sched/dl: Add dl_rq utilization tracking
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
aab03e05
DF
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 14 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18#include "sched.h"
3727e0e1 19#include "pelt.h"
aab03e05 20
332ac17e
DF
21struct dl_bandwidth def_dl_bandwidth;
22
aab03e05
DF
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
06a76fe0
NP
46#ifdef CONFIG_SMP
47static inline struct dl_bw *dl_bw_of(int i)
48{
49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 "sched RCU must be held");
51 return &cpu_rq(i)->rd->dl_bw;
52}
53
54static inline int dl_bw_cpus(int i)
55{
56 struct root_domain *rd = cpu_rq(i)->rd;
57 int cpus = 0;
58
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 "sched RCU must be held");
61 for_each_cpu_and(i, rd->span, cpu_active_mask)
62 cpus++;
63
64 return cpus;
65}
66#else
67static inline struct dl_bw *dl_bw_of(int i)
68{
69 return &cpu_rq(i)->dl.dl_bw;
70}
71
72static inline int dl_bw_cpus(int i)
73{
74 return 1;
75}
76#endif
77
e36d8677 78static inline
794a56eb 79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
80{
81 u64 old = dl_rq->running_bw;
82
83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 dl_rq->running_bw += dl_bw;
85 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
8fd27231 86 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
e0367b12 87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
4042d003 88 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
e36d8677
LA
89}
90
91static inline
794a56eb 92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
93{
94 u64 old = dl_rq->running_bw;
95
96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 dl_rq->running_bw -= dl_bw;
98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 if (dl_rq->running_bw > old)
100 dl_rq->running_bw = 0;
e0367b12 101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
4042d003 102 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
e36d8677
LA
103}
104
8fd27231 105static inline
794a56eb 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
107{
108 u64 old = dl_rq->this_bw;
109
110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 dl_rq->this_bw += dl_bw;
112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113}
114
115static inline
794a56eb 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
117{
118 u64 old = dl_rq->this_bw;
119
120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 dl_rq->this_bw -= dl_bw;
122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 if (dl_rq->this_bw > old)
124 dl_rq->this_bw = 0;
125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126}
127
794a56eb
JL
128static inline
129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130{
131 if (!dl_entity_is_special(dl_se))
132 __add_rq_bw(dl_se->dl_bw, dl_rq);
133}
134
135static inline
136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137{
138 if (!dl_entity_is_special(dl_se))
139 __sub_rq_bw(dl_se->dl_bw, dl_rq);
140}
141
142static inline
143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144{
145 if (!dl_entity_is_special(dl_se))
146 __add_running_bw(dl_se->dl_bw, dl_rq);
147}
148
149static inline
150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151{
152 if (!dl_entity_is_special(dl_se))
153 __sub_running_bw(dl_se->dl_bw, dl_rq);
154}
155
209a0cbd
LA
156void dl_change_utilization(struct task_struct *p, u64 new_bw)
157{
8fd27231 158 struct rq *rq;
209a0cbd 159
794a56eb
JL
160 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161
8fd27231 162 if (task_on_rq_queued(p))
209a0cbd
LA
163 return;
164
8fd27231
LA
165 rq = task_rq(p);
166 if (p->dl.dl_non_contending) {
794a56eb 167 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
168 p->dl.dl_non_contending = 0;
169 /*
170 * If the timer handler is currently running and the
171 * timer cannot be cancelled, inactive_task_timer()
172 * will see that dl_not_contending is not set, and
173 * will not touch the rq's active utilization,
174 * so we are still safe.
175 */
176 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 put_task_struct(p);
178 }
794a56eb
JL
179 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 __add_rq_bw(new_bw, &rq->dl);
209a0cbd
LA
181}
182
183/*
184 * The utilization of a task cannot be immediately removed from
185 * the rq active utilization (running_bw) when the task blocks.
186 * Instead, we have to wait for the so called "0-lag time".
187 *
188 * If a task blocks before the "0-lag time", a timer (the inactive
189 * timer) is armed, and running_bw is decreased when the timer
190 * fires.
191 *
192 * If the task wakes up again before the inactive timer fires,
193 * the timer is cancelled, whereas if the task wakes up after the
194 * inactive timer fired (and running_bw has been decreased) the
195 * task's utilization has to be added to running_bw again.
196 * A flag in the deadline scheduling entity (dl_non_contending)
197 * is used to avoid race conditions between the inactive timer handler
198 * and task wakeups.
199 *
200 * The following diagram shows how running_bw is updated. A task is
201 * "ACTIVE" when its utilization contributes to running_bw; an
202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205 * time already passed, which does not contribute to running_bw anymore.
206 * +------------------+
207 * wakeup | ACTIVE |
208 * +------------------>+ contending |
209 * | add_running_bw | |
210 * | +----+------+------+
211 * | | ^
212 * | dequeue | |
213 * +--------+-------+ | |
214 * | | t >= 0-lag | | wakeup
215 * | INACTIVE |<---------------+ |
216 * | | sub_running_bw | |
217 * +--------+-------+ | |
218 * ^ | |
219 * | t < 0-lag | |
220 * | | |
221 * | V |
222 * | +----+------+------+
223 * | sub_running_bw | ACTIVE |
224 * +-------------------+ |
225 * inactive timer | non contending |
226 * fired +------------------+
227 *
228 * The task_non_contending() function is invoked when a task
229 * blocks, and checks if the 0-lag time already passed or
230 * not (in the first case, it directly updates running_bw;
231 * in the second case, it arms the inactive timer).
232 *
233 * The task_contending() function is invoked when a task wakes
234 * up, and checks if the task is still in the "ACTIVE non contending"
235 * state or not (in the second case, it updates running_bw).
236 */
237static void task_non_contending(struct task_struct *p)
238{
239 struct sched_dl_entity *dl_se = &p->dl;
240 struct hrtimer *timer = &dl_se->inactive_timer;
241 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 struct rq *rq = rq_of_dl_rq(dl_rq);
243 s64 zerolag_time;
244
245 /*
246 * If this is a non-deadline task that has been boosted,
247 * do nothing
248 */
249 if (dl_se->dl_runtime == 0)
250 return;
251
794a56eb
JL
252 if (dl_entity_is_special(dl_se))
253 return;
254
209a0cbd
LA
255 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
256 WARN_ON(dl_se->dl_non_contending);
257
258 zerolag_time = dl_se->deadline -
259 div64_long((dl_se->runtime * dl_se->dl_period),
260 dl_se->dl_runtime);
261
262 /*
263 * Using relative times instead of the absolute "0-lag time"
264 * allows to simplify the code
265 */
266 zerolag_time -= rq_clock(rq);
267
268 /*
269 * If the "0-lag time" already passed, decrease the active
270 * utilization now, instead of starting a timer
271 */
272 if (zerolag_time < 0) {
273 if (dl_task(p))
794a56eb 274 sub_running_bw(dl_se, dl_rq);
387e3130
LA
275 if (!dl_task(p) || p->state == TASK_DEAD) {
276 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
277
8fd27231 278 if (p->state == TASK_DEAD)
794a56eb 279 sub_rq_bw(&p->dl, &rq->dl);
387e3130 280 raw_spin_lock(&dl_b->lock);
8c0944ce 281 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
209a0cbd 282 __dl_clear_params(p);
387e3130
LA
283 raw_spin_unlock(&dl_b->lock);
284 }
209a0cbd
LA
285
286 return;
287 }
288
289 dl_se->dl_non_contending = 1;
290 get_task_struct(p);
291 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
292}
293
8fd27231 294static void task_contending(struct sched_dl_entity *dl_se, int flags)
209a0cbd
LA
295{
296 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
297
298 /*
299 * If this is a non-deadline task that has been boosted,
300 * do nothing
301 */
302 if (dl_se->dl_runtime == 0)
303 return;
304
8fd27231 305 if (flags & ENQUEUE_MIGRATED)
794a56eb 306 add_rq_bw(dl_se, dl_rq);
8fd27231 307
209a0cbd
LA
308 if (dl_se->dl_non_contending) {
309 dl_se->dl_non_contending = 0;
310 /*
311 * If the timer handler is currently running and the
312 * timer cannot be cancelled, inactive_task_timer()
313 * will see that dl_not_contending is not set, and
314 * will not touch the rq's active utilization,
315 * so we are still safe.
316 */
317 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
318 put_task_struct(dl_task_of(dl_se));
319 } else {
320 /*
321 * Since "dl_non_contending" is not set, the
322 * task's utilization has already been removed from
323 * active utilization (either when the task blocked,
324 * when the "inactive timer" fired).
325 * So, add it back.
326 */
794a56eb 327 add_running_bw(dl_se, dl_rq);
209a0cbd
LA
328 }
329}
330
aab03e05
DF
331static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
332{
333 struct sched_dl_entity *dl_se = &p->dl;
334
2161573e 335 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
aab03e05
DF
336}
337
332ac17e
DF
338void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
339{
340 raw_spin_lock_init(&dl_b->dl_runtime_lock);
341 dl_b->dl_period = period;
342 dl_b->dl_runtime = runtime;
343}
344
332ac17e
DF
345void init_dl_bw(struct dl_bw *dl_b)
346{
347 raw_spin_lock_init(&dl_b->lock);
348 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 349 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
350 dl_b->bw = -1;
351 else
1724813d 352 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
353 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
354 dl_b->total_bw = 0;
355}
356
07c54f7a 357void init_dl_rq(struct dl_rq *dl_rq)
aab03e05 358{
2161573e 359 dl_rq->root = RB_ROOT_CACHED;
1baca4ce
JL
360
361#ifdef CONFIG_SMP
362 /* zero means no -deadline tasks */
363 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
364
365 dl_rq->dl_nr_migratory = 0;
366 dl_rq->overloaded = 0;
2161573e 367 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
332ac17e
DF
368#else
369 init_dl_bw(&dl_rq->dl_bw);
1baca4ce 370#endif
e36d8677
LA
371
372 dl_rq->running_bw = 0;
8fd27231 373 dl_rq->this_bw = 0;
4da3abce 374 init_dl_rq_bw_ratio(dl_rq);
1baca4ce
JL
375}
376
377#ifdef CONFIG_SMP
378
379static inline int dl_overloaded(struct rq *rq)
380{
381 return atomic_read(&rq->rd->dlo_count);
382}
383
384static inline void dl_set_overload(struct rq *rq)
385{
386 if (!rq->online)
387 return;
388
389 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
390 /*
391 * Must be visible before the overload count is
392 * set (as in sched_rt.c).
393 *
394 * Matched by the barrier in pull_dl_task().
395 */
396 smp_wmb();
397 atomic_inc(&rq->rd->dlo_count);
398}
399
400static inline void dl_clear_overload(struct rq *rq)
401{
402 if (!rq->online)
403 return;
404
405 atomic_dec(&rq->rd->dlo_count);
406 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
407}
408
409static void update_dl_migration(struct dl_rq *dl_rq)
410{
995b9ea4 411 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
412 if (!dl_rq->overloaded) {
413 dl_set_overload(rq_of_dl_rq(dl_rq));
414 dl_rq->overloaded = 1;
415 }
416 } else if (dl_rq->overloaded) {
417 dl_clear_overload(rq_of_dl_rq(dl_rq));
418 dl_rq->overloaded = 0;
419 }
420}
421
422static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
423{
424 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 425
4b53a341 426 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
427 dl_rq->dl_nr_migratory++;
428
429 update_dl_migration(dl_rq);
430}
431
432static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
433{
434 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 435
4b53a341 436 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
437 dl_rq->dl_nr_migratory--;
438
439 update_dl_migration(dl_rq);
440}
441
442/*
443 * The list of pushable -deadline task is not a plist, like in
444 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
445 */
446static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
447{
448 struct dl_rq *dl_rq = &rq->dl;
2161573e 449 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
1baca4ce
JL
450 struct rb_node *parent = NULL;
451 struct task_struct *entry;
2161573e 452 bool leftmost = true;
1baca4ce
JL
453
454 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
455
456 while (*link) {
457 parent = *link;
458 entry = rb_entry(parent, struct task_struct,
459 pushable_dl_tasks);
460 if (dl_entity_preempt(&p->dl, &entry->dl))
461 link = &parent->rb_left;
462 else {
463 link = &parent->rb_right;
2161573e 464 leftmost = false;
1baca4ce
JL
465 }
466 }
467
2161573e 468 if (leftmost)
7d92de3a 469 dl_rq->earliest_dl.next = p->dl.deadline;
1baca4ce
JL
470
471 rb_link_node(&p->pushable_dl_tasks, parent, link);
2161573e
DB
472 rb_insert_color_cached(&p->pushable_dl_tasks,
473 &dl_rq->pushable_dl_tasks_root, leftmost);
aab03e05
DF
474}
475
1baca4ce
JL
476static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
477{
478 struct dl_rq *dl_rq = &rq->dl;
479
480 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
481 return;
482
2161573e 483 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
1baca4ce
JL
484 struct rb_node *next_node;
485
486 next_node = rb_next(&p->pushable_dl_tasks);
7d92de3a
WL
487 if (next_node) {
488 dl_rq->earliest_dl.next = rb_entry(next_node,
489 struct task_struct, pushable_dl_tasks)->dl.deadline;
490 }
1baca4ce
JL
491 }
492
2161573e 493 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
1baca4ce
JL
494 RB_CLEAR_NODE(&p->pushable_dl_tasks);
495}
496
497static inline int has_pushable_dl_tasks(struct rq *rq)
498{
2161573e 499 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
1baca4ce
JL
500}
501
502static int push_dl_task(struct rq *rq);
503
dc877341
PZ
504static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
505{
506 return dl_task(prev);
507}
508
9916e214
PZ
509static DEFINE_PER_CPU(struct callback_head, dl_push_head);
510static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
511
512static void push_dl_tasks(struct rq *);
9916e214 513static void pull_dl_task(struct rq *);
e3fca9e7 514
02d8ec94 515static inline void deadline_queue_push_tasks(struct rq *rq)
dc877341 516{
e3fca9e7
PZ
517 if (!has_pushable_dl_tasks(rq))
518 return;
519
9916e214
PZ
520 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
521}
522
02d8ec94 523static inline void deadline_queue_pull_task(struct rq *rq)
9916e214
PZ
524{
525 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
526}
527
fa9c9d10
WL
528static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
529
a649f237 530static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
531{
532 struct rq *later_rq = NULL;
fa9c9d10
WL
533
534 later_rq = find_lock_later_rq(p, rq);
fa9c9d10
WL
535 if (!later_rq) {
536 int cpu;
537
538 /*
539 * If we cannot preempt any rq, fall back to pick any
97fb7a0a 540 * online CPU:
fa9c9d10 541 */
0c98d344 542 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
fa9c9d10
WL
543 if (cpu >= nr_cpu_ids) {
544 /*
97fb7a0a 545 * Failed to find any suitable CPU.
fa9c9d10
WL
546 * The task will never come back!
547 */
548 BUG_ON(dl_bandwidth_enabled());
549
550 /*
551 * If admission control is disabled we
552 * try a little harder to let the task
553 * run.
554 */
555 cpu = cpumask_any(cpu_active_mask);
556 }
557 later_rq = cpu_rq(cpu);
558 double_lock_balance(rq, later_rq);
559 }
560
fa9c9d10 561 set_task_cpu(p, later_rq->cpu);
a649f237
PZ
562 double_unlock_balance(later_rq, rq);
563
564 return later_rq;
fa9c9d10
WL
565}
566
1baca4ce
JL
567#else
568
569static inline
570void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
571{
572}
573
574static inline
575void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
576{
577}
578
579static inline
580void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
581{
582}
583
584static inline
585void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
586{
587}
588
dc877341
PZ
589static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
590{
591 return false;
592}
593
0ea60c20 594static inline void pull_dl_task(struct rq *rq)
dc877341 595{
dc877341
PZ
596}
597
02d8ec94 598static inline void deadline_queue_push_tasks(struct rq *rq)
dc877341 599{
dc877341
PZ
600}
601
02d8ec94 602static inline void deadline_queue_pull_task(struct rq *rq)
dc877341
PZ
603{
604}
1baca4ce
JL
605#endif /* CONFIG_SMP */
606
aab03e05
DF
607static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 609static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
aab03e05
DF
610
611/*
612 * We are being explicitly informed that a new instance is starting,
613 * and this means that:
614 * - the absolute deadline of the entity has to be placed at
615 * current time + relative deadline;
616 * - the runtime of the entity has to be set to the maximum value.
617 *
618 * The capability of specifying such event is useful whenever a -deadline
619 * entity wants to (try to!) synchronize its behaviour with the scheduler's
620 * one, and to (try to!) reconcile itself with its own scheduling
621 * parameters.
622 */
98b0a857 623static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
aab03e05
DF
624{
625 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
626 struct rq *rq = rq_of_dl_rq(dl_rq);
627
98b0a857 628 WARN_ON(dl_se->dl_boosted);
72f9f3fd
LA
629 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
630
631 /*
632 * We are racing with the deadline timer. So, do nothing because
633 * the deadline timer handler will take care of properly recharging
634 * the runtime and postponing the deadline
635 */
636 if (dl_se->dl_throttled)
637 return;
aab03e05
DF
638
639 /*
640 * We use the regular wall clock time to set deadlines in the
641 * future; in fact, we must consider execution overheads (time
642 * spent on hardirq context, etc.).
643 */
98b0a857
JL
644 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
645 dl_se->runtime = dl_se->dl_runtime;
aab03e05
DF
646}
647
648/*
649 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
650 * possibility of a entity lasting more than what it declared, and thus
651 * exhausting its runtime.
652 *
653 * Here we are interested in making runtime overrun possible, but we do
654 * not want a entity which is misbehaving to affect the scheduling of all
655 * other entities.
656 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
657 * is used, in order to confine each entity within its own bandwidth.
658 *
659 * This function deals exactly with that, and ensures that when the runtime
660 * of a entity is replenished, its deadline is also postponed. That ensures
661 * the overrunning entity can't interfere with other entity in the system and
662 * can't make them miss their deadlines. Reasons why this kind of overruns
663 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 664 * runtime, or it just underestimated it during sched_setattr().
aab03e05 665 */
2d3d891d
DF
666static void replenish_dl_entity(struct sched_dl_entity *dl_se,
667 struct sched_dl_entity *pi_se)
aab03e05
DF
668{
669 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
670 struct rq *rq = rq_of_dl_rq(dl_rq);
671
2d3d891d
DF
672 BUG_ON(pi_se->dl_runtime <= 0);
673
674 /*
675 * This could be the case for a !-dl task that is boosted.
676 * Just go with full inherited parameters.
677 */
678 if (dl_se->dl_deadline == 0) {
679 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
680 dl_se->runtime = pi_se->dl_runtime;
681 }
682
48be3a67
PZ
683 if (dl_se->dl_yielded && dl_se->runtime > 0)
684 dl_se->runtime = 0;
685
aab03e05
DF
686 /*
687 * We keep moving the deadline away until we get some
688 * available runtime for the entity. This ensures correct
689 * handling of situations where the runtime overrun is
690 * arbitrary large.
691 */
692 while (dl_se->runtime <= 0) {
2d3d891d
DF
693 dl_se->deadline += pi_se->dl_period;
694 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
695 }
696
697 /*
698 * At this point, the deadline really should be "in
699 * the future" with respect to rq->clock. If it's
700 * not, we are, for some reason, lagging too much!
701 * Anyway, after having warn userspace abut that,
702 * we still try to keep the things running by
703 * resetting the deadline and the budget of the
704 * entity.
705 */
706 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 707 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
708 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
709 dl_se->runtime = pi_se->dl_runtime;
aab03e05 710 }
1019a359
PZ
711
712 if (dl_se->dl_yielded)
713 dl_se->dl_yielded = 0;
714 if (dl_se->dl_throttled)
715 dl_se->dl_throttled = 0;
aab03e05
DF
716}
717
718/*
719 * Here we check if --at time t-- an entity (which is probably being
720 * [re]activated or, in general, enqueued) can use its remaining runtime
721 * and its current deadline _without_ exceeding the bandwidth it is
722 * assigned (function returns true if it can't). We are in fact applying
723 * one of the CBS rules: when a task wakes up, if the residual runtime
724 * over residual deadline fits within the allocated bandwidth, then we
725 * can keep the current (absolute) deadline and residual budget without
726 * disrupting the schedulability of the system. Otherwise, we should
727 * refill the runtime and set the deadline a period in the future,
728 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
729 * result in breaking guarantees promised to other tasks (refer to
730 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
731 *
732 * This function returns true if:
733 *
2317d5f1 734 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
aab03e05
DF
735 *
736 * IOW we can't recycle current parameters.
755378a4 737 *
2317d5f1 738 * Notice that the bandwidth check is done against the deadline. For
755378a4 739 * task with deadline equal to period this is the same of using
2317d5f1 740 * dl_period instead of dl_deadline in the equation above.
aab03e05 741 */
2d3d891d
DF
742static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
743 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
744{
745 u64 left, right;
746
747 /*
748 * left and right are the two sides of the equation above,
749 * after a bit of shuffling to use multiplications instead
750 * of divisions.
751 *
752 * Note that none of the time values involved in the two
753 * multiplications are absolute: dl_deadline and dl_runtime
754 * are the relative deadline and the maximum runtime of each
755 * instance, runtime is the runtime left for the last instance
756 * and (deadline - t), since t is rq->clock, is the time left
757 * to the (absolute) deadline. Even if overflowing the u64 type
758 * is very unlikely to occur in both cases, here we scale down
759 * as we want to avoid that risk at all. Scaling down by 10
760 * means that we reduce granularity to 1us. We are fine with it,
761 * since this is only a true/false check and, anyway, thinking
762 * of anything below microseconds resolution is actually fiction
763 * (but still we want to give the user that illusion >;).
764 */
2317d5f1 765 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
332ac17e
DF
766 right = ((dl_se->deadline - t) >> DL_SCALE) *
767 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
768
769 return dl_time_before(right, left);
770}
771
772/*
3effcb42
DBO
773 * Revised wakeup rule [1]: For self-suspending tasks, rather then
774 * re-initializing task's runtime and deadline, the revised wakeup
775 * rule adjusts the task's runtime to avoid the task to overrun its
776 * density.
aab03e05 777 *
3effcb42
DBO
778 * Reasoning: a task may overrun the density if:
779 * runtime / (deadline - t) > dl_runtime / dl_deadline
780 *
781 * Therefore, runtime can be adjusted to:
782 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
783 *
784 * In such way that runtime will be equal to the maximum density
785 * the task can use without breaking any rule.
786 *
787 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
788 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
789 */
790static void
791update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
792{
793 u64 laxity = dl_se->deadline - rq_clock(rq);
794
795 /*
796 * If the task has deadline < period, and the deadline is in the past,
797 * it should already be throttled before this check.
798 *
799 * See update_dl_entity() comments for further details.
800 */
801 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
802
803 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
804}
805
806/*
807 * Regarding the deadline, a task with implicit deadline has a relative
808 * deadline == relative period. A task with constrained deadline has a
809 * relative deadline <= relative period.
810 *
811 * We support constrained deadline tasks. However, there are some restrictions
812 * applied only for tasks which do not have an implicit deadline. See
813 * update_dl_entity() to know more about such restrictions.
814 *
815 * The dl_is_implicit() returns true if the task has an implicit deadline.
816 */
817static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
818{
819 return dl_se->dl_deadline == dl_se->dl_period;
820}
821
822/*
823 * When a deadline entity is placed in the runqueue, its runtime and deadline
824 * might need to be updated. This is done by a CBS wake up rule. There are two
825 * different rules: 1) the original CBS; and 2) the Revisited CBS.
826 *
827 * When the task is starting a new period, the Original CBS is used. In this
828 * case, the runtime is replenished and a new absolute deadline is set.
829 *
830 * When a task is queued before the begin of the next period, using the
831 * remaining runtime and deadline could make the entity to overflow, see
832 * dl_entity_overflow() to find more about runtime overflow. When such case
833 * is detected, the runtime and deadline need to be updated.
834 *
835 * If the task has an implicit deadline, i.e., deadline == period, the Original
836 * CBS is applied. the runtime is replenished and a new absolute deadline is
837 * set, as in the previous cases.
838 *
839 * However, the Original CBS does not work properly for tasks with
840 * deadline < period, which are said to have a constrained deadline. By
841 * applying the Original CBS, a constrained deadline task would be able to run
842 * runtime/deadline in a period. With deadline < period, the task would
843 * overrun the runtime/period allowed bandwidth, breaking the admission test.
844 *
845 * In order to prevent this misbehave, the Revisited CBS is used for
846 * constrained deadline tasks when a runtime overflow is detected. In the
847 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
848 * the remaining runtime of the task is reduced to avoid runtime overflow.
849 * Please refer to the comments update_dl_revised_wakeup() function to find
850 * more about the Revised CBS rule.
aab03e05 851 */
2d3d891d
DF
852static void update_dl_entity(struct sched_dl_entity *dl_se,
853 struct sched_dl_entity *pi_se)
aab03e05
DF
854{
855 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
856 struct rq *rq = rq_of_dl_rq(dl_rq);
857
aab03e05 858 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d 859 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
3effcb42
DBO
860
861 if (unlikely(!dl_is_implicit(dl_se) &&
862 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
863 !dl_se->dl_boosted)){
864 update_dl_revised_wakeup(dl_se, rq);
865 return;
866 }
867
2d3d891d
DF
868 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
869 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
870 }
871}
872
5ac69d37
DBO
873static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
874{
875 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
876}
877
aab03e05
DF
878/*
879 * If the entity depleted all its runtime, and if we want it to sleep
880 * while waiting for some new execution time to become available, we
5ac69d37 881 * set the bandwidth replenishment timer to the replenishment instant
aab03e05
DF
882 * and try to activate it.
883 *
884 * Notice that it is important for the caller to know if the timer
885 * actually started or not (i.e., the replenishment instant is in
886 * the future or in the past).
887 */
a649f237 888static int start_dl_timer(struct task_struct *p)
aab03e05 889{
a649f237
PZ
890 struct sched_dl_entity *dl_se = &p->dl;
891 struct hrtimer *timer = &dl_se->dl_timer;
892 struct rq *rq = task_rq(p);
aab03e05 893 ktime_t now, act;
aab03e05
DF
894 s64 delta;
895
a649f237
PZ
896 lockdep_assert_held(&rq->lock);
897
aab03e05
DF
898 /*
899 * We want the timer to fire at the deadline, but considering
900 * that it is actually coming from rq->clock and not from
901 * hrtimer's time base reading.
902 */
5ac69d37 903 act = ns_to_ktime(dl_next_period(dl_se));
a649f237 904 now = hrtimer_cb_get_time(timer);
aab03e05
DF
905 delta = ktime_to_ns(now) - rq_clock(rq);
906 act = ktime_add_ns(act, delta);
907
908 /*
909 * If the expiry time already passed, e.g., because the value
910 * chosen as the deadline is too small, don't even try to
911 * start the timer in the past!
912 */
913 if (ktime_us_delta(act, now) < 0)
914 return 0;
915
a649f237
PZ
916 /*
917 * !enqueued will guarantee another callback; even if one is already in
918 * progress. This ensures a balanced {get,put}_task_struct().
919 *
920 * The race against __run_timer() clearing the enqueued state is
921 * harmless because we're holding task_rq()->lock, therefore the timer
922 * expiring after we've done the check will wait on its task_rq_lock()
923 * and observe our state.
924 */
925 if (!hrtimer_is_queued(timer)) {
926 get_task_struct(p);
927 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
928 }
aab03e05 929
cc9684d3 930 return 1;
aab03e05
DF
931}
932
933/*
934 * This is the bandwidth enforcement timer callback. If here, we know
935 * a task is not on its dl_rq, since the fact that the timer was running
936 * means the task is throttled and needs a runtime replenishment.
937 *
938 * However, what we actually do depends on the fact the task is active,
939 * (it is on its rq) or has been removed from there by a call to
940 * dequeue_task_dl(). In the former case we must issue the runtime
941 * replenishment and add the task back to the dl_rq; in the latter, we just
942 * do nothing but clearing dl_throttled, so that runtime and deadline
943 * updating (and the queueing back to dl_rq) will be done by the
944 * next call to enqueue_task_dl().
945 */
946static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
947{
948 struct sched_dl_entity *dl_se = container_of(timer,
949 struct sched_dl_entity,
950 dl_timer);
951 struct task_struct *p = dl_task_of(dl_se);
eb580751 952 struct rq_flags rf;
0f397f2c 953 struct rq *rq;
3960c8c0 954
eb580751 955 rq = task_rq_lock(p, &rf);
0f397f2c 956
aab03e05 957 /*
a649f237 958 * The task might have changed its scheduling policy to something
9846d50d 959 * different than SCHED_DEADLINE (through switched_from_dl()).
a649f237 960 */
209a0cbd 961 if (!dl_task(p))
a649f237 962 goto unlock;
a649f237 963
a649f237
PZ
964 /*
965 * The task might have been boosted by someone else and might be in the
966 * boosting/deboosting path, its not throttled.
967 */
968 if (dl_se->dl_boosted)
969 goto unlock;
a79ec89f 970
fa9c9d10 971 /*
a649f237
PZ
972 * Spurious timer due to start_dl_timer() race; or we already received
973 * a replenishment from rt_mutex_setprio().
fa9c9d10 974 */
a649f237 975 if (!dl_se->dl_throttled)
fa9c9d10 976 goto unlock;
a649f237
PZ
977
978 sched_clock_tick();
979 update_rq_clock(rq);
fa9c9d10 980
a79ec89f
KT
981 /*
982 * If the throttle happened during sched-out; like:
983 *
984 * schedule()
985 * deactivate_task()
986 * dequeue_task_dl()
987 * update_curr_dl()
988 * start_dl_timer()
989 * __dequeue_task_dl()
990 * prev->on_rq = 0;
991 *
992 * We can be both throttled and !queued. Replenish the counter
993 * but do not enqueue -- wait for our wakeup to do that.
994 */
995 if (!task_on_rq_queued(p)) {
996 replenish_dl_entity(dl_se, dl_se);
997 goto unlock;
998 }
999
1baca4ce 1000#ifdef CONFIG_SMP
c0c8c9fa 1001 if (unlikely(!rq->online)) {
61c7aca6
WL
1002 /*
1003 * If the runqueue is no longer available, migrate the
1004 * task elsewhere. This necessarily changes rq.
1005 */
c0c8c9fa 1006 lockdep_unpin_lock(&rq->lock, rf.cookie);
a649f237 1007 rq = dl_task_offline_migration(rq, p);
c0c8c9fa 1008 rf.cookie = lockdep_pin_lock(&rq->lock);
dcc3b5ff 1009 update_rq_clock(rq);
61c7aca6
WL
1010
1011 /*
1012 * Now that the task has been migrated to the new RQ and we
1013 * have that locked, proceed as normal and enqueue the task
1014 * there.
1015 */
c0c8c9fa 1016 }
61c7aca6 1017#endif
a649f237 1018
61c7aca6
WL
1019 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1020 if (dl_task(rq->curr))
1021 check_preempt_curr_dl(rq, p, 0);
1022 else
1023 resched_curr(rq);
a649f237 1024
61c7aca6 1025#ifdef CONFIG_SMP
a649f237
PZ
1026 /*
1027 * Queueing this task back might have overloaded rq, check if we need
1028 * to kick someone away.
1019a359 1029 */
0aaafaab
PZ
1030 if (has_pushable_dl_tasks(rq)) {
1031 /*
1032 * Nothing relies on rq->lock after this, so its safe to drop
1033 * rq->lock.
1034 */
d8ac8971 1035 rq_unpin_lock(rq, &rf);
1019a359 1036 push_dl_task(rq);
d8ac8971 1037 rq_repin_lock(rq, &rf);
0aaafaab 1038 }
1baca4ce 1039#endif
a649f237 1040
aab03e05 1041unlock:
eb580751 1042 task_rq_unlock(rq, p, &rf);
aab03e05 1043
a649f237
PZ
1044 /*
1045 * This can free the task_struct, including this hrtimer, do not touch
1046 * anything related to that after this.
1047 */
1048 put_task_struct(p);
1049
aab03e05
DF
1050 return HRTIMER_NORESTART;
1051}
1052
1053void init_dl_task_timer(struct sched_dl_entity *dl_se)
1054{
1055 struct hrtimer *timer = &dl_se->dl_timer;
1056
aab03e05
DF
1057 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058 timer->function = dl_task_timer;
1059}
1060
df8eac8c
DBO
1061/*
1062 * During the activation, CBS checks if it can reuse the current task's
1063 * runtime and period. If the deadline of the task is in the past, CBS
1064 * cannot use the runtime, and so it replenishes the task. This rule
1065 * works fine for implicit deadline tasks (deadline == period), and the
1066 * CBS was designed for implicit deadline tasks. However, a task with
1067 * constrained deadline (deadine < period) might be awakened after the
1068 * deadline, but before the next period. In this case, replenishing the
1069 * task would allow it to run for runtime / deadline. As in this case
1070 * deadline < period, CBS enables a task to run for more than the
1071 * runtime / period. In a very loaded system, this can cause a domino
1072 * effect, making other tasks miss their deadlines.
1073 *
1074 * To avoid this problem, in the activation of a constrained deadline
1075 * task after the deadline but before the next period, throttle the
1076 * task and set the replenishing timer to the begin of the next period,
1077 * unless it is boosted.
1078 */
1079static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1080{
1081 struct task_struct *p = dl_task_of(dl_se);
1082 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1083
1084 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1085 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1086 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1087 return;
1088 dl_se->dl_throttled = 1;
ae83b56a
XP
1089 if (dl_se->runtime > 0)
1090 dl_se->runtime = 0;
df8eac8c
DBO
1091 }
1092}
1093
aab03e05 1094static
6fab5410 1095int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 1096{
269ad801 1097 return (dl_se->runtime <= 0);
aab03e05
DF
1098}
1099
faa59937
JL
1100extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1101
c52f14d3
LA
1102/*
1103 * This function implements the GRUB accounting rule:
1104 * according to the GRUB reclaiming algorithm, the runtime is
daec5798
LA
1105 * not decreased as "dq = -dt", but as
1106 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1107 * where u is the utilization of the task, Umax is the maximum reclaimable
1108 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1109 * as the difference between the "total runqueue utilization" and the
1110 * runqueue active utilization, and Uextra is the (per runqueue) extra
1111 * reclaimable utilization.
9f0d1a50 1112 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
daec5798
LA
1113 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1114 * BW_SHIFT.
1115 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1116 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1117 * Since delta is a 64 bit variable, to have an overflow its value
1118 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1119 * So, overflow is not an issue here.
c52f14d3 1120 */
3febfc8a 1121static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
c52f14d3 1122{
9f0d1a50
LA
1123 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1124 u64 u_act;
daec5798 1125 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
c52f14d3 1126
9f0d1a50 1127 /*
daec5798
LA
1128 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1129 * we compare u_inact + rq->dl.extra_bw with
1130 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1131 * u_inact + rq->dl.extra_bw can be larger than
1132 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1133 * leading to wrong results)
9f0d1a50 1134 */
daec5798
LA
1135 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1136 u_act = u_act_min;
9f0d1a50 1137 else
daec5798 1138 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
9f0d1a50
LA
1139
1140 return (delta * u_act) >> BW_SHIFT;
c52f14d3
LA
1141}
1142
aab03e05
DF
1143/*
1144 * Update the current task's runtime statistics (provided it is still
1145 * a -deadline task and has not been removed from the dl_rq).
1146 */
1147static void update_curr_dl(struct rq *rq)
1148{
1149 struct task_struct *curr = rq->curr;
1150 struct sched_dl_entity *dl_se = &curr->dl;
07881166
JL
1151 u64 delta_exec, scaled_delta_exec;
1152 int cpu = cpu_of(rq);
6fe0ce1e 1153 u64 now;
aab03e05
DF
1154
1155 if (!dl_task(curr) || !on_dl_rq(dl_se))
1156 return;
1157
1158 /*
1159 * Consumed budget is computed considering the time as
1160 * observed by schedulable tasks (excluding time spent
1161 * in hardirq context, etc.). Deadlines are instead
1162 * computed using hard walltime. This seems to be the more
1163 * natural solution, but the full ramifications of this
1164 * approach need further study.
1165 */
6fe0ce1e
WY
1166 now = rq_clock_task(rq);
1167 delta_exec = now - curr->se.exec_start;
48be3a67
PZ
1168 if (unlikely((s64)delta_exec <= 0)) {
1169 if (unlikely(dl_se->dl_yielded))
1170 goto throttle;
734ff2a7 1171 return;
48be3a67 1172 }
aab03e05
DF
1173
1174 schedstat_set(curr->se.statistics.exec_max,
1175 max(curr->se.statistics.exec_max, delta_exec));
1176
1177 curr->se.sum_exec_runtime += delta_exec;
1178 account_group_exec_runtime(curr, delta_exec);
1179
6fe0ce1e 1180 curr->se.exec_start = now;
d2cc5ed6 1181 cgroup_account_cputime(curr, delta_exec);
aab03e05 1182
239be4a9
DF
1183 sched_rt_avg_update(rq, delta_exec);
1184
794a56eb
JL
1185 if (dl_entity_is_special(dl_se))
1186 return;
1187
07881166
JL
1188 /*
1189 * For tasks that participate in GRUB, we implement GRUB-PA: the
1190 * spare reclaimed bandwidth is used to clock down frequency.
1191 *
1192 * For the others, we still need to scale reservation parameters
1193 * according to current frequency and CPU maximum capacity.
1194 */
1195 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1196 scaled_delta_exec = grub_reclaim(delta_exec,
1197 rq,
1198 &curr->dl);
1199 } else {
1200 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1201 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1202
1203 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1204 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1205 }
1206
1207 dl_se->runtime -= scaled_delta_exec;
48be3a67
PZ
1208
1209throttle:
1210 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1019a359 1211 dl_se->dl_throttled = 1;
34be3930
JL
1212
1213 /* If requested, inform the user about runtime overruns. */
1214 if (dl_runtime_exceeded(dl_se) &&
1215 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1216 dl_se->dl_overrun = 1;
1217
aab03e05 1218 __dequeue_task_dl(rq, curr, 0);
a649f237 1219 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
1220 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1221
1222 if (!is_leftmost(curr, &rq->dl))
8875125e 1223 resched_curr(rq);
aab03e05 1224 }
1724813d
PZ
1225
1226 /*
1227 * Because -- for now -- we share the rt bandwidth, we need to
1228 * account our runtime there too, otherwise actual rt tasks
1229 * would be able to exceed the shared quota.
1230 *
1231 * Account to the root rt group for now.
1232 *
1233 * The solution we're working towards is having the RT groups scheduled
1234 * using deadline servers -- however there's a few nasties to figure
1235 * out before that can happen.
1236 */
1237 if (rt_bandwidth_enabled()) {
1238 struct rt_rq *rt_rq = &rq->rt;
1239
1240 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
1241 /*
1242 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
1243 * have our own CBS to keep us inline; only account when RT
1244 * bandwidth is relevant.
1724813d 1245 */
faa59937
JL
1246 if (sched_rt_bandwidth_account(rt_rq))
1247 rt_rq->rt_time += delta_exec;
1724813d
PZ
1248 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1249 }
aab03e05
DF
1250}
1251
209a0cbd
LA
1252static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1253{
1254 struct sched_dl_entity *dl_se = container_of(timer,
1255 struct sched_dl_entity,
1256 inactive_timer);
1257 struct task_struct *p = dl_task_of(dl_se);
1258 struct rq_flags rf;
1259 struct rq *rq;
1260
1261 rq = task_rq_lock(p, &rf);
1262
ecda2b66
JL
1263 sched_clock_tick();
1264 update_rq_clock(rq);
1265
209a0cbd 1266 if (!dl_task(p) || p->state == TASK_DEAD) {
387e3130
LA
1267 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1268
209a0cbd 1269 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
794a56eb
JL
1270 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1271 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
209a0cbd
LA
1272 dl_se->dl_non_contending = 0;
1273 }
387e3130
LA
1274
1275 raw_spin_lock(&dl_b->lock);
8c0944ce 1276 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
387e3130 1277 raw_spin_unlock(&dl_b->lock);
209a0cbd
LA
1278 __dl_clear_params(p);
1279
1280 goto unlock;
1281 }
1282 if (dl_se->dl_non_contending == 0)
1283 goto unlock;
1284
794a56eb 1285 sub_running_bw(dl_se, &rq->dl);
209a0cbd
LA
1286 dl_se->dl_non_contending = 0;
1287unlock:
1288 task_rq_unlock(rq, p, &rf);
1289 put_task_struct(p);
1290
1291 return HRTIMER_NORESTART;
1292}
1293
1294void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1295{
1296 struct hrtimer *timer = &dl_se->inactive_timer;
1297
1298 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1299 timer->function = inactive_task_timer;
1300}
1301
1baca4ce
JL
1302#ifdef CONFIG_SMP
1303
1baca4ce
JL
1304static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1305{
1306 struct rq *rq = rq_of_dl_rq(dl_rq);
1307
1308 if (dl_rq->earliest_dl.curr == 0 ||
1309 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 1310 dl_rq->earliest_dl.curr = deadline;
d8206bb3 1311 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1baca4ce
JL
1312 }
1313}
1314
1315static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1316{
1317 struct rq *rq = rq_of_dl_rq(dl_rq);
1318
1319 /*
1320 * Since we may have removed our earliest (and/or next earliest)
1321 * task we must recompute them.
1322 */
1323 if (!dl_rq->dl_nr_running) {
1324 dl_rq->earliest_dl.curr = 0;
1325 dl_rq->earliest_dl.next = 0;
d8206bb3 1326 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1baca4ce 1327 } else {
2161573e 1328 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1baca4ce
JL
1329 struct sched_dl_entity *entry;
1330
1331 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1332 dl_rq->earliest_dl.curr = entry->deadline;
d8206bb3 1333 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1baca4ce
JL
1334 }
1335}
1336
1337#else
1338
1339static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1341
1342#endif /* CONFIG_SMP */
1343
1344static inline
1345void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1346{
1347 int prio = dl_task_of(dl_se)->prio;
1348 u64 deadline = dl_se->deadline;
1349
1350 WARN_ON(!dl_prio(prio));
1351 dl_rq->dl_nr_running++;
72465447 1352 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1353
1354 inc_dl_deadline(dl_rq, deadline);
1355 inc_dl_migration(dl_se, dl_rq);
1356}
1357
1358static inline
1359void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1360{
1361 int prio = dl_task_of(dl_se)->prio;
1362
1363 WARN_ON(!dl_prio(prio));
1364 WARN_ON(!dl_rq->dl_nr_running);
1365 dl_rq->dl_nr_running--;
72465447 1366 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1367
1368 dec_dl_deadline(dl_rq, dl_se->deadline);
1369 dec_dl_migration(dl_se, dl_rq);
1370}
1371
aab03e05
DF
1372static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1373{
1374 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2161573e 1375 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
aab03e05
DF
1376 struct rb_node *parent = NULL;
1377 struct sched_dl_entity *entry;
1378 int leftmost = 1;
1379
1380 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1381
1382 while (*link) {
1383 parent = *link;
1384 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1385 if (dl_time_before(dl_se->deadline, entry->deadline))
1386 link = &parent->rb_left;
1387 else {
1388 link = &parent->rb_right;
1389 leftmost = 0;
1390 }
1391 }
1392
aab03e05 1393 rb_link_node(&dl_se->rb_node, parent, link);
2161573e 1394 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
aab03e05 1395
1baca4ce 1396 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1397}
1398
1399static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1400{
1401 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1402
1403 if (RB_EMPTY_NODE(&dl_se->rb_node))
1404 return;
1405
2161573e 1406 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
aab03e05
DF
1407 RB_CLEAR_NODE(&dl_se->rb_node);
1408
1baca4ce 1409 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1410}
1411
1412static void
2d3d891d
DF
1413enqueue_dl_entity(struct sched_dl_entity *dl_se,
1414 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
1415{
1416 BUG_ON(on_dl_rq(dl_se));
1417
1418 /*
1419 * If this is a wakeup or a new instance, the scheduling
1420 * parameters of the task might need updating. Otherwise,
1421 * we want a replenishment of its runtime.
1422 */
e36d8677 1423 if (flags & ENQUEUE_WAKEUP) {
8fd27231 1424 task_contending(dl_se, flags);
2d3d891d 1425 update_dl_entity(dl_se, pi_se);
e36d8677 1426 } else if (flags & ENQUEUE_REPLENISH) {
6a503c3b 1427 replenish_dl_entity(dl_se, pi_se);
295d6d5e
LA
1428 } else if ((flags & ENQUEUE_RESTORE) &&
1429 dl_time_before(dl_se->deadline,
1430 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1431 setup_new_dl_entity(dl_se);
e36d8677 1432 }
aab03e05
DF
1433
1434 __enqueue_dl_entity(dl_se);
1435}
1436
1437static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1438{
1439 __dequeue_dl_entity(dl_se);
1440}
1441
1442static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1443{
2d3d891d
DF
1444 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1445 struct sched_dl_entity *pi_se = &p->dl;
1446
1447 /*
193be41e
JF
1448 * Use the scheduling parameters of the top pi-waiter task if:
1449 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1450 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1451 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1452 * boosted due to a SCHED_DEADLINE pi-waiter).
1453 * Otherwise we keep our runtime and deadline.
2d3d891d 1454 */
193be41e 1455 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
2d3d891d 1456 pi_se = &pi_task->dl;
64be6f1f
JL
1457 } else if (!dl_prio(p->normal_prio)) {
1458 /*
1459 * Special case in which we have a !SCHED_DEADLINE task
193be41e 1460 * that is going to be deboosted, but exceeds its
64be6f1f
JL
1461 * runtime while doing so. No point in replenishing
1462 * it, as it's going to return back to its original
1463 * scheduling class after this.
1464 */
1465 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1466 return;
1467 }
2d3d891d 1468
df8eac8c
DBO
1469 /*
1470 * Check if a constrained deadline task was activated
1471 * after the deadline but before the next period.
1472 * If that is the case, the task will be throttled and
1473 * the replenishment timer will be set to the next period.
1474 */
3effcb42 1475 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
df8eac8c
DBO
1476 dl_check_constrained_dl(&p->dl);
1477
8fd27231 1478 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
794a56eb
JL
1479 add_rq_bw(&p->dl, &rq->dl);
1480 add_running_bw(&p->dl, &rq->dl);
8fd27231 1481 }
e36d8677 1482
aab03e05 1483 /*
e36d8677 1484 * If p is throttled, we do not enqueue it. In fact, if it exhausted
aab03e05
DF
1485 * its budget it needs a replenishment and, since it now is on
1486 * its rq, the bandwidth timer callback (which clearly has not
1487 * run yet) will take care of this.
e36d8677
LA
1488 * However, the active utilization does not depend on the fact
1489 * that the task is on the runqueue or not (but depends on the
1490 * task's state - in GRUB parlance, "inactive" vs "active contending").
1491 * In other words, even if a task is throttled its utilization must
1492 * be counted in the active utilization; hence, we need to call
1493 * add_running_bw().
aab03e05 1494 */
e36d8677 1495 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
209a0cbd 1496 if (flags & ENQUEUE_WAKEUP)
8fd27231 1497 task_contending(&p->dl, flags);
209a0cbd 1498
aab03e05 1499 return;
e36d8677 1500 }
aab03e05 1501
2d3d891d 1502 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce 1503
4b53a341 1504 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1baca4ce 1505 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1506}
1507
1508static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1509{
1510 dequeue_dl_entity(&p->dl);
1baca4ce 1511 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
1512}
1513
1514static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1515{
1516 update_curr_dl(rq);
1517 __dequeue_task_dl(rq, p, flags);
e36d8677 1518
8fd27231 1519 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
794a56eb
JL
1520 sub_running_bw(&p->dl, &rq->dl);
1521 sub_rq_bw(&p->dl, &rq->dl);
8fd27231 1522 }
e36d8677
LA
1523
1524 /*
209a0cbd
LA
1525 * This check allows to start the inactive timer (or to immediately
1526 * decrease the active utilization, if needed) in two cases:
e36d8677
LA
1527 * when the task blocks and when it is terminating
1528 * (p->state == TASK_DEAD). We can handle the two cases in the same
1529 * way, because from GRUB's point of view the same thing is happening
1530 * (the task moves from "active contending" to "active non contending"
1531 * or "inactive")
1532 */
1533 if (flags & DEQUEUE_SLEEP)
209a0cbd 1534 task_non_contending(p);
aab03e05
DF
1535}
1536
1537/*
1538 * Yield task semantic for -deadline tasks is:
1539 *
1540 * get off from the CPU until our next instance, with
1541 * a new runtime. This is of little use now, since we
1542 * don't have a bandwidth reclaiming mechanism. Anyway,
1543 * bandwidth reclaiming is planned for the future, and
1544 * yield_task_dl will indicate that some spare budget
1545 * is available for other task instances to use it.
1546 */
1547static void yield_task_dl(struct rq *rq)
1548{
aab03e05
DF
1549 /*
1550 * We make the task go to sleep until its current deadline by
1551 * forcing its runtime to zero. This way, update_curr_dl() stops
1552 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1553 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05 1554 */
48be3a67
PZ
1555 rq->curr->dl.dl_yielded = 1;
1556
6f1607f1 1557 update_rq_clock(rq);
aab03e05 1558 update_curr_dl(rq);
44fb085b
WL
1559 /*
1560 * Tell update_rq_clock() that we've just updated,
1561 * so we don't do microscopic update in schedule()
1562 * and double the fastpath cost.
1563 */
adcc8da8 1564 rq_clock_skip_update(rq);
aab03e05
DF
1565}
1566
1baca4ce
JL
1567#ifdef CONFIG_SMP
1568
1569static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1570
1571static int
1572select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1573{
1574 struct task_struct *curr;
1575 struct rq *rq;
1576
1d7e974c 1577 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1578 goto out;
1579
1580 rq = cpu_rq(cpu);
1581
1582 rcu_read_lock();
316c1608 1583 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1584
1585 /*
1586 * If we are dealing with a -deadline task, we must
1587 * decide where to wake it up.
1588 * If it has a later deadline and the current task
1589 * on this rq can't move (provided the waking task
1590 * can!) we prefer to send it somewhere else. On the
1591 * other hand, if it has a shorter deadline, we
1592 * try to make it stay here, it might be important.
1593 */
1594 if (unlikely(dl_task(curr)) &&
4b53a341 1595 (curr->nr_cpus_allowed < 2 ||
1baca4ce 1596 !dl_entity_preempt(&p->dl, &curr->dl)) &&
4b53a341 1597 (p->nr_cpus_allowed > 1)) {
1baca4ce
JL
1598 int target = find_later_rq(p);
1599
9d514262 1600 if (target != -1 &&
5aa50507
LA
1601 (dl_time_before(p->dl.deadline,
1602 cpu_rq(target)->dl.earliest_dl.curr) ||
1603 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1604 cpu = target;
1605 }
1606 rcu_read_unlock();
1607
1608out:
1609 return cpu;
1610}
1611
209a0cbd
LA
1612static void migrate_task_rq_dl(struct task_struct *p)
1613{
1614 struct rq *rq;
1615
8fd27231 1616 if (p->state != TASK_WAKING)
209a0cbd
LA
1617 return;
1618
1619 rq = task_rq(p);
1620 /*
1621 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1622 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1623 * rq->lock is not... So, lock it
1624 */
1625 raw_spin_lock(&rq->lock);
8fd27231 1626 if (p->dl.dl_non_contending) {
794a56eb 1627 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
1628 p->dl.dl_non_contending = 0;
1629 /*
1630 * If the timer handler is currently running and the
1631 * timer cannot be cancelled, inactive_task_timer()
1632 * will see that dl_not_contending is not set, and
1633 * will not touch the rq's active utilization,
1634 * so we are still safe.
1635 */
1636 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1637 put_task_struct(p);
1638 }
794a56eb 1639 sub_rq_bw(&p->dl, &rq->dl);
209a0cbd
LA
1640 raw_spin_unlock(&rq->lock);
1641}
1642
1baca4ce
JL
1643static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1644{
1645 /*
1646 * Current can't be migrated, useless to reschedule,
1647 * let's hope p can move out.
1648 */
4b53a341 1649 if (rq->curr->nr_cpus_allowed == 1 ||
3261ed0b 1650 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1baca4ce
JL
1651 return;
1652
1653 /*
1654 * p is migratable, so let's not schedule it and
1655 * see if it is pushed or pulled somewhere else.
1656 */
4b53a341 1657 if (p->nr_cpus_allowed != 1 &&
3261ed0b 1658 cpudl_find(&rq->rd->cpudl, p, NULL))
1baca4ce
JL
1659 return;
1660
8875125e 1661 resched_curr(rq);
1baca4ce
JL
1662}
1663
1664#endif /* CONFIG_SMP */
1665
aab03e05
DF
1666/*
1667 * Only called when both the current and waking task are -deadline
1668 * tasks.
1669 */
1670static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1671 int flags)
1672{
1baca4ce 1673 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1674 resched_curr(rq);
1baca4ce
JL
1675 return;
1676 }
1677
1678#ifdef CONFIG_SMP
1679 /*
1680 * In the unlikely case current and p have the same deadline
1681 * let us try to decide what's the best thing to do...
1682 */
332ac17e
DF
1683 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1684 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1685 check_preempt_equal_dl(rq, p);
1686#endif /* CONFIG_SMP */
aab03e05
DF
1687}
1688
1689#ifdef CONFIG_SCHED_HRTICK
1690static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1691{
177ef2a6 1692 hrtick_start(rq, p->dl.runtime);
aab03e05 1693}
36ce9881
WL
1694#else /* !CONFIG_SCHED_HRTICK */
1695static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1696{
1697}
aab03e05
DF
1698#endif
1699
1700static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1701 struct dl_rq *dl_rq)
1702{
2161573e 1703 struct rb_node *left = rb_first_cached(&dl_rq->root);
aab03e05
DF
1704
1705 if (!left)
1706 return NULL;
1707
1708 return rb_entry(left, struct sched_dl_entity, rb_node);
1709}
1710
181a80d1 1711static struct task_struct *
d8ac8971 1712pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
aab03e05
DF
1713{
1714 struct sched_dl_entity *dl_se;
1715 struct task_struct *p;
1716 struct dl_rq *dl_rq;
1717
1718 dl_rq = &rq->dl;
1719
a1d9a323 1720 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1721 /*
1722 * This is OK, because current is on_cpu, which avoids it being
1723 * picked for load-balance and preemption/IRQs are still
1724 * disabled avoiding further scheduler activity on it and we're
1725 * being very careful to re-start the picking loop.
1726 */
d8ac8971 1727 rq_unpin_lock(rq, rf);
38033c37 1728 pull_dl_task(rq);
d8ac8971 1729 rq_repin_lock(rq, rf);
a1d9a323 1730 /*
176cedc4 1731 * pull_dl_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1732 * means a stop task can slip in, in which case we need to
1733 * re-start task selection.
1734 */
da0c1e65 1735 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1736 return RETRY_TASK;
1737 }
1738
734ff2a7
KT
1739 /*
1740 * When prev is DL, we may throttle it in put_prev_task().
1741 * So, we update time before we check for dl_nr_running.
1742 */
1743 if (prev->sched_class == &dl_sched_class)
1744 update_curr_dl(rq);
38033c37 1745
aab03e05
DF
1746 if (unlikely(!dl_rq->dl_nr_running))
1747 return NULL;
1748
3f1d2a31 1749 put_prev_task(rq, prev);
606dba2e 1750
aab03e05
DF
1751 dl_se = pick_next_dl_entity(rq, dl_rq);
1752 BUG_ON(!dl_se);
1753
1754 p = dl_task_of(dl_se);
1755 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1756
1757 /* Running task will never be pushed. */
71362650 1758 dequeue_pushable_dl_task(rq, p);
1baca4ce 1759
aab03e05
DF
1760 if (hrtick_enabled(rq))
1761 start_hrtick_dl(rq, p);
1baca4ce 1762
02d8ec94 1763 deadline_queue_push_tasks(rq);
1baca4ce 1764
3727e0e1
VG
1765 if (rq->curr->sched_class != &dl_sched_class)
1766 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
1767
aab03e05
DF
1768 return p;
1769}
1770
1771static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1772{
1773 update_curr_dl(rq);
1baca4ce 1774
3727e0e1 1775 update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
4b53a341 1776 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1baca4ce 1777 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1778}
1779
d84b3131
FW
1780/*
1781 * scheduler tick hitting a task of our scheduling class.
1782 *
1783 * NOTE: This function can be called remotely by the tick offload that
1784 * goes along full dynticks. Therefore no local assumption can be made
1785 * and everything must be accessed through the @rq and @curr passed in
1786 * parameters.
1787 */
aab03e05
DF
1788static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1789{
1790 update_curr_dl(rq);
1791
3727e0e1 1792 update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
a7bebf48
WL
1793 /*
1794 * Even when we have runtime, update_curr_dl() might have resulted in us
1795 * not being the leftmost task anymore. In that case NEED_RESCHED will
1796 * be set and schedule() will start a new hrtick for the next task.
1797 */
1798 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1799 is_leftmost(p, &rq->dl))
aab03e05 1800 start_hrtick_dl(rq, p);
aab03e05
DF
1801}
1802
1803static void task_fork_dl(struct task_struct *p)
1804{
1805 /*
1806 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1807 * sched_fork()
1808 */
1809}
1810
aab03e05
DF
1811static void set_curr_task_dl(struct rq *rq)
1812{
1813 struct task_struct *p = rq->curr;
1814
1815 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1816
1817 /* You can't push away the running task */
1818 dequeue_pushable_dl_task(rq, p);
1819}
1820
1821#ifdef CONFIG_SMP
1822
1823/* Only try algorithms three times */
1824#define DL_MAX_TRIES 3
1825
1826static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1827{
1828 if (!task_running(rq, p) &&
0c98d344 1829 cpumask_test_cpu(cpu, &p->cpus_allowed))
1baca4ce 1830 return 1;
1baca4ce
JL
1831 return 0;
1832}
1833
8b5e770e
WL
1834/*
1835 * Return the earliest pushable rq's task, which is suitable to be executed
1836 * on the CPU, NULL otherwise:
1837 */
1838static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1839{
2161573e 1840 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
8b5e770e
WL
1841 struct task_struct *p = NULL;
1842
1843 if (!has_pushable_dl_tasks(rq))
1844 return NULL;
1845
1846next_node:
1847 if (next_node) {
1848 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1849
1850 if (pick_dl_task(rq, p, cpu))
1851 return p;
1852
1853 next_node = rb_next(next_node);
1854 goto next_node;
1855 }
1856
1857 return NULL;
1858}
1859
1baca4ce
JL
1860static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1861
1862static int find_later_rq(struct task_struct *task)
1863{
1864 struct sched_domain *sd;
4ba29684 1865 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce 1866 int this_cpu = smp_processor_id();
b18c3ca1 1867 int cpu = task_cpu(task);
1baca4ce
JL
1868
1869 /* Make sure the mask is initialized first */
1870 if (unlikely(!later_mask))
1871 return -1;
1872
4b53a341 1873 if (task->nr_cpus_allowed == 1)
1baca4ce
JL
1874 return -1;
1875
91ec6778
JL
1876 /*
1877 * We have to consider system topology and task affinity
97fb7a0a 1878 * first, then we can look for a suitable CPU.
91ec6778 1879 */
3261ed0b 1880 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1baca4ce
JL
1881 return -1;
1882
1883 /*
b18c3ca1
BP
1884 * If we are here, some targets have been found, including
1885 * the most suitable which is, among the runqueues where the
1886 * current tasks have later deadlines than the task's one, the
1887 * rq with the latest possible one.
1baca4ce
JL
1888 *
1889 * Now we check how well this matches with task's
1890 * affinity and system topology.
1891 *
97fb7a0a 1892 * The last CPU where the task run is our first
1baca4ce
JL
1893 * guess, since it is most likely cache-hot there.
1894 */
1895 if (cpumask_test_cpu(cpu, later_mask))
1896 return cpu;
1897 /*
1898 * Check if this_cpu is to be skipped (i.e., it is
1899 * not in the mask) or not.
1900 */
1901 if (!cpumask_test_cpu(this_cpu, later_mask))
1902 this_cpu = -1;
1903
1904 rcu_read_lock();
1905 for_each_domain(cpu, sd) {
1906 if (sd->flags & SD_WAKE_AFFINE) {
b18c3ca1 1907 int best_cpu;
1baca4ce
JL
1908
1909 /*
1910 * If possible, preempting this_cpu is
1911 * cheaper than migrating.
1912 */
1913 if (this_cpu != -1 &&
1914 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1915 rcu_read_unlock();
1916 return this_cpu;
1917 }
1918
b18c3ca1
BP
1919 best_cpu = cpumask_first_and(later_mask,
1920 sched_domain_span(sd));
1baca4ce 1921 /*
97fb7a0a 1922 * Last chance: if a CPU being in both later_mask
b18c3ca1 1923 * and current sd span is valid, that becomes our
97fb7a0a 1924 * choice. Of course, the latest possible CPU is
b18c3ca1 1925 * already under consideration through later_mask.
1baca4ce 1926 */
b18c3ca1 1927 if (best_cpu < nr_cpu_ids) {
1baca4ce
JL
1928 rcu_read_unlock();
1929 return best_cpu;
1930 }
1931 }
1932 }
1933 rcu_read_unlock();
1934
1935 /*
1936 * At this point, all our guesses failed, we just return
1937 * 'something', and let the caller sort the things out.
1938 */
1939 if (this_cpu != -1)
1940 return this_cpu;
1941
1942 cpu = cpumask_any(later_mask);
1943 if (cpu < nr_cpu_ids)
1944 return cpu;
1945
1946 return -1;
1947}
1948
1949/* Locks the rq it finds */
1950static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1951{
1952 struct rq *later_rq = NULL;
1953 int tries;
1954 int cpu;
1955
1956 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1957 cpu = find_later_rq(task);
1958
1959 if ((cpu == -1) || (cpu == rq->cpu))
1960 break;
1961
1962 later_rq = cpu_rq(cpu);
1963
5aa50507
LA
1964 if (later_rq->dl.dl_nr_running &&
1965 !dl_time_before(task->dl.deadline,
9d514262
WL
1966 later_rq->dl.earliest_dl.curr)) {
1967 /*
1968 * Target rq has tasks of equal or earlier deadline,
1969 * retrying does not release any lock and is unlikely
1970 * to yield a different result.
1971 */
1972 later_rq = NULL;
1973 break;
1974 }
1975
1baca4ce
JL
1976 /* Retry if something changed. */
1977 if (double_lock_balance(rq, later_rq)) {
1978 if (unlikely(task_rq(task) != rq ||
0c98d344 1979 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
da0c1e65 1980 task_running(rq, task) ||
13b5ab02 1981 !dl_task(task) ||
da0c1e65 1982 !task_on_rq_queued(task))) {
1baca4ce
JL
1983 double_unlock_balance(rq, later_rq);
1984 later_rq = NULL;
1985 break;
1986 }
1987 }
1988
1989 /*
1990 * If the rq we found has no -deadline task, or
1991 * its earliest one has a later deadline than our
1992 * task, the rq is a good one.
1993 */
1994 if (!later_rq->dl.dl_nr_running ||
1995 dl_time_before(task->dl.deadline,
1996 later_rq->dl.earliest_dl.curr))
1997 break;
1998
1999 /* Otherwise we try again. */
2000 double_unlock_balance(rq, later_rq);
2001 later_rq = NULL;
2002 }
2003
2004 return later_rq;
2005}
2006
2007static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2008{
2009 struct task_struct *p;
2010
2011 if (!has_pushable_dl_tasks(rq))
2012 return NULL;
2013
2161573e 2014 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
1baca4ce
JL
2015 struct task_struct, pushable_dl_tasks);
2016
2017 BUG_ON(rq->cpu != task_cpu(p));
2018 BUG_ON(task_current(rq, p));
4b53a341 2019 BUG_ON(p->nr_cpus_allowed <= 1);
1baca4ce 2020
da0c1e65 2021 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
2022 BUG_ON(!dl_task(p));
2023
2024 return p;
2025}
2026
2027/*
2028 * See if the non running -deadline tasks on this rq
2029 * can be sent to some other CPU where they can preempt
2030 * and start executing.
2031 */
2032static int push_dl_task(struct rq *rq)
2033{
2034 struct task_struct *next_task;
2035 struct rq *later_rq;
c51b8ab5 2036 int ret = 0;
1baca4ce
JL
2037
2038 if (!rq->dl.overloaded)
2039 return 0;
2040
2041 next_task = pick_next_pushable_dl_task(rq);
2042 if (!next_task)
2043 return 0;
2044
2045retry:
2046 if (unlikely(next_task == rq->curr)) {
2047 WARN_ON(1);
2048 return 0;
2049 }
2050
2051 /*
2052 * If next_task preempts rq->curr, and rq->curr
2053 * can move away, it makes sense to just reschedule
2054 * without going further in pushing next_task.
2055 */
2056 if (dl_task(rq->curr) &&
2057 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
4b53a341 2058 rq->curr->nr_cpus_allowed > 1) {
8875125e 2059 resched_curr(rq);
1baca4ce
JL
2060 return 0;
2061 }
2062
2063 /* We might release rq lock */
2064 get_task_struct(next_task);
2065
2066 /* Will lock the rq it'll find */
2067 later_rq = find_lock_later_rq(next_task, rq);
2068 if (!later_rq) {
2069 struct task_struct *task;
2070
2071 /*
2072 * We must check all this again, since
2073 * find_lock_later_rq releases rq->lock and it is
2074 * then possible that next_task has migrated.
2075 */
2076 task = pick_next_pushable_dl_task(rq);
a776b968 2077 if (task == next_task) {
1baca4ce
JL
2078 /*
2079 * The task is still there. We don't try
97fb7a0a 2080 * again, some other CPU will pull it when ready.
