sched/cpufreq: Fix 32-bit math overflow
[linux-2.6-block.git] / kernel / sched / cpufreq_schedutil.c
CommitLineData
108c35a9 1// SPDX-License-Identifier: GPL-2.0
9bdcb44e
RW
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9bdcb44e
RW
7 */
8
60f05e86
VK
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
9bdcb44e
RW
11#include "sched.h"
12
938e5e4b 13#include <linux/sched/cpufreq.h>
325ea10c
IM
14#include <trace/events/power.h>
15
9bdcb44e 16struct sugov_tunables {
97fb7a0a
IM
17 struct gov_attr_set attr_set;
18 unsigned int rate_limit_us;
9bdcb44e
RW
19};
20
21struct sugov_policy {
97fb7a0a
IM
22 struct cpufreq_policy *policy;
23
24 struct sugov_tunables *tunables;
25 struct list_head tunables_hook;
26
27 raw_spinlock_t update_lock; /* For shared policies */
28 u64 last_freq_update_time;
29 s64 freq_update_delay_ns;
30 unsigned int next_freq;
31 unsigned int cached_raw_freq;
32
33 /* The next fields are only needed if fast switch cannot be used: */
34 struct irq_work irq_work;
35 struct kthread_work work;
36 struct mutex work_lock;
37 struct kthread_worker worker;
38 struct task_struct *thread;
39 bool work_in_progress;
40
41 bool need_freq_update;
9bdcb44e
RW
42};
43
44struct sugov_cpu {
97fb7a0a
IM
45 struct update_util_data update_util;
46 struct sugov_policy *sg_policy;
47 unsigned int cpu;
9bdcb44e 48
97fb7a0a
IM
49 bool iowait_boost_pending;
50 unsigned int iowait_boost;
fd7d5287 51 u64 last_update;
5cbea469 52
8cc90515 53 unsigned long bw_dl;
a23314e9 54 unsigned long min;
97fb7a0a 55 unsigned long max;
b7eaf1aa 56
97fb7a0a 57 /* The field below is for single-CPU policies only: */
b7eaf1aa 58#ifdef CONFIG_NO_HZ_COMMON
97fb7a0a 59 unsigned long saved_idle_calls;
b7eaf1aa 60#endif
9bdcb44e
RW
61};
62
63static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
64
65/************************ Governor internals ***********************/
66
67static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
68{
69 s64 delta_ns;
70
674e7541
VK
71 /*
72 * Since cpufreq_update_util() is called with rq->lock held for
97fb7a0a 73 * the @target_cpu, our per-CPU data is fully serialized.
674e7541 74 *
97fb7a0a 75 * However, drivers cannot in general deal with cross-CPU
674e7541 76 * requests, so while get_next_freq() will work, our
c49cbc19 77 * sugov_update_commit() call may not for the fast switching platforms.
674e7541
VK
78 *
79 * Hence stop here for remote requests if they aren't supported
80 * by the hardware, as calculating the frequency is pointless if
81 * we cannot in fact act on it.
c49cbc19
VK
82 *
83 * For the slow switching platforms, the kthread is always scheduled on
84 * the right set of CPUs and any CPU can find the next frequency and
85 * schedule the kthread.
674e7541 86 */
c49cbc19 87 if (sg_policy->policy->fast_switch_enabled &&
03639978 88 !cpufreq_this_cpu_can_update(sg_policy->policy))
674e7541
VK
89 return false;
90
ecd28842 91 if (unlikely(sg_policy->need_freq_update))
9bdcb44e 92 return true;
9bdcb44e
RW
93
94 delta_ns = time - sg_policy->last_freq_update_time;
97fb7a0a 95
9bdcb44e
RW
96 return delta_ns >= sg_policy->freq_update_delay_ns;
97}
98
a61dec74
RW
99static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
100 unsigned int next_freq)
9bdcb44e 101{
38d4ea22 102 if (sg_policy->next_freq == next_freq)
a61dec74 103 return false;
38d4ea22
RW
104
105 sg_policy->next_freq = next_freq;
9bdcb44e
RW
106 sg_policy->last_freq_update_time = time;
107
a61dec74
RW
108 return true;
109}
9bdcb44e 110
a61dec74
RW
111static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
112 unsigned int next_freq)
113{
114 struct cpufreq_policy *policy = sg_policy->policy;
115
116 if (!sugov_update_next_freq(sg_policy, time, next_freq))
117 return;
118
119 next_freq = cpufreq_driver_fast_switch(policy, next_freq);
120 if (!next_freq)
121 return;
9bdcb44e 122
a61dec74
RW
123 policy->cur = next_freq;
124 trace_cpu_frequency(next_freq, smp_processor_id());
125}
126
127static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
128 unsigned int next_freq)
129{
130 if (!sugov_update_next_freq(sg_policy, time, next_freq))
131 return;
132
133 if (!sg_policy->work_in_progress) {
9bdcb44e
RW
134 sg_policy->work_in_progress = true;
135 irq_work_queue(&sg_policy->irq_work);
136 }
137}
138
139/**
140 * get_next_freq - Compute a new frequency for a given cpufreq policy.
655cb1eb 141 * @sg_policy: schedutil policy object to compute the new frequency for.
9bdcb44e
RW
142 * @util: Current CPU utilization.
143 * @max: CPU capacity.
144 *
145 * If the utilization is frequency-invariant, choose the new frequency to be
146 * proportional to it, that is
147 *
148 * next_freq = C * max_freq * util / max
149 *
150 * Otherwise, approximate the would-be frequency-invariant utilization by
151 * util_raw * (curr_freq / max_freq) which leads to
152 *
153 * next_freq = C * curr_freq * util_raw / max
154 *
155 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
5cbea469
SM
156 *
157 * The lowest driver-supported frequency which is equal or greater than the raw
158 * next_freq (as calculated above) is returned, subject to policy min/max and
159 * cpufreq driver limitations.
9bdcb44e 160 */
655cb1eb
VK
161static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162 unsigned long util, unsigned long max)
9bdcb44e 163{
5cbea469 164 struct cpufreq_policy *policy = sg_policy->policy;
9bdcb44e
RW
165 unsigned int freq = arch_scale_freq_invariant() ?
166 policy->cpuinfo.max_freq : policy->cur;
167
938e5e4b 168 freq = map_util_freq(util, freq, max);
5cbea469 169
ecd28842 170 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
5cbea469 171 return sg_policy->next_freq;
ecd28842
VK
172
173 sg_policy->need_freq_update = false;
6c4f0fa6 174 sg_policy->cached_raw_freq = freq;
5cbea469 175 return cpufreq_driver_resolve_freq(policy, freq);
9bdcb44e
RW
176}
177
45f5519e
PZ
178/*
179 * This function computes an effective utilization for the given CPU, to be
180 * used for frequency selection given the linear relation: f = u * f_max.
181 *
182 * The scheduler tracks the following metrics:
183 *
184 * cpu_util_{cfs,rt,dl,irq}()
185 * cpu_bw_dl()
186 *
187 * Where the cfs,rt and dl util numbers are tracked with the same metric and
188 * synchronized windows and are thus directly comparable.
189 *
190 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
191 * which excludes things like IRQ and steal-time. These latter are then accrued
192 * in the irq utilization.
193 *
194 * The DL bandwidth number otoh is not a measured metric but a value computed
195 * based on the task model parameters and gives the minimal utilization
196 * required to meet deadlines.
197 */
938e5e4b
QP
198unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
199 unsigned long max, enum schedutil_type type)
58919e83 200{
938e5e4b
QP
201 unsigned long dl_util, util, irq;
202 struct rq *rq = cpu_rq(cpu);
8f111bc3 203
938e5e4b 204 if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
dfa444dc
VG
205 return max;
206
45f5519e
PZ
207 /*
208 * Early check to see if IRQ/steal time saturates the CPU, can be
209 * because of inaccuracies in how we track these -- see
210 * update_irq_load_avg().
211 */
dfa444dc 212 irq = cpu_util_irq(rq);
dfa444dc 213 if (unlikely(irq >= max))
9033ea11
VG
214 return max;
215
45f5519e
PZ
216 /*
217 * Because the time spend on RT/DL tasks is visible as 'lost' time to
218 * CFS tasks and we use the same metric to track the effective
219 * utilization (PELT windows are synchronized) we can directly add them
220 * to obtain the CPU's actual utilization.
221 */
938e5e4b 222 util = util_cfs;
dfa444dc 223 util += cpu_util_rt(rq);
3ae117c6 224
938e5e4b
QP
225 dl_util = cpu_util_dl(rq);
226
9033ea11 227 /*
938e5e4b
QP
228 * For frequency selection we do not make cpu_util_dl() a permanent part
229 * of this sum because we want to use cpu_bw_dl() later on, but we need
230 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
231 * that we select f_max when there is no idle time.
45f5519e
PZ
232 *
233 * NOTE: numerical errors or stop class might cause us to not quite hit
234 * saturation when we should -- something for later.
9033ea11 235 */
938e5e4b 236 if (util + dl_util >= max)
9033ea11 237 return max;
8cc90515 238
938e5e4b
QP
239 /*
240 * OTOH, for energy computation we need the estimated running time, so
241 * include util_dl and ignore dl_bw.
242 */
243 if (type == ENERGY_UTIL)
244 util += dl_util;
245
d4edd662 246 /*
45f5519e
PZ
247 * There is still idle time; further improve the number by using the
248 * irq metric. Because IRQ/steal time is hidden from the task clock we
249 * need to scale the task numbers:
8cc90515 250 *
45f5519e
PZ
251 * 1 - irq
252 * U' = irq + ------- * U
253 * max
254 */
2e62c474 255 util = scale_irq_capacity(util, irq, max);
45f5519e
PZ
256 util += irq;
257
258 /*
8cc90515
VG
259 * Bandwidth required by DEADLINE must always be granted while, for
260 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
261 * to gracefully reduce the frequency when no tasks show up for longer
8ecf04e1
PB
262 * periods of time.
263 *
45f5519e
PZ
264 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
265 * bw_dl as requested freq. However, cpufreq is not yet ready for such
266 * an interface. So, we only do the latter for now.
d4edd662 267 */
938e5e4b
QP
268 if (type == FREQUENCY_UTIL)
269 util += cpu_bw_dl(rq);
270
271 return min(max, util);
272}
273
274static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
275{
276 struct rq *rq = cpu_rq(sg_cpu->cpu);
277 unsigned long util = cpu_util_cfs(rq);
278 unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
279
280 sg_cpu->max = max;
281 sg_cpu->bw_dl = cpu_bw_dl(rq);
282
283 return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
58919e83
RW
284}
285
fd7d5287
PB
286/**
287 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
288 * @sg_cpu: the sugov data for the CPU to boost
289 * @time: the update time from the caller
290 * @set_iowait_boost: true if an IO boost has been requested
291 *
292 * The IO wait boost of a task is disabled after a tick since the last update
293 * of a CPU. If a new IO wait boost is requested after more then a tick, then
294 * we enable the boost starting from the minimum frequency, which improves
295 * energy efficiency by ignoring sporadic wakeups from IO.
296 */
297static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
298 bool set_iowait_boost)
21ca6d2c 299{
fd7d5287 300 s64 delta_ns = time - sg_cpu->last_update;
a5a0809b 301
fd7d5287
PB
302 /* Reset boost only if a tick has elapsed since last request */
303 if (delta_ns <= TICK_NSEC)
304 return false;
a5a0809b 305
a23314e9 306 sg_cpu->iowait_boost = set_iowait_boost ? sg_cpu->min : 0;
fd7d5287 307 sg_cpu->iowait_boost_pending = set_iowait_boost;
21ca6d2c 308
fd7d5287
PB
309 return true;
310}
a5a0809b 311
fd7d5287
PB
312/**
313 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
314 * @sg_cpu: the sugov data for the CPU to boost
315 * @time: the update time from the caller
316 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
317 *
318 * Each time a task wakes up after an IO operation, the CPU utilization can be
319 * boosted to a certain utilization which doubles at each "frequent and
320 * successive" wakeup from IO, ranging from the utilization of the minimum
321 * OPP to the utilization of the maximum OPP.
322 * To keep doubling, an IO boost has to be requested at least once per tick,
323 * otherwise we restart from the utilization of the minimum OPP.
324 */
325static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
326 unsigned int flags)
327{
328 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
329
330 /* Reset boost if the CPU appears to have been idle enough */
331 if (sg_cpu->iowait_boost &&
332 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
333 return;
334
335 /* Boost only tasks waking up after IO */
336 if (!set_iowait_boost)
337 return;
338
339 /* Ensure boost doubles only one time at each request */
340 if (sg_cpu->iowait_boost_pending)
341 return;
342 sg_cpu->iowait_boost_pending = true;
343
344 /* Double the boost at each request */
345 if (sg_cpu->iowait_boost) {
a23314e9
PZ
346 sg_cpu->iowait_boost =
347 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
fd7d5287 348 return;
21ca6d2c 349 }
fd7d5287
PB
350
351 /* First wakeup after IO: start with minimum boost */
a23314e9 352 sg_cpu->iowait_boost = sg_cpu->min;
21ca6d2c
RW
353}
354
fd7d5287
PB
355/**
356 * sugov_iowait_apply() - Apply the IO boost to a CPU.
357 * @sg_cpu: the sugov data for the cpu to boost
358 * @time: the update time from the caller
359 * @util: the utilization to (eventually) boost
360 * @max: the maximum value the utilization can be boosted to
361 *
362 * A CPU running a task which woken up after an IO operation can have its
363 * utilization boosted to speed up the completion of those IO operations.
364 * The IO boost value is increased each time a task wakes up from IO, in
365 * sugov_iowait_apply(), and it's instead decreased by this function,
366 * each time an increase has not been requested (!iowait_boost_pending).
367 *
368 * A CPU which also appears to have been idle for at least one tick has also
369 * its IO boost utilization reset.
370 *
371 * This mechanism is designed to boost high frequently IO waiting tasks, while
372 * being more conservative on tasks which does sporadic IO operations.
373 */
a23314e9
PZ
374static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
375 unsigned long util, unsigned long max)
21ca6d2c 376{
a23314e9 377 unsigned long boost;
21ca6d2c 378
fd7d5287 379 /* No boost currently required */
a5a0809b 380 if (!sg_cpu->iowait_boost)
a23314e9 381 return util;
21ca6d2c 382
fd7d5287
PB
383 /* Reset boost if the CPU appears to have been idle enough */
384 if (sugov_iowait_reset(sg_cpu, time, false))
a23314e9 385 return util;
fd7d5287 386
a23314e9 387 if (!sg_cpu->iowait_boost_pending) {
fd7d5287 388 /*
a23314e9 389 * No boost pending; reduce the boost value.
fd7d5287 390 */
a5a0809b 391 sg_cpu->iowait_boost >>= 1;
a23314e9 392 if (sg_cpu->iowait_boost < sg_cpu->min) {
a5a0809b 393 sg_cpu->iowait_boost = 0;
a23314e9 394 return util;
a5a0809b
JF
395 }
396 }
397
a23314e9
PZ
398 sg_cpu->iowait_boost_pending = false;
399
fd7d5287 400 /*
a23314e9
PZ
401 * @util is already in capacity scale; convert iowait_boost
402 * into the same scale so we can compare.
fd7d5287 403 */
a23314e9
PZ
404 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
405 return max(boost, util);
21ca6d2c
RW
406}
407
b7eaf1aa
RW
408#ifdef CONFIG_NO_HZ_COMMON
409static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
410{
466a2b42 411 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
b7eaf1aa
RW
412 bool ret = idle_calls == sg_cpu->saved_idle_calls;
413
414 sg_cpu->saved_idle_calls = idle_calls;
415 return ret;
416}
417#else
418static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
419#endif /* CONFIG_NO_HZ_COMMON */
420
e97a90f7
CS
421/*
422 * Make sugov_should_update_freq() ignore the rate limit when DL
423 * has increased the utilization.
424 */
425static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
426{
8cc90515 427 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
e97a90f7
CS
428 sg_policy->need_freq_update = true;
429}
430
9bdcb44e 431static void sugov_update_single(struct update_util_data *hook, u64 time,
58919e83 432 unsigned int flags)
9bdcb44e
RW
433{
434 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
435 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
58919e83 436 unsigned long util, max;
9bdcb44e 437 unsigned int next_f;
b7eaf1aa 438 bool busy;
9bdcb44e 439
fd7d5287 440 sugov_iowait_boost(sg_cpu, time, flags);
21ca6d2c
RW
441 sg_cpu->last_update = time;
442
e97a90f7
CS
443 ignore_dl_rate_limit(sg_cpu, sg_policy);
444
9bdcb44e
RW
445 if (!sugov_should_update_freq(sg_policy, time))
446 return;
447
b7eaf1aa
RW
448 busy = sugov_cpu_is_busy(sg_cpu);
449
dfa444dc 450 util = sugov_get_util(sg_cpu);
8f111bc3 451 max = sg_cpu->max;
a23314e9 452 util = sugov_iowait_apply(sg_cpu, time, util, max);
8f111bc3
PZ
453 next_f = get_next_freq(sg_policy, util, max);
454 /*
455 * Do not reduce the frequency if the CPU has not been idle
456 * recently, as the reduction is likely to be premature then.
457 */
ecd28842 458 if (busy && next_f < sg_policy->next_freq) {
8f111bc3 459 next_f = sg_policy->next_freq;
07458f6a 460
8f111bc3
PZ
461 /* Reset cached freq as next_freq has changed */
462 sg_policy->cached_raw_freq = 0;
58919e83 463 }
8f111bc3 464
a61dec74
RW
465 /*
466 * This code runs under rq->lock for the target CPU, so it won't run
467 * concurrently on two different CPUs for the same target and it is not
468 * necessary to acquire the lock in the fast switch case.
469 */
470 if (sg_policy->policy->fast_switch_enabled) {
471 sugov_fast_switch(sg_policy, time, next_f);
472 } else {
473 raw_spin_lock(&sg_policy->update_lock);
474 sugov_deferred_update(sg_policy, time, next_f);
475 raw_spin_unlock(&sg_policy->update_lock);
476 }
9bdcb44e
RW
477}
478
d86ab9cf 479static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
9bdcb44e 480{
5cbea469 481 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
9bdcb44e 482 struct cpufreq_policy *policy = sg_policy->policy;
cba1dfb5 483 unsigned long util = 0, max = 1;
9bdcb44e
RW
484 unsigned int j;
485
9bdcb44e 486 for_each_cpu(j, policy->cpus) {
cba1dfb5 487 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
9bdcb44e 488 unsigned long j_util, j_max;
9bdcb44e 489
dfa444dc 490 j_util = sugov_get_util(j_sg_cpu);
9bdcb44e 491 j_max = j_sg_cpu->max;
a23314e9 492 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
fd7d5287 493
9bdcb44e
RW
494 if (j_util * max > j_max * util) {
495 util = j_util;
496 max = j_max;
497 }
498 }
499
655cb1eb 500 return get_next_freq(sg_policy, util, max);
9bdcb44e
RW
501}
502
97fb7a0a
IM
503static void
504sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
9bdcb44e
RW
505{
506 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
507 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
508 unsigned int next_f;
509
510 raw_spin_lock(&sg_policy->update_lock);
511
fd7d5287 512 sugov_iowait_boost(sg_cpu, time, flags);
9bdcb44e
RW
513 sg_cpu->last_update = time;
514
e97a90f7 515 ignore_dl_rate_limit(sg_cpu, sg_policy);
cba1dfb5 516
9bdcb44e 517 if (sugov_should_update_freq(sg_policy, time)) {
8f111bc3 518 next_f = sugov_next_freq_shared(sg_cpu, time);
a61dec74
RW
519
520 if (sg_policy->policy->fast_switch_enabled)
521 sugov_fast_switch(sg_policy, time, next_f);
522 else
523 sugov_deferred_update(sg_policy, time, next_f);
9bdcb44e
RW
524 }
525
526 raw_spin_unlock(&sg_policy->update_lock);
527}
528
02a7b1ee 529static void sugov_work(struct kthread_work *work)
9bdcb44e
RW
530{
531 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
152db033
JFG
532 unsigned int freq;
533 unsigned long flags;
534
535 /*
536 * Hold sg_policy->update_lock shortly to handle the case where:
537 * incase sg_policy->next_freq is read here, and then updated by
a61dec74 538 * sugov_deferred_update() just before work_in_progress is set to false
152db033
JFG
539 * here, we may miss queueing the new update.
540 *
541 * Note: If a work was queued after the update_lock is released,
a61dec74 542 * sugov_work() will just be called again by kthread_work code; and the
152db033
JFG
543 * request will be proceed before the sugov thread sleeps.
544 */
545 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
546 freq = sg_policy->next_freq;
547 sg_policy->work_in_progress = false;
548 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
9bdcb44e
RW
549
550 mutex_lock(&sg_policy->work_lock);
152db033 551 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
9bdcb44e 552 mutex_unlock(&sg_policy->work_lock);
9bdcb44e
RW
553}
554
555static void sugov_irq_work(struct irq_work *irq_work)
556{
557 struct sugov_policy *sg_policy;
558
559 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
02a7b1ee 560
02a7b1ee 561 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
9bdcb44e
RW
562}
563
564/************************** sysfs interface ************************/
565
566static struct sugov_tunables *global_tunables;
567static DEFINE_MUTEX(global_tunables_lock);
568
569static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
570{
571 return container_of(attr_set, struct sugov_tunables, attr_set);
572}
573
574static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
575{
576 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
577
578 return sprintf(buf, "%u\n", tunables->rate_limit_us);
579}
580
97fb7a0a
IM
581static ssize_t
582rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
9bdcb44e
RW
583{
584 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
585 struct sugov_policy *sg_policy;
586 unsigned int rate_limit_us;
587
588 if (kstrtouint(buf, 10, &rate_limit_us))
589 return -EINVAL;
590
591 tunables->rate_limit_us = rate_limit_us;
592
593 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
594 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
595
596 return count;
597}
598
599static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
600
601static struct attribute *sugov_attributes[] = {
602 &rate_limit_us.attr,
603 NULL
604};
605
606static struct kobj_type sugov_tunables_ktype = {
607 .default_attrs = sugov_attributes,
608 .sysfs_ops = &governor_sysfs_ops,
609};
610
611/********************** cpufreq governor interface *********************/
612
531b5c9f 613struct cpufreq_governor schedutil_gov;
9bdcb44e
RW
614
615static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
616{
617 struct sugov_policy *sg_policy;
618
619 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
620 if (!sg_policy)
621 return NULL;
622
623 sg_policy->policy = policy;
9bdcb44e
RW
624 raw_spin_lock_init(&sg_policy->update_lock);
625 return sg_policy;
626}
627
628static void sugov_policy_free(struct sugov_policy *sg_policy)
629{
9bdcb44e
RW
630 kfree(sg_policy);
631}
632
02a7b1ee
VK
633static int sugov_kthread_create(struct sugov_policy *sg_policy)
634{
635 struct task_struct *thread;
794a56eb 636 struct sched_attr attr = {
97fb7a0a
IM
637 .size = sizeof(struct sched_attr),
638 .sched_policy = SCHED_DEADLINE,
639 .sched_flags = SCHED_FLAG_SUGOV,
640 .sched_nice = 0,
641 .sched_priority = 0,
794a56eb
JL
642 /*
643 * Fake (unused) bandwidth; workaround to "fix"
644 * priority inheritance.
645 */
646 .sched_runtime = 1000000,
647 .sched_deadline = 10000000,
648 .sched_period = 10000000,
649 };
02a7b1ee
VK
650 struct cpufreq_policy *policy = sg_policy->policy;
651 int ret;
652
653 /* kthread only required for slow path */
654 if (policy->fast_switch_enabled)
655 return 0;
656
657 kthread_init_work(&sg_policy->work, sugov_work);
658 kthread_init_worker(&sg_policy->worker);
659 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
660 "sugov:%d",
661 cpumask_first(policy->related_cpus));
662 if (IS_ERR(thread)) {
663 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
664 return PTR_ERR(thread);
665 }
666
794a56eb 667 ret = sched_setattr_nocheck(thread, &attr);
02a7b1ee
VK
668 if (ret) {
669 kthread_stop(thread);
794a56eb 670 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
02a7b1ee
VK
671 return ret;
672 }
673
674 sg_policy->thread = thread;
1b04722c 675 kthread_bind_mask(thread, policy->related_cpus);
21ef5729
VK
676 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
677 mutex_init(&sg_policy->work_lock);
678
02a7b1ee
VK
679 wake_up_process(thread);
680
681 return 0;
682}
683
684static void sugov_kthread_stop(struct sugov_policy *sg_policy)
685{
686 /* kthread only required for slow path */
687 if (sg_policy->policy->fast_switch_enabled)
688 return;
689
690 kthread_flush_worker(&sg_policy->worker);
691 kthread_stop(sg_policy->thread);
21ef5729 692 mutex_destroy(&sg_policy->work_lock);
02a7b1ee
VK
693}
694
9bdcb44e
RW
695static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
696{
697 struct sugov_tunables *tunables;
698
699 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
700 if (tunables) {
701 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
702 if (!have_governor_per_policy())
703 global_tunables = tunables;
704 }
705 return tunables;
706}
707
708static void sugov_tunables_free(struct sugov_tunables *tunables)
709{
710 if (!have_governor_per_policy())
711 global_tunables = NULL;
712
713 kfree(tunables);
714}
715
716static int sugov_init(struct cpufreq_policy *policy)
717{
718 struct sugov_policy *sg_policy;
719 struct sugov_tunables *tunables;
9bdcb44e
RW
720 int ret = 0;
721
722 /* State should be equivalent to EXIT */
723 if (policy->governor_data)
724 return -EBUSY;
725
4a71ce43
VK
726 cpufreq_enable_fast_switch(policy);
727
9bdcb44e 728 sg_policy = sugov_policy_alloc(policy);
4a71ce43
VK
729 if (!sg_policy) {
730 ret = -ENOMEM;
731 goto disable_fast_switch;
732 }
9bdcb44e 733
02a7b1ee
VK
734 ret = sugov_kthread_create(sg_policy);
735 if (ret)
736 goto free_sg_policy;
737
9bdcb44e
RW
738 mutex_lock(&global_tunables_lock);
739
740 if (global_tunables) {
741 if (WARN_ON(have_governor_per_policy())) {
742 ret = -EINVAL;
02a7b1ee 743 goto stop_kthread;
9bdcb44e
RW
744 }
745 policy->governor_data = sg_policy;
746 sg_policy->tunables = global_tunables;
747
748 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
749 goto out;
750 }
751
752 tunables = sugov_tunables_alloc(sg_policy);
753 if (!tunables) {
754 ret = -ENOMEM;
02a7b1ee 755 goto stop_kthread;
9bdcb44e
RW
756 }
757
aa7519af 758 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
9bdcb44e
RW
759
760 policy->governor_data = sg_policy;
761 sg_policy->tunables = tunables;
762
763 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
764 get_governor_parent_kobj(policy), "%s",
765 schedutil_gov.name);
766 if (ret)
767 goto fail;
768
8e2ddb03 769out:
9bdcb44e 770 mutex_unlock(&global_tunables_lock);
9bdcb44e
RW
771 return 0;
772
8e2ddb03 773fail:
9bdcb44e
RW
774 policy->governor_data = NULL;
775 sugov_tunables_free(tunables);
776
02a7b1ee
VK
777stop_kthread:
778 sugov_kthread_stop(sg_policy);
9bdcb44e
RW
779 mutex_unlock(&global_tunables_lock);
780
1b5d43cf 781free_sg_policy:
9bdcb44e 782 sugov_policy_free(sg_policy);
4a71ce43
VK
783
784disable_fast_switch:
785 cpufreq_disable_fast_switch(policy);
786
60f05e86 787 pr_err("initialization failed (error %d)\n", ret);
9bdcb44e
RW
788 return ret;
789}
790
e788892b 791static void sugov_exit(struct cpufreq_policy *policy)
9bdcb44e
RW
792{
793 struct sugov_policy *sg_policy = policy->governor_data;
794 struct sugov_tunables *tunables = sg_policy->tunables;
795 unsigned int count;
796
797 mutex_lock(&global_tunables_lock);
798
799 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
800 policy->governor_data = NULL;
801 if (!count)
802 sugov_tunables_free(tunables);
803
804 mutex_unlock(&global_tunables_lock);
805
02a7b1ee 806 sugov_kthread_stop(sg_policy);
9bdcb44e 807 sugov_policy_free(sg_policy);
4a71ce43 808 cpufreq_disable_fast_switch(policy);
9bdcb44e
RW
809}
810
811static int sugov_start(struct cpufreq_policy *policy)
812{
813 struct sugov_policy *sg_policy = policy->governor_data;
814 unsigned int cpu;
815
97fb7a0a
IM
816 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
817 sg_policy->last_freq_update_time = 0;
ecd28842 818 sg_policy->next_freq = 0;
97fb7a0a
IM
819 sg_policy->work_in_progress = false;
820 sg_policy->need_freq_update = false;
821 sg_policy->cached_raw_freq = 0;
9bdcb44e
RW
822
823 for_each_cpu(cpu, policy->cpus) {
824 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
825
4296f23e 826 memset(sg_cpu, 0, sizeof(*sg_cpu));
97fb7a0a
IM
827 sg_cpu->cpu = cpu;
828 sg_cpu->sg_policy = sg_policy;
a23314e9
PZ
829 sg_cpu->min =
830 (SCHED_CAPACITY_SCALE * policy->cpuinfo.min_freq) /
831 policy->cpuinfo.max_freq;
ab2f7cf1
VM
832 }
833
834 for_each_cpu(cpu, policy->cpus) {
835 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
836
4296f23e
RW
837 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
838 policy_is_shared(policy) ?
839 sugov_update_shared :
840 sugov_update_single);
9bdcb44e
RW
841 }
842 return 0;
843}
844
e788892b 845static void sugov_stop(struct cpufreq_policy *policy)
9bdcb44e
RW
846{
847 struct sugov_policy *sg_policy = policy->governor_data;
848 unsigned int cpu;
849
850 for_each_cpu(cpu, policy->cpus)
851 cpufreq_remove_update_util_hook(cpu);
852
853 synchronize_sched();
854
21ef5729
VK
855 if (!policy->fast_switch_enabled) {
856 irq_work_sync(&sg_policy->irq_work);
857 kthread_cancel_work_sync(&sg_policy->work);
858 }
9bdcb44e
RW
859}
860
e788892b 861static void sugov_limits(struct cpufreq_policy *policy)
9bdcb44e
RW
862{
863 struct sugov_policy *sg_policy = policy->governor_data;
864
865 if (!policy->fast_switch_enabled) {
866 mutex_lock(&sg_policy->work_lock);
bf2be2de 867 cpufreq_policy_apply_limits(policy);
9bdcb44e
RW
868 mutex_unlock(&sg_policy->work_lock);
869 }
870
871 sg_policy->need_freq_update = true;
9bdcb44e
RW
872}
873
531b5c9f 874struct cpufreq_governor schedutil_gov = {
97fb7a0a
IM
875 .name = "schedutil",
876 .owner = THIS_MODULE,
877 .dynamic_switching = true,
878 .init = sugov_init,
879 .exit = sugov_exit,
880 .start = sugov_start,
881 .stop = sugov_stop,
882 .limits = sugov_limits,
9bdcb44e
RW
883};
884
9bdcb44e
RW
885#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
886struct cpufreq_governor *cpufreq_default_governor(void)
887{
888 return &schedutil_gov;
889}
9bdcb44e 890#endif
58919e83
RW
891
892static int __init sugov_register(void)
893{
894 return cpufreq_register_governor(&schedutil_gov);
895}
896fs_initcall(sugov_register);
531b5c9f
QP
897
898#ifdef CONFIG_ENERGY_MODEL
899extern bool sched_energy_update;
900extern struct mutex sched_energy_mutex;
901
902static void rebuild_sd_workfn(struct work_struct *work)
903{
904 mutex_lock(&sched_energy_mutex);
905 sched_energy_update = true;
906 rebuild_sched_domains();
907 sched_energy_update = false;
908 mutex_unlock(&sched_energy_mutex);
909}
910static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
911
912/*
913 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
914 * on governor changes to make sure the scheduler knows about it.
915 */
916void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
917 struct cpufreq_governor *old_gov)
918{
919 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
920 /*
921 * When called from the cpufreq_register_driver() path, the
922 * cpu_hotplug_lock is already held, so use a work item to
923 * avoid nested locking in rebuild_sched_domains().
924 */
925 schedule_work(&rebuild_sd_work);
926 }
927
928}
929#endif