Merge tag 'staging-5.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
60e17f5c 99 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
100 *
101 * (default: ~20%)
102 */
60e17f5c
VK
103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
2eeb01a2 232 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 233
9dbdb155
PZ
234 while (fact >> 32) {
235 fact >>= 1;
236 shift--;
237 }
029632fb 238
9dbdb155 239 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
240}
241
242
243const struct sched_class fair_sched_class;
a4c2f00f 244
bf0f6f24
IM
245/**************************************************************
246 * CFS operations on generic schedulable entities:
247 */
248
62160e3f 249#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
250static inline struct task_struct *task_of(struct sched_entity *se)
251{
9148a3a1 252 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
253 return container_of(se, struct task_struct, se);
254}
255
b758149c
PZ
256/* Walk up scheduling entities hierarchy */
257#define for_each_sched_entity(se) \
258 for (; se; se = se->parent)
259
260static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
261{
262 return p->se.cfs_rq;
263}
264
265/* runqueue on which this entity is (to be) queued */
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 return se->cfs_rq;
269}
270
271/* runqueue "owned" by this group */
272static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
273{
274 return grp->my_q;
275}
276
3c93a0c0
QY
277static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
278{
279 if (!path)
280 return;
281
282 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
283 autogroup_path(cfs_rq->tg, path, len);
284 else if (cfs_rq && cfs_rq->tg->css.cgroup)
285 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
286 else
287 strlcpy(path, "(null)", len);
288}
289
f6783319 290static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 291{
5d299eab
PZ
292 struct rq *rq = rq_of(cfs_rq);
293 int cpu = cpu_of(rq);
294
295 if (cfs_rq->on_list)
f6783319 296 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
297
298 cfs_rq->on_list = 1;
299
300 /*
301 * Ensure we either appear before our parent (if already
302 * enqueued) or force our parent to appear after us when it is
303 * enqueued. The fact that we always enqueue bottom-up
304 * reduces this to two cases and a special case for the root
305 * cfs_rq. Furthermore, it also means that we will always reset
306 * tmp_alone_branch either when the branch is connected
307 * to a tree or when we reach the top of the tree
308 */
309 if (cfs_rq->tg->parent &&
310 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 311 /*
5d299eab
PZ
312 * If parent is already on the list, we add the child
313 * just before. Thanks to circular linked property of
314 * the list, this means to put the child at the tail
315 * of the list that starts by parent.
67e86250 316 */
5d299eab
PZ
317 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
318 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
319 /*
320 * The branch is now connected to its tree so we can
321 * reset tmp_alone_branch to the beginning of the
322 * list.
323 */
324 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 325 return true;
5d299eab 326 }
3d4b47b4 327
5d299eab
PZ
328 if (!cfs_rq->tg->parent) {
329 /*
330 * cfs rq without parent should be put
331 * at the tail of the list.
332 */
333 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
334 &rq->leaf_cfs_rq_list);
335 /*
336 * We have reach the top of a tree so we can reset
337 * tmp_alone_branch to the beginning of the list.
338 */
339 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 340 return true;
3d4b47b4 341 }
5d299eab
PZ
342
343 /*
344 * The parent has not already been added so we want to
345 * make sure that it will be put after us.
346 * tmp_alone_branch points to the begin of the branch
347 * where we will add parent.
348 */
349 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
350 /*
351 * update tmp_alone_branch to points to the new begin
352 * of the branch
353 */
354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 355 return false;
3d4b47b4
PZ
356}
357
358static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
359{
360 if (cfs_rq->on_list) {
31bc6aea
VG
361 struct rq *rq = rq_of(cfs_rq);
362
363 /*
364 * With cfs_rq being unthrottled/throttled during an enqueue,
365 * it can happen the tmp_alone_branch points the a leaf that
366 * we finally want to del. In this case, tmp_alone_branch moves
367 * to the prev element but it will point to rq->leaf_cfs_rq_list
368 * at the end of the enqueue.
369 */
370 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
371 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
372
3d4b47b4
PZ
373 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
374 cfs_rq->on_list = 0;
375 }
376}
377
5d299eab
PZ
378static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379{
380 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
381}
382
039ae8bc
VG
383/* Iterate thr' all leaf cfs_rq's on a runqueue */
384#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
385 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
386 leaf_cfs_rq_list)
b758149c
PZ
387
388/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 389static inline struct cfs_rq *
b758149c
PZ
390is_same_group(struct sched_entity *se, struct sched_entity *pse)
391{
392 if (se->cfs_rq == pse->cfs_rq)
fed14d45 393 return se->cfs_rq;
b758149c 394
fed14d45 395 return NULL;
b758149c
PZ
396}
397
398static inline struct sched_entity *parent_entity(struct sched_entity *se)
399{
400 return se->parent;
401}
402
464b7527
PZ
403static void
404find_matching_se(struct sched_entity **se, struct sched_entity **pse)
405{
406 int se_depth, pse_depth;
407
408 /*
409 * preemption test can be made between sibling entities who are in the
410 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
411 * both tasks until we find their ancestors who are siblings of common
412 * parent.
413 */
414
415 /* First walk up until both entities are at same depth */
fed14d45
PZ
416 se_depth = (*se)->depth;
417 pse_depth = (*pse)->depth;
464b7527
PZ
418
419 while (se_depth > pse_depth) {
420 se_depth--;
421 *se = parent_entity(*se);
422 }
423
424 while (pse_depth > se_depth) {
425 pse_depth--;
426 *pse = parent_entity(*pse);
427 }
428
429 while (!is_same_group(*se, *pse)) {
430 *se = parent_entity(*se);
431 *pse = parent_entity(*pse);
432 }
433}
434
8f48894f
PZ
435#else /* !CONFIG_FAIR_GROUP_SCHED */
436
437static inline struct task_struct *task_of(struct sched_entity *se)
438{
439 return container_of(se, struct task_struct, se);
440}
bf0f6f24 441
b758149c
PZ
442#define for_each_sched_entity(se) \
443 for (; se; se = NULL)
bf0f6f24 444
b758149c 445static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 446{
b758149c 447 return &task_rq(p)->cfs;
bf0f6f24
IM
448}
449
b758149c
PZ
450static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
451{
452 struct task_struct *p = task_of(se);
453 struct rq *rq = task_rq(p);
454
455 return &rq->cfs;
456}
457
458/* runqueue "owned" by this group */
459static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
460{
461 return NULL;
462}
463
3c93a0c0
QY
464static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465{
466 if (path)
467 strlcpy(path, "(null)", len);
468}
469
f6783319 470static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 471{
f6783319 472 return true;
3d4b47b4
PZ
473}
474
475static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476{
477}
478
5d299eab
PZ
479static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480{
481}
482
039ae8bc
VG
483#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 485
b758149c
PZ
486static inline struct sched_entity *parent_entity(struct sched_entity *se)
487{
488 return NULL;
489}
490
464b7527
PZ
491static inline void
492find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493{
494}
495
b758149c
PZ
496#endif /* CONFIG_FAIR_GROUP_SCHED */
497
6c16a6dc 498static __always_inline
9dbdb155 499void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
500
501/**************************************************************
502 * Scheduling class tree data structure manipulation methods:
503 */
504
1bf08230 505static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 506{
1bf08230 507 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 508 if (delta > 0)
1bf08230 509 max_vruntime = vruntime;
02e0431a 510
1bf08230 511 return max_vruntime;
02e0431a
PZ
512}
513
0702e3eb 514static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
515{
516 s64 delta = (s64)(vruntime - min_vruntime);
517 if (delta < 0)
518 min_vruntime = vruntime;
519
520 return min_vruntime;
521}
522
54fdc581
FC
523static inline int entity_before(struct sched_entity *a,
524 struct sched_entity *b)
525{
526 return (s64)(a->vruntime - b->vruntime) < 0;
527}
528
1af5f730
PZ
529static void update_min_vruntime(struct cfs_rq *cfs_rq)
530{
b60205c7 531 struct sched_entity *curr = cfs_rq->curr;
bfb06889 532 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 533
1af5f730
PZ
534 u64 vruntime = cfs_rq->min_vruntime;
535
b60205c7
PZ
536 if (curr) {
537 if (curr->on_rq)
538 vruntime = curr->vruntime;
539 else
540 curr = NULL;
541 }
1af5f730 542
bfb06889
DB
543 if (leftmost) { /* non-empty tree */
544 struct sched_entity *se;
545 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 546
b60205c7 547 if (!curr)
1af5f730
PZ
548 vruntime = se->vruntime;
549 else
550 vruntime = min_vruntime(vruntime, se->vruntime);
551 }
552
1bf08230 553 /* ensure we never gain time by being placed backwards. */
1af5f730 554 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
555#ifndef CONFIG_64BIT
556 smp_wmb();
557 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
558#endif
1af5f730
PZ
559}
560
bf0f6f24
IM
561/*
562 * Enqueue an entity into the rb-tree:
563 */
0702e3eb 564static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 565{
bfb06889 566 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
567 struct rb_node *parent = NULL;
568 struct sched_entity *entry;
bfb06889 569 bool leftmost = true;
bf0f6f24
IM
570
571 /*
572 * Find the right place in the rbtree:
573 */
574 while (*link) {
575 parent = *link;
576 entry = rb_entry(parent, struct sched_entity, run_node);
577 /*
578 * We dont care about collisions. Nodes with
579 * the same key stay together.
580 */
2bd2d6f2 581 if (entity_before(se, entry)) {
bf0f6f24
IM
582 link = &parent->rb_left;
583 } else {
584 link = &parent->rb_right;
bfb06889 585 leftmost = false;
bf0f6f24
IM
586 }
587 }
588
bf0f6f24 589 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
590 rb_insert_color_cached(&se->run_node,
591 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
592}
593
0702e3eb 594static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 595{
bfb06889 596 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
597}
598
029632fb 599struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 600{
bfb06889 601 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
602
603 if (!left)
604 return NULL;
605
606 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
607}
608
ac53db59
RR
609static struct sched_entity *__pick_next_entity(struct sched_entity *se)
610{
611 struct rb_node *next = rb_next(&se->run_node);
612
613 if (!next)
614 return NULL;
615
616 return rb_entry(next, struct sched_entity, run_node);
617}
618
619#ifdef CONFIG_SCHED_DEBUG
029632fb 620struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 621{
bfb06889 622 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 623
70eee74b
BS
624 if (!last)
625 return NULL;
7eee3e67
IM
626
627 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
628}
629
bf0f6f24
IM
630/**************************************************************
631 * Scheduling class statistics methods:
632 */
633
acb4a848 634int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 635 void __user *buffer, size_t *lenp,
b2be5e96
PZ
636 loff_t *ppos)
637{
8d65af78 638 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 639 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
640
641 if (ret || !write)
642 return ret;
643
644 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
645 sysctl_sched_min_granularity);
646
acb4a848
CE
647#define WRT_SYSCTL(name) \
648 (normalized_sysctl_##name = sysctl_##name / (factor))
649 WRT_SYSCTL(sched_min_granularity);
650 WRT_SYSCTL(sched_latency);
651 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
652#undef WRT_SYSCTL
653
b2be5e96
PZ
654 return 0;
655}
656#endif
647e7cac 657
a7be37ac 658/*
f9c0b095 659 * delta /= w
a7be37ac 660 */
9dbdb155 661static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 662{
f9c0b095 663 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 664 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
665
666 return delta;
667}
668
647e7cac
IM
669/*
670 * The idea is to set a period in which each task runs once.
671 *
532b1858 672 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
673 * this period because otherwise the slices get too small.
674 *
675 * p = (nr <= nl) ? l : l*nr/nl
676 */
4d78e7b6
PZ
677static u64 __sched_period(unsigned long nr_running)
678{
8e2b0bf3
BF
679 if (unlikely(nr_running > sched_nr_latency))
680 return nr_running * sysctl_sched_min_granularity;
681 else
682 return sysctl_sched_latency;
4d78e7b6
PZ
683}
684
647e7cac
IM
685/*
686 * We calculate the wall-time slice from the period by taking a part
687 * proportional to the weight.
688 *
f9c0b095 689 * s = p*P[w/rw]
647e7cac 690 */
6d0f0ebd 691static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 692{
0a582440 693 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 694
0a582440 695 for_each_sched_entity(se) {
6272d68c 696 struct load_weight *load;
3104bf03 697 struct load_weight lw;
6272d68c
LM
698
699 cfs_rq = cfs_rq_of(se);
700 load = &cfs_rq->load;
f9c0b095 701
0a582440 702 if (unlikely(!se->on_rq)) {
3104bf03 703 lw = cfs_rq->load;
0a582440
MG
704
705 update_load_add(&lw, se->load.weight);
706 load = &lw;
707 }
9dbdb155 708 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
709 }
710 return slice;
bf0f6f24
IM
711}
712
647e7cac 713/*
660cc00f 714 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 715 *
f9c0b095 716 * vs = s/w
647e7cac 717 */
f9c0b095 718static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 719{
f9c0b095 720 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
721}
722
c0796298 723#include "pelt.h"
23127296 724#ifdef CONFIG_SMP
283e2ed3 725
772bd008 726static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 727static unsigned long task_h_load(struct task_struct *p);
3b1baa64 728static unsigned long capacity_of(int cpu);
fb13c7ee 729
540247fb
YD
730/* Give new sched_entity start runnable values to heavy its load in infant time */
731void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 732{
540247fb 733 struct sched_avg *sa = &se->avg;
a75cdaa9 734
f207934f
PZ
735 memset(sa, 0, sizeof(*sa));
736
b5a9b340 737 /*
dfcb245e 738 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 739 * they get a chance to stabilize to their real load level.
dfcb245e 740 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
741 * nothing has been attached to the task group yet.
742 */
743 if (entity_is_task(se))
1ea6c46a 744 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 745
f207934f
PZ
746 se->runnable_weight = se->load.weight;
747
9d89c257 748 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 749}
7ea241af 750
df217913 751static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 752
2b8c41da
YD
753/*
754 * With new tasks being created, their initial util_avgs are extrapolated
755 * based on the cfs_rq's current util_avg:
756 *
757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
758 *
759 * However, in many cases, the above util_avg does not give a desired
760 * value. Moreover, the sum of the util_avgs may be divergent, such
761 * as when the series is a harmonic series.
762 *
763 * To solve this problem, we also cap the util_avg of successive tasks to
764 * only 1/2 of the left utilization budget:
765 *
8fe5c5a9 766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 767 *
8fe5c5a9 768 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 769 *
8fe5c5a9
QP
770 * For example, for a CPU with 1024 of capacity, a simplest series from
771 * the beginning would be like:
2b8c41da
YD
772 *
773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
775 *
776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
777 * if util_avg > util_avg_cap.
778 */
d0fe0b9c 779void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 780{
d0fe0b9c 781 struct sched_entity *se = &p->se;
2b8c41da
YD
782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
783 struct sched_avg *sa = &se->avg;
8ec59c0f 784 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 785 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
786
787 if (cap > 0) {
788 if (cfs_rq->avg.util_avg != 0) {
789 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
790 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
791
792 if (sa->util_avg > cap)
793 sa->util_avg = cap;
794 } else {
795 sa->util_avg = cap;
796 }
2b8c41da 797 }
7dc603c9 798
d0fe0b9c
DE
799 if (p->sched_class != &fair_sched_class) {
800 /*
801 * For !fair tasks do:
802 *
803 update_cfs_rq_load_avg(now, cfs_rq);
804 attach_entity_load_avg(cfs_rq, se, 0);
805 switched_from_fair(rq, p);
806 *
807 * such that the next switched_to_fair() has the
808 * expected state.
809 */
810 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
811 return;
7dc603c9
PZ
812 }
813
df217913 814 attach_entity_cfs_rq(se);
2b8c41da
YD
815}
816
7dc603c9 817#else /* !CONFIG_SMP */
540247fb 818void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
819{
820}
d0fe0b9c 821void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
822{
823}
3d30544f
PZ
824static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
825{
826}
7dc603c9 827#endif /* CONFIG_SMP */
a75cdaa9 828
bf0f6f24 829/*
9dbdb155 830 * Update the current task's runtime statistics.
bf0f6f24 831 */
b7cc0896 832static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 833{
429d43bc 834 struct sched_entity *curr = cfs_rq->curr;
78becc27 835 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 836 u64 delta_exec;
bf0f6f24
IM
837
838 if (unlikely(!curr))
839 return;
840
9dbdb155
PZ
841 delta_exec = now - curr->exec_start;
842 if (unlikely((s64)delta_exec <= 0))
34f28ecd 843 return;
bf0f6f24 844
8ebc91d9 845 curr->exec_start = now;
d842de87 846
9dbdb155
PZ
847 schedstat_set(curr->statistics.exec_max,
848 max(delta_exec, curr->statistics.exec_max));
849
850 curr->sum_exec_runtime += delta_exec;
ae92882e 851 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
852
853 curr->vruntime += calc_delta_fair(delta_exec, curr);
854 update_min_vruntime(cfs_rq);
855
d842de87
SV
856 if (entity_is_task(curr)) {
857 struct task_struct *curtask = task_of(curr);
858
f977bb49 859 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 860 cgroup_account_cputime(curtask, delta_exec);
f06febc9 861 account_group_exec_runtime(curtask, delta_exec);
d842de87 862 }
ec12cb7f
PT
863
864 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
865}
866
6e998916
SG
867static void update_curr_fair(struct rq *rq)
868{
869 update_curr(cfs_rq_of(&rq->curr->se));
870}
871
bf0f6f24 872static inline void
5870db5b 873update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 874{
4fa8d299
JP
875 u64 wait_start, prev_wait_start;
876
877 if (!schedstat_enabled())
878 return;
879
880 wait_start = rq_clock(rq_of(cfs_rq));
881 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
882
883 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
884 likely(wait_start > prev_wait_start))
885 wait_start -= prev_wait_start;
3ea94de1 886
2ed41a55 887 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
888}
889
4fa8d299 890static inline void
3ea94de1
JP
891update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
892{
893 struct task_struct *p;
cb251765
MG
894 u64 delta;
895
4fa8d299
JP
896 if (!schedstat_enabled())
897 return;
898
899 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
900
901 if (entity_is_task(se)) {
902 p = task_of(se);
903 if (task_on_rq_migrating(p)) {
904 /*
905 * Preserve migrating task's wait time so wait_start
906 * time stamp can be adjusted to accumulate wait time
907 * prior to migration.
908 */
2ed41a55 909 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
910 return;
911 }
912 trace_sched_stat_wait(p, delta);
913 }
914
2ed41a55 915 __schedstat_set(se->statistics.wait_max,
4fa8d299 916 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
917 __schedstat_inc(se->statistics.wait_count);
918 __schedstat_add(se->statistics.wait_sum, delta);
919 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 920}
3ea94de1 921
4fa8d299 922static inline void
1a3d027c
JP
923update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
924{
925 struct task_struct *tsk = NULL;
4fa8d299
JP
926 u64 sleep_start, block_start;
927
928 if (!schedstat_enabled())
929 return;
930
931 sleep_start = schedstat_val(se->statistics.sleep_start);
932 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
933
934 if (entity_is_task(se))
935 tsk = task_of(se);
936
4fa8d299
JP
937 if (sleep_start) {
938 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
939
940 if ((s64)delta < 0)
941 delta = 0;
942
4fa8d299 943 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 944 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 945
2ed41a55
PZ
946 __schedstat_set(se->statistics.sleep_start, 0);
947 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
948
949 if (tsk) {
950 account_scheduler_latency(tsk, delta >> 10, 1);
951 trace_sched_stat_sleep(tsk, delta);
952 }
953 }
4fa8d299
JP
954 if (block_start) {
955 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
956
957 if ((s64)delta < 0)
958 delta = 0;
959
4fa8d299 960 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 961 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 962
2ed41a55
PZ
963 __schedstat_set(se->statistics.block_start, 0);
964 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
965
966 if (tsk) {
967 if (tsk->in_iowait) {
2ed41a55
PZ
968 __schedstat_add(se->statistics.iowait_sum, delta);
969 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
970 trace_sched_stat_iowait(tsk, delta);
971 }
972
973 trace_sched_stat_blocked(tsk, delta);
974
975 /*
976 * Blocking time is in units of nanosecs, so shift by
977 * 20 to get a milliseconds-range estimation of the
978 * amount of time that the task spent sleeping:
979 */
980 if (unlikely(prof_on == SLEEP_PROFILING)) {
981 profile_hits(SLEEP_PROFILING,
982 (void *)get_wchan(tsk),
983 delta >> 20);
984 }
985 account_scheduler_latency(tsk, delta >> 10, 0);
986 }
987 }
3ea94de1 988}
3ea94de1 989
bf0f6f24
IM
990/*
991 * Task is being enqueued - update stats:
992 */
cb251765 993static inline void
1a3d027c 994update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 995{
4fa8d299
JP
996 if (!schedstat_enabled())
997 return;
998
bf0f6f24
IM
999 /*
1000 * Are we enqueueing a waiting task? (for current tasks
1001 * a dequeue/enqueue event is a NOP)
1002 */
429d43bc 1003 if (se != cfs_rq->curr)
5870db5b 1004 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1005
1006 if (flags & ENQUEUE_WAKEUP)
1007 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1008}
1009
bf0f6f24 1010static inline void
cb251765 1011update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1012{
4fa8d299
JP
1013
1014 if (!schedstat_enabled())
1015 return;
1016
bf0f6f24
IM
1017 /*
1018 * Mark the end of the wait period if dequeueing a
1019 * waiting task:
1020 */
429d43bc 1021 if (se != cfs_rq->curr)
9ef0a961 1022 update_stats_wait_end(cfs_rq, se);
cb251765 1023
4fa8d299
JP
1024 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1025 struct task_struct *tsk = task_of(se);
cb251765 1026
4fa8d299 1027 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1028 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1029 rq_clock(rq_of(cfs_rq)));
1030 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1031 __schedstat_set(se->statistics.block_start,
4fa8d299 1032 rq_clock(rq_of(cfs_rq)));
cb251765 1033 }
cb251765
MG
1034}
1035
bf0f6f24
IM
1036/*
1037 * We are picking a new current task - update its stats:
1038 */
1039static inline void
79303e9e 1040update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1041{
1042 /*
1043 * We are starting a new run period:
1044 */
78becc27 1045 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1046}
1047
bf0f6f24
IM
1048/**************************************************
1049 * Scheduling class queueing methods:
1050 */
1051
cbee9f88
PZ
1052#ifdef CONFIG_NUMA_BALANCING
1053/*
598f0ec0
MG
1054 * Approximate time to scan a full NUMA task in ms. The task scan period is
1055 * calculated based on the tasks virtual memory size and
1056 * numa_balancing_scan_size.
cbee9f88 1057 */
598f0ec0
MG
1058unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1059unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1060
1061/* Portion of address space to scan in MB */
1062unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1063
4b96a29b
PZ
1064/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1065unsigned int sysctl_numa_balancing_scan_delay = 1000;
1066
b5dd77c8 1067struct numa_group {
c45a7795 1068 refcount_t refcount;
b5dd77c8
RR
1069
1070 spinlock_t lock; /* nr_tasks, tasks */
1071 int nr_tasks;
1072 pid_t gid;
1073 int active_nodes;
1074
1075 struct rcu_head rcu;
1076 unsigned long total_faults;
1077 unsigned long max_faults_cpu;
1078 /*
1079 * Faults_cpu is used to decide whether memory should move
1080 * towards the CPU. As a consequence, these stats are weighted
1081 * more by CPU use than by memory faults.
1082 */
1083 unsigned long *faults_cpu;
1084 unsigned long faults[0];
1085};
1086
cb361d8c
JH
1087/*
1088 * For functions that can be called in multiple contexts that permit reading
1089 * ->numa_group (see struct task_struct for locking rules).
1090 */
1091static struct numa_group *deref_task_numa_group(struct task_struct *p)
1092{
1093 return rcu_dereference_check(p->numa_group, p == current ||
1094 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1095}
1096
1097static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1098{
1099 return rcu_dereference_protected(p->numa_group, p == current);
1100}
1101
b5dd77c8
RR
1102static inline unsigned long group_faults_priv(struct numa_group *ng);
1103static inline unsigned long group_faults_shared(struct numa_group *ng);
1104
598f0ec0
MG
1105static unsigned int task_nr_scan_windows(struct task_struct *p)
1106{
1107 unsigned long rss = 0;
1108 unsigned long nr_scan_pages;
1109
1110 /*
1111 * Calculations based on RSS as non-present and empty pages are skipped
1112 * by the PTE scanner and NUMA hinting faults should be trapped based
1113 * on resident pages
1114 */
1115 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1116 rss = get_mm_rss(p->mm);
1117 if (!rss)
1118 rss = nr_scan_pages;
1119
1120 rss = round_up(rss, nr_scan_pages);
1121 return rss / nr_scan_pages;
1122}
1123
1124/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1125#define MAX_SCAN_WINDOW 2560
1126
1127static unsigned int task_scan_min(struct task_struct *p)
1128{
316c1608 1129 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1130 unsigned int scan, floor;
1131 unsigned int windows = 1;
1132
64192658
KT
1133 if (scan_size < MAX_SCAN_WINDOW)
1134 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1135 floor = 1000 / windows;
1136
1137 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1138 return max_t(unsigned int, floor, scan);
1139}
1140
b5dd77c8
RR
1141static unsigned int task_scan_start(struct task_struct *p)
1142{
1143 unsigned long smin = task_scan_min(p);
1144 unsigned long period = smin;
cb361d8c 1145 struct numa_group *ng;
b5dd77c8
RR
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1148 rcu_read_lock();
1149 ng = rcu_dereference(p->numa_group);
1150 if (ng) {
b5dd77c8
RR
1151 unsigned long shared = group_faults_shared(ng);
1152 unsigned long private = group_faults_priv(ng);
1153
c45a7795 1154 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157 }
cb361d8c 1158 rcu_read_unlock();
b5dd77c8
RR
1159
1160 return max(smin, period);
1161}
1162
598f0ec0
MG
1163static unsigned int task_scan_max(struct task_struct *p)
1164{
b5dd77c8
RR
1165 unsigned long smin = task_scan_min(p);
1166 unsigned long smax;
cb361d8c 1167 struct numa_group *ng;
598f0ec0
MG
1168
1169 /* Watch for min being lower than max due to floor calculations */
1170 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1171
1172 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1173 ng = deref_curr_numa_group(p);
1174 if (ng) {
b5dd77c8
RR
1175 unsigned long shared = group_faults_shared(ng);
1176 unsigned long private = group_faults_priv(ng);
1177 unsigned long period = smax;
1178
c45a7795 1179 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1180 period *= shared + 1;
1181 period /= private + shared + 1;
1182
1183 smax = max(smax, period);
1184 }
1185
598f0ec0
MG
1186 return max(smin, smax);
1187}
1188
0ec8aa00
PZ
1189static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1190{
98fa15f3 1191 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1192 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1193}
1194
1195static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1196{
98fa15f3 1197 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1198 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1199}
1200
be1e4e76
RR
1201/* Shared or private faults. */
1202#define NR_NUMA_HINT_FAULT_TYPES 2
1203
1204/* Memory and CPU locality */
1205#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1206
1207/* Averaged statistics, and temporary buffers. */
1208#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1209
e29cf08b
MG
1210pid_t task_numa_group_id(struct task_struct *p)
1211{
cb361d8c
JH
1212 struct numa_group *ng;
1213 pid_t gid = 0;
1214
1215 rcu_read_lock();
1216 ng = rcu_dereference(p->numa_group);
1217 if (ng)
1218 gid = ng->gid;
1219 rcu_read_unlock();
1220
1221 return gid;
e29cf08b
MG
1222}
1223
44dba3d5 1224/*
97fb7a0a 1225 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1226 * occupy the first half of the array. The second half of the
1227 * array is for current counters, which are averaged into the
1228 * first set by task_numa_placement.
1229 */
1230static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1231{
44dba3d5 1232 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1233}
1234
1235static inline unsigned long task_faults(struct task_struct *p, int nid)
1236{
44dba3d5 1237 if (!p->numa_faults)
ac8e895b
MG
1238 return 0;
1239
44dba3d5
IM
1240 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1241 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1242}
1243
83e1d2cd
MG
1244static inline unsigned long group_faults(struct task_struct *p, int nid)
1245{
cb361d8c
JH
1246 struct numa_group *ng = deref_task_numa_group(p);
1247
1248 if (!ng)
83e1d2cd
MG
1249 return 0;
1250
cb361d8c
JH
1251 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1253}
1254
20e07dea
RR
1255static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1256{
44dba3d5
IM
1257 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1258 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1259}
1260
b5dd77c8
RR
1261static inline unsigned long group_faults_priv(struct numa_group *ng)
1262{
1263 unsigned long faults = 0;
1264 int node;
1265
1266 for_each_online_node(node) {
1267 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1268 }
1269
1270 return faults;
1271}
1272
1273static inline unsigned long group_faults_shared(struct numa_group *ng)
1274{
1275 unsigned long faults = 0;
1276 int node;
1277
1278 for_each_online_node(node) {
1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1280 }
1281
1282 return faults;
1283}
1284
4142c3eb
RR
1285/*
1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1287 * considered part of a numa group's pseudo-interleaving set. Migrations
1288 * between these nodes are slowed down, to allow things to settle down.
1289 */
1290#define ACTIVE_NODE_FRACTION 3
1291
1292static bool numa_is_active_node(int nid, struct numa_group *ng)
1293{
1294 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1295}
1296
6c6b1193
RR
1297/* Handle placement on systems where not all nodes are directly connected. */
1298static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1299 int maxdist, bool task)
1300{
1301 unsigned long score = 0;
1302 int node;
1303
1304 /*
1305 * All nodes are directly connected, and the same distance
1306 * from each other. No need for fancy placement algorithms.
1307 */
1308 if (sched_numa_topology_type == NUMA_DIRECT)
1309 return 0;
1310
1311 /*
1312 * This code is called for each node, introducing N^2 complexity,
1313 * which should be ok given the number of nodes rarely exceeds 8.
1314 */
1315 for_each_online_node(node) {
1316 unsigned long faults;
1317 int dist = node_distance(nid, node);
1318
1319 /*
1320 * The furthest away nodes in the system are not interesting
1321 * for placement; nid was already counted.
1322 */
1323 if (dist == sched_max_numa_distance || node == nid)
1324 continue;
1325
1326 /*
1327 * On systems with a backplane NUMA topology, compare groups
1328 * of nodes, and move tasks towards the group with the most
1329 * memory accesses. When comparing two nodes at distance
1330 * "hoplimit", only nodes closer by than "hoplimit" are part
1331 * of each group. Skip other nodes.
1332 */
1333 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1334 dist >= maxdist)
6c6b1193
RR
1335 continue;
1336
1337 /* Add up the faults from nearby nodes. */
1338 if (task)
1339 faults = task_faults(p, node);
1340 else
1341 faults = group_faults(p, node);
1342
1343 /*
1344 * On systems with a glueless mesh NUMA topology, there are
1345 * no fixed "groups of nodes". Instead, nodes that are not
1346 * directly connected bounce traffic through intermediate
1347 * nodes; a numa_group can occupy any set of nodes.
1348 * The further away a node is, the less the faults count.
1349 * This seems to result in good task placement.
1350 */
1351 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1352 faults *= (sched_max_numa_distance - dist);
1353 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1354 }
1355
1356 score += faults;
1357 }
1358
1359 return score;
1360}
1361
83e1d2cd
MG
1362/*
1363 * These return the fraction of accesses done by a particular task, or
1364 * task group, on a particular numa node. The group weight is given a
1365 * larger multiplier, in order to group tasks together that are almost
1366 * evenly spread out between numa nodes.
1367 */
7bd95320
RR
1368static inline unsigned long task_weight(struct task_struct *p, int nid,
1369 int dist)
83e1d2cd 1370{
7bd95320 1371 unsigned long faults, total_faults;
83e1d2cd 1372
44dba3d5 1373 if (!p->numa_faults)
83e1d2cd
MG
1374 return 0;
1375
1376 total_faults = p->total_numa_faults;
1377
1378 if (!total_faults)
1379 return 0;
1380
7bd95320 1381 faults = task_faults(p, nid);
6c6b1193
RR
1382 faults += score_nearby_nodes(p, nid, dist, true);
1383
7bd95320 1384 return 1000 * faults / total_faults;
83e1d2cd
MG
1385}
1386
7bd95320
RR
1387static inline unsigned long group_weight(struct task_struct *p, int nid,
1388 int dist)
83e1d2cd 1389{
cb361d8c 1390 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1391 unsigned long faults, total_faults;
1392
cb361d8c 1393 if (!ng)
7bd95320
RR
1394 return 0;
1395
cb361d8c 1396 total_faults = ng->total_faults;
7bd95320
RR
1397
1398 if (!total_faults)
83e1d2cd
MG
1399 return 0;
1400
7bd95320 1401 faults = group_faults(p, nid);
6c6b1193
RR
1402 faults += score_nearby_nodes(p, nid, dist, false);
1403
7bd95320 1404 return 1000 * faults / total_faults;
83e1d2cd
MG
1405}
1406
10f39042
RR
1407bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1408 int src_nid, int dst_cpu)
1409{
cb361d8c 1410 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1411 int dst_nid = cpu_to_node(dst_cpu);
1412 int last_cpupid, this_cpupid;
1413
1414 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416
1417 /*
1418 * Allow first faults or private faults to migrate immediately early in
1419 * the lifetime of a task. The magic number 4 is based on waiting for
1420 * two full passes of the "multi-stage node selection" test that is
1421 * executed below.
1422 */
98fa15f3 1423 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1424 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1425 return true;
10f39042
RR
1426
1427 /*
1428 * Multi-stage node selection is used in conjunction with a periodic
1429 * migration fault to build a temporal task<->page relation. By using
1430 * a two-stage filter we remove short/unlikely relations.
1431 *
1432 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1433 * a task's usage of a particular page (n_p) per total usage of this
1434 * page (n_t) (in a given time-span) to a probability.
1435 *
1436 * Our periodic faults will sample this probability and getting the
1437 * same result twice in a row, given these samples are fully
1438 * independent, is then given by P(n)^2, provided our sample period
1439 * is sufficiently short compared to the usage pattern.
1440 *
1441 * This quadric squishes small probabilities, making it less likely we
1442 * act on an unlikely task<->page relation.
1443 */
10f39042
RR
1444 if (!cpupid_pid_unset(last_cpupid) &&
1445 cpupid_to_nid(last_cpupid) != dst_nid)
1446 return false;
1447
1448 /* Always allow migrate on private faults */
1449 if (cpupid_match_pid(p, last_cpupid))
1450 return true;
1451
1452 /* A shared fault, but p->numa_group has not been set up yet. */
1453 if (!ng)
1454 return true;
1455
1456 /*
4142c3eb
RR
1457 * Destination node is much more heavily used than the source
1458 * node? Allow migration.
10f39042 1459 */
4142c3eb
RR
1460 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1461 ACTIVE_NODE_FRACTION)
10f39042
RR
1462 return true;
1463
1464 /*
4142c3eb
RR
1465 * Distribute memory according to CPU & memory use on each node,
1466 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1467 *
1468 * faults_cpu(dst) 3 faults_cpu(src)
1469 * --------------- * - > ---------------
1470 * faults_mem(dst) 4 faults_mem(src)
10f39042 1471 */
4142c3eb
RR
1472 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1473 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1474}
1475
11f10e54
VG
1476static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
1477
1478static unsigned long cpu_runnable_load(struct rq *rq)
1479{
1480 return cfs_rq_runnable_load_avg(&rq->cfs);
1481}
58d081b5 1482
fb13c7ee 1483/* Cached statistics for all CPUs within a node */
58d081b5
MG
1484struct numa_stats {
1485 unsigned long load;
fb13c7ee
MG
1486
1487 /* Total compute capacity of CPUs on a node */
5ef20ca1 1488 unsigned long compute_capacity;
58d081b5 1489};
e6628d5b 1490
fb13c7ee
MG
1491/*
1492 * XXX borrowed from update_sg_lb_stats
1493 */
1494static void update_numa_stats(struct numa_stats *ns, int nid)
1495{
d90707eb 1496 int cpu;
fb13c7ee
MG
1497
1498 memset(ns, 0, sizeof(*ns));
1499 for_each_cpu(cpu, cpumask_of_node(nid)) {
1500 struct rq *rq = cpu_rq(cpu);
1501
a3df0679 1502 ns->load += cpu_runnable_load(rq);
ced549fa 1503 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1504 }
1505
fb13c7ee
MG
1506}
1507
58d081b5
MG
1508struct task_numa_env {
1509 struct task_struct *p;
e6628d5b 1510
58d081b5
MG
1511 int src_cpu, src_nid;
1512 int dst_cpu, dst_nid;
e6628d5b 1513
58d081b5 1514 struct numa_stats src_stats, dst_stats;
e6628d5b 1515
40ea2b42 1516 int imbalance_pct;
7bd95320 1517 int dist;
fb13c7ee
MG
1518
1519 struct task_struct *best_task;
1520 long best_imp;
58d081b5
MG
1521 int best_cpu;
1522};
1523
fb13c7ee
MG
1524static void task_numa_assign(struct task_numa_env *env,
1525 struct task_struct *p, long imp)
1526{
a4739eca
SD
1527 struct rq *rq = cpu_rq(env->dst_cpu);
1528
1529 /* Bail out if run-queue part of active NUMA balance. */
1530 if (xchg(&rq->numa_migrate_on, 1))
1531 return;
1532
1533 /*
1534 * Clear previous best_cpu/rq numa-migrate flag, since task now
1535 * found a better CPU to move/swap.
1536 */
1537 if (env->best_cpu != -1) {
1538 rq = cpu_rq(env->best_cpu);
1539 WRITE_ONCE(rq->numa_migrate_on, 0);
1540 }
1541
fb13c7ee
MG
1542 if (env->best_task)
1543 put_task_struct(env->best_task);
bac78573
ON
1544 if (p)
1545 get_task_struct(p);
fb13c7ee
MG
1546
1547 env->best_task = p;
1548 env->best_imp = imp;
1549 env->best_cpu = env->dst_cpu;
1550}
1551
28a21745 1552static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1553 struct task_numa_env *env)
1554{
e4991b24
RR
1555 long imb, old_imb;
1556 long orig_src_load, orig_dst_load;
28a21745
RR
1557 long src_capacity, dst_capacity;
1558
1559 /*
1560 * The load is corrected for the CPU capacity available on each node.
1561 *
1562 * src_load dst_load
1563 * ------------ vs ---------
1564 * src_capacity dst_capacity
1565 */
1566 src_capacity = env->src_stats.compute_capacity;
1567 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1568
5f95ba7a 1569 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1570
28a21745 1571 orig_src_load = env->src_stats.load;
e4991b24 1572 orig_dst_load = env->dst_stats.load;
28a21745 1573
5f95ba7a 1574 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1575
1576 /* Would this change make things worse? */
1577 return (imb > old_imb);
e63da036
RR
1578}
1579
6fd98e77
SD
1580/*
1581 * Maximum NUMA importance can be 1998 (2*999);
1582 * SMALLIMP @ 30 would be close to 1998/64.
1583 * Used to deter task migration.
1584 */
1585#define SMALLIMP 30
1586
fb13c7ee
MG
1587/*
1588 * This checks if the overall compute and NUMA accesses of the system would
1589 * be improved if the source tasks was migrated to the target dst_cpu taking
1590 * into account that it might be best if task running on the dst_cpu should
1591 * be exchanged with the source task
1592 */
887c290e 1593static void task_numa_compare(struct task_numa_env *env,
305c1fac 1594 long taskimp, long groupimp, bool maymove)
fb13c7ee 1595{
cb361d8c 1596 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1597 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1598 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1599 struct task_struct *cur;
28a21745 1600 long src_load, dst_load;
7bd95320 1601 int dist = env->dist;
cb361d8c
JH
1602 long moveimp = imp;
1603 long load;
fb13c7ee 1604
a4739eca
SD
1605 if (READ_ONCE(dst_rq->numa_migrate_on))
1606 return;
1607
fb13c7ee 1608 rcu_read_lock();
154abafc 1609 cur = rcu_dereference(dst_rq->curr);
bac78573 1610 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1611 cur = NULL;
1612
7af68335
PZ
1613 /*
1614 * Because we have preemption enabled we can get migrated around and
1615 * end try selecting ourselves (current == env->p) as a swap candidate.
1616 */
1617 if (cur == env->p)
1618 goto unlock;
1619
305c1fac 1620 if (!cur) {
6fd98e77 1621 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1622 goto assign;
1623 else
1624 goto unlock;
1625 }
1626
fb13c7ee
MG
1627 /*
1628 * "imp" is the fault differential for the source task between the
1629 * source and destination node. Calculate the total differential for
1630 * the source task and potential destination task. The more negative
305c1fac 1631 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1632 * be incurred if the tasks were swapped.
1633 */
305c1fac 1634 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1635 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1636 goto unlock;
fb13c7ee 1637
305c1fac
SD
1638 /*
1639 * If dst and source tasks are in the same NUMA group, or not
1640 * in any group then look only at task weights.
1641 */
cb361d8c
JH
1642 cur_ng = rcu_dereference(cur->numa_group);
1643 if (cur_ng == p_ng) {
305c1fac
SD
1644 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1645 task_weight(cur, env->dst_nid, dist);
887c290e 1646 /*
305c1fac
SD
1647 * Add some hysteresis to prevent swapping the
1648 * tasks within a group over tiny differences.
887c290e 1649 */
cb361d8c 1650 if (cur_ng)
305c1fac
SD
1651 imp -= imp / 16;
1652 } else {
1653 /*
1654 * Compare the group weights. If a task is all by itself
1655 * (not part of a group), use the task weight instead.
1656 */
cb361d8c 1657 if (cur_ng && p_ng)
305c1fac
SD
1658 imp += group_weight(cur, env->src_nid, dist) -
1659 group_weight(cur, env->dst_nid, dist);
1660 else
1661 imp += task_weight(cur, env->src_nid, dist) -
1662 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1663 }
1664
305c1fac 1665 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1666 imp = moveimp;
305c1fac 1667 cur = NULL;
fb13c7ee 1668 goto assign;
305c1fac 1669 }
fb13c7ee 1670
6fd98e77
SD
1671 /*
1672 * If the NUMA importance is less than SMALLIMP,
1673 * task migration might only result in ping pong
1674 * of tasks and also hurt performance due to cache
1675 * misses.
1676 */
1677 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1678 goto unlock;
1679
fb13c7ee
MG
1680 /*
1681 * In the overloaded case, try and keep the load balanced.
1682 */
305c1fac
SD
1683 load = task_h_load(env->p) - task_h_load(cur);
1684 if (!load)
1685 goto assign;
1686
e720fff6
PZ
1687 dst_load = env->dst_stats.load + load;
1688 src_load = env->src_stats.load - load;
fb13c7ee 1689
28a21745 1690 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1691 goto unlock;
1692
305c1fac 1693assign:
ba7e5a27
RR
1694 /*
1695 * One idle CPU per node is evaluated for a task numa move.
1696 * Call select_idle_sibling to maybe find a better one.
1697 */
10e2f1ac
PZ
1698 if (!cur) {
1699 /*
97fb7a0a 1700 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1701 * can be used from IRQ context.
1702 */
1703 local_irq_disable();
772bd008
MR
1704 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1705 env->dst_cpu);
10e2f1ac
PZ
1706 local_irq_enable();
1707 }
ba7e5a27 1708
fb13c7ee
MG
1709 task_numa_assign(env, cur, imp);
1710unlock:
1711 rcu_read_unlock();
1712}
1713
887c290e
RR
1714static void task_numa_find_cpu(struct task_numa_env *env,
1715 long taskimp, long groupimp)
2c8a50aa 1716{
305c1fac
SD
1717 long src_load, dst_load, load;
1718 bool maymove = false;
2c8a50aa
MG
1719 int cpu;
1720
305c1fac
SD
1721 load = task_h_load(env->p);
1722 dst_load = env->dst_stats.load + load;
1723 src_load = env->src_stats.load - load;
1724
1725 /*
1726 * If the improvement from just moving env->p direction is better
1727 * than swapping tasks around, check if a move is possible.
1728 */
1729 maymove = !load_too_imbalanced(src_load, dst_load, env);
1730
2c8a50aa
MG
1731 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1732 /* Skip this CPU if the source task cannot migrate */
3bd37062 1733 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1734 continue;
1735
1736 env->dst_cpu = cpu;
305c1fac 1737 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1738 }
1739}
1740
58d081b5
MG
1741static int task_numa_migrate(struct task_struct *p)
1742{
58d081b5
MG
1743 struct task_numa_env env = {
1744 .p = p,
fb13c7ee 1745
58d081b5 1746 .src_cpu = task_cpu(p),
b32e86b4 1747 .src_nid = task_node(p),
fb13c7ee
MG
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
4142c3eb 1753 .best_cpu = -1,
58d081b5 1754 };
cb361d8c 1755 unsigned long taskweight, groupweight;
58d081b5 1756 struct sched_domain *sd;
cb361d8c
JH
1757 long taskimp, groupimp;
1758 struct numa_group *ng;
a4739eca 1759 struct rq *best_rq;
7bd95320 1760 int nid, ret, dist;
e6628d5b 1761
58d081b5 1762 /*
fb13c7ee
MG
1763 * Pick the lowest SD_NUMA domain, as that would have the smallest
1764 * imbalance and would be the first to start moving tasks about.
1765 *
1766 * And we want to avoid any moving of tasks about, as that would create
1767 * random movement of tasks -- counter the numa conditions we're trying
1768 * to satisfy here.
58d081b5
MG
1769 */
1770 rcu_read_lock();
fb13c7ee 1771 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1772 if (sd)
1773 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1774 rcu_read_unlock();
1775
46a73e8a
RR
1776 /*
1777 * Cpusets can break the scheduler domain tree into smaller
1778 * balance domains, some of which do not cross NUMA boundaries.
1779 * Tasks that are "trapped" in such domains cannot be migrated
1780 * elsewhere, so there is no point in (re)trying.
1781 */
1782 if (unlikely(!sd)) {
8cd45eee 1783 sched_setnuma(p, task_node(p));
46a73e8a
RR
1784 return -EINVAL;
1785 }
1786
2c8a50aa 1787 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1788 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1789 taskweight = task_weight(p, env.src_nid, dist);
1790 groupweight = group_weight(p, env.src_nid, dist);
1791 update_numa_stats(&env.src_stats, env.src_nid);
1792 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1793 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1794 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1795
a43455a1 1796 /* Try to find a spot on the preferred nid. */
2d4056fa 1797 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1798
9de05d48
RR
1799 /*
1800 * Look at other nodes in these cases:
1801 * - there is no space available on the preferred_nid
1802 * - the task is part of a numa_group that is interleaved across
1803 * multiple NUMA nodes; in order to better consolidate the group,
1804 * we need to check other locations.
1805 */
cb361d8c
JH
1806 ng = deref_curr_numa_group(p);
1807 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1808 for_each_online_node(nid) {
1809 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1810 continue;
58d081b5 1811
7bd95320 1812 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1813 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1814 dist != env.dist) {
1815 taskweight = task_weight(p, env.src_nid, dist);
1816 groupweight = group_weight(p, env.src_nid, dist);
1817 }
7bd95320 1818
83e1d2cd 1819 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1820 taskimp = task_weight(p, nid, dist) - taskweight;
1821 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1822 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1823 continue;
1824
7bd95320 1825 env.dist = dist;
2c8a50aa
MG
1826 env.dst_nid = nid;
1827 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1828 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1829 }
1830 }
1831
68d1b02a
RR
1832 /*
1833 * If the task is part of a workload that spans multiple NUMA nodes,
1834 * and is migrating into one of the workload's active nodes, remember
1835 * this node as the task's preferred numa node, so the workload can
1836 * settle down.
1837 * A task that migrated to a second choice node will be better off
1838 * trying for a better one later. Do not set the preferred node here.
1839 */
cb361d8c 1840 if (ng) {
db015dae
RR
1841 if (env.best_cpu == -1)
1842 nid = env.src_nid;
1843 else
8cd45eee 1844 nid = cpu_to_node(env.best_cpu);
db015dae 1845
8cd45eee
SD
1846 if (nid != p->numa_preferred_nid)
1847 sched_setnuma(p, nid);
db015dae
RR
1848 }
1849
1850 /* No better CPU than the current one was found. */
1851 if (env.best_cpu == -1)
1852 return -EAGAIN;
0ec8aa00 1853
a4739eca 1854 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1855 if (env.best_task == NULL) {
286549dc 1856 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1857 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1858 if (ret != 0)
1859 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1860 return ret;
1861 }
1862
0ad4e3df 1863 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1864 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1865
286549dc
MG
1866 if (ret != 0)
1867 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1868 put_task_struct(env.best_task);
1869 return ret;
e6628d5b
MG
1870}
1871
6b9a7460
MG
1872/* Attempt to migrate a task to a CPU on the preferred node. */
1873static void numa_migrate_preferred(struct task_struct *p)
1874{
5085e2a3
RR
1875 unsigned long interval = HZ;
1876
2739d3ee 1877 /* This task has no NUMA fault statistics yet */
98fa15f3 1878 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1879 return;
1880
2739d3ee 1881 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1882 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1883 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1884
1885 /* Success if task is already running on preferred CPU */
de1b301a 1886 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1887 return;
1888
1889 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1890 task_numa_migrate(p);
6b9a7460
MG
1891}
1892
20e07dea 1893/*
4142c3eb 1894 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1895 * tracking the nodes from which NUMA hinting faults are triggered. This can
1896 * be different from the set of nodes where the workload's memory is currently
1897 * located.
20e07dea 1898 */
4142c3eb 1899static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1900{
1901 unsigned long faults, max_faults = 0;
4142c3eb 1902 int nid, active_nodes = 0;
20e07dea
RR
1903
1904 for_each_online_node(nid) {
1905 faults = group_faults_cpu(numa_group, nid);
1906 if (faults > max_faults)
1907 max_faults = faults;
1908 }
1909
1910 for_each_online_node(nid) {
1911 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1912 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1913 active_nodes++;
20e07dea 1914 }
4142c3eb
RR
1915
1916 numa_group->max_faults_cpu = max_faults;
1917 numa_group->active_nodes = active_nodes;
20e07dea
RR
1918}
1919
04bb2f94
RR
1920/*
1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1922 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1923 * period will be for the next scan window. If local/(local+remote) ratio is
1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1925 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1926 */
1927#define NUMA_PERIOD_SLOTS 10
a22b4b01 1928#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1929
1930/*
1931 * Increase the scan period (slow down scanning) if the majority of
1932 * our memory is already on our local node, or if the majority of
1933 * the page accesses are shared with other processes.
1934 * Otherwise, decrease the scan period.
1935 */
1936static void update_task_scan_period(struct task_struct *p,
1937 unsigned long shared, unsigned long private)
1938{
1939 unsigned int period_slot;
37ec97de 1940 int lr_ratio, ps_ratio;
04bb2f94
RR
1941 int diff;
1942
1943 unsigned long remote = p->numa_faults_locality[0];
1944 unsigned long local = p->numa_faults_locality[1];
1945
1946 /*
1947 * If there were no record hinting faults then either the task is
1948 * completely idle or all activity is areas that are not of interest
074c2381
MG
1949 * to automatic numa balancing. Related to that, if there were failed
1950 * migration then it implies we are migrating too quickly or the local
1951 * node is overloaded. In either case, scan slower
04bb2f94 1952 */
074c2381 1953 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1954 p->numa_scan_period = min(p->numa_scan_period_max,
1955 p->numa_scan_period << 1);
1956
1957 p->mm->numa_next_scan = jiffies +
1958 msecs_to_jiffies(p->numa_scan_period);
1959
1960 return;
1961 }
1962
1963 /*
1964 * Prepare to scale scan period relative to the current period.
1965 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1966 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1967 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1968 */
1969 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1970 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1971 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1972
1973 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1974 /*
1975 * Most memory accesses are local. There is no need to
1976 * do fast NUMA scanning, since memory is already local.
1977 */
1978 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1979 if (!slot)
1980 slot = 1;
1981 diff = slot * period_slot;
1982 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1983 /*
1984 * Most memory accesses are shared with other tasks.
1985 * There is no point in continuing fast NUMA scanning,
1986 * since other tasks may just move the memory elsewhere.
1987 */
1988 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1989 if (!slot)
1990 slot = 1;
1991 diff = slot * period_slot;
1992 } else {
04bb2f94 1993 /*
37ec97de
RR
1994 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1995 * yet they are not on the local NUMA node. Speed up
1996 * NUMA scanning to get the memory moved over.
04bb2f94 1997 */
37ec97de
RR
1998 int ratio = max(lr_ratio, ps_ratio);
1999 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2000 }
2001
2002 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2003 task_scan_min(p), task_scan_max(p));
2004 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2005}
2006
7e2703e6
RR
2007/*
2008 * Get the fraction of time the task has been running since the last
2009 * NUMA placement cycle. The scheduler keeps similar statistics, but
2010 * decays those on a 32ms period, which is orders of magnitude off
2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2012 * stats only if the task is so new there are no NUMA statistics yet.
2013 */
2014static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2015{
2016 u64 runtime, delta, now;
2017 /* Use the start of this time slice to avoid calculations. */
2018 now = p->se.exec_start;
2019 runtime = p->se.sum_exec_runtime;
2020
2021 if (p->last_task_numa_placement) {
2022 delta = runtime - p->last_sum_exec_runtime;
2023 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2024
2025 /* Avoid time going backwards, prevent potential divide error: */
2026 if (unlikely((s64)*period < 0))
2027 *period = 0;
7e2703e6 2028 } else {
c7b50216 2029 delta = p->se.avg.load_sum;
9d89c257 2030 *period = LOAD_AVG_MAX;
7e2703e6
RR
2031 }
2032
2033 p->last_sum_exec_runtime = runtime;
2034 p->last_task_numa_placement = now;
2035
2036 return delta;
2037}
2038
54009416
RR
2039/*
2040 * Determine the preferred nid for a task in a numa_group. This needs to
2041 * be done in a way that produces consistent results with group_weight,
2042 * otherwise workloads might not converge.
2043 */
2044static int preferred_group_nid(struct task_struct *p, int nid)
2045{
2046 nodemask_t nodes;
2047 int dist;
2048
2049 /* Direct connections between all NUMA nodes. */
2050 if (sched_numa_topology_type == NUMA_DIRECT)
2051 return nid;
2052
2053 /*
2054 * On a system with glueless mesh NUMA topology, group_weight
2055 * scores nodes according to the number of NUMA hinting faults on
2056 * both the node itself, and on nearby nodes.
2057 */
2058 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2059 unsigned long score, max_score = 0;
2060 int node, max_node = nid;
2061
2062 dist = sched_max_numa_distance;
2063
2064 for_each_online_node(node) {
2065 score = group_weight(p, node, dist);
2066 if (score > max_score) {
2067 max_score = score;
2068 max_node = node;
2069 }
2070 }
2071 return max_node;
2072 }
2073
2074 /*
2075 * Finding the preferred nid in a system with NUMA backplane
2076 * interconnect topology is more involved. The goal is to locate
2077 * tasks from numa_groups near each other in the system, and
2078 * untangle workloads from different sides of the system. This requires
2079 * searching down the hierarchy of node groups, recursively searching
2080 * inside the highest scoring group of nodes. The nodemask tricks
2081 * keep the complexity of the search down.
2082 */
2083 nodes = node_online_map;
2084 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2085 unsigned long max_faults = 0;
81907478 2086 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2087 int a, b;
2088
2089 /* Are there nodes at this distance from each other? */
2090 if (!find_numa_distance(dist))
2091 continue;
2092
2093 for_each_node_mask(a, nodes) {
2094 unsigned long faults = 0;
2095 nodemask_t this_group;
2096 nodes_clear(this_group);
2097
2098 /* Sum group's NUMA faults; includes a==b case. */
2099 for_each_node_mask(b, nodes) {
2100 if (node_distance(a, b) < dist) {
2101 faults += group_faults(p, b);
2102 node_set(b, this_group);
2103 node_clear(b, nodes);
2104 }
2105 }
2106
2107 /* Remember the top group. */
2108 if (faults > max_faults) {
2109 max_faults = faults;
2110 max_group = this_group;
2111 /*
2112 * subtle: at the smallest distance there is
2113 * just one node left in each "group", the
2114 * winner is the preferred nid.
2115 */
2116 nid = a;
2117 }
2118 }
2119 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2120 if (!max_faults)
2121 break;
54009416
RR
2122 nodes = max_group;
2123 }
2124 return nid;
2125}
2126
cbee9f88
PZ
2127static void task_numa_placement(struct task_struct *p)
2128{
98fa15f3 2129 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2130 unsigned long max_faults = 0;
04bb2f94 2131 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2132 unsigned long total_faults;
2133 u64 runtime, period;
7dbd13ed 2134 spinlock_t *group_lock = NULL;
cb361d8c 2135 struct numa_group *ng;
cbee9f88 2136
7e5a2c17
JL
2137 /*
2138 * The p->mm->numa_scan_seq field gets updated without
2139 * exclusive access. Use READ_ONCE() here to ensure
2140 * that the field is read in a single access:
2141 */
316c1608 2142 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2143 if (p->numa_scan_seq == seq)
2144 return;
2145 p->numa_scan_seq = seq;
598f0ec0 2146 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2147
7e2703e6
RR
2148 total_faults = p->numa_faults_locality[0] +
2149 p->numa_faults_locality[1];
2150 runtime = numa_get_avg_runtime(p, &period);
2151
7dbd13ed 2152 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2153 ng = deref_curr_numa_group(p);
2154 if (ng) {
2155 group_lock = &ng->lock;
60e69eed 2156 spin_lock_irq(group_lock);
7dbd13ed
MG
2157 }
2158
688b7585
MG
2159 /* Find the node with the highest number of faults */
2160 for_each_online_node(nid) {
44dba3d5
IM
2161 /* Keep track of the offsets in numa_faults array */
2162 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2163 unsigned long faults = 0, group_faults = 0;
44dba3d5 2164 int priv;
745d6147 2165
be1e4e76 2166 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2167 long diff, f_diff, f_weight;
8c8a743c 2168
44dba3d5
IM
2169 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2170 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2171 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2172 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2173
ac8e895b 2174 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2175 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2176 fault_types[priv] += p->numa_faults[membuf_idx];
2177 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2178
7e2703e6
RR
2179 /*
2180 * Normalize the faults_from, so all tasks in a group
2181 * count according to CPU use, instead of by the raw
2182 * number of faults. Tasks with little runtime have
2183 * little over-all impact on throughput, and thus their
2184 * faults are less important.
2185 */
2186 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2187 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2188 (total_faults + 1);
44dba3d5
IM
2189 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2190 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2191
44dba3d5
IM
2192 p->numa_faults[mem_idx] += diff;
2193 p->numa_faults[cpu_idx] += f_diff;
2194 faults += p->numa_faults[mem_idx];
83e1d2cd 2195 p->total_numa_faults += diff;
cb361d8c 2196 if (ng) {
44dba3d5
IM
2197 /*
2198 * safe because we can only change our own group
2199 *
2200 * mem_idx represents the offset for a given
2201 * nid and priv in a specific region because it
2202 * is at the beginning of the numa_faults array.
2203 */
cb361d8c
JH
2204 ng->faults[mem_idx] += diff;
2205 ng->faults_cpu[mem_idx] += f_diff;
2206 ng->total_faults += diff;
2207 group_faults += ng->faults[mem_idx];
8c8a743c 2208 }
ac8e895b
MG
2209 }
2210
cb361d8c 2211 if (!ng) {
f03bb676
SD
2212 if (faults > max_faults) {
2213 max_faults = faults;
2214 max_nid = nid;
2215 }
2216 } else if (group_faults > max_faults) {
2217 max_faults = group_faults;
688b7585
MG
2218 max_nid = nid;
2219 }
83e1d2cd
MG
2220 }
2221
cb361d8c
JH
2222 if (ng) {
2223 numa_group_count_active_nodes(ng);
60e69eed 2224 spin_unlock_irq(group_lock);
f03bb676 2225 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2226 }
2227
bb97fc31
RR
2228 if (max_faults) {
2229 /* Set the new preferred node */
2230 if (max_nid != p->numa_preferred_nid)
2231 sched_setnuma(p, max_nid);
3a7053b3 2232 }
30619c89
SD
2233
2234 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2235}
2236
8c8a743c
PZ
2237static inline int get_numa_group(struct numa_group *grp)
2238{
c45a7795 2239 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
c45a7795 2244 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2245 kfree_rcu(grp, rcu);
2246}
2247
3e6a9418
MG
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
8c8a743c
PZ
2250{
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
cb361d8c 2257 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2258 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2259 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
c45a7795 2265 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
8c8a743c 2268 spin_lock_init(&grp->lock);
e29cf08b 2269 grp->gid = p->pid;
50ec8a40 2270 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
8c8a743c 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2275 grp->faults[i] = p->numa_faults[i];
8c8a743c 2276
989348b5 2277 grp->total_faults = p->total_numa_faults;
83e1d2cd 2278
8c8a743c
PZ
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
316c1608 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2287 goto no_join;
8c8a743c
PZ
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
3354781a 2291 goto no_join;
8c8a743c 2292
cb361d8c 2293 my_grp = deref_curr_numa_group(p);
8c8a743c 2294 if (grp == my_grp)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2302 goto no_join;
8c8a743c
PZ
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2308 goto no_join;
8c8a743c 2309
dabe1d99
RR
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
8c8a743c 2317
3e6a9418
MG
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
dabe1d99 2321 if (join && !get_numa_group(grp))
3354781a 2322 goto no_join;
8c8a743c 2323
8c8a743c
PZ
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
60e69eed
MG
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2331
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
8c8a743c 2335 }
989348b5
MG
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
8c8a743c 2338
8c8a743c
PZ
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
60e69eed 2343 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
3354781a
PZ
2348 return;
2349
2350no_join:
2351 rcu_read_unlock();
2352 return;
8c8a743c
PZ
2353}
2354
16d51a59
JH
2355/*
2356 * Get rid of NUMA staticstics associated with a task (either current or dead).
2357 * If @final is set, the task is dead and has reached refcount zero, so we can
2358 * safely free all relevant data structures. Otherwise, there might be
2359 * concurrent reads from places like load balancing and procfs, and we should
2360 * reset the data back to default state without freeing ->numa_faults.
2361 */
2362void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2363{
cb361d8c
JH
2364 /* safe: p either is current or is being freed by current */
2365 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2366 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2367 unsigned long flags;
2368 int i;
8c8a743c 2369
16d51a59
JH
2370 if (!numa_faults)
2371 return;
2372
8c8a743c 2373 if (grp) {
e9dd685c 2374 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2375 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2376 grp->faults[i] -= p->numa_faults[i];
989348b5 2377 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2378
8c8a743c 2379 grp->nr_tasks--;
e9dd685c 2380 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2381 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2382 put_numa_group(grp);
2383 }
2384
16d51a59
JH
2385 if (final) {
2386 p->numa_faults = NULL;
2387 kfree(numa_faults);
2388 } else {
2389 p->total_numa_faults = 0;
2390 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2391 numa_faults[i] = 0;
2392 }
8c8a743c
PZ
2393}
2394
cbee9f88
PZ
2395/*
2396 * Got a PROT_NONE fault for a page on @node.
2397 */
58b46da3 2398void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2399{
2400 struct task_struct *p = current;
6688cc05 2401 bool migrated = flags & TNF_MIGRATED;
58b46da3 2402 int cpu_node = task_node(current);
792568ec 2403 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2404 struct numa_group *ng;
ac8e895b 2405 int priv;
cbee9f88 2406
2a595721 2407 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2408 return;
2409
9ff1d9ff
MG
2410 /* for example, ksmd faulting in a user's mm */
2411 if (!p->mm)
2412 return;
2413
f809ca9a 2414 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2415 if (unlikely(!p->numa_faults)) {
2416 int size = sizeof(*p->numa_faults) *
be1e4e76 2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2418
44dba3d5
IM
2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420 if (!p->numa_faults)
f809ca9a 2421 return;
745d6147 2422
83e1d2cd 2423 p->total_numa_faults = 0;
04bb2f94 2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2425 }
cbee9f88 2426
8c8a743c
PZ
2427 /*
2428 * First accesses are treated as private, otherwise consider accesses
2429 * to be private if the accessing pid has not changed
2430 */
2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432 priv = 1;
2433 } else {
2434 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2435 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2436 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2437 }
2438
792568ec
RR
2439 /*
2440 * If a workload spans multiple NUMA nodes, a shared fault that
2441 * occurs wholly within the set of nodes that the workload is
2442 * actively using should be counted as local. This allows the
2443 * scan rate to slow down when a workload has settled down.
2444 */
cb361d8c 2445 ng = deref_curr_numa_group(p);
4142c3eb
RR
2446 if (!priv && !local && ng && ng->active_nodes > 1 &&
2447 numa_is_active_node(cpu_node, ng) &&
2448 numa_is_active_node(mem_node, ng))
792568ec
RR
2449 local = 1;
2450
2739d3ee 2451 /*
e1ff516a
YW
2452 * Retry to migrate task to preferred node periodically, in case it
2453 * previously failed, or the scheduler moved us.
2739d3ee 2454 */
b6a60cf3
SD
2455 if (time_after(jiffies, p->numa_migrate_retry)) {
2456 task_numa_placement(p);
6b9a7460 2457 numa_migrate_preferred(p);
b6a60cf3 2458 }
6b9a7460 2459
b32e86b4
IM
2460 if (migrated)
2461 p->numa_pages_migrated += pages;
074c2381
MG
2462 if (flags & TNF_MIGRATE_FAIL)
2463 p->numa_faults_locality[2] += pages;
b32e86b4 2464
44dba3d5
IM
2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2467 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2468}
2469
6e5fb223
PZ
2470static void reset_ptenuma_scan(struct task_struct *p)
2471{
7e5a2c17
JL
2472 /*
2473 * We only did a read acquisition of the mmap sem, so
2474 * p->mm->numa_scan_seq is written to without exclusive access
2475 * and the update is not guaranteed to be atomic. That's not
2476 * much of an issue though, since this is just used for
2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 * expensive, to avoid any form of compiler optimizations:
2479 */
316c1608 2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2481 p->mm->numa_scan_offset = 0;
2482}
2483
cbee9f88
PZ
2484/*
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2487 */
9434f9f5 2488static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2489{
2490 unsigned long migrate, next_scan, now = jiffies;
2491 struct task_struct *p = current;
2492 struct mm_struct *mm = p->mm;
51170840 2493 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2494 struct vm_area_struct *vma;
9f40604c 2495 unsigned long start, end;
598f0ec0 2496 unsigned long nr_pte_updates = 0;
4620f8c1 2497 long pages, virtpages;
cbee9f88 2498
9148a3a1 2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2500
b34920d4 2501 work->next = work;
cbee9f88
PZ
2502 /*
2503 * Who cares about NUMA placement when they're dying.
2504 *
2505 * NOTE: make sure not to dereference p->mm before this check,
2506 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 * without p->mm even though we still had it when we enqueued this
2508 * work.
2509 */
2510 if (p->flags & PF_EXITING)
2511 return;
2512
930aa174 2513 if (!mm->numa_next_scan) {
7e8d16b6
MG
2514 mm->numa_next_scan = now +
2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2516 }
2517
cbee9f88
PZ
2518 /*
2519 * Enforce maximal scan/migration frequency..
2520 */
2521 migrate = mm->numa_next_scan;
2522 if (time_before(now, migrate))
2523 return;
2524
598f0ec0
MG
2525 if (p->numa_scan_period == 0) {
2526 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2527 p->numa_scan_period = task_scan_start(p);
598f0ec0 2528 }
cbee9f88 2529
fb003b80 2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532 return;
2533
19a78d11
PZ
2534 /*
2535 * Delay this task enough that another task of this mm will likely win
2536 * the next time around.
2537 */
2538 p->node_stamp += 2 * TICK_NSEC;
2539
9f40604c
MG
2540 start = mm->numa_scan_offset;
2541 pages = sysctl_numa_balancing_scan_size;
2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2543 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2544 if (!pages)
2545 return;
cbee9f88 2546
4620f8c1 2547
8655d549
VB
2548 if (!down_read_trylock(&mm->mmap_sem))
2549 return;
9f40604c 2550 vma = find_vma(mm, start);
6e5fb223
PZ
2551 if (!vma) {
2552 reset_ptenuma_scan(p);
9f40604c 2553 start = 0;
6e5fb223
PZ
2554 vma = mm->mmap;
2555 }
9f40604c 2556 for (; vma; vma = vma->vm_next) {
6b79c57b 2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2559 continue;
6b79c57b 2560 }
6e5fb223 2561
4591ce4f
MG
2562 /*
2563 * Shared library pages mapped by multiple processes are not
2564 * migrated as it is expected they are cache replicated. Avoid
2565 * hinting faults in read-only file-backed mappings or the vdso
2566 * as migrating the pages will be of marginal benefit.
2567 */
2568 if (!vma->vm_mm ||
2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570 continue;
2571
3c67f474
MG
2572 /*
2573 * Skip inaccessible VMAs to avoid any confusion between
2574 * PROT_NONE and NUMA hinting ptes
2575 */
2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577 continue;
4591ce4f 2578
9f40604c
MG
2579 do {
2580 start = max(start, vma->vm_start);
2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582 end = min(end, vma->vm_end);
4620f8c1 2583 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2584
2585 /*
4620f8c1
RR
2586 * Try to scan sysctl_numa_balancing_size worth of
2587 * hpages that have at least one present PTE that
2588 * is not already pte-numa. If the VMA contains
2589 * areas that are unused or already full of prot_numa
2590 * PTEs, scan up to virtpages, to skip through those
2591 * areas faster.
598f0ec0
MG
2592 */
2593 if (nr_pte_updates)
2594 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2595 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2596
9f40604c 2597 start = end;
4620f8c1 2598 if (pages <= 0 || virtpages <= 0)
9f40604c 2599 goto out;
3cf1962c
RR
2600
2601 cond_resched();
9f40604c 2602 } while (end != vma->vm_end);
cbee9f88 2603 }
6e5fb223 2604
9f40604c 2605out:
6e5fb223 2606 /*
c69307d5
PZ
2607 * It is possible to reach the end of the VMA list but the last few
2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 * would find the !migratable VMA on the next scan but not reset the
2610 * scanner to the start so check it now.
6e5fb223
PZ
2611 */
2612 if (vma)
9f40604c 2613 mm->numa_scan_offset = start;
6e5fb223
PZ
2614 else
2615 reset_ptenuma_scan(p);
2616 up_read(&mm->mmap_sem);
51170840
RR
2617
2618 /*
2619 * Make sure tasks use at least 32x as much time to run other code
2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 * Usually update_task_scan_period slows down scanning enough; on an
2622 * overloaded system we need to limit overhead on a per task basis.
2623 */
2624 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625 u64 diff = p->se.sum_exec_runtime - runtime;
2626 p->node_stamp += 32 * diff;
2627 }
cbee9f88
PZ
2628}
2629
d35927a1
VS
2630void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2631{
2632 int mm_users = 0;
2633 struct mm_struct *mm = p->mm;
2634
2635 if (mm) {
2636 mm_users = atomic_read(&mm->mm_users);
2637 if (mm_users == 1) {
2638 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2639 mm->numa_scan_seq = 0;
2640 }
2641 }
2642 p->node_stamp = 0;
2643 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2644 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2645 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2646 p->numa_work.next = &p->numa_work;
2647 p->numa_faults = NULL;
2648 RCU_INIT_POINTER(p->numa_group, NULL);
2649 p->last_task_numa_placement = 0;
2650 p->last_sum_exec_runtime = 0;
2651
b34920d4
VS
2652 init_task_work(&p->numa_work, task_numa_work);
2653
d35927a1
VS
2654 /* New address space, reset the preferred nid */
2655 if (!(clone_flags & CLONE_VM)) {
2656 p->numa_preferred_nid = NUMA_NO_NODE;
2657 return;
2658 }
2659
2660 /*
2661 * New thread, keep existing numa_preferred_nid which should be copied
2662 * already by arch_dup_task_struct but stagger when scans start.
2663 */
2664 if (mm) {
2665 unsigned int delay;
2666
2667 delay = min_t(unsigned int, task_scan_max(current),
2668 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2669 delay += 2 * TICK_NSEC;
2670 p->node_stamp = delay;
2671 }
2672}
2673
cbee9f88
PZ
2674/*
2675 * Drive the periodic memory faults..
2676 */
b1546edc 2677static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2678{
2679 struct callback_head *work = &curr->numa_work;
2680 u64 period, now;
2681
2682 /*
2683 * We don't care about NUMA placement if we don't have memory.
2684 */
2685 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2686 return;
2687
2688 /*
2689 * Using runtime rather than walltime has the dual advantage that
2690 * we (mostly) drive the selection from busy threads and that the
2691 * task needs to have done some actual work before we bother with
2692 * NUMA placement.
2693 */
2694 now = curr->se.sum_exec_runtime;
2695 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2696
25b3e5a3 2697 if (now > curr->node_stamp + period) {
4b96a29b 2698 if (!curr->node_stamp)
b5dd77c8 2699 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2700 curr->node_stamp += period;
cbee9f88 2701
b34920d4 2702 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2703 task_work_add(curr, work, true);
cbee9f88
PZ
2704 }
2705}
3fed382b 2706
3f9672ba
SD
2707static void update_scan_period(struct task_struct *p, int new_cpu)
2708{
2709 int src_nid = cpu_to_node(task_cpu(p));
2710 int dst_nid = cpu_to_node(new_cpu);
2711
05cbdf4f
MG
2712 if (!static_branch_likely(&sched_numa_balancing))
2713 return;
2714
3f9672ba
SD
2715 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2716 return;
2717
05cbdf4f
MG
2718 if (src_nid == dst_nid)
2719 return;
2720
2721 /*
2722 * Allow resets if faults have been trapped before one scan
2723 * has completed. This is most likely due to a new task that
2724 * is pulled cross-node due to wakeups or load balancing.
2725 */
2726 if (p->numa_scan_seq) {
2727 /*
2728 * Avoid scan adjustments if moving to the preferred
2729 * node or if the task was not previously running on
2730 * the preferred node.
2731 */
2732 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2733 (p->numa_preferred_nid != NUMA_NO_NODE &&
2734 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2735 return;
2736 }
2737
2738 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2739}
2740
cbee9f88
PZ
2741#else
2742static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2743{
2744}
0ec8aa00
PZ
2745
2746static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2747{
2748}
2749
2750static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2751{
2752}
3fed382b 2753
3f9672ba
SD
2754static inline void update_scan_period(struct task_struct *p, int new_cpu)
2755{
2756}
2757
cbee9f88
PZ
2758#endif /* CONFIG_NUMA_BALANCING */
2759
30cfdcfc
DA
2760static void
2761account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762{
2763 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2764#ifdef CONFIG_SMP
0ec8aa00
PZ
2765 if (entity_is_task(se)) {
2766 struct rq *rq = rq_of(cfs_rq);
2767
2768 account_numa_enqueue(rq, task_of(se));
2769 list_add(&se->group_node, &rq->cfs_tasks);
2770 }
367456c7 2771#endif
30cfdcfc 2772 cfs_rq->nr_running++;
30cfdcfc
DA
2773}
2774
2775static void
2776account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777{
2778 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2779#ifdef CONFIG_SMP
0ec8aa00
PZ
2780 if (entity_is_task(se)) {
2781 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2782 list_del_init(&se->group_node);
0ec8aa00 2783 }
bfdb198c 2784#endif
30cfdcfc 2785 cfs_rq->nr_running--;
30cfdcfc
DA
2786}
2787
8d5b9025
PZ
2788/*
2789 * Signed add and clamp on underflow.
2790 *
2791 * Explicitly do a load-store to ensure the intermediate value never hits
2792 * memory. This allows lockless observations without ever seeing the negative
2793 * values.
2794 */
2795#define add_positive(_ptr, _val) do { \
2796 typeof(_ptr) ptr = (_ptr); \
2797 typeof(_val) val = (_val); \
2798 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2799 \
2800 res = var + val; \
2801 \
2802 if (val < 0 && res > var) \
2803 res = 0; \
2804 \
2805 WRITE_ONCE(*ptr, res); \
2806} while (0)
2807
2808/*
2809 * Unsigned subtract and clamp on underflow.
2810 *
2811 * Explicitly do a load-store to ensure the intermediate value never hits
2812 * memory. This allows lockless observations without ever seeing the negative
2813 * values.
2814 */
2815#define sub_positive(_ptr, _val) do { \
2816 typeof(_ptr) ptr = (_ptr); \
2817 typeof(*ptr) val = (_val); \
2818 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2819 res = var - val; \
2820 if (res > var) \
2821 res = 0; \
2822 WRITE_ONCE(*ptr, res); \
2823} while (0)
2824
b5c0ce7b
PB
2825/*
2826 * Remove and clamp on negative, from a local variable.
2827 *
2828 * A variant of sub_positive(), which does not use explicit load-store
2829 * and is thus optimized for local variable updates.
2830 */
2831#define lsub_positive(_ptr, _val) do { \
2832 typeof(_ptr) ptr = (_ptr); \
2833 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2834} while (0)
2835
8d5b9025 2836#ifdef CONFIG_SMP
8d5b9025
PZ
2837static inline void
2838enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2839{
1ea6c46a
PZ
2840 cfs_rq->runnable_weight += se->runnable_weight;
2841
2842 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2843 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2844}
2845
2846static inline void
2847dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2848{
1ea6c46a
PZ
2849 cfs_rq->runnable_weight -= se->runnable_weight;
2850
2851 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2852 sub_positive(&cfs_rq->avg.runnable_load_sum,
2853 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2854}
2855
2856static inline void
2857enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2858{
2859 cfs_rq->avg.load_avg += se->avg.load_avg;
2860 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2861}
2862
2863static inline void
2864dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2865{
2866 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2867 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2868}
2869#else
2870static inline void
2871enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874static inline void
2875enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2876static inline void
2877dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2878#endif
2879
9059393e 2880static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2881 unsigned long weight, unsigned long runnable)
9059393e
VG
2882{
2883 if (se->on_rq) {
2884 /* commit outstanding execution time */
2885 if (cfs_rq->curr == se)
2886 update_curr(cfs_rq);
2887 account_entity_dequeue(cfs_rq, se);
2888 dequeue_runnable_load_avg(cfs_rq, se);
2889 }
2890 dequeue_load_avg(cfs_rq, se);
2891
1ea6c46a 2892 se->runnable_weight = runnable;
9059393e
VG
2893 update_load_set(&se->load, weight);
2894
2895#ifdef CONFIG_SMP
1ea6c46a
PZ
2896 do {
2897 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2898
2899 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2900 se->avg.runnable_load_avg =
2901 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2902 } while (0);
9059393e
VG
2903#endif
2904
2905 enqueue_load_avg(cfs_rq, se);
2906 if (se->on_rq) {
2907 account_entity_enqueue(cfs_rq, se);
2908 enqueue_runnable_load_avg(cfs_rq, se);
2909 }
2910}
2911
2912void reweight_task(struct task_struct *p, int prio)
2913{
2914 struct sched_entity *se = &p->se;
2915 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2916 struct load_weight *load = &se->load;
2917 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2918
1ea6c46a 2919 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2920 load->inv_weight = sched_prio_to_wmult[prio];
2921}
2922
3ff6dcac 2923#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2924#ifdef CONFIG_SMP
cef27403
PZ
2925/*
2926 * All this does is approximate the hierarchical proportion which includes that
2927 * global sum we all love to hate.
2928 *
2929 * That is, the weight of a group entity, is the proportional share of the
2930 * group weight based on the group runqueue weights. That is:
2931 *
2932 * tg->weight * grq->load.weight
2933 * ge->load.weight = ----------------------------- (1)
2934 * \Sum grq->load.weight
2935 *
2936 * Now, because computing that sum is prohibitively expensive to compute (been
2937 * there, done that) we approximate it with this average stuff. The average
2938 * moves slower and therefore the approximation is cheaper and more stable.
2939 *
2940 * So instead of the above, we substitute:
2941 *
2942 * grq->load.weight -> grq->avg.load_avg (2)
2943 *
2944 * which yields the following:
2945 *
2946 * tg->weight * grq->avg.load_avg
2947 * ge->load.weight = ------------------------------ (3)
2948 * tg->load_avg
2949 *
2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2951 *
2952 * That is shares_avg, and it is right (given the approximation (2)).
2953 *
2954 * The problem with it is that because the average is slow -- it was designed
2955 * to be exactly that of course -- this leads to transients in boundary
2956 * conditions. In specific, the case where the group was idle and we start the
2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2958 * yielding bad latency etc..
2959 *
2960 * Now, in that special case (1) reduces to:
2961 *
2962 * tg->weight * grq->load.weight
17de4ee0 2963 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2964 * grp->load.weight
2965 *
2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2967 *
2968 * So what we do is modify our approximation (3) to approach (4) in the (near)
2969 * UP case, like:
2970 *
2971 * ge->load.weight =
2972 *
2973 * tg->weight * grq->load.weight
2974 * --------------------------------------------------- (5)
2975 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2976 *
17de4ee0
PZ
2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2978 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2979 *
2980 *
2981 * tg->weight * grq->load.weight
2982 * ge->load.weight = ----------------------------- (6)
2983 * tg_load_avg'
2984 *
2985 * Where:
2986 *
2987 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2988 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2989 *
2990 * And that is shares_weight and is icky. In the (near) UP case it approaches
2991 * (4) while in the normal case it approaches (3). It consistently
2992 * overestimates the ge->load.weight and therefore:
2993 *
2994 * \Sum ge->load.weight >= tg->weight
2995 *
2996 * hence icky!
2997 */
2c8e4dce 2998static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2999{
7c80cfc9
PZ
3000 long tg_weight, tg_shares, load, shares;
3001 struct task_group *tg = cfs_rq->tg;
3002
3003 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3004
3d4b60d3 3005 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3006
ea1dc6fc 3007 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3008
ea1dc6fc
PZ
3009 /* Ensure tg_weight >= load */
3010 tg_weight -= cfs_rq->tg_load_avg_contrib;
3011 tg_weight += load;
3ff6dcac 3012
7c80cfc9 3013 shares = (tg_shares * load);
cf5f0acf
PZ
3014 if (tg_weight)
3015 shares /= tg_weight;
3ff6dcac 3016
b8fd8423
DE
3017 /*
3018 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3019 * of a group with small tg->shares value. It is a floor value which is
3020 * assigned as a minimum load.weight to the sched_entity representing
3021 * the group on a CPU.
3022 *
3023 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3024 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3025 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3026 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3027 * instead of 0.
3028 */
7c80cfc9 3029 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3030}
2c8e4dce
JB
3031
3032/*
17de4ee0
PZ
3033 * This calculates the effective runnable weight for a group entity based on
3034 * the group entity weight calculated above.
3035 *
3036 * Because of the above approximation (2), our group entity weight is
3037 * an load_avg based ratio (3). This means that it includes blocked load and
3038 * does not represent the runnable weight.
3039 *
3040 * Approximate the group entity's runnable weight per ratio from the group
3041 * runqueue:
3042 *
3043 * grq->avg.runnable_load_avg
3044 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3045 * grq->avg.load_avg
3046 *
3047 * However, analogous to above, since the avg numbers are slow, this leads to
3048 * transients in the from-idle case. Instead we use:
3049 *
3050 * ge->runnable_weight = ge->load.weight *
3051 *
3052 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3053 * ----------------------------------------------------- (8)
3054 * max(grq->avg.load_avg, grq->load.weight)
3055 *
3056 * Where these max() serve both to use the 'instant' values to fix the slow
3057 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3058 */
3059static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3060{
17de4ee0
PZ
3061 long runnable, load_avg;
3062
3063 load_avg = max(cfs_rq->avg.load_avg,
3064 scale_load_down(cfs_rq->load.weight));
3065
3066 runnable = max(cfs_rq->avg.runnable_load_avg,
3067 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3068
3069 runnable *= shares;
3070 if (load_avg)
3071 runnable /= load_avg;
17de4ee0 3072
2c8e4dce
JB
3073 return clamp_t(long, runnable, MIN_SHARES, shares);
3074}
387f77cc 3075#endif /* CONFIG_SMP */
ea1dc6fc 3076
82958366
PT
3077static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3078
1ea6c46a
PZ
3079/*
3080 * Recomputes the group entity based on the current state of its group
3081 * runqueue.
3082 */
3083static void update_cfs_group(struct sched_entity *se)
2069dd75 3084{
1ea6c46a
PZ
3085 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3086 long shares, runnable;
2069dd75 3087
1ea6c46a 3088 if (!gcfs_rq)
89ee048f
VG
3089 return;
3090
1ea6c46a 3091 if (throttled_hierarchy(gcfs_rq))
2069dd75 3092 return;
89ee048f 3093
3ff6dcac 3094#ifndef CONFIG_SMP
1ea6c46a 3095 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3096
3097 if (likely(se->load.weight == shares))
3ff6dcac 3098 return;
7c80cfc9 3099#else
2c8e4dce
JB
3100 shares = calc_group_shares(gcfs_rq);
3101 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3102#endif
2069dd75 3103
1ea6c46a 3104 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3105}
89ee048f 3106
2069dd75 3107#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3108static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3109{
3110}
3111#endif /* CONFIG_FAIR_GROUP_SCHED */
3112
ea14b57e 3113static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3114{
43964409
LT
3115 struct rq *rq = rq_of(cfs_rq);
3116
ea14b57e 3117 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3118 /*
3119 * There are a few boundary cases this might miss but it should
3120 * get called often enough that that should (hopefully) not be
9783be2c 3121 * a real problem.
a030d738
VK
3122 *
3123 * It will not get called when we go idle, because the idle
3124 * thread is a different class (!fair), nor will the utilization
3125 * number include things like RT tasks.
3126 *
3127 * As is, the util number is not freq-invariant (we'd have to
3128 * implement arch_scale_freq_capacity() for that).
3129 *
3130 * See cpu_util().
3131 */
ea14b57e 3132 cpufreq_update_util(rq, flags);
a030d738
VK
3133 }
3134}
3135
141965c7 3136#ifdef CONFIG_SMP
c566e8e9 3137#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3138/**
3139 * update_tg_load_avg - update the tg's load avg
3140 * @cfs_rq: the cfs_rq whose avg changed
3141 * @force: update regardless of how small the difference
3142 *
3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3144 * However, because tg->load_avg is a global value there are performance
3145 * considerations.
3146 *
3147 * In order to avoid having to look at the other cfs_rq's, we use a
3148 * differential update where we store the last value we propagated. This in
3149 * turn allows skipping updates if the differential is 'small'.
3150 *
815abf5a 3151 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3152 */
9d89c257 3153static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3154{
9d89c257 3155 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3156
aa0b7ae0
WL
3157 /*
3158 * No need to update load_avg for root_task_group as it is not used.
3159 */
3160 if (cfs_rq->tg == &root_task_group)
3161 return;
3162
9d89c257
YD
3163 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3164 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3165 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3166 }
8165e145 3167}
f5f9739d 3168
ad936d86 3169/*
97fb7a0a 3170 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3171 * caller only guarantees p->pi_lock is held; no other assumptions,
3172 * including the state of rq->lock, should be made.
3173 */
3174void set_task_rq_fair(struct sched_entity *se,
3175 struct cfs_rq *prev, struct cfs_rq *next)
3176{
0ccb977f
PZ
3177 u64 p_last_update_time;
3178 u64 n_last_update_time;
3179
ad936d86
BP
3180 if (!sched_feat(ATTACH_AGE_LOAD))
3181 return;
3182
3183 /*
3184 * We are supposed to update the task to "current" time, then its up to
3185 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3186 * getting what current time is, so simply throw away the out-of-date
3187 * time. This will result in the wakee task is less decayed, but giving
3188 * the wakee more load sounds not bad.
3189 */
0ccb977f
PZ
3190 if (!(se->avg.last_update_time && prev))
3191 return;
ad936d86
BP
3192
3193#ifndef CONFIG_64BIT
0ccb977f 3194 {
ad936d86
BP
3195 u64 p_last_update_time_copy;
3196 u64 n_last_update_time_copy;
3197
3198 do {
3199 p_last_update_time_copy = prev->load_last_update_time_copy;
3200 n_last_update_time_copy = next->load_last_update_time_copy;
3201
3202 smp_rmb();
3203
3204 p_last_update_time = prev->avg.last_update_time;
3205 n_last_update_time = next->avg.last_update_time;
3206
3207 } while (p_last_update_time != p_last_update_time_copy ||
3208 n_last_update_time != n_last_update_time_copy);
0ccb977f 3209 }
ad936d86 3210#else
0ccb977f
PZ
3211 p_last_update_time = prev->avg.last_update_time;
3212 n_last_update_time = next->avg.last_update_time;
ad936d86 3213#endif
23127296 3214 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3215 se->avg.last_update_time = n_last_update_time;
ad936d86 3216}
09a43ace 3217
0e2d2aaa
PZ
3218
3219/*
3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3221 * propagate its contribution. The key to this propagation is the invariant
3222 * that for each group:
3223 *
3224 * ge->avg == grq->avg (1)
3225 *
3226 * _IFF_ we look at the pure running and runnable sums. Because they
3227 * represent the very same entity, just at different points in the hierarchy.
3228 *
a4c3c049
VG
3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3230 * sum over (but still wrong, because the group entity and group rq do not have
3231 * their PELT windows aligned).
0e2d2aaa
PZ
3232 *
3233 * However, update_tg_cfs_runnable() is more complex. So we have:
3234 *
3235 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3236 *
3237 * And since, like util, the runnable part should be directly transferable,
3238 * the following would _appear_ to be the straight forward approach:
3239 *
a4c3c049 3240 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3241 *
3242 * And per (1) we have:
3243 *
a4c3c049 3244 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3245 *
3246 * Which gives:
3247 *
3248 * ge->load.weight * grq->avg.load_avg
3249 * ge->avg.load_avg = ----------------------------------- (4)
3250 * grq->load.weight
3251 *
3252 * Except that is wrong!
3253 *
3254 * Because while for entities historical weight is not important and we
3255 * really only care about our future and therefore can consider a pure
3256 * runnable sum, runqueues can NOT do this.
3257 *
3258 * We specifically want runqueues to have a load_avg that includes
3259 * historical weights. Those represent the blocked load, the load we expect
3260 * to (shortly) return to us. This only works by keeping the weights as
3261 * integral part of the sum. We therefore cannot decompose as per (3).
3262 *
a4c3c049
VG
3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3266 * runnable section of these tasks overlap (or not). If they were to perfectly
3267 * align the rq as a whole would be runnable 2/3 of the time. If however we
3268 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3269 *
a4c3c049 3270 * So we'll have to approximate.. :/
0e2d2aaa 3271 *
a4c3c049 3272 * Given the constraint:
0e2d2aaa 3273 *
a4c3c049 3274 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3275 *
a4c3c049
VG
3276 * We can construct a rule that adds runnable to a rq by assuming minimal
3277 * overlap.
0e2d2aaa 3278 *
a4c3c049 3279 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3280 *
a4c3c049 3281 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3282 *
a4c3c049 3283 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3284 *
0e2d2aaa
PZ
3285 */
3286
09a43ace 3287static inline void
0e2d2aaa 3288update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3289{
09a43ace
VG
3290 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3291
3292 /* Nothing to update */
3293 if (!delta)
3294 return;
3295
a4c3c049
VG
3296 /*
3297 * The relation between sum and avg is:
3298 *
3299 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3300 *
3301 * however, the PELT windows are not aligned between grq and gse.
3302 */
3303
09a43ace
VG
3304 /* Set new sched_entity's utilization */
3305 se->avg.util_avg = gcfs_rq->avg.util_avg;
3306 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3307
3308 /* Update parent cfs_rq utilization */
3309 add_positive(&cfs_rq->avg.util_avg, delta);
3310 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3311}
3312
09a43ace 3313static inline void
0e2d2aaa 3314update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3315{
a4c3c049
VG
3316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3317 unsigned long runnable_load_avg, load_avg;
3318 u64 runnable_load_sum, load_sum = 0;
3319 s64 delta_sum;
09a43ace 3320
0e2d2aaa
PZ
3321 if (!runnable_sum)
3322 return;
09a43ace 3323
0e2d2aaa 3324 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3325
a4c3c049
VG
3326 if (runnable_sum >= 0) {
3327 /*
3328 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3329 * the CPU is saturated running == runnable.
3330 */
3331 runnable_sum += se->avg.load_sum;
3332 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3333 } else {
3334 /*
3335 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3336 * assuming all tasks are equally runnable.
3337 */
3338 if (scale_load_down(gcfs_rq->load.weight)) {
3339 load_sum = div_s64(gcfs_rq->avg.load_sum,
3340 scale_load_down(gcfs_rq->load.weight));
3341 }
3342
3343 /* But make sure to not inflate se's runnable */
3344 runnable_sum = min(se->avg.load_sum, load_sum);
3345 }
3346
3347 /*
3348 * runnable_sum can't be lower than running_sum
23127296
VG
3349 * Rescale running sum to be in the same range as runnable sum
3350 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3351 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3352 */
23127296 3353 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3354 runnable_sum = max(runnable_sum, running_sum);
3355
0e2d2aaa
PZ
3356 load_sum = (s64)se_weight(se) * runnable_sum;
3357 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3358
a4c3c049
VG
3359 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3360 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3361
a4c3c049
VG
3362 se->avg.load_sum = runnable_sum;
3363 se->avg.load_avg = load_avg;
3364 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3365 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3366
1ea6c46a
PZ
3367 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3368 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3369 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3370 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3371
a4c3c049
VG
3372 se->avg.runnable_load_sum = runnable_sum;
3373 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3374
09a43ace 3375 if (se->on_rq) {
a4c3c049
VG
3376 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3377 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3378 }
3379}
3380
0e2d2aaa 3381static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3382{
0e2d2aaa
PZ
3383 cfs_rq->propagate = 1;
3384 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3385}
3386
3387/* Update task and its cfs_rq load average */
3388static inline int propagate_entity_load_avg(struct sched_entity *se)
3389{
0e2d2aaa 3390 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3391
3392 if (entity_is_task(se))
3393 return 0;
3394
0e2d2aaa
PZ
3395 gcfs_rq = group_cfs_rq(se);
3396 if (!gcfs_rq->propagate)
09a43ace
VG
3397 return 0;
3398
0e2d2aaa
PZ
3399 gcfs_rq->propagate = 0;
3400
09a43ace
VG
3401 cfs_rq = cfs_rq_of(se);
3402
0e2d2aaa 3403 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3404
0e2d2aaa
PZ
3405 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3406 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3407
ba19f51f 3408 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3409 trace_pelt_se_tp(se);
ba19f51f 3410
09a43ace
VG
3411 return 1;
3412}
3413
bc427898
VG
3414/*
3415 * Check if we need to update the load and the utilization of a blocked
3416 * group_entity:
3417 */
3418static inline bool skip_blocked_update(struct sched_entity *se)
3419{
3420 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3421
3422 /*
3423 * If sched_entity still have not zero load or utilization, we have to
3424 * decay it:
3425 */
3426 if (se->avg.load_avg || se->avg.util_avg)
3427 return false;
3428
3429 /*
3430 * If there is a pending propagation, we have to update the load and
3431 * the utilization of the sched_entity:
3432 */
0e2d2aaa 3433 if (gcfs_rq->propagate)
bc427898
VG
3434 return false;
3435
3436 /*
3437 * Otherwise, the load and the utilization of the sched_entity is
3438 * already zero and there is no pending propagation, so it will be a
3439 * waste of time to try to decay it:
3440 */
3441 return true;
3442}
3443
6e83125c 3444#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3445
9d89c257 3446static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3447
3448static inline int propagate_entity_load_avg(struct sched_entity *se)
3449{
3450 return 0;
3451}
3452
0e2d2aaa 3453static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3454
6e83125c 3455#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3456
3d30544f
PZ
3457/**
3458 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3459 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3460 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3461 *
3462 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3463 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3464 * post_init_entity_util_avg().
3465 *
3466 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3467 *
7c3edd2c
PZ
3468 * Returns true if the load decayed or we removed load.
3469 *
3470 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3471 * call update_tg_load_avg() when this function returns true.
3d30544f 3472 */
a2c6c91f 3473static inline int
3a123bbb 3474update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3475{
0e2d2aaa 3476 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3477 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3478 int decayed = 0;
2dac754e 3479
2a2f5d4e
PZ
3480 if (cfs_rq->removed.nr) {
3481 unsigned long r;
9a2dd585 3482 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3483
3484 raw_spin_lock(&cfs_rq->removed.lock);
3485 swap(cfs_rq->removed.util_avg, removed_util);
3486 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3487 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3488 cfs_rq->removed.nr = 0;
3489 raw_spin_unlock(&cfs_rq->removed.lock);
3490
2a2f5d4e 3491 r = removed_load;
89741892 3492 sub_positive(&sa->load_avg, r);
9a2dd585 3493 sub_positive(&sa->load_sum, r * divider);
2dac754e 3494
2a2f5d4e 3495 r = removed_util;
89741892 3496 sub_positive(&sa->util_avg, r);
9a2dd585 3497 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3498
0e2d2aaa 3499 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3500
3501 decayed = 1;
9d89c257 3502 }
36ee28e4 3503
23127296 3504 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3505
9d89c257
YD
3506#ifndef CONFIG_64BIT
3507 smp_wmb();
3508 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3509#endif
36ee28e4 3510
2a2f5d4e 3511 return decayed;
21e96f88
SM
3512}
3513
3d30544f
PZ
3514/**
3515 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3516 * @cfs_rq: cfs_rq to attach to
3517 * @se: sched_entity to attach
882a78a9 3518 * @flags: migration hints
3d30544f
PZ
3519 *
3520 * Must call update_cfs_rq_load_avg() before this, since we rely on
3521 * cfs_rq->avg.last_update_time being current.
3522 */
ea14b57e 3523static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3524{
f207934f
PZ
3525 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3526
3527 /*
3528 * When we attach the @se to the @cfs_rq, we must align the decay
3529 * window because without that, really weird and wonderful things can
3530 * happen.
3531 *
3532 * XXX illustrate
3533 */
a05e8c51 3534 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3535 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3536
3537 /*
3538 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3539 * period_contrib. This isn't strictly correct, but since we're
3540 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3541 * _sum a little.
3542 */
3543 se->avg.util_sum = se->avg.util_avg * divider;
3544
3545 se->avg.load_sum = divider;
3546 if (se_weight(se)) {
3547 se->avg.load_sum =
3548 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3549 }
3550
3551 se->avg.runnable_load_sum = se->avg.load_sum;
3552
8d5b9025 3553 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3554 cfs_rq->avg.util_avg += se->avg.util_avg;
3555 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3556
3557 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3558
ea14b57e 3559 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3560
3561 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3562}
3563
3d30544f
PZ
3564/**
3565 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3566 * @cfs_rq: cfs_rq to detach from
3567 * @se: sched_entity to detach
3568 *
3569 * Must call update_cfs_rq_load_avg() before this, since we rely on
3570 * cfs_rq->avg.last_update_time being current.
3571 */
a05e8c51
BP
3572static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573{
8d5b9025 3574 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3575 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3576 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3577
3578 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3579
ea14b57e 3580 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3581
3582 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3583}
3584
b382a531
PZ
3585/*
3586 * Optional action to be done while updating the load average
3587 */
3588#define UPDATE_TG 0x1
3589#define SKIP_AGE_LOAD 0x2
3590#define DO_ATTACH 0x4
3591
3592/* Update task and its cfs_rq load average */
3593static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3594{
23127296 3595 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3596 int decayed;
3597
3598 /*
3599 * Track task load average for carrying it to new CPU after migrated, and
3600 * track group sched_entity load average for task_h_load calc in migration
3601 */
3602 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3603 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3604
3605 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3606 decayed |= propagate_entity_load_avg(se);
3607
3608 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3609
ea14b57e
PZ
3610 /*
3611 * DO_ATTACH means we're here from enqueue_entity().
3612 * !last_update_time means we've passed through
3613 * migrate_task_rq_fair() indicating we migrated.
3614 *
3615 * IOW we're enqueueing a task on a new CPU.
3616 */
3617 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3618 update_tg_load_avg(cfs_rq, 0);
3619
bef69dd8
VG
3620 } else if (decayed) {
3621 cfs_rq_util_change(cfs_rq, 0);
3622
3623 if (flags & UPDATE_TG)
3624 update_tg_load_avg(cfs_rq, 0);
3625 }
b382a531
PZ
3626}
3627
9d89c257 3628#ifndef CONFIG_64BIT
0905f04e
YD
3629static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3630{
9d89c257 3631 u64 last_update_time_copy;
0905f04e 3632 u64 last_update_time;
9ee474f5 3633
9d89c257
YD
3634 do {
3635 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3636 smp_rmb();
3637 last_update_time = cfs_rq->avg.last_update_time;
3638 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3639
3640 return last_update_time;
3641}
9d89c257 3642#else
0905f04e
YD
3643static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3644{
3645 return cfs_rq->avg.last_update_time;
3646}
9d89c257
YD
3647#endif
3648
104cb16d
MR
3649/*
3650 * Synchronize entity load avg of dequeued entity without locking
3651 * the previous rq.
3652 */
71b47eaf 3653static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3654{
3655 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3656 u64 last_update_time;
3657
3658 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3659 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3660}
3661
0905f04e
YD
3662/*
3663 * Task first catches up with cfs_rq, and then subtract
3664 * itself from the cfs_rq (task must be off the queue now).
3665 */
71b47eaf 3666static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3667{
3668 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3669 unsigned long flags;
0905f04e
YD
3670
3671 /*
7dc603c9
PZ
3672 * tasks cannot exit without having gone through wake_up_new_task() ->
3673 * post_init_entity_util_avg() which will have added things to the
3674 * cfs_rq, so we can remove unconditionally.
0905f04e 3675 */
0905f04e 3676
104cb16d 3677 sync_entity_load_avg(se);
2a2f5d4e
PZ
3678
3679 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3680 ++cfs_rq->removed.nr;
3681 cfs_rq->removed.util_avg += se->avg.util_avg;
3682 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3683 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3684 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3685}
642dbc39 3686
7ea241af
YD
3687static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3688{
1ea6c46a 3689 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3690}
3691
3692static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3693{
3694 return cfs_rq->avg.load_avg;
3695}
3696
7f65ea42
PB
3697static inline unsigned long task_util(struct task_struct *p)
3698{
3699 return READ_ONCE(p->se.avg.util_avg);
3700}
3701
3702static inline unsigned long _task_util_est(struct task_struct *p)
3703{
3704 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3705
92a801e5 3706 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3707}
3708
3709static inline unsigned long task_util_est(struct task_struct *p)
3710{
3711 return max(task_util(p), _task_util_est(p));
3712}
3713
3714static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3715 struct task_struct *p)
3716{
3717 unsigned int enqueued;
3718
3719 if (!sched_feat(UTIL_EST))
3720 return;
3721
3722 /* Update root cfs_rq's estimated utilization */
3723 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3724 enqueued += _task_util_est(p);
7f65ea42
PB
3725 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3726}
3727
3728/*
3729 * Check if a (signed) value is within a specified (unsigned) margin,
3730 * based on the observation that:
3731 *
3732 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3733 *
3734 * NOTE: this only works when value + maring < INT_MAX.
3735 */
3736static inline bool within_margin(int value, int margin)
3737{
3738 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3739}
3740
3741static void
3742util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3743{
3744 long last_ewma_diff;
3745 struct util_est ue;
10a35e68 3746 int cpu;
7f65ea42
PB
3747
3748 if (!sched_feat(UTIL_EST))
3749 return;
3750
3482d98b
VG
3751 /* Update root cfs_rq's estimated utilization */
3752 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3753 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3754 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3755
3756 /*
3757 * Skip update of task's estimated utilization when the task has not
3758 * yet completed an activation, e.g. being migrated.
3759 */
3760 if (!task_sleep)
3761 return;
3762
d519329f
PB
3763 /*
3764 * If the PELT values haven't changed since enqueue time,
3765 * skip the util_est update.
3766 */
3767 ue = p->se.avg.util_est;
3768 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3769 return;
3770
b8c96361
PB
3771 /*
3772 * Reset EWMA on utilization increases, the moving average is used only
3773 * to smooth utilization decreases.
3774 */
3775 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3776 if (sched_feat(UTIL_EST_FASTUP)) {
3777 if (ue.ewma < ue.enqueued) {
3778 ue.ewma = ue.enqueued;
3779 goto done;
3780 }
3781 }
3782
7f65ea42
PB
3783 /*
3784 * Skip update of task's estimated utilization when its EWMA is
3785 * already ~1% close to its last activation value.
3786 */
7f65ea42
PB
3787 last_ewma_diff = ue.enqueued - ue.ewma;
3788 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3789 return;
3790
10a35e68
VG
3791 /*
3792 * To avoid overestimation of actual task utilization, skip updates if
3793 * we cannot grant there is idle time in this CPU.
3794 */
3795 cpu = cpu_of(rq_of(cfs_rq));
3796 if (task_util(p) > capacity_orig_of(cpu))
3797 return;
3798
7f65ea42
PB
3799 /*
3800 * Update Task's estimated utilization
3801 *
3802 * When *p completes an activation we can consolidate another sample
3803 * of the task size. This is done by storing the current PELT value
3804 * as ue.enqueued and by using this value to update the Exponential
3805 * Weighted Moving Average (EWMA):
3806 *
3807 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3808 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3809 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3810 * = w * ( last_ewma_diff ) + ewma(t-1)
3811 * = w * (last_ewma_diff + ewma(t-1) / w)
3812 *
3813 * Where 'w' is the weight of new samples, which is configured to be
3814 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3815 */
3816 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3817 ue.ewma += last_ewma_diff;
3818 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 3819done:
7f65ea42
PB
3820 WRITE_ONCE(p->se.avg.util_est, ue);
3821}
3822
3b1baa64
MR
3823static inline int task_fits_capacity(struct task_struct *p, long capacity)
3824{
60e17f5c 3825 return fits_capacity(task_util_est(p), capacity);
3b1baa64
MR
3826}
3827
3828static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3829{
3830 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3831 return;
3832
3833 if (!p) {
3834 rq->misfit_task_load = 0;
3835 return;
3836 }
3837
3838 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3839 rq->misfit_task_load = 0;
3840 return;
3841 }
3842
3843 rq->misfit_task_load = task_h_load(p);
3844}
3845
38033c37
PZ
3846#else /* CONFIG_SMP */
3847
d31b1a66
VG
3848#define UPDATE_TG 0x0
3849#define SKIP_AGE_LOAD 0x0
b382a531 3850#define DO_ATTACH 0x0
d31b1a66 3851
88c0616e 3852static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3853{
ea14b57e 3854 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3855}
3856
9d89c257 3857static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3858
a05e8c51 3859static inline void
ea14b57e 3860attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3861static inline void
3862detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3863
46f69fa3 3864static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3865{
3866 return 0;
3867}
3868
7f65ea42
PB
3869static inline void
3870util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3871
3872static inline void
3873util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3874 bool task_sleep) {}
3b1baa64 3875static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3876
38033c37 3877#endif /* CONFIG_SMP */
9d85f21c 3878
ddc97297
PZ
3879static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3880{
3881#ifdef CONFIG_SCHED_DEBUG
3882 s64 d = se->vruntime - cfs_rq->min_vruntime;
3883
3884 if (d < 0)
3885 d = -d;
3886
3887 if (d > 3*sysctl_sched_latency)
ae92882e 3888 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3889#endif
3890}
3891
aeb73b04
PZ
3892static void
3893place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3894{
1af5f730 3895 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3896
2cb8600e
PZ
3897 /*
3898 * The 'current' period is already promised to the current tasks,
3899 * however the extra weight of the new task will slow them down a
3900 * little, place the new task so that it fits in the slot that
3901 * stays open at the end.
3902 */
94dfb5e7 3903 if (initial && sched_feat(START_DEBIT))
f9c0b095 3904 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3905
a2e7a7eb 3906 /* sleeps up to a single latency don't count. */
5ca9880c 3907 if (!initial) {
a2e7a7eb 3908 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3909
a2e7a7eb
MG
3910 /*
3911 * Halve their sleep time's effect, to allow
3912 * for a gentler effect of sleepers:
3913 */
3914 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3915 thresh >>= 1;
51e0304c 3916
a2e7a7eb 3917 vruntime -= thresh;
aeb73b04
PZ
3918 }
3919
b5d9d734 3920 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3921 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3922}
3923
d3d9dc33
PT
3924static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3925
cb251765
MG
3926static inline void check_schedstat_required(void)
3927{
3928#ifdef CONFIG_SCHEDSTATS
3929 if (schedstat_enabled())
3930 return;
3931
3932 /* Force schedstat enabled if a dependent tracepoint is active */
3933 if (trace_sched_stat_wait_enabled() ||
3934 trace_sched_stat_sleep_enabled() ||
3935 trace_sched_stat_iowait_enabled() ||
3936 trace_sched_stat_blocked_enabled() ||
3937 trace_sched_stat_runtime_enabled()) {
eda8dca5 3938 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3939 "stat_blocked and stat_runtime require the "
f67abed5 3940 "kernel parameter schedstats=enable or "
cb251765
MG
3941 "kernel.sched_schedstats=1\n");
3942 }
3943#endif
3944}
3945
b5179ac7
PZ
3946
3947/*
3948 * MIGRATION
3949 *
3950 * dequeue
3951 * update_curr()
3952 * update_min_vruntime()
3953 * vruntime -= min_vruntime
3954 *
3955 * enqueue
3956 * update_curr()
3957 * update_min_vruntime()
3958 * vruntime += min_vruntime
3959 *
3960 * this way the vruntime transition between RQs is done when both
3961 * min_vruntime are up-to-date.
3962 *
3963 * WAKEUP (remote)
3964 *
59efa0ba 3965 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3966 * vruntime -= min_vruntime
3967 *
3968 * enqueue
3969 * update_curr()
3970 * update_min_vruntime()
3971 * vruntime += min_vruntime
3972 *
3973 * this way we don't have the most up-to-date min_vruntime on the originating
3974 * CPU and an up-to-date min_vruntime on the destination CPU.
3975 */
3976
bf0f6f24 3977static void
88ec22d3 3978enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3979{
2f950354
PZ
3980 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3981 bool curr = cfs_rq->curr == se;
3982
88ec22d3 3983 /*
2f950354
PZ
3984 * If we're the current task, we must renormalise before calling
3985 * update_curr().
88ec22d3 3986 */
2f950354 3987 if (renorm && curr)
88ec22d3
PZ
3988 se->vruntime += cfs_rq->min_vruntime;
3989
2f950354
PZ
3990 update_curr(cfs_rq);
3991
bf0f6f24 3992 /*
2f950354
PZ
3993 * Otherwise, renormalise after, such that we're placed at the current
3994 * moment in time, instead of some random moment in the past. Being
3995 * placed in the past could significantly boost this task to the
3996 * fairness detriment of existing tasks.
bf0f6f24 3997 */
2f950354
PZ
3998 if (renorm && !curr)
3999 se->vruntime += cfs_rq->min_vruntime;
4000
89ee048f
VG
4001 /*
4002 * When enqueuing a sched_entity, we must:
4003 * - Update loads to have both entity and cfs_rq synced with now.
4004 * - Add its load to cfs_rq->runnable_avg
4005 * - For group_entity, update its weight to reflect the new share of
4006 * its group cfs_rq
4007 * - Add its new weight to cfs_rq->load.weight
4008 */
b382a531 4009 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 4010 update_cfs_group(se);
b5b3e35f 4011 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 4012 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4013
1a3d027c 4014 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4015 place_entity(cfs_rq, se, 0);
bf0f6f24 4016
cb251765 4017 check_schedstat_required();
4fa8d299
JP
4018 update_stats_enqueue(cfs_rq, se, flags);
4019 check_spread(cfs_rq, se);
2f950354 4020 if (!curr)
83b699ed 4021 __enqueue_entity(cfs_rq, se);
2069dd75 4022 se->on_rq = 1;
3d4b47b4 4023
d3d9dc33 4024 if (cfs_rq->nr_running == 1) {
3d4b47b4 4025 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4026 check_enqueue_throttle(cfs_rq);
4027 }
bf0f6f24
IM
4028}
4029
2c13c919 4030static void __clear_buddies_last(struct sched_entity *se)
2002c695 4031{
2c13c919
RR
4032 for_each_sched_entity(se) {
4033 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4034 if (cfs_rq->last != se)
2c13c919 4035 break;
f1044799
PZ
4036
4037 cfs_rq->last = NULL;
2c13c919
RR
4038 }
4039}
2002c695 4040
2c13c919
RR
4041static void __clear_buddies_next(struct sched_entity *se)
4042{
4043 for_each_sched_entity(se) {
4044 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4045 if (cfs_rq->next != se)
2c13c919 4046 break;
f1044799
PZ
4047
4048 cfs_rq->next = NULL;
2c13c919 4049 }
2002c695
PZ
4050}
4051
ac53db59
RR
4052static void __clear_buddies_skip(struct sched_entity *se)
4053{
4054 for_each_sched_entity(se) {
4055 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4056 if (cfs_rq->skip != se)
ac53db59 4057 break;
f1044799
PZ
4058
4059 cfs_rq->skip = NULL;
ac53db59
RR
4060 }
4061}
4062
a571bbea
PZ
4063static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4064{
2c13c919
RR
4065 if (cfs_rq->last == se)
4066 __clear_buddies_last(se);
4067
4068 if (cfs_rq->next == se)
4069 __clear_buddies_next(se);
ac53db59
RR
4070
4071 if (cfs_rq->skip == se)
4072 __clear_buddies_skip(se);
a571bbea
PZ
4073}
4074
6c16a6dc 4075static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4076
bf0f6f24 4077static void
371fd7e7 4078dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4079{
a2a2d680
DA
4080 /*
4081 * Update run-time statistics of the 'current'.
4082 */
4083 update_curr(cfs_rq);
89ee048f
VG
4084
4085 /*
4086 * When dequeuing a sched_entity, we must:
4087 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4088 * - Subtract its load from the cfs_rq->runnable_avg.
4089 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4090 * - For group entity, update its weight to reflect the new share
4091 * of its group cfs_rq.
4092 */
88c0616e 4093 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4094 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4095
4fa8d299 4096 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4097
2002c695 4098 clear_buddies(cfs_rq, se);
4793241b 4099
83b699ed 4100 if (se != cfs_rq->curr)
30cfdcfc 4101 __dequeue_entity(cfs_rq, se);
17bc14b7 4102 se->on_rq = 0;
30cfdcfc 4103 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4104
4105 /*
b60205c7
PZ
4106 * Normalize after update_curr(); which will also have moved
4107 * min_vruntime if @se is the one holding it back. But before doing
4108 * update_min_vruntime() again, which will discount @se's position and
4109 * can move min_vruntime forward still more.
88ec22d3 4110 */
371fd7e7 4111 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4112 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4113
d8b4986d
PT
4114 /* return excess runtime on last dequeue */
4115 return_cfs_rq_runtime(cfs_rq);
4116
1ea6c46a 4117 update_cfs_group(se);
b60205c7
PZ
4118
4119 /*
4120 * Now advance min_vruntime if @se was the entity holding it back,
4121 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4122 * put back on, and if we advance min_vruntime, we'll be placed back
4123 * further than we started -- ie. we'll be penalized.
4124 */
9845c49c 4125 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4126 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4127}
4128
4129/*
4130 * Preempt the current task with a newly woken task if needed:
4131 */
7c92e54f 4132static void
2e09bf55 4133check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4134{
11697830 4135 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4136 struct sched_entity *se;
4137 s64 delta;
11697830 4138
6d0f0ebd 4139 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4140 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4141 if (delta_exec > ideal_runtime) {
8875125e 4142 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4143 /*
4144 * The current task ran long enough, ensure it doesn't get
4145 * re-elected due to buddy favours.
4146 */
4147 clear_buddies(cfs_rq, curr);
f685ceac
MG
4148 return;
4149 }
4150
4151 /*
4152 * Ensure that a task that missed wakeup preemption by a
4153 * narrow margin doesn't have to wait for a full slice.
4154 * This also mitigates buddy induced latencies under load.
4155 */
f685ceac
MG
4156 if (delta_exec < sysctl_sched_min_granularity)
4157 return;
4158
f4cfb33e
WX
4159 se = __pick_first_entity(cfs_rq);
4160 delta = curr->vruntime - se->vruntime;
f685ceac 4161
f4cfb33e
WX
4162 if (delta < 0)
4163 return;
d7d82944 4164
f4cfb33e 4165 if (delta > ideal_runtime)
8875125e 4166 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4167}
4168
83b699ed 4169static void
8494f412 4170set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4171{
83b699ed
SV
4172 /* 'current' is not kept within the tree. */
4173 if (se->on_rq) {
4174 /*
4175 * Any task has to be enqueued before it get to execute on
4176 * a CPU. So account for the time it spent waiting on the
4177 * runqueue.
4178 */
4fa8d299 4179 update_stats_wait_end(cfs_rq, se);
83b699ed 4180 __dequeue_entity(cfs_rq, se);
88c0616e 4181 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4182 }
4183
79303e9e 4184 update_stats_curr_start(cfs_rq, se);
429d43bc 4185 cfs_rq->curr = se;
4fa8d299 4186
eba1ed4b
IM
4187 /*
4188 * Track our maximum slice length, if the CPU's load is at
4189 * least twice that of our own weight (i.e. dont track it
4190 * when there are only lesser-weight tasks around):
4191 */
f2bedc47
DE
4192 if (schedstat_enabled() &&
4193 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4194 schedstat_set(se->statistics.slice_max,
4195 max((u64)schedstat_val(se->statistics.slice_max),
4196 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4197 }
4fa8d299 4198
4a55b450 4199 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4200}
4201
3f3a4904
PZ
4202static int
4203wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4204
ac53db59
RR
4205/*
4206 * Pick the next process, keeping these things in mind, in this order:
4207 * 1) keep things fair between processes/task groups
4208 * 2) pick the "next" process, since someone really wants that to run
4209 * 3) pick the "last" process, for cache locality
4210 * 4) do not run the "skip" process, if something else is available
4211 */
678d5718
PZ
4212static struct sched_entity *
4213pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4214{
678d5718
PZ
4215 struct sched_entity *left = __pick_first_entity(cfs_rq);
4216 struct sched_entity *se;
4217
4218 /*
4219 * If curr is set we have to see if its left of the leftmost entity
4220 * still in the tree, provided there was anything in the tree at all.
4221 */
4222 if (!left || (curr && entity_before(curr, left)))
4223 left = curr;
4224
4225 se = left; /* ideally we run the leftmost entity */
f4b6755f 4226
ac53db59
RR
4227 /*
4228 * Avoid running the skip buddy, if running something else can
4229 * be done without getting too unfair.
4230 */
4231 if (cfs_rq->skip == se) {
678d5718
PZ
4232 struct sched_entity *second;
4233
4234 if (se == curr) {
4235 second = __pick_first_entity(cfs_rq);
4236 } else {
4237 second = __pick_next_entity(se);
4238 if (!second || (curr && entity_before(curr, second)))
4239 second = curr;
4240 }
4241
ac53db59
RR
4242 if (second && wakeup_preempt_entity(second, left) < 1)
4243 se = second;
4244 }
aa2ac252 4245
f685ceac
MG
4246 /*
4247 * Prefer last buddy, try to return the CPU to a preempted task.
4248 */
4249 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4250 se = cfs_rq->last;
4251
ac53db59
RR
4252 /*
4253 * Someone really wants this to run. If it's not unfair, run it.
4254 */
4255 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4256 se = cfs_rq->next;
4257
f685ceac 4258 clear_buddies(cfs_rq, se);
4793241b
PZ
4259
4260 return se;
aa2ac252
PZ
4261}
4262
678d5718 4263static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4264
ab6cde26 4265static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4266{
4267 /*
4268 * If still on the runqueue then deactivate_task()
4269 * was not called and update_curr() has to be done:
4270 */
4271 if (prev->on_rq)
b7cc0896 4272 update_curr(cfs_rq);
bf0f6f24 4273
d3d9dc33
PT
4274 /* throttle cfs_rqs exceeding runtime */
4275 check_cfs_rq_runtime(cfs_rq);
4276
4fa8d299 4277 check_spread(cfs_rq, prev);
cb251765 4278
30cfdcfc 4279 if (prev->on_rq) {
4fa8d299 4280 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4281 /* Put 'current' back into the tree. */
4282 __enqueue_entity(cfs_rq, prev);
9d85f21c 4283 /* in !on_rq case, update occurred at dequeue */
88c0616e 4284 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4285 }
429d43bc 4286 cfs_rq->curr = NULL;
bf0f6f24
IM
4287}
4288
8f4d37ec
PZ
4289static void
4290entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4291{
bf0f6f24 4292 /*
30cfdcfc 4293 * Update run-time statistics of the 'current'.
bf0f6f24 4294 */
30cfdcfc 4295 update_curr(cfs_rq);
bf0f6f24 4296
9d85f21c
PT
4297 /*
4298 * Ensure that runnable average is periodically updated.
4299 */
88c0616e 4300 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4301 update_cfs_group(curr);
9d85f21c 4302
8f4d37ec
PZ
4303#ifdef CONFIG_SCHED_HRTICK
4304 /*
4305 * queued ticks are scheduled to match the slice, so don't bother
4306 * validating it and just reschedule.
4307 */
983ed7a6 4308 if (queued) {
8875125e 4309 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4310 return;
4311 }
8f4d37ec
PZ
4312 /*
4313 * don't let the period tick interfere with the hrtick preemption
4314 */
4315 if (!sched_feat(DOUBLE_TICK) &&
4316 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4317 return;
4318#endif
4319
2c2efaed 4320 if (cfs_rq->nr_running > 1)
2e09bf55 4321 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4322}
4323
ab84d31e
PT
4324
4325/**************************************************
4326 * CFS bandwidth control machinery
4327 */
4328
4329#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4330
e9666d10 4331#ifdef CONFIG_JUMP_LABEL
c5905afb 4332static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4333
4334static inline bool cfs_bandwidth_used(void)
4335{
c5905afb 4336 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4337}
4338
1ee14e6c 4339void cfs_bandwidth_usage_inc(void)
029632fb 4340{
ce48c146 4341 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4342}
4343
4344void cfs_bandwidth_usage_dec(void)
4345{
ce48c146 4346 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4347}
e9666d10 4348#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4349static bool cfs_bandwidth_used(void)
4350{
4351 return true;
4352}
4353
1ee14e6c
BS
4354void cfs_bandwidth_usage_inc(void) {}
4355void cfs_bandwidth_usage_dec(void) {}
e9666d10 4356#endif /* CONFIG_JUMP_LABEL */
029632fb 4357
ab84d31e
PT
4358/*
4359 * default period for cfs group bandwidth.
4360 * default: 0.1s, units: nanoseconds
4361 */
4362static inline u64 default_cfs_period(void)
4363{
4364 return 100000000ULL;
4365}
ec12cb7f
PT
4366
4367static inline u64 sched_cfs_bandwidth_slice(void)
4368{
4369 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4370}
4371
a9cf55b2 4372/*
763a9ec0
QC
4373 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4374 * directly instead of rq->clock to avoid adding additional synchronization
4375 * around rq->lock.
a9cf55b2
PT
4376 *
4377 * requires cfs_b->lock
4378 */
029632fb 4379void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4380{
763a9ec0
QC
4381 if (cfs_b->quota != RUNTIME_INF)
4382 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4383}
4384
029632fb
PZ
4385static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4386{
4387 return &tg->cfs_bandwidth;
4388}
4389
85dac906
PT
4390/* returns 0 on failure to allocate runtime */
4391static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4392{
4393 struct task_group *tg = cfs_rq->tg;
4394 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
de53fd7a 4395 u64 amount = 0, min_amount;
ec12cb7f
PT
4396
4397 /* note: this is a positive sum as runtime_remaining <= 0 */
4398 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4399
4400 raw_spin_lock(&cfs_b->lock);
4401 if (cfs_b->quota == RUNTIME_INF)
4402 amount = min_amount;
58088ad0 4403 else {
77a4d1a1 4404 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4405
4406 if (cfs_b->runtime > 0) {
4407 amount = min(cfs_b->runtime, min_amount);
4408 cfs_b->runtime -= amount;
4409 cfs_b->idle = 0;
4410 }
ec12cb7f
PT
4411 }
4412 raw_spin_unlock(&cfs_b->lock);
4413
4414 cfs_rq->runtime_remaining += amount;
85dac906
PT
4415
4416 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4417}
4418
9dbdb155 4419static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4420{
4421 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4422 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4423
4424 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4425 return;
4426
5e2d2cc2
L
4427 if (cfs_rq->throttled)
4428 return;
85dac906
PT
4429 /*
4430 * if we're unable to extend our runtime we resched so that the active
4431 * hierarchy can be throttled
4432 */
4433 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4434 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4435}
4436
6c16a6dc 4437static __always_inline
9dbdb155 4438void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4439{
56f570e5 4440 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4441 return;
4442
4443 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4444}
4445
85dac906
PT
4446static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4447{
56f570e5 4448 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4449}
4450
64660c86
PT
4451/* check whether cfs_rq, or any parent, is throttled */
4452static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4453{
56f570e5 4454 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4455}
4456
4457/*
4458 * Ensure that neither of the group entities corresponding to src_cpu or
4459 * dest_cpu are members of a throttled hierarchy when performing group
4460 * load-balance operations.
4461 */
4462static inline int throttled_lb_pair(struct task_group *tg,
4463 int src_cpu, int dest_cpu)
4464{
4465 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4466
4467 src_cfs_rq = tg->cfs_rq[src_cpu];
4468 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4469
4470 return throttled_hierarchy(src_cfs_rq) ||
4471 throttled_hierarchy(dest_cfs_rq);
4472}
4473
64660c86
PT
4474static int tg_unthrottle_up(struct task_group *tg, void *data)
4475{
4476 struct rq *rq = data;
4477 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4478
4479 cfs_rq->throttle_count--;
64660c86 4480 if (!cfs_rq->throttle_count) {
78becc27 4481 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4482 cfs_rq->throttled_clock_task;
31bc6aea
VG
4483
4484 /* Add cfs_rq with already running entity in the list */
4485 if (cfs_rq->nr_running >= 1)
4486 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4487 }
64660c86
PT
4488
4489 return 0;
4490}
4491
4492static int tg_throttle_down(struct task_group *tg, void *data)
4493{
4494 struct rq *rq = data;
4495 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4496
82958366 4497 /* group is entering throttled state, stop time */
31bc6aea 4498 if (!cfs_rq->throttle_count) {
78becc27 4499 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4500 list_del_leaf_cfs_rq(cfs_rq);
4501 }
64660c86
PT
4502 cfs_rq->throttle_count++;
4503
4504 return 0;
4505}
4506
d3d9dc33 4507static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4508{
4509 struct rq *rq = rq_of(cfs_rq);
4510 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4511 struct sched_entity *se;
43e9f7f2 4512 long task_delta, idle_task_delta, dequeue = 1;
77a4d1a1 4513 bool empty;
85dac906
PT
4514
4515 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4516
f1b17280 4517 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4518 rcu_read_lock();
4519 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4520 rcu_read_unlock();
85dac906
PT
4521
4522 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4523 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4524 for_each_sched_entity(se) {
4525 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4526 /* throttled entity or throttle-on-deactivate */
4527 if (!se->on_rq)
4528 break;
4529
4530 if (dequeue)
4531 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4532 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4533 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4534
4535 if (qcfs_rq->load.weight)
4536 dequeue = 0;
4537 }
4538
4539 if (!se)
72465447 4540 sub_nr_running(rq, task_delta);
85dac906
PT
4541
4542 cfs_rq->throttled = 1;
78becc27 4543 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4544 raw_spin_lock(&cfs_b->lock);
d49db342 4545 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4546
c06f04c7
BS
4547 /*
4548 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4549 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4550 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4551 */
baa9be4f
PA
4552 if (cfs_b->distribute_running)
4553 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4554 else
4555 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4556
4557 /*
4558 * If we're the first throttled task, make sure the bandwidth
4559 * timer is running.
4560 */
4561 if (empty)
4562 start_cfs_bandwidth(cfs_b);
4563
85dac906
PT
4564 raw_spin_unlock(&cfs_b->lock);
4565}
4566
029632fb 4567void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4568{
4569 struct rq *rq = rq_of(cfs_rq);
4570 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4571 struct sched_entity *se;
4572 int enqueue = 1;
43e9f7f2 4573 long task_delta, idle_task_delta;
671fd9da 4574
22b958d8 4575 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4576
4577 cfs_rq->throttled = 0;
1a55af2e
FW
4578
4579 update_rq_clock(rq);
4580
671fd9da 4581 raw_spin_lock(&cfs_b->lock);
78becc27 4582 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4583 list_del_rcu(&cfs_rq->throttled_list);
4584 raw_spin_unlock(&cfs_b->lock);
4585
64660c86
PT
4586 /* update hierarchical throttle state */
4587 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4588
671fd9da
PT
4589 if (!cfs_rq->load.weight)
4590 return;
4591
4592 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4593 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4594 for_each_sched_entity(se) {
4595 if (se->on_rq)
4596 enqueue = 0;
4597
4598 cfs_rq = cfs_rq_of(se);
4599 if (enqueue)
4600 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4601 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4602 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da
PT
4603
4604 if (cfs_rq_throttled(cfs_rq))
4605 break;
4606 }
4607
31bc6aea
VG
4608 assert_list_leaf_cfs_rq(rq);
4609
671fd9da 4610 if (!se)
72465447 4611 add_nr_running(rq, task_delta);
671fd9da 4612
97fb7a0a 4613 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4614 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4615 resched_curr(rq);
671fd9da
PT
4616}
4617
de53fd7a 4618static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
671fd9da
PT
4619{
4620 struct cfs_rq *cfs_rq;
c06f04c7
BS
4621 u64 runtime;
4622 u64 starting_runtime = remaining;
671fd9da
PT
4623
4624 rcu_read_lock();
4625 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4626 throttled_list) {
4627 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4628 struct rq_flags rf;
671fd9da 4629
c0ad4aa4 4630 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4631 if (!cfs_rq_throttled(cfs_rq))
4632 goto next;
4633
5e2d2cc2
L
4634 /* By the above check, this should never be true */
4635 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4636
671fd9da
PT
4637 runtime = -cfs_rq->runtime_remaining + 1;
4638 if (runtime > remaining)
4639 runtime = remaining;
4640 remaining -= runtime;
4641
4642 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4643
4644 /* we check whether we're throttled above */
4645 if (cfs_rq->runtime_remaining > 0)
4646 unthrottle_cfs_rq(cfs_rq);
4647
4648next:
c0ad4aa4 4649 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4650
4651 if (!remaining)
4652 break;
4653 }
4654 rcu_read_unlock();
4655
c06f04c7 4656 return starting_runtime - remaining;
671fd9da
PT
4657}
4658
58088ad0
PT
4659/*
4660 * Responsible for refilling a task_group's bandwidth and unthrottling its
4661 * cfs_rqs as appropriate. If there has been no activity within the last
4662 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4663 * used to track this state.
4664 */
c0ad4aa4 4665static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4666{
de53fd7a 4667 u64 runtime;
51f2176d 4668 int throttled;
58088ad0 4669
58088ad0
PT
4670 /* no need to continue the timer with no bandwidth constraint */
4671 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4672 goto out_deactivate;
58088ad0 4673
671fd9da 4674 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4675 cfs_b->nr_periods += overrun;
671fd9da 4676
51f2176d
BS
4677 /*
4678 * idle depends on !throttled (for the case of a large deficit), and if
4679 * we're going inactive then everything else can be deferred
4680 */
4681 if (cfs_b->idle && !throttled)
4682 goto out_deactivate;
a9cf55b2
PT
4683
4684 __refill_cfs_bandwidth_runtime(cfs_b);
4685
671fd9da
PT
4686 if (!throttled) {
4687 /* mark as potentially idle for the upcoming period */
4688 cfs_b->idle = 1;
51f2176d 4689 return 0;
671fd9da
PT
4690 }
4691
e8da1b18
NR
4692 /* account preceding periods in which throttling occurred */
4693 cfs_b->nr_throttled += overrun;
4694
671fd9da 4695 /*
c06f04c7
BS
4696 * This check is repeated as we are holding onto the new bandwidth while
4697 * we unthrottle. This can potentially race with an unthrottled group
4698 * trying to acquire new bandwidth from the global pool. This can result
4699 * in us over-using our runtime if it is all used during this loop, but
4700 * only by limited amounts in that extreme case.
671fd9da 4701 */
baa9be4f 4702 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4703 runtime = cfs_b->runtime;
baa9be4f 4704 cfs_b->distribute_running = 1;
c0ad4aa4 4705 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4706 /* we can't nest cfs_b->lock while distributing bandwidth */
de53fd7a 4707 runtime = distribute_cfs_runtime(cfs_b, runtime);
c0ad4aa4 4708 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4709
baa9be4f 4710 cfs_b->distribute_running = 0;
671fd9da 4711 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4712
b5c0ce7b 4713 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4714 }
58088ad0 4715
671fd9da
PT
4716 /*
4717 * While we are ensured activity in the period following an
4718 * unthrottle, this also covers the case in which the new bandwidth is
4719 * insufficient to cover the existing bandwidth deficit. (Forcing the
4720 * timer to remain active while there are any throttled entities.)
4721 */
4722 cfs_b->idle = 0;
58088ad0 4723
51f2176d
BS
4724 return 0;
4725
4726out_deactivate:
51f2176d 4727 return 1;
58088ad0 4728}
d3d9dc33 4729
d8b4986d
PT
4730/* a cfs_rq won't donate quota below this amount */
4731static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4732/* minimum remaining period time to redistribute slack quota */
4733static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4734/* how long we wait to gather additional slack before distributing */
4735static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4736
db06e78c
BS
4737/*
4738 * Are we near the end of the current quota period?
4739 *
4740 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4741 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4742 * migrate_hrtimers, base is never cleared, so we are fine.
4743 */
d8b4986d
PT
4744static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4745{
4746 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4747 u64 remaining;
4748
4749 /* if the call-back is running a quota refresh is already occurring */
4750 if (hrtimer_callback_running(refresh_timer))
4751 return 1;
4752
4753 /* is a quota refresh about to occur? */
4754 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4755 if (remaining < min_expire)
4756 return 1;
4757
4758 return 0;
4759}
4760
4761static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4762{
4763 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4764
4765 /* if there's a quota refresh soon don't bother with slack */
4766 if (runtime_refresh_within(cfs_b, min_left))
4767 return;
4768
66567fcb 4769 /* don't push forwards an existing deferred unthrottle */
4770 if (cfs_b->slack_started)
4771 return;
4772 cfs_b->slack_started = true;
4773
4cfafd30
PZ
4774 hrtimer_start(&cfs_b->slack_timer,
4775 ns_to_ktime(cfs_bandwidth_slack_period),
4776 HRTIMER_MODE_REL);
d8b4986d
PT
4777}
4778
4779/* we know any runtime found here is valid as update_curr() precedes return */
4780static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4781{
4782 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4783 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4784
4785 if (slack_runtime <= 0)
4786 return;
4787
4788 raw_spin_lock(&cfs_b->lock);
de53fd7a 4789 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
4790 cfs_b->runtime += slack_runtime;
4791
4792 /* we are under rq->lock, defer unthrottling using a timer */
4793 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4794 !list_empty(&cfs_b->throttled_cfs_rq))
4795 start_cfs_slack_bandwidth(cfs_b);
4796 }
4797 raw_spin_unlock(&cfs_b->lock);
4798
4799 /* even if it's not valid for return we don't want to try again */
4800 cfs_rq->runtime_remaining -= slack_runtime;
4801}
4802
4803static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4804{
56f570e5
PT
4805 if (!cfs_bandwidth_used())
4806 return;
4807
fccfdc6f 4808 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4809 return;
4810
4811 __return_cfs_rq_runtime(cfs_rq);
4812}
4813
4814/*
4815 * This is done with a timer (instead of inline with bandwidth return) since
4816 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4817 */
4818static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4819{
4820 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4821 unsigned long flags;
d8b4986d
PT
4822
4823 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4824 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4825 cfs_b->slack_started = false;
baa9be4f 4826 if (cfs_b->distribute_running) {
c0ad4aa4 4827 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4828 return;
4829 }
4830
db06e78c 4831 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4832 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4833 return;
db06e78c 4834 }
d8b4986d 4835
c06f04c7 4836 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4837 runtime = cfs_b->runtime;
c06f04c7 4838
baa9be4f
PA
4839 if (runtime)
4840 cfs_b->distribute_running = 1;
4841
c0ad4aa4 4842 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4843
4844 if (!runtime)
4845 return;
4846
de53fd7a 4847 runtime = distribute_cfs_runtime(cfs_b, runtime);
d8b4986d 4848
c0ad4aa4 4849 raw_spin_lock_irqsave(&cfs_b->lock, flags);
de53fd7a 4850 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4851 cfs_b->distribute_running = 0;
c0ad4aa4 4852 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4853}
4854
d3d9dc33
PT
4855/*
4856 * When a group wakes up we want to make sure that its quota is not already
4857 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4858 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4859 */
4860static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4861{
56f570e5
PT
4862 if (!cfs_bandwidth_used())
4863 return;
4864
d3d9dc33
PT
4865 /* an active group must be handled by the update_curr()->put() path */
4866 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4867 return;
4868
4869 /* ensure the group is not already throttled */
4870 if (cfs_rq_throttled(cfs_rq))
4871 return;
4872
4873 /* update runtime allocation */
4874 account_cfs_rq_runtime(cfs_rq, 0);
4875 if (cfs_rq->runtime_remaining <= 0)
4876 throttle_cfs_rq(cfs_rq);
4877}
4878
55e16d30
PZ
4879static void sync_throttle(struct task_group *tg, int cpu)
4880{
4881 struct cfs_rq *pcfs_rq, *cfs_rq;
4882
4883 if (!cfs_bandwidth_used())
4884 return;
4885
4886 if (!tg->parent)
4887 return;
4888
4889 cfs_rq = tg->cfs_rq[cpu];
4890 pcfs_rq = tg->parent->cfs_rq[cpu];
4891
4892 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4893 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4894}
4895
d3d9dc33 4896/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4897static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4898{
56f570e5 4899 if (!cfs_bandwidth_used())
678d5718 4900 return false;
56f570e5 4901
d3d9dc33 4902 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4903 return false;
d3d9dc33
PT
4904
4905 /*
4906 * it's possible for a throttled entity to be forced into a running
4907 * state (e.g. set_curr_task), in this case we're finished.
4908 */
4909 if (cfs_rq_throttled(cfs_rq))
678d5718 4910 return true;
d3d9dc33
PT
4911
4912 throttle_cfs_rq(cfs_rq);
678d5718 4913 return true;
d3d9dc33 4914}
029632fb 4915
029632fb
PZ
4916static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4917{
4918 struct cfs_bandwidth *cfs_b =
4919 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4920
029632fb
PZ
4921 do_sched_cfs_slack_timer(cfs_b);
4922
4923 return HRTIMER_NORESTART;
4924}
4925
2e8e1922
PA
4926extern const u64 max_cfs_quota_period;
4927
029632fb
PZ
4928static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4929{
4930 struct cfs_bandwidth *cfs_b =
4931 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4932 unsigned long flags;
029632fb
PZ
4933 int overrun;
4934 int idle = 0;
2e8e1922 4935 int count = 0;
029632fb 4936
c0ad4aa4 4937 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4938 for (;;) {
77a4d1a1 4939 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4940 if (!overrun)
4941 break;
4942
2e8e1922
PA
4943 if (++count > 3) {
4944 u64 new, old = ktime_to_ns(cfs_b->period);
4945
4929a4e6
XZ
4946 /*
4947 * Grow period by a factor of 2 to avoid losing precision.
4948 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4949 * to fail.
4950 */
4951 new = old * 2;
4952 if (new < max_cfs_quota_period) {
4953 cfs_b->period = ns_to_ktime(new);
4954 cfs_b->quota *= 2;
4955
4956 pr_warn_ratelimited(
4957 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4958 smp_processor_id(),
4959 div_u64(new, NSEC_PER_USEC),
4960 div_u64(cfs_b->quota, NSEC_PER_USEC));
4961 } else {
4962 pr_warn_ratelimited(
4963 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4964 smp_processor_id(),
4965 div_u64(old, NSEC_PER_USEC),
4966 div_u64(cfs_b->quota, NSEC_PER_USEC));
4967 }
2e8e1922
PA
4968
4969 /* reset count so we don't come right back in here */
4970 count = 0;
4971 }
4972
c0ad4aa4 4973 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4974 }
4cfafd30
PZ
4975 if (idle)
4976 cfs_b->period_active = 0;
c0ad4aa4 4977 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4978
4979 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4980}
4981
4982void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4983{
4984 raw_spin_lock_init(&cfs_b->lock);
4985 cfs_b->runtime = 0;
4986 cfs_b->quota = RUNTIME_INF;
4987 cfs_b->period = ns_to_ktime(default_cfs_period());
4988
4989 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4990 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4991 cfs_b->period_timer.function = sched_cfs_period_timer;
4992 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4993 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4994 cfs_b->distribute_running = 0;
66567fcb 4995 cfs_b->slack_started = false;
029632fb
PZ
4996}
4997
4998static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4999{
5000 cfs_rq->runtime_enabled = 0;
5001 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5002}
5003
77a4d1a1 5004void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5005{
4cfafd30 5006 lockdep_assert_held(&cfs_b->lock);
029632fb 5007
f1d1be8a
XP
5008 if (cfs_b->period_active)
5009 return;
5010
5011 cfs_b->period_active = 1;
763a9ec0 5012 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5013 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5014}
5015
5016static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5017{
7f1a169b
TH
5018 /* init_cfs_bandwidth() was not called */
5019 if (!cfs_b->throttled_cfs_rq.next)
5020 return;
5021
029632fb
PZ
5022 hrtimer_cancel(&cfs_b->period_timer);
5023 hrtimer_cancel(&cfs_b->slack_timer);
5024}
5025
502ce005 5026/*
97fb7a0a 5027 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5028 *
5029 * The race is harmless, since modifying bandwidth settings of unhooked group
5030 * bits doesn't do much.
5031 */
5032
5033/* cpu online calback */
0e59bdae
KT
5034static void __maybe_unused update_runtime_enabled(struct rq *rq)
5035{
502ce005 5036 struct task_group *tg;
0e59bdae 5037
502ce005
PZ
5038 lockdep_assert_held(&rq->lock);
5039
5040 rcu_read_lock();
5041 list_for_each_entry_rcu(tg, &task_groups, list) {
5042 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5043 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5044
5045 raw_spin_lock(&cfs_b->lock);
5046 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5047 raw_spin_unlock(&cfs_b->lock);
5048 }
502ce005 5049 rcu_read_unlock();
0e59bdae
KT
5050}
5051
502ce005 5052/* cpu offline callback */
38dc3348 5053static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5054{
502ce005
PZ
5055 struct task_group *tg;
5056
5057 lockdep_assert_held(&rq->lock);
5058
5059 rcu_read_lock();
5060 list_for_each_entry_rcu(tg, &task_groups, list) {
5061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5062
029632fb
PZ
5063 if (!cfs_rq->runtime_enabled)
5064 continue;
5065
5066 /*
5067 * clock_task is not advancing so we just need to make sure
5068 * there's some valid quota amount
5069 */
51f2176d 5070 cfs_rq->runtime_remaining = 1;
0e59bdae 5071 /*
97fb7a0a 5072 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5073 * in take_cpu_down(), so we prevent new cfs throttling here.
5074 */
5075 cfs_rq->runtime_enabled = 0;
5076
029632fb
PZ
5077 if (cfs_rq_throttled(cfs_rq))
5078 unthrottle_cfs_rq(cfs_rq);
5079 }
502ce005 5080 rcu_read_unlock();
029632fb
PZ
5081}
5082
5083#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5084
5085static inline bool cfs_bandwidth_used(void)
5086{
5087 return false;
5088}
5089
9dbdb155 5090static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5091static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5092static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5093static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5094static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5095
5096static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5097{
5098 return 0;
5099}
64660c86
PT
5100
5101static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5102{
5103 return 0;
5104}
5105
5106static inline int throttled_lb_pair(struct task_group *tg,
5107 int src_cpu, int dest_cpu)
5108{
5109 return 0;
5110}
029632fb
PZ
5111
5112void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5113
5114#ifdef CONFIG_FAIR_GROUP_SCHED
5115static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5116#endif
5117
029632fb
PZ
5118static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5119{
5120 return NULL;
5121}
5122static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5123static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5124static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5125
5126#endif /* CONFIG_CFS_BANDWIDTH */
5127
bf0f6f24
IM
5128/**************************************************
5129 * CFS operations on tasks:
5130 */
5131
8f4d37ec
PZ
5132#ifdef CONFIG_SCHED_HRTICK
5133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5134{
8f4d37ec
PZ
5135 struct sched_entity *se = &p->se;
5136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5137
9148a3a1 5138 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5139
8bf46a39 5140 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5141 u64 slice = sched_slice(cfs_rq, se);
5142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5143 s64 delta = slice - ran;
5144
5145 if (delta < 0) {
5146 if (rq->curr == p)
8875125e 5147 resched_curr(rq);
8f4d37ec
PZ
5148 return;
5149 }
31656519 5150 hrtick_start(rq, delta);
8f4d37ec
PZ
5151 }
5152}
a4c2f00f
PZ
5153
5154/*
5155 * called from enqueue/dequeue and updates the hrtick when the
5156 * current task is from our class and nr_running is low enough
5157 * to matter.
5158 */
5159static void hrtick_update(struct rq *rq)
5160{
5161 struct task_struct *curr = rq->curr;
5162
b39e66ea 5163 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5164 return;
5165
5166 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5167 hrtick_start_fair(rq, curr);
5168}
55e12e5e 5169#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5170static inline void
5171hrtick_start_fair(struct rq *rq, struct task_struct *p)
5172{
5173}
a4c2f00f
PZ
5174
5175static inline void hrtick_update(struct rq *rq)
5176{
5177}
8f4d37ec
PZ
5178#endif
5179
2802bf3c
MR
5180#ifdef CONFIG_SMP
5181static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5182
5183static inline bool cpu_overutilized(int cpu)
5184{
60e17f5c 5185 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5186}
5187
5188static inline void update_overutilized_status(struct rq *rq)
5189{
f9f240f9 5190 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5191 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5192 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5193 }
2802bf3c
MR
5194}
5195#else
5196static inline void update_overutilized_status(struct rq *rq) { }
5197#endif
5198
bf0f6f24
IM
5199/*
5200 * The enqueue_task method is called before nr_running is
5201 * increased. Here we update the fair scheduling stats and
5202 * then put the task into the rbtree:
5203 */
ea87bb78 5204static void
371fd7e7 5205enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5206{
5207 struct cfs_rq *cfs_rq;
62fb1851 5208 struct sched_entity *se = &p->se;
43e9f7f2 5209 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5210
2539fc82
PB
5211 /*
5212 * The code below (indirectly) updates schedutil which looks at
5213 * the cfs_rq utilization to select a frequency.
5214 * Let's add the task's estimated utilization to the cfs_rq's
5215 * estimated utilization, before we update schedutil.
5216 */
5217 util_est_enqueue(&rq->cfs, p);
5218
8c34ab19
RW
5219 /*
5220 * If in_iowait is set, the code below may not trigger any cpufreq
5221 * utilization updates, so do it here explicitly with the IOWAIT flag
5222 * passed.
5223 */
5224 if (p->in_iowait)
674e7541 5225 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5226
bf0f6f24 5227 for_each_sched_entity(se) {
62fb1851 5228 if (se->on_rq)
bf0f6f24
IM
5229 break;
5230 cfs_rq = cfs_rq_of(se);
88ec22d3 5231 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5232
5233 /*
5234 * end evaluation on encountering a throttled cfs_rq
5235 *
5236 * note: in the case of encountering a throttled cfs_rq we will
5237 * post the final h_nr_running increment below.
e210bffd 5238 */
85dac906
PT
5239 if (cfs_rq_throttled(cfs_rq))
5240 break;
953bfcd1 5241 cfs_rq->h_nr_running++;
43e9f7f2 5242 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5243
88ec22d3 5244 flags = ENQUEUE_WAKEUP;
bf0f6f24 5245 }
8f4d37ec 5246
2069dd75 5247 for_each_sched_entity(se) {
0f317143 5248 cfs_rq = cfs_rq_of(se);
953bfcd1 5249 cfs_rq->h_nr_running++;
43e9f7f2 5250 cfs_rq->idle_h_nr_running += idle_h_nr_running;
2069dd75 5251
85dac906
PT
5252 if (cfs_rq_throttled(cfs_rq))
5253 break;
5254
88c0616e 5255 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5256 update_cfs_group(se);
2069dd75
PZ
5257 }
5258
2802bf3c 5259 if (!se) {
72465447 5260 add_nr_running(rq, 1);
2802bf3c
MR
5261 /*
5262 * Since new tasks are assigned an initial util_avg equal to
5263 * half of the spare capacity of their CPU, tiny tasks have the
5264 * ability to cross the overutilized threshold, which will
5265 * result in the load balancer ruining all the task placement
5266 * done by EAS. As a way to mitigate that effect, do not account
5267 * for the first enqueue operation of new tasks during the
5268 * overutilized flag detection.
5269 *
5270 * A better way of solving this problem would be to wait for
5271 * the PELT signals of tasks to converge before taking them
5272 * into account, but that is not straightforward to implement,
5273 * and the following generally works well enough in practice.
5274 */
5275 if (flags & ENQUEUE_WAKEUP)
5276 update_overutilized_status(rq);
5277
5278 }
cd126afe 5279
f6783319
VG
5280 if (cfs_bandwidth_used()) {
5281 /*
5282 * When bandwidth control is enabled; the cfs_rq_throttled()
5283 * breaks in the above iteration can result in incomplete
5284 * leaf list maintenance, resulting in triggering the assertion
5285 * below.
5286 */
5287 for_each_sched_entity(se) {
5288 cfs_rq = cfs_rq_of(se);
5289
5290 if (list_add_leaf_cfs_rq(cfs_rq))
5291 break;
5292 }
5293 }
5294
5d299eab
PZ
5295 assert_list_leaf_cfs_rq(rq);
5296
a4c2f00f 5297 hrtick_update(rq);
bf0f6f24
IM
5298}
5299
2f36825b
VP
5300static void set_next_buddy(struct sched_entity *se);
5301
bf0f6f24
IM
5302/*
5303 * The dequeue_task method is called before nr_running is
5304 * decreased. We remove the task from the rbtree and
5305 * update the fair scheduling stats:
5306 */
371fd7e7 5307static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5308{
5309 struct cfs_rq *cfs_rq;
62fb1851 5310 struct sched_entity *se = &p->se;
2f36825b 5311 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5312 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24
IM
5313
5314 for_each_sched_entity(se) {
5315 cfs_rq = cfs_rq_of(se);
371fd7e7 5316 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5317
5318 /*
5319 * end evaluation on encountering a throttled cfs_rq
5320 *
5321 * note: in the case of encountering a throttled cfs_rq we will
5322 * post the final h_nr_running decrement below.
5323 */
5324 if (cfs_rq_throttled(cfs_rq))
5325 break;
953bfcd1 5326 cfs_rq->h_nr_running--;
43e9f7f2 5327 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5328
bf0f6f24 5329 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5330 if (cfs_rq->load.weight) {
754bd598
KK
5331 /* Avoid re-evaluating load for this entity: */
5332 se = parent_entity(se);
2f36825b
VP
5333 /*
5334 * Bias pick_next to pick a task from this cfs_rq, as
5335 * p is sleeping when it is within its sched_slice.
5336 */
754bd598
KK
5337 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5338 set_next_buddy(se);
bf0f6f24 5339 break;
2f36825b 5340 }
371fd7e7 5341 flags |= DEQUEUE_SLEEP;
bf0f6f24 5342 }
8f4d37ec 5343
2069dd75 5344 for_each_sched_entity(se) {
0f317143 5345 cfs_rq = cfs_rq_of(se);
953bfcd1 5346 cfs_rq->h_nr_running--;
43e9f7f2 5347 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5348
85dac906
PT
5349 if (cfs_rq_throttled(cfs_rq))
5350 break;
5351
88c0616e 5352 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5353 update_cfs_group(se);
2069dd75
PZ
5354 }
5355
cd126afe 5356 if (!se)
72465447 5357 sub_nr_running(rq, 1);
cd126afe 5358
7f65ea42 5359 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5360 hrtick_update(rq);
bf0f6f24
IM
5361}
5362
e7693a36 5363#ifdef CONFIG_SMP
10e2f1ac
PZ
5364
5365/* Working cpumask for: load_balance, load_balance_newidle. */
5366DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5367DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5368
9fd81dd5 5369#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5370
5371static struct {
5372 cpumask_var_t idle_cpus_mask;
5373 atomic_t nr_cpus;
f643ea22 5374 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5375 unsigned long next_balance; /* in jiffy units */
f643ea22 5376 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5377} nohz ____cacheline_aligned;
5378
9fd81dd5 5379#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5380
3c29e651
VK
5381/* CPU only has SCHED_IDLE tasks enqueued */
5382static int sched_idle_cpu(int cpu)
5383{
5384 struct rq *rq = cpu_rq(cpu);
5385
5386 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5387 rq->nr_running);
5388}
5389
b0fb1eb4
VG
5390static unsigned long cpu_load(struct rq *rq)
5391{
5392 return cfs_rq_load_avg(&rq->cfs);
5393}
5394
3318544b
VG
5395/*
5396 * cpu_load_without - compute CPU load without any contributions from *p
5397 * @cpu: the CPU which load is requested
5398 * @p: the task which load should be discounted
5399 *
5400 * The load of a CPU is defined by the load of tasks currently enqueued on that
5401 * CPU as well as tasks which are currently sleeping after an execution on that
5402 * CPU.
5403 *
5404 * This method returns the load of the specified CPU by discounting the load of
5405 * the specified task, whenever the task is currently contributing to the CPU
5406 * load.
5407 */
5408static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5409{
5410 struct cfs_rq *cfs_rq;
5411 unsigned int load;
5412
5413 /* Task has no contribution or is new */
5414 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5415 return cpu_load(rq);
5416
5417 cfs_rq = &rq->cfs;
5418 load = READ_ONCE(cfs_rq->avg.load_avg);
5419
5420 /* Discount task's util from CPU's util */
5421 lsub_positive(&load, task_h_load(p));
5422
5423 return load;
5424}
5425
ced549fa 5426static unsigned long capacity_of(int cpu)
029632fb 5427{
ced549fa 5428 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5429}
5430
c58d25f3
PZ
5431static void record_wakee(struct task_struct *p)
5432{
5433 /*
5434 * Only decay a single time; tasks that have less then 1 wakeup per
5435 * jiffy will not have built up many flips.
5436 */
5437 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5438 current->wakee_flips >>= 1;
5439 current->wakee_flip_decay_ts = jiffies;
5440 }
5441
5442 if (current->last_wakee != p) {
5443 current->last_wakee = p;
5444 current->wakee_flips++;
5445 }
5446}
5447
63b0e9ed
MG
5448/*
5449 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5450 *
63b0e9ed 5451 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5452 * at a frequency roughly N times higher than one of its wakees.
5453 *
5454 * In order to determine whether we should let the load spread vs consolidating
5455 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5456 * partner, and a factor of lls_size higher frequency in the other.
5457 *
5458 * With both conditions met, we can be relatively sure that the relationship is
5459 * non-monogamous, with partner count exceeding socket size.
5460 *
5461 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5462 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5463 * socket size.
63b0e9ed 5464 */
62470419
MW
5465static int wake_wide(struct task_struct *p)
5466{
63b0e9ed
MG
5467 unsigned int master = current->wakee_flips;
5468 unsigned int slave = p->wakee_flips;
7d9ffa89 5469 int factor = this_cpu_read(sd_llc_size);
62470419 5470
63b0e9ed
MG
5471 if (master < slave)
5472 swap(master, slave);
5473 if (slave < factor || master < slave * factor)
5474 return 0;
5475 return 1;
62470419
MW
5476}
5477
90001d67 5478/*
d153b153
PZ
5479 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5480 * soonest. For the purpose of speed we only consider the waking and previous
5481 * CPU.
90001d67 5482 *
7332dec0
MG
5483 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5484 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5485 *
5486 * wake_affine_weight() - considers the weight to reflect the average
5487 * scheduling latency of the CPUs. This seems to work
5488 * for the overloaded case.
90001d67 5489 */
3b76c4a3 5490static int
89a55f56 5491wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5492{
7332dec0
MG
5493 /*
5494 * If this_cpu is idle, it implies the wakeup is from interrupt
5495 * context. Only allow the move if cache is shared. Otherwise an
5496 * interrupt intensive workload could force all tasks onto one
5497 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5498 *
5499 * If the prev_cpu is idle and cache affine then avoid a migration.
5500 * There is no guarantee that the cache hot data from an interrupt
5501 * is more important than cache hot data on the prev_cpu and from
5502 * a cpufreq perspective, it's better to have higher utilisation
5503 * on one CPU.
7332dec0 5504 */
943d355d
RJ
5505 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5506 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5507
d153b153 5508 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5509 return this_cpu;
90001d67 5510
3b76c4a3 5511 return nr_cpumask_bits;
90001d67
PZ
5512}
5513
3b76c4a3 5514static int
f2cdd9cc
PZ
5515wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5516 int this_cpu, int prev_cpu, int sync)
90001d67 5517{
90001d67
PZ
5518 s64 this_eff_load, prev_eff_load;
5519 unsigned long task_load;
5520
11f10e54 5521 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5522
90001d67
PZ
5523 if (sync) {
5524 unsigned long current_load = task_h_load(current);
5525
f2cdd9cc 5526 if (current_load > this_eff_load)
3b76c4a3 5527 return this_cpu;
90001d67 5528
f2cdd9cc 5529 this_eff_load -= current_load;
90001d67
PZ
5530 }
5531
90001d67
PZ
5532 task_load = task_h_load(p);
5533
f2cdd9cc
PZ
5534 this_eff_load += task_load;
5535 if (sched_feat(WA_BIAS))
5536 this_eff_load *= 100;
5537 this_eff_load *= capacity_of(prev_cpu);
90001d67 5538
11f10e54 5539 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5540 prev_eff_load -= task_load;
5541 if (sched_feat(WA_BIAS))
5542 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5543 prev_eff_load *= capacity_of(this_cpu);
90001d67 5544
082f764a
MG
5545 /*
5546 * If sync, adjust the weight of prev_eff_load such that if
5547 * prev_eff == this_eff that select_idle_sibling() will consider
5548 * stacking the wakee on top of the waker if no other CPU is
5549 * idle.
5550 */
5551 if (sync)
5552 prev_eff_load += 1;
5553
5554 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5555}
5556
772bd008 5557static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5558 int this_cpu, int prev_cpu, int sync)
098fb9db 5559{
3b76c4a3 5560 int target = nr_cpumask_bits;
098fb9db 5561
89a55f56 5562 if (sched_feat(WA_IDLE))
3b76c4a3 5563 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5564
3b76c4a3
MG
5565 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5566 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5567
ae92882e 5568 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5569 if (target == nr_cpumask_bits)
5570 return prev_cpu;
098fb9db 5571
3b76c4a3
MG
5572 schedstat_inc(sd->ttwu_move_affine);
5573 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5574 return target;
098fb9db
IM
5575}
5576
aaee1203 5577static struct sched_group *
78e7ed53 5578find_idlest_group(struct sched_domain *sd, struct task_struct *p,
57abff06 5579 int this_cpu, int sd_flag);
aaee1203
PZ
5580
5581/*
97fb7a0a 5582 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5583 */
5584static int
18bd1b4b 5585find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5586{
5587 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5588 unsigned int min_exit_latency = UINT_MAX;
5589 u64 latest_idle_timestamp = 0;
5590 int least_loaded_cpu = this_cpu;
3c29e651 5591 int shallowest_idle_cpu = -1, si_cpu = -1;
aaee1203
PZ
5592 int i;
5593
eaecf41f
MR
5594 /* Check if we have any choice: */
5595 if (group->group_weight == 1)
ae4df9d6 5596 return cpumask_first(sched_group_span(group));
eaecf41f 5597
aaee1203 5598 /* Traverse only the allowed CPUs */
3bd37062 5599 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5600 if (available_idle_cpu(i)) {
83a0a96a
NP
5601 struct rq *rq = cpu_rq(i);
5602 struct cpuidle_state *idle = idle_get_state(rq);
5603 if (idle && idle->exit_latency < min_exit_latency) {
5604 /*
5605 * We give priority to a CPU whose idle state
5606 * has the smallest exit latency irrespective
5607 * of any idle timestamp.
5608 */
5609 min_exit_latency = idle->exit_latency;
5610 latest_idle_timestamp = rq->idle_stamp;
5611 shallowest_idle_cpu = i;
5612 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5613 rq->idle_stamp > latest_idle_timestamp) {
5614 /*
5615 * If equal or no active idle state, then
5616 * the most recently idled CPU might have
5617 * a warmer cache.
5618 */
5619 latest_idle_timestamp = rq->idle_stamp;
5620 shallowest_idle_cpu = i;
5621 }
3c29e651
VK
5622 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5623 if (sched_idle_cpu(i)) {
5624 si_cpu = i;
5625 continue;
5626 }
5627
11f10e54 5628 load = cpu_load(cpu_rq(i));
18cec7e0 5629 if (load < min_load) {
83a0a96a
NP
5630 min_load = load;
5631 least_loaded_cpu = i;
5632 }
e7693a36
GH
5633 }
5634 }
5635
3c29e651
VK
5636 if (shallowest_idle_cpu != -1)
5637 return shallowest_idle_cpu;
5638 if (si_cpu != -1)
5639 return si_cpu;
5640 return least_loaded_cpu;
aaee1203 5641}
e7693a36 5642
18bd1b4b
BJ
5643static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5644 int cpu, int prev_cpu, int sd_flag)
5645{
93f50f90 5646 int new_cpu = cpu;
18bd1b4b 5647
3bd37062 5648 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5649 return prev_cpu;
5650
c976a862 5651 /*
57abff06 5652 * We need task's util for cpu_util_without, sync it up to
c469933e 5653 * prev_cpu's last_update_time.
c976a862
VK
5654 */
5655 if (!(sd_flag & SD_BALANCE_FORK))
5656 sync_entity_load_avg(&p->se);
5657
18bd1b4b
BJ
5658 while (sd) {
5659 struct sched_group *group;
5660 struct sched_domain *tmp;
5661 int weight;
5662
5663 if (!(sd->flags & sd_flag)) {
5664 sd = sd->child;
5665 continue;
5666 }
5667
5668 group = find_idlest_group(sd, p, cpu, sd_flag);
5669 if (!group) {
5670 sd = sd->child;
5671 continue;
5672 }
5673
5674 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5675 if (new_cpu == cpu) {
97fb7a0a 5676 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5677 sd = sd->child;
5678 continue;
5679 }
5680
97fb7a0a 5681 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5682 cpu = new_cpu;
5683 weight = sd->span_weight;
5684 sd = NULL;
5685 for_each_domain(cpu, tmp) {
5686 if (weight <= tmp->span_weight)
5687 break;
5688 if (tmp->flags & sd_flag)
5689 sd = tmp;
5690 }
18bd1b4b
BJ
5691 }
5692
5693 return new_cpu;
5694}
5695
10e2f1ac 5696#ifdef CONFIG_SCHED_SMT
ba2591a5 5697DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5698EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5699
5700static inline void set_idle_cores(int cpu, int val)
5701{
5702 struct sched_domain_shared *sds;
5703
5704 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5705 if (sds)
5706 WRITE_ONCE(sds->has_idle_cores, val);
5707}
5708
5709static inline bool test_idle_cores(int cpu, bool def)
5710{
5711 struct sched_domain_shared *sds;
5712
5713 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5714 if (sds)
5715 return READ_ONCE(sds->has_idle_cores);
5716
5717 return def;
5718}
5719
5720/*
5721 * Scans the local SMT mask to see if the entire core is idle, and records this
5722 * information in sd_llc_shared->has_idle_cores.
5723 *
5724 * Since SMT siblings share all cache levels, inspecting this limited remote
5725 * state should be fairly cheap.
5726 */
1b568f0a 5727void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5728{
5729 int core = cpu_of(rq);
5730 int cpu;
5731
5732 rcu_read_lock();
5733 if (test_idle_cores(core, true))
5734 goto unlock;
5735
5736 for_each_cpu(cpu, cpu_smt_mask(core)) {
5737 if (cpu == core)
5738 continue;
5739
943d355d 5740 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5741 goto unlock;
5742 }
5743
5744 set_idle_cores(core, 1);
5745unlock:
5746 rcu_read_unlock();
5747}
5748
5749/*
5750 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5751 * there are no idle cores left in the system; tracked through
5752 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5753 */
5754static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5755{
5756 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5757 int core, cpu;
10e2f1ac 5758
1b568f0a
PZ
5759 if (!static_branch_likely(&sched_smt_present))
5760 return -1;
5761
10e2f1ac
PZ
5762 if (!test_idle_cores(target, false))
5763 return -1;
5764
3bd37062 5765 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5766
c743f0a5 5767 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5768 bool idle = true;
5769
5770 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5771 __cpumask_clear_cpu(cpu, cpus);
943d355d 5772 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5773 idle = false;
5774 }
5775
5776 if (idle)
5777 return core;
5778 }
5779
5780 /*
5781 * Failed to find an idle core; stop looking for one.
5782 */
5783 set_idle_cores(target, 0);
5784
5785 return -1;
5786}
5787
5788/*
5789 * Scan the local SMT mask for idle CPUs.
5790 */
1b5500d7 5791static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 5792{
3c29e651 5793 int cpu, si_cpu = -1;
10e2f1ac 5794
1b568f0a
PZ
5795 if (!static_branch_likely(&sched_smt_present))
5796 return -1;
5797
10e2f1ac 5798 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5799 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5800 continue;
943d355d 5801 if (available_idle_cpu(cpu))
10e2f1ac 5802 return cpu;
3c29e651
VK
5803 if (si_cpu == -1 && sched_idle_cpu(cpu))
5804 si_cpu = cpu;
10e2f1ac
PZ
5805 }
5806
3c29e651 5807 return si_cpu;
10e2f1ac
PZ
5808}
5809
5810#else /* CONFIG_SCHED_SMT */
5811
5812static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5813{
5814 return -1;
5815}
5816
1b5500d7 5817static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5818{
5819 return -1;
5820}
5821
5822#endif /* CONFIG_SCHED_SMT */
5823
5824/*
5825 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5826 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5827 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5828 */
10e2f1ac
PZ
5829static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5830{
9cfb38a7 5831 struct sched_domain *this_sd;
1ad3aaf3 5832 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5833 u64 time, cost;
5834 s64 delta;
8dc2d993 5835 int this = smp_processor_id();
3c29e651 5836 int cpu, nr = INT_MAX, si_cpu = -1;
10e2f1ac 5837
9cfb38a7
WL
5838 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5839 if (!this_sd)
5840 return -1;
5841
10e2f1ac
PZ
5842 /*
5843 * Due to large variance we need a large fuzz factor; hackbench in
5844 * particularly is sensitive here.
5845 */
1ad3aaf3
PZ
5846 avg_idle = this_rq()->avg_idle / 512;
5847 avg_cost = this_sd->avg_scan_cost + 1;
5848
5849 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5850 return -1;
5851
1ad3aaf3
PZ
5852 if (sched_feat(SIS_PROP)) {
5853 u64 span_avg = sd->span_weight * avg_idle;
5854 if (span_avg > 4*avg_cost)
5855 nr = div_u64(span_avg, avg_cost);
5856 else
5857 nr = 4;
5858 }
5859
8dc2d993 5860 time = cpu_clock(this);
10e2f1ac 5861
c743f0a5 5862 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3 5863 if (!--nr)
3c29e651 5864 return si_cpu;
3bd37062 5865 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5866 continue;
943d355d 5867 if (available_idle_cpu(cpu))
10e2f1ac 5868 break;
3c29e651
VK
5869 if (si_cpu == -1 && sched_idle_cpu(cpu))
5870 si_cpu = cpu;
10e2f1ac
PZ
5871 }
5872
8dc2d993 5873 time = cpu_clock(this) - time;
10e2f1ac
PZ
5874 cost = this_sd->avg_scan_cost;
5875 delta = (s64)(time - cost) / 8;
5876 this_sd->avg_scan_cost += delta;
5877
5878 return cpu;
5879}
5880
5881/*
5882 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5883 */
772bd008 5884static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5885{
99bd5e2f 5886 struct sched_domain *sd;
32e839dd 5887 int i, recent_used_cpu;
a50bde51 5888
3c29e651 5889 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 5890 return target;
99bd5e2f
SS
5891
5892 /*
97fb7a0a 5893 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 5894 */
3c29e651
VK
5895 if (prev != target && cpus_share_cache(prev, target) &&
5896 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 5897 return prev;
a50bde51 5898
97fb7a0a 5899 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
5900 recent_used_cpu = p->recent_used_cpu;
5901 if (recent_used_cpu != prev &&
5902 recent_used_cpu != target &&
5903 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 5904 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 5905 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
5906 /*
5907 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 5908 * candidate for the next wake:
32e839dd
MG
5909 */
5910 p->recent_used_cpu = prev;
5911 return recent_used_cpu;
5912 }
5913
518cd623 5914 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5915 if (!sd)
5916 return target;
772bd008 5917
10e2f1ac
PZ
5918 i = select_idle_core(p, sd, target);
5919 if ((unsigned)i < nr_cpumask_bits)
5920 return i;
37407ea7 5921
10e2f1ac
PZ
5922 i = select_idle_cpu(p, sd, target);
5923 if ((unsigned)i < nr_cpumask_bits)
5924 return i;
5925
1b5500d7 5926 i = select_idle_smt(p, target);
10e2f1ac
PZ
5927 if ((unsigned)i < nr_cpumask_bits)
5928 return i;
970e1789 5929
a50bde51
PZ
5930 return target;
5931}
231678b7 5932
f9be3e59
PB
5933/**
5934 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5935 * @cpu: the CPU to get the utilization of
5936 *
5937 * The unit of the return value must be the one of capacity so we can compare
5938 * the utilization with the capacity of the CPU that is available for CFS task
5939 * (ie cpu_capacity).
231678b7
DE
5940 *
5941 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5942 * recent utilization of currently non-runnable tasks on a CPU. It represents
5943 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5944 * capacity_orig is the cpu_capacity available at the highest frequency
5945 * (arch_scale_freq_capacity()).
5946 * The utilization of a CPU converges towards a sum equal to or less than the
5947 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5948 * the running time on this CPU scaled by capacity_curr.
5949 *
f9be3e59
PB
5950 * The estimated utilization of a CPU is defined to be the maximum between its
5951 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5952 * currently RUNNABLE on that CPU.
5953 * This allows to properly represent the expected utilization of a CPU which
5954 * has just got a big task running since a long sleep period. At the same time
5955 * however it preserves the benefits of the "blocked utilization" in
5956 * describing the potential for other tasks waking up on the same CPU.
5957 *
231678b7
DE
5958 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5959 * higher than capacity_orig because of unfortunate rounding in
5960 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5961 * the average stabilizes with the new running time. We need to check that the
5962 * utilization stays within the range of [0..capacity_orig] and cap it if
5963 * necessary. Without utilization capping, a group could be seen as overloaded
5964 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5965 * available capacity. We allow utilization to overshoot capacity_curr (but not
5966 * capacity_orig) as it useful for predicting the capacity required after task
5967 * migrations (scheduler-driven DVFS).
f9be3e59
PB
5968 *
5969 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 5970 */
f9be3e59 5971static inline unsigned long cpu_util(int cpu)
8bb5b00c 5972{
f9be3e59
PB
5973 struct cfs_rq *cfs_rq;
5974 unsigned int util;
5975
5976 cfs_rq = &cpu_rq(cpu)->cfs;
5977 util = READ_ONCE(cfs_rq->avg.util_avg);
5978
5979 if (sched_feat(UTIL_EST))
5980 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 5981
f9be3e59 5982 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 5983}
a50bde51 5984
104cb16d 5985/*
c469933e
PB
5986 * cpu_util_without: compute cpu utilization without any contributions from *p
5987 * @cpu: the CPU which utilization is requested
5988 * @p: the task which utilization should be discounted
5989 *
5990 * The utilization of a CPU is defined by the utilization of tasks currently
5991 * enqueued on that CPU as well as tasks which are currently sleeping after an
5992 * execution on that CPU.
5993 *
5994 * This method returns the utilization of the specified CPU by discounting the
5995 * utilization of the specified task, whenever the task is currently
5996 * contributing to the CPU utilization.
104cb16d 5997 */
c469933e 5998static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 5999{
f9be3e59
PB
6000 struct cfs_rq *cfs_rq;
6001 unsigned int util;
104cb16d
MR
6002
6003 /* Task has no contribution or is new */
f9be3e59 6004 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6005 return cpu_util(cpu);
6006
f9be3e59
PB
6007 cfs_rq = &cpu_rq(cpu)->cfs;
6008 util = READ_ONCE(cfs_rq->avg.util_avg);
6009
c469933e 6010 /* Discount task's util from CPU's util */
b5c0ce7b 6011 lsub_positive(&util, task_util(p));
104cb16d 6012
f9be3e59
PB
6013 /*
6014 * Covered cases:
6015 *
6016 * a) if *p is the only task sleeping on this CPU, then:
6017 * cpu_util (== task_util) > util_est (== 0)
6018 * and thus we return:
c469933e 6019 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6020 *
6021 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6022 * IDLE, then:
6023 * cpu_util >= task_util
6024 * cpu_util > util_est (== 0)
6025 * and thus we discount *p's blocked utilization to return:
c469933e 6026 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6027 *
6028 * c) if other tasks are RUNNABLE on that CPU and
6029 * util_est > cpu_util
6030 * then we use util_est since it returns a more restrictive
6031 * estimation of the spare capacity on that CPU, by just
6032 * considering the expected utilization of tasks already
6033 * runnable on that CPU.
6034 *
6035 * Cases a) and b) are covered by the above code, while case c) is
6036 * covered by the following code when estimated utilization is
6037 * enabled.
6038 */
c469933e
PB
6039 if (sched_feat(UTIL_EST)) {
6040 unsigned int estimated =
6041 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6042
6043 /*
6044 * Despite the following checks we still have a small window
6045 * for a possible race, when an execl's select_task_rq_fair()
6046 * races with LB's detach_task():
6047 *
6048 * detach_task()
6049 * p->on_rq = TASK_ON_RQ_MIGRATING;
6050 * ---------------------------------- A
6051 * deactivate_task() \
6052 * dequeue_task() + RaceTime
6053 * util_est_dequeue() /
6054 * ---------------------------------- B
6055 *
6056 * The additional check on "current == p" it's required to
6057 * properly fix the execl regression and it helps in further
6058 * reducing the chances for the above race.
6059 */
b5c0ce7b
PB
6060 if (unlikely(task_on_rq_queued(p) || current == p))
6061 lsub_positive(&estimated, _task_util_est(p));
6062
c469933e
PB
6063 util = max(util, estimated);
6064 }
f9be3e59
PB
6065
6066 /*
6067 * Utilization (estimated) can exceed the CPU capacity, thus let's
6068 * clamp to the maximum CPU capacity to ensure consistency with
6069 * the cpu_util call.
6070 */
6071 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6072}
6073
3273163c
MR
6074/*
6075 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6076 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6077 *
6078 * In that case WAKE_AFFINE doesn't make sense and we'll let
6079 * BALANCE_WAKE sort things out.
6080 */
6081static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6082{
6083 long min_cap, max_cap;
6084
df054e84
MR
6085 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6086 return 0;
6087
3273163c
MR
6088 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6089 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6090
6091 /* Minimum capacity is close to max, no need to abort wake_affine */
6092 if (max_cap - min_cap < max_cap >> 3)
6093 return 0;
6094
104cb16d
MR
6095 /* Bring task utilization in sync with prev_cpu */
6096 sync_entity_load_avg(&p->se);
6097
3b1baa64 6098 return !task_fits_capacity(p, min_cap);
3273163c
MR
6099}
6100
390031e4
QP
6101/*
6102 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6103 * to @dst_cpu.
6104 */
6105static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6106{
6107 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6108 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6109
6110 /*
6111 * If @p migrates from @cpu to another, remove its contribution. Or,
6112 * if @p migrates from another CPU to @cpu, add its contribution. In
6113 * the other cases, @cpu is not impacted by the migration, so the
6114 * util_avg should already be correct.
6115 */
6116 if (task_cpu(p) == cpu && dst_cpu != cpu)
6117 sub_positive(&util, task_util(p));
6118 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6119 util += task_util(p);
6120
6121 if (sched_feat(UTIL_EST)) {
6122 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6123
6124 /*
6125 * During wake-up, the task isn't enqueued yet and doesn't
6126 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6127 * so just add it (if needed) to "simulate" what will be
6128 * cpu_util() after the task has been enqueued.
6129 */
6130 if (dst_cpu == cpu)
6131 util_est += _task_util_est(p);
6132
6133 util = max(util, util_est);
6134 }
6135
6136 return min(util, capacity_orig_of(cpu));
6137}
6138
6139/*
eb92692b 6140 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6141 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6142 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6143 * to compute what would be the energy if we decided to actually migrate that
6144 * task.
6145 */
6146static long
6147compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6148{
eb92692b
QP
6149 struct cpumask *pd_mask = perf_domain_span(pd);
6150 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6151 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6152 int cpu;
6153
eb92692b
QP
6154 /*
6155 * The capacity state of CPUs of the current rd can be driven by CPUs
6156 * of another rd if they belong to the same pd. So, account for the
6157 * utilization of these CPUs too by masking pd with cpu_online_mask
6158 * instead of the rd span.
6159 *
6160 * If an entire pd is outside of the current rd, it will not appear in
6161 * its pd list and will not be accounted by compute_energy().
6162 */
6163 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6164 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6165 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6166
6167 /*
eb92692b
QP
6168 * Busy time computation: utilization clamping is not
6169 * required since the ratio (sum_util / cpu_capacity)
6170 * is already enough to scale the EM reported power
6171 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6172 */
eb92692b
QP
6173 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6174 ENERGY_UTIL, NULL);
af24bde8 6175
390031e4 6176 /*
eb92692b
QP
6177 * Performance domain frequency: utilization clamping
6178 * must be considered since it affects the selection
6179 * of the performance domain frequency.
6180 * NOTE: in case RT tasks are running, by default the
6181 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6182 */
eb92692b
QP
6183 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6184 FREQUENCY_UTIL, tsk);
6185 max_util = max(max_util, cpu_util);
390031e4
QP
6186 }
6187
eb92692b 6188 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6189}
6190
732cd75b
QP
6191/*
6192 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6193 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6194 * spare capacity in each performance domain and uses it as a potential
6195 * candidate to execute the task. Then, it uses the Energy Model to figure
6196 * out which of the CPU candidates is the most energy-efficient.
6197 *
6198 * The rationale for this heuristic is as follows. In a performance domain,
6199 * all the most energy efficient CPU candidates (according to the Energy
6200 * Model) are those for which we'll request a low frequency. When there are
6201 * several CPUs for which the frequency request will be the same, we don't
6202 * have enough data to break the tie between them, because the Energy Model
6203 * only includes active power costs. With this model, if we assume that
6204 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6205 * the maximum spare capacity in a performance domain is guaranteed to be among
6206 * the best candidates of the performance domain.
6207 *
6208 * In practice, it could be preferable from an energy standpoint to pack
6209 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6210 * but that could also hurt our chances to go cluster idle, and we have no
6211 * ways to tell with the current Energy Model if this is actually a good
6212 * idea or not. So, find_energy_efficient_cpu() basically favors
6213 * cluster-packing, and spreading inside a cluster. That should at least be
6214 * a good thing for latency, and this is consistent with the idea that most
6215 * of the energy savings of EAS come from the asymmetry of the system, and
6216 * not so much from breaking the tie between identical CPUs. That's also the
6217 * reason why EAS is enabled in the topology code only for systems where
6218 * SD_ASYM_CPUCAPACITY is set.
6219 *
6220 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6221 * they don't have any useful utilization data yet and it's not possible to
6222 * forecast their impact on energy consumption. Consequently, they will be
6223 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6224 * to be energy-inefficient in some use-cases. The alternative would be to
6225 * bias new tasks towards specific types of CPUs first, or to try to infer
6226 * their util_avg from the parent task, but those heuristics could hurt
6227 * other use-cases too. So, until someone finds a better way to solve this,
6228 * let's keep things simple by re-using the existing slow path.
6229 */
732cd75b
QP
6230static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6231{
eb92692b 6232 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6233 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6234 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6235 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6236 struct sched_domain *sd;
eb92692b 6237 struct perf_domain *pd;
732cd75b
QP
6238
6239 rcu_read_lock();
6240 pd = rcu_dereference(rd->pd);
6241 if (!pd || READ_ONCE(rd->overutilized))
6242 goto fail;
732cd75b
QP
6243
6244 /*
6245 * Energy-aware wake-up happens on the lowest sched_domain starting
6246 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6247 */
6248 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6249 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6250 sd = sd->parent;
6251 if (!sd)
6252 goto fail;
6253
6254 sync_entity_load_avg(&p->se);
6255 if (!task_util_est(p))
6256 goto unlock;
6257
6258 for (; pd; pd = pd->next) {
eb92692b
QP
6259 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6260 unsigned long base_energy_pd;
732cd75b
QP
6261 int max_spare_cap_cpu = -1;
6262
eb92692b
QP
6263 /* Compute the 'base' energy of the pd, without @p */
6264 base_energy_pd = compute_energy(p, -1, pd);
6265 base_energy += base_energy_pd;
6266
732cd75b 6267 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6268 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6269 continue;
6270
6271 /* Skip CPUs that will be overutilized. */
6272 util = cpu_util_next(cpu, p, cpu);
6273 cpu_cap = capacity_of(cpu);
60e17f5c 6274 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6275 continue;
6276
6277 /* Always use prev_cpu as a candidate. */
6278 if (cpu == prev_cpu) {
eb92692b
QP
6279 prev_delta = compute_energy(p, prev_cpu, pd);
6280 prev_delta -= base_energy_pd;
6281 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6282 }
6283
6284 /*
6285 * Find the CPU with the maximum spare capacity in
6286 * the performance domain
6287 */
6288 spare_cap = cpu_cap - util;
6289 if (spare_cap > max_spare_cap) {
6290 max_spare_cap = spare_cap;
6291 max_spare_cap_cpu = cpu;
6292 }
6293 }
6294
6295 /* Evaluate the energy impact of using this CPU. */
4892f51a 6296 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6297 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6298 cur_delta -= base_energy_pd;
6299 if (cur_delta < best_delta) {
6300 best_delta = cur_delta;
732cd75b
QP
6301 best_energy_cpu = max_spare_cap_cpu;
6302 }
6303 }
6304 }
6305unlock:
6306 rcu_read_unlock();
6307
6308 /*
6309 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6310 * least 6% of the energy used by prev_cpu.
6311 */
eb92692b 6312 if (prev_delta == ULONG_MAX)
732cd75b
QP
6313 return best_energy_cpu;
6314
eb92692b 6315 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6316 return best_energy_cpu;
6317
6318 return prev_cpu;
6319
6320fail:
6321 rcu_read_unlock();
6322
6323 return -1;
6324}
6325
aaee1203 6326/*
de91b9cb
MR
6327 * select_task_rq_fair: Select target runqueue for the waking task in domains
6328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6330 *
97fb7a0a
IM
6331 * Balances load by selecting the idlest CPU in the idlest group, or under
6332 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6333 *
97fb7a0a 6334 * Returns the target CPU number.
aaee1203
PZ
6335 *
6336 * preempt must be disabled.
6337 */
0017d735 6338static int
ac66f547 6339select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6340{
f1d88b44 6341 struct sched_domain *tmp, *sd = NULL;
c88d5910 6342 int cpu = smp_processor_id();
63b0e9ed 6343 int new_cpu = prev_cpu;
99bd5e2f 6344 int want_affine = 0;
24d0c1d6 6345 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6346
c58d25f3
PZ
6347 if (sd_flag & SD_BALANCE_WAKE) {
6348 record_wakee(p);
732cd75b 6349
f8a696f2 6350 if (sched_energy_enabled()) {
732cd75b
QP
6351 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6352 if (new_cpu >= 0)
6353 return new_cpu;
6354 new_cpu = prev_cpu;
6355 }
6356
6357 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6358 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6359 }
aaee1203 6360
dce840a0 6361 rcu_read_lock();
aaee1203 6362 for_each_domain(cpu, tmp) {
e4f42888 6363 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6364 break;
e4f42888 6365
fe3bcfe1 6366 /*
97fb7a0a 6367 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6368 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6369 */
99bd5e2f
SS
6370 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6371 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6372 if (cpu != prev_cpu)
6373 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6374
6375 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6376 break;
f03542a7 6377 }
29cd8bae 6378
f03542a7 6379 if (tmp->flags & sd_flag)
29cd8bae 6380 sd = tmp;
63b0e9ed
MG
6381 else if (!want_affine)
6382 break;
29cd8bae
PZ
6383 }
6384
f1d88b44
VK
6385 if (unlikely(sd)) {
6386 /* Slow path */
18bd1b4b 6387 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6388 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6389 /* Fast path */
6390
6391 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6392
6393 if (want_affine)
6394 current->recent_used_cpu = cpu;
e7693a36 6395 }
dce840a0 6396 rcu_read_unlock();
e7693a36 6397
c88d5910 6398 return new_cpu;
e7693a36 6399}
0a74bef8 6400
144d8487
PZ
6401static void detach_entity_cfs_rq(struct sched_entity *se);
6402
0a74bef8 6403/*
97fb7a0a 6404 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6405 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6406 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6407 */
3f9672ba 6408static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6409{
59efa0ba
PZ
6410 /*
6411 * As blocked tasks retain absolute vruntime the migration needs to
6412 * deal with this by subtracting the old and adding the new
6413 * min_vruntime -- the latter is done by enqueue_entity() when placing
6414 * the task on the new runqueue.
6415 */
6416 if (p->state == TASK_WAKING) {
6417 struct sched_entity *se = &p->se;
6418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6419 u64 min_vruntime;
6420
6421#ifndef CONFIG_64BIT
6422 u64 min_vruntime_copy;
6423
6424 do {
6425 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6426 smp_rmb();
6427 min_vruntime = cfs_rq->min_vruntime;
6428 } while (min_vruntime != min_vruntime_copy);
6429#else
6430 min_vruntime = cfs_rq->min_vruntime;
6431#endif
6432
6433 se->vruntime -= min_vruntime;
6434 }
6435
144d8487
PZ
6436 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6437 /*
6438 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6439 * rq->lock and can modify state directly.
6440 */
6441 lockdep_assert_held(&task_rq(p)->lock);
6442 detach_entity_cfs_rq(&p->se);
6443
6444 } else {
6445 /*
6446 * We are supposed to update the task to "current" time, then
6447 * its up to date and ready to go to new CPU/cfs_rq. But we
6448 * have difficulty in getting what current time is, so simply
6449 * throw away the out-of-date time. This will result in the
6450 * wakee task is less decayed, but giving the wakee more load
6451 * sounds not bad.
6452 */
6453 remove_entity_load_avg(&p->se);
6454 }
9d89c257
YD
6455
6456 /* Tell new CPU we are migrated */
6457 p->se.avg.last_update_time = 0;
3944a927
BS
6458
6459 /* We have migrated, no longer consider this task hot */
9d89c257 6460 p->se.exec_start = 0;
3f9672ba
SD
6461
6462 update_scan_period(p, new_cpu);
0a74bef8 6463}
12695578
YD
6464
6465static void task_dead_fair(struct task_struct *p)
6466{
6467 remove_entity_load_avg(&p->se);
6468}
6e2df058
PZ
6469
6470static int
6471balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6472{
6473 if (rq->nr_running)
6474 return 1;
6475
6476 return newidle_balance(rq, rf) != 0;
6477}
e7693a36
GH
6478#endif /* CONFIG_SMP */
6479
a555e9d8 6480static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6481{
6482 unsigned long gran = sysctl_sched_wakeup_granularity;
6483
6484 /*
e52fb7c0
PZ
6485 * Since its curr running now, convert the gran from real-time
6486 * to virtual-time in his units.
13814d42
MG
6487 *
6488 * By using 'se' instead of 'curr' we penalize light tasks, so
6489 * they get preempted easier. That is, if 'se' < 'curr' then
6490 * the resulting gran will be larger, therefore penalizing the
6491 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6492 * be smaller, again penalizing the lighter task.
6493 *
6494 * This is especially important for buddies when the leftmost
6495 * task is higher priority than the buddy.
0bbd3336 6496 */
f4ad9bd2 6497 return calc_delta_fair(gran, se);
0bbd3336
PZ
6498}
6499
464b7527
PZ
6500/*
6501 * Should 'se' preempt 'curr'.
6502 *
6503 * |s1
6504 * |s2
6505 * |s3
6506 * g
6507 * |<--->|c
6508 *
6509 * w(c, s1) = -1
6510 * w(c, s2) = 0
6511 * w(c, s3) = 1
6512 *
6513 */
6514static int
6515wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6516{
6517 s64 gran, vdiff = curr->vruntime - se->vruntime;
6518
6519 if (vdiff <= 0)
6520 return -1;
6521
a555e9d8 6522 gran = wakeup_gran(se);
464b7527
PZ
6523 if (vdiff > gran)
6524 return 1;
6525
6526 return 0;
6527}
6528
02479099
PZ
6529static void set_last_buddy(struct sched_entity *se)
6530{
1da1843f 6531 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6532 return;
6533
c5ae366e
DA
6534 for_each_sched_entity(se) {
6535 if (SCHED_WARN_ON(!se->on_rq))
6536 return;
69c80f3e 6537 cfs_rq_of(se)->last = se;
c5ae366e 6538 }
02479099
PZ
6539}
6540
6541static void set_next_buddy(struct sched_entity *se)
6542{
1da1843f 6543 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6544 return;
6545
c5ae366e
DA
6546 for_each_sched_entity(se) {
6547 if (SCHED_WARN_ON(!se->on_rq))
6548 return;
69c80f3e 6549 cfs_rq_of(se)->next = se;
c5ae366e 6550 }
02479099
PZ
6551}
6552
ac53db59
RR
6553static void set_skip_buddy(struct sched_entity *se)
6554{
69c80f3e
VP
6555 for_each_sched_entity(se)
6556 cfs_rq_of(se)->skip = se;
ac53db59
RR
6557}
6558
bf0f6f24
IM
6559/*
6560 * Preempt the current task with a newly woken task if needed:
6561 */
5a9b86f6 6562static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6563{
6564 struct task_struct *curr = rq->curr;
8651a86c 6565 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6566 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6567 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6568 int next_buddy_marked = 0;
bf0f6f24 6569
4ae7d5ce
IM
6570 if (unlikely(se == pse))
6571 return;
6572
5238cdd3 6573 /*
163122b7 6574 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6575 * unconditionally check_prempt_curr() after an enqueue (which may have
6576 * lead to a throttle). This both saves work and prevents false
6577 * next-buddy nomination below.
6578 */
6579 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6580 return;
6581
2f36825b 6582 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6583 set_next_buddy(pse);
2f36825b
VP
6584 next_buddy_marked = 1;
6585 }
57fdc26d 6586
aec0a514
BR
6587 /*
6588 * We can come here with TIF_NEED_RESCHED already set from new task
6589 * wake up path.
5238cdd3
PT
6590 *
6591 * Note: this also catches the edge-case of curr being in a throttled
6592 * group (e.g. via set_curr_task), since update_curr() (in the
6593 * enqueue of curr) will have resulted in resched being set. This
6594 * prevents us from potentially nominating it as a false LAST_BUDDY
6595 * below.
aec0a514
BR
6596 */
6597 if (test_tsk_need_resched(curr))
6598 return;
6599
a2f5c9ab 6600 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6601 if (unlikely(task_has_idle_policy(curr)) &&
6602 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6603 goto preempt;
6604
91c234b4 6605 /*
a2f5c9ab
DH
6606 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6607 * is driven by the tick):
91c234b4 6608 */
8ed92e51 6609 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6610 return;
bf0f6f24 6611
464b7527 6612 find_matching_se(&se, &pse);
9bbd7374 6613 update_curr(cfs_rq_of(se));
002f128b 6614 BUG_ON(!pse);
2f36825b
VP
6615 if (wakeup_preempt_entity(se, pse) == 1) {
6616 /*
6617 * Bias pick_next to pick the sched entity that is
6618 * triggering this preemption.
6619 */
6620 if (!next_buddy_marked)
6621 set_next_buddy(pse);
3a7e73a2 6622 goto preempt;
2f36825b 6623 }
464b7527 6624
3a7e73a2 6625 return;
a65ac745 6626
3a7e73a2 6627preempt:
8875125e 6628 resched_curr(rq);
3a7e73a2
PZ
6629 /*
6630 * Only set the backward buddy when the current task is still
6631 * on the rq. This can happen when a wakeup gets interleaved
6632 * with schedule on the ->pre_schedule() or idle_balance()
6633 * point, either of which can * drop the rq lock.
6634 *
6635 * Also, during early boot the idle thread is in the fair class,
6636 * for obvious reasons its a bad idea to schedule back to it.
6637 */
6638 if (unlikely(!se->on_rq || curr == rq->idle))
6639 return;
6640
6641 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6642 set_last_buddy(se);
bf0f6f24
IM
6643}
6644
5d7d6056 6645struct task_struct *
d8ac8971 6646pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6647{
6648 struct cfs_rq *cfs_rq = &rq->cfs;
6649 struct sched_entity *se;
678d5718 6650 struct task_struct *p;
37e117c0 6651 int new_tasks;
678d5718 6652
6e83125c 6653again:
6e2df058 6654 if (!sched_fair_runnable(rq))
38033c37 6655 goto idle;
678d5718 6656
9674f5ca 6657#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6658 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6659 goto simple;
6660
6661 /*
6662 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6663 * likely that a next task is from the same cgroup as the current.
6664 *
6665 * Therefore attempt to avoid putting and setting the entire cgroup
6666 * hierarchy, only change the part that actually changes.
6667 */
6668
6669 do {
6670 struct sched_entity *curr = cfs_rq->curr;
6671
6672 /*
6673 * Since we got here without doing put_prev_entity() we also
6674 * have to consider cfs_rq->curr. If it is still a runnable
6675 * entity, update_curr() will update its vruntime, otherwise
6676 * forget we've ever seen it.
6677 */
54d27365
BS
6678 if (curr) {
6679 if (curr->on_rq)
6680 update_curr(cfs_rq);
6681 else
6682 curr = NULL;
678d5718 6683
54d27365
BS
6684 /*
6685 * This call to check_cfs_rq_runtime() will do the
6686 * throttle and dequeue its entity in the parent(s).
9674f5ca 6687 * Therefore the nr_running test will indeed
54d27365
BS
6688 * be correct.
6689 */
9674f5ca
VK
6690 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6691 cfs_rq = &rq->cfs;
6692
6693 if (!cfs_rq->nr_running)
6694 goto idle;
6695
54d27365 6696 goto simple;
9674f5ca 6697 }
54d27365 6698 }
678d5718
PZ
6699
6700 se = pick_next_entity(cfs_rq, curr);
6701 cfs_rq = group_cfs_rq(se);
6702 } while (cfs_rq);
6703
6704 p = task_of(se);
6705
6706 /*
6707 * Since we haven't yet done put_prev_entity and if the selected task
6708 * is a different task than we started out with, try and touch the
6709 * least amount of cfs_rqs.
6710 */
6711 if (prev != p) {
6712 struct sched_entity *pse = &prev->se;
6713
6714 while (!(cfs_rq = is_same_group(se, pse))) {
6715 int se_depth = se->depth;
6716 int pse_depth = pse->depth;
6717
6718 if (se_depth <= pse_depth) {
6719 put_prev_entity(cfs_rq_of(pse), pse);
6720 pse = parent_entity(pse);
6721 }
6722 if (se_depth >= pse_depth) {
6723 set_next_entity(cfs_rq_of(se), se);
6724 se = parent_entity(se);
6725 }
6726 }
6727
6728 put_prev_entity(cfs_rq, pse);
6729 set_next_entity(cfs_rq, se);
6730 }
6731
93824900 6732 goto done;
678d5718 6733simple:
678d5718 6734#endif
67692435
PZ
6735 if (prev)
6736 put_prev_task(rq, prev);
606dba2e 6737
bf0f6f24 6738 do {
678d5718 6739 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6740 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6741 cfs_rq = group_cfs_rq(se);
6742 } while (cfs_rq);
6743
8f4d37ec 6744 p = task_of(se);
678d5718 6745
13a453c2 6746done: __maybe_unused;
93824900
UR
6747#ifdef CONFIG_SMP
6748 /*
6749 * Move the next running task to the front of
6750 * the list, so our cfs_tasks list becomes MRU
6751 * one.
6752 */
6753 list_move(&p->se.group_node, &rq->cfs_tasks);
6754#endif
6755
b39e66ea
MG
6756 if (hrtick_enabled(rq))
6757 hrtick_start_fair(rq, p);
8f4d37ec 6758
3b1baa64
MR
6759 update_misfit_status(p, rq);
6760
8f4d37ec 6761 return p;
38033c37
PZ
6762
6763idle:
67692435
PZ
6764 if (!rf)
6765 return NULL;
6766
5ba553ef 6767 new_tasks = newidle_balance(rq, rf);
46f69fa3 6768
37e117c0 6769 /*
5ba553ef 6770 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
6771 * possible for any higher priority task to appear. In that case we
6772 * must re-start the pick_next_entity() loop.
6773 */
e4aa358b 6774 if (new_tasks < 0)
37e117c0
PZ
6775 return RETRY_TASK;
6776
e4aa358b 6777 if (new_tasks > 0)
38033c37 6778 goto again;
38033c37 6779
23127296
VG
6780 /*
6781 * rq is about to be idle, check if we need to update the
6782 * lost_idle_time of clock_pelt
6783 */
6784 update_idle_rq_clock_pelt(rq);
6785
38033c37 6786 return NULL;
bf0f6f24
IM
6787}
6788
98c2f700
PZ
6789static struct task_struct *__pick_next_task_fair(struct rq *rq)
6790{
6791 return pick_next_task_fair(rq, NULL, NULL);
6792}
6793
bf0f6f24
IM
6794/*
6795 * Account for a descheduled task:
6796 */
6e2df058 6797static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6798{
6799 struct sched_entity *se = &prev->se;
6800 struct cfs_rq *cfs_rq;
6801
6802 for_each_sched_entity(se) {
6803 cfs_rq = cfs_rq_of(se);
ab6cde26 6804 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6805 }
6806}
6807
ac53db59
RR
6808/*
6809 * sched_yield() is very simple
6810 *
6811 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6812 */
6813static void yield_task_fair(struct rq *rq)
6814{
6815 struct task_struct *curr = rq->curr;
6816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6817 struct sched_entity *se = &curr->se;
6818
6819 /*
6820 * Are we the only task in the tree?
6821 */
6822 if (unlikely(rq->nr_running == 1))
6823 return;
6824
6825 clear_buddies(cfs_rq, se);
6826
6827 if (curr->policy != SCHED_BATCH) {
6828 update_rq_clock(rq);
6829 /*
6830 * Update run-time statistics of the 'current'.
6831 */
6832 update_curr(cfs_rq);
916671c0
MG
6833 /*
6834 * Tell update_rq_clock() that we've just updated,
6835 * so we don't do microscopic update in schedule()
6836 * and double the fastpath cost.
6837 */
adcc8da8 6838 rq_clock_skip_update(rq);
ac53db59
RR
6839 }
6840
6841 set_skip_buddy(se);
6842}
6843
d95f4122
MG
6844static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6845{
6846 struct sched_entity *se = &p->se;
6847
5238cdd3
PT
6848 /* throttled hierarchies are not runnable */
6849 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6850 return false;
6851
6852 /* Tell the scheduler that we'd really like pse to run next. */
6853 set_next_buddy(se);
6854
d95f4122
MG
6855 yield_task_fair(rq);
6856
6857 return true;
6858}
6859
681f3e68 6860#ifdef CONFIG_SMP
bf0f6f24 6861/**************************************************
e9c84cb8
PZ
6862 * Fair scheduling class load-balancing methods.
6863 *
6864 * BASICS
6865 *
6866 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6867 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6868 * time to each task. This is expressed in the following equation:
6869 *
6870 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6871 *
97fb7a0a 6872 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6873 * W_i,0 is defined as:
6874 *
6875 * W_i,0 = \Sum_j w_i,j (2)
6876 *
97fb7a0a 6877 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6878 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6879 *
6880 * The weight average is an exponential decay average of the instantaneous
6881 * weight:
6882 *
6883 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6884 *
97fb7a0a 6885 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6886 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6887 * can also include other factors [XXX].
6888 *
6889 * To achieve this balance we define a measure of imbalance which follows
6890 * directly from (1):
6891 *
ced549fa 6892 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6893 *
6894 * We them move tasks around to minimize the imbalance. In the continuous
6895 * function space it is obvious this converges, in the discrete case we get
6896 * a few fun cases generally called infeasible weight scenarios.
6897 *
6898 * [XXX expand on:
6899 * - infeasible weights;
6900 * - local vs global optima in the discrete case. ]
6901 *
6902 *
6903 * SCHED DOMAINS
6904 *
6905 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6906 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6907 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6908 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6909 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 6910 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
6911 * the groups.
6912 *
6913 * This yields:
6914 *
6915 * log_2 n 1 n
6916 * \Sum { --- * --- * 2^i } = O(n) (5)
6917 * i = 0 2^i 2^i
6918 * `- size of each group
97fb7a0a 6919 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
6920 * | `- freq
6921 * `- sum over all levels
6922 *
6923 * Coupled with a limit on how many tasks we can migrate every balance pass,
6924 * this makes (5) the runtime complexity of the balancer.
6925 *
6926 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 6927 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
6928 *
6929 * The adjacency matrix of the resulting graph is given by:
6930 *
97a7142f 6931 * log_2 n
e9c84cb8
PZ
6932 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6933 * k = 0
6934 *
6935 * And you'll find that:
6936 *
6937 * A^(log_2 n)_i,j != 0 for all i,j (7)
6938 *
97fb7a0a 6939 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
6940 * The task movement gives a factor of O(m), giving a convergence complexity
6941 * of:
6942 *
6943 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6944 *
6945 *
6946 * WORK CONSERVING
6947 *
6948 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 6949 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
6950 * tree itself instead of relying on other CPUs to bring it work.
6951 *
6952 * This adds some complexity to both (5) and (8) but it reduces the total idle
6953 * time.
6954 *
6955 * [XXX more?]
6956 *
6957 *
6958 * CGROUPS
6959 *
6960 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6961 *
6962 * s_k,i
6963 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6964 * S_k
6965 *
6966 * Where
6967 *
6968 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6969 *
97fb7a0a 6970 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
6971 *
6972 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6973 * property.
6974 *
6975 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6976 * rewrite all of this once again.]
97a7142f 6977 */
bf0f6f24 6978
ed387b78
HS
6979static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6980
0ec8aa00
PZ
6981enum fbq_type { regular, remote, all };
6982
0b0695f2 6983/*
a9723389
VG
6984 * 'group_type' describes the group of CPUs at the moment of load balancing.
6985 *
0b0695f2 6986 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
6987 * first so the group_type can simply be compared when selecting the busiest
6988 * group. See update_sd_pick_busiest().
0b0695f2 6989 */
3b1baa64 6990enum group_type {
a9723389 6991 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 6992 group_has_spare = 0,
a9723389
VG
6993 /*
6994 * The group is fully used and the tasks don't compete for more CPU
6995 * cycles. Nevertheless, some tasks might wait before running.
6996 */
0b0695f2 6997 group_fully_busy,
a9723389
VG
6998 /*
6999 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7000 * and must be migrated to a more powerful CPU.
7001 */
3b1baa64 7002 group_misfit_task,
a9723389
VG
7003 /*
7004 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7005 * and the task should be migrated to it instead of running on the
7006 * current CPU.
7007 */
0b0695f2 7008 group_asym_packing,
a9723389
VG
7009 /*
7010 * The tasks' affinity constraints previously prevented the scheduler
7011 * from balancing the load across the system.
7012 */
3b1baa64 7013 group_imbalanced,
a9723389
VG
7014 /*
7015 * The CPU is overloaded and can't provide expected CPU cycles to all
7016 * tasks.
7017 */
0b0695f2
VG
7018 group_overloaded
7019};
7020
7021enum migration_type {
7022 migrate_load = 0,
7023 migrate_util,
7024 migrate_task,
7025 migrate_misfit
3b1baa64
MR
7026};
7027
ddcdf6e7 7028#define LBF_ALL_PINNED 0x01
367456c7 7029#define LBF_NEED_BREAK 0x02
6263322c
PZ
7030#define LBF_DST_PINNED 0x04
7031#define LBF_SOME_PINNED 0x08
e022e0d3 7032#define LBF_NOHZ_STATS 0x10
f643ea22 7033#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7034
7035struct lb_env {
7036 struct sched_domain *sd;
7037
ddcdf6e7 7038 struct rq *src_rq;
85c1e7da 7039 int src_cpu;
ddcdf6e7
PZ
7040
7041 int dst_cpu;
7042 struct rq *dst_rq;
7043
88b8dac0
SV
7044 struct cpumask *dst_grpmask;
7045 int new_dst_cpu;
ddcdf6e7 7046 enum cpu_idle_type idle;
bd939f45 7047 long imbalance;
b9403130
MW
7048 /* The set of CPUs under consideration for load-balancing */
7049 struct cpumask *cpus;
7050
ddcdf6e7 7051 unsigned int flags;
367456c7
PZ
7052
7053 unsigned int loop;
7054 unsigned int loop_break;
7055 unsigned int loop_max;
0ec8aa00
PZ
7056
7057 enum fbq_type fbq_type;
0b0695f2 7058 enum migration_type migration_type;
163122b7 7059 struct list_head tasks;
ddcdf6e7
PZ
7060};
7061
029632fb
PZ
7062/*
7063 * Is this task likely cache-hot:
7064 */
5d5e2b1b 7065static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7066{
7067 s64 delta;
7068
e5673f28
KT
7069 lockdep_assert_held(&env->src_rq->lock);
7070
029632fb
PZ
7071 if (p->sched_class != &fair_sched_class)
7072 return 0;
7073
1da1843f 7074 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7075 return 0;
7076
7077 /*
7078 * Buddy candidates are cache hot:
7079 */
5d5e2b1b 7080 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7081 (&p->se == cfs_rq_of(&p->se)->next ||
7082 &p->se == cfs_rq_of(&p->se)->last))
7083 return 1;
7084
7085 if (sysctl_sched_migration_cost == -1)
7086 return 1;
7087 if (sysctl_sched_migration_cost == 0)
7088 return 0;
7089
5d5e2b1b 7090 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7091
7092 return delta < (s64)sysctl_sched_migration_cost;
7093}
7094
3a7053b3 7095#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7096/*
2a1ed24c
SD
7097 * Returns 1, if task migration degrades locality
7098 * Returns 0, if task migration improves locality i.e migration preferred.
7099 * Returns -1, if task migration is not affected by locality.
c1ceac62 7100 */
2a1ed24c 7101static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7102{
b1ad065e 7103 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7104 unsigned long src_weight, dst_weight;
7105 int src_nid, dst_nid, dist;
3a7053b3 7106
2a595721 7107 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7108 return -1;
7109
c3b9bc5b 7110 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7111 return -1;
7a0f3083
MG
7112
7113 src_nid = cpu_to_node(env->src_cpu);
7114 dst_nid = cpu_to_node(env->dst_cpu);
7115
83e1d2cd 7116 if (src_nid == dst_nid)
2a1ed24c 7117 return -1;
7a0f3083 7118
2a1ed24c
SD
7119 /* Migrating away from the preferred node is always bad. */
7120 if (src_nid == p->numa_preferred_nid) {
7121 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7122 return 1;
7123 else
7124 return -1;
7125 }
b1ad065e 7126
c1ceac62
RR
7127 /* Encourage migration to the preferred node. */
7128 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7129 return 0;
b1ad065e 7130
739294fb 7131 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7132 if (env->idle == CPU_IDLE)
739294fb
RR
7133 return -1;
7134
f35678b6 7135 dist = node_distance(src_nid, dst_nid);
c1ceac62 7136 if (numa_group) {
f35678b6
SD
7137 src_weight = group_weight(p, src_nid, dist);
7138 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7139 } else {
f35678b6
SD
7140 src_weight = task_weight(p, src_nid, dist);
7141 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7142 }
7143
f35678b6 7144 return dst_weight < src_weight;
7a0f3083
MG
7145}
7146
3a7053b3 7147#else
2a1ed24c 7148static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7149 struct lb_env *env)
7150{
2a1ed24c 7151 return -1;
7a0f3083 7152}
3a7053b3
MG
7153#endif
7154
1e3c88bd
PZ
7155/*
7156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7157 */
7158static
8e45cb54 7159int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7160{
2a1ed24c 7161 int tsk_cache_hot;
e5673f28
KT
7162
7163 lockdep_assert_held(&env->src_rq->lock);
7164
1e3c88bd
PZ
7165 /*
7166 * We do not migrate tasks that are:
d3198084 7167 * 1) throttled_lb_pair, or
3bd37062 7168 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7169 * 3) running (obviously), or
7170 * 4) are cache-hot on their current CPU.
1e3c88bd 7171 */
d3198084
JK
7172 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7173 return 0;
7174
3bd37062 7175 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7176 int cpu;
88b8dac0 7177
ae92882e 7178 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7179
6263322c
PZ
7180 env->flags |= LBF_SOME_PINNED;
7181
88b8dac0 7182 /*
97fb7a0a 7183 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7184 * our sched_group. We may want to revisit it if we couldn't
7185 * meet load balance goals by pulling other tasks on src_cpu.
7186 *
65a4433a
JH
7187 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7188 * already computed one in current iteration.
88b8dac0 7189 */
65a4433a 7190 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7191 return 0;
7192
97fb7a0a 7193 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7194 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7195 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7196 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7197 env->new_dst_cpu = cpu;
7198 break;
7199 }
88b8dac0 7200 }
e02e60c1 7201
1e3c88bd
PZ
7202 return 0;
7203 }
88b8dac0
SV
7204
7205 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7206 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7207
ddcdf6e7 7208 if (task_running(env->src_rq, p)) {
ae92882e 7209 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7210 return 0;
7211 }
7212
7213 /*
7214 * Aggressive migration if:
3a7053b3
MG
7215 * 1) destination numa is preferred
7216 * 2) task is cache cold, or
7217 * 3) too many balance attempts have failed.
1e3c88bd 7218 */
2a1ed24c
SD
7219 tsk_cache_hot = migrate_degrades_locality(p, env);
7220 if (tsk_cache_hot == -1)
7221 tsk_cache_hot = task_hot(p, env);
3a7053b3 7222
2a1ed24c 7223 if (tsk_cache_hot <= 0 ||
7a96c231 7224 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7225 if (tsk_cache_hot == 1) {
ae92882e
JP
7226 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7227 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7228 }
1e3c88bd
PZ
7229 return 1;
7230 }
7231
ae92882e 7232 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7233 return 0;
1e3c88bd
PZ
7234}
7235
897c395f 7236/*
163122b7
KT
7237 * detach_task() -- detach the task for the migration specified in env
7238 */
7239static void detach_task(struct task_struct *p, struct lb_env *env)
7240{
7241 lockdep_assert_held(&env->src_rq->lock);
7242
5704ac0a 7243 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7244 set_task_cpu(p, env->dst_cpu);
7245}
7246
897c395f 7247/*
e5673f28 7248 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7249 * part of active balancing operations within "domain".
897c395f 7250 *
e5673f28 7251 * Returns a task if successful and NULL otherwise.
897c395f 7252 */
e5673f28 7253static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7254{
93824900 7255 struct task_struct *p;
897c395f 7256
e5673f28
KT
7257 lockdep_assert_held(&env->src_rq->lock);
7258
93824900
UR
7259 list_for_each_entry_reverse(p,
7260 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7261 if (!can_migrate_task(p, env))
7262 continue;
897c395f 7263
163122b7 7264 detach_task(p, env);
e5673f28 7265
367456c7 7266 /*
e5673f28 7267 * Right now, this is only the second place where
163122b7 7268 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7269 * so we can safely collect stats here rather than
163122b7 7270 * inside detach_tasks().
367456c7 7271 */
ae92882e 7272 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7273 return p;
897c395f 7274 }
e5673f28 7275 return NULL;
897c395f
PZ
7276}
7277
eb95308e
PZ
7278static const unsigned int sched_nr_migrate_break = 32;
7279
5d6523eb 7280/*
0b0695f2 7281 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7282 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7283 *
163122b7 7284 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7285 */
163122b7 7286static int detach_tasks(struct lb_env *env)
1e3c88bd 7287{
5d6523eb 7288 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7289 unsigned long util, load;
5d6523eb 7290 struct task_struct *p;
163122b7
KT
7291 int detached = 0;
7292
7293 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7294
bd939f45 7295 if (env->imbalance <= 0)
5d6523eb 7296 return 0;
1e3c88bd 7297
5d6523eb 7298 while (!list_empty(tasks)) {
985d3a4c
YD
7299 /*
7300 * We don't want to steal all, otherwise we may be treated likewise,
7301 * which could at worst lead to a livelock crash.
7302 */
7303 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7304 break;
7305
93824900 7306 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7307
367456c7
PZ
7308 env->loop++;
7309 /* We've more or less seen every task there is, call it quits */
5d6523eb 7310 if (env->loop > env->loop_max)
367456c7 7311 break;
5d6523eb
PZ
7312
7313 /* take a breather every nr_migrate tasks */
367456c7 7314 if (env->loop > env->loop_break) {
eb95308e 7315 env->loop_break += sched_nr_migrate_break;
8e45cb54 7316 env->flags |= LBF_NEED_BREAK;
ee00e66f 7317 break;
a195f004 7318 }
1e3c88bd 7319
d3198084 7320 if (!can_migrate_task(p, env))
367456c7
PZ
7321 goto next;
7322
0b0695f2
VG
7323 switch (env->migration_type) {
7324 case migrate_load:
7325 load = task_h_load(p);
5d6523eb 7326
0b0695f2
VG
7327 if (sched_feat(LB_MIN) &&
7328 load < 16 && !env->sd->nr_balance_failed)
7329 goto next;
367456c7 7330
0b0695f2
VG
7331 if (load/2 > env->imbalance)
7332 goto next;
7333
7334 env->imbalance -= load;
7335 break;
7336
7337 case migrate_util:
7338 util = task_util_est(p);
7339
7340 if (util > env->imbalance)
7341 goto next;
7342
7343 env->imbalance -= util;
7344 break;
7345
7346 case migrate_task:
7347 env->imbalance--;
7348 break;
7349
7350 case migrate_misfit:
c63be7be
VG
7351 /* This is not a misfit task */
7352 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7353 goto next;
7354
7355 env->imbalance = 0;
7356 break;
7357 }
1e3c88bd 7358
163122b7
KT
7359 detach_task(p, env);
7360 list_add(&p->se.group_node, &env->tasks);
7361
7362 detached++;
1e3c88bd 7363
c1a280b6 7364#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7365 /*
7366 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7367 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7368 * the critical section.
7369 */
5d6523eb 7370 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7371 break;
1e3c88bd
PZ
7372#endif
7373
ee00e66f
PZ
7374 /*
7375 * We only want to steal up to the prescribed amount of
0b0695f2 7376 * load/util/tasks.
ee00e66f 7377 */
bd939f45 7378 if (env->imbalance <= 0)
ee00e66f 7379 break;
367456c7
PZ
7380
7381 continue;
7382next:
93824900 7383 list_move(&p->se.group_node, tasks);
1e3c88bd 7384 }
5d6523eb 7385
1e3c88bd 7386 /*
163122b7
KT
7387 * Right now, this is one of only two places we collect this stat
7388 * so we can safely collect detach_one_task() stats here rather
7389 * than inside detach_one_task().
1e3c88bd 7390 */
ae92882e 7391 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7392
163122b7
KT
7393 return detached;
7394}
7395
7396/*
7397 * attach_task() -- attach the task detached by detach_task() to its new rq.
7398 */
7399static void attach_task(struct rq *rq, struct task_struct *p)
7400{
7401 lockdep_assert_held(&rq->lock);
7402
7403 BUG_ON(task_rq(p) != rq);
5704ac0a 7404 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7405 check_preempt_curr(rq, p, 0);
7406}
7407
7408/*
7409 * attach_one_task() -- attaches the task returned from detach_one_task() to
7410 * its new rq.
7411 */
7412static void attach_one_task(struct rq *rq, struct task_struct *p)
7413{
8a8c69c3
PZ
7414 struct rq_flags rf;
7415
7416 rq_lock(rq, &rf);
5704ac0a 7417 update_rq_clock(rq);
163122b7 7418 attach_task(rq, p);
8a8c69c3 7419 rq_unlock(rq, &rf);
163122b7
KT
7420}
7421
7422/*
7423 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7424 * new rq.
7425 */
7426static void attach_tasks(struct lb_env *env)
7427{
7428 struct list_head *tasks = &env->tasks;
7429 struct task_struct *p;
8a8c69c3 7430 struct rq_flags rf;
163122b7 7431
8a8c69c3 7432 rq_lock(env->dst_rq, &rf);
5704ac0a 7433 update_rq_clock(env->dst_rq);
163122b7
KT
7434
7435 while (!list_empty(tasks)) {
7436 p = list_first_entry(tasks, struct task_struct, se.group_node);
7437 list_del_init(&p->se.group_node);
1e3c88bd 7438
163122b7
KT
7439 attach_task(env->dst_rq, p);
7440 }
7441
8a8c69c3 7442 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7443}
7444
b0c79224 7445#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7446static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7447{
7448 if (cfs_rq->avg.load_avg)
7449 return true;
7450
7451 if (cfs_rq->avg.util_avg)
7452 return true;
7453
7454 return false;
7455}
7456
91c27493 7457static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7458{
7459 if (READ_ONCE(rq->avg_rt.util_avg))
7460 return true;
7461
3727e0e1
VG
7462 if (READ_ONCE(rq->avg_dl.util_avg))
7463 return true;
7464
11d4afd4 7465#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7466 if (READ_ONCE(rq->avg_irq.util_avg))
7467 return true;
7468#endif
7469
371bf427
VG
7470 return false;
7471}
7472
b0c79224
VS
7473static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7474{
7475 rq->last_blocked_load_update_tick = jiffies;
7476
7477 if (!has_blocked)
7478 rq->has_blocked_load = 0;
7479}
7480#else
7481static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7482static inline bool others_have_blocked(struct rq *rq) { return false; }
7483static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7484#endif
7485
bef69dd8
VG
7486static bool __update_blocked_others(struct rq *rq, bool *done)
7487{
7488 const struct sched_class *curr_class;
7489 u64 now = rq_clock_pelt(rq);
7490 bool decayed;
7491
7492 /*
7493 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7494 * DL and IRQ signals have been updated before updating CFS.
7495 */
7496 curr_class = rq->curr->sched_class;
7497
7498 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7499 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7500 update_irq_load_avg(rq, 0);
7501
7502 if (others_have_blocked(rq))
7503 *done = false;
7504
7505 return decayed;
7506}
7507
1936c53c
VG
7508#ifdef CONFIG_FAIR_GROUP_SCHED
7509
039ae8bc
VG
7510static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7511{
7512 if (cfs_rq->load.weight)
7513 return false;
7514
7515 if (cfs_rq->avg.load_sum)
7516 return false;
7517
7518 if (cfs_rq->avg.util_sum)
7519 return false;
7520
7521 if (cfs_rq->avg.runnable_load_sum)
7522 return false;
7523
7524 return true;
7525}
7526
bef69dd8 7527static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7528{
039ae8bc 7529 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7530 bool decayed = false;
7531 int cpu = cpu_of(rq);
b90f7c9d 7532
9763b67f
PZ
7533 /*
7534 * Iterates the task_group tree in a bottom up fashion, see
7535 * list_add_leaf_cfs_rq() for details.
7536 */
039ae8bc 7537 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7538 struct sched_entity *se;
7539
bef69dd8 7540 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9d89c257 7541 update_tg_load_avg(cfs_rq, 0);
4e516076 7542
bef69dd8
VG
7543 if (cfs_rq == &rq->cfs)
7544 decayed = true;
7545 }
7546
bc427898
VG
7547 /* Propagate pending load changes to the parent, if any: */
7548 se = cfs_rq->tg->se[cpu];
7549 if (se && !skip_blocked_update(se))
88c0616e 7550 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7551
039ae8bc
VG
7552 /*
7553 * There can be a lot of idle CPU cgroups. Don't let fully
7554 * decayed cfs_rqs linger on the list.
7555 */
7556 if (cfs_rq_is_decayed(cfs_rq))
7557 list_del_leaf_cfs_rq(cfs_rq);
7558
1936c53c
VG
7559 /* Don't need periodic decay once load/util_avg are null */
7560 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7561 *done = false;
9d89c257 7562 }
12b04875 7563
bef69dd8 7564 return decayed;
9e3081ca
PZ
7565}
7566
9763b67f 7567/*
68520796 7568 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7569 * This needs to be done in a top-down fashion because the load of a child
7570 * group is a fraction of its parents load.
7571 */
68520796 7572static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7573{
68520796
VD
7574 struct rq *rq = rq_of(cfs_rq);
7575 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7576 unsigned long now = jiffies;
68520796 7577 unsigned long load;
a35b6466 7578
68520796 7579 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7580 return;
7581
0e9f0245 7582 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7583 for_each_sched_entity(se) {
7584 cfs_rq = cfs_rq_of(se);
0e9f0245 7585 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7586 if (cfs_rq->last_h_load_update == now)
7587 break;
7588 }
a35b6466 7589
68520796 7590 if (!se) {
7ea241af 7591 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7592 cfs_rq->last_h_load_update = now;
7593 }
7594
0e9f0245 7595 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7596 load = cfs_rq->h_load;
7ea241af
YD
7597 load = div64_ul(load * se->avg.load_avg,
7598 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7599 cfs_rq = group_cfs_rq(se);
7600 cfs_rq->h_load = load;
7601 cfs_rq->last_h_load_update = now;
7602 }
9763b67f
PZ
7603}
7604
367456c7 7605static unsigned long task_h_load(struct task_struct *p)
230059de 7606{
367456c7 7607 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7608
68520796 7609 update_cfs_rq_h_load(cfs_rq);
9d89c257 7610 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7611 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7612}
7613#else
bef69dd8 7614static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7615{
6c1d47c0 7616 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7617 bool decayed;
b90f7c9d 7618
bef69dd8
VG
7619 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7620 if (cfs_rq_has_blocked(cfs_rq))
7621 *done = false;
b90f7c9d 7622
bef69dd8 7623 return decayed;
9e3081ca
PZ
7624}
7625
367456c7 7626static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7627{
9d89c257 7628 return p->se.avg.load_avg;
1e3c88bd 7629}
230059de 7630#endif
1e3c88bd 7631
bef69dd8
VG
7632static void update_blocked_averages(int cpu)
7633{
7634 bool decayed = false, done = true;
7635 struct rq *rq = cpu_rq(cpu);
7636 struct rq_flags rf;
7637
7638 rq_lock_irqsave(rq, &rf);
7639 update_rq_clock(rq);
7640
7641 decayed |= __update_blocked_others(rq, &done);
7642 decayed |= __update_blocked_fair(rq, &done);
7643
7644 update_blocked_load_status(rq, !done);
7645 if (decayed)
7646 cpufreq_update_util(rq, 0);
7647 rq_unlock_irqrestore(rq, &rf);
7648}
7649
1e3c88bd 7650/********** Helpers for find_busiest_group ************************/
caeb178c 7651
1e3c88bd
PZ
7652/*
7653 * sg_lb_stats - stats of a sched_group required for load_balancing
7654 */
7655struct sg_lb_stats {
7656 unsigned long avg_load; /*Avg load across the CPUs of the group */
7657 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 7658 unsigned long group_capacity;
9e91d61d 7659 unsigned long group_util; /* Total utilization of the group */
5e23e474 7660 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 7661 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
7662 unsigned int idle_cpus;
7663 unsigned int group_weight;
caeb178c 7664 enum group_type group_type;
490ba971 7665 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 7666 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7667#ifdef CONFIG_NUMA_BALANCING
7668 unsigned int nr_numa_running;
7669 unsigned int nr_preferred_running;
7670#endif
1e3c88bd
PZ
7671};
7672
56cf515b
JK
7673/*
7674 * sd_lb_stats - Structure to store the statistics of a sched_domain
7675 * during load balancing.
7676 */
7677struct sd_lb_stats {
7678 struct sched_group *busiest; /* Busiest group in this sd */
7679 struct sched_group *local; /* Local group in this sd */
7680 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7681 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 7682 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 7683 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 7684
56cf515b 7685 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7686 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7687};
7688
147c5fc2
PZ
7689static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7690{
7691 /*
7692 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7693 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
7694 * We must however set busiest_stat::group_type and
7695 * busiest_stat::idle_cpus to the worst busiest group because
7696 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
7697 */
7698 *sds = (struct sd_lb_stats){
7699 .busiest = NULL,
7700 .local = NULL,
7701 .total_load = 0UL,
63b2ca30 7702 .total_capacity = 0UL,
147c5fc2 7703 .busiest_stat = {
0b0695f2
VG
7704 .idle_cpus = UINT_MAX,
7705 .group_type = group_has_spare,
147c5fc2
PZ
7706 },
7707 };
7708}
7709
287cdaac 7710static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7711{
7712 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7713 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7714 unsigned long used, free;
523e979d 7715 unsigned long irq;
b654f7de 7716
2e62c474 7717 irq = cpu_util_irq(rq);
cadefd3d 7718
523e979d
VG
7719 if (unlikely(irq >= max))
7720 return 1;
aa483808 7721
523e979d
VG
7722 used = READ_ONCE(rq->avg_rt.util_avg);
7723 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7724
523e979d
VG
7725 if (unlikely(used >= max))
7726 return 1;
1e3c88bd 7727
523e979d 7728 free = max - used;
2e62c474
VG
7729
7730 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7731}
7732
ced549fa 7733static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7734{
287cdaac 7735 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7736 struct sched_group *sdg = sd->groups;
7737
8ec59c0f 7738 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7739
ced549fa
NP
7740 if (!capacity)
7741 capacity = 1;
1e3c88bd 7742
ced549fa
NP
7743 cpu_rq(cpu)->cpu_capacity = capacity;
7744 sdg->sgc->capacity = capacity;
bf475ce0 7745 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7746 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7747}
7748
63b2ca30 7749void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7750{
7751 struct sched_domain *child = sd->child;
7752 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7753 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7754 unsigned long interval;
7755
7756 interval = msecs_to_jiffies(sd->balance_interval);
7757 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7758 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7759
7760 if (!child) {
ced549fa 7761 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7762 return;
7763 }
7764
dc7ff76e 7765 capacity = 0;
bf475ce0 7766 min_capacity = ULONG_MAX;
e3d6d0cb 7767 max_capacity = 0;
1e3c88bd 7768
74a5ce20
PZ
7769 if (child->flags & SD_OVERLAP) {
7770 /*
7771 * SD_OVERLAP domains cannot assume that child groups
7772 * span the current group.
7773 */
7774
ae4df9d6 7775 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7776 struct sched_group_capacity *sgc;
9abf24d4 7777 struct rq *rq = cpu_rq(cpu);
863bffc8 7778
9abf24d4 7779 /*
63b2ca30 7780 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7781 * gets here before we've attached the domains to the
7782 * runqueues.
7783 *
ced549fa
NP
7784 * Use capacity_of(), which is set irrespective of domains
7785 * in update_cpu_capacity().
9abf24d4 7786 *
dc7ff76e 7787 * This avoids capacity from being 0 and
9abf24d4 7788 * causing divide-by-zero issues on boot.
9abf24d4
SD
7789 */
7790 if (unlikely(!rq->sd)) {
ced549fa 7791 capacity += capacity_of(cpu);
bf475ce0
MR
7792 } else {
7793 sgc = rq->sd->groups->sgc;
7794 capacity += sgc->capacity;
9abf24d4 7795 }
863bffc8 7796
bf475ce0 7797 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7798 max_capacity = max(capacity, max_capacity);
863bffc8 7799 }
74a5ce20
PZ
7800 } else {
7801 /*
7802 * !SD_OVERLAP domains can assume that child groups
7803 * span the current group.
97a7142f 7804 */
74a5ce20
PZ
7805
7806 group = child->groups;
7807 do {
bf475ce0
MR
7808 struct sched_group_capacity *sgc = group->sgc;
7809
7810 capacity += sgc->capacity;
7811 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7812 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7813 group = group->next;
7814 } while (group != child->groups);
7815 }
1e3c88bd 7816
63b2ca30 7817 sdg->sgc->capacity = capacity;
bf475ce0 7818 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7819 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7820}
7821
9d5efe05 7822/*
ea67821b
VG
7823 * Check whether the capacity of the rq has been noticeably reduced by side
7824 * activity. The imbalance_pct is used for the threshold.
7825 * Return true is the capacity is reduced
9d5efe05
SV
7826 */
7827static inline int
ea67821b 7828check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7829{
ea67821b
VG
7830 return ((rq->cpu_capacity * sd->imbalance_pct) <
7831 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7832}
7833
a0fe2cf0
VS
7834/*
7835 * Check whether a rq has a misfit task and if it looks like we can actually
7836 * help that task: we can migrate the task to a CPU of higher capacity, or
7837 * the task's current CPU is heavily pressured.
7838 */
7839static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7840{
7841 return rq->misfit_task_load &&
7842 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7843 check_cpu_capacity(rq, sd));
7844}
7845
30ce5dab
PZ
7846/*
7847 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7848 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7849 *
97fb7a0a
IM
7850 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7851 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7852 * Something like:
7853 *
2b4d5b25
IM
7854 * { 0 1 2 3 } { 4 5 6 7 }
7855 * * * * *
30ce5dab
PZ
7856 *
7857 * If we were to balance group-wise we'd place two tasks in the first group and
7858 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7859 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7860 *
7861 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7862 * by noticing the lower domain failed to reach balance and had difficulty
7863 * moving tasks due to affinity constraints.
30ce5dab
PZ
7864 *
7865 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7866 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7867 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7868 * to create an effective group imbalance.
7869 *
7870 * This is a somewhat tricky proposition since the next run might not find the
7871 * group imbalance and decide the groups need to be balanced again. A most
7872 * subtle and fragile situation.
7873 */
7874
6263322c 7875static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7876{
63b2ca30 7877 return group->sgc->imbalance;
30ce5dab
PZ
7878}
7879
b37d9316 7880/*
ea67821b
VG
7881 * group_has_capacity returns true if the group has spare capacity that could
7882 * be used by some tasks.
7883 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7884 * smaller than the number of CPUs or if the utilization is lower than the
7885 * available capacity for CFS tasks.
ea67821b
VG
7886 * For the latter, we use a threshold to stabilize the state, to take into
7887 * account the variance of the tasks' load and to return true if the available
7888 * capacity in meaningful for the load balancer.
7889 * As an example, an available capacity of 1% can appear but it doesn't make
7890 * any benefit for the load balance.
b37d9316 7891 */
ea67821b 7892static inline bool
57abff06 7893group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 7894{
5e23e474 7895 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 7896 return true;
c61037e9 7897
ea67821b 7898 if ((sgs->group_capacity * 100) >
57abff06 7899 (sgs->group_util * imbalance_pct))
ea67821b 7900 return true;
b37d9316 7901
ea67821b
VG
7902 return false;
7903}
7904
7905/*
7906 * group_is_overloaded returns true if the group has more tasks than it can
7907 * handle.
7908 * group_is_overloaded is not equals to !group_has_capacity because a group
7909 * with the exact right number of tasks, has no more spare capacity but is not
7910 * overloaded so both group_has_capacity and group_is_overloaded return
7911 * false.
7912 */
7913static inline bool
57abff06 7914group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 7915{
5e23e474 7916 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 7917 return false;
b37d9316 7918
ea67821b 7919 if ((sgs->group_capacity * 100) <
57abff06 7920 (sgs->group_util * imbalance_pct))
ea67821b 7921 return true;
b37d9316 7922
ea67821b 7923 return false;
b37d9316
PZ
7924}
7925
9e0994c0 7926/*
e3d6d0cb 7927 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7928 * per-CPU capacity than sched_group ref.
7929 */
7930static inline bool
e3d6d0cb 7931group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 7932{
60e17f5c 7933 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
7934}
7935
e3d6d0cb
MR
7936/*
7937 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7938 * per-CPU capacity_orig than sched_group ref.
7939 */
7940static inline bool
7941group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7942{
60e17f5c 7943 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
7944}
7945
79a89f92 7946static inline enum
57abff06 7947group_type group_classify(unsigned int imbalance_pct,
0b0695f2 7948 struct sched_group *group,
79a89f92 7949 struct sg_lb_stats *sgs)
caeb178c 7950{
57abff06 7951 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
7952 return group_overloaded;
7953
7954 if (sg_imbalanced(group))
7955 return group_imbalanced;
7956
0b0695f2
VG
7957 if (sgs->group_asym_packing)
7958 return group_asym_packing;
7959
3b1baa64
MR
7960 if (sgs->group_misfit_task_load)
7961 return group_misfit_task;
7962
57abff06 7963 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
7964 return group_fully_busy;
7965
7966 return group_has_spare;
caeb178c
RR
7967}
7968
63928384 7969static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7970{
7971#ifdef CONFIG_NO_HZ_COMMON
7972 unsigned int cpu = rq->cpu;
7973
f643ea22
VG
7974 if (!rq->has_blocked_load)
7975 return false;
7976
e022e0d3 7977 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7978 return false;
e022e0d3 7979
63928384 7980 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7981 return true;
e022e0d3
PZ
7982
7983 update_blocked_averages(cpu);
f643ea22
VG
7984
7985 return rq->has_blocked_load;
7986#else
7987 return false;
e022e0d3
PZ
7988#endif
7989}
7990
1e3c88bd
PZ
7991/**
7992 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7993 * @env: The load balancing environment.
1e3c88bd 7994 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7995 * @sgs: variable to hold the statistics for this group.
630246a0 7996 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 7997 */
bd939f45 7998static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
7999 struct sched_group *group,
8000 struct sg_lb_stats *sgs,
8001 int *sg_status)
1e3c88bd 8002{
0b0695f2 8003 int i, nr_running, local_group;
1e3c88bd 8004
b72ff13c
PZ
8005 memset(sgs, 0, sizeof(*sgs));
8006
0b0695f2
VG
8007 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8008
ae4df9d6 8009 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8010 struct rq *rq = cpu_rq(i);
8011
63928384 8012 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8013 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8014
b0fb1eb4 8015 sgs->group_load += cpu_load(rq);
9e91d61d 8016 sgs->group_util += cpu_util(i);
a3498347 8017 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8018
a426f99c 8019 nr_running = rq->nr_running;
5e23e474
VG
8020 sgs->sum_nr_running += nr_running;
8021
a426f99c 8022 if (nr_running > 1)
630246a0 8023 *sg_status |= SG_OVERLOAD;
4486edd1 8024
2802bf3c
MR
8025 if (cpu_overutilized(i))
8026 *sg_status |= SG_OVERUTILIZED;
4486edd1 8027
0ec8aa00
PZ
8028#ifdef CONFIG_NUMA_BALANCING
8029 sgs->nr_numa_running += rq->nr_numa_running;
8030 sgs->nr_preferred_running += rq->nr_preferred_running;
8031#endif
a426f99c
WL
8032 /*
8033 * No need to call idle_cpu() if nr_running is not 0
8034 */
0b0695f2 8035 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8036 sgs->idle_cpus++;
0b0695f2
VG
8037 /* Idle cpu can't have misfit task */
8038 continue;
8039 }
8040
8041 if (local_group)
8042 continue;
3b1baa64 8043
0b0695f2 8044 /* Check for a misfit task on the cpu */
3b1baa64 8045 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8046 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8047 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8048 *sg_status |= SG_OVERLOAD;
757ffdd7 8049 }
1e3c88bd
PZ
8050 }
8051
0b0695f2
VG
8052 /* Check if dst CPU is idle and preferred to this group */
8053 if (env->sd->flags & SD_ASYM_PACKING &&
8054 env->idle != CPU_NOT_IDLE &&
8055 sgs->sum_h_nr_running &&
8056 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8057 sgs->group_asym_packing = 1;
8058 }
8059
63b2ca30 8060 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8061
aae6d3dd 8062 sgs->group_weight = group->group_weight;
b37d9316 8063
57abff06 8064 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8065
8066 /* Computing avg_load makes sense only when group is overloaded */
8067 if (sgs->group_type == group_overloaded)
8068 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8069 sgs->group_capacity;
1e3c88bd
PZ
8070}
8071
532cb4c4
MN
8072/**
8073 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8074 * @env: The load balancing environment.
532cb4c4
MN
8075 * @sds: sched_domain statistics
8076 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8077 * @sgs: sched_group statistics
532cb4c4
MN
8078 *
8079 * Determine if @sg is a busier group than the previously selected
8080 * busiest group.
e69f6186
YB
8081 *
8082 * Return: %true if @sg is a busier group than the previously selected
8083 * busiest group. %false otherwise.
532cb4c4 8084 */
bd939f45 8085static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8086 struct sd_lb_stats *sds,
8087 struct sched_group *sg,
bd939f45 8088 struct sg_lb_stats *sgs)
532cb4c4 8089{
caeb178c 8090 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8091
0b0695f2
VG
8092 /* Make sure that there is at least one task to pull */
8093 if (!sgs->sum_h_nr_running)
8094 return false;
8095
cad68e55
MR
8096 /*
8097 * Don't try to pull misfit tasks we can't help.
8098 * We can use max_capacity here as reduction in capacity on some
8099 * CPUs in the group should either be possible to resolve
8100 * internally or be covered by avg_load imbalance (eventually).
8101 */
8102 if (sgs->group_type == group_misfit_task &&
8103 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8104 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8105 return false;
8106
caeb178c 8107 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8108 return true;
8109
caeb178c
RR
8110 if (sgs->group_type < busiest->group_type)
8111 return false;
8112
9e0994c0 8113 /*
0b0695f2
VG
8114 * The candidate and the current busiest group are the same type of
8115 * group. Let check which one is the busiest according to the type.
9e0994c0 8116 */
9e0994c0 8117
0b0695f2
VG
8118 switch (sgs->group_type) {
8119 case group_overloaded:
8120 /* Select the overloaded group with highest avg_load. */
8121 if (sgs->avg_load <= busiest->avg_load)
8122 return false;
8123 break;
8124
8125 case group_imbalanced:
8126 /*
8127 * Select the 1st imbalanced group as we don't have any way to
8128 * choose one more than another.
8129 */
9e0994c0
MR
8130 return false;
8131
0b0695f2
VG
8132 case group_asym_packing:
8133 /* Prefer to move from lowest priority CPU's work */
8134 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8135 return false;
8136 break;
532cb4c4 8137
0b0695f2
VG
8138 case group_misfit_task:
8139 /*
8140 * If we have more than one misfit sg go with the biggest
8141 * misfit.
8142 */
8143 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8144 return false;
8145 break;
532cb4c4 8146
0b0695f2
VG
8147 case group_fully_busy:
8148 /*
8149 * Select the fully busy group with highest avg_load. In
8150 * theory, there is no need to pull task from such kind of
8151 * group because tasks have all compute capacity that they need
8152 * but we can still improve the overall throughput by reducing
8153 * contention when accessing shared HW resources.
8154 *
8155 * XXX for now avg_load is not computed and always 0 so we
8156 * select the 1st one.
8157 */
8158 if (sgs->avg_load <= busiest->avg_load)
8159 return false;
8160 break;
8161
8162 case group_has_spare:
8163 /*
8164 * Select not overloaded group with lowest number of
8165 * idle cpus. We could also compare the spare capacity
8166 * which is more stable but it can end up that the
8167 * group has less spare capacity but finally more idle
8168 * CPUs which means less opportunity to pull tasks.
8169 */
8170 if (sgs->idle_cpus >= busiest->idle_cpus)
8171 return false;
8172 break;
532cb4c4
MN
8173 }
8174
0b0695f2
VG
8175 /*
8176 * Candidate sg has no more than one task per CPU and has higher
8177 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8178 * throughput. Maximize throughput, power/energy consequences are not
8179 * considered.
8180 */
8181 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8182 (sgs->group_type <= group_fully_busy) &&
8183 (group_smaller_min_cpu_capacity(sds->local, sg)))
8184 return false;
8185
8186 return true;
532cb4c4
MN
8187}
8188
0ec8aa00
PZ
8189#ifdef CONFIG_NUMA_BALANCING
8190static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8191{
a3498347 8192 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8193 return regular;
a3498347 8194 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8195 return remote;
8196 return all;
8197}
8198
8199static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8200{
8201 if (rq->nr_running > rq->nr_numa_running)
8202 return regular;
8203 if (rq->nr_running > rq->nr_preferred_running)
8204 return remote;
8205 return all;
8206}
8207#else
8208static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8209{
8210 return all;
8211}
8212
8213static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8214{
8215 return regular;
8216}
8217#endif /* CONFIG_NUMA_BALANCING */
8218
57abff06
VG
8219
8220struct sg_lb_stats;
8221
3318544b
VG
8222/*
8223 * task_running_on_cpu - return 1 if @p is running on @cpu.
8224 */
8225
8226static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8227{
8228 /* Task has no contribution or is new */
8229 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8230 return 0;
8231
8232 if (task_on_rq_queued(p))
8233 return 1;
8234
8235 return 0;
8236}
8237
8238/**
8239 * idle_cpu_without - would a given CPU be idle without p ?
8240 * @cpu: the processor on which idleness is tested.
8241 * @p: task which should be ignored.
8242 *
8243 * Return: 1 if the CPU would be idle. 0 otherwise.
8244 */
8245static int idle_cpu_without(int cpu, struct task_struct *p)
8246{
8247 struct rq *rq = cpu_rq(cpu);
8248
8249 if (rq->curr != rq->idle && rq->curr != p)
8250 return 0;
8251
8252 /*
8253 * rq->nr_running can't be used but an updated version without the
8254 * impact of p on cpu must be used instead. The updated nr_running
8255 * be computed and tested before calling idle_cpu_without().
8256 */
8257
8258#ifdef CONFIG_SMP
8259 if (!llist_empty(&rq->wake_list))
8260 return 0;
8261#endif
8262
8263 return 1;
8264}
8265
57abff06
VG
8266/*
8267 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8268 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8269 * @group: sched_group whose statistics are to be updated.
8270 * @sgs: variable to hold the statistics for this group.
3318544b 8271 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8272 */
8273static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8274 struct sched_group *group,
8275 struct sg_lb_stats *sgs,
8276 struct task_struct *p)
8277{
8278 int i, nr_running;
8279
8280 memset(sgs, 0, sizeof(*sgs));
8281
8282 for_each_cpu(i, sched_group_span(group)) {
8283 struct rq *rq = cpu_rq(i);
3318544b 8284 unsigned int local;
57abff06 8285
3318544b 8286 sgs->group_load += cpu_load_without(rq, p);
57abff06 8287 sgs->group_util += cpu_util_without(i, p);
3318544b
VG
8288 local = task_running_on_cpu(i, p);
8289 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8290
3318544b 8291 nr_running = rq->nr_running - local;
57abff06
VG
8292 sgs->sum_nr_running += nr_running;
8293
8294 /*
3318544b 8295 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8296 */
3318544b 8297 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8298 sgs->idle_cpus++;
8299
57abff06
VG
8300 }
8301
8302 /* Check if task fits in the group */
8303 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8304 !task_fits_capacity(p, group->sgc->max_capacity)) {
8305 sgs->group_misfit_task_load = 1;
8306 }
8307
8308 sgs->group_capacity = group->sgc->capacity;
8309
8310 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8311
8312 /*
8313 * Computing avg_load makes sense only when group is fully busy or
8314 * overloaded
8315 */
8316 if (sgs->group_type < group_fully_busy)
8317 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8318 sgs->group_capacity;
8319}
8320
8321static bool update_pick_idlest(struct sched_group *idlest,
8322 struct sg_lb_stats *idlest_sgs,
8323 struct sched_group *group,
8324 struct sg_lb_stats *sgs)
8325{
8326 if (sgs->group_type < idlest_sgs->group_type)
8327 return true;
8328
8329 if (sgs->group_type > idlest_sgs->group_type)
8330 return false;
8331
8332 /*
8333 * The candidate and the current idlest group are the same type of
8334 * group. Let check which one is the idlest according to the type.
8335 */
8336
8337 switch (sgs->group_type) {
8338 case group_overloaded:
8339 case group_fully_busy:
8340 /* Select the group with lowest avg_load. */
8341 if (idlest_sgs->avg_load <= sgs->avg_load)
8342 return false;
8343 break;
8344
8345 case group_imbalanced:
8346 case group_asym_packing:
8347 /* Those types are not used in the slow wakeup path */
8348 return false;
8349
8350 case group_misfit_task:
8351 /* Select group with the highest max capacity */
8352 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8353 return false;
8354 break;
8355
8356 case group_has_spare:
8357 /* Select group with most idle CPUs */
8358 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8359 return false;
8360 break;
8361 }
8362
8363 return true;
8364}
8365
8366/*
8367 * find_idlest_group() finds and returns the least busy CPU group within the
8368 * domain.
8369 *
8370 * Assumes p is allowed on at least one CPU in sd.
8371 */
8372static struct sched_group *
8373find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8374 int this_cpu, int sd_flag)
8375{
8376 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8377 struct sg_lb_stats local_sgs, tmp_sgs;
8378 struct sg_lb_stats *sgs;
8379 unsigned long imbalance;
8380 struct sg_lb_stats idlest_sgs = {
8381 .avg_load = UINT_MAX,
8382 .group_type = group_overloaded,
8383 };
8384
8385 imbalance = scale_load_down(NICE_0_LOAD) *
8386 (sd->imbalance_pct-100) / 100;
8387
8388 do {
8389 int local_group;
8390
8391 /* Skip over this group if it has no CPUs allowed */
8392 if (!cpumask_intersects(sched_group_span(group),
8393 p->cpus_ptr))
8394 continue;
8395
8396 local_group = cpumask_test_cpu(this_cpu,
8397 sched_group_span(group));
8398
8399 if (local_group) {
8400 sgs = &local_sgs;
8401 local = group;
8402 } else {
8403 sgs = &tmp_sgs;
8404 }
8405
8406 update_sg_wakeup_stats(sd, group, sgs, p);
8407
8408 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8409 idlest = group;
8410 idlest_sgs = *sgs;
8411 }
8412
8413 } while (group = group->next, group != sd->groups);
8414
8415
8416 /* There is no idlest group to push tasks to */
8417 if (!idlest)
8418 return NULL;
8419
8420 /*
8421 * If the local group is idler than the selected idlest group
8422 * don't try and push the task.
8423 */
8424 if (local_sgs.group_type < idlest_sgs.group_type)
8425 return NULL;
8426
8427 /*
8428 * If the local group is busier than the selected idlest group
8429 * try and push the task.
8430 */
8431 if (local_sgs.group_type > idlest_sgs.group_type)
8432 return idlest;
8433
8434 switch (local_sgs.group_type) {
8435 case group_overloaded:
8436 case group_fully_busy:
8437 /*
8438 * When comparing groups across NUMA domains, it's possible for
8439 * the local domain to be very lightly loaded relative to the
8440 * remote domains but "imbalance" skews the comparison making
8441 * remote CPUs look much more favourable. When considering
8442 * cross-domain, add imbalance to the load on the remote node
8443 * and consider staying local.
8444 */
8445
8446 if ((sd->flags & SD_NUMA) &&
8447 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8448 return NULL;
8449
8450 /*
8451 * If the local group is less loaded than the selected
8452 * idlest group don't try and push any tasks.
8453 */
8454 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8455 return NULL;
8456
8457 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8458 return NULL;
8459 break;
8460
8461 case group_imbalanced:
8462 case group_asym_packing:
8463 /* Those type are not used in the slow wakeup path */
8464 return NULL;
8465
8466 case group_misfit_task:
8467 /* Select group with the highest max capacity */
8468 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8469 return NULL;
8470 break;
8471
8472 case group_has_spare:
8473 if (sd->flags & SD_NUMA) {
8474#ifdef CONFIG_NUMA_BALANCING
8475 int idlest_cpu;
8476 /*
8477 * If there is spare capacity at NUMA, try to select
8478 * the preferred node
8479 */
8480 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8481 return NULL;
8482
8483 idlest_cpu = cpumask_first(sched_group_span(idlest));
8484 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8485 return idlest;
8486#endif
8487 /*
8488 * Otherwise, keep the task on this node to stay close
8489 * its wakeup source and improve locality. If there is
8490 * a real need of migration, periodic load balance will
8491 * take care of it.
8492 */
8493 if (local_sgs.idle_cpus)
8494 return NULL;
8495 }
8496
8497 /*
8498 * Select group with highest number of idle CPUs. We could also
8499 * compare the utilization which is more stable but it can end
8500 * up that the group has less spare capacity but finally more
8501 * idle CPUs which means more opportunity to run task.
8502 */
8503 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8504 return NULL;
8505 break;
8506 }
8507
8508 return idlest;
8509}
8510
1e3c88bd 8511/**
461819ac 8512 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8513 * @env: The load balancing environment.
1e3c88bd
PZ
8514 * @sds: variable to hold the statistics for this sched_domain.
8515 */
0b0695f2 8516
0ec8aa00 8517static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8518{
bd939f45
PZ
8519 struct sched_domain *child = env->sd->child;
8520 struct sched_group *sg = env->sd->groups;
05b40e05 8521 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8522 struct sg_lb_stats tmp_sgs;
630246a0 8523 int sg_status = 0;
1e3c88bd 8524
e022e0d3 8525#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8526 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8527 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8528#endif
8529
1e3c88bd 8530 do {
56cf515b 8531 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8532 int local_group;
8533
ae4df9d6 8534 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8535 if (local_group) {
8536 sds->local = sg;
05b40e05 8537 sgs = local;
b72ff13c
PZ
8538
8539 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8540 time_after_eq(jiffies, sg->sgc->next_update))
8541 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8542 }
1e3c88bd 8543
630246a0 8544 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8545
b72ff13c
PZ
8546 if (local_group)
8547 goto next_group;
8548
1e3c88bd 8549
b72ff13c 8550 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8551 sds->busiest = sg;
56cf515b 8552 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8553 }
8554
b72ff13c
PZ
8555next_group:
8556 /* Now, start updating sd_lb_stats */
8557 sds->total_load += sgs->group_load;
63b2ca30 8558 sds->total_capacity += sgs->group_capacity;
b72ff13c 8559
532cb4c4 8560 sg = sg->next;
bd939f45 8561 } while (sg != env->sd->groups);
0ec8aa00 8562
0b0695f2
VG
8563 /* Tag domain that child domain prefers tasks go to siblings first */
8564 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8565
f643ea22
VG
8566#ifdef CONFIG_NO_HZ_COMMON
8567 if ((env->flags & LBF_NOHZ_AGAIN) &&
8568 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8569
8570 WRITE_ONCE(nohz.next_blocked,
8571 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8572 }
8573#endif
8574
0ec8aa00
PZ
8575 if (env->sd->flags & SD_NUMA)
8576 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8577
8578 if (!env->sd->parent) {
2802bf3c
MR
8579 struct root_domain *rd = env->dst_rq->rd;
8580
4486edd1 8581 /* update overload indicator if we are at root domain */
2802bf3c
MR
8582 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8583
8584 /* Update over-utilization (tipping point, U >= 0) indicator */
8585 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8586 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8587 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8588 struct root_domain *rd = env->dst_rq->rd;
8589
8590 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8591 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8592 }
532cb4c4
MN
8593}
8594
1e3c88bd
PZ
8595/**
8596 * calculate_imbalance - Calculate the amount of imbalance present within the
8597 * groups of a given sched_domain during load balance.
bd939f45 8598 * @env: load balance environment
1e3c88bd 8599 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8600 */
bd939f45 8601static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8602{
56cf515b
JK
8603 struct sg_lb_stats *local, *busiest;
8604
8605 local = &sds->local_stat;
56cf515b 8606 busiest = &sds->busiest_stat;
dd5feea1 8607
0b0695f2
VG
8608 if (busiest->group_type == group_misfit_task) {
8609 /* Set imbalance to allow misfit tasks to be balanced. */
8610 env->migration_type = migrate_misfit;
c63be7be 8611 env->imbalance = 1;
0b0695f2
VG
8612 return;
8613 }
8614
8615 if (busiest->group_type == group_asym_packing) {
8616 /*
8617 * In case of asym capacity, we will try to migrate all load to
8618 * the preferred CPU.
8619 */
8620 env->migration_type = migrate_task;
8621 env->imbalance = busiest->sum_h_nr_running;
8622 return;
8623 }
8624
8625 if (busiest->group_type == group_imbalanced) {
8626 /*
8627 * In the group_imb case we cannot rely on group-wide averages
8628 * to ensure CPU-load equilibrium, try to move any task to fix
8629 * the imbalance. The next load balance will take care of
8630 * balancing back the system.
8631 */
8632 env->migration_type = migrate_task;
8633 env->imbalance = 1;
490ba971
VG
8634 return;
8635 }
8636
1e3c88bd 8637 /*
0b0695f2 8638 * Try to use spare capacity of local group without overloading it or
a9723389
VG
8639 * emptying busiest.
8640 * XXX Spreading tasks across NUMA nodes is not always the best policy
8641 * and special care should be taken for SD_NUMA domain level before
8642 * spreading the tasks. For now, load_balance() fully relies on
8643 * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
1e3c88bd 8644 */
0b0695f2
VG
8645 if (local->group_type == group_has_spare) {
8646 if (busiest->group_type > group_fully_busy) {
8647 /*
8648 * If busiest is overloaded, try to fill spare
8649 * capacity. This might end up creating spare capacity
8650 * in busiest or busiest still being overloaded but
8651 * there is no simple way to directly compute the
8652 * amount of load to migrate in order to balance the
8653 * system.
8654 */
8655 env->migration_type = migrate_util;
8656 env->imbalance = max(local->group_capacity, local->group_util) -
8657 local->group_util;
8658
8659 /*
8660 * In some cases, the group's utilization is max or even
8661 * higher than capacity because of migrations but the
8662 * local CPU is (newly) idle. There is at least one
8663 * waiting task in this overloaded busiest group. Let's
8664 * try to pull it.
8665 */
8666 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8667 env->migration_type = migrate_task;
8668 env->imbalance = 1;
8669 }
8670
8671 return;
8672 }
8673
8674 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 8675 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
8676 /*
8677 * When prefer sibling, evenly spread running tasks on
8678 * groups.
8679 */
8680 env->migration_type = migrate_task;
5e23e474 8681 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2
VG
8682 env->imbalance = nr_diff >> 1;
8683 return;
8684 }
8685
8686 /*
8687 * If there is no overload, we just want to even the number of
8688 * idle cpus.
8689 */
8690 env->migration_type = migrate_task;
8691 env->imbalance = max_t(long, 0, (local->idle_cpus -
8692 busiest->idle_cpus) >> 1);
fcf0553d 8693 return;
1e3c88bd
PZ
8694 }
8695
9a5d9ba6 8696 /*
0b0695f2
VG
8697 * Local is fully busy but has to take more load to relieve the
8698 * busiest group
9a5d9ba6 8699 */
0b0695f2
VG
8700 if (local->group_type < group_overloaded) {
8701 /*
8702 * Local will become overloaded so the avg_load metrics are
8703 * finally needed.
8704 */
8705
8706 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
8707 local->group_capacity;
8708
8709 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
8710 sds->total_capacity;
dd5feea1
SS
8711 }
8712
8713 /*
0b0695f2
VG
8714 * Both group are or will become overloaded and we're trying to get all
8715 * the CPUs to the average_load, so we don't want to push ourselves
8716 * above the average load, nor do we wish to reduce the max loaded CPU
8717 * below the average load. At the same time, we also don't want to
8718 * reduce the group load below the group capacity. Thus we look for
8719 * the minimum possible imbalance.
dd5feea1 8720 */
0b0695f2 8721 env->migration_type = migrate_load;
56cf515b 8722 env->imbalance = min(
0b0695f2 8723 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 8724 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8725 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8726}
fab47622 8727
1e3c88bd
PZ
8728/******* find_busiest_group() helpers end here *********************/
8729
0b0695f2
VG
8730/*
8731 * Decision matrix according to the local and busiest group type:
8732 *
8733 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8734 * has_spare nr_idle balanced N/A N/A balanced balanced
8735 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
8736 * misfit_task force N/A N/A N/A force force
8737 * asym_packing force force N/A N/A force force
8738 * imbalanced force force N/A N/A force force
8739 * overloaded force force N/A N/A force avg_load
8740 *
8741 * N/A : Not Applicable because already filtered while updating
8742 * statistics.
8743 * balanced : The system is balanced for these 2 groups.
8744 * force : Calculate the imbalance as load migration is probably needed.
8745 * avg_load : Only if imbalance is significant enough.
8746 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
8747 * different in groups.
8748 */
8749
1e3c88bd
PZ
8750/**
8751 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8752 * if there is an imbalance.
1e3c88bd 8753 *
a3df0679 8754 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8755 * to restore balance.
8756 *
cd96891d 8757 * @env: The load balancing environment.
1e3c88bd 8758 *
e69f6186 8759 * Return: - The busiest group if imbalance exists.
1e3c88bd 8760 */
56cf515b 8761static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8762{
56cf515b 8763 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8764 struct sd_lb_stats sds;
8765
147c5fc2 8766 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8767
8768 /*
b0fb1eb4 8769 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
8770 * this level.
8771 */
23f0d209 8772 update_sd_lb_stats(env, &sds);
2802bf3c 8773
f8a696f2 8774 if (sched_energy_enabled()) {
2802bf3c
MR
8775 struct root_domain *rd = env->dst_rq->rd;
8776
8777 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8778 goto out_balanced;
8779 }
8780
56cf515b
JK
8781 local = &sds.local_stat;
8782 busiest = &sds.busiest_stat;
1e3c88bd 8783
cc57aa8f 8784 /* There is no busy sibling group to pull tasks from */
0b0695f2 8785 if (!sds.busiest)
1e3c88bd
PZ
8786 goto out_balanced;
8787
0b0695f2
VG
8788 /* Misfit tasks should be dealt with regardless of the avg load */
8789 if (busiest->group_type == group_misfit_task)
8790 goto force_balance;
8791
8792 /* ASYM feature bypasses nice load balance check */
8793 if (busiest->group_type == group_asym_packing)
8794 goto force_balance;
b0432d8f 8795
866ab43e
PZ
8796 /*
8797 * If the busiest group is imbalanced the below checks don't
30ce5dab 8798 * work because they assume all things are equal, which typically
3bd37062 8799 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8800 */
caeb178c 8801 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8802 goto force_balance;
8803
cc57aa8f 8804 /*
9c58c79a 8805 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8806 * don't try and pull any tasks.
8807 */
0b0695f2 8808 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
8809 goto out_balanced;
8810
cc57aa8f 8811 /*
0b0695f2
VG
8812 * When groups are overloaded, use the avg_load to ensure fairness
8813 * between tasks.
cc57aa8f 8814 */
0b0695f2
VG
8815 if (local->group_type == group_overloaded) {
8816 /*
8817 * If the local group is more loaded than the selected
8818 * busiest group don't try to pull any tasks.
8819 */
8820 if (local->avg_load >= busiest->avg_load)
8821 goto out_balanced;
8822
8823 /* XXX broken for overlapping NUMA groups */
8824 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
8825 sds.total_capacity;
1e3c88bd 8826
aae6d3dd 8827 /*
0b0695f2
VG
8828 * Don't pull any tasks if this group is already above the
8829 * domain average load.
aae6d3dd 8830 */
0b0695f2 8831 if (local->avg_load >= sds.avg_load)
aae6d3dd 8832 goto out_balanced;
0b0695f2 8833
c186fafe 8834 /*
0b0695f2
VG
8835 * If the busiest group is more loaded, use imbalance_pct to be
8836 * conservative.
c186fafe 8837 */
56cf515b
JK
8838 if (100 * busiest->avg_load <=
8839 env->sd->imbalance_pct * local->avg_load)
c186fafe 8840 goto out_balanced;
aae6d3dd 8841 }
1e3c88bd 8842
0b0695f2
VG
8843 /* Try to move all excess tasks to child's sibling domain */
8844 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 8845 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
8846 goto force_balance;
8847
2ab4092f
VG
8848 if (busiest->group_type != group_overloaded) {
8849 if (env->idle == CPU_NOT_IDLE)
8850 /*
8851 * If the busiest group is not overloaded (and as a
8852 * result the local one too) but this CPU is already
8853 * busy, let another idle CPU try to pull task.
8854 */
8855 goto out_balanced;
8856
8857 if (busiest->group_weight > 1 &&
8858 local->idle_cpus <= (busiest->idle_cpus + 1))
8859 /*
8860 * If the busiest group is not overloaded
8861 * and there is no imbalance between this and busiest
8862 * group wrt idle CPUs, it is balanced. The imbalance
8863 * becomes significant if the diff is greater than 1
8864 * otherwise we might end up to just move the imbalance
8865 * on another group. Of course this applies only if
8866 * there is more than 1 CPU per group.
8867 */
8868 goto out_balanced;
8869
8870 if (busiest->sum_h_nr_running == 1)
8871 /*
8872 * busiest doesn't have any tasks waiting to run
8873 */
8874 goto out_balanced;
8875 }
0b0695f2 8876
fab47622 8877force_balance:
1e3c88bd 8878 /* Looks like there is an imbalance. Compute it */
bd939f45 8879 calculate_imbalance(env, &sds);
bb3485c8 8880 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8881
8882out_balanced:
bd939f45 8883 env->imbalance = 0;
1e3c88bd
PZ
8884 return NULL;
8885}
8886
8887/*
97fb7a0a 8888 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8889 */
bd939f45 8890static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8891 struct sched_group *group)
1e3c88bd
PZ
8892{
8893 struct rq *busiest = NULL, *rq;
0b0695f2
VG
8894 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
8895 unsigned int busiest_nr = 0;
1e3c88bd
PZ
8896 int i;
8897
ae4df9d6 8898 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
8899 unsigned long capacity, load, util;
8900 unsigned int nr_running;
0ec8aa00
PZ
8901 enum fbq_type rt;
8902
8903 rq = cpu_rq(i);
8904 rt = fbq_classify_rq(rq);
1e3c88bd 8905
0ec8aa00
PZ
8906 /*
8907 * We classify groups/runqueues into three groups:
8908 * - regular: there are !numa tasks
8909 * - remote: there are numa tasks that run on the 'wrong' node
8910 * - all: there is no distinction
8911 *
8912 * In order to avoid migrating ideally placed numa tasks,
8913 * ignore those when there's better options.
8914 *
8915 * If we ignore the actual busiest queue to migrate another
8916 * task, the next balance pass can still reduce the busiest
8917 * queue by moving tasks around inside the node.
8918 *
8919 * If we cannot move enough load due to this classification
8920 * the next pass will adjust the group classification and
8921 * allow migration of more tasks.
8922 *
8923 * Both cases only affect the total convergence complexity.
8924 */
8925 if (rt > env->fbq_type)
8926 continue;
8927
ced549fa 8928 capacity = capacity_of(i);
0b0695f2 8929 nr_running = rq->cfs.h_nr_running;
9d5efe05 8930
4ad3831a
CR
8931 /*
8932 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8933 * eventually lead to active_balancing high->low capacity.
8934 * Higher per-CPU capacity is considered better than balancing
8935 * average load.
8936 */
8937 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8938 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 8939 nr_running == 1)
4ad3831a
CR
8940 continue;
8941
0b0695f2
VG
8942 switch (env->migration_type) {
8943 case migrate_load:
8944 /*
b0fb1eb4
VG
8945 * When comparing with load imbalance, use cpu_load()
8946 * which is not scaled with the CPU capacity.
0b0695f2 8947 */
b0fb1eb4 8948 load = cpu_load(rq);
1e3c88bd 8949
0b0695f2
VG
8950 if (nr_running == 1 && load > env->imbalance &&
8951 !check_cpu_capacity(rq, env->sd))
8952 break;
ea67821b 8953
0b0695f2
VG
8954 /*
8955 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
8956 * consider the cpu_load() scaled with the CPU
8957 * capacity, so that the load can be moved away
8958 * from the CPU that is potentially running at a
8959 * lower capacity.
0b0695f2
VG
8960 *
8961 * Thus we're looking for max(load_i / capacity_i),
8962 * crosswise multiplication to rid ourselves of the
8963 * division works out to:
8964 * load_i * capacity_j > load_j * capacity_i;
8965 * where j is our previous maximum.
8966 */
8967 if (load * busiest_capacity > busiest_load * capacity) {
8968 busiest_load = load;
8969 busiest_capacity = capacity;
8970 busiest = rq;
8971 }
8972 break;
8973
8974 case migrate_util:
8975 util = cpu_util(cpu_of(rq));
8976
8977 if (busiest_util < util) {
8978 busiest_util = util;
8979 busiest = rq;
8980 }
8981 break;
8982
8983 case migrate_task:
8984 if (busiest_nr < nr_running) {
8985 busiest_nr = nr_running;
8986 busiest = rq;
8987 }
8988 break;
8989
8990 case migrate_misfit:
8991 /*
8992 * For ASYM_CPUCAPACITY domains with misfit tasks we
8993 * simply seek the "biggest" misfit task.
8994 */
8995 if (rq->misfit_task_load > busiest_load) {
8996 busiest_load = rq->misfit_task_load;
8997 busiest = rq;
8998 }
8999
9000 break;
1e3c88bd 9001
1e3c88bd
PZ
9002 }
9003 }
9004
9005 return busiest;
9006}
9007
9008/*
9009 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9010 * so long as it is large enough.
9011 */
9012#define MAX_PINNED_INTERVAL 512
9013
46a745d9
VG
9014static inline bool
9015asym_active_balance(struct lb_env *env)
1af3ed3d 9016{
46a745d9
VG
9017 /*
9018 * ASYM_PACKING needs to force migrate tasks from busy but
9019 * lower priority CPUs in order to pack all tasks in the
9020 * highest priority CPUs.
9021 */
9022 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9023 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9024}
bd939f45 9025
46a745d9
VG
9026static inline bool
9027voluntary_active_balance(struct lb_env *env)
9028{
9029 struct sched_domain *sd = env->sd;
532cb4c4 9030
46a745d9
VG
9031 if (asym_active_balance(env))
9032 return 1;
1af3ed3d 9033
1aaf90a4
VG
9034 /*
9035 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9036 * It's worth migrating the task if the src_cpu's capacity is reduced
9037 * because of other sched_class or IRQs if more capacity stays
9038 * available on dst_cpu.
9039 */
9040 if ((env->idle != CPU_NOT_IDLE) &&
9041 (env->src_rq->cfs.h_nr_running == 1)) {
9042 if ((check_cpu_capacity(env->src_rq, sd)) &&
9043 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9044 return 1;
9045 }
9046
0b0695f2 9047 if (env->migration_type == migrate_misfit)
cad68e55
MR
9048 return 1;
9049
46a745d9
VG
9050 return 0;
9051}
9052
9053static int need_active_balance(struct lb_env *env)
9054{
9055 struct sched_domain *sd = env->sd;
9056
9057 if (voluntary_active_balance(env))
9058 return 1;
9059
1af3ed3d
PZ
9060 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9061}
9062
969c7921
TH
9063static int active_load_balance_cpu_stop(void *data);
9064
23f0d209
JK
9065static int should_we_balance(struct lb_env *env)
9066{
9067 struct sched_group *sg = env->sd->groups;
23f0d209
JK
9068 int cpu, balance_cpu = -1;
9069
024c9d2f
PZ
9070 /*
9071 * Ensure the balancing environment is consistent; can happen
9072 * when the softirq triggers 'during' hotplug.
9073 */
9074 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9075 return 0;
9076
23f0d209 9077 /*
97fb7a0a 9078 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9079 * to do the newly idle load balance.
9080 */
9081 if (env->idle == CPU_NEWLY_IDLE)
9082 return 1;
9083
97fb7a0a 9084 /* Try to find first idle CPU */
e5c14b1f 9085 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9086 if (!idle_cpu(cpu))
23f0d209
JK
9087 continue;
9088
9089 balance_cpu = cpu;
9090 break;
9091 }
9092
9093 if (balance_cpu == -1)
9094 balance_cpu = group_balance_cpu(sg);
9095
9096 /*
97fb7a0a 9097 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
9098 * is eligible for doing load balancing at this and above domains.
9099 */
b0cff9d8 9100 return balance_cpu == env->dst_cpu;
23f0d209
JK
9101}
9102
1e3c88bd
PZ
9103/*
9104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9105 * tasks if there is an imbalance.
9106 */
9107static int load_balance(int this_cpu, struct rq *this_rq,
9108 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9109 int *continue_balancing)
1e3c88bd 9110{
88b8dac0 9111 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9112 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9113 struct sched_group *group;
1e3c88bd 9114 struct rq *busiest;
8a8c69c3 9115 struct rq_flags rf;
4ba29684 9116 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9117
8e45cb54
PZ
9118 struct lb_env env = {
9119 .sd = sd,
ddcdf6e7
PZ
9120 .dst_cpu = this_cpu,
9121 .dst_rq = this_rq,
ae4df9d6 9122 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9123 .idle = idle,
eb95308e 9124 .loop_break = sched_nr_migrate_break,
b9403130 9125 .cpus = cpus,
0ec8aa00 9126 .fbq_type = all,
163122b7 9127 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9128 };
9129
65a4433a 9130 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9131
ae92882e 9132 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9133
9134redo:
23f0d209
JK
9135 if (!should_we_balance(&env)) {
9136 *continue_balancing = 0;
1e3c88bd 9137 goto out_balanced;
23f0d209 9138 }
1e3c88bd 9139
23f0d209 9140 group = find_busiest_group(&env);
1e3c88bd 9141 if (!group) {
ae92882e 9142 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9143 goto out_balanced;
9144 }
9145
b9403130 9146 busiest = find_busiest_queue(&env, group);
1e3c88bd 9147 if (!busiest) {
ae92882e 9148 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9149 goto out_balanced;
9150 }
9151
78feefc5 9152 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9153
ae92882e 9154 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9155
1aaf90a4
VG
9156 env.src_cpu = busiest->cpu;
9157 env.src_rq = busiest;
9158
1e3c88bd
PZ
9159 ld_moved = 0;
9160 if (busiest->nr_running > 1) {
9161 /*
9162 * Attempt to move tasks. If find_busiest_group has found
9163 * an imbalance but busiest->nr_running <= 1, the group is
9164 * still unbalanced. ld_moved simply stays zero, so it is
9165 * correctly treated as an imbalance.
9166 */
8e45cb54 9167 env.flags |= LBF_ALL_PINNED;
c82513e5 9168 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9169
5d6523eb 9170more_balance:
8a8c69c3 9171 rq_lock_irqsave(busiest, &rf);
3bed5e21 9172 update_rq_clock(busiest);
88b8dac0
SV
9173
9174 /*
9175 * cur_ld_moved - load moved in current iteration
9176 * ld_moved - cumulative load moved across iterations
9177 */
163122b7 9178 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9179
9180 /*
163122b7
KT
9181 * We've detached some tasks from busiest_rq. Every
9182 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9183 * unlock busiest->lock, and we are able to be sure
9184 * that nobody can manipulate the tasks in parallel.
9185 * See task_rq_lock() family for the details.
1e3c88bd 9186 */
163122b7 9187
8a8c69c3 9188 rq_unlock(busiest, &rf);
163122b7
KT
9189
9190 if (cur_ld_moved) {
9191 attach_tasks(&env);
9192 ld_moved += cur_ld_moved;
9193 }
9194
8a8c69c3 9195 local_irq_restore(rf.flags);
88b8dac0 9196
f1cd0858
JK
9197 if (env.flags & LBF_NEED_BREAK) {
9198 env.flags &= ~LBF_NEED_BREAK;
9199 goto more_balance;
9200 }
9201
88b8dac0
SV
9202 /*
9203 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9204 * us and move them to an alternate dst_cpu in our sched_group
9205 * where they can run. The upper limit on how many times we
97fb7a0a 9206 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9207 * sched_group.
9208 *
9209 * This changes load balance semantics a bit on who can move
9210 * load to a given_cpu. In addition to the given_cpu itself
9211 * (or a ilb_cpu acting on its behalf where given_cpu is
9212 * nohz-idle), we now have balance_cpu in a position to move
9213 * load to given_cpu. In rare situations, this may cause
9214 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9215 * _independently_ and at _same_ time to move some load to
9216 * given_cpu) causing exceess load to be moved to given_cpu.
9217 * This however should not happen so much in practice and
9218 * moreover subsequent load balance cycles should correct the
9219 * excess load moved.
9220 */
6263322c 9221 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9222
97fb7a0a 9223 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9224 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9225
78feefc5 9226 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9227 env.dst_cpu = env.new_dst_cpu;
6263322c 9228 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9229 env.loop = 0;
9230 env.loop_break = sched_nr_migrate_break;
e02e60c1 9231
88b8dac0
SV
9232 /*
9233 * Go back to "more_balance" rather than "redo" since we
9234 * need to continue with same src_cpu.
9235 */
9236 goto more_balance;
9237 }
1e3c88bd 9238
6263322c
PZ
9239 /*
9240 * We failed to reach balance because of affinity.
9241 */
9242 if (sd_parent) {
63b2ca30 9243 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9244
afdeee05 9245 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9246 *group_imbalance = 1;
6263322c
PZ
9247 }
9248
1e3c88bd 9249 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9250 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9251 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9252 /*
9253 * Attempting to continue load balancing at the current
9254 * sched_domain level only makes sense if there are
9255 * active CPUs remaining as possible busiest CPUs to
9256 * pull load from which are not contained within the
9257 * destination group that is receiving any migrated
9258 * load.
9259 */
9260 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9261 env.loop = 0;
9262 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9263 goto redo;
bbf18b19 9264 }
afdeee05 9265 goto out_all_pinned;
1e3c88bd
PZ
9266 }
9267 }
9268
9269 if (!ld_moved) {
ae92882e 9270 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9271 /*
9272 * Increment the failure counter only on periodic balance.
9273 * We do not want newidle balance, which can be very
9274 * frequent, pollute the failure counter causing
9275 * excessive cache_hot migrations and active balances.
9276 */
9277 if (idle != CPU_NEWLY_IDLE)
9278 sd->nr_balance_failed++;
1e3c88bd 9279
bd939f45 9280 if (need_active_balance(&env)) {
8a8c69c3
PZ
9281 unsigned long flags;
9282
1e3c88bd
PZ
9283 raw_spin_lock_irqsave(&busiest->lock, flags);
9284
97fb7a0a
IM
9285 /*
9286 * Don't kick the active_load_balance_cpu_stop,
9287 * if the curr task on busiest CPU can't be
9288 * moved to this_cpu:
1e3c88bd 9289 */
3bd37062 9290 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9291 raw_spin_unlock_irqrestore(&busiest->lock,
9292 flags);
8e45cb54 9293 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9294 goto out_one_pinned;
9295 }
9296
969c7921
TH
9297 /*
9298 * ->active_balance synchronizes accesses to
9299 * ->active_balance_work. Once set, it's cleared
9300 * only after active load balance is finished.
9301 */
1e3c88bd
PZ
9302 if (!busiest->active_balance) {
9303 busiest->active_balance = 1;
9304 busiest->push_cpu = this_cpu;
9305 active_balance = 1;
9306 }
9307 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9308
bd939f45 9309 if (active_balance) {
969c7921
TH
9310 stop_one_cpu_nowait(cpu_of(busiest),
9311 active_load_balance_cpu_stop, busiest,
9312 &busiest->active_balance_work);
bd939f45 9313 }
1e3c88bd 9314
d02c0711 9315 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9316 sd->nr_balance_failed = sd->cache_nice_tries+1;
9317 }
9318 } else
9319 sd->nr_balance_failed = 0;
9320
46a745d9 9321 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9322 /* We were unbalanced, so reset the balancing interval */
9323 sd->balance_interval = sd->min_interval;
9324 } else {
9325 /*
9326 * If we've begun active balancing, start to back off. This
9327 * case may not be covered by the all_pinned logic if there
9328 * is only 1 task on the busy runqueue (because we don't call
163122b7 9329 * detach_tasks).
1e3c88bd
PZ
9330 */
9331 if (sd->balance_interval < sd->max_interval)
9332 sd->balance_interval *= 2;
9333 }
9334
1e3c88bd
PZ
9335 goto out;
9336
9337out_balanced:
afdeee05
VG
9338 /*
9339 * We reach balance although we may have faced some affinity
f6cad8df
VG
9340 * constraints. Clear the imbalance flag only if other tasks got
9341 * a chance to move and fix the imbalance.
afdeee05 9342 */
f6cad8df 9343 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9344 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9345
9346 if (*group_imbalance)
9347 *group_imbalance = 0;
9348 }
9349
9350out_all_pinned:
9351 /*
9352 * We reach balance because all tasks are pinned at this level so
9353 * we can't migrate them. Let the imbalance flag set so parent level
9354 * can try to migrate them.
9355 */
ae92882e 9356 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9357
9358 sd->nr_balance_failed = 0;
9359
9360out_one_pinned:
3f130a37
VS
9361 ld_moved = 0;
9362
9363 /*
5ba553ef
PZ
9364 * newidle_balance() disregards balance intervals, so we could
9365 * repeatedly reach this code, which would lead to balance_interval
9366 * skyrocketting in a short amount of time. Skip the balance_interval
9367 * increase logic to avoid that.
3f130a37
VS
9368 */
9369 if (env.idle == CPU_NEWLY_IDLE)
9370 goto out;
9371
1e3c88bd 9372 /* tune up the balancing interval */
47b7aee1
VS
9373 if ((env.flags & LBF_ALL_PINNED &&
9374 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9375 sd->balance_interval < sd->max_interval)
1e3c88bd 9376 sd->balance_interval *= 2;
1e3c88bd 9377out:
1e3c88bd
PZ
9378 return ld_moved;
9379}
9380
52a08ef1
JL
9381static inline unsigned long
9382get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9383{
9384 unsigned long interval = sd->balance_interval;
9385
9386 if (cpu_busy)
9387 interval *= sd->busy_factor;
9388
9389 /* scale ms to jiffies */
9390 interval = msecs_to_jiffies(interval);
9391 interval = clamp(interval, 1UL, max_load_balance_interval);
9392
9393 return interval;
9394}
9395
9396static inline void
31851a98 9397update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9398{
9399 unsigned long interval, next;
9400
31851a98
LY
9401 /* used by idle balance, so cpu_busy = 0 */
9402 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9403 next = sd->last_balance + interval;
9404
9405 if (time_after(*next_balance, next))
9406 *next_balance = next;
9407}
9408
1e3c88bd 9409/*
97fb7a0a 9410 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9411 * running tasks off the busiest CPU onto idle CPUs. It requires at
9412 * least 1 task to be running on each physical CPU where possible, and
9413 * avoids physical / logical imbalances.
1e3c88bd 9414 */
969c7921 9415static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9416{
969c7921
TH
9417 struct rq *busiest_rq = data;
9418 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9419 int target_cpu = busiest_rq->push_cpu;
969c7921 9420 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9421 struct sched_domain *sd;
e5673f28 9422 struct task_struct *p = NULL;
8a8c69c3 9423 struct rq_flags rf;
969c7921 9424
8a8c69c3 9425 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9426 /*
9427 * Between queueing the stop-work and running it is a hole in which
9428 * CPUs can become inactive. We should not move tasks from or to
9429 * inactive CPUs.
9430 */
9431 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9432 goto out_unlock;
969c7921 9433
97fb7a0a 9434 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9435 if (unlikely(busiest_cpu != smp_processor_id() ||
9436 !busiest_rq->active_balance))
9437 goto out_unlock;
1e3c88bd
PZ
9438
9439 /* Is there any task to move? */
9440 if (busiest_rq->nr_running <= 1)
969c7921 9441 goto out_unlock;
1e3c88bd
PZ
9442
9443 /*
9444 * This condition is "impossible", if it occurs
9445 * we need to fix it. Originally reported by
97fb7a0a 9446 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9447 */
9448 BUG_ON(busiest_rq == target_rq);
9449
1e3c88bd 9450 /* Search for an sd spanning us and the target CPU. */
dce840a0 9451 rcu_read_lock();
1e3c88bd
PZ
9452 for_each_domain(target_cpu, sd) {
9453 if ((sd->flags & SD_LOAD_BALANCE) &&
9454 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9455 break;
9456 }
9457
9458 if (likely(sd)) {
8e45cb54
PZ
9459 struct lb_env env = {
9460 .sd = sd,
ddcdf6e7
PZ
9461 .dst_cpu = target_cpu,
9462 .dst_rq = target_rq,
9463 .src_cpu = busiest_rq->cpu,
9464 .src_rq = busiest_rq,
8e45cb54 9465 .idle = CPU_IDLE,
65a4433a
JH
9466 /*
9467 * can_migrate_task() doesn't need to compute new_dst_cpu
9468 * for active balancing. Since we have CPU_IDLE, but no
9469 * @dst_grpmask we need to make that test go away with lying
9470 * about DST_PINNED.
9471 */
9472 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9473 };
9474
ae92882e 9475 schedstat_inc(sd->alb_count);
3bed5e21 9476 update_rq_clock(busiest_rq);
1e3c88bd 9477
e5673f28 9478 p = detach_one_task(&env);
d02c0711 9479 if (p) {
ae92882e 9480 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9481 /* Active balancing done, reset the failure counter. */
9482 sd->nr_balance_failed = 0;
9483 } else {
ae92882e 9484 schedstat_inc(sd->alb_failed);
d02c0711 9485 }
1e3c88bd 9486 }
dce840a0 9487 rcu_read_unlock();
969c7921
TH
9488out_unlock:
9489 busiest_rq->active_balance = 0;
8a8c69c3 9490 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9491
9492 if (p)
9493 attach_one_task(target_rq, p);
9494
9495 local_irq_enable();
9496
969c7921 9497 return 0;
1e3c88bd
PZ
9498}
9499
af3fe03c
PZ
9500static DEFINE_SPINLOCK(balancing);
9501
9502/*
9503 * Scale the max load_balance interval with the number of CPUs in the system.
9504 * This trades load-balance latency on larger machines for less cross talk.
9505 */
9506void update_max_interval(void)
9507{
9508 max_load_balance_interval = HZ*num_online_cpus()/10;
9509}
9510
9511/*
9512 * It checks each scheduling domain to see if it is due to be balanced,
9513 * and initiates a balancing operation if so.
9514 *
9515 * Balancing parameters are set up in init_sched_domains.
9516 */
9517static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9518{
9519 int continue_balancing = 1;
9520 int cpu = rq->cpu;
9521 unsigned long interval;
9522 struct sched_domain *sd;
9523 /* Earliest time when we have to do rebalance again */
9524 unsigned long next_balance = jiffies + 60*HZ;
9525 int update_next_balance = 0;
9526 int need_serialize, need_decay = 0;
9527 u64 max_cost = 0;
9528
9529 rcu_read_lock();
9530 for_each_domain(cpu, sd) {
9531 /*
9532 * Decay the newidle max times here because this is a regular
9533 * visit to all the domains. Decay ~1% per second.
9534 */
9535 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9536 sd->max_newidle_lb_cost =
9537 (sd->max_newidle_lb_cost * 253) / 256;
9538 sd->next_decay_max_lb_cost = jiffies + HZ;
9539 need_decay = 1;
9540 }
9541 max_cost += sd->max_newidle_lb_cost;
9542
9543 if (!(sd->flags & SD_LOAD_BALANCE))
9544 continue;
9545
9546 /*
9547 * Stop the load balance at this level. There is another
9548 * CPU in our sched group which is doing load balancing more
9549 * actively.
9550 */
9551 if (!continue_balancing) {
9552 if (need_decay)
9553 continue;
9554 break;
9555 }
9556
9557 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9558
9559 need_serialize = sd->flags & SD_SERIALIZE;
9560 if (need_serialize) {
9561 if (!spin_trylock(&balancing))
9562 goto out;
9563 }
9564
9565 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9566 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9567 /*
9568 * The LBF_DST_PINNED logic could have changed
9569 * env->dst_cpu, so we can't know our idle
9570 * state even if we migrated tasks. Update it.
9571 */
9572 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9573 }
9574 sd->last_balance = jiffies;
9575 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9576 }
9577 if (need_serialize)
9578 spin_unlock(&balancing);
9579out:
9580 if (time_after(next_balance, sd->last_balance + interval)) {
9581 next_balance = sd->last_balance + interval;
9582 update_next_balance = 1;
9583 }
9584 }
9585 if (need_decay) {
9586 /*
9587 * Ensure the rq-wide value also decays but keep it at a
9588 * reasonable floor to avoid funnies with rq->avg_idle.
9589 */
9590 rq->max_idle_balance_cost =
9591 max((u64)sysctl_sched_migration_cost, max_cost);
9592 }
9593 rcu_read_unlock();
9594
9595 /*
9596 * next_balance will be updated only when there is a need.
9597 * When the cpu is attached to null domain for ex, it will not be
9598 * updated.
9599 */
9600 if (likely(update_next_balance)) {
9601 rq->next_balance = next_balance;
9602
9603#ifdef CONFIG_NO_HZ_COMMON
9604 /*
9605 * If this CPU has been elected to perform the nohz idle
9606 * balance. Other idle CPUs have already rebalanced with
9607 * nohz_idle_balance() and nohz.next_balance has been
9608 * updated accordingly. This CPU is now running the idle load
9609 * balance for itself and we need to update the
9610 * nohz.next_balance accordingly.
9611 */
9612 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9613 nohz.next_balance = rq->next_balance;
9614#endif
9615 }
9616}
9617
d987fc7f
MG
9618static inline int on_null_domain(struct rq *rq)
9619{
9620 return unlikely(!rcu_dereference_sched(rq->sd));
9621}
9622
3451d024 9623#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9624/*
9625 * idle load balancing details
83cd4fe2
VP
9626 * - When one of the busy CPUs notice that there may be an idle rebalancing
9627 * needed, they will kick the idle load balancer, which then does idle
9628 * load balancing for all the idle CPUs.
9b019acb
NP
9629 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9630 * anywhere yet.
83cd4fe2 9631 */
1e3c88bd 9632
3dd0337d 9633static inline int find_new_ilb(void)
1e3c88bd 9634{
9b019acb 9635 int ilb;
1e3c88bd 9636
9b019acb
NP
9637 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9638 housekeeping_cpumask(HK_FLAG_MISC)) {
9639 if (idle_cpu(ilb))
9640 return ilb;
9641 }
786d6dc7
SS
9642
9643 return nr_cpu_ids;
1e3c88bd 9644}
1e3c88bd 9645
83cd4fe2 9646/*
9b019acb
NP
9647 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9648 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9649 */
a4064fb6 9650static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9651{
9652 int ilb_cpu;
9653
9654 nohz.next_balance++;
9655
3dd0337d 9656 ilb_cpu = find_new_ilb();
83cd4fe2 9657
0b005cf5
SS
9658 if (ilb_cpu >= nr_cpu_ids)
9659 return;
83cd4fe2 9660
a4064fb6 9661 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9662 if (flags & NOHZ_KICK_MASK)
1c792db7 9663 return;
4550487a 9664
1c792db7
SS
9665 /*
9666 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9667 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9668 * is idle. And the softirq performing nohz idle load balance
9669 * will be run before returning from the IPI.
9670 */
9671 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9672}
9673
9674/*
9f132742
VS
9675 * Current decision point for kicking the idle load balancer in the presence
9676 * of idle CPUs in the system.
4550487a
PZ
9677 */
9678static void nohz_balancer_kick(struct rq *rq)
9679{
9680 unsigned long now = jiffies;
9681 struct sched_domain_shared *sds;
9682 struct sched_domain *sd;
9683 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9684 unsigned int flags = 0;
4550487a
PZ
9685
9686 if (unlikely(rq->idle_balance))
9687 return;
9688
9689 /*
9690 * We may be recently in ticked or tickless idle mode. At the first
9691 * busy tick after returning from idle, we will update the busy stats.
9692 */
00357f5e 9693 nohz_balance_exit_idle(rq);
4550487a
PZ
9694
9695 /*
9696 * None are in tickless mode and hence no need for NOHZ idle load
9697 * balancing.
9698 */
9699 if (likely(!atomic_read(&nohz.nr_cpus)))
9700 return;
9701
f643ea22
VG
9702 if (READ_ONCE(nohz.has_blocked) &&
9703 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9704 flags = NOHZ_STATS_KICK;
9705
4550487a 9706 if (time_before(now, nohz.next_balance))
a4064fb6 9707 goto out;
4550487a 9708
a0fe2cf0 9709 if (rq->nr_running >= 2) {
a4064fb6 9710 flags = NOHZ_KICK_MASK;
4550487a
PZ
9711 goto out;
9712 }
9713
9714 rcu_read_lock();
4550487a
PZ
9715
9716 sd = rcu_dereference(rq->sd);
9717 if (sd) {
e25a7a94
VS
9718 /*
9719 * If there's a CFS task and the current CPU has reduced
9720 * capacity; kick the ILB to see if there's a better CPU to run
9721 * on.
9722 */
9723 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9724 flags = NOHZ_KICK_MASK;
4550487a
PZ
9725 goto unlock;
9726 }
9727 }
9728
011b27bb 9729 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9730 if (sd) {
b9a7b883
VS
9731 /*
9732 * When ASYM_PACKING; see if there's a more preferred CPU
9733 * currently idle; in which case, kick the ILB to move tasks
9734 * around.
9735 */
7edab78d 9736 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9737 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9738 flags = NOHZ_KICK_MASK;
4550487a
PZ
9739 goto unlock;
9740 }
9741 }
9742 }
b9a7b883 9743
a0fe2cf0
VS
9744 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9745 if (sd) {
9746 /*
9747 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9748 * to run the misfit task on.
9749 */
9750 if (check_misfit_status(rq, sd)) {
9751 flags = NOHZ_KICK_MASK;
9752 goto unlock;
9753 }
b9a7b883
VS
9754
9755 /*
9756 * For asymmetric systems, we do not want to nicely balance
9757 * cache use, instead we want to embrace asymmetry and only
9758 * ensure tasks have enough CPU capacity.
9759 *
9760 * Skip the LLC logic because it's not relevant in that case.
9761 */
9762 goto unlock;
a0fe2cf0
VS
9763 }
9764
b9a7b883
VS
9765 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9766 if (sds) {
e25a7a94 9767 /*
b9a7b883
VS
9768 * If there is an imbalance between LLC domains (IOW we could
9769 * increase the overall cache use), we need some less-loaded LLC
9770 * domain to pull some load. Likewise, we may need to spread
9771 * load within the current LLC domain (e.g. packed SMT cores but
9772 * other CPUs are idle). We can't really know from here how busy
9773 * the others are - so just get a nohz balance going if it looks
9774 * like this LLC domain has tasks we could move.
e25a7a94 9775 */
b9a7b883
VS
9776 nr_busy = atomic_read(&sds->nr_busy_cpus);
9777 if (nr_busy > 1) {
9778 flags = NOHZ_KICK_MASK;
9779 goto unlock;
4550487a
PZ
9780 }
9781 }
9782unlock:
9783 rcu_read_unlock();
9784out:
a4064fb6
PZ
9785 if (flags)
9786 kick_ilb(flags);
83cd4fe2
VP
9787}
9788
00357f5e 9789static void set_cpu_sd_state_busy(int cpu)
71325960 9790{
00357f5e 9791 struct sched_domain *sd;
a22e47a4 9792
00357f5e
PZ
9793 rcu_read_lock();
9794 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9795
00357f5e
PZ
9796 if (!sd || !sd->nohz_idle)
9797 goto unlock;
9798 sd->nohz_idle = 0;
9799
9800 atomic_inc(&sd->shared->nr_busy_cpus);
9801unlock:
9802 rcu_read_unlock();
71325960
SS
9803}
9804
00357f5e
PZ
9805void nohz_balance_exit_idle(struct rq *rq)
9806{
9807 SCHED_WARN_ON(rq != this_rq());
9808
9809 if (likely(!rq->nohz_tick_stopped))
9810 return;
9811
9812 rq->nohz_tick_stopped = 0;
9813 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9814 atomic_dec(&nohz.nr_cpus);
9815
9816 set_cpu_sd_state_busy(rq->cpu);
9817}
9818
9819static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9820{
9821 struct sched_domain *sd;
69e1e811 9822
69e1e811 9823 rcu_read_lock();
0e369d75 9824 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9825
9826 if (!sd || sd->nohz_idle)
9827 goto unlock;
9828 sd->nohz_idle = 1;
9829
0e369d75 9830 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9831unlock:
69e1e811
SS
9832 rcu_read_unlock();
9833}
9834
1e3c88bd 9835/*
97fb7a0a 9836 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9837 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9838 */
c1cc017c 9839void nohz_balance_enter_idle(int cpu)
1e3c88bd 9840{
00357f5e
PZ
9841 struct rq *rq = cpu_rq(cpu);
9842
9843 SCHED_WARN_ON(cpu != smp_processor_id());
9844
97fb7a0a 9845 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9846 if (!cpu_active(cpu))
9847 return;
9848
387bc8b5 9849 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9850 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9851 return;
9852
f643ea22
VG
9853 /*
9854 * Can be set safely without rq->lock held
9855 * If a clear happens, it will have evaluated last additions because
9856 * rq->lock is held during the check and the clear
9857 */
9858 rq->has_blocked_load = 1;
9859
9860 /*
9861 * The tick is still stopped but load could have been added in the
9862 * meantime. We set the nohz.has_blocked flag to trig a check of the
9863 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9864 * of nohz.has_blocked can only happen after checking the new load
9865 */
00357f5e 9866 if (rq->nohz_tick_stopped)
f643ea22 9867 goto out;
1e3c88bd 9868
97fb7a0a 9869 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9870 if (on_null_domain(rq))
d987fc7f
MG
9871 return;
9872
00357f5e
PZ
9873 rq->nohz_tick_stopped = 1;
9874
c1cc017c
AS
9875 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9876 atomic_inc(&nohz.nr_cpus);
00357f5e 9877
f643ea22
VG
9878 /*
9879 * Ensures that if nohz_idle_balance() fails to observe our
9880 * @idle_cpus_mask store, it must observe the @has_blocked
9881 * store.
9882 */
9883 smp_mb__after_atomic();
9884
00357f5e 9885 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9886
9887out:
9888 /*
9889 * Each time a cpu enter idle, we assume that it has blocked load and
9890 * enable the periodic update of the load of idle cpus
9891 */
9892 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9893}
1e3c88bd 9894
1e3c88bd 9895/*
31e77c93
VG
9896 * Internal function that runs load balance for all idle cpus. The load balance
9897 * can be a simple update of blocked load or a complete load balance with
9898 * tasks movement depending of flags.
9899 * The function returns false if the loop has stopped before running
9900 * through all idle CPUs.
1e3c88bd 9901 */
31e77c93
VG
9902static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9903 enum cpu_idle_type idle)
83cd4fe2 9904{
c5afb6a8 9905 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9906 unsigned long now = jiffies;
9907 unsigned long next_balance = now + 60*HZ;
f643ea22 9908 bool has_blocked_load = false;
c5afb6a8 9909 int update_next_balance = 0;
b7031a02 9910 int this_cpu = this_rq->cpu;
b7031a02 9911 int balance_cpu;
31e77c93 9912 int ret = false;
b7031a02 9913 struct rq *rq;
83cd4fe2 9914
b7031a02 9915 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9916
f643ea22
VG
9917 /*
9918 * We assume there will be no idle load after this update and clear
9919 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9920 * set the has_blocked flag and trig another update of idle load.
9921 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9922 * setting the flag, we are sure to not clear the state and not
9923 * check the load of an idle cpu.
9924 */
9925 WRITE_ONCE(nohz.has_blocked, 0);
9926
9927 /*
9928 * Ensures that if we miss the CPU, we must see the has_blocked
9929 * store from nohz_balance_enter_idle().
9930 */
9931 smp_mb();
9932
83cd4fe2 9933 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9934 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9935 continue;
9936
9937 /*
97fb7a0a
IM
9938 * If this CPU gets work to do, stop the load balancing
9939 * work being done for other CPUs. Next load
83cd4fe2
VP
9940 * balancing owner will pick it up.
9941 */
f643ea22
VG
9942 if (need_resched()) {
9943 has_blocked_load = true;
9944 goto abort;
9945 }
83cd4fe2 9946
5ed4f1d9
VG
9947 rq = cpu_rq(balance_cpu);
9948
63928384 9949 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9950
ed61bbc6
TC
9951 /*
9952 * If time for next balance is due,
9953 * do the balance.
9954 */
9955 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9956 struct rq_flags rf;
9957
31e77c93 9958 rq_lock_irqsave(rq, &rf);
ed61bbc6 9959 update_rq_clock(rq);
31e77c93 9960 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9961
b7031a02
PZ
9962 if (flags & NOHZ_BALANCE_KICK)
9963 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9964 }
83cd4fe2 9965
c5afb6a8
VG
9966 if (time_after(next_balance, rq->next_balance)) {
9967 next_balance = rq->next_balance;
9968 update_next_balance = 1;
9969 }
83cd4fe2 9970 }
c5afb6a8 9971
31e77c93
VG
9972 /* Newly idle CPU doesn't need an update */
9973 if (idle != CPU_NEWLY_IDLE) {
9974 update_blocked_averages(this_cpu);
9975 has_blocked_load |= this_rq->has_blocked_load;
9976 }
9977
b7031a02
PZ
9978 if (flags & NOHZ_BALANCE_KICK)
9979 rebalance_domains(this_rq, CPU_IDLE);
9980
f643ea22
VG
9981 WRITE_ONCE(nohz.next_blocked,
9982 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9983
31e77c93
VG
9984 /* The full idle balance loop has been done */
9985 ret = true;
9986
f643ea22
VG
9987abort:
9988 /* There is still blocked load, enable periodic update */
9989 if (has_blocked_load)
9990 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9991
c5afb6a8
VG
9992 /*
9993 * next_balance will be updated only when there is a need.
9994 * When the CPU is attached to null domain for ex, it will not be
9995 * updated.
9996 */
9997 if (likely(update_next_balance))
9998 nohz.next_balance = next_balance;
b7031a02 9999
31e77c93
VG
10000 return ret;
10001}
10002
10003/*
10004 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10005 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10006 */
10007static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10008{
10009 int this_cpu = this_rq->cpu;
10010 unsigned int flags;
10011
10012 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10013 return false;
10014
10015 if (idle != CPU_IDLE) {
10016 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10017 return false;
10018 }
10019
80eb8657 10020 /* could be _relaxed() */
31e77c93
VG
10021 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10022 if (!(flags & NOHZ_KICK_MASK))
10023 return false;
10024
10025 _nohz_idle_balance(this_rq, flags, idle);
10026
b7031a02 10027 return true;
83cd4fe2 10028}
31e77c93
VG
10029
10030static void nohz_newidle_balance(struct rq *this_rq)
10031{
10032 int this_cpu = this_rq->cpu;
10033
10034 /*
10035 * This CPU doesn't want to be disturbed by scheduler
10036 * housekeeping
10037 */
10038 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10039 return;
10040
10041 /* Will wake up very soon. No time for doing anything else*/
10042 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10043 return;
10044
10045 /* Don't need to update blocked load of idle CPUs*/
10046 if (!READ_ONCE(nohz.has_blocked) ||
10047 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10048 return;
10049
10050 raw_spin_unlock(&this_rq->lock);
10051 /*
10052 * This CPU is going to be idle and blocked load of idle CPUs
10053 * need to be updated. Run the ilb locally as it is a good
10054 * candidate for ilb instead of waking up another idle CPU.
10055 * Kick an normal ilb if we failed to do the update.
10056 */
10057 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10058 kick_ilb(NOHZ_STATS_KICK);
10059 raw_spin_lock(&this_rq->lock);
10060}
10061
dd707247
PZ
10062#else /* !CONFIG_NO_HZ_COMMON */
10063static inline void nohz_balancer_kick(struct rq *rq) { }
10064
31e77c93 10065static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10066{
10067 return false;
10068}
31e77c93
VG
10069
10070static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10071#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10072
47ea5412
PZ
10073/*
10074 * idle_balance is called by schedule() if this_cpu is about to become
10075 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10076 *
10077 * Returns:
10078 * < 0 - we released the lock and there are !fair tasks present
10079 * 0 - failed, no new tasks
10080 * > 0 - success, new (fair) tasks present
47ea5412 10081 */
5ba553ef 10082int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10083{
10084 unsigned long next_balance = jiffies + HZ;
10085 int this_cpu = this_rq->cpu;
10086 struct sched_domain *sd;
10087 int pulled_task = 0;
10088 u64 curr_cost = 0;
10089
5ba553ef 10090 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10091 /*
10092 * We must set idle_stamp _before_ calling idle_balance(), such that we
10093 * measure the duration of idle_balance() as idle time.
10094 */
10095 this_rq->idle_stamp = rq_clock(this_rq);
10096
10097 /*
10098 * Do not pull tasks towards !active CPUs...
10099 */
10100 if (!cpu_active(this_cpu))
10101 return 0;
10102
10103 /*
10104 * This is OK, because current is on_cpu, which avoids it being picked
10105 * for load-balance and preemption/IRQs are still disabled avoiding
10106 * further scheduler activity on it and we're being very careful to
10107 * re-start the picking loop.
10108 */
10109 rq_unpin_lock(this_rq, rf);
10110
10111 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10112 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10113
47ea5412
PZ
10114 rcu_read_lock();
10115 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10116 if (sd)
10117 update_next_balance(sd, &next_balance);
10118 rcu_read_unlock();
10119
31e77c93
VG
10120 nohz_newidle_balance(this_rq);
10121
47ea5412
PZ
10122 goto out;
10123 }
10124
10125 raw_spin_unlock(&this_rq->lock);
10126
10127 update_blocked_averages(this_cpu);
10128 rcu_read_lock();
10129 for_each_domain(this_cpu, sd) {
10130 int continue_balancing = 1;
10131 u64 t0, domain_cost;
10132
10133 if (!(sd->flags & SD_LOAD_BALANCE))
10134 continue;
10135
10136 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10137 update_next_balance(sd, &next_balance);
10138 break;
10139 }
10140
10141 if (sd->flags & SD_BALANCE_NEWIDLE) {
10142 t0 = sched_clock_cpu(this_cpu);
10143
10144 pulled_task = load_balance(this_cpu, this_rq,
10145 sd, CPU_NEWLY_IDLE,
10146 &continue_balancing);
10147
10148 domain_cost = sched_clock_cpu(this_cpu) - t0;
10149 if (domain_cost > sd->max_newidle_lb_cost)
10150 sd->max_newidle_lb_cost = domain_cost;
10151
10152 curr_cost += domain_cost;
10153 }
10154
10155 update_next_balance(sd, &next_balance);
10156
10157 /*
10158 * Stop searching for tasks to pull if there are
10159 * now runnable tasks on this rq.
10160 */
10161 if (pulled_task || this_rq->nr_running > 0)
10162 break;
10163 }
10164 rcu_read_unlock();
10165
10166 raw_spin_lock(&this_rq->lock);
10167
10168 if (curr_cost > this_rq->max_idle_balance_cost)
10169 this_rq->max_idle_balance_cost = curr_cost;
10170
457be908 10171out:
47ea5412
PZ
10172 /*
10173 * While browsing the domains, we released the rq lock, a task could
10174 * have been enqueued in the meantime. Since we're not going idle,
10175 * pretend we pulled a task.
10176 */
10177 if (this_rq->cfs.h_nr_running && !pulled_task)
10178 pulled_task = 1;
10179
47ea5412
PZ
10180 /* Move the next balance forward */
10181 if (time_after(this_rq->next_balance, next_balance))
10182 this_rq->next_balance = next_balance;
10183
10184 /* Is there a task of a high priority class? */
10185 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10186 pulled_task = -1;
10187
10188 if (pulled_task)
10189 this_rq->idle_stamp = 0;
10190
10191 rq_repin_lock(this_rq, rf);
10192
10193 return pulled_task;
10194}
10195
83cd4fe2
VP
10196/*
10197 * run_rebalance_domains is triggered when needed from the scheduler tick.
10198 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10199 */
0766f788 10200static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10201{
208cb16b 10202 struct rq *this_rq = this_rq();
6eb57e0d 10203 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10204 CPU_IDLE : CPU_NOT_IDLE;
10205
1e3c88bd 10206 /*
97fb7a0a
IM
10207 * If this CPU has a pending nohz_balance_kick, then do the
10208 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10209 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10210 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10211 * load balance only within the local sched_domain hierarchy
10212 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10213 */
b7031a02
PZ
10214 if (nohz_idle_balance(this_rq, idle))
10215 return;
10216
10217 /* normal load balance */
10218 update_blocked_averages(this_rq->cpu);
d4573c3e 10219 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10220}
10221
1e3c88bd
PZ
10222/*
10223 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10224 */
7caff66f 10225void trigger_load_balance(struct rq *rq)
1e3c88bd 10226{
1e3c88bd 10227 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10228 if (unlikely(on_null_domain(rq)))
10229 return;
10230
10231 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10232 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10233
10234 nohz_balancer_kick(rq);
1e3c88bd
PZ
10235}
10236
0bcdcf28
CE
10237static void rq_online_fair(struct rq *rq)
10238{
10239 update_sysctl();
0e59bdae
KT
10240
10241 update_runtime_enabled(rq);
0bcdcf28
CE
10242}
10243
10244static void rq_offline_fair(struct rq *rq)
10245{
10246 update_sysctl();
a4c96ae3
PB
10247
10248 /* Ensure any throttled groups are reachable by pick_next_task */
10249 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10250}
10251
55e12e5e 10252#endif /* CONFIG_SMP */
e1d1484f 10253
bf0f6f24 10254/*
d84b3131
FW
10255 * scheduler tick hitting a task of our scheduling class.
10256 *
10257 * NOTE: This function can be called remotely by the tick offload that
10258 * goes along full dynticks. Therefore no local assumption can be made
10259 * and everything must be accessed through the @rq and @curr passed in
10260 * parameters.
bf0f6f24 10261 */
8f4d37ec 10262static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10263{
10264 struct cfs_rq *cfs_rq;
10265 struct sched_entity *se = &curr->se;
10266
10267 for_each_sched_entity(se) {
10268 cfs_rq = cfs_rq_of(se);
8f4d37ec 10269 entity_tick(cfs_rq, se, queued);
bf0f6f24 10270 }
18bf2805 10271
b52da86e 10272 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10273 task_tick_numa(rq, curr);
3b1baa64
MR
10274
10275 update_misfit_status(curr, rq);
2802bf3c 10276 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10277}
10278
10279/*
cd29fe6f
PZ
10280 * called on fork with the child task as argument from the parent's context
10281 * - child not yet on the tasklist
10282 * - preemption disabled
bf0f6f24 10283 */
cd29fe6f 10284static void task_fork_fair(struct task_struct *p)
bf0f6f24 10285{
4fc420c9
DN
10286 struct cfs_rq *cfs_rq;
10287 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10288 struct rq *rq = this_rq();
8a8c69c3 10289 struct rq_flags rf;
bf0f6f24 10290
8a8c69c3 10291 rq_lock(rq, &rf);
861d034e
PZ
10292 update_rq_clock(rq);
10293
4fc420c9
DN
10294 cfs_rq = task_cfs_rq(current);
10295 curr = cfs_rq->curr;
e210bffd
PZ
10296 if (curr) {
10297 update_curr(cfs_rq);
b5d9d734 10298 se->vruntime = curr->vruntime;
e210bffd 10299 }
aeb73b04 10300 place_entity(cfs_rq, se, 1);
4d78e7b6 10301
cd29fe6f 10302 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10303 /*
edcb60a3
IM
10304 * Upon rescheduling, sched_class::put_prev_task() will place
10305 * 'current' within the tree based on its new key value.
10306 */
4d78e7b6 10307 swap(curr->vruntime, se->vruntime);
8875125e 10308 resched_curr(rq);
4d78e7b6 10309 }
bf0f6f24 10310
88ec22d3 10311 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10312 rq_unlock(rq, &rf);
bf0f6f24
IM
10313}
10314
cb469845
SR
10315/*
10316 * Priority of the task has changed. Check to see if we preempt
10317 * the current task.
10318 */
da7a735e
PZ
10319static void
10320prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10321{
da0c1e65 10322 if (!task_on_rq_queued(p))
da7a735e
PZ
10323 return;
10324
cb469845
SR
10325 /*
10326 * Reschedule if we are currently running on this runqueue and
10327 * our priority decreased, or if we are not currently running on
10328 * this runqueue and our priority is higher than the current's
10329 */
da7a735e 10330 if (rq->curr == p) {
cb469845 10331 if (p->prio > oldprio)
8875125e 10332 resched_curr(rq);
cb469845 10333 } else
15afe09b 10334 check_preempt_curr(rq, p, 0);
cb469845
SR
10335}
10336
daa59407 10337static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10338{
10339 struct sched_entity *se = &p->se;
da7a735e
PZ
10340
10341 /*
daa59407
BP
10342 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10343 * the dequeue_entity(.flags=0) will already have normalized the
10344 * vruntime.
10345 */
10346 if (p->on_rq)
10347 return true;
10348
10349 /*
10350 * When !on_rq, vruntime of the task has usually NOT been normalized.
10351 * But there are some cases where it has already been normalized:
da7a735e 10352 *
daa59407
BP
10353 * - A forked child which is waiting for being woken up by
10354 * wake_up_new_task().
10355 * - A task which has been woken up by try_to_wake_up() and
10356 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10357 */
d0cdb3ce
SM
10358 if (!se->sum_exec_runtime ||
10359 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10360 return true;
10361
10362 return false;
10363}
10364
09a43ace
VG
10365#ifdef CONFIG_FAIR_GROUP_SCHED
10366/*
10367 * Propagate the changes of the sched_entity across the tg tree to make it
10368 * visible to the root
10369 */
10370static void propagate_entity_cfs_rq(struct sched_entity *se)
10371{
10372 struct cfs_rq *cfs_rq;
10373
10374 /* Start to propagate at parent */
10375 se = se->parent;
10376
10377 for_each_sched_entity(se) {
10378 cfs_rq = cfs_rq_of(se);
10379
10380 if (cfs_rq_throttled(cfs_rq))
10381 break;
10382
88c0616e 10383 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10384 }
10385}
10386#else
10387static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10388#endif
10389
df217913 10390static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10391{
daa59407
BP
10392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10393
9d89c257 10394 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10395 update_load_avg(cfs_rq, se, 0);
a05e8c51 10396 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10397 update_tg_load_avg(cfs_rq, false);
09a43ace 10398 propagate_entity_cfs_rq(se);
da7a735e
PZ
10399}
10400
df217913 10401static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10402{
daa59407 10403 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10404
10405#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10406 /*
10407 * Since the real-depth could have been changed (only FAIR
10408 * class maintain depth value), reset depth properly.
10409 */
10410 se->depth = se->parent ? se->parent->depth + 1 : 0;
10411#endif
7855a35a 10412
df217913 10413 /* Synchronize entity with its cfs_rq */
88c0616e 10414 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10415 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10416 update_tg_load_avg(cfs_rq, false);
09a43ace 10417 propagate_entity_cfs_rq(se);
df217913
VG
10418}
10419
10420static void detach_task_cfs_rq(struct task_struct *p)
10421{
10422 struct sched_entity *se = &p->se;
10423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10424
10425 if (!vruntime_normalized(p)) {
10426 /*
10427 * Fix up our vruntime so that the current sleep doesn't
10428 * cause 'unlimited' sleep bonus.
10429 */
10430 place_entity(cfs_rq, se, 0);
10431 se->vruntime -= cfs_rq->min_vruntime;
10432 }
10433
10434 detach_entity_cfs_rq(se);
10435}
10436
10437static void attach_task_cfs_rq(struct task_struct *p)
10438{
10439 struct sched_entity *se = &p->se;
10440 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10441
10442 attach_entity_cfs_rq(se);
daa59407
BP
10443
10444 if (!vruntime_normalized(p))
10445 se->vruntime += cfs_rq->min_vruntime;
10446}
6efdb105 10447
daa59407
BP
10448static void switched_from_fair(struct rq *rq, struct task_struct *p)
10449{
10450 detach_task_cfs_rq(p);
10451}
10452
10453static void switched_to_fair(struct rq *rq, struct task_struct *p)
10454{
10455 attach_task_cfs_rq(p);
7855a35a 10456
daa59407 10457 if (task_on_rq_queued(p)) {
7855a35a 10458 /*
daa59407
BP
10459 * We were most likely switched from sched_rt, so
10460 * kick off the schedule if running, otherwise just see
10461 * if we can still preempt the current task.
7855a35a 10462 */
daa59407
BP
10463 if (rq->curr == p)
10464 resched_curr(rq);
10465 else
10466 check_preempt_curr(rq, p, 0);
7855a35a 10467 }
cb469845
SR
10468}
10469
83b699ed
SV
10470/* Account for a task changing its policy or group.
10471 *
10472 * This routine is mostly called to set cfs_rq->curr field when a task
10473 * migrates between groups/classes.
10474 */
a0e813f2 10475static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10476{
03b7fad1
PZ
10477 struct sched_entity *se = &p->se;
10478
10479#ifdef CONFIG_SMP
10480 if (task_on_rq_queued(p)) {
10481 /*
10482 * Move the next running task to the front of the list, so our
10483 * cfs_tasks list becomes MRU one.
10484 */
10485 list_move(&se->group_node, &rq->cfs_tasks);
10486 }
10487#endif
83b699ed 10488
ec12cb7f
PT
10489 for_each_sched_entity(se) {
10490 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10491
10492 set_next_entity(cfs_rq, se);
10493 /* ensure bandwidth has been allocated on our new cfs_rq */
10494 account_cfs_rq_runtime(cfs_rq, 0);
10495 }
83b699ed
SV
10496}
10497
029632fb
PZ
10498void init_cfs_rq(struct cfs_rq *cfs_rq)
10499{
bfb06889 10500 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10501 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10502#ifndef CONFIG_64BIT
10503 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10504#endif
141965c7 10505#ifdef CONFIG_SMP
2a2f5d4e 10506 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10507#endif
029632fb
PZ
10508}
10509
810b3817 10510#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10511static void task_set_group_fair(struct task_struct *p)
10512{
10513 struct sched_entity *se = &p->se;
10514
10515 set_task_rq(p, task_cpu(p));
10516 se->depth = se->parent ? se->parent->depth + 1 : 0;
10517}
10518
bc54da21 10519static void task_move_group_fair(struct task_struct *p)
810b3817 10520{
daa59407 10521 detach_task_cfs_rq(p);
b2b5ce02 10522 set_task_rq(p, task_cpu(p));
6efdb105
BP
10523
10524#ifdef CONFIG_SMP
10525 /* Tell se's cfs_rq has been changed -- migrated */
10526 p->se.avg.last_update_time = 0;
10527#endif
daa59407 10528 attach_task_cfs_rq(p);
810b3817 10529}
029632fb 10530
ea86cb4b
VG
10531static void task_change_group_fair(struct task_struct *p, int type)
10532{
10533 switch (type) {
10534 case TASK_SET_GROUP:
10535 task_set_group_fair(p);
10536 break;
10537
10538 case TASK_MOVE_GROUP:
10539 task_move_group_fair(p);
10540 break;
10541 }
10542}
10543
029632fb
PZ
10544void free_fair_sched_group(struct task_group *tg)
10545{
10546 int i;
10547
10548 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10549
10550 for_each_possible_cpu(i) {
10551 if (tg->cfs_rq)
10552 kfree(tg->cfs_rq[i]);
6fe1f348 10553 if (tg->se)
029632fb
PZ
10554 kfree(tg->se[i]);
10555 }
10556
10557 kfree(tg->cfs_rq);
10558 kfree(tg->se);
10559}
10560
10561int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10562{
029632fb 10563 struct sched_entity *se;
b7fa30c9 10564 struct cfs_rq *cfs_rq;
029632fb
PZ
10565 int i;
10566
6396bb22 10567 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10568 if (!tg->cfs_rq)
10569 goto err;
6396bb22 10570 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10571 if (!tg->se)
10572 goto err;
10573
10574 tg->shares = NICE_0_LOAD;
10575
10576 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10577
10578 for_each_possible_cpu(i) {
10579 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10580 GFP_KERNEL, cpu_to_node(i));
10581 if (!cfs_rq)
10582 goto err;
10583
10584 se = kzalloc_node(sizeof(struct sched_entity),
10585 GFP_KERNEL, cpu_to_node(i));
10586 if (!se)
10587 goto err_free_rq;
10588
10589 init_cfs_rq(cfs_rq);
10590 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10591 init_entity_runnable_average(se);
029632fb
PZ
10592 }
10593
10594 return 1;
10595
10596err_free_rq:
10597 kfree(cfs_rq);
10598err:
10599 return 0;
10600}
10601
8663e24d
PZ
10602void online_fair_sched_group(struct task_group *tg)
10603{
10604 struct sched_entity *se;
a46d14ec 10605 struct rq_flags rf;
8663e24d
PZ
10606 struct rq *rq;
10607 int i;
10608
10609 for_each_possible_cpu(i) {
10610 rq = cpu_rq(i);
10611 se = tg->se[i];
a46d14ec 10612 rq_lock_irq(rq, &rf);
4126bad6 10613 update_rq_clock(rq);
d0326691 10614 attach_entity_cfs_rq(se);
55e16d30 10615 sync_throttle(tg, i);
a46d14ec 10616 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10617 }
10618}
10619
6fe1f348 10620void unregister_fair_sched_group(struct task_group *tg)
029632fb 10621{
029632fb 10622 unsigned long flags;
6fe1f348
PZ
10623 struct rq *rq;
10624 int cpu;
029632fb 10625
6fe1f348
PZ
10626 for_each_possible_cpu(cpu) {
10627 if (tg->se[cpu])
10628 remove_entity_load_avg(tg->se[cpu]);
029632fb 10629
6fe1f348
PZ
10630 /*
10631 * Only empty task groups can be destroyed; so we can speculatively
10632 * check on_list without danger of it being re-added.
10633 */
10634 if (!tg->cfs_rq[cpu]->on_list)
10635 continue;
10636
10637 rq = cpu_rq(cpu);
10638
10639 raw_spin_lock_irqsave(&rq->lock, flags);
10640 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10641 raw_spin_unlock_irqrestore(&rq->lock, flags);
10642 }
029632fb
PZ
10643}
10644
10645void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10646 struct sched_entity *se, int cpu,
10647 struct sched_entity *parent)
10648{
10649 struct rq *rq = cpu_rq(cpu);
10650
10651 cfs_rq->tg = tg;
10652 cfs_rq->rq = rq;
029632fb
PZ
10653 init_cfs_rq_runtime(cfs_rq);
10654
10655 tg->cfs_rq[cpu] = cfs_rq;
10656 tg->se[cpu] = se;
10657
10658 /* se could be NULL for root_task_group */
10659 if (!se)
10660 return;
10661
fed14d45 10662 if (!parent) {
029632fb 10663 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10664 se->depth = 0;
10665 } else {
029632fb 10666 se->cfs_rq = parent->my_q;
fed14d45
PZ
10667 se->depth = parent->depth + 1;
10668 }
029632fb
PZ
10669
10670 se->my_q = cfs_rq;
0ac9b1c2
PT
10671 /* guarantee group entities always have weight */
10672 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10673 se->parent = parent;
10674}
10675
10676static DEFINE_MUTEX(shares_mutex);
10677
10678int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10679{
10680 int i;
029632fb
PZ
10681
10682 /*
10683 * We can't change the weight of the root cgroup.
10684 */
10685 if (!tg->se[0])
10686 return -EINVAL;
10687
10688 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10689
10690 mutex_lock(&shares_mutex);
10691 if (tg->shares == shares)
10692 goto done;
10693
10694 tg->shares = shares;
10695 for_each_possible_cpu(i) {
10696 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10697 struct sched_entity *se = tg->se[i];
10698 struct rq_flags rf;
029632fb 10699
029632fb 10700 /* Propagate contribution to hierarchy */
8a8c69c3 10701 rq_lock_irqsave(rq, &rf);
71b1da46 10702 update_rq_clock(rq);
89ee048f 10703 for_each_sched_entity(se) {
88c0616e 10704 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10705 update_cfs_group(se);
89ee048f 10706 }
8a8c69c3 10707 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10708 }
10709
10710done:
10711 mutex_unlock(&shares_mutex);
10712 return 0;
10713}
10714#else /* CONFIG_FAIR_GROUP_SCHED */
10715
10716void free_fair_sched_group(struct task_group *tg) { }
10717
10718int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10719{
10720 return 1;
10721}
10722
8663e24d
PZ
10723void online_fair_sched_group(struct task_group *tg) { }
10724
6fe1f348 10725void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10726
10727#endif /* CONFIG_FAIR_GROUP_SCHED */
10728
810b3817 10729
6d686f45 10730static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10731{
10732 struct sched_entity *se = &task->se;
0d721cea
PW
10733 unsigned int rr_interval = 0;
10734
10735 /*
10736 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10737 * idle runqueue:
10738 */
0d721cea 10739 if (rq->cfs.load.weight)
a59f4e07 10740 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10741
10742 return rr_interval;
10743}
10744
bf0f6f24
IM
10745/*
10746 * All the scheduling class methods:
10747 */
029632fb 10748const struct sched_class fair_sched_class = {
5522d5d5 10749 .next = &idle_sched_class,
bf0f6f24
IM
10750 .enqueue_task = enqueue_task_fair,
10751 .dequeue_task = dequeue_task_fair,
10752 .yield_task = yield_task_fair,
d95f4122 10753 .yield_to_task = yield_to_task_fair,
bf0f6f24 10754
2e09bf55 10755 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 10756
98c2f700 10757 .pick_next_task = __pick_next_task_fair,
bf0f6f24 10758 .put_prev_task = put_prev_task_fair,
03b7fad1 10759 .set_next_task = set_next_task_fair,
bf0f6f24 10760
681f3e68 10761#ifdef CONFIG_SMP
6e2df058 10762 .balance = balance_fair,
4ce72a2c 10763 .select_task_rq = select_task_rq_fair,
0a74bef8 10764 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10765
0bcdcf28
CE
10766 .rq_online = rq_online_fair,
10767 .rq_offline = rq_offline_fair,
88ec22d3 10768
12695578 10769 .task_dead = task_dead_fair,
c5b28038 10770 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10771#endif
bf0f6f24 10772
bf0f6f24 10773 .task_tick = task_tick_fair,
cd29fe6f 10774 .task_fork = task_fork_fair,
cb469845
SR
10775
10776 .prio_changed = prio_changed_fair,
da7a735e 10777 .switched_from = switched_from_fair,
cb469845 10778 .switched_to = switched_to_fair,
810b3817 10779
0d721cea
PW
10780 .get_rr_interval = get_rr_interval_fair,
10781
6e998916
SG
10782 .update_curr = update_curr_fair,
10783
810b3817 10784#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10785 .task_change_group = task_change_group_fair,
810b3817 10786#endif
982d9cdc
PB
10787
10788#ifdef CONFIG_UCLAMP_TASK
10789 .uclamp_enabled = 1,
10790#endif
bf0f6f24
IM
10791};
10792
10793#ifdef CONFIG_SCHED_DEBUG
029632fb 10794void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10795{
039ae8bc 10796 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10797
5973e5b9 10798 rcu_read_lock();
039ae8bc 10799 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10800 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10801 rcu_read_unlock();
bf0f6f24 10802}
397f2378
SD
10803
10804#ifdef CONFIG_NUMA_BALANCING
10805void show_numa_stats(struct task_struct *p, struct seq_file *m)
10806{
10807 int node;
10808 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10809 struct numa_group *ng;
397f2378 10810
cb361d8c
JH
10811 rcu_read_lock();
10812 ng = rcu_dereference(p->numa_group);
397f2378
SD
10813 for_each_online_node(node) {
10814 if (p->numa_faults) {
10815 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10816 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10817 }
cb361d8c
JH
10818 if (ng) {
10819 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10820 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10821 }
10822 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10823 }
cb361d8c 10824 rcu_read_unlock();
397f2378
SD
10825}
10826#endif /* CONFIG_NUMA_BALANCING */
10827#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10828
10829__init void init_sched_fair_class(void)
10830{
10831#ifdef CONFIG_SMP
10832 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10833
3451d024 10834#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10835 nohz.next_balance = jiffies;
f643ea22 10836 nohz.next_blocked = jiffies;
029632fb 10837 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10838#endif
10839#endif /* SMP */
10840
10841}
3c93a0c0
QY
10842
10843/*
10844 * Helper functions to facilitate extracting info from tracepoints.
10845 */
10846
10847const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10848{
10849#ifdef CONFIG_SMP
10850 return cfs_rq ? &cfs_rq->avg : NULL;
10851#else
10852 return NULL;
10853#endif
10854}
10855EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10856
10857char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10858{
10859 if (!cfs_rq) {
10860 if (str)
10861 strlcpy(str, "(null)", len);
10862 else
10863 return NULL;
10864 }
10865
10866 cfs_rq_tg_path(cfs_rq, str, len);
10867 return str;
10868}
10869EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10870
10871int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10872{
10873 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10874}
10875EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10876
10877const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10878{
10879#ifdef CONFIG_SMP
10880 return rq ? &rq->avg_rt : NULL;
10881#else
10882 return NULL;
10883#endif
10884}
10885EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10886
10887const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10888{
10889#ifdef CONFIG_SMP
10890 return rq ? &rq->avg_dl : NULL;
10891#else
10892 return NULL;
10893#endif
10894}
10895EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10896
10897const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10898{
10899#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10900 return rq ? &rq->avg_irq : NULL;
10901#else
10902 return NULL;
10903#endif
10904}
10905EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10906
10907int sched_trace_rq_cpu(struct rq *rq)
10908{
10909 return rq ? cpu_of(rq) : -1;
10910}
10911EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10912
10913const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10914{
10915#ifdef CONFIG_SMP
10916 return rd ? rd->span : NULL;
10917#else
10918 return NULL;
10919#endif
10920}
10921EXPORT_SYMBOL_GPL(sched_trace_rd_span);