq);
7175 else
7176 curr = NULL;
7177
7178 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7179 goto again;
7180 }
7181
7182 se = pick_next_entity(cfs_rq, curr);
7183 cfs_rq = group_cfs_rq(se);
7184 } while (cfs_rq);
7185
7186 return task_of(se);
7187}
7188#endif
7189
5d7d6056 7190struct task_struct *
d8ac8971 7191pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7192{
7193 struct cfs_rq *cfs_rq = &rq->cfs;
7194 struct sched_entity *se;
678d5718 7195 struct task_struct *p;
37e117c0 7196 int new_tasks;
678d5718 7197
6e83125c 7198again:
6e2df058 7199 if (!sched_fair_runnable(rq))
38033c37 7200 goto idle;
678d5718 7201
9674f5ca 7202#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7203 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7204 goto simple;
7205
7206 /*
7207 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7208 * likely that a next task is from the same cgroup as the current.
7209 *
7210 * Therefore attempt to avoid putting and setting the entire cgroup
7211 * hierarchy, only change the part that actually changes.
7212 */
7213
7214 do {
7215 struct sched_entity *curr = cfs_rq->curr;
7216
7217 /*
7218 * Since we got here without doing put_prev_entity() we also
7219 * have to consider cfs_rq->curr. If it is still a runnable
7220 * entity, update_curr() will update its vruntime, otherwise
7221 * forget we've ever seen it.
7222 */
54d27365
BS
7223 if (curr) {
7224 if (curr->on_rq)
7225 update_curr(cfs_rq);
7226 else
7227 curr = NULL;
678d5718 7228
54d27365
BS
7229 /*
7230 * This call to check_cfs_rq_runtime() will do the
7231 * throttle and dequeue its entity in the parent(s).
9674f5ca 7232 * Therefore the nr_running test will indeed
54d27365
BS
7233 * be correct.
7234 */
9674f5ca
VK
7235 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7236 cfs_rq = &rq->cfs;
7237
7238 if (!cfs_rq->nr_running)
7239 goto idle;
7240
54d27365 7241 goto simple;
9674f5ca 7242 }
54d27365 7243 }
678d5718
PZ
7244
7245 se = pick_next_entity(cfs_rq, curr);
7246 cfs_rq = group_cfs_rq(se);
7247 } while (cfs_rq);
7248
7249 p = task_of(se);
7250
7251 /*
7252 * Since we haven't yet done put_prev_entity and if the selected task
7253 * is a different task than we started out with, try and touch the
7254 * least amount of cfs_rqs.
7255 */
7256 if (prev != p) {
7257 struct sched_entity *pse = &prev->se;
7258
7259 while (!(cfs_rq = is_same_group(se, pse))) {
7260 int se_depth = se->depth;
7261 int pse_depth = pse->depth;
7262
7263 if (se_depth <= pse_depth) {
7264 put_prev_entity(cfs_rq_of(pse), pse);
7265 pse = parent_entity(pse);
7266 }
7267 if (se_depth >= pse_depth) {
7268 set_next_entity(cfs_rq_of(se), se);
7269 se = parent_entity(se);
7270 }
7271 }
7272
7273 put_prev_entity(cfs_rq, pse);
7274 set_next_entity(cfs_rq, se);
7275 }
7276
93824900 7277 goto done;
678d5718 7278simple:
678d5718 7279#endif
67692435
PZ
7280 if (prev)
7281 put_prev_task(rq, prev);
606dba2e 7282
bf0f6f24 7283 do {
678d5718 7284 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7285 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7286 cfs_rq = group_cfs_rq(se);
7287 } while (cfs_rq);
7288
8f4d37ec 7289 p = task_of(se);
678d5718 7290
13a453c2 7291done: __maybe_unused;
93824900
UR
7292#ifdef CONFIG_SMP
7293 /*
7294 * Move the next running task to the front of
7295 * the list, so our cfs_tasks list becomes MRU
7296 * one.
7297 */
7298 list_move(&p->se.group_node, &rq->cfs_tasks);
7299#endif
7300
e0ee463c 7301 if (hrtick_enabled_fair(rq))
b39e66ea 7302 hrtick_start_fair(rq, p);
8f4d37ec 7303
3b1baa64
MR
7304 update_misfit_status(p, rq);
7305
8f4d37ec 7306 return p;
38033c37
PZ
7307
7308idle:
67692435
PZ
7309 if (!rf)
7310 return NULL;
7311
5ba553ef 7312 new_tasks = newidle_balance(rq, rf);
46f69fa3 7313
37e117c0 7314 /*
5ba553ef 7315 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7316 * possible for any higher priority task to appear. In that case we
7317 * must re-start the pick_next_entity() loop.
7318 */
e4aa358b 7319 if (new_tasks < 0)
37e117c0
PZ
7320 return RETRY_TASK;
7321
e4aa358b 7322 if (new_tasks > 0)
38033c37 7323 goto again;
38033c37 7324
23127296
VG
7325 /*
7326 * rq is about to be idle, check if we need to update the
7327 * lost_idle_time of clock_pelt
7328 */
7329 update_idle_rq_clock_pelt(rq);
7330
38033c37 7331 return NULL;
bf0f6f24
IM
7332}
7333
98c2f700
PZ
7334static struct task_struct *__pick_next_task_fair(struct rq *rq)
7335{
7336 return pick_next_task_fair(rq, NULL, NULL);
7337}
7338
bf0f6f24
IM
7339/*
7340 * Account for a descheduled task:
7341 */
6e2df058 7342static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7343{
7344 struct sched_entity *se = &prev->se;
7345 struct cfs_rq *cfs_rq;
7346
7347 for_each_sched_entity(se) {
7348 cfs_rq = cfs_rq_of(se);
ab6cde26 7349 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7350 }
7351}
7352
ac53db59
RR
7353/*
7354 * sched_yield() is very simple
7355 *
7356 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7357 */
7358static void yield_task_fair(struct rq *rq)
7359{
7360 struct task_struct *curr = rq->curr;
7361 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7362 struct sched_entity *se = &curr->se;
7363
7364 /*
7365 * Are we the only task in the tree?
7366 */
7367 if (unlikely(rq->nr_running == 1))
7368 return;
7369
7370 clear_buddies(cfs_rq, se);
7371
7372 if (curr->policy != SCHED_BATCH) {
7373 update_rq_clock(rq);
7374 /*
7375 * Update run-time statistics of the 'current'.
7376 */
7377 update_curr(cfs_rq);
916671c0
MG
7378 /*
7379 * Tell update_rq_clock() that we've just updated,
7380 * so we don't do microscopic update in schedule()
7381 * and double the fastpath cost.
7382 */
adcc8da8 7383 rq_clock_skip_update(rq);
ac53db59
RR
7384 }
7385
7386 set_skip_buddy(se);
7387}
7388
0900acf2 7389static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7390{
7391 struct sched_entity *se = &p->se;
7392
5238cdd3
PT
7393 /* throttled hierarchies are not runnable */
7394 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7395 return false;
7396
7397 /* Tell the scheduler that we'd really like pse to run next. */
7398 set_next_buddy(se);
7399
d95f4122
MG
7400 yield_task_fair(rq);
7401
7402 return true;
7403}
7404
681f3e68 7405#ifdef CONFIG_SMP
bf0f6f24 7406/**************************************************
e9c84cb8
PZ
7407 * Fair scheduling class load-balancing methods.
7408 *
7409 * BASICS
7410 *
7411 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7412 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7413 * time to each task. This is expressed in the following equation:
7414 *
7415 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7416 *
97fb7a0a 7417 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7418 * W_i,0 is defined as:
7419 *
7420 * W_i,0 = \Sum_j w_i,j (2)
7421 *
97fb7a0a 7422 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7423 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7424 *
7425 * The weight average is an exponential decay average of the instantaneous
7426 * weight:
7427 *
7428 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7429 *
97fb7a0a 7430 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7431 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7432 * can also include other factors [XXX].
7433 *
7434 * To achieve this balance we define a measure of imbalance which follows
7435 * directly from (1):
7436 *
ced549fa 7437 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7438 *
7439 * We them move tasks around to minimize the imbalance. In the continuous
7440 * function space it is obvious this converges, in the discrete case we get
7441 * a few fun cases generally called infeasible weight scenarios.
7442 *
7443 * [XXX expand on:
7444 * - infeasible weights;
7445 * - local vs global optima in the discrete case. ]
7446 *
7447 *
7448 * SCHED DOMAINS
7449 *
7450 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7451 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7452 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7453 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7454 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7455 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7456 * the groups.
7457 *
7458 * This yields:
7459 *
7460 * log_2 n 1 n
7461 * \Sum { --- * --- * 2^i } = O(n) (5)
7462 * i = 0 2^i 2^i
7463 * `- size of each group
97fb7a0a 7464 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7465 * | `- freq
7466 * `- sum over all levels
7467 *
7468 * Coupled with a limit on how many tasks we can migrate every balance pass,
7469 * this makes (5) the runtime complexity of the balancer.
7470 *
7471 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7472 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7473 *
7474 * The adjacency matrix of the resulting graph is given by:
7475 *
97a7142f 7476 * log_2 n
e9c84cb8
PZ
7477 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7478 * k = 0
7479 *
7480 * And you'll find that:
7481 *
7482 * A^(log_2 n)_i,j != 0 for all i,j (7)
7483 *
97fb7a0a 7484 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7485 * The task movement gives a factor of O(m), giving a convergence complexity
7486 * of:
7487 *
7488 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7489 *
7490 *
7491 * WORK CONSERVING
7492 *
7493 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7494 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7495 * tree itself instead of relying on other CPUs to bring it work.
7496 *
7497 * This adds some complexity to both (5) and (8) but it reduces the total idle
7498 * time.
7499 *
7500 * [XXX more?]
7501 *
7502 *
7503 * CGROUPS
7504 *
7505 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7506 *
7507 * s_k,i
7508 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7509 * S_k
7510 *
7511 * Where
7512 *
7513 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7514 *
97fb7a0a 7515 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7516 *
7517 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7518 * property.
7519 *
7520 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7521 * rewrite all of this once again.]
97a7142f 7522 */
bf0f6f24 7523
ed387b78
HS
7524static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7525
0ec8aa00
PZ
7526enum fbq_type { regular, remote, all };
7527
0b0695f2 7528/*
a9723389
VG
7529 * 'group_type' describes the group of CPUs at the moment of load balancing.
7530 *
0b0695f2 7531 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7532 * first so the group_type can simply be compared when selecting the busiest
7533 * group. See update_sd_pick_busiest().
0b0695f2 7534 */
3b1baa64 7535enum group_type {
a9723389 7536 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7537 group_has_spare = 0,
a9723389
VG
7538 /*
7539 * The group is fully used and the tasks don't compete for more CPU
7540 * cycles. Nevertheless, some tasks might wait before running.
7541 */
0b0695f2 7542 group_fully_busy,
a9723389
VG
7543 /*
7544 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7545 * and must be migrated to a more powerful CPU.
7546 */
3b1baa64 7547 group_misfit_task,
a9723389
VG
7548 /*
7549 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7550 * and the task should be migrated to it instead of running on the
7551 * current CPU.
7552 */
0b0695f2 7553 group_asym_packing,
a9723389
VG
7554 /*
7555 * The tasks' affinity constraints previously prevented the scheduler
7556 * from balancing the load across the system.
7557 */
3b1baa64 7558 group_imbalanced,
a9723389
VG
7559 /*
7560 * The CPU is overloaded and can't provide expected CPU cycles to all
7561 * tasks.
7562 */
0b0695f2
VG
7563 group_overloaded
7564};
7565
7566enum migration_type {
7567 migrate_load = 0,
7568 migrate_util,
7569 migrate_task,
7570 migrate_misfit
3b1baa64
MR
7571};
7572
ddcdf6e7 7573#define LBF_ALL_PINNED 0x01
367456c7 7574#define LBF_NEED_BREAK 0x02
6263322c
PZ
7575#define LBF_DST_PINNED 0x04
7576#define LBF_SOME_PINNED 0x08
23fb06d9 7577#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7578
7579struct lb_env {
7580 struct sched_domain *sd;
7581
ddcdf6e7 7582 struct rq *src_rq;
85c1e7da 7583 int src_cpu;
ddcdf6e7
PZ
7584
7585 int dst_cpu;
7586 struct rq *dst_rq;
7587
88b8dac0
SV
7588 struct cpumask *dst_grpmask;
7589 int new_dst_cpu;
ddcdf6e7 7590 enum cpu_idle_type idle;
bd939f45 7591 long imbalance;
b9403130
MW
7592 /* The set of CPUs under consideration for load-balancing */
7593 struct cpumask *cpus;
7594
ddcdf6e7 7595 unsigned int flags;
367456c7
PZ
7596
7597 unsigned int loop;
7598 unsigned int loop_break;
7599 unsigned int loop_max;
0ec8aa00
PZ
7600
7601 enum fbq_type fbq_type;
0b0695f2 7602 enum migration_type migration_type;
163122b7 7603 struct list_head tasks;
ddcdf6e7
PZ
7604};
7605
029632fb
PZ
7606/*
7607 * Is this task likely cache-hot:
7608 */
5d5e2b1b 7609static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7610{
7611 s64 delta;
7612
5cb9eaa3 7613 lockdep_assert_rq_held(env->src_rq);
e5673f28 7614
029632fb
PZ
7615 if (p->sched_class != &fair_sched_class)
7616 return 0;
7617
1da1843f 7618 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7619 return 0;
7620
ec73240b
JD
7621 /* SMT siblings share cache */
7622 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7623 return 0;
7624
029632fb
PZ
7625 /*
7626 * Buddy candidates are cache hot:
7627 */
5d5e2b1b 7628 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7629 (&p->se == cfs_rq_of(&p->se)->next ||
7630 &p->se == cfs_rq_of(&p->se)->last))
7631 return 1;
7632
7633 if (sysctl_sched_migration_cost == -1)
7634 return 1;
97886d9d
AL
7635
7636 /*
7637 * Don't migrate task if the task's cookie does not match
7638 * with the destination CPU's core cookie.
7639 */
7640 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7641 return 1;
7642
029632fb
PZ
7643 if (sysctl_sched_migration_cost == 0)
7644 return 0;
7645
5d5e2b1b 7646 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7647
7648 return delta < (s64)sysctl_sched_migration_cost;
7649}
7650
3a7053b3 7651#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7652/*
2a1ed24c
SD
7653 * Returns 1, if task migration degrades locality
7654 * Returns 0, if task migration improves locality i.e migration preferred.
7655 * Returns -1, if task migration is not affected by locality.
c1ceac62 7656 */
2a1ed24c 7657static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7658{
b1ad065e 7659 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7660 unsigned long src_weight, dst_weight;
7661 int src_nid, dst_nid, dist;
3a7053b3 7662
2a595721 7663 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7664 return -1;
7665
c3b9bc5b 7666 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7667 return -1;
7a0f3083
MG
7668
7669 src_nid = cpu_to_node(env->src_cpu);
7670 dst_nid = cpu_to_node(env->dst_cpu);
7671
83e1d2cd 7672 if (src_nid == dst_nid)
2a1ed24c 7673 return -1;
7a0f3083 7674
2a1ed24c
SD
7675 /* Migrating away from the preferred node is always bad. */
7676 if (src_nid == p->numa_preferred_nid) {
7677 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7678 return 1;
7679 else
7680 return -1;
7681 }
b1ad065e 7682
c1ceac62
RR
7683 /* Encourage migration to the preferred node. */
7684 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7685 return 0;
b1ad065e 7686
739294fb 7687 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7688 if (env->idle == CPU_IDLE)
739294fb
RR
7689 return -1;
7690
f35678b6 7691 dist = node_distance(src_nid, dst_nid);
c1ceac62 7692 if (numa_group) {
f35678b6
SD
7693 src_weight = group_weight(p, src_nid, dist);
7694 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7695 } else {
f35678b6
SD
7696 src_weight = task_weight(p, src_nid, dist);
7697 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7698 }
7699
f35678b6 7700 return dst_weight < src_weight;
7a0f3083
MG
7701}
7702
3a7053b3 7703#else
2a1ed24c 7704static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7705 struct lb_env *env)
7706{
2a1ed24c 7707 return -1;
7a0f3083 7708}
3a7053b3
MG
7709#endif
7710
1e3c88bd
PZ
7711/*
7712 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7713 */
7714static
8e45cb54 7715int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7716{
2a1ed24c 7717 int tsk_cache_hot;
e5673f28 7718
5cb9eaa3 7719 lockdep_assert_rq_held(env->src_rq);
e5673f28 7720
1e3c88bd
PZ
7721 /*
7722 * We do not migrate tasks that are:
d3198084 7723 * 1) throttled_lb_pair, or
3bd37062 7724 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7725 * 3) running (obviously), or
7726 * 4) are cache-hot on their current CPU.
1e3c88bd 7727 */
d3198084
JK
7728 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7729 return 0;
7730
9bcb959d 7731 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7732 if (kthread_is_per_cpu(p))
9bcb959d
LC
7733 return 0;
7734
3bd37062 7735 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7736 int cpu;
88b8dac0 7737
ae92882e 7738 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7739
6263322c
PZ
7740 env->flags |= LBF_SOME_PINNED;
7741
88b8dac0 7742 /*
97fb7a0a 7743 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7744 * our sched_group. We may want to revisit it if we couldn't
7745 * meet load balance goals by pulling other tasks on src_cpu.
7746 *
23fb06d9
VS
7747 * Avoid computing new_dst_cpu
7748 * - for NEWLY_IDLE
7749 * - if we have already computed one in current iteration
7750 * - if it's an active balance
88b8dac0 7751 */
23fb06d9
VS
7752 if (env->idle == CPU_NEWLY_IDLE ||
7753 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7754 return 0;
7755
97fb7a0a 7756 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7757 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7758 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7759 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7760 env->new_dst_cpu = cpu;
7761 break;
7762 }
88b8dac0 7763 }
e02e60c1 7764
1e3c88bd
PZ
7765 return 0;
7766 }
88b8dac0 7767
3b03706f 7768 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7769 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7770
ddcdf6e7 7771 if (task_running(env->src_rq, p)) {
ae92882e 7772 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7773 return 0;
7774 }
7775
7776 /*
7777 * Aggressive migration if:
23fb06d9
VS
7778 * 1) active balance
7779 * 2) destination numa is preferred
7780 * 3) task is cache cold, or
7781 * 4) too many balance attempts have failed.
1e3c88bd 7782 */
23fb06d9
VS
7783 if (env->flags & LBF_ACTIVE_LB)
7784 return 1;
7785
2a1ed24c
SD
7786 tsk_cache_hot = migrate_degrades_locality(p, env);
7787 if (tsk_cache_hot == -1)
7788 tsk_cache_hot = task_hot(p, env);
3a7053b3 7789
2a1ed24c 7790 if (tsk_cache_hot <= 0 ||
7a96c231 7791 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7792 if (tsk_cache_hot == 1) {
ae92882e
JP
7793 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7794 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7795 }
1e3c88bd
PZ
7796 return 1;
7797 }
7798
ae92882e 7799 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7800 return 0;
1e3c88bd
PZ
7801}
7802
897c395f 7803/*
163122b7
KT
7804 * detach_task() -- detach the task for the migration specified in env
7805 */
7806static void detach_task(struct task_struct *p, struct lb_env *env)
7807{
5cb9eaa3 7808 lockdep_assert_rq_held(env->src_rq);
163122b7 7809
5704ac0a 7810 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7811 set_task_cpu(p, env->dst_cpu);
7812}
7813
897c395f 7814/*
e5673f28 7815 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7816 * part of active balancing operations within "domain".
897c395f 7817 *
e5673f28 7818 * Returns a task if successful and NULL otherwise.
897c395f 7819 */
e5673f28 7820static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7821{
93824900 7822 struct task_struct *p;
897c395f 7823
5cb9eaa3 7824 lockdep_assert_rq_held(env->src_rq);
e5673f28 7825
93824900
UR
7826 list_for_each_entry_reverse(p,
7827 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7828 if (!can_migrate_task(p, env))
7829 continue;
897c395f 7830
163122b7 7831 detach_task(p, env);
e5673f28 7832
367456c7 7833 /*
e5673f28 7834 * Right now, this is only the second place where
163122b7 7835 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7836 * so we can safely collect stats here rather than
163122b7 7837 * inside detach_tasks().
367456c7 7838 */
ae92882e 7839 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7840 return p;
897c395f 7841 }
e5673f28 7842 return NULL;
897c395f
PZ
7843}
7844
eb95308e
PZ
7845static const unsigned int sched_nr_migrate_break = 32;
7846
5d6523eb 7847/*
0b0695f2 7848 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7849 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7850 *
163122b7 7851 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7852 */
163122b7 7853static int detach_tasks(struct lb_env *env)
1e3c88bd 7854{
5d6523eb 7855 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7856 unsigned long util, load;
5d6523eb 7857 struct task_struct *p;
163122b7
KT
7858 int detached = 0;
7859
5cb9eaa3 7860 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 7861
acb4decc
AL
7862 /*
7863 * Source run queue has been emptied by another CPU, clear
7864 * LBF_ALL_PINNED flag as we will not test any task.
7865 */
7866 if (env->src_rq->nr_running <= 1) {
7867 env->flags &= ~LBF_ALL_PINNED;
7868 return 0;
7869 }
7870
bd939f45 7871 if (env->imbalance <= 0)
5d6523eb 7872 return 0;
1e3c88bd 7873
5d6523eb 7874 while (!list_empty(tasks)) {
985d3a4c
YD
7875 /*
7876 * We don't want to steal all, otherwise we may be treated likewise,
7877 * which could at worst lead to a livelock crash.
7878 */
7879 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7880 break;
7881
93824900 7882 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7883
367456c7
PZ
7884 env->loop++;
7885 /* We've more or less seen every task there is, call it quits */
5d6523eb 7886 if (env->loop > env->loop_max)
367456c7 7887 break;
5d6523eb
PZ
7888
7889 /* take a breather every nr_migrate tasks */
367456c7 7890 if (env->loop > env->loop_break) {
eb95308e 7891 env->loop_break += sched_nr_migrate_break;
8e45cb54 7892 env->flags |= LBF_NEED_BREAK;
ee00e66f 7893 break;
a195f004 7894 }
1e3c88bd 7895
d3198084 7896 if (!can_migrate_task(p, env))
367456c7
PZ
7897 goto next;
7898
0b0695f2
VG
7899 switch (env->migration_type) {
7900 case migrate_load:
01cfcde9
VG
7901 /*
7902 * Depending of the number of CPUs and tasks and the
7903 * cgroup hierarchy, task_h_load() can return a null
7904 * value. Make sure that env->imbalance decreases
7905 * otherwise detach_tasks() will stop only after
7906 * detaching up to loop_max tasks.
7907 */
7908 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7909
0b0695f2
VG
7910 if (sched_feat(LB_MIN) &&
7911 load < 16 && !env->sd->nr_balance_failed)
7912 goto next;
367456c7 7913
6cf82d55
VG
7914 /*
7915 * Make sure that we don't migrate too much load.
7916 * Nevertheless, let relax the constraint if
7917 * scheduler fails to find a good waiting task to
7918 * migrate.
7919 */
39a2a6eb 7920 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7921 goto next;
7922
7923 env->imbalance -= load;
7924 break;
7925
7926 case migrate_util:
7927 util = task_util_est(p);
7928
7929 if (util > env->imbalance)
7930 goto next;
7931
7932 env->imbalance -= util;
7933 break;
7934
7935 case migrate_task:
7936 env->imbalance--;
7937 break;
7938
7939 case migrate_misfit:
c63be7be
VG
7940 /* This is not a misfit task */
7941 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7942 goto next;
7943
7944 env->imbalance = 0;
7945 break;
7946 }
1e3c88bd 7947
163122b7
KT
7948 detach_task(p, env);
7949 list_add(&p->se.group_node, &env->tasks);
7950
7951 detached++;
1e3c88bd 7952
c1a280b6 7953#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7954 /*
7955 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7956 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7957 * the critical section.
7958 */
5d6523eb 7959 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7960 break;
1e3c88bd
PZ
7961#endif
7962
ee00e66f
PZ
7963 /*
7964 * We only want to steal up to the prescribed amount of
0b0695f2 7965 * load/util/tasks.
ee00e66f 7966 */
bd939f45 7967 if (env->imbalance <= 0)
ee00e66f 7968 break;
367456c7
PZ
7969
7970 continue;
7971next:
93824900 7972 list_move(&p->se.group_node, tasks);
1e3c88bd 7973 }
5d6523eb 7974
1e3c88bd 7975 /*
163122b7
KT
7976 * Right now, this is one of only two places we collect this stat
7977 * so we can safely collect detach_one_task() stats here rather
7978 * than inside detach_one_task().
1e3c88bd 7979 */
ae92882e 7980 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7981
163122b7
KT
7982 return detached;
7983}
7984
7985/*
7986 * attach_task() -- attach the task detached by detach_task() to its new rq.
7987 */
7988static void attach_task(struct rq *rq, struct task_struct *p)
7989{
5cb9eaa3 7990 lockdep_assert_rq_held(rq);
163122b7
KT
7991
7992 BUG_ON(task_rq(p) != rq);
5704ac0a 7993 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7994 check_preempt_curr(rq, p, 0);
7995}
7996
7997/*
7998 * attach_one_task() -- attaches the task returned from detach_one_task() to
7999 * its new rq.
8000 */
8001static void attach_one_task(struct rq *rq, struct task_struct *p)
8002{
8a8c69c3
PZ
8003 struct rq_flags rf;
8004
8005 rq_lock(rq, &rf);
5704ac0a 8006 update_rq_clock(rq);
163122b7 8007 attach_task(rq, p);
8a8c69c3 8008 rq_unlock(rq, &rf);
163122b7
KT
8009}
8010
8011/*
8012 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8013 * new rq.
8014 */
8015static void attach_tasks(struct lb_env *env)
8016{
8017 struct list_head *tasks = &env->tasks;
8018 struct task_struct *p;
8a8c69c3 8019 struct rq_flags rf;
163122b7 8020
8a8c69c3 8021 rq_lock(env->dst_rq, &rf);
5704ac0a 8022 update_rq_clock(env->dst_rq);
163122b7
KT
8023
8024 while (!list_empty(tasks)) {
8025 p = list_first_entry(tasks, struct task_struct, se.group_node);
8026 list_del_init(&p->se.group_node);
1e3c88bd 8027
163122b7
KT
8028 attach_task(env->dst_rq, p);
8029 }
8030
8a8c69c3 8031 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
8032}
8033
b0c79224 8034#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
8035static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8036{
8037 if (cfs_rq->avg.load_avg)
8038 return true;
8039
8040 if (cfs_rq->avg.util_avg)
8041 return true;
8042
8043 return false;
8044}
8045
91c27493 8046static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
8047{
8048 if (READ_ONCE(rq->avg_rt.util_avg))
8049 return true;
8050
3727e0e1
VG
8051 if (READ_ONCE(rq->avg_dl.util_avg))
8052 return true;
8053
b4eccf5f
TG
8054 if (thermal_load_avg(rq))
8055 return true;
8056
11d4afd4 8057#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
8058 if (READ_ONCE(rq->avg_irq.util_avg))
8059 return true;
8060#endif
8061
371bf427
VG
8062 return false;
8063}
8064
39b6a429 8065static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 8066{
39b6a429
VG
8067 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8068}
b0c79224 8069
39b6a429
VG
8070static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8071{
b0c79224
VS
8072 if (!has_blocked)
8073 rq->has_blocked_load = 0;
8074}
8075#else
8076static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8077static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 8078static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
8079static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8080#endif
8081
bef69dd8
VG
8082static bool __update_blocked_others(struct rq *rq, bool *done)
8083{
8084 const struct sched_class *curr_class;
8085 u64 now = rq_clock_pelt(rq);
b4eccf5f 8086 unsigned long thermal_pressure;
bef69dd8
VG
8087 bool decayed;
8088
8089 /*
8090 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8091 * DL and IRQ signals have been updated before updating CFS.
8092 */
8093 curr_class = rq->curr->sched_class;
8094
b4eccf5f
TG
8095 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8096
bef69dd8
VG
8097 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8098 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 8099 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
8100 update_irq_load_avg(rq, 0);
8101
8102 if (others_have_blocked(rq))
8103 *done = false;
8104
8105 return decayed;
8106}
8107
1936c53c
VG
8108#ifdef CONFIG_FAIR_GROUP_SCHED
8109
bef69dd8 8110static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8111{
039ae8bc 8112 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8113 bool decayed = false;
8114 int cpu = cpu_of(rq);
b90f7c9d 8115
9763b67f
PZ
8116 /*
8117 * Iterates the task_group tree in a bottom up fashion, see
8118 * list_add_leaf_cfs_rq() for details.
8119 */
039ae8bc 8120 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8121 struct sched_entity *se;
8122
bef69dd8 8123 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8124 update_tg_load_avg(cfs_rq);
4e516076 8125
bef69dd8
VG
8126 if (cfs_rq == &rq->cfs)
8127 decayed = true;
8128 }
8129
bc427898
VG
8130 /* Propagate pending load changes to the parent, if any: */
8131 se = cfs_rq->tg->se[cpu];
8132 if (se && !skip_blocked_update(se))
02da26ad 8133 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8134
039ae8bc
VG
8135 /*
8136 * There can be a lot of idle CPU cgroups. Don't let fully
8137 * decayed cfs_rqs linger on the list.
8138 */
8139 if (cfs_rq_is_decayed(cfs_rq))
8140 list_del_leaf_cfs_rq(cfs_rq);
8141
1936c53c
VG
8142 /* Don't need periodic decay once load/util_avg are null */
8143 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8144 *done = false;
9d89c257 8145 }
12b04875 8146
bef69dd8 8147 return decayed;
9e3081ca
PZ
8148}
8149
9763b67f 8150/*
68520796 8151 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8152 * This needs to be done in a top-down fashion because the load of a child
8153 * group is a fraction of its parents load.
8154 */
68520796 8155static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8156{
68520796
VD
8157 struct rq *rq = rq_of(cfs_rq);
8158 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8159 unsigned long now = jiffies;
68520796 8160 unsigned long load;
a35b6466 8161
68520796 8162 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8163 return;
8164
0e9f0245 8165 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8166 for_each_sched_entity(se) {
8167 cfs_rq = cfs_rq_of(se);
0e9f0245 8168 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8169 if (cfs_rq->last_h_load_update == now)
8170 break;
8171 }
a35b6466 8172
68520796 8173 if (!se) {
7ea241af 8174 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8175 cfs_rq->last_h_load_update = now;
8176 }
8177
0e9f0245 8178 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8179 load = cfs_rq->h_load;
7ea241af
YD
8180 load = div64_ul(load * se->avg.load_avg,
8181 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8182 cfs_rq = group_cfs_rq(se);
8183 cfs_rq->h_load = load;
8184 cfs_rq->last_h_load_update = now;
8185 }
9763b67f
PZ
8186}
8187
367456c7 8188static unsigned long task_h_load(struct task_struct *p)
230059de 8189{
367456c7 8190 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8191
68520796 8192 update_cfs_rq_h_load(cfs_rq);
9d89c257 8193 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8194 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8195}
8196#else
bef69dd8 8197static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8198{
6c1d47c0 8199 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8200 bool decayed;
b90f7c9d 8201
bef69dd8
VG
8202 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8203 if (cfs_rq_has_blocked(cfs_rq))
8204 *done = false;
b90f7c9d 8205
bef69dd8 8206 return decayed;
9e3081ca
PZ
8207}
8208
367456c7 8209static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8210{
9d89c257 8211 return p->se.avg.load_avg;
1e3c88bd 8212}
230059de 8213#endif
1e3c88bd 8214
bef69dd8
VG
8215static void update_blocked_averages(int cpu)
8216{
8217 bool decayed = false, done = true;
8218 struct rq *rq = cpu_rq(cpu);
8219 struct rq_flags rf;
8220
8221 rq_lock_irqsave(rq, &rf);
39b6a429 8222 update_blocked_load_tick(rq);
bef69dd8
VG
8223 update_rq_clock(rq);
8224
8225 decayed |= __update_blocked_others(rq, &done);
8226 decayed |= __update_blocked_fair(rq, &done);
8227
8228 update_blocked_load_status(rq, !done);
8229 if (decayed)
8230 cpufreq_update_util(rq, 0);
8231 rq_unlock_irqrestore(rq, &rf);
8232}
8233
1e3c88bd 8234/********** Helpers for find_busiest_group ************************/
caeb178c 8235
1e3c88bd
PZ
8236/*
8237 * sg_lb_stats - stats of a sched_group required for load_balancing
8238 */
8239struct sg_lb_stats {
8240 unsigned long avg_load; /*Avg load across the CPUs of the group */
8241 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8242 unsigned long group_capacity;
070f5e86
VG
8243 unsigned long group_util; /* Total utilization over the CPUs of the group */
8244 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8245 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8246 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8247 unsigned int idle_cpus;
8248 unsigned int group_weight;
caeb178c 8249 enum group_type group_type;
490ba971 8250 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8251 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8252#ifdef CONFIG_NUMA_BALANCING
8253 unsigned int nr_numa_running;
8254 unsigned int nr_preferred_running;
8255#endif
1e3c88bd
PZ
8256};
8257
56cf515b
JK
8258/*
8259 * sd_lb_stats - Structure to store the statistics of a sched_domain
8260 * during load balancing.
8261 */
8262struct sd_lb_stats {
8263 struct sched_group *busiest; /* Busiest group in this sd */
8264 struct sched_group *local; /* Local group in this sd */
8265 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8266 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8267 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8268 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8269
56cf515b 8270 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8271 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8272};
8273
147c5fc2
PZ
8274static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8275{
8276 /*
8277 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8278 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8279 * We must however set busiest_stat::group_type and
8280 * busiest_stat::idle_cpus to the worst busiest group because
8281 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8282 */
8283 *sds = (struct sd_lb_stats){
8284 .busiest = NULL,
8285 .local = NULL,
8286 .total_load = 0UL,
63b2ca30 8287 .total_capacity = 0UL,
147c5fc2 8288 .busiest_stat = {
0b0695f2
VG
8289 .idle_cpus = UINT_MAX,
8290 .group_type = group_has_spare,
147c5fc2
PZ
8291 },
8292 };
8293}
8294
1ca2034e 8295static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8296{
8297 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8298 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8299 unsigned long used, free;
523e979d 8300 unsigned long irq;
b654f7de 8301
2e62c474 8302 irq = cpu_util_irq(rq);
cadefd3d 8303
523e979d
VG
8304 if (unlikely(irq >= max))
8305 return 1;
aa483808 8306
467b7d01
TG
8307 /*
8308 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8309 * (running and not running) with weights 0 and 1024 respectively.
8310 * avg_thermal.load_avg tracks thermal pressure and the weighted
8311 * average uses the actual delta max capacity(load).
