Merge tag 'media/v5.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-block.git] / kernel / sched / cputime.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
325ea10c
IM
2/*
3 * Simple CPU accounting cgroup controller
4 */
73fbec60 5#include "sched.h"
73fbec60
FW
6
7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8
9/*
10 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 11 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
12 * with interrupts disabled. So, writes are safe.
13 * They are read and saved off onto struct rq in update_rq_clock().
14 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 15 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
16 * or new value with a side effect of accounting a slice of irq time to wrong
17 * task when irq is in progress while we read rq->clock. That is a worthy
18 * compromise in place of having locks on each irq in account_system_time.
19 */
19d23dbf 20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 21
73fbec60
FW
22static int sched_clock_irqtime;
23
24void enable_sched_clock_irqtime(void)
25{
26 sched_clock_irqtime = 1;
27}
28
29void disable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 0;
32}
33
25e2d8c1
FW
34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
35 enum cpu_usage_stat idx)
36{
37 u64 *cpustat = kcpustat_this_cpu->cpustat;
38
39 u64_stats_update_begin(&irqtime->sync);
40 cpustat[idx] += delta;
41 irqtime->total += delta;
42 irqtime->tick_delta += delta;
43 u64_stats_update_end(&irqtime->sync);
44}
45
73fbec60 46/*
d3759e71 47 * Called after incrementing preempt_count on {soft,}irq_enter
73fbec60
FW
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
d3759e71 50void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
73fbec60 51{
19d23dbf 52 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
d3759e71 53 unsigned int pc;
73fbec60
FW
54 s64 delta;
55 int cpu;
56
57 if (!sched_clock_irqtime)
58 return;
59
73fbec60 60 cpu = smp_processor_id();
19d23dbf
FW
61 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
62 irqtime->irq_start_time += delta;
6516b386 63 pc = irq_count() - offset;
73fbec60 64
73fbec60
FW
65 /*
66 * We do not account for softirq time from ksoftirqd here.
67 * We want to continue accounting softirq time to ksoftirqd thread
68 * in that case, so as not to confuse scheduler with a special task
69 * that do not consume any time, but still wants to run.
70 */
d3759e71 71 if (pc & HARDIRQ_MASK)
25e2d8c1 72 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
d3759e71 73 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
25e2d8c1 74 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
73fbec60 75}
73fbec60 76
2b1f967d 77static u64 irqtime_tick_accounted(u64 maxtime)
73fbec60 78{
a499a5a1 79 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
2b1f967d 80 u64 delta;
73fbec60 81
2b1f967d
FW
82 delta = min(irqtime->tick_delta, maxtime);
83 irqtime->tick_delta -= delta;
2810f611 84
a499a5a1 85 return delta;
73fbec60
FW
86}
87
88#else /* CONFIG_IRQ_TIME_ACCOUNTING */
89
90#define sched_clock_irqtime (0)
91
2b1f967d 92static u64 irqtime_tick_accounted(u64 dummy)
57430218
RR
93{
94 return 0;
95}
96
73fbec60
FW
97#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
98
99static inline void task_group_account_field(struct task_struct *p, int index,
100 u64 tmp)
101{
73fbec60
FW
102 /*
103 * Since all updates are sure to touch the root cgroup, we
104 * get ourselves ahead and touch it first. If the root cgroup
105 * is the only cgroup, then nothing else should be necessary.
106 *
107 */
a4f61cc0 108 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 109
d2cc5ed6 110 cgroup_account_cputime_field(p, index, tmp);
73fbec60
FW
111}
112
113/*
97fb7a0a
IM
114 * Account user CPU time to a process.
115 * @p: the process that the CPU time gets accounted to
116 * @cputime: the CPU time spent in user space since the last update
73fbec60 117 */
23244a5c 118void account_user_time(struct task_struct *p, u64 cputime)
73fbec60
FW
119{
120 int index;
121
122 /* Add user time to process. */
23244a5c
FW
123 p->utime += cputime;
124 account_group_user_time(p, cputime);
73fbec60 125
d0ea0268 126 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
127
128 /* Add user time to cpustat. */
23244a5c 129 task_group_account_field(p, index, cputime);
73fbec60
FW
130
131 /* Account for user time used */
6fac4829 132 acct_account_cputime(p);
73fbec60
FW
133}
134
135/*
97fb7a0a
IM
136 * Account guest CPU time to a process.
137 * @p: the process that the CPU time gets accounted to
138 * @cputime: the CPU time spent in virtual machine since the last update
73fbec60 139 */
fb8b049c 140void account_guest_time(struct task_struct *p, u64 cputime)
73fbec60
FW
141{
142 u64 *cpustat = kcpustat_this_cpu->cpustat;
143
144 /* Add guest time to process. */
fb8b049c
FW
145 p->utime += cputime;
146 account_group_user_time(p, cputime);
147 p->gtime += cputime;
73fbec60
FW
148
149 /* Add guest time to cpustat. */
d0ea0268 150 if (task_nice(p) > 0) {
fb8b049c
FW
151 cpustat[CPUTIME_NICE] += cputime;
152 cpustat[CPUTIME_GUEST_NICE] += cputime;
73fbec60 153 } else {
fb8b049c
FW
154 cpustat[CPUTIME_USER] += cputime;
155 cpustat[CPUTIME_GUEST] += cputime;
73fbec60
FW
156 }
157}
158
159/*
97fb7a0a
IM
160 * Account system CPU time to a process and desired cpustat field
161 * @p: the process that the CPU time gets accounted to
162 * @cputime: the CPU time spent in kernel space since the last update
40565b5a 163 * @index: pointer to cpustat field that has to be updated
73fbec60 164 */
c31cc6a5 165void account_system_index_time(struct task_struct *p,
fb8b049c 166 u64 cputime, enum cpu_usage_stat index)
73fbec60
FW
167{
168 /* Add system time to process. */
fb8b049c
FW
169 p->stime += cputime;
170 account_group_system_time(p, cputime);
73fbec60
FW
171
172 /* Add system time to cpustat. */
fb8b049c 173 task_group_account_field(p, index, cputime);
73fbec60
FW
174
175 /* Account for system time used */
6fac4829 176 acct_account_cputime(p);
73fbec60
FW
177}
178
179/*
97fb7a0a
IM
180 * Account system CPU time to a process.
181 * @p: the process that the CPU time gets accounted to
73fbec60 182 * @hardirq_offset: the offset to subtract from hardirq_count()
97fb7a0a 183 * @cputime: the CPU time spent in kernel space since the last update
73fbec60 184 */
fb8b049c 185void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
73fbec60
FW
186{
187 int index;
188
189 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
40565b5a 190 account_guest_time(p, cputime);
73fbec60
FW
191 return;
192 }
193
194 if (hardirq_count() - hardirq_offset)
195 index = CPUTIME_IRQ;
196 else if (in_serving_softirq())
197 index = CPUTIME_SOFTIRQ;
198 else
199 index = CPUTIME_SYSTEM;
200
c31cc6a5 201 account_system_index_time(p, cputime, index);
73fbec60
FW
202}
203
204/*
205 * Account for involuntary wait time.
97fb7a0a 206 * @cputime: the CPU time spent in involuntary wait
73fbec60 207 */
be9095ed 208void account_steal_time(u64 cputime)
73fbec60
FW
209{
210 u64 *cpustat = kcpustat_this_cpu->cpustat;
211
be9095ed 212 cpustat[CPUTIME_STEAL] += cputime;
73fbec60
FW
213}
214
215/*
216 * Account for idle time.
97fb7a0a 217 * @cputime: the CPU time spent in idle wait
73fbec60 218 */
18b43a9b 219void account_idle_time(u64 cputime)
73fbec60
FW
220{
221 u64 *cpustat = kcpustat_this_cpu->cpustat;
222 struct rq *rq = this_rq();
223
224 if (atomic_read(&rq->nr_iowait) > 0)
18b43a9b 225 cpustat[CPUTIME_IOWAIT] += cputime;
73fbec60 226 else
18b43a9b 227 cpustat[CPUTIME_IDLE] += cputime;
73fbec60
FW
228}
229
03cbc732
WL
230/*
231 * When a guest is interrupted for a longer amount of time, missed clock
232 * ticks are not redelivered later. Due to that, this function may on
233 * occasion account more time than the calling functions think elapsed.
234 */
2b1f967d 235static __always_inline u64 steal_account_process_time(u64 maxtime)
73fbec60
FW
236{
237#ifdef CONFIG_PARAVIRT
238 if (static_key_false(&paravirt_steal_enabled)) {
2b1f967d 239 u64 steal;
73fbec60
FW
240
241 steal = paravirt_steal_clock(smp_processor_id());
242 steal -= this_rq()->prev_steal_time;
2b1f967d
FW
243 steal = min(steal, maxtime);
244 account_steal_time(steal);
245 this_rq()->prev_steal_time += steal;
73fbec60 246
2b1f967d 247 return steal;
73fbec60
FW
248 }
249#endif
807e5b80 250 return 0;
73fbec60
FW
251}
252
57430218
RR
253/*
254 * Account how much elapsed time was spent in steal, irq, or softirq time.
255 */
2b1f967d 256static inline u64 account_other_time(u64 max)
57430218 257{
2b1f967d 258 u64 accounted;
57430218 259
2c11dba0 260 lockdep_assert_irqs_disabled();
2810f611 261
57430218
RR
262 accounted = steal_account_process_time(max);
263
264 if (accounted < max)
a499a5a1 265 accounted += irqtime_tick_accounted(max - accounted);
57430218
RR
266
267 return accounted;
268}
269
a1eb1411
SG
270#ifdef CONFIG_64BIT
271static inline u64 read_sum_exec_runtime(struct task_struct *t)
272{
273 return t->se.sum_exec_runtime;
274}
275#else
276static u64 read_sum_exec_runtime(struct task_struct *t)
277{
278 u64 ns;
279 struct rq_flags rf;
280 struct rq *rq;
281
282 rq = task_rq_lock(t, &rf);
283 ns = t->se.sum_exec_runtime;
284 task_rq_unlock(rq, t, &rf);
285
286 return ns;
287}
288#endif
289
a634f933
FW
290/*
291 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
292 * tasks (sum on group iteration) belonging to @tsk's group.
293 */
294void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
295{
296 struct signal_struct *sig = tsk->signal;
5613fda9 297 u64 utime, stime;
a634f933 298 struct task_struct *t;
e78c3496 299 unsigned int seq, nextseq;
9c368b5b 300 unsigned long flags;
a634f933 301
a1eb1411
SG
302 /*
303 * Update current task runtime to account pending time since last
304 * scheduler action or thread_group_cputime() call. This thread group
305 * might have other running tasks on different CPUs, but updating
306 * their runtime can affect syscall performance, so we skip account
307 * those pending times and rely only on values updated on tick or
308 * other scheduler action.
309 */
310 if (same_thread_group(current, tsk))
311 (void) task_sched_runtime(current);
312
a634f933 313 rcu_read_lock();
e78c3496
RR
314 /* Attempt a lockless read on the first round. */
315 nextseq = 0;
316 do {
317 seq = nextseq;
9c368b5b 318 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
e78c3496
RR
319 times->utime = sig->utime;
320 times->stime = sig->stime;
321 times->sum_exec_runtime = sig->sum_sched_runtime;
322
323 for_each_thread(tsk, t) {
324 task_cputime(t, &utime, &stime);
325 times->utime += utime;
326 times->stime += stime;
a1eb1411 327 times->sum_exec_runtime += read_sum_exec_runtime(t);
e78c3496
RR
328 }
329 /* If lockless access failed, take the lock. */
330 nextseq = 1;
331 } while (need_seqretry(&sig->stats_lock, seq));
9c368b5b 332 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
a634f933
FW
333 rcu_read_unlock();
334}
335
73fbec60
FW
336#ifdef CONFIG_IRQ_TIME_ACCOUNTING
337/*
338 * Account a tick to a process and cpustat
97fb7a0a 339 * @p: the process that the CPU time gets accounted to
73fbec60
FW
340 * @user_tick: is the tick from userspace
341 * @rq: the pointer to rq
342 *
343 * Tick demultiplexing follows the order
344 * - pending hardirq update
345 * - pending softirq update
346 * - user_time
347 * - idle_time
348 * - system time
349 * - check for guest_time
350 * - else account as system_time
351 *
352 * Check for hardirq is done both for system and user time as there is
353 * no timer going off while we are on hardirq and hence we may never get an
354 * opportunity to update it solely in system time.
355 * p->stime and friends are only updated on system time and not on irq
356 * softirq as those do not count in task exec_runtime any more.
357 */
358static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
9dec1b69 359 int ticks)
73fbec60 360{
2b1f967d 361 u64 other, cputime = TICK_NSEC * ticks;
73fbec60 362
57430218
RR
363 /*
364 * When returning from idle, many ticks can get accounted at
365 * once, including some ticks of steal, irq, and softirq time.
366 * Subtract those ticks from the amount of time accounted to
367 * idle, or potentially user or system time. Due to rounding,
368 * other time can exceed ticks occasionally.
369 */
03cbc732 370 other = account_other_time(ULONG_MAX);
2b1f967d 371 if (other >= cputime)
73fbec60 372 return;
23244a5c 373
2b1f967d 374 cputime -= other;
73fbec60 375
57430218 376 if (this_cpu_ksoftirqd() == p) {
73fbec60
FW
377 /*
378 * ksoftirqd time do not get accounted in cpu_softirq_time.
379 * So, we have to handle it separately here.
380 * Also, p->stime needs to be updated for ksoftirqd.
381 */
fb8b049c 382 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
73fbec60 383 } else if (user_tick) {
40565b5a 384 account_user_time(p, cputime);
9dec1b69 385 } else if (p == this_rq()->idle) {
18b43a9b 386 account_idle_time(cputime);
73fbec60 387 } else if (p->flags & PF_VCPU) { /* System time or guest time */
fb8b049c 388 account_guest_time(p, cputime);
73fbec60 389 } else {
fb8b049c 390 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
73fbec60
FW
391 }
392}
393
394static void irqtime_account_idle_ticks(int ticks)
395{
9dec1b69 396 irqtime_account_process_tick(current, 0, ticks);
73fbec60
FW
397}
398#else /* CONFIG_IRQ_TIME_ACCOUNTING */
97fb7a0a 399static inline void irqtime_account_idle_ticks(int ticks) { }
3f4724ea 400static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
9dec1b69 401 int nr_ticks) { }
73fbec60
FW
402#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
403
73fbec60
FW
404/*
405 * Use precise platform statistics if available:
406 */
8d495477
FW
407#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
408
97fb7a0a 409# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
8d495477 410void vtime_task_switch(struct task_struct *prev)
e3942ba0
FW
411{
412 if (is_idle_task(prev))
413 vtime_account_idle(prev);
414 else
f83eeb1a 415 vtime_account_kernel(prev);
e3942ba0 416
c8d7dabf 417 vtime_flush(prev);
e3942ba0
FW
418 arch_vtime_task_switch(prev);
419}
97fb7a0a 420# endif
0cfdf9a1 421
d3759e71 422void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
a7e1a9e3 423{
6516b386 424 unsigned int pc = irq_count() - offset;
d3759e71
FW
425
426 if (pc & HARDIRQ_OFFSET) {
8a6a5920 427 vtime_account_hardirq(tsk);
d3759e71 428 } else if (pc & SOFTIRQ_OFFSET) {
8a6a5920
FW
429 vtime_account_softirq(tsk);
430 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
431 is_idle_task(tsk)) {
0cfdf9a1 432 vtime_account_idle(tsk);
8a6a5920 433 } else {
f83eeb1a 434 vtime_account_kernel(tsk);
8a6a5920 435 }
a7e1a9e3 436}
9fbc42ea 437
8157a7fa
TH
438void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
439 u64 *ut, u64 *st)
440{
441 *ut = curr->utime;
442 *st = curr->stime;
443}
444
5613fda9 445void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
9fbc42ea
FW
446{
447 *ut = p->utime;
448 *st = p->stime;
449}
9eec50b8 450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
a7e1a9e3 451
5613fda9 452void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
9fbc42ea
FW
453{
454 struct task_cputime cputime;
73fbec60 455
9fbc42ea
FW
456 thread_group_cputime(p, &cputime);
457
458 *ut = cputime.utime;
459 *st = cputime.stime;
460}
97fb7a0a
IM
461
462#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
463
9fbc42ea 464/*
97fb7a0a
IM
465 * Account a single tick of CPU time.
466 * @p: the process that the CPU time gets accounted to
9fbc42ea
FW
467 * @user_tick: indicates if the tick is a user or a system tick
468 */
469void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 470{
2b1f967d 471 u64 cputime, steal;
73fbec60 472
e44fcb4b 473 if (vtime_accounting_enabled_this_cpu())
9fbc42ea
FW
474 return;
475
476 if (sched_clock_irqtime) {
9dec1b69 477 irqtime_account_process_tick(p, user_tick, 1);
9fbc42ea
FW
478 return;
479 }
480
2b1f967d 481 cputime = TICK_NSEC;
03cbc732 482 steal = steal_account_process_time(ULONG_MAX);
57430218 483
2b1f967d 484 if (steal >= cputime)
9fbc42ea 485 return;
73fbec60 486
2b1f967d 487 cputime -= steal;
57430218 488
9fbc42ea 489 if (user_tick)
40565b5a 490 account_user_time(p, cputime);
9dec1b69 491 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
fb8b049c 492 account_system_time(p, HARDIRQ_OFFSET, cputime);
73fbec60 493 else
18b43a9b 494 account_idle_time(cputime);
9fbc42ea 495}
73fbec60 496
9fbc42ea
FW
497/*
498 * Account multiple ticks of idle time.
499 * @ticks: number of stolen ticks
500 */
501void account_idle_ticks(unsigned long ticks)
502{
18b43a9b 503 u64 cputime, steal;
26f2c75c 504
9fbc42ea
FW
505 if (sched_clock_irqtime) {
506 irqtime_account_idle_ticks(ticks);
507 return;
508 }
509
18b43a9b 510 cputime = ticks * TICK_NSEC;
2b1f967d 511 steal = steal_account_process_time(ULONG_MAX);
f9bcf1e0
WL
512
513 if (steal >= cputime)
514 return;
515
516 cputime -= steal;
517 account_idle_time(cputime);
9fbc42ea 518}
73fbec60 519
347abad9 520/*
9d7fb042
PZ
521 * Adjust tick based cputime random precision against scheduler runtime
522 * accounting.
347abad9 523 *
9d7fb042
PZ
524 * Tick based cputime accounting depend on random scheduling timeslices of a
525 * task to be interrupted or not by the timer. Depending on these
526 * circumstances, the number of these interrupts may be over or
527 * under-optimistic, matching the real user and system cputime with a variable
528 * precision.
529 *
530 * Fix this by scaling these tick based values against the total runtime
531 * accounted by the CFS scheduler.
532 *
533 * This code provides the following guarantees:
534 *
535 * stime + utime == rtime
536 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
537 *
538 * Assuming that rtime_i+1 >= rtime_i.
fa092057 539 */
cfb766da
TH
540void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
541 u64 *ut, u64 *st)
73fbec60 542{
5613fda9 543 u64 rtime, stime, utime;
9d7fb042 544 unsigned long flags;
fa092057 545
9d7fb042
PZ
546 /* Serialize concurrent callers such that we can honour our guarantees */
547 raw_spin_lock_irqsave(&prev->lock, flags);
5613fda9 548 rtime = curr->sum_exec_runtime;
73fbec60 549
772c808a 550 /*
9d7fb042
PZ
551 * This is possible under two circumstances:
552 * - rtime isn't monotonic after all (a bug);
553 * - we got reordered by the lock.
554 *
555 * In both cases this acts as a filter such that the rest of the code
556 * can assume it is monotonic regardless of anything else.
772c808a
SG
557 */
558 if (prev->stime + prev->utime >= rtime)
559 goto out;
560
5a8e01f8
SG
561 stime = curr->stime;
562 utime = curr->utime;
563
173be9a1 564 /*
3b9c08ae 565 * If either stime or utime are 0, assume all runtime is userspace.
3b03706f 566 * Once a task gets some ticks, the monotonicity code at 'update:'
3b9c08ae 567 * will ensure things converge to the observed ratio.
173be9a1 568 */
3b9c08ae
IM
569 if (stime == 0) {
570 utime = rtime;
571 goto update;
9d7fb042 572 }
5a8e01f8 573
3b9c08ae
IM
574 if (utime == 0) {
575 stime = rtime;
576 goto update;
577 }
578
3dc167ba 579 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
3b9c08ae
IM
580
581update:
9d7fb042
PZ
582 /*
583 * Make sure stime doesn't go backwards; this preserves monotonicity
584 * for utime because rtime is monotonic.
585 *
586 * utime_i+1 = rtime_i+1 - stime_i
587 * = rtime_i+1 - (rtime_i - utime_i)
588 * = (rtime_i+1 - rtime_i) + utime_i
589 * >= utime_i
590 */
591 if (stime < prev->stime)
592 stime = prev->stime;
593 utime = rtime - stime;
594
595 /*
596 * Make sure utime doesn't go backwards; this still preserves
597 * monotonicity for stime, analogous argument to above.
598 */
599 if (utime < prev->utime) {
600 utime = prev->utime;
601 stime = rtime - utime;
602 }
d37f761d 603
9d7fb042
PZ
604 prev->stime = stime;
605 prev->utime = utime;
772c808a 606out:
d37f761d
FW
607 *ut = prev->utime;
608 *st = prev->stime;
9d7fb042 609 raw_spin_unlock_irqrestore(&prev->lock, flags);
d37f761d 610}
73fbec60 611
5613fda9 612void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
d37f761d
FW
613{
614 struct task_cputime cputime = {
d37f761d
FW
615 .sum_exec_runtime = p->se.sum_exec_runtime,
616 };
617
6fac4829 618 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 619 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60 620}
9eec50b8 621EXPORT_SYMBOL_GPL(task_cputime_adjusted);
73fbec60 622
5613fda9 623void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
73fbec60 624{
73fbec60 625 struct task_cputime cputime;
73fbec60
FW
626
627 thread_group_cputime(p, &cputime);
d37f761d 628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 629}
9fbc42ea 630#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
631
632#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 633static u64 vtime_delta(struct vtime *vtime)
6a61671b 634{
2a42eb95 635 unsigned long long clock;
6a61671b 636
0e4097c3 637 clock = sched_clock();
2a42eb95 638 if (clock < vtime->starttime)
6a61671b 639 return 0;
abf917cd 640
2a42eb95 641 return clock - vtime->starttime;
6a61671b
FW
642}
643
bac5b6b6 644static u64 get_vtime_delta(struct vtime *vtime)
abf917cd 645{
2a42eb95
WL
646 u64 delta = vtime_delta(vtime);
647 u64 other;
abf917cd 648
03cbc732
WL
649 /*
650 * Unlike tick based timing, vtime based timing never has lost
651 * ticks, and no need for steal time accounting to make up for
652 * lost ticks. Vtime accounts a rounded version of actual
653 * elapsed time. Limit account_other_time to prevent rounding
654 * errors from causing elapsed vtime to go negative.
655 */
b58c3584 656 other = account_other_time(delta);
bac5b6b6 657 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
2a42eb95 658 vtime->starttime += delta;
abf917cd 659
b58c3584 660 return delta - other;
abf917cd
FW
661}
662
f83eeb1a
FW
663static void vtime_account_system(struct task_struct *tsk,
664 struct vtime *vtime)
6a61671b 665{
2a42eb95
WL
666 vtime->stime += get_vtime_delta(vtime);
667 if (vtime->stime >= TICK_NSEC) {
668 account_system_time(tsk, irq_count(), vtime->stime);
669 vtime->stime = 0;
670 }
671}
672
673static void vtime_account_guest(struct task_struct *tsk,
674 struct vtime *vtime)
675{
676 vtime->gtime += get_vtime_delta(vtime);
677 if (vtime->gtime >= TICK_NSEC) {
678 account_guest_time(tsk, vtime->gtime);
679 vtime->gtime = 0;
680 }
6a61671b
FW
681}
682
8d495477
FW
683static void __vtime_account_kernel(struct task_struct *tsk,
684 struct vtime *vtime)
685{
686 /* We might have scheduled out from guest path */
e6d5bf3e 687 if (vtime->state == VTIME_GUEST)
8d495477
FW
688 vtime_account_guest(tsk, vtime);
689 else
690 vtime_account_system(tsk, vtime);
691}
692
f83eeb1a 693void vtime_account_kernel(struct task_struct *tsk)
abf917cd 694{
bac5b6b6
FW
695 struct vtime *vtime = &tsk->vtime;
696
697 if (!vtime_delta(vtime))
ff9a9b4c
RR
698 return;
699
bac5b6b6 700 write_seqcount_begin(&vtime->seqcount);
8d495477 701 __vtime_account_kernel(tsk, vtime);
bac5b6b6 702 write_seqcount_end(&vtime->seqcount);
6a61671b 703}
3f4724ea 704
1c3eda01 705void vtime_user_enter(struct task_struct *tsk)
abf917cd 706{
bac5b6b6
FW
707 struct vtime *vtime = &tsk->vtime;
708
709 write_seqcount_begin(&vtime->seqcount);
f83eeb1a 710 vtime_account_system(tsk, vtime);
bac5b6b6
FW
711 vtime->state = VTIME_USER;
712 write_seqcount_end(&vtime->seqcount);
6a61671b
FW
713}
714
1c3eda01 715void vtime_user_exit(struct task_struct *tsk)
6a61671b 716{
bac5b6b6
FW
717 struct vtime *vtime = &tsk->vtime;
718
719 write_seqcount_begin(&vtime->seqcount);
2a42eb95
WL
720 vtime->utime += get_vtime_delta(vtime);
721 if (vtime->utime >= TICK_NSEC) {
722 account_user_time(tsk, vtime->utime);
723 vtime->utime = 0;
724 }
bac5b6b6
FW
725 vtime->state = VTIME_SYS;
726 write_seqcount_end(&vtime->seqcount);
6a61671b
FW
727}
728
729void vtime_guest_enter(struct task_struct *tsk)
730{
bac5b6b6 731 struct vtime *vtime = &tsk->vtime;
5b206d48
FW
732 /*
733 * The flags must be updated under the lock with
60a9ce57 734 * the vtime_starttime flush and update.
5b206d48
FW
735 * That enforces a right ordering and update sequence
736 * synchronization against the reader (task_gtime())
737 * that can thus safely catch up with a tickless delta.
738 */
bac5b6b6 739 write_seqcount_begin(&vtime->seqcount);
f83eeb1a 740 vtime_account_system(tsk, vtime);
68e7a4d6 741 tsk->flags |= PF_VCPU;
e6d5bf3e 742 vtime->state = VTIME_GUEST;
bac5b6b6 743 write_seqcount_end(&vtime->seqcount);
6a61671b 744}
48d6a816 745EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
746
747void vtime_guest_exit(struct task_struct *tsk)
748{
bac5b6b6
FW
749 struct vtime *vtime = &tsk->vtime;
750
751 write_seqcount_begin(&vtime->seqcount);
2a42eb95 752 vtime_account_guest(tsk, vtime);
68e7a4d6 753 tsk->flags &= ~PF_VCPU;
e6d5bf3e 754 vtime->state = VTIME_SYS;
bac5b6b6 755 write_seqcount_end(&vtime->seqcount);
abf917cd 756}
48d6a816 757EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
758
759void vtime_account_idle(struct task_struct *tsk)
760{
bac5b6b6 761 account_idle_time(get_vtime_delta(&tsk->vtime));
abf917cd 762}
3f4724ea 763
8d495477 764void vtime_task_switch_generic(struct task_struct *prev)
6a61671b 765{
bac5b6b6 766 struct vtime *vtime = &prev->vtime;
6a61671b 767
bac5b6b6 768 write_seqcount_begin(&vtime->seqcount);
14faf6fc 769 if (vtime->state == VTIME_IDLE)
8d495477
FW
770 vtime_account_idle(prev);
771 else
772 __vtime_account_kernel(prev, vtime);
bac5b6b6 773 vtime->state = VTIME_INACTIVE;
802f4a82 774 vtime->cpu = -1;
bac5b6b6
FW
775 write_seqcount_end(&vtime->seqcount);
776
777 vtime = &current->vtime;
778
779 write_seqcount_begin(&vtime->seqcount);
14faf6fc
FW
780 if (is_idle_task(current))
781 vtime->state = VTIME_IDLE;
e6d5bf3e
FW
782 else if (current->flags & PF_VCPU)
783 vtime->state = VTIME_GUEST;
14faf6fc
FW
784 else
785 vtime->state = VTIME_SYS;
0e4097c3 786 vtime->starttime = sched_clock();
802f4a82 787 vtime->cpu = smp_processor_id();
bac5b6b6 788 write_seqcount_end(&vtime->seqcount);
6a61671b
FW
789}
790
45eacc69 791void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b 792{
bac5b6b6 793 struct vtime *vtime = &t->vtime;
6a61671b
FW
794 unsigned long flags;
795
b7ce2277 796 local_irq_save(flags);
bac5b6b6 797 write_seqcount_begin(&vtime->seqcount);
14faf6fc 798 vtime->state = VTIME_IDLE;
0e4097c3 799 vtime->starttime = sched_clock();
802f4a82 800 vtime->cpu = cpu;
bac5b6b6 801 write_seqcount_end(&vtime->seqcount);
b7ce2277 802 local_irq_restore(flags);
6a61671b
FW
803}
804
16a6d9be 805u64 task_gtime(struct task_struct *t)
6a61671b 806{
bac5b6b6 807 struct vtime *vtime = &t->vtime;
6a61671b 808 unsigned int seq;
16a6d9be 809 u64 gtime;
6a61671b 810
e5925394 811 if (!vtime_accounting_enabled())
2541117b
HS
812 return t->gtime;
813
6a61671b 814 do {
bac5b6b6 815 seq = read_seqcount_begin(&vtime->seqcount);
6a61671b
FW
816
817 gtime = t->gtime;
e6d5bf3e 818 if (vtime->state == VTIME_GUEST)
2a42eb95 819 gtime += vtime->gtime + vtime_delta(vtime);
6a61671b 820
bac5b6b6 821 } while (read_seqcount_retry(&vtime->seqcount, seq));
6a61671b
FW
822
823 return gtime;
824}
825
826/*
827 * Fetch cputime raw values from fields of task_struct and
828 * add up the pending nohz execution time since the last
829 * cputime snapshot.
830 */
5613fda9 831void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
6a61671b 832{
bac5b6b6 833 struct vtime *vtime = &t->vtime;
6a61671b 834 unsigned int seq;
bac5b6b6 835 u64 delta;
6a61671b 836
353c50eb
SG
837 if (!vtime_accounting_enabled()) {
838 *utime = t->utime;
839 *stime = t->stime;
840 return;
841 }
6a61671b 842
353c50eb 843 do {
bac5b6b6 844 seq = read_seqcount_begin(&vtime->seqcount);
6a61671b 845
353c50eb
SG
846 *utime = t->utime;
847 *stime = t->stime;
6a61671b 848
14faf6fc
FW
849 /* Task is sleeping or idle, nothing to add */
850 if (vtime->state < VTIME_SYS)
6a61671b
FW
851 continue;
852
bac5b6b6 853 delta = vtime_delta(vtime);
6a61671b
FW
854
855 /*
e6d5bf3e
FW
856 * Task runs either in user (including guest) or kernel space,
857 * add pending nohz time to the right place.
6a61671b 858 */
e6d5bf3e 859 if (vtime->state == VTIME_SYS)
2a42eb95 860 *stime += vtime->stime + delta;
e6d5bf3e
FW
861 else
862 *utime += vtime->utime + delta;
bac5b6b6 863 } while (read_seqcount_retry(&vtime->seqcount, seq));
6a61671b 864}
64eea63c 865
f1dfdab6 866static int vtime_state_fetch(struct vtime *vtime, int cpu)
74722bb2 867{
f1dfdab6
CW
868 int state = READ_ONCE(vtime->state);
869
74722bb2
FW
870 /*
871 * We raced against a context switch, fetch the
872 * kcpustat task again.
873 */
874 if (vtime->cpu != cpu && vtime->cpu != -1)
875 return -EAGAIN;
876
877 /*
878 * Two possible things here:
879 * 1) We are seeing the scheduling out task (prev) or any past one.
880 * 2) We are seeing the scheduling in task (next) but it hasn't
881 * passed though vtime_task_switch() yet so the pending
882 * cputime of the prev task may not be flushed yet.
883 *
884 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
885 */
f1dfdab6 886 if (state == VTIME_INACTIVE)
74722bb2
FW
887 return -EAGAIN;
888
f1dfdab6 889 return state;
74722bb2
FW
890}
891
5a1c9558
FW
892static u64 kcpustat_user_vtime(struct vtime *vtime)
893{
894 if (vtime->state == VTIME_USER)
895 return vtime->utime + vtime_delta(vtime);
896 else if (vtime->state == VTIME_GUEST)
897 return vtime->gtime + vtime_delta(vtime);
898 return 0;
899}
900
64eea63c 901static int kcpustat_field_vtime(u64 *cpustat,
5a1c9558 902 struct task_struct *tsk,
64eea63c
FW
903 enum cpu_usage_stat usage,
904 int cpu, u64 *val)
905{
5a1c9558 906 struct vtime *vtime = &tsk->vtime;
64eea63c 907 unsigned int seq;
64eea63c
FW
908
909 do {
f1dfdab6
CW
910 int state;
911
64eea63c
FW
912 seq = read_seqcount_begin(&vtime->seqcount);
913
f1dfdab6
CW
914 state = vtime_state_fetch(vtime, cpu);
915 if (state < 0)
916 return state;
64eea63c
FW
917
918 *val = cpustat[usage];
919
5a1c9558
FW
920 /*
921 * Nice VS unnice cputime accounting may be inaccurate if
922 * the nice value has changed since the last vtime update.
923 * But proper fix would involve interrupting target on nice
924 * updates which is a no go on nohz_full (although the scheduler
925 * may still interrupt the target if rescheduling is needed...)
926 */
927 switch (usage) {
928 case CPUTIME_SYSTEM:
f1dfdab6 929 if (state == VTIME_SYS)
5a1c9558
FW
930 *val += vtime->stime + vtime_delta(vtime);
931 break;
932 case CPUTIME_USER:
933 if (task_nice(tsk) <= 0)
934 *val += kcpustat_user_vtime(vtime);
935 break;
936 case CPUTIME_NICE:
937 if (task_nice(tsk) > 0)
938 *val += kcpustat_user_vtime(vtime);
939 break;
940 case CPUTIME_GUEST:
f1dfdab6 941 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
5a1c9558
FW
942 *val += vtime->gtime + vtime_delta(vtime);
943 break;
944 case CPUTIME_GUEST_NICE:
f1dfdab6 945 if (state == VTIME_GUEST && task_nice(tsk) > 0)
5a1c9558
FW
946 *val += vtime->gtime + vtime_delta(vtime);
947 break;
948 default:
949 break;
950 }
64eea63c
FW
951 } while (read_seqcount_retry(&vtime->seqcount, seq));
952
953 return 0;
954}
955
956u64 kcpustat_field(struct kernel_cpustat *kcpustat,
957 enum cpu_usage_stat usage, int cpu)
958{
959 u64 *cpustat = kcpustat->cpustat;
e0d648f9 960 u64 val = cpustat[usage];
64eea63c 961 struct rq *rq;
64eea63c
FW
962 int err;
963
964 if (!vtime_accounting_enabled_cpu(cpu))
e0d648f9 965 return val;
64eea63c 966
64eea63c
FW
967 rq = cpu_rq(cpu);
968
969 for (;;) {
970 struct task_struct *curr;
64eea63c
FW
971
972 rcu_read_lock();
973 curr = rcu_dereference(rq->curr);
974 if (WARN_ON_ONCE(!curr)) {
975 rcu_read_unlock();
976 return cpustat[usage];
977 }
978
5a1c9558 979 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
64eea63c
FW
980 rcu_read_unlock();
981
982 if (!err)
983 return val;
984
985 cpu_relax();
986 }
987}
988EXPORT_SYMBOL_GPL(kcpustat_field);
74722bb2
FW
989
990static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
991 const struct kernel_cpustat *src,
992 struct task_struct *tsk, int cpu)
993{
994 struct vtime *vtime = &tsk->vtime;
995 unsigned int seq;
74722bb2
FW
996
997 do {
998 u64 *cpustat;
999 u64 delta;
f1dfdab6 1000 int state;
74722bb2
FW
1001
1002 seq = read_seqcount_begin(&vtime->seqcount);
1003
f1dfdab6
CW
1004 state = vtime_state_fetch(vtime, cpu);
1005 if (state < 0)
1006 return state;
74722bb2
FW
1007
1008 *dst = *src;
1009 cpustat = dst->cpustat;
1010
1011 /* Task is sleeping, dead or idle, nothing to add */
f1dfdab6 1012 if (state < VTIME_SYS)
74722bb2
FW
1013 continue;
1014
1015 delta = vtime_delta(vtime);
1016
1017 /*
1018 * Task runs either in user (including guest) or kernel space,
1019 * add pending nohz time to the right place.
1020 */
f1dfdab6 1021 if (state == VTIME_SYS) {
74722bb2 1022 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
f1dfdab6 1023 } else if (state == VTIME_USER) {
74722bb2
FW
1024 if (task_nice(tsk) > 0)
1025 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1026 else
1027 cpustat[CPUTIME_USER] += vtime->utime + delta;
1028 } else {
f1dfdab6 1029 WARN_ON_ONCE(state != VTIME_GUEST);
74722bb2
FW
1030 if (task_nice(tsk) > 0) {
1031 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1032 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1033 } else {
1034 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1035 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1036 }
1037 }
1038 } while (read_seqcount_retry(&vtime->seqcount, seq));
1039
f1dfdab6 1040 return 0;
74722bb2
FW
1041}
1042
1043void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1044{
1045 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1046 struct rq *rq;
1047 int err;
1048
1049 if (!vtime_accounting_enabled_cpu(cpu)) {
1050 *dst = *src;
1051 return;
1052 }
1053
1054 rq = cpu_rq(cpu);
1055
1056 for (;;) {
1057 struct task_struct *curr;
1058
1059 rcu_read_lock();
1060 curr = rcu_dereference(rq->curr);
1061 if (WARN_ON_ONCE(!curr)) {
1062 rcu_read_unlock();
1063 *dst = *src;
1064 return;
1065 }
1066
1067 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1068 rcu_read_unlock();
1069
1070 if (!err)
1071 return;
1072
1073 cpu_relax();
1074 }
1075}
1076EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1077
abf917cd 1078#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */