Merge tag 'dm-4.4-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux-2.6-block.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
a4f61cc0 124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
d0ea0268 145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
d0ea0268 172 if (task_nice(p) > 0) {
73fbec60
FW
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
dee08a72
FW
261 u64 steal;
262 cputime_t steal_ct;
73fbec60
FW
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
dee08a72
FW
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
73fbec60 274
dee08a72
FW
275 account_steal_time(steal_ct);
276 return steal_ct;
73fbec60
FW
277 }
278#endif
279 return false;
280}
281
a634f933
FW
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288 struct signal_struct *sig = tsk->signal;
6fac4829 289 cputime_t utime, stime;
a634f933 290 struct task_struct *t;
e78c3496 291 unsigned int seq, nextseq;
9c368b5b 292 unsigned long flags;
a634f933
FW
293
294 rcu_read_lock();
e78c3496
RR
295 /* Attempt a lockless read on the first round. */
296 nextseq = 0;
297 do {
298 seq = nextseq;
9c368b5b 299 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
e78c3496
RR
300 times->utime = sig->utime;
301 times->stime = sig->stime;
302 times->sum_exec_runtime = sig->sum_sched_runtime;
303
304 for_each_thread(tsk, t) {
305 task_cputime(t, &utime, &stime);
306 times->utime += utime;
307 times->stime += stime;
308 times->sum_exec_runtime += task_sched_runtime(t);
309 }
310 /* If lockless access failed, take the lock. */
311 nextseq = 1;
312 } while (need_seqretry(&sig->stats_lock, seq));
9c368b5b 313 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
a634f933
FW
314 rcu_read_unlock();
315}
316
73fbec60
FW
317#ifdef CONFIG_IRQ_TIME_ACCOUNTING
318/*
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
323 *
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
327 * - user_time
328 * - idle_time
329 * - system time
330 * - check for guest_time
331 * - else account as system_time
332 *
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
338 */
339static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 340 struct rq *rq, int ticks)
73fbec60 341{
2d513868
TG
342 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
344 u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346 if (steal_account_process_tick())
347 return;
348
2d513868
TG
349 cputime *= ticks;
350 scaled *= ticks;
351
73fbec60 352 if (irqtime_account_hi_update()) {
2d513868 353 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 354 } else if (irqtime_account_si_update()) {
2d513868 355 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
356 } else if (this_cpu_ksoftirqd() == p) {
357 /*
358 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 * So, we have to handle it separately here.
360 * Also, p->stime needs to be updated for ksoftirqd.
361 */
2d513868 362 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 363 } else if (user_tick) {
2d513868 364 account_user_time(p, cputime, scaled);
73fbec60 365 } else if (p == rq->idle) {
2d513868 366 account_idle_time(cputime);
73fbec60 367 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2d513868 368 account_guest_time(p, cputime, scaled);
73fbec60 369 } else {
2d513868 370 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
371 }
372}
373
374static void irqtime_account_idle_ticks(int ticks)
375{
73fbec60
FW
376 struct rq *rq = this_rq();
377
2d513868 378 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
379}
380#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
381static inline void irqtime_account_idle_ticks(int ticks) {}
382static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 383 struct rq *rq, int nr_ticks) {}
73fbec60
FW
384#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
73fbec60
FW
386/*
387 * Use precise platform statistics if available:
388 */
389#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 390
e3942ba0 391#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
b0493406 392void vtime_common_task_switch(struct task_struct *prev)
e3942ba0
FW
393{
394 if (is_idle_task(prev))
395 vtime_account_idle(prev);
396 else
397 vtime_account_system(prev);
398
abf917cd 399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 400 vtime_account_user(prev);
abf917cd 401#endif
e3942ba0
FW
402 arch_vtime_task_switch(prev);
403}
404#endif
11113334 405
a7e1a9e3
FW
406/*
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 409 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
412 * vtime_account().
413 */
414#ifndef __ARCH_HAS_VTIME_ACCOUNT
b0493406 415void vtime_common_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 416{
abf917cd
FW
417 if (!in_interrupt()) {
418 /*
419 * If we interrupted user, context_tracking_in_user()
420 * is 1 because the context tracking don't hook
421 * on irq entry/exit. This way we know if
422 * we need to flush user time on kernel entry.
423 */
424 if (context_tracking_in_user()) {
425 vtime_account_user(tsk);
426 return;
427 }
428
429 if (is_idle_task(tsk)) {
430 vtime_account_idle(tsk);
431 return;
432 }
433 }
434 vtime_account_system(tsk);
a7e1a9e3 435}
b0493406 436EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
a7e1a9e3 437#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
438#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443{
444 *ut = p->utime;
445 *st = p->stime;
446}
a7e1a9e3 447
9fbc42ea
FW
448void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449{
450 struct task_cputime cputime;
73fbec60 451
9fbc42ea
FW
452 thread_group_cputime(p, &cputime);
453
454 *ut = cputime.utime;
455 *st = cputime.stime;
456}
457#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
458/*
459 * Account a single tick of cpu time.
460 * @p: the process that the cpu time gets accounted to
461 * @user_tick: indicates if the tick is a user or a system tick
462 */
463void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 464{
9fbc42ea
FW
465 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
466 struct rq *rq = this_rq();
73fbec60 467
9fbc42ea
FW
468 if (vtime_accounting_enabled())
469 return;
470
471 if (sched_clock_irqtime) {
2d513868 472 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
473 return;
474 }
475
476 if (steal_account_process_tick())
477 return;
73fbec60 478
9fbc42ea
FW
479 if (user_tick)
480 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
481 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
482 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
483 one_jiffy_scaled);
73fbec60 484 else
9fbc42ea
FW
485 account_idle_time(cputime_one_jiffy);
486}
73fbec60 487
9fbc42ea
FW
488/*
489 * Account multiple ticks of steal time.
490 * @p: the process from which the cpu time has been stolen
491 * @ticks: number of stolen ticks
492 */
493void account_steal_ticks(unsigned long ticks)
494{
495 account_steal_time(jiffies_to_cputime(ticks));
496}
497
498/*
499 * Account multiple ticks of idle time.
500 * @ticks: number of stolen ticks
501 */
502void account_idle_ticks(unsigned long ticks)
503{
504
505 if (sched_clock_irqtime) {
506 irqtime_account_idle_ticks(ticks);
507 return;
508 }
509
510 account_idle_time(jiffies_to_cputime(ticks));
511}
73fbec60 512
d9a3c982 513/*
55eaa7c1
SG
514 * Perform (stime * rtime) / total, but avoid multiplication overflow by
515 * loosing precision when the numbers are big.
d9a3c982
FW
516 */
517static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 518{
55eaa7c1 519 u64 scaled;
73fbec60 520
55eaa7c1
SG
521 for (;;) {
522 /* Make sure "rtime" is the bigger of stime/rtime */
84f9f3a1
SG
523 if (stime > rtime)
524 swap(rtime, stime);
55eaa7c1
SG
525
526 /* Make sure 'total' fits in 32 bits */
527 if (total >> 32)
528 goto drop_precision;
529
530 /* Does rtime (and thus stime) fit in 32 bits? */
531 if (!(rtime >> 32))
532 break;
533
534 /* Can we just balance rtime/stime rather than dropping bits? */
535 if (stime >> 31)
536 goto drop_precision;
537
538 /* We can grow stime and shrink rtime and try to make them both fit */
539 stime <<= 1;
540 rtime >>= 1;
541 continue;
542
543drop_precision:
544 /* We drop from rtime, it has more bits than stime */
545 rtime >>= 1;
546 total >>= 1;
d9a3c982 547 }
73fbec60 548
55eaa7c1
SG
549 /*
550 * Make sure gcc understands that this is a 32x32->64 multiply,
551 * followed by a 64/32->64 divide.
552 */
553 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 554 return (__force cputime_t) scaled;
73fbec60
FW
555}
556
347abad9 557/*
9d7fb042
PZ
558 * Adjust tick based cputime random precision against scheduler runtime
559 * accounting.
347abad9 560 *
9d7fb042
PZ
561 * Tick based cputime accounting depend on random scheduling timeslices of a
562 * task to be interrupted or not by the timer. Depending on these
563 * circumstances, the number of these interrupts may be over or
564 * under-optimistic, matching the real user and system cputime with a variable
565 * precision.
566 *
567 * Fix this by scaling these tick based values against the total runtime
568 * accounted by the CFS scheduler.
569 *
570 * This code provides the following guarantees:
571 *
572 * stime + utime == rtime
573 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
574 *
575 * Assuming that rtime_i+1 >= rtime_i.
fa092057 576 */
d37f761d 577static void cputime_adjust(struct task_cputime *curr,
9d7fb042 578 struct prev_cputime *prev,
d37f761d 579 cputime_t *ut, cputime_t *st)
73fbec60 580{
5a8e01f8 581 cputime_t rtime, stime, utime;
9d7fb042 582 unsigned long flags;
fa092057 583
9d7fb042
PZ
584 /* Serialize concurrent callers such that we can honour our guarantees */
585 raw_spin_lock_irqsave(&prev->lock, flags);
d37f761d 586 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 587
772c808a 588 /*
9d7fb042
PZ
589 * This is possible under two circumstances:
590 * - rtime isn't monotonic after all (a bug);
591 * - we got reordered by the lock.