8312 */
523e979d
VG
8313 used = READ_ONCE(rq->avg_rt.util_avg);
8314 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8315 used += thermal_load_avg(rq);
1e3c88bd 8316
523e979d
VG
8317 if (unlikely(used >= max))
8318 return 1;
1e3c88bd 8319
523e979d 8320 free = max - used;
2e62c474
VG
8321
8322 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8323}
8324
ced549fa 8325static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8326{
1ca2034e 8327 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8328 struct sched_group *sdg = sd->groups;
8329
8ec59c0f 8330 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8331
ced549fa
NP
8332 if (!capacity)
8333 capacity = 1;
1e3c88bd 8334
ced549fa 8335 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8336 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8337
ced549fa 8338 sdg->sgc->capacity = capacity;
bf475ce0 8339 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8340 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8341}
8342
63b2ca30 8343void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8344{
8345 struct sched_domain *child = sd->child;
8346 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8347 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8348 unsigned long interval;
8349
8350 interval = msecs_to_jiffies(sd->balance_interval);
8351 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8352 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8353
8354 if (!child) {
ced549fa 8355 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8356 return;
8357 }
8358
dc7ff76e 8359 capacity = 0;
bf475ce0 8360 min_capacity = ULONG_MAX;
e3d6d0cb 8361 max_capacity = 0;
1e3c88bd 8362
74a5ce20
PZ
8363 if (child->flags & SD_OVERLAP) {
8364 /*
8365 * SD_OVERLAP domains cannot assume that child groups
8366 * span the current group.
8367 */
8368
ae4df9d6 8369 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8370 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8371
4c58f57f
PL
8372 capacity += cpu_cap;
8373 min_capacity = min(cpu_cap, min_capacity);
8374 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8375 }
74a5ce20
PZ
8376 } else {
8377 /*
8378 * !SD_OVERLAP domains can assume that child groups
8379 * span the current group.
97a7142f 8380 */
74a5ce20
PZ
8381
8382 group = child->groups;
8383 do {
bf475ce0
MR
8384 struct sched_group_capacity *sgc = group->sgc;
8385
8386 capacity += sgc->capacity;
8387 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8388 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8389 group = group->next;
8390 } while (group != child->groups);
8391 }
1e3c88bd 8392
63b2ca30 8393 sdg->sgc->capacity = capacity;
bf475ce0 8394 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8395 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8396}
8397
9d5efe05 8398/*
ea67821b
VG
8399 * Check whether the capacity of the rq has been noticeably reduced by side
8400 * activity. The imbalance_pct is used for the threshold.
8401 * Return true is the capacity is reduced
9d5efe05
SV
8402 */
8403static inline int
ea67821b 8404check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8405{
ea67821b
VG
8406 return ((rq->cpu_capacity * sd->imbalance_pct) <
8407 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8408}
8409
a0fe2cf0
VS
8410/*
8411 * Check whether a rq has a misfit task and if it looks like we can actually
8412 * help that task: we can migrate the task to a CPU of higher capacity, or
8413 * the task's current CPU is heavily pressured.
8414 */
8415static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8416{
8417 return rq->misfit_task_load &&
8418 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8419 check_cpu_capacity(rq, sd));
8420}
8421
30ce5dab
PZ
8422/*
8423 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8424 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8425 *
97fb7a0a
IM
8426 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8427 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8428 * Something like:
8429 *
2b4d5b25
IM
8430 * { 0 1 2 3 } { 4 5 6 7 }
8431 * * * * *
30ce5dab
PZ
8432 *
8433 * If we were to balance group-wise we'd place two tasks in the first group and
8434 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8435 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8436 *
8437 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8438 * by noticing the lower domain failed to reach balance and had difficulty
8439 * moving tasks due to affinity constraints.
30ce5dab
PZ
8440 *
8441 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8442 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8443 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8444 * to create an effective group imbalance.
8445 *
8446 * This is a somewhat tricky proposition since the next run might not find the
8447 * group imbalance and decide the groups need to be balanced again. A most
8448 * subtle and fragile situation.
8449 */
8450
6263322c 8451static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8452{
63b2ca30 8453 return group->sgc->imbalance;
30ce5dab
PZ
8454}
8455
b37d9316 8456/*
ea67821b
VG
8457 * group_has_capacity returns true if the group has spare capacity that could
8458 * be used by some tasks.
8459 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8460 * smaller than the number of CPUs or if the utilization is lower than the
8461 * available capacity for CFS tasks.
ea67821b
VG
8462 * For the latter, we use a threshold to stabilize the state, to take into
8463 * account the variance of the tasks' load and to return true if the available
8464 * capacity in meaningful for the load balancer.
8465 * As an example, an available capacity of 1% can appear but it doesn't make
8466 * any benefit for the load balance.
b37d9316 8467 */
ea67821b 8468static inline bool
57abff06 8469group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8470{
5e23e474 8471 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8472 return true;
c61037e9 8473
070f5e86
VG
8474 if ((sgs->group_capacity * imbalance_pct) <
8475 (sgs->group_runnable * 100))
8476 return false;
8477
ea67821b 8478 if ((sgs->group_capacity * 100) >
57abff06 8479 (sgs->group_util * imbalance_pct))
ea67821b 8480 return true;
b37d9316 8481
ea67821b
VG
8482 return false;
8483}
8484
8485/*
8486 * group_is_overloaded returns true if the group has more tasks than it can
8487 * handle.
8488 * group_is_overloaded is not equals to !group_has_capacity because a group
8489 * with the exact right number of tasks, has no more spare capacity but is not
8490 * overloaded so both group_has_capacity and group_is_overloaded return
8491 * false.
8492 */
8493static inline bool
57abff06 8494group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8495{
5e23e474 8496 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8497 return false;
b37d9316 8498
ea67821b 8499 if ((sgs->group_capacity * 100) <
57abff06 8500 (sgs->group_util * imbalance_pct))
ea67821b 8501 return true;
b37d9316 8502
070f5e86
VG
8503 if ((sgs->group_capacity * imbalance_pct) <
8504 (sgs->group_runnable * 100))
8505 return true;
8506
ea67821b 8507 return false;
b37d9316
PZ
8508}
8509
79a89f92 8510static inline enum
57abff06 8511group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8512 struct sched_group *group,
79a89f92 8513 struct sg_lb_stats *sgs)
caeb178c 8514{
57abff06 8515 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8516 return group_overloaded;
8517
8518 if (sg_imbalanced(group))
8519 return group_imbalanced;
8520
0b0695f2
VG
8521 if (sgs->group_asym_packing)
8522 return group_asym_packing;
8523
3b1baa64
MR
8524 if (sgs->group_misfit_task_load)
8525 return group_misfit_task;
8526
57abff06 8527 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8528 return group_fully_busy;
8529
8530 return group_has_spare;
caeb178c
RR
8531}
8532
1e3c88bd
PZ
8533/**
8534 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8535 * @env: The load balancing environment.
1e3c88bd 8536 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8537 * @sgs: variable to hold the statistics for this group.
630246a0 8538 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8539 */
bd939f45 8540static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8541 struct sched_group *group,
8542 struct sg_lb_stats *sgs,
8543 int *sg_status)
1e3c88bd 8544{
0b0695f2 8545 int i, nr_running, local_group;
1e3c88bd 8546
b72ff13c
PZ
8547 memset(sgs, 0, sizeof(*sgs));
8548
0b0695f2
VG
8549 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8550
ae4df9d6 8551 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8552 struct rq *rq = cpu_rq(i);
8553
b0fb1eb4 8554 sgs->group_load += cpu_load(rq);
9e91d61d 8555 sgs->group_util += cpu_util(i);
070f5e86 8556 sgs->group_runnable += cpu_runnable(rq);
a3498347 8557 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8558
a426f99c 8559 nr_running = rq->nr_running;
5e23e474
VG
8560 sgs->sum_nr_running += nr_running;
8561
a426f99c 8562 if (nr_running > 1)
630246a0 8563 *sg_status |= SG_OVERLOAD;
4486edd1 8564
2802bf3c
MR
8565 if (cpu_overutilized(i))
8566 *sg_status |= SG_OVERUTILIZED;
4486edd1 8567
0ec8aa00
PZ
8568#ifdef CONFIG_NUMA_BALANCING
8569 sgs->nr_numa_running += rq->nr_numa_running;
8570 sgs->nr_preferred_running += rq->nr_preferred_running;
8571#endif
a426f99c
WL
8572 /*
8573 * No need to call idle_cpu() if nr_running is not 0
8574 */
0b0695f2 8575 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8576 sgs->idle_cpus++;
0b0695f2
VG
8577 /* Idle cpu can't have misfit task */
8578 continue;
8579 }
8580
8581 if (local_group)
8582 continue;
3b1baa64 8583
0b0695f2 8584 /* Check for a misfit task on the cpu */
3b1baa64 8585 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8586 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8587 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8588 *sg_status |= SG_OVERLOAD;
757ffdd7 8589 }
1e3c88bd
PZ
8590 }
8591
0b0695f2
VG
8592 /* Check if dst CPU is idle and preferred to this group */
8593 if (env->sd->flags & SD_ASYM_PACKING &&
8594 env->idle != CPU_NOT_IDLE &&
8595 sgs->sum_h_nr_running &&
8596 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8597 sgs->group_asym_packing = 1;
8598 }
8599
63b2ca30 8600 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8601
aae6d3dd 8602 sgs->group_weight = group->group_weight;
b37d9316 8603
57abff06 8604 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8605
8606 /* Computing avg_load makes sense only when group is overloaded */
8607 if (sgs->group_type == group_overloaded)
8608 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8609 sgs->group_capacity;
1e3c88bd
PZ
8610}
8611
532cb4c4
MN
8612/**
8613 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8614 * @env: The load balancing environment.
532cb4c4
MN
8615 * @sds: sched_domain statistics
8616 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8617 * @sgs: sched_group statistics
532cb4c4
MN
8618 *
8619 * Determine if @sg is a busier group than the previously selected
8620 * busiest group.
e69f6186
YB
8621 *
8622 * Return: %true if @sg is a busier group than the previously selected
8623 * busiest group. %false otherwise.
532cb4c4 8624 */
bd939f45 8625static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8626 struct sd_lb_stats *sds,
8627 struct sched_group *sg,
bd939f45 8628 struct sg_lb_stats *sgs)
532cb4c4 8629{
caeb178c 8630 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8631
0b0695f2
VG
8632 /* Make sure that there is at least one task to pull */
8633 if (!sgs->sum_h_nr_running)
8634 return false;
8635
cad68e55
MR
8636 /*
8637 * Don't try to pull misfit tasks we can't help.
8638 * We can use max_capacity here as reduction in capacity on some
8639 * CPUs in the group should either be possible to resolve
8640 * internally or be covered by avg_load imbalance (eventually).
8641 */
8642 if (sgs->group_type == group_misfit_task &&
4aed8aa4 8643 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8644 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8645 return false;
8646
caeb178c 8647 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8648 return true;
8649
caeb178c
RR
8650 if (sgs->group_type < busiest->group_type)
8651 return false;
8652
9e0994c0 8653 /*
0b0695f2
VG
8654 * The candidate and the current busiest group are the same type of
8655 * group. Let check which one is the busiest according to the type.
9e0994c0 8656 */
9e0994c0 8657
0b0695f2
VG
8658 switch (sgs->group_type) {
8659 case group_overloaded:
8660 /* Select the overloaded group with highest avg_load. */
8661 if (sgs->avg_load <= busiest->avg_load)
8662 return false;
8663 break;
8664
8665 case group_imbalanced:
8666 /*
8667 * Select the 1st imbalanced group as we don't have any way to
8668 * choose one more than another.
8669 */
9e0994c0
MR
8670 return false;
8671
0b0695f2
VG
8672 case group_asym_packing:
8673 /* Prefer to move from lowest priority CPU's work */
8674 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8675 return false;
8676 break;
532cb4c4 8677
0b0695f2
VG
8678 case group_misfit_task:
8679 /*
8680 * If we have more than one misfit sg go with the biggest
8681 * misfit.
8682 */
8683 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8684 return false;
8685 break;
532cb4c4 8686
0b0695f2
VG
8687 case group_fully_busy:
8688 /*
8689 * Select the fully busy group with highest avg_load. In
8690 * theory, there is no need to pull task from such kind of
8691 * group because tasks have all compute capacity that they need
8692 * but we can still improve the overall throughput by reducing
8693 * contention when accessing shared HW resources.
8694 *
8695 * XXX for now avg_load is not computed and always 0 so we
8696 * select the 1st one.
8697 */
8698 if (sgs->avg_load <= busiest->avg_load)
8699 return false;
8700 break;
8701
8702 case group_has_spare:
8703 /*
5f68eb19
VG
8704 * Select not overloaded group with lowest number of idle cpus
8705 * and highest number of running tasks. We could also compare
8706 * the spare capacity which is more stable but it can end up
8707 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8708 * CPUs which means less opportunity to pull tasks.
8709 */
5f68eb19 8710 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8711 return false;
5f68eb19
VG
8712 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8713 (sgs->sum_nr_running <= busiest->sum_nr_running))
8714 return false;
8715
0b0695f2 8716 break;
532cb4c4
MN
8717 }
8718
0b0695f2
VG
8719 /*
8720 * Candidate sg has no more than one task per CPU and has higher
8721 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8722 * throughput. Maximize throughput, power/energy consequences are not
8723 * considered.
8724 */
8725 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8726 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 8727 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
8728 return false;
8729
8730 return true;
532cb4c4
MN
8731}
8732
0ec8aa00
PZ
8733#ifdef CONFIG_NUMA_BALANCING
8734static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8735{
a3498347 8736 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8737 return regular;
a3498347 8738 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8739 return remote;
8740 return all;
8741}
8742
8743static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8744{
8745 if (rq->nr_running > rq->nr_numa_running)
8746 return regular;
8747 if (rq->nr_running > rq->nr_preferred_running)
8748 return remote;
8749 return all;
8750}
8751#else
8752static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8753{
8754 return all;
8755}
8756
8757static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8758{
8759 return regular;
8760}
8761#endif /* CONFIG_NUMA_BALANCING */
8762
57abff06
VG
8763
8764struct sg_lb_stats;
8765
3318544b
VG
8766/*
8767 * task_running_on_cpu - return 1 if @p is running on @cpu.
8768 */
8769
8770static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8771{
8772 /* Task has no contribution or is new */
8773 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8774 return 0;
8775
8776 if (task_on_rq_queued(p))
8777 return 1;
8778
8779 return 0;
8780}
8781
8782/**
8783 * idle_cpu_without - would a given CPU be idle without p ?
8784 * @cpu: the processor on which idleness is tested.
8785 * @p: task which should be ignored.
8786 *
8787 * Return: 1 if the CPU would be idle. 0 otherwise.
8788 */
8789static int idle_cpu_without(int cpu, struct task_struct *p)
8790{
8791 struct rq *rq = cpu_rq(cpu);
8792
8793 if (rq->curr != rq->idle && rq->curr != p)
8794 return 0;
8795
8796 /*
8797 * rq->nr_running can't be used but an updated version without the
8798 * impact of p on cpu must be used instead. The updated nr_running
8799 * be computed and tested before calling idle_cpu_without().
8800 */
8801
8802#ifdef CONFIG_SMP
126c2092 8803 if (rq->ttwu_pending)
3318544b
VG
8804 return 0;
8805#endif
8806
8807 return 1;
8808}
8809
57abff06
VG
8810/*
8811 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8812 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8813 * @group: sched_group whose statistics are to be updated.
8814 * @sgs: variable to hold the statistics for this group.
3318544b 8815 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8816 */
8817static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8818 struct sched_group *group,
8819 struct sg_lb_stats *sgs,
8820 struct task_struct *p)
8821{
8822 int i, nr_running;
8823
8824 memset(sgs, 0, sizeof(*sgs));
8825
8826 for_each_cpu(i, sched_group_span(group)) {
8827 struct rq *rq = cpu_rq(i);
3318544b 8828 unsigned int local;
57abff06 8829
3318544b 8830 sgs->group_load += cpu_load_without(rq, p);
57abff06 8831 sgs->group_util += cpu_util_without(i, p);
070f5e86 8832 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8833 local = task_running_on_cpu(i, p);
8834 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8835
3318544b 8836 nr_running = rq->nr_running - local;
57abff06
VG
8837 sgs->sum_nr_running += nr_running;
8838
8839 /*
3318544b 8840 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8841 */
3318544b 8842 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8843 sgs->idle_cpus++;
8844
57abff06
VG
8845 }
8846
8847 /* Check if task fits in the group */
8848 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8849 !task_fits_capacity(p, group->sgc->max_capacity)) {
8850 sgs->group_misfit_task_load = 1;
8851 }
8852
8853 sgs->group_capacity = group->sgc->capacity;
8854
289de359
VG
8855 sgs->group_weight = group->group_weight;
8856
57abff06
VG
8857 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8858
8859 /*
8860 * Computing avg_load makes sense only when group is fully busy or
8861 * overloaded
8862 */
6c8116c9
TZ
8863 if (sgs->group_type == group_fully_busy ||
8864 sgs->group_type == group_overloaded)
57abff06
VG
8865 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8866 sgs->group_capacity;
8867}
8868
8869static bool update_pick_idlest(struct sched_group *idlest,
8870 struct sg_lb_stats *idlest_sgs,
8871 struct sched_group *group,
8872 struct sg_lb_stats *sgs)
8873{
8874 if (sgs->group_type < idlest_sgs->group_type)
8875 return true;
8876
8877 if (sgs->group_type > idlest_sgs->group_type)
8878 return false;
8879
8880 /*
8881 * The candidate and the current idlest group are the same type of
8882 * group. Let check which one is the idlest according to the type.
8883 */
8884
8885 switch (sgs->group_type) {
8886 case group_overloaded:
8887 case group_fully_busy:
8888 /* Select the group with lowest avg_load. */
8889 if (idlest_sgs->avg_load <= sgs->avg_load)
8890 return false;
8891 break;
8892
8893 case group_imbalanced:
8894 case group_asym_packing:
8895 /* Those types are not used in the slow wakeup path */
8896 return false;
8897
8898 case group_misfit_task:
8899 /* Select group with the highest max capacity */
8900 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8901 return false;
8902 break;
8903
8904 case group_has_spare:
8905 /* Select group with most idle CPUs */
3edecfef 8906 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8907 return false;
3edecfef
PP
8908
8909 /* Select group with lowest group_util */
8910 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8911 idlest_sgs->group_util <= sgs->group_util)
8912 return false;
8913
57abff06
VG
8914 break;
8915 }
8916
8917 return true;
8918}
8919
23e6082a
MG
8920/*
8921 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8922 * This is an approximation as the number of running tasks may not be
8923 * related to the number of busy CPUs due to sched_setaffinity.
8924 */
8925static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8926{
8927 return (dst_running < (dst_weight >> 2));
8928}
8929
57abff06
VG
8930/*
8931 * find_idlest_group() finds and returns the least busy CPU group within the
8932 * domain.
8933 *
8934 * Assumes p is allowed on at least one CPU in sd.
8935 */
8936static struct sched_group *
45da2773 8937find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8938{
8939 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8940 struct sg_lb_stats local_sgs, tmp_sgs;
8941 struct sg_lb_stats *sgs;
8942 unsigned long imbalance;
8943 struct sg_lb_stats idlest_sgs = {
8944 .avg_load = UINT_MAX,
8945 .group_type = group_overloaded,
8946 };
8947
57abff06
VG
8948 do {
8949 int local_group;
8950
8951 /* Skip over this group if it has no CPUs allowed */
8952 if (!cpumask_intersects(sched_group_span(group),
8953 p->cpus_ptr))
8954 continue;
8955
97886d9d
AL
8956 /* Skip over this group if no cookie matched */
8957 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
8958 continue;
8959
57abff06
VG
8960 local_group = cpumask_test_cpu(this_cpu,
8961 sched_group_span(group));
8962
8963 if (local_group) {
8964 sgs = &local_sgs;
8965 local = group;
8966 } else {
8967 sgs = &tmp_sgs;
8968 }
8969
8970 update_sg_wakeup_stats(sd, group, sgs, p);
8971
8972 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8973 idlest = group;
8974 idlest_sgs = *sgs;
8975 }
8976
8977 } while (group = group->next, group != sd->groups);
8978
8979
8980 /* There is no idlest group to push tasks to */
8981 if (!idlest)
8982 return NULL;
8983
7ed735c3
VG
8984 /* The local group has been skipped because of CPU affinity */
8985 if (!local)
8986 return idlest;
8987
57abff06
VG
8988 /*
8989 * If the local group is idler than the selected idlest group
8990 * don't try and push the task.
8991 */
8992 if (local_sgs.group_type < idlest_sgs.group_type)
8993 return NULL;
8994
8995 /*
8996 * If the local group is busier than the selected idlest group
8997 * try and push the task.
8998 */
8999 if (local_sgs.group_type > idlest_sgs.group_type)
9000 return idlest;
9001
9002 switch (local_sgs.group_type) {
9003 case group_overloaded:
9004 case group_fully_busy:
5c339005
MG
9005
9006 /* Calculate allowed imbalance based on load */
9007 imbalance = scale_load_down(NICE_0_LOAD) *
9008 (sd->imbalance_pct-100) / 100;
9009
57abff06
VG
9010 /*
9011 * When comparing groups across NUMA domains, it's possible for
9012 * the local domain to be very lightly loaded relative to the
9013 * remote domains but "imbalance" skews the comparison making
9014 * remote CPUs look much more favourable. When considering
9015 * cross-domain, add imbalance to the load on the remote node
9016 * and consider staying local.
9017 */
9018
9019 if ((sd->flags & SD_NUMA) &&
9020 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9021 return NULL;
9022
9023 /*
9024 * If the local group is less loaded than the selected
9025 * idlest group don't try and push any tasks.
9026 */
9027 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9028 return NULL;
9029
9030 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9031 return NULL;
9032 break;
9033
9034 case group_imbalanced:
9035 case group_asym_packing:
9036 /* Those type are not used in the slow wakeup path */
9037 return NULL;
9038
9039 case group_misfit_task:
9040 /* Select group with the highest max capacity */
9041 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9042 return NULL;
9043 break;
9044
9045 case group_has_spare:
9046 if (sd->flags & SD_NUMA) {
9047#ifdef CONFIG_NUMA_BALANCING
9048 int idlest_cpu;
9049 /*
9050 * If there is spare capacity at NUMA, try to select
9051 * the preferred node
9052 */
9053 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9054 return NULL;
9055
9056 idlest_cpu = cpumask_first(sched_group_span(idlest));
9057 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9058 return idlest;
9059#endif
9060 /*
9061 * Otherwise, keep the task on this node to stay close
9062 * its wakeup source and improve locality. If there is
9063 * a real need of migration, periodic load balance will
9064 * take care of it.
9065 */
23e6082a 9066 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
9067 return NULL;
9068 }
9069
9070 /*
9071 * Select group with highest number of idle CPUs. We could also
9072 * compare the utilization which is more stable but it can end
9073 * up that the group has less spare capacity but finally more
9074 * idle CPUs which means more opportunity to run task.
9075 */
9076 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9077 return NULL;
9078 break;
9079 }
9080
9081 return idlest;
9082}
9083
1e3c88bd 9084/**
461819ac 9085 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 9086 * @env: The load balancing environment.
1e3c88bd
PZ
9087 * @sds: variable to hold the statistics for this sched_domain.
9088 */
0b0695f2 9089
0ec8aa00 9090static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9091{
bd939f45
PZ
9092 struct sched_domain *child = env->sd->child;
9093 struct sched_group *sg = env->sd->groups;
05b40e05 9094 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 9095 struct sg_lb_stats tmp_sgs;
630246a0 9096 int sg_status = 0;
1e3c88bd 9097
1e3c88bd 9098 do {
56cf515b 9099 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9100 int local_group;
9101
ae4df9d6 9102 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9103 if (local_group) {
9104 sds->local = sg;
05b40e05 9105 sgs = local;
b72ff13c
PZ
9106
9107 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9108 time_after_eq(jiffies, sg->sgc->next_update))
9109 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9110 }
1e3c88bd 9111
630246a0 9112 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 9113
b72ff13c
PZ
9114 if (local_group)
9115 goto next_group;
9116
1e3c88bd 9117
b72ff13c 9118 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9119 sds->busiest = sg;
56cf515b 9120 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9121 }
9122
b72ff13c
PZ
9123next_group:
9124 /* Now, start updating sd_lb_stats */
9125 sds->total_load += sgs->group_load;
63b2ca30 9126 sds->total_capacity += sgs->group_capacity;
b72ff13c 9127
532cb4c4 9128 sg = sg->next;
bd939f45 9129 } while (sg != env->sd->groups);
0ec8aa00 9130
0b0695f2
VG
9131 /* Tag domain that child domain prefers tasks go to siblings first */
9132 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9133
f643ea22 9134
0ec8aa00
PZ
9135 if (env->sd->flags & SD_NUMA)
9136 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9137
9138 if (!env->sd->parent) {
2802bf3c
MR
9139 struct root_domain *rd = env->dst_rq->rd;
9140
4486edd1 9141 /* update overload indicator if we are at root domain */
2802bf3c
MR
9142 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9143
9144 /* Update over-utilization (tipping point, U >= 0) indicator */
9145 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9146 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9147 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9148 struct root_domain *rd = env->dst_rq->rd;
9149
9150 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9151 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9152 }
532cb4c4
MN
9153}
9154
abeae76a
MG
9155#define NUMA_IMBALANCE_MIN 2
9156
7d2b5dd0
MG
9157static inline long adjust_numa_imbalance(int imbalance,
9158 int dst_running, int dst_weight)
fb86f5b2 9159{
23e6082a
MG
9160 if (!allow_numa_imbalance(dst_running, dst_weight))
9161 return imbalance;
9162
fb86f5b2
MG
9163 /*
9164 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9165 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9166 */
23e6082a 9167 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9168 return 0;
9169
9170 return imbalance;
9171}
9172
1e3c88bd
PZ
9173/**
9174 * calculate_imbalance - Calculate the amount of imbalance present within the
9175 * groups of a given sched_domain during load balance.
bd939f45 9176 * @env: load balance environment
1e3c88bd 9177 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9178 */
bd939f45 9179static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9180{
56cf515b
JK
9181 struct sg_lb_stats *local, *busiest;
9182
9183 local = &sds->local_stat;
56cf515b 9184 busiest = &sds->busiest_stat;
dd5feea1 9185
0b0695f2
VG
9186 if (busiest->group_type == group_misfit_task) {
9187 /* Set imbalance to allow misfit tasks to be balanced. */
9188 env->migration_type = migrate_misfit;
c63be7be 9189 env->imbalance = 1;
0b0695f2
VG
9190 return;
9191 }
9192
9193 if (busiest->group_type == group_asym_packing) {
9194 /*
9195 * In case of asym capacity, we will try to migrate all load to
9196 * the preferred CPU.
9197 */
9198 env->migration_type = migrate_task;
9199 env->imbalance = busiest->sum_h_nr_running;
9200 return;
9201 }
9202
9203 if (busiest->group_type == group_imbalanced) {
9204 /*
9205 * In the group_imb case we cannot rely on group-wide averages
9206 * to ensure CPU-load equilibrium, try to move any task to fix
9207 * the imbalance. The next load balance will take care of
9208 * balancing back the system.
9209 */
9210 env->migration_type = migrate_task;
9211 env->imbalance = 1;
490ba971
VG
9212 return;
9213 }
9214
1e3c88bd 9215 /*
0b0695f2 9216 * Try to use spare capacity of local group without overloading it or
a9723389 9217 * emptying busiest.
1e3c88bd 9218 */
0b0695f2 9219 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9220 if ((busiest->group_type > group_fully_busy) &&
9221 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9222 /*
9223 * If busiest is overloaded, try to fill spare
9224 * capacity. This might end up creating spare capacity
9225 * in busiest or busiest still being overloaded but
9226 * there is no simple way to directly compute the
9227 * amount of load to migrate in order to balance the
9228 * system.
9229 */
9230 env->migration_type = migrate_util;
9231 env->imbalance = max(local->group_capacity, local->group_util) -
9232 local->group_util;
9233
9234 /*
9235 * In some cases, the group's utilization is max or even
9236 * higher than capacity because of migrations but the
9237 * local CPU is (newly) idle. There is at least one
9238 * waiting task in this overloaded busiest group. Let's
9239 * try to pull it.
9240 */
9241 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9242 env->migration_type = migrate_task;
9243 env->imbalance = 1;
9244 }
9245
9246 return;
9247 }
9248
9249 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9250 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9251 /*
9252 * When prefer sibling, evenly spread running tasks on
9253 * groups.
9254 */
9255 env->migration_type = migrate_task;
5e23e474 9256 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9257 env->imbalance = nr_diff >> 1;
b396f523 9258 } else {
0b0695f2 9259
b396f523
MG
9260 /*
9261 * If there is no overload, we just want to even the number of
9262 * idle cpus.
9263 */
9264 env->migration_type = migrate_task;
9265 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9266 busiest->idle_cpus) >> 1);
b396f523
MG
9267 }
9268
9269 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9270 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9271 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9272 busiest->sum_nr_running, busiest->group_weight);
9273 }
b396f523 9274
fcf0553d 9275 return;
1e3c88bd
PZ
9276 }
9277
9a5d9ba6 9278 /*
0b0695f2
VG
9279 * Local is fully busy but has to take more load to relieve the
9280 * busiest group
9a5d9ba6 9281 */
0b0695f2
VG
9282 if (local->group_type < group_overloaded) {
9283 /*
9284 * Local will become overloaded so the avg_load metrics are
9285 * finally needed.
9286 */
9287
9288 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9289 local->group_capacity;
9290
9291 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9292 sds->total_capacity;
111688ca
AL
9293 /*
9294 * If the local group is more loaded than the selected
9295 * busiest group don't try to pull any tasks.
9296 */
9297 if (local->avg_load >= busiest->avg_load) {
9298 env->imbalance = 0;
9299 return;
9300 }
dd5feea1
SS
9301 }
9302
9303 /*
0b0695f2
VG
9304 * Both group are or will become overloaded and we're trying to get all
9305 * the CPUs to the average_load, so we don't want to push ourselves
9306 * above the average load, nor do we wish to reduce the max loaded CPU
9307 * below the average load. At the same time, we also don't want to
9308 * reduce the group load below the group capacity. Thus we look for
9309 * the minimum possible imbalance.
dd5feea1 9310 */
0b0695f2 9311 env->migration_type = migrate_load;
56cf515b 9312 env->imbalance = min(
0b0695f2 9313 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9314 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9315 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9316}
fab47622 9317
1e3c88bd
PZ
9318/******* find_busiest_group() helpers end here *********************/
9319
0b0695f2
VG
9320/*
9321 * Decision matrix according to the local and busiest group type:
9322 *
9323 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9324 * has_spare nr_idle balanced N/A N/A balanced balanced
9325 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9326 * misfit_task force N/A N/A N/A force force
9327 * asym_packing force force N/A N/A force force
9328 * imbalanced force force N/A N/A force force
9329 * overloaded force force N/A N/A force avg_load
9330 *
9331 * N/A : Not Applicable because already filtered while updating
9332 * statistics.
9333 * balanced : The system is balanced for these 2 groups.
9334 * force : Calculate the imbalance as load migration is probably needed.
9335 * avg_load : Only if imbalance is significant enough.
9336 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9337 * different in groups.
9338 */
9339
1e3c88bd
PZ
9340/**
9341 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9342 * if there is an imbalance.
1e3c88bd 9343 *
a3df0679 9344 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9345 * to restore balance.
9346 *
cd96891d 9347 * @env: The load balancing environment.
1e3c88bd 9348 *
e69f6186 9349 * Return: - The busiest group if imbalance exists.
1e3c88bd 9350 */
56cf515b 9351static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9352{
56cf515b 9353 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9354 struct sd_lb_stats sds;
9355
147c5fc2 9356 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9357
9358 /*
b0fb1eb4 9359 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9360 * this level.
9361 */
23f0d209 9362 update_sd_lb_stats(env, &sds);
2802bf3c 9363
f8a696f2 9364 if (sched_energy_enabled()) {
2802bf3c
MR
9365 struct root_domain *rd = env->dst_rq->rd;
9366
9367 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9368 goto out_balanced;
9369 }
9370
56cf515b
JK
9371 local = &sds.local_stat;
9372 busiest = &sds.busiest_stat;
1e3c88bd 9373
cc57aa8f 9374 /* There is no busy sibling group to pull tasks from */
0b0695f2 9375 if (!sds.busiest)
1e3c88bd
PZ
9376 goto out_balanced;
9377
0b0695f2
VG
9378 /* Misfit tasks should be dealt with regardless of the avg load */
9379 if (busiest->group_type == group_misfit_task)
9380 goto force_balance;
9381
9382 /* ASYM feature bypasses nice load balance check */
9383 if (busiest->group_type == group_asym_packing)
9384 goto force_balance;
b0432d8f 9385
866ab43e
PZ
9386 /*
9387 * If the busiest group is imbalanced the below checks don't
30ce5dab 9388 * work because they assume all things are equal, which typically
3bd37062 9389 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9390 */
caeb178c 9391 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9392 goto force_balance;
9393
cc57aa8f 9394 /*
9c58c79a 9395 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9396 * don't try and pull any tasks.
9397 */
0b0695f2 9398 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9399 goto out_balanced;
9400
cc57aa8f 9401 /*
0b0695f2
VG
9402 * When groups are overloaded, use the avg_load to ensure fairness
9403 * between tasks.
cc57aa8f 9404 */
0b0695f2
VG
9405 if (local->group_type == group_overloaded) {
9406 /*
9407 * If the local group is more loaded than the selected
9408 * busiest group don't try to pull any tasks.
9409 */
9410 if (local->avg_load >= busiest->avg_load)
9411 goto out_balanced;
9412
9413 /* XXX broken for overlapping NUMA groups */
9414 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9415 sds.total_capacity;
1e3c88bd 9416
aae6d3dd 9417 /*
0b0695f2
VG
9418 * Don't pull any tasks if this group is already above the
9419 * domain average load.
aae6d3dd 9420 */
0b0695f2 9421 if (local->avg_load >= sds.avg_load)
aae6d3dd 9422 goto out_balanced;
0b0695f2 9423
c186fafe 9424 /*
0b0695f2
VG
9425 * If the busiest group is more loaded, use imbalance_pct to be
9426 * conservative.
c186fafe 9427 */
56cf515b
JK
9428 if (100 * busiest->avg_load <=
9429 env->sd->imbalance_pct * local->avg_load)
c186fafe 9430 goto out_balanced;
aae6d3dd 9431 }
1e3c88bd 9432
0b0695f2
VG
9433 /* Try to move all excess tasks to child's sibling domain */
9434 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9435 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9436 goto force_balance;
9437
2ab4092f
VG
9438 if (busiest->group_type != group_overloaded) {
9439 if (env->idle == CPU_NOT_IDLE)
9440 /*
9441 * If the busiest group is not overloaded (and as a
9442 * result the local one too) but this CPU is already
9443 * busy, let another idle CPU try to pull task.
9444 */
9445 goto out_balanced;
9446
9447 if (busiest->group_weight > 1 &&
9448 local->idle_cpus <= (busiest->idle_cpus + 1))
9449 /*
9450 * If the busiest group is not overloaded
9451 * and there is no imbalance between this and busiest
9452 * group wrt idle CPUs, it is balanced. The imbalance
9453 * becomes significant if the diff is greater than 1
9454 * otherwise we might end up to just move the imbalance
9455 * on another group. Of course this applies only if
9456 * there is more than 1 CPU per group.
