Merge tag 'kvm-s390-master-4.16-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / sched / deadline.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
aab03e05
DF
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
1baca4ce 14 * Juri Lelli <juri.lelli@gmail.com>,
aab03e05
DF
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18#include "sched.h"
19
6bfd6d72 20#include <linux/slab.h>
06a76fe0 21#include <uapi/linux/sched/types.h>
6bfd6d72 22
332ac17e
DF
23struct dl_bandwidth def_dl_bandwidth;
24
aab03e05
DF
25static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
26{
27 return container_of(dl_se, struct task_struct, dl);
28}
29
30static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
31{
32 return container_of(dl_rq, struct rq, dl);
33}
34
35static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
36{
37 struct task_struct *p = dl_task_of(dl_se);
38 struct rq *rq = task_rq(p);
39
40 return &rq->dl;
41}
42
43static inline int on_dl_rq(struct sched_dl_entity *dl_se)
44{
45 return !RB_EMPTY_NODE(&dl_se->rb_node);
46}
47
06a76fe0
NP
48#ifdef CONFIG_SMP
49static inline struct dl_bw *dl_bw_of(int i)
50{
51 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
52 "sched RCU must be held");
53 return &cpu_rq(i)->rd->dl_bw;
54}
55
56static inline int dl_bw_cpus(int i)
57{
58 struct root_domain *rd = cpu_rq(i)->rd;
59 int cpus = 0;
60
61 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
62 "sched RCU must be held");
63 for_each_cpu_and(i, rd->span, cpu_active_mask)
64 cpus++;
65
66 return cpus;
67}
68#else
69static inline struct dl_bw *dl_bw_of(int i)
70{
71 return &cpu_rq(i)->dl.dl_bw;
72}
73
74static inline int dl_bw_cpus(int i)
75{
76 return 1;
77}
78#endif
79
e36d8677 80static inline
794a56eb 81void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
82{
83 u64 old = dl_rq->running_bw;
84
85 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
86 dl_rq->running_bw += dl_bw;
87 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
8fd27231 88 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
e0367b12
JL
89 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
90 cpufreq_update_util(rq_of_dl_rq(dl_rq), SCHED_CPUFREQ_DL);
e36d8677
LA
91}
92
93static inline
794a56eb 94void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
e36d8677
LA
95{
96 u64 old = dl_rq->running_bw;
97
98 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
99 dl_rq->running_bw -= dl_bw;
100 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
101 if (dl_rq->running_bw > old)
102 dl_rq->running_bw = 0;
e0367b12
JL
103 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
104 cpufreq_update_util(rq_of_dl_rq(dl_rq), SCHED_CPUFREQ_DL);
e36d8677
LA
105}
106
8fd27231 107static inline
794a56eb 108void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
109{
110 u64 old = dl_rq->this_bw;
111
112 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
113 dl_rq->this_bw += dl_bw;
114 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
115}
116
117static inline
794a56eb 118void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
8fd27231
LA
119{
120 u64 old = dl_rq->this_bw;
121
122 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
123 dl_rq->this_bw -= dl_bw;
124 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
125 if (dl_rq->this_bw > old)
126 dl_rq->this_bw = 0;
127 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
128}
129
794a56eb
JL
130static inline
131void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
132{
133 if (!dl_entity_is_special(dl_se))
134 __add_rq_bw(dl_se->dl_bw, dl_rq);
135}
136
137static inline
138void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
139{
140 if (!dl_entity_is_special(dl_se))
141 __sub_rq_bw(dl_se->dl_bw, dl_rq);
142}
143
144static inline
145void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146{
147 if (!dl_entity_is_special(dl_se))
148 __add_running_bw(dl_se->dl_bw, dl_rq);
149}
150
151static inline
152void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
153{
154 if (!dl_entity_is_special(dl_se))
155 __sub_running_bw(dl_se->dl_bw, dl_rq);
156}
157
209a0cbd
LA
158void dl_change_utilization(struct task_struct *p, u64 new_bw)
159{
8fd27231 160 struct rq *rq;
209a0cbd 161
794a56eb
JL
162 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
163
8fd27231 164 if (task_on_rq_queued(p))
209a0cbd
LA
165 return;
166
8fd27231
LA
167 rq = task_rq(p);
168 if (p->dl.dl_non_contending) {
794a56eb 169 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
170 p->dl.dl_non_contending = 0;
171 /*
172 * If the timer handler is currently running and the
173 * timer cannot be cancelled, inactive_task_timer()
174 * will see that dl_not_contending is not set, and
175 * will not touch the rq's active utilization,
176 * so we are still safe.
177 */
178 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
179 put_task_struct(p);
180 }
794a56eb
JL
181 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
182 __add_rq_bw(new_bw, &rq->dl);
209a0cbd
LA
183}
184
185/*
186 * The utilization of a task cannot be immediately removed from
187 * the rq active utilization (running_bw) when the task blocks.
188 * Instead, we have to wait for the so called "0-lag time".
189 *
190 * If a task blocks before the "0-lag time", a timer (the inactive
191 * timer) is armed, and running_bw is decreased when the timer
192 * fires.
193 *
194 * If the task wakes up again before the inactive timer fires,
195 * the timer is cancelled, whereas if the task wakes up after the
196 * inactive timer fired (and running_bw has been decreased) the
197 * task's utilization has to be added to running_bw again.
198 * A flag in the deadline scheduling entity (dl_non_contending)
199 * is used to avoid race conditions between the inactive timer handler
200 * and task wakeups.
201 *
202 * The following diagram shows how running_bw is updated. A task is
203 * "ACTIVE" when its utilization contributes to running_bw; an
204 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
205 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
206 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
207 * time already passed, which does not contribute to running_bw anymore.
208 * +------------------+
209 * wakeup | ACTIVE |
210 * +------------------>+ contending |
211 * | add_running_bw | |
212 * | +----+------+------+
213 * | | ^
214 * | dequeue | |
215 * +--------+-------+ | |
216 * | | t >= 0-lag | | wakeup
217 * | INACTIVE |<---------------+ |
218 * | | sub_running_bw | |
219 * +--------+-------+ | |
220 * ^ | |
221 * | t < 0-lag | |
222 * | | |
223 * | V |
224 * | +----+------+------+
225 * | sub_running_bw | ACTIVE |
226 * +-------------------+ |
227 * inactive timer | non contending |
228 * fired +------------------+
229 *
230 * The task_non_contending() function is invoked when a task
231 * blocks, and checks if the 0-lag time already passed or
232 * not (in the first case, it directly updates running_bw;
233 * in the second case, it arms the inactive timer).
234 *
235 * The task_contending() function is invoked when a task wakes
236 * up, and checks if the task is still in the "ACTIVE non contending"
237 * state or not (in the second case, it updates running_bw).
238 */
239static void task_non_contending(struct task_struct *p)
240{
241 struct sched_dl_entity *dl_se = &p->dl;
242 struct hrtimer *timer = &dl_se->inactive_timer;
243 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
244 struct rq *rq = rq_of_dl_rq(dl_rq);
245 s64 zerolag_time;
246
247 /*
248 * If this is a non-deadline task that has been boosted,
249 * do nothing
250 */
251 if (dl_se->dl_runtime == 0)
252 return;
253
794a56eb
JL
254 if (dl_entity_is_special(dl_se))
255 return;
256
209a0cbd
LA
257 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
258 WARN_ON(dl_se->dl_non_contending);
259
260 zerolag_time = dl_se->deadline -
261 div64_long((dl_se->runtime * dl_se->dl_period),
262 dl_se->dl_runtime);
263
264 /*
265 * Using relative times instead of the absolute "0-lag time"
266 * allows to simplify the code
267 */
268 zerolag_time -= rq_clock(rq);
269
270 /*
271 * If the "0-lag time" already passed, decrease the active
272 * utilization now, instead of starting a timer
273 */
274 if (zerolag_time < 0) {
275 if (dl_task(p))
794a56eb 276 sub_running_bw(dl_se, dl_rq);
387e3130
LA
277 if (!dl_task(p) || p->state == TASK_DEAD) {
278 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
279
8fd27231 280 if (p->state == TASK_DEAD)
794a56eb 281 sub_rq_bw(&p->dl, &rq->dl);
387e3130 282 raw_spin_lock(&dl_b->lock);
8c0944ce 283 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
209a0cbd 284 __dl_clear_params(p);
387e3130
LA
285 raw_spin_unlock(&dl_b->lock);
286 }
209a0cbd
LA
287
288 return;
289 }
290
291 dl_se->dl_non_contending = 1;
292 get_task_struct(p);
293 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
294}
295
8fd27231 296static void task_contending(struct sched_dl_entity *dl_se, int flags)
209a0cbd
LA
297{
298 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
299
300 /*
301 * If this is a non-deadline task that has been boosted,
302 * do nothing
303 */
304 if (dl_se->dl_runtime == 0)
305 return;
306
8fd27231 307 if (flags & ENQUEUE_MIGRATED)
794a56eb 308 add_rq_bw(dl_se, dl_rq);
8fd27231 309
209a0cbd
LA
310 if (dl_se->dl_non_contending) {
311 dl_se->dl_non_contending = 0;
312 /*
313 * If the timer handler is currently running and the
314 * timer cannot be cancelled, inactive_task_timer()
315 * will see that dl_not_contending is not set, and
316 * will not touch the rq's active utilization,
317 * so we are still safe.
318 */
319 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
320 put_task_struct(dl_task_of(dl_se));
321 } else {
322 /*
323 * Since "dl_non_contending" is not set, the
324 * task's utilization has already been removed from
325 * active utilization (either when the task blocked,
326 * when the "inactive timer" fired).
327 * So, add it back.
328 */
794a56eb 329 add_running_bw(dl_se, dl_rq);
209a0cbd
LA
330 }
331}
332
aab03e05
DF
333static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
334{
335 struct sched_dl_entity *dl_se = &p->dl;
336
2161573e 337 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
aab03e05
DF
338}
339
332ac17e
DF
340void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
341{
342 raw_spin_lock_init(&dl_b->dl_runtime_lock);
343 dl_b->dl_period = period;
344 dl_b->dl_runtime = runtime;
345}
346
332ac17e
DF
347void init_dl_bw(struct dl_bw *dl_b)
348{
349 raw_spin_lock_init(&dl_b->lock);
350 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
1724813d 351 if (global_rt_runtime() == RUNTIME_INF)
332ac17e
DF
352 dl_b->bw = -1;
353 else
1724813d 354 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
332ac17e
DF
355 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
356 dl_b->total_bw = 0;
357}
358
07c54f7a 359void init_dl_rq(struct dl_rq *dl_rq)
aab03e05 360{
2161573e 361 dl_rq->root = RB_ROOT_CACHED;
1baca4ce
JL
362
363#ifdef CONFIG_SMP
364 /* zero means no -deadline tasks */
365 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
366
367 dl_rq->dl_nr_migratory = 0;
368 dl_rq->overloaded = 0;
2161573e 369 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
332ac17e
DF
370#else
371 init_dl_bw(&dl_rq->dl_bw);
1baca4ce 372#endif
e36d8677
LA
373
374 dl_rq->running_bw = 0;
8fd27231 375 dl_rq->this_bw = 0;
4da3abce 376 init_dl_rq_bw_ratio(dl_rq);
1baca4ce
JL
377}
378
379#ifdef CONFIG_SMP
380
381static inline int dl_overloaded(struct rq *rq)
382{
383 return atomic_read(&rq->rd->dlo_count);
384}
385
386static inline void dl_set_overload(struct rq *rq)
387{
388 if (!rq->online)
389 return;
390
391 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
392 /*
393 * Must be visible before the overload count is
394 * set (as in sched_rt.c).
395 *
396 * Matched by the barrier in pull_dl_task().
397 */
398 smp_wmb();
399 atomic_inc(&rq->rd->dlo_count);
400}
401
402static inline void dl_clear_overload(struct rq *rq)
403{
404 if (!rq->online)
405 return;
406
407 atomic_dec(&rq->rd->dlo_count);
408 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
409}
410
411static void update_dl_migration(struct dl_rq *dl_rq)
412{
995b9ea4 413 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
1baca4ce
JL
414 if (!dl_rq->overloaded) {
415 dl_set_overload(rq_of_dl_rq(dl_rq));
416 dl_rq->overloaded = 1;
417 }
418 } else if (dl_rq->overloaded) {
419 dl_clear_overload(rq_of_dl_rq(dl_rq));
420 dl_rq->overloaded = 0;
421 }
422}
423
424static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
425{
426 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 427
4b53a341 428 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
429 dl_rq->dl_nr_migratory++;
430
431 update_dl_migration(dl_rq);
432}
433
434static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
435{
436 struct task_struct *p = dl_task_of(dl_se);
1baca4ce 437
4b53a341 438 if (p->nr_cpus_allowed > 1)
1baca4ce
JL
439 dl_rq->dl_nr_migratory--;
440
441 update_dl_migration(dl_rq);
442}
443
444/*
445 * The list of pushable -deadline task is not a plist, like in
446 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
447 */
448static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
449{
450 struct dl_rq *dl_rq = &rq->dl;
2161573e 451 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
1baca4ce
JL
452 struct rb_node *parent = NULL;
453 struct task_struct *entry;
2161573e 454 bool leftmost = true;
1baca4ce
JL
455
456 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
457
458 while (*link) {
459 parent = *link;
460 entry = rb_entry(parent, struct task_struct,
461 pushable_dl_tasks);
462 if (dl_entity_preempt(&p->dl, &entry->dl))
463 link = &parent->rb_left;
464 else {
465 link = &parent->rb_right;
2161573e 466 leftmost = false;
1baca4ce
JL
467 }
468 }
469
2161573e 470 if (leftmost)
7d92de3a 471 dl_rq->earliest_dl.next = p->dl.deadline;
1baca4ce
JL
472
473 rb_link_node(&p->pushable_dl_tasks, parent, link);
2161573e
DB
474 rb_insert_color_cached(&p->pushable_dl_tasks,
475 &dl_rq->pushable_dl_tasks_root, leftmost);
aab03e05
DF
476}
477
1baca4ce
JL
478static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
479{
480 struct dl_rq *dl_rq = &rq->dl;
481
482 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
483 return;
484
2161573e 485 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
1baca4ce
JL
486 struct rb_node *next_node;
487
488 next_node = rb_next(&p->pushable_dl_tasks);
7d92de3a
WL
489 if (next_node) {
490 dl_rq->earliest_dl.next = rb_entry(next_node,
491 struct task_struct, pushable_dl_tasks)->dl.deadline;
492 }
1baca4ce
JL
493 }
494
2161573e 495 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
1baca4ce
JL
496 RB_CLEAR_NODE(&p->pushable_dl_tasks);
497}
498
499static inline int has_pushable_dl_tasks(struct rq *rq)
500{
2161573e 501 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
1baca4ce
JL
502}
503
504static int push_dl_task(struct rq *rq);
505
dc877341
PZ
506static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
507{
508 return dl_task(prev);
509}
510
9916e214
PZ
511static DEFINE_PER_CPU(struct callback_head, dl_push_head);
512static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
e3fca9e7
PZ
513
514static void push_dl_tasks(struct rq *);
9916e214 515static void pull_dl_task(struct rq *);
e3fca9e7
PZ
516
517static inline void queue_push_tasks(struct rq *rq)
dc877341 518{
e3fca9e7
PZ
519 if (!has_pushable_dl_tasks(rq))
520 return;
521
9916e214
PZ
522 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
523}
524
525static inline void queue_pull_task(struct rq *rq)
526{
527 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
dc877341
PZ
528}
529
fa9c9d10
WL
530static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
531
a649f237 532static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
fa9c9d10
WL
533{
534 struct rq *later_rq = NULL;
fa9c9d10
WL
535
536 later_rq = find_lock_later_rq(p, rq);
fa9c9d10
WL
537 if (!later_rq) {
538 int cpu;
539
540 /*
541 * If we cannot preempt any rq, fall back to pick any
542 * online cpu.
543 */
0c98d344 544 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
fa9c9d10
WL
545 if (cpu >= nr_cpu_ids) {
546 /*
547 * Fail to find any suitable cpu.
548 * The task will never come back!
549 */
550 BUG_ON(dl_bandwidth_enabled());
551
552 /*
553 * If admission control is disabled we
554 * try a little harder to let the task
555 * run.
556 */
557 cpu = cpumask_any(cpu_active_mask);
558 }
559 later_rq = cpu_rq(cpu);
560 double_lock_balance(rq, later_rq);
561 }
562
fa9c9d10 563 set_task_cpu(p, later_rq->cpu);
a649f237
PZ
564 double_unlock_balance(later_rq, rq);
565
566 return later_rq;
fa9c9d10
WL
567}
568
1baca4ce
JL
569#else
570
571static inline
572void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
573{
574}
575
576static inline
577void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
578{
579}
580
581static inline
582void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
583{
584}
585
586static inline
587void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
588{
589}
590
dc877341
PZ
591static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
592{
593 return false;
594}
595
0ea60c20 596static inline void pull_dl_task(struct rq *rq)
dc877341 597{
dc877341
PZ
598}
599
e3fca9e7 600static inline void queue_push_tasks(struct rq *rq)
dc877341 601{
dc877341
PZ
602}
603
9916e214 604static inline void queue_pull_task(struct rq *rq)
dc877341
PZ
605{
606}
1baca4ce
JL
607#endif /* CONFIG_SMP */
608
aab03e05
DF
609static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
610static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
611static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
612 int flags);
613
614/*
615 * We are being explicitly informed that a new instance is starting,
616 * and this means that:
617 * - the absolute deadline of the entity has to be placed at
618 * current time + relative deadline;
619 * - the runtime of the entity has to be set to the maximum value.
620 *
621 * The capability of specifying such event is useful whenever a -deadline
622 * entity wants to (try to!) synchronize its behaviour with the scheduler's
623 * one, and to (try to!) reconcile itself with its own scheduling
624 * parameters.
625 */
98b0a857 626static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
aab03e05
DF
627{
628 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
629 struct rq *rq = rq_of_dl_rq(dl_rq);
630
98b0a857 631 WARN_ON(dl_se->dl_boosted);
72f9f3fd
LA
632 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
633
634 /*
635 * We are racing with the deadline timer. So, do nothing because
636 * the deadline timer handler will take care of properly recharging
637 * the runtime and postponing the deadline
638 */
639 if (dl_se->dl_throttled)
640 return;
aab03e05
DF
641
642 /*
643 * We use the regular wall clock time to set deadlines in the
644 * future; in fact, we must consider execution overheads (time
645 * spent on hardirq context, etc.).
646 */
98b0a857
JL
647 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
648 dl_se->runtime = dl_se->dl_runtime;
aab03e05
DF
649}
650
651/*
652 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
653 * possibility of a entity lasting more than what it declared, and thus
654 * exhausting its runtime.
655 *
656 * Here we are interested in making runtime overrun possible, but we do
657 * not want a entity which is misbehaving to affect the scheduling of all
658 * other entities.
659 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
660 * is used, in order to confine each entity within its own bandwidth.
661 *
662 * This function deals exactly with that, and ensures that when the runtime
663 * of a entity is replenished, its deadline is also postponed. That ensures
664 * the overrunning entity can't interfere with other entity in the system and
665 * can't make them miss their deadlines. Reasons why this kind of overruns
666 * could happen are, typically, a entity voluntarily trying to overcome its
1b09d29b 667 * runtime, or it just underestimated it during sched_setattr().
aab03e05 668 */
2d3d891d
DF
669static void replenish_dl_entity(struct sched_dl_entity *dl_se,
670 struct sched_dl_entity *pi_se)
aab03e05
DF
671{
672 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
673 struct rq *rq = rq_of_dl_rq(dl_rq);
674
2d3d891d
DF
675 BUG_ON(pi_se->dl_runtime <= 0);
676
677 /*
678 * This could be the case for a !-dl task that is boosted.
679 * Just go with full inherited parameters.
680 */
681 if (dl_se->dl_deadline == 0) {
682 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
683 dl_se->runtime = pi_se->dl_runtime;
684 }
685
48be3a67
PZ
686 if (dl_se->dl_yielded && dl_se->runtime > 0)
687 dl_se->runtime = 0;
688
aab03e05
DF
689 /*
690 * We keep moving the deadline away until we get some
691 * available runtime for the entity. This ensures correct
692 * handling of situations where the runtime overrun is
693 * arbitrary large.
694 */
695 while (dl_se->runtime <= 0) {
2d3d891d
DF
696 dl_se->deadline += pi_se->dl_period;
697 dl_se->runtime += pi_se->dl_runtime;
aab03e05
DF
698 }
699
700 /*
701 * At this point, the deadline really should be "in
702 * the future" with respect to rq->clock. If it's
703 * not, we are, for some reason, lagging too much!
704 * Anyway, after having warn userspace abut that,
705 * we still try to keep the things running by
706 * resetting the deadline and the budget of the
707 * entity.
708 */
709 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
c219b7dd 710 printk_deferred_once("sched: DL replenish lagged too much\n");
2d3d891d
DF
711 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
712 dl_se->runtime = pi_se->dl_runtime;
aab03e05 713 }
1019a359
PZ
714
715 if (dl_se->dl_yielded)
716 dl_se->dl_yielded = 0;
717 if (dl_se->dl_throttled)
718 dl_se->dl_throttled = 0;
aab03e05
DF
719}
720
721/*
722 * Here we check if --at time t-- an entity (which is probably being
723 * [re]activated or, in general, enqueued) can use its remaining runtime
724 * and its current deadline _without_ exceeding the bandwidth it is
725 * assigned (function returns true if it can't). We are in fact applying
726 * one of the CBS rules: when a task wakes up, if the residual runtime
727 * over residual deadline fits within the allocated bandwidth, then we
728 * can keep the current (absolute) deadline and residual budget without
729 * disrupting the schedulability of the system. Otherwise, we should
730 * refill the runtime and set the deadline a period in the future,
731 * because keeping the current (absolute) deadline of the task would
712e5e34
DF
732 * result in breaking guarantees promised to other tasks (refer to
733 * Documentation/scheduler/sched-deadline.txt for more informations).
aab03e05
DF
734 *
735 * This function returns true if:
736 *
2317d5f1 737 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
aab03e05
DF
738 *
739 * IOW we can't recycle current parameters.
755378a4 740 *
2317d5f1 741 * Notice that the bandwidth check is done against the deadline. For
755378a4 742 * task with deadline equal to period this is the same of using
2317d5f1 743 * dl_period instead of dl_deadline in the equation above.
aab03e05 744 */
2d3d891d
DF
745static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
746 struct sched_dl_entity *pi_se, u64 t)
aab03e05
DF
747{
748 u64 left, right;
749
750 /*
751 * left and right are the two sides of the equation above,
752 * after a bit of shuffling to use multiplications instead
753 * of divisions.
