Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
bc7a34b8 621int get_nohz_timer_target(void)
83cd4fe2 622{
bc7a34b8 623 int i, cpu = smp_processor_id();
83cd4fe2
VP
624 struct sched_domain *sd;
625
bc7a34b8 626 if (!idle_cpu(cpu))
6201b4d6
VK
627 return cpu;
628
057f3fad 629 rcu_read_lock();
83cd4fe2 630 for_each_domain(cpu, sd) {
057f3fad
PZ
631 for_each_cpu(i, sched_domain_span(sd)) {
632 if (!idle_cpu(i)) {
633 cpu = i;
634 goto unlock;
635 }
636 }
83cd4fe2 637 }
057f3fad
PZ
638unlock:
639 rcu_read_unlock();
83cd4fe2
VP
640 return cpu;
641}
06d8308c
TG
642/*
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
651 */
1c20091e 652static void wake_up_idle_cpu(int cpu)
06d8308c
TG
653{
654 struct rq *rq = cpu_rq(cpu);
655
656 if (cpu == smp_processor_id())
657 return;
658
67b9ca70 659 if (set_nr_and_not_polling(rq->idle))
06d8308c 660 smp_send_reschedule(cpu);
dfc68f29
AL
661 else
662 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
663}
664
c5bfece2 665static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 666{
53c5fa16
FW
667 /*
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
671 * empty IRQ.
672 */
c5bfece2 673 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
53c5fa16 676 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
677 return true;
678 }
679
680 return false;
681}
682
683void wake_up_nohz_cpu(int cpu)
684{
c5bfece2 685 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
686 wake_up_idle_cpu(cpu);
687}
688
ca38062e 689static inline bool got_nohz_idle_kick(void)
45bf76df 690{
1c792db7 691 int cpu = smp_processor_id();
873b4c65
VG
692
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 return false;
695
696 if (idle_cpu(cpu) && !need_resched())
697 return true;
698
699 /*
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
702 */
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 return false;
45bf76df
IM
705}
706
3451d024 707#else /* CONFIG_NO_HZ_COMMON */
45bf76df 708
ca38062e 709static inline bool got_nohz_idle_kick(void)
2069dd75 710{
ca38062e 711 return false;
2069dd75
PZ
712}
713
3451d024 714#endif /* CONFIG_NO_HZ_COMMON */
d842de87 715
ce831b38
FW
716#ifdef CONFIG_NO_HZ_FULL
717bool sched_can_stop_tick(void)
718{
1e78cdbd
RR
719 /*
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
722 */
723 if (current->policy == SCHED_FIFO)
724 return true;
725
726 /*
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
729 */
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = &current->rt;
732
733 return rt_se->run_list.prev == rt_se->run_list.next;
734 }
735
3882ec64
FW
736 /*
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
740 */
541b8264
VK
741 if (this_rq()->nr_running > 1)
742 return false;
ce831b38 743
541b8264 744 return true;
ce831b38
FW
745}
746#endif /* CONFIG_NO_HZ_FULL */
d842de87 747
029632fb 748void sched_avg_update(struct rq *rq)
18d95a28 749{
e9e9250b
PZ
750 s64 period = sched_avg_period();
751
78becc27 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
18d95a28
PZ
762}
763
6d6bc0ad 764#endif /* CONFIG_SMP */
18d95a28 765
a790de99
PT
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 768/*
8277434e
PT
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 773 */
029632fb 774int walk_tg_tree_from(struct task_group *from,
8277434e 775 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
776{
777 struct task_group *parent, *child;
eb755805 778 int ret;
c09595f6 779
8277434e
PT
780 parent = from;
781
c09595f6 782down:
eb755805
PZ
783 ret = (*down)(parent, data);
784 if (ret)
8277434e 785 goto out;
c09595f6
PZ
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790up:
791 continue;
792 }
eb755805 793 ret = (*up)(parent, data);
8277434e
PT
794 if (ret || parent == from)
795 goto out;
c09595f6
PZ
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
8277434e 801out:
eb755805 802 return ret;
c09595f6
PZ
803}
804
029632fb 805int tg_nop(struct task_group *tg, void *data)
eb755805 806{
e2b245f8 807 return 0;
eb755805 808}
18d95a28
PZ
809#endif
810
45bf76df
IM
811static void set_load_weight(struct task_struct *p)
812{
f05998d4
NR
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
dd41f596
IM
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
c8b28116 820 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 821 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
822 return;
823 }
71f8bd46 824
c8b28116 825 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 826 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
827}
828
371fd7e7 829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 830{
a64692a3 831 update_rq_clock(rq);
43148951 832 sched_info_queued(rq, p);
371fd7e7 833 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
834}
835
371fd7e7 836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 837{
a64692a3 838 update_rq_clock(rq);
43148951 839 sched_info_dequeued(rq, p);
371fd7e7 840 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
841}
842
029632fb 843void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
844{
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
371fd7e7 848 enqueue_task(rq, p, flags);
1e3c88bd
PZ
849}
850
029632fb 851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
852{
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
371fd7e7 856 dequeue_task(rq, p, flags);
1e3c88bd
PZ
857}
858
fe44d621 859static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 860{
095c0aa8
GC
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
095c0aa8
GC
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 893 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
095c0aa8 900 rq->prev_steal_time_rq += steal;
095c0aa8
GC
901 delta -= steal;
902 }
903#endif
904
fe44d621
PZ
905 rq->clock_task += delta;
906
095c0aa8 907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
909 sched_rt_avg_update(rq, irq_delta + steal);
910#endif
aa483808
VP
911}
912
34f971f6
PZ
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941}
942
14531189 943/*
dd41f596 944 * __normal_prio - return the priority that is based on the static prio
14531189 945 */
14531189
IM
946static inline int __normal_prio(struct task_struct *p)
947{
dd41f596 948 return p->static_prio;
14531189
IM
949}
950
b29739f9
IM
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
36c8b586 958static inline int normal_prio(struct task_struct *p)
b29739f9
IM
959{
960 int prio;
961
aab03e05
DF
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
b29739f9
IM
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
36c8b586 978static int effective_prio(struct task_struct *p)
b29739f9
IM
979{
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989}
990
1da177e4
LT
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
e69f6186
YB
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 996 */
36c8b586 997inline int task_curr(const struct task_struct *p)
1da177e4
LT
998{
999 return cpu_curr(task_cpu(p)) == p;
1000}
1001
67dfa1b7 1002/*
4c9a4bc8
PZ
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1005 *
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
67dfa1b7 1008 */
cb469845
SR
1009static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
da7a735e 1011 int oldprio)
cb469845
SR
1012{
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
da7a735e 1015 prev_class->switched_from(rq, p);
4c9a4bc8 1016
da7a735e 1017 p->sched_class->switched_to(rq, p);
2d3d891d 1018 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1019 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1020}
1021
029632fb 1022void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1023{
1024 const struct sched_class *class;
1025
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 } else {
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1031 break;
1032 if (class == p->sched_class) {
8875125e 1033 resched_curr(rq);
1e5a7405
PZ
1034 break;
1035 }
1036 }
1037 }
1038
1039 /*
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1042 */
da0c1e65 1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1044 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1045}
1046
1da177e4 1047#ifdef CONFIG_SMP
5cc389bc
PZ
1048/*
1049 * This is how migration works:
1050 *
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1052 * stop_one_cpu().
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1054 * off the CPU)
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1059 * is done.
1060 */
1061
1062/*
1063 * move_queued_task - move a queued task to new rq.
1064 *
1065 * Returns (locked) new rq. Old rq's lock is released.
1066 */
5e16bbc2 1067static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1068{
5cc389bc
PZ
1069 lockdep_assert_held(&rq->lock);
1070
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1075
1076 rq = cpu_rq(new_cpu);
1077
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1083
1084 return rq;
1085}
1086
1087struct migration_arg {
1088 struct task_struct *task;
1089 int dest_cpu;
1090};
1091
1092/*
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1097 *
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
5cc389bc 1100 */
5e16bbc2 1101static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1102{
5cc389bc 1103 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1104 return rq;
5cc389bc
PZ
1105
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1108 return rq;
5cc389bc 1109
5e16bbc2
PZ
1110 rq = move_queued_task(rq, p, dest_cpu);
1111
1112 return rq;
5cc389bc
PZ
1113}
1114
1115/*
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1119 */
1120static int migration_cpu_stop(void *data)
1121{
1122 struct migration_arg *arg = data;
5e16bbc2
PZ
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
5cc389bc
PZ
1125
1126 /*
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1129 */
1130 local_irq_disable();
1131 /*
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 */
1136 sched_ttwu_pending();
5e16bbc2
PZ
1137
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1140 /*
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1144 */
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1149
5cc389bc
PZ
1150 local_irq_enable();
1151 return 0;
1152}
1153
c5b28038
PZ
1154/*
1155 * sched_class::set_cpus_allowed must do the below, but is not required to
1156 * actually call this function.
1157 */
1158void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1159{
5cc389bc
PZ
1160 cpumask_copy(&p->cpus_allowed, new_mask);
1161 p->nr_cpus_allowed = cpumask_weight(new_mask);
1162}
1163
c5b28038
PZ
1164void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1165{
6c37067e
PZ
1166 struct rq *rq = task_rq(p);
1167 bool queued, running;
1168
c5b28038 1169 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1170
1171 queued = task_on_rq_queued(p);
1172 running = task_current(rq, p);
1173
1174 if (queued) {
1175 /*
1176 * Because __kthread_bind() calls this on blocked tasks without
1177 * holding rq->lock.
1178 */
1179 lockdep_assert_held(&rq->lock);
1180 dequeue_task(rq, p, 0);
1181 }
1182 if (running)
1183 put_prev_task(rq, p);
1184
c5b28038 1185 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1186
1187 if (running)
1188 p->sched_class->set_curr_task(rq);
1189 if (queued)
1190 enqueue_task(rq, p, 0);
c5b28038
PZ
1191}
1192
5cc389bc
PZ
1193/*
1194 * Change a given task's CPU affinity. Migrate the thread to a
1195 * proper CPU and schedule it away if the CPU it's executing on
1196 * is removed from the allowed bitmask.
1197 *
1198 * NOTE: the caller must have a valid reference to the task, the
1199 * task must not exit() & deallocate itself prematurely. The
1200 * call is not atomic; no spinlocks may be held.
1201 */
25834c73
PZ
1202static int __set_cpus_allowed_ptr(struct task_struct *p,
1203 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1204{
1205 unsigned long flags;
1206 struct rq *rq;
1207 unsigned int dest_cpu;
1208 int ret = 0;
1209
1210 rq = task_rq_lock(p, &flags);
1211
25834c73
PZ
1212 /*
1213 * Must re-check here, to close a race against __kthread_bind(),
1214 * sched_setaffinity() is not guaranteed to observe the flag.
1215 */
1216 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1217 ret = -EINVAL;
1218 goto out;
1219 }
1220
5cc389bc
PZ
1221 if (cpumask_equal(&p->cpus_allowed, new_mask))
1222 goto out;
1223
1224 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1225 ret = -EINVAL;
1226 goto out;
1227 }
1228
1229 do_set_cpus_allowed(p, new_mask);
1230
1231 /* Can the task run on the task's current CPU? If so, we're done */
1232 if (cpumask_test_cpu(task_cpu(p), new_mask))
1233 goto out;
1234
1235 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1236 if (task_running(rq, p) || p->state == TASK_WAKING) {
1237 struct migration_arg arg = { p, dest_cpu };
1238 /* Need help from migration thread: drop lock and wait. */
1239 task_rq_unlock(rq, p, &flags);
1240 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1241 tlb_migrate_finish(p->mm);
1242 return 0;
cbce1a68
PZ
1243 } else if (task_on_rq_queued(p)) {
1244 /*
1245 * OK, since we're going to drop the lock immediately
1246 * afterwards anyway.
1247 */
1248 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1249 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1250 lockdep_pin_lock(&rq->lock);
1251 }
5cc389bc
PZ
1252out:
1253 task_rq_unlock(rq, p, &flags);
1254
1255 return ret;
1256}
25834c73
PZ
1257
1258int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1259{
1260 return __set_cpus_allowed_ptr(p, new_mask, false);
1261}
5cc389bc
PZ
1262EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1263
dd41f596 1264void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1265{
e2912009
PZ
1266#ifdef CONFIG_SCHED_DEBUG
1267 /*
1268 * We should never call set_task_cpu() on a blocked task,
1269 * ttwu() will sort out the placement.
1270 */
077614ee 1271 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1272 !p->on_rq);
0122ec5b
PZ
1273
1274#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1275 /*
1276 * The caller should hold either p->pi_lock or rq->lock, when changing
1277 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1278 *
1279 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1280 * see task_group().
6c6c54e1
PZ
1281 *
1282 * Furthermore, all task_rq users should acquire both locks, see
1283 * task_rq_lock().
1284 */
0122ec5b
PZ
1285 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1286 lockdep_is_held(&task_rq(p)->lock)));
1287#endif
e2912009
PZ
1288#endif
1289
de1d7286 1290 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1291
0c69774e 1292 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1293 if (p->sched_class->migrate_task_rq)
1294 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1295 p->se.nr_migrations++;
ff303e66 1296 perf_event_task_migrate(p);
0c69774e 1297 }
dd41f596
IM
1298
1299 __set_task_cpu(p, new_cpu);
c65cc870
IM
1300}
1301
ac66f547
PZ
1302static void __migrate_swap_task(struct task_struct *p, int cpu)
1303{
da0c1e65 1304 if (task_on_rq_queued(p)) {
ac66f547
PZ
1305 struct rq *src_rq, *dst_rq;
1306
1307 src_rq = task_rq(p);
1308 dst_rq = cpu_rq(cpu);
1309
1310 deactivate_task(src_rq, p, 0);
1311 set_task_cpu(p, cpu);
1312 activate_task(dst_rq, p, 0);
1313 check_preempt_curr(dst_rq, p, 0);
1314 } else {
1315 /*
1316 * Task isn't running anymore; make it appear like we migrated
1317 * it before it went to sleep. This means on wakeup we make the
1318 * previous cpu our targer instead of where it really is.
1319 */
1320 p->wake_cpu = cpu;
1321 }
1322}
1323
1324struct migration_swap_arg {
1325 struct task_struct *src_task, *dst_task;
1326 int src_cpu, dst_cpu;
1327};
1328
1329static int migrate_swap_stop(void *data)
1330{
1331 struct migration_swap_arg *arg = data;
1332 struct rq *src_rq, *dst_rq;
1333 int ret = -EAGAIN;
1334
1335 src_rq = cpu_rq(arg->src_cpu);
1336 dst_rq = cpu_rq(arg->dst_cpu);
1337
74602315
PZ
1338 double_raw_lock(&arg->src_task->pi_lock,
1339 &arg->dst_task->pi_lock);
ac66f547
PZ
1340 double_rq_lock(src_rq, dst_rq);
1341 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1342 goto unlock;
1343
1344 if (task_cpu(arg->src_task) != arg->src_cpu)
1345 goto unlock;
1346
1347 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1348 goto unlock;
1349
1350 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1351 goto unlock;
1352
1353 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1354 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1355
1356 ret = 0;
1357
1358unlock:
1359 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1360 raw_spin_unlock(&arg->dst_task->pi_lock);
1361 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1362
1363 return ret;
1364}
1365
1366/*
1367 * Cross migrate two tasks
1368 */
1369int migrate_swap(struct task_struct *cur, struct task_struct *p)
1370{
1371 struct migration_swap_arg arg;
1372 int ret = -EINVAL;
1373
ac66f547
PZ
1374 arg = (struct migration_swap_arg){
1375 .src_task = cur,
1376 .src_cpu = task_cpu(cur),
1377 .dst_task = p,
1378 .dst_cpu = task_cpu(p),
1379 };
1380
1381 if (arg.src_cpu == arg.dst_cpu)
1382 goto out;
1383
6acce3ef
PZ
1384 /*
1385 * These three tests are all lockless; this is OK since all of them
1386 * will be re-checked with proper locks held further down the line.
1387 */
ac66f547
PZ
1388 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1389 goto out;
1390
1391 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1392 goto out;
1393
1394 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1395 goto out;
1396
286549dc 1397 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1398 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1399
1400out:
ac66f547
PZ
1401 return ret;
1402}
1403
1da177e4
LT
1404/*
1405 * wait_task_inactive - wait for a thread to unschedule.
1406 *
85ba2d86
RM
1407 * If @match_state is nonzero, it's the @p->state value just checked and
1408 * not expected to change. If it changes, i.e. @p might have woken up,
1409 * then return zero. When we succeed in waiting for @p to be off its CPU,
1410 * we return a positive number (its total switch count). If a second call
1411 * a short while later returns the same number, the caller can be sure that
1412 * @p has remained unscheduled the whole time.
1413 *
1da177e4
LT
1414 * The caller must ensure that the task *will* unschedule sometime soon,
1415 * else this function might spin for a *long* time. This function can't
1416 * be called with interrupts off, or it may introduce deadlock with
1417 * smp_call_function() if an IPI is sent by the same process we are
1418 * waiting to become inactive.
1419 */
85ba2d86 1420unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1421{
1422 unsigned long flags;
da0c1e65 1423 int running, queued;
85ba2d86 1424 unsigned long ncsw;
70b97a7f 1425 struct rq *rq;
1da177e4 1426
3a5c359a
AK
1427 for (;;) {
1428 /*
1429 * We do the initial early heuristics without holding
1430 * any task-queue locks at all. We'll only try to get
1431 * the runqueue lock when things look like they will
1432 * work out!
1433 */
1434 rq = task_rq(p);
fa490cfd 1435
3a5c359a
AK
1436 /*
1437 * If the task is actively running on another CPU
1438 * still, just relax and busy-wait without holding
1439 * any locks.
1440 *
1441 * NOTE! Since we don't hold any locks, it's not
1442 * even sure that "rq" stays as the right runqueue!
1443 * But we don't care, since "task_running()" will
1444 * return false if the runqueue has changed and p
1445 * is actually now running somewhere else!
1446 */
85ba2d86
RM
1447 while (task_running(rq, p)) {
1448 if (match_state && unlikely(p->state != match_state))
1449 return 0;
3a5c359a 1450 cpu_relax();
85ba2d86 1451 }
fa490cfd 1452
3a5c359a
AK
1453 /*
1454 * Ok, time to look more closely! We need the rq
1455 * lock now, to be *sure*. If we're wrong, we'll
1456 * just go back and repeat.
1457 */
1458 rq = task_rq_lock(p, &flags);
27a9da65 1459 trace_sched_wait_task(p);
3a5c359a 1460 running = task_running(rq, p);
da0c1e65 1461 queued = task_on_rq_queued(p);
85ba2d86 1462 ncsw = 0;
f31e11d8 1463 if (!match_state || p->state == match_state)
93dcf55f 1464 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1465 task_rq_unlock(rq, p, &flags);
fa490cfd 1466
85ba2d86
RM
1467 /*
1468 * If it changed from the expected state, bail out now.
1469 */
1470 if (unlikely(!ncsw))
1471 break;
1472
3a5c359a
AK
1473 /*
1474 * Was it really running after all now that we
1475 * checked with the proper locks actually held?
1476 *
1477 * Oops. Go back and try again..
1478 */
1479 if (unlikely(running)) {
1480 cpu_relax();
1481 continue;
1482 }
fa490cfd 1483
3a5c359a
AK
1484 /*
1485 * It's not enough that it's not actively running,
1486 * it must be off the runqueue _entirely_, and not
1487 * preempted!
1488 *
80dd99b3 1489 * So if it was still runnable (but just not actively
3a5c359a
AK
1490 * running right now), it's preempted, and we should
1491 * yield - it could be a while.
1492 */
da0c1e65 1493 if (unlikely(queued)) {
8eb90c30
TG
1494 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1495
1496 set_current_state(TASK_UNINTERRUPTIBLE);
1497 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1498 continue;
1499 }
fa490cfd 1500
3a5c359a
AK
1501 /*
1502 * Ahh, all good. It wasn't running, and it wasn't
1503 * runnable, which means that it will never become
1504 * running in the future either. We're all done!
1505 */
1506 break;
1507 }
85ba2d86
RM
1508
1509 return ncsw;
1da177e4
LT
1510}
1511
1512/***
1513 * kick_process - kick a running thread to enter/exit the kernel
1514 * @p: the to-be-kicked thread
1515 *
1516 * Cause a process which is running on another CPU to enter
1517 * kernel-mode, without any delay. (to get signals handled.)
1518 *
25985edc 1519 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1520 * because all it wants to ensure is that the remote task enters
1521 * the kernel. If the IPI races and the task has been migrated
1522 * to another CPU then no harm is done and the purpose has been
1523 * achieved as well.
1524 */
36c8b586 1525void kick_process(struct task_struct *p)
1da177e4
LT
1526{
1527 int cpu;
1528
1529 preempt_disable();
1530 cpu = task_cpu(p);
1531 if ((cpu != smp_processor_id()) && task_curr(p))
1532 smp_send_reschedule(cpu);
1533 preempt_enable();
1534}
b43e3521 1535EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1536
30da688e 1537/*
013fdb80 1538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1539 */
5da9a0fb
PZ
1540static int select_fallback_rq(int cpu, struct task_struct *p)
1541{
aa00d89c
TC
1542 int nid = cpu_to_node(cpu);
1543 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1544 enum { cpuset, possible, fail } state = cpuset;
1545 int dest_cpu;
5da9a0fb 1546
aa00d89c
TC
1547 /*
1548 * If the node that the cpu is on has been offlined, cpu_to_node()
1549 * will return -1. There is no cpu on the node, and we should
1550 * select the cpu on the other node.
1551 */
1552 if (nid != -1) {
1553 nodemask = cpumask_of_node(nid);
1554
1555 /* Look for allowed, online CPU in same node. */
1556 for_each_cpu(dest_cpu, nodemask) {
1557 if (!cpu_online(dest_cpu))
1558 continue;
1559 if (!cpu_active(dest_cpu))
1560 continue;
1561 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1562 return dest_cpu;
1563 }
2baab4e9 1564 }
5da9a0fb 1565
2baab4e9
PZ
1566 for (;;) {
1567 /* Any allowed, online CPU? */
e3831edd 1568 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1569 if (!cpu_online(dest_cpu))
1570 continue;
1571 if (!cpu_active(dest_cpu))
1572 continue;
1573 goto out;
1574 }
5da9a0fb 1575
2baab4e9
PZ
1576 switch (state) {
1577 case cpuset:
1578 /* No more Mr. Nice Guy. */
1579 cpuset_cpus_allowed_fallback(p);
1580 state = possible;
1581 break;
1582
1583 case possible:
1584 do_set_cpus_allowed(p, cpu_possible_mask);
1585 state = fail;
1586 break;
1587
1588 case fail:
1589 BUG();
1590 break;
1591 }
1592 }
1593
1594out:
1595 if (state != cpuset) {
1596 /*
1597 * Don't tell them about moving exiting tasks or
1598 * kernel threads (both mm NULL), since they never
1599 * leave kernel.
1600 */
1601 if (p->mm && printk_ratelimit()) {
aac74dc4 1602 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1603 task_pid_nr(p), p->comm, cpu);
1604 }
5da9a0fb
PZ
1605 }
1606
1607 return dest_cpu;
1608}
1609
e2912009 1610/*
013fdb80 1611 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1612 */
970b13ba 1613static inline
ac66f547 1614int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1615{
cbce1a68
PZ
1616 lockdep_assert_held(&p->pi_lock);
1617
6c1d9410
WL
1618 if (p->nr_cpus_allowed > 1)
1619 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1620
1621 /*
1622 * In order not to call set_task_cpu() on a blocking task we need
1623 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1624 * cpu.
1625 *
1626 * Since this is common to all placement strategies, this lives here.
1627 *
1628 * [ this allows ->select_task() to simply return task_cpu(p) and
1629 * not worry about this generic constraint ]
1630 */
fa17b507 1631 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1632 !cpu_online(cpu)))
5da9a0fb 1633 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1634
1635 return cpu;
970b13ba 1636}
09a40af5
MG
1637
1638static void update_avg(u64 *avg, u64 sample)
1639{
1640 s64 diff = sample - *avg;
1641 *avg += diff >> 3;
1642}
25834c73
PZ
1643
1644#else
1645
1646static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1647 const struct cpumask *new_mask, bool check)
1648{
1649 return set_cpus_allowed_ptr(p, new_mask);
1650}
1651
5cc389bc 1652#endif /* CONFIG_SMP */
970b13ba 1653
d7c01d27 1654static void
b84cb5df 1655ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1656{
d7c01d27 1657#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1658 struct rq *rq = this_rq();
1659
d7c01d27
PZ
1660#ifdef CONFIG_SMP
1661 int this_cpu = smp_processor_id();
1662
1663 if (cpu == this_cpu) {
1664 schedstat_inc(rq, ttwu_local);
1665 schedstat_inc(p, se.statistics.nr_wakeups_local);
1666 } else {
1667 struct sched_domain *sd;
1668
1669 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1670 rcu_read_lock();
d7c01d27
PZ
1671 for_each_domain(this_cpu, sd) {
1672 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1673 schedstat_inc(sd, ttwu_wake_remote);
1674 break;
1675 }
1676 }
057f3fad 1677 rcu_read_unlock();
d7c01d27 1678 }
f339b9dc
PZ
1679
1680 if (wake_flags & WF_MIGRATED)
1681 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1682
d7c01d27
PZ
1683#endif /* CONFIG_SMP */
1684
1685 schedstat_inc(rq, ttwu_count);
9ed3811a 1686 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1687
1688 if (wake_flags & WF_SYNC)
9ed3811a 1689 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1690
d7c01d27
PZ
1691#endif /* CONFIG_SCHEDSTATS */
1692}
1693
1694static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1695{
9ed3811a 1696 activate_task(rq, p, en_flags);
da0c1e65 1697 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1698
1699 /* if a worker is waking up, notify workqueue */
1700 if (p->flags & PF_WQ_WORKER)
1701 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1702}
1703
23f41eeb
PZ
1704/*
1705 * Mark the task runnable and perform wakeup-preemption.
1706 */
89363381 1707static void
23f41eeb 1708ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1709{
9ed3811a 1710 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1711 p->state = TASK_RUNNING;
fbd705a0
PZ
1712 trace_sched_wakeup(p);
1713
9ed3811a 1714#ifdef CONFIG_SMP
4c9a4bc8
PZ
1715 if (p->sched_class->task_woken) {
1716 /*
cbce1a68
PZ
1717 * Our task @p is fully woken up and running; so its safe to
1718 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1719 */
cbce1a68 1720 lockdep_unpin_lock(&rq->lock);
9ed3811a 1721 p->sched_class->task_woken(rq, p);
cbce1a68 1722 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1723 }
9ed3811a 1724
e69c6341 1725 if (rq->idle_stamp) {
78becc27 1726 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1727 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1728
abfafa54
JL
1729 update_avg(&rq->avg_idle, delta);
1730
1731 if (rq->avg_idle > max)
9ed3811a 1732 rq->avg_idle = max;
abfafa54 1733
9ed3811a
TH
1734 rq->idle_stamp = 0;
1735 }
1736#endif
1737}
1738
c05fbafb
PZ
1739static void
1740ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1741{
cbce1a68
PZ
1742 lockdep_assert_held(&rq->lock);
1743
c05fbafb
PZ
1744#ifdef CONFIG_SMP
1745 if (p->sched_contributes_to_load)
1746 rq->nr_uninterruptible--;
1747#endif
1748
1749 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1750 ttwu_do_wakeup(rq, p, wake_flags);
1751}
1752
1753/*
1754 * Called in case the task @p isn't fully descheduled from its runqueue,
1755 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1756 * since all we need to do is flip p->state to TASK_RUNNING, since
1757 * the task is still ->on_rq.
1758 */
1759static int ttwu_remote(struct task_struct *p, int wake_flags)
1760{
1761 struct rq *rq;
1762 int ret = 0;
1763
1764 rq = __task_rq_lock(p);
da0c1e65 1765 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1766 /* check_preempt_curr() may use rq clock */
1767 update_rq_clock(rq);
c05fbafb
PZ
1768 ttwu_do_wakeup(rq, p, wake_flags);
1769 ret = 1;
1770 }
1771 __task_rq_unlock(rq);
1772
1773 return ret;
1774}
1775
317f3941 1776#ifdef CONFIG_SMP
e3baac47 1777void sched_ttwu_pending(void)
317f3941
PZ
1778{
1779 struct rq *rq = this_rq();
fa14ff4a
PZ
1780 struct llist_node *llist = llist_del_all(&rq->wake_list);
1781 struct task_struct *p;
e3baac47 1782 unsigned long flags;
317f3941 1783
e3baac47
PZ
1784 if (!llist)
1785 return;
1786
1787 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1788 lockdep_pin_lock(&rq->lock);
317f3941 1789
fa14ff4a
PZ
1790 while (llist) {
1791 p = llist_entry(llist, struct task_struct, wake_entry);
1792 llist = llist_next(llist);
317f3941
PZ
1793 ttwu_do_activate(rq, p, 0);
1794 }
1795
cbce1a68 1796 lockdep_unpin_lock(&rq->lock);
e3baac47 1797 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1798}
1799
1800void scheduler_ipi(void)
1801{
f27dde8d
PZ
1802 /*
1803 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804 * TIF_NEED_RESCHED remotely (for the first time) will also send
1805 * this IPI.
1806 */
8cb75e0c 1807 preempt_fold_need_resched();
f27dde8d 1808
fd2ac4f4 1809 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1810 return;
1811
1812 /*
1813 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1814 * traditionally all their work was done from the interrupt return
1815 * path. Now that we actually do some work, we need to make sure
1816 * we do call them.
1817 *
1818 * Some archs already do call them, luckily irq_enter/exit nest
1819 * properly.
1820 *
1821 * Arguably we should visit all archs and update all handlers,
1822 * however a fair share of IPIs are still resched only so this would
1823 * somewhat pessimize the simple resched case.
1824 */
1825 irq_enter();
fa14ff4a 1826 sched_ttwu_pending();
ca38062e
SS
1827
1828 /*
1829 * Check if someone kicked us for doing the nohz idle load balance.