9457 */
9458 goto out_balanced;
9459
9460 if (busiest->sum_h_nr_running == 1)
9461 /*
9462 * busiest doesn't have any tasks waiting to run
9463 */
9464 goto out_balanced;
9465 }
0b0695f2 9466
fab47622 9467force_balance:
1e3c88bd 9468 /* Looks like there is an imbalance. Compute it */
bd939f45 9469 calculate_imbalance(env, &sds);
bb3485c8 9470 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9471
9472out_balanced:
bd939f45 9473 env->imbalance = 0;
1e3c88bd
PZ
9474 return NULL;
9475}
9476
9477/*
97fb7a0a 9478 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9479 */
bd939f45 9480static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9481 struct sched_group *group)
1e3c88bd
PZ
9482{
9483 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9484 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9485 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9486 int i;
9487
ae4df9d6 9488 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9489 unsigned long capacity, load, util;
9490 unsigned int nr_running;
0ec8aa00
PZ
9491 enum fbq_type rt;
9492
9493 rq = cpu_rq(i);
9494 rt = fbq_classify_rq(rq);
1e3c88bd 9495
0ec8aa00
PZ
9496 /*
9497 * We classify groups/runqueues into three groups:
9498 * - regular: there are !numa tasks
9499 * - remote: there are numa tasks that run on the 'wrong' node
9500 * - all: there is no distinction
9501 *
9502 * In order to avoid migrating ideally placed numa tasks,
9503 * ignore those when there's better options.
9504 *
9505 * If we ignore the actual busiest queue to migrate another
9506 * task, the next balance pass can still reduce the busiest
9507 * queue by moving tasks around inside the node.
9508 *
9509 * If we cannot move enough load due to this classification
9510 * the next pass will adjust the group classification and
9511 * allow migration of more tasks.
9512 *
9513 * Both cases only affect the total convergence complexity.
9514 */
9515 if (rt > env->fbq_type)
9516 continue;
9517
0b0695f2 9518 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9519 if (!nr_running)
9520 continue;
9521
9522 capacity = capacity_of(i);
9d5efe05 9523
4ad3831a
CR
9524 /*
9525 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9526 * eventually lead to active_balancing high->low capacity.
9527 * Higher per-CPU capacity is considered better than balancing
9528 * average load.
9529 */
9530 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9531 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9532 nr_running == 1)
4ad3831a
CR
9533 continue;
9534
0b0695f2
VG
9535 switch (env->migration_type) {
9536 case migrate_load:
9537 /*
b0fb1eb4
VG
9538 * When comparing with load imbalance, use cpu_load()
9539 * which is not scaled with the CPU capacity.
0b0695f2 9540 */
b0fb1eb4 9541 load = cpu_load(rq);
1e3c88bd 9542
0b0695f2
VG
9543 if (nr_running == 1 && load > env->imbalance &&
9544 !check_cpu_capacity(rq, env->sd))
9545 break;
ea67821b 9546
0b0695f2
VG
9547 /*
9548 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9549 * consider the cpu_load() scaled with the CPU
9550 * capacity, so that the load can be moved away
9551 * from the CPU that is potentially running at a
9552 * lower capacity.
0b0695f2
VG
9553 *
9554 * Thus we're looking for max(load_i / capacity_i),
9555 * crosswise multiplication to rid ourselves of the
9556 * division works out to:
9557 * load_i * capacity_j > load_j * capacity_i;
9558 * where j is our previous maximum.
9559 */
9560 if (load * busiest_capacity > busiest_load * capacity) {
9561 busiest_load = load;
9562 busiest_capacity = capacity;
9563 busiest = rq;
9564 }
9565 break;
9566
9567 case migrate_util:
9568 util = cpu_util(cpu_of(rq));
9569
c32b4308
VG
9570 /*
9571 * Don't try to pull utilization from a CPU with one
9572 * running task. Whatever its utilization, we will fail
9573 * detach the task.
9574 */
9575 if (nr_running <= 1)
9576 continue;
9577
0b0695f2
VG
9578 if (busiest_util < util) {
9579 busiest_util = util;
9580 busiest = rq;
9581 }
9582 break;
9583
9584 case migrate_task:
9585 if (busiest_nr < nr_running) {
9586 busiest_nr = nr_running;
9587 busiest = rq;
9588 }
9589 break;
9590
9591 case migrate_misfit:
9592 /*
9593 * For ASYM_CPUCAPACITY domains with misfit tasks we
9594 * simply seek the "biggest" misfit task.
9595 */
9596 if (rq->misfit_task_load > busiest_load) {
9597 busiest_load = rq->misfit_task_load;
9598 busiest = rq;
9599 }
9600
9601 break;
1e3c88bd 9602
1e3c88bd
PZ
9603 }
9604 }
9605
9606 return busiest;
9607}
9608
9609/*
9610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9611 * so long as it is large enough.
9612 */
9613#define MAX_PINNED_INTERVAL 512
9614
46a745d9
VG
9615static inline bool
9616asym_active_balance(struct lb_env *env)
1af3ed3d 9617{
46a745d9
VG
9618 /*
9619 * ASYM_PACKING needs to force migrate tasks from busy but
9620 * lower priority CPUs in order to pack all tasks in the
9621 * highest priority CPUs.
9622 */
9623 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9624 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9625}
bd939f45 9626
46a745d9 9627static inline bool
e9b9734b
VG
9628imbalanced_active_balance(struct lb_env *env)
9629{
9630 struct sched_domain *sd = env->sd;
9631
9632 /*
9633 * The imbalanced case includes the case of pinned tasks preventing a fair
9634 * distribution of the load on the system but also the even distribution of the
9635 * threads on a system with spare capacity
9636 */
9637 if ((env->migration_type == migrate_task) &&
9638 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9639 return 1;
9640
9641 return 0;
9642}
9643
9644static int need_active_balance(struct lb_env *env)
46a745d9
VG
9645{
9646 struct sched_domain *sd = env->sd;
532cb4c4 9647
46a745d9
VG
9648 if (asym_active_balance(env))
9649 return 1;
1af3ed3d 9650
e9b9734b
VG
9651 if (imbalanced_active_balance(env))
9652 return 1;
9653
1aaf90a4
VG
9654 /*
9655 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9656 * It's worth migrating the task if the src_cpu's capacity is reduced
9657 * because of other sched_class or IRQs if more capacity stays
9658 * available on dst_cpu.
9659 */
9660 if ((env->idle != CPU_NOT_IDLE) &&
9661 (env->src_rq->cfs.h_nr_running == 1)) {
9662 if ((check_cpu_capacity(env->src_rq, sd)) &&
9663 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9664 return 1;
9665 }
9666
0b0695f2 9667 if (env->migration_type == migrate_misfit)
cad68e55
MR
9668 return 1;
9669
46a745d9
VG
9670 return 0;
9671}
9672
969c7921
TH
9673static int active_load_balance_cpu_stop(void *data);
9674
23f0d209
JK
9675static int should_we_balance(struct lb_env *env)
9676{
9677 struct sched_group *sg = env->sd->groups;
64297f2b 9678 int cpu;
23f0d209 9679
024c9d2f
PZ
9680 /*
9681 * Ensure the balancing environment is consistent; can happen
9682 * when the softirq triggers 'during' hotplug.
9683 */
9684 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9685 return 0;
9686
23f0d209 9687 /*
97fb7a0a 9688 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9689 * to do the newly idle load balance.
9690 */
9691 if (env->idle == CPU_NEWLY_IDLE)
9692 return 1;
9693
97fb7a0a 9694 /* Try to find first idle CPU */
e5c14b1f 9695 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9696 if (!idle_cpu(cpu))
23f0d209
JK
9697 continue;
9698
64297f2b
PW
9699 /* Are we the first idle CPU? */
9700 return cpu == env->dst_cpu;
23f0d209
JK
9701 }
9702
64297f2b
PW
9703 /* Are we the first CPU of this group ? */
9704 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9705}
9706
1e3c88bd
PZ
9707/*
9708 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9709 * tasks if there is an imbalance.
9710 */
9711static int load_balance(int this_cpu, struct rq *this_rq,
9712 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9713 int *continue_balancing)
1e3c88bd 9714{
88b8dac0 9715 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9716 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9717 struct sched_group *group;
1e3c88bd 9718 struct rq *busiest;
8a8c69c3 9719 struct rq_flags rf;
4ba29684 9720 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9721
8e45cb54
PZ
9722 struct lb_env env = {
9723 .sd = sd,
ddcdf6e7
PZ
9724 .dst_cpu = this_cpu,
9725 .dst_rq = this_rq,
ae4df9d6 9726 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9727 .idle = idle,
eb95308e 9728 .loop_break = sched_nr_migrate_break,
b9403130 9729 .cpus = cpus,
0ec8aa00 9730 .fbq_type = all,
163122b7 9731 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9732 };
9733
65a4433a 9734 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9735
ae92882e 9736 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9737
9738redo:
23f0d209
JK
9739 if (!should_we_balance(&env)) {
9740 *continue_balancing = 0;
1e3c88bd 9741 goto out_balanced;
23f0d209 9742 }
1e3c88bd 9743
23f0d209 9744 group = find_busiest_group(&env);
1e3c88bd 9745 if (!group) {
ae92882e 9746 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9747 goto out_balanced;
9748 }
9749
b9403130 9750 busiest = find_busiest_queue(&env, group);
1e3c88bd 9751 if (!busiest) {
ae92882e 9752 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9753 goto out_balanced;
9754 }
9755
78feefc5 9756 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9757
ae92882e 9758 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9759
1aaf90a4
VG
9760 env.src_cpu = busiest->cpu;
9761 env.src_rq = busiest;
9762
1e3c88bd 9763 ld_moved = 0;
8a41dfcd
VG
9764 /* Clear this flag as soon as we find a pullable task */
9765 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9766 if (busiest->nr_running > 1) {
9767 /*
9768 * Attempt to move tasks. If find_busiest_group has found
9769 * an imbalance but busiest->nr_running <= 1, the group is
9770 * still unbalanced. ld_moved simply stays zero, so it is
9771 * correctly treated as an imbalance.
9772 */
c82513e5 9773 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9774
5d6523eb 9775more_balance:
8a8c69c3 9776 rq_lock_irqsave(busiest, &rf);
3bed5e21 9777 update_rq_clock(busiest);
88b8dac0
SV
9778
9779 /*
9780 * cur_ld_moved - load moved in current iteration
9781 * ld_moved - cumulative load moved across iterations
9782 */
163122b7 9783 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9784
9785 /*
163122b7
KT
9786 * We've detached some tasks from busiest_rq. Every
9787 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9788 * unlock busiest->lock, and we are able to be sure
9789 * that nobody can manipulate the tasks in parallel.
9790 * See task_rq_lock() family for the details.
1e3c88bd 9791 */
163122b7 9792
8a8c69c3 9793 rq_unlock(busiest, &rf);
163122b7
KT
9794
9795 if (cur_ld_moved) {
9796 attach_tasks(&env);
9797 ld_moved += cur_ld_moved;
9798 }
9799
8a8c69c3 9800 local_irq_restore(rf.flags);
88b8dac0 9801
f1cd0858
JK
9802 if (env.flags & LBF_NEED_BREAK) {
9803 env.flags &= ~LBF_NEED_BREAK;
9804 goto more_balance;
9805 }
9806
88b8dac0
SV
9807 /*
9808 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9809 * us and move them to an alternate dst_cpu in our sched_group
9810 * where they can run. The upper limit on how many times we
97fb7a0a 9811 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9812 * sched_group.
9813 *
9814 * This changes load balance semantics a bit on who can move
9815 * load to a given_cpu. In addition to the given_cpu itself
9816 * (or a ilb_cpu acting on its behalf where given_cpu is
9817 * nohz-idle), we now have balance_cpu in a position to move
9818 * load to given_cpu. In rare situations, this may cause
9819 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9820 * _independently_ and at _same_ time to move some load to
3b03706f 9821 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
9822 * This however should not happen so much in practice and
9823 * moreover subsequent load balance cycles should correct the
9824 * excess load moved.
9825 */
6263322c 9826 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9827
97fb7a0a 9828 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9829 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9830
78feefc5 9831 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9832 env.dst_cpu = env.new_dst_cpu;
6263322c 9833 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9834 env.loop = 0;
9835 env.loop_break = sched_nr_migrate_break;
e02e60c1 9836
88b8dac0
SV
9837 /*
9838 * Go back to "more_balance" rather than "redo" since we
9839 * need to continue with same src_cpu.
9840 */
9841 goto more_balance;
9842 }
1e3c88bd 9843
6263322c
PZ
9844 /*
9845 * We failed to reach balance because of affinity.
9846 */
9847 if (sd_parent) {
63b2ca30 9848 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9849
afdeee05 9850 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9851 *group_imbalance = 1;
6263322c
PZ
9852 }
9853
1e3c88bd 9854 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9855 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9856 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9857 /*
9858 * Attempting to continue load balancing at the current
9859 * sched_domain level only makes sense if there are
9860 * active CPUs remaining as possible busiest CPUs to
9861 * pull load from which are not contained within the
9862 * destination group that is receiving any migrated
9863 * load.
9864 */
9865 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9866 env.loop = 0;
9867 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9868 goto redo;
bbf18b19 9869 }
afdeee05 9870 goto out_all_pinned;
1e3c88bd
PZ
9871 }
9872 }
9873
9874 if (!ld_moved) {
ae92882e 9875 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9876 /*
9877 * Increment the failure counter only on periodic balance.
9878 * We do not want newidle balance, which can be very
9879 * frequent, pollute the failure counter causing
9880 * excessive cache_hot migrations and active balances.
9881 */
9882 if (idle != CPU_NEWLY_IDLE)
9883 sd->nr_balance_failed++;
1e3c88bd 9884
bd939f45 9885 if (need_active_balance(&env)) {
8a8c69c3
PZ
9886 unsigned long flags;
9887
5cb9eaa3 9888 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 9889
97fb7a0a
IM
9890 /*
9891 * Don't kick the active_load_balance_cpu_stop,
9892 * if the curr task on busiest CPU can't be
9893 * moved to this_cpu:
1e3c88bd 9894 */
3bd37062 9895 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 9896 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
9897 goto out_one_pinned;
9898 }
9899
8a41dfcd
VG
9900 /* Record that we found at least one task that could run on this_cpu */
9901 env.flags &= ~LBF_ALL_PINNED;
9902
969c7921
TH
9903 /*
9904 * ->active_balance synchronizes accesses to
9905 * ->active_balance_work. Once set, it's cleared
9906 * only after active load balance is finished.
9907 */
1e3c88bd
PZ
9908 if (!busiest->active_balance) {
9909 busiest->active_balance = 1;
9910 busiest->push_cpu = this_cpu;
9911 active_balance = 1;
9912 }
5cb9eaa3 9913 raw_spin_rq_unlock_irqrestore(busiest, flags);
969c7921 9914
bd939f45 9915 if (active_balance) {
969c7921
TH
9916 stop_one_cpu_nowait(cpu_of(busiest),
9917 active_load_balance_cpu_stop, busiest,
9918 &busiest->active_balance_work);
bd939f45 9919 }
1e3c88bd 9920 }
e9b9734b 9921 } else {
1e3c88bd 9922 sd->nr_balance_failed = 0;
e9b9734b 9923 }
1e3c88bd 9924
e9b9734b 9925 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
9926 /* We were unbalanced, so reset the balancing interval */
9927 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
9928 }
9929
1e3c88bd
PZ
9930 goto out;
9931
9932out_balanced:
afdeee05
VG
9933 /*
9934 * We reach balance although we may have faced some affinity
f6cad8df
VG
9935 * constraints. Clear the imbalance flag only if other tasks got
9936 * a chance to move and fix the imbalance.
afdeee05 9937 */
f6cad8df 9938 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9939 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9940
9941 if (*group_imbalance)
9942 *group_imbalance = 0;
9943 }
9944
9945out_all_pinned:
9946 /*
9947 * We reach balance because all tasks are pinned at this level so
9948 * we can't migrate them. Let the imbalance flag set so parent level
9949 * can try to migrate them.
9950 */
ae92882e 9951 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9952
9953 sd->nr_balance_failed = 0;
9954
9955out_one_pinned:
3f130a37
VS
9956 ld_moved = 0;
9957
9958 /*
5ba553ef
PZ
9959 * newidle_balance() disregards balance intervals, so we could
9960 * repeatedly reach this code, which would lead to balance_interval
3b03706f 9961 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 9962 * increase logic to avoid that.
3f130a37
VS
9963 */
9964 if (env.idle == CPU_NEWLY_IDLE)
9965 goto out;
9966
1e3c88bd 9967 /* tune up the balancing interval */
47b7aee1
VS
9968 if ((env.flags & LBF_ALL_PINNED &&
9969 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9970 sd->balance_interval < sd->max_interval)
1e3c88bd 9971 sd->balance_interval *= 2;
1e3c88bd 9972out:
1e3c88bd
PZ
9973 return ld_moved;
9974}
9975
52a08ef1
JL
9976static inline unsigned long
9977get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9978{
9979 unsigned long interval = sd->balance_interval;
9980
9981 if (cpu_busy)
9982 interval *= sd->busy_factor;
9983
9984 /* scale ms to jiffies */
9985 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9986
9987 /*
9988 * Reduce likelihood of busy balancing at higher domains racing with
9989 * balancing at lower domains by preventing their balancing periods
9990 * from being multiples of each other.
9991 */
9992 if (cpu_busy)
9993 interval -= 1;
9994
52a08ef1
JL
9995 interval = clamp(interval, 1UL, max_load_balance_interval);
9996
9997 return interval;
9998}
9999
10000static inline void
31851a98 10001update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
10002{
10003 unsigned long interval, next;
10004
31851a98
LY
10005 /* used by idle balance, so cpu_busy = 0 */
10006 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
10007 next = sd->last_balance + interval;
10008
10009 if (time_after(*next_balance, next))
10010 *next_balance = next;
10011}
10012
1e3c88bd 10013/*
97fb7a0a 10014 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
10015 * running tasks off the busiest CPU onto idle CPUs. It requires at
10016 * least 1 task to be running on each physical CPU where possible, and
10017 * avoids physical / logical imbalances.
1e3c88bd 10018 */
969c7921 10019static int active_load_balance_cpu_stop(void *data)
1e3c88bd 10020{
969c7921
TH
10021 struct rq *busiest_rq = data;
10022 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 10023 int target_cpu = busiest_rq->push_cpu;
969c7921 10024 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 10025 struct sched_domain *sd;
e5673f28 10026 struct task_struct *p = NULL;
8a8c69c3 10027 struct rq_flags rf;
969c7921 10028
8a8c69c3 10029 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
10030 /*
10031 * Between queueing the stop-work and running it is a hole in which
10032 * CPUs can become inactive. We should not move tasks from or to
10033 * inactive CPUs.
10034 */
10035 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10036 goto out_unlock;
969c7921 10037
97fb7a0a 10038 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
10039 if (unlikely(busiest_cpu != smp_processor_id() ||
10040 !busiest_rq->active_balance))
10041 goto out_unlock;
1e3c88bd
PZ
10042
10043 /* Is there any task to move? */
10044 if (busiest_rq->nr_running <= 1)
969c7921 10045 goto out_unlock;
1e3c88bd
PZ
10046
10047 /*
10048 * This condition is "impossible", if it occurs
10049 * we need to fix it. Originally reported by
97fb7a0a 10050 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
10051 */
10052 BUG_ON(busiest_rq == target_rq);
10053
1e3c88bd 10054 /* Search for an sd spanning us and the target CPU. */
dce840a0 10055 rcu_read_lock();
1e3c88bd 10056 for_each_domain(target_cpu, sd) {
e669ac8a
VS
10057 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10058 break;
1e3c88bd
PZ
10059 }
10060
10061 if (likely(sd)) {
8e45cb54
PZ
10062 struct lb_env env = {
10063 .sd = sd,
ddcdf6e7
PZ
10064 .dst_cpu = target_cpu,
10065 .dst_rq = target_rq,
10066 .src_cpu = busiest_rq->cpu,
10067 .src_rq = busiest_rq,
8e45cb54 10068 .idle = CPU_IDLE,
23fb06d9 10069 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
10070 };
10071
ae92882e 10072 schedstat_inc(sd->alb_count);
3bed5e21 10073 update_rq_clock(busiest_rq);
1e3c88bd 10074
e5673f28 10075 p = detach_one_task(&env);
d02c0711 10076 if (p) {
ae92882e 10077 schedstat_inc(sd->alb_pushed);
d02c0711
SD
10078 /* Active balancing done, reset the failure counter. */
10079 sd->nr_balance_failed = 0;
10080 } else {
ae92882e 10081 schedstat_inc(sd->alb_failed);
d02c0711 10082 }
1e3c88bd 10083 }
dce840a0 10084 rcu_read_unlock();
969c7921
TH
10085out_unlock:
10086 busiest_rq->active_balance = 0;
8a8c69c3 10087 rq_unlock(busiest_rq, &rf);
e5673f28
KT
10088
10089 if (p)
10090 attach_one_task(target_rq, p);
10091
10092 local_irq_enable();
10093
969c7921 10094 return 0;
1e3c88bd
PZ
10095}
10096
af3fe03c
PZ
10097static DEFINE_SPINLOCK(balancing);
10098
10099/*
10100 * Scale the max load_balance interval with the number of CPUs in the system.
10101 * This trades load-balance latency on larger machines for less cross talk.
10102 */
10103void update_max_interval(void)
10104{
10105 max_load_balance_interval = HZ*num_online_cpus()/10;
10106}
10107
10108/*
10109 * It checks each scheduling domain to see if it is due to be balanced,
10110 * and initiates a balancing operation if so.
10111 *
10112 * Balancing parameters are set up in init_sched_domains.
10113 */
10114static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10115{
10116 int continue_balancing = 1;
10117 int cpu = rq->cpu;
323af6de 10118 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10119 unsigned long interval;
10120 struct sched_domain *sd;
10121 /* Earliest time when we have to do rebalance again */
10122 unsigned long next_balance = jiffies + 60*HZ;
10123 int update_next_balance = 0;
10124 int need_serialize, need_decay = 0;
10125 u64 max_cost = 0;
10126
10127 rcu_read_lock();
10128 for_each_domain(cpu, sd) {
10129 /*
10130 * Decay the newidle max times here because this is a regular
10131 * visit to all the domains. Decay ~1% per second.
10132 */
10133 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10134 sd->max_newidle_lb_cost =
10135 (sd->max_newidle_lb_cost * 253) / 256;
10136 sd->next_decay_max_lb_cost = jiffies + HZ;
10137 need_decay = 1;
10138 }
10139 max_cost += sd->max_newidle_lb_cost;
10140
af3fe03c
PZ
10141 /*
10142 * Stop the load balance at this level. There is another
10143 * CPU in our sched group which is doing load balancing more
10144 * actively.
10145 */
10146 if (!continue_balancing) {
10147 if (need_decay)
10148 continue;
10149 break;
10150 }
10151
323af6de 10152 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10153
10154 need_serialize = sd->flags & SD_SERIALIZE;
10155 if (need_serialize) {
10156 if (!spin_trylock(&balancing))
10157 goto out;
10158 }
10159
10160 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10161 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10162 /*
10163 * The LBF_DST_PINNED logic could have changed
10164 * env->dst_cpu, so we can't know our idle
10165 * state even if we migrated tasks. Update it.
10166 */
10167 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10168 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10169 }
10170 sd->last_balance = jiffies;
323af6de 10171 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10172 }
10173 if (need_serialize)
10174 spin_unlock(&balancing);
10175out:
10176 if (time_after(next_balance, sd->last_balance + interval)) {
10177 next_balance = sd->last_balance + interval;
10178 update_next_balance = 1;
10179 }
10180 }
10181 if (need_decay) {
10182 /*
10183 * Ensure the rq-wide value also decays but keep it at a
10184 * reasonable floor to avoid funnies with rq->avg_idle.
10185 */
10186 rq->max_idle_balance_cost =
10187 max((u64)sysctl_sched_migration_cost, max_cost);
10188 }
10189 rcu_read_unlock();
10190
10191 /*
10192 * next_balance will be updated only when there is a need.
10193 * When the cpu is attached to null domain for ex, it will not be
10194 * updated.
10195 */
7a82e5f5 10196 if (likely(update_next_balance))
af3fe03c
PZ
10197 rq->next_balance = next_balance;
10198
af3fe03c
PZ
10199}
10200
d987fc7f
MG
10201static inline int on_null_domain(struct rq *rq)
10202{
10203 return unlikely(!rcu_dereference_sched(rq->sd));
10204}
10205
3451d024 10206#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10207/*
10208 * idle load balancing details
83cd4fe2
VP
10209 * - When one of the busy CPUs notice that there may be an idle rebalancing
10210 * needed, they will kick the idle load balancer, which then does idle
10211 * load balancing for all the idle CPUs.
9b019acb
NP
10212 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10213 * anywhere yet.
83cd4fe2 10214 */
1e3c88bd 10215
3dd0337d 10216static inline int find_new_ilb(void)
1e3c88bd 10217{
9b019acb 10218 int ilb;
1e3c88bd 10219
9b019acb
NP
10220 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10221 housekeeping_cpumask(HK_FLAG_MISC)) {
45da7a2b
PZ
10222
10223 if (ilb == smp_processor_id())
10224 continue;
10225
9b019acb
NP
10226 if (idle_cpu(ilb))
10227 return ilb;
10228 }
786d6dc7
SS
10229
10230 return nr_cpu_ids;
1e3c88bd 10231}
1e3c88bd 10232
83cd4fe2 10233/*
9b019acb
NP
10234 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10235 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10236 */
a4064fb6 10237static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10238{
10239 int ilb_cpu;
10240
3ea2f097
VG
10241 /*
10242 * Increase nohz.next_balance only when if full ilb is triggered but
10243 * not if we only update stats.
10244 */
10245 if (flags & NOHZ_BALANCE_KICK)
10246 nohz.next_balance = jiffies+1;
83cd4fe2 10247
3dd0337d 10248 ilb_cpu = find_new_ilb();
83cd4fe2 10249
0b005cf5
SS
10250 if (ilb_cpu >= nr_cpu_ids)
10251 return;
83cd4fe2 10252
19a1f5ec
PZ
10253 /*
10254 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10255 * the first flag owns it; cleared by nohz_csd_func().
10256 */
a4064fb6 10257 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10258 if (flags & NOHZ_KICK_MASK)
1c792db7 10259 return;
4550487a 10260
1c792db7 10261 /*
90b5363a 10262 * This way we generate an IPI on the target CPU which
1c792db7
SS
10263 * is idle. And the softirq performing nohz idle load balance
10264 * will be run before returning from the IPI.
10265 */
90b5363a 10266 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10267}
10268
10269/*
9f132742
VS
10270 * Current decision point for kicking the idle load balancer in the presence
10271 * of idle CPUs in the system.
4550487a
PZ
10272 */
10273static void nohz_balancer_kick(struct rq *rq)
10274{
10275 unsigned long now = jiffies;
10276 struct sched_domain_shared *sds;
10277 struct sched_domain *sd;
10278 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10279 unsigned int flags = 0;
4550487a
PZ
10280
10281 if (unlikely(rq->idle_balance))
10282 return;
10283
10284 /*
10285 * We may be recently in ticked or tickless idle mode. At the first
10286 * busy tick after returning from idle, we will update the busy stats.
10287 */
00357f5e 10288 nohz_balance_exit_idle(rq);
4550487a
PZ
10289
10290 /*
10291 * None are in tickless mode and hence no need for NOHZ idle load
10292 * balancing.
10293 */
10294 if (likely(!atomic_read(&nohz.nr_cpus)))
10295 return;
10296
f643ea22
VG
10297 if (READ_ONCE(nohz.has_blocked) &&
10298 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10299 flags = NOHZ_STATS_KICK;
10300
4550487a 10301 if (time_before(now, nohz.next_balance))
a4064fb6 10302 goto out;
4550487a 10303
a0fe2cf0 10304 if (rq->nr_running >= 2) {
a4064fb6 10305 flags = NOHZ_KICK_MASK;
4550487a
PZ
10306 goto out;
10307 }
10308
10309 rcu_read_lock();
4550487a
PZ
10310
10311 sd = rcu_dereference(rq->sd);
10312 if (sd) {
e25a7a94
VS
10313 /*
10314 * If there's a CFS task and the current CPU has reduced
10315 * capacity; kick the ILB to see if there's a better CPU to run
10316 * on.
10317 */
10318 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10319 flags = NOHZ_KICK_MASK;
4550487a
PZ
10320 goto unlock;
10321 }
10322 }
10323
011b27bb 10324 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10325 if (sd) {
b9a7b883
VS
10326 /*
10327 * When ASYM_PACKING; see if there's a more preferred CPU
10328 * currently idle; in which case, kick the ILB to move tasks
10329 * around.
10330 */
7edab78d 10331 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10332 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10333 flags = NOHZ_KICK_MASK;
4550487a
PZ
10334 goto unlock;
10335 }
10336 }
10337 }
b9a7b883 10338
a0fe2cf0
VS
10339 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10340 if (sd) {
10341 /*
10342 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10343 * to run the misfit task on.
10344 */
10345 if (check_misfit_status(rq, sd)) {
10346 flags = NOHZ_KICK_MASK;
10347 goto unlock;
10348 }
b9a7b883
VS
10349
10350 /*
10351 * For asymmetric systems, we do not want to nicely balance
10352 * cache use, instead we want to embrace asymmetry and only
10353 * ensure tasks have enough CPU capacity.
10354 *
10355 * Skip the LLC logic because it's not relevant in that case.
10356 */
10357 goto unlock;
a0fe2cf0
VS
10358 }
10359
b9a7b883
VS
10360 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10361 if (sds) {
e25a7a94 10362 /*
b9a7b883
VS
10363 * If there is an imbalance between LLC domains (IOW we could
10364 * increase the overall cache use), we need some less-loaded LLC
10365 * domain to pull some load. Likewise, we may need to spread
10366 * load within the current LLC domain (e.g. packed SMT cores but
10367 * other CPUs are idle). We can't really know from here how busy
10368 * the others are - so just get a nohz balance going if it looks
10369 * like this LLC domain has tasks we could move.
e25a7a94 10370 */
b9a7b883
VS
10371 nr_busy = atomic_read(&sds->nr_busy_cpus);
10372 if (nr_busy > 1) {
10373 flags = NOHZ_KICK_MASK;
10374 goto unlock;
4550487a
PZ
10375 }
10376 }
10377unlock:
10378 rcu_read_unlock();
10379out:
a4064fb6
PZ
10380 if (flags)
10381 kick_ilb(flags);
83cd4fe2
VP
10382}
10383
00357f5e 10384static void set_cpu_sd_state_busy(int cpu)
71325960 10385{
00357f5e 10386 struct sched_domain *sd;
a22e47a4 10387
00357f5e
PZ
10388 rcu_read_lock();
10389 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10390
00357f5e
PZ
10391 if (!sd || !sd->nohz_idle)
10392 goto unlock;
10393 sd->nohz_idle = 0;
10394
10395 atomic_inc(&sd->shared->nr_busy_cpus);
10396unlock:
10397 rcu_read_unlock();
71325960
SS
10398}
10399
00357f5e
PZ
10400void nohz_balance_exit_idle(struct rq *rq)
10401{
10402 SCHED_WARN_ON(rq != this_rq());
10403
10404 if (likely(!rq->nohz_tick_stopped))
10405 return;
10406
10407 rq->nohz_tick_stopped = 0;
10408 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10409 atomic_dec(&nohz.nr_cpus);
10410
10411 set_cpu_sd_state_busy(rq->cpu);
10412}
10413
10414static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10415{
10416 struct sched_domain *sd;
69e1e811 10417
69e1e811 10418 rcu_read_lock();
0e369d75 10419 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10420
10421 if (!sd || sd->nohz_idle)
10422 goto unlock;
10423 sd->nohz_idle = 1;
10424
0e369d75 10425 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10426unlock:
69e1e811
SS
10427 rcu_read_unlock();
10428}
10429
1e3c88bd 10430/*
97fb7a0a 10431 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10432 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10433 */
c1cc017c 10434void nohz_balance_enter_idle(int cpu)
1e3c88bd 10435{
00357f5e
PZ
10436 struct rq *rq = cpu_rq(cpu);
10437
10438 SCHED_WARN_ON(cpu != smp_processor_id());
10439
97fb7a0a 10440 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10441 if (!cpu_active(cpu))
10442 return;
10443
387bc8b5 10444 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10445 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10446 return;
10447
f643ea22
VG
10448 /*
10449 * Can be set safely without rq->lock held
10450 * If a clear happens, it will have evaluated last additions because
10451 * rq->lock is held during the check and the clear
10452 */
10453 rq->has_blocked_load = 1;
10454
10455 /*
10456 * The tick is still stopped but load could have been added in the
10457 * meantime. We set the nohz.has_blocked flag to trig a check of the
10458 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10459 * of nohz.has_blocked can only happen after checking the new load
10460 */
00357f5e 10461 if (rq->nohz_tick_stopped)
f643ea22 10462 goto out;
1e3c88bd 10463
97fb7a0a 10464 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10465 if (on_null_domain(rq))
d987fc7f
MG
10466 return;
10467
00357f5e
PZ
10468 rq->nohz_tick_stopped = 1;
10469
c1cc017c
AS
10470 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10471 atomic_inc(&nohz.nr_cpus);
00357f5e 10472
f643ea22
VG
10473 /*
10474 * Ensures that if nohz_idle_balance() fails to observe our
10475 * @idle_cpus_mask store, it must observe the @has_blocked
10476 * store.
10477 */
10478 smp_mb__after_atomic();
10479
00357f5e 10480 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10481
10482out:
10483 /*
10484 * Each time a cpu enter idle, we assume that it has blocked load and
10485 * enable the periodic update of the load of idle cpus
10486 */
10487 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10488}
1e3c88bd 10489
3f5ad914
Y
10490static bool update_nohz_stats(struct rq *rq)
10491{
10492 unsigned int cpu = rq->cpu;
10493
10494 if (!rq->has_blocked_load)
10495 return false;
10496
10497 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10498 return false;
10499
10500 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10501 return true;
10502
10503 update_blocked_averages(cpu);
10504
10505 return rq->has_blocked_load;
10506}
10507
1e3c88bd 10508/*
31e77c93
VG
10509 * Internal function that runs load balance for all idle cpus. The load balance
10510 * can be a simple update of blocked load or a complete load balance with
10511 * tasks movement depending of flags.
1e3c88bd 10512 */
ab2dde5e 10513static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10514 enum cpu_idle_type idle)
83cd4fe2 10515{
c5afb6a8 10516 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10517 unsigned long now = jiffies;
10518 unsigned long next_balance = now + 60*HZ;
f643ea22 10519 bool has_blocked_load = false;
c5afb6a8 10520 int update_next_balance = 0;
b7031a02 10521 int this_cpu = this_rq->cpu;
b7031a02
PZ
10522 int balance_cpu;
10523 struct rq *rq;
83cd4fe2 10524
b7031a02 10525 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10526
f643ea22
VG
10527 /*
10528 * We assume there will be no idle load after this update and clear
10529 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10530 * set the has_blocked flag and trig another update of idle load.
10531 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10532 * setting the flag, we are sure to not clear the state and not
10533 * check the load of an idle cpu.
10534 */
10535 WRITE_ONCE(nohz.has_blocked, 0);
10536
10537 /*
10538 * Ensures that if we miss the CPU, we must see the has_blocked
10539 * store from nohz_balance_enter_idle().
10540 */
10541 smp_mb();
10542
7a82e5f5
VG
10543 /*
10544 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10545 * chance for other idle cpu to pull load.
10546 */
10547 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10548 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10549 continue;
10550
10551 /*
97fb7a0a
IM
10552 * If this CPU gets work to do, stop the load balancing
10553 * work being done for other CPUs. Next load
83cd4fe2
VP
10554 * balancing owner will pick it up.
10555 */
f643ea22
VG
10556 if (need_resched()) {
10557 has_blocked_load = true;
10558 goto abort;
10559 }
83cd4fe2 10560
5ed4f1d9
VG
10561 rq = cpu_rq(balance_cpu);
10562
64f84f27 10563 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10564
ed61bbc6
TC
10565 /*
10566 * If time for next balance is due,
10567 * do the balance.
10568 */
10569 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10570 struct rq_flags rf;
10571
31e77c93 10572 rq_lock_irqsave(rq, &rf);
ed61bbc6 10573 update_rq_clock(rq);
31e77c93 10574 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10575
b7031a02
PZ
10576 if (flags & NOHZ_BALANCE_KICK)
10577 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10578 }
83cd4fe2 10579
c5afb6a8
VG
10580 if (time_after(next_balance, rq->next_balance)) {
10581 next_balance = rq->next_balance;
10582 update_next_balance = 1;
10583 }
83cd4fe2 10584 }
c5afb6a8 10585
3ea2f097
VG
10586 /*
10587 * next_balance will be updated only when there is a need.
10588 * When the CPU is attached to null domain for ex, it will not be
10589 * updated.
10590 */
10591 if (likely(update_next_balance))
10592 nohz.next_balance = next_balance;
10593
f643ea22
VG
10594 WRITE_ONCE(nohz.next_blocked,
10595 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10596
10597abort:
10598 /* There is still blocked load, enable periodic update */
10599 if (has_blocked_load)
10600 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10601}
10602
10603/*
10604 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10605 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10606 */
10607static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10608{
19a1f5ec 10609 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10610
19a1f5ec 10611 if (!flags)
31e77c93
VG
10612 return false;
10613
19a1f5ec 10614 this_rq->nohz_idle_balance = 0;
31e77c93 10615
19a1f5ec 10616 if (idle != CPU_IDLE)
31e77c93
VG
10617 return false;
10618
10619 _nohz_idle_balance(this_rq, flags, idle);
10620
b7031a02 10621 return true;
83cd4fe2 10622}
31e77c93 10623
c6f88654
VG
10624/*
10625 * Check if we need to run the ILB for updating blocked load before entering
10626 * idle state.
10627 */
10628void nohz_run_idle_balance(int cpu)
10629{
10630 unsigned int flags;
10631
10632 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10633
10634 /*
10635 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10636 * (ie NOHZ_STATS_KICK set) and will do the same.
10637 */
10638 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10639 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10640}
10641
31e77c93
VG
10642static void nohz_newidle_balance(struct rq *this_rq)
10643{
10644 int this_cpu = this_rq->cpu;
10645
10646 /*
10647 * This CPU doesn't want to be disturbed by scheduler
10648 * housekeeping
10649 */
10650 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10651 return;
10652
10653 /* Will wake up very soon. No time for doing anything else*/
10654 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10655 return;
10656
10657 /* Don't need to update blocked load of idle CPUs*/
10658 if (!READ_ONCE(nohz.has_blocked) ||
10659 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10660 return;
10661
31e77c93 10662 /*
c6f88654
VG
10663 * Set the need to trigger ILB in order to update blocked load
10664 * before entering idle state.
31e77c93 10665 */
c6f88654 10666 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10667}
10668
dd707247
PZ
10669#else /* !CONFIG_NO_HZ_COMMON */
10670static inline void nohz_balancer_kick(struct rq *rq) { }
10671
31e77c93 10672static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10673{
10674 return false;
10675}
31e77c93
VG
10676
10677static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10678#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10679
47ea5412 10680/*
5b78f2dc 10681 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10682 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10683 *
10684 * Returns:
10685 * < 0 - we released the lock and there are !fair tasks present
10686 * 0 - failed, no new tasks
10687 * > 0 - success, new (fair) tasks present
47ea5412 10688 */
d91cecc1 10689static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10690{
10691 unsigned long next_balance = jiffies + HZ;
10692 int this_cpu = this_rq->cpu;
10693 struct sched_domain *sd;
10694 int pulled_task = 0;
10695 u64 curr_cost = 0;
10696
5ba553ef 10697 update_misfit_status(NULL, this_rq);
e5e678e4
RR
10698
10699 /*
10700 * There is a task waiting to run. No need to search for one.
10701 * Return 0; the task will be enqueued when switching to idle.
10702 */
10703 if (this_rq->ttwu_pending)
10704 return 0;
10705
47ea5412
PZ
10706 /*
10707 * We must set idle_stamp _before_ calling idle_balance(), such that we
10708 * measure the duration of idle_balance() as idle time.
10709 */
10710 this_rq->idle_stamp = rq_clock(this_rq);
10711
10712 /*
10713 * Do not pull tasks towards !active CPUs...
10714 */
10715 if (!cpu_active(this_cpu))
10716 return 0;
10717
10718 /*
10719 * This is OK, because current is on_cpu, which avoids it being picked
10720 * for load-balance and preemption/IRQs are still disabled avoiding
10721 * further scheduler activity on it and we're being very careful to
10722 * re-start the picking loop.
10723 */
10724 rq_unpin_lock(this_rq, rf);
10725
10726 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10727 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10728
47ea5412
PZ
10729 rcu_read_lock();
10730 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10731 if (sd)
10732 update_next_balance(sd, &next_balance);
10733 rcu_read_unlock();
10734
10735 goto out;
10736 }
10737
5cb9eaa3 10738 raw_spin_rq_unlock(this_rq);
47ea5412
PZ
10739
10740 update_blocked_averages(this_cpu);
10741 rcu_read_lock();
10742 for_each_domain(this_cpu, sd) {
10743 int continue_balancing = 1;
10744 u64 t0, domain_cost;
10745
47ea5412
PZ
10746 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10747 update_next_balance(sd, &next_balance);
10748 break;
10749 }
10750
10751 if (sd->flags & SD_BALANCE_NEWIDLE) {
10752 t0 = sched_clock_cpu(this_cpu);
10753
10754 pulled_task = load_balance(this_cpu, this_rq,
10755 sd, CPU_NEWLY_IDLE,
10756 &continue_balancing);
10757
10758 domain_cost = sched_clock_cpu(this_cpu) - t0;
10759 if (domain_cost > sd->max_newidle_lb_cost)
10760 sd->max_newidle_lb_cost = domain_cost;
10761
10762 curr_cost += domain_cost;
10763 }
10764
10765 update_next_balance(sd, &next_balance);
10766
10767 /*
10768 * Stop searching for tasks to pull if there are
10769 * now runnable tasks on this rq.
10770 */
e5e678e4
RR
10771 if (pulled_task || this_rq->nr_running > 0 ||
10772 this_rq->ttwu_pending)
47ea5412
PZ
10773 break;
10774 }
10775 rcu_read_unlock();
10776
5cb9eaa3 10777 raw_spin_rq_lock(this_rq);
47ea5412
PZ
10778
10779 if (curr_cost > this_rq->max_idle_balance_cost)
10780 this_rq->max_idle_balance_cost = curr_cost;
10781
10782 /*
10783 * While browsing the domains, we released the rq lock, a task could
10784 * have been enqueued in the meantime. Since we're not going idle,
10785 * pretend we pulled a task.
10786 */
10787 if (this_rq->cfs.h_nr_running && !pulled_task)
10788 pulled_task = 1;
10789
47ea5412
PZ
10790 /* Is there a task of a high priority class? */
10791 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10792 pulled_task = -1;
10793
6553fc18
VG
10794out:
10795 /* Move the next balance forward */
10796 if (time_after(this_rq->next_balance, next_balance))
10797 this_rq->next_balance = next_balance;
10798
47ea5412
PZ
10799 if (pulled_task)
10800 this_rq->idle_stamp = 0;
0826530d
VG
10801 else
10802 nohz_newidle_balance(this_rq);
47ea5412
PZ
10803
10804 rq_repin_lock(this_rq, rf);
10805
10806 return pulled_task;
10807}
10808
83cd4fe2
VP
10809/*
10810 * run_rebalance_domains is triggered when needed from the scheduler tick.
10811 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10812 */
0766f788 10813static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10814{
208cb16b 10815 struct rq *this_rq = this_rq();
6eb57e0d 10816 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10817 CPU_IDLE : CPU_NOT_IDLE;
10818
1e3c88bd 10819 /*
97fb7a0a
IM
10820 * If this CPU has a pending nohz_balance_kick, then do the
10821 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10822 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10823 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10824 * load balance only within the local sched_domain hierarchy
10825 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10826 */
b7031a02
PZ
10827 if (nohz_idle_balance(this_rq, idle))
10828 return;
10829
10830 /* normal load balance */
10831 update_blocked_averages(this_rq->cpu);
d4573c3e 10832 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10833}
10834
1e3c88bd
PZ
10835/*
10836 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10837 */
7caff66f 10838void trigger_load_balance(struct rq *rq)
1e3c88bd 10839{
e0b257c3
AMB
10840 /*
10841 * Don't need to rebalance while attached to NULL domain or
10842 * runqueue CPU is not active
10843 */
10844 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10845 return;
10846
10847 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10848 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10849
10850 nohz_balancer_kick(rq);
1e3c88bd
PZ
10851}
10852
0bcdcf28
CE
10853static void rq_online_fair(struct rq *rq)
10854{
10855 update_sysctl();
0e59bdae
KT
10856
10857 update_runtime_enabled(rq);
0bcdcf28
CE
10858}
10859
10860static void rq_offline_fair(struct rq *rq)
10861{
10862 update_sysctl();
a4c96ae3
PB
10863
10864 /* Ensure any throttled groups are reachable by pick_next_task */
10865 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10866}
10867
55e12e5e 10868#endif /* CONFIG_SMP */
e1d1484f 10869
8039e96f
VP
10870#ifdef CONFIG_SCHED_CORE
10871static inline bool
10872__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10873{
10874 u64 slice = sched_slice(cfs_rq_of(se), se);
10875 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10876
10877 return (rtime * min_nr_tasks > slice);
10878}
10879
10880#define MIN_NR_TASKS_DURING_FORCEIDLE 2
10881static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10882{
10883 if (!sched_core_enabled(rq))
10884 return;
10885
10886 /*
10887 * If runqueue has only one task which used up its slice and
10888 * if the sibling is forced idle, then trigger schedule to
10889 * give forced idle task a chance.
10890 *
10891 * sched_slice() considers only this active rq and it gets the
10892 * whole slice. But during force idle, we have siblings acting
10893 * like a single runqueue and hence we need to consider runnable
cc00c198 10894 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 10895 * go through the forced idle rq, but that would be a perf hit.
cc00c198 10896 * We can assume that the forced idle CPU has at least
8039e96f 10897 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 10898 * if we need to give up the CPU.
8039e96f
VP
10899 */
10900 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10901 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10902 resched_curr(rq);
10903}
c6047c2e
JFG
10904
10905/*
10906 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10907 */
10908static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10909{
10910 for_each_sched_entity(se) {
10911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10912
10913 if (forceidle) {
10914 if (cfs_rq->forceidle_seq == fi_seq)
10915 break;
10916 cfs_rq->forceidle_seq = fi_seq;
10917 }
10918
10919 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10920 }
10921}
10922
10923void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10924{
10925 struct sched_entity *se = &p->se;
10926
10927 if (p->sched_class != &fair_sched_class)
10928 return;
10929
10930 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10931}
10932
10933bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10934{
10935 struct rq *rq = task_rq(a);
10936 struct sched_entity *sea = &a->se;
10937 struct sched_entity *seb = &b->se;
10938 struct cfs_rq *cfs_rqa;
10939 struct cfs_rq *cfs_rqb;
10940 s64 delta;
10941
10942 SCHED_WARN_ON(task_rq(b)->core != rq->core);
10943
10944#ifdef CONFIG_FAIR_GROUP_SCHED
10945 /*
10946 * Find an se in the hierarchy for tasks a and b, such that the se's
10947 * are immediate siblings.
10948 */
10949 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10950 int sea_depth = sea->depth;
10951 int seb_depth = seb->depth;
10952
10953 if (sea_depth >= seb_depth)
10954 sea = parent_entity(sea);
10955 if (sea_depth <= seb_depth)
10956 seb = parent_entity(seb);
10957 }
10958
10959 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10960 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10961
10962 cfs_rqa = sea->cfs_rq;
10963 cfs_rqb = seb->cfs_rq;
10964#else
10965 cfs_rqa = &task_rq(a)->cfs;
10966 cfs_rqb = &task_rq(b)->cfs;
10967#endif
10968
10969 /*
10970 * Find delta after normalizing se's vruntime with its cfs_rq's
10971 * min_vruntime_fi, which would have been updated in prior calls
10972 * to se_fi_update().
10973 */
10974 delta = (s64)(sea->vruntime - seb->vruntime) +
10975 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10976
10977 return delta > 0;
10978}
8039e96f
VP
10979#else
10980static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10981#endif
10982
bf0f6f24 10983/*
d84b3131
FW
10984 * scheduler tick hitting a task of our scheduling class.
10985 *
10986 * NOTE: This function can be called remotely by the tick offload that
10987 * goes along full dynticks. Therefore no local assumption can be made
10988 * and everything must be accessed through the @rq and @curr passed in
10989 * parameters.
bf0f6f24 10990 */
8f4d37ec 10991static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10992{
10993 struct cfs_rq *cfs_rq;
10994 struct sched_entity *se = &curr->se;
10995
10996 for_each_sched_entity(se) {
10997 cfs_rq = cfs_rq_of(se);
8f4d37ec 10998 entity_tick(cfs_rq, se, queued);
bf0f6f24 10999 }
18bf2805 11000
b52da86e 11001 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 11002 task_tick_numa(rq, curr);
3b1baa64
MR
11003
11004 update_misfit_status(curr, rq);
2802bf3c 11005 update_overutilized_status(task_rq(curr));
8039e96f
VP
11006
11007 task_tick_core(rq, curr);
bf0f6f24
IM
11008}
11009
11010/*
cd29fe6f
PZ
11011 * called on fork with the child task as argument from the parent's context
11012 * - child not yet on the tasklist
11013 * - preemption disabled
bf0f6f24 11014 */
cd29fe6f 11015static void task_fork_fair(struct task_struct *p)
bf0f6f24 11016{
4fc420c9
DN
11017 struct cfs_rq *cfs_rq;
11018 struct sched_entity *se = &p->se, *curr;
cd29fe6f 11019 struct rq *rq = this_rq();
8a8c69c3 11020 struct rq_flags rf;
bf0f6f24 11021
8a8c69c3 11022 rq_lock(rq, &rf);
861d034e
PZ
11023 update_rq_clock(rq);
11024
4fc420c9
DN
11025 cfs_rq = task_cfs_rq(current);
11026 curr = cfs_rq->curr;
e210bffd
PZ
11027 if (curr) {
11028 update_curr(cfs_rq);
b5d9d734 11029 se->vruntime = curr->vruntime;
e210bffd 11030 }
aeb73b04 11031 place_entity(cfs_rq, se, 1);
4d78e7b6 11032
cd29fe6f 11033 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 11034 /*
edcb60a3
IM
11035 * Upon rescheduling, sched_class::put_prev_task() will place
11036 * 'current' within the tree based on its new key value.
11037 */
4d78e7b6 11038 swap(curr->vruntime, se->vruntime);
8875125e 11039 resched_curr(rq);
4d78e7b6 11040 }
bf0f6f24 11041
88ec22d3 11042 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 11043 rq_unlock(rq, &rf);
bf0f6f24
IM
11044}
11045
cb469845
SR
11046/*
11047 * Priority of the task has changed. Check to see if we preempt
11048 * the current task.
11049 */
da7a735e
PZ
11050static void
11051prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 11052{
da0c1e65 11053 if (!task_on_rq_queued(p))
da7a735e
PZ
11054 return;
11055
7c2e8bbd
FW
11056 if (rq->cfs.nr_running == 1)
11057 return;
11058
cb469845
SR
11059 /*
11060 * Reschedule if we are currently running on this runqueue and
11061 * our priority decreased, or if we are not currently running on
11062 * this runqueue and our priority is higher than the current's
11063 */
65bcf072 11064 if (task_current(rq, p)) {
cb469845 11065 if (p->prio > oldprio)
8875125e 11066 resched_curr(rq);
cb469845 11067 } else
15afe09b 11068 check_preempt_curr(rq, p, 0);
cb469845
SR
11069}
11070
daa59407 11071static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
11072{
11073 struct sched_entity *se = &p->se;
da7a735e
PZ
11074
11075 /*
daa59407
BP
11076 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11077 * the dequeue_entity(.flags=0) will already have normalized the
11078 * vruntime.
11079 */
11080 if (p->on_rq)
11081 return true;
11082
11083 /*
11084 * When !on_rq, vruntime of the task has usually NOT been normalized.
11085 * But there are some cases where it has already been normalized:
da7a735e 11086 *
daa59407
BP
11087 * - A forked child which is waiting for being woken up by
11088 * wake_up_new_task().
11089 * - A task which has been woken up by try_to_wake_up() and
11090 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 11091 */
d0cdb3ce 11092 if (!se->sum_exec_runtime ||
2f064a59 11093 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
11094 return true;
11095
11096 return false;
11097}
11098
09a43ace
VG
11099#ifdef CONFIG_FAIR_GROUP_SCHED
11100/*
11101 * Propagate the changes of the sched_entity across the tg tree to make it
11102 * visible to the root
11103 */
11104static void propagate_entity_cfs_rq(struct sched_entity *se)
11105{
11106 struct cfs_rq *cfs_rq;
11107
0258bdfa
OU
11108 list_add_leaf_cfs_rq(cfs_rq_of(se));
11109
09a43ace
VG
11110 /* Start to propagate at parent */
11111 se = se->parent;
11112
11113 for_each_sched_entity(se) {
11114 cfs_rq = cfs_rq_of(se);
11115
0258bdfa
OU
11116 if (!cfs_rq_throttled(cfs_rq)){
11117 update_load_avg(cfs_rq, se, UPDATE_TG);
11118 list_add_leaf_cfs_rq(cfs_rq);
11119 continue;
11120 }
09a43ace 11121
0258bdfa
OU
11122 if (list_add_leaf_cfs_rq(cfs_rq))
11123 break;
09a43ace
VG
11124 }
11125}
11126#else
11127static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11128#endif
11129
df217913 11130static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 11131{
daa59407
BP
11132 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11133
9d89c257 11134 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 11135 update_load_avg(cfs_rq, se, 0);
a05e8c51 11136 detach_entity_load_avg(cfs_rq, se);
fe749158 11137 update_tg_load_avg(cfs_rq);
09a43ace 11138 propagate_entity_cfs_rq(se);
da7a735e
PZ
11139}
11140
df217913 11141static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 11142{
daa59407 11143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
11144
11145#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
11146 /*
11147 * Since the real-depth could have been changed (only FAIR
11148 * class maintain depth value), reset depth properly.
11149 */
11150 se->depth = se->parent ? se->parent->depth + 1 : 0;
11151#endif
7855a35a 11152
df217913 11153 /* Synchronize entity with its cfs_rq */
88c0616e 11154 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 11155 attach_entity_load_avg(cfs_rq, se);
fe749158 11156 update_tg_load_avg(cfs_rq);
09a43ace 11157 propagate_entity_cfs_rq(se);
df217913
VG
11158}
11159
11160static void detach_task_cfs_rq(struct task_struct *p)
11161{
11162 struct sched_entity *se = &p->se;
11163 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11164
11165 if (!vruntime_normalized(p)) {
11166 /*
11167 * Fix up our vruntime so that the current sleep doesn't
11168 * cause 'unlimited' sleep bonus.
11169 */
11170 place_entity(cfs_rq, se, 0);
11171 se->vruntime -= cfs_rq->min_vruntime;
11172 }
11173
11174 detach_entity_cfs_rq(se);
11175}
11176
11177static void attach_task_cfs_rq(struct task_struct *p)
11178{
11179 struct sched_entity *se = &p->se;
11180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11181
11182 attach_entity_cfs_rq(se);
daa59407
BP
11183
11184 if (!vruntime_normalized(p))
11185 se->vruntime += cfs_rq->min_vruntime;
11186}
6efdb105 11187
daa59407
BP
11188static void switched_from_fair(struct rq *rq, struct task_struct *p)
11189{
11190 detach_task_cfs_rq(p);
11191}
11192
11193static void switched_to_fair(struct rq *rq, struct task_struct *p)
11194{
11195 attach_task_cfs_rq(p);
7855a35a 11196
daa59407 11197 if (task_on_rq_queued(p)) {
7855a35a 11198 /*
daa59407
BP
11199 * We were most likely switched from sched_rt, so
11200 * kick off the schedule if running, otherwise just see
11201 * if we can still preempt the current task.
7855a35a 11202 */
65bcf072 11203 if (task_current(rq, p))
daa59407
BP
11204 resched_curr(rq);
11205 else
11206 check_preempt_curr(rq, p, 0);
7855a35a 11207 }
cb469845
SR
11208}
11209
83b699ed
SV
11210/* Account for a task changing its policy or group.
11211 *
11212 * This routine is mostly called to set cfs_rq->curr field when a task
11213 * migrates between groups/classes.
11214 */
a0e813f2 11215static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 11216{
03b7fad1
PZ
11217 struct sched_entity *se = &p->se;
11218
11219#ifdef CONFIG_SMP
11220 if (task_on_rq_queued(p)) {
11221 /*
11222 * Move the next running task to the front of the list, so our
11223 * cfs_tasks list becomes MRU one.
11224 */
11225 list_move(&se->group_node, &rq->cfs_tasks);
11226 }
11227#endif
83b699ed 11228
ec12cb7f
PT
11229 for_each_sched_entity(se) {
11230 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11231
11232 set_next_entity(cfs_rq, se);
11233 /* ensure bandwidth has been allocated on our new cfs_rq */
11234 account_cfs_rq_runtime(cfs_rq, 0);
11235 }
83b699ed
SV
11236}
11237
029632fb
PZ
11238void init_cfs_rq(struct cfs_rq *cfs_rq)
11239{
bfb06889 11240 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11241 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11242#ifndef CONFIG_64BIT
11243 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11244#endif
141965c7 11245#ifdef CONFIG_SMP
2a2f5d4e 11246 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11247#endif
029632fb
PZ
11248}
11249
810b3817 11250#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11251static void task_set_group_fair(struct task_struct *p)
11252{
11253 struct sched_entity *se = &p->se;
11254
11255 set_task_rq(p, task_cpu(p));
11256 se->depth = se->parent ? se->parent->depth + 1 : 0;
11257}
11258
bc54da21 11259static void task_move_group_fair(struct task_struct *p)
810b3817 11260{
daa59407 11261 detach_task_cfs_rq(p);
b2b5ce02 11262 set_task_rq(p, task_cpu(p));
6efdb105
BP
11263
11264#ifdef CONFIG_SMP
11265 /* Tell se's cfs_rq has been changed -- migrated */
11266 p->se.avg.last_update_time = 0;
11267#endif
daa59407 11268 attach_task_cfs_rq(p);
810b3817 11269}
029632fb 11270
ea86cb4b
VG
11271static void task_change_group_fair(struct task_struct *p, int type)
11272{
11273 switch (type) {
11274 case TASK_SET_GROUP:
11275 task_set_group_fair(p);
11276 break;
11277
11278 case TASK_MOVE_GROUP:
11279 task_move_group_fair(p);
11280 break;
11281 }
11282}
11283
029632fb
PZ
11284void free_fair_sched_group(struct task_group *tg)
11285{
11286 int i;
11287
11288 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11289
11290 for_each_possible_cpu(i) {
11291 if (tg->cfs_rq)
11292 kfree(tg->cfs_rq[i]);
6fe1f348 11293 if (tg->se)
029632fb
PZ
11294 kfree(tg->se[i]);
11295 }
11296
11297 kfree(tg->cfs_rq);
11298 kfree(tg->se);
11299}
11300
11301int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11302{
029632fb 11303 struct sched_entity *se;
b7fa30c9 11304 struct cfs_rq *cfs_rq;
029632fb
PZ
11305 int i;
11306
6396bb22 11307 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11308 if (!tg->cfs_rq)
11309 goto err;
6396bb22 11310 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11311 if (!tg->se)
11312 goto err;
11313
11314 tg->shares = NICE_0_LOAD;
11315
11316 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11317
11318 for_each_possible_cpu(i) {
11319 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11320 GFP_KERNEL, cpu_to_node(i));
11321 if (!cfs_rq)
11322 goto err;
11323
11324 se = kzalloc_node(sizeof(struct sched_entity),
11325 GFP_KERNEL, cpu_to_node(i));
11326 if (!se)
11327 goto err_free_rq;
11328
11329 init_cfs_rq(cfs_rq);
11330 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11331 init_entity_runnable_average(se);
029632fb
PZ
11332 }
11333
11334 return 1;
11335
11336err_free_rq:
11337 kfree(cfs_rq);
11338err:
11339 return 0;
11340}
11341
8663e24d
PZ
11342void online_fair_sched_group(struct task_group *tg)
11343{
11344 struct sched_entity *se;
a46d14ec 11345 struct rq_flags rf;
8663e24d
PZ
11346 struct rq *rq;
11347 int i;
11348
11349 for_each_possible_cpu(i) {
11350 rq = cpu_rq(i);
11351 se = tg->se[i];
a46d14ec 11352 rq_lock_irq(rq, &rf);
4126bad6 11353 update_rq_clock(rq);
d0326691 11354 attach_entity_cfs_rq(se);
55e16d30 11355 sync_throttle(tg, i);
a46d14ec 11356 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11357 }
11358}
11359
6fe1f348 11360void unregister_fair_sched_group(struct task_group *tg)
029632fb 11361{
029632fb 11362 unsigned long flags;
6fe1f348
PZ
11363 struct rq *rq;
11364 int cpu;
029632fb 11365
6fe1f348
PZ
11366 for_each_possible_cpu(cpu) {
11367 if (tg->se[cpu])
11368 remove_entity_load_avg(tg->se[cpu]);
029632fb 11369
6fe1f348
PZ
11370 /*
11371 * Only empty task groups can be destroyed; so we can speculatively
11372 * check on_list without danger of it being re-added.
11373 */
11374 if (!tg->cfs_rq[cpu]->on_list)
11375 continue;
11376
11377 rq = cpu_rq(cpu);
11378
5cb9eaa3 11379 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 11380 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 11381 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 11382 }
029632fb
PZ
11383}
11384
11385void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11386 struct sched_entity *se, int cpu,
11387 struct sched_entity *parent)
11388{
11389 struct rq *rq = cpu_rq(cpu);
11390
11391 cfs_rq->tg = tg;
11392 cfs_rq->rq = rq;
029632fb
PZ
11393 init_cfs_rq_runtime(cfs_rq);
11394
11395 tg->cfs_rq[cpu] = cfs_rq;
11396 tg->se[cpu] = se;
11397
11398 /* se could be NULL for root_task_group */
11399 if (!se)
11400 return;
11401
fed14d45 11402 if (!parent) {
029632fb 11403 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11404 se->depth = 0;
11405 } else {
029632fb 11406 se->cfs_rq = parent->my_q;
fed14d45
PZ
11407 se->depth = parent->depth + 1;
11408 }
029632fb
PZ
11409
11410 se->my_q = cfs_rq;
0ac9b1c2
PT
11411 /* guarantee group entities always have weight */
11412 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11413 se->parent = parent;
11414}
11415
11416static DEFINE_MUTEX(shares_mutex);
11417
11418int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11419{
11420 int i;
029632fb
PZ
11421
11422 /*
11423 * We can't change the weight of the root cgroup.
11424 */
11425 if (!tg->se[0])
11426 return -EINVAL;
11427
11428 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11429
11430 mutex_lock(&shares_mutex);
11431 if (tg->shares == shares)
11432 goto done;
11433
11434 tg->shares = shares;
11435 for_each_possible_cpu(i) {
11436 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11437 struct sched_entity *se = tg->se[i];
11438 struct rq_flags rf;
029632fb 11439
029632fb 11440 /* Propagate contribution to hierarchy */
8a8c69c3 11441 rq_lock_irqsave(rq, &rf);
71b1da46 11442 update_rq_clock(rq);
89ee048f 11443 for_each_sched_entity(se) {
88c0616e 11444 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11445 update_cfs_group(se);
89ee048f 11446 }
8a8c69c3 11447 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11448 }
11449
11450done:
11451 mutex_unlock(&shares_mutex);
11452 return 0;
11453}
11454#else /* CONFIG_FAIR_GROUP_SCHED */
11455
11456void free_fair_sched_group(struct task_group *tg) { }
11457
11458int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11459{
11460 return 1;
11461}
11462
8663e24d
PZ
11463void online_fair_sched_group(struct task_group *tg) { }
11464
6fe1f348 11465void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11466
11467#endif /* CONFIG_FAIR_GROUP_SCHED */
11468
810b3817 11469
6d686f45 11470static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11471{
11472 struct sched_entity *se = &task->se;
0d721cea
PW
11473 unsigned int rr_interval = 0;
11474
11475 /*
11476 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11477 * idle runqueue:
11478 */
0d721cea 11479 if (rq->cfs.load.weight)
a59f4e07 11480 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11481
11482 return rr_interval;
11483}
11484
bf0f6f24
IM
11485/*
11486 * All the scheduling class methods:
11487 */
43c31ac0
PZ
11488DEFINE_SCHED_CLASS(fair) = {
11489
bf0f6f24
IM
11490 .enqueue_task = enqueue_task_fair,
11491 .dequeue_task = dequeue_task_fair,
11492 .yield_task = yield_task_fair,
d95f4122 11493 .yield_to_task = yield_to_task_fair,
bf0f6f24 11494
2e09bf55 11495 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11496
98c2f700 11497 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11498 .put_prev_task = put_prev_task_fair,
03b7fad1 11499 .set_next_task = set_next_task_fair,
bf0f6f24 11500
681f3e68 11501#ifdef CONFIG_SMP
6e2df058 11502 .balance = balance_fair,
21f56ffe 11503 .pick_task = pick_task_fair,
4ce72a2c 11504 .select_task_rq = select_task_rq_fair,
0a74bef8 11505 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11506
0bcdcf28
CE
11507 .rq_online = rq_online_fair,
11508 .rq_offline = rq_offline_fair,
88ec22d3 11509
12695578 11510 .task_dead = task_dead_fair,
c5b28038 11511 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11512#endif
bf0f6f24 11513
bf0f6f24 11514 .task_tick = task_tick_fair,
cd29fe6f 11515 .task_fork = task_fork_fair,
cb469845
SR
11516
11517 .prio_changed = prio_changed_fair,
da7a735e 11518 .switched_from = switched_from_fair,
cb469845 11519 .switched_to = switched_to_fair,
810b3817 11520
0d721cea
PW
11521 .get_rr_interval = get_rr_interval_fair,
11522
6e998916
SG
11523 .update_curr = update_curr_fair,
11524
810b3817 11525#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11526 .task_change_group = task_change_group_fair,
810b3817 11527#endif
982d9cdc
PB
11528
11529#ifdef CONFIG_UCLAMP_TASK
11530 .uclamp_enabled = 1,
11531#endif
bf0f6f24
IM
11532};
11533
11534#ifdef CONFIG_SCHED_DEBUG
029632fb 11535void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11536{
039ae8bc 11537 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11538
5973e5b9 11539 rcu_read_lock();
039ae8bc 11540 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11541 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11542 rcu_read_unlock();
bf0f6f24 11543}
397f2378
SD
11544
11545#ifdef CONFIG_NUMA_BALANCING
11546void show_numa_stats(struct task_struct *p, struct seq_file *m)
11547{
11548 int node;
11549 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11550 struct numa_group *ng;
397f2378 11551
cb361d8c
JH
11552 rcu_read_lock();
11553 ng = rcu_dereference(p->numa_group);
397f2378
SD
11554 for_each_online_node(node) {
11555 if (p->numa_faults) {
11556 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11557 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11558 }
cb361d8c
JH
11559 if (ng) {
11560 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11561 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11562 }
11563 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11564 }
cb361d8c 11565 rcu_read_unlock();
397f2378
SD
11566}
11567#endif /* CONFIG_NUMA_BALANCING */
11568#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11569
11570__init void init_sched_fair_class(void)
11571{
11572#ifdef CONFIG_SMP
11573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11574
3451d024 11575#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11576 nohz.next_balance = jiffies;
f643ea22 11577 nohz.next_blocked = jiffies;
029632fb 11578 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11579#endif
11580#endif /* SMP */
11581
11582}
3c93a0c0
QY
11583
11584/*
11585 * Helper functions to facilitate extracting info from tracepoints.
11586 */
11587
11588const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11589{
11590#ifdef CONFIG_SMP
11591 return cfs_rq ? &cfs_rq->avg : NULL;
11592#else
11593 return NULL;
11594#endif
11595}
11596EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11597
11598char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11599{
11600 if (!cfs_rq) {
11601 if (str)
11602 strlcpy(str, "(null)", len);
11603 else
11604 return NULL;
11605 }
11606
11607 cfs_rq_tg_path(cfs_rq, str, len);
11608 return str;
11609}
11610EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11611
11612int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11613{
11614 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11615}
11616EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11617
11618const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11619{
11620#ifdef CONFIG_SMP
11621 return rq ? &rq->avg_rt : NULL;
11622#else
11623 return NULL;
11624#endif
11625}
11626EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11627
11628const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11629{
11630#ifdef CONFIG_SMP
11631 return rq ? &rq->avg_dl : NULL;
11632#else
11633 return NULL;
11634#endif
11635}
11636EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11637
11638const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11639{
11640#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11641 return rq ? &rq->avg_irq : NULL;
11642#else
11643 return NULL;
11644#endif
11645}
11646EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11647
11648int sched_trace_rq_cpu(struct rq *rq)
11649{
11650 return rq ? cpu_of(rq) : -1;
11651}
11652EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11653
51cf18c9
VD
11654int sched_trace_rq_cpu_capacity(struct rq *rq)
11655{
11656 return rq ?
11657#ifdef CONFIG_SMP
11658 rq->cpu_capacity
11659#else
11660 SCHED_CAPACITY_SCALE
11661#endif
11662 : -1;
11663}
11664EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11665
3c93a0c0
QY
11666const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11667{
11668#ifdef CONFIG_SMP
11669 return rd ? rd->span : NULL;
11670#else
11671 return NULL;
11672#endif
11673}
11674EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11675
11676int sched_trace_rq_nr_running(struct rq *rq)
11677{
11678 return rq ? rq->nr_running : -1;
11679}
11680EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);