sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
fa85ae24 79/*
d1ccc66d 80 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
81 * default: 1s
82 */
9f0c1e56 83unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 84
029632fb 85__read_mostly int scheduler_running;
6892b75e 86
9edeaea1
PZ
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
8a311c74
PZ
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
c6047c2e 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
c6047c2e
JFG
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
c6047c2e 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
8a311c74
PZ
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
6e33cad0 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
6e33cad0 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
181{
182 rq->core->core_task_seq++;
183
6e33cad0 184 if (!sched_core_enqueued(p))
8a311c74
PZ
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
6e33cad0 188 RB_CLEAR_NODE(&p->core_node);
8a311c74
PZ
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
d2dfa17b
PZ
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
9edeaea1
PZ
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
875feb41 237static atomic_t sched_core_count;
9edeaea1
PZ
238static struct cpumask sched_core_mask;
239
240static void __sched_core_flip(bool enabled)
241{
242 int cpu, t, i;
243
244 cpus_read_lock();
245
246 /*
247 * Toggle the online cores, one by one.
248 */
249 cpumask_copy(&sched_core_mask, cpu_online_mask);
250 for_each_cpu(cpu, &sched_core_mask) {
251 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252
253 i = 0;
254 local_irq_disable();
255 for_each_cpu(t, smt_mask) {
256 /* supports up to SMT8 */
257 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 }
259
260 for_each_cpu(t, smt_mask)
261 cpu_rq(t)->core_enabled = enabled;
262
263 for_each_cpu(t, smt_mask)
264 raw_spin_unlock(&cpu_rq(t)->__lock);
265 local_irq_enable();
266
267 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 }
269
270 /*
271 * Toggle the offline CPUs.
272 */
273 cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275
276 for_each_cpu(cpu, &sched_core_mask)
277 cpu_rq(cpu)->core_enabled = enabled;
278
279 cpus_read_unlock();
280}
281
8a311c74 282static void sched_core_assert_empty(void)
9edeaea1 283{
8a311c74 284 int cpu;
9edeaea1 285
8a311c74
PZ
286 for_each_possible_cpu(cpu)
287 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288}
289
290static void __sched_core_enable(void)
291{
9edeaea1
PZ
292 static_branch_enable(&__sched_core_enabled);
293 /*
294 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 * and future ones will observe !sched_core_disabled().
296 */
297 synchronize_rcu();
298 __sched_core_flip(true);
8a311c74 299 sched_core_assert_empty();
9edeaea1
PZ
300}
301
302static void __sched_core_disable(void)
303{
8a311c74 304 sched_core_assert_empty();
9edeaea1
PZ
305 __sched_core_flip(false);
306 static_branch_disable(&__sched_core_enabled);
307}
308
309void sched_core_get(void)
310{
875feb41
PZ
311 if (atomic_inc_not_zero(&sched_core_count))
312 return;
313
9edeaea1 314 mutex_lock(&sched_core_mutex);
875feb41 315 if (!atomic_read(&sched_core_count))
9edeaea1 316 __sched_core_enable();
875feb41
PZ
317
318 smp_mb__before_atomic();
319 atomic_inc(&sched_core_count);
9edeaea1
PZ
320 mutex_unlock(&sched_core_mutex);
321}
322
875feb41 323static void __sched_core_put(struct work_struct *work)
9edeaea1 324{
875feb41 325 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 326 __sched_core_disable();
875feb41
PZ
327 mutex_unlock(&sched_core_mutex);
328 }
329}
330
331void sched_core_put(void)
332{
333 static DECLARE_WORK(_work, __sched_core_put);
334
335 /*
336 * "There can be only one"
337 *
338 * Either this is the last one, or we don't actually need to do any
339 * 'work'. If it is the last *again*, we rely on
340 * WORK_STRUCT_PENDING_BIT.
341 */
342 if (!atomic_add_unless(&sched_core_count, -1, 1))
343 schedule_work(&_work);
9edeaea1
PZ
344}
345
8a311c74
PZ
346#else /* !CONFIG_SCHED_CORE */
347
348static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350
9edeaea1
PZ
351#endif /* CONFIG_SCHED_CORE */
352
9f0c1e56
PZ
353/*
354 * part of the period that we allow rt tasks to run in us.
355 * default: 0.95s
356 */
357int sysctl_sched_rt_runtime = 950000;
fa85ae24 358
58877d34
PZ
359
360/*
361 * Serialization rules:
362 *
363 * Lock order:
364 *
365 * p->pi_lock
366 * rq->lock
367 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368 *
369 * rq1->lock
370 * rq2->lock where: rq1 < rq2
371 *
372 * Regular state:
373 *
374 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 376 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
377 * to run next.
378 *
379 * Task enqueue is also under rq->lock, possibly taken from another CPU.
380 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381 * the local CPU to avoid bouncing the runqueue state around [ see
382 * ttwu_queue_wakelist() ]
383 *
384 * Task wakeup, specifically wakeups that involve migration, are horribly
385 * complicated to avoid having to take two rq->locks.
386 *
387 * Special state:
388 *
389 * System-calls and anything external will use task_rq_lock() which acquires
390 * both p->pi_lock and rq->lock. As a consequence the state they change is
391 * stable while holding either lock:
392 *
393 * - sched_setaffinity()/
394 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
395 * - set_user_nice(): p->se.load, p->*prio
396 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
397 * p->se.load, p->rt_priority,
398 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
399 * - sched_setnuma(): p->numa_preferred_nid
400 * - sched_move_task()/
401 * cpu_cgroup_fork(): p->sched_task_group
402 * - uclamp_update_active() p->uclamp*
403 *
404 * p->state <- TASK_*:
405 *
406 * is changed locklessly using set_current_state(), __set_current_state() or
407 * set_special_state(), see their respective comments, or by
408 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
409 * concurrent self.
410 *
411 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412 *
413 * is set by activate_task() and cleared by deactivate_task(), under
414 * rq->lock. Non-zero indicates the task is runnable, the special
415 * ON_RQ_MIGRATING state is used for migration without holding both
416 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417 *
418 * p->on_cpu <- { 0, 1 }:
419 *
420 * is set by prepare_task() and cleared by finish_task() such that it will be
421 * set before p is scheduled-in and cleared after p is scheduled-out, both
422 * under rq->lock. Non-zero indicates the task is running on its CPU.
423 *
424 * [ The astute reader will observe that it is possible for two tasks on one
425 * CPU to have ->on_cpu = 1 at the same time. ]
426 *
427 * task_cpu(p): is changed by set_task_cpu(), the rules are:
428 *
429 * - Don't call set_task_cpu() on a blocked task:
430 *
431 * We don't care what CPU we're not running on, this simplifies hotplug,
432 * the CPU assignment of blocked tasks isn't required to be valid.
433 *
434 * - for try_to_wake_up(), called under p->pi_lock:
435 *
436 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
437 *
438 * - for migration called under rq->lock:
439 * [ see task_on_rq_migrating() in task_rq_lock() ]
440 *
441 * o move_queued_task()
442 * o detach_task()
443 *
444 * - for migration called under double_rq_lock():
445 *
446 * o __migrate_swap_task()
447 * o push_rt_task() / pull_rt_task()
448 * o push_dl_task() / pull_dl_task()
449 * o dl_task_offline_migration()
450 *
451 */
452
39d371b7
PZ
453void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454{
d66f1b06
PZ
455 raw_spinlock_t *lock;
456
9edeaea1
PZ
457 /* Matches synchronize_rcu() in __sched_core_enable() */
458 preempt_disable();
d66f1b06
PZ
459 if (sched_core_disabled()) {
460 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
461 /* preempt_count *MUST* be > 1 */
462 preempt_enable_no_resched();
d66f1b06
PZ
463 return;
464 }
465
466 for (;;) {
9ef7e7e3 467 lock = __rq_lockp(rq);
d66f1b06 468 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 469 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
470 /* preempt_count *MUST* be > 1 */
471 preempt_enable_no_resched();
d66f1b06 472 return;
9edeaea1 473 }
d66f1b06
PZ
474 raw_spin_unlock(lock);
475 }
39d371b7
PZ
476}
477
478bool raw_spin_rq_trylock(struct rq *rq)
479{
d66f1b06
PZ
480 raw_spinlock_t *lock;
481 bool ret;
482
9edeaea1
PZ
483 /* Matches synchronize_rcu() in __sched_core_enable() */
484 preempt_disable();
485 if (sched_core_disabled()) {
486 ret = raw_spin_trylock(&rq->__lock);
487 preempt_enable();
488 return ret;
489 }
d66f1b06
PZ
490
491 for (;;) {
9ef7e7e3 492 lock = __rq_lockp(rq);
d66f1b06 493 ret = raw_spin_trylock(lock);
9ef7e7e3 494 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 495 preempt_enable();
d66f1b06 496 return ret;
9edeaea1 497 }
d66f1b06
PZ
498 raw_spin_unlock(lock);
499 }
39d371b7
PZ
500}
501
502void raw_spin_rq_unlock(struct rq *rq)
503{
504 raw_spin_unlock(rq_lockp(rq));
505}
506
d66f1b06
PZ
507#ifdef CONFIG_SMP
508/*
509 * double_rq_lock - safely lock two runqueues
510 */
511void double_rq_lock(struct rq *rq1, struct rq *rq2)
512{
513 lockdep_assert_irqs_disabled();
514
515 if (rq_order_less(rq2, rq1))
516 swap(rq1, rq2);
517
518 raw_spin_rq_lock(rq1);
9ef7e7e3 519 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
520 return;
521
522 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523}
524#endif
525
3e71a462
PZ
526/*
527 * __task_rq_lock - lock the rq @p resides on.
528 */
eb580751 529struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
530 __acquires(rq->lock)
531{
532 struct rq *rq;
533
534 lockdep_assert_held(&p->pi_lock);
535
536 for (;;) {
537 rq = task_rq(p);
5cb9eaa3 538 raw_spin_rq_lock(rq);
3e71a462 539 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 540 rq_pin_lock(rq, rf);
3e71a462
PZ
541 return rq;
542 }
5cb9eaa3 543 raw_spin_rq_unlock(rq);
3e71a462
PZ
544
545 while (unlikely(task_on_rq_migrating(p)))
546 cpu_relax();
547 }
548}
549
550/*
551 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552 */
eb580751 553struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
554 __acquires(p->pi_lock)
555 __acquires(rq->lock)
556{
557 struct rq *rq;
558
559 for (;;) {
eb580751 560 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 561 rq = task_rq(p);
5cb9eaa3 562 raw_spin_rq_lock(rq);
3e71a462
PZ
563 /*
564 * move_queued_task() task_rq_lock()
565 *
566 * ACQUIRE (rq->lock)
567 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
568 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
569 * [S] ->cpu = new_cpu [L] task_rq()
570 * [L] ->on_rq
571 * RELEASE (rq->lock)
572 *
c546951d 573 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
574 * the old rq->lock will fully serialize against the stores.
575 *
c546951d
AP
576 * If we observe the new CPU in task_rq_lock(), the address
577 * dependency headed by '[L] rq = task_rq()' and the acquire
578 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
579 */
580 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 581 rq_pin_lock(rq, rf);
3e71a462
PZ
582 return rq;
583 }
5cb9eaa3 584 raw_spin_rq_unlock(rq);
eb580751 585 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
586
587 while (unlikely(task_on_rq_migrating(p)))
588 cpu_relax();
589 }
590}
591
535b9552
IM
592/*
593 * RQ-clock updating methods:
594 */
595
596static void update_rq_clock_task(struct rq *rq, s64 delta)
597{
598/*
599 * In theory, the compile should just see 0 here, and optimize out the call
600 * to sched_rt_avg_update. But I don't trust it...
601 */
11d4afd4
VG
602 s64 __maybe_unused steal = 0, irq_delta = 0;
603
535b9552
IM
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606
607 /*
608 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 * this case when a previous update_rq_clock() happened inside a
610 * {soft,}irq region.
611 *
612 * When this happens, we stop ->clock_task and only update the
613 * prev_irq_time stamp to account for the part that fit, so that a next
614 * update will consume the rest. This ensures ->clock_task is
615 * monotonic.
616 *
617 * It does however cause some slight miss-attribution of {soft,}irq
618 * time, a more accurate solution would be to update the irq_time using
619 * the current rq->clock timestamp, except that would require using
620 * atomic ops.
621 */
622 if (irq_delta > delta)
623 irq_delta = delta;
624
625 rq->prev_irq_time += irq_delta;
626 delta -= irq_delta;
627#endif
628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 if (static_key_false((&paravirt_steal_rq_enabled))) {
630 steal = paravirt_steal_clock(cpu_of(rq));
631 steal -= rq->prev_steal_time_rq;
632
633 if (unlikely(steal > delta))
634 steal = delta;
635
636 rq->prev_steal_time_rq += steal;
637 delta -= steal;
638 }
639#endif
640
641 rq->clock_task += delta;
642
11d4afd4 643#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 644 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 645 update_irq_load_avg(rq, irq_delta + steal);
535b9552 646#endif
23127296 647 update_rq_clock_pelt(rq, delta);
535b9552
IM
648}
649
650void update_rq_clock(struct rq *rq)
651{
652 s64 delta;
653
5cb9eaa3 654 lockdep_assert_rq_held(rq);
535b9552
IM
655
656 if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 return;
658
659#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
660 if (sched_feat(WARN_DOUBLE_CLOCK))
661 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
662 rq->clock_update_flags |= RQCF_UPDATED;
663#endif
26ae58d2 664
535b9552
IM
665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 if (delta < 0)
667 return;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
670}
671
8f4d37ec
PZ
672#ifdef CONFIG_SCHED_HRTICK
673/*
674 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 675 */
8f4d37ec 676
8f4d37ec
PZ
677static void hrtick_clear(struct rq *rq)
678{
679 if (hrtimer_active(&rq->hrtick_timer))
680 hrtimer_cancel(&rq->hrtick_timer);
681}
682
8f4d37ec
PZ
683/*
684 * High-resolution timer tick.
685 * Runs from hardirq context with interrupts disabled.
686 */
687static enum hrtimer_restart hrtick(struct hrtimer *timer)
688{
689 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 690 struct rq_flags rf;
8f4d37ec
PZ
691
692 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693
8a8c69c3 694 rq_lock(rq, &rf);
3e51f33f 695 update_rq_clock(rq);
8f4d37ec 696 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 697 rq_unlock(rq, &rf);
8f4d37ec
PZ
698
699 return HRTIMER_NORESTART;
700}
701
95e904c7 702#ifdef CONFIG_SMP
971ee28c 703
4961b6e1 704static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
705{
706 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 707 ktime_t time = rq->hrtick_time;
971ee28c 708
156ec6f4 709 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
710}
711
31656519
PZ
712/*
713 * called from hardirq (IPI) context
714 */
715static void __hrtick_start(void *arg)
b328ca18 716{
31656519 717 struct rq *rq = arg;
8a8c69c3 718 struct rq_flags rf;
b328ca18 719
8a8c69c3 720 rq_lock(rq, &rf);
971ee28c 721 __hrtick_restart(rq);
8a8c69c3 722 rq_unlock(rq, &rf);
b328ca18
PZ
723}
724
31656519
PZ
725/*
726 * Called to set the hrtick timer state.
727 *
728 * called with rq->lock held and irqs disabled
729 */
029632fb 730void hrtick_start(struct rq *rq, u64 delay)
b328ca18 731{
31656519 732 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 733 s64 delta;
734
735 /*
736 * Don't schedule slices shorter than 10000ns, that just
737 * doesn't make sense and can cause timer DoS.
738 */
739 delta = max_t(s64, delay, 10000LL);
156ec6f4 740 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 741
fd3eafda 742 if (rq == this_rq())
971ee28c 743 __hrtick_restart(rq);
fd3eafda 744 else
c46fff2a 745 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
746}
747
31656519
PZ
748#else
749/*
750 * Called to set the hrtick timer state.
751 *
752 * called with rq->lock held and irqs disabled
753 */
029632fb 754void hrtick_start(struct rq *rq, u64 delay)
31656519 755{
86893335
WL
756 /*
757 * Don't schedule slices shorter than 10000ns, that just
758 * doesn't make sense. Rely on vruntime for fairness.
759 */
760 delay = max_t(u64, delay, 10000LL);
4961b6e1 761 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 762 HRTIMER_MODE_REL_PINNED_HARD);
31656519 763}
90b5363a 764
31656519 765#endif /* CONFIG_SMP */
8f4d37ec 766
77a021be 767static void hrtick_rq_init(struct rq *rq)
8f4d37ec 768{
31656519 769#ifdef CONFIG_SMP
545b8c8d 770 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 771#endif
d5096aa6 772 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 773 rq->hrtick_timer.function = hrtick;
8f4d37ec 774}
006c75f1 775#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
776static inline void hrtick_clear(struct rq *rq)
777{
778}
779
77a021be 780static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
781{
782}
006c75f1 783#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 784
5529578a
FW
785/*
786 * cmpxchg based fetch_or, macro so it works for different integer types
787 */
788#define fetch_or(ptr, mask) \
789 ({ \
790 typeof(ptr) _ptr = (ptr); \
791 typeof(mask) _mask = (mask); \
792 typeof(*_ptr) _old, _val = *_ptr; \
793 \
794 for (;;) { \
795 _old = cmpxchg(_ptr, _val, _val | _mask); \
796 if (_old == _val) \
797 break; \
798 _val = _old; \
799 } \
800 _old; \
801})
802
e3baac47 803#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
804/*
805 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806 * this avoids any races wrt polling state changes and thereby avoids
807 * spurious IPIs.
808 */
809static bool set_nr_and_not_polling(struct task_struct *p)
810{
811 struct thread_info *ti = task_thread_info(p);
812 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813}
e3baac47
PZ
814
815/*
816 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817 *
818 * If this returns true, then the idle task promises to call
819 * sched_ttwu_pending() and reschedule soon.
820 */
821static bool set_nr_if_polling(struct task_struct *p)
822{
823 struct thread_info *ti = task_thread_info(p);
316c1608 824 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
825
826 for (;;) {
827 if (!(val & _TIF_POLLING_NRFLAG))
828 return false;
829 if (val & _TIF_NEED_RESCHED)
830 return true;
831 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 if (old == val)
833 break;
834 val = old;
835 }
836 return true;
837}
838
fd99f91a
PZ
839#else
840static bool set_nr_and_not_polling(struct task_struct *p)
841{
842 set_tsk_need_resched(p);
843 return true;
844}
e3baac47
PZ
845
846#ifdef CONFIG_SMP
847static bool set_nr_if_polling(struct task_struct *p)
848{
849 return false;
850}
851#endif
fd99f91a
PZ
852#endif
853
07879c6a 854static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
855{
856 struct wake_q_node *node = &task->wake_q;
857
858 /*
859 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 860 * it's already queued (either by us or someone else) and will get the
76751049
PZ
861 * wakeup due to that.
862 *
4c4e3731
PZ
863 * In order to ensure that a pending wakeup will observe our pending
864 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 865 */
4c4e3731 866 smp_mb__before_atomic();
87ff19cb 867 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 868 return false;
76751049
PZ
869
870 /*
871 * The head is context local, there can be no concurrency.
872 */
873 *head->lastp = node;
874 head->lastp = &node->next;
07879c6a
DB
875 return true;
876}
877
878/**
879 * wake_q_add() - queue a wakeup for 'later' waking.
880 * @head: the wake_q_head to add @task to
881 * @task: the task to queue for 'later' wakeup
882 *
883 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885 * instantly.
886 *
887 * This function must be used as-if it were wake_up_process(); IOW the task
888 * must be ready to be woken at this location.
889 */
890void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891{
892 if (__wake_q_add(head, task))
893 get_task_struct(task);
894}
895
896/**
897 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898 * @head: the wake_q_head to add @task to
899 * @task: the task to queue for 'later' wakeup
900 *
901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903 * instantly.
904 *
905 * This function must be used as-if it were wake_up_process(); IOW the task
906 * must be ready to be woken at this location.
907 *
908 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909 * that already hold reference to @task can call the 'safe' version and trust
910 * wake_q to do the right thing depending whether or not the @task is already
911 * queued for wakeup.
912 */
913void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914{
915 if (!__wake_q_add(head, task))
916 put_task_struct(task);
76751049
PZ
917}
918
919void wake_up_q(struct wake_q_head *head)
920{
921 struct wake_q_node *node = head->first;
922
923 while (node != WAKE_Q_TAIL) {
924 struct task_struct *task;
925
926 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 927 /* Task can safely be re-inserted now: */
76751049
PZ
928 node = node->next;
929 task->wake_q.next = NULL;
930
931 /*
7696f991
AP
932 * wake_up_process() executes a full barrier, which pairs with
933 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
934 */
935 wake_up_process(task);
936 put_task_struct(task);
937 }
938}
939
c24d20db 940/*
8875125e 941 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
942 *
943 * On UP this means the setting of the need_resched flag, on SMP it
944 * might also involve a cross-CPU call to trigger the scheduler on
945 * the target CPU.
946 */
8875125e 947void resched_curr(struct rq *rq)
c24d20db 948{
8875125e 949 struct task_struct *curr = rq->curr;
c24d20db
IM
950 int cpu;
951
5cb9eaa3 952 lockdep_assert_rq_held(rq);
c24d20db 953
8875125e 954 if (test_tsk_need_resched(curr))
c24d20db
IM
955 return;
956
8875125e 957 cpu = cpu_of(rq);
fd99f91a 958
f27dde8d 959 if (cpu == smp_processor_id()) {
8875125e 960 set_tsk_need_resched(curr);
f27dde8d 961 set_preempt_need_resched();
c24d20db 962 return;
f27dde8d 963 }
c24d20db 964
8875125e 965 if (set_nr_and_not_polling(curr))
c24d20db 966 smp_send_reschedule(cpu);
dfc68f29
AL
967 else
968 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
969}
970
029632fb 971void resched_cpu(int cpu)
c24d20db
IM
972{
973 struct rq *rq = cpu_rq(cpu);
974 unsigned long flags;
975
5cb9eaa3 976 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
977 if (cpu_online(cpu) || cpu == smp_processor_id())
978 resched_curr(rq);
5cb9eaa3 979 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 980}
06d8308c 981
b021fe3e 982#ifdef CONFIG_SMP
3451d024 983#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 984/*
d1ccc66d
IM
985 * In the semi idle case, use the nearest busy CPU for migrating timers
986 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
987 *
988 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
989 * selecting an idle CPU will add more delays to the timers than intended
990 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 991 */
bc7a34b8 992int get_nohz_timer_target(void)
83cd4fe2 993{
e938b9c9 994 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 995 struct sched_domain *sd;
031e3bd8 996 const struct cpumask *hk_mask;
83cd4fe2 997
e938b9c9
WL
998 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
999 if (!idle_cpu(cpu))
1000 return cpu;
1001 default_cpu = cpu;
1002 }
6201b4d6 1003
031e3bd8
YZ
1004 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1005
057f3fad 1006 rcu_read_lock();
83cd4fe2 1007 for_each_domain(cpu, sd) {
031e3bd8 1008 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1009 if (cpu == i)
1010 continue;
1011
e938b9c9 1012 if (!idle_cpu(i)) {
057f3fad
PZ
1013 cpu = i;
1014 goto unlock;
1015 }
1016 }
83cd4fe2 1017 }
9642d18e 1018
e938b9c9
WL
1019 if (default_cpu == -1)
1020 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1021 cpu = default_cpu;
057f3fad
PZ
1022unlock:
1023 rcu_read_unlock();
83cd4fe2
VP
1024 return cpu;
1025}
d1ccc66d 1026
06d8308c
TG
1027/*
1028 * When add_timer_on() enqueues a timer into the timer wheel of an
1029 * idle CPU then this timer might expire before the next timer event
1030 * which is scheduled to wake up that CPU. In case of a completely
1031 * idle system the next event might even be infinite time into the
1032 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1033 * leaves the inner idle loop so the newly added timer is taken into
1034 * account when the CPU goes back to idle and evaluates the timer
1035 * wheel for the next timer event.
1036 */
1c20091e 1037static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1038{
1039 struct rq *rq = cpu_rq(cpu);
1040
1041 if (cpu == smp_processor_id())
1042 return;
1043
67b9ca70 1044 if (set_nr_and_not_polling(rq->idle))
06d8308c 1045 smp_send_reschedule(cpu);
dfc68f29
AL
1046 else
1047 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1048}
1049
c5bfece2 1050static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1051{
53c5fa16
FW
1052 /*
1053 * We just need the target to call irq_exit() and re-evaluate
1054 * the next tick. The nohz full kick at least implies that.
1055 * If needed we can still optimize that later with an
1056 * empty IRQ.
1057 */
379d9ecb
PM
1058 if (cpu_is_offline(cpu))
1059 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1060 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1061 if (cpu != smp_processor_id() ||
1062 tick_nohz_tick_stopped())
53c5fa16 1063 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1064 return true;
1065 }
1066
1067 return false;
1068}
1069
379d9ecb
PM
1070/*
1071 * Wake up the specified CPU. If the CPU is going offline, it is the
1072 * caller's responsibility to deal with the lost wakeup, for example,
1073 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1074 */
1c20091e
FW
1075void wake_up_nohz_cpu(int cpu)
1076{
c5bfece2 1077 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1078 wake_up_idle_cpu(cpu);
1079}
1080
19a1f5ec 1081static void nohz_csd_func(void *info)
45bf76df 1082{
19a1f5ec
PZ
1083 struct rq *rq = info;
1084 int cpu = cpu_of(rq);
1085 unsigned int flags;
873b4c65
VG
1086
1087 /*
19a1f5ec 1088 * Release the rq::nohz_csd.
873b4c65 1089 */
c6f88654 1090 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1091 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1092
19a1f5ec
PZ
1093 rq->idle_balance = idle_cpu(cpu);
1094 if (rq->idle_balance && !need_resched()) {
1095 rq->nohz_idle_balance = flags;
90b5363a
PZI
1096 raise_softirq_irqoff(SCHED_SOFTIRQ);
1097 }
2069dd75
PZ
1098}
1099
3451d024 1100#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1101
ce831b38 1102#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1103bool sched_can_stop_tick(struct rq *rq)
ce831b38 1104{
76d92ac3
FW
1105 int fifo_nr_running;
1106
1107 /* Deadline tasks, even if single, need the tick */
1108 if (rq->dl.dl_nr_running)
1109 return false;
1110
1e78cdbd 1111 /*
b19a888c 1112 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1113 * actual RR behaviour.
1e78cdbd 1114 */
76d92ac3
FW
1115 if (rq->rt.rr_nr_running) {
1116 if (rq->rt.rr_nr_running == 1)
1117 return true;
1118 else
1119 return false;
1e78cdbd
RR
1120 }
1121
2548d546
PZ
1122 /*
1123 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1124 * forced preemption between FIFO tasks.
1125 */
1126 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1127 if (fifo_nr_running)
1128 return true;
1129
1130 /*
1131 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1132 * if there's more than one we need the tick for involuntary
1133 * preemption.
1134 */
1135 if (rq->nr_running > 1)
541b8264 1136 return false;
ce831b38 1137
541b8264 1138 return true;
ce831b38
FW
1139}
1140#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1141#endif /* CONFIG_SMP */
18d95a28 1142
a790de99
PT
1143#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1144 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1145/*
8277434e
PT
1146 * Iterate task_group tree rooted at *from, calling @down when first entering a
1147 * node and @up when leaving it for the final time.
1148 *
1149 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1150 */
029632fb 1151int walk_tg_tree_from(struct task_group *from,
8277434e 1152 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1153{
1154 struct task_group *parent, *child;
eb755805 1155 int ret;
c09595f6 1156
8277434e
PT
1157 parent = from;
1158
c09595f6 1159down:
eb755805
PZ
1160 ret = (*down)(parent, data);
1161 if (ret)
8277434e 1162 goto out;
c09595f6
PZ
1163 list_for_each_entry_rcu(child, &parent->children, siblings) {
1164 parent = child;
1165 goto down;
1166
1167up:
1168 continue;
1169 }
eb755805 1170 ret = (*up)(parent, data);
8277434e
PT
1171 if (ret || parent == from)
1172 goto out;
c09595f6
PZ
1173
1174 child = parent;
1175 parent = parent->parent;
1176 if (parent)
1177 goto up;
8277434e 1178out:
eb755805 1179 return ret;
c09595f6
PZ
1180}
1181
029632fb 1182int tg_nop(struct task_group *tg, void *data)
eb755805 1183{
e2b245f8 1184 return 0;
eb755805 1185}
18d95a28
PZ
1186#endif
1187
9059393e 1188static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1189{
f05998d4
NR
1190 int prio = p->static_prio - MAX_RT_PRIO;
1191 struct load_weight *load = &p->se.load;
1192
dd41f596
IM
1193 /*
1194 * SCHED_IDLE tasks get minimal weight:
1195 */
1da1843f 1196 if (task_has_idle_policy(p)) {
c8b28116 1197 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1198 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1199 return;
1200 }
71f8bd46 1201
9059393e
VG
1202 /*
1203 * SCHED_OTHER tasks have to update their load when changing their
1204 * weight
1205 */
1206 if (update_load && p->sched_class == &fair_sched_class) {
1207 reweight_task(p, prio);
1208 } else {
1209 load->weight = scale_load(sched_prio_to_weight[prio]);
1210 load->inv_weight = sched_prio_to_wmult[prio];
1211 }
71f8bd46
IM
1212}
1213
69842cba 1214#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1215/*
1216 * Serializes updates of utilization clamp values
1217 *
1218 * The (slow-path) user-space triggers utilization clamp value updates which
1219 * can require updates on (fast-path) scheduler's data structures used to
1220 * support enqueue/dequeue operations.
1221 * While the per-CPU rq lock protects fast-path update operations, user-space
1222 * requests are serialized using a mutex to reduce the risk of conflicting
1223 * updates or API abuses.
1224 */
1225static DEFINE_MUTEX(uclamp_mutex);
1226
e8f14172
PB
1227/* Max allowed minimum utilization */
1228unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1229
1230/* Max allowed maximum utilization */
1231unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1232
13685c4a
QY
1233/*
1234 * By default RT tasks run at the maximum performance point/capacity of the
1235 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1236 * SCHED_CAPACITY_SCALE.
1237 *
1238 * This knob allows admins to change the default behavior when uclamp is being
1239 * used. In battery powered devices, particularly, running at the maximum
1240 * capacity and frequency will increase energy consumption and shorten the
1241 * battery life.
1242 *
1243 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1244 *
1245 * This knob will not override the system default sched_util_clamp_min defined
1246 * above.
1247 */
1248unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1249
e8f14172
PB
1250/* All clamps are required to be less or equal than these values */
1251static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1252
46609ce2
QY
1253/*
1254 * This static key is used to reduce the uclamp overhead in the fast path. It
1255 * primarily disables the call to uclamp_rq_{inc, dec}() in
1256 * enqueue/dequeue_task().
1257 *
1258 * This allows users to continue to enable uclamp in their kernel config with
1259 * minimum uclamp overhead in the fast path.
1260 *
1261 * As soon as userspace modifies any of the uclamp knobs, the static key is
1262 * enabled, since we have an actual users that make use of uclamp
1263 * functionality.
1264 *
1265 * The knobs that would enable this static key are:
1266 *
1267 * * A task modifying its uclamp value with sched_setattr().
1268 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1269 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1270 */
1271DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1272
69842cba
PB
1273/* Integer rounded range for each bucket */
1274#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1275
1276#define for_each_clamp_id(clamp_id) \
1277 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1278
1279static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1280{
6d2f8909 1281 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1282}
1283
7763baac 1284static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1285{
1286 if (clamp_id == UCLAMP_MIN)
1287 return 0;
1288 return SCHED_CAPACITY_SCALE;
1289}
1290
a509a7cd
PB
1291static inline void uclamp_se_set(struct uclamp_se *uc_se,
1292 unsigned int value, bool user_defined)
69842cba
PB
1293{
1294 uc_se->value = value;
1295 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1296 uc_se->user_defined = user_defined;
69842cba
PB
1297}
1298
e496187d 1299static inline unsigned int
0413d7f3 1300uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1301 unsigned int clamp_value)
1302{
1303 /*
1304 * Avoid blocked utilization pushing up the frequency when we go
1305 * idle (which drops the max-clamp) by retaining the last known
1306 * max-clamp.
1307 */
1308 if (clamp_id == UCLAMP_MAX) {
1309 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1310 return clamp_value;
1311 }
1312
1313 return uclamp_none(UCLAMP_MIN);
1314}
1315
0413d7f3 1316static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1317 unsigned int clamp_value)
1318{
1319 /* Reset max-clamp retention only on idle exit */
1320 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1321 return;
1322
1323 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1324}
1325
69842cba 1326static inline
7763baac 1327unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1328 unsigned int clamp_value)
69842cba
PB
1329{
1330 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1331 int bucket_id = UCLAMP_BUCKETS - 1;
1332
1333 /*
1334 * Since both min and max clamps are max aggregated, find the
1335 * top most bucket with tasks in.
1336 */
1337 for ( ; bucket_id >= 0; bucket_id--) {
1338 if (!bucket[bucket_id].tasks)
1339 continue;
1340 return bucket[bucket_id].value;
1341 }
1342
1343 /* No tasks -- default clamp values */
e496187d 1344 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1345}
1346
13685c4a
QY
1347static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1348{
1349 unsigned int default_util_min;
1350 struct uclamp_se *uc_se;
1351
1352 lockdep_assert_held(&p->pi_lock);
1353
1354 uc_se = &p->uclamp_req[UCLAMP_MIN];
1355
1356 /* Only sync if user didn't override the default */
1357 if (uc_se->user_defined)
1358 return;
1359
1360 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1361 uclamp_se_set(uc_se, default_util_min, false);
1362}
1363
1364static void uclamp_update_util_min_rt_default(struct task_struct *p)
1365{
1366 struct rq_flags rf;
1367 struct rq *rq;
1368
1369 if (!rt_task(p))
1370 return;
1371
1372 /* Protect updates to p->uclamp_* */
1373 rq = task_rq_lock(p, &rf);
1374 __uclamp_update_util_min_rt_default(p);
1375 task_rq_unlock(rq, p, &rf);
1376}
1377
1378static void uclamp_sync_util_min_rt_default(void)
1379{
1380 struct task_struct *g, *p;
1381
1382 /*
1383 * copy_process() sysctl_uclamp
1384 * uclamp_min_rt = X;
1385 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1386 * // link thread smp_mb__after_spinlock()
1387 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1388 * sched_post_fork() for_each_process_thread()
1389 * __uclamp_sync_rt() __uclamp_sync_rt()
1390 *
1391 * Ensures that either sched_post_fork() will observe the new
1392 * uclamp_min_rt or for_each_process_thread() will observe the new
1393 * task.
1394 */
1395 read_lock(&tasklist_lock);
1396 smp_mb__after_spinlock();
1397 read_unlock(&tasklist_lock);
1398
1399 rcu_read_lock();
1400 for_each_process_thread(g, p)
1401 uclamp_update_util_min_rt_default(p);
1402 rcu_read_unlock();
1403}
1404
3eac870a 1405static inline struct uclamp_se
0413d7f3 1406uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1407{
0213b708 1408 /* Copy by value as we could modify it */
3eac870a
PB
1409 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1410#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1411 unsigned int tg_min, tg_max, value;
3eac870a
PB
1412
1413 /*
1414 * Tasks in autogroups or root task group will be
1415 * restricted by system defaults.
1416 */
1417 if (task_group_is_autogroup(task_group(p)))
1418 return uc_req;
1419 if (task_group(p) == &root_task_group)
1420 return uc_req;
1421
0213b708
QY
1422 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1423 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1424 value = uc_req.value;
1425 value = clamp(value, tg_min, tg_max);
1426 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1427#endif
1428
1429 return uc_req;
1430}
1431
e8f14172
PB
1432/*
1433 * The effective clamp bucket index of a task depends on, by increasing
1434 * priority:
1435 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1436 * - the task group effective clamp value, for tasks not either in the root
1437 * group or in an autogroup
e8f14172
PB
1438 * - the system default clamp value, defined by the sysadmin
1439 */
1440static inline struct uclamp_se
0413d7f3 1441uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1442{
3eac870a 1443 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1444 struct uclamp_se uc_max = uclamp_default[clamp_id];
1445
1446 /* System default restrictions always apply */
1447 if (unlikely(uc_req.value > uc_max.value))
1448 return uc_max;
1449
1450 return uc_req;
1451}
1452
686516b5 1453unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1454{
1455 struct uclamp_se uc_eff;
1456
1457 /* Task currently refcounted: use back-annotated (effective) value */
1458 if (p->uclamp[clamp_id].active)
686516b5 1459 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1460
1461 uc_eff = uclamp_eff_get(p, clamp_id);
1462
686516b5 1463 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1464}
1465
69842cba
PB
1466/*
1467 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1468 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1469 * updates the rq's clamp value if required.
60daf9c1
PB
1470 *
1471 * Tasks can have a task-specific value requested from user-space, track
1472 * within each bucket the maximum value for tasks refcounted in it.
1473 * This "local max aggregation" allows to track the exact "requested" value
1474 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1475 */
1476static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1477 enum uclamp_id clamp_id)
69842cba
PB
1478{
1479 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1480 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1481 struct uclamp_bucket *bucket;
1482
5cb9eaa3 1483 lockdep_assert_rq_held(rq);
69842cba 1484
e8f14172
PB
1485 /* Update task effective clamp */
1486 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1487
69842cba
PB
1488 bucket = &uc_rq->bucket[uc_se->bucket_id];
1489 bucket->tasks++;
e8f14172 1490 uc_se->active = true;
69842cba 1491
e496187d
PB
1492 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1493
60daf9c1
PB
1494 /*
1495 * Local max aggregation: rq buckets always track the max
1496 * "requested" clamp value of its RUNNABLE tasks.
1497 */
1498 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1499 bucket->value = uc_se->value;
1500
69842cba 1501 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1502 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1503}
1504
1505/*
1506 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1507 * is released. If this is the last task reference counting the rq's max
1508 * active clamp value, then the rq's clamp value is updated.
1509 *
1510 * Both refcounted tasks and rq's cached clamp values are expected to be
1511 * always valid. If it's detected they are not, as defensive programming,
1512 * enforce the expected state and warn.
1513 */
1514static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1515 enum uclamp_id clamp_id)
69842cba
PB
1516{
1517 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1518 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1519 struct uclamp_bucket *bucket;
e496187d 1520 unsigned int bkt_clamp;
69842cba
PB
1521 unsigned int rq_clamp;
1522
5cb9eaa3 1523 lockdep_assert_rq_held(rq);
69842cba 1524
46609ce2
QY
1525 /*
1526 * If sched_uclamp_used was enabled after task @p was enqueued,
1527 * we could end up with unbalanced call to uclamp_rq_dec_id().
1528 *
1529 * In this case the uc_se->active flag should be false since no uclamp
1530 * accounting was performed at enqueue time and we can just return
1531 * here.
1532 *
b19a888c 1533 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1534 * problem too
1535 *
1536 * enqueue(taskA)
1537 * // sched_uclamp_used gets enabled
1538 * enqueue(taskB)
1539 * dequeue(taskA)
b19a888c 1540 * // Must not decrement bucket->tasks here
46609ce2
QY
1541 * dequeue(taskB)
1542 *
1543 * where we could end up with stale data in uc_se and
1544 * bucket[uc_se->bucket_id].
1545 *
1546 * The following check here eliminates the possibility of such race.
1547 */
1548 if (unlikely(!uc_se->active))
1549 return;
1550
69842cba 1551 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1552
69842cba
PB
1553 SCHED_WARN_ON(!bucket->tasks);
1554 if (likely(bucket->tasks))
1555 bucket->tasks--;
46609ce2 1556
e8f14172 1557 uc_se->active = false;
69842cba 1558
60daf9c1
PB
1559 /*
1560 * Keep "local max aggregation" simple and accept to (possibly)
1561 * overboost some RUNNABLE tasks in the same bucket.
1562 * The rq clamp bucket value is reset to its base value whenever
1563 * there are no more RUNNABLE tasks refcounting it.
1564 */
69842cba
PB
1565 if (likely(bucket->tasks))
1566 return;
1567
1568 rq_clamp = READ_ONCE(uc_rq->value);
1569 /*
1570 * Defensive programming: this should never happen. If it happens,
1571 * e.g. due to future modification, warn and fixup the expected value.
1572 */
1573 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1574 if (bucket->value >= rq_clamp) {
1575 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1576 WRITE_ONCE(uc_rq->value, bkt_clamp);
1577 }
69842cba
PB
1578}
1579
1580static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1581{
0413d7f3 1582 enum uclamp_id clamp_id;
69842cba 1583
46609ce2
QY
1584 /*
1585 * Avoid any overhead until uclamp is actually used by the userspace.
1586 *
1587 * The condition is constructed such that a NOP is generated when
1588 * sched_uclamp_used is disabled.
1589 */
1590 if (!static_branch_unlikely(&sched_uclamp_used))
1591 return;
1592
69842cba
PB
1593 if (unlikely(!p->sched_class->uclamp_enabled))
1594 return;
1595
1596 for_each_clamp_id(clamp_id)
1597 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1598
1599 /* Reset clamp idle holding when there is one RUNNABLE task */
1600 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1601 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1602}
1603
1604static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1605{
0413d7f3 1606 enum uclamp_id clamp_id;
69842cba 1607
46609ce2
QY
1608 /*
1609 * Avoid any overhead until uclamp is actually used by the userspace.
1610 *
1611 * The condition is constructed such that a NOP is generated when
1612 * sched_uclamp_used is disabled.
1613 */
1614 if (!static_branch_unlikely(&sched_uclamp_used))
1615 return;
1616
69842cba
PB
1617 if (unlikely(!p->sched_class->uclamp_enabled))
1618 return;
1619
1620 for_each_clamp_id(clamp_id)
1621 uclamp_rq_dec_id(rq, p, clamp_id);
1622}
1623
ca4984a7
QP
1624static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1625 enum uclamp_id clamp_id)
1626{
1627 if (!p->uclamp[clamp_id].active)
1628 return;
1629
1630 uclamp_rq_dec_id(rq, p, clamp_id);
1631 uclamp_rq_inc_id(rq, p, clamp_id);
1632
1633 /*
1634 * Make sure to clear the idle flag if we've transiently reached 0
1635 * active tasks on rq.
1636 */
1637 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1638 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1639}
1640
babbe170 1641static inline void
0213b708 1642uclamp_update_active(struct task_struct *p)
babbe170 1643{
0213b708 1644 enum uclamp_id clamp_id;
babbe170
PB
1645 struct rq_flags rf;
1646 struct rq *rq;
1647
1648 /*
1649 * Lock the task and the rq where the task is (or was) queued.
1650 *
1651 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1652 * price to pay to safely serialize util_{min,max} updates with
1653 * enqueues, dequeues and migration operations.
1654 * This is the same locking schema used by __set_cpus_allowed_ptr().
1655 */
1656 rq = task_rq_lock(p, &rf);
1657
1658 /*
1659 * Setting the clamp bucket is serialized by task_rq_lock().
1660 * If the task is not yet RUNNABLE and its task_struct is not
1661 * affecting a valid clamp bucket, the next time it's enqueued,
1662 * it will already see the updated clamp bucket value.
1663 */
ca4984a7
QP
1664 for_each_clamp_id(clamp_id)
1665 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1666
1667 task_rq_unlock(rq, p, &rf);
1668}
1669
e3b8b6a0 1670#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1671static inline void
0213b708 1672uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1673{
1674 struct css_task_iter it;
1675 struct task_struct *p;
babbe170
PB
1676
1677 css_task_iter_start(css, 0, &it);
0213b708
QY
1678 while ((p = css_task_iter_next(&it)))
1679 uclamp_update_active(p);
babbe170
PB
1680 css_task_iter_end(&it);
1681}
1682
7274a5c1
PB
1683static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1684static void uclamp_update_root_tg(void)
1685{
1686 struct task_group *tg = &root_task_group;
1687
1688 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1689 sysctl_sched_uclamp_util_min, false);
1690 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1691 sysctl_sched_uclamp_util_max, false);
1692
1693 rcu_read_lock();
1694 cpu_util_update_eff(&root_task_group.css);
1695 rcu_read_unlock();
1696}
1697#else
1698static void uclamp_update_root_tg(void) { }
1699#endif
1700
e8f14172 1701int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1702 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1703{
7274a5c1 1704 bool update_root_tg = false;
13685c4a 1705 int old_min, old_max, old_min_rt;
e8f14172
PB
1706 int result;
1707
2480c093 1708 mutex_lock(&uclamp_mutex);
e8f14172
PB
1709 old_min = sysctl_sched_uclamp_util_min;
1710 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1711 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1712
1713 result = proc_dointvec(table, write, buffer, lenp, ppos);
1714 if (result)
1715 goto undo;
1716 if (!write)
1717 goto done;
1718
1719 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1720 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1721 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1722
e8f14172
PB
1723 result = -EINVAL;
1724 goto undo;
1725 }
1726
1727 if (old_min != sysctl_sched_uclamp_util_min) {
1728 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1729 sysctl_sched_uclamp_util_min, false);
7274a5c1 1730 update_root_tg = true;
e8f14172
PB
1731 }
1732 if (old_max != sysctl_sched_uclamp_util_max) {
1733 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1734 sysctl_sched_uclamp_util_max, false);
7274a5c1 1735 update_root_tg = true;
e8f14172
PB
1736 }
1737
46609ce2
QY
1738 if (update_root_tg) {
1739 static_branch_enable(&sched_uclamp_used);
7274a5c1 1740 uclamp_update_root_tg();
46609ce2 1741 }
7274a5c1 1742
13685c4a
QY
1743 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1744 static_branch_enable(&sched_uclamp_used);
1745 uclamp_sync_util_min_rt_default();
1746 }
7274a5c1 1747
e8f14172 1748 /*
7274a5c1
PB
1749 * We update all RUNNABLE tasks only when task groups are in use.
1750 * Otherwise, keep it simple and do just a lazy update at each next
1751 * task enqueue time.
e8f14172 1752 */
7274a5c1 1753
e8f14172
PB
1754 goto done;
1755
1756undo:
1757 sysctl_sched_uclamp_util_min = old_min;
1758 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1759 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1760done:
2480c093 1761 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1762
1763 return result;
1764}
1765
a509a7cd
PB
1766static int uclamp_validate(struct task_struct *p,
1767 const struct sched_attr *attr)
1768{
480a6ca2
DE
1769 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1770 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1771
480a6ca2
DE
1772 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1773 util_min = attr->sched_util_min;
a509a7cd 1774
480a6ca2
DE
1775 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1776 return -EINVAL;
1777 }
1778
1779 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1780 util_max = attr->sched_util_max;
1781
1782 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1783 return -EINVAL;
1784 }
1785
1786 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1787 return -EINVAL;
1788
e65855a5
QY
1789 /*
1790 * We have valid uclamp attributes; make sure uclamp is enabled.
1791 *
1792 * We need to do that here, because enabling static branches is a
1793 * blocking operation which obviously cannot be done while holding
1794 * scheduler locks.
1795 */
1796 static_branch_enable(&sched_uclamp_used);
1797
a509a7cd
PB
1798 return 0;
1799}
1800
480a6ca2
DE
1801static bool uclamp_reset(const struct sched_attr *attr,
1802 enum uclamp_id clamp_id,
1803 struct uclamp_se *uc_se)
1804{
1805 /* Reset on sched class change for a non user-defined clamp value. */
1806 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1807 !uc_se->user_defined)
1808 return true;
1809
1810 /* Reset on sched_util_{min,max} == -1. */
1811 if (clamp_id == UCLAMP_MIN &&
1812 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1813 attr->sched_util_min == -1) {
1814 return true;
1815 }
1816
1817 if (clamp_id == UCLAMP_MAX &&
1818 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1819 attr->sched_util_max == -1) {
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
a509a7cd
PB
1826static void __setscheduler_uclamp(struct task_struct *p,
1827 const struct sched_attr *attr)
1828{
0413d7f3 1829 enum uclamp_id clamp_id;
1a00d999 1830
1a00d999
PB
1831 for_each_clamp_id(clamp_id) {
1832 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1833 unsigned int value;
1a00d999 1834
480a6ca2 1835 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1836 continue;
1837
13685c4a
QY
1838 /*
1839 * RT by default have a 100% boost value that could be modified
1840 * at runtime.
1841 */
1a00d999 1842 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1843 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1844 else
480a6ca2
DE
1845 value = uclamp_none(clamp_id);
1846
1847 uclamp_se_set(uc_se, value, false);
1a00d999 1848
1a00d999
PB
1849 }
1850
a509a7cd
PB
1851 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1852 return;
1853
480a6ca2
DE
1854 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1855 attr->sched_util_min != -1) {
a509a7cd
PB
1856 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1857 attr->sched_util_min, true);
1858 }
1859
480a6ca2
DE
1860 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1861 attr->sched_util_max != -1) {
a509a7cd
PB
1862 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1863 attr->sched_util_max, true);
1864 }
1865}
1866
e8f14172
PB
1867static void uclamp_fork(struct task_struct *p)
1868{
0413d7f3 1869 enum uclamp_id clamp_id;
e8f14172 1870
13685c4a
QY
1871 /*
1872 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1873 * as the task is still at its early fork stages.
1874 */
e8f14172
PB
1875 for_each_clamp_id(clamp_id)
1876 p->uclamp[clamp_id].active = false;
a87498ac
PB
1877
1878 if (likely(!p->sched_reset_on_fork))
1879 return;
1880
1881 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1882 uclamp_se_set(&p->uclamp_req[clamp_id],
1883 uclamp_none(clamp_id), false);
a87498ac 1884 }
e8f14172
PB
1885}
1886
13685c4a
QY
1887static void uclamp_post_fork(struct task_struct *p)
1888{
1889 uclamp_update_util_min_rt_default(p);
1890}
1891
d81ae8aa
QY
1892static void __init init_uclamp_rq(struct rq *rq)
1893{
1894 enum uclamp_id clamp_id;
1895 struct uclamp_rq *uc_rq = rq->uclamp;
1896
1897 for_each_clamp_id(clamp_id) {
1898 uc_rq[clamp_id] = (struct uclamp_rq) {
1899 .value = uclamp_none(clamp_id)
1900 };
1901 }
1902
1903 rq->uclamp_flags = 0;
1904}
1905
69842cba
PB
1906static void __init init_uclamp(void)
1907{
e8f14172 1908 struct uclamp_se uc_max = {};
0413d7f3 1909 enum uclamp_id clamp_id;
69842cba
PB
1910 int cpu;
1911
d81ae8aa
QY
1912 for_each_possible_cpu(cpu)
1913 init_uclamp_rq(cpu_rq(cpu));
69842cba 1914
69842cba 1915 for_each_clamp_id(clamp_id) {
e8f14172 1916 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1917 uclamp_none(clamp_id), false);
69842cba 1918 }
e8f14172
PB
1919
1920 /* System defaults allow max clamp values for both indexes */
a509a7cd 1921 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1922 for_each_clamp_id(clamp_id) {
e8f14172 1923 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1924#ifdef CONFIG_UCLAMP_TASK_GROUP
1925 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1926 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1927#endif
1928 }
69842cba
PB
1929}
1930
1931#else /* CONFIG_UCLAMP_TASK */
1932static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1933static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1934static inline int uclamp_validate(struct task_struct *p,
1935 const struct sched_attr *attr)
1936{
1937 return -EOPNOTSUPP;
1938}
1939static void __setscheduler_uclamp(struct task_struct *p,
1940 const struct sched_attr *attr) { }
e8f14172 1941static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1942static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1943static inline void init_uclamp(void) { }
1944#endif /* CONFIG_UCLAMP_TASK */
1945
1de64443 1946static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1947{
0a67d1ee
PZ
1948 if (!(flags & ENQUEUE_NOCLOCK))
1949 update_rq_clock(rq);
1950
eb414681 1951 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 1952 sched_info_enqueue(rq, p);
eb414681
JW
1953 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1954 }
0a67d1ee 1955
69842cba 1956 uclamp_rq_inc(rq, p);
371fd7e7 1957 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
1958
1959 if (sched_core_enabled(rq))
1960 sched_core_enqueue(rq, p);
71f8bd46
IM
1961}
1962
1de64443 1963static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1964{
8a311c74
PZ
1965 if (sched_core_enabled(rq))
1966 sched_core_dequeue(rq, p);
1967
0a67d1ee
PZ
1968 if (!(flags & DEQUEUE_NOCLOCK))
1969 update_rq_clock(rq);
1970
eb414681 1971 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 1972 sched_info_dequeue(rq, p);
eb414681
JW
1973 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1974 }
0a67d1ee 1975
69842cba 1976 uclamp_rq_dec(rq, p);
371fd7e7 1977 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1978}
1979
029632fb 1980void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1981{
371fd7e7 1982 enqueue_task(rq, p, flags);
7dd77884
PZ
1983
1984 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1985}
1986
029632fb 1987void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1988{
7dd77884
PZ
1989 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1990
371fd7e7 1991 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1992}
1993
14531189 1994/*
dd41f596 1995 * __normal_prio - return the priority that is based on the static prio
14531189 1996 */
14531189
IM
1997static inline int __normal_prio(struct task_struct *p)
1998{
dd41f596 1999 return p->static_prio;
14531189
IM
2000}
2001
b29739f9
IM
2002/*
2003 * Calculate the expected normal priority: i.e. priority
2004 * without taking RT-inheritance into account. Might be
2005 * boosted by interactivity modifiers. Changes upon fork,
2006 * setprio syscalls, and whenever the interactivity
2007 * estimator recalculates.
2008 */
36c8b586 2009static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2010{
2011 int prio;
2012
aab03e05
DF
2013 if (task_has_dl_policy(p))
2014 prio = MAX_DL_PRIO-1;
2015 else if (task_has_rt_policy(p))
b29739f9
IM
2016 prio = MAX_RT_PRIO-1 - p->rt_priority;
2017 else
2018 prio = __normal_prio(p);
2019 return prio;
2020}
2021
2022/*
2023 * Calculate the current priority, i.e. the priority
2024 * taken into account by the scheduler. This value might
2025 * be boosted by RT tasks, or might be boosted by
2026 * interactivity modifiers. Will be RT if the task got
2027 * RT-boosted. If not then it returns p->normal_prio.
2028 */
36c8b586 2029static int effective_prio(struct task_struct *p)
b29739f9
IM
2030{
2031 p->normal_prio = normal_prio(p);
2032 /*
2033 * If we are RT tasks or we were boosted to RT priority,
2034 * keep the priority unchanged. Otherwise, update priority
2035 * to the normal priority:
2036 */
2037 if (!rt_prio(p->prio))
2038 return p->normal_prio;
2039 return p->prio;
2040}
2041
1da177e4
LT
2042/**
2043 * task_curr - is this task currently executing on a CPU?
2044 * @p: the task in question.
e69f6186
YB
2045 *
2046 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2047 */
36c8b586 2048inline int task_curr(const struct task_struct *p)
1da177e4
LT
2049{
2050 return cpu_curr(task_cpu(p)) == p;
2051}
2052
67dfa1b7 2053/*
4c9a4bc8
PZ
2054 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2055 * use the balance_callback list if you want balancing.
2056 *
2057 * this means any call to check_class_changed() must be followed by a call to
2058 * balance_callback().
67dfa1b7 2059 */
cb469845
SR
2060static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2061 const struct sched_class *prev_class,
da7a735e 2062 int oldprio)
cb469845
SR
2063{
2064 if (prev_class != p->sched_class) {
2065 if (prev_class->switched_from)
da7a735e 2066 prev_class->switched_from(rq, p);
4c9a4bc8 2067
da7a735e 2068 p->sched_class->switched_to(rq, p);
2d3d891d 2069 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2070 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2071}
2072
029632fb 2073void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2074{
aa93cd53 2075 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2076 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2077 else if (p->sched_class > rq->curr->sched_class)
2078 resched_curr(rq);
1e5a7405
PZ
2079
2080 /*
2081 * A queue event has occurred, and we're going to schedule. In
2082 * this case, we can save a useless back to back clock update.
2083 */
da0c1e65 2084 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2085 rq_clock_skip_update(rq);
1e5a7405
PZ
2086}
2087
1da177e4 2088#ifdef CONFIG_SMP
175f0e25 2089
af449901
PZ
2090static void
2091__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2092
2093static int __set_cpus_allowed_ptr(struct task_struct *p,
2094 const struct cpumask *new_mask,
2095 u32 flags);
2096
2097static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2098{
2099 if (likely(!p->migration_disabled))
2100 return;
2101
2102 if (p->cpus_ptr != &p->cpus_mask)
2103 return;
2104
2105 /*
2106 * Violates locking rules! see comment in __do_set_cpus_allowed().
2107 */
2108 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2109}
2110
2111void migrate_disable(void)
2112{
3015ef4b
TG
2113 struct task_struct *p = current;
2114
2115 if (p->migration_disabled) {
2116 p->migration_disabled++;
af449901 2117 return;
3015ef4b 2118 }
af449901 2119
3015ef4b
TG
2120 preempt_disable();
2121 this_rq()->nr_pinned++;
2122 p->migration_disabled = 1;
2123 preempt_enable();
af449901
PZ
2124}
2125EXPORT_SYMBOL_GPL(migrate_disable);
2126
2127void migrate_enable(void)
2128{
2129 struct task_struct *p = current;
2130
6d337eab
PZ
2131 if (p->migration_disabled > 1) {
2132 p->migration_disabled--;
af449901 2133 return;
6d337eab 2134 }
af449901 2135
6d337eab
PZ
2136 /*
2137 * Ensure stop_task runs either before or after this, and that
2138 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2139 */
2140 preempt_disable();
2141 if (p->cpus_ptr != &p->cpus_mask)
2142 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2143 /*
2144 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2145 * regular cpus_mask, otherwise things that race (eg.
2146 * select_fallback_rq) get confused.
2147 */
af449901 2148 barrier();
6d337eab 2149 p->migration_disabled = 0;
3015ef4b 2150 this_rq()->nr_pinned--;
6d337eab 2151 preempt_enable();
af449901
PZ
2152}
2153EXPORT_SYMBOL_GPL(migrate_enable);
2154
3015ef4b
TG
2155static inline bool rq_has_pinned_tasks(struct rq *rq)
2156{
2157 return rq->nr_pinned;
2158}
2159
175f0e25 2160/*
bee98539 2161 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2162 * __set_cpus_allowed_ptr() and select_fallback_rq().
2163 */
2164static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2165{
5ba2ffba 2166 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2167 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2168 return false;
2169
5ba2ffba
PZ
2170 /* migrate_disabled() must be allowed to finish. */
2171 if (is_migration_disabled(p))
175f0e25
PZ
2172 return cpu_online(cpu);
2173
5ba2ffba
PZ
2174 /* Non kernel threads are not allowed during either online or offline. */
2175 if (!(p->flags & PF_KTHREAD))
2176 return cpu_active(cpu);
2177
2178 /* KTHREAD_IS_PER_CPU is always allowed. */
2179 if (kthread_is_per_cpu(p))
2180 return cpu_online(cpu);
2181
2182 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2183 if (cpu_dying(cpu))
5ba2ffba
PZ
2184 return false;
2185
2186 /* But are allowed during online. */
2187 return cpu_online(cpu);
175f0e25
PZ
2188}
2189
5cc389bc
PZ
2190/*
2191 * This is how migration works:
2192 *
2193 * 1) we invoke migration_cpu_stop() on the target CPU using
2194 * stop_one_cpu().
2195 * 2) stopper starts to run (implicitly forcing the migrated thread
2196 * off the CPU)
2197 * 3) it checks whether the migrated task is still in the wrong runqueue.
2198 * 4) if it's in the wrong runqueue then the migration thread removes
2199 * it and puts it into the right queue.
2200 * 5) stopper completes and stop_one_cpu() returns and the migration
2201 * is done.
2202 */
2203
2204/*
2205 * move_queued_task - move a queued task to new rq.
2206 *
2207 * Returns (locked) new rq. Old rq's lock is released.
2208 */
8a8c69c3
PZ
2209static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2210 struct task_struct *p, int new_cpu)
5cc389bc 2211{
5cb9eaa3 2212 lockdep_assert_rq_held(rq);
5cc389bc 2213
58877d34 2214 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2215 set_task_cpu(p, new_cpu);
8a8c69c3 2216 rq_unlock(rq, rf);
5cc389bc
PZ
2217
2218 rq = cpu_rq(new_cpu);
2219
8a8c69c3 2220 rq_lock(rq, rf);
5cc389bc 2221 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2222 activate_task(rq, p, 0);
5cc389bc
PZ
2223 check_preempt_curr(rq, p, 0);
2224
2225 return rq;
2226}
2227
2228struct migration_arg {
6d337eab
PZ
2229 struct task_struct *task;
2230 int dest_cpu;
2231 struct set_affinity_pending *pending;
2232};
2233
50caf9c1
PZ
2234/*
2235 * @refs: number of wait_for_completion()
2236 * @stop_pending: is @stop_work in use
2237 */
6d337eab
PZ
2238struct set_affinity_pending {
2239 refcount_t refs;
9e81889c 2240 unsigned int stop_pending;
6d337eab
PZ
2241 struct completion done;
2242 struct cpu_stop_work stop_work;
2243 struct migration_arg arg;
5cc389bc
PZ
2244};
2245
2246/*
d1ccc66d 2247 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2248 * this because either it can't run here any more (set_cpus_allowed()
2249 * away from this CPU, or CPU going down), or because we're
2250 * attempting to rebalance this task on exec (sched_exec).
2251 *
2252 * So we race with normal scheduler movements, but that's OK, as long
2253 * as the task is no longer on this CPU.
5cc389bc 2254 */
8a8c69c3
PZ
2255static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2256 struct task_struct *p, int dest_cpu)
5cc389bc 2257{
5cc389bc 2258 /* Affinity changed (again). */
175f0e25 2259 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2260 return rq;
5cc389bc 2261
15ff991e 2262 update_rq_clock(rq);
8a8c69c3 2263 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2264
2265 return rq;
5cc389bc
PZ
2266}
2267
2268/*
2269 * migration_cpu_stop - this will be executed by a highprio stopper thread
2270 * and performs thread migration by bumping thread off CPU then
2271 * 'pushing' onto another runqueue.
2272 */
2273static int migration_cpu_stop(void *data)
2274{
2275 struct migration_arg *arg = data;
c20cf065 2276 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2277 struct task_struct *p = arg->task;
2278 struct rq *rq = this_rq();
6d337eab 2279 bool complete = false;
8a8c69c3 2280 struct rq_flags rf;
5cc389bc
PZ
2281
2282 /*
d1ccc66d
IM
2283 * The original target CPU might have gone down and we might
2284 * be on another CPU but it doesn't matter.
5cc389bc 2285 */
6d337eab 2286 local_irq_save(rf.flags);
5cc389bc
PZ
2287 /*
2288 * We need to explicitly wake pending tasks before running
3bd37062 2289 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2290 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2291 */
a1488664 2292 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2293
2294 raw_spin_lock(&p->pi_lock);
8a8c69c3 2295 rq_lock(rq, &rf);
6d337eab 2296
e140749c
VS
2297 /*
2298 * If we were passed a pending, then ->stop_pending was set, thus
2299 * p->migration_pending must have remained stable.
2300 */
2301 WARN_ON_ONCE(pending && pending != p->migration_pending);
2302
5e16bbc2
PZ
2303 /*
2304 * If task_rq(p) != rq, it cannot be migrated here, because we're
2305 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2306 * we're holding p->pi_lock.
2307 */
bf89a304 2308 if (task_rq(p) == rq) {
6d337eab
PZ
2309 if (is_migration_disabled(p))
2310 goto out;
2311
2312 if (pending) {
e140749c 2313 p->migration_pending = NULL;
6d337eab 2314 complete = true;
6d337eab 2315
3f1bc119
PZ
2316 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2317 goto out;
3f1bc119 2318 }
6d337eab 2319
bf89a304 2320 if (task_on_rq_queued(p))
475ea6c6 2321 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2322 else
475ea6c6 2323 p->wake_cpu = arg->dest_cpu;
6d337eab 2324
3f1bc119
PZ
2325 /*
2326 * XXX __migrate_task() can fail, at which point we might end
2327 * up running on a dodgy CPU, AFAICT this can only happen
2328 * during CPU hotplug, at which point we'll get pushed out
2329 * anyway, so it's probably not a big deal.
2330 */
2331
c20cf065 2332 } else if (pending) {
6d337eab
PZ
2333 /*
2334 * This happens when we get migrated between migrate_enable()'s
2335 * preempt_enable() and scheduling the stopper task. At that
2336 * point we're a regular task again and not current anymore.
2337 *
2338 * A !PREEMPT kernel has a giant hole here, which makes it far
2339 * more likely.
2340 */
2341
d707faa6
VS
2342 /*
2343 * The task moved before the stopper got to run. We're holding
2344 * ->pi_lock, so the allowed mask is stable - if it got
2345 * somewhere allowed, we're done.
2346 */
c20cf065 2347 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2348 p->migration_pending = NULL;
d707faa6
VS
2349 complete = true;
2350 goto out;
2351 }
2352
6d337eab
PZ
2353 /*
2354 * When migrate_enable() hits a rq mis-match we can't reliably
2355 * determine is_migration_disabled() and so have to chase after
2356 * it.
2357 */
9e81889c 2358 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2359 task_rq_unlock(rq, p, &rf);
2360 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2361 &pending->arg, &pending->stop_work);
2362 return 0;
bf89a304 2363 }
6d337eab 2364out:
9e81889c
PZ
2365 if (pending)
2366 pending->stop_pending = false;
6d337eab
PZ
2367 task_rq_unlock(rq, p, &rf);
2368
2369 if (complete)
2370 complete_all(&pending->done);
2371
5cc389bc
PZ
2372 return 0;
2373}
2374
a7c81556
PZ
2375int push_cpu_stop(void *arg)
2376{
2377 struct rq *lowest_rq = NULL, *rq = this_rq();
2378 struct task_struct *p = arg;
2379
2380 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2381 raw_spin_rq_lock(rq);
a7c81556
PZ
2382
2383 if (task_rq(p) != rq)
2384 goto out_unlock;
2385
2386 if (is_migration_disabled(p)) {
2387 p->migration_flags |= MDF_PUSH;
2388 goto out_unlock;
2389 }
2390
2391 p->migration_flags &= ~MDF_PUSH;
2392
2393 if (p->sched_class->find_lock_rq)
2394 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2395
a7c81556
PZ
2396 if (!lowest_rq)
2397 goto out_unlock;
2398
2399 // XXX validate p is still the highest prio task
2400 if (task_rq(p) == rq) {
2401 deactivate_task(rq, p, 0);
2402 set_task_cpu(p, lowest_rq->cpu);
2403 activate_task(lowest_rq, p, 0);
2404 resched_curr(lowest_rq);
2405 }
2406
2407 double_unlock_balance(rq, lowest_rq);
2408
2409out_unlock:
2410 rq->push_busy = false;
5cb9eaa3 2411 raw_spin_rq_unlock(rq);
a7c81556
PZ
2412 raw_spin_unlock_irq(&p->pi_lock);
2413
2414 put_task_struct(p);
5cc389bc
PZ
2415 return 0;
2416}
2417
c5b28038
PZ
2418/*
2419 * sched_class::set_cpus_allowed must do the below, but is not required to
2420 * actually call this function.
2421 */
9cfc3e18 2422void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2423{
af449901
PZ
2424 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2425 p->cpus_ptr = new_mask;
2426 return;
2427 }
2428
3bd37062 2429 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2430 p->nr_cpus_allowed = cpumask_weight(new_mask);
2431}
2432
9cfc3e18
PZ
2433static void
2434__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2435{
6c37067e
PZ
2436 struct rq *rq = task_rq(p);
2437 bool queued, running;
2438
af449901
PZ
2439 /*
2440 * This here violates the locking rules for affinity, since we're only
2441 * supposed to change these variables while holding both rq->lock and
2442 * p->pi_lock.
2443 *
2444 * HOWEVER, it magically works, because ttwu() is the only code that
2445 * accesses these variables under p->pi_lock and only does so after
2446 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2447 * before finish_task().
2448 *
2449 * XXX do further audits, this smells like something putrid.
2450 */
2451 if (flags & SCA_MIGRATE_DISABLE)
2452 SCHED_WARN_ON(!p->on_cpu);
2453 else
2454 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2455
2456 queued = task_on_rq_queued(p);
2457 running = task_current(rq, p);
2458
2459 if (queued) {
2460 /*
2461 * Because __kthread_bind() calls this on blocked tasks without
2462 * holding rq->lock.
2463 */
5cb9eaa3 2464 lockdep_assert_rq_held(rq);
7a57f32a 2465 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2466 }
2467 if (running)
2468 put_prev_task(rq, p);
2469
9cfc3e18 2470 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2471
6c37067e 2472 if (queued)
7134b3e9 2473 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2474 if (running)
03b7fad1 2475 set_next_task(rq, p);
c5b28038
PZ
2476}
2477
9cfc3e18
PZ
2478void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2479{
2480 __do_set_cpus_allowed(p, new_mask, 0);
2481}
2482
6d337eab 2483/*
c777d847
VS
2484 * This function is wildly self concurrent; here be dragons.
2485 *
2486 *
2487 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2488 * designated task is enqueued on an allowed CPU. If that task is currently
2489 * running, we have to kick it out using the CPU stopper.
2490 *
2491 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2492 * Consider:
2493 *
2494 * Initial conditions: P0->cpus_mask = [0, 1]
2495 *
2496 * P0@CPU0 P1
2497 *
2498 * migrate_disable();
2499 * <preempted>
2500 * set_cpus_allowed_ptr(P0, [1]);
2501 *
2502 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2503 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2504 * This means we need the following scheme:
2505 *
2506 * P0@CPU0 P1
2507 *
2508 * migrate_disable();
2509 * <preempted>
2510 * set_cpus_allowed_ptr(P0, [1]);
2511 * <blocks>
2512 * <resumes>
2513 * migrate_enable();
2514 * __set_cpus_allowed_ptr();
2515 * <wakes local stopper>
2516 * `--> <woken on migration completion>
2517 *
2518 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2519 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2520 * task p are serialized by p->pi_lock, which we can leverage: the one that
2521 * should come into effect at the end of the Migrate-Disable region is the last
2522 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2523 * but we still need to properly signal those waiting tasks at the appropriate
2524 * moment.
2525 *
2526 * This is implemented using struct set_affinity_pending. The first
2527 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2528 * setup an instance of that struct and install it on the targeted task_struct.
2529 * Any and all further callers will reuse that instance. Those then wait for
2530 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2531 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2532 *
2533 *
2534 * (1) In the cases covered above. There is one more where the completion is
2535 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2536 * occurs after the stopper bailed out due to the targeted task still being
2537 * Migrate-Disable. Consider:
c777d847
VS
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
e140749c
VS
2541 * CPU0 P1 P2
2542 * <P0>
2543 * migrate_disable();
2544 * <preempted>
c777d847
VS
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 * <blocks>
e140749c
VS
2547 * <migration/0>
2548 * migration_cpu_stop()
2549 * is_migration_disabled()
2550 * <bails>
c777d847
VS
2551 * set_cpus_allowed_ptr(P0, [0, 1]);
2552 * <signal completion>
2553 * <awakes>
2554 *
2555 * Note that the above is safe vs a concurrent migrate_enable(), as any
2556 * pending affinity completion is preceded by an uninstallation of
2557 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2558 */
2559static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2560 int dest_cpu, unsigned int flags)
2561{
2562 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2563 bool stop_pending, complete = false;
6d337eab
PZ
2564
2565 /* Can the task run on the task's current CPU? If so, we're done */
2566 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2567 struct task_struct *push_task = NULL;
2568
2569 if ((flags & SCA_MIGRATE_ENABLE) &&
2570 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2571 rq->push_busy = true;
2572 push_task = get_task_struct(p);
2573 }
2574
50caf9c1
PZ
2575 /*
2576 * If there are pending waiters, but no pending stop_work,
2577 * then complete now.
2578 */
6d337eab 2579 pending = p->migration_pending;
50caf9c1 2580 if (pending && !pending->stop_pending) {
6d337eab
PZ
2581 p->migration_pending = NULL;
2582 complete = true;
2583 }
50caf9c1 2584
6d337eab
PZ
2585 task_rq_unlock(rq, p, rf);
2586
a7c81556
PZ
2587 if (push_task) {
2588 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2589 p, &rq->push_work);
2590 }
2591
6d337eab 2592 if (complete)
50caf9c1 2593 complete_all(&pending->done);
6d337eab
PZ
2594
2595 return 0;
2596 }
2597
2598 if (!(flags & SCA_MIGRATE_ENABLE)) {
2599 /* serialized by p->pi_lock */
2600 if (!p->migration_pending) {
c777d847 2601 /* Install the request */
6d337eab
PZ
2602 refcount_set(&my_pending.refs, 1);
2603 init_completion(&my_pending.done);
8a6edb52
PZ
2604 my_pending.arg = (struct migration_arg) {
2605 .task = p,
475ea6c6 2606 .dest_cpu = dest_cpu,
8a6edb52
PZ
2607 .pending = &my_pending,
2608 };
2609
6d337eab
PZ
2610 p->migration_pending = &my_pending;
2611 } else {
2612 pending = p->migration_pending;
2613 refcount_inc(&pending->refs);
475ea6c6
VS
2614 /*
2615 * Affinity has changed, but we've already installed a
2616 * pending. migration_cpu_stop() *must* see this, else
2617 * we risk a completion of the pending despite having a
2618 * task on a disallowed CPU.
2619 *
2620 * Serialized by p->pi_lock, so this is safe.
2621 */
2622 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2623 }
2624 }
2625 pending = p->migration_pending;
2626 /*
2627 * - !MIGRATE_ENABLE:
2628 * we'll have installed a pending if there wasn't one already.
2629 *
2630 * - MIGRATE_ENABLE:
2631 * we're here because the current CPU isn't matching anymore,
2632 * the only way that can happen is because of a concurrent
2633 * set_cpus_allowed_ptr() call, which should then still be
2634 * pending completion.
2635 *
2636 * Either way, we really should have a @pending here.
2637 */
2638 if (WARN_ON_ONCE(!pending)) {
2639 task_rq_unlock(rq, p, rf);
2640 return -EINVAL;
2641 }
2642
2f064a59 2643 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2644 /*
58b1a450
PZ
2645 * MIGRATE_ENABLE gets here because 'p == current', but for
2646 * anything else we cannot do is_migration_disabled(), punt
2647 * and have the stopper function handle it all race-free.
c777d847 2648 */
9e81889c
PZ
2649 stop_pending = pending->stop_pending;
2650 if (!stop_pending)
2651 pending->stop_pending = true;
58b1a450 2652
58b1a450
PZ
2653 if (flags & SCA_MIGRATE_ENABLE)
2654 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2655
6d337eab 2656 task_rq_unlock(rq, p, rf);
8a6edb52 2657
9e81889c
PZ
2658 if (!stop_pending) {
2659 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2660 &pending->arg, &pending->stop_work);
2661 }
6d337eab 2662
58b1a450
PZ
2663 if (flags & SCA_MIGRATE_ENABLE)
2664 return 0;
6d337eab
PZ
2665 } else {
2666
2667 if (!is_migration_disabled(p)) {
2668 if (task_on_rq_queued(p))
2669 rq = move_queued_task(rq, rf, p, dest_cpu);
2670
50caf9c1
PZ
2671 if (!pending->stop_pending) {
2672 p->migration_pending = NULL;
2673 complete = true;
2674 }
6d337eab
PZ
2675 }
2676 task_rq_unlock(rq, p, rf);
2677
6d337eab
PZ
2678 if (complete)
2679 complete_all(&pending->done);
2680 }
2681
2682 wait_for_completion(&pending->done);
2683
2684 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2685 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2686
c777d847
VS
2687 /*
2688 * Block the original owner of &pending until all subsequent callers
2689 * have seen the completion and decremented the refcount
2690 */
6d337eab
PZ
2691 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2692
50caf9c1
PZ
2693 /* ARGH */
2694 WARN_ON_ONCE(my_pending.stop_pending);
2695
6d337eab
PZ
2696 return 0;
2697}
2698
5cc389bc
PZ
2699/*
2700 * Change a given task's CPU affinity. Migrate the thread to a
2701 * proper CPU and schedule it away if the CPU it's executing on
2702 * is removed from the allowed bitmask.
2703 *
2704 * NOTE: the caller must have a valid reference to the task, the
2705 * task must not exit() & deallocate itself prematurely. The
2706 * call is not atomic; no spinlocks may be held.
2707 */
25834c73 2708static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2709 const struct cpumask *new_mask,
2710 u32 flags)
5cc389bc 2711{
e9d867a6 2712 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2713 unsigned int dest_cpu;
eb580751
PZ
2714 struct rq_flags rf;
2715 struct rq *rq;
5cc389bc
PZ
2716 int ret = 0;
2717
eb580751 2718 rq = task_rq_lock(p, &rf);
a499c3ea 2719 update_rq_clock(rq);
5cc389bc 2720
af449901 2721 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2722 /*
741ba80f
PZ
2723 * Kernel threads are allowed on online && !active CPUs,
2724 * however, during cpu-hot-unplug, even these might get pushed
2725 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2726 *
2727 * Specifically, migration_disabled() tasks must not fail the
2728 * cpumask_any_and_distribute() pick below, esp. so on
2729 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2730 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2731 */
2732 cpu_valid_mask = cpu_online_mask;
2733 }
2734
25834c73
PZ
2735 /*
2736 * Must re-check here, to close a race against __kthread_bind(),
2737 * sched_setaffinity() is not guaranteed to observe the flag.
2738 */
9cfc3e18 2739 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2740 ret = -EINVAL;
2741 goto out;
2742 }
2743
885b3ba4
VS
2744 if (!(flags & SCA_MIGRATE_ENABLE)) {
2745 if (cpumask_equal(&p->cpus_mask, new_mask))
2746 goto out;
2747
2748 if (WARN_ON_ONCE(p == current &&
2749 is_migration_disabled(p) &&
2750 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2751 ret = -EBUSY;
2752 goto out;
2753 }
2754 }
5cc389bc 2755
46a87b38
PT
2756 /*
2757 * Picking a ~random cpu helps in cases where we are changing affinity
2758 * for groups of tasks (ie. cpuset), so that load balancing is not
2759 * immediately required to distribute the tasks within their new mask.
2760 */
2761 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2762 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2763 ret = -EINVAL;
2764 goto out;
2765 }
2766
9cfc3e18 2767 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2768
6d337eab 2769 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2770
5cc389bc 2771out:
eb580751 2772 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2773
2774 return ret;
2775}
25834c73
PZ
2776
2777int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2778{
9cfc3e18 2779 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2780}
5cc389bc
PZ
2781EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2782
dd41f596 2783void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2784{
e2912009 2785#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
2786 unsigned int state = READ_ONCE(p->__state);
2787
e2912009
PZ
2788 /*
2789 * We should never call set_task_cpu() on a blocked task,
2790 * ttwu() will sort out the placement.
2791 */
2f064a59 2792 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 2793
3ea94de1
JP
2794 /*
2795 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2796 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2797 * time relying on p->on_rq.
2798 */
2f064a59 2799 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
2800 p->sched_class == &fair_sched_class &&
2801 (p->on_rq && !task_on_rq_migrating(p)));
2802
0122ec5b 2803#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2804 /*
2805 * The caller should hold either p->pi_lock or rq->lock, when changing
2806 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2807 *
2808 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2809 * see task_group().
6c6c54e1
PZ
2810 *
2811 * Furthermore, all task_rq users should acquire both locks, see
2812 * task_rq_lock().