1baca4ce 2081 */
1baca4ce
JL
2082 goto out;
2083 }
2084
2085 if (!task)
2086 /* No more tasks */
2087 goto out;
2088
2089 put_task_struct(next_task);
2090 next_task = task;
2091 goto retry;
2092 }
2093
2094 deactivate_task(rq, next_task, 0);
794a56eb
JL
2095 sub_running_bw(&next_task->dl, &rq->dl);
2096 sub_rq_bw(&next_task->dl, &rq->dl);
1baca4ce 2097 set_task_cpu(next_task, later_rq->cpu);
794a56eb
JL
2098 add_rq_bw(&next_task->dl, &later_rq->dl);
2099 add_running_bw(&next_task->dl, &later_rq->dl);
1baca4ce 2100 activate_task(later_rq, next_task, 0);
c51b8ab5 2101 ret = 1;
1baca4ce 2102
8875125e 2103 resched_curr(later_rq);
1baca4ce
JL
2104
2105 double_unlock_balance(rq, later_rq);
2106
2107out:
2108 put_task_struct(next_task);
2109
c51b8ab5 2110 return ret;
1baca4ce
JL
2111}
2112
2113static void push_dl_tasks(struct rq *rq)
2114{
4ffa08ed 2115 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
2116 while (push_dl_task(rq))
2117 ;
aab03e05
DF
2118}
2119
0ea60c20 2120static void pull_dl_task(struct rq *this_rq)
1baca4ce 2121{
0ea60c20 2122 int this_cpu = this_rq->cpu, cpu;
1baca4ce 2123 struct task_struct *p;
0ea60c20 2124 bool resched = false;
1baca4ce
JL
2125 struct rq *src_rq;
2126 u64 dmin = LONG_MAX;
2127
2128 if (likely(!dl_overloaded(this_rq)))
0ea60c20 2129 return;
1baca4ce
JL
2130
2131 /*
2132 * Match the barrier from dl_set_overloaded; this guarantees that if we
2133 * see overloaded we must also see the dlo_mask bit.
2134 */
2135 smp_rmb();
2136
2137 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2138 if (this_cpu == cpu)
2139 continue;
2140
2141 src_rq = cpu_rq(cpu);
2142
2143 /*
2144 * It looks racy, abd it is! However, as in sched_rt.c,
2145 * we are fine with this.
2146 */
2147 if (this_rq->dl.dl_nr_running &&
2148 dl_time_before(this_rq->dl.earliest_dl.curr,
2149 src_rq->dl.earliest_dl.next))
2150 continue;
2151
2152 /* Might drop this_rq->lock */
2153 double_lock_balance(this_rq, src_rq);
2154
2155 /*
2156 * If there are no more pullable tasks on the
2157 * rq, we're done with it.
2158 */
2159 if (src_rq->dl.dl_nr_running <= 1)
2160 goto skip;
2161
8b5e770e 2162 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
2163
2164 /*
2165 * We found a task to be pulled if:
2166 * - it preempts our current (if there's one),
2167 * - it will preempt the last one we pulled (if any).
2168 */
2169 if (p && dl_time_before(p->dl.deadline, dmin) &&
2170 (!this_rq->dl.dl_nr_running ||
2171 dl_time_before(p->dl.deadline,
2172 this_rq->dl.earliest_dl.curr))) {
2173 WARN_ON(p == src_rq->curr);
da0c1e65 2174 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
2175
2176 /*
2177 * Then we pull iff p has actually an earlier
2178 * deadline than the current task of its runqueue.
2179 */
2180 if (dl_time_before(p->dl.deadline,
2181 src_rq->curr->dl.deadline))
2182 goto skip;
2183
0ea60c20 2184 resched = true;
1baca4ce
JL
2185
2186 deactivate_task(src_rq, p, 0);
794a56eb
JL
2187 sub_running_bw(&p->dl, &src_rq->dl);
2188 sub_rq_bw(&p->dl, &src_rq->dl);
1baca4ce 2189 set_task_cpu(p, this_cpu);
794a56eb
JL
2190 add_rq_bw(&p->dl, &this_rq->dl);
2191 add_running_bw(&p->dl, &this_rq->dl);
1baca4ce
JL
2192 activate_task(this_rq, p, 0);
2193 dmin = p->dl.deadline;
2194
2195 /* Is there any other task even earlier? */
2196 }
2197skip:
2198 double_unlock_balance(this_rq, src_rq);
2199 }
2200
0ea60c20
PZ
2201 if (resched)
2202 resched_curr(this_rq);
1baca4ce
JL
2203}
2204
2205/*
2206 * Since the task is not running and a reschedule is not going to happen
2207 * anytime soon on its runqueue, we try pushing it away now.
2208 */
2209static void task_woken_dl(struct rq *rq, struct task_struct *p)
2210{
2211 if (!task_running(rq, p) &&
2212 !test_tsk_need_resched(rq->curr) &&
4b53a341 2213 p->nr_cpus_allowed > 1 &&
1baca4ce 2214 dl_task(rq->curr) &&
4b53a341 2215 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 2216 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
2217 push_dl_tasks(rq);
2218 }
2219}
2220
2221static void set_cpus_allowed_dl(struct task_struct *p,
2222 const struct cpumask *new_mask)
2223{
7f51412a 2224 struct root_domain *src_rd;
6c37067e 2225 struct rq *rq;
1baca4ce
JL
2226
2227 BUG_ON(!dl_task(p));
2228
7f51412a
JL
2229 rq = task_rq(p);
2230 src_rd = rq->rd;
2231 /*
2232 * Migrating a SCHED_DEADLINE task between exclusive
2233 * cpusets (different root_domains) entails a bandwidth
2234 * update. We already made space for us in the destination
2235 * domain (see cpuset_can_attach()).
2236 */
2237 if (!cpumask_intersects(src_rd->span, new_mask)) {
2238 struct dl_bw *src_dl_b;
2239
2240 src_dl_b = dl_bw_of(cpu_of(rq));
2241 /*
2242 * We now free resources of the root_domain we are migrating
2243 * off. In the worst case, sched_setattr() may temporary fail
2244 * until we complete the update.
2245 */
2246 raw_spin_lock(&src_dl_b->lock);
8c0944ce 2247 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
7f51412a
JL
2248 raw_spin_unlock(&src_dl_b->lock);
2249 }
2250
6c37067e 2251 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
2252}
2253
2254/* Assumes rq->lock is held */
2255static void rq_online_dl(struct rq *rq)
2256{
2257 if (rq->dl.overloaded)
2258 dl_set_overload(rq);
6bfd6d72 2259
16b26943 2260 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72 2261 if (rq->dl.dl_nr_running > 0)
d8206bb3 2262 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1baca4ce
JL
2263}
2264
2265/* Assumes rq->lock is held */
2266static void rq_offline_dl(struct rq *rq)
2267{
2268 if (rq->dl.overloaded)
2269 dl_clear_overload(rq);
6bfd6d72 2270
d8206bb3 2271 cpudl_clear(&rq->rd->cpudl, rq->cpu);
16b26943 2272 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
2273}
2274
a6c0e746 2275void __init init_sched_dl_class(void)
1baca4ce
JL
2276{
2277 unsigned int i;
2278
2279 for_each_possible_cpu(i)
2280 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2281 GFP_KERNEL, cpu_to_node(i));
2282}
2283
2284#endif /* CONFIG_SMP */
2285
aab03e05
DF
2286static void switched_from_dl(struct rq *rq, struct task_struct *p)
2287{
a649f237 2288 /*
209a0cbd
LA
2289 * task_non_contending() can start the "inactive timer" (if the 0-lag
2290 * time is in the future). If the task switches back to dl before
2291 * the "inactive timer" fires, it can continue to consume its current
2292 * runtime using its current deadline. If it stays outside of
2293 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2294 * will reset the task parameters.
a649f237 2295 */
209a0cbd
LA
2296 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2297 task_non_contending(p);
2298
8fd27231 2299 if (!task_on_rq_queued(p))
794a56eb 2300 sub_rq_bw(&p->dl, &rq->dl);
8fd27231 2301
209a0cbd
LA
2302 /*
2303 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2304 * at the 0-lag time, because the task could have been migrated
2305 * while SCHED_OTHER in the meanwhile.
2306 */
2307 if (p->dl.dl_non_contending)
2308 p->dl.dl_non_contending = 0;
a5e7be3b 2309
1baca4ce
JL
2310 /*
2311 * Since this might be the only -deadline task on the rq,
2312 * this is the right place to try to pull some other one
97fb7a0a 2313 * from an overloaded CPU, if any.
1baca4ce 2314 */
cd660911
WL
2315 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2316 return;
2317
02d8ec94 2318 deadline_queue_pull_task(rq);
aab03e05
DF
2319}
2320
1baca4ce
JL
2321/*
2322 * When switching to -deadline, we may overload the rq, then
2323 * we try to push someone off, if possible.
2324 */
aab03e05
DF
2325static void switched_to_dl(struct rq *rq, struct task_struct *p)
2326{
209a0cbd
LA
2327 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2328 put_task_struct(p);
98b0a857
JL
2329
2330 /* If p is not queued we will update its parameters at next wakeup. */
8fd27231 2331 if (!task_on_rq_queued(p)) {
794a56eb 2332 add_rq_bw(&p->dl, &rq->dl);
98b0a857 2333
8fd27231
LA
2334 return;
2335 }
72f9f3fd 2336
98b0a857 2337 if (rq->curr != p) {
1baca4ce 2338#ifdef CONFIG_SMP
4b53a341 2339 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
02d8ec94 2340 deadline_queue_push_tasks(rq);
619bd4a7 2341#endif
9916e214
PZ
2342 if (dl_task(rq->curr))
2343 check_preempt_curr_dl(rq, p, 0);
2344 else
2345 resched_curr(rq);
aab03e05
DF
2346 }
2347}
2348
1baca4ce
JL
2349/*
2350 * If the scheduling parameters of a -deadline task changed,
2351 * a push or pull operation might be needed.
2352 */
aab03e05
DF
2353static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2354 int oldprio)
2355{
da0c1e65 2356 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 2357#ifdef CONFIG_SMP
1baca4ce
JL
2358 /*
2359 * This might be too much, but unfortunately
2360 * we don't have the old deadline value, and
2361 * we can't argue if the task is increasing
2362 * or lowering its prio, so...
2363 */
2364 if (!rq->dl.overloaded)
02d8ec94 2365 deadline_queue_pull_task(rq);
1baca4ce
JL
2366
2367 /*
2368 * If we now have a earlier deadline task than p,
2369 * then reschedule, provided p is still on this
2370 * runqueue.
2371 */
9916e214 2372 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 2373 resched_curr(rq);
1baca4ce
JL
2374#else
2375 /*
2376 * Again, we don't know if p has a earlier
2377 * or later deadline, so let's blindly set a
2378 * (maybe not needed) rescheduling point.
2379 */
8875125e 2380 resched_curr(rq);
1baca4ce 2381#endif /* CONFIG_SMP */
801ccdbf 2382 }
aab03e05 2383}
aab03e05
DF
2384
2385const struct sched_class dl_sched_class = {
2386 .next = &rt_sched_class,
2387 .enqueue_task = enqueue_task_dl,
2388 .dequeue_task = dequeue_task_dl,
2389 .yield_task = yield_task_dl,
2390
2391 .check_preempt_curr = check_preempt_curr_dl,
2392
2393 .pick_next_task = pick_next_task_dl,
2394 .put_prev_task = put_prev_task_dl,
2395
2396#ifdef CONFIG_SMP
2397 .select_task_rq = select_task_rq_dl,
209a0cbd 2398 .migrate_task_rq = migrate_task_rq_dl,
1baca4ce
JL
2399 .set_cpus_allowed = set_cpus_allowed_dl,
2400 .rq_online = rq_online_dl,
2401 .rq_offline = rq_offline_dl,
1baca4ce 2402 .task_woken = task_woken_dl,
aab03e05
DF
2403#endif
2404
2405 .set_curr_task = set_curr_task_dl,
2406 .task_tick = task_tick_dl,
2407 .task_fork = task_fork_dl,
aab03e05
DF
2408
2409 .prio_changed = prio_changed_dl,
2410 .switched_from = switched_from_dl,
2411 .switched_to = switched_to_dl,
6e998916
SG
2412
2413 .update_curr = update_curr_dl,
aab03e05 2414};
acb32132 2415
06a76fe0
NP
2416int sched_dl_global_validate(void)
2417{
2418 u64 runtime = global_rt_runtime();
2419 u64 period = global_rt_period();
2420 u64 new_bw = to_ratio(period, runtime);
2421 struct dl_bw *dl_b;
2422 int cpu, ret = 0;
2423 unsigned long flags;
2424
2425 /*
2426 * Here we want to check the bandwidth not being set to some
2427 * value smaller than the currently allocated bandwidth in
2428 * any of the root_domains.
2429 *
2430 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2431 * cycling on root_domains... Discussion on different/better
2432 * solutions is welcome!
2433 */
2434 for_each_possible_cpu(cpu) {
2435 rcu_read_lock_sched();
2436 dl_b = dl_bw_of(cpu);
2437
2438 raw_spin_lock_irqsave(&dl_b->lock, flags);
2439 if (new_bw < dl_b->total_bw)
2440 ret = -EBUSY;
2441 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2442
2443 rcu_read_unlock_sched();
2444
2445 if (ret)
2446 break;
2447 }
2448
2449 return ret;
2450}
2451
2452void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2453{
2454 if (global_rt_runtime() == RUNTIME_INF) {
2455 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2456 dl_rq->extra_bw = 1 << BW_SHIFT;
2457 } else {
2458 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2459 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2460 dl_rq->extra_bw = to_ratio(global_rt_period(),
2461 global_rt_runtime());
2462 }
2463}
2464
2465void sched_dl_do_global(void)
2466{
2467 u64 new_bw = -1;
2468 struct dl_bw *dl_b;
2469 int cpu;
2470 unsigned long flags;
2471
2472 def_dl_bandwidth.dl_period = global_rt_period();
2473 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2474
2475 if (global_rt_runtime() != RUNTIME_INF)
2476 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2477
2478 /*
2479 * FIXME: As above...
2480 */
2481 for_each_possible_cpu(cpu) {
2482 rcu_read_lock_sched();
2483 dl_b = dl_bw_of(cpu);
2484
2485 raw_spin_lock_irqsave(&dl_b->lock, flags);
2486 dl_b->bw = new_bw;
2487 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2488
2489 rcu_read_unlock_sched();
2490 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2491 }
2492}
2493
2494/*
2495 * We must be sure that accepting a new task (or allowing changing the
2496 * parameters of an existing one) is consistent with the bandwidth
2497 * constraints. If yes, this function also accordingly updates the currently
2498 * allocated bandwidth to reflect the new situation.
2499 *
2500 * This function is called while holding p's rq->lock.
2501 */
2502int sched_dl_overflow(struct task_struct *p, int policy,
2503 const struct sched_attr *attr)
2504{
2505 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2506 u64 period = attr->sched_period ?: attr->sched_deadline;
2507 u64 runtime = attr->sched_runtime;
2508 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2509 int cpus, err = -1;
2510
794a56eb
JL
2511 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2512 return 0;
2513
06a76fe0
NP
2514 /* !deadline task may carry old deadline bandwidth */
2515 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2516 return 0;
2517
2518 /*
2519 * Either if a task, enters, leave, or stays -deadline but changes
2520 * its parameters, we may need to update accordingly the total
2521 * allocated bandwidth of the container.
2522 */
2523 raw_spin_lock(&dl_b->lock);
2524 cpus = dl_bw_cpus(task_cpu(p));
2525 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2526 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2527 if (hrtimer_active(&p->dl.inactive_timer))
8c0944ce 2528 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2529 __dl_add(dl_b, new_bw, cpus);
2530 err = 0;
2531 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2532 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2533 /*
2534 * XXX this is slightly incorrect: when the task
2535 * utilization decreases, we should delay the total
2536 * utilization change until the task's 0-lag point.
2537 * But this would require to set the task's "inactive
2538 * timer" when the task is not inactive.
2539 */
8c0944ce 2540 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2541 __dl_add(dl_b, new_bw, cpus);
2542 dl_change_utilization(p, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 /*
2546 * Do not decrease the total deadline utilization here,
2547 * switched_from_dl() will take care to do it at the correct
2548 * (0-lag) time.
2549 */
2550 err = 0;
2551 }
2552 raw_spin_unlock(&dl_b->lock);
2553
2554 return err;
2555}
2556
2557/*
2558 * This function initializes the sched_dl_entity of a newly becoming
2559 * SCHED_DEADLINE task.
2560 *
2561 * Only the static values are considered here, the actual runtime and the
2562 * absolute deadline will be properly calculated when the task is enqueued
2563 * for the first time with its new policy.
2564 */
2565void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2566{
2567 struct sched_dl_entity *dl_se = &p->dl;
2568
2569 dl_se->dl_runtime = attr->sched_runtime;
2570 dl_se->dl_deadline = attr->sched_deadline;
2571 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2572 dl_se->flags = attr->sched_flags;
2573 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2574 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2575}
2576
2577void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2578{
2579 struct sched_dl_entity *dl_se = &p->dl;
2580
2581 attr->sched_priority = p->rt_priority;
2582 attr->sched_runtime = dl_se->dl_runtime;
2583 attr->sched_deadline = dl_se->dl_deadline;
2584 attr->sched_period = dl_se->dl_period;
2585 attr->sched_flags = dl_se->flags;
2586}
2587
2588/*
2589 * This function validates the new parameters of a -deadline task.
2590 * We ask for the deadline not being zero, and greater or equal
2591 * than the runtime, as well as the period of being zero or
2592 * greater than deadline. Furthermore, we have to be sure that
2593 * user parameters are above the internal resolution of 1us (we
2594 * check sched_runtime only since it is always the smaller one) and
2595 * below 2^63 ns (we have to check both sched_deadline and
2596 * sched_period, as the latter can be zero).
2597 */
2598bool __checkparam_dl(const struct sched_attr *attr)
2599{
794a56eb
JL
2600 /* special dl tasks don't actually use any parameter */
2601 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2602 return true;
2603
06a76fe0
NP
2604 /* deadline != 0 */
2605 if (attr->sched_deadline == 0)
2606 return false;
2607
2608 /*
2609 * Since we truncate DL_SCALE bits, make sure we're at least
2610 * that big.
2611 */
2612 if (attr->sched_runtime < (1ULL << DL_SCALE))
2613 return false;
2614
2615 /*
2616 * Since we use the MSB for wrap-around and sign issues, make
2617 * sure it's not set (mind that period can be equal to zero).
2618 */
2619 if (attr->sched_deadline & (1ULL << 63) ||
2620 attr->sched_period & (1ULL << 63))
2621 return false;
2622
2623 /* runtime <= deadline <= period (if period != 0) */
2624 if ((attr->sched_period != 0 &&
2625 attr->sched_period < attr->sched_deadline) ||
2626 attr->sched_deadline < attr->sched_runtime)
2627 return false;
2628
2629 return true;
2630}
2631
2632/*
2633 * This function clears the sched_dl_entity static params.
2634 */
2635void __dl_clear_params(struct task_struct *p)
2636{
2637 struct sched_dl_entity *dl_se = &p->dl;
2638
97fb7a0a
IM
2639 dl_se->dl_runtime = 0;
2640 dl_se->dl_deadline = 0;
2641 dl_se->dl_period = 0;
2642 dl_se->flags = 0;
2643 dl_se->dl_bw = 0;
2644 dl_se->dl_density = 0;
06a76fe0 2645
97fb7a0a
IM
2646 dl_se->dl_throttled = 0;
2647 dl_se->dl_yielded = 0;
2648 dl_se->dl_non_contending = 0;
2649 dl_se->dl_overrun = 0;
06a76fe0
NP
2650}
2651
2652bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2653{
2654 struct sched_dl_entity *dl_se = &p->dl;
2655
2656 if (dl_se->dl_runtime != attr->sched_runtime ||
2657 dl_se->dl_deadline != attr->sched_deadline ||
2658 dl_se->dl_period != attr->sched_period ||
2659 dl_se->flags != attr->sched_flags)
2660 return true;
2661
2662 return false;
2663}
2664
2665#ifdef CONFIG_SMP
2666int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2667{
97fb7a0a 2668 unsigned int dest_cpu;
06a76fe0
NP
2669 struct dl_bw *dl_b;
2670 bool overflow;
2671 int cpus, ret;
2672 unsigned long flags;
2673
97fb7a0a
IM
2674 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2675
06a76fe0
NP
2676 rcu_read_lock_sched();
2677 dl_b = dl_bw_of(dest_cpu);
2678 raw_spin_lock_irqsave(&dl_b->lock, flags);
2679 cpus = dl_bw_cpus(dest_cpu);
2680 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
97fb7a0a 2681 if (overflow) {
06a76fe0 2682 ret = -EBUSY;
97fb7a0a 2683 } else {
06a76fe0
NP
2684 /*
2685 * We reserve space for this task in the destination
2686 * root_domain, as we can't fail after this point.
2687 * We will free resources in the source root_domain
2688 * later on (see set_cpus_allowed_dl()).
2689 */
2690 __dl_add(dl_b, p->dl.dl_bw, cpus);
2691 ret = 0;
2692 }
2693 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2694 rcu_read_unlock_sched();
97fb7a0a 2695
06a76fe0
NP
2696 return ret;
2697}
2698
2699int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2700 const struct cpumask *trial)
2701{
2702 int ret = 1, trial_cpus;
2703 struct dl_bw *cur_dl_b;
2704 unsigned long flags;
2705
2706 rcu_read_lock_sched();
2707 cur_dl_b = dl_bw_of(cpumask_any(cur));
2708 trial_cpus = cpumask_weight(trial);
2709
2710 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2711 if (cur_dl_b->bw != -1 &&
2712 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2713 ret = 0;
2714 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2715 rcu_read_unlock_sched();
97fb7a0a 2716
06a76fe0
NP
2717 return ret;
2718}
2719
2720bool dl_cpu_busy(unsigned int cpu)
2721{
2722 unsigned long flags;
2723 struct dl_bw *dl_b;
2724 bool overflow;
2725 int cpus;
2726
2727 rcu_read_lock_sched();
2728 dl_b = dl_bw_of(cpu);
2729 raw_spin_lock_irqsave(&dl_b->lock, flags);
2730 cpus = dl_bw_cpus(cpu);
2731 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2732 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2733 rcu_read_unlock_sched();
97fb7a0a 2734
06a76fe0
NP
2735 return overflow;
2736}
2737#endif
2738
acb32132 2739#ifdef CONFIG_SCHED_DEBUG
acb32132
WL
2740void print_dl_stats(struct seq_file *m, int cpu)
2741{
2742 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2743}
2744#endif /* CONFIG_SCHED_DEBUG */