1830 */
873b4c65 1831 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1832 this_rq()->idle_balance = 1;
ca38062e 1833 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1834 }
c5d753a5 1835 irq_exit();
317f3941
PZ
1836}
1837
1838static void ttwu_queue_remote(struct task_struct *p, int cpu)
1839{
e3baac47
PZ
1840 struct rq *rq = cpu_rq(cpu);
1841
1842 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1843 if (!set_nr_if_polling(rq->idle))
1844 smp_send_reschedule(cpu);
1845 else
1846 trace_sched_wake_idle_without_ipi(cpu);
1847 }
317f3941 1848}
d6aa8f85 1849
f6be8af1
CL
1850void wake_up_if_idle(int cpu)
1851{
1852 struct rq *rq = cpu_rq(cpu);
1853 unsigned long flags;
1854
fd7de1e8
AL
1855 rcu_read_lock();
1856
1857 if (!is_idle_task(rcu_dereference(rq->curr)))
1858 goto out;
f6be8af1
CL
1859
1860 if (set_nr_if_polling(rq->idle)) {
1861 trace_sched_wake_idle_without_ipi(cpu);
1862 } else {
1863 raw_spin_lock_irqsave(&rq->lock, flags);
1864 if (is_idle_task(rq->curr))
1865 smp_send_reschedule(cpu);
1866 /* Else cpu is not in idle, do nothing here */
1867 raw_spin_unlock_irqrestore(&rq->lock, flags);
1868 }
fd7de1e8
AL
1869
1870out:
1871 rcu_read_unlock();
f6be8af1
CL
1872}
1873
39be3501 1874bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1875{
1876 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1877}
d6aa8f85 1878#endif /* CONFIG_SMP */
317f3941 1879
c05fbafb
PZ
1880static void ttwu_queue(struct task_struct *p, int cpu)
1881{
1882 struct rq *rq = cpu_rq(cpu);
1883
17d9f311 1884#if defined(CONFIG_SMP)
39be3501 1885 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1886 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1887 ttwu_queue_remote(p, cpu);
1888 return;
1889 }
1890#endif
1891
c05fbafb 1892 raw_spin_lock(&rq->lock);
cbce1a68 1893 lockdep_pin_lock(&rq->lock);
c05fbafb 1894 ttwu_do_activate(rq, p, 0);
cbce1a68 1895 lockdep_unpin_lock(&rq->lock);
c05fbafb 1896 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1897}
1898
1899/**
1da177e4 1900 * try_to_wake_up - wake up a thread
9ed3811a 1901 * @p: the thread to be awakened
1da177e4 1902 * @state: the mask of task states that can be woken
9ed3811a 1903 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1904 *
1905 * Put it on the run-queue if it's not already there. The "current"
1906 * thread is always on the run-queue (except when the actual
1907 * re-schedule is in progress), and as such you're allowed to do
1908 * the simpler "current->state = TASK_RUNNING" to mark yourself
1909 * runnable without the overhead of this.
1910 *
e69f6186 1911 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1912 * or @state didn't match @p's state.
1da177e4 1913 */
e4a52bcb
PZ
1914static int
1915try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1916{
1da177e4 1917 unsigned long flags;
c05fbafb 1918 int cpu, success = 0;
2398f2c6 1919
e0acd0a6
ON
1920 /*
1921 * If we are going to wake up a thread waiting for CONDITION we
1922 * need to ensure that CONDITION=1 done by the caller can not be
1923 * reordered with p->state check below. This pairs with mb() in
1924 * set_current_state() the waiting thread does.
1925 */
1926 smp_mb__before_spinlock();
013fdb80 1927 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1928 if (!(p->state & state))
1da177e4
LT
1929 goto out;
1930
fbd705a0
PZ
1931 trace_sched_waking(p);
1932
c05fbafb 1933 success = 1; /* we're going to change ->state */
1da177e4 1934 cpu = task_cpu(p);
1da177e4 1935
c05fbafb
PZ
1936 if (p->on_rq && ttwu_remote(p, wake_flags))
1937 goto stat;
1da177e4 1938
1da177e4 1939#ifdef CONFIG_SMP
e9c84311 1940 /*
c05fbafb
PZ
1941 * If the owning (remote) cpu is still in the middle of schedule() with
1942 * this task as prev, wait until its done referencing the task.
e9c84311 1943 */
f3e94786 1944 while (p->on_cpu)
e4a52bcb 1945 cpu_relax();
0970d299 1946 /*
e4a52bcb 1947 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1948 */
e4a52bcb 1949 smp_rmb();
1da177e4 1950
a8e4f2ea 1951 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1952 p->state = TASK_WAKING;
e7693a36 1953
e4a52bcb 1954 if (p->sched_class->task_waking)
74f8e4b2 1955 p->sched_class->task_waking(p);
efbbd05a 1956
ac66f547 1957 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1958 if (task_cpu(p) != cpu) {
1959 wake_flags |= WF_MIGRATED;
e4a52bcb 1960 set_task_cpu(p, cpu);
f339b9dc 1961 }
1da177e4 1962#endif /* CONFIG_SMP */
1da177e4 1963
c05fbafb
PZ
1964 ttwu_queue(p, cpu);
1965stat:
b84cb5df 1966 ttwu_stat(p, cpu, wake_flags);
1da177e4 1967out:
013fdb80 1968 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1969
1970 return success;
1971}
1972
21aa9af0
TH
1973/**
1974 * try_to_wake_up_local - try to wake up a local task with rq lock held
1975 * @p: the thread to be awakened
1976 *
2acca55e 1977 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1978 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1979 * the current task.
21aa9af0
TH
1980 */
1981static void try_to_wake_up_local(struct task_struct *p)
1982{
1983 struct rq *rq = task_rq(p);
21aa9af0 1984
383efcd0
TH
1985 if (WARN_ON_ONCE(rq != this_rq()) ||
1986 WARN_ON_ONCE(p == current))
1987 return;
1988
21aa9af0
TH
1989 lockdep_assert_held(&rq->lock);
1990
2acca55e 1991 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1992 /*
1993 * This is OK, because current is on_cpu, which avoids it being
1994 * picked for load-balance and preemption/IRQs are still
1995 * disabled avoiding further scheduler activity on it and we've
1996 * not yet picked a replacement task.
1997 */
1998 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
1999 raw_spin_unlock(&rq->lock);
2000 raw_spin_lock(&p->pi_lock);
2001 raw_spin_lock(&rq->lock);
cbce1a68 2002 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2003 }
2004
21aa9af0 2005 if (!(p->state & TASK_NORMAL))
2acca55e 2006 goto out;
21aa9af0 2007
fbd705a0
PZ
2008 trace_sched_waking(p);
2009
da0c1e65 2010 if (!task_on_rq_queued(p))
d7c01d27
PZ
2011 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2012
23f41eeb 2013 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2014 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2015out:
2016 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2017}
2018
50fa610a
DH
2019/**
2020 * wake_up_process - Wake up a specific process
2021 * @p: The process to be woken up.
2022 *
2023 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2024 * processes.
2025 *
2026 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2027 *
2028 * It may be assumed that this function implies a write memory barrier before
2029 * changing the task state if and only if any tasks are woken up.
2030 */
7ad5b3a5 2031int wake_up_process(struct task_struct *p)
1da177e4 2032{
9067ac85
ON
2033 WARN_ON(task_is_stopped_or_traced(p));
2034 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2035}
1da177e4
LT
2036EXPORT_SYMBOL(wake_up_process);
2037
7ad5b3a5 2038int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2039{
2040 return try_to_wake_up(p, state, 0);
2041}
2042
a5e7be3b
JL
2043/*
2044 * This function clears the sched_dl_entity static params.
2045 */
2046void __dl_clear_params(struct task_struct *p)
2047{
2048 struct sched_dl_entity *dl_se = &p->dl;
2049
2050 dl_se->dl_runtime = 0;
2051 dl_se->dl_deadline = 0;
2052 dl_se->dl_period = 0;
2053 dl_se->flags = 0;
2054 dl_se->dl_bw = 0;
40767b0d
PZ
2055
2056 dl_se->dl_throttled = 0;
2057 dl_se->dl_new = 1;
2058 dl_se->dl_yielded = 0;
a5e7be3b
JL
2059}
2060
1da177e4
LT
2061/*
2062 * Perform scheduler related setup for a newly forked process p.
2063 * p is forked by current.
dd41f596
IM
2064 *
2065 * __sched_fork() is basic setup used by init_idle() too:
2066 */
5e1576ed 2067static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2068{
fd2f4419
PZ
2069 p->on_rq = 0;
2070
2071 p->se.on_rq = 0;
dd41f596
IM
2072 p->se.exec_start = 0;
2073 p->se.sum_exec_runtime = 0;
f6cf891c 2074 p->se.prev_sum_exec_runtime = 0;
6c594c21 2075 p->se.nr_migrations = 0;
da7a735e 2076 p->se.vruntime = 0;
fd2f4419 2077 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2078
2079#ifdef CONFIG_SCHEDSTATS
41acab88 2080 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2081#endif
476d139c 2082
aab03e05 2083 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2084 init_dl_task_timer(&p->dl);
a5e7be3b 2085 __dl_clear_params(p);
aab03e05 2086
fa717060 2087 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2088
e107be36
AK
2089#ifdef CONFIG_PREEMPT_NOTIFIERS
2090 INIT_HLIST_HEAD(&p->preempt_notifiers);
2091#endif
cbee9f88
PZ
2092
2093#ifdef CONFIG_NUMA_BALANCING
2094 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2095 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2096 p->mm->numa_scan_seq = 0;
2097 }
2098
5e1576ed
RR
2099 if (clone_flags & CLONE_VM)
2100 p->numa_preferred_nid = current->numa_preferred_nid;
2101 else
2102 p->numa_preferred_nid = -1;
2103
cbee9f88
PZ
2104 p->node_stamp = 0ULL;
2105 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2106 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2107 p->numa_work.next = &p->numa_work;
44dba3d5 2108 p->numa_faults = NULL;
7e2703e6
RR
2109 p->last_task_numa_placement = 0;
2110 p->last_sum_exec_runtime = 0;
8c8a743c 2111
8c8a743c 2112 p->numa_group = NULL;
cbee9f88 2113#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2114}
2115
1a687c2e 2116#ifdef CONFIG_NUMA_BALANCING
3105b86a 2117#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2118void set_numabalancing_state(bool enabled)
2119{
2120 if (enabled)
2121 sched_feat_set("NUMA");
2122 else
2123 sched_feat_set("NO_NUMA");
2124}
3105b86a
MG
2125#else
2126__read_mostly bool numabalancing_enabled;
2127
2128void set_numabalancing_state(bool enabled)
2129{
2130 numabalancing_enabled = enabled;
dd41f596 2131}
3105b86a 2132#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2133
2134#ifdef CONFIG_PROC_SYSCTL
2135int sysctl_numa_balancing(struct ctl_table *table, int write,
2136 void __user *buffer, size_t *lenp, loff_t *ppos)
2137{
2138 struct ctl_table t;
2139 int err;
2140 int state = numabalancing_enabled;
2141
2142 if (write && !capable(CAP_SYS_ADMIN))
2143 return -EPERM;
2144
2145 t = *table;
2146 t.data = &state;
2147 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2148 if (err < 0)
2149 return err;
2150 if (write)
2151 set_numabalancing_state(state);
2152 return err;
2153}
2154#endif
2155#endif
dd41f596
IM
2156
2157/*
2158 * fork()/clone()-time setup:
2159 */
aab03e05 2160int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2161{
0122ec5b 2162 unsigned long flags;
dd41f596
IM
2163 int cpu = get_cpu();
2164
5e1576ed 2165 __sched_fork(clone_flags, p);
06b83b5f 2166 /*
0017d735 2167 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2168 * nobody will actually run it, and a signal or other external
2169 * event cannot wake it up and insert it on the runqueue either.
2170 */
0017d735 2171 p->state = TASK_RUNNING;
dd41f596 2172
c350a04e
MG
2173 /*
2174 * Make sure we do not leak PI boosting priority to the child.
2175 */
2176 p->prio = current->normal_prio;
2177
b9dc29e7
MG
2178 /*
2179 * Revert to default priority/policy on fork if requested.
2180 */
2181 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2182 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2183 p->policy = SCHED_NORMAL;
6c697bdf 2184 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2185 p->rt_priority = 0;
2186 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2187 p->static_prio = NICE_TO_PRIO(0);
2188
2189 p->prio = p->normal_prio = __normal_prio(p);
2190 set_load_weight(p);
6c697bdf 2191
b9dc29e7
MG
2192 /*
2193 * We don't need the reset flag anymore after the fork. It has
2194 * fulfilled its duty:
2195 */
2196 p->sched_reset_on_fork = 0;
2197 }
ca94c442 2198
aab03e05
DF
2199 if (dl_prio(p->prio)) {
2200 put_cpu();
2201 return -EAGAIN;
2202 } else if (rt_prio(p->prio)) {
2203 p->sched_class = &rt_sched_class;
2204 } else {
2ddbf952 2205 p->sched_class = &fair_sched_class;
aab03e05 2206 }
b29739f9 2207
cd29fe6f
PZ
2208 if (p->sched_class->task_fork)
2209 p->sched_class->task_fork(p);
2210
86951599
PZ
2211 /*
2212 * The child is not yet in the pid-hash so no cgroup attach races,
2213 * and the cgroup is pinned to this child due to cgroup_fork()
2214 * is ran before sched_fork().
2215 *
2216 * Silence PROVE_RCU.
2217 */
0122ec5b 2218 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2219 set_task_cpu(p, cpu);
0122ec5b 2220 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2221
f6db8347 2222#ifdef CONFIG_SCHED_INFO
dd41f596 2223 if (likely(sched_info_on()))
52f17b6c 2224 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2225#endif
3ca7a440
PZ
2226#if defined(CONFIG_SMP)
2227 p->on_cpu = 0;
4866cde0 2228#endif
01028747 2229 init_task_preempt_count(p);
806c09a7 2230#ifdef CONFIG_SMP
917b627d 2231 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2232 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2233#endif
917b627d 2234
476d139c 2235 put_cpu();
aab03e05 2236 return 0;
1da177e4
LT
2237}
2238
332ac17e
DF
2239unsigned long to_ratio(u64 period, u64 runtime)
2240{
2241 if (runtime == RUNTIME_INF)
2242 return 1ULL << 20;
2243
2244 /*
2245 * Doing this here saves a lot of checks in all
2246 * the calling paths, and returning zero seems
2247 * safe for them anyway.
2248 */
2249 if (period == 0)
2250 return 0;
2251
2252 return div64_u64(runtime << 20, period);
2253}
2254
2255#ifdef CONFIG_SMP
2256inline struct dl_bw *dl_bw_of(int i)
2257{
f78f5b90
PM
2258 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2259 "sched RCU must be held");
332ac17e
DF
2260 return &cpu_rq(i)->rd->dl_bw;
2261}
2262
de212f18 2263static inline int dl_bw_cpus(int i)
332ac17e 2264{
de212f18
PZ
2265 struct root_domain *rd = cpu_rq(i)->rd;
2266 int cpus = 0;
2267
f78f5b90
PM
2268 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2269 "sched RCU must be held");
de212f18
PZ
2270 for_each_cpu_and(i, rd->span, cpu_active_mask)
2271 cpus++;
2272
2273 return cpus;
332ac17e
DF
2274}
2275#else
2276inline struct dl_bw *dl_bw_of(int i)
2277{
2278 return &cpu_rq(i)->dl.dl_bw;
2279}
2280
de212f18 2281static inline int dl_bw_cpus(int i)
332ac17e
DF
2282{
2283 return 1;
2284}
2285#endif
2286
332ac17e
DF
2287/*
2288 * We must be sure that accepting a new task (or allowing changing the
2289 * parameters of an existing one) is consistent with the bandwidth
2290 * constraints. If yes, this function also accordingly updates the currently
2291 * allocated bandwidth to reflect the new situation.
2292 *
2293 * This function is called while holding p's rq->lock.
40767b0d
PZ
2294 *
2295 * XXX we should delay bw change until the task's 0-lag point, see
2296 * __setparam_dl().
332ac17e
DF
2297 */
2298static int dl_overflow(struct task_struct *p, int policy,
2299 const struct sched_attr *attr)
2300{
2301
2302 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2303 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2304 u64 runtime = attr->sched_runtime;
2305 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2306 int cpus, err = -1;
332ac17e
DF
2307
2308 if (new_bw == p->dl.dl_bw)
2309 return 0;
2310
2311 /*
2312 * Either if a task, enters, leave, or stays -deadline but changes
2313 * its parameters, we may need to update accordingly the total
2314 * allocated bandwidth of the container.
2315 */
2316 raw_spin_lock(&dl_b->lock);
de212f18 2317 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2318 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2319 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2320 __dl_add(dl_b, new_bw);
2321 err = 0;
2322 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2323 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2324 __dl_clear(dl_b, p->dl.dl_bw);
2325 __dl_add(dl_b, new_bw);
2326 err = 0;
2327 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2328 __dl_clear(dl_b, p->dl.dl_bw);
2329 err = 0;
2330 }
2331 raw_spin_unlock(&dl_b->lock);
2332
2333 return err;
2334}
2335
2336extern void init_dl_bw(struct dl_bw *dl_b);
2337
1da177e4
LT
2338/*
2339 * wake_up_new_task - wake up a newly created task for the first time.
2340 *
2341 * This function will do some initial scheduler statistics housekeeping
2342 * that must be done for every newly created context, then puts the task
2343 * on the runqueue and wakes it.
2344 */
3e51e3ed 2345void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2346{
2347 unsigned long flags;
dd41f596 2348 struct rq *rq;
fabf318e 2349
ab2515c4 2350 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2351#ifdef CONFIG_SMP
2352 /*
2353 * Fork balancing, do it here and not earlier because:
2354 * - cpus_allowed can change in the fork path
2355 * - any previously selected cpu might disappear through hotplug
fabf318e 2356 */
ac66f547 2357 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2358#endif
2359
a75cdaa9 2360 /* Initialize new task's runnable average */
540247fb 2361 init_entity_runnable_average(&p->se);
ab2515c4 2362 rq = __task_rq_lock(p);
cd29fe6f 2363 activate_task(rq, p, 0);
da0c1e65 2364 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2365 trace_sched_wakeup_new(p);
a7558e01 2366 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2367#ifdef CONFIG_SMP
efbbd05a
PZ
2368 if (p->sched_class->task_woken)
2369 p->sched_class->task_woken(rq, p);
9a897c5a 2370#endif
0122ec5b 2371 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2372}
2373
e107be36
AK
2374#ifdef CONFIG_PREEMPT_NOTIFIERS
2375
1cde2930
PZ
2376static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2377
2ecd9d29
PZ
2378void preempt_notifier_inc(void)
2379{
2380 static_key_slow_inc(&preempt_notifier_key);
2381}
2382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2383
2384void preempt_notifier_dec(void)
2385{
2386 static_key_slow_dec(&preempt_notifier_key);
2387}
2388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2389
e107be36 2390/**
80dd99b3 2391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2392 * @notifier: notifier struct to register
e107be36
AK
2393 */
2394void preempt_notifier_register(struct preempt_notifier *notifier)
2395{
2ecd9d29
PZ
2396 if (!static_key_false(&preempt_notifier_key))
2397 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2398
e107be36
AK
2399 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2400}
2401EXPORT_SYMBOL_GPL(preempt_notifier_register);
2402
2403/**
2404 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2405 * @notifier: notifier struct to unregister
e107be36 2406 *
d84525a8 2407 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2408 */
2409void preempt_notifier_unregister(struct preempt_notifier *notifier)
2410{
2411 hlist_del(&notifier->link);
2412}
2413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2414
1cde2930 2415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2416{
2417 struct preempt_notifier *notifier;
e107be36 2418
b67bfe0d 2419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2420 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2421}
2422
1cde2930
PZ
2423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2424{
2425 if (static_key_false(&preempt_notifier_key))
2426 __fire_sched_in_preempt_notifiers(curr);
2427}
2428
e107be36 2429static void
1cde2930
PZ
2430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2431 struct task_struct *next)
e107be36
AK
2432{
2433 struct preempt_notifier *notifier;
e107be36 2434
b67bfe0d 2435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2436 notifier->ops->sched_out(notifier, next);
2437}
2438
1cde2930
PZ
2439static __always_inline void
2440fire_sched_out_preempt_notifiers(struct task_struct *curr,
2441 struct task_struct *next)
2442{
2443 if (static_key_false(&preempt_notifier_key))
2444 __fire_sched_out_preempt_notifiers(curr, next);
2445}
2446
6d6bc0ad 2447#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2448
1cde2930 2449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2450{
2451}
2452
1cde2930 2453static inline void
e107be36
AK
2454fire_sched_out_preempt_notifiers(struct task_struct *curr,
2455 struct task_struct *next)
2456{
2457}
2458
6d6bc0ad 2459#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2460
4866cde0
NP
2461/**
2462 * prepare_task_switch - prepare to switch tasks
2463 * @rq: the runqueue preparing to switch
421cee29 2464 * @prev: the current task that is being switched out
4866cde0
NP
2465 * @next: the task we are going to switch to.
2466 *
2467 * This is called with the rq lock held and interrupts off. It must
2468 * be paired with a subsequent finish_task_switch after the context
2469 * switch.
2470 *
2471 * prepare_task_switch sets up locking and calls architecture specific
2472 * hooks.
2473 */
e107be36
AK
2474static inline void
2475prepare_task_switch(struct rq *rq, struct task_struct *prev,
2476 struct task_struct *next)
4866cde0 2477{
895dd92c 2478 trace_sched_switch(prev, next);
43148951 2479 sched_info_switch(rq, prev, next);
fe4b04fa 2480 perf_event_task_sched_out(prev, next);
e107be36 2481 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2482 prepare_lock_switch(rq, next);
2483 prepare_arch_switch(next);
2484}
2485
1da177e4
LT
2486/**
2487 * finish_task_switch - clean up after a task-switch
2488 * @prev: the thread we just switched away from.
2489 *
4866cde0
NP
2490 * finish_task_switch must be called after the context switch, paired
2491 * with a prepare_task_switch call before the context switch.
2492 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2493 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2494 *
2495 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2496 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2497 * with the lock held can cause deadlocks; see schedule() for
2498 * details.)
dfa50b60
ON
2499 *
2500 * The context switch have flipped the stack from under us and restored the
2501 * local variables which were saved when this task called schedule() in the
2502 * past. prev == current is still correct but we need to recalculate this_rq
2503 * because prev may have moved to another CPU.
1da177e4 2504 */
dfa50b60 2505static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2506 __releases(rq->lock)
2507{
dfa50b60 2508 struct rq *rq = this_rq();
1da177e4 2509 struct mm_struct *mm = rq->prev_mm;
55a101f8 2510 long prev_state;
1da177e4
LT
2511
2512 rq->prev_mm = NULL;
2513
2514 /*
2515 * A task struct has one reference for the use as "current".
c394cc9f 2516 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2517 * schedule one last time. The schedule call will never return, and
2518 * the scheduled task must drop that reference.
c394cc9f 2519 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2520 * still held, otherwise prev could be scheduled on another cpu, die
2521 * there before we look at prev->state, and then the reference would
2522 * be dropped twice.
2523 * Manfred Spraul <manfred@colorfullife.com>
2524 */
55a101f8 2525 prev_state = prev->state;
bf9fae9f 2526 vtime_task_switch(prev);
a8d757ef 2527 perf_event_task_sched_in(prev, current);
4866cde0 2528 finish_lock_switch(rq, prev);
01f23e16 2529 finish_arch_post_lock_switch();
e8fa1362 2530
e107be36 2531 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2532 if (mm)
2533 mmdrop(mm);
c394cc9f 2534 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2535 if (prev->sched_class->task_dead)
2536 prev->sched_class->task_dead(prev);
2537
c6fd91f0 2538 /*
2539 * Remove function-return probe instances associated with this
2540 * task and put them back on the free list.
9761eea8 2541 */
c6fd91f0 2542 kprobe_flush_task(prev);
1da177e4 2543 put_task_struct(prev);
c6fd91f0 2544 }
99e5ada9 2545
de734f89 2546 tick_nohz_task_switch();
dfa50b60 2547 return rq;
1da177e4
LT
2548}
2549
3f029d3c
GH
2550#ifdef CONFIG_SMP
2551
3f029d3c 2552/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2553static void __balance_callback(struct rq *rq)
3f029d3c 2554{
e3fca9e7
PZ
2555 struct callback_head *head, *next;
2556 void (*func)(struct rq *rq);
2557 unsigned long flags;
3f029d3c 2558
e3fca9e7
PZ
2559 raw_spin_lock_irqsave(&rq->lock, flags);
2560 head = rq->balance_callback;
2561 rq->balance_callback = NULL;
2562 while (head) {
2563 func = (void (*)(struct rq *))head->func;
2564 next = head->next;
2565 head->next = NULL;
2566 head = next;
3f029d3c 2567
e3fca9e7 2568 func(rq);
3f029d3c 2569 }
e3fca9e7
PZ
2570 raw_spin_unlock_irqrestore(&rq->lock, flags);
2571}
2572
2573static inline void balance_callback(struct rq *rq)
2574{
2575 if (unlikely(rq->balance_callback))
2576 __balance_callback(rq);
3f029d3c
GH
2577}
2578
2579#else
da19ab51 2580
e3fca9e7 2581static inline void balance_callback(struct rq *rq)
3f029d3c 2582{
1da177e4
LT
2583}
2584
3f029d3c
GH
2585#endif
2586
1da177e4
LT
2587/**
2588 * schedule_tail - first thing a freshly forked thread must call.
2589 * @prev: the thread we just switched away from.
2590 */
722a9f92 2591asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2592 __releases(rq->lock)
2593{
1a43a14a 2594 struct rq *rq;
da19ab51 2595
1a43a14a
ON
2596 /* finish_task_switch() drops rq->lock and enables preemtion */
2597 preempt_disable();
dfa50b60 2598 rq = finish_task_switch(prev);
e3fca9e7 2599 balance_callback(rq);
1a43a14a 2600 preempt_enable();
70b97a7f 2601
1da177e4 2602 if (current->set_child_tid)
b488893a 2603 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2604}
2605
2606/*
dfa50b60 2607 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2608 */
dfa50b60 2609static inline struct rq *
70b97a7f 2610context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2611 struct task_struct *next)
1da177e4 2612{
dd41f596 2613 struct mm_struct *mm, *oldmm;
1da177e4 2614
e107be36 2615 prepare_task_switch(rq, prev, next);
fe4b04fa 2616
dd41f596
IM
2617 mm = next->mm;
2618 oldmm = prev->active_mm;
9226d125
ZA
2619 /*
2620 * For paravirt, this is coupled with an exit in switch_to to
2621 * combine the page table reload and the switch backend into
2622 * one hypercall.
2623 */
224101ed 2624 arch_start_context_switch(prev);
9226d125 2625
31915ab4 2626 if (!mm) {
1da177e4
LT
2627 next->active_mm = oldmm;
2628 atomic_inc(&oldmm->mm_count);
2629 enter_lazy_tlb(oldmm, next);
2630 } else
2631 switch_mm(oldmm, mm, next);
2632
31915ab4 2633 if (!prev->mm) {
1da177e4 2634 prev->active_mm = NULL;
1da177e4
LT
2635 rq->prev_mm = oldmm;
2636 }
3a5f5e48
IM
2637 /*
2638 * Since the runqueue lock will be released by the next
2639 * task (which is an invalid locking op but in the case
2640 * of the scheduler it's an obvious special-case), so we
2641 * do an early lockdep release here:
2642 */
cbce1a68 2643 lockdep_unpin_lock(&rq->lock);
8a25d5de 2644 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2645
2646 /* Here we just switch the register state and the stack. */
2647 switch_to(prev, next, prev);
dd41f596 2648 barrier();
dfa50b60
ON
2649
2650 return finish_task_switch(prev);
1da177e4
LT
2651}
2652
2653/*
1c3e8264 2654 * nr_running and nr_context_switches:
1da177e4
LT
2655 *
2656 * externally visible scheduler statistics: current number of runnable
1c3e8264 2657 * threads, total number of context switches performed since bootup.
1da177e4
LT
2658 */
2659unsigned long nr_running(void)
2660{
2661 unsigned long i, sum = 0;
2662
2663 for_each_online_cpu(i)
2664 sum += cpu_rq(i)->nr_running;
2665
2666 return sum;
f711f609 2667}
1da177e4 2668
2ee507c4
TC
2669/*
2670 * Check if only the current task is running on the cpu.
2671 */
2672bool single_task_running(void)
2673{
2674 if (cpu_rq(smp_processor_id())->nr_running == 1)
2675 return true;
2676 else
2677 return false;
2678}
2679EXPORT_SYMBOL(single_task_running);
2680
1da177e4 2681unsigned long long nr_context_switches(void)
46cb4b7c 2682{
cc94abfc
SR
2683 int i;
2684 unsigned long long sum = 0;
46cb4b7c 2685
0a945022 2686 for_each_possible_cpu(i)
1da177e4 2687 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2688
1da177e4
LT
2689 return sum;
2690}
483b4ee6 2691
1da177e4
LT
2692unsigned long nr_iowait(void)
2693{
2694 unsigned long i, sum = 0;
483b4ee6 2695
0a945022 2696 for_each_possible_cpu(i)
1da177e4 2697 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2698
1da177e4
LT
2699 return sum;
2700}
483b4ee6 2701
8c215bd3 2702unsigned long nr_iowait_cpu(int cpu)
69d25870 2703{
8c215bd3 2704 struct rq *this = cpu_rq(cpu);
69d25870
AV
2705 return atomic_read(&this->nr_iowait);
2706}
46cb4b7c 2707
372ba8cb
MG
2708void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2709{
3289bdb4
PZ
2710 struct rq *rq = this_rq();
2711 *nr_waiters = atomic_read(&rq->nr_iowait);
2712 *load = rq->load.weight;
372ba8cb
MG
2713}
2714
dd41f596 2715#ifdef CONFIG_SMP
8a0be9ef 2716
46cb4b7c 2717/*
38022906
PZ
2718 * sched_exec - execve() is a valuable balancing opportunity, because at
2719 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2720 */
38022906 2721void sched_exec(void)
46cb4b7c 2722{
38022906 2723 struct task_struct *p = current;
1da177e4 2724 unsigned long flags;
0017d735 2725 int dest_cpu;
46cb4b7c 2726
8f42ced9 2727 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2728 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2729 if (dest_cpu == smp_processor_id())
2730 goto unlock;
38022906 2731
8f42ced9 2732 if (likely(cpu_active(dest_cpu))) {
969c7921 2733 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2734
8f42ced9
PZ
2735 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2736 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2737 return;
2738 }
0017d735 2739unlock:
8f42ced9 2740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2741}
dd41f596 2742
1da177e4
LT
2743#endif
2744
1da177e4 2745DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2746DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2747
2748EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2749EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2750
c5f8d995
HS
2751/*
2752 * Return accounted runtime for the task.