2813 */
0122ec5b 2814 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 2815 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 2816#endif
4ff9083b
PZ
2817 /*
2818 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2819 */
2820 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2821
2822 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2823#endif
2824
de1d7286 2825 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2826
0c69774e 2827 if (task_cpu(p) != new_cpu) {
0a74bef8 2828 if (p->sched_class->migrate_task_rq)
1327237a 2829 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2830 p->se.nr_migrations++;
d7822b1e 2831 rseq_migrate(p);
ff303e66 2832 perf_event_task_migrate(p);
0c69774e 2833 }
dd41f596
IM
2834
2835 __set_task_cpu(p, new_cpu);
c65cc870
IM
2836}
2837
0ad4e3df 2838#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2839static void __migrate_swap_task(struct task_struct *p, int cpu)
2840{
da0c1e65 2841 if (task_on_rq_queued(p)) {
ac66f547 2842 struct rq *src_rq, *dst_rq;
8a8c69c3 2843 struct rq_flags srf, drf;
ac66f547
PZ
2844
2845 src_rq = task_rq(p);
2846 dst_rq = cpu_rq(cpu);
2847
8a8c69c3
PZ
2848 rq_pin_lock(src_rq, &srf);
2849 rq_pin_lock(dst_rq, &drf);
2850
ac66f547
PZ
2851 deactivate_task(src_rq, p, 0);
2852 set_task_cpu(p, cpu);
2853 activate_task(dst_rq, p, 0);
2854 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2855
2856 rq_unpin_lock(dst_rq, &drf);
2857 rq_unpin_lock(src_rq, &srf);
2858
ac66f547
PZ
2859 } else {
2860 /*
2861 * Task isn't running anymore; make it appear like we migrated
2862 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2863 * previous CPU our target instead of where it really is.
ac66f547
PZ
2864 */
2865 p->wake_cpu = cpu;
2866 }
2867}
2868
2869struct migration_swap_arg {
2870 struct task_struct *src_task, *dst_task;
2871 int src_cpu, dst_cpu;
2872};
2873
2874static int migrate_swap_stop(void *data)
2875{
2876 struct migration_swap_arg *arg = data;
2877 struct rq *src_rq, *dst_rq;
2878 int ret = -EAGAIN;
2879
62694cd5
PZ
2880 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2881 return -EAGAIN;
2882
ac66f547
PZ
2883 src_rq = cpu_rq(arg->src_cpu);
2884 dst_rq = cpu_rq(arg->dst_cpu);
2885
74602315
PZ
2886 double_raw_lock(&arg->src_task->pi_lock,
2887 &arg->dst_task->pi_lock);
ac66f547 2888 double_rq_lock(src_rq, dst_rq);
62694cd5 2889
ac66f547
PZ
2890 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2891 goto unlock;
2892
2893 if (task_cpu(arg->src_task) != arg->src_cpu)
2894 goto unlock;
2895
3bd37062 2896 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2897 goto unlock;
2898
3bd37062 2899 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2900 goto unlock;
2901
2902 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2903 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2904
2905 ret = 0;
2906
2907unlock:
2908 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2909 raw_spin_unlock(&arg->dst_task->pi_lock);
2910 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2911
2912 return ret;
2913}
2914
2915/*
2916 * Cross migrate two tasks
2917 */
0ad4e3df
SD
2918int migrate_swap(struct task_struct *cur, struct task_struct *p,
2919 int target_cpu, int curr_cpu)
ac66f547
PZ
2920{
2921 struct migration_swap_arg arg;
2922 int ret = -EINVAL;
2923
ac66f547
PZ
2924 arg = (struct migration_swap_arg){
2925 .src_task = cur,
0ad4e3df 2926 .src_cpu = curr_cpu,
ac66f547 2927 .dst_task = p,
0ad4e3df 2928 .dst_cpu = target_cpu,
ac66f547
PZ
2929 };
2930
2931 if (arg.src_cpu == arg.dst_cpu)
2932 goto out;
2933
6acce3ef
PZ
2934 /*
2935 * These three tests are all lockless; this is OK since all of them
2936 * will be re-checked with proper locks held further down the line.
2937 */
ac66f547
PZ
2938 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2939 goto out;
2940
3bd37062 2941 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2942 goto out;
2943
3bd37062 2944 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2945 goto out;
2946
286549dc 2947 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2948 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2949
2950out:
ac66f547
PZ
2951 return ret;
2952}
0ad4e3df 2953#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2954
1da177e4
LT
2955/*
2956 * wait_task_inactive - wait for a thread to unschedule.
2957 *
85ba2d86
RM
2958 * If @match_state is nonzero, it's the @p->state value just checked and
2959 * not expected to change. If it changes, i.e. @p might have woken up,
2960 * then return zero. When we succeed in waiting for @p to be off its CPU,
2961 * we return a positive number (its total switch count). If a second call
2962 * a short while later returns the same number, the caller can be sure that
2963 * @p has remained unscheduled the whole time.
2964 *
1da177e4
LT
2965 * The caller must ensure that the task *will* unschedule sometime soon,
2966 * else this function might spin for a *long* time. This function can't
2967 * be called with interrupts off, or it may introduce deadlock with
2968 * smp_call_function() if an IPI is sent by the same process we are
2969 * waiting to become inactive.
2970 */
2f064a59 2971unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 2972{
da0c1e65 2973 int running, queued;
eb580751 2974 struct rq_flags rf;
85ba2d86 2975 unsigned long ncsw;
70b97a7f 2976 struct rq *rq;
1da177e4 2977
3a5c359a
AK
2978 for (;;) {
2979 /*
2980 * We do the initial early heuristics without holding
2981 * any task-queue locks at all. We'll only try to get
2982 * the runqueue lock when things look like they will
2983 * work out!
2984 */
2985 rq = task_rq(p);
fa490cfd 2986
3a5c359a
AK
2987 /*
2988 * If the task is actively running on another CPU
2989 * still, just relax and busy-wait without holding
2990 * any locks.
2991 *
2992 * NOTE! Since we don't hold any locks, it's not
2993 * even sure that "rq" stays as the right runqueue!
2994 * But we don't care, since "task_running()" will
2995 * return false if the runqueue has changed and p
2996 * is actually now running somewhere else!
2997 */
85ba2d86 2998 while (task_running(rq, p)) {
2f064a59 2999 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
85ba2d86 3000 return 0;
3a5c359a 3001 cpu_relax();
85ba2d86 3002 }
fa490cfd 3003
3a5c359a
AK
3004 /*
3005 * Ok, time to look more closely! We need the rq
3006 * lock now, to be *sure*. If we're wrong, we'll
3007 * just go back and repeat.
3008 */
eb580751 3009 rq = task_rq_lock(p, &rf);
27a9da65 3010 trace_sched_wait_task(p);
3a5c359a 3011 running = task_running(rq, p);
da0c1e65 3012 queued = task_on_rq_queued(p);
85ba2d86 3013 ncsw = 0;
2f064a59 3014 if (!match_state || READ_ONCE(p->__state) == match_state)
93dcf55f 3015 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3016 task_rq_unlock(rq, p, &rf);
fa490cfd 3017
85ba2d86
RM
3018 /*
3019 * If it changed from the expected state, bail out now.
3020 */
3021 if (unlikely(!ncsw))
3022 break;
3023
3a5c359a
AK
3024 /*
3025 * Was it really running after all now that we
3026 * checked with the proper locks actually held?
3027 *
3028 * Oops. Go back and try again..
3029 */
3030 if (unlikely(running)) {
3031 cpu_relax();
3032 continue;
3033 }
fa490cfd 3034
3a5c359a
AK
3035 /*
3036 * It's not enough that it's not actively running,
3037 * it must be off the runqueue _entirely_, and not
3038 * preempted!
3039 *
80dd99b3 3040 * So if it was still runnable (but just not actively
3a5c359a
AK
3041 * running right now), it's preempted, and we should
3042 * yield - it could be a while.
3043 */
da0c1e65 3044 if (unlikely(queued)) {
8b0e1953 3045 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3046
3047 set_current_state(TASK_UNINTERRUPTIBLE);
3048 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
3049 continue;
3050 }
fa490cfd 3051
3a5c359a
AK
3052 /*
3053 * Ahh, all good. It wasn't running, and it wasn't
3054 * runnable, which means that it will never become
3055 * running in the future either. We're all done!
3056 */
3057 break;
3058 }
85ba2d86
RM
3059
3060 return ncsw;
1da177e4
LT
3061}
3062
3063/***
3064 * kick_process - kick a running thread to enter/exit the kernel
3065 * @p: the to-be-kicked thread
3066 *
3067 * Cause a process which is running on another CPU to enter
3068 * kernel-mode, without any delay. (to get signals handled.)
3069 *
25985edc 3070 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3071 * because all it wants to ensure is that the remote task enters
3072 * the kernel. If the IPI races and the task has been migrated
3073 * to another CPU then no harm is done and the purpose has been
3074 * achieved as well.
3075 */
36c8b586 3076void kick_process(struct task_struct *p)
1da177e4
LT
3077{
3078 int cpu;
3079
3080 preempt_disable();
3081 cpu = task_cpu(p);
3082 if ((cpu != smp_processor_id()) && task_curr(p))
3083 smp_send_reschedule(cpu);
3084 preempt_enable();
3085}
b43e3521 3086EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3087
30da688e 3088/*
3bd37062 3089 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3090 *
3091 * A few notes on cpu_active vs cpu_online:
3092 *
3093 * - cpu_active must be a subset of cpu_online
3094 *
97fb7a0a 3095 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3096 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3097 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3098 * see it.
3099 *
d1ccc66d 3100 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3101 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3102 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3103 * off.
3104 *
3105 * This means that fallback selection must not select !active CPUs.
3106 * And can assume that any active CPU must be online. Conversely
3107 * select_task_rq() below may allow selection of !active CPUs in order
3108 * to satisfy the above rules.
30da688e 3109 */
5da9a0fb
PZ
3110static int select_fallback_rq(int cpu, struct task_struct *p)
3111{
aa00d89c
TC
3112 int nid = cpu_to_node(cpu);
3113 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3114 enum { cpuset, possible, fail } state = cpuset;
3115 int dest_cpu;
5da9a0fb 3116
aa00d89c 3117 /*
d1ccc66d
IM
3118 * If the node that the CPU is on has been offlined, cpu_to_node()
3119 * will return -1. There is no CPU on the node, and we should
3120 * select the CPU on the other node.
aa00d89c
TC
3121 */
3122 if (nid != -1) {
3123 nodemask = cpumask_of_node(nid);
3124
3125 /* Look for allowed, online CPU in same node. */
3126 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
3127 if (!cpu_active(dest_cpu))
3128 continue;
3bd37062 3129 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
3130 return dest_cpu;
3131 }
2baab4e9 3132 }
5da9a0fb 3133
2baab4e9
PZ
3134 for (;;) {
3135 /* Any allowed, online CPU? */
3bd37062 3136 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3137 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3138 continue;
175f0e25 3139
2baab4e9
PZ
3140 goto out;
3141 }
5da9a0fb 3142
e73e85f0 3143 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3144 switch (state) {
3145 case cpuset:
e73e85f0
ON
3146 if (IS_ENABLED(CONFIG_CPUSETS)) {
3147 cpuset_cpus_allowed_fallback(p);
3148 state = possible;
3149 break;
3150 }
df561f66 3151 fallthrough;
2baab4e9 3152 case possible:
af449901
PZ
3153 /*
3154 * XXX When called from select_task_rq() we only
3155 * hold p->pi_lock and again violate locking order.
3156 *
3157 * More yuck to audit.
3158 */
2baab4e9
PZ
3159 do_set_cpus_allowed(p, cpu_possible_mask);
3160 state = fail;
3161 break;
3162
3163 case fail:
3164 BUG();
3165 break;
3166 }
3167 }
3168
3169out:
3170 if (state != cpuset) {
3171 /*
3172 * Don't tell them about moving exiting tasks or
3173 * kernel threads (both mm NULL), since they never
3174 * leave kernel.
3175 */
3176 if (p->mm && printk_ratelimit()) {
aac74dc4 3177 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3178 task_pid_nr(p), p->comm, cpu);
3179 }
5da9a0fb
PZ
3180 }
3181
3182 return dest_cpu;
3183}
3184
e2912009 3185/*
3bd37062 3186 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3187 */
970b13ba 3188static inline
3aef1551 3189int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3190{
cbce1a68
PZ
3191 lockdep_assert_held(&p->pi_lock);
3192
af449901 3193 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3194 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3195 else
3bd37062 3196 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3197
3198 /*
3199 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3200 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3201 * CPU.
e2912009
PZ
3202 *
3203 * Since this is common to all placement strategies, this lives here.
3204 *
3205 * [ this allows ->select_task() to simply return task_cpu(p) and
3206 * not worry about this generic constraint ]
3207 */
7af443ee 3208 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3209 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3210
3211 return cpu;
970b13ba 3212}
09a40af5 3213
f5832c19
NP
3214void sched_set_stop_task(int cpu, struct task_struct *stop)
3215{
ded467dc 3216 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3217 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3218 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3219
3220 if (stop) {
3221 /*
3222 * Make it appear like a SCHED_FIFO task, its something
3223 * userspace knows about and won't get confused about.
3224 *
3225 * Also, it will make PI more or less work without too
3226 * much confusion -- but then, stop work should not
3227 * rely on PI working anyway.
3228 */
3229 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3230
3231 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3232
3233 /*
3234 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3235 * adjust the effective priority of a task. As a result,
3236 * rt_mutex_setprio() can trigger (RT) balancing operations,
3237 * which can then trigger wakeups of the stop thread to push
3238 * around the current task.
3239 *
3240 * The stop task itself will never be part of the PI-chain, it
3241 * never blocks, therefore that ->pi_lock recursion is safe.
3242 * Tell lockdep about this by placing the stop->pi_lock in its
3243 * own class.
3244 */
3245 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3246 }
3247
3248 cpu_rq(cpu)->stop = stop;
3249
3250 if (old_stop) {
3251 /*
3252 * Reset it back to a normal scheduling class so that
3253 * it can die in pieces.
3254 */
3255 old_stop->sched_class = &rt_sched_class;
3256 }
3257}
3258
74d862b6 3259#else /* CONFIG_SMP */
25834c73
PZ
3260
3261static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3262 const struct cpumask *new_mask,
3263 u32 flags)
25834c73
PZ
3264{
3265 return set_cpus_allowed_ptr(p, new_mask);
3266}
3267
af449901
PZ
3268static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3269
3015ef4b
TG
3270static inline bool rq_has_pinned_tasks(struct rq *rq)
3271{
3272 return false;
3273}
3274
74d862b6 3275#endif /* !CONFIG_SMP */
970b13ba 3276
d7c01d27 3277static void
b84cb5df 3278ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3279{
4fa8d299 3280 struct rq *rq;
b84cb5df 3281
4fa8d299
JP
3282 if (!schedstat_enabled())
3283 return;
3284
3285 rq = this_rq();
d7c01d27 3286
4fa8d299
JP
3287#ifdef CONFIG_SMP
3288 if (cpu == rq->cpu) {
b85c8b71
PZ
3289 __schedstat_inc(rq->ttwu_local);
3290 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
3291 } else {
3292 struct sched_domain *sd;
3293
b85c8b71 3294 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 3295 rcu_read_lock();
4fa8d299 3296 for_each_domain(rq->cpu, sd) {
d7c01d27 3297 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3298 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3299 break;
3300 }
3301 }
057f3fad 3302 rcu_read_unlock();
d7c01d27 3303 }
f339b9dc
PZ
3304
3305 if (wake_flags & WF_MIGRATED)
b85c8b71 3306 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
3307#endif /* CONFIG_SMP */
3308
b85c8b71
PZ
3309 __schedstat_inc(rq->ttwu_count);
3310 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
3311
3312 if (wake_flags & WF_SYNC)
b85c8b71 3313 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
3314}
3315
23f41eeb
PZ
3316/*
3317 * Mark the task runnable and perform wakeup-preemption.
3318 */
e7904a28 3319static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3320 struct rq_flags *rf)
9ed3811a 3321{
9ed3811a 3322 check_preempt_curr(rq, p, wake_flags);
2f064a59 3323 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3324 trace_sched_wakeup(p);
3325
9ed3811a 3326#ifdef CONFIG_SMP
4c9a4bc8
PZ
3327 if (p->sched_class->task_woken) {
3328 /*
b19a888c 3329 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3330 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3331 */
d8ac8971 3332 rq_unpin_lock(rq, rf);
9ed3811a 3333 p->sched_class->task_woken(rq, p);
d8ac8971 3334 rq_repin_lock(rq, rf);
4c9a4bc8 3335 }
9ed3811a 3336
e69c6341 3337 if (rq->idle_stamp) {
78becc27 3338 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3339 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3340
abfafa54
JL
3341 update_avg(&rq->avg_idle, delta);
3342
3343 if (rq->avg_idle > max)
9ed3811a 3344 rq->avg_idle = max;
abfafa54 3345
94aafc3e
PZ
3346 rq->wake_stamp = jiffies;
3347 rq->wake_avg_idle = rq->avg_idle / 2;
3348
9ed3811a
TH
3349 rq->idle_stamp = 0;
3350 }
3351#endif
3352}
3353
c05fbafb 3354static void
e7904a28 3355ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3356 struct rq_flags *rf)
c05fbafb 3357{
77558e4d 3358 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3359
5cb9eaa3 3360 lockdep_assert_rq_held(rq);
cbce1a68 3361
c05fbafb
PZ
3362 if (p->sched_contributes_to_load)
3363 rq->nr_uninterruptible--;
b5179ac7 3364
dbfb089d 3365#ifdef CONFIG_SMP
b5179ac7 3366 if (wake_flags & WF_MIGRATED)
59efa0ba 3367 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3368 else
c05fbafb 3369#endif
ec618b84
PZ
3370 if (p->in_iowait) {
3371 delayacct_blkio_end(p);
3372 atomic_dec(&task_rq(p)->nr_iowait);
3373 }
c05fbafb 3374
1b174a2c 3375 activate_task(rq, p, en_flags);
d8ac8971 3376 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3377}
3378
3379/*
58877d34
PZ
3380 * Consider @p being inside a wait loop:
3381 *
3382 * for (;;) {
3383 * set_current_state(TASK_UNINTERRUPTIBLE);
3384 *
3385 * if (CONDITION)
3386 * break;
3387 *
3388 * schedule();
3389 * }
3390 * __set_current_state(TASK_RUNNING);
3391 *
3392 * between set_current_state() and schedule(). In this case @p is still
3393 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3394 * an atomic manner.
3395 *
3396 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3397 * then schedule() must still happen and p->state can be changed to
3398 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3399 * need to do a full wakeup with enqueue.
3400 *
3401 * Returns: %true when the wakeup is done,
3402 * %false otherwise.
c05fbafb 3403 */
58877d34 3404static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3405{
eb580751 3406 struct rq_flags rf;
c05fbafb
PZ
3407 struct rq *rq;
3408 int ret = 0;
3409
eb580751 3410 rq = __task_rq_lock(p, &rf);
da0c1e65 3411 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3412 /* check_preempt_curr() may use rq clock */
3413 update_rq_clock(rq);
d8ac8971 3414 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3415 ret = 1;
3416 }
eb580751 3417 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3418
3419 return ret;
3420}
3421
317f3941 3422#ifdef CONFIG_SMP
a1488664 3423void sched_ttwu_pending(void *arg)
317f3941 3424{
a1488664 3425 struct llist_node *llist = arg;
317f3941 3426 struct rq *rq = this_rq();
73215849 3427 struct task_struct *p, *t;
d8ac8971 3428 struct rq_flags rf;
317f3941 3429
e3baac47
PZ
3430 if (!llist)
3431 return;
3432
126c2092
PZ
3433 /*
3434 * rq::ttwu_pending racy indication of out-standing wakeups.
3435 * Races such that false-negatives are possible, since they
3436 * are shorter lived that false-positives would be.
3437 */
3438 WRITE_ONCE(rq->ttwu_pending, 0);
3439
8a8c69c3 3440 rq_lock_irqsave(rq, &rf);
77558e4d 3441 update_rq_clock(rq);
317f3941 3442
8c4890d1 3443 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3444 if (WARN_ON_ONCE(p->on_cpu))
3445 smp_cond_load_acquire(&p->on_cpu, !VAL);
3446
3447 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3448 set_task_cpu(p, cpu_of(rq));
3449
73215849 3450 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3451 }
317f3941 3452
8a8c69c3 3453 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3454}
3455
b2a02fc4 3456void send_call_function_single_ipi(int cpu)
317f3941 3457{
b2a02fc4 3458 struct rq *rq = cpu_rq(cpu);
ca38062e 3459
b2a02fc4
PZ
3460 if (!set_nr_if_polling(rq->idle))
3461 arch_send_call_function_single_ipi(cpu);
3462 else
3463 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3464}
3465
2ebb1771
MG
3466/*
3467 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3468 * necessary. The wakee CPU on receipt of the IPI will queue the task
3469 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3470 * of the wakeup instead of the waker.
3471 */
3472static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3473{
e3baac47
PZ
3474 struct rq *rq = cpu_rq(cpu);
3475
b7e7ade3
PZ
3476 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3477
126c2092 3478 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3479 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3480}
d6aa8f85 3481
f6be8af1
CL
3482void wake_up_if_idle(int cpu)
3483{
3484 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3485 struct rq_flags rf;
f6be8af1 3486
fd7de1e8
AL
3487 rcu_read_lock();
3488
3489 if (!is_idle_task(rcu_dereference(rq->curr)))
3490 goto out;
f6be8af1
CL
3491
3492 if (set_nr_if_polling(rq->idle)) {
3493 trace_sched_wake_idle_without_ipi(cpu);
3494 } else {
8a8c69c3 3495 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3496 if (is_idle_task(rq->curr))
3497 smp_send_reschedule(cpu);
d1ccc66d 3498 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3499 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3500 }
fd7de1e8
AL
3501
3502out:
3503 rcu_read_unlock();
f6be8af1
CL
3504}
3505
39be3501 3506bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3507{
3508 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3509}
c6e7bd7a 3510
2ebb1771
MG
3511static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3512{
5ba2ffba
PZ
3513 /*
3514 * Do not complicate things with the async wake_list while the CPU is
3515 * in hotplug state.
3516 */
3517 if (!cpu_active(cpu))
3518 return false;
3519
2ebb1771
MG
3520 /*
3521 * If the CPU does not share cache, then queue the task on the
3522 * remote rqs wakelist to avoid accessing remote data.
3523 */
3524 if (!cpus_share_cache(smp_processor_id(), cpu))
3525 return true;
3526
3527 /*
3528 * If the task is descheduling and the only running task on the
3529 * CPU then use the wakelist to offload the task activation to
3530 * the soon-to-be-idle CPU as the current CPU is likely busy.
3531 * nr_running is checked to avoid unnecessary task stacking.
3532 */
739f70b4 3533 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3534 return true;
3535
3536 return false;
3537}
3538
3539static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3540{
2ebb1771 3541 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3542 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3543 return false;
3544
c6e7bd7a 3545 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3546 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3547 return true;
3548 }
3549
3550 return false;
3551}
58877d34
PZ
3552
3553#else /* !CONFIG_SMP */
3554
3555static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3556{
3557 return false;
3558}
3559
d6aa8f85 3560#endif /* CONFIG_SMP */
317f3941 3561
b5179ac7 3562static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3563{
3564 struct rq *rq = cpu_rq(cpu);
d8ac8971 3565 struct rq_flags rf;
c05fbafb 3566
2ebb1771 3567 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3568 return;
317f3941 3569
8a8c69c3 3570 rq_lock(rq, &rf);
77558e4d 3571 update_rq_clock(rq);
d8ac8971 3572 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3573 rq_unlock(rq, &rf);
9ed3811a
TH
3574}
3575
8643cda5
PZ
3576/*
3577 * Notes on Program-Order guarantees on SMP systems.
3578 *
3579 * MIGRATION
3580 *
3581 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3582 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3583 * execution on its new CPU [c1].
8643cda5
PZ
3584 *
3585 * For migration (of runnable tasks) this is provided by the following means:
3586 *
3587 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3588 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3589 * rq(c1)->lock (if not at the same time, then in that order).
3590 * C) LOCK of the rq(c1)->lock scheduling in task
3591 *
7696f991 3592 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3593 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3594 *
3595 * Example:
3596 *
3597 * CPU0 CPU1 CPU2
3598 *
3599 * LOCK rq(0)->lock
3600 * sched-out X
3601 * sched-in Y
3602 * UNLOCK rq(0)->lock
3603 *
3604 * LOCK rq(0)->lock // orders against CPU0
3605 * dequeue X
3606 * UNLOCK rq(0)->lock
3607 *
3608 * LOCK rq(1)->lock
3609 * enqueue X
3610 * UNLOCK rq(1)->lock
3611 *
3612 * LOCK rq(1)->lock // orders against CPU2
3613 * sched-out Z
3614 * sched-in X
3615 * UNLOCK rq(1)->lock
3616 *
3617 *
3618 * BLOCKING -- aka. SLEEP + WAKEUP
3619 *
3620 * For blocking we (obviously) need to provide the same guarantee as for
3621 * migration. However the means are completely different as there is no lock
3622 * chain to provide order. Instead we do:
3623 *
58877d34
PZ
3624 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3625 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3626 *
3627 * Example:
3628 *
3629 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3630 *
3631 * LOCK rq(0)->lock LOCK X->pi_lock
3632 * dequeue X
3633 * sched-out X
3634 * smp_store_release(X->on_cpu, 0);
3635 *
1f03e8d2 3636 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3637 * X->state = WAKING
3638 * set_task_cpu(X,2)
3639 *
3640 * LOCK rq(2)->lock
3641 * enqueue X
3642 * X->state = RUNNING
3643 * UNLOCK rq(2)->lock
3644 *
3645 * LOCK rq(2)->lock // orders against CPU1
3646 * sched-out Z
3647 * sched-in X
3648 * UNLOCK rq(2)->lock
3649 *
3650 * UNLOCK X->pi_lock
3651 * UNLOCK rq(0)->lock
3652 *
3653 *
7696f991
AP
3654 * However, for wakeups there is a second guarantee we must provide, namely we
3655 * must ensure that CONDITION=1 done by the caller can not be reordered with
3656 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3657 */
3658
9ed3811a 3659/**
1da177e4 3660 * try_to_wake_up - wake up a thread
9ed3811a 3661 * @p: the thread to be awakened
1da177e4 3662 * @state: the mask of task states that can be woken
9ed3811a 3663 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3664 *
58877d34
PZ
3665 * Conceptually does:
3666 *
3667 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3668 *
a2250238
PZ
3669 * If the task was not queued/runnable, also place it back on a runqueue.
3670 *
58877d34
PZ
3671 * This function is atomic against schedule() which would dequeue the task.
3672 *
3673 * It issues a full memory barrier before accessing @p->state, see the comment
3674 * with set_current_state().
a2250238 3675 *
58877d34 3676 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3677 *
58877d34
PZ
3678 * Relies on p->pi_lock stabilizing:
3679 * - p->sched_class
3680 * - p->cpus_ptr
3681 * - p->sched_task_group
3682 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3683 *
3684 * Tries really hard to only take one task_rq(p)->lock for performance.
3685 * Takes rq->lock in:
3686 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3687 * - ttwu_queue() -- new rq, for enqueue of the task;
3688 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3689 *
3690 * As a consequence we race really badly with just about everything. See the
3691 * many memory barriers and their comments for details.
7696f991 3692 *
a2250238
PZ
3693 * Return: %true if @p->state changes (an actual wakeup was done),
3694 * %false otherwise.
1da177e4 3695 */
e4a52bcb
PZ
3696static int
3697try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3698{
1da177e4 3699 unsigned long flags;
c05fbafb 3700 int cpu, success = 0;
2398f2c6 3701
e3d85487 3702 preempt_disable();
aacedf26
PZ
3703 if (p == current) {
3704 /*
3705 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3706 * == smp_processor_id()'. Together this means we can special
58877d34 3707 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3708 * without taking any locks.
3709 *
3710 * In particular:
3711 * - we rely on Program-Order guarantees for all the ordering,
3712 * - we're serialized against set_special_state() by virtue of
3713 * it disabling IRQs (this allows not taking ->pi_lock).
3714 */
2f064a59 3715 if (!(READ_ONCE(p->__state) & state))
e3d85487 3716 goto out;
aacedf26
PZ
3717
3718 success = 1;
aacedf26 3719 trace_sched_waking(p);
2f064a59 3720 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
3721 trace_sched_wakeup(p);
3722 goto out;
3723 }
3724
e0acd0a6
ON
3725 /*
3726 * If we are going to wake up a thread waiting for CONDITION we
3727 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3728 * reordered with p->state check below. This pairs with smp_store_mb()
3729 * in set_current_state() that the waiting thread does.
e0acd0a6 3730 */
013fdb80 3731 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3732 smp_mb__after_spinlock();
2f064a59 3733 if (!(READ_ONCE(p->__state) & state))
aacedf26 3734 goto unlock;
1da177e4 3735
fbd705a0
PZ
3736 trace_sched_waking(p);
3737
d1ccc66d
IM
3738 /* We're going to change ->state: */
3739 success = 1;
1da177e4 3740
135e8c92
BS
3741 /*
3742 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3743 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3744 * in smp_cond_load_acquire() below.
3745 *
3d85b270
AP
3746 * sched_ttwu_pending() try_to_wake_up()
3747 * STORE p->on_rq = 1 LOAD p->state
3748 * UNLOCK rq->lock
3749 *
3750 * __schedule() (switch to task 'p')
3751 * LOCK rq->lock smp_rmb();
3752 * smp_mb__after_spinlock();
3753 * UNLOCK rq->lock
135e8c92
BS
3754 *
3755 * [task p]
3d85b270 3756 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3757 *
3d85b270
AP
3758 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3759 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3760 *
3761 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3762 */
3763 smp_rmb();
58877d34 3764 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3765 goto unlock;
1da177e4 3766
1da177e4 3767#ifdef CONFIG_SMP
ecf7d01c
PZ
3768 /*
3769 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3770 * possible to, falsely, observe p->on_cpu == 0.
3771 *
3772 * One must be running (->on_cpu == 1) in order to remove oneself
3773 * from the runqueue.
3774 *
3d85b270
AP
3775 * __schedule() (switch to task 'p') try_to_wake_up()
3776 * STORE p->on_cpu = 1 LOAD p->on_rq
3777 * UNLOCK rq->lock
3778 *
3779 * __schedule() (put 'p' to sleep)
3780 * LOCK rq->lock smp_rmb();
3781 * smp_mb__after_spinlock();
3782 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3783 *
3d85b270
AP
3784 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3785 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3786 *
3787 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3788 * schedule()'s deactivate_task() has 'happened' and p will no longer
3789 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3790 */
dbfb089d
PZ
3791 smp_acquire__after_ctrl_dep();
3792
3793 /*
3794 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3795 * == 0), which means we need to do an enqueue, change p->state to
3796 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3797 * enqueue, such as ttwu_queue_wakelist().
3798 */
2f064a59 3799 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 3800
c6e7bd7a
PZ
3801 /*
3802 * If the owning (remote) CPU is still in the middle of schedule() with
3803 * this task as prev, considering queueing p on the remote CPUs wake_list
3804 * which potentially sends an IPI instead of spinning on p->on_cpu to
3805 * let the waker make forward progress. This is safe because IRQs are
3806 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3807 *
3808 * Ensure we load task_cpu(p) after p->on_cpu:
3809 *
3810 * set_task_cpu(p, cpu);
3811 * STORE p->cpu = @cpu
3812 * __schedule() (switch to task 'p')
3813 * LOCK rq->lock
3814 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3815 * STORE p->on_cpu = 1 LOAD p->cpu
3816 *
3817 * to ensure we observe the correct CPU on which the task is currently
3818 * scheduling.
c6e7bd7a 3819 */
b6e13e85 3820 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3821 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3822 goto unlock;
3823
e9c84311 3824 /*
d1ccc66d 3825 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3826 * this task as prev, wait until it's done referencing the task.
b75a2253 3827 *
31cb1bc0 3828 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3829 *
3830 * This ensures that tasks getting woken will be fully ordered against
3831 * their previous state and preserve Program Order.
0970d299 3832 */
1f03e8d2 3833 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3834
3aef1551 3835 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3836 if (task_cpu(p) != cpu) {
ec618b84
PZ
3837 if (p->in_iowait) {
3838 delayacct_blkio_end(p);
3839 atomic_dec(&task_rq(p)->nr_iowait);
3840 }
3841
f339b9dc 3842 wake_flags |= WF_MIGRATED;
eb414681 3843 psi_ttwu_dequeue(p);
e4a52bcb 3844 set_task_cpu(p, cpu);
f339b9dc 3845 }
b6e13e85
PZ
3846#else
3847 cpu = task_cpu(p);
1da177e4 3848#endif /* CONFIG_SMP */
1da177e4 3849
b5179ac7 3850 ttwu_queue(p, cpu, wake_flags);
aacedf26 3851unlock:
013fdb80 3852 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3853out:
3854 if (success)
b6e13e85 3855 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3856 preempt_enable();
1da177e4
LT
3857
3858 return success;
3859}
3860
2beaf328
PM
3861/**
3862 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3863 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3864 * @func: Function to invoke.
3865 * @arg: Argument to function.
3866 *
3867 * If the specified task can be quickly locked into a definite state
3868 * (either sleeping or on a given runqueue), arrange to keep it in that
3869 * state while invoking @func(@arg). This function can use ->on_rq and
3870 * task_curr() to work out what the state is, if required. Given that
3871 * @func can be invoked with a runqueue lock held, it had better be quite
3872 * lightweight.
3873 *
3874 * Returns:
3875 * @false if the task slipped out from under the locks.
3876 * @true if the task was locked onto a runqueue or is sleeping.
3877 * However, @func can override this by returning @false.
3878 */
3879bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3880{
2beaf328 3881 struct rq_flags rf;
1b7af295 3882 bool ret = false;
2beaf328
PM
3883 struct rq *rq;
3884
1b7af295 3885 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3886 if (p->on_rq) {
3887 rq = __task_rq_lock(p, &rf);
3888 if (task_rq(p) == rq)
3889 ret = func(p, arg);
3890 rq_unlock(rq, &rf);
3891 } else {
2f064a59 3892 switch (READ_ONCE(p->__state)) {
2beaf328
PM
3893 case TASK_RUNNING:
3894 case TASK_WAKING:
3895 break;
3896 default:
3897 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3898 if (!p->on_rq)
3899 ret = func(p, arg);
3900 }
3901 }
1b7af295 3902 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3903 return ret;
3904}
3905
50fa610a
DH
3906/**
3907 * wake_up_process - Wake up a specific process
3908 * @p: The process to be woken up.
3909 *
3910 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3911 * processes.
3912 *
3913 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3914 *
7696f991 3915 * This function executes a full memory barrier before accessing the task state.
50fa610a 3916 */
7ad5b3a5 3917int wake_up_process(struct task_struct *p)
1da177e4 3918{
9067ac85 3919 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3920}
1da177e4
LT
3921EXPORT_SYMBOL(wake_up_process);
3922
7ad5b3a5 3923int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3924{
3925 return try_to_wake_up(p, state, 0);
3926}
3927
1da177e4
LT
3928/*
3929 * Perform scheduler related setup for a newly forked process p.
3930 * p is forked by current.
dd41f596
IM
3931 *
3932 * __sched_fork() is basic setup used by init_idle() too:
3933 */
5e1576ed 3934static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3935{
fd2f4419
PZ
3936 p->on_rq = 0;
3937
3938 p->se.on_rq = 0;
dd41f596
IM
3939 p->se.exec_start = 0;
3940 p->se.sum_exec_runtime = 0;
f6cf891c 3941 p->se.prev_sum_exec_runtime = 0;
6c594c21 3942 p->se.nr_migrations = 0;
da7a735e 3943 p->se.vruntime = 0;
fd2f4419 3944 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3945
ad936d86
BP
3946#ifdef CONFIG_FAIR_GROUP_SCHED
3947 p->se.cfs_rq = NULL;
3948#endif
3949
6cfb0d5d 3950#ifdef CONFIG_SCHEDSTATS
cb251765 3951 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3952 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3953#endif
476d139c 3954
aab03e05 3955 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3956 init_dl_task_timer(&p->dl);
209a0cbd 3957 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3958 __dl_clear_params(p);
aab03e05 3959
fa717060 3960 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3961 p->rt.timeout = 0;
3962 p->rt.time_slice = sched_rr_timeslice;
3963 p->rt.on_rq = 0;
3964 p->rt.on_list = 0;
476d139c 3965
e107be36
AK
3966#ifdef CONFIG_PREEMPT_NOTIFIERS
3967 INIT_HLIST_HEAD(&p->preempt_notifiers);
3968#endif
cbee9f88 3969
5e1f0f09
MG
3970#ifdef CONFIG_COMPACTION
3971 p->capture_control = NULL;
3972#endif
13784475 3973 init_numa_balancing(clone_flags, p);
a1488664 3974#ifdef CONFIG_SMP
8c4890d1 3975 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3976 p->migration_pending = NULL;
a1488664 3977#endif
dd41f596
IM
3978}
3979
2a595721
SD
3980DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3981
1a687c2e 3982#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3983
1a687c2e
MG
3984void set_numabalancing_state(bool enabled)
3985{
3986 if (enabled)
2a595721 3987 static_branch_enable(&sched_numa_balancing);
1a687c2e 3988 else
2a595721 3989 static_branch_disable(&sched_numa_balancing);
1a687c2e 3990}
54a43d54
AK
3991
3992#ifdef CONFIG_PROC_SYSCTL
3993int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3994 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3995{
3996 struct ctl_table t;
3997 int err;
2a595721 3998 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3999
4000 if (write && !capable(CAP_SYS_ADMIN))
4001 return -EPERM;
4002
4003 t = *table;
4004 t.data = &state;
4005 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4006 if (err < 0)
4007 return err;
4008 if (write)
4009 set_numabalancing_state(state);
4010 return err;
4011}
4012#endif
4013#endif
dd41f596 4014
4698f88c
JP
4015#ifdef CONFIG_SCHEDSTATS
4016
cb251765
MG
4017DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4018
cb251765
MG
4019static void set_schedstats(bool enabled)
4020{
4021 if (enabled)
4022 static_branch_enable(&sched_schedstats);
4023 else
4024 static_branch_disable(&sched_schedstats);
4025}
4026
4027void force_schedstat_enabled(void)
4028{
4029 if (!schedstat_enabled()) {
4030 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4031 static_branch_enable(&sched_schedstats);
4032 }
4033}
4034
4035static int __init setup_schedstats(char *str)
4036{
4037 int ret = 0;
4038 if (!str)
4039 goto out;
4040
4041 if (!strcmp(str, "enable")) {
1faa491a 4042 set_schedstats(true);
cb251765
MG
4043 ret = 1;
4044 } else if (!strcmp(str, "disable")) {
1faa491a 4045 set_schedstats(false);
cb251765
MG
4046 ret = 1;
4047 }
4048out:
4049 if (!ret)
4050 pr_warn("Unable to parse schedstats=\n");
4051
4052 return ret;
4053}
4054__setup("schedstats=", setup_schedstats);
4055
4056#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4057int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4058 size_t *lenp, loff_t *ppos)
cb251765
MG
4059{
4060 struct ctl_table t;
4061 int err;
4062 int state = static_branch_likely(&sched_schedstats);
4063
4064 if (write && !capable(CAP_SYS_ADMIN))
4065 return -EPERM;
4066
4067 t = *table;
4068 t.data = &state;
4069 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4070 if (err < 0)
4071 return err;
4072 if (write)
4073 set_schedstats(state);
4074 return err;
4075}
4698f88c 4076#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4077#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4078
4079/*
4080 * fork()/clone()-time setup:
4081 */
aab03e05 4082int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4083{
0122ec5b 4084 unsigned long flags;
dd41f596 4085
5e1576ed 4086 __sched_fork(clone_flags, p);
06b83b5f 4087 /*
7dc603c9 4088 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4089 * nobody will actually run it, and a signal or other external
4090 * event cannot wake it up and insert it on the runqueue either.
4091 */
2f064a59 4092 p->__state = TASK_NEW;
dd41f596 4093
c350a04e
MG
4094 /*
4095 * Make sure we do not leak PI boosting priority to the child.
4096 */
4097 p->prio = current->normal_prio;
4098
e8f14172
PB
4099 uclamp_fork(p);
4100
b9dc29e7
MG
4101 /*
4102 * Revert to default priority/policy on fork if requested.
4103 */
4104 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4105 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4106 p->policy = SCHED_NORMAL;
6c697bdf 4107 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4108 p->rt_priority = 0;
4109 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4110 p->static_prio = NICE_TO_PRIO(0);
4111
4112 p->prio = p->normal_prio = __normal_prio(p);
9059393e 4113 set_load_weight(p, false);
6c697bdf 4114
b9dc29e7
MG
4115 /*
4116 * We don't need the reset flag anymore after the fork. It has
4117 * fulfilled its duty:
4118 */
4119 p->sched_reset_on_fork = 0;
4120 }
ca94c442 4121
af0fffd9 4122 if (dl_prio(p->prio))
aab03e05 4123 return -EAGAIN;
af0fffd9 4124 else if (rt_prio(p->prio))
aab03e05 4125 p->sched_class = &rt_sched_class;
af0fffd9 4126 else
2ddbf952 4127 p->sched_class = &fair_sched_class;
b29739f9 4128
7dc603c9 4129 init_entity_runnable_average(&p->se);
cd29fe6f 4130
86951599
PZ
4131 /*
4132 * The child is not yet in the pid-hash so no cgroup attach races,
4133 * and the cgroup is pinned to this child due to cgroup_fork()
4134 * is ran before sched_fork().
4135 *
4136 * Silence PROVE_RCU.
4137 */
0122ec5b 4138 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 4139 rseq_migrate(p);
e210bffd 4140 /*
d1ccc66d 4141 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
4142 * so use __set_task_cpu().
4143 */
af0fffd9 4144 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
4145 if (p->sched_class->task_fork)
4146 p->sched_class->task_fork(p);
0122ec5b 4147 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 4148
f6db8347 4149#ifdef CONFIG_SCHED_INFO
dd41f596 4150 if (likely(sched_info_on()))
52f17b6c 4151 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4152#endif
3ca7a440
PZ
4153#if defined(CONFIG_SMP)
4154 p->on_cpu = 0;
4866cde0 4155#endif
01028747 4156 init_task_preempt_count(p);
806c09a7 4157#ifdef CONFIG_SMP
917b627d 4158 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4159 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4160#endif
aab03e05 4161 return 0;
1da177e4
LT
4162}
4163
13685c4a
QY
4164void sched_post_fork(struct task_struct *p)
4165{
4166 uclamp_post_fork(p);
4167}
4168
332ac17e
DF
4169unsigned long to_ratio(u64 period, u64 runtime)
4170{
4171 if (runtime == RUNTIME_INF)
c52f14d3 4172 return BW_UNIT;
332ac17e
DF
4173
4174 /*
4175 * Doing this here saves a lot of checks in all
4176 * the calling paths, and returning zero seems
4177 * safe for them anyway.
4178 */
4179 if (period == 0)
4180 return 0;
4181
c52f14d3 4182 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4183}
4184
1da177e4
LT
4185/*
4186 * wake_up_new_task - wake up a newly created task for the first time.
4187 *
4188 * This function will do some initial scheduler statistics housekeeping
4189 * that must be done for every newly created context, then puts the task
4190 * on the runqueue and wakes it.
4191 */
3e51e3ed 4192void wake_up_new_task(struct task_struct *p)
1da177e4 4193{
eb580751 4194 struct rq_flags rf;
dd41f596 4195 struct rq *rq;
fabf318e 4196
eb580751 4197 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4198 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4199#ifdef CONFIG_SMP
4200 /*
4201 * Fork balancing, do it here and not earlier because:
3bd37062 4202 * - cpus_ptr can change in the fork path
d1ccc66d 4203 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4204 *
4205 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4206 * as we're not fully set-up yet.
fabf318e 4207 */
32e839dd 4208 p->recent_used_cpu = task_cpu(p);
ce3614da 4209 rseq_migrate(p);
3aef1551 4210 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4211#endif
b7fa30c9 4212 rq = __task_rq_lock(p, &rf);
4126bad6 4213 update_rq_clock(rq);
d0fe0b9c 4214 post_init_entity_util_avg(p);
0017d735 4215
7a57f32a 4216 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4217 trace_sched_wakeup_new(p);
a7558e01 4218 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4219#ifdef CONFIG_SMP
0aaafaab
PZ
4220 if (p->sched_class->task_woken) {
4221 /*
b19a888c 4222 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4223 * drop it.
4224 */
d8ac8971 4225 rq_unpin_lock(rq, &rf);
efbbd05a 4226 p->sched_class->task_woken(rq, p);
d8ac8971 4227 rq_repin_lock(rq, &rf);
0aaafaab 4228 }
9a897c5a 4229#endif
eb580751 4230 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4231}
4232
e107be36
AK
4233#ifdef CONFIG_PREEMPT_NOTIFIERS
4234
b7203428 4235static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4236
2ecd9d29
PZ
4237void preempt_notifier_inc(void)
4238{
b7203428 4239 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4240}
4241EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4242
4243void preempt_notifier_dec(void)
4244{
b7203428 4245 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4246}
4247EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4248
e107be36 4249/**
80dd99b3 4250 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4251 * @notifier: notifier struct to register
e107be36
AK
4252 */
4253void preempt_notifier_register(struct preempt_notifier *notifier)
4254{
b7203428 4255 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4256 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4257
e107be36
AK
4258 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4259}
4260EXPORT_SYMBOL_GPL(preempt_notifier_register);
4261
4262/**
4263 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4264 * @notifier: notifier struct to unregister
e107be36 4265 *
d84525a8 4266 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4267 */
4268void preempt_notifier_unregister(struct preempt_notifier *notifier)
4269{
4270 hlist_del(&notifier->link);
4271}
4272EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4273
1cde2930 4274static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4275{
4276 struct preempt_notifier *notifier;
e107be36 4277
b67bfe0d 4278 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4279 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4280}
4281
1cde2930
PZ
4282static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4283{
b7203428 4284 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4285 __fire_sched_in_preempt_notifiers(curr);
4286}
4287
e107be36 4288static void
1cde2930
PZ
4289__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4290 struct task_struct *next)
e107be36
AK
4291{
4292 struct preempt_notifier *notifier;
e107be36 4293
b67bfe0d 4294 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4295 notifier->ops->sched_out(notifier, next);
4296}
4297
1cde2930
PZ
4298static __always_inline void
4299fire_sched_out_preempt_notifiers(struct task_struct *curr,
4300 struct task_struct *next)
4301{
b7203428 4302 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4303 __fire_sched_out_preempt_notifiers(curr, next);
4304}
4305
6d6bc0ad 4306#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4307
1cde2930 4308static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4309{
4310}
4311
1cde2930 4312static inline void
e107be36
AK
4313fire_sched_out_preempt_notifiers(struct task_struct *curr,
4314 struct task_struct *next)
4315{
4316}
4317
6d6bc0ad 4318#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4319
31cb1bc0 4320static inline void prepare_task(struct task_struct *next)
4321{
4322#ifdef CONFIG_SMP
4323 /*
4324 * Claim the task as running, we do this before switching to it
4325 * such that any running task will have this set.
58877d34
PZ
4326 *
4327 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4328 */
58877d34 4329 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4330#endif
4331}
4332
4333static inline void finish_task(struct task_struct *prev)
4334{
4335#ifdef CONFIG_SMP
4336 /*
58877d34
PZ
4337 * This must be the very last reference to @prev from this CPU. After
4338 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4339 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4340 * finished.
4341 *
4342 * In particular, the load of prev->state in finish_task_switch() must
4343 * happen before this.
4344 *
4345 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4346 */
4347 smp_store_release(&prev->on_cpu, 0);
4348#endif
4349}
4350
565790d2
PZ
4351#ifdef CONFIG_SMP
4352
4353static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4354{
4355 void (*func)(struct rq *rq);
4356 struct callback_head *next;
4357
5cb9eaa3 4358 lockdep_assert_rq_held(rq);
565790d2
PZ
4359
4360 while (head) {
4361 func = (void (*)(struct rq *))head->func;
4362 next = head->next;
4363 head->next = NULL;
4364 head = next;
4365
4366 func(rq);
4367 }
4368}
4369
ae792702
PZ
4370static void balance_push(struct rq *rq);
4371
4372struct callback_head balance_push_callback = {
4373 .next = NULL,
4374 .func = (void (*)(struct callback_head *))balance_push,
4375};
4376
565790d2
PZ
4377static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4378{
4379 struct callback_head *head = rq->balance_callback;
4380
5cb9eaa3 4381 lockdep_assert_rq_held(rq);
ae792702 4382 if (head)
565790d2
PZ
4383 rq->balance_callback = NULL;
4384
4385 return head;
4386}
4387
4388static void __balance_callbacks(struct rq *rq)
4389{
4390 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4391}
4392
4393static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4394{
4395 unsigned long flags;
4396
4397 if (unlikely(head)) {
5cb9eaa3 4398 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4399 do_balance_callbacks(rq, head);
5cb9eaa3 4400 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4401 }
4402}
4403
4404#else
4405
4406static inline void __balance_callbacks(struct rq *rq)
4407{
4408}
4409
4410static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4411{
4412 return NULL;
4413}
4414
4415static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4416{
4417}
4418
4419#endif
4420
269d5992
PZ
4421static inline void
4422prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4423{
269d5992
PZ
4424 /*
4425 * Since the runqueue lock will be released by the next
4426 * task (which is an invalid locking op but in the case
4427 * of the scheduler it's an obvious special-case), so we
4428 * do an early lockdep release here:
4429 */
4430 rq_unpin_lock(rq, rf);
9ef7e7e3 4431 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4432#ifdef CONFIG_DEBUG_SPINLOCK
4433 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4434 rq_lockp(rq)->owner = next;
31cb1bc0 4435#endif
269d5992
PZ
4436}
4437
4438static inline void finish_lock_switch(struct rq *rq)
4439{
31cb1bc0 4440 /*
4441 * If we are tracking spinlock dependencies then we have to
4442 * fix up the runqueue lock - which gets 'carried over' from
4443 * prev into current:
4444 */
9ef7e7e3 4445 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4446 __balance_callbacks(rq);
5cb9eaa3 4447 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4448}
4449
325ea10c
IM
4450/*
4451 * NOP if the arch has not defined these:
4452 */
4453
4454#ifndef prepare_arch_switch
4455# define prepare_arch_switch(next) do { } while (0)
4456#endif
4457
4458#ifndef finish_arch_post_lock_switch
4459# define finish_arch_post_lock_switch() do { } while (0)
4460#endif
4461
5fbda3ec
TG
4462static inline void kmap_local_sched_out(void)
4463{
4464#ifdef CONFIG_KMAP_LOCAL
4465 if (unlikely(current->kmap_ctrl.idx))
4466 __kmap_local_sched_out();
4467#endif
4468}
4469
4470static inline void kmap_local_sched_in(void)
4471{
4472#ifdef CONFIG_KMAP_LOCAL
4473 if (unlikely(current->kmap_ctrl.idx))
4474 __kmap_local_sched_in();
4475#endif
4476}
4477
4866cde0
NP
4478/**
4479 * prepare_task_switch - prepare to switch tasks
4480 * @rq: the runqueue preparing to switch
421cee29 4481 * @prev: the current task that is being switched out
4866cde0
NP
4482 * @next: the task we are going to switch to.
4483 *
4484 * This is called with the rq lock held and interrupts off. It must
4485 * be paired with a subsequent finish_task_switch after the context
4486 * switch.
4487 *
4488 * prepare_task_switch sets up locking and calls architecture specific
4489 * hooks.
4490 */
e107be36
AK
4491static inline void
4492prepare_task_switch(struct rq *rq, struct task_struct *prev,
4493 struct task_struct *next)
4866cde0 4494{
0ed557aa 4495 kcov_prepare_switch(prev);
43148951 4496 sched_info_switch(rq, prev, next);
fe4b04fa 4497 perf_event_task_sched_out(prev, next);
d7822b1e 4498 rseq_preempt(prev);
e107be36 4499 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4500 kmap_local_sched_out();
31cb1bc0 4501 prepare_task(next);
4866cde0
NP
4502 prepare_arch_switch(next);
4503}
4504
1da177e4
LT
4505/**
4506 * finish_task_switch - clean up after a task-switch
4507 * @prev: the thread we just switched away from.
4508 *
4866cde0
NP
4509 * finish_task_switch must be called after the context switch, paired
4510 * with a prepare_task_switch call before the context switch.
4511 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4512 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4513 *
4514 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4515 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4516 * with the lock held can cause deadlocks; see schedule() for
4517 * details.)
dfa50b60
ON
4518 *
4519 * The context switch have flipped the stack from under us and restored the
4520 * local variables which were saved when this task called schedule() in the
4521 * past. prev == current is still correct but we need to recalculate this_rq
4522 * because prev may have moved to another CPU.
1da177e4 4523 */
dfa50b60 4524static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4525 __releases(rq->lock)
4526{
dfa50b60 4527 struct rq *rq = this_rq();
1da177e4 4528 struct mm_struct *mm = rq->prev_mm;
55a101f8 4529 long prev_state;
1da177e4 4530
609ca066
PZ
4531 /*
4532 * The previous task will have left us with a preempt_count of 2
4533 * because it left us after:
4534 *
4535 * schedule()
4536 * preempt_disable(); // 1
4537 * __schedule()
4538 * raw_spin_lock_irq(&rq->lock) // 2
4539 *
4540 * Also, see FORK_PREEMPT_COUNT.
4541 */
e2bf1c4b
PZ
4542 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4543 "corrupted preempt_count: %s/%d/0x%x\n",
4544 current->comm, current->pid, preempt_count()))
4545 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4546
1da177e4
LT
4547 rq->prev_mm = NULL;
4548
4549 /*
4550 * A task struct has one reference for the use as "current".
c394cc9f 4551 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4552 * schedule one last time. The schedule call will never return, and
4553 * the scheduled task must drop that reference.
95913d97
PZ
4554 *
4555 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4556 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4557 * running on another CPU and we could rave with its RUNNING -> DEAD
4558 * transition, resulting in a double drop.
1da177e4 4559 */
2f064a59 4560 prev_state = READ_ONCE(prev->__state);
bf9fae9f 4561 vtime_task_switch(prev);
a8d757ef 4562 perf_event_task_sched_in(prev, current);
31cb1bc0 4563 finish_task(prev);
4564 finish_lock_switch(rq);
01f23e16 4565 finish_arch_post_lock_switch();
0ed557aa 4566 kcov_finish_switch(current);
5fbda3ec
TG
4567 /*
4568 * kmap_local_sched_out() is invoked with rq::lock held and
4569 * interrupts disabled. There is no requirement for that, but the
4570 * sched out code does not have an interrupt enabled section.
4571 * Restoring the maps on sched in does not require interrupts being
4572 * disabled either.
4573 */
4574 kmap_local_sched_in();
e8fa1362 4575
e107be36 4576 fire_sched_in_preempt_notifiers(current);
306e0604 4577 /*
70216e18
MD
4578 * When switching through a kernel thread, the loop in
4579 * membarrier_{private,global}_expedited() may have observed that
4580 * kernel thread and not issued an IPI. It is therefore possible to
4581 * schedule between user->kernel->user threads without passing though
4582 * switch_mm(). Membarrier requires a barrier after storing to
4583 * rq->curr, before returning to userspace, so provide them here:
4584 *
4585 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4586 * provided by mmdrop(),
4587 * - a sync_core for SYNC_CORE.
306e0604 4588 */
70216e18
MD
4589 if (mm) {
4590 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4591 mmdrop(mm);
70216e18 4592 }
1cef1150
PZ
4593 if (unlikely(prev_state == TASK_DEAD)) {
4594 if (prev->sched_class->task_dead)
4595 prev->sched_class->task_dead(prev);
68f24b08 4596
1cef1150
PZ
4597 /*
4598 * Remove function-return probe instances associated with this
4599 * task and put them back on the free list.
4600 */
4601 kprobe_flush_task(prev);
4602
4603 /* Task is done with its stack. */
4604 put_task_stack(prev);
4605
0ff7b2cf 4606 put_task_struct_rcu_user(prev);
c6fd91f0 4607 }
99e5ada9 4608
de734f89 4609 tick_nohz_task_switch();
dfa50b60 4610 return rq;
1da177e4
LT
4611}
4612
4613/**
4614 * schedule_tail - first thing a freshly forked thread must call.
4615 * @prev: the thread we just switched away from.
4616 */
722a9f92 4617asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4618 __releases(rq->lock)
4619{
609ca066
PZ
4620 /*
4621 * New tasks start with FORK_PREEMPT_COUNT, see there and
4622 * finish_task_switch() for details.
4623 *
4624 * finish_task_switch() will drop rq->lock() and lower preempt_count
4625 * and the preempt_enable() will end up enabling preemption (on
4626 * PREEMPT_COUNT kernels).
4627 */
4628
13c2235b 4629 finish_task_switch(prev);
1a43a14a 4630 preempt_enable();
70b97a7f 4631
1da177e4 4632 if (current->set_child_tid)
b488893a 4633 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4634
4635 calculate_sigpending();
1da177e4
LT
4636}
4637
4638/*
dfa50b60 4639 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4640 */
04936948 4641static __always_inline struct rq *
70b97a7f 4642context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4643 struct task_struct *next, struct rq_flags *rf)
1da177e4 4644{
e107be36 4645 prepare_task_switch(rq, prev, next);
fe4b04fa 4646
9226d125
ZA
4647 /*
4648 * For paravirt, this is coupled with an exit in switch_to to
4649 * combine the page table reload and the switch backend into
4650 * one hypercall.
4651 */
224101ed 4652 arch_start_context_switch(prev);
9226d125 4653
306e0604 4654 /*
139d025c
PZ
4655 * kernel -> kernel lazy + transfer active
4656 * user -> kernel lazy + mmgrab() active
4657 *
4658 * kernel -> user switch + mmdrop() active
4659 * user -> user switch
306e0604 4660 */
139d025c
PZ
4661 if (!next->mm) { // to kernel
4662 enter_lazy_tlb(prev->active_mm, next);
4663
4664 next->active_mm = prev->active_mm;
4665 if (prev->mm) // from user
4666 mmgrab(prev->active_mm);
4667 else
4668 prev->active_mm = NULL;
4669 } else { // to user
227a4aad 4670 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4671 /*
4672 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4673 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4674 *
4675 * The below provides this either through switch_mm(), or in
4676 * case 'prev->active_mm == next->mm' through
4677 * finish_task_switch()'s mmdrop().
4678 */
139d025c 4679 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4680
139d025c
PZ
4681 if (!prev->mm) { // from kernel
4682 /* will mmdrop() in finish_task_switch(). */
4683 rq->prev_mm = prev->active_mm;
4684 prev->active_mm = NULL;
4685 }
1da177e4 4686 }
92509b73 4687
cb42c9a3 4688 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4689
269d5992 4690 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4691
4692 /* Here we just switch the register state and the stack. */
4693 switch_to(prev, next, prev);
dd41f596 4694 barrier();
dfa50b60
ON
4695
4696 return finish_task_switch(prev);
1da177e4
LT
4697}
4698
4699/*
1c3e8264 4700 * nr_running and nr_context_switches:
1da177e4
LT
4701 *
4702 * externally visible scheduler statistics: current number of runnable
1c3e8264 4703 * threads, total number of context switches performed since bootup.
1da177e4 4704 */
01aee8fd 4705unsigned int nr_running(void)
1da177e4 4706{
01aee8fd 4707 unsigned int i, sum = 0;
1da177e4
LT
4708
4709 for_each_online_cpu(i)
4710 sum += cpu_rq(i)->nr_running;
4711
4712 return sum;
f711f609 4713}
1da177e4 4714
2ee507c4 4715/*
d1ccc66d 4716 * Check if only the current task is running on the CPU.
00cc1633
DD
4717 *
4718 * Caution: this function does not check that the caller has disabled
4719 * preemption, thus the result might have a time-of-check-to-time-of-use
4720 * race. The caller is responsible to use it correctly, for example:
4721 *
dfcb245e 4722 * - from a non-preemptible section (of course)
00cc1633
DD
4723 *
4724 * - from a thread that is bound to a single CPU
4725 *
4726 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4727 */
4728bool single_task_running(void)
4729{
00cc1633 4730 return raw_rq()->nr_running == 1;
2ee507c4
TC
4731}
4732EXPORT_SYMBOL(single_task_running);
4733
1da177e4 4734unsigned long long nr_context_switches(void)
46cb4b7c 4735{
cc94abfc
SR
4736 int i;
4737 unsigned long long sum = 0;
46cb4b7c 4738
0a945022 4739 for_each_possible_cpu(i)
1da177e4 4740 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4741
1da177e4
LT
4742 return sum;
4743}
483b4ee6 4744
145d952a
DL
4745/*
4746 * Consumers of these two interfaces, like for example the cpuidle menu
4747 * governor, are using nonsensical data. Preferring shallow idle state selection
4748 * for a CPU that has IO-wait which might not even end up running the task when
4749 * it does become runnable.
4750 */
4751
8fc2858e 4752unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
4753{
4754 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4755}
4756
e33a9bba 4757/*
b19a888c 4758 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4759 *
4760 * The idea behind IO-wait account is to account the idle time that we could
4761 * have spend running if it were not for IO. That is, if we were to improve the
4762 * storage performance, we'd have a proportional reduction in IO-wait time.
4763 *
4764 * This all works nicely on UP, where, when a task blocks on IO, we account
4765 * idle time as IO-wait, because if the storage were faster, it could've been
4766 * running and we'd not be idle.
4767 *
4768 * This has been extended to SMP, by doing the same for each CPU. This however
4769 * is broken.
4770 *
4771 * Imagine for instance the case where two tasks block on one CPU, only the one
4772 * CPU will have IO-wait accounted, while the other has regular idle. Even
4773 * though, if the storage were faster, both could've ran at the same time,
4774 * utilising both CPUs.
4775 *
4776 * This means, that when looking globally, the current IO-wait accounting on
4777 * SMP is a lower bound, by reason of under accounting.
4778 *
4779 * Worse, since the numbers are provided per CPU, they are sometimes
4780 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4781 * associated with any one particular CPU, it can wake to another CPU than it
4782 * blocked on. This means the per CPU IO-wait number is meaningless.
4783 *
4784 * Task CPU affinities can make all that even more 'interesting'.
4785 */
4786
97455168 4787unsigned int nr_iowait(void)
1da177e4 4788{
97455168 4789 unsigned int i, sum = 0;
483b4ee6 4790
0a945022 4791 for_each_possible_cpu(i)
145d952a 4792 sum += nr_iowait_cpu(i);
46cb4b7c 4793
1da177e4
LT
4794 return sum;
4795}
483b4ee6 4796
dd41f596 4797#ifdef CONFIG_SMP
8a0be9ef 4798
46cb4b7c 4799/*
38022906
PZ
4800 * sched_exec - execve() is a valuable balancing opportunity, because at
4801 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4802 */
38022906 4803void sched_exec(void)
46cb4b7c 4804{
38022906 4805 struct task_struct *p = current;
1da177e4 4806 unsigned long flags;
0017d735 4807 int dest_cpu;
46cb4b7c 4808
8f42ced9 4809 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4810 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4811 if (dest_cpu == smp_processor_id())
4812 goto unlock;
38022906 4813
8f42ced9 4814 if (likely(cpu_active(dest_cpu))) {
969c7921 4815 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4816
8f42ced9
PZ
4817 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4818 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4819 return;
4820 }
0017d735 4821unlock:
8f42ced9 4822 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4823}
dd41f596 4824
1da177e4
LT
4825#endif
4826
1da177e4 4827DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4828DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4829
4830EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4831EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4832
6075620b
GG
4833/*
4834 * The function fair_sched_class.update_curr accesses the struct curr
4835 * and its field curr->exec_start; when called from task_sched_runtime(),
4836 * we observe a high rate of cache misses in practice.
4837 * Prefetching this data results in improved performance.
4838 */
4839static inline void prefetch_curr_exec_start(struct task_struct *p)
4840{
4841#ifdef CONFIG_FAIR_GROUP_SCHED
4842 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4843#else
4844 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4845#endif
4846 prefetch(curr);
4847 prefetch(&curr->exec_start);
4848}
4849
c5f8d995
HS
4850/*
4851 * Return accounted runtime for the task.
4852 * In case the task is currently running, return the runtime plus current's
4853 * pending runtime that have not been accounted yet.
4854 */
4855unsigned long long task_sched_runtime(struct task_struct *p)
4856{
eb580751 4857 struct rq_flags rf;
c5f8d995 4858 struct rq *rq;
6e998916 4859 u64 ns;
c5f8d995 4860
911b2898
PZ
4861#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4862 /*
97fb7a0a 4863 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4864 * So we have a optimization chance when the task's delta_exec is 0.
4865 * Reading ->on_cpu is racy, but this is ok.
4866 *
d1ccc66d
IM
4867 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4868 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4869 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4870 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4871 * been accounted, so we're correct here as well.
911b2898 4872 */
da0c1e65 4873 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4874 return p->se.sum_exec_runtime;
4875#endif
4876
eb580751 4877 rq = task_rq_lock(p, &rf);
6e998916
SG
4878 /*
4879 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4880 * project cycles that may never be accounted to this
4881 * thread, breaking clock_gettime().
4882 */
4883 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4884 prefetch_curr_exec_start(p);
6e998916
SG
4885 update_rq_clock(rq);
4886 p->sched_class->update_curr(rq);
4887 }
4888 ns = p->se.sum_exec_runtime;
eb580751 4889 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4890
4891 return ns;
4892}
48f24c4d 4893
c006fac5
PT
4894#ifdef CONFIG_SCHED_DEBUG
4895static u64 cpu_resched_latency(struct rq *rq)
4896{
4897 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4898 u64 resched_latency, now = rq_clock(rq);
4899 static bool warned_once;
4900
4901 if (sysctl_resched_latency_warn_once && warned_once)
4902 return 0;
4903
4904 if (!need_resched() || !latency_warn_ms)
4905 return 0;
4906
4907 if (system_state == SYSTEM_BOOTING)
4908 return 0;
4909
4910 if (!rq->last_seen_need_resched_ns) {
4911 rq->last_seen_need_resched_ns = now;
4912 rq->ticks_without_resched = 0;
4913 return 0;
4914 }
4915
4916 rq->ticks_without_resched++;
4917 resched_latency = now - rq->last_seen_need_resched_ns;
4918 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4919 return 0;
4920
4921 warned_once = true;
4922
4923 return resched_latency;
4924}
4925
4926static int __init setup_resched_latency_warn_ms(char *str)
4927{
4928 long val;
4929
4930 if ((kstrtol(str, 0, &val))) {
4931 pr_warn("Unable to set resched_latency_warn_ms\n");
4932 return 1;
4933 }
4934
4935 sysctl_resched_latency_warn_ms = val;
4936 return 1;
4937}
4938__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4939#else
4940static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4941#endif /* CONFIG_SCHED_DEBUG */
4942
7835b98b
CL
4943/*
4944 * This function gets called by the timer code, with HZ frequency.
4945 * We call it with interrupts disabled.
7835b98b
CL
4946 */
4947void scheduler_tick(void)
4948{
7835b98b
CL
4949 int cpu = smp_processor_id();
4950 struct rq *rq = cpu_rq(cpu);
dd41f596 4951 struct task_struct *curr = rq->curr;
8a8c69c3 4952 struct rq_flags rf;
b4eccf5f 4953 unsigned long thermal_pressure;
c006fac5 4954 u64 resched_latency;
3e51f33f 4955
1567c3e3 4956 arch_scale_freq_tick();
3e51f33f 4957 sched_clock_tick();
dd41f596 4958
8a8c69c3
PZ
4959 rq_lock(rq, &rf);
4960
3e51f33f 4961 update_rq_clock(rq);
b4eccf5f 4962 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4963 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4964 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
4965 if (sched_feat(LATENCY_WARN))
4966 resched_latency = cpu_resched_latency(rq);
3289bdb4 4967 calc_global_load_tick(rq);
8a8c69c3
PZ
4968
4969 rq_unlock(rq, &rf);
7835b98b 4970
c006fac5
PT
4971 if (sched_feat(LATENCY_WARN) && resched_latency)
4972 resched_latency_warn(cpu, resched_latency);
4973
e9d2b064 4974 perf_event_task_tick();
e220d2dc 4975
e418e1c2 4976#ifdef CONFIG_SMP
6eb57e0d 4977 rq->idle_balance = idle_cpu(cpu);
7caff66f 4978 trigger_load_balance(rq);
e418e1c2 4979#endif
1da177e4
LT
4980}
4981
265f22a9 4982#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4983
4984struct tick_work {
4985 int cpu;
b55bd585 4986 atomic_t state;
d84b3131
FW
4987 struct delayed_work work;
4988};
b55bd585
PM
4989/* Values for ->state, see diagram below. */
4990#define TICK_SCHED_REMOTE_OFFLINE 0
4991#define TICK_SCHED_REMOTE_OFFLINING 1
4992#define TICK_SCHED_REMOTE_RUNNING 2
4993
4994/*
4995 * State diagram for ->state:
4996 *
4997 *
4998 * TICK_SCHED_REMOTE_OFFLINE
4999 * | ^
5000 * | |
5001 * | | sched_tick_remote()
5002 * | |
5003 * | |
5004 * +--TICK_SCHED_REMOTE_OFFLINING
5005 * | ^
5006 * | |
5007 * sched_tick_start() | | sched_tick_stop()
5008 * | |
5009 * V |
5010 * TICK_SCHED_REMOTE_RUNNING
5011 *
5012 *
5013 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5014 * and sched_tick_start() are happy to leave the state in RUNNING.
5015 */
d84b3131
FW
5016
5017static struct tick_work __percpu *tick_work_cpu;
5018
5019static void sched_tick_remote(struct work_struct *work)
5020{
5021 struct delayed_work *dwork = to_delayed_work(work);
5022 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5023 int cpu = twork->cpu;
5024 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5025 struct task_struct *curr;
d84b3131 5026 struct rq_flags rf;
d9c0ffca 5027 u64 delta;
b55bd585 5028 int os;
d84b3131
FW
5029
5030 /*
5031 * Handle the tick only if it appears the remote CPU is running in full
5032 * dynticks mode. The check is racy by nature, but missing a tick or
5033 * having one too much is no big deal because the scheduler tick updates
5034 * statistics and checks timeslices in a time-independent way, regardless
5035 * of when exactly it is running.
5036 */
488603b8 5037 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5038 goto out_requeue;
d84b3131 5039
d9c0ffca
FW
5040 rq_lock_irq(rq, &rf);
5041 curr = rq->curr;
488603b8 5042 if (cpu_is_offline(cpu))
d9c0ffca 5043 goto out_unlock;
d84b3131 5044
d9c0ffca 5045 update_rq_clock(rq);
d9c0ffca 5046
488603b8
SW
5047 if (!is_idle_task(curr)) {
5048 /*
5049 * Make sure the next tick runs within a reasonable
5050 * amount of time.
5051 */
5052 delta = rq_clock_task(rq) - curr->se.exec_start;
5053 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5054 }
d9c0ffca
FW
5055 curr->sched_class->task_tick(rq, curr, 0);
5056
ebc0f83c 5057 calc_load_nohz_remote(rq);
d9c0ffca
FW
5058out_unlock:
5059 rq_unlock_irq(rq, &rf);
d9c0ffca 5060out_requeue:
ebc0f83c 5061
d84b3131
FW
5062 /*
5063 * Run the remote tick once per second (1Hz). This arbitrary
5064 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5065 * to keep scheduler internal stats reasonably up to date. But
5066 * first update state to reflect hotplug activity if required.
d84b3131 5067 */
b55bd585
PM
5068 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5069 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5070 if (os == TICK_SCHED_REMOTE_RUNNING)
5071 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5072}
5073
5074static void sched_tick_start(int cpu)
5075{
b55bd585 5076 int os;
d84b3131
FW
5077 struct tick_work *twork;
5078
5079 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5080 return;
5081
5082 WARN_ON_ONCE(!tick_work_cpu);
5083
5084 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5085 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5086 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5087 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5088 twork->cpu = cpu;
5089 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5090 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5091 }
d84b3131
FW
5092}
5093
5094#ifdef CONFIG_HOTPLUG_CPU
5095static void sched_tick_stop(int cpu)
5096{
5097 struct tick_work *twork;
b55bd585 5098 int os;
d84b3131
FW
5099
5100 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5101 return;
5102
5103 WARN_ON_ONCE(!tick_work_cpu);
5104
5105 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5106 /* There cannot be competing actions, but don't rely on stop-machine. */
5107 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5108 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5109 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5110}
5111#endif /* CONFIG_HOTPLUG_CPU */
5112
5113int __init sched_tick_offload_init(void)
5114{
5115 tick_work_cpu = alloc_percpu(struct tick_work);
5116 BUG_ON(!tick_work_cpu);
d84b3131
FW
5117 return 0;
5118}
5119
5120#else /* !CONFIG_NO_HZ_FULL */
5121static inline void sched_tick_start(int cpu) { }
5122static inline void sched_tick_stop(int cpu) { }
265f22a9 5123#endif
1da177e4 5124
c1a280b6 5125#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5126 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5127/*
5128 * If the value passed in is equal to the current preempt count
5129 * then we just disabled preemption. Start timing the latency.
5130 */
5131static inline void preempt_latency_start(int val)
5132{
5133 if (preempt_count() == val) {
5134 unsigned long ip = get_lock_parent_ip();
5135#ifdef CONFIG_DEBUG_PREEMPT
5136 current->preempt_disable_ip = ip;
5137#endif
5138 trace_preempt_off(CALLER_ADDR0, ip);
5139 }
5140}
7e49fcce 5141
edafe3a5 5142void preempt_count_add(int val)
1da177e4 5143{
6cd8a4bb 5144#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5145 /*
5146 * Underflow?
5147 */
9a11b49a
IM
5148 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5149 return;
6cd8a4bb 5150#endif
bdb43806 5151 __preempt_count_add(val);
6cd8a4bb 5152#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5153 /*
5154 * Spinlock count overflowing soon?
5155 */
33859f7f
MOS
5156 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5157 PREEMPT_MASK - 10);
6cd8a4bb 5158#endif
47252cfb 5159 preempt_latency_start(val);
1da177e4 5160}
bdb43806 5161EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5162NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5163
47252cfb
SR
5164/*
5165 * If the value passed in equals to the current preempt count
5166 * then we just enabled preemption. Stop timing the latency.
5167 */
5168static inline void preempt_latency_stop(int val)
5169{
5170 if (preempt_count() == val)
5171 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5172}
5173
edafe3a5 5174void preempt_count_sub(int val)
1da177e4 5175{
6cd8a4bb 5176#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5177 /*
5178 * Underflow?
5179 */
01e3eb82 5180 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5181 return;
1da177e4
LT
5182 /*
5183 * Is the spinlock portion underflowing?
5184 */
9a11b49a
IM
5185 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5186 !(preempt_count() & PREEMPT_MASK)))
5187 return;
6cd8a4bb 5188#endif
9a11b49a 5189
47252cfb 5190 preempt_latency_stop(val);
bdb43806 5191 __preempt_count_sub(val);
1da177e4 5192}
bdb43806 5193EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5194NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5195
47252cfb
SR
5196#else
5197static inline void preempt_latency_start(int val) { }
5198static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5199#endif
5200
59ddbcb2
IM
5201static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5202{
5203#ifdef CONFIG_DEBUG_PREEMPT
5204 return p->preempt_disable_ip;
5205#else
5206 return 0;
5207#endif
5208}
5209
1da177e4 5210/*
dd41f596 5211 * Print scheduling while atomic bug:
1da177e4 5212 */
dd41f596 5213static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5214{
d1c6d149
VN
5215 /* Save this before calling printk(), since that will clobber it */
5216 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5217
664dfa65
DJ
5218 if (oops_in_progress)
5219 return;
5220
3df0fc5b
PZ
5221 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5222 prev->comm, prev->pid, preempt_count());
838225b4 5223
dd41f596 5224 debug_show_held_locks(prev);
e21f5b15 5225 print_modules();
dd41f596
IM
5226 if (irqs_disabled())
5227 print_irqtrace_events(prev);
d1c6d149
VN
5228 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5229 && in_atomic_preempt_off()) {
8f47b187 5230 pr_err("Preemption disabled at:");
2062a4e8 5231 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5232 }
748c7201
DBO
5233 if (panic_on_warn)
5234 panic("scheduling while atomic\n");
5235
6135fc1e 5236 dump_stack();
373d4d09 5237 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5238}
1da177e4 5239
dd41f596
IM
5240/*
5241 * Various schedule()-time debugging checks and statistics:
5242 */
312364f3 5243static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5244{
0d9e2632 5245#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5246 if (task_stack_end_corrupted(prev))
5247 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5248
5249 if (task_scs_end_corrupted(prev))
5250 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5251#endif
b99def8b 5252
312364f3 5253#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5254 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5255 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5256 prev->comm, prev->pid, prev->non_block_count);
5257 dump_stack();
5258 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5259 }
5260#endif
5261
1dc0fffc 5262 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5263 __schedule_bug(prev);
1dc0fffc
PZ
5264 preempt_count_set(PREEMPT_DISABLED);
5265 }
b3fbab05 5266 rcu_sleep_check();
9f68b5b7 5267 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5268
1da177e4
LT
5269 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5270
ae92882e 5271 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5272}
5273
457d1f46
CY
5274static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5275 struct rq_flags *rf)
5276{
5277#ifdef CONFIG_SMP
5278 const struct sched_class *class;
5279 /*
5280 * We must do the balancing pass before put_prev_task(), such
5281 * that when we release the rq->lock the task is in the same
5282 * state as before we took rq->lock.
5283 *
5284 * We can terminate the balance pass as soon as we know there is
5285 * a runnable task of @class priority or higher.
5286 */
5287 for_class_range(class, prev->sched_class, &idle_sched_class) {
5288 if (class->balance(rq, prev, rf))
5289 break;
5290 }
5291#endif
5292
5293 put_prev_task(rq, prev);
5294}
5295
dd41f596
IM
5296/*
5297 * Pick up the highest-prio task:
5298 */
5299static inline struct task_struct *
539f6512 5300__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5301{
49ee5768 5302 const struct sched_class *class;
dd41f596 5303 struct task_struct *p;
1da177e4
LT
5304
5305 /*
0ba87bb2
PZ
5306 * Optimization: we know that if all tasks are in the fair class we can
5307 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5308 * higher scheduling class, because otherwise those lose the
0ba87bb2 5309 * opportunity to pull in more work from other CPUs.
1da177e4 5310 */
aa93cd53 5311 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5312 rq->nr_running == rq->cfs.h_nr_running)) {
5313
5d7d6056 5314 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5315 if (unlikely(p == RETRY_TASK))
67692435 5316 goto restart;
6ccdc84b 5317
1699949d 5318 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5319 if (!p) {
f488e105 5320 put_prev_task(rq, prev);
98c2f700 5321 p = pick_next_task_idle(rq);
f488e105 5322 }
6ccdc84b
PZ
5323
5324 return p;
1da177e4
LT
5325 }
5326
67692435 5327restart:
457d1f46 5328 put_prev_task_balance(rq, prev, rf);
67692435 5329
34f971f6 5330 for_each_class(class) {
98c2f700 5331 p = class->pick_next_task(rq);
67692435 5332 if (p)
dd41f596 5333 return p;
dd41f596 5334 }
34f971f6 5335
d1ccc66d
IM
5336 /* The idle class should always have a runnable task: */
5337 BUG();
dd41f596 5338}
1da177e4 5339
9edeaea1 5340#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5341static inline bool is_task_rq_idle(struct task_struct *t)
5342{
5343 return (task_rq(t)->idle == t);
5344}
5345
5346static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5347{
5348 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5349}
5350
5351static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5352{
5353 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5354 return true;
5355
5356 return a->core_cookie == b->core_cookie;
5357}
5358
5359// XXX fairness/fwd progress conditions
5360/*
5361 * Returns
5362 * - NULL if there is no runnable task for this class.
5363 * - the highest priority task for this runqueue if it matches
5364 * rq->core->core_cookie or its priority is greater than max.
5365 * - Else returns idle_task.
5366 */
5367static struct task_struct *
c6047c2e 5368pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
539f6512
PZ
5369{
5370 struct task_struct *class_pick, *cookie_pick;
5371 unsigned long cookie = rq->core->core_cookie;
5372
5373 class_pick = class->pick_task(rq);
5374 if (!class_pick)
5375 return NULL;
5376
5377 if (!cookie) {
5378 /*
5379 * If class_pick is tagged, return it only if it has
5380 * higher priority than max.
5381 */
5382 if (max && class_pick->core_cookie &&
c6047c2e 5383 prio_less(class_pick, max, in_fi))
539f6512
PZ
5384 return idle_sched_class.pick_task(rq);
5385
5386 return class_pick;
5387 }
5388
5389 /*
5390 * If class_pick is idle or matches cookie, return early.
5391 */
5392 if (cookie_equals(class_pick, cookie))
5393 return class_pick;
5394
5395 cookie_pick = sched_core_find(rq, cookie);
5396
5397 /*
5398 * If class > max && class > cookie, it is the highest priority task on
5399 * the core (so far) and it must be selected, otherwise we must go with
5400 * the cookie pick in order to satisfy the constraint.
5401 */
c6047c2e
JFG
5402 if (prio_less(cookie_pick, class_pick, in_fi) &&
5403 (!max || prio_less(max, class_pick, in_fi)))
539f6512
PZ
5404 return class_pick;
5405
5406 return cookie_pick;
5407}
5408
c6047c2e
JFG
5409extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5410
539f6512
PZ
5411static struct task_struct *
5412pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5413{
5414 struct task_struct *next, *max = NULL;
5415 const struct sched_class *class;
5416 const struct cpumask *smt_mask;
c6047c2e 5417 bool fi_before = false;
d2dfa17b 5418 int i, j, cpu, occ = 0;
539f6512 5419 bool need_sync;
539f6512
PZ
5420
5421 if (!sched_core_enabled(rq))
5422 return __pick_next_task(rq, prev, rf);
5423
5424 cpu = cpu_of(rq);
5425
5426 /* Stopper task is switching into idle, no need core-wide selection. */
5427 if (cpu_is_offline(cpu)) {
5428 /*
5429 * Reset core_pick so that we don't enter the fastpath when
5430 * coming online. core_pick would already be migrated to
5431 * another cpu during offline.
5432 */
5433 rq->core_pick = NULL;
5434 return __pick_next_task(rq, prev, rf);
5435 }
5436
5437 /*
5438 * If there were no {en,de}queues since we picked (IOW, the task
5439 * pointers are all still valid), and we haven't scheduled the last
5440 * pick yet, do so now.
5441 *
5442 * rq->core_pick can be NULL if no selection was made for a CPU because
5443 * it was either offline or went offline during a sibling's core-wide
5444 * selection. In this case, do a core-wide selection.
5445 */
5446 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5447 rq->core->core_pick_seq != rq->core_sched_seq &&
5448 rq->core_pick) {
5449 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5450
5451 next = rq->core_pick;
5452 if (next != prev) {
5453 put_prev_task(rq, prev);
5454 set_next_task(rq, next);
5455 }
5456
5457 rq->core_pick = NULL;
5458 return next;
5459 }
5460
5461 put_prev_task_balance(rq, prev, rf);
5462
5463 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5464 need_sync = !!rq->core->core_cookie;
5465
5466 /* reset state */
5467 rq->core->core_cookie = 0UL;
5468 if (rq->core->core_forceidle) {
5469 need_sync = true;
5470 fi_before = true;
5471 rq->core->core_forceidle = false;
5472 }
539f6512
PZ
5473
5474 /*
5475 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5476 *
5477 * @task_seq guards the task state ({en,de}queues)
5478 * @pick_seq is the @task_seq we did a selection on
5479 * @sched_seq is the @pick_seq we scheduled
5480 *
5481 * However, preemptions can cause multiple picks on the same task set.
5482 * 'Fix' this by also increasing @task_seq for every pick.
5483 */
5484 rq->core->core_task_seq++;
539f6512 5485
7afbba11
JFG
5486 /*
5487 * Optimize for common case where this CPU has no cookies
5488 * and there are no cookied tasks running on siblings.
5489 */
5490 if (!need_sync) {
5491 for_each_class(class) {
5492 next = class->pick_task(rq);
5493 if (next)
5494 break;
5495 }
5496
5497 if (!next->core_cookie) {
5498 rq->core_pick = NULL;
c6047c2e
JFG
5499 /*
5500 * For robustness, update the min_vruntime_fi for
5501 * unconstrained picks as well.
5502 */
5503 WARN_ON_ONCE(fi_before);
5504 task_vruntime_update(rq, next, false);
7afbba11
JFG
5505 goto done;
5506 }
8039e96f 5507 }
7afbba11 5508
539f6512
PZ
5509 for_each_cpu(i, smt_mask) {
5510 struct rq *rq_i = cpu_rq(i);
5511
5512 rq_i->core_pick = NULL;
5513
539f6512
PZ
5514 if (i != cpu)
5515 update_rq_clock(rq_i);
5516 }
5517
5518 /*
cc00c198 5519 * Try and select tasks for each sibling in descending sched_class
539f6512
PZ
5520 * order.
5521 */
5522 for_each_class(class) {
5523again:
5524 for_each_cpu_wrap(i, smt_mask, cpu) {
5525 struct rq *rq_i = cpu_rq(i);
5526 struct task_struct *p;
5527
5528 if (rq_i->core_pick)
5529 continue;
5530
5531 /*
5532 * If this sibling doesn't yet have a suitable task to
cc00c198 5533 * run; ask for the most eligible task, given the
539f6512
PZ
5534 * highest priority task already selected for this
5535 * core.
5536 */
c6047c2e 5537 p = pick_task(rq_i, class, max, fi_before);
7afbba11 5538 if (!p)
539f6512 5539 continue;
539f6512 5540
d2dfa17b
PZ
5541 if (!is_task_rq_idle(p))
5542 occ++;
5543
539f6512 5544 rq_i->core_pick = p;
c6047c2e
JFG
5545 if (rq_i->idle == p && rq_i->nr_running) {
5546 rq->core->core_forceidle = true;
5547 if (!fi_before)
5548 rq->core->core_forceidle_seq++;
5549 }
539f6512
PZ
5550
5551 /*
5552 * If this new candidate is of higher priority than the
5553 * previous; and they're incompatible; we need to wipe
5554 * the slate and start over. pick_task makes sure that
5555 * p's priority is more than max if it doesn't match
5556 * max's cookie.
5557 *
5558 * NOTE: this is a linear max-filter and is thus bounded
5559 * in execution time.
5560 */
5561 if (!max || !cookie_match(max, p)) {
5562 struct task_struct *old_max = max;
5563
5564 rq->core->core_cookie = p->core_cookie;
5565 max = p;
5566
5567 if (old_max) {
c6047c2e 5568 rq->core->core_forceidle = false;
539f6512
PZ
5569 for_each_cpu(j, smt_mask) {
5570 if (j == i)
5571 continue;
5572
5573 cpu_rq(j)->core_pick = NULL;
5574 }
d2dfa17b 5575 occ = 1;
539f6512 5576 goto again;
539f6512 5577 }
539f6512
PZ
5578 }
5579 }
539f6512
PZ
5580 }
5581
5582 rq->core->core_pick_seq = rq->core->core_task_seq;
5583 next = rq->core_pick;
5584 rq->core_sched_seq = rq->core->core_pick_seq;
5585
5586 /* Something should have been selected for current CPU */
5587 WARN_ON_ONCE(!next);
5588
5589 /*
5590 * Reschedule siblings
5591 *
5592 * NOTE: L1TF -- at this point we're no longer running the old task and
5593 * sending an IPI (below) ensures the sibling will no longer be running
5594 * their task. This ensures there is no inter-sibling overlap between
5595 * non-matching user state.
5596 */
5597 for_each_cpu(i, smt_mask) {
5598 struct rq *rq_i = cpu_rq(i);
5599
5600 /*
5601 * An online sibling might have gone offline before a task
5602 * could be picked for it, or it might be offline but later
5603 * happen to come online, but its too late and nothing was
5604 * picked for it. That's Ok - it will pick tasks for itself,
5605 * so ignore it.
5606 */
5607 if (!rq_i->core_pick)
5608 continue;
5609
c6047c2e
JFG
5610 /*
5611 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5612 * fi_before fi update?
5613 * 0 0 1
5614 * 0 1 1
5615 * 1 0 1
5616 * 1 1 0
5617 */
5618 if (!(fi_before && rq->core->core_forceidle))
5619 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
539f6512 5620
d2dfa17b
PZ
5621 rq_i->core_pick->core_occupation = occ;
5622
539f6512
PZ
5623 if (i == cpu) {
5624 rq_i->core_pick = NULL;
5625 continue;
5626 }
5627
5628 /* Did we break L1TF mitigation requirements? */
5629 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5630
5631 if (rq_i->curr == rq_i->core_pick) {
5632 rq_i->core_pick = NULL;
5633 continue;
5634 }
5635
5636 resched_curr(rq_i);
5637 }
5638
5639done:
5640 set_next_task(rq, next);
5641 return next;
5642}
9edeaea1 5643
d2dfa17b
PZ
5644static bool try_steal_cookie(int this, int that)
5645{
5646 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5647 struct task_struct *p;
5648 unsigned long cookie;
5649 bool success = false;
5650
5651 local_irq_disable();
5652 double_rq_lock(dst, src);
5653
5654 cookie = dst->core->core_cookie;
5655 if (!cookie)
5656 goto unlock;
5657
5658 if (dst->curr != dst->idle)
5659 goto unlock;
5660
5661 p = sched_core_find(src, cookie);
5662 if (p == src->idle)
5663 goto unlock;
5664
5665 do {
5666 if (p == src->core_pick || p == src->curr)
5667 goto next;
5668
5669 if (!cpumask_test_cpu(this, &p->cpus_mask))
5670 goto next;
5671
5672 if (p->core_occupation > dst->idle->core_occupation)
5673 goto next;
5674
d2dfa17b
PZ
5675 deactivate_task(src, p, 0);
5676 set_task_cpu(p, this);
5677 activate_task(dst, p, 0);
d2dfa17b
PZ
5678
5679 resched_curr(dst);
5680
5681 success = true;
5682 break;
5683
5684next:
5685 p = sched_core_next(p, cookie);
5686 } while (p);
5687
5688unlock:
5689 double_rq_unlock(dst, src);
5690 local_irq_enable();
5691
5692 return success;
5693}
5694
5695static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5696{
5697 int i;
5698
5699 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5700 if (i == cpu)
5701 continue;
5702
5703 if (need_resched())
5704 break;
5705
5706 if (try_steal_cookie(cpu, i))
5707 return true;
5708 }
5709
5710 return false;
5711}
5712
5713static void sched_core_balance(struct rq *rq)
5714{
5715 struct sched_domain *sd;
5716 int cpu = cpu_of(rq);
5717
5718 preempt_disable();
5719 rcu_read_lock();
5720 raw_spin_rq_unlock_irq(rq);
5721 for_each_domain(cpu, sd) {
5722 if (need_resched())
5723 break;
5724
5725 if (steal_cookie_task(cpu, sd))
5726 break;
5727 }
5728 raw_spin_rq_lock_irq(rq);
5729 rcu_read_unlock();
5730 preempt_enable();
5731}
5732
5733static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5734
5735void queue_core_balance(struct rq *rq)
5736{
5737 if (!sched_core_enabled(rq))
5738 return;
5739
5740 if (!rq->core->core_cookie)
5741 return;
5742
5743 if (!rq->nr_running) /* not forced idle */
5744 return;
5745
5746 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5747}
5748
9edeaea1
PZ
5749static inline void sched_core_cpu_starting(unsigned int cpu)
5750{
5751 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5752 struct rq *rq, *core_rq = NULL;
5753 int i;
5754
5755 core_rq = cpu_rq(cpu)->core;
5756
5757 if (!core_rq) {
5758 for_each_cpu(i, smt_mask) {
5759 rq = cpu_rq(i);
5760 if (rq->core && rq->core == rq)
5761 core_rq = rq;
5762 }
5763
5764 if (!core_rq)
5765 core_rq = cpu_rq(cpu);
5766
5767 for_each_cpu(i, smt_mask) {
5768 rq = cpu_rq(i);
5769
5770 WARN_ON_ONCE(rq->core && rq->core != core_rq);
5771 rq->core = core_rq;
5772 }
5773 }
5774}
5775#else /* !CONFIG_SCHED_CORE */
5776
5777static inline void sched_core_cpu_starting(unsigned int cpu) {}
5778
539f6512
PZ
5779static struct task_struct *
5780pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5781{
5782 return __pick_next_task(rq, prev, rf);
5783}
5784
9edeaea1
PZ
5785#endif /* CONFIG_SCHED_CORE */
5786
dd41f596 5787/*
c259e01a 5788 * __schedule() is the main scheduler function.
edde96ea
PE
5789 *
5790 * The main means of driving the scheduler and thus entering this function are:
5791 *
5792 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5793 *
5794 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5795 * paths. For example, see arch/x86/entry_64.S.
5796 *
5797 * To drive preemption between tasks, the scheduler sets the flag in timer
5798 * interrupt handler scheduler_tick().
5799 *
5800 * 3. Wakeups don't really cause entry into schedule(). They add a
5801 * task to the run-queue and that's it.
5802 *
5803 * Now, if the new task added to the run-queue preempts the current
5804 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5805 * called on the nearest possible occasion:
5806 *
c1a280b6 5807 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
5808 *
5809 * - in syscall or exception context, at the next outmost
5810 * preempt_enable(). (this might be as soon as the wake_up()'s
5811 * spin_unlock()!)
5812 *
5813 * - in IRQ context, return from interrupt-handler to
5814 * preemptible context
5815 *
c1a280b6 5816 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
5817 * then at the next:
5818 *
5819 * - cond_resched() call
5820 * - explicit schedule() call
5821 * - return from syscall or exception to user-space
5822 * - return from interrupt-handler to user-space
bfd9b2b5 5823 *
b30f0e3f 5824 * WARNING: must be called with preemption disabled!
dd41f596 5825 */
499d7955 5826static void __sched notrace __schedule(bool preempt)
dd41f596
IM
5827{
5828 struct task_struct *prev, *next;
67ca7bde 5829 unsigned long *switch_count;
dbfb089d 5830 unsigned long prev_state;
d8ac8971 5831 struct rq_flags rf;
dd41f596 5832 struct rq *rq;
31656519 5833 int cpu;
dd41f596 5834
dd41f596
IM
5835 cpu = smp_processor_id();
5836 rq = cpu_rq(cpu);
dd41f596 5837 prev = rq->curr;
dd41f596 5838
312364f3 5839 schedule_debug(prev, preempt);
1da177e4 5840
e0ee463c 5841 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 5842 hrtick_clear(rq);
8f4d37ec 5843
46a5d164 5844 local_irq_disable();
bcbfdd01 5845 rcu_note_context_switch(preempt);
46a5d164 5846
e0acd0a6
ON
5847 /*
5848 * Make sure that signal_pending_state()->signal_pending() below
5849 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
5850 * done by the caller to avoid the race with signal_wake_up():
5851 *
5852 * __set_current_state(@state) signal_wake_up()
5853 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5854 * wake_up_state(p, state)
5855 * LOCK rq->lock LOCK p->pi_state
5856 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5857 * if (signal_pending_state()) if (p->state & @state)
306e0604 5858 *
dbfb089d 5859 * Also, the membarrier system call requires a full memory barrier
306e0604 5860 * after coming from user-space, before storing to rq->curr.
e0acd0a6 5861 */
8a8c69c3 5862 rq_lock(rq, &rf);
d89e588c 5863 smp_mb__after_spinlock();
1da177e4 5864
d1ccc66d
IM
5865 /* Promote REQ to ACT */
5866 rq->clock_update_flags <<= 1;
bce4dc80 5867 update_rq_clock(rq);
9edfbfed 5868
246d86b5 5869 switch_count = &prev->nivcsw;
d136122f 5870
dbfb089d 5871 /*
d136122f
PZ
5872 * We must load prev->state once (task_struct::state is volatile), such
5873 * that:
5874 *
5875 * - we form a control dependency vs deactivate_task() below.
5876 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5877 */
2f064a59 5878 prev_state = READ_ONCE(prev->__state);
d136122f 5879 if (!preempt && prev_state) {
dbfb089d 5880 if (signal_pending_state(prev_state, prev)) {
2f064a59 5881 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 5882 } else {
dbfb089d
PZ
5883 prev->sched_contributes_to_load =
5884 (prev_state & TASK_UNINTERRUPTIBLE) &&
5885 !(prev_state & TASK_NOLOAD) &&
5886 !(prev->flags & PF_FROZEN);
5887
5888 if (prev->sched_contributes_to_load)
5889 rq->nr_uninterruptible++;
5890
5891 /*
5892 * __schedule() ttwu()
d136122f
PZ
5893 * prev_state = prev->state; if (p->on_rq && ...)
5894 * if (prev_state) goto out;
5895 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5896 * p->state = TASK_WAKING
5897 *
5898 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5899 *
5900 * After this, schedule() must not care about p->state any more.
5901 */
bce4dc80 5902 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5903
e33a9bba
TH
5904 if (prev->in_iowait) {
5905 atomic_inc(&rq->nr_iowait);
5906 delayacct_blkio_start();
5907 }
21aa9af0 5908 }
dd41f596 5909 switch_count = &prev->nvcsw;
1da177e4
LT
5910 }
5911
d8ac8971 5912 next = pick_next_task(rq, prev, &rf);
f26f9aff 5913 clear_tsk_need_resched(prev);
f27dde8d 5914 clear_preempt_need_resched();
c006fac5
PT
5915#ifdef CONFIG_SCHED_DEBUG
5916 rq->last_seen_need_resched_ns = 0;
5917#endif
1da177e4 5918
1da177e4 5919 if (likely(prev != next)) {
1da177e4 5920 rq->nr_switches++;
5311a98f
EB
5921 /*
5922 * RCU users of rcu_dereference(rq->curr) may not see
5923 * changes to task_struct made by pick_next_task().
5924 */
5925 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5926 /*
5927 * The membarrier system call requires each architecture
5928 * to have a full memory barrier after updating
306e0604
MD
5929 * rq->curr, before returning to user-space.
5930 *
5931 * Here are the schemes providing that barrier on the
5932 * various architectures:
5933 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5934 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5935 * - finish_lock_switch() for weakly-ordered
5936 * architectures where spin_unlock is a full barrier,
5937 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5938 * is a RELEASE barrier),
22e4ebb9 5939 */
1da177e4
LT
5940 ++*switch_count;
5941
af449901 5942 migrate_disable_switch(rq, prev);
b05e75d6
JW
5943 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5944
c73464b1 5945 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5946
5947 /* Also unlocks the rq: */
5948 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5949 } else {
cb42c9a3 5950 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5951
565790d2
PZ
5952 rq_unpin_lock(rq, &rf);
5953 __balance_callbacks(rq);
5cb9eaa3 5954 raw_spin_rq_unlock_irq(rq);
565790d2 5955 }
1da177e4 5956}
c259e01a 5957
9af6528e
PZ
5958void __noreturn do_task_dead(void)
5959{
d1ccc66d 5960 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5961 set_special_state(TASK_DEAD);
d1ccc66d
IM
5962
5963 /* Tell freezer to ignore us: */
5964 current->flags |= PF_NOFREEZE;
5965
9af6528e
PZ
5966 __schedule(false);
5967 BUG();
d1ccc66d
IM
5968
5969 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5970 for (;;)
d1ccc66d 5971 cpu_relax();
9af6528e
PZ
5972}
5973
9c40cef2
TG
5974static inline void sched_submit_work(struct task_struct *tsk)
5975{
c1cecf88
SAS
5976 unsigned int task_flags;
5977
b03fbd4f 5978 if (task_is_running(tsk))
9c40cef2 5979 return;
6d25be57 5980
c1cecf88 5981 task_flags = tsk->flags;
6d25be57
TG
5982 /*
5983 * If a worker went to sleep, notify and ask workqueue whether
5984 * it wants to wake up a task to maintain concurrency.
5985 * As this function is called inside the schedule() context,
5986 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5987 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5988 * requires it.
6d25be57 5989 */
c1cecf88 5990 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5991 preempt_disable();
c1cecf88 5992 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5993 wq_worker_sleeping(tsk);
5994 else
5995 io_wq_worker_sleeping(tsk);
6d25be57
TG
5996 preempt_enable_no_resched();
5997 }
5998
b0fdc013
SAS
5999 if (tsk_is_pi_blocked(tsk))
6000 return;
6001
9c40cef2
TG
6002 /*
6003 * If we are going to sleep and we have plugged IO queued,
6004 * make sure to submit it to avoid deadlocks.
6005 */
6006 if (blk_needs_flush_plug(tsk))
6007 blk_schedule_flush_plug(tsk);
6008}
6009
6d25be57
TG
6010static void sched_update_worker(struct task_struct *tsk)
6011{
771b53d0
JA
6012 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6013 if (tsk->flags & PF_WQ_WORKER)
6014 wq_worker_running(tsk);
6015 else
6016 io_wq_worker_running(tsk);
6017 }
6d25be57
TG
6018}
6019
722a9f92 6020asmlinkage __visible void __sched schedule(void)
c259e01a 6021{
9c40cef2
TG
6022 struct task_struct *tsk = current;
6023
6024 sched_submit_work(tsk);
bfd9b2b5 6025 do {
b30f0e3f 6026 preempt_disable();
fc13aeba 6027 __schedule(false);
b30f0e3f 6028 sched_preempt_enable_no_resched();
bfd9b2b5 6029 } while (need_resched());
6d25be57 6030 sched_update_worker(tsk);
c259e01a 6031}
1da177e4
LT
6032EXPORT_SYMBOL(schedule);
6033
8663effb
SRV
6034/*
6035 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6036 * state (have scheduled out non-voluntarily) by making sure that all
6037 * tasks have either left the run queue or have gone into user space.
6038 * As idle tasks do not do either, they must not ever be preempted
6039 * (schedule out non-voluntarily).
6040 *
6041 * schedule_idle() is similar to schedule_preempt_disable() except that it
6042 * never enables preemption because it does not call sched_submit_work().
6043 */
6044void __sched schedule_idle(void)
6045{
6046 /*
6047 * As this skips calling sched_submit_work(), which the idle task does
6048 * regardless because that function is a nop when the task is in a
6049 * TASK_RUNNING state, make sure this isn't used someplace that the
6050 * current task can be in any other state. Note, idle is always in the
6051 * TASK_RUNNING state.
6052 */
2f064a59 6053 WARN_ON_ONCE(current->__state);
8663effb
SRV
6054 do {
6055 __schedule(false);
6056 } while (need_resched());
6057}
6058
6775de49 6059#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6060asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6061{
6062 /*
6063 * If we come here after a random call to set_need_resched(),
6064 * or we have been woken up remotely but the IPI has not yet arrived,
6065 * we haven't yet exited the RCU idle mode. Do it here manually until
6066 * we find a better solution.
7cc78f8f
AL
6067 *
6068 * NB: There are buggy callers of this function. Ideally we
c467ea76 6069 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6070 * too frequently to make sense yet.
20ab65e3 6071 */
7cc78f8f 6072 enum ctx_state prev_state = exception_enter();
20ab65e3 6073 schedule();
7cc78f8f 6074 exception_exit(prev_state);
20ab65e3
FW
6075}
6076#endif
6077
c5491ea7
TG
6078/**
6079 * schedule_preempt_disabled - called with preemption disabled
6080 *
6081 * Returns with preemption disabled. Note: preempt_count must be 1
6082 */
6083void __sched schedule_preempt_disabled(void)
6084{
ba74c144 6085 sched_preempt_enable_no_resched();
c5491ea7
TG
6086 schedule();
6087 preempt_disable();
6088}
6089
06b1f808 6090static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6091{
6092 do {
47252cfb
SR
6093 /*
6094 * Because the function tracer can trace preempt_count_sub()
6095 * and it also uses preempt_enable/disable_notrace(), if
6096 * NEED_RESCHED is set, the preempt_enable_notrace() called
6097 * by the function tracer will call this function again and
6098 * cause infinite recursion.
6099 *
6100 * Preemption must be disabled here before the function
6101 * tracer can trace. Break up preempt_disable() into two
6102 * calls. One to disable preemption without fear of being
6103 * traced. The other to still record the preemption latency,
6104 * which can also be traced by the function tracer.
6105 */
499d7955 6106 preempt_disable_notrace();
47252cfb 6107 preempt_latency_start(1);
fc13aeba 6108 __schedule(true);
47252cfb 6109 preempt_latency_stop(1);
499d7955 6110 preempt_enable_no_resched_notrace();
a18b5d01
FW
6111
6112 /*
6113 * Check again in case we missed a preemption opportunity
6114 * between schedule and now.
6115 */
a18b5d01
FW
6116 } while (need_resched());
6117}
6118
c1a280b6 6119#ifdef CONFIG_PREEMPTION
1da177e4 6120/*
a49b4f40
VS
6121 * This is the entry point to schedule() from in-kernel preemption
6122 * off of preempt_enable.
1da177e4 6123 */
722a9f92 6124asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6125{
1da177e4
LT
6126 /*
6127 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6128 * we do not want to preempt the current task. Just return..
1da177e4 6129 */
fbb00b56 6130 if (likely(!preemptible()))
1da177e4
LT
6131 return;
6132
a18b5d01 6133 preempt_schedule_common();
1da177e4 6134}
376e2424 6135NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6136EXPORT_SYMBOL(preempt_schedule);
009f60e2 6137
2c9a98d3
PZI
6138#ifdef CONFIG_PREEMPT_DYNAMIC
6139DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6140EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6141#endif
6142
6143
009f60e2 6144/**
4eaca0a8 6145 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6146 *
6147 * The tracing infrastructure uses preempt_enable_notrace to prevent
6148 * recursion and tracing preempt enabling caused by the tracing
6149 * infrastructure itself. But as tracing can happen in areas coming
6150 * from userspace or just about to enter userspace, a preempt enable
6151 * can occur before user_exit() is called. This will cause the scheduler
6152 * to be called when the system is still in usermode.
6153 *
6154 * To prevent this, the preempt_enable_notrace will use this function
6155 * instead of preempt_schedule() to exit user context if needed before
6156 * calling the scheduler.
6157 */
4eaca0a8 6158asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6159{
6160 enum ctx_state prev_ctx;
6161
6162 if (likely(!preemptible()))
6163 return;
6164
6165 do {
47252cfb
SR
6166 /*
6167 * Because the function tracer can trace preempt_count_sub()
6168 * and it also uses preempt_enable/disable_notrace(), if
6169 * NEED_RESCHED is set, the preempt_enable_notrace() called
6170 * by the function tracer will call this function again and
6171 * cause infinite recursion.
6172 *
6173 * Preemption must be disabled here before the function
6174 * tracer can trace. Break up preempt_disable() into two
6175 * calls. One to disable preemption without fear of being
6176 * traced. The other to still record the preemption latency,
6177 * which can also be traced by the function tracer.
6178 */
3d8f74dd 6179 preempt_disable_notrace();
47252cfb 6180 preempt_latency_start(1);
009f60e2
ON
6181 /*
6182 * Needs preempt disabled in case user_exit() is traced
6183 * and the tracer calls preempt_enable_notrace() causing
6184 * an infinite recursion.
6185 */
6186 prev_ctx = exception_enter();
fc13aeba 6187 __schedule(true);
009f60e2
ON
6188 exception_exit(prev_ctx);
6189
47252cfb 6190 preempt_latency_stop(1);
3d8f74dd 6191 preempt_enable_no_resched_notrace();
009f60e2
ON
6192 } while (need_resched());
6193}
4eaca0a8 6194EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6195
2c9a98d3
PZI
6196#ifdef CONFIG_PREEMPT_DYNAMIC
6197DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6198EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6199#endif
6200
c1a280b6 6201#endif /* CONFIG_PREEMPTION */
1da177e4 6202
826bfeb3
PZI
6203#ifdef CONFIG_PREEMPT_DYNAMIC
6204
6205#include <linux/entry-common.h>
6206
6207/*
6208 * SC:cond_resched
6209 * SC:might_resched
6210 * SC:preempt_schedule
6211 * SC:preempt_schedule_notrace
6212 * SC:irqentry_exit_cond_resched
6213 *
6214 *
6215 * NONE:
6216 * cond_resched <- __cond_resched
6217 * might_resched <- RET0
6218 * preempt_schedule <- NOP
6219 * preempt_schedule_notrace <- NOP
6220 * irqentry_exit_cond_resched <- NOP
6221 *
6222 * VOLUNTARY:
6223 * cond_resched <- __cond_resched
6224 * might_resched <- __cond_resched
6225 * preempt_schedule <- NOP
6226 * preempt_schedule_notrace <- NOP
6227 * irqentry_exit_cond_resched <- NOP
6228 *
6229 * FULL:
6230 * cond_resched <- RET0
6231 * might_resched <- RET0
6232 * preempt_schedule <- preempt_schedule
6233 * preempt_schedule_notrace <- preempt_schedule_notrace
6234 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6235 */
e59e10f8
PZ
6236
6237enum {
6238 preempt_dynamic_none = 0,
6239 preempt_dynamic_voluntary,
6240 preempt_dynamic_full,
6241};
6242
1011dcce 6243int preempt_dynamic_mode = preempt_dynamic_full;
e59e10f8 6244
1011dcce 6245int sched_dynamic_mode(const char *str)
826bfeb3 6246{
e59e10f8 6247 if (!strcmp(str, "none"))
7e1b2eb7 6248 return preempt_dynamic_none;
e59e10f8
PZ
6249
6250 if (!strcmp(str, "voluntary"))
7e1b2eb7 6251 return preempt_dynamic_voluntary;
e59e10f8
PZ
6252
6253 if (!strcmp(str, "full"))
7e1b2eb7 6254 return preempt_dynamic_full;
e59e10f8 6255
c4681f3f 6256 return -EINVAL;
e59e10f8
PZ
6257}
6258
1011dcce 6259void sched_dynamic_update(int mode)
e59e10f8
PZ
6260{
6261 /*
6262 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6263 * the ZERO state, which is invalid.
6264 */
6265 static_call_update(cond_resched, __cond_resched);
6266 static_call_update(might_resched, __cond_resched);
6267 static_call_update(preempt_schedule, __preempt_schedule_func);
6268 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6269 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6270
6271 switch (mode) {
6272 case preempt_dynamic_none:
826bfeb3 6273 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6274 static_call_update(might_resched, (void *)&__static_call_return0);
6275 static_call_update(preempt_schedule, NULL);
6276 static_call_update(preempt_schedule_notrace, NULL);
6277 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6278 pr_info("Dynamic Preempt: none\n");
6279 break;
6280
6281 case preempt_dynamic_voluntary:
826bfeb3
PZI
6282 static_call_update(cond_resched, __cond_resched);
6283 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6284 static_call_update(preempt_schedule, NULL);
6285 static_call_update(preempt_schedule_notrace, NULL);
6286 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6287 pr_info("Dynamic Preempt: voluntary\n");
6288 break;
6289
6290 case preempt_dynamic_full:
9432bbd9
PZ
6291 static_call_update(cond_resched, (void *)&__static_call_return0);
6292 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6293 static_call_update(preempt_schedule, __preempt_schedule_func);
6294 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6295 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6296 pr_info("Dynamic Preempt: full\n");
6297 break;
6298 }
6299
6300 preempt_dynamic_mode = mode;
6301}
6302
6303static int __init setup_preempt_mode(char *str)
6304{
6305 int mode = sched_dynamic_mode(str);
6306 if (mode < 0) {
6307 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
6308 return 1;
6309 }
e59e10f8
PZ
6310
6311 sched_dynamic_update(mode);
826bfeb3
PZI
6312 return 0;
6313}
6314__setup("preempt=", setup_preempt_mode);
6315
6316#endif /* CONFIG_PREEMPT_DYNAMIC */
6317
1da177e4 6318/*
a49b4f40 6319 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6320 * off of irq context.
6321 * Note, that this is called and return with irqs disabled. This will
6322 * protect us against recursive calling from irq.
6323 */
722a9f92 6324asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6325{
b22366cd 6326 enum ctx_state prev_state;
6478d880 6327
2ed6e34f 6328 /* Catch callers which need to be fixed */
f27dde8d 6329 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6330
b22366cd
FW
6331 prev_state = exception_enter();
6332
3a5c359a 6333 do {
3d8f74dd 6334 preempt_disable();
3a5c359a 6335 local_irq_enable();
fc13aeba 6336 __schedule(true);
3a5c359a 6337 local_irq_disable();
3d8f74dd 6338 sched_preempt_enable_no_resched();
5ed0cec0 6339 } while (need_resched());
b22366cd
FW
6340
6341 exception_exit(prev_state);
1da177e4
LT
6342}
6343
ac6424b9 6344int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6345 void *key)
1da177e4 6346{
062d3f95 6347 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6348 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6349}
1da177e4
LT
6350EXPORT_SYMBOL(default_wake_function);
6351
b29739f9
IM
6352#ifdef CONFIG_RT_MUTEXES
6353
acd58620
PZ
6354static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6355{
6356 if (pi_task)
6357 prio = min(prio, pi_task->prio);
6358
6359 return prio;
6360}
6361
6362static inline int rt_effective_prio(struct task_struct *p, int prio)
6363{
6364 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6365
6366 return __rt_effective_prio(pi_task, prio);
6367}
6368
b29739f9
IM
6369/*
6370 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6371 * @p: task to boost
6372 * @pi_task: donor task
b29739f9
IM
6373 *
6374 * This function changes the 'effective' priority of a task. It does
6375 * not touch ->normal_prio like __setscheduler().
6376 *
c365c292
TG
6377 * Used by the rt_mutex code to implement priority inheritance
6378 * logic. Call site only calls if the priority of the task changed.
b29739f9 6379 */
acd58620 6380void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6381{
acd58620 6382 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6383 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6384 const struct sched_class *prev_class;
eb580751
PZ
6385 struct rq_flags rf;
6386 struct rq *rq;
b29739f9 6387
acd58620
PZ
6388 /* XXX used to be waiter->prio, not waiter->task->prio */
6389 prio = __rt_effective_prio(pi_task, p->normal_prio);
6390
6391 /*
6392 * If nothing changed; bail early.
6393 */
6394 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6395 return;
b29739f9 6396
eb580751 6397 rq = __task_rq_lock(p, &rf);
80f5c1b8 6398 update_rq_clock(rq);
acd58620
PZ
6399 /*
6400 * Set under pi_lock && rq->lock, such that the value can be used under
6401 * either lock.
6402 *
6403 * Note that there is loads of tricky to make this pointer cache work
6404 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6405 * ensure a task is de-boosted (pi_task is set to NULL) before the
6406 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6407 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6408 */
6409 p->pi_top_task = pi_task;
6410
6411 /*
6412 * For FIFO/RR we only need to set prio, if that matches we're done.
6413 */
6414 if (prio == p->prio && !dl_prio(prio))
6415 goto out_unlock;
b29739f9 6416
1c4dd99b
TG
6417 /*
6418 * Idle task boosting is a nono in general. There is one
6419 * exception, when PREEMPT_RT and NOHZ is active:
6420 *
6421 * The idle task calls get_next_timer_interrupt() and holds
6422 * the timer wheel base->lock on the CPU and another CPU wants
6423 * to access the timer (probably to cancel it). We can safely
6424 * ignore the boosting request, as the idle CPU runs this code
6425 * with interrupts disabled and will complete the lock
6426 * protected section without being interrupted. So there is no
6427 * real need to boost.
6428 */
6429 if (unlikely(p == rq->idle)) {
6430 WARN_ON(p != rq->curr);
6431 WARN_ON(p->pi_blocked_on);
6432 goto out_unlock;
6433 }
6434
b91473ff 6435 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6436 oldprio = p->prio;
ff77e468
PZ
6437
6438 if (oldprio == prio)
6439 queue_flag &= ~DEQUEUE_MOVE;
6440
83ab0aa0 6441 prev_class = p->sched_class;
da0c1e65 6442 queued = task_on_rq_queued(p);
051a1d1a 6443 running = task_current(rq, p);
da0c1e65 6444 if (queued)
ff77e468 6445 dequeue_task(rq, p, queue_flag);
0e1f3483 6446 if (running)
f3cd1c4e 6447 put_prev_task(rq, p);
dd41f596 6448
2d3d891d
DF
6449 /*
6450 * Boosting condition are:
6451 * 1. -rt task is running and holds mutex A
6452 * --> -dl task blocks on mutex A
6453 *
6454 * 2. -dl task is running and holds mutex A
6455 * --> -dl task blocks on mutex A and could preempt the
6456 * running task
6457 */
6458 if (dl_prio(prio)) {
466af29b 6459 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6460 (pi_task && dl_prio(pi_task->prio) &&
6461 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6462 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6463 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6464 } else {
6465 p->dl.pi_se = &p->dl;
6466 }
aab03e05 6467 p->sched_class = &dl_sched_class;
2d3d891d
DF
6468 } else if (rt_prio(prio)) {
6469 if (dl_prio(oldprio))
2279f540 6470 p->dl.pi_se = &p->dl;
2d3d891d 6471 if (oldprio < prio)
ff77e468 6472 queue_flag |= ENQUEUE_HEAD;
dd41f596 6473 p->sched_class = &rt_sched_class;
2d3d891d
DF
6474 } else {
6475 if (dl_prio(oldprio))
2279f540 6476 p->dl.pi_se = &p->dl;
746db944
BS
6477 if (rt_prio(oldprio))
6478 p->rt.timeout = 0;
dd41f596 6479 p->sched_class = &fair_sched_class;
2d3d891d 6480 }
dd41f596 6481
b29739f9
IM
6482 p->prio = prio;
6483
da0c1e65 6484 if (queued)
ff77e468 6485 enqueue_task(rq, p, queue_flag);
a399d233 6486 if (running)
03b7fad1 6487 set_next_task(rq, p);
cb469845 6488
da7a735e 6489 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6490out_unlock:
d1ccc66d
IM
6491 /* Avoid rq from going away on us: */
6492 preempt_disable();
4c9a4bc8 6493
565790d2
PZ
6494 rq_unpin_lock(rq, &rf);
6495 __balance_callbacks(rq);
5cb9eaa3 6496 raw_spin_rq_unlock(rq);
565790d2 6497
4c9a4bc8 6498 preempt_enable();
b29739f9 6499}
acd58620
PZ
6500#else
6501static inline int rt_effective_prio(struct task_struct *p, int prio)
6502{
6503 return prio;
6504}
b29739f9 6505#endif
d50dde5a 6506
36c8b586 6507void set_user_nice(struct task_struct *p, long nice)
1da177e4 6508{
49bd21ef 6509 bool queued, running;
53a23364 6510 int old_prio;
eb580751 6511 struct rq_flags rf;
70b97a7f 6512 struct rq *rq;
1da177e4 6513
75e45d51 6514 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6515 return;
6516 /*
6517 * We have to be careful, if called from sys_setpriority(),
6518 * the task might be in the middle of scheduling on another CPU.
6519 */
eb580751 6520 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6521 update_rq_clock(rq);
6522
1da177e4
LT
6523 /*
6524 * The RT priorities are set via sched_setscheduler(), but we still
6525 * allow the 'normal' nice value to be set - but as expected
b19a888c 6526 * it won't have any effect on scheduling until the task is
aab03e05 6527 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6528 */
aab03e05 6529 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6530 p->static_prio = NICE_TO_PRIO(nice);
6531 goto out_unlock;
6532 }
da0c1e65 6533 queued = task_on_rq_queued(p);
49bd21ef 6534 running = task_current(rq, p);
da0c1e65 6535 if (queued)
7a57f32a 6536 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6537 if (running)
6538 put_prev_task(rq, p);
1da177e4 6539
1da177e4 6540 p->static_prio = NICE_TO_PRIO(nice);
9059393e 6541 set_load_weight(p, true);
b29739f9
IM
6542 old_prio = p->prio;
6543 p->prio = effective_prio(p);
1da177e4 6544
5443a0be 6545 if (queued)
7134b3e9 6546 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6547 if (running)
03b7fad1 6548 set_next_task(rq, p);
5443a0be
FW
6549
6550 /*
6551 * If the task increased its priority or is running and
6552 * lowered its priority, then reschedule its CPU:
6553 */
6554 p->sched_class->prio_changed(rq, p, old_prio);
6555
1da177e4 6556out_unlock:
eb580751 6557 task_rq_unlock(rq, p, &rf);
1da177e4 6558}
1da177e4
LT
6559EXPORT_SYMBOL(set_user_nice);
6560
e43379f1
MM
6561/*
6562 * can_nice - check if a task can reduce its nice value
6563 * @p: task
6564 * @nice: nice value
6565 */
36c8b586 6566int can_nice(const struct task_struct *p, const int nice)
e43379f1 6567{
d1ccc66d 6568 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6569 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6570
78d7d407 6571 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6572 capable(CAP_SYS_NICE));
6573}
6574
1da177e4
LT
6575#ifdef __ARCH_WANT_SYS_NICE
6576
6577/*
6578 * sys_nice - change the priority of the current process.
6579 * @increment: priority increment
6580 *
6581 * sys_setpriority is a more generic, but much slower function that
6582 * does similar things.
6583 */
5add95d4 6584SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6585{
48f24c4d 6586 long nice, retval;
1da177e4
LT
6587
6588 /*
6589 * Setpriority might change our priority at the same moment.
6590 * We don't have to worry. Conceptually one call occurs first
6591 * and we have a single winner.
6592 */
a9467fa3 6593 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6594 nice = task_nice(current) + increment;
1da177e4 6595
a9467fa3 6596 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6597 if (increment < 0 && !can_nice(current, nice))
6598 return -EPERM;
6599
1da177e4
LT
6600 retval = security_task_setnice(current, nice);
6601 if (retval)
6602 return retval;
6603
6604 set_user_nice(current, nice);
6605 return 0;
6606}
6607
6608#endif
6609
6610/**
6611 * task_prio - return the priority value of a given task.
6612 * @p: the task in question.
6613 *
e69f6186 6614 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6615 *
6616 * sched policy return value kernel prio user prio/nice
6617 *
6618 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6619 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6620 * deadline -101 -1 0
1da177e4 6621 */
36c8b586 6622int task_prio(const struct task_struct *p)
1da177e4
LT
6623{
6624 return p->prio - MAX_RT_PRIO;
6625}
6626
1da177e4 6627/**
d1ccc66d 6628 * idle_cpu - is a given CPU idle currently?
1da177e4 6629 * @cpu: the processor in question.
e69f6186
YB
6630 *
6631 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
6632 */
6633int idle_cpu(int cpu)
6634{
908a3283
TG
6635 struct rq *rq = cpu_rq(cpu);
6636
6637 if (rq->curr != rq->idle)
6638 return 0;
6639
6640 if (rq->nr_running)
6641 return 0;
6642
6643#ifdef CONFIG_SMP
126c2092 6644 if (rq->ttwu_pending)
908a3283
TG
6645 return 0;
6646#endif
6647
6648 return 1;
1da177e4
LT
6649}
6650
943d355d
RJ
6651/**
6652 * available_idle_cpu - is a given CPU idle for enqueuing work.
6653 * @cpu: the CPU in question.
6654 *
6655 * Return: 1 if the CPU is currently idle. 0 otherwise.
6656 */
6657int available_idle_cpu(int cpu)
6658{
6659 if (!idle_cpu(cpu))
6660 return 0;
6661
247f2f6f
RJ
6662 if (vcpu_is_preempted(cpu))
6663 return 0;
6664
908a3283 6665 return 1;
1da177e4
LT
6666}
6667
1da177e4 6668/**
d1ccc66d 6669 * idle_task - return the idle task for a given CPU.
1da177e4 6670 * @cpu: the processor in question.
e69f6186 6671 *
d1ccc66d 6672 * Return: The idle task for the CPU @cpu.
1da177e4 6673 */
36c8b586 6674struct task_struct *idle_task(int cpu)
1da177e4
LT
6675{
6676 return cpu_rq(cpu)->idle;
6677}
6678
7d6a905f
VK
6679#ifdef CONFIG_SMP
6680/*
6681 * This function computes an effective utilization for the given CPU, to be
6682 * used for frequency selection given the linear relation: f = u * f_max.
6683 *
6684 * The scheduler tracks the following metrics:
6685 *
6686 * cpu_util_{cfs,rt,dl,irq}()
6687 * cpu_bw_dl()
6688 *
6689 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6690 * synchronized windows and are thus directly comparable.
6691 *
6692 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6693 * which excludes things like IRQ and steal-time. These latter are then accrued
6694 * in the irq utilization.
6695 *
6696 * The DL bandwidth number otoh is not a measured metric but a value computed
6697 * based on the task model parameters and gives the minimal utilization
6698 * required to meet deadlines.
6699 */
a5418be9
VK
6700unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6701 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
6702 struct task_struct *p)
6703{
6704 unsigned long dl_util, util, irq;
6705 struct rq *rq = cpu_rq(cpu);
6706
6707 if (!uclamp_is_used() &&
6708 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6709 return max;
6710 }
6711
6712 /*
6713 * Early check to see if IRQ/steal time saturates the CPU, can be
6714 * because of inaccuracies in how we track these -- see
6715 * update_irq_load_avg().
6716 */
6717 irq = cpu_util_irq(rq);
6718 if (unlikely(irq >= max))
6719 return max;
6720
6721 /*
6722 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6723 * CFS tasks and we use the same metric to track the effective
6724 * utilization (PELT windows are synchronized) we can directly add them
6725 * to obtain the CPU's actual utilization.
6726 *
6727 * CFS and RT utilization can be boosted or capped, depending on
6728 * utilization clamp constraints requested by currently RUNNABLE
6729 * tasks.
6730 * When there are no CFS RUNNABLE tasks, clamps are released and
6731 * frequency will be gracefully reduced with the utilization decay.
6732 */
6733 util = util_cfs + cpu_util_rt(rq);
6734 if (type == FREQUENCY_UTIL)
6735 util = uclamp_rq_util_with(rq, util, p);
6736
6737 dl_util = cpu_util_dl(rq);
6738
6739 /*
6740 * For frequency selection we do not make cpu_util_dl() a permanent part
6741 * of this sum because we want to use cpu_bw_dl() later on, but we need
6742 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6743 * that we select f_max when there is no idle time.
6744 *
6745 * NOTE: numerical errors or stop class might cause us to not quite hit
6746 * saturation when we should -- something for later.
6747 */
6748 if (util + dl_util >= max)
6749 return max;
6750
6751 /*
6752 * OTOH, for energy computation we need the estimated running time, so
6753 * include util_dl and ignore dl_bw.
6754 */
6755 if (type == ENERGY_UTIL)
6756 util += dl_util;
6757
6758 /*
6759 * There is still idle time; further improve the number by using the
6760 * irq metric. Because IRQ/steal time is hidden from the task clock we
6761 * need to scale the task numbers:
6762 *
6763 * max - irq
6764 * U' = irq + --------- * U
6765 * max
6766 */
6767 util = scale_irq_capacity(util, irq, max);
6768 util += irq;
6769
6770 /*
6771 * Bandwidth required by DEADLINE must always be granted while, for
6772 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6773 * to gracefully reduce the frequency when no tasks show up for longer
6774 * periods of time.
6775 *
6776 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6777 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6778 * an interface. So, we only do the latter for now.
6779 */
6780 if (type == FREQUENCY_UTIL)
6781 util += cpu_bw_dl(rq);
6782
6783 return min(max, util);
6784}
a5418be9
VK
6785
6786unsigned long sched_cpu_util(int cpu, unsigned long max)
6787{
6788 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6789 ENERGY_UTIL, NULL);
6790}
7d6a905f
VK
6791#endif /* CONFIG_SMP */
6792
1da177e4
LT
6793/**
6794 * find_process_by_pid - find a process with a matching PID value.
6795 * @pid: the pid in question.
e69f6186
YB
6796 *
6797 * The task of @pid, if found. %NULL otherwise.
1da177e4 6798 */
a9957449 6799static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6800{
228ebcbe 6801 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6802}
6803
c13db6b1
SR
6804/*
6805 * sched_setparam() passes in -1 for its policy, to let the functions
6806 * it calls know not to change it.
6807 */
6808#define SETPARAM_POLICY -1
6809
c365c292
TG
6810static void __setscheduler_params(struct task_struct *p,
6811 const struct sched_attr *attr)
1da177e4 6812{
d50dde5a
DF
6813 int policy = attr->sched_policy;
6814
c13db6b1 6815 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6816 policy = p->policy;
6817
1da177e4 6818 p->policy = policy;
d50dde5a 6819
aab03e05
DF
6820 if (dl_policy(policy))
6821 __setparam_dl(p, attr);
39fd8fd2 6822 else if (fair_policy(policy))
d50dde5a
DF
6823 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6824
39fd8fd2
PZ
6825 /*
6826 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6827 * !rt_policy. Always setting this ensures that things like
6828 * getparam()/getattr() don't report silly values for !rt tasks.
6829 */
6830 p->rt_priority = attr->sched_priority;
383afd09 6831 p->normal_prio = normal_prio(p);
9059393e 6832 set_load_weight(p, true);
c365c292 6833}
39fd8fd2 6834
c365c292
TG
6835/* Actually do priority change: must hold pi & rq lock. */
6836static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6837 const struct sched_attr *attr, bool keep_boost)
c365c292 6838{
a509a7cd
PB
6839 /*
6840 * If params can't change scheduling class changes aren't allowed
6841 * either.
6842 */
6843 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6844 return;
6845
c365c292 6846 __setscheduler_params(p, attr);
d50dde5a 6847
383afd09 6848 /*
0782e63b
TG
6849 * Keep a potential priority boosting if called from
6850 * sched_setscheduler().
383afd09 6851 */
acd58620 6852 p->prio = normal_prio(p);
0782e63b 6853 if (keep_boost)
acd58620 6854 p->prio = rt_effective_prio(p, p->prio);
383afd09 6855
aab03e05
DF
6856 if (dl_prio(p->prio))
6857 p->sched_class = &dl_sched_class;
6858 else if (rt_prio(p->prio))
ffd44db5
PZ
6859 p->sched_class = &rt_sched_class;
6860 else
6861 p->sched_class = &fair_sched_class;
1da177e4 6862}
aab03e05 6863
c69e8d9c 6864/*
d1ccc66d 6865 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6866 */
6867static bool check_same_owner(struct task_struct *p)
6868{
6869 const struct cred *cred = current_cred(), *pcred;
6870 bool match;
6871
6872 rcu_read_lock();
6873 pcred = __task_cred(p);
9c806aa0
EB
6874 match = (uid_eq(cred->euid, pcred->euid) ||
6875 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6876 rcu_read_unlock();
6877 return match;
6878}
6879
d50dde5a
DF
6880static int __sched_setscheduler(struct task_struct *p,
6881 const struct sched_attr *attr,
dbc7f069 6882 bool user, bool pi)
1da177e4 6883{
383afd09
SR
6884 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6885 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6886 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6887 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6888 const struct sched_class *prev_class;
565790d2 6889 struct callback_head *head;
eb580751 6890 struct rq_flags rf;
ca94c442 6891 int reset_on_fork;
7a57f32a 6892 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6893 struct rq *rq;
1da177e4 6894
896bbb25
SRV
6895 /* The pi code expects interrupts enabled */
6896 BUG_ON(pi && in_interrupt());
1da177e4 6897recheck:
d1ccc66d 6898 /* Double check policy once rq lock held: */
ca94c442
LP
6899 if (policy < 0) {
6900 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6901 policy = oldpolicy = p->policy;
ca94c442 6902 } else {
7479f3c9 6903 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6904
20f9cd2a 6905 if (!valid_policy(policy))
ca94c442
LP
6906 return -EINVAL;
6907 }
6908
794a56eb 6909 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6910 return -EINVAL;
6911
1da177e4
LT
6912 /*
6913 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6914 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6915 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6916 */
ae18ad28 6917 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6918 return -EINVAL;
aab03e05
DF
6919 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6920 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6921 return -EINVAL;
6922
37e4ab3f
OC
6923 /*
6924 * Allow unprivileged RT tasks to decrease priority:
6925 */
961ccddd 6926 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6927 if (fair_policy(policy)) {
d0ea0268 6928 if (attr->sched_nice < task_nice(p) &&
eaad4513 6929 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6930 return -EPERM;
6931 }
6932
e05606d3 6933 if (rt_policy(policy)) {
a44702e8
ON
6934 unsigned long rlim_rtprio =
6935 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6936
d1ccc66d 6937 /* Can't set/change the rt policy: */
8dc3e909
ON
6938 if (policy != p->policy && !rlim_rtprio)
6939 return -EPERM;
6940
d1ccc66d 6941 /* Can't increase priority: */
d50dde5a
DF
6942 if (attr->sched_priority > p->rt_priority &&
6943 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6944 return -EPERM;
6945 }
c02aa73b 6946
d44753b8
JL
6947 /*
6948 * Can't set/change SCHED_DEADLINE policy at all for now
6949 * (safest behavior); in the future we would like to allow
6950 * unprivileged DL tasks to increase their relative deadline
6951 * or reduce their runtime (both ways reducing utilization)
6952 */
6953 if (dl_policy(policy))
6954 return -EPERM;
6955
dd41f596 6956 /*
c02aa73b
DH
6957 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6958 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6959 */
1da1843f 6960 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6961 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6962 return -EPERM;
6963 }
5fe1d75f 6964
d1ccc66d 6965 /* Can't change other user's priorities: */
c69e8d9c 6966 if (!check_same_owner(p))
37e4ab3f 6967 return -EPERM;
ca94c442 6968
d1ccc66d 6969 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6970 if (p->sched_reset_on_fork && !reset_on_fork)
6971 return -EPERM;
37e4ab3f 6972 }
1da177e4 6973
725aad24 6974 if (user) {
794a56eb
JL
6975 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6976 return -EINVAL;
6977
b0ae1981 6978 retval = security_task_setscheduler(p);
725aad24
JF
6979 if (retval)
6980 return retval;
6981 }
6982
a509a7cd
PB
6983 /* Update task specific "requested" clamps */
6984 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6985 retval = uclamp_validate(p, attr);
6986 if (retval)
6987 return retval;
6988 }
6989
710da3c8
JL
6990 if (pi)
6991 cpuset_read_lock();
6992
b29739f9 6993 /*
d1ccc66d 6994 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6995 * changing the priority of the task:
0122ec5b 6996 *
25985edc 6997 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6998 * runqueue lock must be held.
6999 */
eb580751 7000 rq = task_rq_lock(p, &rf);
80f5c1b8 7001 update_rq_clock(rq);
dc61b1d6 7002
34f971f6 7003 /*
d1ccc66d 7004 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7005 */
7006 if (p == rq->stop) {
4b211f2b
MP
7007 retval = -EINVAL;
7008 goto unlock;
34f971f6
PZ
7009 }
7010
a51e9198 7011 /*
d6b1e911
TG
7012 * If not changing anything there's no need to proceed further,
7013 * but store a possible modification of reset_on_fork.
a51e9198 7014 */
d50dde5a 7015 if (unlikely(policy == p->policy)) {
d0ea0268 7016 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7017 goto change;
7018 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7019 goto change;
75381608 7020 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7021 goto change;
a509a7cd
PB
7022 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7023 goto change;
d50dde5a 7024
d6b1e911 7025 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7026 retval = 0;
7027 goto unlock;
a51e9198 7028 }
d50dde5a 7029change:
a51e9198 7030
dc61b1d6 7031 if (user) {
332ac17e 7032#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7033 /*
7034 * Do not allow realtime tasks into groups that have no runtime
7035 * assigned.
7036 */
7037 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7038 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7039 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7040 retval = -EPERM;
7041 goto unlock;
dc61b1d6 7042 }
dc61b1d6 7043#endif
332ac17e 7044#ifdef CONFIG_SMP
794a56eb
JL
7045 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7046 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7047 cpumask_t *span = rq->rd->span;
332ac17e
DF
7048
7049 /*
7050 * Don't allow tasks with an affinity mask smaller than
7051 * the entire root_domain to become SCHED_DEADLINE. We
7052 * will also fail if there's no bandwidth available.
7053 */
3bd37062 7054 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7055 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7056 retval = -EPERM;
7057 goto unlock;
332ac17e
DF
7058 }
7059 }
7060#endif
7061 }
dc61b1d6 7062
d1ccc66d 7063 /* Re-check policy now with rq lock held: */
1da177e4
LT
7064 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7065 policy = oldpolicy = -1;
eb580751 7066 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7067 if (pi)
7068 cpuset_read_unlock();
1da177e4
LT
7069 goto recheck;
7070 }
332ac17e
DF
7071
7072 /*
7073 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7074 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7075 * is available.
7076 */
06a76fe0 7077 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7078 retval = -EBUSY;
7079 goto unlock;
332ac17e
DF
7080 }
7081
c365c292
TG
7082 p->sched_reset_on_fork = reset_on_fork;
7083 oldprio = p->prio;
7084
dbc7f069
PZ
7085 if (pi) {
7086 /*
7087 * Take priority boosted tasks into account. If the new
7088 * effective priority is unchanged, we just store the new
7089 * normal parameters and do not touch the scheduler class and
7090 * the runqueue. This will be done when the task deboost
7091 * itself.
7092 */
acd58620 7093 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
7094 if (new_effective_prio == oldprio)
7095 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7096 }
7097
da0c1e65 7098 queued = task_on_rq_queued(p);
051a1d1a 7099 running = task_current(rq, p);
da0c1e65 7100 if (queued)
ff77e468 7101 dequeue_task(rq, p, queue_flags);
0e1f3483 7102 if (running)
f3cd1c4e 7103 put_prev_task(rq, p);
f6b53205 7104
83ab0aa0 7105 prev_class = p->sched_class;
a509a7cd 7106
dbc7f069 7107 __setscheduler(rq, p, attr, pi);
a509a7cd 7108 __setscheduler_uclamp(p, attr);
f6b53205 7109
da0c1e65 7110 if (queued) {
81a44c54
TG
7111 /*
7112 * We enqueue to tail when the priority of a task is
7113 * increased (user space view).
7114 */
ff77e468
PZ
7115 if (oldprio < p->prio)
7116 queue_flags |= ENQUEUE_HEAD;
1de64443 7117
ff77e468 7118 enqueue_task(rq, p, queue_flags);
81a44c54 7119 }
a399d233 7120 if (running)
03b7fad1 7121 set_next_task(rq, p);
cb469845 7122
da7a735e 7123 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7124
7125 /* Avoid rq from going away on us: */
7126 preempt_disable();
565790d2 7127 head = splice_balance_callbacks(rq);
eb580751 7128 task_rq_unlock(rq, p, &rf);
b29739f9 7129
710da3c8
JL
7130 if (pi) {
7131 cpuset_read_unlock();
dbc7f069 7132 rt_mutex_adjust_pi(p);
710da3c8 7133 }
95e02ca9 7134
d1ccc66d 7135 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7136 balance_callbacks(rq, head);
4c9a4bc8 7137 preempt_enable();
95e02ca9 7138
1da177e4 7139 return 0;
4b211f2b
MP
7140
7141unlock:
7142 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7143 if (pi)
7144 cpuset_read_unlock();
4b211f2b 7145 return retval;
1da177e4 7146}
961ccddd 7147
7479f3c9
PZ
7148static int _sched_setscheduler(struct task_struct *p, int policy,
7149 const struct sched_param *param, bool check)
7150{
7151 struct sched_attr attr = {
7152 .sched_policy = policy,
7153 .sched_priority = param->sched_priority,
7154 .sched_nice = PRIO_TO_NICE(p->static_prio),
7155 };
7156
c13db6b1
SR
7157 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7158 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7159 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7160 policy &= ~SCHED_RESET_ON_FORK;
7161 attr.sched_policy = policy;
7162 }
7163
dbc7f069 7164 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7165}
961ccddd
RR
7166/**
7167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7168 * @p: the task in question.
7169 * @policy: new policy.
7170 * @param: structure containing the new RT priority.
7171 *
7318d4cc
PZ
7172 * Use sched_set_fifo(), read its comment.
7173 *
e69f6186
YB
7174 * Return: 0 on success. An error code otherwise.
7175 *
961ccddd
RR
7176 * NOTE that the task may be already dead.
7177 */
7178int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7179 const struct sched_param *param)
961ccddd 7180{
7479f3c9 7181 return _sched_setscheduler(p, policy, param, true);
961ccddd 7182}
1da177e4 7183
d50dde5a
DF
7184int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7185{
dbc7f069 7186 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7187}
d50dde5a 7188
794a56eb
JL
7189int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7190{
7191 return __sched_setscheduler(p, attr, false, true);
7192}
4c38f2df 7193EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7194
961ccddd
RR
7195/**
7196 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7197 * @p: the task in question.
7198 * @policy: new policy.
7199 * @param: structure containing the new RT priority.
7200 *
7201 * Just like sched_setscheduler, only don't bother checking if the
7202 * current context has permission. For example, this is needed in
7203 * stop_machine(): we create temporary high priority worker threads,
7204 * but our caller might not have that capability.
e69f6186
YB
7205 *
7206 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7207 */
7208int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7209 const struct sched_param *param)
961ccddd 7210{
7479f3c9 7211 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7212}
7213
7318d4cc
PZ
7214/*
7215 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7216 * incapable of resource management, which is the one thing an OS really should
7217 * be doing.
7218 *
7219 * This is of course the reason it is limited to privileged users only.
7220 *
7221 * Worse still; it is fundamentally impossible to compose static priority
7222 * workloads. You cannot take two correctly working static prio workloads
7223 * and smash them together and still expect them to work.
7224 *
7225 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7226 *
7227 * MAX_RT_PRIO / 2
7228 *
7229 * The administrator _MUST_ configure the system, the kernel simply doesn't
7230 * know enough information to make a sensible choice.
7231 */
8b700983 7232void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7233{
7234 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7235 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7236}
7237EXPORT_SYMBOL_GPL(sched_set_fifo);
7238
7239/*
7240 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7241 */
8b700983 7242void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7243{
7244 struct sched_param sp = { .sched_priority = 1 };
8b700983 7245 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7246}
7247EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7248
8b700983 7249void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7250{
7251 struct sched_attr attr = {
7252 .sched_policy = SCHED_NORMAL,
7253 .sched_nice = nice,
7254 };
8b700983 7255 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7256}
7257EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7258
95cdf3b7
IM
7259static int
7260do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7261{
1da177e4
LT
7262 struct sched_param lparam;
7263 struct task_struct *p;
36c8b586 7264 int retval;
1da177e4
LT
7265
7266 if (!param || pid < 0)
7267 return -EINVAL;
7268 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7269 return -EFAULT;
5fe1d75f
ON
7270
7271 rcu_read_lock();
7272 retval = -ESRCH;
1da177e4 7273 p = find_process_by_pid(pid);
710da3c8
JL
7274 if (likely(p))
7275 get_task_struct(p);
5fe1d75f 7276 rcu_read_unlock();
36c8b586 7277
710da3c8
JL
7278 if (likely(p)) {
7279 retval = sched_setscheduler(p, policy, &lparam);
7280 put_task_struct(p);
7281 }
7282
1da177e4
LT
7283 return retval;
7284}
7285
d50dde5a
DF
7286/*
7287 * Mimics kernel/events/core.c perf_copy_attr().
7288 */
d1ccc66d 7289static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7290{
7291 u32 size;
7292 int ret;
7293
d1ccc66d 7294 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7295 memset(attr, 0, sizeof(*attr));
7296
7297 ret = get_user(size, &uattr->size);
7298 if (ret)
7299 return ret;
7300
d1ccc66d
IM
7301 /* ABI compatibility quirk: */
7302 if (!size)
d50dde5a 7303 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7304 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7305 goto err_size;
7306
dff3a85f
AS
7307 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7308 if (ret) {
7309 if (ret == -E2BIG)
7310 goto err_size;
7311 return ret;
d50dde5a
DF
7312 }
7313
a509a7cd
PB
7314 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7315 size < SCHED_ATTR_SIZE_VER1)
7316 return -EINVAL;
7317
d50dde5a 7318 /*
d1ccc66d 7319 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7320 * to be strict and return an error on out-of-bounds values?
7321 */
75e45d51 7322 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7323
e78c7bca 7324 return 0;
d50dde5a
DF
7325
7326err_size:
7327 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7328 return -E2BIG;
d50dde5a
DF
7329}
7330
f4dddf90
QP
7331static void get_params(struct task_struct *p, struct sched_attr *attr)
7332{
7333 if (task_has_dl_policy(p))
7334 __getparam_dl(p, attr);
7335 else if (task_has_rt_policy(p))
7336 attr->sched_priority = p->rt_priority;
7337 else
7338 attr->sched_nice = task_nice(p);
7339}
7340
1da177e4
LT
7341/**
7342 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7343 * @pid: the pid in question.
7344 * @policy: new policy.
7345 * @param: structure containing the new RT priority.
e69f6186
YB
7346 *
7347 * Return: 0 on success. An error code otherwise.
1da177e4 7348 */
d1ccc66d 7349SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7350{
c21761f1
JB
7351 if (policy < 0)
7352 return -EINVAL;
7353
1da177e4
LT
7354 return do_sched_setscheduler(pid, policy, param);
7355}
7356
7357/**
7358 * sys_sched_setparam - set/change the RT priority of a thread
7359 * @pid: the pid in question.
7360 * @param: structure containing the new RT priority.
e69f6186
YB
7361 *
7362 * Return: 0 on success. An error code otherwise.
1da177e4 7363 */
5add95d4 7364SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7365{
c13db6b1 7366 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7367}
7368
d50dde5a
DF
7369/**
7370 * sys_sched_setattr - same as above, but with extended sched_attr
7371 * @pid: the pid in question.
5778fccf 7372 * @uattr: structure containing the extended parameters.
db66d756 7373 * @flags: for future extension.
d50dde5a 7374 */
6d35ab48
PZ
7375SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7376 unsigned int, flags)
d50dde5a
DF
7377{
7378 struct sched_attr attr;
7379 struct task_struct *p;
7380 int retval;
7381
6d35ab48 7382 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7383 return -EINVAL;
7384
143cf23d
MK
7385 retval = sched_copy_attr(uattr, &attr);
7386 if (retval)
7387 return retval;
d50dde5a 7388
b14ed2c2 7389 if ((int)attr.sched_policy < 0)
dbdb2275 7390 return -EINVAL;
1d6362fa
PB
7391 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7392 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7393
7394 rcu_read_lock();
7395 retval = -ESRCH;
7396 p = find_process_by_pid(pid);
a509a7cd
PB
7397 if (likely(p))
7398 get_task_struct(p);
d50dde5a
DF
7399 rcu_read_unlock();
7400
a509a7cd 7401 if (likely(p)) {
f4dddf90
QP
7402 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7403 get_params(p, &attr);
a509a7cd
PB
7404 retval = sched_setattr(p, &attr);
7405 put_task_struct(p);
7406 }
7407
d50dde5a
DF
7408 return retval;
7409}
7410
1da177e4
LT
7411/**
7412 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7413 * @pid: the pid in question.
e69f6186
YB
7414 *
7415 * Return: On success, the policy of the thread. Otherwise, a negative error
7416 * code.
1da177e4 7417 */
5add95d4 7418SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7419{
36c8b586 7420 struct task_struct *p;
3a5c359a 7421 int retval;
1da177e4
LT
7422
7423 if (pid < 0)
3a5c359a 7424 return -EINVAL;
1da177e4
LT
7425
7426 retval = -ESRCH;
5fe85be0 7427 rcu_read_lock();
1da177e4
LT
7428 p = find_process_by_pid(pid);
7429 if (p) {
7430 retval = security_task_getscheduler(p);
7431 if (!retval)
ca94c442
LP
7432 retval = p->policy
7433 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7434 }
5fe85be0 7435 rcu_read_unlock();
1da177e4
LT
7436 return retval;
7437}
7438
7439/**
ca94c442 7440 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7441 * @pid: the pid in question.
7442 * @param: structure containing the RT priority.
e69f6186
YB
7443 *
7444 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7445 * code.
1da177e4 7446 */
5add95d4 7447SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7448{
ce5f7f82 7449 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7450 struct task_struct *p;
3a5c359a 7451 int retval;
1da177e4
LT
7452
7453 if (!param || pid < 0)
3a5c359a 7454 return -EINVAL;
1da177e4 7455
5fe85be0 7456 rcu_read_lock();
1da177e4
LT
7457 p = find_process_by_pid(pid);
7458 retval = -ESRCH;
7459 if (!p)
7460 goto out_unlock;
7461
7462 retval = security_task_getscheduler(p);
7463 if (retval)
7464 goto out_unlock;
7465
ce5f7f82
PZ
7466 if (task_has_rt_policy(p))
7467 lp.sched_priority = p->rt_priority;
5fe85be0 7468 rcu_read_unlock();
1da177e4
LT
7469
7470 /*
7471 * This one might sleep, we cannot do it with a spinlock held ...
7472 */
7473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7474
1da177e4
LT
7475 return retval;
7476
7477out_unlock:
5fe85be0 7478 rcu_read_unlock();
1da177e4
LT
7479 return retval;
7480}
7481
1251201c
IM
7482/*
7483 * Copy the kernel size attribute structure (which might be larger
7484 * than what user-space knows about) to user-space.
7485 *
7486 * Note that all cases are valid: user-space buffer can be larger or
7487 * smaller than the kernel-space buffer. The usual case is that both
7488 * have the same size.
7489 */
7490static int
7491sched_attr_copy_to_user(struct sched_attr __user *uattr,
7492 struct sched_attr *kattr,
7493 unsigned int usize)
d50dde5a 7494{
1251201c 7495 unsigned int ksize = sizeof(*kattr);
d50dde5a 7496
96d4f267 7497 if (!access_ok(uattr, usize))
d50dde5a
DF
7498 return -EFAULT;
7499
7500 /*
1251201c
IM
7501 * sched_getattr() ABI forwards and backwards compatibility:
7502 *
7503 * If usize == ksize then we just copy everything to user-space and all is good.
7504 *
7505 * If usize < ksize then we only copy as much as user-space has space for,
7506 * this keeps ABI compatibility as well. We skip the rest.
7507 *
7508 * If usize > ksize then user-space is using a newer version of the ABI,
7509 * which part the kernel doesn't know about. Just ignore it - tooling can
7510 * detect the kernel's knowledge of attributes from the attr->size value
7511 * which is set to ksize in this case.
d50dde5a 7512 */
1251201c 7513 kattr->size = min(usize, ksize);
d50dde5a 7514
1251201c 7515 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7516 return -EFAULT;
7517
22400674 7518 return 0;
d50dde5a
DF
7519}
7520
7521/**
aab03e05 7522 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7523 * @pid: the pid in question.
5778fccf 7524 * @uattr: structure containing the extended parameters.
dff3a85f 7525 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7526 * @flags: for future extension.
d50dde5a 7527 */
6d35ab48 7528SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7529 unsigned int, usize, unsigned int, flags)
d50dde5a 7530{
1251201c 7531 struct sched_attr kattr = { };
d50dde5a
DF
7532 struct task_struct *p;
7533 int retval;
7534
1251201c
IM
7535 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7536 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7537 return -EINVAL;
7538
7539 rcu_read_lock();
7540 p = find_process_by_pid(pid);
7541 retval = -ESRCH;
7542 if (!p)
7543 goto out_unlock;
7544
7545 retval = security_task_getscheduler(p);
7546 if (retval)
7547 goto out_unlock;
7548
1251201c 7549 kattr.sched_policy = p->policy;
7479f3c9 7550 if (p->sched_reset_on_fork)
1251201c 7551 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 7552 get_params(p, &kattr);
7ad721bf 7553 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 7554
a509a7cd 7555#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7556 /*
7557 * This could race with another potential updater, but this is fine
7558 * because it'll correctly read the old or the new value. We don't need
7559 * to guarantee who wins the race as long as it doesn't return garbage.
7560 */
1251201c
IM
7561 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7562 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7563#endif
7564
d50dde5a
DF
7565 rcu_read_unlock();
7566
1251201c 7567 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7568
7569out_unlock:
7570 rcu_read_unlock();
7571 return retval;
7572}
7573
96f874e2 7574long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 7575{
5a16f3d3 7576 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
7577 struct task_struct *p;
7578 int retval;
1da177e4 7579
23f5d142 7580 rcu_read_lock();
1da177e4
LT
7581
7582 p = find_process_by_pid(pid);
7583 if (!p) {
23f5d142 7584 rcu_read_unlock();
1da177e4
LT
7585 return -ESRCH;
7586 }
7587
23f5d142 7588 /* Prevent p going away */
1da177e4 7589 get_task_struct(p);
23f5d142 7590 rcu_read_unlock();
1da177e4 7591
14a40ffc
TH
7592 if (p->flags & PF_NO_SETAFFINITY) {
7593 retval = -EINVAL;
7594 goto out_put_task;
7595 }
5a16f3d3
RR
7596 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7597 retval = -ENOMEM;
7598 goto out_put_task;
7599 }
7600 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7601 retval = -ENOMEM;
7602 goto out_free_cpus_allowed;
7603 }
1da177e4 7604 retval = -EPERM;
4c44aaaf
EB
7605 if (!check_same_owner(p)) {
7606 rcu_read_lock();
7607 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7608 rcu_read_unlock();
16303ab2 7609 goto out_free_new_mask;
4c44aaaf
EB
7610 }
7611 rcu_read_unlock();
7612 }
1da177e4 7613
b0ae1981 7614 retval = security_task_setscheduler(p);
e7834f8f 7615 if (retval)
16303ab2 7616 goto out_free_new_mask;
e7834f8f 7617
e4099a5e
PZ
7618
7619 cpuset_cpus_allowed(p, cpus_allowed);
7620 cpumask_and(new_mask, in_mask, cpus_allowed);
7621
332ac17e
DF
7622 /*
7623 * Since bandwidth control happens on root_domain basis,
7624 * if admission test is enabled, we only admit -deadline
7625 * tasks allowed to run on all the CPUs in the task's
7626 * root_domain.
7627 */
7628#ifdef CONFIG_SMP
f1e3a093
KT
7629 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7630 rcu_read_lock();
7631 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 7632 retval = -EBUSY;
f1e3a093 7633 rcu_read_unlock();
16303ab2 7634 goto out_free_new_mask;
332ac17e 7635 }
f1e3a093 7636 rcu_read_unlock();
332ac17e
DF
7637 }
7638#endif
49246274 7639again:
9cfc3e18 7640 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 7641
8707d8b8 7642 if (!retval) {
5a16f3d3
RR
7643 cpuset_cpus_allowed(p, cpus_allowed);
7644 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
7645 /*
7646 * We must have raced with a concurrent cpuset
7647 * update. Just reset the cpus_allowed to the
7648 * cpuset's cpus_allowed
7649 */
5a16f3d3 7650 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
7651 goto again;
7652 }
7653 }
16303ab2 7654out_free_new_mask:
5a16f3d3
RR
7655 free_cpumask_var(new_mask);
7656out_free_cpus_allowed:
7657 free_cpumask_var(cpus_allowed);
7658out_put_task:
1da177e4 7659 put_task_struct(p);
1da177e4
LT
7660 return retval;
7661}
7662
7663static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 7664 struct cpumask *new_mask)
1da177e4 7665{
96f874e2
RR
7666 if (len < cpumask_size())
7667 cpumask_clear(new_mask);
7668 else if (len > cpumask_size())
7669 len = cpumask_size();
7670
1da177e4
LT
7671 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7672}
7673
7674/**
d1ccc66d 7675 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
7676 * @pid: pid of the process
7677 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7678 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
7679 *
7680 * Return: 0 on success. An error code otherwise.
1da177e4 7681 */
5add95d4
HC
7682SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7683 unsigned long __user *, user_mask_ptr)
1da177e4 7684{
5a16f3d3 7685 cpumask_var_t new_mask;
1da177e4
LT
7686 int retval;
7687
5a16f3d3
RR
7688 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7689 return -ENOMEM;
1da177e4 7690
5a16f3d3
RR
7691 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7692 if (retval == 0)
7693 retval = sched_setaffinity(pid, new_mask);
7694 free_cpumask_var(new_mask);
7695 return retval;
1da177e4
LT
7696}
7697
96f874e2 7698long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 7699{
36c8b586 7700 struct task_struct *p;
31605683 7701 unsigned long flags;
1da177e4 7702 int retval;
1da177e4 7703
23f5d142 7704 rcu_read_lock();
1da177e4
LT
7705
7706 retval = -ESRCH;
7707 p = find_process_by_pid(pid);
7708 if (!p)
7709 goto out_unlock;
7710
e7834f8f
DQ
7711 retval = security_task_getscheduler(p);
7712 if (retval)
7713 goto out_unlock;
7714
013fdb80 7715 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 7716 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 7717 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7718
7719out_unlock:
23f5d142 7720 rcu_read_unlock();
1da177e4 7721
9531b62f 7722 return retval;
1da177e4
LT
7723}
7724
7725/**
d1ccc66d 7726 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
7727 * @pid: pid of the process
7728 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7729 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 7730 *
599b4840
ZW
7731 * Return: size of CPU mask copied to user_mask_ptr on success. An
7732 * error code otherwise.
1da177e4 7733 */
5add95d4
HC
7734SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7735 unsigned long __user *, user_mask_ptr)
1da177e4
LT
7736{
7737 int ret;
f17c8607 7738 cpumask_var_t mask;
1da177e4 7739
84fba5ec 7740 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
7741 return -EINVAL;
7742 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
7743 return -EINVAL;
7744
f17c8607
RR
7745 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7746 return -ENOMEM;
1da177e4 7747
f17c8607
RR
7748 ret = sched_getaffinity(pid, mask);
7749 if (ret == 0) {
4de373a1 7750 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
7751
7752 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
7753 ret = -EFAULT;
7754 else
cd3d8031 7755 ret = retlen;
f17c8607
RR
7756 }
7757 free_cpumask_var(mask);
1da177e4 7758
f17c8607 7759 return ret;
1da177e4
LT
7760}
7761
7d4dd4f1 7762static void do_sched_yield(void)
1da177e4 7763{
8a8c69c3
PZ
7764 struct rq_flags rf;
7765 struct rq *rq;
7766
246b3b33 7767 rq = this_rq_lock_irq(&rf);
1da177e4 7768
ae92882e 7769 schedstat_inc(rq->yld_count);
4530d7ab 7770 current->sched_class->yield_task(rq);
1da177e4 7771
8a8c69c3 7772 preempt_disable();
345a957f 7773 rq_unlock_irq(rq, &rf);
ba74c144 7774 sched_preempt_enable_no_resched();
1da177e4
LT
7775
7776 schedule();
7d4dd4f1 7777}
1da177e4 7778
59a74b15
MCC
7779/**
7780 * sys_sched_yield - yield the current processor to other threads.
7781 *
7782 * This function yields the current CPU to other tasks. If there are no
7783 * other threads running on this CPU then this function will return.
7784 *
7785 * Return: 0.
7786 */
7d4dd4f1
DB
7787SYSCALL_DEFINE0(sched_yield)
7788{
7789 do_sched_yield();
1da177e4
LT
7790 return 0;
7791}
7792
b965f1dd
PZI
7793#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7794int __sched __cond_resched(void)
1da177e4 7795{
fe32d3cd 7796 if (should_resched(0)) {
a18b5d01 7797 preempt_schedule_common();
1da177e4
LT
7798 return 1;
7799 }
b965f1dd 7800#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 7801 rcu_all_qs();
b965f1dd 7802#endif
1da177e4
LT
7803 return 0;
7804}
b965f1dd
PZI
7805EXPORT_SYMBOL(__cond_resched);
7806#endif
7807
7808#ifdef CONFIG_PREEMPT_DYNAMIC
7809DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 7810EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
7811
7812DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 7813EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 7814#endif
1da177e4
LT
7815
7816/*
613afbf8 7817 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7818 * call schedule, and on return reacquire the lock.
7819 *
c1a280b6 7820 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7821 * operations here to prevent schedule() from being called twice (once via
7822 * spin_unlock(), once by hand).
7823 */
613afbf8 7824int __cond_resched_lock(spinlock_t *lock)
1da177e4 7825{
fe32d3cd 7826 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7827 int ret = 0;
7828
f607c668
PZ
7829 lockdep_assert_held(lock);
7830
4a81e832 7831 if (spin_needbreak(lock) || resched) {
1da177e4 7832 spin_unlock(lock);
d86ee480 7833 if (resched)
a18b5d01 7834 preempt_schedule_common();
95c354fe
NP
7835 else
7836 cpu_relax();
6df3cecb 7837 ret = 1;
1da177e4 7838 spin_lock(lock);
1da177e4 7839 }
6df3cecb 7840 return ret;
1da177e4 7841}
613afbf8 7842EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7843
f3d4b4b1
BG
7844int __cond_resched_rwlock_read(rwlock_t *lock)
7845{
7846 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7847 int ret = 0;
7848
7849 lockdep_assert_held_read(lock);
7850
7851 if (rwlock_needbreak(lock) || resched) {
7852 read_unlock(lock);
7853 if (resched)
7854 preempt_schedule_common();
7855 else
7856 cpu_relax();
7857 ret = 1;
7858 read_lock(lock);
7859 }
7860 return ret;
7861}
7862EXPORT_SYMBOL(__cond_resched_rwlock_read);
7863
7864int __cond_resched_rwlock_write(rwlock_t *lock)
7865{
7866 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7867 int ret = 0;
7868
7869 lockdep_assert_held_write(lock);
7870
7871 if (rwlock_needbreak(lock) || resched) {
7872 write_unlock(lock);
7873 if (resched)
7874 preempt_schedule_common();
7875 else
7876 cpu_relax();
7877 ret = 1;
7878 write_lock(lock);
7879 }
7880 return ret;
7881}
7882EXPORT_SYMBOL(__cond_resched_rwlock_write);
7883
1da177e4
LT
7884/**
7885 * yield - yield the current processor to other threads.
7886 *
8e3fabfd
PZ
7887 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7888 *
7889 * The scheduler is at all times free to pick the calling task as the most
7890 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7891 * it, it's already broken.
8e3fabfd
PZ
7892 *
7893 * Typical broken usage is:
7894 *
7895 * while (!event)
d1ccc66d 7896 * yield();
8e3fabfd
PZ
7897 *
7898 * where one assumes that yield() will let 'the other' process run that will
7899 * make event true. If the current task is a SCHED_FIFO task that will never
7900 * happen. Never use yield() as a progress guarantee!!
7901 *
7902 * If you want to use yield() to wait for something, use wait_event().
7903 * If you want to use yield() to be 'nice' for others, use cond_resched().
7904 * If you still want to use yield(), do not!
1da177e4
LT
7905 */
7906void __sched yield(void)
7907{
7908 set_current_state(TASK_RUNNING);
7d4dd4f1 7909 do_sched_yield();
1da177e4 7910}
1da177e4
LT
7911EXPORT_SYMBOL(yield);
7912
d95f4122
MG
7913/**
7914 * yield_to - yield the current processor to another thread in
7915 * your thread group, or accelerate that thread toward the
7916 * processor it's on.
16addf95
RD
7917 * @p: target task
7918 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7919 *
7920 * It's the caller's job to ensure that the target task struct
7921 * can't go away on us before we can do any checks.
7922 *
e69f6186 7923 * Return:
7b270f60
PZ
7924 * true (>0) if we indeed boosted the target task.
7925 * false (0) if we failed to boost the target.
7926 * -ESRCH if there's no task to yield to.
d95f4122 7927 */
fa93384f 7928int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7929{
7930 struct task_struct *curr = current;
7931 struct rq *rq, *p_rq;
7932 unsigned long flags;
c3c18640 7933 int yielded = 0;
d95f4122
MG
7934
7935 local_irq_save(flags);
7936 rq = this_rq();
7937
7938again:
7939 p_rq = task_rq(p);
7b270f60
PZ
7940 /*
7941 * If we're the only runnable task on the rq and target rq also
7942 * has only one task, there's absolutely no point in yielding.
7943 */
7944 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7945 yielded = -ESRCH;
7946 goto out_irq;
7947 }
7948
d95f4122 7949 double_rq_lock(rq, p_rq);
39e24d8f 7950 if (task_rq(p) != p_rq) {
d95f4122
MG
7951 double_rq_unlock(rq, p_rq);
7952 goto again;
7953 }
7954
7955 if (!curr->sched_class->yield_to_task)
7b270f60 7956 goto out_unlock;
d95f4122
MG
7957
7958 if (curr->sched_class != p->sched_class)
7b270f60 7959 goto out_unlock;
d95f4122 7960
b03fbd4f 7961 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 7962 goto out_unlock;
d95f4122 7963
0900acf2 7964 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7965 if (yielded) {
ae92882e 7966 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7967 /*
7968 * Make p's CPU reschedule; pick_next_entity takes care of
7969 * fairness.
7970 */
7971 if (preempt && rq != p_rq)
8875125e 7972 resched_curr(p_rq);
6d1cafd8 7973 }
d95f4122 7974
7b270f60 7975out_unlock:
d95f4122 7976 double_rq_unlock(rq, p_rq);
7b270f60 7977out_irq:
d95f4122
MG
7978 local_irq_restore(flags);
7979
7b270f60 7980 if (yielded > 0)
d95f4122
MG
7981 schedule();
7982
7983 return yielded;
7984}
7985EXPORT_SYMBOL_GPL(yield_to);
7986
10ab5643
TH
7987int io_schedule_prepare(void)
7988{
7989 int old_iowait = current->in_iowait;
7990
7991 current->in_iowait = 1;
7992 blk_schedule_flush_plug(current);
7993
7994 return old_iowait;
7995}
7996
7997void io_schedule_finish(int token)
7998{
7999 current->in_iowait = token;
8000}
8001
1da177e4 8002/*
41a2d6cf 8003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8004 * that process accounting knows that this is a task in IO wait state.
1da177e4 8005 */
1da177e4
LT
8006long __sched io_schedule_timeout(long timeout)
8007{
10ab5643 8008 int token;
1da177e4
LT
8009 long ret;
8010
10ab5643 8011 token = io_schedule_prepare();
1da177e4 8012 ret = schedule_timeout(timeout);
10ab5643 8013 io_schedule_finish(token);
9cff8ade 8014
1da177e4
LT
8015 return ret;
8016}
9cff8ade 8017EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8018
e3b929b0 8019void __sched io_schedule(void)
10ab5643
TH
8020{
8021 int token;
8022
8023 token = io_schedule_prepare();
8024 schedule();
8025 io_schedule_finish(token);
8026}
8027EXPORT_SYMBOL(io_schedule);
8028
1da177e4
LT
8029/**
8030 * sys_sched_get_priority_max - return maximum RT priority.
8031 * @policy: scheduling class.
8032 *
e69f6186
YB
8033 * Return: On success, this syscall returns the maximum
8034 * rt_priority that can be used by a given scheduling class.
8035 * On failure, a negative error code is returned.
1da177e4 8036 */
5add95d4 8037SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8038{
8039 int ret = -EINVAL;
8040
8041 switch (policy) {
8042 case SCHED_FIFO:
8043 case SCHED_RR:
ae18ad28 8044 ret = MAX_RT_PRIO-1;
1da177e4 8045 break;
aab03e05 8046 case SCHED_DEADLINE:
1da177e4 8047 case SCHED_NORMAL:
b0a9499c 8048 case SCHED_BATCH:
dd41f596 8049 case SCHED_IDLE:
1da177e4
LT
8050 ret = 0;
8051 break;
8052 }
8053 return ret;
8054}
8055
8056/**
8057 * sys_sched_get_priority_min - return minimum RT priority.
8058 * @policy: scheduling class.
8059 *
e69f6186
YB
8060 * Return: On success, this syscall returns the minimum
8061 * rt_priority that can be used by a given scheduling class.
8062 * On failure, a negative error code is returned.
1da177e4 8063 */
5add95d4 8064SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8065{
8066 int ret = -EINVAL;
8067
8068 switch (policy) {
8069 case SCHED_FIFO:
8070 case SCHED_RR:
8071 ret = 1;
8072 break;
aab03e05 8073 case SCHED_DEADLINE:
1da177e4 8074 case SCHED_NORMAL:
b0a9499c 8075 case SCHED_BATCH:
dd41f596 8076 case SCHED_IDLE:
1da177e4
LT
8077 ret = 0;
8078 }
8079 return ret;
8080}
8081
abca5fc5 8082static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8083{
36c8b586 8084 struct task_struct *p;
a4ec24b4 8085 unsigned int time_slice;
eb580751 8086 struct rq_flags rf;
dba091b9 8087 struct rq *rq;
3a5c359a 8088 int retval;
1da177e4
LT
8089
8090 if (pid < 0)
3a5c359a 8091 return -EINVAL;
1da177e4
LT
8092
8093 retval = -ESRCH;
1a551ae7 8094 rcu_read_lock();
1da177e4
LT
8095 p = find_process_by_pid(pid);
8096 if (!p)
8097 goto out_unlock;
8098
8099 retval = security_task_getscheduler(p);
8100 if (retval)
8101 goto out_unlock;
8102
eb580751 8103 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8104 time_slice = 0;
8105 if (p->sched_class->get_rr_interval)
8106 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8107 task_rq_unlock(rq, p, &rf);
a4ec24b4 8108
1a551ae7 8109 rcu_read_unlock();
abca5fc5
AV
8110 jiffies_to_timespec64(time_slice, t);
8111 return 0;
3a5c359a 8112
1da177e4 8113out_unlock:
1a551ae7 8114 rcu_read_unlock();
1da177e4
LT
8115 return retval;
8116}
8117
2064a5ab
RD
8118/**
8119 * sys_sched_rr_get_interval - return the default timeslice of a process.
8120 * @pid: pid of the process.
8121 * @interval: userspace pointer to the timeslice value.
8122 *
8123 * this syscall writes the default timeslice value of a given process
8124 * into the user-space timespec buffer. A value of '0' means infinity.
8125 *
8126 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8127 * an error code.
8128 */
abca5fc5 8129SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8130 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8131{
8132 struct timespec64 t;
8133 int retval = sched_rr_get_interval(pid, &t);
8134
8135 if (retval == 0)
8136 retval = put_timespec64(&t, interval);
8137
8138 return retval;
8139}
8140
474b9c77 8141#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8142SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8143 struct old_timespec32 __user *, interval)
abca5fc5
AV
8144{
8145 struct timespec64 t;
8146 int retval = sched_rr_get_interval(pid, &t);
8147
8148 if (retval == 0)
9afc5eee 8149 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8150 return retval;
8151}
8152#endif
8153
82a1fcb9 8154void sched_show_task(struct task_struct *p)
1da177e4 8155{
1da177e4 8156 unsigned long free = 0;
4e79752c 8157 int ppid;
c930b2c0 8158
38200502
TH
8159 if (!try_get_task_stack(p))
8160 return;
20435d84 8161
cc172ff3 8162 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8163
b03fbd4f 8164 if (task_is_running(p))
cc172ff3 8165 pr_cont(" running task ");
1da177e4 8166#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8167 free = stack_not_used(p);
1da177e4 8168#endif
a90e984c 8169 ppid = 0;
4e79752c 8170 rcu_read_lock();
a90e984c
ON
8171 if (pid_alive(p))
8172 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8173 rcu_read_unlock();
cc172ff3
LZ
8174 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8175 free, task_pid_nr(p), ppid,
aa47b7e0 8176 (unsigned long)task_thread_info(p)->flags);
1da177e4 8177
3d1cb205 8178 print_worker_info(KERN_INFO, p);
a8b62fd0 8179 print_stop_info(KERN_INFO, p);
9cb8f069 8180 show_stack(p, NULL, KERN_INFO);
38200502 8181 put_task_stack(p);
1da177e4 8182}
0032f4e8 8183EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8184
5d68cc95
PZ
8185static inline bool
8186state_filter_match(unsigned long state_filter, struct task_struct *p)
8187{
2f064a59
PZ
8188 unsigned int state = READ_ONCE(p->__state);
8189
5d68cc95
PZ
8190 /* no filter, everything matches */
8191 if (!state_filter)
8192 return true;
8193
8194 /* filter, but doesn't match */
2f064a59 8195 if (!(state & state_filter))
5d68cc95
PZ
8196 return false;
8197
8198 /*
8199 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8200 * TASK_KILLABLE).
8201 */
2f064a59 8202 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
5d68cc95
PZ
8203 return false;
8204
8205 return true;
8206}
8207
8208
2f064a59 8209void show_state_filter(unsigned int state_filter)
1da177e4 8210{
36c8b586 8211 struct task_struct *g, *p;
1da177e4 8212
510f5acc 8213 rcu_read_lock();
5d07f420 8214 for_each_process_thread(g, p) {
1da177e4
LT
8215 /*
8216 * reset the NMI-timeout, listing all files on a slow
25985edc 8217 * console might take a lot of time:
57675cb9
AR
8218 * Also, reset softlockup watchdogs on all CPUs, because
8219 * another CPU might be blocked waiting for us to process
8220 * an IPI.
1da177e4
LT
8221 */
8222 touch_nmi_watchdog();
57675cb9 8223 touch_all_softlockup_watchdogs();
5d68cc95 8224 if (state_filter_match(state_filter, p))
82a1fcb9 8225 sched_show_task(p);
5d07f420 8226 }
1da177e4 8227
dd41f596 8228#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8229 if (!state_filter)
8230 sysrq_sched_debug_show();
dd41f596 8231#endif
510f5acc 8232 rcu_read_unlock();
e59e2ae2
IM
8233 /*
8234 * Only show locks if all tasks are dumped:
8235 */
93335a21 8236 if (!state_filter)
e59e2ae2 8237 debug_show_all_locks();
1da177e4
LT
8238}
8239
f340c0d1
IM
8240/**
8241 * init_idle - set up an idle thread for a given CPU
8242 * @idle: task in question
d1ccc66d 8243 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8244 *
8245 * NOTE: this function does not set the idle thread's NEED_RESCHED
8246 * flag, to make booting more robust.
8247 */
f1a0a376 8248void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8249{
70b97a7f 8250 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8251 unsigned long flags;
8252
ff51ff84
PZ
8253 __sched_fork(0, idle);
8254
00b89fe0
VS
8255 /*
8256 * The idle task doesn't need the kthread struct to function, but it
8257 * is dressed up as a per-CPU kthread and thus needs to play the part
8258 * if we want to avoid special-casing it in code that deals with per-CPU
8259 * kthreads.
8260 */
8261 set_kthread_struct(idle);
8262
25834c73 8263 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8264 raw_spin_rq_lock(rq);
5cbd54ef 8265
2f064a59 8266 idle->__state = TASK_RUNNING;
dd41f596 8267 idle->se.exec_start = sched_clock();
00b89fe0
VS
8268 /*
8269 * PF_KTHREAD should already be set at this point; regardless, make it
8270 * look like a proper per-CPU kthread.
8271 */
8272 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8273 kthread_set_per_cpu(idle, cpu);
dd41f596 8274
d08b9f0c 8275 scs_task_reset(idle);
e1b77c92
MR
8276 kasan_unpoison_task_stack(idle);
8277
de9b8f5d
PZ
8278#ifdef CONFIG_SMP
8279 /*
b19a888c 8280 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8281 * in that case do_set_cpus_allowed() will not do the right thing.
8282 *
8283 * And since this is boot we can forgo the serialization.
8284 */
9cfc3e18 8285 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8286#endif
6506cf6c
PZ
8287 /*
8288 * We're having a chicken and egg problem, even though we are
d1ccc66d 8289 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8290 * lockdep check in task_group() will fail.
8291 *
8292 * Similar case to sched_fork(). / Alternatively we could
8293 * use task_rq_lock() here and obtain the other rq->lock.
8294 *
8295 * Silence PROVE_RCU
8296 */
8297 rcu_read_lock();
dd41f596 8298 __set_task_cpu(idle, cpu);
6506cf6c 8299 rcu_read_unlock();
1da177e4 8300
5311a98f
EB
8301 rq->idle = idle;
8302 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8303 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8304#ifdef CONFIG_SMP
3ca7a440 8305 idle->on_cpu = 1;
4866cde0 8306#endif
5cb9eaa3 8307 raw_spin_rq_unlock(rq);
25834c73 8308 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8309
8310 /* Set the preempt count _outside_ the spinlocks! */
01028747 8311 init_idle_preempt_count(idle, cpu);
55cd5340 8312
dd41f596
IM
8313 /*
8314 * The idle tasks have their own, simple scheduling class:
8315 */
8316 idle->sched_class = &idle_sched_class;
868baf07 8317 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8318 vtime_init_idle(idle, cpu);
de9b8f5d 8319#ifdef CONFIG_SMP
f1c6f1a7
CE
8320 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8321#endif
19978ca6
IM
8322}
8323
e1d4eeec
NP
8324#ifdef CONFIG_SMP
8325
f82f8042
JL
8326int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8327 const struct cpumask *trial)
8328{
06a76fe0 8329 int ret = 1;
f82f8042 8330
bb2bc55a
MG
8331 if (!cpumask_weight(cur))
8332 return ret;
8333
06a76fe0 8334 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8335
8336 return ret;
8337}
8338
7f51412a
JL
8339int task_can_attach(struct task_struct *p,
8340 const struct cpumask *cs_cpus_allowed)
8341{
8342 int ret = 0;
8343
8344 /*
8345 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8346 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8347 * affinity and isolating such threads by their set of
8348 * allowed nodes is unnecessary. Thus, cpusets are not
8349 * applicable for such threads. This prevents checking for
8350 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8351 * before cpus_mask may be changed.
7f51412a
JL
8352 */
8353 if (p->flags & PF_NO_SETAFFINITY) {
8354 ret = -EINVAL;
8355 goto out;
8356 }
8357
7f51412a 8358 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8359 cs_cpus_allowed))
8360 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8361
7f51412a
JL
8362out:
8363 return ret;
8364}
8365
f2cb1360 8366bool sched_smp_initialized __read_mostly;
e26fbffd 8367
e6628d5b
MG
8368#ifdef CONFIG_NUMA_BALANCING
8369/* Migrate current task p to target_cpu */
8370int migrate_task_to(struct task_struct *p, int target_cpu)
8371{
8372 struct migration_arg arg = { p, target_cpu };
8373 int curr_cpu = task_cpu(p);
8374
8375 if (curr_cpu == target_cpu)
8376 return 0;
8377
3bd37062 8378 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8379 return -EINVAL;
8380
8381 /* TODO: This is not properly updating schedstats */
8382
286549dc 8383 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8384 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8385}
0ec8aa00
PZ
8386
8387/*
8388 * Requeue a task on a given node and accurately track the number of NUMA
8389 * tasks on the runqueues
8390 */
8391void sched_setnuma(struct task_struct *p, int nid)
8392{
da0c1e65 8393 bool queued, running;
eb580751
PZ
8394 struct rq_flags rf;
8395 struct rq *rq;
0ec8aa00 8396
eb580751 8397 rq = task_rq_lock(p, &rf);
da0c1e65 8398 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8399 running = task_current(rq, p);
8400
da0c1e65 8401 if (queued)
1de64443 8402 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8403 if (running)
f3cd1c4e 8404 put_prev_task(rq, p);
0ec8aa00
PZ
8405
8406 p->numa_preferred_nid = nid;
0ec8aa00 8407
da0c1e65 8408 if (queued)
7134b3e9 8409 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8410 if (running)
03b7fad1 8411 set_next_task(rq, p);
eb580751 8412 task_rq_unlock(rq, p, &rf);
0ec8aa00 8413}
5cc389bc 8414#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8415
1da177e4 8416#ifdef CONFIG_HOTPLUG_CPU
054b9108 8417/*
d1ccc66d 8418 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8419 * offline.
054b9108 8420 */
48c5ccae 8421void idle_task_exit(void)
1da177e4 8422{
48c5ccae 8423 struct mm_struct *mm = current->active_mm;
e76bd8d9 8424
48c5ccae 8425 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8426 BUG_ON(current != this_rq()->idle);
e76bd8d9 8427
a53efe5f 8428 if (mm != &init_mm) {
252d2a41 8429 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8430 finish_arch_post_lock_switch();
8431 }
bf2c59fc
PZ
8432
8433 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8434}
8435
2558aacf 8436static int __balance_push_cpu_stop(void *arg)
1da177e4 8437{
2558aacf
PZ
8438 struct task_struct *p = arg;
8439 struct rq *rq = this_rq();
8440 struct rq_flags rf;
8441 int cpu;
1da177e4 8442
2558aacf
PZ
8443 raw_spin_lock_irq(&p->pi_lock);
8444 rq_lock(rq, &rf);
3f1d2a31 8445
2558aacf
PZ
8446 update_rq_clock(rq);
8447
8448 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8449 cpu = select_fallback_rq(rq->cpu, p);
8450 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8451 }
3f1d2a31 8452
2558aacf
PZ
8453 rq_unlock(rq, &rf);
8454 raw_spin_unlock_irq(&p->pi_lock);
8455
8456 put_task_struct(p);
8457
8458 return 0;
10e7071b 8459}
3f1d2a31 8460
2558aacf
PZ
8461static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8462
48f24c4d 8463/*
2558aacf 8464 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8465 *
8466 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8467 * effective when the hotplug motion is down.
1da177e4 8468 */
2558aacf 8469static void balance_push(struct rq *rq)
1da177e4 8470{
2558aacf
PZ
8471 struct task_struct *push_task = rq->curr;
8472
5cb9eaa3 8473 lockdep_assert_rq_held(rq);
2558aacf 8474 SCHED_WARN_ON(rq->cpu != smp_processor_id());
b5c44773 8475
ae792702
PZ
8476 /*
8477 * Ensure the thing is persistent until balance_push_set(.on = false);
8478 */
8479 rq->balance_callback = &balance_push_callback;
1da177e4 8480
b5c44773
PZ
8481 /*
8482 * Only active while going offline.
8483 */
8484 if (!cpu_dying(rq->cpu))
8485 return;
8486
1da177e4 8487 /*
2558aacf
PZ
8488 * Both the cpu-hotplug and stop task are in this case and are
8489 * required to complete the hotplug process.
1da177e4 8490 */
00b89fe0 8491 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8492 is_migration_disabled(push_task)) {
8493
f2469a1f
TG
8494 /*
8495 * If this is the idle task on the outgoing CPU try to wake
8496 * up the hotplug control thread which might wait for the
8497 * last task to vanish. The rcuwait_active() check is
8498 * accurate here because the waiter is pinned on this CPU
8499 * and can't obviously be running in parallel.
3015ef4b
TG
8500 *
8501 * On RT kernels this also has to check whether there are
8502 * pinned and scheduled out tasks on the runqueue. They
8503 * need to leave the migrate disabled section first.
f2469a1f 8504 */
3015ef4b
TG
8505 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8506 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8507 raw_spin_rq_unlock(rq);
f2469a1f 8508 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8509 raw_spin_rq_lock(rq);
f2469a1f 8510 }
2558aacf 8511 return;
f2469a1f 8512 }
48f24c4d 8513
2558aacf 8514 get_task_struct(push_task);
77bd3970 8515 /*
2558aacf
PZ
8516 * Temporarily drop rq->lock such that we can wake-up the stop task.
8517 * Both preemption and IRQs are still disabled.
77bd3970 8518 */
5cb9eaa3 8519 raw_spin_rq_unlock(rq);
2558aacf
PZ
8520 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8521 this_cpu_ptr(&push_work));
8522 /*
8523 * At this point need_resched() is true and we'll take the loop in
8524 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8525 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8526 */
5cb9eaa3 8527 raw_spin_rq_lock(rq);
2558aacf 8528}
77bd3970 8529
2558aacf
PZ
8530static void balance_push_set(int cpu, bool on)
8531{
8532 struct rq *rq = cpu_rq(cpu);
8533 struct rq_flags rf;
48c5ccae 8534
2558aacf 8535 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8536 if (on) {
8537 WARN_ON_ONCE(rq->balance_callback);
ae792702 8538 rq->balance_callback = &balance_push_callback;
22f667c9 8539 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8540 rq->balance_callback = NULL;
22f667c9 8541 }
2558aacf
PZ
8542 rq_unlock_irqrestore(rq, &rf);
8543}
e692ab53 8544
f2469a1f
TG
8545/*
8546 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8547 * inactive. All tasks which are not per CPU kernel threads are either
8548 * pushed off this CPU now via balance_push() or placed on a different CPU
8549 * during wakeup. Wait until the CPU is quiescent.
8550 */
8551static void balance_hotplug_wait(void)
8552{
8553 struct rq *rq = this_rq();
5473e0cc 8554
3015ef4b
TG
8555 rcuwait_wait_event(&rq->hotplug_wait,
8556 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8557 TASK_UNINTERRUPTIBLE);
8558}
5473e0cc 8559
2558aacf 8560#else
dce48a84 8561
2558aacf
PZ
8562static inline void balance_push(struct rq *rq)
8563{
dce48a84 8564}
dce48a84 8565
2558aacf
PZ
8566static inline void balance_push_set(int cpu, bool on)
8567{
8568}
8569
f2469a1f
TG
8570static inline void balance_hotplug_wait(void)
8571{
dce48a84 8572}
f2469a1f 8573
1da177e4
LT
8574#endif /* CONFIG_HOTPLUG_CPU */
8575
f2cb1360 8576void set_rq_online(struct rq *rq)
1f11eb6a
GH
8577{
8578 if (!rq->online) {
8579 const struct sched_class *class;
8580
c6c4927b 8581 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8582 rq->online = 1;
8583
8584 for_each_class(class) {
8585 if (class->rq_online)
8586 class->rq_online(rq);
8587 }
8588 }
8589}
8590
f2cb1360 8591void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8592{
8593 if (rq->online) {
8594 const struct sched_class *class;
8595
8596 for_each_class(class) {
8597 if (class->rq_offline)
8598 class->rq_offline(rq);
8599 }
8600
c6c4927b 8601 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8602 rq->online = 0;
8603 }
8604}
8605
d1ccc66d
IM
8606/*
8607 * used to mark begin/end of suspend/resume:
8608 */
8609static int num_cpus_frozen;
d35be8ba 8610
1da177e4 8611/*
3a101d05
TH
8612 * Update cpusets according to cpu_active mask. If cpusets are
8613 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8614 * around partition_sched_domains().
d35be8ba
SB
8615 *
8616 * If we come here as part of a suspend/resume, don't touch cpusets because we
8617 * want to restore it back to its original state upon resume anyway.
1da177e4 8618 */
40190a78 8619static void cpuset_cpu_active(void)
e761b772 8620{
40190a78 8621 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8622 /*
8623 * num_cpus_frozen tracks how many CPUs are involved in suspend
8624 * resume sequence. As long as this is not the last online
8625 * operation in the resume sequence, just build a single sched
8626 * domain, ignoring cpusets.
8627 */
50e76632
PZ
8628 partition_sched_domains(1, NULL, NULL);
8629 if (--num_cpus_frozen)
135fb3e1 8630 return;
d35be8ba
SB
8631 /*
8632 * This is the last CPU online operation. So fall through and
8633 * restore the original sched domains by considering the
8634 * cpuset configurations.
8635 */
50e76632 8636 cpuset_force_rebuild();
3a101d05 8637 }
30e03acd 8638 cpuset_update_active_cpus();
3a101d05 8639}
e761b772 8640
40190a78 8641static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 8642{
40190a78 8643 if (!cpuhp_tasks_frozen) {
06a76fe0 8644 if (dl_cpu_busy(cpu))
135fb3e1 8645 return -EBUSY;
30e03acd 8646 cpuset_update_active_cpus();
135fb3e1 8647 } else {
d35be8ba
SB
8648 num_cpus_frozen++;
8649 partition_sched_domains(1, NULL, NULL);
e761b772 8650 }
135fb3e1 8651 return 0;
e761b772 8652}
e761b772 8653
40190a78 8654int sched_cpu_activate(unsigned int cpu)
135fb3e1 8655{
7d976699 8656 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8657 struct rq_flags rf;
7d976699 8658
22f667c9 8659 /*
b5c44773
PZ
8660 * Clear the balance_push callback and prepare to schedule
8661 * regular tasks.
22f667c9 8662 */
2558aacf
PZ
8663 balance_push_set(cpu, false);
8664
ba2591a5
PZ
8665#ifdef CONFIG_SCHED_SMT
8666 /*
c5511d03 8667 * When going up, increment the number of cores with SMT present.
ba2591a5 8668 */
c5511d03
PZI
8669 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8670 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 8671#endif
40190a78 8672 set_cpu_active(cpu, true);
135fb3e1 8673
40190a78 8674 if (sched_smp_initialized) {
135fb3e1 8675 sched_domains_numa_masks_set(cpu);
40190a78 8676 cpuset_cpu_active();
e761b772 8677 }
7d976699
TG
8678
8679 /*
8680 * Put the rq online, if not already. This happens:
8681 *
8682 * 1) In the early boot process, because we build the real domains
d1ccc66d 8683 * after all CPUs have been brought up.
7d976699
TG
8684 *
8685 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8686 * domains.
8687 */
8a8c69c3 8688 rq_lock_irqsave(rq, &rf);
7d976699
TG
8689 if (rq->rd) {
8690 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8691 set_rq_online(rq);
8692 }
8a8c69c3 8693 rq_unlock_irqrestore(rq, &rf);
7d976699 8694
40190a78 8695 return 0;
135fb3e1
TG
8696}
8697
40190a78 8698int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 8699{
120455c5
PZ
8700 struct rq *rq = cpu_rq(cpu);
8701 struct rq_flags rf;
135fb3e1
TG
8702 int ret;
8703
e0b257c3
AMB
8704 /*
8705 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8706 * load balancing when not active
8707 */
8708 nohz_balance_exit_idle(rq);
8709
40190a78 8710 set_cpu_active(cpu, false);
741ba80f
PZ
8711
8712 /*
8713 * From this point forward, this CPU will refuse to run any task that
8714 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8715 * push those tasks away until this gets cleared, see
8716 * sched_cpu_dying().
8717 */
975707f2
PZ
8718 balance_push_set(cpu, true);
8719
b2454caa 8720 /*
975707f2
PZ
8721 * We've cleared cpu_active_mask / set balance_push, wait for all
8722 * preempt-disabled and RCU users of this state to go away such that
8723 * all new such users will observe it.
b2454caa 8724 *
5ba2ffba
PZ
8725 * Specifically, we rely on ttwu to no longer target this CPU, see
8726 * ttwu_queue_cond() and is_cpu_allowed().
8727 *
b2454caa
PZ
8728 * Do sync before park smpboot threads to take care the rcu boost case.
8729 */
309ba859 8730 synchronize_rcu();
40190a78 8731
120455c5
PZ
8732 rq_lock_irqsave(rq, &rf);
8733 if (rq->rd) {
8734 update_rq_clock(rq);
8735 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8736 set_rq_offline(rq);
8737 }
8738 rq_unlock_irqrestore(rq, &rf);
8739
c5511d03
PZI
8740#ifdef CONFIG_SCHED_SMT
8741 /*
8742 * When going down, decrement the number of cores with SMT present.
8743 */
8744 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8745 static_branch_dec_cpuslocked(&sched_smt_present);
8746#endif
8747
40190a78
TG
8748 if (!sched_smp_initialized)
8749 return 0;
8750
8751 ret = cpuset_cpu_inactive(cpu);
8752 if (ret) {
2558aacf 8753 balance_push_set(cpu, false);
40190a78
TG
8754 set_cpu_active(cpu, true);
8755 return ret;
135fb3e1 8756 }
40190a78
TG
8757 sched_domains_numa_masks_clear(cpu);
8758 return 0;
135fb3e1
TG
8759}
8760
94baf7a5
TG
8761static void sched_rq_cpu_starting(unsigned int cpu)
8762{
8763 struct rq *rq = cpu_rq(cpu);
8764
8765 rq->calc_load_update = calc_load_update;
94baf7a5
TG
8766 update_max_interval();
8767}
8768
135fb3e1
TG
8769int sched_cpu_starting(unsigned int cpu)
8770{
9edeaea1 8771 sched_core_cpu_starting(cpu);
94baf7a5 8772 sched_rq_cpu_starting(cpu);
d84b3131 8773 sched_tick_start(cpu);
135fb3e1 8774 return 0;
e761b772 8775}
e761b772 8776
f2785ddb 8777#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
8778
8779/*
8780 * Invoked immediately before the stopper thread is invoked to bring the
8781 * CPU down completely. At this point all per CPU kthreads except the
8782 * hotplug thread (current) and the stopper thread (inactive) have been
8783 * either parked or have been unbound from the outgoing CPU. Ensure that
8784 * any of those which might be on the way out are gone.
8785 *
8786 * If after this point a bound task is being woken on this CPU then the
8787 * responsible hotplug callback has failed to do it's job.
8788 * sched_cpu_dying() will catch it with the appropriate fireworks.
8789 */
8790int sched_cpu_wait_empty(unsigned int cpu)
8791{
8792 balance_hotplug_wait();
8793 return 0;
8794}
8795
8796/*
8797 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8798 * might have. Called from the CPU stopper task after ensuring that the
8799 * stopper is the last running task on the CPU, so nr_active count is
8800 * stable. We need to take the teardown thread which is calling this into
8801 * account, so we hand in adjust = 1 to the load calculation.
8802 *
8803 * Also see the comment "Global load-average calculations".
8804 */
8805static void calc_load_migrate(struct rq *rq)
8806{
8807 long delta = calc_load_fold_active(rq, 1);
8808
8809 if (delta)
8810 atomic_long_add(delta, &calc_load_tasks);
8811}
8812
36c6e17b
VS
8813static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8814{
8815 struct task_struct *g, *p;
8816 int cpu = cpu_of(rq);
8817
5cb9eaa3 8818 lockdep_assert_rq_held(rq);
36c6e17b
VS
8819
8820 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8821 for_each_process_thread(g, p) {
8822 if (task_cpu(p) != cpu)
8823 continue;
8824
8825 if (!task_on_rq_queued(p))
8826 continue;
8827
8828 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8829 }
8830}
8831
f2785ddb
TG
8832int sched_cpu_dying(unsigned int cpu)
8833{
8834 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8835 struct rq_flags rf;
f2785ddb
TG
8836
8837 /* Handle pending wakeups and then migrate everything off */
d84b3131 8838 sched_tick_stop(cpu);
8a8c69c3
PZ
8839
8840 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8841 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8842 WARN(true, "Dying CPU not properly vacated!");
8843 dump_rq_tasks(rq, KERN_WARNING);
8844 }
8a8c69c3
PZ
8845 rq_unlock_irqrestore(rq, &rf);
8846
f2785ddb
TG
8847 calc_load_migrate(rq);
8848 update_max_interval();
e5ef27d0 8849 hrtick_clear(rq);
f2785ddb
TG
8850 return 0;
8851}
8852#endif
8853
1da177e4
LT
8854void __init sched_init_smp(void)
8855{
cb83b629
PZ
8856 sched_init_numa();
8857
6acce3ef
PZ
8858 /*
8859 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8860 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8861 * happen.
6acce3ef 8862 */
712555ee 8863 mutex_lock(&sched_domains_mutex);
8d5dc512 8864 sched_init_domains(cpu_active_mask);
712555ee 8865 mutex_unlock(&sched_domains_mutex);
e761b772 8866
5c1e1767 8867 /* Move init over to a non-isolated CPU */
edb93821 8868 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8869 BUG();
15faafc6 8870 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 8871 sched_init_granularity();
4212823f 8872
0e3900e6 8873 init_sched_rt_class();
1baca4ce 8874 init_sched_dl_class();
1b568f0a 8875
e26fbffd 8876 sched_smp_initialized = true;
1da177e4 8877}
e26fbffd
TG
8878
8879static int __init migration_init(void)
8880{
77a5352b 8881 sched_cpu_starting(smp_processor_id());
e26fbffd 8882 return 0;
1da177e4 8883}
e26fbffd
TG
8884early_initcall(migration_init);
8885
1da177e4
LT
8886#else
8887void __init sched_init_smp(void)
8888{
19978ca6 8889 sched_init_granularity();
1da177e4
LT
8890}
8891#endif /* CONFIG_SMP */
8892
8893int in_sched_functions(unsigned long addr)
8894{
1da177e4
LT
8895 return in_lock_functions(addr) ||
8896 (addr >= (unsigned long)__sched_text_start
8897 && addr < (unsigned long)__sched_text_end);
8898}
8899
029632fb 8900#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8901/*
8902 * Default task group.
8903 * Every task in system belongs to this group at bootup.
8904 */
029632fb 8905struct task_group root_task_group;
35cf4e50 8906LIST_HEAD(task_groups);
b0367629
WL
8907
8908/* Cacheline aligned slab cache for task_group */
8909static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8910#endif
6f505b16 8911
e6252c3e 8912DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8913DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8914
1da177e4
LT
8915void __init sched_init(void)
8916{
a1dc0446 8917 unsigned long ptr = 0;
55627e3c 8918 int i;
434d53b0 8919
c3a340f7
SRV
8920 /* Make sure the linker didn't screw up */
8921 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8922 &fair_sched_class + 1 != &rt_sched_class ||
8923 &rt_sched_class + 1 != &dl_sched_class);
8924#ifdef CONFIG_SMP
8925 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8926#endif
8927
5822a454 8928 wait_bit_init();
9dcb8b68 8929
434d53b0 8930#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8931 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8932#endif
8933#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8934 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8935#endif
a1dc0446
QC
8936 if (ptr) {
8937 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8938
8939#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8940 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8941 ptr += nr_cpu_ids * sizeof(void **);
8942
07e06b01 8943 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8944 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8945
b1d1779e
WY
8946 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8947 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8948#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8949#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8950 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8951 ptr += nr_cpu_ids * sizeof(void **);
8952
07e06b01 8953 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8954 ptr += nr_cpu_ids * sizeof(void **);
8955
6d6bc0ad 8956#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8957 }
df7c8e84 8958#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8959 for_each_possible_cpu(i) {
8960 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8961 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8962 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8963 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8964 }
b74e6278 8965#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8966
d1ccc66d
IM
8967 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8968 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8969
57d885fe
GH
8970#ifdef CONFIG_SMP
8971 init_defrootdomain();
8972#endif
8973
d0b27fa7 8974#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8975 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8976 global_rt_period(), global_rt_runtime());
6d6bc0ad 8977#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8978
7c941438 8979#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8980 task_group_cache = KMEM_CACHE(task_group, 0);
8981
07e06b01
YZ
8982 list_add(&root_task_group.list, &task_groups);
8983 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8984 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8985 autogroup_init(&init_task);
7c941438 8986#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8987
0a945022 8988 for_each_possible_cpu(i) {
70b97a7f 8989 struct rq *rq;
1da177e4
LT
8990
8991 rq = cpu_rq(i);
5cb9eaa3 8992 raw_spin_lock_init(&rq->__lock);
7897986b 8993 rq->nr_running = 0;
dce48a84
TG
8994 rq->calc_load_active = 0;
8995 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8996 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8997 init_rt_rq(&rq->rt);
8998 init_dl_rq(&rq->dl);
dd41f596 8999#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9000 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9001 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9002 /*
d1ccc66d 9003 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9004 *
9005 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9006 * gets 100% of the CPU resources in the system. This overall
9007 * system CPU resource is divided among the tasks of
07e06b01 9008 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9009 * based on each entity's (task or task-group's) weight
9010 * (se->load.weight).
9011 *
07e06b01 9012 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9013 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9014 * then A0's share of the CPU resource is:
354d60c2 9015 *
0d905bca 9016 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9017 *
07e06b01
YZ
9018 * We achieve this by letting root_task_group's tasks sit
9019 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9020 */
07e06b01 9021 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9022#endif /* CONFIG_FAIR_GROUP_SCHED */
9023
9024 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9025#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9026 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9027#endif
1da177e4 9028#ifdef CONFIG_SMP
41c7ce9a 9029 rq->sd = NULL;
57d885fe 9030 rq->rd = NULL;
ca6d75e6 9031 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9032 rq->balance_callback = &balance_push_callback;
1da177e4 9033 rq->active_balance = 0;
dd41f596 9034 rq->next_balance = jiffies;
1da177e4 9035 rq->push_cpu = 0;
0a2966b4 9036 rq->cpu = i;
1f11eb6a 9037 rq->online = 0;
eae0c9df
MG
9038 rq->idle_stamp = 0;
9039 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9040 rq->wake_stamp = jiffies;
9041 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9042 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9043
9044 INIT_LIST_HEAD(&rq->cfs_tasks);
9045
dc938520 9046 rq_attach_root(rq, &def_root_domain);
3451d024 9047#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9048 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9049 atomic_set(&rq->nohz_flags, 0);
90b5363a 9050
545b8c8d 9051 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9052#endif
f2469a1f
TG
9053#ifdef CONFIG_HOTPLUG_CPU
9054 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9055#endif
9fd81dd5 9056#endif /* CONFIG_SMP */
77a021be 9057 hrtick_rq_init(rq);
1da177e4 9058 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9059
9060#ifdef CONFIG_SCHED_CORE
9061 rq->core = NULL;
539f6512 9062 rq->core_pick = NULL;
9edeaea1 9063 rq->core_enabled = 0;
539f6512
PZ
9064 rq->core_tree = RB_ROOT;
9065 rq->core_forceidle = false;
9066
9067 rq->core_cookie = 0UL;
9edeaea1 9068#endif
1da177e4
LT
9069 }
9070
9059393e 9071 set_load_weight(&init_task, false);
b50f60ce 9072
1da177e4
LT
9073 /*
9074 * The boot idle thread does lazy MMU switching as well:
9075 */
f1f10076 9076 mmgrab(&init_mm);
1da177e4
LT
9077 enter_lazy_tlb(&init_mm, current);
9078
9079 /*
9080 * Make us the idle thread. Technically, schedule() should not be
9081 * called from this thread, however somewhere below it might be,
9082 * but because we are the idle thread, we just pick up running again
9083 * when this runqueue becomes "idle".
9084 */
9085 init_idle(current, smp_processor_id());
dce48a84
TG
9086
9087 calc_load_update = jiffies + LOAD_FREQ;
9088
bf4d83f6 9089#ifdef CONFIG_SMP
29d5e047 9090 idle_thread_set_boot_cpu();
b5c44773 9091 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9092#endif
9093 init_sched_fair_class();
6a7b3dc3 9094
eb414681
JW
9095 psi_init();
9096
69842cba
PB
9097 init_uclamp();
9098
6892b75e 9099 scheduler_running = 1;
1da177e4
LT
9100}
9101
d902db1e 9102#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
9103static inline int preempt_count_equals(int preempt_offset)
9104{
da7142e2 9105 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 9106
4ba8216c 9107 return (nested == preempt_offset);
e4aafea2
FW
9108}
9109
d894837f 9110void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9111{
d6c23bb3 9112 unsigned int state = get_current_state();
8eb23b9f
PZ
9113 /*
9114 * Blocking primitives will set (and therefore destroy) current->state,
9115 * since we will exit with TASK_RUNNING make sure we enter with it,
9116 * otherwise we will destroy state.
9117 */
d6c23bb3 9118 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9119 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9120 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9121 (void *)current->task_state_change,
00845eb9 9122 (void *)current->task_state_change);
8eb23b9f 9123
3427445a
PZ
9124 ___might_sleep(file, line, preempt_offset);
9125}
9126EXPORT_SYMBOL(__might_sleep);
9127
9128void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9129{
d1ccc66d
IM
9130 /* Ratelimiting timestamp: */
9131 static unsigned long prev_jiffy;
9132
d1c6d149 9133 unsigned long preempt_disable_ip;
1da177e4 9134
d1ccc66d
IM
9135 /* WARN_ON_ONCE() by default, no rate limit required: */
9136 rcu_sleep_check();
9137
db273be2 9138 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 9139 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9140 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9141 oops_in_progress)
aef745fc 9142 return;
1c3c5eab 9143
aef745fc
IM
9144 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9145 return;
9146 prev_jiffy = jiffies;
9147
d1ccc66d 9148 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9149 preempt_disable_ip = get_preempt_disable_ip(current);
9150
3df0fc5b
PZ
9151 printk(KERN_ERR
9152 "BUG: sleeping function called from invalid context at %s:%d\n",
9153 file, line);
9154 printk(KERN_ERR
312364f3
DV
9155 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9156 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 9157 current->pid, current->comm);
aef745fc 9158
a8b686b3
ES
9159 if (task_stack_end_corrupted(current))
9160 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9161
aef745fc
IM
9162 debug_show_held_locks(current);
9163 if (irqs_disabled())
9164 print_irqtrace_events(current);
d1c6d149
VN
9165 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9166 && !preempt_count_equals(preempt_offset)) {
8f47b187 9167 pr_err("Preemption disabled at:");
2062a4e8 9168 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 9169 }
aef745fc 9170 dump_stack();
f0b22e39 9171 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9172}
3427445a 9173EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
9174
9175void __cant_sleep(const char *file, int line, int preempt_offset)
9176{
9177 static unsigned long prev_jiffy;
9178
9179 if (irqs_disabled())
9180 return;
9181
9182 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9183 return;
9184
9185 if (preempt_count() > preempt_offset)
9186 return;
9187
9188 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9189 return;
9190 prev_jiffy = jiffies;
9191
9192 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9193 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9194 in_atomic(), irqs_disabled(),
9195 current->pid, current->comm);
9196
9197 debug_show_held_locks(current);
9198 dump_stack();
9199 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9200}
9201EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9202
9203#ifdef CONFIG_SMP
9204void __cant_migrate(const char *file, int line)
9205{
9206 static unsigned long prev_jiffy;
9207
9208 if (irqs_disabled())
9209 return;
9210
9211 if (is_migration_disabled(current))
9212 return;
9213
9214 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9215 return;
9216
9217 if (preempt_count() > 0)
9218 return;
9219
9220 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9221 return;
9222 prev_jiffy = jiffies;
9223
9224 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9225 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9226 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9227 current->pid, current->comm);
9228
9229 debug_show_held_locks(current);
9230 dump_stack();
9231 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9232}
9233EXPORT_SYMBOL_GPL(__cant_migrate);
9234#endif
1da177e4
LT
9235#endif
9236
9237#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9238void normalize_rt_tasks(void)
3a5e4dc1 9239{
dbc7f069 9240 struct task_struct *g, *p;
d50dde5a
DF
9241 struct sched_attr attr = {
9242 .sched_policy = SCHED_NORMAL,
9243 };
1da177e4 9244
3472eaa1 9245 read_lock(&tasklist_lock);
5d07f420 9246 for_each_process_thread(g, p) {
178be793
IM
9247 /*
9248 * Only normalize user tasks:
9249 */
3472eaa1 9250 if (p->flags & PF_KTHREAD)
178be793
IM
9251 continue;
9252
4fa8d299
JP
9253 p->se.exec_start = 0;
9254 schedstat_set(p->se.statistics.wait_start, 0);
9255 schedstat_set(p->se.statistics.sleep_start, 0);
9256 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 9257
aab03e05 9258 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9259 /*
9260 * Renice negative nice level userspace
9261 * tasks back to 0:
9262 */
3472eaa1 9263 if (task_nice(p) < 0)
dd41f596 9264 set_user_nice(p, 0);
1da177e4 9265 continue;
dd41f596 9266 }
1da177e4 9267
dbc7f069 9268 __sched_setscheduler(p, &attr, false, false);
5d07f420 9269 }
3472eaa1 9270 read_unlock(&tasklist_lock);
1da177e4
LT
9271}
9272
9273#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9274
67fc4e0c 9275#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9276/*
67fc4e0c 9277 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9278 *
9279 * They can only be called when the whole system has been
9280 * stopped - every CPU needs to be quiescent, and no scheduling
9281 * activity can take place. Using them for anything else would
9282 * be a serious bug, and as a result, they aren't even visible
9283 * under any other configuration.
9284 */
9285
9286/**
d1ccc66d 9287 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9288 * @cpu: the processor in question.
9289 *
9290 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9291 *
9292 * Return: The current task for @cpu.
1df5c10a 9293 */
36c8b586 9294struct task_struct *curr_task(int cpu)
1df5c10a
LT
9295{
9296 return cpu_curr(cpu);
9297}
9298
67fc4e0c
JW
9299#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9300
9301#ifdef CONFIG_IA64
1df5c10a 9302/**
5feeb783 9303 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9304 * @cpu: the processor in question.
9305 * @p: the task pointer to set.
9306 *
9307 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9308 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9309 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9310 * must be called with all CPU's synchronized, and interrupts disabled, the
9311 * and caller must save the original value of the current task (see
9312 * curr_task() above) and restore that value before reenabling interrupts and
9313 * re-starting the system.
9314 *
9315 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9316 */
a458ae2e 9317void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9318{
9319 cpu_curr(cpu) = p;
9320}
9321
9322#endif
29f59db3 9323
7c941438 9324#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9325/* task_group_lock serializes the addition/removal of task groups */
9326static DEFINE_SPINLOCK(task_group_lock);
9327
2480c093
PB
9328static inline void alloc_uclamp_sched_group(struct task_group *tg,
9329 struct task_group *parent)
9330{
9331#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9332 enum uclamp_id clamp_id;
2480c093
PB
9333
9334 for_each_clamp_id(clamp_id) {
9335 uclamp_se_set(&tg->uclamp_req[clamp_id],
9336 uclamp_none(clamp_id), false);
0b60ba2d 9337 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9338 }
9339#endif
9340}
9341
2f5177f0 9342static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9343{
9344 free_fair_sched_group(tg);
9345 free_rt_sched_group(tg);
e9aa1dd1 9346 autogroup_free(tg);
b0367629 9347 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9348}
9349
9350/* allocate runqueue etc for a new task group */
ec7dc8ac 9351struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9352{
9353 struct task_group *tg;
bccbe08a 9354
b0367629 9355 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9356 if (!tg)
9357 return ERR_PTR(-ENOMEM);
9358
ec7dc8ac 9359 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9360 goto err;
9361
ec7dc8ac 9362 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9363 goto err;
9364
2480c093
PB
9365 alloc_uclamp_sched_group(tg, parent);
9366
ace783b9
LZ
9367 return tg;
9368
9369err:
2f5177f0 9370 sched_free_group(tg);
ace783b9
LZ
9371 return ERR_PTR(-ENOMEM);
9372}
9373
9374void sched_online_group(struct task_group *tg, struct task_group *parent)
9375{
9376 unsigned long flags;
9377
8ed36996 9378 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9379 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9380
d1ccc66d
IM
9381 /* Root should already exist: */
9382 WARN_ON(!parent);
f473aa5e
PZ
9383
9384 tg->parent = parent;
f473aa5e 9385 INIT_LIST_HEAD(&tg->children);
09f2724a 9386 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9387 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9388
9389 online_fair_sched_group(tg);
29f59db3
SV
9390}
9391
9b5b7751 9392/* rcu callback to free various structures associated with a task group */
2f5177f0 9393static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 9394{
d1ccc66d 9395 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 9396 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9397}
9398
4cf86d77 9399void sched_destroy_group(struct task_group *tg)
ace783b9 9400{
d1ccc66d 9401 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 9402 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
9403}
9404
9405void sched_offline_group(struct task_group *tg)
29f59db3 9406{
8ed36996 9407 unsigned long flags;
29f59db3 9408
d1ccc66d 9409 /* End participation in shares distribution: */
6fe1f348 9410 unregister_fair_sched_group(tg);
3d4b47b4
PZ
9411
9412 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9413 list_del_rcu(&tg->list);
f473aa5e 9414 list_del_rcu(&tg->siblings);
8ed36996 9415 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9416}
9417
ea86cb4b 9418static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9419{
8323f26c 9420 struct task_group *tg;
29f59db3 9421
f7b8a47d
KT
9422 /*
9423 * All callers are synchronized by task_rq_lock(); we do not use RCU
9424 * which is pointless here. Thus, we pass "true" to task_css_check()
9425 * to prevent lockdep warnings.
9426 */
9427 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9428 struct task_group, css);
9429 tg = autogroup_task_group(tsk, tg);
9430 tsk->sched_task_group = tg;
9431
810b3817 9432#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9433 if (tsk->sched_class->task_change_group)
9434 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9435 else
810b3817 9436#endif
b2b5ce02 9437 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9438}
9439
9440/*
9441 * Change task's runqueue when it moves between groups.
9442 *
9443 * The caller of this function should have put the task in its new group by
9444 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9445 * its new group.
9446 */
9447void sched_move_task(struct task_struct *tsk)
9448{
7a57f32a
PZ
9449 int queued, running, queue_flags =
9450 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9451 struct rq_flags rf;
9452 struct rq *rq;
9453
9454 rq = task_rq_lock(tsk, &rf);
1b1d6225 9455 update_rq_clock(rq);
ea86cb4b
VG
9456
9457 running = task_current(rq, tsk);
9458 queued = task_on_rq_queued(tsk);
9459
9460 if (queued)
7a57f32a 9461 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9462 if (running)
ea86cb4b
VG
9463 put_prev_task(rq, tsk);
9464
9465 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9466
da0c1e65 9467 if (queued)
7a57f32a 9468 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9469 if (running) {
03b7fad1 9470 set_next_task(rq, tsk);
2a4b03ff
VG
9471 /*
9472 * After changing group, the running task may have joined a
9473 * throttled one but it's still the running task. Trigger a
9474 * resched to make sure that task can still run.
9475 */
9476 resched_curr(rq);
9477 }
29f59db3 9478
eb580751 9479 task_rq_unlock(rq, tsk, &rf);
29f59db3 9480}
68318b8e 9481
a7c6d554 9482static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9483{
a7c6d554 9484 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9485}
9486
eb95419b
TH
9487static struct cgroup_subsys_state *
9488cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9489{
eb95419b
TH
9490 struct task_group *parent = css_tg(parent_css);
9491 struct task_group *tg;
68318b8e 9492
eb95419b 9493 if (!parent) {
68318b8e 9494 /* This is early initialization for the top cgroup */
07e06b01 9495 return &root_task_group.css;
68318b8e
SV
9496 }
9497
ec7dc8ac 9498 tg = sched_create_group(parent);
68318b8e
SV
9499 if (IS_ERR(tg))
9500 return ERR_PTR(-ENOMEM);
9501
68318b8e
SV
9502 return &tg->css;
9503}
9504
96b77745
KK
9505/* Expose task group only after completing cgroup initialization */
9506static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9507{
9508 struct task_group *tg = css_tg(css);
9509 struct task_group *parent = css_tg(css->parent);
9510
9511 if (parent)
9512 sched_online_group(tg, parent);
7226017a
QY
9513
9514#ifdef CONFIG_UCLAMP_TASK_GROUP
9515 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9516 mutex_lock(&uclamp_mutex);
9517 rcu_read_lock();
7226017a 9518 cpu_util_update_eff(css);
93b73858
QY
9519 rcu_read_unlock();
9520 mutex_unlock(&uclamp_mutex);
7226017a
QY
9521#endif
9522
96b77745
KK
9523 return 0;
9524}
9525
2f5177f0 9526static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9527{
eb95419b 9528 struct task_group *tg = css_tg(css);
ace783b9 9529
2f5177f0 9530 sched_offline_group(tg);
ace783b9
LZ
9531}
9532
eb95419b 9533static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9534{
eb95419b 9535 struct task_group *tg = css_tg(css);
68318b8e 9536
2f5177f0
PZ
9537 /*
9538 * Relies on the RCU grace period between css_released() and this.
9539 */
9540 sched_free_group(tg);
ace783b9
LZ
9541}
9542
ea86cb4b
VG
9543/*
9544 * This is called before wake_up_new_task(), therefore we really only
9545 * have to set its group bits, all the other stuff does not apply.
9546 */
b53202e6 9547static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9548{
ea86cb4b
VG
9549 struct rq_flags rf;
9550 struct rq *rq;
9551
9552 rq = task_rq_lock(task, &rf);
9553
80f5c1b8 9554 update_rq_clock(rq);
ea86cb4b
VG
9555 sched_change_group(task, TASK_SET_GROUP);
9556
9557 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9558}
9559
1f7dd3e5 9560static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9561{
bb9d97b6 9562 struct task_struct *task;
1f7dd3e5 9563 struct cgroup_subsys_state *css;
7dc603c9 9564 int ret = 0;
bb9d97b6 9565
1f7dd3e5 9566 cgroup_taskset_for_each(task, css, tset) {
b68aa230 9567#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 9568 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 9569 return -EINVAL;
b68aa230 9570#endif
7dc603c9 9571 /*
b19a888c 9572 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
9573 * running, we're sure to observe its full state.
9574 */
9575 raw_spin_lock_irq(&task->pi_lock);
9576 /*
9577 * Avoid calling sched_move_task() before wake_up_new_task()
9578 * has happened. This would lead to problems with PELT, due to
9579 * move wanting to detach+attach while we're not attached yet.
9580 */
2f064a59 9581 if (READ_ONCE(task->__state) == TASK_NEW)
7dc603c9
PZ
9582 ret = -EINVAL;
9583 raw_spin_unlock_irq(&task->pi_lock);
9584
9585 if (ret)
9586 break;
bb9d97b6 9587 }
7dc603c9 9588 return ret;
be367d09 9589}
68318b8e 9590
1f7dd3e5 9591static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 9592{
bb9d97b6 9593 struct task_struct *task;
1f7dd3e5 9594 struct cgroup_subsys_state *css;
bb9d97b6 9595
1f7dd3e5 9596 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9597 sched_move_task(task);
68318b8e
SV
9598}
9599
2480c093 9600#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
9601static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9602{
9603 struct cgroup_subsys_state *top_css = css;
9604 struct uclamp_se *uc_parent = NULL;
9605 struct uclamp_se *uc_se = NULL;
9606 unsigned int eff[UCLAMP_CNT];
0413d7f3 9607 enum uclamp_id clamp_id;
0b60ba2d
PB
9608 unsigned int clamps;
9609
93b73858
QY
9610 lockdep_assert_held(&uclamp_mutex);
9611 SCHED_WARN_ON(!rcu_read_lock_held());
9612
0b60ba2d
PB
9613 css_for_each_descendant_pre(css, top_css) {
9614 uc_parent = css_tg(css)->parent
9615 ? css_tg(css)->parent->uclamp : NULL;
9616
9617 for_each_clamp_id(clamp_id) {
9618 /* Assume effective clamps matches requested clamps */
9619 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9620 /* Cap effective clamps with parent's effective clamps */
9621 if (uc_parent &&
9622 eff[clamp_id] > uc_parent[clamp_id].value) {
9623 eff[clamp_id] = uc_parent[clamp_id].value;
9624 }
9625 }
9626 /* Ensure protection is always capped by limit */
9627 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9628
9629 /* Propagate most restrictive effective clamps */
9630 clamps = 0x0;
9631 uc_se = css_tg(css)->uclamp;
9632 for_each_clamp_id(clamp_id) {
9633 if (eff[clamp_id] == uc_se[clamp_id].value)
9634 continue;
9635 uc_se[clamp_id].value = eff[clamp_id];
9636 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9637 clamps |= (0x1 << clamp_id);
9638 }
babbe170 9639 if (!clamps) {
0b60ba2d 9640 css = css_rightmost_descendant(css);
babbe170
PB
9641 continue;
9642 }
9643
9644 /* Immediately update descendants RUNNABLE tasks */
0213b708 9645 uclamp_update_active_tasks(css);
0b60ba2d
PB
9646 }
9647}
2480c093
PB
9648
9649/*
9650 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9651 * C expression. Since there is no way to convert a macro argument (N) into a
9652 * character constant, use two levels of macros.
9653 */
9654#define _POW10(exp) ((unsigned int)1e##exp)
9655#define POW10(exp) _POW10(exp)
9656
9657struct uclamp_request {
9658#define UCLAMP_PERCENT_SHIFT 2
9659#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9660 s64 percent;
9661 u64 util;
9662 int ret;
9663};
9664
9665static inline struct uclamp_request
9666capacity_from_percent(char *buf)
9667{
9668 struct uclamp_request req = {
9669 .percent = UCLAMP_PERCENT_SCALE,
9670 .util = SCHED_CAPACITY_SCALE,
9671 .ret = 0,
9672 };
9673
9674 buf = strim(buf);
9675 if (strcmp(buf, "max")) {
9676 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9677 &req.percent);
9678 if (req.ret)
9679 return req;
b562d140 9680 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
9681 req.ret = -ERANGE;
9682 return req;
9683 }
9684
9685 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9686 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9687 }
9688
9689 return req;
9690}
9691
9692static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9693 size_t nbytes, loff_t off,
9694 enum uclamp_id clamp_id)
9695{
9696 struct uclamp_request req;
9697 struct task_group *tg;
9698
9699 req = capacity_from_percent(buf);
9700 if (req.ret)
9701 return req.ret;
9702
46609ce2
QY
9703 static_branch_enable(&sched_uclamp_used);
9704
2480c093
PB
9705 mutex_lock(&uclamp_mutex);
9706 rcu_read_lock();
9707
9708 tg = css_tg(of_css(of));
9709 if (tg->uclamp_req[clamp_id].value != req.util)
9710 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9711
9712 /*
9713 * Because of not recoverable conversion rounding we keep track of the
9714 * exact requested value
9715 */
9716 tg->uclamp_pct[clamp_id] = req.percent;
9717
0b60ba2d
PB
9718 /* Update effective clamps to track the most restrictive value */
9719 cpu_util_update_eff(of_css(of));
9720
2480c093
PB
9721 rcu_read_unlock();
9722 mutex_unlock(&uclamp_mutex);
9723
9724 return nbytes;
9725}
9726
9727static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9728 char *buf, size_t nbytes,
9729 loff_t off)
9730{
9731 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9732}
9733
9734static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9735 char *buf, size_t nbytes,
9736 loff_t off)
9737{
9738 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9739}
9740
9741static inline void cpu_uclamp_print(struct seq_file *sf,
9742 enum uclamp_id clamp_id)
9743{
9744 struct task_group *tg;
9745 u64 util_clamp;
9746 u64 percent;
9747 u32 rem;
9748
9749 rcu_read_lock();
9750 tg = css_tg(seq_css(sf));
9751 util_clamp = tg->uclamp_req[clamp_id].value;
9752 rcu_read_unlock();
9753
9754 if (util_clamp == SCHED_CAPACITY_SCALE) {
9755 seq_puts(sf, "max\n");
9756 return;
9757 }
9758
9759 percent = tg->uclamp_pct[clamp_id];
9760 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9761 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9762}
9763
9764static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9765{
9766 cpu_uclamp_print(sf, UCLAMP_MIN);
9767 return 0;
9768}
9769
9770static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9771{
9772 cpu_uclamp_print(sf, UCLAMP_MAX);
9773 return 0;
9774}
9775#endif /* CONFIG_UCLAMP_TASK_GROUP */
9776
052f1dc7 9777#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
9778static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9779 struct cftype *cftype, u64 shareval)
68318b8e 9780{
5b61d50a
KK
9781 if (shareval > scale_load_down(ULONG_MAX))
9782 shareval = MAX_SHARES;
182446d0 9783 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
9784}
9785
182446d0
TH
9786static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9787 struct cftype *cft)
68318b8e 9788{
182446d0 9789 struct task_group *tg = css_tg(css);
68318b8e 9790
c8b28116 9791 return (u64) scale_load_down(tg->shares);
68318b8e 9792}
ab84d31e
PT
9793
9794#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9795static DEFINE_MUTEX(cfs_constraints_mutex);
9796
ab84d31e 9797const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 9798static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
9799/* More than 203 days if BW_SHIFT equals 20. */
9800static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 9801
a790de99
PT
9802static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9803
f4183717
HC
9804static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9805 u64 burst)
ab84d31e 9806{
56f570e5 9807 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 9808 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
9809
9810 if (tg == &root_task_group)
9811 return -EINVAL;
9812
9813 /*
9814 * Ensure we have at some amount of bandwidth every period. This is
9815 * to prevent reaching a state of large arrears when throttled via
9816 * entity_tick() resulting in prolonged exit starvation.
9817 */
9818 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9819 return -EINVAL;
9820
9821 /*
3b03706f 9822 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
9823 * periods. This also allows us to normalize in computing quota
9824 * feasibility.
9825 */
9826 if (period > max_cfs_quota_period)
9827 return -EINVAL;
9828
d505b8af
HC
9829 /*
9830 * Bound quota to defend quota against overflow during bandwidth shift.
9831 */
9832 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9833 return -EINVAL;
9834
f4183717
HC
9835 if (quota != RUNTIME_INF && (burst > quota ||
9836 burst + quota > max_cfs_runtime))
9837 return -EINVAL;
9838
0e59bdae
KT
9839 /*
9840 * Prevent race between setting of cfs_rq->runtime_enabled and
9841 * unthrottle_offline_cfs_rqs().
9842 */
9843 get_online_cpus();
a790de99
PT
9844 mutex_lock(&cfs_constraints_mutex);
9845 ret = __cfs_schedulable(tg, period, quota);
9846 if (ret)
9847 goto out_unlock;
9848
58088ad0 9849 runtime_enabled = quota != RUNTIME_INF;
56f570e5 9850 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
9851 /*
9852 * If we need to toggle cfs_bandwidth_used, off->on must occur
9853 * before making related changes, and on->off must occur afterwards
9854 */
9855 if (runtime_enabled && !runtime_was_enabled)
9856 cfs_bandwidth_usage_inc();
ab84d31e
PT
9857 raw_spin_lock_irq(&cfs_b->lock);
9858 cfs_b->period = ns_to_ktime(period);
9859 cfs_b->quota = quota;
f4183717 9860 cfs_b->burst = burst;
58088ad0 9861
a9cf55b2 9862 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9863
9864 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9865 if (runtime_enabled)
9866 start_cfs_bandwidth(cfs_b);
d1ccc66d 9867
ab84d31e
PT
9868 raw_spin_unlock_irq(&cfs_b->lock);
9869
0e59bdae 9870 for_each_online_cpu(i) {
ab84d31e 9871 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9872 struct rq *rq = cfs_rq->rq;
8a8c69c3 9873 struct rq_flags rf;
ab84d31e 9874
8a8c69c3 9875 rq_lock_irq(rq, &rf);
58088ad0 9876 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9877 cfs_rq->runtime_remaining = 0;
671fd9da 9878
029632fb 9879 if (cfs_rq->throttled)
671fd9da 9880 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9881 rq_unlock_irq(rq, &rf);
ab84d31e 9882 }
1ee14e6c
BS
9883 if (runtime_was_enabled && !runtime_enabled)
9884 cfs_bandwidth_usage_dec();
a790de99
PT
9885out_unlock:
9886 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 9887 put_online_cpus();
ab84d31e 9888
a790de99 9889 return ret;
ab84d31e
PT
9890}
9891
b1546edc 9892static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 9893{
f4183717 9894 u64 quota, period, burst;
ab84d31e 9895
029632fb 9896 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 9897 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
9898 if (cfs_quota_us < 0)
9899 quota = RUNTIME_INF;
1a8b4540 9900 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9901 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9902 else
9903 return -EINVAL;
ab84d31e 9904
f4183717 9905 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9906}
9907
b1546edc 9908static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9909{
9910 u64 quota_us;
9911
029632fb 9912 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9913 return -1;
9914
029632fb 9915 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9916 do_div(quota_us, NSEC_PER_USEC);
9917
9918 return quota_us;
9919}
9920
b1546edc 9921static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 9922{
f4183717 9923 u64 quota, period, burst;
ab84d31e 9924
1a8b4540
KK
9925 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9926 return -EINVAL;
9927
ab84d31e 9928 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9929 quota = tg->cfs_bandwidth.quota;
f4183717 9930 burst = tg->cfs_bandwidth.burst;
ab84d31e 9931
f4183717 9932 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9933}
9934
b1546edc 9935static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9936{
9937 u64 cfs_period_us;
9938
029632fb 9939 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9940 do_div(cfs_period_us, NSEC_PER_USEC);
9941
9942 return cfs_period_us;
9943}
9944
f4183717
HC
9945static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9946{
9947 u64 quota, period, burst;
9948
9949 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9950 return -EINVAL;
9951
9952 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9953 period = ktime_to_ns(tg->cfs_bandwidth.period);
9954 quota = tg->cfs_bandwidth.quota;
9955
9956 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9957}
9958
9959static long tg_get_cfs_burst(struct task_group *tg)
9960{
9961 u64 burst_us;
9962
9963 burst_us = tg->cfs_bandwidth.burst;
9964 do_div(burst_us, NSEC_PER_USEC);
9965
9966 return burst_us;
9967}
9968
182446d0
TH
9969static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9970 struct cftype *cft)
ab84d31e 9971{
182446d0 9972 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9973}
9974
182446d0
TH
9975static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9976 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9977{
182446d0 9978 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9979}
9980
182446d0
TH
9981static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9982 struct cftype *cft)
ab84d31e 9983{
182446d0 9984 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9985}
9986
182446d0
TH
9987static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9988 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9989{
182446d0 9990 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9991}
9992
f4183717
HC
9993static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9994 struct cftype *cft)
9995{
9996 return tg_get_cfs_burst(css_tg(css));
9997}
9998
9999static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10000 struct cftype *cftype, u64 cfs_burst_us)
10001{
10002 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10003}
10004
a790de99
PT
10005struct cfs_schedulable_data {
10006 struct task_group *tg;
10007 u64 period, quota;
10008};
10009
10010/*
10011 * normalize group quota/period to be quota/max_period
10012 * note: units are usecs
10013 */
10014static u64 normalize_cfs_quota(struct task_group *tg,
10015 struct cfs_schedulable_data *d)
10016{
10017 u64 quota, period;
10018
10019 if (tg == d->tg) {
10020 period = d->period;
10021 quota = d->quota;
10022 } else {
10023 period = tg_get_cfs_period(tg);
10024 quota = tg_get_cfs_quota(tg);
10025 }
10026
10027 /* note: these should typically be equivalent */
10028 if (quota == RUNTIME_INF || quota == -1)
10029 return RUNTIME_INF;
10030
10031 return to_ratio(period, quota);
10032}
10033
10034static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10035{
10036 struct cfs_schedulable_data *d = data;
029632fb 10037 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10038 s64 quota = 0, parent_quota = -1;
10039
10040 if (!tg->parent) {
10041 quota = RUNTIME_INF;
10042 } else {
029632fb 10043 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10044
10045 quota = normalize_cfs_quota(tg, d);
9c58c79a 10046 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10047
10048 /*
c53593e5
TH
10049 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10050 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10051 * limit is set:
a790de99 10052 */
c53593e5
TH
10053 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10054 quota = min(quota, parent_quota);
10055 } else {
10056 if (quota == RUNTIME_INF)
10057 quota = parent_quota;
10058 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10059 return -EINVAL;
10060 }
a790de99 10061 }
9c58c79a 10062 cfs_b->hierarchical_quota = quota;
a790de99
PT
10063
10064 return 0;
10065}
10066
10067static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10068{
8277434e 10069 int ret;
a790de99
PT
10070 struct cfs_schedulable_data data = {
10071 .tg = tg,
10072 .period = period,
10073 .quota = quota,
10074 };
10075
10076 if (quota != RUNTIME_INF) {
10077 do_div(data.period, NSEC_PER_USEC);
10078 do_div(data.quota, NSEC_PER_USEC);
10079 }
10080
8277434e
PT
10081 rcu_read_lock();
10082 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10083 rcu_read_unlock();
10084
10085 return ret;
a790de99 10086}
e8da1b18 10087
a1f7164c 10088static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10089{
2da8ca82 10090 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10091 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10092
44ffc75b
TH
10093 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10094 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10095 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10096
3d6c50c2
YW
10097 if (schedstat_enabled() && tg != &root_task_group) {
10098 u64 ws = 0;
10099 int i;
10100
10101 for_each_possible_cpu(i)
10102 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10103
10104 seq_printf(sf, "wait_sum %llu\n", ws);
10105 }
10106
e8da1b18
NR
10107 return 0;
10108}
ab84d31e 10109#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10110#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10111
052f1dc7 10112#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10113static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10114 struct cftype *cft, s64 val)
6f505b16 10115{
182446d0 10116 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10117}
10118
182446d0
TH
10119static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10120 struct cftype *cft)
6f505b16 10121{
182446d0 10122 return sched_group_rt_runtime(css_tg(css));
6f505b16 10123}
d0b27fa7 10124
182446d0
TH
10125static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10126 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10127{
182446d0 10128 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10129}
10130
182446d0
TH
10131static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10132 struct cftype *cft)
d0b27fa7 10133{
182446d0 10134 return sched_group_rt_period(css_tg(css));
d0b27fa7 10135}
6d6bc0ad 10136#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10137
a1f7164c 10138static struct cftype cpu_legacy_files[] = {
052f1dc7 10139#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10140 {
10141 .name = "shares",
f4c753b7
PM
10142 .read_u64 = cpu_shares_read_u64,
10143 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10144 },
052f1dc7 10145#endif
ab84d31e
PT
10146#ifdef CONFIG_CFS_BANDWIDTH
10147 {
10148 .name = "cfs_quota_us",
10149 .read_s64 = cpu_cfs_quota_read_s64,
10150 .write_s64 = cpu_cfs_quota_write_s64,
10151 },
10152 {
10153 .name = "cfs_period_us",
10154 .read_u64 = cpu_cfs_period_read_u64,
10155 .write_u64 = cpu_cfs_period_write_u64,
10156 },
f4183717
HC
10157 {
10158 .name = "cfs_burst_us",
10159 .read_u64 = cpu_cfs_burst_read_u64,
10160 .write_u64 = cpu_cfs_burst_write_u64,
10161 },
e8da1b18
NR
10162 {
10163 .name = "stat",
a1f7164c 10164 .seq_show = cpu_cfs_stat_show,
e8da1b18 10165 },
ab84d31e 10166#endif
052f1dc7 10167#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10168 {
9f0c1e56 10169 .name = "rt_runtime_us",
06ecb27c
PM
10170 .read_s64 = cpu_rt_runtime_read,
10171 .write_s64 = cpu_rt_runtime_write,
6f505b16 10172 },
d0b27fa7
PZ
10173 {
10174 .name = "rt_period_us",
f4c753b7
PM
10175 .read_u64 = cpu_rt_period_read_uint,
10176 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10177 },
2480c093
PB
10178#endif
10179#ifdef CONFIG_UCLAMP_TASK_GROUP
10180 {
10181 .name = "uclamp.min",
10182 .flags = CFTYPE_NOT_ON_ROOT,
10183 .seq_show = cpu_uclamp_min_show,
10184 .write = cpu_uclamp_min_write,
10185 },
10186 {
10187 .name = "uclamp.max",
10188 .flags = CFTYPE_NOT_ON_ROOT,
10189 .seq_show = cpu_uclamp_max_show,
10190 .write = cpu_uclamp_max_write,
10191 },
052f1dc7 10192#endif
d1ccc66d 10193 { } /* Terminate */
68318b8e
SV
10194};
10195
d41bf8c9
TH
10196static int cpu_extra_stat_show(struct seq_file *sf,
10197 struct cgroup_subsys_state *css)
0d593634 10198{
0d593634
TH
10199#ifdef CONFIG_CFS_BANDWIDTH
10200 {
d41bf8c9 10201 struct task_group *tg = css_tg(css);
0d593634
TH
10202 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10203 u64 throttled_usec;
10204
10205 throttled_usec = cfs_b->throttled_time;
10206 do_div(throttled_usec, NSEC_PER_USEC);
10207
10208 seq_printf(sf, "nr_periods %d\n"
10209 "nr_throttled %d\n"
10210 "throttled_usec %llu\n",
10211 cfs_b->nr_periods, cfs_b->nr_throttled,
10212 throttled_usec);
10213 }
10214#endif
10215 return 0;
10216}
10217
10218#ifdef CONFIG_FAIR_GROUP_SCHED
10219static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10220 struct cftype *cft)
10221{
10222 struct task_group *tg = css_tg(css);
10223 u64 weight = scale_load_down(tg->shares);
10224
10225 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10226}
10227
10228static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10229 struct cftype *cft, u64 weight)
10230{
10231 /*
10232 * cgroup weight knobs should use the common MIN, DFL and MAX
10233 * values which are 1, 100 and 10000 respectively. While it loses
10234 * a bit of range on both ends, it maps pretty well onto the shares
10235 * value used by scheduler and the round-trip conversions preserve
10236 * the original value over the entire range.
10237 */
10238 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10239 return -ERANGE;
10240
10241 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10242
10243 return sched_group_set_shares(css_tg(css), scale_load(weight));
10244}
10245
10246static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10247 struct cftype *cft)
10248{
10249 unsigned long weight = scale_load_down(css_tg(css)->shares);
10250 int last_delta = INT_MAX;
10251 int prio, delta;
10252
10253 /* find the closest nice value to the current weight */
10254 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10255 delta = abs(sched_prio_to_weight[prio] - weight);
10256 if (delta >= last_delta)
10257 break;
10258 last_delta = delta;
10259 }
10260
10261 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10262}
10263
10264static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10265 struct cftype *cft, s64 nice)
10266{
10267 unsigned long weight;
7281c8de 10268 int idx;
0d593634
TH
10269
10270 if (nice < MIN_NICE || nice > MAX_NICE)
10271 return -ERANGE;
10272
7281c8de
PZ
10273 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10274 idx = array_index_nospec(idx, 40);
10275 weight = sched_prio_to_weight[idx];
10276
0d593634
TH
10277 return sched_group_set_shares(css_tg(css), scale_load(weight));
10278}
10279#endif
10280
10281static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10282 long period, long quota)
10283{
10284 if (quota < 0)
10285 seq_puts(sf, "max");
10286 else
10287 seq_printf(sf, "%ld", quota);
10288
10289 seq_printf(sf, " %ld\n", period);
10290}
10291
10292/* caller should put the current value in *@periodp before calling */
10293static int __maybe_unused cpu_period_quota_parse(char *buf,
10294 u64 *periodp, u64 *quotap)
10295{
10296 char tok[21]; /* U64_MAX */
10297
4c47acd8 10298 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10299 return -EINVAL;
10300
10301 *periodp *= NSEC_PER_USEC;
10302
10303 if (sscanf(tok, "%llu", quotap))
10304 *quotap *= NSEC_PER_USEC;
10305 else if (!strcmp(tok, "max"))
10306 *quotap = RUNTIME_INF;
10307 else
10308 return -EINVAL;
10309
10310 return 0;
10311}
10312
10313#ifdef CONFIG_CFS_BANDWIDTH
10314static int cpu_max_show(struct seq_file *sf, void *v)
10315{
10316 struct task_group *tg = css_tg(seq_css(sf));
10317
10318 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10319 return 0;
10320}
10321
10322static ssize_t cpu_max_write(struct kernfs_open_file *of,
10323 char *buf, size_t nbytes, loff_t off)
10324{
10325 struct task_group *tg = css_tg(of_css(of));
10326 u64 period = tg_get_cfs_period(tg);
f4183717 10327 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
10328 u64 quota;
10329 int ret;
10330
10331 ret = cpu_period_quota_parse(buf, &period, &quota);
10332 if (!ret)
f4183717 10333 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
10334 return ret ?: nbytes;
10335}
10336#endif
10337
10338static struct cftype cpu_files[] = {
0d593634
TH
10339#ifdef CONFIG_FAIR_GROUP_SCHED
10340 {
10341 .name = "weight",
10342 .flags = CFTYPE_NOT_ON_ROOT,
10343 .read_u64 = cpu_weight_read_u64,
10344 .write_u64 = cpu_weight_write_u64,
10345 },
10346 {
10347 .name = "weight.nice",
10348 .flags = CFTYPE_NOT_ON_ROOT,
10349 .read_s64 = cpu_weight_nice_read_s64,
10350 .write_s64 = cpu_weight_nice_write_s64,
10351 },
10352#endif
10353#ifdef CONFIG_CFS_BANDWIDTH
10354 {
10355 .name = "max",
10356 .flags = CFTYPE_NOT_ON_ROOT,
10357 .seq_show = cpu_max_show,
10358 .write = cpu_max_write,
10359 },
f4183717
HC
10360 {
10361 .name = "max.burst",
10362 .flags = CFTYPE_NOT_ON_ROOT,
10363 .read_u64 = cpu_cfs_burst_read_u64,
10364 .write_u64 = cpu_cfs_burst_write_u64,
10365 },
2480c093
PB
10366#endif
10367#ifdef CONFIG_UCLAMP_TASK_GROUP
10368 {
10369 .name = "uclamp.min",
10370 .flags = CFTYPE_NOT_ON_ROOT,
10371 .seq_show = cpu_uclamp_min_show,
10372 .write = cpu_uclamp_min_write,
10373 },
10374 {
10375 .name = "uclamp.max",
10376 .flags = CFTYPE_NOT_ON_ROOT,
10377 .seq_show = cpu_uclamp_max_show,
10378 .write = cpu_uclamp_max_write,
10379 },
0d593634
TH
10380#endif
10381 { } /* terminate */
10382};
10383
073219e9 10384struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10385 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10386 .css_online = cpu_cgroup_css_online,
2f5177f0 10387 .css_released = cpu_cgroup_css_released,
92fb9748 10388 .css_free = cpu_cgroup_css_free,
d41bf8c9 10389 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10390 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10391 .can_attach = cpu_cgroup_can_attach,
10392 .attach = cpu_cgroup_attach,
a1f7164c 10393 .legacy_cftypes = cpu_legacy_files,
0d593634 10394 .dfl_cftypes = cpu_files,
b38e42e9 10395 .early_init = true,
0d593634 10396 .threaded = true,
68318b8e
SV
10397};
10398
052f1dc7 10399#endif /* CONFIG_CGROUP_SCHED */
d842de87 10400
b637a328
PM
10401void dump_cpu_task(int cpu)
10402{
10403 pr_info("Task dump for CPU %d:\n", cpu);
10404 sched_show_task(cpu_curr(cpu));
10405}
ed82b8a1
AK
10406
10407/*
10408 * Nice levels are multiplicative, with a gentle 10% change for every
10409 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10410 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10411 * that remained on nice 0.
10412 *
10413 * The "10% effect" is relative and cumulative: from _any_ nice level,
10414 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10415 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10416 * If a task goes up by ~10% and another task goes down by ~10% then
10417 * the relative distance between them is ~25%.)
10418 */
10419const int sched_prio_to_weight[40] = {
10420 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10421 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10422 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10423 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10424 /* 0 */ 1024, 820, 655, 526, 423,
10425 /* 5 */ 335, 272, 215, 172, 137,
10426 /* 10 */ 110, 87, 70, 56, 45,
10427 /* 15 */ 36, 29, 23, 18, 15,
10428};
10429
10430/*
10431 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10432 *
10433 * In cases where the weight does not change often, we can use the
10434 * precalculated inverse to speed up arithmetics by turning divisions
10435 * into multiplications:
10436 */
10437const u32 sched_prio_to_wmult[40] = {
10438 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10439 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10440 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10441 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10442 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10443 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10444 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10445 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10446};
14a7405b 10447
9d246053
PA
10448void call_trace_sched_update_nr_running(struct rq *rq, int count)
10449{
10450 trace_sched_update_nr_running_tp(rq, count);
10451}