754 *
755 * Note that none of the time values involved in the two
756 * multiplications are absolute: dl_deadline and dl_runtime
757 * are the relative deadline and the maximum runtime of each
758 * instance, runtime is the runtime left for the last instance
759 * and (deadline - t), since t is rq->clock, is the time left
760 * to the (absolute) deadline. Even if overflowing the u64 type
761 * is very unlikely to occur in both cases, here we scale down
762 * as we want to avoid that risk at all. Scaling down by 10
763 * means that we reduce granularity to 1us. We are fine with it,
764 * since this is only a true/false check and, anyway, thinking
765 * of anything below microseconds resolution is actually fiction
766 * (but still we want to give the user that illusion >;).
767 */
2317d5f1 768 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
332ac17e
DF
769 right = ((dl_se->deadline - t) >> DL_SCALE) *
770 (pi_se->dl_runtime >> DL_SCALE);
aab03e05
DF
771
772 return dl_time_before(right, left);
773}
774
775/*
3effcb42
DBO
776 * Revised wakeup rule [1]: For self-suspending tasks, rather then
777 * re-initializing task's runtime and deadline, the revised wakeup
778 * rule adjusts the task's runtime to avoid the task to overrun its
779 * density.
aab03e05 780 *
3effcb42
DBO
781 * Reasoning: a task may overrun the density if:
782 * runtime / (deadline - t) > dl_runtime / dl_deadline
783 *
784 * Therefore, runtime can be adjusted to:
785 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
786 *
787 * In such way that runtime will be equal to the maximum density
788 * the task can use without breaking any rule.
789 *
790 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
791 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
792 */
793static void
794update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
795{
796 u64 laxity = dl_se->deadline - rq_clock(rq);
797
798 /*
799 * If the task has deadline < period, and the deadline is in the past,
800 * it should already be throttled before this check.
801 *
802 * See update_dl_entity() comments for further details.
803 */
804 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
805
806 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
807}
808
809/*
810 * Regarding the deadline, a task with implicit deadline has a relative
811 * deadline == relative period. A task with constrained deadline has a
812 * relative deadline <= relative period.
813 *
814 * We support constrained deadline tasks. However, there are some restrictions
815 * applied only for tasks which do not have an implicit deadline. See
816 * update_dl_entity() to know more about such restrictions.
817 *
818 * The dl_is_implicit() returns true if the task has an implicit deadline.
819 */
820static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
821{
822 return dl_se->dl_deadline == dl_se->dl_period;
823}
824
825/*
826 * When a deadline entity is placed in the runqueue, its runtime and deadline
827 * might need to be updated. This is done by a CBS wake up rule. There are two
828 * different rules: 1) the original CBS; and 2) the Revisited CBS.
829 *
830 * When the task is starting a new period, the Original CBS is used. In this
831 * case, the runtime is replenished and a new absolute deadline is set.
832 *
833 * When a task is queued before the begin of the next period, using the
834 * remaining runtime and deadline could make the entity to overflow, see
835 * dl_entity_overflow() to find more about runtime overflow. When such case
836 * is detected, the runtime and deadline need to be updated.
837 *
838 * If the task has an implicit deadline, i.e., deadline == period, the Original
839 * CBS is applied. the runtime is replenished and a new absolute deadline is
840 * set, as in the previous cases.
841 *
842 * However, the Original CBS does not work properly for tasks with
843 * deadline < period, which are said to have a constrained deadline. By
844 * applying the Original CBS, a constrained deadline task would be able to run
845 * runtime/deadline in a period. With deadline < period, the task would
846 * overrun the runtime/period allowed bandwidth, breaking the admission test.
847 *
848 * In order to prevent this misbehave, the Revisited CBS is used for
849 * constrained deadline tasks when a runtime overflow is detected. In the
850 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
851 * the remaining runtime of the task is reduced to avoid runtime overflow.
852 * Please refer to the comments update_dl_revised_wakeup() function to find
853 * more about the Revised CBS rule.
aab03e05 854 */
2d3d891d
DF
855static void update_dl_entity(struct sched_dl_entity *dl_se,
856 struct sched_dl_entity *pi_se)
aab03e05
DF
857{
858 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
859 struct rq *rq = rq_of_dl_rq(dl_rq);
860
aab03e05 861 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
2d3d891d 862 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
3effcb42
DBO
863
864 if (unlikely(!dl_is_implicit(dl_se) &&
865 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
866 !dl_se->dl_boosted)){
867 update_dl_revised_wakeup(dl_se, rq);
868 return;
869 }
870
2d3d891d
DF
871 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
872 dl_se->runtime = pi_se->dl_runtime;
aab03e05
DF
873 }
874}
875
5ac69d37
DBO
876static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
877{
878 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
879}
880
aab03e05
DF
881/*
882 * If the entity depleted all its runtime, and if we want it to sleep
883 * while waiting for some new execution time to become available, we
5ac69d37 884 * set the bandwidth replenishment timer to the replenishment instant
aab03e05
DF
885 * and try to activate it.
886 *
887 * Notice that it is important for the caller to know if the timer
888 * actually started or not (i.e., the replenishment instant is in
889 * the future or in the past).
890 */
a649f237 891static int start_dl_timer(struct task_struct *p)
aab03e05 892{
a649f237
PZ
893 struct sched_dl_entity *dl_se = &p->dl;
894 struct hrtimer *timer = &dl_se->dl_timer;
895 struct rq *rq = task_rq(p);
aab03e05 896 ktime_t now, act;
aab03e05
DF
897 s64 delta;
898
a649f237
PZ
899 lockdep_assert_held(&rq->lock);
900
aab03e05
DF
901 /*
902 * We want the timer to fire at the deadline, but considering
903 * that it is actually coming from rq->clock and not from
904 * hrtimer's time base reading.
905 */
5ac69d37 906 act = ns_to_ktime(dl_next_period(dl_se));
a649f237 907 now = hrtimer_cb_get_time(timer);
aab03e05
DF
908 delta = ktime_to_ns(now) - rq_clock(rq);
909 act = ktime_add_ns(act, delta);
910
911 /*
912 * If the expiry time already passed, e.g., because the value
913 * chosen as the deadline is too small, don't even try to
914 * start the timer in the past!
915 */
916 if (ktime_us_delta(act, now) < 0)
917 return 0;
918
a649f237
PZ
919 /*
920 * !enqueued will guarantee another callback; even if one is already in
921 * progress. This ensures a balanced {get,put}_task_struct().
922 *
923 * The race against __run_timer() clearing the enqueued state is
924 * harmless because we're holding task_rq()->lock, therefore the timer
925 * expiring after we've done the check will wait on its task_rq_lock()
926 * and observe our state.
927 */
928 if (!hrtimer_is_queued(timer)) {
929 get_task_struct(p);
930 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
931 }
aab03e05 932
cc9684d3 933 return 1;
aab03e05
DF
934}
935
936/*
937 * This is the bandwidth enforcement timer callback. If here, we know
938 * a task is not on its dl_rq, since the fact that the timer was running
939 * means the task is throttled and needs a runtime replenishment.
940 *
941 * However, what we actually do depends on the fact the task is active,
942 * (it is on its rq) or has been removed from there by a call to
943 * dequeue_task_dl(). In the former case we must issue the runtime
944 * replenishment and add the task back to the dl_rq; in the latter, we just
945 * do nothing but clearing dl_throttled, so that runtime and deadline
946 * updating (and the queueing back to dl_rq) will be done by the
947 * next call to enqueue_task_dl().
948 */
949static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
950{
951 struct sched_dl_entity *dl_se = container_of(timer,
952 struct sched_dl_entity,
953 dl_timer);
954 struct task_struct *p = dl_task_of(dl_se);
eb580751 955 struct rq_flags rf;
0f397f2c 956 struct rq *rq;
3960c8c0 957
eb580751 958 rq = task_rq_lock(p, &rf);
0f397f2c 959
aab03e05 960 /*
a649f237 961 * The task might have changed its scheduling policy to something
9846d50d 962 * different than SCHED_DEADLINE (through switched_from_dl()).
a649f237 963 */
209a0cbd 964 if (!dl_task(p))
a649f237 965 goto unlock;
a649f237 966
a649f237
PZ
967 /*
968 * The task might have been boosted by someone else and might be in the
969 * boosting/deboosting path, its not throttled.
970 */
971 if (dl_se->dl_boosted)
972 goto unlock;
a79ec89f 973
fa9c9d10 974 /*
a649f237
PZ
975 * Spurious timer due to start_dl_timer() race; or we already received
976 * a replenishment from rt_mutex_setprio().
fa9c9d10 977 */
a649f237 978 if (!dl_se->dl_throttled)
fa9c9d10 979 goto unlock;
a649f237
PZ
980
981 sched_clock_tick();
982 update_rq_clock(rq);
fa9c9d10 983
a79ec89f
KT
984 /*
985 * If the throttle happened during sched-out; like:
986 *
987 * schedule()
988 * deactivate_task()
989 * dequeue_task_dl()
990 * update_curr_dl()
991 * start_dl_timer()
992 * __dequeue_task_dl()
993 * prev->on_rq = 0;
994 *
995 * We can be both throttled and !queued. Replenish the counter
996 * but do not enqueue -- wait for our wakeup to do that.
997 */
998 if (!task_on_rq_queued(p)) {
999 replenish_dl_entity(dl_se, dl_se);
1000 goto unlock;
1001 }
1002
1baca4ce 1003#ifdef CONFIG_SMP
c0c8c9fa 1004 if (unlikely(!rq->online)) {
61c7aca6
WL
1005 /*
1006 * If the runqueue is no longer available, migrate the
1007 * task elsewhere. This necessarily changes rq.
1008 */
c0c8c9fa 1009 lockdep_unpin_lock(&rq->lock, rf.cookie);
a649f237 1010 rq = dl_task_offline_migration(rq, p);
c0c8c9fa 1011 rf.cookie = lockdep_pin_lock(&rq->lock);
dcc3b5ff 1012 update_rq_clock(rq);
61c7aca6
WL
1013
1014 /*
1015 * Now that the task has been migrated to the new RQ and we
1016 * have that locked, proceed as normal and enqueue the task
1017 * there.
1018 */
c0c8c9fa 1019 }
61c7aca6 1020#endif
a649f237 1021
61c7aca6
WL
1022 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1023 if (dl_task(rq->curr))
1024 check_preempt_curr_dl(rq, p, 0);
1025 else
1026 resched_curr(rq);
a649f237 1027
61c7aca6 1028#ifdef CONFIG_SMP
a649f237
PZ
1029 /*
1030 * Queueing this task back might have overloaded rq, check if we need
1031 * to kick someone away.
1019a359 1032 */
0aaafaab
PZ
1033 if (has_pushable_dl_tasks(rq)) {
1034 /*
1035 * Nothing relies on rq->lock after this, so its safe to drop
1036 * rq->lock.
1037 */
d8ac8971 1038 rq_unpin_lock(rq, &rf);
1019a359 1039 push_dl_task(rq);
d8ac8971 1040 rq_repin_lock(rq, &rf);
0aaafaab 1041 }
1baca4ce 1042#endif
a649f237 1043
aab03e05 1044unlock:
eb580751 1045 task_rq_unlock(rq, p, &rf);
aab03e05 1046
a649f237
PZ
1047 /*
1048 * This can free the task_struct, including this hrtimer, do not touch
1049 * anything related to that after this.
1050 */
1051 put_task_struct(p);
1052
aab03e05
DF
1053 return HRTIMER_NORESTART;
1054}
1055
1056void init_dl_task_timer(struct sched_dl_entity *dl_se)
1057{
1058 struct hrtimer *timer = &dl_se->dl_timer;
1059
aab03e05
DF
1060 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061 timer->function = dl_task_timer;
1062}
1063
df8eac8c
DBO
1064/*
1065 * During the activation, CBS checks if it can reuse the current task's
1066 * runtime and period. If the deadline of the task is in the past, CBS
1067 * cannot use the runtime, and so it replenishes the task. This rule
1068 * works fine for implicit deadline tasks (deadline == period), and the
1069 * CBS was designed for implicit deadline tasks. However, a task with
1070 * constrained deadline (deadine < period) might be awakened after the
1071 * deadline, but before the next period. In this case, replenishing the
1072 * task would allow it to run for runtime / deadline. As in this case
1073 * deadline < period, CBS enables a task to run for more than the
1074 * runtime / period. In a very loaded system, this can cause a domino
1075 * effect, making other tasks miss their deadlines.
1076 *
1077 * To avoid this problem, in the activation of a constrained deadline
1078 * task after the deadline but before the next period, throttle the
1079 * task and set the replenishing timer to the begin of the next period,
1080 * unless it is boosted.
1081 */
1082static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1083{
1084 struct task_struct *p = dl_task_of(dl_se);
1085 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1086
1087 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1088 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1089 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1090 return;
1091 dl_se->dl_throttled = 1;
ae83b56a
XP
1092 if (dl_se->runtime > 0)
1093 dl_se->runtime = 0;
df8eac8c
DBO
1094 }
1095}
1096
aab03e05 1097static
6fab5410 1098int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
aab03e05 1099{
269ad801 1100 return (dl_se->runtime <= 0);
aab03e05
DF
1101}
1102
faa59937
JL
1103extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1104
c52f14d3
LA
1105/*
1106 * This function implements the GRUB accounting rule:
1107 * according to the GRUB reclaiming algorithm, the runtime is
daec5798
LA
1108 * not decreased as "dq = -dt", but as
1109 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1110 * where u is the utilization of the task, Umax is the maximum reclaimable
1111 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1112 * as the difference between the "total runqueue utilization" and the
1113 * runqueue active utilization, and Uextra is the (per runqueue) extra
1114 * reclaimable utilization.
9f0d1a50 1115 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
daec5798
LA
1116 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1117 * BW_SHIFT.
1118 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1119 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1120 * Since delta is a 64 bit variable, to have an overflow its value
1121 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1122 * So, overflow is not an issue here.
c52f14d3 1123 */
9f0d1a50 1124u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
c52f14d3 1125{
9f0d1a50
LA
1126 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1127 u64 u_act;
daec5798 1128 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
c52f14d3 1129
9f0d1a50 1130 /*
daec5798
LA
1131 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1132 * we compare u_inact + rq->dl.extra_bw with
1133 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1134 * u_inact + rq->dl.extra_bw can be larger than
1135 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1136 * leading to wrong results)
9f0d1a50 1137 */
daec5798
LA
1138 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1139 u_act = u_act_min;
9f0d1a50 1140 else
daec5798 1141 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
9f0d1a50
LA
1142
1143 return (delta * u_act) >> BW_SHIFT;
c52f14d3
LA
1144}
1145
aab03e05
DF
1146/*
1147 * Update the current task's runtime statistics (provided it is still
1148 * a -deadline task and has not been removed from the dl_rq).
1149 */
1150static void update_curr_dl(struct rq *rq)
1151{
1152 struct task_struct *curr = rq->curr;
1153 struct sched_dl_entity *dl_se = &curr->dl;
07881166
JL
1154 u64 delta_exec, scaled_delta_exec;
1155 int cpu = cpu_of(rq);
6fe0ce1e 1156 u64 now;
aab03e05
DF
1157
1158 if (!dl_task(curr) || !on_dl_rq(dl_se))
1159 return;
1160
1161 /*
1162 * Consumed budget is computed considering the time as
1163 * observed by schedulable tasks (excluding time spent
1164 * in hardirq context, etc.). Deadlines are instead
1165 * computed using hard walltime. This seems to be the more
1166 * natural solution, but the full ramifications of this
1167 * approach need further study.
1168 */
6fe0ce1e
WY
1169 now = rq_clock_task(rq);
1170 delta_exec = now - curr->se.exec_start;
48be3a67
PZ
1171 if (unlikely((s64)delta_exec <= 0)) {
1172 if (unlikely(dl_se->dl_yielded))
1173 goto throttle;
734ff2a7 1174 return;
48be3a67 1175 }
aab03e05
DF
1176
1177 schedstat_set(curr->se.statistics.exec_max,
1178 max(curr->se.statistics.exec_max, delta_exec));
1179
1180 curr->se.sum_exec_runtime += delta_exec;
1181 account_group_exec_runtime(curr, delta_exec);
1182
6fe0ce1e 1183 curr->se.exec_start = now;
d2cc5ed6 1184 cgroup_account_cputime(curr, delta_exec);
aab03e05 1185
239be4a9
DF
1186 sched_rt_avg_update(rq, delta_exec);
1187
794a56eb
JL
1188 if (dl_entity_is_special(dl_se))
1189 return;
1190
07881166
JL
1191 /*
1192 * For tasks that participate in GRUB, we implement GRUB-PA: the
1193 * spare reclaimed bandwidth is used to clock down frequency.
1194 *
1195 * For the others, we still need to scale reservation parameters
1196 * according to current frequency and CPU maximum capacity.
1197 */
1198 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1199 scaled_delta_exec = grub_reclaim(delta_exec,
1200 rq,
1201 &curr->dl);
1202 } else {
1203 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1204 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1205
1206 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1207 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1208 }
1209
1210 dl_se->runtime -= scaled_delta_exec;
48be3a67
PZ
1211
1212throttle:
1213 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1019a359 1214 dl_se->dl_throttled = 1;
34be3930
JL
1215
1216 /* If requested, inform the user about runtime overruns. */
1217 if (dl_runtime_exceeded(dl_se) &&
1218 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1219 dl_se->dl_overrun = 1;
1220
aab03e05 1221 __dequeue_task_dl(rq, curr, 0);
a649f237 1222 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
aab03e05
DF
1223 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1224
1225 if (!is_leftmost(curr, &rq->dl))
8875125e 1226 resched_curr(rq);
aab03e05 1227 }
1724813d
PZ
1228
1229 /*
1230 * Because -- for now -- we share the rt bandwidth, we need to
1231 * account our runtime there too, otherwise actual rt tasks
1232 * would be able to exceed the shared quota.
1233 *
1234 * Account to the root rt group for now.
1235 *
1236 * The solution we're working towards is having the RT groups scheduled
1237 * using deadline servers -- however there's a few nasties to figure
1238 * out before that can happen.
1239 */
1240 if (rt_bandwidth_enabled()) {
1241 struct rt_rq *rt_rq = &rq->rt;
1242
1243 raw_spin_lock(&rt_rq->rt_runtime_lock);
1724813d
PZ
1244 /*
1245 * We'll let actual RT tasks worry about the overflow here, we
faa59937
JL
1246 * have our own CBS to keep us inline; only account when RT
1247 * bandwidth is relevant.
1724813d 1248 */
faa59937
JL
1249 if (sched_rt_bandwidth_account(rt_rq))
1250 rt_rq->rt_time += delta_exec;
1724813d
PZ
1251 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1252 }
aab03e05
DF
1253}
1254
209a0cbd
LA
1255static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1256{
1257 struct sched_dl_entity *dl_se = container_of(timer,
1258 struct sched_dl_entity,
1259 inactive_timer);
1260 struct task_struct *p = dl_task_of(dl_se);
1261 struct rq_flags rf;
1262 struct rq *rq;
1263
1264 rq = task_rq_lock(p, &rf);
1265
1266 if (!dl_task(p) || p->state == TASK_DEAD) {
387e3130
LA
1267 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1268
209a0cbd 1269 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
794a56eb
JL
1270 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1271 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
209a0cbd
LA
1272 dl_se->dl_non_contending = 0;
1273 }
387e3130
LA
1274
1275 raw_spin_lock(&dl_b->lock);
8c0944ce 1276 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
387e3130 1277 raw_spin_unlock(&dl_b->lock);
209a0cbd
LA
1278 __dl_clear_params(p);
1279
1280 goto unlock;
1281 }
1282 if (dl_se->dl_non_contending == 0)
1283 goto unlock;
1284
1285 sched_clock_tick();
1286 update_rq_clock(rq);
1287
794a56eb 1288 sub_running_bw(dl_se, &rq->dl);
209a0cbd
LA
1289 dl_se->dl_non_contending = 0;
1290unlock:
1291 task_rq_unlock(rq, p, &rf);
1292 put_task_struct(p);
1293
1294 return HRTIMER_NORESTART;
1295}
1296
1297void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1298{
1299 struct hrtimer *timer = &dl_se->inactive_timer;
1300
1301 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1302 timer->function = inactive_task_timer;
1303}
1304
1baca4ce
JL
1305#ifdef CONFIG_SMP
1306
1baca4ce
JL
1307static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1308{
1309 struct rq *rq = rq_of_dl_rq(dl_rq);
1310
1311 if (dl_rq->earliest_dl.curr == 0 ||
1312 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1baca4ce 1313 dl_rq->earliest_dl.curr = deadline;
d8206bb3 1314 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1baca4ce
JL
1315 }
1316}
1317
1318static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1319{
1320 struct rq *rq = rq_of_dl_rq(dl_rq);
1321
1322 /*
1323 * Since we may have removed our earliest (and/or next earliest)
1324 * task we must recompute them.
1325 */
1326 if (!dl_rq->dl_nr_running) {
1327 dl_rq->earliest_dl.curr = 0;
1328 dl_rq->earliest_dl.next = 0;
d8206bb3 1329 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1baca4ce 1330 } else {
2161573e 1331 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1baca4ce
JL
1332 struct sched_dl_entity *entry;
1333
1334 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1335 dl_rq->earliest_dl.curr = entry->deadline;
d8206bb3 1336 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1baca4ce
JL
1337 }
1338}
1339
1340#else
1341
1342static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1343static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1344
1345#endif /* CONFIG_SMP */
1346
1347static inline
1348void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1349{
1350 int prio = dl_task_of(dl_se)->prio;
1351 u64 deadline = dl_se->deadline;
1352
1353 WARN_ON(!dl_prio(prio));
1354 dl_rq->dl_nr_running++;
72465447 1355 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1356
1357 inc_dl_deadline(dl_rq, deadline);
1358 inc_dl_migration(dl_se, dl_rq);
1359}
1360
1361static inline
1362void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1363{
1364 int prio = dl_task_of(dl_se)->prio;
1365
1366 WARN_ON(!dl_prio(prio));
1367 WARN_ON(!dl_rq->dl_nr_running);
1368 dl_rq->dl_nr_running--;
72465447 1369 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1baca4ce
JL
1370
1371 dec_dl_deadline(dl_rq, dl_se->deadline);
1372 dec_dl_migration(dl_se, dl_rq);
1373}
1374
aab03e05
DF
1375static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1376{
1377 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2161573e 1378 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
aab03e05
DF
1379 struct rb_node *parent = NULL;
1380 struct sched_dl_entity *entry;
1381 int leftmost = 1;
1382
1383 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1384
1385 while (*link) {
1386 parent = *link;
1387 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1388 if (dl_time_before(dl_se->deadline, entry->deadline))
1389 link = &parent->rb_left;
1390 else {
1391 link = &parent->rb_right;
1392 leftmost = 0;
1393 }
1394 }
1395
aab03e05 1396 rb_link_node(&dl_se->rb_node, parent, link);
2161573e 1397 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
aab03e05 1398
1baca4ce 1399 inc_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1400}
1401
1402static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1403{
1404 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405
1406 if (RB_EMPTY_NODE(&dl_se->rb_node))
1407 return;
1408
2161573e 1409 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
aab03e05
DF
1410 RB_CLEAR_NODE(&dl_se->rb_node);
1411
1baca4ce 1412 dec_dl_tasks(dl_se, dl_rq);
aab03e05
DF
1413}
1414
1415static void
2d3d891d
DF
1416enqueue_dl_entity(struct sched_dl_entity *dl_se,
1417 struct sched_dl_entity *pi_se, int flags)
aab03e05
DF
1418{
1419 BUG_ON(on_dl_rq(dl_se));
1420
1421 /*
1422 * If this is a wakeup or a new instance, the scheduling
1423 * parameters of the task might need updating. Otherwise,
1424 * we want a replenishment of its runtime.
1425 */
e36d8677 1426 if (flags & ENQUEUE_WAKEUP) {
8fd27231 1427 task_contending(dl_se, flags);
2d3d891d 1428 update_dl_entity(dl_se, pi_se);
e36d8677 1429 } else if (flags & ENQUEUE_REPLENISH) {
6a503c3b 1430 replenish_dl_entity(dl_se, pi_se);
295d6d5e
LA
1431 } else if ((flags & ENQUEUE_RESTORE) &&
1432 dl_time_before(dl_se->deadline,
1433 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1434 setup_new_dl_entity(dl_se);
e36d8677 1435 }
aab03e05
DF
1436
1437 __enqueue_dl_entity(dl_se);
1438}
1439
1440static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1441{
1442 __dequeue_dl_entity(dl_se);
1443}
1444
1445static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1446{
2d3d891d
DF
1447 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1448 struct sched_dl_entity *pi_se = &p->dl;
1449
1450 /*
193be41e
JF
1451 * Use the scheduling parameters of the top pi-waiter task if:
1452 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1453 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1454 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1455 * boosted due to a SCHED_DEADLINE pi-waiter).
1456 * Otherwise we keep our runtime and deadline.
2d3d891d 1457 */
193be41e 1458 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
2d3d891d 1459 pi_se = &pi_task->dl;
64be6f1f
JL
1460 } else if (!dl_prio(p->normal_prio)) {
1461 /*
1462 * Special case in which we have a !SCHED_DEADLINE task
193be41e 1463 * that is going to be deboosted, but exceeds its
64be6f1f
JL
1464 * runtime while doing so. No point in replenishing
1465 * it, as it's going to return back to its original
1466 * scheduling class after this.
1467 */
1468 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1469 return;
1470 }
2d3d891d 1471
df8eac8c
DBO
1472 /*
1473 * Check if a constrained deadline task was activated
1474 * after the deadline but before the next period.
1475 * If that is the case, the task will be throttled and
1476 * the replenishment timer will be set to the next period.
1477 */
3effcb42 1478 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
df8eac8c
DBO
1479 dl_check_constrained_dl(&p->dl);
1480
8fd27231 1481 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
794a56eb
JL
1482 add_rq_bw(&p->dl, &rq->dl);
1483 add_running_bw(&p->dl, &rq->dl);
8fd27231 1484 }
e36d8677 1485
aab03e05 1486 /*
e36d8677 1487 * If p is throttled, we do not enqueue it. In fact, if it exhausted
aab03e05
DF
1488 * its budget it needs a replenishment and, since it now is on
1489 * its rq, the bandwidth timer callback (which clearly has not
1490 * run yet) will take care of this.
e36d8677
LA
1491 * However, the active utilization does not depend on the fact
1492 * that the task is on the runqueue or not (but depends on the
1493 * task's state - in GRUB parlance, "inactive" vs "active contending").
1494 * In other words, even if a task is throttled its utilization must
1495 * be counted in the active utilization; hence, we need to call
1496 * add_running_bw().
aab03e05 1497 */
e36d8677 1498 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
209a0cbd 1499 if (flags & ENQUEUE_WAKEUP)
8fd27231 1500 task_contending(&p->dl, flags);
209a0cbd 1501
aab03e05 1502 return;
e36d8677 1503 }
aab03e05 1504
2d3d891d 1505 enqueue_dl_entity(&p->dl, pi_se, flags);
1baca4ce 1506
4b53a341 1507 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1baca4ce 1508 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1509}
1510
1511static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1512{
1513 dequeue_dl_entity(&p->dl);
1baca4ce 1514 dequeue_pushable_dl_task(rq, p);
aab03e05
DF
1515}
1516
1517static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1518{
1519 update_curr_dl(rq);
1520 __dequeue_task_dl(rq, p, flags);
e36d8677 1521
8fd27231 1522 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
794a56eb
JL
1523 sub_running_bw(&p->dl, &rq->dl);
1524 sub_rq_bw(&p->dl, &rq->dl);
8fd27231 1525 }
e36d8677
LA
1526
1527 /*
209a0cbd
LA
1528 * This check allows to start the inactive timer (or to immediately
1529 * decrease the active utilization, if needed) in two cases:
e36d8677
LA
1530 * when the task blocks and when it is terminating
1531 * (p->state == TASK_DEAD). We can handle the two cases in the same
1532 * way, because from GRUB's point of view the same thing is happening
1533 * (the task moves from "active contending" to "active non contending"
1534 * or "inactive")
1535 */
1536 if (flags & DEQUEUE_SLEEP)
209a0cbd 1537 task_non_contending(p);
aab03e05
DF
1538}
1539
1540/*
1541 * Yield task semantic for -deadline tasks is:
1542 *
1543 * get off from the CPU until our next instance, with
1544 * a new runtime. This is of little use now, since we
1545 * don't have a bandwidth reclaiming mechanism. Anyway,
1546 * bandwidth reclaiming is planned for the future, and
1547 * yield_task_dl will indicate that some spare budget
1548 * is available for other task instances to use it.
1549 */
1550static void yield_task_dl(struct rq *rq)
1551{
aab03e05
DF
1552 /*
1553 * We make the task go to sleep until its current deadline by
1554 * forcing its runtime to zero. This way, update_curr_dl() stops
1555 * it and the bandwidth timer will wake it up and will give it
5bfd126e 1556 * new scheduling parameters (thanks to dl_yielded=1).
aab03e05 1557 */
48be3a67
PZ
1558 rq->curr->dl.dl_yielded = 1;
1559
6f1607f1 1560 update_rq_clock(rq);
aab03e05 1561 update_curr_dl(rq);
44fb085b
WL
1562 /*
1563 * Tell update_rq_clock() that we've just updated,
1564 * so we don't do microscopic update in schedule()
1565 * and double the fastpath cost.
1566 */
1567 rq_clock_skip_update(rq, true);
aab03e05
DF
1568}
1569
1baca4ce
JL
1570#ifdef CONFIG_SMP
1571
1572static int find_later_rq(struct task_struct *task);
1baca4ce
JL
1573
1574static int
1575select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1576{
1577 struct task_struct *curr;
1578 struct rq *rq;
1579
1d7e974c 1580 if (sd_flag != SD_BALANCE_WAKE)
1baca4ce
JL
1581 goto out;
1582
1583 rq = cpu_rq(cpu);
1584
1585 rcu_read_lock();
316c1608 1586 curr = READ_ONCE(rq->curr); /* unlocked access */
1baca4ce
JL
1587
1588 /*
1589 * If we are dealing with a -deadline task, we must
1590 * decide where to wake it up.
1591 * If it has a later deadline and the current task
1592 * on this rq can't move (provided the waking task
1593 * can!) we prefer to send it somewhere else. On the
1594 * other hand, if it has a shorter deadline, we
1595 * try to make it stay here, it might be important.
1596 */
1597 if (unlikely(dl_task(curr)) &&
4b53a341 1598 (curr->nr_cpus_allowed < 2 ||
1baca4ce 1599 !dl_entity_preempt(&p->dl, &curr->dl)) &&
4b53a341 1600 (p->nr_cpus_allowed > 1)) {
1baca4ce
JL
1601 int target = find_later_rq(p);
1602
9d514262 1603 if (target != -1 &&
5aa50507
LA
1604 (dl_time_before(p->dl.deadline,
1605 cpu_rq(target)->dl.earliest_dl.curr) ||
1606 (cpu_rq(target)->dl.dl_nr_running == 0)))
1baca4ce
JL
1607 cpu = target;
1608 }
1609 rcu_read_unlock();
1610
1611out:
1612 return cpu;
1613}
1614
209a0cbd
LA
1615static void migrate_task_rq_dl(struct task_struct *p)
1616{
1617 struct rq *rq;
1618
8fd27231 1619 if (p->state != TASK_WAKING)
209a0cbd
LA
1620 return;
1621
1622 rq = task_rq(p);
1623 /*
1624 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1625 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1626 * rq->lock is not... So, lock it
1627 */
1628 raw_spin_lock(&rq->lock);
8fd27231 1629 if (p->dl.dl_non_contending) {
794a56eb 1630 sub_running_bw(&p->dl, &rq->dl);
8fd27231
LA
1631 p->dl.dl_non_contending = 0;
1632 /*
1633 * If the timer handler is currently running and the
1634 * timer cannot be cancelled, inactive_task_timer()
1635 * will see that dl_not_contending is not set, and
1636 * will not touch the rq's active utilization,
1637 * so we are still safe.
1638 */
1639 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1640 put_task_struct(p);
1641 }
794a56eb 1642 sub_rq_bw(&p->dl, &rq->dl);
209a0cbd
LA
1643 raw_spin_unlock(&rq->lock);
1644}
1645
1baca4ce
JL
1646static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1647{
1648 /*
1649 * Current can't be migrated, useless to reschedule,
1650 * let's hope p can move out.
1651 */
4b53a341 1652 if (rq->curr->nr_cpus_allowed == 1 ||
3261ed0b 1653 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1baca4ce
JL
1654 return;
1655
1656 /*
1657 * p is migratable, so let's not schedule it and
1658 * see if it is pushed or pulled somewhere else.
1659 */
4b53a341 1660 if (p->nr_cpus_allowed != 1 &&
3261ed0b 1661 cpudl_find(&rq->rd->cpudl, p, NULL))
1baca4ce
JL
1662 return;
1663
8875125e 1664 resched_curr(rq);
1baca4ce
JL
1665}
1666
1667#endif /* CONFIG_SMP */
1668
aab03e05
DF
1669/*
1670 * Only called when both the current and waking task are -deadline
1671 * tasks.
1672 */
1673static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1674 int flags)
1675{
1baca4ce 1676 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
8875125e 1677 resched_curr(rq);
1baca4ce
JL
1678 return;
1679 }
1680
1681#ifdef CONFIG_SMP
1682 /*
1683 * In the unlikely case current and p have the same deadline
1684 * let us try to decide what's the best thing to do...
1685 */
332ac17e
DF
1686 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1687 !test_tsk_need_resched(rq->curr))
1baca4ce
JL
1688 check_preempt_equal_dl(rq, p);
1689#endif /* CONFIG_SMP */
aab03e05
DF
1690}
1691
1692#ifdef CONFIG_SCHED_HRTICK
1693static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1694{
177ef2a6 1695 hrtick_start(rq, p->dl.runtime);
aab03e05 1696}
36ce9881
WL
1697#else /* !CONFIG_SCHED_HRTICK */
1698static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1699{
1700}
aab03e05
DF
1701#endif
1702
1703static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1704 struct dl_rq *dl_rq)
1705{
2161573e 1706 struct rb_node *left = rb_first_cached(&dl_rq->root);
aab03e05
DF
1707
1708 if (!left)
1709 return NULL;
1710
1711 return rb_entry(left, struct sched_dl_entity, rb_node);
1712}
1713
181a80d1 1714static struct task_struct *
d8ac8971 1715pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
aab03e05
DF
1716{
1717 struct sched_dl_entity *dl_se;
1718 struct task_struct *p;
1719 struct dl_rq *dl_rq;
1720
1721 dl_rq = &rq->dl;
1722
a1d9a323 1723 if (need_pull_dl_task(rq, prev)) {
cbce1a68
PZ
1724 /*
1725 * This is OK, because current is on_cpu, which avoids it being
1726 * picked for load-balance and preemption/IRQs are still
1727 * disabled avoiding further scheduler activity on it and we're
1728 * being very careful to re-start the picking loop.
1729 */
d8ac8971 1730 rq_unpin_lock(rq, rf);
38033c37 1731 pull_dl_task(rq);
d8ac8971 1732 rq_repin_lock(rq, rf);
a1d9a323 1733 /*
176cedc4 1734 * pull_dl_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1735 * means a stop task can slip in, in which case we need to
1736 * re-start task selection.
1737 */
da0c1e65 1738 if (rq->stop && task_on_rq_queued(rq->stop))
a1d9a323
KT
1739 return RETRY_TASK;
1740 }
1741
734ff2a7
KT
1742 /*
1743 * When prev is DL, we may throttle it in put_prev_task().
1744 * So, we update time before we check for dl_nr_running.
1745 */
1746 if (prev->sched_class == &dl_sched_class)
1747 update_curr_dl(rq);
38033c37 1748
aab03e05
DF
1749 if (unlikely(!dl_rq->dl_nr_running))
1750 return NULL;
1751
3f1d2a31 1752 put_prev_task(rq, prev);
606dba2e 1753
aab03e05
DF
1754 dl_se = pick_next_dl_entity(rq, dl_rq);
1755 BUG_ON(!dl_se);
1756
1757 p = dl_task_of(dl_se);
1758 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1759
1760 /* Running task will never be pushed. */
71362650 1761 dequeue_pushable_dl_task(rq, p);
1baca4ce 1762
aab03e05
DF
1763 if (hrtick_enabled(rq))
1764 start_hrtick_dl(rq, p);
1baca4ce 1765
e3fca9e7 1766 queue_push_tasks(rq);
1baca4ce 1767
aab03e05
DF
1768 return p;
1769}
1770
1771static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1772{
1773 update_curr_dl(rq);
1baca4ce 1774
4b53a341 1775 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1baca4ce 1776 enqueue_pushable_dl_task(rq, p);
aab03e05
DF
1777}
1778
1779static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1780{
1781 update_curr_dl(rq);
1782
a7bebf48
WL
1783 /*
1784 * Even when we have runtime, update_curr_dl() might have resulted in us
1785 * not being the leftmost task anymore. In that case NEED_RESCHED will
1786 * be set and schedule() will start a new hrtick for the next task.
1787 */
1788 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1789 is_leftmost(p, &rq->dl))
aab03e05 1790 start_hrtick_dl(rq, p);
aab03e05
DF
1791}
1792
1793static void task_fork_dl(struct task_struct *p)
1794{
1795 /*
1796 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1797 * sched_fork()
1798 */
1799}
1800
aab03e05
DF
1801static void set_curr_task_dl(struct rq *rq)
1802{
1803 struct task_struct *p = rq->curr;
1804
1805 p->se.exec_start = rq_clock_task(rq);
1baca4ce
JL
1806
1807 /* You can't push away the running task */
1808 dequeue_pushable_dl_task(rq, p);
1809}
1810
1811#ifdef CONFIG_SMP
1812
1813/* Only try algorithms three times */
1814#define DL_MAX_TRIES 3
1815
1816static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1817{
1818 if (!task_running(rq, p) &&
0c98d344 1819 cpumask_test_cpu(cpu, &p->cpus_allowed))
1baca4ce 1820 return 1;
1baca4ce
JL
1821 return 0;
1822}
1823
8b5e770e
WL
1824/*
1825 * Return the earliest pushable rq's task, which is suitable to be executed
1826 * on the CPU, NULL otherwise:
1827 */
1828static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1829{
2161573e 1830 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
8b5e770e
WL
1831 struct task_struct *p = NULL;
1832
1833 if (!has_pushable_dl_tasks(rq))
1834 return NULL;
1835
1836next_node:
1837 if (next_node) {
1838 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1839
1840 if (pick_dl_task(rq, p, cpu))
1841 return p;
1842
1843 next_node = rb_next(next_node);
1844 goto next_node;
1845 }
1846
1847 return NULL;
1848}
1849
1baca4ce
JL
1850static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1851
1852static int find_later_rq(struct task_struct *task)
1853{
1854 struct sched_domain *sd;
4ba29684 1855 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1baca4ce 1856 int this_cpu = smp_processor_id();
b18c3ca1 1857 int cpu = task_cpu(task);
1baca4ce
JL
1858
1859 /* Make sure the mask is initialized first */
1860 if (unlikely(!later_mask))
1861 return -1;
1862
4b53a341 1863 if (task->nr_cpus_allowed == 1)
1baca4ce
JL
1864 return -1;
1865
91ec6778
JL
1866 /*
1867 * We have to consider system topology and task affinity
1868 * first, then we can look for a suitable cpu.
1869 */
3261ed0b 1870 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1baca4ce
JL
1871 return -1;
1872
1873 /*
b18c3ca1
BP
1874 * If we are here, some targets have been found, including
1875 * the most suitable which is, among the runqueues where the
1876 * current tasks have later deadlines than the task's one, the
1877 * rq with the latest possible one.
1baca4ce
JL
1878 *
1879 * Now we check how well this matches with task's
1880 * affinity and system topology.
1881 *
1882 * The last cpu where the task run is our first
1883 * guess, since it is most likely cache-hot there.
1884 */
1885 if (cpumask_test_cpu(cpu, later_mask))
1886 return cpu;
1887 /*
1888 * Check if this_cpu is to be skipped (i.e., it is
1889 * not in the mask) or not.
1890 */
1891 if (!cpumask_test_cpu(this_cpu, later_mask))
1892 this_cpu = -1;
1893
1894 rcu_read_lock();
1895 for_each_domain(cpu, sd) {
1896 if (sd->flags & SD_WAKE_AFFINE) {
b18c3ca1 1897 int best_cpu;
1baca4ce
JL
1898
1899 /*
1900 * If possible, preempting this_cpu is
1901 * cheaper than migrating.
1902 */
1903 if (this_cpu != -1 &&
1904 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1905 rcu_read_unlock();
1906 return this_cpu;
1907 }
1908
b18c3ca1
BP
1909 best_cpu = cpumask_first_and(later_mask,
1910 sched_domain_span(sd));
1baca4ce 1911 /*
b18c3ca1
BP
1912 * Last chance: if a cpu being in both later_mask
1913 * and current sd span is valid, that becomes our
1914 * choice. Of course, the latest possible cpu is
1915 * already under consideration through later_mask.
1baca4ce 1916 */
b18c3ca1 1917 if (best_cpu < nr_cpu_ids) {
1baca4ce
JL
1918 rcu_read_unlock();
1919 return best_cpu;
1920 }
1921 }
1922 }
1923 rcu_read_unlock();
1924
1925 /*
1926 * At this point, all our guesses failed, we just return
1927 * 'something', and let the caller sort the things out.
1928 */
1929 if (this_cpu != -1)
1930 return this_cpu;
1931
1932 cpu = cpumask_any(later_mask);
1933 if (cpu < nr_cpu_ids)
1934 return cpu;
1935
1936 return -1;
1937}
1938
1939/* Locks the rq it finds */
1940static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1941{
1942 struct rq *later_rq = NULL;
1943 int tries;
1944 int cpu;
1945
1946 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1947 cpu = find_later_rq(task);
1948
1949 if ((cpu == -1) || (cpu == rq->cpu))
1950 break;
1951
1952 later_rq = cpu_rq(cpu);
1953
5aa50507
LA
1954 if (later_rq->dl.dl_nr_running &&
1955 !dl_time_before(task->dl.deadline,
9d514262
WL
1956 later_rq->dl.earliest_dl.curr)) {
1957 /*
1958 * Target rq has tasks of equal or earlier deadline,
1959 * retrying does not release any lock and is unlikely
1960 * to yield a different result.
1961 */
1962 later_rq = NULL;
1963 break;
1964 }
1965
1baca4ce
JL
1966 /* Retry if something changed. */
1967 if (double_lock_balance(rq, later_rq)) {
1968 if (unlikely(task_rq(task) != rq ||
0c98d344 1969 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
da0c1e65 1970 task_running(rq, task) ||
13b5ab02 1971 !dl_task(task) ||
da0c1e65 1972 !task_on_rq_queued(task))) {
1baca4ce
JL
1973 double_unlock_balance(rq, later_rq);
1974 later_rq = NULL;
1975 break;
1976 }
1977 }
1978
1979 /*
1980 * If the rq we found has no -deadline task, or
1981 * its earliest one has a later deadline than our
1982 * task, the rq is a good one.
1983 */
1984 if (!later_rq->dl.dl_nr_running ||
1985 dl_time_before(task->dl.deadline,
1986 later_rq->dl.earliest_dl.curr))
1987 break;
1988
1989 /* Otherwise we try again. */
1990 double_unlock_balance(rq, later_rq);
1991 later_rq = NULL;
1992 }
1993
1994 return later_rq;
1995}
1996
1997static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1998{
1999 struct task_struct *p;
2000
2001 if (!has_pushable_dl_tasks(rq))
2002 return NULL;
2003
2161573e 2004 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
1baca4ce
JL
2005 struct task_struct, pushable_dl_tasks);
2006
2007 BUG_ON(rq->cpu != task_cpu(p));
2008 BUG_ON(task_current(rq, p));
4b53a341 2009 BUG_ON(p->nr_cpus_allowed <= 1);
1baca4ce 2010
da0c1e65 2011 BUG_ON(!task_on_rq_queued(p));
1baca4ce
JL
2012 BUG_ON(!dl_task(p));
2013
2014 return p;
2015}
2016
2017/*
2018 * See if the non running -deadline tasks on this rq
2019 * can be sent to some other CPU where they can preempt
2020 * and start executing.
2021 */
2022static int push_dl_task(struct rq *rq)
2023{
2024 struct task_struct *next_task;
2025 struct rq *later_rq;
c51b8ab5 2026 int ret = 0;
1baca4ce
JL
2027
2028 if (!rq->dl.overloaded)
2029 return 0;
2030
2031 next_task = pick_next_pushable_dl_task(rq);
2032 if (!next_task)
2033 return 0;
2034
2035retry:
2036 if (unlikely(next_task == rq->curr)) {
2037 WARN_ON(1);
2038 return 0;
2039 }
2040
2041 /*
2042 * If next_task preempts rq->curr, and rq->curr
2043 * can move away, it makes sense to just reschedule
2044 * without going further in pushing next_task.
2045 */
2046 if (dl_task(rq->curr) &&
2047 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
4b53a341 2048 rq->curr->nr_cpus_allowed > 1) {
8875125e 2049 resched_curr(rq);
1baca4ce
JL
2050 return 0;
2051 }
2052
2053 /* We might release rq lock */
2054 get_task_struct(next_task);
2055
2056 /* Will lock the rq it'll find */
2057 later_rq = find_lock_later_rq(next_task, rq);
2058 if (!later_rq) {
2059 struct task_struct *task;
2060
2061 /*
2062 * We must check all this again, since
2063 * find_lock_later_rq releases rq->lock and it is
2064 * then possible that next_task has migrated.
2065 */
2066 task = pick_next_pushable_dl_task(rq);
a776b968 2067 if (task == next_task) {
1baca4ce
JL
2068 /*
2069 * The task is still there. We don't try
2070 * again, some other cpu will pull it when ready.
2071 */
1baca4ce
JL
2072 goto out;
2073 }
2074
2075 if (!task)
2076 /* No more tasks */
2077 goto out;
2078
2079 put_task_struct(next_task);
2080 next_task = task;
2081 goto retry;
2082 }
2083
2084 deactivate_task(rq, next_task, 0);
794a56eb
JL
2085 sub_running_bw(&next_task->dl, &rq->dl);
2086 sub_rq_bw(&next_task->dl, &rq->dl);
1baca4ce 2087 set_task_cpu(next_task, later_rq->cpu);
794a56eb
JL
2088 add_rq_bw(&next_task->dl, &later_rq->dl);
2089 add_running_bw(&next_task->dl, &later_rq->dl);
1baca4ce 2090 activate_task(later_rq, next_task, 0);
c51b8ab5 2091 ret = 1;
1baca4ce 2092
8875125e 2093 resched_curr(later_rq);
1baca4ce
JL
2094
2095 double_unlock_balance(rq, later_rq);
2096
2097out:
2098 put_task_struct(next_task);
2099
c51b8ab5 2100 return ret;
1baca4ce
JL
2101}
2102
2103static void push_dl_tasks(struct rq *rq)
2104{
4ffa08ed 2105 /* push_dl_task() will return true if it moved a -deadline task */
1baca4ce
JL
2106 while (push_dl_task(rq))
2107 ;
aab03e05
DF
2108}
2109
0ea60c20 2110static void pull_dl_task(struct rq *this_rq)
1baca4ce 2111{
0ea60c20 2112 int this_cpu = this_rq->cpu, cpu;
1baca4ce 2113 struct task_struct *p;
0ea60c20 2114 bool resched = false;
1baca4ce
JL
2115 struct rq *src_rq;
2116 u64 dmin = LONG_MAX;
2117
2118 if (likely(!dl_overloaded(this_rq)))
0ea60c20 2119 return;
1baca4ce
JL
2120
2121 /*
2122 * Match the barrier from dl_set_overloaded; this guarantees that if we
2123 * see overloaded we must also see the dlo_mask bit.
2124 */
2125 smp_rmb();
2126
2127 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2128 if (this_cpu == cpu)
2129 continue;
2130
2131 src_rq = cpu_rq(cpu);
2132
2133 /*
2134 * It looks racy, abd it is! However, as in sched_rt.c,
2135 * we are fine with this.
2136 */
2137 if (this_rq->dl.dl_nr_running &&
2138 dl_time_before(this_rq->dl.earliest_dl.curr,
2139 src_rq->dl.earliest_dl.next))
2140 continue;
2141
2142 /* Might drop this_rq->lock */
2143 double_lock_balance(this_rq, src_rq);
2144
2145 /*
2146 * If there are no more pullable tasks on the
2147 * rq, we're done with it.
2148 */
2149 if (src_rq->dl.dl_nr_running <= 1)
2150 goto skip;
2151
8b5e770e 2152 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1baca4ce
JL
2153
2154 /*
2155 * We found a task to be pulled if:
2156 * - it preempts our current (if there's one),
2157 * - it will preempt the last one we pulled (if any).
2158 */
2159 if (p && dl_time_before(p->dl.deadline, dmin) &&
2160 (!this_rq->dl.dl_nr_running ||
2161 dl_time_before(p->dl.deadline,
2162 this_rq->dl.earliest_dl.curr))) {
2163 WARN_ON(p == src_rq->curr);
da0c1e65 2164 WARN_ON(!task_on_rq_queued(p));
1baca4ce
JL
2165
2166 /*
2167 * Then we pull iff p has actually an earlier
2168 * deadline than the current task of its runqueue.
2169 */
2170 if (dl_time_before(p->dl.deadline,
2171 src_rq->curr->dl.deadline))
2172 goto skip;
2173
0ea60c20 2174 resched = true;
1baca4ce
JL
2175
2176 deactivate_task(src_rq, p, 0);
794a56eb
JL
2177 sub_running_bw(&p->dl, &src_rq->dl);
2178 sub_rq_bw(&p->dl, &src_rq->dl);
1baca4ce 2179 set_task_cpu(p, this_cpu);
794a56eb
JL
2180 add_rq_bw(&p->dl, &this_rq->dl);
2181 add_running_bw(&p->dl, &this_rq->dl);
1baca4ce
JL
2182 activate_task(this_rq, p, 0);
2183 dmin = p->dl.deadline;
2184
2185 /* Is there any other task even earlier? */
2186 }
2187skip:
2188 double_unlock_balance(this_rq, src_rq);
2189 }
2190
0ea60c20
PZ
2191 if (resched)
2192 resched_curr(this_rq);
1baca4ce
JL
2193}
2194
2195/*
2196 * Since the task is not running and a reschedule is not going to happen
2197 * anytime soon on its runqueue, we try pushing it away now.
2198 */
2199static void task_woken_dl(struct rq *rq, struct task_struct *p)
2200{
2201 if (!task_running(rq, p) &&
2202 !test_tsk_need_resched(rq->curr) &&
4b53a341 2203 p->nr_cpus_allowed > 1 &&
1baca4ce 2204 dl_task(rq->curr) &&
4b53a341 2205 (rq->curr->nr_cpus_allowed < 2 ||
6b0a563f 2206 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1baca4ce
JL
2207 push_dl_tasks(rq);
2208 }
2209}
2210
2211static void set_cpus_allowed_dl(struct task_struct *p,
2212 const struct cpumask *new_mask)
2213{
7f51412a 2214 struct root_domain *src_rd;
6c37067e 2215 struct rq *rq;
1baca4ce
JL
2216
2217 BUG_ON(!dl_task(p));
2218
7f51412a
JL
2219 rq = task_rq(p);
2220 src_rd = rq->rd;
2221 /*
2222 * Migrating a SCHED_DEADLINE task between exclusive
2223 * cpusets (different root_domains) entails a bandwidth
2224 * update. We already made space for us in the destination
2225 * domain (see cpuset_can_attach()).
2226 */
2227 if (!cpumask_intersects(src_rd->span, new_mask)) {
2228 struct dl_bw *src_dl_b;
2229
2230 src_dl_b = dl_bw_of(cpu_of(rq));
2231 /*
2232 * We now free resources of the root_domain we are migrating
2233 * off. In the worst case, sched_setattr() may temporary fail
2234 * until we complete the update.
2235 */
2236 raw_spin_lock(&src_dl_b->lock);
8c0944ce 2237 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
7f51412a
JL
2238 raw_spin_unlock(&src_dl_b->lock);
2239 }
2240
6c37067e 2241 set_cpus_allowed_common(p, new_mask);
1baca4ce
JL
2242}
2243
2244/* Assumes rq->lock is held */
2245static void rq_online_dl(struct rq *rq)
2246{
2247 if (rq->dl.overloaded)
2248 dl_set_overload(rq);
6bfd6d72 2249
16b26943 2250 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
6bfd6d72 2251 if (rq->dl.dl_nr_running > 0)
d8206bb3 2252 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1baca4ce
JL
2253}
2254
2255/* Assumes rq->lock is held */
2256static void rq_offline_dl(struct rq *rq)
2257{
2258 if (rq->dl.overloaded)
2259 dl_clear_overload(rq);
6bfd6d72 2260
d8206bb3 2261 cpudl_clear(&rq->rd->cpudl, rq->cpu);
16b26943 2262 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1baca4ce
JL
2263}
2264
a6c0e746 2265void __init init_sched_dl_class(void)
1baca4ce
JL
2266{
2267 unsigned int i;
2268
2269 for_each_possible_cpu(i)
2270 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2271 GFP_KERNEL, cpu_to_node(i));
2272}
2273
2274#endif /* CONFIG_SMP */
2275
aab03e05
DF
2276static void switched_from_dl(struct rq *rq, struct task_struct *p)
2277{
a649f237 2278 /*
209a0cbd
LA
2279 * task_non_contending() can start the "inactive timer" (if the 0-lag
2280 * time is in the future). If the task switches back to dl before
2281 * the "inactive timer" fires, it can continue to consume its current
2282 * runtime using its current deadline. If it stays outside of
2283 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2284 * will reset the task parameters.
a649f237 2285 */
209a0cbd
LA
2286 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2287 task_non_contending(p);
2288
8fd27231 2289 if (!task_on_rq_queued(p))
794a56eb 2290 sub_rq_bw(&p->dl, &rq->dl);
8fd27231 2291
209a0cbd
LA
2292 /*
2293 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2294 * at the 0-lag time, because the task could have been migrated
2295 * while SCHED_OTHER in the meanwhile.
2296 */
2297 if (p->dl.dl_non_contending)
2298 p->dl.dl_non_contending = 0;
a5e7be3b 2299
1baca4ce
JL
2300 /*
2301 * Since this might be the only -deadline task on the rq,
2302 * this is the right place to try to pull some other one
2303 * from an overloaded cpu, if any.
2304 */
cd660911
WL
2305 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2306 return;
2307
9916e214 2308 queue_pull_task(rq);
aab03e05
DF
2309}
2310
1baca4ce
JL
2311/*
2312 * When switching to -deadline, we may overload the rq, then
2313 * we try to push someone off, if possible.
2314 */
aab03e05
DF
2315static void switched_to_dl(struct rq *rq, struct task_struct *p)
2316{
209a0cbd
LA
2317 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2318 put_task_struct(p);
98b0a857
JL
2319
2320 /* If p is not queued we will update its parameters at next wakeup. */
8fd27231 2321 if (!task_on_rq_queued(p)) {
794a56eb 2322 add_rq_bw(&p->dl, &rq->dl);
98b0a857 2323
8fd27231
LA
2324 return;
2325 }
72f9f3fd 2326
98b0a857 2327 if (rq->curr != p) {
1baca4ce 2328#ifdef CONFIG_SMP
4b53a341 2329 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
9916e214 2330 queue_push_tasks(rq);
619bd4a7 2331#endif
9916e214
PZ
2332 if (dl_task(rq->curr))
2333 check_preempt_curr_dl(rq, p, 0);
2334 else
2335 resched_curr(rq);
aab03e05
DF
2336 }
2337}
2338
1baca4ce
JL
2339/*
2340 * If the scheduling parameters of a -deadline task changed,
2341 * a push or pull operation might be needed.
2342 */
aab03e05
DF
2343static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2344 int oldprio)
2345{
da0c1e65 2346 if (task_on_rq_queued(p) || rq->curr == p) {
aab03e05 2347#ifdef CONFIG_SMP
1baca4ce
JL
2348 /*
2349 * This might be too much, but unfortunately
2350 * we don't have the old deadline value, and
2351 * we can't argue if the task is increasing
2352 * or lowering its prio, so...
2353 */
2354 if (!rq->dl.overloaded)
9916e214 2355 queue_pull_task(rq);
1baca4ce
JL
2356
2357 /*
2358 * If we now have a earlier deadline task than p,
2359 * then reschedule, provided p is still on this
2360 * runqueue.
2361 */
9916e214 2362 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
8875125e 2363 resched_curr(rq);
1baca4ce
JL
2364#else
2365 /*
2366 * Again, we don't know if p has a earlier
2367 * or later deadline, so let's blindly set a
2368 * (maybe not needed) rescheduling point.
2369 */
8875125e 2370 resched_curr(rq);
1baca4ce 2371#endif /* CONFIG_SMP */
801ccdbf 2372 }
aab03e05 2373}
aab03e05
DF
2374
2375const struct sched_class dl_sched_class = {
2376 .next = &rt_sched_class,
2377 .enqueue_task = enqueue_task_dl,
2378 .dequeue_task = dequeue_task_dl,
2379 .yield_task = yield_task_dl,
2380
2381 .check_preempt_curr = check_preempt_curr_dl,
2382
2383 .pick_next_task = pick_next_task_dl,
2384 .put_prev_task = put_prev_task_dl,
2385
2386#ifdef CONFIG_SMP
2387 .select_task_rq = select_task_rq_dl,
209a0cbd 2388 .migrate_task_rq = migrate_task_rq_dl,
1baca4ce
JL
2389 .set_cpus_allowed = set_cpus_allowed_dl,
2390 .rq_online = rq_online_dl,
2391 .rq_offline = rq_offline_dl,
1baca4ce 2392 .task_woken = task_woken_dl,
aab03e05
DF
2393#endif
2394
2395 .set_curr_task = set_curr_task_dl,
2396 .task_tick = task_tick_dl,
2397 .task_fork = task_fork_dl,
aab03e05
DF
2398
2399 .prio_changed = prio_changed_dl,
2400 .switched_from = switched_from_dl,
2401 .switched_to = switched_to_dl,
6e998916
SG
2402
2403 .update_curr = update_curr_dl,
aab03e05 2404};
acb32132 2405
06a76fe0
NP
2406int sched_dl_global_validate(void)
2407{
2408 u64 runtime = global_rt_runtime();
2409 u64 period = global_rt_period();
2410 u64 new_bw = to_ratio(period, runtime);
2411 struct dl_bw *dl_b;
2412 int cpu, ret = 0;
2413 unsigned long flags;
2414
2415 /*
2416 * Here we want to check the bandwidth not being set to some
2417 * value smaller than the currently allocated bandwidth in
2418 * any of the root_domains.
2419 *
2420 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2421 * cycling on root_domains... Discussion on different/better
2422 * solutions is welcome!
2423 */
2424 for_each_possible_cpu(cpu) {
2425 rcu_read_lock_sched();
2426 dl_b = dl_bw_of(cpu);
2427
2428 raw_spin_lock_irqsave(&dl_b->lock, flags);
2429 if (new_bw < dl_b->total_bw)
2430 ret = -EBUSY;
2431 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2432
2433 rcu_read_unlock_sched();
2434
2435 if (ret)
2436 break;
2437 }
2438
2439 return ret;
2440}
2441
2442void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2443{
2444 if (global_rt_runtime() == RUNTIME_INF) {
2445 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2446 dl_rq->extra_bw = 1 << BW_SHIFT;
2447 } else {
2448 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2449 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2450 dl_rq->extra_bw = to_ratio(global_rt_period(),
2451 global_rt_runtime());
2452 }
2453}
2454
2455void sched_dl_do_global(void)
2456{
2457 u64 new_bw = -1;
2458 struct dl_bw *dl_b;
2459 int cpu;
2460 unsigned long flags;
2461
2462 def_dl_bandwidth.dl_period = global_rt_period();
2463 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2464
2465 if (global_rt_runtime() != RUNTIME_INF)
2466 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2467
2468 /*
2469 * FIXME: As above...
2470 */
2471 for_each_possible_cpu(cpu) {
2472 rcu_read_lock_sched();
2473 dl_b = dl_bw_of(cpu);
2474
2475 raw_spin_lock_irqsave(&dl_b->lock, flags);
2476 dl_b->bw = new_bw;
2477 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2478
2479 rcu_read_unlock_sched();
2480 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2481 }
2482}
2483
2484/*
2485 * We must be sure that accepting a new task (or allowing changing the
2486 * parameters of an existing one) is consistent with the bandwidth
2487 * constraints. If yes, this function also accordingly updates the currently
2488 * allocated bandwidth to reflect the new situation.
2489 *
2490 * This function is called while holding p's rq->lock.
2491 */
2492int sched_dl_overflow(struct task_struct *p, int policy,
2493 const struct sched_attr *attr)
2494{
2495 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2496 u64 period = attr->sched_period ?: attr->sched_deadline;
2497 u64 runtime = attr->sched_runtime;
2498 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2499 int cpus, err = -1;
2500
794a56eb
JL
2501 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2502 return 0;
2503
06a76fe0
NP
2504 /* !deadline task may carry old deadline bandwidth */
2505 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2506 return 0;
2507
2508 /*
2509 * Either if a task, enters, leave, or stays -deadline but changes
2510 * its parameters, we may need to update accordingly the total
2511 * allocated bandwidth of the container.
2512 */
2513 raw_spin_lock(&dl_b->lock);
2514 cpus = dl_bw_cpus(task_cpu(p));
2515 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2516 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2517 if (hrtimer_active(&p->dl.inactive_timer))
8c0944ce 2518 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2519 __dl_add(dl_b, new_bw, cpus);
2520 err = 0;
2521 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2522 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2523 /*
2524 * XXX this is slightly incorrect: when the task
2525 * utilization decreases, we should delay the total
2526 * utilization change until the task's 0-lag point.
2527 * But this would require to set the task's "inactive
2528 * timer" when the task is not inactive.
2529 */
8c0944ce 2530 __dl_sub(dl_b, p->dl.dl_bw, cpus);
06a76fe0
NP
2531 __dl_add(dl_b, new_bw, cpus);
2532 dl_change_utilization(p, new_bw);
2533 err = 0;
2534 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2535 /*
2536 * Do not decrease the total deadline utilization here,
2537 * switched_from_dl() will take care to do it at the correct
2538 * (0-lag) time.
2539 */
2540 err = 0;
2541 }
2542 raw_spin_unlock(&dl_b->lock);
2543
2544 return err;
2545}
2546
2547/*
2548 * This function initializes the sched_dl_entity of a newly becoming
2549 * SCHED_DEADLINE task.
2550 *
2551 * Only the static values are considered here, the actual runtime and the
2552 * absolute deadline will be properly calculated when the task is enqueued
2553 * for the first time with its new policy.
2554 */
2555void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2556{
2557 struct sched_dl_entity *dl_se = &p->dl;
2558
2559 dl_se->dl_runtime = attr->sched_runtime;
2560 dl_se->dl_deadline = attr->sched_deadline;
2561 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2562 dl_se->flags = attr->sched_flags;
2563 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2564 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2565}
2566
2567void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2568{
2569 struct sched_dl_entity *dl_se = &p->dl;
2570
2571 attr->sched_priority = p->rt_priority;
2572 attr->sched_runtime = dl_se->dl_runtime;
2573 attr->sched_deadline = dl_se->dl_deadline;
2574 attr->sched_period = dl_se->dl_period;
2575 attr->sched_flags = dl_se->flags;
2576}
2577
2578/*
2579 * This function validates the new parameters of a -deadline task.
2580 * We ask for the deadline not being zero, and greater or equal
2581 * than the runtime, as well as the period of being zero or
2582 * greater than deadline. Furthermore, we have to be sure that
2583 * user parameters are above the internal resolution of 1us (we
2584 * check sched_runtime only since it is always the smaller one) and
2585 * below 2^63 ns (we have to check both sched_deadline and
2586 * sched_period, as the latter can be zero).
2587 */
2588bool __checkparam_dl(const struct sched_attr *attr)
2589{
794a56eb
JL
2590 /* special dl tasks don't actually use any parameter */
2591 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2592 return true;
2593
06a76fe0
NP
2594 /* deadline != 0 */
2595 if (attr->sched_deadline == 0)
2596 return false;
2597
2598 /*
2599 * Since we truncate DL_SCALE bits, make sure we're at least
2600 * that big.
2601 */
2602 if (attr->sched_runtime < (1ULL << DL_SCALE))
2603 return false;
2604
2605 /*
2606 * Since we use the MSB for wrap-around and sign issues, make
2607 * sure it's not set (mind that period can be equal to zero).
2608 */
2609 if (attr->sched_deadline & (1ULL << 63) ||
2610 attr->sched_period & (1ULL << 63))
2611 return false;
2612
2613 /* runtime <= deadline <= period (if period != 0) */
2614 if ((attr->sched_period != 0 &&
2615 attr->sched_period < attr->sched_deadline) ||
2616 attr->sched_deadline < attr->sched_runtime)
2617 return false;
2618
2619 return true;
2620}
2621
2622/*
2623 * This function clears the sched_dl_entity static params.
2624 */
2625void __dl_clear_params(struct task_struct *p)
2626{
2627 struct sched_dl_entity *dl_se = &p->dl;
2628
2629 dl_se->dl_runtime = 0;
2630 dl_se->dl_deadline = 0;
2631 dl_se->dl_period = 0;
2632 dl_se->flags = 0;
2633 dl_se->dl_bw = 0;
2634 dl_se->dl_density = 0;
2635
2636 dl_se->dl_throttled = 0;
2637 dl_se->dl_yielded = 0;
2638 dl_se->dl_non_contending = 0;
34be3930 2639 dl_se->dl_overrun = 0;
06a76fe0
NP
2640}
2641
2642bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2643{
2644 struct sched_dl_entity *dl_se = &p->dl;
2645
2646 if (dl_se->dl_runtime != attr->sched_runtime ||
2647 dl_se->dl_deadline != attr->sched_deadline ||
2648 dl_se->dl_period != attr->sched_period ||
2649 dl_se->flags != attr->sched_flags)
2650 return true;
2651
2652 return false;
2653}
2654
2655#ifdef CONFIG_SMP
2656int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2657{
2658 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
2659 cs_cpus_allowed);
2660 struct dl_bw *dl_b;
2661 bool overflow;
2662 int cpus, ret;
2663 unsigned long flags;
2664
2665 rcu_read_lock_sched();
2666 dl_b = dl_bw_of(dest_cpu);
2667 raw_spin_lock_irqsave(&dl_b->lock, flags);
2668 cpus = dl_bw_cpus(dest_cpu);
2669 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2670 if (overflow)
2671 ret = -EBUSY;
2672 else {
2673 /*
2674 * We reserve space for this task in the destination
2675 * root_domain, as we can't fail after this point.
2676 * We will free resources in the source root_domain
2677 * later on (see set_cpus_allowed_dl()).
2678 */
2679 __dl_add(dl_b, p->dl.dl_bw, cpus);
2680 ret = 0;
2681 }
2682 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2683 rcu_read_unlock_sched();
2684 return ret;
2685}
2686
2687int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2688 const struct cpumask *trial)
2689{
2690 int ret = 1, trial_cpus;
2691 struct dl_bw *cur_dl_b;
2692 unsigned long flags;
2693
2694 rcu_read_lock_sched();
2695 cur_dl_b = dl_bw_of(cpumask_any(cur));
2696 trial_cpus = cpumask_weight(trial);
2697
2698 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2699 if (cur_dl_b->bw != -1 &&
2700 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2701 ret = 0;
2702 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2703 rcu_read_unlock_sched();
2704 return ret;
2705}
2706
2707bool dl_cpu_busy(unsigned int cpu)
2708{
2709 unsigned long flags;
2710 struct dl_bw *dl_b;
2711 bool overflow;
2712 int cpus;
2713
2714 rcu_read_lock_sched();
2715 dl_b = dl_bw_of(cpu);
2716 raw_spin_lock_irqsave(&dl_b->lock, flags);
2717 cpus = dl_bw_cpus(cpu);
2718 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2719 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2720 rcu_read_unlock_sched();
2721 return overflow;
2722}
2723#endif
2724
acb32132
WL
2725#ifdef CONFIG_SCHED_DEBUG
2726extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2727
2728void print_dl_stats(struct seq_file *m, int cpu)
2729{
2730 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2731}
2732#endif /* CONFIG_SCHED_DEBUG */