2753 * In case the task is currently running, return the runtime plus current's
2754 * pending runtime that have not been accounted yet.
2755 */
2756unsigned long long task_sched_runtime(struct task_struct *p)
2757{
2758 unsigned long flags;
2759 struct rq *rq;
6e998916 2760 u64 ns;
c5f8d995 2761
911b2898
PZ
2762#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2763 /*
2764 * 64-bit doesn't need locks to atomically read a 64bit value.
2765 * So we have a optimization chance when the task's delta_exec is 0.
2766 * Reading ->on_cpu is racy, but this is ok.
2767 *
2768 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2769 * If we race with it entering cpu, unaccounted time is 0. This is
2770 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2771 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2772 * been accounted, so we're correct here as well.
911b2898 2773 */
da0c1e65 2774 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2775 return p->se.sum_exec_runtime;
2776#endif
2777
c5f8d995 2778 rq = task_rq_lock(p, &flags);
6e998916
SG
2779 /*
2780 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2781 * project cycles that may never be accounted to this
2782 * thread, breaking clock_gettime().
2783 */
2784 if (task_current(rq, p) && task_on_rq_queued(p)) {
2785 update_rq_clock(rq);
2786 p->sched_class->update_curr(rq);
2787 }
2788 ns = p->se.sum_exec_runtime;
0122ec5b 2789 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2790
2791 return ns;
2792}
48f24c4d 2793
7835b98b
CL
2794/*
2795 * This function gets called by the timer code, with HZ frequency.
2796 * We call it with interrupts disabled.
7835b98b
CL
2797 */
2798void scheduler_tick(void)
2799{
7835b98b
CL
2800 int cpu = smp_processor_id();
2801 struct rq *rq = cpu_rq(cpu);
dd41f596 2802 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2803
2804 sched_clock_tick();
dd41f596 2805
05fa785c 2806 raw_spin_lock(&rq->lock);
3e51f33f 2807 update_rq_clock(rq);
fa85ae24 2808 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2809 update_cpu_load_active(rq);
3289bdb4 2810 calc_global_load_tick(rq);
05fa785c 2811 raw_spin_unlock(&rq->lock);
7835b98b 2812
e9d2b064 2813 perf_event_task_tick();
e220d2dc 2814
e418e1c2 2815#ifdef CONFIG_SMP
6eb57e0d 2816 rq->idle_balance = idle_cpu(cpu);
7caff66f 2817 trigger_load_balance(rq);
e418e1c2 2818#endif
265f22a9 2819 rq_last_tick_reset(rq);
1da177e4
LT
2820}
2821
265f22a9
FW
2822#ifdef CONFIG_NO_HZ_FULL
2823/**
2824 * scheduler_tick_max_deferment
2825 *
2826 * Keep at least one tick per second when a single
2827 * active task is running because the scheduler doesn't
2828 * yet completely support full dynticks environment.
2829 *
2830 * This makes sure that uptime, CFS vruntime, load
2831 * balancing, etc... continue to move forward, even
2832 * with a very low granularity.
e69f6186
YB
2833 *
2834 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2835 */
2836u64 scheduler_tick_max_deferment(void)
2837{
2838 struct rq *rq = this_rq();
316c1608 2839 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2840
2841 next = rq->last_sched_tick + HZ;
2842
2843 if (time_before_eq(next, now))
2844 return 0;
2845
8fe8ff09 2846 return jiffies_to_nsecs(next - now);
1da177e4 2847}
265f22a9 2848#endif
1da177e4 2849
132380a0 2850notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2851{
2852 if (in_lock_functions(addr)) {
2853 addr = CALLER_ADDR2;
2854 if (in_lock_functions(addr))
2855 addr = CALLER_ADDR3;
2856 }
2857 return addr;
2858}
1da177e4 2859
7e49fcce
SR
2860#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2861 defined(CONFIG_PREEMPT_TRACER))
2862
edafe3a5 2863void preempt_count_add(int val)
1da177e4 2864{
6cd8a4bb 2865#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2866 /*
2867 * Underflow?
2868 */
9a11b49a
IM
2869 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2870 return;
6cd8a4bb 2871#endif
bdb43806 2872 __preempt_count_add(val);
6cd8a4bb 2873#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2874 /*
2875 * Spinlock count overflowing soon?
2876 */
33859f7f
MOS
2877 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2878 PREEMPT_MASK - 10);
6cd8a4bb 2879#endif
8f47b187
TG
2880 if (preempt_count() == val) {
2881 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2882#ifdef CONFIG_DEBUG_PREEMPT
2883 current->preempt_disable_ip = ip;
2884#endif
2885 trace_preempt_off(CALLER_ADDR0, ip);
2886 }
1da177e4 2887}
bdb43806 2888EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2889NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2890
edafe3a5 2891void preempt_count_sub(int val)
1da177e4 2892{
6cd8a4bb 2893#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2894 /*
2895 * Underflow?
2896 */
01e3eb82 2897 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2898 return;
1da177e4
LT
2899 /*
2900 * Is the spinlock portion underflowing?
2901 */
9a11b49a
IM
2902 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2903 !(preempt_count() & PREEMPT_MASK)))
2904 return;
6cd8a4bb 2905#endif
9a11b49a 2906
6cd8a4bb
SR
2907 if (preempt_count() == val)
2908 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2909 __preempt_count_sub(val);
1da177e4 2910}
bdb43806 2911EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2912NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2913
2914#endif
2915
2916/*
dd41f596 2917 * Print scheduling while atomic bug:
1da177e4 2918 */
dd41f596 2919static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2920{
664dfa65
DJ
2921 if (oops_in_progress)
2922 return;
2923
3df0fc5b
PZ
2924 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2925 prev->comm, prev->pid, preempt_count());
838225b4 2926
dd41f596 2927 debug_show_held_locks(prev);
e21f5b15 2928 print_modules();
dd41f596
IM
2929 if (irqs_disabled())
2930 print_irqtrace_events(prev);
8f47b187
TG
2931#ifdef CONFIG_DEBUG_PREEMPT
2932 if (in_atomic_preempt_off()) {
2933 pr_err("Preemption disabled at:");
2934 print_ip_sym(current->preempt_disable_ip);
2935 pr_cont("\n");
2936 }
2937#endif
6135fc1e 2938 dump_stack();
373d4d09 2939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2940}
1da177e4 2941
dd41f596
IM
2942/*
2943 * Various schedule()-time debugging checks and statistics:
2944 */
2945static inline void schedule_debug(struct task_struct *prev)
2946{
0d9e2632
AT
2947#ifdef CONFIG_SCHED_STACK_END_CHECK
2948 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2949#endif
1da177e4 2950 /*
41a2d6cf 2951 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2952 * schedule() atomically, we ignore that path. Otherwise whine
2953 * if we are scheduling when we should not.
1da177e4 2954 */
192301e7 2955 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2956 __schedule_bug(prev);
b3fbab05 2957 rcu_sleep_check();
dd41f596 2958
1da177e4
LT
2959 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2960
2d72376b 2961 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2962}
2963
2964/*
2965 * Pick up the highest-prio task:
2966 */
2967static inline struct task_struct *
606dba2e 2968pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2969{
37e117c0 2970 const struct sched_class *class = &fair_sched_class;
dd41f596 2971 struct task_struct *p;
1da177e4
LT
2972
2973 /*
dd41f596
IM
2974 * Optimization: we know that if all tasks are in
2975 * the fair class we can call that function directly:
1da177e4 2976 */
37e117c0 2977 if (likely(prev->sched_class == class &&
38033c37 2978 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2979 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2980 if (unlikely(p == RETRY_TASK))
2981 goto again;
2982
2983 /* assumes fair_sched_class->next == idle_sched_class */
2984 if (unlikely(!p))
2985 p = idle_sched_class.pick_next_task(rq, prev);
2986
2987 return p;
1da177e4
LT
2988 }
2989
37e117c0 2990again:
34f971f6 2991 for_each_class(class) {
606dba2e 2992 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2993 if (p) {
2994 if (unlikely(p == RETRY_TASK))
2995 goto again;
dd41f596 2996 return p;
37e117c0 2997 }
dd41f596 2998 }
34f971f6
PZ
2999
3000 BUG(); /* the idle class will always have a runnable task */
dd41f596 3001}
1da177e4 3002
dd41f596 3003/*
c259e01a 3004 * __schedule() is the main scheduler function.
edde96ea
PE
3005 *
3006 * The main means of driving the scheduler and thus entering this function are:
3007 *
3008 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3009 *
3010 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3011 * paths. For example, see arch/x86/entry_64.S.
3012 *
3013 * To drive preemption between tasks, the scheduler sets the flag in timer
3014 * interrupt handler scheduler_tick().
3015 *
3016 * 3. Wakeups don't really cause entry into schedule(). They add a
3017 * task to the run-queue and that's it.
3018 *
3019 * Now, if the new task added to the run-queue preempts the current
3020 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3021 * called on the nearest possible occasion:
3022 *
3023 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3024 *
3025 * - in syscall or exception context, at the next outmost
3026 * preempt_enable(). (this might be as soon as the wake_up()'s
3027 * spin_unlock()!)
3028 *
3029 * - in IRQ context, return from interrupt-handler to
3030 * preemptible context
3031 *
3032 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3033 * then at the next:
3034 *
3035 * - cond_resched() call
3036 * - explicit schedule() call
3037 * - return from syscall or exception to user-space
3038 * - return from interrupt-handler to user-space
bfd9b2b5 3039 *
b30f0e3f 3040 * WARNING: must be called with preemption disabled!
dd41f596 3041 */
c259e01a 3042static void __sched __schedule(void)
dd41f596
IM
3043{
3044 struct task_struct *prev, *next;
67ca7bde 3045 unsigned long *switch_count;
dd41f596 3046 struct rq *rq;
31656519 3047 int cpu;
dd41f596 3048
dd41f596
IM
3049 cpu = smp_processor_id();
3050 rq = cpu_rq(cpu);
38200cf2 3051 rcu_note_context_switch();
dd41f596 3052 prev = rq->curr;
dd41f596 3053
dd41f596 3054 schedule_debug(prev);
1da177e4 3055
31656519 3056 if (sched_feat(HRTICK))
f333fdc9 3057 hrtick_clear(rq);
8f4d37ec 3058
e0acd0a6
ON
3059 /*
3060 * Make sure that signal_pending_state()->signal_pending() below
3061 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3062 * done by the caller to avoid the race with signal_wake_up().
3063 */
3064 smp_mb__before_spinlock();
05fa785c 3065 raw_spin_lock_irq(&rq->lock);
cbce1a68 3066 lockdep_pin_lock(&rq->lock);
1da177e4 3067
9edfbfed
PZ
3068 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3069
246d86b5 3070 switch_count = &prev->nivcsw;
1da177e4 3071 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3072 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3073 prev->state = TASK_RUNNING;
21aa9af0 3074 } else {
2acca55e
PZ
3075 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3076 prev->on_rq = 0;
3077
21aa9af0 3078 /*
2acca55e
PZ
3079 * If a worker went to sleep, notify and ask workqueue
3080 * whether it wants to wake up a task to maintain
3081 * concurrency.
21aa9af0
TH
3082 */
3083 if (prev->flags & PF_WQ_WORKER) {
3084 struct task_struct *to_wakeup;
3085
3086 to_wakeup = wq_worker_sleeping(prev, cpu);
3087 if (to_wakeup)
3088 try_to_wake_up_local(to_wakeup);
3089 }
21aa9af0 3090 }
dd41f596 3091 switch_count = &prev->nvcsw;
1da177e4
LT
3092 }
3093
9edfbfed 3094 if (task_on_rq_queued(prev))
606dba2e
PZ
3095 update_rq_clock(rq);
3096
3097 next = pick_next_task(rq, prev);
f26f9aff 3098 clear_tsk_need_resched(prev);
f27dde8d 3099 clear_preempt_need_resched();
9edfbfed 3100 rq->clock_skip_update = 0;
1da177e4 3101
1da177e4 3102 if (likely(prev != next)) {
1da177e4
LT
3103 rq->nr_switches++;
3104 rq->curr = next;
3105 ++*switch_count;
3106
dfa50b60
ON
3107 rq = context_switch(rq, prev, next); /* unlocks the rq */
3108 cpu = cpu_of(rq);
cbce1a68
PZ
3109 } else {
3110 lockdep_unpin_lock(&rq->lock);
05fa785c 3111 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3112 }
1da177e4 3113
e3fca9e7 3114 balance_callback(rq);
1da177e4 3115}
c259e01a 3116
9c40cef2
TG
3117static inline void sched_submit_work(struct task_struct *tsk)
3118{
3c7d5184 3119 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3120 return;
3121 /*
3122 * If we are going to sleep and we have plugged IO queued,
3123 * make sure to submit it to avoid deadlocks.
3124 */
3125 if (blk_needs_flush_plug(tsk))
3126 blk_schedule_flush_plug(tsk);
3127}
3128
722a9f92 3129asmlinkage __visible void __sched schedule(void)
c259e01a 3130{
9c40cef2
TG
3131 struct task_struct *tsk = current;
3132
3133 sched_submit_work(tsk);
bfd9b2b5 3134 do {
b30f0e3f 3135 preempt_disable();
bfd9b2b5 3136 __schedule();
b30f0e3f 3137 sched_preempt_enable_no_resched();
bfd9b2b5 3138 } while (need_resched());
c259e01a 3139}
1da177e4
LT
3140EXPORT_SYMBOL(schedule);
3141
91d1aa43 3142#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3143asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3144{
3145 /*
3146 * If we come here after a random call to set_need_resched(),
3147 * or we have been woken up remotely but the IPI has not yet arrived,
3148 * we haven't yet exited the RCU idle mode. Do it here manually until
3149 * we find a better solution.
7cc78f8f
AL
3150 *
3151 * NB: There are buggy callers of this function. Ideally we
c467ea76 3152 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3153 * too frequently to make sense yet.
20ab65e3 3154 */
7cc78f8f 3155 enum ctx_state prev_state = exception_enter();
20ab65e3 3156 schedule();
7cc78f8f 3157 exception_exit(prev_state);
20ab65e3
FW
3158}
3159#endif
3160
c5491ea7
TG
3161/**
3162 * schedule_preempt_disabled - called with preemption disabled
3163 *
3164 * Returns with preemption disabled. Note: preempt_count must be 1
3165 */
3166void __sched schedule_preempt_disabled(void)
3167{
ba74c144 3168 sched_preempt_enable_no_resched();
c5491ea7
TG
3169 schedule();
3170 preempt_disable();
3171}
3172
06b1f808 3173static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3174{
3175 do {
b30f0e3f 3176 preempt_active_enter();
a18b5d01 3177 __schedule();
b30f0e3f 3178 preempt_active_exit();
a18b5d01
FW
3179
3180 /*
3181 * Check again in case we missed a preemption opportunity
3182 * between schedule and now.
3183 */
a18b5d01
FW
3184 } while (need_resched());
3185}
3186
1da177e4
LT
3187#ifdef CONFIG_PREEMPT
3188/*
2ed6e34f 3189 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3190 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3191 * occur there and call schedule directly.
3192 */
722a9f92 3193asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3194{
1da177e4
LT
3195 /*
3196 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3197 * we do not want to preempt the current task. Just return..
1da177e4 3198 */
fbb00b56 3199 if (likely(!preemptible()))
1da177e4
LT
3200 return;
3201
a18b5d01 3202 preempt_schedule_common();
1da177e4 3203}
376e2424 3204NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3205EXPORT_SYMBOL(preempt_schedule);
009f60e2 3206
009f60e2 3207/**
4eaca0a8 3208 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3209 *
3210 * The tracing infrastructure uses preempt_enable_notrace to prevent
3211 * recursion and tracing preempt enabling caused by the tracing
3212 * infrastructure itself. But as tracing can happen in areas coming
3213 * from userspace or just about to enter userspace, a preempt enable
3214 * can occur before user_exit() is called. This will cause the scheduler
3215 * to be called when the system is still in usermode.
3216 *
3217 * To prevent this, the preempt_enable_notrace will use this function
3218 * instead of preempt_schedule() to exit user context if needed before
3219 * calling the scheduler.
3220 */
4eaca0a8 3221asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3222{
3223 enum ctx_state prev_ctx;
3224
3225 if (likely(!preemptible()))
3226 return;
3227
3228 do {
be690035
FW
3229 /*
3230 * Use raw __prempt_count() ops that don't call function.
3231 * We can't call functions before disabling preemption which
3232 * disarm preemption tracing recursions.
3233 */
3234 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3235 barrier();
009f60e2
ON
3236 /*
3237 * Needs preempt disabled in case user_exit() is traced
3238 * and the tracer calls preempt_enable_notrace() causing
3239 * an infinite recursion.
3240 */
3241 prev_ctx = exception_enter();
3242 __schedule();
3243 exception_exit(prev_ctx);
3244
009f60e2 3245 barrier();
be690035 3246 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3247 } while (need_resched());
3248}
4eaca0a8 3249EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3250
32e475d7 3251#endif /* CONFIG_PREEMPT */
1da177e4
LT
3252
3253/*
2ed6e34f 3254 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3255 * off of irq context.
3256 * Note, that this is called and return with irqs disabled. This will
3257 * protect us against recursive calling from irq.
3258 */
722a9f92 3259asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3260{
b22366cd 3261 enum ctx_state prev_state;
6478d880 3262
2ed6e34f 3263 /* Catch callers which need to be fixed */
f27dde8d 3264 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3265
b22366cd
FW
3266 prev_state = exception_enter();
3267
3a5c359a 3268 do {
b30f0e3f 3269 preempt_active_enter();
3a5c359a 3270 local_irq_enable();
c259e01a 3271 __schedule();
3a5c359a 3272 local_irq_disable();
b30f0e3f 3273 preempt_active_exit();
5ed0cec0 3274 } while (need_resched());
b22366cd
FW
3275
3276 exception_exit(prev_state);
1da177e4
LT
3277}
3278
63859d4f 3279int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3280 void *key)
1da177e4 3281{
63859d4f 3282 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3283}
1da177e4
LT
3284EXPORT_SYMBOL(default_wake_function);
3285
b29739f9
IM
3286#ifdef CONFIG_RT_MUTEXES
3287
3288/*
3289 * rt_mutex_setprio - set the current priority of a task
3290 * @p: task
3291 * @prio: prio value (kernel-internal form)
3292 *
3293 * This function changes the 'effective' priority of a task. It does
3294 * not touch ->normal_prio like __setscheduler().
3295 *
c365c292
TG
3296 * Used by the rt_mutex code to implement priority inheritance
3297 * logic. Call site only calls if the priority of the task changed.
b29739f9 3298 */
36c8b586 3299void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3300{
da0c1e65 3301 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3302 struct rq *rq;
83ab0aa0 3303 const struct sched_class *prev_class;
b29739f9 3304
aab03e05 3305 BUG_ON(prio > MAX_PRIO);
b29739f9 3306
0122ec5b 3307 rq = __task_rq_lock(p);
b29739f9 3308
1c4dd99b
TG
3309 /*
3310 * Idle task boosting is a nono in general. There is one
3311 * exception, when PREEMPT_RT and NOHZ is active:
3312 *
3313 * The idle task calls get_next_timer_interrupt() and holds
3314 * the timer wheel base->lock on the CPU and another CPU wants
3315 * to access the timer (probably to cancel it). We can safely
3316 * ignore the boosting request, as the idle CPU runs this code
3317 * with interrupts disabled and will complete the lock
3318 * protected section without being interrupted. So there is no
3319 * real need to boost.
3320 */
3321 if (unlikely(p == rq->idle)) {
3322 WARN_ON(p != rq->curr);
3323 WARN_ON(p->pi_blocked_on);
3324 goto out_unlock;
3325 }
3326
a8027073 3327 trace_sched_pi_setprio(p, prio);
d5f9f942 3328 oldprio = p->prio;
83ab0aa0 3329 prev_class = p->sched_class;
da0c1e65 3330 queued = task_on_rq_queued(p);
051a1d1a 3331 running = task_current(rq, p);
da0c1e65 3332 if (queued)
69be72c1 3333 dequeue_task(rq, p, 0);
0e1f3483 3334 if (running)
f3cd1c4e 3335 put_prev_task(rq, p);
dd41f596 3336
2d3d891d
DF
3337 /*
3338 * Boosting condition are:
3339 * 1. -rt task is running and holds mutex A
3340 * --> -dl task blocks on mutex A
3341 *
3342 * 2. -dl task is running and holds mutex A
3343 * --> -dl task blocks on mutex A and could preempt the
3344 * running task
3345 */
3346 if (dl_prio(prio)) {
466af29b
ON
3347 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3348 if (!dl_prio(p->normal_prio) ||
3349 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3350 p->dl.dl_boosted = 1;
2d3d891d
DF
3351 enqueue_flag = ENQUEUE_REPLENISH;
3352 } else
3353 p->dl.dl_boosted = 0;
aab03e05 3354 p->sched_class = &dl_sched_class;
2d3d891d
DF
3355 } else if (rt_prio(prio)) {
3356 if (dl_prio(oldprio))
3357 p->dl.dl_boosted = 0;
3358 if (oldprio < prio)
3359 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3360 p->sched_class = &rt_sched_class;
2d3d891d
DF
3361 } else {
3362 if (dl_prio(oldprio))
3363 p->dl.dl_boosted = 0;
746db944
BS
3364 if (rt_prio(oldprio))
3365 p->rt.timeout = 0;
dd41f596 3366 p->sched_class = &fair_sched_class;
2d3d891d 3367 }
dd41f596 3368
b29739f9
IM
3369 p->prio = prio;
3370
0e1f3483
HS
3371 if (running)
3372 p->sched_class->set_curr_task(rq);
da0c1e65 3373 if (queued)
2d3d891d 3374 enqueue_task(rq, p, enqueue_flag);
cb469845 3375
da7a735e 3376 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3377out_unlock:
4c9a4bc8 3378 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3379 __task_rq_unlock(rq);
4c9a4bc8
PZ
3380
3381 balance_callback(rq);
3382 preempt_enable();
b29739f9 3383}
b29739f9 3384#endif
d50dde5a 3385
36c8b586 3386void set_user_nice(struct task_struct *p, long nice)
1da177e4 3387{
da0c1e65 3388 int old_prio, delta, queued;
1da177e4 3389 unsigned long flags;
70b97a7f 3390 struct rq *rq;
1da177e4 3391
75e45d51 3392 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3393 return;
3394 /*
3395 * We have to be careful, if called from sys_setpriority(),
3396 * the task might be in the middle of scheduling on another CPU.
3397 */
3398 rq = task_rq_lock(p, &flags);
3399 /*
3400 * The RT priorities are set via sched_setscheduler(), but we still
3401 * allow the 'normal' nice value to be set - but as expected
3402 * it wont have any effect on scheduling until the task is
aab03e05 3403 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3404 */
aab03e05 3405 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3406 p->static_prio = NICE_TO_PRIO(nice);
3407 goto out_unlock;
3408 }
da0c1e65
KT
3409 queued = task_on_rq_queued(p);
3410 if (queued)
69be72c1 3411 dequeue_task(rq, p, 0);
1da177e4 3412
1da177e4 3413 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3414 set_load_weight(p);
b29739f9
IM
3415 old_prio = p->prio;
3416 p->prio = effective_prio(p);
3417 delta = p->prio - old_prio;
1da177e4 3418
da0c1e65 3419 if (queued) {
371fd7e7 3420 enqueue_task(rq, p, 0);
1da177e4 3421 /*
d5f9f942
AM
3422 * If the task increased its priority or is running and
3423 * lowered its priority, then reschedule its CPU:
1da177e4 3424 */
d5f9f942 3425 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3426 resched_curr(rq);
1da177e4
LT
3427 }
3428out_unlock:
0122ec5b 3429 task_rq_unlock(rq, p, &flags);
1da177e4 3430}
1da177e4
LT
3431EXPORT_SYMBOL(set_user_nice);
3432
e43379f1
MM
3433/*
3434 * can_nice - check if a task can reduce its nice value
3435 * @p: task
3436 * @nice: nice value
3437 */
36c8b586 3438int can_nice(const struct task_struct *p, const int nice)
e43379f1 3439{
024f4747 3440 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3441 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3442
78d7d407 3443 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3444 capable(CAP_SYS_NICE));
3445}
3446
1da177e4
LT
3447#ifdef __ARCH_WANT_SYS_NICE
3448
3449/*
3450 * sys_nice - change the priority of the current process.
3451 * @increment: priority increment
3452 *
3453 * sys_setpriority is a more generic, but much slower function that
3454 * does similar things.
3455 */
5add95d4 3456SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3457{
48f24c4d 3458 long nice, retval;
1da177e4
LT
3459
3460 /*
3461 * Setpriority might change our priority at the same moment.
3462 * We don't have to worry. Conceptually one call occurs first
3463 * and we have a single winner.
3464 */
a9467fa3 3465 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3466 nice = task_nice(current) + increment;
1da177e4 3467
a9467fa3 3468 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3469 if (increment < 0 && !can_nice(current, nice))
3470 return -EPERM;
3471
1da177e4
LT
3472 retval = security_task_setnice(current, nice);
3473 if (retval)
3474 return retval;
3475
3476 set_user_nice(current, nice);
3477 return 0;
3478}
3479
3480#endif
3481
3482/**
3483 * task_prio - return the priority value of a given task.
3484 * @p: the task in question.
3485 *
e69f6186 3486 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3487 * RT tasks are offset by -200. Normal tasks are centered
3488 * around 0, value goes from -16 to +15.
3489 */
36c8b586 3490int task_prio(const struct task_struct *p)
1da177e4
LT
3491{
3492 return p->prio - MAX_RT_PRIO;
3493}
3494
1da177e4
LT
3495/**
3496 * idle_cpu - is a given cpu idle currently?
3497 * @cpu: the processor in question.
e69f6186
YB
3498 *
3499 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3500 */
3501int idle_cpu(int cpu)
3502{
908a3283
TG
3503 struct rq *rq = cpu_rq(cpu);
3504
3505 if (rq->curr != rq->idle)
3506 return 0;
3507
3508 if (rq->nr_running)
3509 return 0;
3510
3511#ifdef CONFIG_SMP
3512 if (!llist_empty(&rq->wake_list))
3513 return 0;
3514#endif
3515
3516 return 1;
1da177e4
LT
3517}
3518
1da177e4
LT
3519/**
3520 * idle_task - return the idle task for a given cpu.
3521 * @cpu: the processor in question.
e69f6186
YB
3522 *
3523 * Return: The idle task for the cpu @cpu.
1da177e4 3524 */
36c8b586 3525struct task_struct *idle_task(int cpu)
1da177e4
LT
3526{
3527 return cpu_rq(cpu)->idle;
3528}
3529
3530/**
3531 * find_process_by_pid - find a process with a matching PID value.
3532 * @pid: the pid in question.
e69f6186
YB
3533 *
3534 * The task of @pid, if found. %NULL otherwise.
1da177e4 3535 */
a9957449 3536static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3537{
228ebcbe 3538 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3539}
3540
aab03e05
DF
3541/*
3542 * This function initializes the sched_dl_entity of a newly becoming
3543 * SCHED_DEADLINE task.
3544 *
3545 * Only the static values are considered here, the actual runtime and the
3546 * absolute deadline will be properly calculated when the task is enqueued
3547 * for the first time with its new policy.
3548 */
3549static void
3550__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3551{
3552 struct sched_dl_entity *dl_se = &p->dl;
3553
aab03e05
DF
3554 dl_se->dl_runtime = attr->sched_runtime;
3555 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3556 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3557 dl_se->flags = attr->sched_flags;
332ac17e 3558 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3559
3560 /*
3561 * Changing the parameters of a task is 'tricky' and we're not doing
3562 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3563 *
3564 * What we SHOULD do is delay the bandwidth release until the 0-lag
3565 * point. This would include retaining the task_struct until that time
3566 * and change dl_overflow() to not immediately decrement the current
3567 * amount.
3568 *
3569 * Instead we retain the current runtime/deadline and let the new
3570 * parameters take effect after the current reservation period lapses.
3571 * This is safe (albeit pessimistic) because the 0-lag point is always
3572 * before the current scheduling deadline.
3573 *
3574 * We can still have temporary overloads because we do not delay the
3575 * change in bandwidth until that time; so admission control is
3576 * not on the safe side. It does however guarantee tasks will never
3577 * consume more than promised.
3578 */
aab03e05
DF
3579}
3580
c13db6b1
SR
3581/*
3582 * sched_setparam() passes in -1 for its policy, to let the functions
3583 * it calls know not to change it.
3584 */
3585#define SETPARAM_POLICY -1
3586
c365c292
TG
3587static void __setscheduler_params(struct task_struct *p,
3588 const struct sched_attr *attr)
1da177e4 3589{
d50dde5a
DF
3590 int policy = attr->sched_policy;
3591
c13db6b1 3592 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3593 policy = p->policy;
3594
1da177e4 3595 p->policy = policy;
d50dde5a 3596
aab03e05
DF
3597 if (dl_policy(policy))
3598 __setparam_dl(p, attr);
39fd8fd2 3599 else if (fair_policy(policy))
d50dde5a
DF
3600 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3601
39fd8fd2
PZ
3602 /*
3603 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3604 * !rt_policy. Always setting this ensures that things like
3605 * getparam()/getattr() don't report silly values for !rt tasks.
3606 */
3607 p->rt_priority = attr->sched_priority;
383afd09 3608 p->normal_prio = normal_prio(p);
c365c292
TG
3609 set_load_weight(p);
3610}
39fd8fd2 3611
c365c292
TG
3612/* Actually do priority change: must hold pi & rq lock. */
3613static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3614 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3615{
3616 __setscheduler_params(p, attr);
d50dde5a 3617
383afd09 3618 /*
0782e63b
TG
3619 * Keep a potential priority boosting if called from
3620 * sched_setscheduler().
383afd09 3621 */
0782e63b
TG
3622 if (keep_boost)
3623 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3624 else
3625 p->prio = normal_prio(p);
383afd09 3626
aab03e05
DF
3627 if (dl_prio(p->prio))
3628 p->sched_class = &dl_sched_class;
3629 else if (rt_prio(p->prio))
ffd44db5
PZ
3630 p->sched_class = &rt_sched_class;
3631 else
3632 p->sched_class = &fair_sched_class;
1da177e4 3633}
aab03e05
DF
3634
3635static void
3636__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3637{
3638 struct sched_dl_entity *dl_se = &p->dl;
3639
3640 attr->sched_priority = p->rt_priority;
3641 attr->sched_runtime = dl_se->dl_runtime;
3642 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3643 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3644 attr->sched_flags = dl_se->flags;
3645}
3646
3647/*
3648 * This function validates the new parameters of a -deadline task.
3649 * We ask for the deadline not being zero, and greater or equal
755378a4 3650 * than the runtime, as well as the period of being zero or
332ac17e 3651 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3652 * user parameters are above the internal resolution of 1us (we
3653 * check sched_runtime only since it is always the smaller one) and
3654 * below 2^63 ns (we have to check both sched_deadline and
3655 * sched_period, as the latter can be zero).
aab03e05
DF
3656 */
3657static bool
3658__checkparam_dl(const struct sched_attr *attr)
3659{
b0827819
JL
3660 /* deadline != 0 */
3661 if (attr->sched_deadline == 0)
3662 return false;
3663
3664 /*
3665 * Since we truncate DL_SCALE bits, make sure we're at least
3666 * that big.
3667 */
3668 if (attr->sched_runtime < (1ULL << DL_SCALE))
3669 return false;
3670
3671 /*
3672 * Since we use the MSB for wrap-around and sign issues, make
3673 * sure it's not set (mind that period can be equal to zero).
3674 */
3675 if (attr->sched_deadline & (1ULL << 63) ||
3676 attr->sched_period & (1ULL << 63))
3677 return false;
3678
3679 /* runtime <= deadline <= period (if period != 0) */
3680 if ((attr->sched_period != 0 &&
3681 attr->sched_period < attr->sched_deadline) ||
3682 attr->sched_deadline < attr->sched_runtime)
3683 return false;
3684
3685 return true;
aab03e05
DF
3686}
3687
c69e8d9c
DH
3688/*
3689 * check the target process has a UID that matches the current process's
3690 */
3691static bool check_same_owner(struct task_struct *p)
3692{
3693 const struct cred *cred = current_cred(), *pcred;
3694 bool match;
3695
3696 rcu_read_lock();
3697 pcred = __task_cred(p);
9c806aa0
EB
3698 match = (uid_eq(cred->euid, pcred->euid) ||
3699 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3700 rcu_read_unlock();
3701 return match;
3702}
3703
75381608
WL
3704static bool dl_param_changed(struct task_struct *p,
3705 const struct sched_attr *attr)
3706{
3707 struct sched_dl_entity *dl_se = &p->dl;
3708
3709 if (dl_se->dl_runtime != attr->sched_runtime ||
3710 dl_se->dl_deadline != attr->sched_deadline ||
3711 dl_se->dl_period != attr->sched_period ||
3712 dl_se->flags != attr->sched_flags)
3713 return true;
3714
3715 return false;
3716}
3717
d50dde5a
DF
3718static int __sched_setscheduler(struct task_struct *p,
3719 const struct sched_attr *attr,
dbc7f069 3720 bool user, bool pi)
1da177e4 3721{
383afd09
SR
3722 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3723 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3724 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3725 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3726 unsigned long flags;
83ab0aa0 3727 const struct sched_class *prev_class;
70b97a7f 3728 struct rq *rq;
ca94c442 3729 int reset_on_fork;
1da177e4 3730
66e5393a
SR
3731 /* may grab non-irq protected spin_locks */
3732 BUG_ON(in_interrupt());
1da177e4
LT
3733recheck:
3734 /* double check policy once rq lock held */
ca94c442
LP
3735 if (policy < 0) {
3736 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3737 policy = oldpolicy = p->policy;
ca94c442 3738 } else {
7479f3c9 3739 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3740
aab03e05
DF
3741 if (policy != SCHED_DEADLINE &&
3742 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3743 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3744 policy != SCHED_IDLE)
3745 return -EINVAL;
3746 }
3747
7479f3c9
PZ
3748 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3749 return -EINVAL;
3750
1da177e4
LT
3751 /*
3752 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3753 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3754 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3755 */
0bb040a4 3756 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3757 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3758 return -EINVAL;
aab03e05
DF
3759 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3760 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3761 return -EINVAL;
3762
37e4ab3f
OC
3763 /*
3764 * Allow unprivileged RT tasks to decrease priority:
3765 */
961ccddd 3766 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3767 if (fair_policy(policy)) {
d0ea0268 3768 if (attr->sched_nice < task_nice(p) &&
eaad4513 3769 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3770 return -EPERM;
3771 }
3772
e05606d3 3773 if (rt_policy(policy)) {
a44702e8
ON
3774 unsigned long rlim_rtprio =
3775 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3776
3777 /* can't set/change the rt policy */
3778 if (policy != p->policy && !rlim_rtprio)
3779 return -EPERM;
3780
3781 /* can't increase priority */
d50dde5a
DF
3782 if (attr->sched_priority > p->rt_priority &&
3783 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3784 return -EPERM;
3785 }
c02aa73b 3786
d44753b8
JL
3787 /*
3788 * Can't set/change SCHED_DEADLINE policy at all for now
3789 * (safest behavior); in the future we would like to allow
3790 * unprivileged DL tasks to increase their relative deadline
3791 * or reduce their runtime (both ways reducing utilization)
3792 */
3793 if (dl_policy(policy))
3794 return -EPERM;
3795
dd41f596 3796 /*
c02aa73b
DH
3797 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3798 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3799 */
c02aa73b 3800 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3801 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3802 return -EPERM;
3803 }
5fe1d75f 3804
37e4ab3f 3805 /* can't change other user's priorities */
c69e8d9c 3806 if (!check_same_owner(p))
37e4ab3f 3807 return -EPERM;
ca94c442
LP
3808
3809 /* Normal users shall not reset the sched_reset_on_fork flag */
3810 if (p->sched_reset_on_fork && !reset_on_fork)
3811 return -EPERM;
37e4ab3f 3812 }
1da177e4 3813
725aad24 3814 if (user) {
b0ae1981 3815 retval = security_task_setscheduler(p);
725aad24
JF
3816 if (retval)
3817 return retval;
3818 }
3819
b29739f9
IM
3820 /*
3821 * make sure no PI-waiters arrive (or leave) while we are
3822 * changing the priority of the task:
0122ec5b 3823 *
25985edc 3824 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3825 * runqueue lock must be held.
3826 */
0122ec5b 3827 rq = task_rq_lock(p, &flags);
dc61b1d6 3828
34f971f6
PZ
3829 /*
3830 * Changing the policy of the stop threads its a very bad idea
3831 */
3832 if (p == rq->stop) {
0122ec5b 3833 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3834 return -EINVAL;
3835 }
3836
a51e9198 3837 /*
d6b1e911
TG
3838 * If not changing anything there's no need to proceed further,
3839 * but store a possible modification of reset_on_fork.
a51e9198 3840 */
d50dde5a 3841 if (unlikely(policy == p->policy)) {
d0ea0268 3842 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3843 goto change;
3844 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3845 goto change;
75381608 3846 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3847 goto change;
d50dde5a 3848
d6b1e911 3849 p->sched_reset_on_fork = reset_on_fork;
45afb173 3850 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3851 return 0;
3852 }
d50dde5a 3853change:
a51e9198 3854
dc61b1d6 3855 if (user) {
332ac17e 3856#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3857 /*
3858 * Do not allow realtime tasks into groups that have no runtime
3859 * assigned.
3860 */
3861 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3862 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3863 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3864 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3865 return -EPERM;
3866 }
dc61b1d6 3867#endif
332ac17e
DF
3868#ifdef CONFIG_SMP
3869 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3870 cpumask_t *span = rq->rd->span;
332ac17e
DF
3871
3872 /*
3873 * Don't allow tasks with an affinity mask smaller than
3874 * the entire root_domain to become SCHED_DEADLINE. We
3875 * will also fail if there's no bandwidth available.
3876 */
e4099a5e
PZ
3877 if (!cpumask_subset(span, &p->cpus_allowed) ||
3878 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3879 task_rq_unlock(rq, p, &flags);
3880 return -EPERM;
3881 }
3882 }
3883#endif
3884 }
dc61b1d6 3885
1da177e4
LT
3886 /* recheck policy now with rq lock held */
3887 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3888 policy = oldpolicy = -1;
0122ec5b 3889 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3890 goto recheck;
3891 }
332ac17e
DF
3892
3893 /*
3894 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3895 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3896 * is available.
3897 */
e4099a5e 3898 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3899 task_rq_unlock(rq, p, &flags);
3900 return -EBUSY;
3901 }
3902
c365c292
TG
3903 p->sched_reset_on_fork = reset_on_fork;
3904 oldprio = p->prio;
3905
dbc7f069
PZ
3906 if (pi) {
3907 /*
3908 * Take priority boosted tasks into account. If the new
3909 * effective priority is unchanged, we just store the new
3910 * normal parameters and do not touch the scheduler class and
3911 * the runqueue. This will be done when the task deboost
3912 * itself.
3913 */
3914 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3915 if (new_effective_prio == oldprio) {
3916 __setscheduler_params(p, attr);
3917 task_rq_unlock(rq, p, &flags);
3918 return 0;
3919 }
c365c292
TG
3920 }
3921
da0c1e65 3922 queued = task_on_rq_queued(p);
051a1d1a 3923 running = task_current(rq, p);
da0c1e65 3924 if (queued)
4ca9b72b 3925 dequeue_task(rq, p, 0);
0e1f3483 3926 if (running)
f3cd1c4e 3927 put_prev_task(rq, p);
f6b53205 3928
83ab0aa0 3929 prev_class = p->sched_class;
dbc7f069 3930 __setscheduler(rq, p, attr, pi);
f6b53205 3931
0e1f3483
HS
3932 if (running)
3933 p->sched_class->set_curr_task(rq);
da0c1e65 3934 if (queued) {
81a44c54
TG
3935 /*
3936 * We enqueue to tail when the priority of a task is
3937 * increased (user space view).
3938 */
3939 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3940 }
cb469845 3941
da7a735e 3942 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3943 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3944 task_rq_unlock(rq, p, &flags);
b29739f9 3945
dbc7f069
PZ
3946 if (pi)
3947 rt_mutex_adjust_pi(p);
95e02ca9 3948
4c9a4bc8
PZ
3949 /*
3950 * Run balance callbacks after we've adjusted the PI chain.
3951 */
3952 balance_callback(rq);
3953 preempt_enable();
95e02ca9 3954
1da177e4
LT
3955 return 0;
3956}
961ccddd 3957
7479f3c9
PZ
3958static int _sched_setscheduler(struct task_struct *p, int policy,
3959 const struct sched_param *param, bool check)
3960{
3961 struct sched_attr attr = {
3962 .sched_policy = policy,
3963 .sched_priority = param->sched_priority,
3964 .sched_nice = PRIO_TO_NICE(p->static_prio),
3965 };
3966
c13db6b1
SR
3967 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3968 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3969 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3970 policy &= ~SCHED_RESET_ON_FORK;
3971 attr.sched_policy = policy;
3972 }
3973
dbc7f069 3974 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3975}
961ccddd
RR
3976/**
3977 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3978 * @p: the task in question.
3979 * @policy: new policy.
3980 * @param: structure containing the new RT priority.
3981 *
e69f6186
YB
3982 * Return: 0 on success. An error code otherwise.
3983 *
961ccddd
RR
3984 * NOTE that the task may be already dead.
3985 */
3986int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3987 const struct sched_param *param)
961ccddd 3988{
7479f3c9 3989 return _sched_setscheduler(p, policy, param, true);
961ccddd 3990}
1da177e4
LT
3991EXPORT_SYMBOL_GPL(sched_setscheduler);
3992
d50dde5a
DF
3993int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3994{
dbc7f069 3995 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3996}
3997EXPORT_SYMBOL_GPL(sched_setattr);
3998
961ccddd
RR
3999/**
4000 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4001 * @p: the task in question.
4002 * @policy: new policy.
4003 * @param: structure containing the new RT priority.
4004 *
4005 * Just like sched_setscheduler, only don't bother checking if the
4006 * current context has permission. For example, this is needed in
4007 * stop_machine(): we create temporary high priority worker threads,
4008 * but our caller might not have that capability.
e69f6186
YB
4009 *
4010 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4011 */
4012int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4013 const struct sched_param *param)
961ccddd 4014{
7479f3c9 4015 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4016}
4017
95cdf3b7
IM
4018static int
4019do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4020{
1da177e4
LT
4021 struct sched_param lparam;
4022 struct task_struct *p;
36c8b586 4023 int retval;
1da177e4
LT
4024
4025 if (!param || pid < 0)
4026 return -EINVAL;
4027 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4028 return -EFAULT;
5fe1d75f
ON
4029
4030 rcu_read_lock();
4031 retval = -ESRCH;
1da177e4 4032 p = find_process_by_pid(pid);
5fe1d75f
ON
4033 if (p != NULL)
4034 retval = sched_setscheduler(p, policy, &lparam);
4035 rcu_read_unlock();
36c8b586 4036
1da177e4
LT
4037 return retval;
4038}
4039
d50dde5a
DF
4040/*
4041 * Mimics kernel/events/core.c perf_copy_attr().
4042 */
4043static int sched_copy_attr(struct sched_attr __user *uattr,
4044 struct sched_attr *attr)
4045{
4046 u32 size;
4047 int ret;
4048
4049 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4050 return -EFAULT;
4051
4052 /*
4053 * zero the full structure, so that a short copy will be nice.
4054 */
4055 memset(attr, 0, sizeof(*attr));
4056
4057 ret = get_user(size, &uattr->size);
4058 if (ret)
4059 return ret;
4060
4061 if (size > PAGE_SIZE) /* silly large */
4062 goto err_size;
4063
4064 if (!size) /* abi compat */
4065 size = SCHED_ATTR_SIZE_VER0;
4066
4067 if (size < SCHED_ATTR_SIZE_VER0)
4068 goto err_size;
4069
4070 /*
4071 * If we're handed a bigger struct than we know of,
4072 * ensure all the unknown bits are 0 - i.e. new
4073 * user-space does not rely on any kernel feature
4074 * extensions we dont know about yet.
4075 */
4076 if (size > sizeof(*attr)) {
4077 unsigned char __user *addr;
4078 unsigned char __user *end;
4079 unsigned char val;
4080
4081 addr = (void __user *)uattr + sizeof(*attr);
4082 end = (void __user *)uattr + size;
4083
4084 for (; addr < end; addr++) {
4085 ret = get_user(val, addr);
4086 if (ret)
4087 return ret;
4088 if (val)
4089 goto err_size;
4090 }
4091 size = sizeof(*attr);
4092 }
4093
4094 ret = copy_from_user(attr, uattr, size);
4095 if (ret)
4096 return -EFAULT;
4097
4098 /*
4099 * XXX: do we want to be lenient like existing syscalls; or do we want
4100 * to be strict and return an error on out-of-bounds values?
4101 */
75e45d51 4102 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4103
e78c7bca 4104 return 0;
d50dde5a
DF
4105
4106err_size:
4107 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4108 return -E2BIG;
d50dde5a
DF
4109}
4110
1da177e4
LT
4111/**
4112 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4113 * @pid: the pid in question.
4114 * @policy: new policy.
4115 * @param: structure containing the new RT priority.
e69f6186
YB
4116 *
4117 * Return: 0 on success. An error code otherwise.
1da177e4 4118 */
5add95d4
HC
4119SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4120 struct sched_param __user *, param)
1da177e4 4121{
c21761f1
JB
4122 /* negative values for policy are not valid */
4123 if (policy < 0)
4124 return -EINVAL;
4125
1da177e4
LT
4126 return do_sched_setscheduler(pid, policy, param);
4127}
4128
4129/**
4130 * sys_sched_setparam - set/change the RT priority of a thread
4131 * @pid: the pid in question.
4132 * @param: structure containing the new RT priority.
e69f6186
YB
4133 *
4134 * Return: 0 on success. An error code otherwise.
1da177e4 4135 */
5add95d4 4136SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4137{
c13db6b1 4138 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4139}
4140
d50dde5a
DF
4141/**
4142 * sys_sched_setattr - same as above, but with extended sched_attr
4143 * @pid: the pid in question.
5778fccf 4144 * @uattr: structure containing the extended parameters.
db66d756 4145 * @flags: for future extension.
d50dde5a 4146 */
6d35ab48
PZ
4147SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4148 unsigned int, flags)
d50dde5a
DF
4149{
4150 struct sched_attr attr;
4151 struct task_struct *p;
4152 int retval;
4153
6d35ab48 4154 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4155 return -EINVAL;
4156
143cf23d
MK
4157 retval = sched_copy_attr(uattr, &attr);
4158 if (retval)
4159 return retval;
d50dde5a 4160
b14ed2c2 4161 if ((int)attr.sched_policy < 0)
dbdb2275 4162 return -EINVAL;
d50dde5a
DF
4163
4164 rcu_read_lock();
4165 retval = -ESRCH;
4166 p = find_process_by_pid(pid);
4167 if (p != NULL)
4168 retval = sched_setattr(p, &attr);
4169 rcu_read_unlock();
4170
4171 return retval;
4172}
4173
1da177e4
LT
4174/**
4175 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4176 * @pid: the pid in question.
e69f6186
YB
4177 *
4178 * Return: On success, the policy of the thread. Otherwise, a negative error
4179 * code.
1da177e4 4180 */
5add95d4 4181SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4182{
36c8b586 4183 struct task_struct *p;
3a5c359a 4184 int retval;
1da177e4
LT
4185
4186 if (pid < 0)
3a5c359a 4187 return -EINVAL;
1da177e4
LT
4188
4189 retval = -ESRCH;
5fe85be0 4190 rcu_read_lock();
1da177e4
LT
4191 p = find_process_by_pid(pid);
4192 if (p) {
4193 retval = security_task_getscheduler(p);
4194 if (!retval)
ca94c442
LP
4195 retval = p->policy
4196 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4197 }
5fe85be0 4198 rcu_read_unlock();
1da177e4
LT
4199 return retval;
4200}
4201
4202/**
ca94c442 4203 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4204 * @pid: the pid in question.
4205 * @param: structure containing the RT priority.
e69f6186
YB
4206 *
4207 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4208 * code.
1da177e4 4209 */
5add95d4 4210SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4211{
ce5f7f82 4212 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4213 struct task_struct *p;
3a5c359a 4214 int retval;
1da177e4
LT
4215
4216 if (!param || pid < 0)
3a5c359a 4217 return -EINVAL;
1da177e4 4218
5fe85be0 4219 rcu_read_lock();
1da177e4
LT
4220 p = find_process_by_pid(pid);
4221 retval = -ESRCH;
4222 if (!p)
4223 goto out_unlock;
4224
4225 retval = security_task_getscheduler(p);
4226 if (retval)
4227 goto out_unlock;
4228
ce5f7f82
PZ
4229 if (task_has_rt_policy(p))
4230 lp.sched_priority = p->rt_priority;
5fe85be0 4231 rcu_read_unlock();
1da177e4
LT
4232
4233 /*
4234 * This one might sleep, we cannot do it with a spinlock held ...
4235 */
4236 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4237
1da177e4
LT
4238 return retval;
4239
4240out_unlock:
5fe85be0 4241 rcu_read_unlock();
1da177e4
LT
4242 return retval;
4243}
4244
d50dde5a
DF
4245static int sched_read_attr(struct sched_attr __user *uattr,
4246 struct sched_attr *attr,
4247 unsigned int usize)
4248{
4249 int ret;
4250
4251 if (!access_ok(VERIFY_WRITE, uattr, usize))
4252 return -EFAULT;
4253
4254 /*
4255 * If we're handed a smaller struct than we know of,
4256 * ensure all the unknown bits are 0 - i.e. old
4257 * user-space does not get uncomplete information.
4258 */
4259 if (usize < sizeof(*attr)) {
4260 unsigned char *addr;
4261 unsigned char *end;
4262
4263 addr = (void *)attr + usize;
4264 end = (void *)attr + sizeof(*attr);
4265
4266 for (; addr < end; addr++) {
4267 if (*addr)
22400674 4268 return -EFBIG;
d50dde5a
DF
4269 }
4270
4271 attr->size = usize;
4272 }
4273
4efbc454 4274 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4275 if (ret)
4276 return -EFAULT;
4277
22400674 4278 return 0;
d50dde5a
DF
4279}
4280
4281/**
aab03e05 4282 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4283 * @pid: the pid in question.
5778fccf 4284 * @uattr: structure containing the extended parameters.
d50dde5a 4285 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4286 * @flags: for future extension.
d50dde5a 4287 */
6d35ab48
PZ
4288SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4289 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4290{
4291 struct sched_attr attr = {
4292 .size = sizeof(struct sched_attr),
4293 };
4294 struct task_struct *p;
4295 int retval;
4296
4297 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4298 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4299 return -EINVAL;
4300
4301 rcu_read_lock();
4302 p = find_process_by_pid(pid);
4303 retval = -ESRCH;
4304 if (!p)
4305 goto out_unlock;
4306
4307 retval = security_task_getscheduler(p);
4308 if (retval)
4309 goto out_unlock;
4310
4311 attr.sched_policy = p->policy;
7479f3c9
PZ
4312 if (p->sched_reset_on_fork)
4313 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4314 if (task_has_dl_policy(p))
4315 __getparam_dl(p, &attr);
4316 else if (task_has_rt_policy(p))
d50dde5a
DF
4317 attr.sched_priority = p->rt_priority;
4318 else
d0ea0268 4319 attr.sched_nice = task_nice(p);
d50dde5a
DF
4320
4321 rcu_read_unlock();
4322
4323 retval = sched_read_attr(uattr, &attr, size);
4324 return retval;
4325
4326out_unlock:
4327 rcu_read_unlock();
4328 return retval;
4329}
4330
96f874e2 4331long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4332{
5a16f3d3 4333 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4334 struct task_struct *p;
4335 int retval;
1da177e4 4336
23f5d142 4337 rcu_read_lock();
1da177e4
LT
4338
4339 p = find_process_by_pid(pid);
4340 if (!p) {
23f5d142 4341 rcu_read_unlock();
1da177e4
LT
4342 return -ESRCH;
4343 }
4344
23f5d142 4345 /* Prevent p going away */
1da177e4 4346 get_task_struct(p);
23f5d142 4347 rcu_read_unlock();
1da177e4 4348
14a40ffc
TH
4349 if (p->flags & PF_NO_SETAFFINITY) {
4350 retval = -EINVAL;
4351 goto out_put_task;
4352 }
5a16f3d3
RR
4353 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4354 retval = -ENOMEM;
4355 goto out_put_task;
4356 }
4357 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4358 retval = -ENOMEM;
4359 goto out_free_cpus_allowed;
4360 }
1da177e4 4361 retval = -EPERM;
4c44aaaf
EB
4362 if (!check_same_owner(p)) {
4363 rcu_read_lock();
4364 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4365 rcu_read_unlock();
16303ab2 4366 goto out_free_new_mask;
4c44aaaf
EB
4367 }
4368 rcu_read_unlock();
4369 }
1da177e4 4370
b0ae1981 4371 retval = security_task_setscheduler(p);
e7834f8f 4372 if (retval)
16303ab2 4373 goto out_free_new_mask;
e7834f8f 4374
e4099a5e
PZ
4375
4376 cpuset_cpus_allowed(p, cpus_allowed);
4377 cpumask_and(new_mask, in_mask, cpus_allowed);
4378
332ac17e
DF
4379 /*
4380 * Since bandwidth control happens on root_domain basis,
4381 * if admission test is enabled, we only admit -deadline
4382 * tasks allowed to run on all the CPUs in the task's
4383 * root_domain.
4384 */
4385#ifdef CONFIG_SMP
f1e3a093
KT
4386 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4387 rcu_read_lock();
4388 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4389 retval = -EBUSY;
f1e3a093 4390 rcu_read_unlock();
16303ab2 4391 goto out_free_new_mask;
332ac17e 4392 }
f1e3a093 4393 rcu_read_unlock();
332ac17e
DF
4394 }
4395#endif
49246274 4396again:
25834c73 4397 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4398
8707d8b8 4399 if (!retval) {
5a16f3d3
RR
4400 cpuset_cpus_allowed(p, cpus_allowed);
4401 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4402 /*
4403 * We must have raced with a concurrent cpuset
4404 * update. Just reset the cpus_allowed to the
4405 * cpuset's cpus_allowed
4406 */
5a16f3d3 4407 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4408 goto again;
4409 }
4410 }
16303ab2 4411out_free_new_mask:
5a16f3d3
RR
4412 free_cpumask_var(new_mask);
4413out_free_cpus_allowed:
4414 free_cpumask_var(cpus_allowed);
4415out_put_task:
1da177e4 4416 put_task_struct(p);
1da177e4
LT
4417 return retval;
4418}
4419
4420static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4421 struct cpumask *new_mask)
1da177e4 4422{
96f874e2
RR
4423 if (len < cpumask_size())
4424 cpumask_clear(new_mask);
4425 else if (len > cpumask_size())
4426 len = cpumask_size();
4427
1da177e4
LT
4428 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4429}
4430
4431/**
4432 * sys_sched_setaffinity - set the cpu affinity of a process
4433 * @pid: pid of the process
4434 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4435 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4436 *
4437 * Return: 0 on success. An error code otherwise.
1da177e4 4438 */
5add95d4
HC
4439SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4440 unsigned long __user *, user_mask_ptr)
1da177e4 4441{
5a16f3d3 4442 cpumask_var_t new_mask;
1da177e4
LT
4443 int retval;
4444
5a16f3d3
RR
4445 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4446 return -ENOMEM;
1da177e4 4447
5a16f3d3
RR
4448 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4449 if (retval == 0)
4450 retval = sched_setaffinity(pid, new_mask);
4451 free_cpumask_var(new_mask);
4452 return retval;
1da177e4
LT
4453}
4454
96f874e2 4455long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4456{
36c8b586 4457 struct task_struct *p;
31605683 4458 unsigned long flags;
1da177e4 4459 int retval;
1da177e4 4460
23f5d142 4461 rcu_read_lock();
1da177e4
LT
4462
4463 retval = -ESRCH;
4464 p = find_process_by_pid(pid);
4465 if (!p)
4466 goto out_unlock;
4467
e7834f8f
DQ
4468 retval = security_task_getscheduler(p);
4469 if (retval)
4470 goto out_unlock;
4471
013fdb80 4472 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4473 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4475
4476out_unlock:
23f5d142 4477 rcu_read_unlock();
1da177e4 4478
9531b62f 4479 return retval;
1da177e4
LT
4480}
4481
4482/**
4483 * sys_sched_getaffinity - get the cpu affinity of a process
4484 * @pid: pid of the process
4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4487 *
4488 * Return: 0 on success. An error code otherwise.
1da177e4 4489 */
5add95d4
HC
4490SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4491 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4492{
4493 int ret;
f17c8607 4494 cpumask_var_t mask;
1da177e4 4495
84fba5ec 4496 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4497 return -EINVAL;
4498 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4499 return -EINVAL;
4500
f17c8607
RR
4501 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4502 return -ENOMEM;
1da177e4 4503
f17c8607
RR
4504 ret = sched_getaffinity(pid, mask);
4505 if (ret == 0) {
8bc037fb 4506 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4507
4508 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4509 ret = -EFAULT;
4510 else
cd3d8031 4511 ret = retlen;
f17c8607
RR
4512 }
4513 free_cpumask_var(mask);
1da177e4 4514
f17c8607 4515 return ret;
1da177e4
LT
4516}
4517
4518/**
4519 * sys_sched_yield - yield the current processor to other threads.
4520 *
dd41f596
IM
4521 * This function yields the current CPU to other tasks. If there are no
4522 * other threads running on this CPU then this function will return.
e69f6186
YB
4523 *
4524 * Return: 0.
1da177e4 4525 */
5add95d4 4526SYSCALL_DEFINE0(sched_yield)
1da177e4 4527{
70b97a7f 4528 struct rq *rq = this_rq_lock();
1da177e4 4529
2d72376b 4530 schedstat_inc(rq, yld_count);
4530d7ab 4531 current->sched_class->yield_task(rq);
1da177e4
LT
4532
4533 /*
4534 * Since we are going to call schedule() anyway, there's
4535 * no need to preempt or enable interrupts:
4536 */
4537 __release(rq->lock);
8a25d5de 4538 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4539 do_raw_spin_unlock(&rq->lock);
ba74c144 4540 sched_preempt_enable_no_resched();
1da177e4
LT
4541
4542 schedule();
4543
4544 return 0;
4545}
4546
02b67cc3 4547int __sched _cond_resched(void)
1da177e4 4548{
fe32d3cd 4549 if (should_resched(0)) {
a18b5d01 4550 preempt_schedule_common();
1da177e4
LT
4551 return 1;
4552 }
4553 return 0;
4554}
02b67cc3 4555EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4556
4557/*
613afbf8 4558 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4559 * call schedule, and on return reacquire the lock.
4560 *
41a2d6cf 4561 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4562 * operations here to prevent schedule() from being called twice (once via
4563 * spin_unlock(), once by hand).
4564 */
613afbf8 4565int __cond_resched_lock(spinlock_t *lock)
1da177e4 4566{
fe32d3cd 4567 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4568 int ret = 0;
4569
f607c668
PZ
4570 lockdep_assert_held(lock);
4571
4a81e832 4572 if (spin_needbreak(lock) || resched) {
1da177e4 4573 spin_unlock(lock);
d86ee480 4574 if (resched)
a18b5d01 4575 preempt_schedule_common();
95c354fe
NP
4576 else
4577 cpu_relax();
6df3cecb 4578 ret = 1;
1da177e4 4579 spin_lock(lock);
1da177e4 4580 }
6df3cecb 4581 return ret;
1da177e4 4582}
613afbf8 4583EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4584
613afbf8 4585int __sched __cond_resched_softirq(void)
1da177e4
LT
4586{
4587 BUG_ON(!in_softirq());
4588
fe32d3cd 4589 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4590 local_bh_enable();
a18b5d01 4591 preempt_schedule_common();
1da177e4
LT
4592 local_bh_disable();
4593 return 1;
4594 }
4595 return 0;
4596}
613afbf8 4597EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4598
1da177e4
LT
4599/**
4600 * yield - yield the current processor to other threads.
4601 *
8e3fabfd
PZ
4602 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4603 *
4604 * The scheduler is at all times free to pick the calling task as the most
4605 * eligible task to run, if removing the yield() call from your code breaks
4606 * it, its already broken.
4607 *
4608 * Typical broken usage is:
4609 *
4610 * while (!event)
4611 * yield();
4612 *
4613 * where one assumes that yield() will let 'the other' process run that will
4614 * make event true. If the current task is a SCHED_FIFO task that will never
4615 * happen. Never use yield() as a progress guarantee!!
4616 *
4617 * If you want to use yield() to wait for something, use wait_event().
4618 * If you want to use yield() to be 'nice' for others, use cond_resched().
4619 * If you still want to use yield(), do not!
1da177e4
LT
4620 */
4621void __sched yield(void)
4622{
4623 set_current_state(TASK_RUNNING);
4624 sys_sched_yield();
4625}
1da177e4
LT
4626EXPORT_SYMBOL(yield);
4627
d95f4122
MG
4628/**
4629 * yield_to - yield the current processor to another thread in
4630 * your thread group, or accelerate that thread toward the
4631 * processor it's on.
16addf95
RD
4632 * @p: target task
4633 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4634 *
4635 * It's the caller's job to ensure that the target task struct
4636 * can't go away on us before we can do any checks.
4637 *
e69f6186 4638 * Return:
7b270f60
PZ
4639 * true (>0) if we indeed boosted the target task.
4640 * false (0) if we failed to boost the target.
4641 * -ESRCH if there's no task to yield to.
d95f4122 4642 */
fa93384f 4643int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4644{
4645 struct task_struct *curr = current;
4646 struct rq *rq, *p_rq;
4647 unsigned long flags;
c3c18640 4648 int yielded = 0;
d95f4122
MG
4649
4650 local_irq_save(flags);
4651 rq = this_rq();
4652
4653again:
4654 p_rq = task_rq(p);
7b270f60
PZ
4655 /*
4656 * If we're the only runnable task on the rq and target rq also
4657 * has only one task, there's absolutely no point in yielding.
4658 */
4659 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4660 yielded = -ESRCH;
4661 goto out_irq;
4662 }
4663
d95f4122 4664 double_rq_lock(rq, p_rq);
39e24d8f 4665 if (task_rq(p) != p_rq) {
d95f4122
MG
4666 double_rq_unlock(rq, p_rq);
4667 goto again;
4668 }
4669
4670 if (!curr->sched_class->yield_to_task)
7b270f60 4671 goto out_unlock;
d95f4122
MG
4672
4673 if (curr->sched_class != p->sched_class)
7b270f60 4674 goto out_unlock;
d95f4122
MG
4675
4676 if (task_running(p_rq, p) || p->state)
7b270f60 4677 goto out_unlock;
d95f4122
MG
4678
4679 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4680 if (yielded) {
d95f4122 4681 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4682 /*
4683 * Make p's CPU reschedule; pick_next_entity takes care of
4684 * fairness.
4685 */
4686 if (preempt && rq != p_rq)
8875125e 4687 resched_curr(p_rq);
6d1cafd8 4688 }
d95f4122 4689
7b270f60 4690out_unlock:
d95f4122 4691 double_rq_unlock(rq, p_rq);
7b270f60 4692out_irq:
d95f4122
MG
4693 local_irq_restore(flags);
4694
7b270f60 4695 if (yielded > 0)
d95f4122
MG
4696 schedule();
4697
4698 return yielded;
4699}
4700EXPORT_SYMBOL_GPL(yield_to);
4701
1da177e4 4702/*
41a2d6cf 4703 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4704 * that process accounting knows that this is a task in IO wait state.
1da177e4 4705 */
1da177e4
LT
4706long __sched io_schedule_timeout(long timeout)
4707{
9cff8ade
N
4708 int old_iowait = current->in_iowait;
4709 struct rq *rq;
1da177e4
LT
4710 long ret;
4711
9cff8ade 4712 current->in_iowait = 1;
10d784ea 4713 blk_schedule_flush_plug(current);
9cff8ade 4714
0ff92245 4715 delayacct_blkio_start();
9cff8ade 4716 rq = raw_rq();
1da177e4
LT
4717 atomic_inc(&rq->nr_iowait);
4718 ret = schedule_timeout(timeout);
9cff8ade 4719 current->in_iowait = old_iowait;
1da177e4 4720 atomic_dec(&rq->nr_iowait);
0ff92245 4721 delayacct_blkio_end();
9cff8ade 4722
1da177e4
LT
4723 return ret;
4724}
9cff8ade 4725EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4726
4727/**
4728 * sys_sched_get_priority_max - return maximum RT priority.
4729 * @policy: scheduling class.
4730 *
e69f6186
YB
4731 * Return: On success, this syscall returns the maximum
4732 * rt_priority that can be used by a given scheduling class.
4733 * On failure, a negative error code is returned.
1da177e4 4734 */
5add95d4 4735SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4736{
4737 int ret = -EINVAL;
4738
4739 switch (policy) {
4740 case SCHED_FIFO:
4741 case SCHED_RR:
4742 ret = MAX_USER_RT_PRIO-1;
4743 break;
aab03e05 4744 case SCHED_DEADLINE:
1da177e4 4745 case SCHED_NORMAL:
b0a9499c 4746 case SCHED_BATCH:
dd41f596 4747 case SCHED_IDLE:
1da177e4
LT
4748 ret = 0;
4749 break;
4750 }
4751 return ret;
4752}
4753
4754/**
4755 * sys_sched_get_priority_min - return minimum RT priority.
4756 * @policy: scheduling class.
4757 *
e69f6186
YB
4758 * Return: On success, this syscall returns the minimum
4759 * rt_priority that can be used by a given scheduling class.
4760 * On failure, a negative error code is returned.
1da177e4 4761 */
5add95d4 4762SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4763{
4764 int ret = -EINVAL;
4765
4766 switch (policy) {
4767 case SCHED_FIFO:
4768 case SCHED_RR:
4769 ret = 1;
4770 break;
aab03e05 4771 case SCHED_DEADLINE:
1da177e4 4772 case SCHED_NORMAL:
b0a9499c 4773 case SCHED_BATCH:
dd41f596 4774 case SCHED_IDLE:
1da177e4
LT
4775 ret = 0;
4776 }
4777 return ret;
4778}
4779
4780/**
4781 * sys_sched_rr_get_interval - return the default timeslice of a process.
4782 * @pid: pid of the process.
4783 * @interval: userspace pointer to the timeslice value.
4784 *
4785 * this syscall writes the default timeslice value of a given process
4786 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4787 *
4788 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4789 * an error code.
1da177e4 4790 */
17da2bd9 4791SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4792 struct timespec __user *, interval)
1da177e4 4793{
36c8b586 4794 struct task_struct *p;
a4ec24b4 4795 unsigned int time_slice;
dba091b9
TG
4796 unsigned long flags;
4797 struct rq *rq;
3a5c359a 4798 int retval;
1da177e4 4799 struct timespec t;
1da177e4
LT
4800
4801 if (pid < 0)
3a5c359a 4802 return -EINVAL;
1da177e4
LT
4803
4804 retval = -ESRCH;
1a551ae7 4805 rcu_read_lock();
1da177e4
LT
4806 p = find_process_by_pid(pid);
4807 if (!p)
4808 goto out_unlock;
4809
4810 retval = security_task_getscheduler(p);
4811 if (retval)
4812 goto out_unlock;
4813
dba091b9 4814 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4815 time_slice = 0;
4816 if (p->sched_class->get_rr_interval)
4817 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4818 task_rq_unlock(rq, p, &flags);
a4ec24b4 4819
1a551ae7 4820 rcu_read_unlock();
a4ec24b4 4821 jiffies_to_timespec(time_slice, &t);
1da177e4 4822 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4823 return retval;
3a5c359a 4824
1da177e4 4825out_unlock:
1a551ae7 4826 rcu_read_unlock();
1da177e4
LT
4827 return retval;
4828}
4829
7c731e0a 4830static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4831
82a1fcb9 4832void sched_show_task(struct task_struct *p)
1da177e4 4833{
1da177e4 4834 unsigned long free = 0;
4e79752c 4835 int ppid;
1f8a7633 4836 unsigned long state = p->state;
1da177e4 4837
1f8a7633
TH
4838 if (state)
4839 state = __ffs(state) + 1;
28d0686c 4840 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4841 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4842#if BITS_PER_LONG == 32
1da177e4 4843 if (state == TASK_RUNNING)
3df0fc5b 4844 printk(KERN_CONT " running ");
1da177e4 4845 else
3df0fc5b 4846 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4847#else
4848 if (state == TASK_RUNNING)
3df0fc5b 4849 printk(KERN_CONT " running task ");
1da177e4 4850 else
3df0fc5b 4851 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4852#endif
4853#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4854 free = stack_not_used(p);
1da177e4 4855#endif
a90e984c 4856 ppid = 0;
4e79752c 4857 rcu_read_lock();
a90e984c
ON
4858 if (pid_alive(p))
4859 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4860 rcu_read_unlock();
3df0fc5b 4861 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4862 task_pid_nr(p), ppid,
aa47b7e0 4863 (unsigned long)task_thread_info(p)->flags);
1da177e4 4864
3d1cb205 4865 print_worker_info(KERN_INFO, p);
5fb5e6de 4866 show_stack(p, NULL);
1da177e4
LT
4867}
4868
e59e2ae2 4869void show_state_filter(unsigned long state_filter)
1da177e4 4870{
36c8b586 4871 struct task_struct *g, *p;
1da177e4 4872
4bd77321 4873#if BITS_PER_LONG == 32
3df0fc5b
PZ
4874 printk(KERN_INFO
4875 " task PC stack pid father\n");
1da177e4 4876#else
3df0fc5b
PZ
4877 printk(KERN_INFO
4878 " task PC stack pid father\n");
1da177e4 4879#endif
510f5acc 4880 rcu_read_lock();
5d07f420 4881 for_each_process_thread(g, p) {
1da177e4
LT
4882 /*
4883 * reset the NMI-timeout, listing all files on a slow
25985edc 4884 * console might take a lot of time:
1da177e4
LT
4885 */
4886 touch_nmi_watchdog();
39bc89fd 4887 if (!state_filter || (p->state & state_filter))
82a1fcb9 4888 sched_show_task(p);
5d07f420 4889 }
1da177e4 4890
04c9167f
JF
4891 touch_all_softlockup_watchdogs();
4892
dd41f596
IM
4893#ifdef CONFIG_SCHED_DEBUG
4894 sysrq_sched_debug_show();
4895#endif
510f5acc 4896 rcu_read_unlock();
e59e2ae2
IM
4897 /*
4898 * Only show locks if all tasks are dumped:
4899 */
93335a21 4900 if (!state_filter)
e59e2ae2 4901 debug_show_all_locks();
1da177e4
LT
4902}
4903
0db0628d 4904void init_idle_bootup_task(struct task_struct *idle)
1df21055 4905{
dd41f596 4906 idle->sched_class = &idle_sched_class;
1df21055
IM
4907}
4908
f340c0d1
IM
4909/**
4910 * init_idle - set up an idle thread for a given CPU
4911 * @idle: task in question
4912 * @cpu: cpu the idle task belongs to
4913 *
4914 * NOTE: this function does not set the idle thread's NEED_RESCHED
4915 * flag, to make booting more robust.
4916 */
0db0628d 4917void init_idle(struct task_struct *idle, int cpu)
1da177e4 4918{
70b97a7f 4919 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4920 unsigned long flags;
4921
25834c73
PZ
4922 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4923 raw_spin_lock(&rq->lock);
5cbd54ef 4924
5e1576ed 4925 __sched_fork(0, idle);
06b83b5f 4926 idle->state = TASK_RUNNING;
dd41f596
IM
4927 idle->se.exec_start = sched_clock();
4928
1e1b6c51 4929 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4930 /*
4931 * We're having a chicken and egg problem, even though we are
4932 * holding rq->lock, the cpu isn't yet set to this cpu so the
4933 * lockdep check in task_group() will fail.
4934 *
4935 * Similar case to sched_fork(). / Alternatively we could
4936 * use task_rq_lock() here and obtain the other rq->lock.
4937 *
4938 * Silence PROVE_RCU
4939 */
4940 rcu_read_lock();
dd41f596 4941 __set_task_cpu(idle, cpu);
6506cf6c 4942 rcu_read_unlock();
1da177e4 4943
1da177e4 4944 rq->curr = rq->idle = idle;
da0c1e65 4945 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4946#if defined(CONFIG_SMP)
4947 idle->on_cpu = 1;
4866cde0 4948#endif
25834c73
PZ
4949 raw_spin_unlock(&rq->lock);
4950 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4951
4952 /* Set the preempt count _outside_ the spinlocks! */
01028747 4953 init_idle_preempt_count(idle, cpu);
55cd5340 4954
dd41f596
IM
4955 /*
4956 * The idle tasks have their own, simple scheduling class:
4957 */
4958 idle->sched_class = &idle_sched_class;
868baf07 4959 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4960 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4961#if defined(CONFIG_SMP)
4962 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4963#endif
19978ca6
IM
4964}
4965
f82f8042
JL
4966int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4967 const struct cpumask *trial)
4968{
4969 int ret = 1, trial_cpus;
4970 struct dl_bw *cur_dl_b;
4971 unsigned long flags;
4972
bb2bc55a
MG
4973 if (!cpumask_weight(cur))
4974 return ret;
4975
75e23e49 4976 rcu_read_lock_sched();
f82f8042
JL
4977 cur_dl_b = dl_bw_of(cpumask_any(cur));
4978 trial_cpus = cpumask_weight(trial);
4979
4980 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4981 if (cur_dl_b->bw != -1 &&
4982 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4983 ret = 0;
4984 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4985 rcu_read_unlock_sched();
f82f8042
JL
4986
4987 return ret;
4988}
4989
7f51412a
JL
4990int task_can_attach(struct task_struct *p,
4991 const struct cpumask *cs_cpus_allowed)
4992{
4993 int ret = 0;
4994
4995 /*
4996 * Kthreads which disallow setaffinity shouldn't be moved
4997 * to a new cpuset; we don't want to change their cpu
4998 * affinity and isolating such threads by their set of
4999 * allowed nodes is unnecessary. Thus, cpusets are not
5000 * applicable for such threads. This prevents checking for
5001 * success of set_cpus_allowed_ptr() on all attached tasks
5002 * before cpus_allowed may be changed.
5003 */
5004 if (p->flags & PF_NO_SETAFFINITY) {
5005 ret = -EINVAL;
5006 goto out;
5007 }
5008
5009#ifdef CONFIG_SMP
5010 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5011 cs_cpus_allowed)) {
5012 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5013 cs_cpus_allowed);
75e23e49 5014 struct dl_bw *dl_b;
7f51412a
JL
5015 bool overflow;
5016 int cpus;
5017 unsigned long flags;
5018
75e23e49
JL
5019 rcu_read_lock_sched();
5020 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5021 raw_spin_lock_irqsave(&dl_b->lock, flags);
5022 cpus = dl_bw_cpus(dest_cpu);
5023 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5024 if (overflow)
5025 ret = -EBUSY;
5026 else {
5027 /*
5028 * We reserve space for this task in the destination
5029 * root_domain, as we can't fail after this point.
5030 * We will free resources in the source root_domain
5031 * later on (see set_cpus_allowed_dl()).
5032 */
5033 __dl_add(dl_b, p->dl.dl_bw);
5034 }
5035 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5036 rcu_read_unlock_sched();
7f51412a
JL
5037
5038 }
5039#endif
5040out:
5041 return ret;
5042}
5043
1da177e4 5044#ifdef CONFIG_SMP
1da177e4 5045
e6628d5b
MG
5046#ifdef CONFIG_NUMA_BALANCING
5047/* Migrate current task p to target_cpu */
5048int migrate_task_to(struct task_struct *p, int target_cpu)
5049{
5050 struct migration_arg arg = { p, target_cpu };
5051 int curr_cpu = task_cpu(p);
5052
5053 if (curr_cpu == target_cpu)
5054 return 0;
5055
5056 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5057 return -EINVAL;
5058
5059 /* TODO: This is not properly updating schedstats */
5060
286549dc 5061 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5062 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5063}
0ec8aa00
PZ
5064
5065/*
5066 * Requeue a task on a given node and accurately track the number of NUMA
5067 * tasks on the runqueues
5068 */
5069void sched_setnuma(struct task_struct *p, int nid)
5070{
5071 struct rq *rq;
5072 unsigned long flags;
da0c1e65 5073 bool queued, running;
0ec8aa00
PZ
5074
5075 rq = task_rq_lock(p, &flags);
da0c1e65 5076 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5077 running = task_current(rq, p);
5078
da0c1e65 5079 if (queued)
0ec8aa00
PZ
5080 dequeue_task(rq, p, 0);
5081 if (running)
f3cd1c4e 5082 put_prev_task(rq, p);
0ec8aa00
PZ
5083
5084 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5085
5086 if (running)
5087 p->sched_class->set_curr_task(rq);
da0c1e65 5088 if (queued)
0ec8aa00
PZ
5089 enqueue_task(rq, p, 0);
5090 task_rq_unlock(rq, p, &flags);
5091}
5cc389bc 5092#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5093
1da177e4 5094#ifdef CONFIG_HOTPLUG_CPU
054b9108 5095/*
48c5ccae
PZ
5096 * Ensures that the idle task is using init_mm right before its cpu goes
5097 * offline.
054b9108 5098 */
48c5ccae 5099void idle_task_exit(void)
1da177e4 5100{
48c5ccae 5101 struct mm_struct *mm = current->active_mm;
e76bd8d9 5102
48c5ccae 5103 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5104
a53efe5f 5105 if (mm != &init_mm) {
48c5ccae 5106 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5107 finish_arch_post_lock_switch();
5108 }
48c5ccae 5109 mmdrop(mm);
1da177e4
LT
5110}
5111
5112/*
5d180232
PZ
5113 * Since this CPU is going 'away' for a while, fold any nr_active delta
5114 * we might have. Assumes we're called after migrate_tasks() so that the
5115 * nr_active count is stable.
5116 *
5117 * Also see the comment "Global load-average calculations".
1da177e4 5118 */
5d180232 5119static void calc_load_migrate(struct rq *rq)
1da177e4 5120{
5d180232
PZ
5121 long delta = calc_load_fold_active(rq);
5122 if (delta)
5123 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5124}
5125
3f1d2a31
PZ
5126static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5127{
5128}
5129
5130static const struct sched_class fake_sched_class = {
5131 .put_prev_task = put_prev_task_fake,
5132};
5133
5134static struct task_struct fake_task = {
5135 /*
5136 * Avoid pull_{rt,dl}_task()
5137 */
5138 .prio = MAX_PRIO + 1,
5139 .sched_class = &fake_sched_class,
5140};
5141
48f24c4d 5142/*
48c5ccae
PZ
5143 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5144 * try_to_wake_up()->select_task_rq().
5145 *
5146 * Called with rq->lock held even though we'er in stop_machine() and
5147 * there's no concurrency possible, we hold the required locks anyway
5148 * because of lock validation efforts.
1da177e4 5149 */
5e16bbc2 5150static void migrate_tasks(struct rq *dead_rq)
1da177e4 5151{
5e16bbc2 5152 struct rq *rq = dead_rq;
48c5ccae
PZ
5153 struct task_struct *next, *stop = rq->stop;
5154 int dest_cpu;
1da177e4
LT
5155
5156 /*
48c5ccae
PZ
5157 * Fudge the rq selection such that the below task selection loop
5158 * doesn't get stuck on the currently eligible stop task.
5159 *
5160 * We're currently inside stop_machine() and the rq is either stuck
5161 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5162 * either way we should never end up calling schedule() until we're
5163 * done here.
1da177e4 5164 */
48c5ccae 5165 rq->stop = NULL;
48f24c4d 5166
77bd3970
FW
5167 /*
5168 * put_prev_task() and pick_next_task() sched
5169 * class method both need to have an up-to-date
5170 * value of rq->clock[_task]
5171 */
5172 update_rq_clock(rq);
5173
5e16bbc2 5174 for (;;) {
48c5ccae
PZ
5175 /*
5176 * There's this thread running, bail when that's the only
5177 * remaining thread.
5178 */
5179 if (rq->nr_running == 1)
dd41f596 5180 break;
48c5ccae 5181
cbce1a68
PZ
5182 /*
5183 * Ensure rq->lock covers the entire task selection
5184 * until the migration.
5185 */
5186 lockdep_pin_lock(&rq->lock);
3f1d2a31 5187 next = pick_next_task(rq, &fake_task);
48c5ccae 5188 BUG_ON(!next);
79c53799 5189 next->sched_class->put_prev_task(rq, next);
e692ab53 5190
48c5ccae 5191 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5192 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5193
cbce1a68 5194 lockdep_unpin_lock(&rq->lock);
5e16bbc2
PZ
5195 rq = __migrate_task(rq, next, dest_cpu);
5196 if (rq != dead_rq) {
5197 raw_spin_unlock(&rq->lock);
5198 rq = dead_rq;
5199 raw_spin_lock(&rq->lock);
5200 }
1da177e4 5201 }
dce48a84 5202
48c5ccae 5203 rq->stop = stop;
dce48a84 5204}
1da177e4
LT
5205#endif /* CONFIG_HOTPLUG_CPU */
5206
e692ab53
NP
5207#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5208
5209static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5210 {
5211 .procname = "sched_domain",
c57baf1e 5212 .mode = 0555,
e0361851 5213 },
56992309 5214 {}
e692ab53
NP
5215};
5216
5217static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5218 {
5219 .procname = "kernel",
c57baf1e 5220 .mode = 0555,
e0361851
AD
5221 .child = sd_ctl_dir,
5222 },
56992309 5223 {}
e692ab53
NP
5224};
5225
5226static struct ctl_table *sd_alloc_ctl_entry(int n)
5227{
5228 struct ctl_table *entry =
5cf9f062 5229 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5230
e692ab53
NP
5231 return entry;
5232}
5233
6382bc90
MM
5234static void sd_free_ctl_entry(struct ctl_table **tablep)
5235{
cd790076 5236 struct ctl_table *entry;
6382bc90 5237
cd790076
MM
5238 /*
5239 * In the intermediate directories, both the child directory and
5240 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5241 * will always be set. In the lowest directory the names are
cd790076
MM
5242 * static strings and all have proc handlers.
5243 */
5244 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5245 if (entry->child)
5246 sd_free_ctl_entry(&entry->child);
cd790076
MM
5247 if (entry->proc_handler == NULL)
5248 kfree(entry->procname);
5249 }
6382bc90
MM
5250
5251 kfree(*tablep);
5252 *tablep = NULL;
5253}
5254
201c373e 5255static int min_load_idx = 0;
fd9b86d3 5256static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5257
e692ab53 5258static void
e0361851 5259set_table_entry(struct ctl_table *entry,
e692ab53 5260 const char *procname, void *data, int maxlen,
201c373e
NK
5261 umode_t mode, proc_handler *proc_handler,
5262 bool load_idx)
e692ab53 5263{
e692ab53
NP
5264 entry->procname = procname;
5265 entry->data = data;
5266 entry->maxlen = maxlen;
5267 entry->mode = mode;
5268 entry->proc_handler = proc_handler;
201c373e
NK
5269
5270 if (load_idx) {
5271 entry->extra1 = &min_load_idx;
5272 entry->extra2 = &max_load_idx;
5273 }
e692ab53
NP
5274}
5275
5276static struct ctl_table *
5277sd_alloc_ctl_domain_table(struct sched_domain *sd)
5278{
37e6bae8 5279 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5280
ad1cdc1d
MM
5281 if (table == NULL)
5282 return NULL;
5283
e0361851 5284 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5285 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5286 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5287 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5288 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5289 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5290 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5291 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5292 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5293 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5294 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5295 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5296 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5297 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5298 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5299 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5300 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5301 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5302 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5303 &sd->cache_nice_tries,
201c373e 5304 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5305 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5306 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5307 set_table_entry(&table[11], "max_newidle_lb_cost",
5308 &sd->max_newidle_lb_cost,
5309 sizeof(long), 0644, proc_doulongvec_minmax, false);
5310 set_table_entry(&table[12], "name", sd->name,
201c373e 5311 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5312 /* &table[13] is terminator */
e692ab53
NP
5313
5314 return table;
5315}
5316
be7002e6 5317static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5318{
5319 struct ctl_table *entry, *table;
5320 struct sched_domain *sd;
5321 int domain_num = 0, i;
5322 char buf[32];
5323
5324 for_each_domain(cpu, sd)
5325 domain_num++;
5326 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5327 if (table == NULL)
5328 return NULL;
e692ab53
NP
5329
5330 i = 0;
5331 for_each_domain(cpu, sd) {
5332 snprintf(buf, 32, "domain%d", i);
e692ab53 5333 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5334 entry->mode = 0555;
e692ab53
NP
5335 entry->child = sd_alloc_ctl_domain_table(sd);
5336 entry++;
5337 i++;
5338 }
5339 return table;
5340}
5341
5342static struct ctl_table_header *sd_sysctl_header;
6382bc90 5343static void register_sched_domain_sysctl(void)
e692ab53 5344{
6ad4c188 5345 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5346 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5347 char buf[32];
5348
7378547f
MM
5349 WARN_ON(sd_ctl_dir[0].child);
5350 sd_ctl_dir[0].child = entry;
5351
ad1cdc1d
MM
5352 if (entry == NULL)
5353 return;
5354
6ad4c188 5355 for_each_possible_cpu(i) {
e692ab53 5356 snprintf(buf, 32, "cpu%d", i);
e692ab53 5357 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5358 entry->mode = 0555;
e692ab53 5359 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5360 entry++;
e692ab53 5361 }
7378547f
MM
5362
5363 WARN_ON(sd_sysctl_header);
e692ab53
NP
5364 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5365}
6382bc90 5366
7378547f 5367/* may be called multiple times per register */
6382bc90
MM
5368static void unregister_sched_domain_sysctl(void)
5369{
781b0203 5370 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5371 sd_sysctl_header = NULL;
7378547f
MM
5372 if (sd_ctl_dir[0].child)
5373 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5374}
e692ab53 5375#else
6382bc90
MM
5376static void register_sched_domain_sysctl(void)
5377{
5378}
5379static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5380{
5381}
5cc389bc 5382#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5383
1f11eb6a
GH
5384static void set_rq_online(struct rq *rq)
5385{
5386 if (!rq->online) {
5387 const struct sched_class *class;
5388
c6c4927b 5389 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5390 rq->online = 1;
5391
5392 for_each_class(class) {
5393 if (class->rq_online)
5394 class->rq_online(rq);
5395 }
5396 }
5397}
5398
5399static void set_rq_offline(struct rq *rq)
5400{
5401 if (rq->online) {
5402 const struct sched_class *class;
5403
5404 for_each_class(class) {
5405 if (class->rq_offline)
5406 class->rq_offline(rq);
5407 }
5408
c6c4927b 5409 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5410 rq->online = 0;
5411 }
5412}
5413
1da177e4
LT
5414/*
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5417 */
0db0628d 5418static int
48f24c4d 5419migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5420{
48f24c4d 5421 int cpu = (long)hcpu;
1da177e4 5422 unsigned long flags;
969c7921 5423 struct rq *rq = cpu_rq(cpu);
1da177e4 5424
48c5ccae 5425 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5426
1da177e4 5427 case CPU_UP_PREPARE:
a468d389 5428 rq->calc_load_update = calc_load_update;
1da177e4 5429 break;
48f24c4d 5430
1da177e4 5431 case CPU_ONLINE:
1f94ef59 5432 /* Update our root-domain */
05fa785c 5433 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5434 if (rq->rd) {
c6c4927b 5435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5436
5437 set_rq_online(rq);
1f94ef59 5438 }
05fa785c 5439 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5440 break;
48f24c4d 5441
1da177e4 5442#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5443 case CPU_DYING:
317f3941 5444 sched_ttwu_pending();
57d885fe 5445 /* Update our root-domain */
05fa785c 5446 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5447 if (rq->rd) {
c6c4927b 5448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5449 set_rq_offline(rq);
57d885fe 5450 }
5e16bbc2 5451 migrate_tasks(rq);
48c5ccae 5452 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5454 break;
48c5ccae 5455
5d180232 5456 case CPU_DEAD:
f319da0c 5457 calc_load_migrate(rq);
57d885fe 5458 break;
1da177e4
LT
5459#endif
5460 }
49c022e6
PZ
5461
5462 update_max_interval();
5463
1da177e4
LT
5464 return NOTIFY_OK;
5465}
5466
f38b0820
PM
5467/*
5468 * Register at high priority so that task migration (migrate_all_tasks)
5469 * happens before everything else. This has to be lower priority than
cdd6c482 5470 * the notifier in the perf_event subsystem, though.
1da177e4 5471 */
0db0628d 5472static struct notifier_block migration_notifier = {
1da177e4 5473 .notifier_call = migration_call,
50a323b7 5474 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5475};
5476
6a82b60d 5477static void set_cpu_rq_start_time(void)
a803f026
CM
5478{
5479 int cpu = smp_processor_id();
5480 struct rq *rq = cpu_rq(cpu);
5481 rq->age_stamp = sched_clock_cpu(cpu);
5482}
5483
0db0628d 5484static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5485 unsigned long action, void *hcpu)
5486{
5487 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5488 case CPU_STARTING:
5489 set_cpu_rq_start_time();
5490 return NOTIFY_OK;
dd9d3843
JS
5491 case CPU_ONLINE:
5492 /*
5493 * At this point a starting CPU has marked itself as online via
5494 * set_cpu_online(). But it might not yet have marked itself
5495 * as active, which is essential from here on.
5496 *
5497 * Thus, fall-through and help the starting CPU along.
5498 */
3a101d05
TH
5499 case CPU_DOWN_FAILED:
5500 set_cpu_active((long)hcpu, true);
5501 return NOTIFY_OK;
5502 default:
5503 return NOTIFY_DONE;
5504 }
5505}
5506
0db0628d 5507static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5508 unsigned long action, void *hcpu)
5509{
5510 switch (action & ~CPU_TASKS_FROZEN) {
5511 case CPU_DOWN_PREPARE:
3c18d447 5512 set_cpu_active((long)hcpu, false);
3a101d05 5513 return NOTIFY_OK;
3c18d447
JL
5514 default:
5515 return NOTIFY_DONE;
3a101d05
TH
5516 }
5517}
5518
7babe8db 5519static int __init migration_init(void)
1da177e4
LT
5520{
5521 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5522 int err;
48f24c4d 5523
3a101d05 5524 /* Initialize migration for the boot CPU */
07dccf33
AM
5525 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5526 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5527 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5528 register_cpu_notifier(&migration_notifier);
7babe8db 5529
3a101d05
TH
5530 /* Register cpu active notifiers */
5531 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5532 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5533
a004cd42 5534 return 0;
1da177e4 5535}
7babe8db 5536early_initcall(migration_init);
476f3534 5537
4cb98839
PZ
5538static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5539
3e9830dc 5540#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5541
d039ac60 5542static __read_mostly int sched_debug_enabled;
f6630114 5543
d039ac60 5544static int __init sched_debug_setup(char *str)
f6630114 5545{
d039ac60 5546 sched_debug_enabled = 1;
f6630114
MT
5547
5548 return 0;
5549}
d039ac60
PZ
5550early_param("sched_debug", sched_debug_setup);
5551
5552static inline bool sched_debug(void)
5553{
5554 return sched_debug_enabled;
5555}
f6630114 5556
7c16ec58 5557static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5558 struct cpumask *groupmask)
1da177e4 5559{
4dcf6aff 5560 struct sched_group *group = sd->groups;
1da177e4 5561
96f874e2 5562 cpumask_clear(groupmask);
4dcf6aff
IM
5563
5564 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5565
5566 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5567 printk("does not load-balance\n");
4dcf6aff 5568 if (sd->parent)
3df0fc5b
PZ
5569 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5570 " has parent");
4dcf6aff 5571 return -1;
41c7ce9a
NP
5572 }
5573
333470ee
TH
5574 printk(KERN_CONT "span %*pbl level %s\n",
5575 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5576
758b2cdc 5577 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5578 printk(KERN_ERR "ERROR: domain->span does not contain "
5579 "CPU%d\n", cpu);
4dcf6aff 5580 }
758b2cdc 5581 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5582 printk(KERN_ERR "ERROR: domain->groups does not contain"
5583 " CPU%d\n", cpu);
4dcf6aff 5584 }
1da177e4 5585
4dcf6aff 5586 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5587 do {
4dcf6aff 5588 if (!group) {
3df0fc5b
PZ
5589 printk("\n");
5590 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5591 break;
5592 }
5593
758b2cdc 5594 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5595 printk(KERN_CONT "\n");
5596 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5597 break;
5598 }
1da177e4 5599
cb83b629
PZ
5600 if (!(sd->flags & SD_OVERLAP) &&
5601 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5602 printk(KERN_CONT "\n");
5603 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5604 break;
5605 }
1da177e4 5606
758b2cdc 5607 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5608
333470ee
TH
5609 printk(KERN_CONT " %*pbl",
5610 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5611 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5612 printk(KERN_CONT " (cpu_capacity = %d)",
5613 group->sgc->capacity);
381512cf 5614 }
1da177e4 5615
4dcf6aff
IM
5616 group = group->next;
5617 } while (group != sd->groups);
3df0fc5b 5618 printk(KERN_CONT "\n");
1da177e4 5619
758b2cdc 5620 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5621 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5622
758b2cdc
RR
5623 if (sd->parent &&
5624 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5625 printk(KERN_ERR "ERROR: parent span is not a superset "
5626 "of domain->span\n");
4dcf6aff
IM
5627 return 0;
5628}
1da177e4 5629
4dcf6aff
IM
5630static void sched_domain_debug(struct sched_domain *sd, int cpu)
5631{
5632 int level = 0;
1da177e4 5633
d039ac60 5634 if (!sched_debug_enabled)
f6630114
MT
5635 return;
5636
4dcf6aff
IM
5637 if (!sd) {
5638 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5639 return;
5640 }
1da177e4 5641
4dcf6aff
IM
5642 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5643
5644 for (;;) {
4cb98839 5645 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5646 break;
1da177e4
LT
5647 level++;
5648 sd = sd->parent;
33859f7f 5649 if (!sd)
4dcf6aff
IM
5650 break;
5651 }
1da177e4 5652}
6d6bc0ad 5653#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5654# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5655static inline bool sched_debug(void)
5656{
5657 return false;
5658}
6d6bc0ad 5659#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5660
1a20ff27 5661static int sd_degenerate(struct sched_domain *sd)
245af2c7 5662{
758b2cdc 5663 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5664 return 1;
5665
5666 /* Following flags need at least 2 groups */
5667 if (sd->flags & (SD_LOAD_BALANCE |
5668 SD_BALANCE_NEWIDLE |
5669 SD_BALANCE_FORK |
89c4710e 5670 SD_BALANCE_EXEC |
5d4dfddd 5671 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5672 SD_SHARE_PKG_RESOURCES |
5673 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5674 if (sd->groups != sd->groups->next)
5675 return 0;
5676 }
5677
5678 /* Following flags don't use groups */
c88d5910 5679 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5680 return 0;
5681
5682 return 1;
5683}
5684
48f24c4d
IM
5685static int
5686sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5687{
5688 unsigned long cflags = sd->flags, pflags = parent->flags;
5689
5690 if (sd_degenerate(parent))
5691 return 1;
5692
758b2cdc 5693 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5694 return 0;
5695
245af2c7
SS
5696 /* Flags needing groups don't count if only 1 group in parent */
5697 if (parent->groups == parent->groups->next) {
5698 pflags &= ~(SD_LOAD_BALANCE |
5699 SD_BALANCE_NEWIDLE |
5700 SD_BALANCE_FORK |
89c4710e 5701 SD_BALANCE_EXEC |
5d4dfddd 5702 SD_SHARE_CPUCAPACITY |
10866e62 5703 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5704 SD_PREFER_SIBLING |
5705 SD_SHARE_POWERDOMAIN);
5436499e
KC
5706 if (nr_node_ids == 1)
5707 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5708 }
5709 if (~cflags & pflags)
5710 return 0;
5711
5712 return 1;
5713}
5714
dce840a0 5715static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5716{
dce840a0 5717 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5718
68e74568 5719 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5720 cpudl_cleanup(&rd->cpudl);
1baca4ce 5721 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5722 free_cpumask_var(rd->rto_mask);
5723 free_cpumask_var(rd->online);
5724 free_cpumask_var(rd->span);
5725 kfree(rd);
5726}
5727
57d885fe
GH
5728static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5729{
a0490fa3 5730 struct root_domain *old_rd = NULL;
57d885fe 5731 unsigned long flags;
57d885fe 5732
05fa785c 5733 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5734
5735 if (rq->rd) {
a0490fa3 5736 old_rd = rq->rd;
57d885fe 5737
c6c4927b 5738 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5739 set_rq_offline(rq);
57d885fe 5740
c6c4927b 5741 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5742
a0490fa3 5743 /*
0515973f 5744 * If we dont want to free the old_rd yet then
a0490fa3
IM
5745 * set old_rd to NULL to skip the freeing later
5746 * in this function:
5747 */
5748 if (!atomic_dec_and_test(&old_rd->refcount))
5749 old_rd = NULL;
57d885fe
GH
5750 }
5751
5752 atomic_inc(&rd->refcount);
5753 rq->rd = rd;
5754
c6c4927b 5755 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5756 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5757 set_rq_online(rq);
57d885fe 5758
05fa785c 5759 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5760
5761 if (old_rd)
dce840a0 5762 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5763}
5764
68c38fc3 5765static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5766{
5767 memset(rd, 0, sizeof(*rd));
5768
68c38fc3 5769 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5770 goto out;
68c38fc3 5771 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5772 goto free_span;
1baca4ce 5773 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5774 goto free_online;
1baca4ce
JL
5775 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5776 goto free_dlo_mask;
6e0534f2 5777
332ac17e 5778 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5779 if (cpudl_init(&rd->cpudl) != 0)
5780 goto free_dlo_mask;
332ac17e 5781
68c38fc3 5782 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5783 goto free_rto_mask;
c6c4927b 5784 return 0;
6e0534f2 5785
68e74568
RR
5786free_rto_mask:
5787 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5788free_dlo_mask:
5789 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5790free_online:
5791 free_cpumask_var(rd->online);
5792free_span:
5793 free_cpumask_var(rd->span);
0c910d28 5794out:
c6c4927b 5795 return -ENOMEM;
57d885fe
GH
5796}
5797
029632fb
PZ
5798/*
5799 * By default the system creates a single root-domain with all cpus as
5800 * members (mimicking the global state we have today).
5801 */
5802struct root_domain def_root_domain;
5803
57d885fe
GH
5804static void init_defrootdomain(void)
5805{
68c38fc3 5806 init_rootdomain(&def_root_domain);
c6c4927b 5807
57d885fe
GH
5808 atomic_set(&def_root_domain.refcount, 1);
5809}
5810
dc938520 5811static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5812{
5813 struct root_domain *rd;
5814
5815 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5816 if (!rd)
5817 return NULL;
5818
68c38fc3 5819 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5820 kfree(rd);
5821 return NULL;
5822 }
57d885fe
GH
5823
5824 return rd;
5825}
5826
63b2ca30 5827static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5828{
5829 struct sched_group *tmp, *first;
5830
5831 if (!sg)
5832 return;
5833
5834 first = sg;
5835 do {
5836 tmp = sg->next;
5837
63b2ca30
NP
5838 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5839 kfree(sg->sgc);
e3589f6c
PZ
5840
5841 kfree(sg);
5842 sg = tmp;
5843 } while (sg != first);
5844}
5845
dce840a0
PZ
5846static void free_sched_domain(struct rcu_head *rcu)
5847{
5848 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5849
5850 /*
5851 * If its an overlapping domain it has private groups, iterate and
5852 * nuke them all.
5853 */
5854 if (sd->flags & SD_OVERLAP) {
5855 free_sched_groups(sd->groups, 1);
5856 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5857 kfree(sd->groups->sgc);
dce840a0 5858 kfree(sd->groups);
9c3f75cb 5859 }
dce840a0
PZ
5860 kfree(sd);
5861}
5862
5863static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5864{
5865 call_rcu(&sd->rcu, free_sched_domain);
5866}
5867
5868static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5869{
5870 for (; sd; sd = sd->parent)
5871 destroy_sched_domain(sd, cpu);
5872}
5873
518cd623
PZ
5874/*
5875 * Keep a special pointer to the highest sched_domain that has
5876 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5877 * allows us to avoid some pointer chasing select_idle_sibling().
5878 *
5879 * Also keep a unique ID per domain (we use the first cpu number in
5880 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5881 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5882 */
5883DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5884DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5885DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5886DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5887DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5888DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5889
5890static void update_top_cache_domain(int cpu)
5891{
5892 struct sched_domain *sd;
5d4cf996 5893 struct sched_domain *busy_sd = NULL;
518cd623 5894 int id = cpu;
7d9ffa89 5895 int size = 1;
518cd623
PZ
5896
5897 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5898 if (sd) {
518cd623 5899 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5900 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5901 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5902 }
5d4cf996 5903 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5904
5905 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5906 per_cpu(sd_llc_size, cpu) = size;
518cd623 5907 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5908
5909 sd = lowest_flag_domain(cpu, SD_NUMA);
5910 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5911
5912 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5913 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5914}
5915
1da177e4 5916/*
0eab9146 5917 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5918 * hold the hotplug lock.
5919 */
0eab9146
IM
5920static void
5921cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5922{
70b97a7f 5923 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5924 struct sched_domain *tmp;
5925
5926 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5927 for (tmp = sd; tmp; ) {
245af2c7
SS
5928 struct sched_domain *parent = tmp->parent;
5929 if (!parent)
5930 break;
f29c9b1c 5931
1a848870 5932 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5933 tmp->parent = parent->parent;
1a848870
SS
5934 if (parent->parent)
5935 parent->parent->child = tmp;
10866e62
PZ
5936 /*
5937 * Transfer SD_PREFER_SIBLING down in case of a
5938 * degenerate parent; the spans match for this
5939 * so the property transfers.
5940 */
5941 if (parent->flags & SD_PREFER_SIBLING)
5942 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5943 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5944 } else
5945 tmp = tmp->parent;
245af2c7
SS
5946 }
5947
1a848870 5948 if (sd && sd_degenerate(sd)) {
dce840a0 5949 tmp = sd;
245af2c7 5950 sd = sd->parent;
dce840a0 5951 destroy_sched_domain(tmp, cpu);
1a848870
SS
5952 if (sd)
5953 sd->child = NULL;
5954 }
1da177e4 5955
4cb98839 5956 sched_domain_debug(sd, cpu);
1da177e4 5957
57d885fe 5958 rq_attach_root(rq, rd);
dce840a0 5959 tmp = rq->sd;
674311d5 5960 rcu_assign_pointer(rq->sd, sd);
dce840a0 5961 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5962
5963 update_top_cache_domain(cpu);
1da177e4
LT
5964}
5965
1da177e4
LT
5966/* Setup the mask of cpus configured for isolated domains */
5967static int __init isolated_cpu_setup(char *str)
5968{
bdddd296 5969 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5970 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5971 return 1;
5972}
5973
8927f494 5974__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5975
49a02c51 5976struct s_data {
21d42ccf 5977 struct sched_domain ** __percpu sd;
49a02c51
AH
5978 struct root_domain *rd;
5979};
5980
2109b99e 5981enum s_alloc {
2109b99e 5982 sa_rootdomain,
21d42ccf 5983 sa_sd,
dce840a0 5984 sa_sd_storage,
2109b99e
AH
5985 sa_none,
5986};
5987
c1174876
PZ
5988/*
5989 * Build an iteration mask that can exclude certain CPUs from the upwards
5990 * domain traversal.
5991 *
5992 * Asymmetric node setups can result in situations where the domain tree is of
5993 * unequal depth, make sure to skip domains that already cover the entire
5994 * range.
5995 *
5996 * In that case build_sched_domains() will have terminated the iteration early
5997 * and our sibling sd spans will be empty. Domains should always include the
5998 * cpu they're built on, so check that.
5999 *
6000 */
6001static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6002{
6003 const struct cpumask *span = sched_domain_span(sd);
6004 struct sd_data *sdd = sd->private;
6005 struct sched_domain *sibling;
6006 int i;
6007
6008 for_each_cpu(i, span) {
6009 sibling = *per_cpu_ptr(sdd->sd, i);
6010 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6011 continue;
6012
6013 cpumask_set_cpu(i, sched_group_mask(sg));
6014 }
6015}
6016
6017/*
6018 * Return the canonical balance cpu for this group, this is the first cpu
6019 * of this group that's also in the iteration mask.
6020 */
6021int group_balance_cpu(struct sched_group *sg)
6022{
6023 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6024}
6025
e3589f6c
PZ
6026static int
6027build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6028{
6029 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030 const struct cpumask *span = sched_domain_span(sd);
6031 struct cpumask *covered = sched_domains_tmpmask;
6032 struct sd_data *sdd = sd->private;
aaecac4a 6033 struct sched_domain *sibling;
e3589f6c
PZ
6034 int i;
6035
6036 cpumask_clear(covered);
6037
6038 for_each_cpu(i, span) {
6039 struct cpumask *sg_span;
6040
6041 if (cpumask_test_cpu(i, covered))
6042 continue;
6043
aaecac4a 6044 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6045
6046 /* See the comment near build_group_mask(). */
aaecac4a 6047 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6048 continue;
6049
e3589f6c 6050 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6051 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6052
6053 if (!sg)
6054 goto fail;
6055
6056 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6057 if (sibling->child)
6058 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6059 else
e3589f6c
PZ
6060 cpumask_set_cpu(i, sg_span);
6061
6062 cpumask_or(covered, covered, sg_span);
6063
63b2ca30
NP
6064 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6065 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6066 build_group_mask(sd, sg);
6067
c3decf0d 6068 /*
63b2ca30 6069 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6070 * domains and no possible iteration will get us here, we won't
6071 * die on a /0 trap.
6072 */
ca8ce3d0 6073 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6074
c1174876
PZ
6075 /*
6076 * Make sure the first group of this domain contains the
6077 * canonical balance cpu. Otherwise the sched_domain iteration
6078 * breaks. See update_sg_lb_stats().
6079 */
74a5ce20 6080 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6081 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6082 groups = sg;
6083
6084 if (!first)
6085 first = sg;
6086 if (last)
6087 last->next = sg;
6088 last = sg;
6089 last->next = first;
6090 }
6091 sd->groups = groups;
6092
6093 return 0;
6094
6095fail:
6096 free_sched_groups(first, 0);
6097
6098 return -ENOMEM;
6099}
6100
dce840a0 6101static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6102{
dce840a0
PZ
6103 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6104 struct sched_domain *child = sd->child;
1da177e4 6105
dce840a0
PZ
6106 if (child)
6107 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6108
9c3f75cb 6109 if (sg) {
dce840a0 6110 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6111 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6112 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6113 }
dce840a0
PZ
6114
6115 return cpu;
1e9f28fa 6116}
1e9f28fa 6117
01a08546 6118/*
dce840a0
PZ
6119 * build_sched_groups will build a circular linked list of the groups
6120 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6121 * and ->cpu_capacity to 0.
e3589f6c
PZ
6122 *
6123 * Assumes the sched_domain tree is fully constructed
01a08546 6124 */
e3589f6c
PZ
6125static int
6126build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6127{
dce840a0
PZ
6128 struct sched_group *first = NULL, *last = NULL;
6129 struct sd_data *sdd = sd->private;
6130 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6131 struct cpumask *covered;
dce840a0 6132 int i;
9c1cfda2 6133
e3589f6c
PZ
6134 get_group(cpu, sdd, &sd->groups);
6135 atomic_inc(&sd->groups->ref);
6136
0936629f 6137 if (cpu != cpumask_first(span))
e3589f6c
PZ
6138 return 0;
6139
f96225fd
PZ
6140 lockdep_assert_held(&sched_domains_mutex);
6141 covered = sched_domains_tmpmask;
6142
dce840a0 6143 cpumask_clear(covered);
6711cab4 6144
dce840a0
PZ
6145 for_each_cpu(i, span) {
6146 struct sched_group *sg;
cd08e923 6147 int group, j;
6711cab4 6148
dce840a0
PZ
6149 if (cpumask_test_cpu(i, covered))
6150 continue;
6711cab4 6151
cd08e923 6152 group = get_group(i, sdd, &sg);
c1174876 6153 cpumask_setall(sched_group_mask(sg));
0601a88d 6154
dce840a0
PZ
6155 for_each_cpu(j, span) {
6156 if (get_group(j, sdd, NULL) != group)
6157 continue;
0601a88d 6158
dce840a0
PZ
6159 cpumask_set_cpu(j, covered);
6160 cpumask_set_cpu(j, sched_group_cpus(sg));
6161 }
0601a88d 6162
dce840a0
PZ
6163 if (!first)
6164 first = sg;
6165 if (last)
6166 last->next = sg;
6167 last = sg;
6168 }
6169 last->next = first;
e3589f6c
PZ
6170
6171 return 0;
0601a88d 6172}
51888ca2 6173
89c4710e 6174/*
63b2ca30 6175 * Initialize sched groups cpu_capacity.
89c4710e 6176 *
63b2ca30 6177 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6178 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6179 * Typically cpu_capacity for all the groups in a sched domain will be same
6180 * unless there are asymmetries in the topology. If there are asymmetries,
6181 * group having more cpu_capacity will pickup more load compared to the
6182 * group having less cpu_capacity.
89c4710e 6183 */
63b2ca30 6184static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6185{
e3589f6c 6186 struct sched_group *sg = sd->groups;
89c4710e 6187
94c95ba6 6188 WARN_ON(!sg);
e3589f6c
PZ
6189
6190 do {
6191 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6192 sg = sg->next;
6193 } while (sg != sd->groups);
89c4710e 6194
c1174876 6195 if (cpu != group_balance_cpu(sg))
e3589f6c 6196 return;
aae6d3dd 6197
63b2ca30
NP
6198 update_group_capacity(sd, cpu);
6199 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6200}
6201
7c16ec58
MT
6202/*
6203 * Initializers for schedule domains
6204 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6205 */
6206
1d3504fc 6207static int default_relax_domain_level = -1;
60495e77 6208int sched_domain_level_max;
1d3504fc
HS
6209
6210static int __init setup_relax_domain_level(char *str)
6211{
a841f8ce
DS
6212 if (kstrtoint(str, 0, &default_relax_domain_level))
6213 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6214
1d3504fc
HS
6215 return 1;
6216}
6217__setup("relax_domain_level=", setup_relax_domain_level);
6218
6219static void set_domain_attribute(struct sched_domain *sd,
6220 struct sched_domain_attr *attr)
6221{
6222 int request;
6223
6224 if (!attr || attr->relax_domain_level < 0) {
6225 if (default_relax_domain_level < 0)
6226 return;
6227 else
6228 request = default_relax_domain_level;
6229 } else
6230 request = attr->relax_domain_level;
6231 if (request < sd->level) {
6232 /* turn off idle balance on this domain */
c88d5910 6233 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6234 } else {
6235 /* turn on idle balance on this domain */
c88d5910 6236 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6237 }
6238}
6239
54ab4ff4
PZ
6240static void __sdt_free(const struct cpumask *cpu_map);
6241static int __sdt_alloc(const struct cpumask *cpu_map);
6242
2109b99e
AH
6243static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6244 const struct cpumask *cpu_map)
6245{
6246 switch (what) {
2109b99e 6247 case sa_rootdomain:
822ff793
PZ
6248 if (!atomic_read(&d->rd->refcount))
6249 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6250 case sa_sd:
6251 free_percpu(d->sd); /* fall through */
dce840a0 6252 case sa_sd_storage:
54ab4ff4 6253 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6254 case sa_none:
6255 break;
6256 }
6257}
3404c8d9 6258
2109b99e
AH
6259static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6260 const struct cpumask *cpu_map)
6261{
dce840a0
PZ
6262 memset(d, 0, sizeof(*d));
6263
54ab4ff4
PZ
6264 if (__sdt_alloc(cpu_map))
6265 return sa_sd_storage;
dce840a0
PZ
6266 d->sd = alloc_percpu(struct sched_domain *);
6267 if (!d->sd)
6268 return sa_sd_storage;
2109b99e 6269 d->rd = alloc_rootdomain();
dce840a0 6270 if (!d->rd)
21d42ccf 6271 return sa_sd;
2109b99e
AH
6272 return sa_rootdomain;
6273}
57d885fe 6274
dce840a0
PZ
6275/*
6276 * NULL the sd_data elements we've used to build the sched_domain and
6277 * sched_group structure so that the subsequent __free_domain_allocs()
6278 * will not free the data we're using.
6279 */
6280static void claim_allocations(int cpu, struct sched_domain *sd)
6281{
6282 struct sd_data *sdd = sd->private;
dce840a0
PZ
6283
6284 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6285 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6286
e3589f6c 6287 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6288 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6289
63b2ca30
NP
6290 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6291 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6292}
6293
cb83b629 6294#ifdef CONFIG_NUMA
cb83b629 6295static int sched_domains_numa_levels;
e3fe70b1 6296enum numa_topology_type sched_numa_topology_type;
cb83b629 6297static int *sched_domains_numa_distance;
9942f79b 6298int sched_max_numa_distance;
cb83b629
PZ
6299static struct cpumask ***sched_domains_numa_masks;
6300static int sched_domains_curr_level;
143e1e28 6301#endif
cb83b629 6302
143e1e28
VG
6303/*
6304 * SD_flags allowed in topology descriptions.
6305 *
5d4dfddd 6306 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6307 * SD_SHARE_PKG_RESOURCES - describes shared caches
6308 * SD_NUMA - describes NUMA topologies
d77b3ed5 6309 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6310 *
6311 * Odd one out:
6312 * SD_ASYM_PACKING - describes SMT quirks
6313 */
6314#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6315 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6316 SD_SHARE_PKG_RESOURCES | \
6317 SD_NUMA | \
d77b3ed5
VG
6318 SD_ASYM_PACKING | \
6319 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6320
6321static struct sched_domain *
143e1e28 6322sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6323{
6324 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6325 int sd_weight, sd_flags = 0;
6326
6327#ifdef CONFIG_NUMA
6328 /*
6329 * Ugly hack to pass state to sd_numa_mask()...
6330 */
6331 sched_domains_curr_level = tl->numa_level;
6332#endif
6333
6334 sd_weight = cpumask_weight(tl->mask(cpu));
6335
6336 if (tl->sd_flags)
6337 sd_flags = (*tl->sd_flags)();
6338 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6339 "wrong sd_flags in topology description\n"))
6340 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6341
6342 *sd = (struct sched_domain){
6343 .min_interval = sd_weight,
6344 .max_interval = 2*sd_weight,
6345 .busy_factor = 32,
870a0bb5 6346 .imbalance_pct = 125,
143e1e28
VG
6347
6348 .cache_nice_tries = 0,
6349 .busy_idx = 0,
6350 .idle_idx = 0,
cb83b629
PZ
6351 .newidle_idx = 0,
6352 .wake_idx = 0,
6353 .forkexec_idx = 0,
6354
6355 .flags = 1*SD_LOAD_BALANCE
6356 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6357 | 1*SD_BALANCE_EXEC
6358 | 1*SD_BALANCE_FORK
cb83b629 6359 | 0*SD_BALANCE_WAKE
143e1e28 6360 | 1*SD_WAKE_AFFINE
5d4dfddd 6361 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6362 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6363 | 0*SD_SERIALIZE
cb83b629 6364 | 0*SD_PREFER_SIBLING
143e1e28
VG
6365 | 0*SD_NUMA
6366 | sd_flags
cb83b629 6367 ,
143e1e28 6368
cb83b629
PZ
6369 .last_balance = jiffies,
6370 .balance_interval = sd_weight,
143e1e28 6371 .smt_gain = 0,
2b4cfe64
JL
6372 .max_newidle_lb_cost = 0,
6373 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6374#ifdef CONFIG_SCHED_DEBUG
6375 .name = tl->name,
6376#endif
cb83b629 6377 };
cb83b629
PZ
6378
6379 /*
143e1e28 6380 * Convert topological properties into behaviour.
cb83b629 6381 */
143e1e28 6382
5d4dfddd 6383 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6384 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6385 sd->imbalance_pct = 110;
6386 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6387
6388 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6389 sd->imbalance_pct = 117;
6390 sd->cache_nice_tries = 1;
6391 sd->busy_idx = 2;
6392
6393#ifdef CONFIG_NUMA
6394 } else if (sd->flags & SD_NUMA) {
6395 sd->cache_nice_tries = 2;
6396 sd->busy_idx = 3;
6397 sd->idle_idx = 2;
6398
6399 sd->flags |= SD_SERIALIZE;
6400 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6401 sd->flags &= ~(SD_BALANCE_EXEC |
6402 SD_BALANCE_FORK |
6403 SD_WAKE_AFFINE);
6404 }
6405
6406#endif
6407 } else {
6408 sd->flags |= SD_PREFER_SIBLING;
6409 sd->cache_nice_tries = 1;
6410 sd->busy_idx = 2;
6411 sd->idle_idx = 1;
6412 }
6413
6414 sd->private = &tl->data;
cb83b629
PZ
6415
6416 return sd;
6417}
6418
143e1e28
VG
6419/*
6420 * Topology list, bottom-up.
6421 */
6422static struct sched_domain_topology_level default_topology[] = {
6423#ifdef CONFIG_SCHED_SMT
6424 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6425#endif
6426#ifdef CONFIG_SCHED_MC
6427 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6428#endif
6429 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6430 { NULL, },
6431};
6432
6433struct sched_domain_topology_level *sched_domain_topology = default_topology;
6434
6435#define for_each_sd_topology(tl) \
6436 for (tl = sched_domain_topology; tl->mask; tl++)
6437
6438void set_sched_topology(struct sched_domain_topology_level *tl)
6439{
6440 sched_domain_topology = tl;
6441}
6442
6443#ifdef CONFIG_NUMA
6444
cb83b629
PZ
6445static const struct cpumask *sd_numa_mask(int cpu)
6446{
6447 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6448}
6449
d039ac60
PZ
6450static void sched_numa_warn(const char *str)
6451{
6452 static int done = false;
6453 int i,j;
6454
6455 if (done)
6456 return;
6457
6458 done = true;
6459
6460 printk(KERN_WARNING "ERROR: %s\n\n", str);
6461
6462 for (i = 0; i < nr_node_ids; i++) {
6463 printk(KERN_WARNING " ");
6464 for (j = 0; j < nr_node_ids; j++)
6465 printk(KERN_CONT "%02d ", node_distance(i,j));
6466 printk(KERN_CONT "\n");
6467 }
6468 printk(KERN_WARNING "\n");
6469}
6470
9942f79b 6471bool find_numa_distance(int distance)
d039ac60
PZ
6472{
6473 int i;
6474
6475 if (distance == node_distance(0, 0))
6476 return true;
6477
6478 for (i = 0; i < sched_domains_numa_levels; i++) {
6479 if (sched_domains_numa_distance[i] == distance)
6480 return true;
6481 }
6482
6483 return false;
6484}
6485
e3fe70b1
RR
6486/*
6487 * A system can have three types of NUMA topology:
6488 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6489 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6490 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6491 *
6492 * The difference between a glueless mesh topology and a backplane
6493 * topology lies in whether communication between not directly
6494 * connected nodes goes through intermediary nodes (where programs
6495 * could run), or through backplane controllers. This affects
6496 * placement of programs.
6497 *
6498 * The type of topology can be discerned with the following tests:
6499 * - If the maximum distance between any nodes is 1 hop, the system
6500 * is directly connected.
6501 * - If for two nodes A and B, located N > 1 hops away from each other,
6502 * there is an intermediary node C, which is < N hops away from both
6503 * nodes A and B, the system is a glueless mesh.
6504 */
6505static void init_numa_topology_type(void)
6506{
6507 int a, b, c, n;
6508
6509 n = sched_max_numa_distance;
6510
e237882b 6511 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6512 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6513 return;
6514 }
e3fe70b1
RR
6515
6516 for_each_online_node(a) {
6517 for_each_online_node(b) {
6518 /* Find two nodes furthest removed from each other. */
6519 if (node_distance(a, b) < n)
6520 continue;
6521
6522 /* Is there an intermediary node between a and b? */
6523 for_each_online_node(c) {
6524 if (node_distance(a, c) < n &&
6525 node_distance(b, c) < n) {
6526 sched_numa_topology_type =
6527 NUMA_GLUELESS_MESH;
6528 return;
6529 }
6530 }
6531
6532 sched_numa_topology_type = NUMA_BACKPLANE;
6533 return;
6534 }
6535 }
6536}
6537
cb83b629
PZ
6538static void sched_init_numa(void)
6539{
6540 int next_distance, curr_distance = node_distance(0, 0);
6541 struct sched_domain_topology_level *tl;
6542 int level = 0;
6543 int i, j, k;
6544
cb83b629
PZ
6545 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6546 if (!sched_domains_numa_distance)
6547 return;
6548
6549 /*
6550 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6551 * unique distances in the node_distance() table.
6552 *
6553 * Assumes node_distance(0,j) includes all distances in
6554 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6555 */
6556 next_distance = curr_distance;
6557 for (i = 0; i < nr_node_ids; i++) {
6558 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6559 for (k = 0; k < nr_node_ids; k++) {
6560 int distance = node_distance(i, k);
6561
6562 if (distance > curr_distance &&
6563 (distance < next_distance ||
6564 next_distance == curr_distance))
6565 next_distance = distance;
6566
6567 /*
6568 * While not a strong assumption it would be nice to know
6569 * about cases where if node A is connected to B, B is not
6570 * equally connected to A.
6571 */
6572 if (sched_debug() && node_distance(k, i) != distance)
6573 sched_numa_warn("Node-distance not symmetric");
6574
6575 if (sched_debug() && i && !find_numa_distance(distance))
6576 sched_numa_warn("Node-0 not representative");
6577 }
6578 if (next_distance != curr_distance) {
6579 sched_domains_numa_distance[level++] = next_distance;
6580 sched_domains_numa_levels = level;
6581 curr_distance = next_distance;
6582 } else break;
cb83b629 6583 }
d039ac60
PZ
6584
6585 /*
6586 * In case of sched_debug() we verify the above assumption.
6587 */
6588 if (!sched_debug())
6589 break;
cb83b629 6590 }
c123588b
AR
6591
6592 if (!level)
6593 return;
6594
cb83b629
PZ
6595 /*
6596 * 'level' contains the number of unique distances, excluding the
6597 * identity distance node_distance(i,i).
6598 *
28b4a521 6599 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6600 * numbers.
6601 */
6602
5f7865f3
TC
6603 /*
6604 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6605 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6606 * the array will contain less then 'level' members. This could be
6607 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6608 * in other functions.
6609 *
6610 * We reset it to 'level' at the end of this function.
6611 */
6612 sched_domains_numa_levels = 0;
6613
cb83b629
PZ
6614 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6615 if (!sched_domains_numa_masks)
6616 return;
6617
6618 /*
6619 * Now for each level, construct a mask per node which contains all
6620 * cpus of nodes that are that many hops away from us.
6621 */
6622 for (i = 0; i < level; i++) {
6623 sched_domains_numa_masks[i] =
6624 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6625 if (!sched_domains_numa_masks[i])
6626 return;
6627
6628 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6629 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6630 if (!mask)
6631 return;
6632
6633 sched_domains_numa_masks[i][j] = mask;
6634
6635 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6636 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6637 continue;
6638
6639 cpumask_or(mask, mask, cpumask_of_node(k));
6640 }
6641 }
6642 }
6643
143e1e28
VG
6644 /* Compute default topology size */
6645 for (i = 0; sched_domain_topology[i].mask; i++);
6646
c515db8c 6647 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6648 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6649 if (!tl)
6650 return;
6651
6652 /*
6653 * Copy the default topology bits..
6654 */
143e1e28
VG
6655 for (i = 0; sched_domain_topology[i].mask; i++)
6656 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6657
6658 /*
6659 * .. and append 'j' levels of NUMA goodness.
6660 */
6661 for (j = 0; j < level; i++, j++) {
6662 tl[i] = (struct sched_domain_topology_level){
cb83b629 6663 .mask = sd_numa_mask,
143e1e28 6664 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6665 .flags = SDTL_OVERLAP,
6666 .numa_level = j,
143e1e28 6667 SD_INIT_NAME(NUMA)
cb83b629
PZ
6668 };
6669 }
6670
6671 sched_domain_topology = tl;
5f7865f3
TC
6672
6673 sched_domains_numa_levels = level;
9942f79b 6674 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6675
6676 init_numa_topology_type();
cb83b629 6677}
301a5cba
TC
6678
6679static void sched_domains_numa_masks_set(int cpu)
6680{
6681 int i, j;
6682 int node = cpu_to_node(cpu);
6683
6684 for (i = 0; i < sched_domains_numa_levels; i++) {
6685 for (j = 0; j < nr_node_ids; j++) {
6686 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6688 }
6689 }
6690}
6691
6692static void sched_domains_numa_masks_clear(int cpu)
6693{
6694 int i, j;
6695 for (i = 0; i < sched_domains_numa_levels; i++) {
6696 for (j = 0; j < nr_node_ids; j++)
6697 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6698 }
6699}
6700
6701/*
6702 * Update sched_domains_numa_masks[level][node] array when new cpus
6703 * are onlined.
6704 */
6705static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6706 unsigned long action,
6707 void *hcpu)
6708{
6709 int cpu = (long)hcpu;
6710
6711 switch (action & ~CPU_TASKS_FROZEN) {
6712 case CPU_ONLINE:
6713 sched_domains_numa_masks_set(cpu);
6714 break;
6715
6716 case CPU_DEAD:
6717 sched_domains_numa_masks_clear(cpu);
6718 break;
6719
6720 default:
6721 return NOTIFY_DONE;
6722 }
6723
6724 return NOTIFY_OK;
cb83b629
PZ
6725}
6726#else
6727static inline void sched_init_numa(void)
6728{
6729}
301a5cba
TC
6730
6731static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6732 unsigned long action,
6733 void *hcpu)
6734{
6735 return 0;
6736}
cb83b629
PZ
6737#endif /* CONFIG_NUMA */
6738
54ab4ff4
PZ
6739static int __sdt_alloc(const struct cpumask *cpu_map)
6740{
6741 struct sched_domain_topology_level *tl;
6742 int j;
6743
27723a68 6744 for_each_sd_topology(tl) {
54ab4ff4
PZ
6745 struct sd_data *sdd = &tl->data;
6746
6747 sdd->sd = alloc_percpu(struct sched_domain *);
6748 if (!sdd->sd)
6749 return -ENOMEM;
6750
6751 sdd->sg = alloc_percpu(struct sched_group *);
6752 if (!sdd->sg)
6753 return -ENOMEM;
6754
63b2ca30
NP
6755 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6756 if (!sdd->sgc)
9c3f75cb
PZ
6757 return -ENOMEM;
6758
54ab4ff4
PZ
6759 for_each_cpu(j, cpu_map) {
6760 struct sched_domain *sd;
6761 struct sched_group *sg;
63b2ca30 6762 struct sched_group_capacity *sgc;
54ab4ff4 6763
5cc389bc 6764 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6765 GFP_KERNEL, cpu_to_node(j));
6766 if (!sd)
6767 return -ENOMEM;
6768
6769 *per_cpu_ptr(sdd->sd, j) = sd;
6770
6771 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6772 GFP_KERNEL, cpu_to_node(j));
6773 if (!sg)
6774 return -ENOMEM;
6775
30b4e9eb
IM
6776 sg->next = sg;
6777
54ab4ff4 6778 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6779
63b2ca30 6780 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6781 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6782 if (!sgc)
9c3f75cb
PZ
6783 return -ENOMEM;
6784
63b2ca30 6785 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6786 }
6787 }
6788
6789 return 0;
6790}
6791
6792static void __sdt_free(const struct cpumask *cpu_map)
6793{
6794 struct sched_domain_topology_level *tl;
6795 int j;
6796
27723a68 6797 for_each_sd_topology(tl) {
54ab4ff4
PZ
6798 struct sd_data *sdd = &tl->data;
6799
6800 for_each_cpu(j, cpu_map) {
fb2cf2c6 6801 struct sched_domain *sd;
6802
6803 if (sdd->sd) {
6804 sd = *per_cpu_ptr(sdd->sd, j);
6805 if (sd && (sd->flags & SD_OVERLAP))
6806 free_sched_groups(sd->groups, 0);
6807 kfree(*per_cpu_ptr(sdd->sd, j));
6808 }
6809
6810 if (sdd->sg)
6811 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6812 if (sdd->sgc)
6813 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6814 }
6815 free_percpu(sdd->sd);
fb2cf2c6 6816 sdd->sd = NULL;
54ab4ff4 6817 free_percpu(sdd->sg);
fb2cf2c6 6818 sdd->sg = NULL;
63b2ca30
NP
6819 free_percpu(sdd->sgc);
6820 sdd->sgc = NULL;
54ab4ff4
PZ
6821 }
6822}
6823
2c402dc3 6824struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6825 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6826 struct sched_domain *child, int cpu)
2c402dc3 6827{
143e1e28 6828 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6829 if (!sd)
d069b916 6830 return child;
2c402dc3 6831
2c402dc3 6832 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6833 if (child) {
6834 sd->level = child->level + 1;
6835 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6836 child->parent = sd;
c75e0128 6837 sd->child = child;
6ae72dff
PZ
6838
6839 if (!cpumask_subset(sched_domain_span(child),
6840 sched_domain_span(sd))) {
6841 pr_err("BUG: arch topology borken\n");
6842#ifdef CONFIG_SCHED_DEBUG
6843 pr_err(" the %s domain not a subset of the %s domain\n",
6844 child->name, sd->name);
6845#endif
6846 /* Fixup, ensure @sd has at least @child cpus. */
6847 cpumask_or(sched_domain_span(sd),
6848 sched_domain_span(sd),
6849 sched_domain_span(child));
6850 }
6851
60495e77 6852 }
a841f8ce 6853 set_domain_attribute(sd, attr);
2c402dc3
PZ
6854
6855 return sd;
6856}
6857
2109b99e
AH
6858/*
6859 * Build sched domains for a given set of cpus and attach the sched domains
6860 * to the individual cpus
6861 */
dce840a0
PZ
6862static int build_sched_domains(const struct cpumask *cpu_map,
6863 struct sched_domain_attr *attr)
2109b99e 6864{
1c632169 6865 enum s_alloc alloc_state;
dce840a0 6866 struct sched_domain *sd;
2109b99e 6867 struct s_data d;
822ff793 6868 int i, ret = -ENOMEM;
9c1cfda2 6869
2109b99e
AH
6870 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6871 if (alloc_state != sa_rootdomain)
6872 goto error;
9c1cfda2 6873
dce840a0 6874 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6875 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6876 struct sched_domain_topology_level *tl;
6877
3bd65a80 6878 sd = NULL;
27723a68 6879 for_each_sd_topology(tl) {
4a850cbe 6880 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6881 if (tl == sched_domain_topology)
6882 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6883 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6884 sd->flags |= SD_OVERLAP;
d110235d
PZ
6885 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6886 break;
e3589f6c 6887 }
dce840a0
PZ
6888 }
6889
6890 /* Build the groups for the domains */
6891 for_each_cpu(i, cpu_map) {
6892 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6893 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6894 if (sd->flags & SD_OVERLAP) {
6895 if (build_overlap_sched_groups(sd, i))
6896 goto error;
6897 } else {
6898 if (build_sched_groups(sd, i))
6899 goto error;
6900 }
1cf51902 6901 }
a06dadbe 6902 }
9c1cfda2 6903
ced549fa 6904 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6905 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6906 if (!cpumask_test_cpu(i, cpu_map))
6907 continue;
9c1cfda2 6908
dce840a0
PZ
6909 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6910 claim_allocations(i, sd);
63b2ca30 6911 init_sched_groups_capacity(i, sd);
dce840a0 6912 }
f712c0c7 6913 }
9c1cfda2 6914
1da177e4 6915 /* Attach the domains */
dce840a0 6916 rcu_read_lock();
abcd083a 6917 for_each_cpu(i, cpu_map) {
21d42ccf 6918 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6919 cpu_attach_domain(sd, d.rd, i);
1da177e4 6920 }
dce840a0 6921 rcu_read_unlock();
51888ca2 6922
822ff793 6923 ret = 0;
51888ca2 6924error:
2109b99e 6925 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6926 return ret;
1da177e4 6927}
029190c5 6928
acc3f5d7 6929static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6930static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6931static struct sched_domain_attr *dattr_cur;
6932 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6933
6934/*
6935 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6936 * cpumask) fails, then fallback to a single sched domain,
6937 * as determined by the single cpumask fallback_doms.
029190c5 6938 */
4212823f 6939static cpumask_var_t fallback_doms;
029190c5 6940
ee79d1bd
HC
6941/*
6942 * arch_update_cpu_topology lets virtualized architectures update the
6943 * cpu core maps. It is supposed to return 1 if the topology changed
6944 * or 0 if it stayed the same.
6945 */
52f5684c 6946int __weak arch_update_cpu_topology(void)
22e52b07 6947{
ee79d1bd 6948 return 0;
22e52b07
HC
6949}
6950
acc3f5d7
RR
6951cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6952{
6953 int i;
6954 cpumask_var_t *doms;
6955
6956 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6957 if (!doms)
6958 return NULL;
6959 for (i = 0; i < ndoms; i++) {
6960 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6961 free_sched_domains(doms, i);
6962 return NULL;
6963 }
6964 }
6965 return doms;
6966}
6967
6968void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6969{
6970 unsigned int i;
6971 for (i = 0; i < ndoms; i++)
6972 free_cpumask_var(doms[i]);
6973 kfree(doms);
6974}
6975
1a20ff27 6976/*
41a2d6cf 6977 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6978 * For now this just excludes isolated cpus, but could be used to
6979 * exclude other special cases in the future.
1a20ff27 6980 */
c4a8849a 6981static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6982{
7378547f
MM
6983 int err;
6984
22e52b07 6985 arch_update_cpu_topology();
029190c5 6986 ndoms_cur = 1;
acc3f5d7 6987 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6988 if (!doms_cur)
acc3f5d7
RR
6989 doms_cur = &fallback_doms;
6990 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6991 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6992 register_sched_domain_sysctl();
7378547f
MM
6993
6994 return err;
1a20ff27
DG
6995}
6996
1a20ff27
DG
6997/*
6998 * Detach sched domains from a group of cpus specified in cpu_map
6999 * These cpus will now be attached to the NULL domain
7000 */
96f874e2 7001static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7002{
7003 int i;
7004
dce840a0 7005 rcu_read_lock();
abcd083a 7006 for_each_cpu(i, cpu_map)
57d885fe 7007 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7008 rcu_read_unlock();
1a20ff27
DG
7009}
7010
1d3504fc
HS
7011/* handle null as "default" */
7012static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7013 struct sched_domain_attr *new, int idx_new)
7014{
7015 struct sched_domain_attr tmp;
7016
7017 /* fast path */
7018 if (!new && !cur)
7019 return 1;
7020
7021 tmp = SD_ATTR_INIT;
7022 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7023 new ? (new + idx_new) : &tmp,
7024 sizeof(struct sched_domain_attr));
7025}
7026
029190c5
PJ
7027/*
7028 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7029 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7030 * doms_new[] to the current sched domain partitioning, doms_cur[].
7031 * It destroys each deleted domain and builds each new domain.
7032 *
acc3f5d7 7033 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7034 * The masks don't intersect (don't overlap.) We should setup one
7035 * sched domain for each mask. CPUs not in any of the cpumasks will
7036 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7037 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7038 * it as it is.
7039 *
acc3f5d7
RR
7040 * The passed in 'doms_new' should be allocated using
7041 * alloc_sched_domains. This routine takes ownership of it and will
7042 * free_sched_domains it when done with it. If the caller failed the
7043 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7044 * and partition_sched_domains() will fallback to the single partition
7045 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7046 *
96f874e2 7047 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7048 * ndoms_new == 0 is a special case for destroying existing domains,
7049 * and it will not create the default domain.
dfb512ec 7050 *
029190c5
PJ
7051 * Call with hotplug lock held
7052 */
acc3f5d7 7053void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7054 struct sched_domain_attr *dattr_new)
029190c5 7055{
dfb512ec 7056 int i, j, n;
d65bd5ec 7057 int new_topology;
029190c5 7058
712555ee 7059 mutex_lock(&sched_domains_mutex);
a1835615 7060
7378547f
MM
7061 /* always unregister in case we don't destroy any domains */
7062 unregister_sched_domain_sysctl();
7063
d65bd5ec
HC
7064 /* Let architecture update cpu core mappings. */
7065 new_topology = arch_update_cpu_topology();
7066
dfb512ec 7067 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7068
7069 /* Destroy deleted domains */
7070 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7071 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7072 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7073 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7074 goto match1;
7075 }
7076 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7077 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7078match1:
7079 ;
7080 }
7081
c8d2d47a 7082 n = ndoms_cur;
e761b772 7083 if (doms_new == NULL) {
c8d2d47a 7084 n = 0;
acc3f5d7 7085 doms_new = &fallback_doms;
6ad4c188 7086 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7087 WARN_ON_ONCE(dattr_new);
e761b772
MK
7088 }
7089
029190c5
PJ
7090 /* Build new domains */
7091 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7092 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7093 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7094 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7095 goto match2;
7096 }
7097 /* no match - add a new doms_new */
dce840a0 7098 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7099match2:
7100 ;
7101 }
7102
7103 /* Remember the new sched domains */
acc3f5d7
RR
7104 if (doms_cur != &fallback_doms)
7105 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7106 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7107 doms_cur = doms_new;
1d3504fc 7108 dattr_cur = dattr_new;
029190c5 7109 ndoms_cur = ndoms_new;
7378547f
MM
7110
7111 register_sched_domain_sysctl();
a1835615 7112
712555ee 7113 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7114}
7115
d35be8ba
SB
7116static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7117
1da177e4 7118/*
3a101d05
TH
7119 * Update cpusets according to cpu_active mask. If cpusets are
7120 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7121 * around partition_sched_domains().
d35be8ba
SB
7122 *
7123 * If we come here as part of a suspend/resume, don't touch cpusets because we
7124 * want to restore it back to its original state upon resume anyway.
1da177e4 7125 */
0b2e918a
TH
7126static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7127 void *hcpu)
e761b772 7128{
d35be8ba
SB
7129 switch (action) {
7130 case CPU_ONLINE_FROZEN:
7131 case CPU_DOWN_FAILED_FROZEN:
7132
7133 /*
7134 * num_cpus_frozen tracks how many CPUs are involved in suspend
7135 * resume sequence. As long as this is not the last online
7136 * operation in the resume sequence, just build a single sched
7137 * domain, ignoring cpusets.
7138 */
7139 num_cpus_frozen--;
7140 if (likely(num_cpus_frozen)) {
7141 partition_sched_domains(1, NULL, NULL);
7142 break;
7143 }
7144
7145 /*
7146 * This is the last CPU online operation. So fall through and
7147 * restore the original sched domains by considering the
7148 * cpuset configurations.
7149 */
7150
e761b772 7151 case CPU_ONLINE:
7ddf96b0 7152 cpuset_update_active_cpus(true);
d35be8ba 7153 break;
3a101d05
TH
7154 default:
7155 return NOTIFY_DONE;
7156 }
d35be8ba 7157 return NOTIFY_OK;
3a101d05 7158}
e761b772 7159
0b2e918a
TH
7160static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7161 void *hcpu)
3a101d05 7162{
3c18d447
JL
7163 unsigned long flags;
7164 long cpu = (long)hcpu;
7165 struct dl_bw *dl_b;
533445c6
OS
7166 bool overflow;
7167 int cpus;
3c18d447 7168
533445c6 7169 switch (action) {
3a101d05 7170 case CPU_DOWN_PREPARE:
533445c6
OS
7171 rcu_read_lock_sched();
7172 dl_b = dl_bw_of(cpu);
3c18d447 7173
533445c6
OS
7174 raw_spin_lock_irqsave(&dl_b->lock, flags);
7175 cpus = dl_bw_cpus(cpu);
7176 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7177 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7178
533445c6 7179 rcu_read_unlock_sched();
3c18d447 7180
533445c6
OS
7181 if (overflow)
7182 return notifier_from_errno(-EBUSY);
7ddf96b0 7183 cpuset_update_active_cpus(false);
d35be8ba
SB
7184 break;
7185 case CPU_DOWN_PREPARE_FROZEN:
7186 num_cpus_frozen++;
7187 partition_sched_domains(1, NULL, NULL);
7188 break;
e761b772
MK
7189 default:
7190 return NOTIFY_DONE;
7191 }
d35be8ba 7192 return NOTIFY_OK;
e761b772 7193}
e761b772 7194
1da177e4
LT
7195void __init sched_init_smp(void)
7196{
dcc30a35
RR
7197 cpumask_var_t non_isolated_cpus;
7198
7199 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7200 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7201
8cb9764f
CM
7202 /* nohz_full won't take effect without isolating the cpus. */
7203 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7204
cb83b629
PZ
7205 sched_init_numa();
7206
6acce3ef
PZ
7207 /*
7208 * There's no userspace yet to cause hotplug operations; hence all the
7209 * cpu masks are stable and all blatant races in the below code cannot
7210 * happen.
7211 */
712555ee 7212 mutex_lock(&sched_domains_mutex);
c4a8849a 7213 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7214 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7215 if (cpumask_empty(non_isolated_cpus))
7216 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7217 mutex_unlock(&sched_domains_mutex);
e761b772 7218
301a5cba 7219 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7220 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7221 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7222
b328ca18 7223 init_hrtick();
5c1e1767
NP
7224
7225 /* Move init over to a non-isolated CPU */
dcc30a35 7226 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7227 BUG();
19978ca6 7228 sched_init_granularity();
dcc30a35 7229 free_cpumask_var(non_isolated_cpus);
4212823f 7230
0e3900e6 7231 init_sched_rt_class();
1baca4ce 7232 init_sched_dl_class();
1da177e4
LT
7233}
7234#else
7235void __init sched_init_smp(void)
7236{
19978ca6 7237 sched_init_granularity();
1da177e4
LT
7238}
7239#endif /* CONFIG_SMP */
7240
7241int in_sched_functions(unsigned long addr)
7242{
1da177e4
LT
7243 return in_lock_functions(addr) ||
7244 (addr >= (unsigned long)__sched_text_start
7245 && addr < (unsigned long)__sched_text_end);
7246}
7247
029632fb 7248#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7249/*
7250 * Default task group.
7251 * Every task in system belongs to this group at bootup.
7252 */
029632fb 7253struct task_group root_task_group;
35cf4e50 7254LIST_HEAD(task_groups);
052f1dc7 7255#endif
6f505b16 7256
e6252c3e 7257DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7258
1da177e4
LT
7259void __init sched_init(void)
7260{
dd41f596 7261 int i, j;
434d53b0
MT
7262 unsigned long alloc_size = 0, ptr;
7263
7264#ifdef CONFIG_FAIR_GROUP_SCHED
7265 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7266#endif
7267#ifdef CONFIG_RT_GROUP_SCHED
7268 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7269#endif
434d53b0 7270 if (alloc_size) {
36b7b6d4 7271 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7272
7273#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7274 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7275 ptr += nr_cpu_ids * sizeof(void **);
7276
07e06b01 7277 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7278 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7279
6d6bc0ad 7280#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7281#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7282 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7283 ptr += nr_cpu_ids * sizeof(void **);
7284
07e06b01 7285 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7286 ptr += nr_cpu_ids * sizeof(void **);
7287
6d6bc0ad 7288#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7289 }
df7c8e84 7290#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7291 for_each_possible_cpu(i) {
7292 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7293 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7294 }
b74e6278 7295#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7296
332ac17e
DF
7297 init_rt_bandwidth(&def_rt_bandwidth,
7298 global_rt_period(), global_rt_runtime());
7299 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7300 global_rt_period(), global_rt_runtime());
332ac17e 7301
57d885fe
GH
7302#ifdef CONFIG_SMP
7303 init_defrootdomain();
7304#endif
7305
d0b27fa7 7306#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7307 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7308 global_rt_period(), global_rt_runtime());
6d6bc0ad 7309#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7310
7c941438 7311#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7312 list_add(&root_task_group.list, &task_groups);
7313 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7314 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7315 autogroup_init(&init_task);
54c707e9 7316
7c941438 7317#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7318
0a945022 7319 for_each_possible_cpu(i) {
70b97a7f 7320 struct rq *rq;
1da177e4
LT
7321
7322 rq = cpu_rq(i);
05fa785c 7323 raw_spin_lock_init(&rq->lock);
7897986b 7324 rq->nr_running = 0;
dce48a84
TG
7325 rq->calc_load_active = 0;
7326 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7327 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7328 init_rt_rq(&rq->rt);
7329 init_dl_rq(&rq->dl);
dd41f596 7330#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7331 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7332 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7333 /*
07e06b01 7334 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7335 *
7336 * In case of task-groups formed thr' the cgroup filesystem, it
7337 * gets 100% of the cpu resources in the system. This overall
7338 * system cpu resource is divided among the tasks of
07e06b01 7339 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7340 * based on each entity's (task or task-group's) weight
7341 * (se->load.weight).
7342 *
07e06b01 7343 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7344 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7345 * then A0's share of the cpu resource is:
7346 *
0d905bca 7347 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7348 *
07e06b01
YZ
7349 * We achieve this by letting root_task_group's tasks sit
7350 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7351 */
ab84d31e 7352 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7353 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7354#endif /* CONFIG_FAIR_GROUP_SCHED */
7355
7356 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7357#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7358 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7359#endif
1da177e4 7360
dd41f596
IM
7361 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7362 rq->cpu_load[j] = 0;
fdf3e95d
VP
7363
7364 rq->last_load_update_tick = jiffies;
7365
1da177e4 7366#ifdef CONFIG_SMP
41c7ce9a 7367 rq->sd = NULL;
57d885fe 7368 rq->rd = NULL;
ca6d75e6 7369 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7370 rq->balance_callback = NULL;
1da177e4 7371 rq->active_balance = 0;
dd41f596 7372 rq->next_balance = jiffies;
1da177e4 7373 rq->push_cpu = 0;
0a2966b4 7374 rq->cpu = i;
1f11eb6a 7375 rq->online = 0;
eae0c9df
MG
7376 rq->idle_stamp = 0;
7377 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7378 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7379
7380 INIT_LIST_HEAD(&rq->cfs_tasks);
7381
dc938520 7382 rq_attach_root(rq, &def_root_domain);
3451d024 7383#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7384 rq->nohz_flags = 0;
83cd4fe2 7385#endif
265f22a9
FW
7386#ifdef CONFIG_NO_HZ_FULL
7387 rq->last_sched_tick = 0;
7388#endif
1da177e4 7389#endif
8f4d37ec 7390 init_rq_hrtick(rq);
1da177e4 7391 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7392 }
7393
2dd73a4f 7394 set_load_weight(&init_task);
b50f60ce 7395
e107be36
AK
7396#ifdef CONFIG_PREEMPT_NOTIFIERS
7397 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7398#endif
7399
1da177e4
LT
7400 /*
7401 * The boot idle thread does lazy MMU switching as well:
7402 */
7403 atomic_inc(&init_mm.mm_count);
7404 enter_lazy_tlb(&init_mm, current);
7405
1b537c7d
YD
7406 /*
7407 * During early bootup we pretend to be a normal task:
7408 */
7409 current->sched_class = &fair_sched_class;
7410
1da177e4
LT
7411 /*
7412 * Make us the idle thread. Technically, schedule() should not be
7413 * called from this thread, however somewhere below it might be,
7414 * but because we are the idle thread, we just pick up running again
7415 * when this runqueue becomes "idle".
7416 */
7417 init_idle(current, smp_processor_id());
dce48a84
TG
7418
7419 calc_load_update = jiffies + LOAD_FREQ;
7420
bf4d83f6 7421#ifdef CONFIG_SMP
4cb98839 7422 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7423 /* May be allocated at isolcpus cmdline parse time */
7424 if (cpu_isolated_map == NULL)
7425 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7426 idle_thread_set_boot_cpu();
a803f026 7427 set_cpu_rq_start_time();
029632fb
PZ
7428#endif
7429 init_sched_fair_class();
6a7b3dc3 7430
6892b75e 7431 scheduler_running = 1;
1da177e4
LT
7432}
7433
d902db1e 7434#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7435static inline int preempt_count_equals(int preempt_offset)
7436{
234da7bc 7437 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7438
4ba8216c 7439 return (nested == preempt_offset);
e4aafea2
FW
7440}
7441
d894837f 7442void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7443{
8eb23b9f
PZ
7444 /*
7445 * Blocking primitives will set (and therefore destroy) current->state,
7446 * since we will exit with TASK_RUNNING make sure we enter with it,
7447 * otherwise we will destroy state.
7448 */
00845eb9 7449 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7450 "do not call blocking ops when !TASK_RUNNING; "
7451 "state=%lx set at [<%p>] %pS\n",
7452 current->state,
7453 (void *)current->task_state_change,
00845eb9 7454 (void *)current->task_state_change);
8eb23b9f 7455
3427445a
PZ
7456 ___might_sleep(file, line, preempt_offset);
7457}
7458EXPORT_SYMBOL(__might_sleep);
7459
7460void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7461{
1da177e4
LT
7462 static unsigned long prev_jiffy; /* ratelimiting */
7463
b3fbab05 7464 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7465 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7466 !is_idle_task(current)) ||
e4aafea2 7467 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7468 return;
7469 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7470 return;
7471 prev_jiffy = jiffies;
7472
3df0fc5b
PZ
7473 printk(KERN_ERR
7474 "BUG: sleeping function called from invalid context at %s:%d\n",
7475 file, line);
7476 printk(KERN_ERR
7477 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7478 in_atomic(), irqs_disabled(),
7479 current->pid, current->comm);
aef745fc 7480
a8b686b3
ES
7481 if (task_stack_end_corrupted(current))
7482 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7483
aef745fc
IM
7484 debug_show_held_locks(current);
7485 if (irqs_disabled())
7486 print_irqtrace_events(current);
8f47b187
TG
7487#ifdef CONFIG_DEBUG_PREEMPT
7488 if (!preempt_count_equals(preempt_offset)) {
7489 pr_err("Preemption disabled at:");
7490 print_ip_sym(current->preempt_disable_ip);
7491 pr_cont("\n");
7492 }
7493#endif
aef745fc 7494 dump_stack();
1da177e4 7495}
3427445a 7496EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7497#endif
7498
7499#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7500void normalize_rt_tasks(void)
3a5e4dc1 7501{
dbc7f069 7502 struct task_struct *g, *p;
d50dde5a
DF
7503 struct sched_attr attr = {
7504 .sched_policy = SCHED_NORMAL,
7505 };
1da177e4 7506
3472eaa1 7507 read_lock(&tasklist_lock);
5d07f420 7508 for_each_process_thread(g, p) {
178be793
IM
7509 /*
7510 * Only normalize user tasks:
7511 */
3472eaa1 7512 if (p->flags & PF_KTHREAD)
178be793
IM
7513 continue;
7514
6cfb0d5d 7515 p->se.exec_start = 0;
6cfb0d5d 7516#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7517 p->se.statistics.wait_start = 0;
7518 p->se.statistics.sleep_start = 0;
7519 p->se.statistics.block_start = 0;
6cfb0d5d 7520#endif
dd41f596 7521
aab03e05 7522 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7523 /*
7524 * Renice negative nice level userspace
7525 * tasks back to 0:
7526 */
3472eaa1 7527 if (task_nice(p) < 0)
dd41f596 7528 set_user_nice(p, 0);
1da177e4 7529 continue;
dd41f596 7530 }
1da177e4 7531
dbc7f069 7532 __sched_setscheduler(p, &attr, false, false);
5d07f420 7533 }
3472eaa1 7534 read_unlock(&tasklist_lock);
1da177e4
LT
7535}
7536
7537#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7538
67fc4e0c 7539#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7540/*
67fc4e0c 7541 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7542 *
7543 * They can only be called when the whole system has been
7544 * stopped - every CPU needs to be quiescent, and no scheduling
7545 * activity can take place. Using them for anything else would
7546 * be a serious bug, and as a result, they aren't even visible
7547 * under any other configuration.
7548 */
7549
7550/**
7551 * curr_task - return the current task for a given cpu.
7552 * @cpu: the processor in question.
7553 *
7554 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7555 *
7556 * Return: The current task for @cpu.
1df5c10a 7557 */
36c8b586 7558struct task_struct *curr_task(int cpu)
1df5c10a
LT
7559{
7560 return cpu_curr(cpu);
7561}
7562
67fc4e0c
JW
7563#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7564
7565#ifdef CONFIG_IA64
1df5c10a
LT
7566/**
7567 * set_curr_task - set the current task for a given cpu.
7568 * @cpu: the processor in question.
7569 * @p: the task pointer to set.
7570 *
7571 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7572 * are serviced on a separate stack. It allows the architecture to switch the
7573 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7574 * must be called with all CPU's synchronized, and interrupts disabled, the
7575 * and caller must save the original value of the current task (see
7576 * curr_task() above) and restore that value before reenabling interrupts and
7577 * re-starting the system.
7578 *
7579 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7580 */
36c8b586 7581void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7582{
7583 cpu_curr(cpu) = p;
7584}
7585
7586#endif
29f59db3 7587
7c941438 7588#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7589/* task_group_lock serializes the addition/removal of task groups */
7590static DEFINE_SPINLOCK(task_group_lock);
7591
bccbe08a
PZ
7592static void free_sched_group(struct task_group *tg)
7593{
7594 free_fair_sched_group(tg);
7595 free_rt_sched_group(tg);
e9aa1dd1 7596 autogroup_free(tg);
bccbe08a
PZ
7597 kfree(tg);
7598}
7599
7600/* allocate runqueue etc for a new task group */
ec7dc8ac 7601struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7602{
7603 struct task_group *tg;
bccbe08a
PZ
7604
7605 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7606 if (!tg)
7607 return ERR_PTR(-ENOMEM);
7608
ec7dc8ac 7609 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7610 goto err;
7611
ec7dc8ac 7612 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7613 goto err;
7614
ace783b9
LZ
7615 return tg;
7616
7617err:
7618 free_sched_group(tg);
7619 return ERR_PTR(-ENOMEM);
7620}
7621
7622void sched_online_group(struct task_group *tg, struct task_group *parent)
7623{
7624 unsigned long flags;
7625
8ed36996 7626 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7627 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7628
7629 WARN_ON(!parent); /* root should already exist */
7630
7631 tg->parent = parent;
f473aa5e 7632 INIT_LIST_HEAD(&tg->children);
09f2724a 7633 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7634 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7635}
7636
9b5b7751 7637/* rcu callback to free various structures associated with a task group */
6f505b16 7638static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7639{
29f59db3 7640 /* now it should be safe to free those cfs_rqs */
6f505b16 7641 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7642}
7643
9b5b7751 7644/* Destroy runqueue etc associated with a task group */
4cf86d77 7645void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7646{
7647 /* wait for possible concurrent references to cfs_rqs complete */
7648 call_rcu(&tg->rcu, free_sched_group_rcu);
7649}
7650
7651void sched_offline_group(struct task_group *tg)
29f59db3 7652{
8ed36996 7653 unsigned long flags;
9b5b7751 7654 int i;
29f59db3 7655
3d4b47b4
PZ
7656 /* end participation in shares distribution */
7657 for_each_possible_cpu(i)
bccbe08a 7658 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7659
7660 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7661 list_del_rcu(&tg->list);
f473aa5e 7662 list_del_rcu(&tg->siblings);
8ed36996 7663 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7664}
7665
9b5b7751 7666/* change task's runqueue when it moves between groups.
3a252015
IM
7667 * The caller of this function should have put the task in its new group
7668 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7669 * reflect its new group.
9b5b7751
SV
7670 */
7671void sched_move_task(struct task_struct *tsk)
29f59db3 7672{
8323f26c 7673 struct task_group *tg;
da0c1e65 7674 int queued, running;
29f59db3
SV
7675 unsigned long flags;
7676 struct rq *rq;
7677
7678 rq = task_rq_lock(tsk, &flags);
7679
051a1d1a 7680 running = task_current(rq, tsk);
da0c1e65 7681 queued = task_on_rq_queued(tsk);
29f59db3 7682
da0c1e65 7683 if (queued)
29f59db3 7684 dequeue_task(rq, tsk, 0);
0e1f3483 7685 if (unlikely(running))
f3cd1c4e 7686 put_prev_task(rq, tsk);
29f59db3 7687
f7b8a47d
KT
7688 /*
7689 * All callers are synchronized by task_rq_lock(); we do not use RCU
7690 * which is pointless here. Thus, we pass "true" to task_css_check()
7691 * to prevent lockdep warnings.
7692 */
7693 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7694 struct task_group, css);
7695 tg = autogroup_task_group(tsk, tg);
7696 tsk->sched_task_group = tg;
7697
810b3817 7698#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7699 if (tsk->sched_class->task_move_group)
da0c1e65 7700 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7701 else
810b3817 7702#endif
b2b5ce02 7703 set_task_rq(tsk, task_cpu(tsk));
810b3817 7704
0e1f3483
HS
7705 if (unlikely(running))
7706 tsk->sched_class->set_curr_task(rq);
da0c1e65 7707 if (queued)
371fd7e7 7708 enqueue_task(rq, tsk, 0);
29f59db3 7709
0122ec5b 7710 task_rq_unlock(rq, tsk, &flags);
29f59db3 7711}
7c941438 7712#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7713
a790de99
PT
7714#ifdef CONFIG_RT_GROUP_SCHED
7715/*
7716 * Ensure that the real time constraints are schedulable.
7717 */
7718static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7719
9a7e0b18
PZ
7720/* Must be called with tasklist_lock held */
7721static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7722{
9a7e0b18 7723 struct task_struct *g, *p;
b40b2e8e 7724
1fe89e1b
PZ
7725 /*
7726 * Autogroups do not have RT tasks; see autogroup_create().
7727 */
7728 if (task_group_is_autogroup(tg))
7729 return 0;
7730
5d07f420 7731 for_each_process_thread(g, p) {
8651c658 7732 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7733 return 1;
5d07f420 7734 }
b40b2e8e 7735
9a7e0b18
PZ
7736 return 0;
7737}
b40b2e8e 7738
9a7e0b18
PZ
7739struct rt_schedulable_data {
7740 struct task_group *tg;
7741 u64 rt_period;
7742 u64 rt_runtime;
7743};
b40b2e8e 7744
a790de99 7745static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7746{
7747 struct rt_schedulable_data *d = data;
7748 struct task_group *child;
7749 unsigned long total, sum = 0;
7750 u64 period, runtime;
b40b2e8e 7751
9a7e0b18
PZ
7752 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7754
9a7e0b18
PZ
7755 if (tg == d->tg) {
7756 period = d->rt_period;
7757 runtime = d->rt_runtime;
b40b2e8e 7758 }
b40b2e8e 7759
4653f803
PZ
7760 /*
7761 * Cannot have more runtime than the period.
7762 */
7763 if (runtime > period && runtime != RUNTIME_INF)
7764 return -EINVAL;
6f505b16 7765
4653f803
PZ
7766 /*
7767 * Ensure we don't starve existing RT tasks.
7768 */
9a7e0b18
PZ
7769 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7770 return -EBUSY;
6f505b16 7771
9a7e0b18 7772 total = to_ratio(period, runtime);
6f505b16 7773
4653f803
PZ
7774 /*
7775 * Nobody can have more than the global setting allows.
7776 */
7777 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7778 return -EINVAL;
6f505b16 7779
4653f803
PZ
7780 /*
7781 * The sum of our children's runtime should not exceed our own.
7782 */
9a7e0b18
PZ
7783 list_for_each_entry_rcu(child, &tg->children, siblings) {
7784 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7785 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7786
9a7e0b18
PZ
7787 if (child == d->tg) {
7788 period = d->rt_period;
7789 runtime = d->rt_runtime;
7790 }
6f505b16 7791
9a7e0b18 7792 sum += to_ratio(period, runtime);
9f0c1e56 7793 }
6f505b16 7794
9a7e0b18
PZ
7795 if (sum > total)
7796 return -EINVAL;
7797
7798 return 0;
6f505b16
PZ
7799}
7800
9a7e0b18 7801static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7802{
8277434e
PT
7803 int ret;
7804
9a7e0b18
PZ
7805 struct rt_schedulable_data data = {
7806 .tg = tg,
7807 .rt_period = period,
7808 .rt_runtime = runtime,
7809 };
7810
8277434e
PT
7811 rcu_read_lock();
7812 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7813 rcu_read_unlock();
7814
7815 return ret;
521f1a24
DG
7816}
7817
ab84d31e 7818static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7819 u64 rt_period, u64 rt_runtime)
6f505b16 7820{
ac086bc2 7821 int i, err = 0;
9f0c1e56 7822
2636ed5f
PZ
7823 /*
7824 * Disallowing the root group RT runtime is BAD, it would disallow the
7825 * kernel creating (and or operating) RT threads.
7826 */
7827 if (tg == &root_task_group && rt_runtime == 0)
7828 return -EINVAL;
7829
7830 /* No period doesn't make any sense. */
7831 if (rt_period == 0)
7832 return -EINVAL;
7833
9f0c1e56 7834 mutex_lock(&rt_constraints_mutex);
521f1a24 7835 read_lock(&tasklist_lock);
9a7e0b18
PZ
7836 err = __rt_schedulable(tg, rt_period, rt_runtime);
7837 if (err)
9f0c1e56 7838 goto unlock;
ac086bc2 7839
0986b11b 7840 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7841 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7842 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7843
7844 for_each_possible_cpu(i) {
7845 struct rt_rq *rt_rq = tg->rt_rq[i];
7846
0986b11b 7847 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7848 rt_rq->rt_runtime = rt_runtime;
0986b11b 7849 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7850 }
0986b11b 7851 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7852unlock:
521f1a24 7853 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7854 mutex_unlock(&rt_constraints_mutex);
7855
7856 return err;
6f505b16
PZ
7857}
7858
25cc7da7 7859static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7860{
7861 u64 rt_runtime, rt_period;
7862
7863 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7864 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7865 if (rt_runtime_us < 0)
7866 rt_runtime = RUNTIME_INF;
7867
ab84d31e 7868 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7869}
7870
25cc7da7 7871static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7872{
7873 u64 rt_runtime_us;
7874
d0b27fa7 7875 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7876 return -1;
7877
d0b27fa7 7878 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7879 do_div(rt_runtime_us, NSEC_PER_USEC);
7880 return rt_runtime_us;
7881}
d0b27fa7 7882
ce2f5fe4 7883static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7884{
7885 u64 rt_runtime, rt_period;
7886
ce2f5fe4 7887 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7888 rt_runtime = tg->rt_bandwidth.rt_runtime;
7889
ab84d31e 7890 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7891}
7892
25cc7da7 7893static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7894{
7895 u64 rt_period_us;
7896
7897 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7898 do_div(rt_period_us, NSEC_PER_USEC);
7899 return rt_period_us;
7900}
332ac17e 7901#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7902
332ac17e 7903#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7904static int sched_rt_global_constraints(void)
7905{
7906 int ret = 0;
7907
7908 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7909 read_lock(&tasklist_lock);
4653f803 7910 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7911 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7912 mutex_unlock(&rt_constraints_mutex);
7913
7914 return ret;
7915}
54e99124 7916
25cc7da7 7917static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7918{
7919 /* Don't accept realtime tasks when there is no way for them to run */
7920 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7921 return 0;
7922
7923 return 1;
7924}
7925
6d6bc0ad 7926#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7927static int sched_rt_global_constraints(void)
7928{
ac086bc2 7929 unsigned long flags;
332ac17e 7930 int i, ret = 0;
ec5d4989 7931
0986b11b 7932 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7933 for_each_possible_cpu(i) {
7934 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7935
0986b11b 7936 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7937 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7938 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7939 }
0986b11b 7940 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7941
332ac17e 7942 return ret;
d0b27fa7 7943}
6d6bc0ad 7944#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7945
a1963b81 7946static int sched_dl_global_validate(void)
332ac17e 7947{
1724813d
PZ
7948 u64 runtime = global_rt_runtime();
7949 u64 period = global_rt_period();
332ac17e 7950 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7951 struct dl_bw *dl_b;
1724813d 7952 int cpu, ret = 0;
49516342 7953 unsigned long flags;
332ac17e
DF
7954
7955 /*
7956 * Here we want to check the bandwidth not being set to some
7957 * value smaller than the currently allocated bandwidth in
7958 * any of the root_domains.
7959 *
7960 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7961 * cycling on root_domains... Discussion on different/better
7962 * solutions is welcome!
7963 */
1724813d 7964 for_each_possible_cpu(cpu) {
f10e00f4
KT
7965 rcu_read_lock_sched();
7966 dl_b = dl_bw_of(cpu);
332ac17e 7967
49516342 7968 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7969 if (new_bw < dl_b->total_bw)
7970 ret = -EBUSY;
49516342 7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7972
f10e00f4
KT
7973 rcu_read_unlock_sched();
7974
1724813d
PZ
7975 if (ret)
7976 break;
332ac17e
DF
7977 }
7978
1724813d 7979 return ret;
332ac17e
DF
7980}
7981
1724813d 7982static void sched_dl_do_global(void)
ce0dbbbb 7983{
1724813d 7984 u64 new_bw = -1;
f10e00f4 7985 struct dl_bw *dl_b;
1724813d 7986 int cpu;
49516342 7987 unsigned long flags;
ce0dbbbb 7988
1724813d
PZ
7989 def_dl_bandwidth.dl_period = global_rt_period();
7990 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7991
7992 if (global_rt_runtime() != RUNTIME_INF)
7993 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7994
7995 /*
7996 * FIXME: As above...
7997 */
7998 for_each_possible_cpu(cpu) {
f10e00f4
KT
7999 rcu_read_lock_sched();
8000 dl_b = dl_bw_of(cpu);
1724813d 8001
49516342 8002 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8003 dl_b->bw = new_bw;
49516342 8004 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8005
8006 rcu_read_unlock_sched();
ce0dbbbb 8007 }
1724813d
PZ
8008}
8009
8010static int sched_rt_global_validate(void)
8011{
8012 if (sysctl_sched_rt_period <= 0)
8013 return -EINVAL;
8014
e9e7cb38
JL
8015 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8016 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8017 return -EINVAL;
8018
8019 return 0;
8020}
8021
8022static void sched_rt_do_global(void)
8023{
8024 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8025 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8026}
8027
d0b27fa7 8028int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8029 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8030 loff_t *ppos)
8031{
d0b27fa7
PZ
8032 int old_period, old_runtime;
8033 static DEFINE_MUTEX(mutex);
1724813d 8034 int ret;
d0b27fa7
PZ
8035
8036 mutex_lock(&mutex);
8037 old_period = sysctl_sched_rt_period;
8038 old_runtime = sysctl_sched_rt_runtime;
8039
8d65af78 8040 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8041
8042 if (!ret && write) {
1724813d
PZ
8043 ret = sched_rt_global_validate();
8044 if (ret)
8045 goto undo;
8046
a1963b81 8047 ret = sched_dl_global_validate();
1724813d
PZ
8048 if (ret)
8049 goto undo;
8050
a1963b81 8051 ret = sched_rt_global_constraints();
1724813d
PZ
8052 if (ret)
8053 goto undo;
8054
8055 sched_rt_do_global();
8056 sched_dl_do_global();
8057 }
8058 if (0) {
8059undo:
8060 sysctl_sched_rt_period = old_period;
8061 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8062 }
8063 mutex_unlock(&mutex);
8064
8065 return ret;
8066}
68318b8e 8067
1724813d 8068int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8069 void __user *buffer, size_t *lenp,
8070 loff_t *ppos)
8071{
8072 int ret;
332ac17e 8073 static DEFINE_MUTEX(mutex);
332ac17e
DF
8074
8075 mutex_lock(&mutex);
332ac17e 8076 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8077 /* make sure that internally we keep jiffies */
8078 /* also, writing zero resets timeslice to default */
332ac17e 8079 if (!ret && write) {
1724813d
PZ
8080 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8081 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8082 }
8083 mutex_unlock(&mutex);
332ac17e
DF
8084 return ret;
8085}
8086
052f1dc7 8087#ifdef CONFIG_CGROUP_SCHED
68318b8e 8088
a7c6d554 8089static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8090{
a7c6d554 8091 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8092}
8093
eb95419b
TH
8094static struct cgroup_subsys_state *
8095cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8096{
eb95419b
TH
8097 struct task_group *parent = css_tg(parent_css);
8098 struct task_group *tg;
68318b8e 8099
eb95419b 8100 if (!parent) {
68318b8e 8101 /* This is early initialization for the top cgroup */
07e06b01 8102 return &root_task_group.css;
68318b8e
SV
8103 }
8104
ec7dc8ac 8105 tg = sched_create_group(parent);
68318b8e
SV
8106 if (IS_ERR(tg))
8107 return ERR_PTR(-ENOMEM);
8108
68318b8e
SV
8109 return &tg->css;
8110}
8111
eb95419b 8112static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8113{
eb95419b 8114 struct task_group *tg = css_tg(css);
5c9d535b 8115 struct task_group *parent = css_tg(css->parent);
ace783b9 8116
63876986
TH
8117 if (parent)
8118 sched_online_group(tg, parent);
ace783b9
LZ
8119 return 0;
8120}
8121
eb95419b 8122static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8123{
eb95419b 8124 struct task_group *tg = css_tg(css);
68318b8e
SV
8125
8126 sched_destroy_group(tg);
8127}
8128
eb95419b 8129static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8130{
eb95419b 8131 struct task_group *tg = css_tg(css);
ace783b9
LZ
8132
8133 sched_offline_group(tg);
8134}
8135
eeb61e53
KT
8136static void cpu_cgroup_fork(struct task_struct *task)
8137{
8138 sched_move_task(task);
8139}
8140
eb95419b 8141static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8142 struct cgroup_taskset *tset)
68318b8e 8143{
bb9d97b6
TH
8144 struct task_struct *task;
8145
924f0d9a 8146 cgroup_taskset_for_each(task, tset) {
b68aa230 8147#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8148 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8149 return -EINVAL;
b68aa230 8150#else
bb9d97b6
TH
8151 /* We don't support RT-tasks being in separate groups */
8152 if (task->sched_class != &fair_sched_class)
8153 return -EINVAL;
b68aa230 8154#endif
bb9d97b6 8155 }
be367d09
BB
8156 return 0;
8157}
68318b8e 8158
eb95419b 8159static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8160 struct cgroup_taskset *tset)
68318b8e 8161{
bb9d97b6
TH
8162 struct task_struct *task;
8163
924f0d9a 8164 cgroup_taskset_for_each(task, tset)
bb9d97b6 8165 sched_move_task(task);
68318b8e
SV
8166}
8167
eb95419b
TH
8168static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8169 struct cgroup_subsys_state *old_css,
8170 struct task_struct *task)
068c5cc5
PZ
8171{
8172 /*
8173 * cgroup_exit() is called in the copy_process() failure path.
8174 * Ignore this case since the task hasn't ran yet, this avoids
8175 * trying to poke a half freed task state from generic code.
8176 */
8177 if (!(task->flags & PF_EXITING))
8178 return;
8179
8180 sched_move_task(task);
8181}
8182
052f1dc7 8183#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8184static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8185 struct cftype *cftype, u64 shareval)
68318b8e 8186{
182446d0 8187 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8188}
8189
182446d0
TH
8190static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8191 struct cftype *cft)
68318b8e 8192{
182446d0 8193 struct task_group *tg = css_tg(css);
68318b8e 8194
c8b28116 8195 return (u64) scale_load_down(tg->shares);
68318b8e 8196}
ab84d31e
PT
8197
8198#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8199static DEFINE_MUTEX(cfs_constraints_mutex);
8200
ab84d31e
PT
8201const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8202const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8203
a790de99
PT
8204static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8205
ab84d31e
PT
8206static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8207{
56f570e5 8208 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8209 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8210
8211 if (tg == &root_task_group)
8212 return -EINVAL;
8213
8214 /*
8215 * Ensure we have at some amount of bandwidth every period. This is
8216 * to prevent reaching a state of large arrears when throttled via
8217 * entity_tick() resulting in prolonged exit starvation.
8218 */
8219 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8220 return -EINVAL;
8221
8222 /*
8223 * Likewise, bound things on the otherside by preventing insane quota
8224 * periods. This also allows us to normalize in computing quota
8225 * feasibility.
8226 */
8227 if (period > max_cfs_quota_period)
8228 return -EINVAL;
8229
0e59bdae
KT
8230 /*
8231 * Prevent race between setting of cfs_rq->runtime_enabled and
8232 * unthrottle_offline_cfs_rqs().
8233 */
8234 get_online_cpus();
a790de99
PT
8235 mutex_lock(&cfs_constraints_mutex);
8236 ret = __cfs_schedulable(tg, period, quota);
8237 if (ret)
8238 goto out_unlock;
8239
58088ad0 8240 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8241 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8242 /*
8243 * If we need to toggle cfs_bandwidth_used, off->on must occur
8244 * before making related changes, and on->off must occur afterwards
8245 */
8246 if (runtime_enabled && !runtime_was_enabled)
8247 cfs_bandwidth_usage_inc();
ab84d31e
PT
8248 raw_spin_lock_irq(&cfs_b->lock);
8249 cfs_b->period = ns_to_ktime(period);
8250 cfs_b->quota = quota;
58088ad0 8251
a9cf55b2 8252 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8253 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8254 if (runtime_enabled)
8255 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8256 raw_spin_unlock_irq(&cfs_b->lock);
8257
0e59bdae 8258 for_each_online_cpu(i) {
ab84d31e 8259 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8260 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8261
8262 raw_spin_lock_irq(&rq->lock);
58088ad0 8263 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8264 cfs_rq->runtime_remaining = 0;
671fd9da 8265
029632fb 8266 if (cfs_rq->throttled)
671fd9da 8267 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8268 raw_spin_unlock_irq(&rq->lock);
8269 }
1ee14e6c
BS
8270 if (runtime_was_enabled && !runtime_enabled)
8271 cfs_bandwidth_usage_dec();
a790de99
PT
8272out_unlock:
8273 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8274 put_online_cpus();
ab84d31e 8275
a790de99 8276 return ret;
ab84d31e
PT
8277}
8278
8279int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8280{
8281 u64 quota, period;
8282
029632fb 8283 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8284 if (cfs_quota_us < 0)
8285 quota = RUNTIME_INF;
8286 else
8287 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8288
8289 return tg_set_cfs_bandwidth(tg, period, quota);
8290}
8291
8292long tg_get_cfs_quota(struct task_group *tg)
8293{
8294 u64 quota_us;
8295
029632fb 8296 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8297 return -1;
8298
029632fb 8299 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8300 do_div(quota_us, NSEC_PER_USEC);
8301
8302 return quota_us;
8303}
8304
8305int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8306{
8307 u64 quota, period;
8308
8309 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8310 quota = tg->cfs_bandwidth.quota;
ab84d31e 8311
ab84d31e
PT
8312 return tg_set_cfs_bandwidth(tg, period, quota);
8313}
8314
8315long tg_get_cfs_period(struct task_group *tg)
8316{
8317 u64 cfs_period_us;
8318
029632fb 8319 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8320 do_div(cfs_period_us, NSEC_PER_USEC);
8321
8322 return cfs_period_us;
8323}
8324
182446d0
TH
8325static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8326 struct cftype *cft)
ab84d31e 8327{
182446d0 8328 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8329}
8330
182446d0
TH
8331static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8332 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8333{
182446d0 8334 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8335}
8336
182446d0
TH
8337static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8338 struct cftype *cft)
ab84d31e 8339{
182446d0 8340 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8341}
8342
182446d0
TH
8343static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8344 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8345{
182446d0 8346 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8347}
8348
a790de99
PT
8349struct cfs_schedulable_data {
8350 struct task_group *tg;
8351 u64 period, quota;
8352};
8353
8354/*
8355 * normalize group quota/period to be quota/max_period
8356 * note: units are usecs
8357 */
8358static u64 normalize_cfs_quota(struct task_group *tg,
8359 struct cfs_schedulable_data *d)
8360{
8361 u64 quota, period;
8362
8363 if (tg == d->tg) {
8364 period = d->period;
8365 quota = d->quota;
8366 } else {
8367 period = tg_get_cfs_period(tg);
8368 quota = tg_get_cfs_quota(tg);
8369 }
8370
8371 /* note: these should typically be equivalent */
8372 if (quota == RUNTIME_INF || quota == -1)
8373 return RUNTIME_INF;
8374
8375 return to_ratio(period, quota);
8376}
8377
8378static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8379{
8380 struct cfs_schedulable_data *d = data;
029632fb 8381 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8382 s64 quota = 0, parent_quota = -1;
8383
8384 if (!tg->parent) {
8385 quota = RUNTIME_INF;
8386 } else {
029632fb 8387 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8388
8389 quota = normalize_cfs_quota(tg, d);
9c58c79a 8390 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8391
8392 /*
8393 * ensure max(child_quota) <= parent_quota, inherit when no
8394 * limit is set
8395 */
8396 if (quota == RUNTIME_INF)
8397 quota = parent_quota;
8398 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8399 return -EINVAL;
8400 }
9c58c79a 8401 cfs_b->hierarchical_quota = quota;
a790de99
PT
8402
8403 return 0;
8404}
8405
8406static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8407{
8277434e 8408 int ret;
a790de99
PT
8409 struct cfs_schedulable_data data = {
8410 .tg = tg,
8411 .period = period,
8412 .quota = quota,
8413 };
8414
8415 if (quota != RUNTIME_INF) {
8416 do_div(data.period, NSEC_PER_USEC);
8417 do_div(data.quota, NSEC_PER_USEC);
8418 }
8419
8277434e
PT
8420 rcu_read_lock();
8421 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8422 rcu_read_unlock();
8423
8424 return ret;
a790de99 8425}
e8da1b18 8426
2da8ca82 8427static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8428{
2da8ca82 8429 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8430 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8431
44ffc75b
TH
8432 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8433 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8434 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8435
8436 return 0;
8437}
ab84d31e 8438#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8439#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8440
052f1dc7 8441#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8442static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8443 struct cftype *cft, s64 val)
6f505b16 8444{
182446d0 8445 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8446}
8447
182446d0
TH
8448static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8449 struct cftype *cft)
6f505b16 8450{
182446d0 8451 return sched_group_rt_runtime(css_tg(css));
6f505b16 8452}
d0b27fa7 8453
182446d0
TH
8454static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8455 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8456{
182446d0 8457 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8458}
8459
182446d0
TH
8460static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8461 struct cftype *cft)
d0b27fa7 8462{
182446d0 8463 return sched_group_rt_period(css_tg(css));
d0b27fa7 8464}
6d6bc0ad 8465#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8466
fe5c7cc2 8467static struct cftype cpu_files[] = {
052f1dc7 8468#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8469 {
8470 .name = "shares",
f4c753b7
PM
8471 .read_u64 = cpu_shares_read_u64,
8472 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8473 },
052f1dc7 8474#endif
ab84d31e
PT
8475#ifdef CONFIG_CFS_BANDWIDTH
8476 {
8477 .name = "cfs_quota_us",
8478 .read_s64 = cpu_cfs_quota_read_s64,
8479 .write_s64 = cpu_cfs_quota_write_s64,
8480 },
8481 {
8482 .name = "cfs_period_us",
8483 .read_u64 = cpu_cfs_period_read_u64,
8484 .write_u64 = cpu_cfs_period_write_u64,
8485 },
e8da1b18
NR
8486 {
8487 .name = "stat",
2da8ca82 8488 .seq_show = cpu_stats_show,
e8da1b18 8489 },
ab84d31e 8490#endif
052f1dc7 8491#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8492 {
9f0c1e56 8493 .name = "rt_runtime_us",
06ecb27c
PM
8494 .read_s64 = cpu_rt_runtime_read,
8495 .write_s64 = cpu_rt_runtime_write,
6f505b16 8496 },
d0b27fa7
PZ
8497 {
8498 .name = "rt_period_us",
f4c753b7
PM
8499 .read_u64 = cpu_rt_period_read_uint,
8500 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8501 },
052f1dc7 8502#endif
4baf6e33 8503 { } /* terminate */
68318b8e
SV
8504};
8505
073219e9 8506struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8507 .css_alloc = cpu_cgroup_css_alloc,
8508 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8509 .css_online = cpu_cgroup_css_online,
8510 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8511 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8512 .can_attach = cpu_cgroup_can_attach,
8513 .attach = cpu_cgroup_attach,
068c5cc5 8514 .exit = cpu_cgroup_exit,
5577964e 8515 .legacy_cftypes = cpu_files,
68318b8e
SV
8516 .early_init = 1,
8517};
8518
052f1dc7 8519#endif /* CONFIG_CGROUP_SCHED */
d842de87 8520
b637a328
PM
8521void dump_cpu_task(int cpu)
8522{
8523 pr_info("Task dump for CPU %d:\n", cpu);
8524 sched_show_task(cpu_curr(cpu));
8525}