592 *
593 * In both cases this acts as a filter such that the rest of the code
594 * can assume it is monotonic regardless of anything else.
772c808a
SG
595 */
596 if (prev->stime + prev->utime >= rtime)
597 goto out;
598
5a8e01f8
SG
599 stime = curr->stime;
600 utime = curr->utime;
601
602 if (utime == 0) {
603 stime = rtime;
9d7fb042
PZ
604 goto update;
605 }
5a8e01f8 606
9d7fb042
PZ
607 if (stime == 0) {
608 utime = rtime;
609 goto update;
d9a3c982 610 }
73fbec60 611
9d7fb042
PZ
612 stime = scale_stime((__force u64)stime, (__force u64)rtime,
613 (__force u64)(stime + utime));
614
615 /*
616 * Make sure stime doesn't go backwards; this preserves monotonicity
617 * for utime because rtime is monotonic.
618 *
619 * utime_i+1 = rtime_i+1 - stime_i
620 * = rtime_i+1 - (rtime_i - utime_i)
621 * = (rtime_i+1 - rtime_i) + utime_i
622 * >= utime_i
623 */
624 if (stime < prev->stime)
625 stime = prev->stime;
626 utime = rtime - stime;
627
628 /*
629 * Make sure utime doesn't go backwards; this still preserves
630 * monotonicity for stime, analogous argument to above.
631 */
632 if (utime < prev->utime) {
633 utime = prev->utime;
634 stime = rtime - utime;
635 }
d37f761d 636
9d7fb042
PZ
637update:
638 prev->stime = stime;
639 prev->utime = utime;
772c808a 640out:
d37f761d
FW
641 *ut = prev->utime;
642 *st = prev->stime;
9d7fb042 643 raw_spin_unlock_irqrestore(&prev->lock, flags);
d37f761d 644}
73fbec60 645
d37f761d
FW
646void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
647{
648 struct task_cputime cputime = {
d37f761d
FW
649 .sum_exec_runtime = p->se.sum_exec_runtime,
650 };
651
6fac4829 652 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 653 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60
FW
654}
655
e80d0a1a 656void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 657{
73fbec60 658 struct task_cputime cputime;
73fbec60
FW
659
660 thread_group_cputime(p, &cputime);
d37f761d 661 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 662}
9fbc42ea 663#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
664
665#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
666static unsigned long long vtime_delta(struct task_struct *tsk)
667{
668 unsigned long long clock;
669
7f6575f1 670 clock = local_clock();
6a61671b
FW
671 if (clock < tsk->vtime_snap)
672 return 0;
abf917cd 673
6a61671b
FW
674 return clock - tsk->vtime_snap;
675}
676
677static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 678{
6a61671b 679 unsigned long long delta = vtime_delta(tsk);
abf917cd 680
6a61671b
FW
681 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
682 tsk->vtime_snap += delta;
abf917cd
FW
683
684 /* CHECKME: always safe to convert nsecs to cputime? */
685 return nsecs_to_cputime(delta);
686}
687
6a61671b
FW
688static void __vtime_account_system(struct task_struct *tsk)
689{
690 cputime_t delta_cpu = get_vtime_delta(tsk);
691
692 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
693}
694
abf917cd
FW
695void vtime_account_system(struct task_struct *tsk)
696{
6a61671b
FW
697 write_seqlock(&tsk->vtime_seqlock);
698 __vtime_account_system(tsk);
699 write_sequnlock(&tsk->vtime_seqlock);
700}
3f4724ea 701
b0493406 702void vtime_gen_account_irq_exit(struct task_struct *tsk)
6a61671b 703{
6a61671b 704 write_seqlock(&tsk->vtime_seqlock);
af2350bd 705 __vtime_account_system(tsk);
6a61671b
FW
706 if (context_tracking_in_user())
707 tsk->vtime_snap_whence = VTIME_USER;
6a61671b 708 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
709}
710
711void vtime_account_user(struct task_struct *tsk)
712{
3f4724ea
FW
713 cputime_t delta_cpu;
714
6a61671b 715 write_seqlock(&tsk->vtime_seqlock);
54461562 716 delta_cpu = get_vtime_delta(tsk);
6a61671b 717 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 718 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
719 write_sequnlock(&tsk->vtime_seqlock);
720}
721
722void vtime_user_enter(struct task_struct *tsk)
723{
6a61671b 724 write_seqlock(&tsk->vtime_seqlock);
6a61671b 725 __vtime_account_system(tsk);
af2350bd 726 tsk->vtime_snap_whence = VTIME_USER;
6a61671b
FW
727 write_sequnlock(&tsk->vtime_seqlock);
728}
729
730void vtime_guest_enter(struct task_struct *tsk)
731{
5b206d48
FW
732 /*
733 * The flags must be updated under the lock with
734 * the vtime_snap flush and update.
735 * That enforces a right ordering and update sequence
736 * synchronization against the reader (task_gtime())
737 * that can thus safely catch up with a tickless delta.
738 */
6a61671b
FW
739 write_seqlock(&tsk->vtime_seqlock);
740 __vtime_account_system(tsk);
741 current->flags |= PF_VCPU;
742 write_sequnlock(&tsk->vtime_seqlock);
743}
48d6a816 744EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
745
746void vtime_guest_exit(struct task_struct *tsk)
747{
748 write_seqlock(&tsk->vtime_seqlock);
749 __vtime_account_system(tsk);
750 current->flags &= ~PF_VCPU;
751 write_sequnlock(&tsk->vtime_seqlock);
abf917cd 752}
48d6a816 753EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
754
755void vtime_account_idle(struct task_struct *tsk)
756{
6a61671b 757 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
758
759 account_idle_time(delta_cpu);
760}
3f4724ea 761
6a61671b
FW
762void arch_vtime_task_switch(struct task_struct *prev)
763{
764 write_seqlock(&prev->vtime_seqlock);
765 prev->vtime_snap_whence = VTIME_SLEEPING;
766 write_sequnlock(&prev->vtime_seqlock);
767
768 write_seqlock(&current->vtime_seqlock);
769 current->vtime_snap_whence = VTIME_SYS;
45eacc69 770 current->vtime_snap = sched_clock_cpu(smp_processor_id());
6a61671b
FW
771 write_sequnlock(&current->vtime_seqlock);
772}
773
45eacc69 774void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
775{
776 unsigned long flags;
777
778 write_seqlock_irqsave(&t->vtime_seqlock, flags);
779 t->vtime_snap_whence = VTIME_SYS;
45eacc69 780 t->vtime_snap = sched_clock_cpu(cpu);
6a61671b
FW
781 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
782}
783
784cputime_t task_gtime(struct task_struct *t)
785{
6a61671b
FW
786 unsigned int seq;
787 cputime_t gtime;
788
789 do {
cdc4e86b 790 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
791
792 gtime = t->gtime;
793 if (t->flags & PF_VCPU)
794 gtime += vtime_delta(t);
795
cdc4e86b 796 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
797
798 return gtime;
799}
800
801/*
802 * Fetch cputime raw values from fields of task_struct and
803 * add up the pending nohz execution time since the last
804 * cputime snapshot.
805 */
806static void
807fetch_task_cputime(struct task_struct *t,
808 cputime_t *u_dst, cputime_t *s_dst,
809 cputime_t *u_src, cputime_t *s_src,
810 cputime_t *udelta, cputime_t *sdelta)
811{
6a61671b
FW
812 unsigned int seq;
813 unsigned long long delta;
814
815 do {
816 *udelta = 0;
817 *sdelta = 0;
818
cdc4e86b 819 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
820
821 if (u_dst)
822 *u_dst = *u_src;
823 if (s_dst)
824 *s_dst = *s_src;
825
826 /* Task is sleeping, nothing to add */
827 if (t->vtime_snap_whence == VTIME_SLEEPING ||
828 is_idle_task(t))
829 continue;
830
831 delta = vtime_delta(t);
832
833 /*
834 * Task runs either in user or kernel space, add pending nohz time to
835 * the right place.
836 */
837 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
838 *udelta = delta;
839 } else {
840 if (t->vtime_snap_whence == VTIME_SYS)
841 *sdelta = delta;
842 }
cdc4e86b 843 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
844}
845
846
847void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
848{
849 cputime_t udelta, sdelta;
850
851 fetch_task_cputime(t, utime, stime, &t->utime,
852 &t->stime, &udelta, &sdelta);
853 if (utime)
854 *utime += udelta;
855 if (stime)
856 *stime += sdelta;
857}
858
859void task_cputime_scaled(struct task_struct *t,
860 cputime_t *utimescaled, cputime_t *stimescaled)
861{
862 cputime_t udelta, sdelta;
863
864 fetch_task_cputime(t, utimescaled, stimescaled,
865 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
866 if (utimescaled)
867 *utimescaled += cputime_to_scaled(udelta);
868 if (stimescaled)
869 *stimescaled += cputime_to_scaled(sdelta);
870}
abf917cd 871#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */