Merge branch 'for-4.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
3e71a462
PZ
173/*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
eb580751 176struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
177 __acquires(rq->lock)
178{
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 187 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195}
196
197/*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
eb580751 200struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203{
204 struct rq *rq;
205
206 for (;;) {
eb580751 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 227 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
eb580751 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236}
237
8f4d37ec
PZ
238#ifdef CONFIG_SCHED_HRTICK
239/*
240 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 241 */
8f4d37ec 242
8f4d37ec
PZ
243static void hrtick_clear(struct rq *rq)
244{
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247}
248
8f4d37ec
PZ
249/*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253static enum hrtimer_restart hrtick(struct hrtimer *timer)
254{
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
05fa785c 259 raw_spin_lock(&rq->lock);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 262 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
b328ca18 282
05fa785c 283 raw_spin_lock(&rq->lock);
971ee28c 284 __hrtick_restart(rq);
31656519 285 rq->hrtick_csd_pending = 0;
05fa785c 286 raw_spin_unlock(&rq->lock);
b328ca18
PZ
287}
288
31656519
PZ
289/*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
029632fb 294void hrtick_start(struct rq *rq, u64 delay)
b328ca18 295{
31656519 296 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 306
cc584b21 307 hrtimer_set_expires(timer, time);
31656519
PZ
308
309 if (rq == this_rq()) {
971ee28c 310 __hrtick_restart(rq);
31656519 311 } else if (!rq->hrtick_csd_pending) {
c46fff2a 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
313 rq->hrtick_csd_pending = 1;
314 }
b328ca18
PZ
315}
316
31656519
PZ
317#else
318/*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
029632fb 323void hrtick_start(struct rq *rq, u64 delay)
31656519 324{
86893335
WL
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
31656519 332}
31656519 333#endif /* CONFIG_SMP */
8f4d37ec 334
31656519 335static void init_rq_hrtick(struct rq *rq)
8f4d37ec 336{
31656519
PZ
337#ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
8f4d37ec 339
31656519
PZ
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343#endif
8f4d37ec 344
31656519
PZ
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
8f4d37ec 347}
006c75f1 348#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
349static inline void hrtick_clear(struct rq *rq)
350{
351}
352
8f4d37ec
PZ
353static inline void init_rq_hrtick(struct rq *rq)
354{
355}
006c75f1 356#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 357
5529578a
FW
358/*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361#define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374})
375
e3baac47 376#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
377/*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382static bool set_nr_and_not_polling(struct task_struct *p)
383{
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386}
e3baac47
PZ
387
388/*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394static bool set_nr_if_polling(struct task_struct *p)
395{
396 struct thread_info *ti = task_thread_info(p);
316c1608 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410}
411
fd99f91a
PZ
412#else
413static bool set_nr_and_not_polling(struct task_struct *p)
414{
415 set_tsk_need_resched(p);
416 return true;
417}
e3baac47
PZ
418
419#ifdef CONFIG_SMP
420static bool set_nr_if_polling(struct task_struct *p)
421{
422 return false;
423}
424#endif
fd99f91a
PZ
425#endif
426
76751049
PZ
427void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428{
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 437 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449}
450
451void wake_up_q(struct wake_q_head *head)
452{
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471}
472
c24d20db 473/*
8875125e 474 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
8875125e 480void resched_curr(struct rq *rq)
c24d20db 481{
8875125e 482 struct task_struct *curr = rq->curr;
c24d20db
IM
483 int cpu;
484
8875125e 485 lockdep_assert_held(&rq->lock);
c24d20db 486
8875125e 487 if (test_tsk_need_resched(curr))
c24d20db
IM
488 return;
489
8875125e 490 cpu = cpu_of(rq);
fd99f91a 491
f27dde8d 492 if (cpu == smp_processor_id()) {
8875125e 493 set_tsk_need_resched(curr);
f27dde8d 494 set_preempt_need_resched();
c24d20db 495 return;
f27dde8d 496 }
c24d20db 497
8875125e 498 if (set_nr_and_not_polling(curr))
c24d20db 499 smp_send_reschedule(cpu);
dfc68f29
AL
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
502}
503
029632fb 504void resched_cpu(int cpu)
c24d20db
IM
505{
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
05fa785c 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 510 return;
8875125e 511 resched_curr(rq);
05fa785c 512 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 513}
06d8308c 514
b021fe3e 515#ifdef CONFIG_SMP
3451d024 516#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
517/*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
bc7a34b8 525int get_nohz_timer_target(void)
83cd4fe2 526{
bc7a34b8 527 int i, cpu = smp_processor_id();
83cd4fe2
VP
528 struct sched_domain *sd;
529
9642d18e 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
531 return cpu;
532
057f3fad 533 rcu_read_lock();
83cd4fe2 534 for_each_domain(cpu, sd) {
057f3fad 535 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
540 cpu = i;
541 goto unlock;
542 }
543 }
83cd4fe2 544 }
9642d18e
VH
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
057f3fad
PZ
548unlock:
549 rcu_read_unlock();
83cd4fe2
VP
550 return cpu;
551}
06d8308c
TG
552/*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
1c20091e 562static void wake_up_idle_cpu(int cpu)
06d8308c
TG
563{
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
67b9ca70 569 if (set_nr_and_not_polling(rq->idle))
06d8308c 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
573}
574
c5bfece2 575static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 576{
53c5fa16
FW
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
c5bfece2 583 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
53c5fa16 586 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
587 return true;
588 }
589
590 return false;
591}
592
593void wake_up_nohz_cpu(int cpu)
594{
c5bfece2 595 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
596 wake_up_idle_cpu(cpu);
597}
598
ca38062e 599static inline bool got_nohz_idle_kick(void)
45bf76df 600{
1c792db7 601 int cpu = smp_processor_id();
873b4c65
VG
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
45bf76df
IM
615}
616
3451d024 617#else /* CONFIG_NO_HZ_COMMON */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
3451d024 624#endif /* CONFIG_NO_HZ_COMMON */
d842de87 625
ce831b38 626#ifdef CONFIG_NO_HZ_FULL
76d92ac3 627bool sched_can_stop_tick(struct rq *rq)
ce831b38 628{
76d92ac3
FW
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
1e78cdbd 635 /*
2548d546
PZ
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
1e78cdbd 638 */
76d92ac3
FW
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
1e78cdbd
RR
644 }
645
2548d546
PZ
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
541b8264 660 return false;
ce831b38 661
541b8264 662 return true;
ce831b38
FW
663}
664#endif /* CONFIG_NO_HZ_FULL */
d842de87 665
029632fb 666void sched_avg_update(struct rq *rq)
18d95a28 667{
e9e9250b
PZ
668 s64 period = sched_avg_period();
669
78becc27 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
18d95a28
PZ
680}
681
6d6bc0ad 682#endif /* CONFIG_SMP */
18d95a28 683
a790de99
PT
684#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 686/*
8277434e
PT
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 691 */
029632fb 692int walk_tg_tree_from(struct task_group *from,
8277434e 693 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
694{
695 struct task_group *parent, *child;
eb755805 696 int ret;
c09595f6 697
8277434e
PT
698 parent = from;
699
c09595f6 700down:
eb755805
PZ
701 ret = (*down)(parent, data);
702 if (ret)
8277434e 703 goto out;
c09595f6
PZ
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708up:
709 continue;
710 }
eb755805 711 ret = (*up)(parent, data);
8277434e
PT
712 if (ret || parent == from)
713 goto out;
c09595f6
PZ
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
8277434e 719out:
eb755805 720 return ret;
c09595f6
PZ
721}
722
029632fb 723int tg_nop(struct task_group *tg, void *data)
eb755805 724{
e2b245f8 725 return 0;
eb755805 726}
18d95a28
PZ
727#endif
728
45bf76df
IM
729static void set_load_weight(struct task_struct *p)
730{
f05998d4
NR
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
dd41f596
IM
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
20f9cd2a 737 if (idle_policy(p->policy)) {
c8b28116 738 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 739 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
740 return;
741 }
71f8bd46 742
ed82b8a1
AK
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
745}
746
1de64443 747static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 748{
a64692a3 749 update_rq_clock(rq);
1de64443
PZ
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
371fd7e7 752 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
753}
754
1de64443 755static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
371fd7e7 760 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
761}
762
029632fb 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
371fd7e7 768 enqueue_task(rq, p, flags);
1e3c88bd
PZ
769}
770
029632fb 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
371fd7e7 776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
fe44d621 779static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 780{
095c0aa8
GC
781/*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787#endif
788#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
095c0aa8
GC
811#endif
812#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 813 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
095c0aa8 820 rq->prev_steal_time_rq += steal;
095c0aa8
GC
821 delta -= steal;
822 }
823#endif
824
fe44d621
PZ
825 rq->clock_task += delta;
826
095c0aa8 827#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
829 sched_rt_avg_update(rq, irq_delta + steal);
830#endif
aa483808
VP
831}
832
34f971f6
PZ
833void sched_set_stop_task(int cpu, struct task_struct *stop)
834{
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861}
862
14531189 863/*
dd41f596 864 * __normal_prio - return the priority that is based on the static prio
14531189 865 */
14531189
IM
866static inline int __normal_prio(struct task_struct *p)
867{
dd41f596 868 return p->static_prio;
14531189
IM
869}
870
b29739f9
IM
871/*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
36c8b586 878static inline int normal_prio(struct task_struct *p)
b29739f9
IM
879{
880 int prio;
881
aab03e05
DF
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
b29739f9
IM
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889}
890
891/*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
36c8b586 898static int effective_prio(struct task_struct *p)
b29739f9
IM
899{
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909}
910
1da177e4
LT
911/**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
e69f6186
YB
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 916 */
36c8b586 917inline int task_curr(const struct task_struct *p)
1da177e4
LT
918{
919 return cpu_curr(task_cpu(p)) == p;
920}
921
67dfa1b7 922/*
4c9a4bc8
PZ
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
67dfa1b7 928 */
cb469845
SR
929static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
da7a735e 931 int oldprio)
cb469845
SR
932{
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
da7a735e 935 prev_class->switched_from(rq, p);
4c9a4bc8 936
da7a735e 937 p->sched_class->switched_to(rq, p);
2d3d891d 938 } else if (oldprio != p->prio || dl_task(p))
da7a735e 939 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
940}
941
029632fb 942void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
943{
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
8875125e 953 resched_curr(rq);
1e5a7405
PZ
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
da0c1e65 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 964 rq_clock_skip_update(rq, true);
1e5a7405
PZ
965}
966
1da177e4 967#ifdef CONFIG_SMP
5cc389bc
PZ
968/*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982/*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
5e16bbc2 987static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 988{
5cc389bc
PZ
989 lockdep_assert_held(&rq->lock);
990
5cc389bc 991 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 992 dequeue_task(rq, p, 0);
5cc389bc
PZ
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1000 enqueue_task(rq, p, 0);
3ea94de1 1001 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005}
1006
1007struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010};
1011
1012/*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
5cc389bc 1020 */
5e16bbc2 1021static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1022{
5cc389bc 1023 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1024 return rq;
5cc389bc
PZ
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1028 return rq;
5cc389bc 1029
5e16bbc2
PZ
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
5cc389bc
PZ
1033}
1034
1035/*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040static int migration_cpu_stop(void *data)
1041{
1042 struct migration_arg *arg = data;
5e16bbc2
PZ
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
5cc389bc
PZ
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
5e16bbc2
PZ
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
5cc389bc
PZ
1070 local_irq_enable();
1071 return 0;
1072}
1073
c5b28038
PZ
1074/*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1079{
5cc389bc
PZ
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082}
1083
c5b28038
PZ
1084void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085{
6c37067e
PZ
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
c5b28038 1089 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1de64443 1100 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
c5b28038 1105 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1de64443 1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1111}
1112
5cc389bc
PZ
1113/*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
25834c73
PZ
1122static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
5cc389bc 1124{
e9d867a6 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1126 unsigned int dest_cpu;
eb580751
PZ
1127 struct rq_flags rf;
1128 struct rq *rq;
5cc389bc
PZ
1129 int ret = 0;
1130
eb580751 1131 rq = task_rq_lock(p, &rf);
5cc389bc 1132
e9d867a6
PZI
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
25834c73
PZ
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
5cc389bc
PZ
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
e9d867a6 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
e9d867a6
PZI
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
5cc389bc
PZ
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
e9d867a6 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
eb580751 1177 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
cbce1a68
PZ
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
e7904a28 1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1187 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1188 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1189 }
5cc389bc 1190out:
eb580751 1191 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1192
1193 return ret;
1194}
25834c73
PZ
1195
1196int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197{
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199}
5cc389bc
PZ
1200EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
dd41f596 1202void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1203{
e2912009
PZ
1204#ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
077614ee 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1210 !p->on_rq);
0122ec5b 1211
3ea94de1
JP
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
0122ec5b 1221#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1227 * see task_group().
6c6c54e1
PZ
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
0122ec5b
PZ
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234#endif
e2912009
PZ
1235#endif
1236
de1d7286 1237 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1238
0c69774e 1239 if (task_cpu(p) != new_cpu) {
0a74bef8 1240 if (p->sched_class->migrate_task_rq)
5a4fd036 1241 p->sched_class->migrate_task_rq(p);
0c69774e 1242 p->se.nr_migrations++;
ff303e66 1243 perf_event_task_migrate(p);
0c69774e 1244 }
dd41f596
IM
1245
1246 __set_task_cpu(p, new_cpu);
c65cc870
IM
1247}
1248
ac66f547
PZ
1249static void __migrate_swap_task(struct task_struct *p, int cpu)
1250{
da0c1e65 1251 if (task_on_rq_queued(p)) {
ac66f547
PZ
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
3ea94de1 1257 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
3ea94de1 1261 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271}
1272
1273struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276};
1277
1278static int migrate_swap_stop(void *data)
1279{
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
62694cd5
PZ
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
ac66f547
PZ
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
74602315
PZ
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
ac66f547 1292 double_rq_lock(src_rq, dst_rq);
62694cd5 1293
ac66f547
PZ
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311unlock:
1312 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1315
1316 return ret;
1317}
1318
1319/*
1320 * Cross migrate two tasks
1321 */
1322int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323{
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
ac66f547
PZ
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
6acce3ef
PZ
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
ac66f547
PZ
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
286549dc 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353out:
ac66f547
PZ
1354 return ret;
1355}
1356
1da177e4
LT
1357/*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
85ba2d86
RM
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1da177e4
LT
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
85ba2d86 1373unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1374{
da0c1e65 1375 int running, queued;
eb580751 1376 struct rq_flags rf;
85ba2d86 1377 unsigned long ncsw;
70b97a7f 1378 struct rq *rq;
1da177e4 1379
3a5c359a
AK
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
fa490cfd 1388
3a5c359a
AK
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
85ba2d86
RM
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
3a5c359a 1403 cpu_relax();
85ba2d86 1404 }
fa490cfd 1405
3a5c359a
AK
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
eb580751 1411 rq = task_rq_lock(p, &rf);
27a9da65 1412 trace_sched_wait_task(p);
3a5c359a 1413 running = task_running(rq, p);
da0c1e65 1414 queued = task_on_rq_queued(p);
85ba2d86 1415 ncsw = 0;
f31e11d8 1416 if (!match_state || p->state == match_state)
93dcf55f 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1418 task_rq_unlock(rq, p, &rf);
fa490cfd 1419
85ba2d86
RM
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
3a5c359a
AK
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
80dd99b3 1442 * So if it was still runnable (but just not actively
3a5c359a
AK
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
da0c1e65 1446 if (unlikely(queued)) {
8eb90c30
TG
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1451 continue;
1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
85ba2d86
RM
1461
1462 return ncsw;
1da177e4
LT
1463}
1464
1465/***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
25985edc 1472 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
36c8b586 1478void kick_process(struct task_struct *p)
1da177e4
LT
1479{
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487}
b43e3521 1488EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1489
30da688e 1490/*
013fdb80 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
30da688e 1511 */
5da9a0fb
PZ
1512static int select_fallback_rq(int cpu, struct task_struct *p)
1513{
aa00d89c
TC
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
5da9a0fb 1518
aa00d89c
TC
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
2baab4e9 1534 }
5da9a0fb 1535
2baab4e9
PZ
1536 for (;;) {
1537 /* Any allowed, online CPU? */
e3831edd 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1539 if (!cpu_active(dest_cpu))
1540 continue;
1541 goto out;
1542 }
5da9a0fb 1543
e73e85f0 1544 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1545 switch (state) {
1546 case cpuset:
e73e85f0
ON
1547 if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 cpuset_cpus_allowed_fallback(p);
1549 state = possible;
1550 break;
1551 }
1552 /* fall-through */
2baab4e9
PZ
1553 case possible:
1554 do_set_cpus_allowed(p, cpu_possible_mask);
1555 state = fail;
1556 break;
1557
1558 case fail:
1559 BUG();
1560 break;
1561 }
1562 }
1563
1564out:
1565 if (state != cpuset) {
1566 /*
1567 * Don't tell them about moving exiting tasks or
1568 * kernel threads (both mm NULL), since they never
1569 * leave kernel.
1570 */
1571 if (p->mm && printk_ratelimit()) {
aac74dc4 1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1573 task_pid_nr(p), p->comm, cpu);
1574 }
5da9a0fb
PZ
1575 }
1576
1577 return dest_cpu;
1578}
1579
e2912009 1580/*
013fdb80 1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1582 */
970b13ba 1583static inline
ac66f547 1584int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1585{
cbce1a68
PZ
1586 lockdep_assert_held(&p->pi_lock);
1587
50605ffb 1588 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1590 else
1591 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
fa17b507 1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1604 !cpu_online(cpu)))
5da9a0fb 1605 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1606
1607 return cpu;
970b13ba 1608}
09a40af5
MG
1609
1610static void update_avg(u64 *avg, u64 sample)
1611{
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614}
25834c73
PZ
1615
1616#else
1617
1618static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620{
1621 return set_cpus_allowed_ptr(p, new_mask);
1622}
1623
5cc389bc 1624#endif /* CONFIG_SMP */
970b13ba 1625
d7c01d27 1626static void
b84cb5df 1627ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1628{
d7c01d27 1629#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1630 struct rq *rq = this_rq();
1631
d7c01d27
PZ
1632#ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1642 rcu_read_lock();
d7c01d27
PZ
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
057f3fad 1649 rcu_read_unlock();
d7c01d27 1650 }
f339b9dc
PZ
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
d7c01d27
PZ
1655#endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
9ed3811a 1658 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1659
1660 if (wake_flags & WF_SYNC)
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1662
d7c01d27
PZ
1663#endif /* CONFIG_SCHEDSTATS */
1664}
1665
1de64443 1666static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1667{
9ed3811a 1668 activate_task(rq, p, en_flags);
da0c1e65 1669 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1674}
1675
23f41eeb
PZ
1676/*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
e7904a28
PZ
1679static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 struct pin_cookie cookie)
9ed3811a 1681{
9ed3811a 1682 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1683 p->state = TASK_RUNNING;
fbd705a0
PZ
1684 trace_sched_wakeup(p);
1685
9ed3811a 1686#ifdef CONFIG_SMP
4c9a4bc8
PZ
1687 if (p->sched_class->task_woken) {
1688 /*
cbce1a68
PZ
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1691 */
e7904a28 1692 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1693 p->sched_class->task_woken(rq, p);
e7904a28 1694 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1695 }
9ed3811a 1696
e69c6341 1697 if (rq->idle_stamp) {
78becc27 1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1699 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1700
abfafa54
JL
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
9ed3811a 1704 rq->avg_idle = max;
abfafa54 1705
9ed3811a
TH
1706 rq->idle_stamp = 0;
1707 }
1708#endif
1709}
1710
c05fbafb 1711static void
e7904a28
PZ
1712ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 struct pin_cookie cookie)
c05fbafb 1714{
b5179ac7
PZ
1715 int en_flags = ENQUEUE_WAKEUP;
1716
cbce1a68
PZ
1717 lockdep_assert_held(&rq->lock);
1718
c05fbafb
PZ
1719#ifdef CONFIG_SMP
1720 if (p->sched_contributes_to_load)
1721 rq->nr_uninterruptible--;
b5179ac7 1722
b5179ac7 1723 if (wake_flags & WF_MIGRATED)
59efa0ba 1724 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1725#endif
1726
b5179ac7 1727 ttwu_activate(rq, p, en_flags);
e7904a28 1728 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1729}
1730
1731/*
1732 * Called in case the task @p isn't fully descheduled from its runqueue,
1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734 * since all we need to do is flip p->state to TASK_RUNNING, since
1735 * the task is still ->on_rq.
1736 */
1737static int ttwu_remote(struct task_struct *p, int wake_flags)
1738{
eb580751 1739 struct rq_flags rf;
c05fbafb
PZ
1740 struct rq *rq;
1741 int ret = 0;
1742
eb580751 1743 rq = __task_rq_lock(p, &rf);
da0c1e65 1744 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1745 /* check_preempt_curr() may use rq clock */
1746 update_rq_clock(rq);
e7904a28 1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1748 ret = 1;
1749 }
eb580751 1750 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1751
1752 return ret;
1753}
1754
317f3941 1755#ifdef CONFIG_SMP
e3baac47 1756void sched_ttwu_pending(void)
317f3941
PZ
1757{
1758 struct rq *rq = this_rq();
fa14ff4a 1759 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1760 struct pin_cookie cookie;
fa14ff4a 1761 struct task_struct *p;
e3baac47 1762 unsigned long flags;
317f3941 1763
e3baac47
PZ
1764 if (!llist)
1765 return;
1766
1767 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1768 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1769
fa14ff4a 1770 while (llist) {
b7e7ade3
PZ
1771 int wake_flags = 0;
1772
fa14ff4a
PZ
1773 p = llist_entry(llist, struct task_struct, wake_entry);
1774 llist = llist_next(llist);
b7e7ade3
PZ
1775
1776 if (p->sched_remote_wakeup)
1777 wake_flags = WF_MIGRATED;
1778
1779 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1780 }
1781
e7904a28 1782 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1783 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1784}
1785
1786void scheduler_ipi(void)
1787{
f27dde8d
PZ
1788 /*
1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 * this IPI.
1792 */
8cb75e0c 1793 preempt_fold_need_resched();
f27dde8d 1794
fd2ac4f4 1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1796 return;
1797
1798 /*
1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 * traditionally all their work was done from the interrupt return
1801 * path. Now that we actually do some work, we need to make sure
1802 * we do call them.
1803 *
1804 * Some archs already do call them, luckily irq_enter/exit nest
1805 * properly.
1806 *
1807 * Arguably we should visit all archs and update all handlers,
1808 * however a fair share of IPIs are still resched only so this would
1809 * somewhat pessimize the simple resched case.
1810 */
1811 irq_enter();
fa14ff4a 1812 sched_ttwu_pending();
ca38062e
SS
1813
1814 /*
1815 * Check if someone kicked us for doing the nohz idle load balance.
1816 */
873b4c65 1817 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1818 this_rq()->idle_balance = 1;
ca38062e 1819 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1820 }
c5d753a5 1821 irq_exit();
317f3941
PZ
1822}
1823
b7e7ade3 1824static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1825{
e3baac47
PZ
1826 struct rq *rq = cpu_rq(cpu);
1827
b7e7ade3
PZ
1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829
e3baac47
PZ
1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 if (!set_nr_if_polling(rq->idle))
1832 smp_send_reschedule(cpu);
1833 else
1834 trace_sched_wake_idle_without_ipi(cpu);
1835 }
317f3941 1836}
d6aa8f85 1837
f6be8af1
CL
1838void wake_up_if_idle(int cpu)
1839{
1840 struct rq *rq = cpu_rq(cpu);
1841 unsigned long flags;
1842
fd7de1e8
AL
1843 rcu_read_lock();
1844
1845 if (!is_idle_task(rcu_dereference(rq->curr)))
1846 goto out;
f6be8af1
CL
1847
1848 if (set_nr_if_polling(rq->idle)) {
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 } else {
1851 raw_spin_lock_irqsave(&rq->lock, flags);
1852 if (is_idle_task(rq->curr))
1853 smp_send_reschedule(cpu);
1854 /* Else cpu is not in idle, do nothing here */
1855 raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 }
fd7de1e8
AL
1857
1858out:
1859 rcu_read_unlock();
f6be8af1
CL
1860}
1861
39be3501 1862bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1863{
1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865}
d6aa8f85 1866#endif /* CONFIG_SMP */
317f3941 1867
b5179ac7 1868static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1869{
1870 struct rq *rq = cpu_rq(cpu);
e7904a28 1871 struct pin_cookie cookie;
c05fbafb 1872
17d9f311 1873#if defined(CONFIG_SMP)
39be3501 1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1876 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1877 return;
1878 }
1879#endif
1880
c05fbafb 1881 raw_spin_lock(&rq->lock);
e7904a28 1882 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1883 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1884 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1885 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1886}
1887
8643cda5
PZ
1888/*
1889 * Notes on Program-Order guarantees on SMP systems.
1890 *
1891 * MIGRATION
1892 *
1893 * The basic program-order guarantee on SMP systems is that when a task [t]
1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895 * execution on its new cpu [c1].
1896 *
1897 * For migration (of runnable tasks) this is provided by the following means:
1898 *
1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1901 * rq(c1)->lock (if not at the same time, then in that order).
1902 * C) LOCK of the rq(c1)->lock scheduling in task
1903 *
1904 * Transitivity guarantees that B happens after A and C after B.
1905 * Note: we only require RCpc transitivity.
1906 * Note: the cpu doing B need not be c0 or c1
1907 *
1908 * Example:
1909 *
1910 * CPU0 CPU1 CPU2
1911 *
1912 * LOCK rq(0)->lock
1913 * sched-out X
1914 * sched-in Y
1915 * UNLOCK rq(0)->lock
1916 *
1917 * LOCK rq(0)->lock // orders against CPU0
1918 * dequeue X
1919 * UNLOCK rq(0)->lock
1920 *
1921 * LOCK rq(1)->lock
1922 * enqueue X
1923 * UNLOCK rq(1)->lock
1924 *
1925 * LOCK rq(1)->lock // orders against CPU2
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(1)->lock
1929 *
1930 *
1931 * BLOCKING -- aka. SLEEP + WAKEUP
1932 *
1933 * For blocking we (obviously) need to provide the same guarantee as for
1934 * migration. However the means are completely different as there is no lock
1935 * chain to provide order. Instead we do:
1936 *
1937 * 1) smp_store_release(X->on_cpu, 0)
1938 * 2) smp_cond_acquire(!X->on_cpu)
1939 *
1940 * Example:
1941 *
1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1943 *
1944 * LOCK rq(0)->lock LOCK X->pi_lock
1945 * dequeue X
1946 * sched-out X
1947 * smp_store_release(X->on_cpu, 0);
1948 *
1949 * smp_cond_acquire(!X->on_cpu);
1950 * X->state = WAKING
1951 * set_task_cpu(X,2)
1952 *
1953 * LOCK rq(2)->lock
1954 * enqueue X
1955 * X->state = RUNNING
1956 * UNLOCK rq(2)->lock
1957 *
1958 * LOCK rq(2)->lock // orders against CPU1
1959 * sched-out Z
1960 * sched-in X
1961 * UNLOCK rq(2)->lock
1962 *
1963 * UNLOCK X->pi_lock
1964 * UNLOCK rq(0)->lock
1965 *
1966 *
1967 * However; for wakeups there is a second guarantee we must provide, namely we
1968 * must observe the state that lead to our wakeup. That is, not only must our
1969 * task observe its own prior state, it must also observe the stores prior to
1970 * its wakeup.
1971 *
1972 * This means that any means of doing remote wakeups must order the CPU doing
1973 * the wakeup against the CPU the task is going to end up running on. This,
1974 * however, is already required for the regular Program-Order guarantee above,
1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976 *
1977 */
1978
9ed3811a 1979/**
1da177e4 1980 * try_to_wake_up - wake up a thread
9ed3811a 1981 * @p: the thread to be awakened
1da177e4 1982 * @state: the mask of task states that can be woken
9ed3811a 1983 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1984 *
1985 * Put it on the run-queue if it's not already there. The "current"
1986 * thread is always on the run-queue (except when the actual
1987 * re-schedule is in progress), and as such you're allowed to do
1988 * the simpler "current->state = TASK_RUNNING" to mark yourself
1989 * runnable without the overhead of this.
1990 *
e69f6186 1991 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1992 * or @state didn't match @p's state.
1da177e4 1993 */
e4a52bcb
PZ
1994static int
1995try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1996{
1da177e4 1997 unsigned long flags;
c05fbafb 1998 int cpu, success = 0;
2398f2c6 1999
e0acd0a6
ON
2000 /*
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2005 */
2006 smp_mb__before_spinlock();
013fdb80 2007 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2008 if (!(p->state & state))
1da177e4
LT
2009 goto out;
2010
fbd705a0
PZ
2011 trace_sched_waking(p);
2012
c05fbafb 2013 success = 1; /* we're going to change ->state */
1da177e4 2014 cpu = task_cpu(p);
1da177e4 2015
c05fbafb
PZ
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
1da177e4 2018
1da177e4 2019#ifdef CONFIG_SMP
ecf7d01c
PZ
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
e9c84311 2039 /*
c05fbafb
PZ
2040 * If the owning (remote) cpu is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2042 *
2043 * Pairs with the smp_store_release() in finish_lock_switch().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
0970d299 2047 */
b3e0b1b6 2048 smp_cond_acquire(!p->on_cpu);
1da177e4 2049
a8e4f2ea 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2051 p->state = TASK_WAKING;
e7693a36 2052
ac66f547 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
e4a52bcb 2056 set_task_cpu(p, cpu);
f339b9dc 2057 }
1da177e4 2058#endif /* CONFIG_SMP */
1da177e4 2059
b5179ac7 2060 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2061stat:
cb251765
MG
2062 if (schedstat_enabled())
2063 ttwu_stat(p, cpu, wake_flags);
1da177e4 2064out:
013fdb80 2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2066
2067 return success;
2068}
2069
21aa9af0
TH
2070/**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
2073 *
2acca55e 2074 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2076 * the current task.
21aa9af0 2077 */
e7904a28 2078static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2079{
2080 struct rq *rq = task_rq(p);
21aa9af0 2081
383efcd0
TH
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
21aa9af0
TH
2086 lockdep_assert_held(&rq->lock);
2087
2acca55e 2088 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
e7904a28 2095 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2096 raw_spin_unlock(&rq->lock);
2097 raw_spin_lock(&p->pi_lock);
2098 raw_spin_lock(&rq->lock);
e7904a28 2099 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2100 }
2101
21aa9af0 2102 if (!(p->state & TASK_NORMAL))
2acca55e 2103 goto out;
21aa9af0 2104
fbd705a0
PZ
2105 trace_sched_waking(p);
2106
da0c1e65 2107 if (!task_on_rq_queued(p))
d7c01d27
PZ
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109
e7904a28 2110 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2111 if (schedstat_enabled())
2112 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2113out:
2114 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2115}
2116
50fa610a
DH
2117/**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
7ad5b3a5 2129int wake_up_process(struct task_struct *p)
1da177e4 2130{
9067ac85 2131 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2132}
1da177e4
LT
2133EXPORT_SYMBOL(wake_up_process);
2134
7ad5b3a5 2135int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2136{
2137 return try_to_wake_up(p, state, 0);
2138}
2139
a5e7be3b
JL
2140/*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143void __dl_clear_params(struct task_struct *p)
2144{
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
40767b0d
PZ
2152
2153 dl_se->dl_throttled = 0;
40767b0d 2154 dl_se->dl_yielded = 0;
a5e7be3b
JL
2155}
2156
1da177e4
LT
2157/*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
dd41f596
IM
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
5e1576ed 2163static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2164{
fd2f4419
PZ
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
dd41f596
IM
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
f6cf891c 2170 p->se.prev_sum_exec_runtime = 0;
6c594c21 2171 p->se.nr_migrations = 0;
da7a735e 2172 p->se.vruntime = 0;
fd2f4419 2173 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2174
ad936d86
BP
2175#ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177#endif
2178
6cfb0d5d 2179#ifdef CONFIG_SCHEDSTATS
cb251765 2180 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2182#endif
476d139c 2183
aab03e05 2184 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2185 init_dl_task_timer(&p->dl);
a5e7be3b 2186 __dl_clear_params(p);
aab03e05 2187
fa717060 2188 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
476d139c 2193
e107be36
AK
2194#ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196#endif
cbee9f88
PZ
2197
2198#ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
5e1576ed
RR
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
cbee9f88
PZ
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2212 p->numa_work.next = &p->numa_work;
44dba3d5 2213 p->numa_faults = NULL;
7e2703e6
RR
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
8c8a743c 2216
8c8a743c 2217 p->numa_group = NULL;
cbee9f88 2218#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2219}
2220
2a595721
SD
2221DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
1a687c2e 2223#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2224
1a687c2e
MG
2225void set_numabalancing_state(bool enabled)
2226{
2227 if (enabled)
2a595721 2228 static_branch_enable(&sched_numa_balancing);
1a687c2e 2229 else
2a595721 2230 static_branch_disable(&sched_numa_balancing);
1a687c2e 2231}
54a43d54
AK
2232
2233#ifdef CONFIG_PROC_SYSCTL
2234int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236{
2237 struct ctl_table t;
2238 int err;
2a595721 2239 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252}
2253#endif
2254#endif
dd41f596 2255
4698f88c
JP
2256#ifdef CONFIG_SCHEDSTATS
2257
cb251765 2258DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2259static bool __initdata __sched_schedstats = false;
cb251765 2260
cb251765
MG
2261static void set_schedstats(bool enabled)
2262{
2263 if (enabled)
2264 static_branch_enable(&sched_schedstats);
2265 else
2266 static_branch_disable(&sched_schedstats);
2267}
2268
2269void force_schedstat_enabled(void)
2270{
2271 if (!schedstat_enabled()) {
2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 static_branch_enable(&sched_schedstats);
2274 }
2275}
2276
2277static int __init setup_schedstats(char *str)
2278{
2279 int ret = 0;
2280 if (!str)
2281 goto out;
2282
4698f88c
JP
2283 /*
2284 * This code is called before jump labels have been set up, so we can't
2285 * change the static branch directly just yet. Instead set a temporary
2286 * variable so init_schedstats() can do it later.
2287 */
cb251765 2288 if (!strcmp(str, "enable")) {
4698f88c 2289 __sched_schedstats = true;
cb251765
MG
2290 ret = 1;
2291 } else if (!strcmp(str, "disable")) {
4698f88c 2292 __sched_schedstats = false;
cb251765
MG
2293 ret = 1;
2294 }
2295out:
2296 if (!ret)
2297 pr_warn("Unable to parse schedstats=\n");
2298
2299 return ret;
2300}
2301__setup("schedstats=", setup_schedstats);
2302
4698f88c
JP
2303static void __init init_schedstats(void)
2304{
2305 set_schedstats(__sched_schedstats);
2306}
2307
cb251765
MG
2308#ifdef CONFIG_PROC_SYSCTL
2309int sysctl_schedstats(struct ctl_table *table, int write,
2310 void __user *buffer, size_t *lenp, loff_t *ppos)
2311{
2312 struct ctl_table t;
2313 int err;
2314 int state = static_branch_likely(&sched_schedstats);
2315
2316 if (write && !capable(CAP_SYS_ADMIN))
2317 return -EPERM;
2318
2319 t = *table;
2320 t.data = &state;
2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 if (err < 0)
2323 return err;
2324 if (write)
2325 set_schedstats(state);
2326 return err;
2327}
4698f88c
JP
2328#endif /* CONFIG_PROC_SYSCTL */
2329#else /* !CONFIG_SCHEDSTATS */
2330static inline void init_schedstats(void) {}
2331#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2332
2333/*
2334 * fork()/clone()-time setup:
2335 */
aab03e05 2336int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2337{
0122ec5b 2338 unsigned long flags;
dd41f596
IM
2339 int cpu = get_cpu();
2340
5e1576ed 2341 __sched_fork(clone_flags, p);
06b83b5f 2342 /*
0017d735 2343 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2344 * nobody will actually run it, and a signal or other external
2345 * event cannot wake it up and insert it on the runqueue either.
2346 */
0017d735 2347 p->state = TASK_RUNNING;
dd41f596 2348
c350a04e
MG
2349 /*
2350 * Make sure we do not leak PI boosting priority to the child.
2351 */
2352 p->prio = current->normal_prio;
2353
b9dc29e7
MG
2354 /*
2355 * Revert to default priority/policy on fork if requested.
2356 */
2357 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2359 p->policy = SCHED_NORMAL;
6c697bdf 2360 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2361 p->rt_priority = 0;
2362 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 p->static_prio = NICE_TO_PRIO(0);
2364
2365 p->prio = p->normal_prio = __normal_prio(p);
2366 set_load_weight(p);
6c697bdf 2367
b9dc29e7
MG
2368 /*
2369 * We don't need the reset flag anymore after the fork. It has
2370 * fulfilled its duty:
2371 */
2372 p->sched_reset_on_fork = 0;
2373 }
ca94c442 2374
aab03e05
DF
2375 if (dl_prio(p->prio)) {
2376 put_cpu();
2377 return -EAGAIN;
2378 } else if (rt_prio(p->prio)) {
2379 p->sched_class = &rt_sched_class;
2380 } else {
2ddbf952 2381 p->sched_class = &fair_sched_class;
aab03e05 2382 }
b29739f9 2383
cd29fe6f
PZ
2384 if (p->sched_class->task_fork)
2385 p->sched_class->task_fork(p);
2386
86951599
PZ
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
0122ec5b 2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2395 set_task_cpu(p, cpu);
0122ec5b 2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2397
f6db8347 2398#ifdef CONFIG_SCHED_INFO
dd41f596 2399 if (likely(sched_info_on()))
52f17b6c 2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2401#endif
3ca7a440
PZ
2402#if defined(CONFIG_SMP)
2403 p->on_cpu = 0;
4866cde0 2404#endif
01028747 2405 init_task_preempt_count(p);
806c09a7 2406#ifdef CONFIG_SMP
917b627d 2407 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2408 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2409#endif
917b627d 2410
476d139c 2411 put_cpu();
aab03e05 2412 return 0;
1da177e4
LT
2413}
2414
332ac17e
DF
2415unsigned long to_ratio(u64 period, u64 runtime)
2416{
2417 if (runtime == RUNTIME_INF)
2418 return 1ULL << 20;
2419
2420 /*
2421 * Doing this here saves a lot of checks in all
2422 * the calling paths, and returning zero seems
2423 * safe for them anyway.
2424 */
2425 if (period == 0)
2426 return 0;
2427
2428 return div64_u64(runtime << 20, period);
2429}
2430
2431#ifdef CONFIG_SMP
2432inline struct dl_bw *dl_bw_of(int i)
2433{
f78f5b90
PM
2434 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2435 "sched RCU must be held");
332ac17e
DF
2436 return &cpu_rq(i)->rd->dl_bw;
2437}
2438
de212f18 2439static inline int dl_bw_cpus(int i)
332ac17e 2440{
de212f18
PZ
2441 struct root_domain *rd = cpu_rq(i)->rd;
2442 int cpus = 0;
2443
f78f5b90
PM
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
de212f18
PZ
2446 for_each_cpu_and(i, rd->span, cpu_active_mask)
2447 cpus++;
2448
2449 return cpus;
332ac17e
DF
2450}
2451#else
2452inline struct dl_bw *dl_bw_of(int i)
2453{
2454 return &cpu_rq(i)->dl.dl_bw;
2455}
2456
de212f18 2457static inline int dl_bw_cpus(int i)
332ac17e
DF
2458{
2459 return 1;
2460}
2461#endif
2462
332ac17e
DF
2463/*
2464 * We must be sure that accepting a new task (or allowing changing the
2465 * parameters of an existing one) is consistent with the bandwidth
2466 * constraints. If yes, this function also accordingly updates the currently
2467 * allocated bandwidth to reflect the new situation.
2468 *
2469 * This function is called while holding p's rq->lock.
40767b0d
PZ
2470 *
2471 * XXX we should delay bw change until the task's 0-lag point, see
2472 * __setparam_dl().
332ac17e
DF
2473 */
2474static int dl_overflow(struct task_struct *p, int policy,
2475 const struct sched_attr *attr)
2476{
2477
2478 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2479 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2480 u64 runtime = attr->sched_runtime;
2481 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2482 int cpus, err = -1;
332ac17e 2483
fec148c0
XP
2484 /* !deadline task may carry old deadline bandwidth */
2485 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2486 return 0;
2487
2488 /*
2489 * Either if a task, enters, leave, or stays -deadline but changes
2490 * its parameters, we may need to update accordingly the total
2491 * allocated bandwidth of the container.
2492 */
2493 raw_spin_lock(&dl_b->lock);
de212f18 2494 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2495 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2496 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2497 __dl_add(dl_b, new_bw);
2498 err = 0;
2499 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2500 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2501 __dl_clear(dl_b, p->dl.dl_bw);
2502 __dl_add(dl_b, new_bw);
2503 err = 0;
2504 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2505 __dl_clear(dl_b, p->dl.dl_bw);
2506 err = 0;
2507 }
2508 raw_spin_unlock(&dl_b->lock);
2509
2510 return err;
2511}
2512
2513extern void init_dl_bw(struct dl_bw *dl_b);
2514
1da177e4
LT
2515/*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
3e51e3ed 2522void wake_up_new_task(struct task_struct *p)
1da177e4 2523{
eb580751 2524 struct rq_flags rf;
dd41f596 2525 struct rq *rq;
fabf318e 2526
98d8fd81
MR
2527 /* Initialize new task's runnable average */
2528 init_entity_runnable_average(&p->se);
eb580751 2529 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
fabf318e
PZ
2530#ifdef CONFIG_SMP
2531 /*
2532 * Fork balancing, do it here and not earlier because:
2533 * - cpus_allowed can change in the fork path
2534 * - any previously selected cpu might disappear through hotplug
fabf318e 2535 */
ac66f547 2536 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2537#endif
2b8c41da
YD
2538 /* Post initialize new task's util average when its cfs_rq is set */
2539 post_init_entity_util_avg(&p->se);
0017d735 2540
eb580751 2541 rq = __task_rq_lock(p, &rf);
cd29fe6f 2542 activate_task(rq, p, 0);
da0c1e65 2543 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2544 trace_sched_wakeup_new(p);
a7558e01 2545 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2546#ifdef CONFIG_SMP
0aaafaab
PZ
2547 if (p->sched_class->task_woken) {
2548 /*
2549 * Nothing relies on rq->lock after this, so its fine to
2550 * drop it.
2551 */
e7904a28 2552 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2553 p->sched_class->task_woken(rq, p);
e7904a28 2554 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2555 }
9a897c5a 2556#endif
eb580751 2557 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2558}
2559
e107be36
AK
2560#ifdef CONFIG_PREEMPT_NOTIFIERS
2561
1cde2930
PZ
2562static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2563
2ecd9d29
PZ
2564void preempt_notifier_inc(void)
2565{
2566 static_key_slow_inc(&preempt_notifier_key);
2567}
2568EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2569
2570void preempt_notifier_dec(void)
2571{
2572 static_key_slow_dec(&preempt_notifier_key);
2573}
2574EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2575
e107be36 2576/**
80dd99b3 2577 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2578 * @notifier: notifier struct to register
e107be36
AK
2579 */
2580void preempt_notifier_register(struct preempt_notifier *notifier)
2581{
2ecd9d29
PZ
2582 if (!static_key_false(&preempt_notifier_key))
2583 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2584
e107be36
AK
2585 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2586}
2587EXPORT_SYMBOL_GPL(preempt_notifier_register);
2588
2589/**
2590 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2591 * @notifier: notifier struct to unregister
e107be36 2592 *
d84525a8 2593 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2594 */
2595void preempt_notifier_unregister(struct preempt_notifier *notifier)
2596{
2597 hlist_del(&notifier->link);
2598}
2599EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2600
1cde2930 2601static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2602{
2603 struct preempt_notifier *notifier;
e107be36 2604
b67bfe0d 2605 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2606 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2607}
2608
1cde2930
PZ
2609static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610{
2611 if (static_key_false(&preempt_notifier_key))
2612 __fire_sched_in_preempt_notifiers(curr);
2613}
2614
e107be36 2615static void
1cde2930
PZ
2616__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2617 struct task_struct *next)
e107be36
AK
2618{
2619 struct preempt_notifier *notifier;
e107be36 2620
b67bfe0d 2621 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2622 notifier->ops->sched_out(notifier, next);
2623}
2624
1cde2930
PZ
2625static __always_inline void
2626fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
2628{
2629 if (static_key_false(&preempt_notifier_key))
2630 __fire_sched_out_preempt_notifiers(curr, next);
2631}
2632
6d6bc0ad 2633#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2634
1cde2930 2635static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2636{
2637}
2638
1cde2930 2639static inline void
e107be36
AK
2640fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642{
2643}
2644
6d6bc0ad 2645#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2646
4866cde0
NP
2647/**
2648 * prepare_task_switch - prepare to switch tasks
2649 * @rq: the runqueue preparing to switch
421cee29 2650 * @prev: the current task that is being switched out
4866cde0
NP
2651 * @next: the task we are going to switch to.
2652 *
2653 * This is called with the rq lock held and interrupts off. It must
2654 * be paired with a subsequent finish_task_switch after the context
2655 * switch.
2656 *
2657 * prepare_task_switch sets up locking and calls architecture specific
2658 * hooks.
2659 */
e107be36
AK
2660static inline void
2661prepare_task_switch(struct rq *rq, struct task_struct *prev,
2662 struct task_struct *next)
4866cde0 2663{
43148951 2664 sched_info_switch(rq, prev, next);
fe4b04fa 2665 perf_event_task_sched_out(prev, next);
e107be36 2666 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669}
2670
1da177e4
LT
2671/**
2672 * finish_task_switch - clean up after a task-switch
2673 * @prev: the thread we just switched away from.
2674 *
4866cde0
NP
2675 * finish_task_switch must be called after the context switch, paired
2676 * with a prepare_task_switch call before the context switch.
2677 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2678 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2679 *
2680 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2681 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2682 * with the lock held can cause deadlocks; see schedule() for
2683 * details.)
dfa50b60
ON
2684 *
2685 * The context switch have flipped the stack from under us and restored the
2686 * local variables which were saved when this task called schedule() in the
2687 * past. prev == current is still correct but we need to recalculate this_rq
2688 * because prev may have moved to another CPU.
1da177e4 2689 */
dfa50b60 2690static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2691 __releases(rq->lock)
2692{
dfa50b60 2693 struct rq *rq = this_rq();
1da177e4 2694 struct mm_struct *mm = rq->prev_mm;
55a101f8 2695 long prev_state;
1da177e4 2696
609ca066
PZ
2697 /*
2698 * The previous task will have left us with a preempt_count of 2
2699 * because it left us after:
2700 *
2701 * schedule()
2702 * preempt_disable(); // 1
2703 * __schedule()
2704 * raw_spin_lock_irq(&rq->lock) // 2
2705 *
2706 * Also, see FORK_PREEMPT_COUNT.
2707 */
e2bf1c4b
PZ
2708 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2709 "corrupted preempt_count: %s/%d/0x%x\n",
2710 current->comm, current->pid, preempt_count()))
2711 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2712
1da177e4
LT
2713 rq->prev_mm = NULL;
2714
2715 /*
2716 * A task struct has one reference for the use as "current".
c394cc9f 2717 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2718 * schedule one last time. The schedule call will never return, and
2719 * the scheduled task must drop that reference.
95913d97
PZ
2720 *
2721 * We must observe prev->state before clearing prev->on_cpu (in
2722 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2723 * running on another CPU and we could rave with its RUNNING -> DEAD
2724 * transition, resulting in a double drop.
1da177e4 2725 */
55a101f8 2726 prev_state = prev->state;
bf9fae9f 2727 vtime_task_switch(prev);
a8d757ef 2728 perf_event_task_sched_in(prev, current);
4866cde0 2729 finish_lock_switch(rq, prev);
01f23e16 2730 finish_arch_post_lock_switch();
e8fa1362 2731
e107be36 2732 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2733 if (mm)
2734 mmdrop(mm);
c394cc9f 2735 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2736 if (prev->sched_class->task_dead)
2737 prev->sched_class->task_dead(prev);
2738
c6fd91f0 2739 /*
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
9761eea8 2742 */
c6fd91f0 2743 kprobe_flush_task(prev);
1da177e4 2744 put_task_struct(prev);
c6fd91f0 2745 }
99e5ada9 2746
de734f89 2747 tick_nohz_task_switch();
dfa50b60 2748 return rq;
1da177e4
LT
2749}
2750
3f029d3c
GH
2751#ifdef CONFIG_SMP
2752
3f029d3c 2753/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2754static void __balance_callback(struct rq *rq)
3f029d3c 2755{
e3fca9e7
PZ
2756 struct callback_head *head, *next;
2757 void (*func)(struct rq *rq);
2758 unsigned long flags;
3f029d3c 2759
e3fca9e7
PZ
2760 raw_spin_lock_irqsave(&rq->lock, flags);
2761 head = rq->balance_callback;
2762 rq->balance_callback = NULL;
2763 while (head) {
2764 func = (void (*)(struct rq *))head->func;
2765 next = head->next;
2766 head->next = NULL;
2767 head = next;
3f029d3c 2768
e3fca9e7 2769 func(rq);
3f029d3c 2770 }
e3fca9e7
PZ
2771 raw_spin_unlock_irqrestore(&rq->lock, flags);
2772}
2773
2774static inline void balance_callback(struct rq *rq)
2775{
2776 if (unlikely(rq->balance_callback))
2777 __balance_callback(rq);
3f029d3c
GH
2778}
2779
2780#else
da19ab51 2781
e3fca9e7 2782static inline void balance_callback(struct rq *rq)
3f029d3c 2783{
1da177e4
LT
2784}
2785
3f029d3c
GH
2786#endif
2787
1da177e4
LT
2788/**
2789 * schedule_tail - first thing a freshly forked thread must call.
2790 * @prev: the thread we just switched away from.
2791 */
722a9f92 2792asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2793 __releases(rq->lock)
2794{
1a43a14a 2795 struct rq *rq;
da19ab51 2796
609ca066
PZ
2797 /*
2798 * New tasks start with FORK_PREEMPT_COUNT, see there and
2799 * finish_task_switch() for details.
2800 *
2801 * finish_task_switch() will drop rq->lock() and lower preempt_count
2802 * and the preempt_enable() will end up enabling preemption (on
2803 * PREEMPT_COUNT kernels).
2804 */
2805
dfa50b60 2806 rq = finish_task_switch(prev);
e3fca9e7 2807 balance_callback(rq);
1a43a14a 2808 preempt_enable();
70b97a7f 2809
1da177e4 2810 if (current->set_child_tid)
b488893a 2811 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2812}
2813
2814/*
dfa50b60 2815 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2816 */
04936948 2817static __always_inline struct rq *
70b97a7f 2818context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2819 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2820{
dd41f596 2821 struct mm_struct *mm, *oldmm;
1da177e4 2822
e107be36 2823 prepare_task_switch(rq, prev, next);
fe4b04fa 2824
dd41f596
IM
2825 mm = next->mm;
2826 oldmm = prev->active_mm;
9226d125
ZA
2827 /*
2828 * For paravirt, this is coupled with an exit in switch_to to
2829 * combine the page table reload and the switch backend into
2830 * one hypercall.
2831 */
224101ed 2832 arch_start_context_switch(prev);
9226d125 2833
31915ab4 2834 if (!mm) {
1da177e4
LT
2835 next->active_mm = oldmm;
2836 atomic_inc(&oldmm->mm_count);
2837 enter_lazy_tlb(oldmm, next);
2838 } else
f98db601 2839 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2840
31915ab4 2841 if (!prev->mm) {
1da177e4 2842 prev->active_mm = NULL;
1da177e4
LT
2843 rq->prev_mm = oldmm;
2844 }
3a5f5e48
IM
2845 /*
2846 * Since the runqueue lock will be released by the next
2847 * task (which is an invalid locking op but in the case
2848 * of the scheduler it's an obvious special-case), so we
2849 * do an early lockdep release here:
2850 */
e7904a28 2851 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2852 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2853
2854 /* Here we just switch the register state and the stack. */
2855 switch_to(prev, next, prev);
dd41f596 2856 barrier();
dfa50b60
ON
2857
2858 return finish_task_switch(prev);
1da177e4
LT
2859}
2860
2861/*
1c3e8264 2862 * nr_running and nr_context_switches:
1da177e4
LT
2863 *
2864 * externally visible scheduler statistics: current number of runnable
1c3e8264 2865 * threads, total number of context switches performed since bootup.
1da177e4
LT
2866 */
2867unsigned long nr_running(void)
2868{
2869 unsigned long i, sum = 0;
2870
2871 for_each_online_cpu(i)
2872 sum += cpu_rq(i)->nr_running;
2873
2874 return sum;
f711f609 2875}
1da177e4 2876
2ee507c4
TC
2877/*
2878 * Check if only the current task is running on the cpu.
00cc1633
DD
2879 *
2880 * Caution: this function does not check that the caller has disabled
2881 * preemption, thus the result might have a time-of-check-to-time-of-use
2882 * race. The caller is responsible to use it correctly, for example:
2883 *
2884 * - from a non-preemptable section (of course)
2885 *
2886 * - from a thread that is bound to a single CPU
2887 *
2888 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2889 */
2890bool single_task_running(void)
2891{
00cc1633 2892 return raw_rq()->nr_running == 1;
2ee507c4
TC
2893}
2894EXPORT_SYMBOL(single_task_running);
2895
1da177e4 2896unsigned long long nr_context_switches(void)
46cb4b7c 2897{
cc94abfc
SR
2898 int i;
2899 unsigned long long sum = 0;
46cb4b7c 2900
0a945022 2901 for_each_possible_cpu(i)
1da177e4 2902 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2903
1da177e4
LT
2904 return sum;
2905}
483b4ee6 2906
1da177e4
LT
2907unsigned long nr_iowait(void)
2908{
2909 unsigned long i, sum = 0;
483b4ee6 2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4 2912 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2913
1da177e4
LT
2914 return sum;
2915}
483b4ee6 2916
8c215bd3 2917unsigned long nr_iowait_cpu(int cpu)
69d25870 2918{
8c215bd3 2919 struct rq *this = cpu_rq(cpu);
69d25870
AV
2920 return atomic_read(&this->nr_iowait);
2921}
46cb4b7c 2922
372ba8cb
MG
2923void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2924{
3289bdb4
PZ
2925 struct rq *rq = this_rq();
2926 *nr_waiters = atomic_read(&rq->nr_iowait);
2927 *load = rq->load.weight;
372ba8cb
MG
2928}
2929
dd41f596 2930#ifdef CONFIG_SMP
8a0be9ef 2931
46cb4b7c 2932/*
38022906
PZ
2933 * sched_exec - execve() is a valuable balancing opportunity, because at
2934 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2935 */
38022906 2936void sched_exec(void)
46cb4b7c 2937{
38022906 2938 struct task_struct *p = current;
1da177e4 2939 unsigned long flags;
0017d735 2940 int dest_cpu;
46cb4b7c 2941
8f42ced9 2942 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2943 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2944 if (dest_cpu == smp_processor_id())
2945 goto unlock;
38022906 2946
8f42ced9 2947 if (likely(cpu_active(dest_cpu))) {
969c7921 2948 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2949
8f42ced9
PZ
2950 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2951 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2952 return;
2953 }
0017d735 2954unlock:
8f42ced9 2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2956}
dd41f596 2957
1da177e4
LT
2958#endif
2959
1da177e4 2960DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2961DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2962
2963EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2964EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2965
c5f8d995
HS
2966/*
2967 * Return accounted runtime for the task.
2968 * In case the task is currently running, return the runtime plus current's
2969 * pending runtime that have not been accounted yet.
2970 */
2971unsigned long long task_sched_runtime(struct task_struct *p)
2972{
eb580751 2973 struct rq_flags rf;
c5f8d995 2974 struct rq *rq;
6e998916 2975 u64 ns;
c5f8d995 2976
911b2898
PZ
2977#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2978 /*
2979 * 64-bit doesn't need locks to atomically read a 64bit value.
2980 * So we have a optimization chance when the task's delta_exec is 0.
2981 * Reading ->on_cpu is racy, but this is ok.
2982 *
2983 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2984 * If we race with it entering cpu, unaccounted time is 0. This is
2985 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2986 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2987 * been accounted, so we're correct here as well.
911b2898 2988 */
da0c1e65 2989 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2990 return p->se.sum_exec_runtime;
2991#endif
2992
eb580751 2993 rq = task_rq_lock(p, &rf);
6e998916
SG
2994 /*
2995 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2996 * project cycles that may never be accounted to this
2997 * thread, breaking clock_gettime().
2998 */
2999 if (task_current(rq, p) && task_on_rq_queued(p)) {
3000 update_rq_clock(rq);
3001 p->sched_class->update_curr(rq);
3002 }
3003 ns = p->se.sum_exec_runtime;
eb580751 3004 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3005
3006 return ns;
3007}
48f24c4d 3008
7835b98b
CL
3009/*
3010 * This function gets called by the timer code, with HZ frequency.
3011 * We call it with interrupts disabled.
7835b98b
CL
3012 */
3013void scheduler_tick(void)
3014{
7835b98b
CL
3015 int cpu = smp_processor_id();
3016 struct rq *rq = cpu_rq(cpu);
dd41f596 3017 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3018
3019 sched_clock_tick();
dd41f596 3020
05fa785c 3021 raw_spin_lock(&rq->lock);
3e51f33f 3022 update_rq_clock(rq);
fa85ae24 3023 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3024 cpu_load_update_active(rq);
3289bdb4 3025 calc_global_load_tick(rq);
05fa785c 3026 raw_spin_unlock(&rq->lock);
7835b98b 3027
e9d2b064 3028 perf_event_task_tick();
e220d2dc 3029
e418e1c2 3030#ifdef CONFIG_SMP
6eb57e0d 3031 rq->idle_balance = idle_cpu(cpu);
7caff66f 3032 trigger_load_balance(rq);
e418e1c2 3033#endif
265f22a9 3034 rq_last_tick_reset(rq);
1da177e4
LT
3035}
3036
265f22a9
FW
3037#ifdef CONFIG_NO_HZ_FULL
3038/**
3039 * scheduler_tick_max_deferment
3040 *
3041 * Keep at least one tick per second when a single
3042 * active task is running because the scheduler doesn't
3043 * yet completely support full dynticks environment.
3044 *
3045 * This makes sure that uptime, CFS vruntime, load
3046 * balancing, etc... continue to move forward, even
3047 * with a very low granularity.
e69f6186
YB
3048 *
3049 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3050 */
3051u64 scheduler_tick_max_deferment(void)
3052{
3053 struct rq *rq = this_rq();
316c1608 3054 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3055
3056 next = rq->last_sched_tick + HZ;
3057
3058 if (time_before_eq(next, now))
3059 return 0;
3060
8fe8ff09 3061 return jiffies_to_nsecs(next - now);
1da177e4 3062}
265f22a9 3063#endif
1da177e4 3064
7e49fcce
SR
3065#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3066 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3067/*
3068 * If the value passed in is equal to the current preempt count
3069 * then we just disabled preemption. Start timing the latency.
3070 */
3071static inline void preempt_latency_start(int val)
3072{
3073 if (preempt_count() == val) {
3074 unsigned long ip = get_lock_parent_ip();
3075#ifdef CONFIG_DEBUG_PREEMPT
3076 current->preempt_disable_ip = ip;
3077#endif
3078 trace_preempt_off(CALLER_ADDR0, ip);
3079 }
3080}
7e49fcce 3081
edafe3a5 3082void preempt_count_add(int val)
1da177e4 3083{
6cd8a4bb 3084#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3085 /*
3086 * Underflow?
3087 */
9a11b49a
IM
3088 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3089 return;
6cd8a4bb 3090#endif
bdb43806 3091 __preempt_count_add(val);
6cd8a4bb 3092#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3093 /*
3094 * Spinlock count overflowing soon?
3095 */
33859f7f
MOS
3096 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3097 PREEMPT_MASK - 10);
6cd8a4bb 3098#endif
47252cfb 3099 preempt_latency_start(val);
1da177e4 3100}
bdb43806 3101EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3102NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3103
47252cfb
SR
3104/*
3105 * If the value passed in equals to the current preempt count
3106 * then we just enabled preemption. Stop timing the latency.
3107 */
3108static inline void preempt_latency_stop(int val)
3109{
3110 if (preempt_count() == val)
3111 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3112}
3113
edafe3a5 3114void preempt_count_sub(int val)
1da177e4 3115{
6cd8a4bb 3116#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3117 /*
3118 * Underflow?
3119 */
01e3eb82 3120 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3121 return;
1da177e4
LT
3122 /*
3123 * Is the spinlock portion underflowing?
3124 */
9a11b49a
IM
3125 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3126 !(preempt_count() & PREEMPT_MASK)))
3127 return;
6cd8a4bb 3128#endif
9a11b49a 3129
47252cfb 3130 preempt_latency_stop(val);
bdb43806 3131 __preempt_count_sub(val);
1da177e4 3132}
bdb43806 3133EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3134NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3135
47252cfb
SR
3136#else
3137static inline void preempt_latency_start(int val) { }
3138static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3139#endif
3140
3141/*
dd41f596 3142 * Print scheduling while atomic bug:
1da177e4 3143 */
dd41f596 3144static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3145{
664dfa65
DJ
3146 if (oops_in_progress)
3147 return;
3148
3df0fc5b
PZ
3149 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3150 prev->comm, prev->pid, preempt_count());
838225b4 3151
dd41f596 3152 debug_show_held_locks(prev);
e21f5b15 3153 print_modules();
dd41f596
IM
3154 if (irqs_disabled())
3155 print_irqtrace_events(prev);
8f47b187
TG
3156#ifdef CONFIG_DEBUG_PREEMPT
3157 if (in_atomic_preempt_off()) {
3158 pr_err("Preemption disabled at:");
3159 print_ip_sym(current->preempt_disable_ip);
3160 pr_cont("\n");
3161 }
3162#endif
6135fc1e 3163 dump_stack();
373d4d09 3164 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3165}
1da177e4 3166
dd41f596
IM
3167/*
3168 * Various schedule()-time debugging checks and statistics:
3169 */
3170static inline void schedule_debug(struct task_struct *prev)
3171{
0d9e2632 3172#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3173 if (task_stack_end_corrupted(prev))
3174 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3175#endif
b99def8b 3176
1dc0fffc 3177 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3178 __schedule_bug(prev);
1dc0fffc
PZ
3179 preempt_count_set(PREEMPT_DISABLED);
3180 }
b3fbab05 3181 rcu_sleep_check();
dd41f596 3182
1da177e4
LT
3183 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3184
2d72376b 3185 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3186}
3187
3188/*
3189 * Pick up the highest-prio task:
3190 */
3191static inline struct task_struct *
e7904a28 3192pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3193{
37e117c0 3194 const struct sched_class *class = &fair_sched_class;
dd41f596 3195 struct task_struct *p;
1da177e4
LT
3196
3197 /*
dd41f596
IM
3198 * Optimization: we know that if all tasks are in
3199 * the fair class we can call that function directly:
1da177e4 3200 */
37e117c0 3201 if (likely(prev->sched_class == class &&
38033c37 3202 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3203 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3204 if (unlikely(p == RETRY_TASK))
3205 goto again;
3206
3207 /* assumes fair_sched_class->next == idle_sched_class */
3208 if (unlikely(!p))
e7904a28 3209 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3210
3211 return p;
1da177e4
LT
3212 }
3213
37e117c0 3214again:
34f971f6 3215 for_each_class(class) {
e7904a28 3216 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3217 if (p) {
3218 if (unlikely(p == RETRY_TASK))
3219 goto again;
dd41f596 3220 return p;
37e117c0 3221 }
dd41f596 3222 }
34f971f6
PZ
3223
3224 BUG(); /* the idle class will always have a runnable task */
dd41f596 3225}
1da177e4 3226
dd41f596 3227/*
c259e01a 3228 * __schedule() is the main scheduler function.
edde96ea
PE
3229 *
3230 * The main means of driving the scheduler and thus entering this function are:
3231 *
3232 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3233 *
3234 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3235 * paths. For example, see arch/x86/entry_64.S.
3236 *
3237 * To drive preemption between tasks, the scheduler sets the flag in timer
3238 * interrupt handler scheduler_tick().
3239 *
3240 * 3. Wakeups don't really cause entry into schedule(). They add a
3241 * task to the run-queue and that's it.
3242 *
3243 * Now, if the new task added to the run-queue preempts the current
3244 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3245 * called on the nearest possible occasion:
3246 *
3247 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3248 *
3249 * - in syscall or exception context, at the next outmost
3250 * preempt_enable(). (this might be as soon as the wake_up()'s
3251 * spin_unlock()!)
3252 *
3253 * - in IRQ context, return from interrupt-handler to
3254 * preemptible context
3255 *
3256 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3257 * then at the next:
3258 *
3259 * - cond_resched() call
3260 * - explicit schedule() call
3261 * - return from syscall or exception to user-space
3262 * - return from interrupt-handler to user-space
bfd9b2b5 3263 *
b30f0e3f 3264 * WARNING: must be called with preemption disabled!
dd41f596 3265 */
499d7955 3266static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3267{
3268 struct task_struct *prev, *next;
67ca7bde 3269 unsigned long *switch_count;
e7904a28 3270 struct pin_cookie cookie;
dd41f596 3271 struct rq *rq;
31656519 3272 int cpu;
dd41f596 3273
dd41f596
IM
3274 cpu = smp_processor_id();
3275 rq = cpu_rq(cpu);
dd41f596 3276 prev = rq->curr;
dd41f596 3277
b99def8b
PZ
3278 /*
3279 * do_exit() calls schedule() with preemption disabled as an exception;
3280 * however we must fix that up, otherwise the next task will see an
3281 * inconsistent (higher) preempt count.
3282 *
3283 * It also avoids the below schedule_debug() test from complaining
3284 * about this.
3285 */
3286 if (unlikely(prev->state == TASK_DEAD))
3287 preempt_enable_no_resched_notrace();
3288
dd41f596 3289 schedule_debug(prev);
1da177e4 3290
31656519 3291 if (sched_feat(HRTICK))
f333fdc9 3292 hrtick_clear(rq);
8f4d37ec 3293
46a5d164
PM
3294 local_irq_disable();
3295 rcu_note_context_switch();
3296
e0acd0a6
ON
3297 /*
3298 * Make sure that signal_pending_state()->signal_pending() below
3299 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3300 * done by the caller to avoid the race with signal_wake_up().
3301 */
3302 smp_mb__before_spinlock();
46a5d164 3303 raw_spin_lock(&rq->lock);
e7904a28 3304 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3305
9edfbfed
PZ
3306 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3307
246d86b5 3308 switch_count = &prev->nivcsw;
fc13aeba 3309 if (!preempt && prev->state) {
21aa9af0 3310 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3311 prev->state = TASK_RUNNING;
21aa9af0 3312 } else {
2acca55e
PZ
3313 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3314 prev->on_rq = 0;
3315
21aa9af0 3316 /*
2acca55e
PZ
3317 * If a worker went to sleep, notify and ask workqueue
3318 * whether it wants to wake up a task to maintain
3319 * concurrency.
21aa9af0
TH
3320 */
3321 if (prev->flags & PF_WQ_WORKER) {
3322 struct task_struct *to_wakeup;
3323
9b7f6597 3324 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3325 if (to_wakeup)
e7904a28 3326 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3327 }
21aa9af0 3328 }
dd41f596 3329 switch_count = &prev->nvcsw;
1da177e4
LT
3330 }
3331
9edfbfed 3332 if (task_on_rq_queued(prev))
606dba2e
PZ
3333 update_rq_clock(rq);
3334
e7904a28 3335 next = pick_next_task(rq, prev, cookie);
f26f9aff 3336 clear_tsk_need_resched(prev);
f27dde8d 3337 clear_preempt_need_resched();
9edfbfed 3338 rq->clock_skip_update = 0;
1da177e4 3339
1da177e4 3340 if (likely(prev != next)) {
1da177e4
LT
3341 rq->nr_switches++;
3342 rq->curr = next;
3343 ++*switch_count;
3344
c73464b1 3345 trace_sched_switch(preempt, prev, next);
e7904a28 3346 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3347 } else {
e7904a28 3348 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3349 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3350 }
1da177e4 3351
e3fca9e7 3352 balance_callback(rq);
1da177e4 3353}
8e05e96a 3354STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3355
9c40cef2
TG
3356static inline void sched_submit_work(struct task_struct *tsk)
3357{
3c7d5184 3358 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3359 return;
3360 /*
3361 * If we are going to sleep and we have plugged IO queued,
3362 * make sure to submit it to avoid deadlocks.
3363 */
3364 if (blk_needs_flush_plug(tsk))
3365 blk_schedule_flush_plug(tsk);
3366}
3367
722a9f92 3368asmlinkage __visible void __sched schedule(void)
c259e01a 3369{
9c40cef2
TG
3370 struct task_struct *tsk = current;
3371
3372 sched_submit_work(tsk);
bfd9b2b5 3373 do {
b30f0e3f 3374 preempt_disable();
fc13aeba 3375 __schedule(false);
b30f0e3f 3376 sched_preempt_enable_no_resched();
bfd9b2b5 3377 } while (need_resched());
c259e01a 3378}
1da177e4
LT
3379EXPORT_SYMBOL(schedule);
3380
91d1aa43 3381#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3382asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3383{
3384 /*
3385 * If we come here after a random call to set_need_resched(),
3386 * or we have been woken up remotely but the IPI has not yet arrived,
3387 * we haven't yet exited the RCU idle mode. Do it here manually until
3388 * we find a better solution.
7cc78f8f
AL
3389 *
3390 * NB: There are buggy callers of this function. Ideally we
c467ea76 3391 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3392 * too frequently to make sense yet.
20ab65e3 3393 */
7cc78f8f 3394 enum ctx_state prev_state = exception_enter();
20ab65e3 3395 schedule();
7cc78f8f 3396 exception_exit(prev_state);
20ab65e3
FW
3397}
3398#endif
3399
c5491ea7
TG
3400/**
3401 * schedule_preempt_disabled - called with preemption disabled
3402 *
3403 * Returns with preemption disabled. Note: preempt_count must be 1
3404 */
3405void __sched schedule_preempt_disabled(void)
3406{
ba74c144 3407 sched_preempt_enable_no_resched();
c5491ea7
TG
3408 schedule();
3409 preempt_disable();
3410}
3411
06b1f808 3412static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3413{
3414 do {
47252cfb
SR
3415 /*
3416 * Because the function tracer can trace preempt_count_sub()
3417 * and it also uses preempt_enable/disable_notrace(), if
3418 * NEED_RESCHED is set, the preempt_enable_notrace() called
3419 * by the function tracer will call this function again and
3420 * cause infinite recursion.
3421 *
3422 * Preemption must be disabled here before the function
3423 * tracer can trace. Break up preempt_disable() into two
3424 * calls. One to disable preemption without fear of being
3425 * traced. The other to still record the preemption latency,
3426 * which can also be traced by the function tracer.
3427 */
499d7955 3428 preempt_disable_notrace();
47252cfb 3429 preempt_latency_start(1);
fc13aeba 3430 __schedule(true);
47252cfb 3431 preempt_latency_stop(1);
499d7955 3432 preempt_enable_no_resched_notrace();
a18b5d01
FW
3433
3434 /*
3435 * Check again in case we missed a preemption opportunity
3436 * between schedule and now.
3437 */
a18b5d01
FW
3438 } while (need_resched());
3439}
3440
1da177e4
LT
3441#ifdef CONFIG_PREEMPT
3442/*
2ed6e34f 3443 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3444 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3445 * occur there and call schedule directly.
3446 */
722a9f92 3447asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3448{
1da177e4
LT
3449 /*
3450 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3451 * we do not want to preempt the current task. Just return..
1da177e4 3452 */
fbb00b56 3453 if (likely(!preemptible()))
1da177e4
LT
3454 return;
3455
a18b5d01 3456 preempt_schedule_common();
1da177e4 3457}
376e2424 3458NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3459EXPORT_SYMBOL(preempt_schedule);
009f60e2 3460
009f60e2 3461/**
4eaca0a8 3462 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3463 *
3464 * The tracing infrastructure uses preempt_enable_notrace to prevent
3465 * recursion and tracing preempt enabling caused by the tracing
3466 * infrastructure itself. But as tracing can happen in areas coming
3467 * from userspace or just about to enter userspace, a preempt enable
3468 * can occur before user_exit() is called. This will cause the scheduler
3469 * to be called when the system is still in usermode.
3470 *
3471 * To prevent this, the preempt_enable_notrace will use this function
3472 * instead of preempt_schedule() to exit user context if needed before
3473 * calling the scheduler.
3474 */
4eaca0a8 3475asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3476{
3477 enum ctx_state prev_ctx;
3478
3479 if (likely(!preemptible()))
3480 return;
3481
3482 do {
47252cfb
SR
3483 /*
3484 * Because the function tracer can trace preempt_count_sub()
3485 * and it also uses preempt_enable/disable_notrace(), if
3486 * NEED_RESCHED is set, the preempt_enable_notrace() called
3487 * by the function tracer will call this function again and
3488 * cause infinite recursion.
3489 *
3490 * Preemption must be disabled here before the function
3491 * tracer can trace. Break up preempt_disable() into two
3492 * calls. One to disable preemption without fear of being
3493 * traced. The other to still record the preemption latency,
3494 * which can also be traced by the function tracer.
3495 */
3d8f74dd 3496 preempt_disable_notrace();
47252cfb 3497 preempt_latency_start(1);
009f60e2
ON
3498 /*
3499 * Needs preempt disabled in case user_exit() is traced
3500 * and the tracer calls preempt_enable_notrace() causing
3501 * an infinite recursion.
3502 */
3503 prev_ctx = exception_enter();
fc13aeba 3504 __schedule(true);
009f60e2
ON
3505 exception_exit(prev_ctx);
3506
47252cfb 3507 preempt_latency_stop(1);
3d8f74dd 3508 preempt_enable_no_resched_notrace();
009f60e2
ON
3509 } while (need_resched());
3510}
4eaca0a8 3511EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3512
32e475d7 3513#endif /* CONFIG_PREEMPT */
1da177e4
LT
3514
3515/*
2ed6e34f 3516 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3517 * off of irq context.
3518 * Note, that this is called and return with irqs disabled. This will
3519 * protect us against recursive calling from irq.
3520 */
722a9f92 3521asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3522{
b22366cd 3523 enum ctx_state prev_state;
6478d880 3524
2ed6e34f 3525 /* Catch callers which need to be fixed */
f27dde8d 3526 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3527
b22366cd
FW
3528 prev_state = exception_enter();
3529
3a5c359a 3530 do {
3d8f74dd 3531 preempt_disable();
3a5c359a 3532 local_irq_enable();
fc13aeba 3533 __schedule(true);
3a5c359a 3534 local_irq_disable();
3d8f74dd 3535 sched_preempt_enable_no_resched();
5ed0cec0 3536 } while (need_resched());
b22366cd
FW
3537
3538 exception_exit(prev_state);
1da177e4
LT
3539}
3540
63859d4f 3541int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3542 void *key)
1da177e4 3543{
63859d4f 3544 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3545}
1da177e4
LT
3546EXPORT_SYMBOL(default_wake_function);
3547
b29739f9
IM
3548#ifdef CONFIG_RT_MUTEXES
3549
3550/*
3551 * rt_mutex_setprio - set the current priority of a task
3552 * @p: task
3553 * @prio: prio value (kernel-internal form)
3554 *
3555 * This function changes the 'effective' priority of a task. It does
3556 * not touch ->normal_prio like __setscheduler().
3557 *
c365c292
TG
3558 * Used by the rt_mutex code to implement priority inheritance
3559 * logic. Call site only calls if the priority of the task changed.
b29739f9 3560 */
36c8b586 3561void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3562{
ff77e468 3563 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3564 const struct sched_class *prev_class;
eb580751
PZ
3565 struct rq_flags rf;
3566 struct rq *rq;
b29739f9 3567
aab03e05 3568 BUG_ON(prio > MAX_PRIO);
b29739f9 3569
eb580751 3570 rq = __task_rq_lock(p, &rf);
b29739f9 3571
1c4dd99b
TG
3572 /*
3573 * Idle task boosting is a nono in general. There is one
3574 * exception, when PREEMPT_RT and NOHZ is active:
3575 *
3576 * The idle task calls get_next_timer_interrupt() and holds
3577 * the timer wheel base->lock on the CPU and another CPU wants
3578 * to access the timer (probably to cancel it). We can safely
3579 * ignore the boosting request, as the idle CPU runs this code
3580 * with interrupts disabled and will complete the lock
3581 * protected section without being interrupted. So there is no
3582 * real need to boost.
3583 */
3584 if (unlikely(p == rq->idle)) {
3585 WARN_ON(p != rq->curr);
3586 WARN_ON(p->pi_blocked_on);
3587 goto out_unlock;
3588 }
3589
a8027073 3590 trace_sched_pi_setprio(p, prio);
d5f9f942 3591 oldprio = p->prio;
ff77e468
PZ
3592
3593 if (oldprio == prio)
3594 queue_flag &= ~DEQUEUE_MOVE;
3595
83ab0aa0 3596 prev_class = p->sched_class;
da0c1e65 3597 queued = task_on_rq_queued(p);
051a1d1a 3598 running = task_current(rq, p);
da0c1e65 3599 if (queued)
ff77e468 3600 dequeue_task(rq, p, queue_flag);
0e1f3483 3601 if (running)
f3cd1c4e 3602 put_prev_task(rq, p);
dd41f596 3603
2d3d891d
DF
3604 /*
3605 * Boosting condition are:
3606 * 1. -rt task is running and holds mutex A
3607 * --> -dl task blocks on mutex A
3608 *
3609 * 2. -dl task is running and holds mutex A
3610 * --> -dl task blocks on mutex A and could preempt the
3611 * running task
3612 */
3613 if (dl_prio(prio)) {
466af29b
ON
3614 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3615 if (!dl_prio(p->normal_prio) ||
3616 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3617 p->dl.dl_boosted = 1;
ff77e468 3618 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3619 } else
3620 p->dl.dl_boosted = 0;
aab03e05 3621 p->sched_class = &dl_sched_class;
2d3d891d
DF
3622 } else if (rt_prio(prio)) {
3623 if (dl_prio(oldprio))
3624 p->dl.dl_boosted = 0;
3625 if (oldprio < prio)
ff77e468 3626 queue_flag |= ENQUEUE_HEAD;
dd41f596 3627 p->sched_class = &rt_sched_class;
2d3d891d
DF
3628 } else {
3629 if (dl_prio(oldprio))
3630 p->dl.dl_boosted = 0;
746db944
BS
3631 if (rt_prio(oldprio))
3632 p->rt.timeout = 0;
dd41f596 3633 p->sched_class = &fair_sched_class;
2d3d891d 3634 }
dd41f596 3635
b29739f9
IM
3636 p->prio = prio;
3637
0e1f3483
HS
3638 if (running)
3639 p->sched_class->set_curr_task(rq);
da0c1e65 3640 if (queued)
ff77e468 3641 enqueue_task(rq, p, queue_flag);
cb469845 3642
da7a735e 3643 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3644out_unlock:
4c9a4bc8 3645 preempt_disable(); /* avoid rq from going away on us */
eb580751 3646 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3647
3648 balance_callback(rq);
3649 preempt_enable();
b29739f9 3650}
b29739f9 3651#endif
d50dde5a 3652
36c8b586 3653void set_user_nice(struct task_struct *p, long nice)
1da177e4 3654{
da0c1e65 3655 int old_prio, delta, queued;
eb580751 3656 struct rq_flags rf;
70b97a7f 3657 struct rq *rq;
1da177e4 3658
75e45d51 3659 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3660 return;
3661 /*
3662 * We have to be careful, if called from sys_setpriority(),
3663 * the task might be in the middle of scheduling on another CPU.
3664 */
eb580751 3665 rq = task_rq_lock(p, &rf);
1da177e4
LT
3666 /*
3667 * The RT priorities are set via sched_setscheduler(), but we still
3668 * allow the 'normal' nice value to be set - but as expected
3669 * it wont have any effect on scheduling until the task is
aab03e05 3670 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3671 */
aab03e05 3672 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3673 p->static_prio = NICE_TO_PRIO(nice);
3674 goto out_unlock;
3675 }
da0c1e65
KT
3676 queued = task_on_rq_queued(p);
3677 if (queued)
1de64443 3678 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3679
1da177e4 3680 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3681 set_load_weight(p);
b29739f9
IM
3682 old_prio = p->prio;
3683 p->prio = effective_prio(p);
3684 delta = p->prio - old_prio;
1da177e4 3685
da0c1e65 3686 if (queued) {
1de64443 3687 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3688 /*
d5f9f942
AM
3689 * If the task increased its priority or is running and
3690 * lowered its priority, then reschedule its CPU:
1da177e4 3691 */
d5f9f942 3692 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3693 resched_curr(rq);
1da177e4
LT
3694 }
3695out_unlock:
eb580751 3696 task_rq_unlock(rq, p, &rf);
1da177e4 3697}
1da177e4
LT
3698EXPORT_SYMBOL(set_user_nice);
3699
e43379f1
MM
3700/*
3701 * can_nice - check if a task can reduce its nice value
3702 * @p: task
3703 * @nice: nice value
3704 */
36c8b586 3705int can_nice(const struct task_struct *p, const int nice)
e43379f1 3706{
024f4747 3707 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3708 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3709
78d7d407 3710 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3711 capable(CAP_SYS_NICE));
3712}
3713
1da177e4
LT
3714#ifdef __ARCH_WANT_SYS_NICE
3715
3716/*
3717 * sys_nice - change the priority of the current process.
3718 * @increment: priority increment
3719 *
3720 * sys_setpriority is a more generic, but much slower function that
3721 * does similar things.
3722 */
5add95d4 3723SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3724{
48f24c4d 3725 long nice, retval;
1da177e4
LT
3726
3727 /*
3728 * Setpriority might change our priority at the same moment.
3729 * We don't have to worry. Conceptually one call occurs first
3730 * and we have a single winner.
3731 */
a9467fa3 3732 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3733 nice = task_nice(current) + increment;
1da177e4 3734
a9467fa3 3735 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3736 if (increment < 0 && !can_nice(current, nice))
3737 return -EPERM;
3738
1da177e4
LT
3739 retval = security_task_setnice(current, nice);
3740 if (retval)
3741 return retval;
3742
3743 set_user_nice(current, nice);
3744 return 0;
3745}
3746
3747#endif
3748
3749/**
3750 * task_prio - return the priority value of a given task.
3751 * @p: the task in question.
3752 *
e69f6186 3753 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3754 * RT tasks are offset by -200. Normal tasks are centered
3755 * around 0, value goes from -16 to +15.
3756 */
36c8b586 3757int task_prio(const struct task_struct *p)
1da177e4
LT
3758{
3759 return p->prio - MAX_RT_PRIO;
3760}
3761
1da177e4
LT
3762/**
3763 * idle_cpu - is a given cpu idle currently?
3764 * @cpu: the processor in question.
e69f6186
YB
3765 *
3766 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3767 */
3768int idle_cpu(int cpu)
3769{
908a3283
TG
3770 struct rq *rq = cpu_rq(cpu);
3771
3772 if (rq->curr != rq->idle)
3773 return 0;
3774
3775 if (rq->nr_running)
3776 return 0;
3777
3778#ifdef CONFIG_SMP
3779 if (!llist_empty(&rq->wake_list))
3780 return 0;
3781#endif
3782
3783 return 1;
1da177e4
LT
3784}
3785
1da177e4
LT
3786/**
3787 * idle_task - return the idle task for a given cpu.
3788 * @cpu: the processor in question.
e69f6186
YB
3789 *
3790 * Return: The idle task for the cpu @cpu.
1da177e4 3791 */
36c8b586 3792struct task_struct *idle_task(int cpu)
1da177e4
LT
3793{
3794 return cpu_rq(cpu)->idle;
3795}
3796
3797/**
3798 * find_process_by_pid - find a process with a matching PID value.
3799 * @pid: the pid in question.
e69f6186
YB
3800 *
3801 * The task of @pid, if found. %NULL otherwise.
1da177e4 3802 */
a9957449 3803static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3804{
228ebcbe 3805 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3806}
3807
aab03e05
DF
3808/*
3809 * This function initializes the sched_dl_entity of a newly becoming
3810 * SCHED_DEADLINE task.
3811 *
3812 * Only the static values are considered here, the actual runtime and the
3813 * absolute deadline will be properly calculated when the task is enqueued
3814 * for the first time with its new policy.
3815 */
3816static void
3817__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3818{
3819 struct sched_dl_entity *dl_se = &p->dl;
3820
aab03e05
DF
3821 dl_se->dl_runtime = attr->sched_runtime;
3822 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3823 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3824 dl_se->flags = attr->sched_flags;
332ac17e 3825 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3826
3827 /*
3828 * Changing the parameters of a task is 'tricky' and we're not doing
3829 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3830 *
3831 * What we SHOULD do is delay the bandwidth release until the 0-lag
3832 * point. This would include retaining the task_struct until that time
3833 * and change dl_overflow() to not immediately decrement the current
3834 * amount.
3835 *
3836 * Instead we retain the current runtime/deadline and let the new
3837 * parameters take effect after the current reservation period lapses.
3838 * This is safe (albeit pessimistic) because the 0-lag point is always
3839 * before the current scheduling deadline.
3840 *
3841 * We can still have temporary overloads because we do not delay the
3842 * change in bandwidth until that time; so admission control is
3843 * not on the safe side. It does however guarantee tasks will never
3844 * consume more than promised.
3845 */
aab03e05
DF
3846}
3847
c13db6b1
SR
3848/*
3849 * sched_setparam() passes in -1 for its policy, to let the functions
3850 * it calls know not to change it.
3851 */
3852#define SETPARAM_POLICY -1
3853
c365c292
TG
3854static void __setscheduler_params(struct task_struct *p,
3855 const struct sched_attr *attr)
1da177e4 3856{
d50dde5a
DF
3857 int policy = attr->sched_policy;
3858
c13db6b1 3859 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3860 policy = p->policy;
3861
1da177e4 3862 p->policy = policy;
d50dde5a 3863
aab03e05
DF
3864 if (dl_policy(policy))
3865 __setparam_dl(p, attr);
39fd8fd2 3866 else if (fair_policy(policy))
d50dde5a
DF
3867 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3868
39fd8fd2
PZ
3869 /*
3870 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3871 * !rt_policy. Always setting this ensures that things like
3872 * getparam()/getattr() don't report silly values for !rt tasks.
3873 */
3874 p->rt_priority = attr->sched_priority;
383afd09 3875 p->normal_prio = normal_prio(p);
c365c292
TG
3876 set_load_weight(p);
3877}
39fd8fd2 3878
c365c292
TG
3879/* Actually do priority change: must hold pi & rq lock. */
3880static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3881 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3882{
3883 __setscheduler_params(p, attr);
d50dde5a 3884
383afd09 3885 /*
0782e63b
TG
3886 * Keep a potential priority boosting if called from
3887 * sched_setscheduler().
383afd09 3888 */
0782e63b
TG
3889 if (keep_boost)
3890 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3891 else
3892 p->prio = normal_prio(p);
383afd09 3893
aab03e05
DF
3894 if (dl_prio(p->prio))
3895 p->sched_class = &dl_sched_class;
3896 else if (rt_prio(p->prio))
ffd44db5
PZ
3897 p->sched_class = &rt_sched_class;
3898 else
3899 p->sched_class = &fair_sched_class;
1da177e4 3900}
aab03e05
DF
3901
3902static void
3903__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3904{
3905 struct sched_dl_entity *dl_se = &p->dl;
3906
3907 attr->sched_priority = p->rt_priority;
3908 attr->sched_runtime = dl_se->dl_runtime;
3909 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3910 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3911 attr->sched_flags = dl_se->flags;
3912}
3913
3914/*
3915 * This function validates the new parameters of a -deadline task.
3916 * We ask for the deadline not being zero, and greater or equal
755378a4 3917 * than the runtime, as well as the period of being zero or
332ac17e 3918 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3919 * user parameters are above the internal resolution of 1us (we
3920 * check sched_runtime only since it is always the smaller one) and
3921 * below 2^63 ns (we have to check both sched_deadline and
3922 * sched_period, as the latter can be zero).
aab03e05
DF
3923 */
3924static bool
3925__checkparam_dl(const struct sched_attr *attr)
3926{
b0827819
JL
3927 /* deadline != 0 */
3928 if (attr->sched_deadline == 0)
3929 return false;
3930
3931 /*
3932 * Since we truncate DL_SCALE bits, make sure we're at least
3933 * that big.
3934 */
3935 if (attr->sched_runtime < (1ULL << DL_SCALE))
3936 return false;
3937
3938 /*
3939 * Since we use the MSB for wrap-around and sign issues, make
3940 * sure it's not set (mind that period can be equal to zero).
3941 */
3942 if (attr->sched_deadline & (1ULL << 63) ||
3943 attr->sched_period & (1ULL << 63))
3944 return false;
3945
3946 /* runtime <= deadline <= period (if period != 0) */
3947 if ((attr->sched_period != 0 &&
3948 attr->sched_period < attr->sched_deadline) ||
3949 attr->sched_deadline < attr->sched_runtime)
3950 return false;
3951
3952 return true;
aab03e05
DF
3953}
3954
c69e8d9c
DH
3955/*
3956 * check the target process has a UID that matches the current process's
3957 */
3958static bool check_same_owner(struct task_struct *p)
3959{
3960 const struct cred *cred = current_cred(), *pcred;
3961 bool match;
3962
3963 rcu_read_lock();
3964 pcred = __task_cred(p);
9c806aa0
EB
3965 match = (uid_eq(cred->euid, pcred->euid) ||
3966 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3967 rcu_read_unlock();
3968 return match;
3969}
3970
75381608
WL
3971static bool dl_param_changed(struct task_struct *p,
3972 const struct sched_attr *attr)
3973{
3974 struct sched_dl_entity *dl_se = &p->dl;
3975
3976 if (dl_se->dl_runtime != attr->sched_runtime ||
3977 dl_se->dl_deadline != attr->sched_deadline ||
3978 dl_se->dl_period != attr->sched_period ||
3979 dl_se->flags != attr->sched_flags)
3980 return true;
3981
3982 return false;
3983}
3984
d50dde5a
DF
3985static int __sched_setscheduler(struct task_struct *p,
3986 const struct sched_attr *attr,
dbc7f069 3987 bool user, bool pi)
1da177e4 3988{
383afd09
SR
3989 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3990 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3991 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3992 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 3993 const struct sched_class *prev_class;
eb580751 3994 struct rq_flags rf;
ca94c442 3995 int reset_on_fork;
ff77e468 3996 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 3997 struct rq *rq;
1da177e4 3998
66e5393a
SR
3999 /* may grab non-irq protected spin_locks */
4000 BUG_ON(in_interrupt());
1da177e4
LT
4001recheck:
4002 /* double check policy once rq lock held */
ca94c442
LP
4003 if (policy < 0) {
4004 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4005 policy = oldpolicy = p->policy;
ca94c442 4006 } else {
7479f3c9 4007 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4008
20f9cd2a 4009 if (!valid_policy(policy))
ca94c442
LP
4010 return -EINVAL;
4011 }
4012
7479f3c9
PZ
4013 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4014 return -EINVAL;
4015
1da177e4
LT
4016 /*
4017 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4019 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4020 */
0bb040a4 4021 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4022 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4023 return -EINVAL;
aab03e05
DF
4024 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4025 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4026 return -EINVAL;
4027
37e4ab3f
OC
4028 /*
4029 * Allow unprivileged RT tasks to decrease priority:
4030 */
961ccddd 4031 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4032 if (fair_policy(policy)) {
d0ea0268 4033 if (attr->sched_nice < task_nice(p) &&
eaad4513 4034 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4035 return -EPERM;
4036 }
4037
e05606d3 4038 if (rt_policy(policy)) {
a44702e8
ON
4039 unsigned long rlim_rtprio =
4040 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4041
4042 /* can't set/change the rt policy */
4043 if (policy != p->policy && !rlim_rtprio)
4044 return -EPERM;
4045
4046 /* can't increase priority */
d50dde5a
DF
4047 if (attr->sched_priority > p->rt_priority &&
4048 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4049 return -EPERM;
4050 }
c02aa73b 4051
d44753b8
JL
4052 /*
4053 * Can't set/change SCHED_DEADLINE policy at all for now
4054 * (safest behavior); in the future we would like to allow
4055 * unprivileged DL tasks to increase their relative deadline
4056 * or reduce their runtime (both ways reducing utilization)
4057 */
4058 if (dl_policy(policy))
4059 return -EPERM;
4060
dd41f596 4061 /*
c02aa73b
DH
4062 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4063 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4064 */
20f9cd2a 4065 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4066 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4067 return -EPERM;
4068 }
5fe1d75f 4069
37e4ab3f 4070 /* can't change other user's priorities */
c69e8d9c 4071 if (!check_same_owner(p))
37e4ab3f 4072 return -EPERM;
ca94c442
LP
4073
4074 /* Normal users shall not reset the sched_reset_on_fork flag */
4075 if (p->sched_reset_on_fork && !reset_on_fork)
4076 return -EPERM;
37e4ab3f 4077 }
1da177e4 4078
725aad24 4079 if (user) {
b0ae1981 4080 retval = security_task_setscheduler(p);
725aad24
JF
4081 if (retval)
4082 return retval;
4083 }
4084
b29739f9
IM
4085 /*
4086 * make sure no PI-waiters arrive (or leave) while we are
4087 * changing the priority of the task:
0122ec5b 4088 *
25985edc 4089 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4090 * runqueue lock must be held.
4091 */
eb580751 4092 rq = task_rq_lock(p, &rf);
dc61b1d6 4093
34f971f6
PZ
4094 /*
4095 * Changing the policy of the stop threads its a very bad idea
4096 */
4097 if (p == rq->stop) {
eb580751 4098 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4099 return -EINVAL;
4100 }
4101
a51e9198 4102 /*
d6b1e911
TG
4103 * If not changing anything there's no need to proceed further,
4104 * but store a possible modification of reset_on_fork.
a51e9198 4105 */
d50dde5a 4106 if (unlikely(policy == p->policy)) {
d0ea0268 4107 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4108 goto change;
4109 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4110 goto change;
75381608 4111 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4112 goto change;
d50dde5a 4113
d6b1e911 4114 p->sched_reset_on_fork = reset_on_fork;
eb580751 4115 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4116 return 0;
4117 }
d50dde5a 4118change:
a51e9198 4119
dc61b1d6 4120 if (user) {
332ac17e 4121#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4122 /*
4123 * Do not allow realtime tasks into groups that have no runtime
4124 * assigned.
4125 */
4126 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4127 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4128 !task_group_is_autogroup(task_group(p))) {
eb580751 4129 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4130 return -EPERM;
4131 }
dc61b1d6 4132#endif
332ac17e
DF
4133#ifdef CONFIG_SMP
4134 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4135 cpumask_t *span = rq->rd->span;
332ac17e
DF
4136
4137 /*
4138 * Don't allow tasks with an affinity mask smaller than
4139 * the entire root_domain to become SCHED_DEADLINE. We
4140 * will also fail if there's no bandwidth available.
4141 */
e4099a5e
PZ
4142 if (!cpumask_subset(span, &p->cpus_allowed) ||
4143 rq->rd->dl_bw.bw == 0) {
eb580751 4144 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4145 return -EPERM;
4146 }
4147 }
4148#endif
4149 }
dc61b1d6 4150
1da177e4
LT
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 policy = oldpolicy = -1;
eb580751 4154 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4155 goto recheck;
4156 }
332ac17e
DF
4157
4158 /*
4159 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4160 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4161 * is available.
4162 */
e4099a5e 4163 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4164 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4165 return -EBUSY;
4166 }
4167
c365c292
TG
4168 p->sched_reset_on_fork = reset_on_fork;
4169 oldprio = p->prio;
4170
dbc7f069
PZ
4171 if (pi) {
4172 /*
4173 * Take priority boosted tasks into account. If the new
4174 * effective priority is unchanged, we just store the new
4175 * normal parameters and do not touch the scheduler class and
4176 * the runqueue. This will be done when the task deboost
4177 * itself.
4178 */
4179 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4180 if (new_effective_prio == oldprio)
4181 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4182 }
4183
da0c1e65 4184 queued = task_on_rq_queued(p);
051a1d1a 4185 running = task_current(rq, p);
da0c1e65 4186 if (queued)
ff77e468 4187 dequeue_task(rq, p, queue_flags);
0e1f3483 4188 if (running)
f3cd1c4e 4189 put_prev_task(rq, p);
f6b53205 4190
83ab0aa0 4191 prev_class = p->sched_class;
dbc7f069 4192 __setscheduler(rq, p, attr, pi);
f6b53205 4193
0e1f3483
HS
4194 if (running)
4195 p->sched_class->set_curr_task(rq);
da0c1e65 4196 if (queued) {
81a44c54
TG
4197 /*
4198 * We enqueue to tail when the priority of a task is
4199 * increased (user space view).
4200 */
ff77e468
PZ
4201 if (oldprio < p->prio)
4202 queue_flags |= ENQUEUE_HEAD;
1de64443 4203
ff77e468 4204 enqueue_task(rq, p, queue_flags);
81a44c54 4205 }
cb469845 4206
da7a735e 4207 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4208 preempt_disable(); /* avoid rq from going away on us */
eb580751 4209 task_rq_unlock(rq, p, &rf);
b29739f9 4210
dbc7f069
PZ
4211 if (pi)
4212 rt_mutex_adjust_pi(p);
95e02ca9 4213
4c9a4bc8
PZ
4214 /*
4215 * Run balance callbacks after we've adjusted the PI chain.
4216 */
4217 balance_callback(rq);
4218 preempt_enable();
95e02ca9 4219
1da177e4
LT
4220 return 0;
4221}
961ccddd 4222
7479f3c9
PZ
4223static int _sched_setscheduler(struct task_struct *p, int policy,
4224 const struct sched_param *param, bool check)
4225{
4226 struct sched_attr attr = {
4227 .sched_policy = policy,
4228 .sched_priority = param->sched_priority,
4229 .sched_nice = PRIO_TO_NICE(p->static_prio),
4230 };
4231
c13db6b1
SR
4232 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4233 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4234 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4235 policy &= ~SCHED_RESET_ON_FORK;
4236 attr.sched_policy = policy;
4237 }
4238
dbc7f069 4239 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4240}
961ccddd
RR
4241/**
4242 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4243 * @p: the task in question.
4244 * @policy: new policy.
4245 * @param: structure containing the new RT priority.
4246 *
e69f6186
YB
4247 * Return: 0 on success. An error code otherwise.
4248 *
961ccddd
RR
4249 * NOTE that the task may be already dead.
4250 */
4251int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4252 const struct sched_param *param)
961ccddd 4253{
7479f3c9 4254 return _sched_setscheduler(p, policy, param, true);
961ccddd 4255}
1da177e4
LT
4256EXPORT_SYMBOL_GPL(sched_setscheduler);
4257
d50dde5a
DF
4258int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4259{
dbc7f069 4260 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4261}
4262EXPORT_SYMBOL_GPL(sched_setattr);
4263
961ccddd
RR
4264/**
4265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4266 * @p: the task in question.
4267 * @policy: new policy.
4268 * @param: structure containing the new RT priority.
4269 *
4270 * Just like sched_setscheduler, only don't bother checking if the
4271 * current context has permission. For example, this is needed in
4272 * stop_machine(): we create temporary high priority worker threads,
4273 * but our caller might not have that capability.
e69f6186
YB
4274 *
4275 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4276 */
4277int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4278 const struct sched_param *param)
961ccddd 4279{
7479f3c9 4280 return _sched_setscheduler(p, policy, param, false);
961ccddd 4281}
84778472 4282EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4283
95cdf3b7
IM
4284static int
4285do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4286{
1da177e4
LT
4287 struct sched_param lparam;
4288 struct task_struct *p;
36c8b586 4289 int retval;
1da177e4
LT
4290
4291 if (!param || pid < 0)
4292 return -EINVAL;
4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 return -EFAULT;
5fe1d75f
ON
4295
4296 rcu_read_lock();
4297 retval = -ESRCH;
1da177e4 4298 p = find_process_by_pid(pid);
5fe1d75f
ON
4299 if (p != NULL)
4300 retval = sched_setscheduler(p, policy, &lparam);
4301 rcu_read_unlock();
36c8b586 4302
1da177e4
LT
4303 return retval;
4304}
4305
d50dde5a
DF
4306/*
4307 * Mimics kernel/events/core.c perf_copy_attr().
4308 */
4309static int sched_copy_attr(struct sched_attr __user *uattr,
4310 struct sched_attr *attr)
4311{
4312 u32 size;
4313 int ret;
4314
4315 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4316 return -EFAULT;
4317
4318 /*
4319 * zero the full structure, so that a short copy will be nice.
4320 */
4321 memset(attr, 0, sizeof(*attr));
4322
4323 ret = get_user(size, &uattr->size);
4324 if (ret)
4325 return ret;
4326
4327 if (size > PAGE_SIZE) /* silly large */
4328 goto err_size;
4329
4330 if (!size) /* abi compat */
4331 size = SCHED_ATTR_SIZE_VER0;
4332
4333 if (size < SCHED_ATTR_SIZE_VER0)
4334 goto err_size;
4335
4336 /*
4337 * If we're handed a bigger struct than we know of,
4338 * ensure all the unknown bits are 0 - i.e. new
4339 * user-space does not rely on any kernel feature
4340 * extensions we dont know about yet.
4341 */
4342 if (size > sizeof(*attr)) {
4343 unsigned char __user *addr;
4344 unsigned char __user *end;
4345 unsigned char val;
4346
4347 addr = (void __user *)uattr + sizeof(*attr);
4348 end = (void __user *)uattr + size;
4349
4350 for (; addr < end; addr++) {
4351 ret = get_user(val, addr);
4352 if (ret)
4353 return ret;
4354 if (val)
4355 goto err_size;
4356 }
4357 size = sizeof(*attr);
4358 }
4359
4360 ret = copy_from_user(attr, uattr, size);
4361 if (ret)
4362 return -EFAULT;
4363
4364 /*
4365 * XXX: do we want to be lenient like existing syscalls; or do we want
4366 * to be strict and return an error on out-of-bounds values?
4367 */
75e45d51 4368 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4369
e78c7bca 4370 return 0;
d50dde5a
DF
4371
4372err_size:
4373 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4374 return -E2BIG;
d50dde5a
DF
4375}
4376
1da177e4
LT
4377/**
4378 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4379 * @pid: the pid in question.
4380 * @policy: new policy.
4381 * @param: structure containing the new RT priority.
e69f6186
YB
4382 *
4383 * Return: 0 on success. An error code otherwise.
1da177e4 4384 */
5add95d4
HC
4385SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4386 struct sched_param __user *, param)
1da177e4 4387{
c21761f1
JB
4388 /* negative values for policy are not valid */
4389 if (policy < 0)
4390 return -EINVAL;
4391
1da177e4
LT
4392 return do_sched_setscheduler(pid, policy, param);
4393}
4394
4395/**
4396 * sys_sched_setparam - set/change the RT priority of a thread
4397 * @pid: the pid in question.
4398 * @param: structure containing the new RT priority.
e69f6186
YB
4399 *
4400 * Return: 0 on success. An error code otherwise.
1da177e4 4401 */
5add95d4 4402SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4403{
c13db6b1 4404 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4405}
4406
d50dde5a
DF
4407/**
4408 * sys_sched_setattr - same as above, but with extended sched_attr
4409 * @pid: the pid in question.
5778fccf 4410 * @uattr: structure containing the extended parameters.
db66d756 4411 * @flags: for future extension.
d50dde5a 4412 */
6d35ab48
PZ
4413SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4414 unsigned int, flags)
d50dde5a
DF
4415{
4416 struct sched_attr attr;
4417 struct task_struct *p;
4418 int retval;
4419
6d35ab48 4420 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4421 return -EINVAL;
4422
143cf23d
MK
4423 retval = sched_copy_attr(uattr, &attr);
4424 if (retval)
4425 return retval;
d50dde5a 4426
b14ed2c2 4427 if ((int)attr.sched_policy < 0)
dbdb2275 4428 return -EINVAL;
d50dde5a
DF
4429
4430 rcu_read_lock();
4431 retval = -ESRCH;
4432 p = find_process_by_pid(pid);
4433 if (p != NULL)
4434 retval = sched_setattr(p, &attr);
4435 rcu_read_unlock();
4436
4437 return retval;
4438}
4439
1da177e4
LT
4440/**
4441 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4442 * @pid: the pid in question.
e69f6186
YB
4443 *
4444 * Return: On success, the policy of the thread. Otherwise, a negative error
4445 * code.
1da177e4 4446 */
5add95d4 4447SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4448{
36c8b586 4449 struct task_struct *p;
3a5c359a 4450 int retval;
1da177e4
LT
4451
4452 if (pid < 0)
3a5c359a 4453 return -EINVAL;
1da177e4
LT
4454
4455 retval = -ESRCH;
5fe85be0 4456 rcu_read_lock();
1da177e4
LT
4457 p = find_process_by_pid(pid);
4458 if (p) {
4459 retval = security_task_getscheduler(p);
4460 if (!retval)
ca94c442
LP
4461 retval = p->policy
4462 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4463 }
5fe85be0 4464 rcu_read_unlock();
1da177e4
LT
4465 return retval;
4466}
4467
4468/**
ca94c442 4469 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4470 * @pid: the pid in question.
4471 * @param: structure containing the RT priority.
e69f6186
YB
4472 *
4473 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4474 * code.
1da177e4 4475 */
5add95d4 4476SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4477{
ce5f7f82 4478 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4479 struct task_struct *p;
3a5c359a 4480 int retval;
1da177e4
LT
4481
4482 if (!param || pid < 0)
3a5c359a 4483 return -EINVAL;
1da177e4 4484
5fe85be0 4485 rcu_read_lock();
1da177e4
LT
4486 p = find_process_by_pid(pid);
4487 retval = -ESRCH;
4488 if (!p)
4489 goto out_unlock;
4490
4491 retval = security_task_getscheduler(p);
4492 if (retval)
4493 goto out_unlock;
4494
ce5f7f82
PZ
4495 if (task_has_rt_policy(p))
4496 lp.sched_priority = p->rt_priority;
5fe85be0 4497 rcu_read_unlock();
1da177e4
LT
4498
4499 /*
4500 * This one might sleep, we cannot do it with a spinlock held ...
4501 */
4502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4503
1da177e4
LT
4504 return retval;
4505
4506out_unlock:
5fe85be0 4507 rcu_read_unlock();
1da177e4
LT
4508 return retval;
4509}
4510
d50dde5a
DF
4511static int sched_read_attr(struct sched_attr __user *uattr,
4512 struct sched_attr *attr,
4513 unsigned int usize)
4514{
4515 int ret;
4516
4517 if (!access_ok(VERIFY_WRITE, uattr, usize))
4518 return -EFAULT;
4519
4520 /*
4521 * If we're handed a smaller struct than we know of,
4522 * ensure all the unknown bits are 0 - i.e. old
4523 * user-space does not get uncomplete information.
4524 */
4525 if (usize < sizeof(*attr)) {
4526 unsigned char *addr;
4527 unsigned char *end;
4528
4529 addr = (void *)attr + usize;
4530 end = (void *)attr + sizeof(*attr);
4531
4532 for (; addr < end; addr++) {
4533 if (*addr)
22400674 4534 return -EFBIG;
d50dde5a
DF
4535 }
4536
4537 attr->size = usize;
4538 }
4539
4efbc454 4540 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4541 if (ret)
4542 return -EFAULT;
4543
22400674 4544 return 0;
d50dde5a
DF
4545}
4546
4547/**
aab03e05 4548 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4549 * @pid: the pid in question.
5778fccf 4550 * @uattr: structure containing the extended parameters.
d50dde5a 4551 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4552 * @flags: for future extension.
d50dde5a 4553 */
6d35ab48
PZ
4554SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4555 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4556{
4557 struct sched_attr attr = {
4558 .size = sizeof(struct sched_attr),
4559 };
4560 struct task_struct *p;
4561 int retval;
4562
4563 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4564 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4565 return -EINVAL;
4566
4567 rcu_read_lock();
4568 p = find_process_by_pid(pid);
4569 retval = -ESRCH;
4570 if (!p)
4571 goto out_unlock;
4572
4573 retval = security_task_getscheduler(p);
4574 if (retval)
4575 goto out_unlock;
4576
4577 attr.sched_policy = p->policy;
7479f3c9
PZ
4578 if (p->sched_reset_on_fork)
4579 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4580 if (task_has_dl_policy(p))
4581 __getparam_dl(p, &attr);
4582 else if (task_has_rt_policy(p))
d50dde5a
DF
4583 attr.sched_priority = p->rt_priority;
4584 else
d0ea0268 4585 attr.sched_nice = task_nice(p);
d50dde5a
DF
4586
4587 rcu_read_unlock();
4588
4589 retval = sched_read_attr(uattr, &attr, size);
4590 return retval;
4591
4592out_unlock:
4593 rcu_read_unlock();
4594 return retval;
4595}
4596
96f874e2 4597long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4598{
5a16f3d3 4599 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4600 struct task_struct *p;
4601 int retval;
1da177e4 4602
23f5d142 4603 rcu_read_lock();
1da177e4
LT
4604
4605 p = find_process_by_pid(pid);
4606 if (!p) {
23f5d142 4607 rcu_read_unlock();
1da177e4
LT
4608 return -ESRCH;
4609 }
4610
23f5d142 4611 /* Prevent p going away */
1da177e4 4612 get_task_struct(p);
23f5d142 4613 rcu_read_unlock();
1da177e4 4614
14a40ffc
TH
4615 if (p->flags & PF_NO_SETAFFINITY) {
4616 retval = -EINVAL;
4617 goto out_put_task;
4618 }
5a16f3d3
RR
4619 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4620 retval = -ENOMEM;
4621 goto out_put_task;
4622 }
4623 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4624 retval = -ENOMEM;
4625 goto out_free_cpus_allowed;
4626 }
1da177e4 4627 retval = -EPERM;
4c44aaaf
EB
4628 if (!check_same_owner(p)) {
4629 rcu_read_lock();
4630 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4631 rcu_read_unlock();
16303ab2 4632 goto out_free_new_mask;
4c44aaaf
EB
4633 }
4634 rcu_read_unlock();
4635 }
1da177e4 4636
b0ae1981 4637 retval = security_task_setscheduler(p);
e7834f8f 4638 if (retval)
16303ab2 4639 goto out_free_new_mask;
e7834f8f 4640
e4099a5e
PZ
4641
4642 cpuset_cpus_allowed(p, cpus_allowed);
4643 cpumask_and(new_mask, in_mask, cpus_allowed);
4644
332ac17e
DF
4645 /*
4646 * Since bandwidth control happens on root_domain basis,
4647 * if admission test is enabled, we only admit -deadline
4648 * tasks allowed to run on all the CPUs in the task's
4649 * root_domain.
4650 */
4651#ifdef CONFIG_SMP
f1e3a093
KT
4652 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4653 rcu_read_lock();
4654 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4655 retval = -EBUSY;
f1e3a093 4656 rcu_read_unlock();
16303ab2 4657 goto out_free_new_mask;
332ac17e 4658 }
f1e3a093 4659 rcu_read_unlock();
332ac17e
DF
4660 }
4661#endif
49246274 4662again:
25834c73 4663 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4664
8707d8b8 4665 if (!retval) {
5a16f3d3
RR
4666 cpuset_cpus_allowed(p, cpus_allowed);
4667 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4668 /*
4669 * We must have raced with a concurrent cpuset
4670 * update. Just reset the cpus_allowed to the
4671 * cpuset's cpus_allowed
4672 */
5a16f3d3 4673 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4674 goto again;
4675 }
4676 }
16303ab2 4677out_free_new_mask:
5a16f3d3
RR
4678 free_cpumask_var(new_mask);
4679out_free_cpus_allowed:
4680 free_cpumask_var(cpus_allowed);
4681out_put_task:
1da177e4 4682 put_task_struct(p);
1da177e4
LT
4683 return retval;
4684}
4685
4686static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4687 struct cpumask *new_mask)
1da177e4 4688{
96f874e2
RR
4689 if (len < cpumask_size())
4690 cpumask_clear(new_mask);
4691 else if (len > cpumask_size())
4692 len = cpumask_size();
4693
1da177e4
LT
4694 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4695}
4696
4697/**
4698 * sys_sched_setaffinity - set the cpu affinity of a process
4699 * @pid: pid of the process
4700 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4701 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4702 *
4703 * Return: 0 on success. An error code otherwise.
1da177e4 4704 */
5add95d4
HC
4705SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4706 unsigned long __user *, user_mask_ptr)
1da177e4 4707{
5a16f3d3 4708 cpumask_var_t new_mask;
1da177e4
LT
4709 int retval;
4710
5a16f3d3
RR
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4712 return -ENOMEM;
1da177e4 4713
5a16f3d3
RR
4714 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4715 if (retval == 0)
4716 retval = sched_setaffinity(pid, new_mask);
4717 free_cpumask_var(new_mask);
4718 return retval;
1da177e4
LT
4719}
4720
96f874e2 4721long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4722{
36c8b586 4723 struct task_struct *p;
31605683 4724 unsigned long flags;
1da177e4 4725 int retval;
1da177e4 4726
23f5d142 4727 rcu_read_lock();
1da177e4
LT
4728
4729 retval = -ESRCH;
4730 p = find_process_by_pid(pid);
4731 if (!p)
4732 goto out_unlock;
4733
e7834f8f
DQ
4734 retval = security_task_getscheduler(p);
4735 if (retval)
4736 goto out_unlock;
4737
013fdb80 4738 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4739 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4741
4742out_unlock:
23f5d142 4743 rcu_read_unlock();
1da177e4 4744
9531b62f 4745 return retval;
1da177e4
LT
4746}
4747
4748/**
4749 * sys_sched_getaffinity - get the cpu affinity of a process
4750 * @pid: pid of the process
4751 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4752 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4753 *
4754 * Return: 0 on success. An error code otherwise.
1da177e4 4755 */
5add95d4
HC
4756SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4757 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4758{
4759 int ret;
f17c8607 4760 cpumask_var_t mask;
1da177e4 4761
84fba5ec 4762 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4763 return -EINVAL;
4764 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4765 return -EINVAL;
4766
f17c8607
RR
4767 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4768 return -ENOMEM;
1da177e4 4769
f17c8607
RR
4770 ret = sched_getaffinity(pid, mask);
4771 if (ret == 0) {
8bc037fb 4772 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4773
4774 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4775 ret = -EFAULT;
4776 else
cd3d8031 4777 ret = retlen;
f17c8607
RR
4778 }
4779 free_cpumask_var(mask);
1da177e4 4780
f17c8607 4781 return ret;
1da177e4
LT
4782}
4783
4784/**
4785 * sys_sched_yield - yield the current processor to other threads.
4786 *
dd41f596
IM
4787 * This function yields the current CPU to other tasks. If there are no
4788 * other threads running on this CPU then this function will return.
e69f6186
YB
4789 *
4790 * Return: 0.
1da177e4 4791 */
5add95d4 4792SYSCALL_DEFINE0(sched_yield)
1da177e4 4793{
70b97a7f 4794 struct rq *rq = this_rq_lock();
1da177e4 4795
2d72376b 4796 schedstat_inc(rq, yld_count);
4530d7ab 4797 current->sched_class->yield_task(rq);
1da177e4
LT
4798
4799 /*
4800 * Since we are going to call schedule() anyway, there's
4801 * no need to preempt or enable interrupts:
4802 */
4803 __release(rq->lock);
8a25d5de 4804 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4805 do_raw_spin_unlock(&rq->lock);
ba74c144 4806 sched_preempt_enable_no_resched();
1da177e4
LT
4807
4808 schedule();
4809
4810 return 0;
4811}
4812
02b67cc3 4813int __sched _cond_resched(void)
1da177e4 4814{
fe32d3cd 4815 if (should_resched(0)) {
a18b5d01 4816 preempt_schedule_common();
1da177e4
LT
4817 return 1;
4818 }
4819 return 0;
4820}
02b67cc3 4821EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4822
4823/*
613afbf8 4824 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4825 * call schedule, and on return reacquire the lock.
4826 *
41a2d6cf 4827 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4828 * operations here to prevent schedule() from being called twice (once via
4829 * spin_unlock(), once by hand).
4830 */
613afbf8 4831int __cond_resched_lock(spinlock_t *lock)
1da177e4 4832{
fe32d3cd 4833 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4834 int ret = 0;
4835
f607c668
PZ
4836 lockdep_assert_held(lock);
4837
4a81e832 4838 if (spin_needbreak(lock) || resched) {
1da177e4 4839 spin_unlock(lock);
d86ee480 4840 if (resched)
a18b5d01 4841 preempt_schedule_common();
95c354fe
NP
4842 else
4843 cpu_relax();
6df3cecb 4844 ret = 1;
1da177e4 4845 spin_lock(lock);
1da177e4 4846 }
6df3cecb 4847 return ret;
1da177e4 4848}
613afbf8 4849EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4850
613afbf8 4851int __sched __cond_resched_softirq(void)
1da177e4
LT
4852{
4853 BUG_ON(!in_softirq());
4854
fe32d3cd 4855 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4856 local_bh_enable();
a18b5d01 4857 preempt_schedule_common();
1da177e4
LT
4858 local_bh_disable();
4859 return 1;
4860 }
4861 return 0;
4862}
613afbf8 4863EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4864
1da177e4
LT
4865/**
4866 * yield - yield the current processor to other threads.
4867 *
8e3fabfd
PZ
4868 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4869 *
4870 * The scheduler is at all times free to pick the calling task as the most
4871 * eligible task to run, if removing the yield() call from your code breaks
4872 * it, its already broken.
4873 *
4874 * Typical broken usage is:
4875 *
4876 * while (!event)
4877 * yield();
4878 *
4879 * where one assumes that yield() will let 'the other' process run that will
4880 * make event true. If the current task is a SCHED_FIFO task that will never
4881 * happen. Never use yield() as a progress guarantee!!
4882 *
4883 * If you want to use yield() to wait for something, use wait_event().
4884 * If you want to use yield() to be 'nice' for others, use cond_resched().
4885 * If you still want to use yield(), do not!
1da177e4
LT
4886 */
4887void __sched yield(void)
4888{
4889 set_current_state(TASK_RUNNING);
4890 sys_sched_yield();
4891}
1da177e4
LT
4892EXPORT_SYMBOL(yield);
4893
d95f4122
MG
4894/**
4895 * yield_to - yield the current processor to another thread in
4896 * your thread group, or accelerate that thread toward the
4897 * processor it's on.
16addf95
RD
4898 * @p: target task
4899 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4900 *
4901 * It's the caller's job to ensure that the target task struct
4902 * can't go away on us before we can do any checks.
4903 *
e69f6186 4904 * Return:
7b270f60
PZ
4905 * true (>0) if we indeed boosted the target task.
4906 * false (0) if we failed to boost the target.
4907 * -ESRCH if there's no task to yield to.
d95f4122 4908 */
fa93384f 4909int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4910{
4911 struct task_struct *curr = current;
4912 struct rq *rq, *p_rq;
4913 unsigned long flags;
c3c18640 4914 int yielded = 0;
d95f4122
MG
4915
4916 local_irq_save(flags);
4917 rq = this_rq();
4918
4919again:
4920 p_rq = task_rq(p);
7b270f60
PZ
4921 /*
4922 * If we're the only runnable task on the rq and target rq also
4923 * has only one task, there's absolutely no point in yielding.
4924 */
4925 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4926 yielded = -ESRCH;
4927 goto out_irq;
4928 }
4929
d95f4122 4930 double_rq_lock(rq, p_rq);
39e24d8f 4931 if (task_rq(p) != p_rq) {
d95f4122
MG
4932 double_rq_unlock(rq, p_rq);
4933 goto again;
4934 }
4935
4936 if (!curr->sched_class->yield_to_task)
7b270f60 4937 goto out_unlock;
d95f4122
MG
4938
4939 if (curr->sched_class != p->sched_class)
7b270f60 4940 goto out_unlock;
d95f4122
MG
4941
4942 if (task_running(p_rq, p) || p->state)
7b270f60 4943 goto out_unlock;
d95f4122
MG
4944
4945 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4946 if (yielded) {
d95f4122 4947 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4948 /*
4949 * Make p's CPU reschedule; pick_next_entity takes care of
4950 * fairness.
4951 */
4952 if (preempt && rq != p_rq)
8875125e 4953 resched_curr(p_rq);
6d1cafd8 4954 }
d95f4122 4955
7b270f60 4956out_unlock:
d95f4122 4957 double_rq_unlock(rq, p_rq);
7b270f60 4958out_irq:
d95f4122
MG
4959 local_irq_restore(flags);
4960
7b270f60 4961 if (yielded > 0)
d95f4122
MG
4962 schedule();
4963
4964 return yielded;
4965}
4966EXPORT_SYMBOL_GPL(yield_to);
4967
1da177e4 4968/*
41a2d6cf 4969 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4970 * that process accounting knows that this is a task in IO wait state.
1da177e4 4971 */
1da177e4
LT
4972long __sched io_schedule_timeout(long timeout)
4973{
9cff8ade
N
4974 int old_iowait = current->in_iowait;
4975 struct rq *rq;
1da177e4
LT
4976 long ret;
4977
9cff8ade 4978 current->in_iowait = 1;
10d784ea 4979 blk_schedule_flush_plug(current);
9cff8ade 4980
0ff92245 4981 delayacct_blkio_start();
9cff8ade 4982 rq = raw_rq();
1da177e4
LT
4983 atomic_inc(&rq->nr_iowait);
4984 ret = schedule_timeout(timeout);
9cff8ade 4985 current->in_iowait = old_iowait;
1da177e4 4986 atomic_dec(&rq->nr_iowait);
0ff92245 4987 delayacct_blkio_end();
9cff8ade 4988
1da177e4
LT
4989 return ret;
4990}
9cff8ade 4991EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4992
4993/**
4994 * sys_sched_get_priority_max - return maximum RT priority.
4995 * @policy: scheduling class.
4996 *
e69f6186
YB
4997 * Return: On success, this syscall returns the maximum
4998 * rt_priority that can be used by a given scheduling class.
4999 * On failure, a negative error code is returned.
1da177e4 5000 */
5add95d4 5001SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5002{
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = MAX_USER_RT_PRIO-1;
5009 break;
aab03e05 5010 case SCHED_DEADLINE:
1da177e4 5011 case SCHED_NORMAL:
b0a9499c 5012 case SCHED_BATCH:
dd41f596 5013 case SCHED_IDLE:
1da177e4
LT
5014 ret = 0;
5015 break;
5016 }
5017 return ret;
5018}
5019
5020/**
5021 * sys_sched_get_priority_min - return minimum RT priority.
5022 * @policy: scheduling class.
5023 *
e69f6186
YB
5024 * Return: On success, this syscall returns the minimum
5025 * rt_priority that can be used by a given scheduling class.
5026 * On failure, a negative error code is returned.
1da177e4 5027 */
5add95d4 5028SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5029{
5030 int ret = -EINVAL;
5031
5032 switch (policy) {
5033 case SCHED_FIFO:
5034 case SCHED_RR:
5035 ret = 1;
5036 break;
aab03e05 5037 case SCHED_DEADLINE:
1da177e4 5038 case SCHED_NORMAL:
b0a9499c 5039 case SCHED_BATCH:
dd41f596 5040 case SCHED_IDLE:
1da177e4
LT
5041 ret = 0;
5042 }
5043 return ret;
5044}
5045
5046/**
5047 * sys_sched_rr_get_interval - return the default timeslice of a process.
5048 * @pid: pid of the process.
5049 * @interval: userspace pointer to the timeslice value.
5050 *
5051 * this syscall writes the default timeslice value of a given process
5052 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5053 *
5054 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5055 * an error code.
1da177e4 5056 */
17da2bd9 5057SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5058 struct timespec __user *, interval)
1da177e4 5059{
36c8b586 5060 struct task_struct *p;
a4ec24b4 5061 unsigned int time_slice;
eb580751
PZ
5062 struct rq_flags rf;
5063 struct timespec t;
dba091b9 5064 struct rq *rq;
3a5c359a 5065 int retval;
1da177e4
LT
5066
5067 if (pid < 0)
3a5c359a 5068 return -EINVAL;
1da177e4
LT
5069
5070 retval = -ESRCH;
1a551ae7 5071 rcu_read_lock();
1da177e4
LT
5072 p = find_process_by_pid(pid);
5073 if (!p)
5074 goto out_unlock;
5075
5076 retval = security_task_getscheduler(p);
5077 if (retval)
5078 goto out_unlock;
5079
eb580751 5080 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5081 time_slice = 0;
5082 if (p->sched_class->get_rr_interval)
5083 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5084 task_rq_unlock(rq, p, &rf);
a4ec24b4 5085
1a551ae7 5086 rcu_read_unlock();
a4ec24b4 5087 jiffies_to_timespec(time_slice, &t);
1da177e4 5088 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5089 return retval;
3a5c359a 5090
1da177e4 5091out_unlock:
1a551ae7 5092 rcu_read_unlock();
1da177e4
LT
5093 return retval;
5094}
5095
7c731e0a 5096static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5097
82a1fcb9 5098void sched_show_task(struct task_struct *p)
1da177e4 5099{
1da177e4 5100 unsigned long free = 0;
4e79752c 5101 int ppid;
1f8a7633 5102 unsigned long state = p->state;
1da177e4 5103
1f8a7633
TH
5104 if (state)
5105 state = __ffs(state) + 1;
28d0686c 5106 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5107 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5108#if BITS_PER_LONG == 32
1da177e4 5109 if (state == TASK_RUNNING)
3df0fc5b 5110 printk(KERN_CONT " running ");
1da177e4 5111 else
3df0fc5b 5112 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5113#else
5114 if (state == TASK_RUNNING)
3df0fc5b 5115 printk(KERN_CONT " running task ");
1da177e4 5116 else
3df0fc5b 5117 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5118#endif
5119#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5120 free = stack_not_used(p);
1da177e4 5121#endif
a90e984c 5122 ppid = 0;
4e79752c 5123 rcu_read_lock();
a90e984c
ON
5124 if (pid_alive(p))
5125 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5126 rcu_read_unlock();
3df0fc5b 5127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5128 task_pid_nr(p), ppid,
aa47b7e0 5129 (unsigned long)task_thread_info(p)->flags);
1da177e4 5130
3d1cb205 5131 print_worker_info(KERN_INFO, p);
5fb5e6de 5132 show_stack(p, NULL);
1da177e4
LT
5133}
5134
e59e2ae2 5135void show_state_filter(unsigned long state_filter)
1da177e4 5136{
36c8b586 5137 struct task_struct *g, *p;
1da177e4 5138
4bd77321 5139#if BITS_PER_LONG == 32
3df0fc5b
PZ
5140 printk(KERN_INFO
5141 " task PC stack pid father\n");
1da177e4 5142#else
3df0fc5b
PZ
5143 printk(KERN_INFO
5144 " task PC stack pid father\n");
1da177e4 5145#endif
510f5acc 5146 rcu_read_lock();
5d07f420 5147 for_each_process_thread(g, p) {
1da177e4
LT
5148 /*
5149 * reset the NMI-timeout, listing all files on a slow
25985edc 5150 * console might take a lot of time:
1da177e4
LT
5151 */
5152 touch_nmi_watchdog();
39bc89fd 5153 if (!state_filter || (p->state & state_filter))
82a1fcb9 5154 sched_show_task(p);
5d07f420 5155 }
1da177e4 5156
04c9167f
JF
5157 touch_all_softlockup_watchdogs();
5158
dd41f596 5159#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5160 if (!state_filter)
5161 sysrq_sched_debug_show();
dd41f596 5162#endif
510f5acc 5163 rcu_read_unlock();
e59e2ae2
IM
5164 /*
5165 * Only show locks if all tasks are dumped:
5166 */
93335a21 5167 if (!state_filter)
e59e2ae2 5168 debug_show_all_locks();
1da177e4
LT
5169}
5170
0db0628d 5171void init_idle_bootup_task(struct task_struct *idle)
1df21055 5172{
dd41f596 5173 idle->sched_class = &idle_sched_class;
1df21055
IM
5174}
5175
f340c0d1
IM
5176/**
5177 * init_idle - set up an idle thread for a given CPU
5178 * @idle: task in question
5179 * @cpu: cpu the idle task belongs to
5180 *
5181 * NOTE: this function does not set the idle thread's NEED_RESCHED
5182 * flag, to make booting more robust.
5183 */
0db0628d 5184void init_idle(struct task_struct *idle, int cpu)
1da177e4 5185{
70b97a7f 5186 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5187 unsigned long flags;
5188
25834c73
PZ
5189 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5190 raw_spin_lock(&rq->lock);
5cbd54ef 5191
5e1576ed 5192 __sched_fork(0, idle);
06b83b5f 5193 idle->state = TASK_RUNNING;
dd41f596
IM
5194 idle->se.exec_start = sched_clock();
5195
e1b77c92
MR
5196 kasan_unpoison_task_stack(idle);
5197
de9b8f5d
PZ
5198#ifdef CONFIG_SMP
5199 /*
5200 * Its possible that init_idle() gets called multiple times on a task,
5201 * in that case do_set_cpus_allowed() will not do the right thing.
5202 *
5203 * And since this is boot we can forgo the serialization.
5204 */
5205 set_cpus_allowed_common(idle, cpumask_of(cpu));
5206#endif
6506cf6c
PZ
5207 /*
5208 * We're having a chicken and egg problem, even though we are
5209 * holding rq->lock, the cpu isn't yet set to this cpu so the
5210 * lockdep check in task_group() will fail.
5211 *
5212 * Similar case to sched_fork(). / Alternatively we could
5213 * use task_rq_lock() here and obtain the other rq->lock.
5214 *
5215 * Silence PROVE_RCU
5216 */
5217 rcu_read_lock();
dd41f596 5218 __set_task_cpu(idle, cpu);
6506cf6c 5219 rcu_read_unlock();
1da177e4 5220
1da177e4 5221 rq->curr = rq->idle = idle;
da0c1e65 5222 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5223#ifdef CONFIG_SMP
3ca7a440 5224 idle->on_cpu = 1;
4866cde0 5225#endif
25834c73
PZ
5226 raw_spin_unlock(&rq->lock);
5227 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5228
5229 /* Set the preempt count _outside_ the spinlocks! */
01028747 5230 init_idle_preempt_count(idle, cpu);
55cd5340 5231
dd41f596
IM
5232 /*
5233 * The idle tasks have their own, simple scheduling class:
5234 */
5235 idle->sched_class = &idle_sched_class;
868baf07 5236 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5237 vtime_init_idle(idle, cpu);
de9b8f5d 5238#ifdef CONFIG_SMP
f1c6f1a7
CE
5239 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5240#endif
19978ca6
IM
5241}
5242
f82f8042
JL
5243int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5244 const struct cpumask *trial)
5245{
5246 int ret = 1, trial_cpus;
5247 struct dl_bw *cur_dl_b;
5248 unsigned long flags;
5249
bb2bc55a
MG
5250 if (!cpumask_weight(cur))
5251 return ret;
5252
75e23e49 5253 rcu_read_lock_sched();
f82f8042
JL
5254 cur_dl_b = dl_bw_of(cpumask_any(cur));
5255 trial_cpus = cpumask_weight(trial);
5256
5257 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5258 if (cur_dl_b->bw != -1 &&
5259 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5260 ret = 0;
5261 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5262 rcu_read_unlock_sched();
f82f8042
JL
5263
5264 return ret;
5265}
5266
7f51412a
JL
5267int task_can_attach(struct task_struct *p,
5268 const struct cpumask *cs_cpus_allowed)
5269{
5270 int ret = 0;
5271
5272 /*
5273 * Kthreads which disallow setaffinity shouldn't be moved
5274 * to a new cpuset; we don't want to change their cpu
5275 * affinity and isolating such threads by their set of
5276 * allowed nodes is unnecessary. Thus, cpusets are not
5277 * applicable for such threads. This prevents checking for
5278 * success of set_cpus_allowed_ptr() on all attached tasks
5279 * before cpus_allowed may be changed.
5280 */
5281 if (p->flags & PF_NO_SETAFFINITY) {
5282 ret = -EINVAL;
5283 goto out;
5284 }
5285
5286#ifdef CONFIG_SMP
5287 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5288 cs_cpus_allowed)) {
5289 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5290 cs_cpus_allowed);
75e23e49 5291 struct dl_bw *dl_b;
7f51412a
JL
5292 bool overflow;
5293 int cpus;
5294 unsigned long flags;
5295
75e23e49
JL
5296 rcu_read_lock_sched();
5297 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5298 raw_spin_lock_irqsave(&dl_b->lock, flags);
5299 cpus = dl_bw_cpus(dest_cpu);
5300 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5301 if (overflow)
5302 ret = -EBUSY;
5303 else {
5304 /*
5305 * We reserve space for this task in the destination
5306 * root_domain, as we can't fail after this point.
5307 * We will free resources in the source root_domain
5308 * later on (see set_cpus_allowed_dl()).
5309 */
5310 __dl_add(dl_b, p->dl.dl_bw);
5311 }
5312 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5313 rcu_read_unlock_sched();
7f51412a
JL
5314
5315 }
5316#endif
5317out:
5318 return ret;
5319}
5320
1da177e4 5321#ifdef CONFIG_SMP
1da177e4 5322
e26fbffd
TG
5323static bool sched_smp_initialized __read_mostly;
5324
e6628d5b
MG
5325#ifdef CONFIG_NUMA_BALANCING
5326/* Migrate current task p to target_cpu */
5327int migrate_task_to(struct task_struct *p, int target_cpu)
5328{
5329 struct migration_arg arg = { p, target_cpu };
5330 int curr_cpu = task_cpu(p);
5331
5332 if (curr_cpu == target_cpu)
5333 return 0;
5334
5335 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5336 return -EINVAL;
5337
5338 /* TODO: This is not properly updating schedstats */
5339
286549dc 5340 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5341 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5342}
0ec8aa00
PZ
5343
5344/*
5345 * Requeue a task on a given node and accurately track the number of NUMA
5346 * tasks on the runqueues
5347 */
5348void sched_setnuma(struct task_struct *p, int nid)
5349{
da0c1e65 5350 bool queued, running;
eb580751
PZ
5351 struct rq_flags rf;
5352 struct rq *rq;
0ec8aa00 5353
eb580751 5354 rq = task_rq_lock(p, &rf);
da0c1e65 5355 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5356 running = task_current(rq, p);
5357
da0c1e65 5358 if (queued)
1de64443 5359 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5360 if (running)
f3cd1c4e 5361 put_prev_task(rq, p);
0ec8aa00
PZ
5362
5363 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5364
5365 if (running)
5366 p->sched_class->set_curr_task(rq);
da0c1e65 5367 if (queued)
1de64443 5368 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5369 task_rq_unlock(rq, p, &rf);
0ec8aa00 5370}
5cc389bc 5371#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5372
1da177e4 5373#ifdef CONFIG_HOTPLUG_CPU
054b9108 5374/*
48c5ccae
PZ
5375 * Ensures that the idle task is using init_mm right before its cpu goes
5376 * offline.
054b9108 5377 */
48c5ccae 5378void idle_task_exit(void)
1da177e4 5379{
48c5ccae 5380 struct mm_struct *mm = current->active_mm;
e76bd8d9 5381
48c5ccae 5382 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5383
a53efe5f 5384 if (mm != &init_mm) {
f98db601 5385 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5386 finish_arch_post_lock_switch();
5387 }
48c5ccae 5388 mmdrop(mm);
1da177e4
LT
5389}
5390
5391/*
5d180232
PZ
5392 * Since this CPU is going 'away' for a while, fold any nr_active delta
5393 * we might have. Assumes we're called after migrate_tasks() so that the
5394 * nr_active count is stable.
5395 *
5396 * Also see the comment "Global load-average calculations".
1da177e4 5397 */
5d180232 5398static void calc_load_migrate(struct rq *rq)
1da177e4 5399{
5d180232
PZ
5400 long delta = calc_load_fold_active(rq);
5401 if (delta)
5402 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5403}
5404
3f1d2a31
PZ
5405static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5406{
5407}
5408
5409static const struct sched_class fake_sched_class = {
5410 .put_prev_task = put_prev_task_fake,
5411};
5412
5413static struct task_struct fake_task = {
5414 /*
5415 * Avoid pull_{rt,dl}_task()
5416 */
5417 .prio = MAX_PRIO + 1,
5418 .sched_class = &fake_sched_class,
5419};
5420
48f24c4d 5421/*
48c5ccae
PZ
5422 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5423 * try_to_wake_up()->select_task_rq().
5424 *
5425 * Called with rq->lock held even though we'er in stop_machine() and
5426 * there's no concurrency possible, we hold the required locks anyway
5427 * because of lock validation efforts.
1da177e4 5428 */
5e16bbc2 5429static void migrate_tasks(struct rq *dead_rq)
1da177e4 5430{
5e16bbc2 5431 struct rq *rq = dead_rq;
48c5ccae 5432 struct task_struct *next, *stop = rq->stop;
e7904a28 5433 struct pin_cookie cookie;
48c5ccae 5434 int dest_cpu;
1da177e4
LT
5435
5436 /*
48c5ccae
PZ
5437 * Fudge the rq selection such that the below task selection loop
5438 * doesn't get stuck on the currently eligible stop task.
5439 *
5440 * We're currently inside stop_machine() and the rq is either stuck
5441 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5442 * either way we should never end up calling schedule() until we're
5443 * done here.
1da177e4 5444 */
48c5ccae 5445 rq->stop = NULL;
48f24c4d 5446
77bd3970
FW
5447 /*
5448 * put_prev_task() and pick_next_task() sched
5449 * class method both need to have an up-to-date
5450 * value of rq->clock[_task]
5451 */
5452 update_rq_clock(rq);
5453
5e16bbc2 5454 for (;;) {
48c5ccae
PZ
5455 /*
5456 * There's this thread running, bail when that's the only
5457 * remaining thread.
5458 */
5459 if (rq->nr_running == 1)
dd41f596 5460 break;
48c5ccae 5461
cbce1a68 5462 /*
5473e0cc 5463 * pick_next_task assumes pinned rq->lock.
cbce1a68 5464 */
e7904a28
PZ
5465 cookie = lockdep_pin_lock(&rq->lock);
5466 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5467 BUG_ON(!next);
79c53799 5468 next->sched_class->put_prev_task(rq, next);
e692ab53 5469
5473e0cc
WL
5470 /*
5471 * Rules for changing task_struct::cpus_allowed are holding
5472 * both pi_lock and rq->lock, such that holding either
5473 * stabilizes the mask.
5474 *
5475 * Drop rq->lock is not quite as disastrous as it usually is
5476 * because !cpu_active at this point, which means load-balance
5477 * will not interfere. Also, stop-machine.
5478 */
e7904a28 5479 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5480 raw_spin_unlock(&rq->lock);
5481 raw_spin_lock(&next->pi_lock);
5482 raw_spin_lock(&rq->lock);
5483
5484 /*
5485 * Since we're inside stop-machine, _nothing_ should have
5486 * changed the task, WARN if weird stuff happened, because in
5487 * that case the above rq->lock drop is a fail too.
5488 */
5489 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5490 raw_spin_unlock(&next->pi_lock);
5491 continue;
5492 }
5493
48c5ccae 5494 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5495 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5496
5e16bbc2
PZ
5497 rq = __migrate_task(rq, next, dest_cpu);
5498 if (rq != dead_rq) {
5499 raw_spin_unlock(&rq->lock);
5500 rq = dead_rq;
5501 raw_spin_lock(&rq->lock);
5502 }
5473e0cc 5503 raw_spin_unlock(&next->pi_lock);
1da177e4 5504 }
dce48a84 5505
48c5ccae 5506 rq->stop = stop;
dce48a84 5507}
1da177e4
LT
5508#endif /* CONFIG_HOTPLUG_CPU */
5509
1f11eb6a
GH
5510static void set_rq_online(struct rq *rq)
5511{
5512 if (!rq->online) {
5513 const struct sched_class *class;
5514
c6c4927b 5515 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5516 rq->online = 1;
5517
5518 for_each_class(class) {
5519 if (class->rq_online)
5520 class->rq_online(rq);
5521 }
5522 }
5523}
5524
5525static void set_rq_offline(struct rq *rq)
5526{
5527 if (rq->online) {
5528 const struct sched_class *class;
5529
5530 for_each_class(class) {
5531 if (class->rq_offline)
5532 class->rq_offline(rq);
5533 }
5534
c6c4927b 5535 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5536 rq->online = 0;
5537 }
5538}
5539
9cf7243d 5540static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5541{
969c7921 5542 struct rq *rq = cpu_rq(cpu);
1da177e4 5543
a803f026
CM
5544 rq->age_stamp = sched_clock_cpu(cpu);
5545}
5546
4cb98839
PZ
5547static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5548
3e9830dc 5549#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5550
d039ac60 5551static __read_mostly int sched_debug_enabled;
f6630114 5552
d039ac60 5553static int __init sched_debug_setup(char *str)
f6630114 5554{
d039ac60 5555 sched_debug_enabled = 1;
f6630114
MT
5556
5557 return 0;
5558}
d039ac60
PZ
5559early_param("sched_debug", sched_debug_setup);
5560
5561static inline bool sched_debug(void)
5562{
5563 return sched_debug_enabled;
5564}
f6630114 5565
7c16ec58 5566static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5567 struct cpumask *groupmask)
1da177e4 5568{
4dcf6aff 5569 struct sched_group *group = sd->groups;
1da177e4 5570
96f874e2 5571 cpumask_clear(groupmask);
4dcf6aff
IM
5572
5573 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5574
5575 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5576 printk("does not load-balance\n");
4dcf6aff 5577 if (sd->parent)
3df0fc5b
PZ
5578 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5579 " has parent");
4dcf6aff 5580 return -1;
41c7ce9a
NP
5581 }
5582
333470ee
TH
5583 printk(KERN_CONT "span %*pbl level %s\n",
5584 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5585
758b2cdc 5586 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5587 printk(KERN_ERR "ERROR: domain->span does not contain "
5588 "CPU%d\n", cpu);
4dcf6aff 5589 }
758b2cdc 5590 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: domain->groups does not contain"
5592 " CPU%d\n", cpu);
4dcf6aff 5593 }
1da177e4 5594
4dcf6aff 5595 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5596 do {
4dcf6aff 5597 if (!group) {
3df0fc5b
PZ
5598 printk("\n");
5599 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5600 break;
5601 }
5602
758b2cdc 5603 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5604 printk(KERN_CONT "\n");
5605 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5606 break;
5607 }
1da177e4 5608
cb83b629
PZ
5609 if (!(sd->flags & SD_OVERLAP) &&
5610 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5611 printk(KERN_CONT "\n");
5612 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5613 break;
5614 }
1da177e4 5615
758b2cdc 5616 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5617
333470ee
TH
5618 printk(KERN_CONT " %*pbl",
5619 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5620 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5621 printk(KERN_CONT " (cpu_capacity = %d)",
5622 group->sgc->capacity);
381512cf 5623 }
1da177e4 5624
4dcf6aff
IM
5625 group = group->next;
5626 } while (group != sd->groups);
3df0fc5b 5627 printk(KERN_CONT "\n");
1da177e4 5628
758b2cdc 5629 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5630 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5631
758b2cdc
RR
5632 if (sd->parent &&
5633 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5634 printk(KERN_ERR "ERROR: parent span is not a superset "
5635 "of domain->span\n");
4dcf6aff
IM
5636 return 0;
5637}
1da177e4 5638
4dcf6aff
IM
5639static void sched_domain_debug(struct sched_domain *sd, int cpu)
5640{
5641 int level = 0;
1da177e4 5642
d039ac60 5643 if (!sched_debug_enabled)
f6630114
MT
5644 return;
5645
4dcf6aff
IM
5646 if (!sd) {
5647 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5648 return;
5649 }
1da177e4 5650
4dcf6aff
IM
5651 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5652
5653 for (;;) {
4cb98839 5654 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5655 break;
1da177e4
LT
5656 level++;
5657 sd = sd->parent;
33859f7f 5658 if (!sd)
4dcf6aff
IM
5659 break;
5660 }
1da177e4 5661}
6d6bc0ad 5662#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5663# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5664static inline bool sched_debug(void)
5665{
5666 return false;
5667}
6d6bc0ad 5668#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5669
1a20ff27 5670static int sd_degenerate(struct sched_domain *sd)
245af2c7 5671{
758b2cdc 5672 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5673 return 1;
5674
5675 /* Following flags need at least 2 groups */
5676 if (sd->flags & (SD_LOAD_BALANCE |
5677 SD_BALANCE_NEWIDLE |
5678 SD_BALANCE_FORK |
89c4710e 5679 SD_BALANCE_EXEC |
5d4dfddd 5680 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5681 SD_SHARE_PKG_RESOURCES |
5682 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5683 if (sd->groups != sd->groups->next)
5684 return 0;
5685 }
5686
5687 /* Following flags don't use groups */
c88d5910 5688 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5689 return 0;
5690
5691 return 1;
5692}
5693
48f24c4d
IM
5694static int
5695sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5696{
5697 unsigned long cflags = sd->flags, pflags = parent->flags;
5698
5699 if (sd_degenerate(parent))
5700 return 1;
5701
758b2cdc 5702 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5703 return 0;
5704
245af2c7
SS
5705 /* Flags needing groups don't count if only 1 group in parent */
5706 if (parent->groups == parent->groups->next) {
5707 pflags &= ~(SD_LOAD_BALANCE |
5708 SD_BALANCE_NEWIDLE |
5709 SD_BALANCE_FORK |
89c4710e 5710 SD_BALANCE_EXEC |
5d4dfddd 5711 SD_SHARE_CPUCAPACITY |
10866e62 5712 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5713 SD_PREFER_SIBLING |
5714 SD_SHARE_POWERDOMAIN);
5436499e
KC
5715 if (nr_node_ids == 1)
5716 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5717 }
5718 if (~cflags & pflags)
5719 return 0;
5720
5721 return 1;
5722}
5723
dce840a0 5724static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5725{
dce840a0 5726 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5727
68e74568 5728 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5729 cpudl_cleanup(&rd->cpudl);
1baca4ce 5730 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5731 free_cpumask_var(rd->rto_mask);
5732 free_cpumask_var(rd->online);
5733 free_cpumask_var(rd->span);
5734 kfree(rd);
5735}
5736
57d885fe
GH
5737static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5738{
a0490fa3 5739 struct root_domain *old_rd = NULL;
57d885fe 5740 unsigned long flags;
57d885fe 5741
05fa785c 5742 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5743
5744 if (rq->rd) {
a0490fa3 5745 old_rd = rq->rd;
57d885fe 5746
c6c4927b 5747 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5748 set_rq_offline(rq);
57d885fe 5749
c6c4927b 5750 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5751
a0490fa3 5752 /*
0515973f 5753 * If we dont want to free the old_rd yet then
a0490fa3
IM
5754 * set old_rd to NULL to skip the freeing later
5755 * in this function:
5756 */
5757 if (!atomic_dec_and_test(&old_rd->refcount))
5758 old_rd = NULL;
57d885fe
GH
5759 }
5760
5761 atomic_inc(&rd->refcount);
5762 rq->rd = rd;
5763
c6c4927b 5764 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5765 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5766 set_rq_online(rq);
57d885fe 5767
05fa785c 5768 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5769
5770 if (old_rd)
dce840a0 5771 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5772}
5773
68c38fc3 5774static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5775{
5776 memset(rd, 0, sizeof(*rd));
5777
8295c699 5778 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5779 goto out;
8295c699 5780 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5781 goto free_span;
8295c699 5782 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5783 goto free_online;
8295c699 5784 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5785 goto free_dlo_mask;
6e0534f2 5786
332ac17e 5787 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5788 if (cpudl_init(&rd->cpudl) != 0)
5789 goto free_dlo_mask;
332ac17e 5790
68c38fc3 5791 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5792 goto free_rto_mask;
c6c4927b 5793 return 0;
6e0534f2 5794
68e74568
RR
5795free_rto_mask:
5796 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5797free_dlo_mask:
5798 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5799free_online:
5800 free_cpumask_var(rd->online);
5801free_span:
5802 free_cpumask_var(rd->span);
0c910d28 5803out:
c6c4927b 5804 return -ENOMEM;
57d885fe
GH
5805}
5806
029632fb
PZ
5807/*
5808 * By default the system creates a single root-domain with all cpus as
5809 * members (mimicking the global state we have today).
5810 */
5811struct root_domain def_root_domain;
5812
57d885fe
GH
5813static void init_defrootdomain(void)
5814{
68c38fc3 5815 init_rootdomain(&def_root_domain);
c6c4927b 5816
57d885fe
GH
5817 atomic_set(&def_root_domain.refcount, 1);
5818}
5819
dc938520 5820static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5821{
5822 struct root_domain *rd;
5823
5824 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5825 if (!rd)
5826 return NULL;
5827
68c38fc3 5828 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5829 kfree(rd);
5830 return NULL;
5831 }
57d885fe
GH
5832
5833 return rd;
5834}
5835
63b2ca30 5836static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5837{
5838 struct sched_group *tmp, *first;
5839
5840 if (!sg)
5841 return;
5842
5843 first = sg;
5844 do {
5845 tmp = sg->next;
5846
63b2ca30
NP
5847 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5848 kfree(sg->sgc);
e3589f6c
PZ
5849
5850 kfree(sg);
5851 sg = tmp;
5852 } while (sg != first);
5853}
5854
dce840a0
PZ
5855static void free_sched_domain(struct rcu_head *rcu)
5856{
5857 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5858
5859 /*
5860 * If its an overlapping domain it has private groups, iterate and
5861 * nuke them all.
5862 */
5863 if (sd->flags & SD_OVERLAP) {
5864 free_sched_groups(sd->groups, 1);
5865 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5866 kfree(sd->groups->sgc);
dce840a0 5867 kfree(sd->groups);
9c3f75cb 5868 }
dce840a0
PZ
5869 kfree(sd);
5870}
5871
5872static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5873{
5874 call_rcu(&sd->rcu, free_sched_domain);
5875}
5876
5877static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5878{
5879 for (; sd; sd = sd->parent)
5880 destroy_sched_domain(sd, cpu);
5881}
5882
518cd623
PZ
5883/*
5884 * Keep a special pointer to the highest sched_domain that has
5885 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5886 * allows us to avoid some pointer chasing select_idle_sibling().
5887 *
5888 * Also keep a unique ID per domain (we use the first cpu number in
5889 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5890 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5891 */
5892DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5893DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5894DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5895DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5896DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5897DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5898
5899static void update_top_cache_domain(int cpu)
5900{
5901 struct sched_domain *sd;
5d4cf996 5902 struct sched_domain *busy_sd = NULL;
518cd623 5903 int id = cpu;
7d9ffa89 5904 int size = 1;
518cd623
PZ
5905
5906 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5907 if (sd) {
518cd623 5908 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5909 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5910 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5911 }
5d4cf996 5912 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5913
5914 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5915 per_cpu(sd_llc_size, cpu) = size;
518cd623 5916 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5917
5918 sd = lowest_flag_domain(cpu, SD_NUMA);
5919 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5920
5921 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5922 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5923}
5924
1da177e4 5925/*
0eab9146 5926 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5927 * hold the hotplug lock.
5928 */
0eab9146
IM
5929static void
5930cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5931{
70b97a7f 5932 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5933 struct sched_domain *tmp;
5934
5935 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5936 for (tmp = sd; tmp; ) {
245af2c7
SS
5937 struct sched_domain *parent = tmp->parent;
5938 if (!parent)
5939 break;
f29c9b1c 5940
1a848870 5941 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5942 tmp->parent = parent->parent;
1a848870
SS
5943 if (parent->parent)
5944 parent->parent->child = tmp;
10866e62
PZ
5945 /*
5946 * Transfer SD_PREFER_SIBLING down in case of a
5947 * degenerate parent; the spans match for this
5948 * so the property transfers.
5949 */
5950 if (parent->flags & SD_PREFER_SIBLING)
5951 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5952 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5953 } else
5954 tmp = tmp->parent;
245af2c7
SS
5955 }
5956
1a848870 5957 if (sd && sd_degenerate(sd)) {
dce840a0 5958 tmp = sd;
245af2c7 5959 sd = sd->parent;
dce840a0 5960 destroy_sched_domain(tmp, cpu);
1a848870
SS
5961 if (sd)
5962 sd->child = NULL;
5963 }
1da177e4 5964
4cb98839 5965 sched_domain_debug(sd, cpu);
1da177e4 5966
57d885fe 5967 rq_attach_root(rq, rd);
dce840a0 5968 tmp = rq->sd;
674311d5 5969 rcu_assign_pointer(rq->sd, sd);
dce840a0 5970 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5971
5972 update_top_cache_domain(cpu);
1da177e4
LT
5973}
5974
1da177e4
LT
5975/* Setup the mask of cpus configured for isolated domains */
5976static int __init isolated_cpu_setup(char *str)
5977{
a6e4491c
PB
5978 int ret;
5979
bdddd296 5980 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5981 ret = cpulist_parse(str, cpu_isolated_map);
5982 if (ret) {
5983 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5984 return 0;
5985 }
1da177e4
LT
5986 return 1;
5987}
8927f494 5988__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5989
49a02c51 5990struct s_data {
21d42ccf 5991 struct sched_domain ** __percpu sd;
49a02c51
AH
5992 struct root_domain *rd;
5993};
5994
2109b99e 5995enum s_alloc {
2109b99e 5996 sa_rootdomain,
21d42ccf 5997 sa_sd,
dce840a0 5998 sa_sd_storage,
2109b99e
AH
5999 sa_none,
6000};
6001
c1174876
PZ
6002/*
6003 * Build an iteration mask that can exclude certain CPUs from the upwards
6004 * domain traversal.
6005 *
6006 * Asymmetric node setups can result in situations where the domain tree is of
6007 * unequal depth, make sure to skip domains that already cover the entire
6008 * range.
6009 *
6010 * In that case build_sched_domains() will have terminated the iteration early
6011 * and our sibling sd spans will be empty. Domains should always include the
6012 * cpu they're built on, so check that.
6013 *
6014 */
6015static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6016{
6017 const struct cpumask *span = sched_domain_span(sd);
6018 struct sd_data *sdd = sd->private;
6019 struct sched_domain *sibling;
6020 int i;
6021
6022 for_each_cpu(i, span) {
6023 sibling = *per_cpu_ptr(sdd->sd, i);
6024 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6025 continue;
6026
6027 cpumask_set_cpu(i, sched_group_mask(sg));
6028 }
6029}
6030
6031/*
6032 * Return the canonical balance cpu for this group, this is the first cpu
6033 * of this group that's also in the iteration mask.
6034 */
6035int group_balance_cpu(struct sched_group *sg)
6036{
6037 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6038}
6039
e3589f6c
PZ
6040static int
6041build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6042{
6043 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6044 const struct cpumask *span = sched_domain_span(sd);
6045 struct cpumask *covered = sched_domains_tmpmask;
6046 struct sd_data *sdd = sd->private;
aaecac4a 6047 struct sched_domain *sibling;
e3589f6c
PZ
6048 int i;
6049
6050 cpumask_clear(covered);
6051
6052 for_each_cpu(i, span) {
6053 struct cpumask *sg_span;
6054
6055 if (cpumask_test_cpu(i, covered))
6056 continue;
6057
aaecac4a 6058 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6059
6060 /* See the comment near build_group_mask(). */
aaecac4a 6061 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6062 continue;
6063
e3589f6c 6064 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6065 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6066
6067 if (!sg)
6068 goto fail;
6069
6070 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6071 if (sibling->child)
6072 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6073 else
e3589f6c
PZ
6074 cpumask_set_cpu(i, sg_span);
6075
6076 cpumask_or(covered, covered, sg_span);
6077
63b2ca30
NP
6078 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6079 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6080 build_group_mask(sd, sg);
6081
c3decf0d 6082 /*
63b2ca30 6083 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6084 * domains and no possible iteration will get us here, we won't
6085 * die on a /0 trap.
6086 */
ca8ce3d0 6087 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6088
c1174876
PZ
6089 /*
6090 * Make sure the first group of this domain contains the
6091 * canonical balance cpu. Otherwise the sched_domain iteration
6092 * breaks. See update_sg_lb_stats().
6093 */
74a5ce20 6094 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6095 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6096 groups = sg;
6097
6098 if (!first)
6099 first = sg;
6100 if (last)
6101 last->next = sg;
6102 last = sg;
6103 last->next = first;
6104 }
6105 sd->groups = groups;
6106
6107 return 0;
6108
6109fail:
6110 free_sched_groups(first, 0);
6111
6112 return -ENOMEM;
6113}
6114
dce840a0 6115static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6116{
dce840a0
PZ
6117 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6118 struct sched_domain *child = sd->child;
1da177e4 6119
dce840a0
PZ
6120 if (child)
6121 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6122
9c3f75cb 6123 if (sg) {
dce840a0 6124 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6125 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6126 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6127 }
dce840a0
PZ
6128
6129 return cpu;
1e9f28fa 6130}
1e9f28fa 6131
01a08546 6132/*
dce840a0
PZ
6133 * build_sched_groups will build a circular linked list of the groups
6134 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6135 * and ->cpu_capacity to 0.
e3589f6c
PZ
6136 *
6137 * Assumes the sched_domain tree is fully constructed
01a08546 6138 */
e3589f6c
PZ
6139static int
6140build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6141{
dce840a0
PZ
6142 struct sched_group *first = NULL, *last = NULL;
6143 struct sd_data *sdd = sd->private;
6144 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6145 struct cpumask *covered;
dce840a0 6146 int i;
9c1cfda2 6147
e3589f6c
PZ
6148 get_group(cpu, sdd, &sd->groups);
6149 atomic_inc(&sd->groups->ref);
6150
0936629f 6151 if (cpu != cpumask_first(span))
e3589f6c
PZ
6152 return 0;
6153
f96225fd
PZ
6154 lockdep_assert_held(&sched_domains_mutex);
6155 covered = sched_domains_tmpmask;
6156
dce840a0 6157 cpumask_clear(covered);
6711cab4 6158
dce840a0
PZ
6159 for_each_cpu(i, span) {
6160 struct sched_group *sg;
cd08e923 6161 int group, j;
6711cab4 6162
dce840a0
PZ
6163 if (cpumask_test_cpu(i, covered))
6164 continue;
6711cab4 6165
cd08e923 6166 group = get_group(i, sdd, &sg);
c1174876 6167 cpumask_setall(sched_group_mask(sg));
0601a88d 6168
dce840a0
PZ
6169 for_each_cpu(j, span) {
6170 if (get_group(j, sdd, NULL) != group)
6171 continue;
0601a88d 6172
dce840a0
PZ
6173 cpumask_set_cpu(j, covered);
6174 cpumask_set_cpu(j, sched_group_cpus(sg));
6175 }
0601a88d 6176
dce840a0
PZ
6177 if (!first)
6178 first = sg;
6179 if (last)
6180 last->next = sg;
6181 last = sg;
6182 }
6183 last->next = first;
e3589f6c
PZ
6184
6185 return 0;
0601a88d 6186}
51888ca2 6187
89c4710e 6188/*
63b2ca30 6189 * Initialize sched groups cpu_capacity.
89c4710e 6190 *
63b2ca30 6191 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6192 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6193 * Typically cpu_capacity for all the groups in a sched domain will be same
6194 * unless there are asymmetries in the topology. If there are asymmetries,
6195 * group having more cpu_capacity will pickup more load compared to the
6196 * group having less cpu_capacity.
89c4710e 6197 */
63b2ca30 6198static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6199{
e3589f6c 6200 struct sched_group *sg = sd->groups;
89c4710e 6201
94c95ba6 6202 WARN_ON(!sg);
e3589f6c
PZ
6203
6204 do {
6205 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6206 sg = sg->next;
6207 } while (sg != sd->groups);
89c4710e 6208
c1174876 6209 if (cpu != group_balance_cpu(sg))
e3589f6c 6210 return;
aae6d3dd 6211
63b2ca30
NP
6212 update_group_capacity(sd, cpu);
6213 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6214}
6215
7c16ec58
MT
6216/*
6217 * Initializers for schedule domains
6218 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6219 */
6220
1d3504fc 6221static int default_relax_domain_level = -1;
60495e77 6222int sched_domain_level_max;
1d3504fc
HS
6223
6224static int __init setup_relax_domain_level(char *str)
6225{
a841f8ce
DS
6226 if (kstrtoint(str, 0, &default_relax_domain_level))
6227 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6228
1d3504fc
HS
6229 return 1;
6230}
6231__setup("relax_domain_level=", setup_relax_domain_level);
6232
6233static void set_domain_attribute(struct sched_domain *sd,
6234 struct sched_domain_attr *attr)
6235{
6236 int request;
6237
6238 if (!attr || attr->relax_domain_level < 0) {
6239 if (default_relax_domain_level < 0)
6240 return;
6241 else
6242 request = default_relax_domain_level;
6243 } else
6244 request = attr->relax_domain_level;
6245 if (request < sd->level) {
6246 /* turn off idle balance on this domain */
c88d5910 6247 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6248 } else {
6249 /* turn on idle balance on this domain */
c88d5910 6250 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6251 }
6252}
6253
54ab4ff4
PZ
6254static void __sdt_free(const struct cpumask *cpu_map);
6255static int __sdt_alloc(const struct cpumask *cpu_map);
6256
2109b99e
AH
6257static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6258 const struct cpumask *cpu_map)
6259{
6260 switch (what) {
2109b99e 6261 case sa_rootdomain:
822ff793
PZ
6262 if (!atomic_read(&d->rd->refcount))
6263 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6264 case sa_sd:
6265 free_percpu(d->sd); /* fall through */
dce840a0 6266 case sa_sd_storage:
54ab4ff4 6267 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6268 case sa_none:
6269 break;
6270 }
6271}
3404c8d9 6272
2109b99e
AH
6273static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6274 const struct cpumask *cpu_map)
6275{
dce840a0
PZ
6276 memset(d, 0, sizeof(*d));
6277
54ab4ff4
PZ
6278 if (__sdt_alloc(cpu_map))
6279 return sa_sd_storage;
dce840a0
PZ
6280 d->sd = alloc_percpu(struct sched_domain *);
6281 if (!d->sd)
6282 return sa_sd_storage;
2109b99e 6283 d->rd = alloc_rootdomain();
dce840a0 6284 if (!d->rd)
21d42ccf 6285 return sa_sd;
2109b99e
AH
6286 return sa_rootdomain;
6287}
57d885fe 6288
dce840a0
PZ
6289/*
6290 * NULL the sd_data elements we've used to build the sched_domain and
6291 * sched_group structure so that the subsequent __free_domain_allocs()
6292 * will not free the data we're using.
6293 */
6294static void claim_allocations(int cpu, struct sched_domain *sd)
6295{
6296 struct sd_data *sdd = sd->private;
dce840a0
PZ
6297
6298 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6299 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6300
e3589f6c 6301 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6302 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6303
63b2ca30
NP
6304 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6305 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6306}
6307
cb83b629 6308#ifdef CONFIG_NUMA
cb83b629 6309static int sched_domains_numa_levels;
e3fe70b1 6310enum numa_topology_type sched_numa_topology_type;
cb83b629 6311static int *sched_domains_numa_distance;
9942f79b 6312int sched_max_numa_distance;
cb83b629
PZ
6313static struct cpumask ***sched_domains_numa_masks;
6314static int sched_domains_curr_level;
143e1e28 6315#endif
cb83b629 6316
143e1e28
VG
6317/*
6318 * SD_flags allowed in topology descriptions.
6319 *
5d4dfddd 6320 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6321 * SD_SHARE_PKG_RESOURCES - describes shared caches
6322 * SD_NUMA - describes NUMA topologies
d77b3ed5 6323 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6324 *
6325 * Odd one out:
6326 * SD_ASYM_PACKING - describes SMT quirks
6327 */
6328#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6329 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6330 SD_SHARE_PKG_RESOURCES | \
6331 SD_NUMA | \
d77b3ed5
VG
6332 SD_ASYM_PACKING | \
6333 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6334
6335static struct sched_domain *
143e1e28 6336sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6337{
6338 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6339 int sd_weight, sd_flags = 0;
6340
6341#ifdef CONFIG_NUMA
6342 /*
6343 * Ugly hack to pass state to sd_numa_mask()...
6344 */
6345 sched_domains_curr_level = tl->numa_level;
6346#endif
6347
6348 sd_weight = cpumask_weight(tl->mask(cpu));
6349
6350 if (tl->sd_flags)
6351 sd_flags = (*tl->sd_flags)();
6352 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6353 "wrong sd_flags in topology description\n"))
6354 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6355
6356 *sd = (struct sched_domain){
6357 .min_interval = sd_weight,
6358 .max_interval = 2*sd_weight,
6359 .busy_factor = 32,
870a0bb5 6360 .imbalance_pct = 125,
143e1e28
VG
6361
6362 .cache_nice_tries = 0,
6363 .busy_idx = 0,
6364 .idle_idx = 0,
cb83b629
PZ
6365 .newidle_idx = 0,
6366 .wake_idx = 0,
6367 .forkexec_idx = 0,
6368
6369 .flags = 1*SD_LOAD_BALANCE
6370 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6371 | 1*SD_BALANCE_EXEC
6372 | 1*SD_BALANCE_FORK
cb83b629 6373 | 0*SD_BALANCE_WAKE
143e1e28 6374 | 1*SD_WAKE_AFFINE
5d4dfddd 6375 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6376 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6377 | 0*SD_SERIALIZE
cb83b629 6378 | 0*SD_PREFER_SIBLING
143e1e28
VG
6379 | 0*SD_NUMA
6380 | sd_flags
cb83b629 6381 ,
143e1e28 6382
cb83b629
PZ
6383 .last_balance = jiffies,
6384 .balance_interval = sd_weight,
143e1e28 6385 .smt_gain = 0,
2b4cfe64
JL
6386 .max_newidle_lb_cost = 0,
6387 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6388#ifdef CONFIG_SCHED_DEBUG
6389 .name = tl->name,
6390#endif
cb83b629 6391 };
cb83b629
PZ
6392
6393 /*
143e1e28 6394 * Convert topological properties into behaviour.
cb83b629 6395 */
143e1e28 6396
5d4dfddd 6397 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6398 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6399 sd->imbalance_pct = 110;
6400 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6401
6402 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6403 sd->imbalance_pct = 117;
6404 sd->cache_nice_tries = 1;
6405 sd->busy_idx = 2;
6406
6407#ifdef CONFIG_NUMA
6408 } else if (sd->flags & SD_NUMA) {
6409 sd->cache_nice_tries = 2;
6410 sd->busy_idx = 3;
6411 sd->idle_idx = 2;
6412
6413 sd->flags |= SD_SERIALIZE;
6414 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6415 sd->flags &= ~(SD_BALANCE_EXEC |
6416 SD_BALANCE_FORK |
6417 SD_WAKE_AFFINE);
6418 }
6419
6420#endif
6421 } else {
6422 sd->flags |= SD_PREFER_SIBLING;
6423 sd->cache_nice_tries = 1;
6424 sd->busy_idx = 2;
6425 sd->idle_idx = 1;
6426 }
6427
6428 sd->private = &tl->data;
cb83b629
PZ
6429
6430 return sd;
6431}
6432
143e1e28
VG
6433/*
6434 * Topology list, bottom-up.
6435 */
6436static struct sched_domain_topology_level default_topology[] = {
6437#ifdef CONFIG_SCHED_SMT
6438 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6439#endif
6440#ifdef CONFIG_SCHED_MC
6441 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6442#endif
6443 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6444 { NULL, },
6445};
6446
c6e1e7b5
JG
6447static struct sched_domain_topology_level *sched_domain_topology =
6448 default_topology;
143e1e28
VG
6449
6450#define for_each_sd_topology(tl) \
6451 for (tl = sched_domain_topology; tl->mask; tl++)
6452
6453void set_sched_topology(struct sched_domain_topology_level *tl)
6454{
6455 sched_domain_topology = tl;
6456}
6457
6458#ifdef CONFIG_NUMA
6459
cb83b629
PZ
6460static const struct cpumask *sd_numa_mask(int cpu)
6461{
6462 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6463}
6464
d039ac60
PZ
6465static void sched_numa_warn(const char *str)
6466{
6467 static int done = false;
6468 int i,j;
6469
6470 if (done)
6471 return;
6472
6473 done = true;
6474
6475 printk(KERN_WARNING "ERROR: %s\n\n", str);
6476
6477 for (i = 0; i < nr_node_ids; i++) {
6478 printk(KERN_WARNING " ");
6479 for (j = 0; j < nr_node_ids; j++)
6480 printk(KERN_CONT "%02d ", node_distance(i,j));
6481 printk(KERN_CONT "\n");
6482 }
6483 printk(KERN_WARNING "\n");
6484}
6485
9942f79b 6486bool find_numa_distance(int distance)
d039ac60
PZ
6487{
6488 int i;
6489
6490 if (distance == node_distance(0, 0))
6491 return true;
6492
6493 for (i = 0; i < sched_domains_numa_levels; i++) {
6494 if (sched_domains_numa_distance[i] == distance)
6495 return true;
6496 }
6497
6498 return false;
6499}
6500
e3fe70b1
RR
6501/*
6502 * A system can have three types of NUMA topology:
6503 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6504 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6505 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6506 *
6507 * The difference between a glueless mesh topology and a backplane
6508 * topology lies in whether communication between not directly
6509 * connected nodes goes through intermediary nodes (where programs
6510 * could run), or through backplane controllers. This affects
6511 * placement of programs.
6512 *
6513 * The type of topology can be discerned with the following tests:
6514 * - If the maximum distance between any nodes is 1 hop, the system
6515 * is directly connected.
6516 * - If for two nodes A and B, located N > 1 hops away from each other,
6517 * there is an intermediary node C, which is < N hops away from both
6518 * nodes A and B, the system is a glueless mesh.
6519 */
6520static void init_numa_topology_type(void)
6521{
6522 int a, b, c, n;
6523
6524 n = sched_max_numa_distance;
6525
e237882b 6526 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6527 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6528 return;
6529 }
e3fe70b1
RR
6530
6531 for_each_online_node(a) {
6532 for_each_online_node(b) {
6533 /* Find two nodes furthest removed from each other. */
6534 if (node_distance(a, b) < n)
6535 continue;
6536
6537 /* Is there an intermediary node between a and b? */
6538 for_each_online_node(c) {
6539 if (node_distance(a, c) < n &&
6540 node_distance(b, c) < n) {
6541 sched_numa_topology_type =
6542 NUMA_GLUELESS_MESH;
6543 return;
6544 }
6545 }
6546
6547 sched_numa_topology_type = NUMA_BACKPLANE;
6548 return;
6549 }
6550 }
6551}
6552
cb83b629
PZ
6553static void sched_init_numa(void)
6554{
6555 int next_distance, curr_distance = node_distance(0, 0);
6556 struct sched_domain_topology_level *tl;
6557 int level = 0;
6558 int i, j, k;
6559
cb83b629
PZ
6560 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6561 if (!sched_domains_numa_distance)
6562 return;
6563
6564 /*
6565 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6566 * unique distances in the node_distance() table.
6567 *
6568 * Assumes node_distance(0,j) includes all distances in
6569 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6570 */
6571 next_distance = curr_distance;
6572 for (i = 0; i < nr_node_ids; i++) {
6573 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6574 for (k = 0; k < nr_node_ids; k++) {
6575 int distance = node_distance(i, k);
6576
6577 if (distance > curr_distance &&
6578 (distance < next_distance ||
6579 next_distance == curr_distance))
6580 next_distance = distance;
6581
6582 /*
6583 * While not a strong assumption it would be nice to know
6584 * about cases where if node A is connected to B, B is not
6585 * equally connected to A.
6586 */
6587 if (sched_debug() && node_distance(k, i) != distance)
6588 sched_numa_warn("Node-distance not symmetric");
6589
6590 if (sched_debug() && i && !find_numa_distance(distance))
6591 sched_numa_warn("Node-0 not representative");
6592 }
6593 if (next_distance != curr_distance) {
6594 sched_domains_numa_distance[level++] = next_distance;
6595 sched_domains_numa_levels = level;
6596 curr_distance = next_distance;
6597 } else break;
cb83b629 6598 }
d039ac60
PZ
6599
6600 /*
6601 * In case of sched_debug() we verify the above assumption.
6602 */
6603 if (!sched_debug())
6604 break;
cb83b629 6605 }
c123588b
AR
6606
6607 if (!level)
6608 return;
6609
cb83b629
PZ
6610 /*
6611 * 'level' contains the number of unique distances, excluding the
6612 * identity distance node_distance(i,i).
6613 *
28b4a521 6614 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6615 * numbers.
6616 */
6617
5f7865f3
TC
6618 /*
6619 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6620 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6621 * the array will contain less then 'level' members. This could be
6622 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6623 * in other functions.
6624 *
6625 * We reset it to 'level' at the end of this function.
6626 */
6627 sched_domains_numa_levels = 0;
6628
cb83b629
PZ
6629 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6630 if (!sched_domains_numa_masks)
6631 return;
6632
6633 /*
6634 * Now for each level, construct a mask per node which contains all
6635 * cpus of nodes that are that many hops away from us.
6636 */
6637 for (i = 0; i < level; i++) {
6638 sched_domains_numa_masks[i] =
6639 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6640 if (!sched_domains_numa_masks[i])
6641 return;
6642
6643 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6644 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6645 if (!mask)
6646 return;
6647
6648 sched_domains_numa_masks[i][j] = mask;
6649
9c03ee14 6650 for_each_node(k) {
dd7d8634 6651 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6652 continue;
6653
6654 cpumask_or(mask, mask, cpumask_of_node(k));
6655 }
6656 }
6657 }
6658
143e1e28
VG
6659 /* Compute default topology size */
6660 for (i = 0; sched_domain_topology[i].mask; i++);
6661
c515db8c 6662 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6663 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6664 if (!tl)
6665 return;
6666
6667 /*
6668 * Copy the default topology bits..
6669 */
143e1e28
VG
6670 for (i = 0; sched_domain_topology[i].mask; i++)
6671 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6672
6673 /*
6674 * .. and append 'j' levels of NUMA goodness.
6675 */
6676 for (j = 0; j < level; i++, j++) {
6677 tl[i] = (struct sched_domain_topology_level){
cb83b629 6678 .mask = sd_numa_mask,
143e1e28 6679 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6680 .flags = SDTL_OVERLAP,
6681 .numa_level = j,
143e1e28 6682 SD_INIT_NAME(NUMA)
cb83b629
PZ
6683 };
6684 }
6685
6686 sched_domain_topology = tl;
5f7865f3
TC
6687
6688 sched_domains_numa_levels = level;
9942f79b 6689 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6690
6691 init_numa_topology_type();
cb83b629 6692}
301a5cba 6693
135fb3e1 6694static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6695{
301a5cba 6696 int node = cpu_to_node(cpu);
135fb3e1 6697 int i, j;
301a5cba
TC
6698
6699 for (i = 0; i < sched_domains_numa_levels; i++) {
6700 for (j = 0; j < nr_node_ids; j++) {
6701 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6702 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6703 }
6704 }
6705}
6706
135fb3e1 6707static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6708{
6709 int i, j;
135fb3e1 6710
301a5cba
TC
6711 for (i = 0; i < sched_domains_numa_levels; i++) {
6712 for (j = 0; j < nr_node_ids; j++)
6713 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6714 }
6715}
6716
cb83b629 6717#else
135fb3e1
TG
6718static inline void sched_init_numa(void) { }
6719static void sched_domains_numa_masks_set(unsigned int cpu) { }
6720static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6721#endif /* CONFIG_NUMA */
6722
54ab4ff4
PZ
6723static int __sdt_alloc(const struct cpumask *cpu_map)
6724{
6725 struct sched_domain_topology_level *tl;
6726 int j;
6727
27723a68 6728 for_each_sd_topology(tl) {
54ab4ff4
PZ
6729 struct sd_data *sdd = &tl->data;
6730
6731 sdd->sd = alloc_percpu(struct sched_domain *);
6732 if (!sdd->sd)
6733 return -ENOMEM;
6734
6735 sdd->sg = alloc_percpu(struct sched_group *);
6736 if (!sdd->sg)
6737 return -ENOMEM;
6738
63b2ca30
NP
6739 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6740 if (!sdd->sgc)
9c3f75cb
PZ
6741 return -ENOMEM;
6742
54ab4ff4
PZ
6743 for_each_cpu(j, cpu_map) {
6744 struct sched_domain *sd;
6745 struct sched_group *sg;
63b2ca30 6746 struct sched_group_capacity *sgc;
54ab4ff4 6747
5cc389bc 6748 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6749 GFP_KERNEL, cpu_to_node(j));
6750 if (!sd)
6751 return -ENOMEM;
6752
6753 *per_cpu_ptr(sdd->sd, j) = sd;
6754
6755 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6756 GFP_KERNEL, cpu_to_node(j));
6757 if (!sg)
6758 return -ENOMEM;
6759
30b4e9eb
IM
6760 sg->next = sg;
6761
54ab4ff4 6762 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6763
63b2ca30 6764 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6765 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6766 if (!sgc)
9c3f75cb
PZ
6767 return -ENOMEM;
6768
63b2ca30 6769 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6770 }
6771 }
6772
6773 return 0;
6774}
6775
6776static void __sdt_free(const struct cpumask *cpu_map)
6777{
6778 struct sched_domain_topology_level *tl;
6779 int j;
6780
27723a68 6781 for_each_sd_topology(tl) {
54ab4ff4
PZ
6782 struct sd_data *sdd = &tl->data;
6783
6784 for_each_cpu(j, cpu_map) {
fb2cf2c6 6785 struct sched_domain *sd;
6786
6787 if (sdd->sd) {
6788 sd = *per_cpu_ptr(sdd->sd, j);
6789 if (sd && (sd->flags & SD_OVERLAP))
6790 free_sched_groups(sd->groups, 0);
6791 kfree(*per_cpu_ptr(sdd->sd, j));
6792 }
6793
6794 if (sdd->sg)
6795 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6796 if (sdd->sgc)
6797 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6798 }
6799 free_percpu(sdd->sd);
fb2cf2c6 6800 sdd->sd = NULL;
54ab4ff4 6801 free_percpu(sdd->sg);
fb2cf2c6 6802 sdd->sg = NULL;
63b2ca30
NP
6803 free_percpu(sdd->sgc);
6804 sdd->sgc = NULL;
54ab4ff4
PZ
6805 }
6806}
6807
2c402dc3 6808struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6809 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6810 struct sched_domain *child, int cpu)
2c402dc3 6811{
143e1e28 6812 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6813 if (!sd)
d069b916 6814 return child;
2c402dc3 6815
2c402dc3 6816 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6817 if (child) {
6818 sd->level = child->level + 1;
6819 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6820 child->parent = sd;
c75e0128 6821 sd->child = child;
6ae72dff
PZ
6822
6823 if (!cpumask_subset(sched_domain_span(child),
6824 sched_domain_span(sd))) {
6825 pr_err("BUG: arch topology borken\n");
6826#ifdef CONFIG_SCHED_DEBUG
6827 pr_err(" the %s domain not a subset of the %s domain\n",
6828 child->name, sd->name);
6829#endif
6830 /* Fixup, ensure @sd has at least @child cpus. */
6831 cpumask_or(sched_domain_span(sd),
6832 sched_domain_span(sd),
6833 sched_domain_span(child));
6834 }
6835
60495e77 6836 }
a841f8ce 6837 set_domain_attribute(sd, attr);
2c402dc3
PZ
6838
6839 return sd;
6840}
6841
2109b99e
AH
6842/*
6843 * Build sched domains for a given set of cpus and attach the sched domains
6844 * to the individual cpus
6845 */
dce840a0
PZ
6846static int build_sched_domains(const struct cpumask *cpu_map,
6847 struct sched_domain_attr *attr)
2109b99e 6848{
1c632169 6849 enum s_alloc alloc_state;
dce840a0 6850 struct sched_domain *sd;
2109b99e 6851 struct s_data d;
822ff793 6852 int i, ret = -ENOMEM;
9c1cfda2 6853
2109b99e
AH
6854 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6855 if (alloc_state != sa_rootdomain)
6856 goto error;
9c1cfda2 6857
dce840a0 6858 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6859 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6860 struct sched_domain_topology_level *tl;
6861
3bd65a80 6862 sd = NULL;
27723a68 6863 for_each_sd_topology(tl) {
4a850cbe 6864 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6865 if (tl == sched_domain_topology)
6866 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6867 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6868 sd->flags |= SD_OVERLAP;
d110235d
PZ
6869 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6870 break;
e3589f6c 6871 }
dce840a0
PZ
6872 }
6873
6874 /* Build the groups for the domains */
6875 for_each_cpu(i, cpu_map) {
6876 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6877 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6878 if (sd->flags & SD_OVERLAP) {
6879 if (build_overlap_sched_groups(sd, i))
6880 goto error;
6881 } else {
6882 if (build_sched_groups(sd, i))
6883 goto error;
6884 }
1cf51902 6885 }
a06dadbe 6886 }
9c1cfda2 6887
ced549fa 6888 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6889 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6890 if (!cpumask_test_cpu(i, cpu_map))
6891 continue;
9c1cfda2 6892
dce840a0
PZ
6893 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6894 claim_allocations(i, sd);
63b2ca30 6895 init_sched_groups_capacity(i, sd);
dce840a0 6896 }
f712c0c7 6897 }
9c1cfda2 6898
1da177e4 6899 /* Attach the domains */
dce840a0 6900 rcu_read_lock();
abcd083a 6901 for_each_cpu(i, cpu_map) {
21d42ccf 6902 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6903 cpu_attach_domain(sd, d.rd, i);
1da177e4 6904 }
dce840a0 6905 rcu_read_unlock();
51888ca2 6906
822ff793 6907 ret = 0;
51888ca2 6908error:
2109b99e 6909 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6910 return ret;
1da177e4 6911}
029190c5 6912
acc3f5d7 6913static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6914static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6915static struct sched_domain_attr *dattr_cur;
6916 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6917
6918/*
6919 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6920 * cpumask) fails, then fallback to a single sched domain,
6921 * as determined by the single cpumask fallback_doms.
029190c5 6922 */
4212823f 6923static cpumask_var_t fallback_doms;
029190c5 6924
ee79d1bd
HC
6925/*
6926 * arch_update_cpu_topology lets virtualized architectures update the
6927 * cpu core maps. It is supposed to return 1 if the topology changed
6928 * or 0 if it stayed the same.
6929 */
52f5684c 6930int __weak arch_update_cpu_topology(void)
22e52b07 6931{
ee79d1bd 6932 return 0;
22e52b07
HC
6933}
6934
acc3f5d7
RR
6935cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6936{
6937 int i;
6938 cpumask_var_t *doms;
6939
6940 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6941 if (!doms)
6942 return NULL;
6943 for (i = 0; i < ndoms; i++) {
6944 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6945 free_sched_domains(doms, i);
6946 return NULL;
6947 }
6948 }
6949 return doms;
6950}
6951
6952void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6953{
6954 unsigned int i;
6955 for (i = 0; i < ndoms; i++)
6956 free_cpumask_var(doms[i]);
6957 kfree(doms);
6958}
6959
1a20ff27 6960/*
41a2d6cf 6961 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6962 * For now this just excludes isolated cpus, but could be used to
6963 * exclude other special cases in the future.
1a20ff27 6964 */
c4a8849a 6965static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6966{
7378547f
MM
6967 int err;
6968
22e52b07 6969 arch_update_cpu_topology();
029190c5 6970 ndoms_cur = 1;
acc3f5d7 6971 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6972 if (!doms_cur)
acc3f5d7
RR
6973 doms_cur = &fallback_doms;
6974 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6975 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6976 register_sched_domain_sysctl();
7378547f
MM
6977
6978 return err;
1a20ff27
DG
6979}
6980
1a20ff27
DG
6981/*
6982 * Detach sched domains from a group of cpus specified in cpu_map
6983 * These cpus will now be attached to the NULL domain
6984 */
96f874e2 6985static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6986{
6987 int i;
6988
dce840a0 6989 rcu_read_lock();
abcd083a 6990 for_each_cpu(i, cpu_map)
57d885fe 6991 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6992 rcu_read_unlock();
1a20ff27
DG
6993}
6994
1d3504fc
HS
6995/* handle null as "default" */
6996static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6997 struct sched_domain_attr *new, int idx_new)
6998{
6999 struct sched_domain_attr tmp;
7000
7001 /* fast path */
7002 if (!new && !cur)
7003 return 1;
7004
7005 tmp = SD_ATTR_INIT;
7006 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7007 new ? (new + idx_new) : &tmp,
7008 sizeof(struct sched_domain_attr));
7009}
7010
029190c5
PJ
7011/*
7012 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7013 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7014 * doms_new[] to the current sched domain partitioning, doms_cur[].
7015 * It destroys each deleted domain and builds each new domain.
7016 *
acc3f5d7 7017 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7018 * The masks don't intersect (don't overlap.) We should setup one
7019 * sched domain for each mask. CPUs not in any of the cpumasks will
7020 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7021 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7022 * it as it is.
7023 *
acc3f5d7
RR
7024 * The passed in 'doms_new' should be allocated using
7025 * alloc_sched_domains. This routine takes ownership of it and will
7026 * free_sched_domains it when done with it. If the caller failed the
7027 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7028 * and partition_sched_domains() will fallback to the single partition
7029 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7030 *
96f874e2 7031 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7032 * ndoms_new == 0 is a special case for destroying existing domains,
7033 * and it will not create the default domain.
dfb512ec 7034 *
029190c5
PJ
7035 * Call with hotplug lock held
7036 */
acc3f5d7 7037void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7038 struct sched_domain_attr *dattr_new)
029190c5 7039{
dfb512ec 7040 int i, j, n;
d65bd5ec 7041 int new_topology;
029190c5 7042
712555ee 7043 mutex_lock(&sched_domains_mutex);
a1835615 7044
7378547f
MM
7045 /* always unregister in case we don't destroy any domains */
7046 unregister_sched_domain_sysctl();
7047
d65bd5ec
HC
7048 /* Let architecture update cpu core mappings. */
7049 new_topology = arch_update_cpu_topology();
7050
dfb512ec 7051 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7052
7053 /* Destroy deleted domains */
7054 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7055 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7056 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7057 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7058 goto match1;
7059 }
7060 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7061 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7062match1:
7063 ;
7064 }
7065
c8d2d47a 7066 n = ndoms_cur;
e761b772 7067 if (doms_new == NULL) {
c8d2d47a 7068 n = 0;
acc3f5d7 7069 doms_new = &fallback_doms;
6ad4c188 7070 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7071 WARN_ON_ONCE(dattr_new);
e761b772
MK
7072 }
7073
029190c5
PJ
7074 /* Build new domains */
7075 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7076 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7077 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7078 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7079 goto match2;
7080 }
7081 /* no match - add a new doms_new */
dce840a0 7082 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7083match2:
7084 ;
7085 }
7086
7087 /* Remember the new sched domains */
acc3f5d7
RR
7088 if (doms_cur != &fallback_doms)
7089 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7090 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7091 doms_cur = doms_new;
1d3504fc 7092 dattr_cur = dattr_new;
029190c5 7093 ndoms_cur = ndoms_new;
7378547f
MM
7094
7095 register_sched_domain_sysctl();
a1835615 7096
712555ee 7097 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7098}
7099
d35be8ba
SB
7100static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7101
1da177e4 7102/*
3a101d05
TH
7103 * Update cpusets according to cpu_active mask. If cpusets are
7104 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7105 * around partition_sched_domains().
d35be8ba
SB
7106 *
7107 * If we come here as part of a suspend/resume, don't touch cpusets because we
7108 * want to restore it back to its original state upon resume anyway.
1da177e4 7109 */
40190a78 7110static void cpuset_cpu_active(void)
e761b772 7111{
40190a78 7112 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7113 /*
7114 * num_cpus_frozen tracks how many CPUs are involved in suspend
7115 * resume sequence. As long as this is not the last online
7116 * operation in the resume sequence, just build a single sched
7117 * domain, ignoring cpusets.
7118 */
7119 num_cpus_frozen--;
7120 if (likely(num_cpus_frozen)) {
7121 partition_sched_domains(1, NULL, NULL);
135fb3e1 7122 return;
d35be8ba 7123 }
d35be8ba
SB
7124 /*
7125 * This is the last CPU online operation. So fall through and
7126 * restore the original sched domains by considering the
7127 * cpuset configurations.
7128 */
3a101d05 7129 }
135fb3e1 7130 cpuset_update_active_cpus(true);
3a101d05 7131}
e761b772 7132
40190a78 7133static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7134{
3c18d447 7135 unsigned long flags;
3c18d447 7136 struct dl_bw *dl_b;
533445c6
OS
7137 bool overflow;
7138 int cpus;
3c18d447 7139
40190a78 7140 if (!cpuhp_tasks_frozen) {
533445c6
OS
7141 rcu_read_lock_sched();
7142 dl_b = dl_bw_of(cpu);
3c18d447 7143
533445c6
OS
7144 raw_spin_lock_irqsave(&dl_b->lock, flags);
7145 cpus = dl_bw_cpus(cpu);
7146 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7147 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7148
533445c6 7149 rcu_read_unlock_sched();
3c18d447 7150
533445c6 7151 if (overflow)
135fb3e1 7152 return -EBUSY;
7ddf96b0 7153 cpuset_update_active_cpus(false);
135fb3e1 7154 } else {
d35be8ba
SB
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
e761b772 7157 }
135fb3e1 7158 return 0;
e761b772 7159}
e761b772 7160
40190a78 7161int sched_cpu_activate(unsigned int cpu)
135fb3e1 7162{
7d976699
TG
7163 struct rq *rq = cpu_rq(cpu);
7164 unsigned long flags;
7165
40190a78 7166 set_cpu_active(cpu, true);
135fb3e1 7167
40190a78 7168 if (sched_smp_initialized) {
135fb3e1 7169 sched_domains_numa_masks_set(cpu);
40190a78 7170 cpuset_cpu_active();
e761b772 7171 }
7d976699
TG
7172
7173 /*
7174 * Put the rq online, if not already. This happens:
7175 *
7176 * 1) In the early boot process, because we build the real domains
7177 * after all cpus have been brought up.
7178 *
7179 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7180 * domains.
7181 */
7182 raw_spin_lock_irqsave(&rq->lock, flags);
7183 if (rq->rd) {
7184 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7185 set_rq_online(rq);
7186 }
7187 raw_spin_unlock_irqrestore(&rq->lock, flags);
7188
7189 update_max_interval();
7190
40190a78 7191 return 0;
135fb3e1
TG
7192}
7193
40190a78 7194int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7195{
135fb3e1
TG
7196 int ret;
7197
40190a78 7198 set_cpu_active(cpu, false);
b2454caa
PZ
7199 /*
7200 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7201 * users of this state to go away such that all new such users will
7202 * observe it.
7203 *
7204 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7205 * not imply sync_sched(), so wait for both.
7206 *
7207 * Do sync before park smpboot threads to take care the rcu boost case.
7208 */
7209 if (IS_ENABLED(CONFIG_PREEMPT))
7210 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7211 else
7212 synchronize_rcu();
40190a78
TG
7213
7214 if (!sched_smp_initialized)
7215 return 0;
7216
7217 ret = cpuset_cpu_inactive(cpu);
7218 if (ret) {
7219 set_cpu_active(cpu, true);
7220 return ret;
135fb3e1 7221 }
40190a78
TG
7222 sched_domains_numa_masks_clear(cpu);
7223 return 0;
135fb3e1
TG
7224}
7225
94baf7a5
TG
7226static void sched_rq_cpu_starting(unsigned int cpu)
7227{
7228 struct rq *rq = cpu_rq(cpu);
7229
7230 rq->calc_load_update = calc_load_update;
7231 account_reset_rq(rq);
7232 update_max_interval();
7233}
7234
135fb3e1
TG
7235int sched_cpu_starting(unsigned int cpu)
7236{
7237 set_cpu_rq_start_time(cpu);
94baf7a5 7238 sched_rq_cpu_starting(cpu);
135fb3e1 7239 return 0;
e761b772 7240}
e761b772 7241
f2785ddb
TG
7242#ifdef CONFIG_HOTPLUG_CPU
7243int sched_cpu_dying(unsigned int cpu)
7244{
7245 struct rq *rq = cpu_rq(cpu);
7246 unsigned long flags;
7247
7248 /* Handle pending wakeups and then migrate everything off */
7249 sched_ttwu_pending();
7250 raw_spin_lock_irqsave(&rq->lock, flags);
7251 if (rq->rd) {
7252 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7253 set_rq_offline(rq);
7254 }
7255 migrate_tasks(rq);
7256 BUG_ON(rq->nr_running != 1);
7257 raw_spin_unlock_irqrestore(&rq->lock, flags);
7258 calc_load_migrate(rq);
7259 update_max_interval();
20a5c8cc 7260 nohz_balance_exit_idle(cpu);
e5ef27d0 7261 hrtick_clear(rq);
f2785ddb
TG
7262 return 0;
7263}
7264#endif
7265
1da177e4
LT
7266void __init sched_init_smp(void)
7267{
dcc30a35
RR
7268 cpumask_var_t non_isolated_cpus;
7269
7270 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7272
cb83b629
PZ
7273 sched_init_numa();
7274
6acce3ef
PZ
7275 /*
7276 * There's no userspace yet to cause hotplug operations; hence all the
7277 * cpu masks are stable and all blatant races in the below code cannot
7278 * happen.
7279 */
712555ee 7280 mutex_lock(&sched_domains_mutex);
c4a8849a 7281 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7282 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7283 if (cpumask_empty(non_isolated_cpus))
7284 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7285 mutex_unlock(&sched_domains_mutex);
e761b772 7286
5c1e1767 7287 /* Move init over to a non-isolated CPU */
dcc30a35 7288 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7289 BUG();
19978ca6 7290 sched_init_granularity();
dcc30a35 7291 free_cpumask_var(non_isolated_cpus);
4212823f 7292
0e3900e6 7293 init_sched_rt_class();
1baca4ce 7294 init_sched_dl_class();
e26fbffd 7295 sched_smp_initialized = true;
1da177e4 7296}
e26fbffd
TG
7297
7298static int __init migration_init(void)
7299{
94baf7a5 7300 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7301 return 0;
1da177e4 7302}
e26fbffd
TG
7303early_initcall(migration_init);
7304
1da177e4
LT
7305#else
7306void __init sched_init_smp(void)
7307{
19978ca6 7308 sched_init_granularity();
1da177e4
LT
7309}
7310#endif /* CONFIG_SMP */
7311
7312int in_sched_functions(unsigned long addr)
7313{
1da177e4
LT
7314 return in_lock_functions(addr) ||
7315 (addr >= (unsigned long)__sched_text_start
7316 && addr < (unsigned long)__sched_text_end);
7317}
7318
029632fb 7319#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7320/*
7321 * Default task group.
7322 * Every task in system belongs to this group at bootup.
7323 */
029632fb 7324struct task_group root_task_group;
35cf4e50 7325LIST_HEAD(task_groups);
b0367629
WL
7326
7327/* Cacheline aligned slab cache for task_group */
7328static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7329#endif
6f505b16 7330
e6252c3e 7331DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7332
1da177e4
LT
7333void __init sched_init(void)
7334{
dd41f596 7335 int i, j;
434d53b0
MT
7336 unsigned long alloc_size = 0, ptr;
7337
7338#ifdef CONFIG_FAIR_GROUP_SCHED
7339 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7340#endif
7341#ifdef CONFIG_RT_GROUP_SCHED
7342 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7343#endif
434d53b0 7344 if (alloc_size) {
36b7b6d4 7345 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7346
7347#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7348 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7349 ptr += nr_cpu_ids * sizeof(void **);
7350
07e06b01 7351 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7352 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7353
6d6bc0ad 7354#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7355#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7356 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7357 ptr += nr_cpu_ids * sizeof(void **);
7358
07e06b01 7359 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7360 ptr += nr_cpu_ids * sizeof(void **);
7361
6d6bc0ad 7362#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7363 }
df7c8e84 7364#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7365 for_each_possible_cpu(i) {
7366 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7367 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7368 }
b74e6278 7369#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7370
332ac17e
DF
7371 init_rt_bandwidth(&def_rt_bandwidth,
7372 global_rt_period(), global_rt_runtime());
7373 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7374 global_rt_period(), global_rt_runtime());
332ac17e 7375
57d885fe
GH
7376#ifdef CONFIG_SMP
7377 init_defrootdomain();
7378#endif
7379
d0b27fa7 7380#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7382 global_rt_period(), global_rt_runtime());
6d6bc0ad 7383#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7384
7c941438 7385#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7386 task_group_cache = KMEM_CACHE(task_group, 0);
7387
07e06b01
YZ
7388 list_add(&root_task_group.list, &task_groups);
7389 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7390 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7391 autogroup_init(&init_task);
7c941438 7392#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7393
0a945022 7394 for_each_possible_cpu(i) {
70b97a7f 7395 struct rq *rq;
1da177e4
LT
7396
7397 rq = cpu_rq(i);
05fa785c 7398 raw_spin_lock_init(&rq->lock);
7897986b 7399 rq->nr_running = 0;
dce48a84
TG
7400 rq->calc_load_active = 0;
7401 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7402 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7403 init_rt_rq(&rq->rt);
7404 init_dl_rq(&rq->dl);
dd41f596 7405#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7406 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7407 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7408 /*
07e06b01 7409 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7410 *
7411 * In case of task-groups formed thr' the cgroup filesystem, it
7412 * gets 100% of the cpu resources in the system. This overall
7413 * system cpu resource is divided among the tasks of
07e06b01 7414 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7415 * based on each entity's (task or task-group's) weight
7416 * (se->load.weight).
7417 *
07e06b01 7418 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7419 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7420 * then A0's share of the cpu resource is:
7421 *
0d905bca 7422 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7423 *
07e06b01
YZ
7424 * We achieve this by letting root_task_group's tasks sit
7425 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7426 */
ab84d31e 7427 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7428 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7429#endif /* CONFIG_FAIR_GROUP_SCHED */
7430
7431 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7432#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7433 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7434#endif
1da177e4 7435
dd41f596
IM
7436 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7437 rq->cpu_load[j] = 0;
fdf3e95d 7438
1da177e4 7439#ifdef CONFIG_SMP
41c7ce9a 7440 rq->sd = NULL;
57d885fe 7441 rq->rd = NULL;
ca6d75e6 7442 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7443 rq->balance_callback = NULL;
1da177e4 7444 rq->active_balance = 0;
dd41f596 7445 rq->next_balance = jiffies;
1da177e4 7446 rq->push_cpu = 0;
0a2966b4 7447 rq->cpu = i;
1f11eb6a 7448 rq->online = 0;
eae0c9df
MG
7449 rq->idle_stamp = 0;
7450 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7451 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7452
7453 INIT_LIST_HEAD(&rq->cfs_tasks);
7454
dc938520 7455 rq_attach_root(rq, &def_root_domain);
3451d024 7456#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7457 rq->last_load_update_tick = jiffies;
1c792db7 7458 rq->nohz_flags = 0;
83cd4fe2 7459#endif
265f22a9
FW
7460#ifdef CONFIG_NO_HZ_FULL
7461 rq->last_sched_tick = 0;
7462#endif
9fd81dd5 7463#endif /* CONFIG_SMP */
8f4d37ec 7464 init_rq_hrtick(rq);
1da177e4 7465 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7466 }
7467
2dd73a4f 7468 set_load_weight(&init_task);
b50f60ce 7469
e107be36
AK
7470#ifdef CONFIG_PREEMPT_NOTIFIERS
7471 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7472#endif
7473
1da177e4
LT
7474 /*
7475 * The boot idle thread does lazy MMU switching as well:
7476 */
7477 atomic_inc(&init_mm.mm_count);
7478 enter_lazy_tlb(&init_mm, current);
7479
1b537c7d
YD
7480 /*
7481 * During early bootup we pretend to be a normal task:
7482 */
7483 current->sched_class = &fair_sched_class;
7484
1da177e4
LT
7485 /*
7486 * Make us the idle thread. Technically, schedule() should not be
7487 * called from this thread, however somewhere below it might be,
7488 * but because we are the idle thread, we just pick up running again
7489 * when this runqueue becomes "idle".
7490 */
7491 init_idle(current, smp_processor_id());
dce48a84
TG
7492
7493 calc_load_update = jiffies + LOAD_FREQ;
7494
bf4d83f6 7495#ifdef CONFIG_SMP
4cb98839 7496 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7497 /* May be allocated at isolcpus cmdline parse time */
7498 if (cpu_isolated_map == NULL)
7499 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7500 idle_thread_set_boot_cpu();
9cf7243d 7501 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7502#endif
7503 init_sched_fair_class();
6a7b3dc3 7504
4698f88c
JP
7505 init_schedstats();
7506
6892b75e 7507 scheduler_running = 1;
1da177e4
LT
7508}
7509
d902db1e 7510#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7511static inline int preempt_count_equals(int preempt_offset)
7512{
da7142e2 7513 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7514
4ba8216c 7515 return (nested == preempt_offset);
e4aafea2
FW
7516}
7517
d894837f 7518void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7519{
8eb23b9f
PZ
7520 /*
7521 * Blocking primitives will set (and therefore destroy) current->state,
7522 * since we will exit with TASK_RUNNING make sure we enter with it,
7523 * otherwise we will destroy state.
7524 */
00845eb9 7525 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7526 "do not call blocking ops when !TASK_RUNNING; "
7527 "state=%lx set at [<%p>] %pS\n",
7528 current->state,
7529 (void *)current->task_state_change,
00845eb9 7530 (void *)current->task_state_change);
8eb23b9f 7531
3427445a
PZ
7532 ___might_sleep(file, line, preempt_offset);
7533}
7534EXPORT_SYMBOL(__might_sleep);
7535
7536void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7537{
1da177e4
LT
7538 static unsigned long prev_jiffy; /* ratelimiting */
7539
b3fbab05 7540 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7541 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7542 !is_idle_task(current)) ||
e4aafea2 7543 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7544 return;
7545 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7546 return;
7547 prev_jiffy = jiffies;
7548
3df0fc5b
PZ
7549 printk(KERN_ERR
7550 "BUG: sleeping function called from invalid context at %s:%d\n",
7551 file, line);
7552 printk(KERN_ERR
7553 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7554 in_atomic(), irqs_disabled(),
7555 current->pid, current->comm);
aef745fc 7556
a8b686b3
ES
7557 if (task_stack_end_corrupted(current))
7558 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7559
aef745fc
IM
7560 debug_show_held_locks(current);
7561 if (irqs_disabled())
7562 print_irqtrace_events(current);
8f47b187
TG
7563#ifdef CONFIG_DEBUG_PREEMPT
7564 if (!preempt_count_equals(preempt_offset)) {
7565 pr_err("Preemption disabled at:");
7566 print_ip_sym(current->preempt_disable_ip);
7567 pr_cont("\n");
7568 }
7569#endif
aef745fc 7570 dump_stack();
1da177e4 7571}
3427445a 7572EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7573#endif
7574
7575#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7576void normalize_rt_tasks(void)
3a5e4dc1 7577{
dbc7f069 7578 struct task_struct *g, *p;
d50dde5a
DF
7579 struct sched_attr attr = {
7580 .sched_policy = SCHED_NORMAL,
7581 };
1da177e4 7582
3472eaa1 7583 read_lock(&tasklist_lock);
5d07f420 7584 for_each_process_thread(g, p) {
178be793
IM
7585 /*
7586 * Only normalize user tasks:
7587 */
3472eaa1 7588 if (p->flags & PF_KTHREAD)
178be793
IM
7589 continue;
7590
6cfb0d5d 7591 p->se.exec_start = 0;
6cfb0d5d 7592#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7593 p->se.statistics.wait_start = 0;
7594 p->se.statistics.sleep_start = 0;
7595 p->se.statistics.block_start = 0;
6cfb0d5d 7596#endif
dd41f596 7597
aab03e05 7598 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7599 /*
7600 * Renice negative nice level userspace
7601 * tasks back to 0:
7602 */
3472eaa1 7603 if (task_nice(p) < 0)
dd41f596 7604 set_user_nice(p, 0);
1da177e4 7605 continue;
dd41f596 7606 }
1da177e4 7607
dbc7f069 7608 __sched_setscheduler(p, &attr, false, false);
5d07f420 7609 }
3472eaa1 7610 read_unlock(&tasklist_lock);
1da177e4
LT
7611}
7612
7613#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7614
67fc4e0c 7615#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7616/*
67fc4e0c 7617 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7618 *
7619 * They can only be called when the whole system has been
7620 * stopped - every CPU needs to be quiescent, and no scheduling
7621 * activity can take place. Using them for anything else would
7622 * be a serious bug, and as a result, they aren't even visible
7623 * under any other configuration.
7624 */
7625
7626/**
7627 * curr_task - return the current task for a given cpu.
7628 * @cpu: the processor in question.
7629 *
7630 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7631 *
7632 * Return: The current task for @cpu.
1df5c10a 7633 */
36c8b586 7634struct task_struct *curr_task(int cpu)
1df5c10a
LT
7635{
7636 return cpu_curr(cpu);
7637}
7638
67fc4e0c
JW
7639#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7640
7641#ifdef CONFIG_IA64
1df5c10a
LT
7642/**
7643 * set_curr_task - set the current task for a given cpu.
7644 * @cpu: the processor in question.
7645 * @p: the task pointer to set.
7646 *
7647 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7648 * are serviced on a separate stack. It allows the architecture to switch the
7649 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7650 * must be called with all CPU's synchronized, and interrupts disabled, the
7651 * and caller must save the original value of the current task (see
7652 * curr_task() above) and restore that value before reenabling interrupts and
7653 * re-starting the system.
7654 *
7655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7656 */
36c8b586 7657void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7658{
7659 cpu_curr(cpu) = p;
7660}
7661
7662#endif
29f59db3 7663
7c941438 7664#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7665/* task_group_lock serializes the addition/removal of task groups */
7666static DEFINE_SPINLOCK(task_group_lock);
7667
2f5177f0 7668static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7669{
7670 free_fair_sched_group(tg);
7671 free_rt_sched_group(tg);
e9aa1dd1 7672 autogroup_free(tg);
b0367629 7673 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7674}
7675
7676/* allocate runqueue etc for a new task group */
ec7dc8ac 7677struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7678{
7679 struct task_group *tg;
bccbe08a 7680
b0367629 7681 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7682 if (!tg)
7683 return ERR_PTR(-ENOMEM);
7684
ec7dc8ac 7685 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7686 goto err;
7687
ec7dc8ac 7688 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7689 goto err;
7690
ace783b9
LZ
7691 return tg;
7692
7693err:
2f5177f0 7694 sched_free_group(tg);
ace783b9
LZ
7695 return ERR_PTR(-ENOMEM);
7696}
7697
7698void sched_online_group(struct task_group *tg, struct task_group *parent)
7699{
7700 unsigned long flags;
7701
8ed36996 7702 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7703 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7704
7705 WARN_ON(!parent); /* root should already exist */
7706
7707 tg->parent = parent;
f473aa5e 7708 INIT_LIST_HEAD(&tg->children);
09f2724a 7709 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7710 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7711}
7712
9b5b7751 7713/* rcu callback to free various structures associated with a task group */
2f5177f0 7714static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7715{
29f59db3 7716 /* now it should be safe to free those cfs_rqs */
2f5177f0 7717 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7718}
7719
4cf86d77 7720void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7721{
7722 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7723 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7724}
7725
7726void sched_offline_group(struct task_group *tg)
29f59db3 7727{
8ed36996 7728 unsigned long flags;
29f59db3 7729
3d4b47b4 7730 /* end participation in shares distribution */
6fe1f348 7731 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7732
7733 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7734 list_del_rcu(&tg->list);
f473aa5e 7735 list_del_rcu(&tg->siblings);
8ed36996 7736 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7737}
7738
9b5b7751 7739/* change task's runqueue when it moves between groups.
3a252015
IM
7740 * The caller of this function should have put the task in its new group
7741 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7742 * reflect its new group.
9b5b7751
SV
7743 */
7744void sched_move_task(struct task_struct *tsk)
29f59db3 7745{
8323f26c 7746 struct task_group *tg;
da0c1e65 7747 int queued, running;
eb580751 7748 struct rq_flags rf;
29f59db3
SV
7749 struct rq *rq;
7750
eb580751 7751 rq = task_rq_lock(tsk, &rf);
29f59db3 7752
051a1d1a 7753 running = task_current(rq, tsk);
da0c1e65 7754 queued = task_on_rq_queued(tsk);
29f59db3 7755
da0c1e65 7756 if (queued)
ff77e468 7757 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7758 if (unlikely(running))
f3cd1c4e 7759 put_prev_task(rq, tsk);
29f59db3 7760
f7b8a47d
KT
7761 /*
7762 * All callers are synchronized by task_rq_lock(); we do not use RCU
7763 * which is pointless here. Thus, we pass "true" to task_css_check()
7764 * to prevent lockdep warnings.
7765 */
7766 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7767 struct task_group, css);
7768 tg = autogroup_task_group(tsk, tg);
7769 tsk->sched_task_group = tg;
7770
810b3817 7771#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7772 if (tsk->sched_class->task_move_group)
bc54da21 7773 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7774 else
810b3817 7775#endif
b2b5ce02 7776 set_task_rq(tsk, task_cpu(tsk));
810b3817 7777
0e1f3483
HS
7778 if (unlikely(running))
7779 tsk->sched_class->set_curr_task(rq);
da0c1e65 7780 if (queued)
ff77e468 7781 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7782
eb580751 7783 task_rq_unlock(rq, tsk, &rf);
29f59db3 7784}
7c941438 7785#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7786
a790de99
PT
7787#ifdef CONFIG_RT_GROUP_SCHED
7788/*
7789 * Ensure that the real time constraints are schedulable.
7790 */
7791static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7792
9a7e0b18
PZ
7793/* Must be called with tasklist_lock held */
7794static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7795{
9a7e0b18 7796 struct task_struct *g, *p;
b40b2e8e 7797
1fe89e1b
PZ
7798 /*
7799 * Autogroups do not have RT tasks; see autogroup_create().
7800 */
7801 if (task_group_is_autogroup(tg))
7802 return 0;
7803
5d07f420 7804 for_each_process_thread(g, p) {
8651c658 7805 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7806 return 1;
5d07f420 7807 }
b40b2e8e 7808
9a7e0b18
PZ
7809 return 0;
7810}
b40b2e8e 7811
9a7e0b18
PZ
7812struct rt_schedulable_data {
7813 struct task_group *tg;
7814 u64 rt_period;
7815 u64 rt_runtime;
7816};
b40b2e8e 7817
a790de99 7818static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7819{
7820 struct rt_schedulable_data *d = data;
7821 struct task_group *child;
7822 unsigned long total, sum = 0;
7823 u64 period, runtime;
b40b2e8e 7824
9a7e0b18
PZ
7825 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7826 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7827
9a7e0b18
PZ
7828 if (tg == d->tg) {
7829 period = d->rt_period;
7830 runtime = d->rt_runtime;
b40b2e8e 7831 }
b40b2e8e 7832
4653f803
PZ
7833 /*
7834 * Cannot have more runtime than the period.
7835 */
7836 if (runtime > period && runtime != RUNTIME_INF)
7837 return -EINVAL;
6f505b16 7838
4653f803
PZ
7839 /*
7840 * Ensure we don't starve existing RT tasks.
7841 */
9a7e0b18
PZ
7842 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7843 return -EBUSY;
6f505b16 7844
9a7e0b18 7845 total = to_ratio(period, runtime);
6f505b16 7846
4653f803
PZ
7847 /*
7848 * Nobody can have more than the global setting allows.
7849 */
7850 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7851 return -EINVAL;
6f505b16 7852
4653f803
PZ
7853 /*
7854 * The sum of our children's runtime should not exceed our own.
7855 */
9a7e0b18
PZ
7856 list_for_each_entry_rcu(child, &tg->children, siblings) {
7857 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7858 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7859
9a7e0b18
PZ
7860 if (child == d->tg) {
7861 period = d->rt_period;
7862 runtime = d->rt_runtime;
7863 }
6f505b16 7864
9a7e0b18 7865 sum += to_ratio(period, runtime);
9f0c1e56 7866 }
6f505b16 7867
9a7e0b18
PZ
7868 if (sum > total)
7869 return -EINVAL;
7870
7871 return 0;
6f505b16
PZ
7872}
7873
9a7e0b18 7874static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7875{
8277434e
PT
7876 int ret;
7877
9a7e0b18
PZ
7878 struct rt_schedulable_data data = {
7879 .tg = tg,
7880 .rt_period = period,
7881 .rt_runtime = runtime,
7882 };
7883
8277434e
PT
7884 rcu_read_lock();
7885 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7886 rcu_read_unlock();
7887
7888 return ret;
521f1a24
DG
7889}
7890
ab84d31e 7891static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7892 u64 rt_period, u64 rt_runtime)
6f505b16 7893{
ac086bc2 7894 int i, err = 0;
9f0c1e56 7895
2636ed5f
PZ
7896 /*
7897 * Disallowing the root group RT runtime is BAD, it would disallow the
7898 * kernel creating (and or operating) RT threads.
7899 */
7900 if (tg == &root_task_group && rt_runtime == 0)
7901 return -EINVAL;
7902
7903 /* No period doesn't make any sense. */
7904 if (rt_period == 0)
7905 return -EINVAL;
7906
9f0c1e56 7907 mutex_lock(&rt_constraints_mutex);
521f1a24 7908 read_lock(&tasklist_lock);
9a7e0b18
PZ
7909 err = __rt_schedulable(tg, rt_period, rt_runtime);
7910 if (err)
9f0c1e56 7911 goto unlock;
ac086bc2 7912
0986b11b 7913 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7914 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7915 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7916
7917 for_each_possible_cpu(i) {
7918 struct rt_rq *rt_rq = tg->rt_rq[i];
7919
0986b11b 7920 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7921 rt_rq->rt_runtime = rt_runtime;
0986b11b 7922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7923 }
0986b11b 7924 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7925unlock:
521f1a24 7926 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7927 mutex_unlock(&rt_constraints_mutex);
7928
7929 return err;
6f505b16
PZ
7930}
7931
25cc7da7 7932static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7933{
7934 u64 rt_runtime, rt_period;
7935
7936 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7937 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7938 if (rt_runtime_us < 0)
7939 rt_runtime = RUNTIME_INF;
7940
ab84d31e 7941 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7942}
7943
25cc7da7 7944static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7945{
7946 u64 rt_runtime_us;
7947
d0b27fa7 7948 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7949 return -1;
7950
d0b27fa7 7951 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7952 do_div(rt_runtime_us, NSEC_PER_USEC);
7953 return rt_runtime_us;
7954}
d0b27fa7 7955
ce2f5fe4 7956static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7957{
7958 u64 rt_runtime, rt_period;
7959
ce2f5fe4 7960 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7961 rt_runtime = tg->rt_bandwidth.rt_runtime;
7962
ab84d31e 7963 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7964}
7965
25cc7da7 7966static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7967{
7968 u64 rt_period_us;
7969
7970 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7971 do_div(rt_period_us, NSEC_PER_USEC);
7972 return rt_period_us;
7973}
332ac17e 7974#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7975
332ac17e 7976#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7977static int sched_rt_global_constraints(void)
7978{
7979 int ret = 0;
7980
7981 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7982 read_lock(&tasklist_lock);
4653f803 7983 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7984 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7985 mutex_unlock(&rt_constraints_mutex);
7986
7987 return ret;
7988}
54e99124 7989
25cc7da7 7990static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7991{
7992 /* Don't accept realtime tasks when there is no way for them to run */
7993 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7994 return 0;
7995
7996 return 1;
7997}
7998
6d6bc0ad 7999#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8000static int sched_rt_global_constraints(void)
8001{
ac086bc2 8002 unsigned long flags;
8c5e9554 8003 int i;
ec5d4989 8004
0986b11b 8005 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8006 for_each_possible_cpu(i) {
8007 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8008
0986b11b 8009 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8010 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8011 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8012 }
0986b11b 8013 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8014
8c5e9554 8015 return 0;
d0b27fa7 8016}
6d6bc0ad 8017#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8018
a1963b81 8019static int sched_dl_global_validate(void)
332ac17e 8020{
1724813d
PZ
8021 u64 runtime = global_rt_runtime();
8022 u64 period = global_rt_period();
332ac17e 8023 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8024 struct dl_bw *dl_b;
1724813d 8025 int cpu, ret = 0;
49516342 8026 unsigned long flags;
332ac17e
DF
8027
8028 /*
8029 * Here we want to check the bandwidth not being set to some
8030 * value smaller than the currently allocated bandwidth in
8031 * any of the root_domains.
8032 *
8033 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8034 * cycling on root_domains... Discussion on different/better
8035 * solutions is welcome!
8036 */
1724813d 8037 for_each_possible_cpu(cpu) {
f10e00f4
KT
8038 rcu_read_lock_sched();
8039 dl_b = dl_bw_of(cpu);
332ac17e 8040
49516342 8041 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8042 if (new_bw < dl_b->total_bw)
8043 ret = -EBUSY;
49516342 8044 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8045
f10e00f4
KT
8046 rcu_read_unlock_sched();
8047
1724813d
PZ
8048 if (ret)
8049 break;
332ac17e
DF
8050 }
8051
1724813d 8052 return ret;
332ac17e
DF
8053}
8054
1724813d 8055static void sched_dl_do_global(void)
ce0dbbbb 8056{
1724813d 8057 u64 new_bw = -1;
f10e00f4 8058 struct dl_bw *dl_b;
1724813d 8059 int cpu;
49516342 8060 unsigned long flags;
ce0dbbbb 8061
1724813d
PZ
8062 def_dl_bandwidth.dl_period = global_rt_period();
8063 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8064
8065 if (global_rt_runtime() != RUNTIME_INF)
8066 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8067
8068 /*
8069 * FIXME: As above...
8070 */
8071 for_each_possible_cpu(cpu) {
f10e00f4
KT
8072 rcu_read_lock_sched();
8073 dl_b = dl_bw_of(cpu);
1724813d 8074
49516342 8075 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8076 dl_b->bw = new_bw;
49516342 8077 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8078
8079 rcu_read_unlock_sched();
ce0dbbbb 8080 }
1724813d
PZ
8081}
8082
8083static int sched_rt_global_validate(void)
8084{
8085 if (sysctl_sched_rt_period <= 0)
8086 return -EINVAL;
8087
e9e7cb38
JL
8088 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8089 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8090 return -EINVAL;
8091
8092 return 0;
8093}
8094
8095static void sched_rt_do_global(void)
8096{
8097 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8098 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8099}
8100
d0b27fa7 8101int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8102 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8103 loff_t *ppos)
8104{
d0b27fa7
PZ
8105 int old_period, old_runtime;
8106 static DEFINE_MUTEX(mutex);
1724813d 8107 int ret;
d0b27fa7
PZ
8108
8109 mutex_lock(&mutex);
8110 old_period = sysctl_sched_rt_period;
8111 old_runtime = sysctl_sched_rt_runtime;
8112
8d65af78 8113 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8114
8115 if (!ret && write) {
1724813d
PZ
8116 ret = sched_rt_global_validate();
8117 if (ret)
8118 goto undo;
8119
a1963b81 8120 ret = sched_dl_global_validate();
1724813d
PZ
8121 if (ret)
8122 goto undo;
8123
a1963b81 8124 ret = sched_rt_global_constraints();
1724813d
PZ
8125 if (ret)
8126 goto undo;
8127
8128 sched_rt_do_global();
8129 sched_dl_do_global();
8130 }
8131 if (0) {
8132undo:
8133 sysctl_sched_rt_period = old_period;
8134 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8135 }
8136 mutex_unlock(&mutex);
8137
8138 return ret;
8139}
68318b8e 8140
1724813d 8141int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8142 void __user *buffer, size_t *lenp,
8143 loff_t *ppos)
8144{
8145 int ret;
332ac17e 8146 static DEFINE_MUTEX(mutex);
332ac17e
DF
8147
8148 mutex_lock(&mutex);
332ac17e 8149 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8150 /* make sure that internally we keep jiffies */
8151 /* also, writing zero resets timeslice to default */
332ac17e 8152 if (!ret && write) {
1724813d
PZ
8153 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8154 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8155 }
8156 mutex_unlock(&mutex);
332ac17e
DF
8157 return ret;
8158}
8159
052f1dc7 8160#ifdef CONFIG_CGROUP_SCHED
68318b8e 8161
a7c6d554 8162static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8163{
a7c6d554 8164 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8165}
8166
eb95419b
TH
8167static struct cgroup_subsys_state *
8168cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8169{
eb95419b
TH
8170 struct task_group *parent = css_tg(parent_css);
8171 struct task_group *tg;
68318b8e 8172
eb95419b 8173 if (!parent) {
68318b8e 8174 /* This is early initialization for the top cgroup */
07e06b01 8175 return &root_task_group.css;
68318b8e
SV
8176 }
8177
ec7dc8ac 8178 tg = sched_create_group(parent);
68318b8e
SV
8179 if (IS_ERR(tg))
8180 return ERR_PTR(-ENOMEM);
8181
2f5177f0
PZ
8182 sched_online_group(tg, parent);
8183
68318b8e
SV
8184 return &tg->css;
8185}
8186
2f5177f0 8187static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8188{
eb95419b 8189 struct task_group *tg = css_tg(css);
ace783b9 8190
2f5177f0 8191 sched_offline_group(tg);
ace783b9
LZ
8192}
8193
eb95419b 8194static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8195{
eb95419b 8196 struct task_group *tg = css_tg(css);
68318b8e 8197
2f5177f0
PZ
8198 /*
8199 * Relies on the RCU grace period between css_released() and this.
8200 */
8201 sched_free_group(tg);
ace783b9
LZ
8202}
8203
b53202e6 8204static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8205{
8206 sched_move_task(task);
8207}
8208
1f7dd3e5 8209static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8210{
bb9d97b6 8211 struct task_struct *task;
1f7dd3e5 8212 struct cgroup_subsys_state *css;
bb9d97b6 8213
1f7dd3e5 8214 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8215#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8216 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8217 return -EINVAL;
b68aa230 8218#else
bb9d97b6
TH
8219 /* We don't support RT-tasks being in separate groups */
8220 if (task->sched_class != &fair_sched_class)
8221 return -EINVAL;
b68aa230 8222#endif
bb9d97b6 8223 }
be367d09
BB
8224 return 0;
8225}
68318b8e 8226
1f7dd3e5 8227static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8228{
bb9d97b6 8229 struct task_struct *task;
1f7dd3e5 8230 struct cgroup_subsys_state *css;
bb9d97b6 8231
1f7dd3e5 8232 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8233 sched_move_task(task);
68318b8e
SV
8234}
8235
052f1dc7 8236#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8237static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8238 struct cftype *cftype, u64 shareval)
68318b8e 8239{
182446d0 8240 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8241}
8242
182446d0
TH
8243static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8244 struct cftype *cft)
68318b8e 8245{
182446d0 8246 struct task_group *tg = css_tg(css);
68318b8e 8247
c8b28116 8248 return (u64) scale_load_down(tg->shares);
68318b8e 8249}
ab84d31e
PT
8250
8251#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8252static DEFINE_MUTEX(cfs_constraints_mutex);
8253
ab84d31e
PT
8254const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8255const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8256
a790de99
PT
8257static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8258
ab84d31e
PT
8259static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8260{
56f570e5 8261 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8262 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8263
8264 if (tg == &root_task_group)
8265 return -EINVAL;
8266
8267 /*
8268 * Ensure we have at some amount of bandwidth every period. This is
8269 * to prevent reaching a state of large arrears when throttled via
8270 * entity_tick() resulting in prolonged exit starvation.
8271 */
8272 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8273 return -EINVAL;
8274
8275 /*
8276 * Likewise, bound things on the otherside by preventing insane quota
8277 * periods. This also allows us to normalize in computing quota
8278 * feasibility.
8279 */
8280 if (period > max_cfs_quota_period)
8281 return -EINVAL;
8282
0e59bdae
KT
8283 /*
8284 * Prevent race between setting of cfs_rq->runtime_enabled and
8285 * unthrottle_offline_cfs_rqs().
8286 */
8287 get_online_cpus();
a790de99
PT
8288 mutex_lock(&cfs_constraints_mutex);
8289 ret = __cfs_schedulable(tg, period, quota);
8290 if (ret)
8291 goto out_unlock;
8292
58088ad0 8293 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8294 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8295 /*
8296 * If we need to toggle cfs_bandwidth_used, off->on must occur
8297 * before making related changes, and on->off must occur afterwards
8298 */
8299 if (runtime_enabled && !runtime_was_enabled)
8300 cfs_bandwidth_usage_inc();
ab84d31e
PT
8301 raw_spin_lock_irq(&cfs_b->lock);
8302 cfs_b->period = ns_to_ktime(period);
8303 cfs_b->quota = quota;
58088ad0 8304
a9cf55b2 8305 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8306 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8307 if (runtime_enabled)
8308 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8309 raw_spin_unlock_irq(&cfs_b->lock);
8310
0e59bdae 8311 for_each_online_cpu(i) {
ab84d31e 8312 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8313 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8314
8315 raw_spin_lock_irq(&rq->lock);
58088ad0 8316 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8317 cfs_rq->runtime_remaining = 0;
671fd9da 8318
029632fb 8319 if (cfs_rq->throttled)
671fd9da 8320 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8321 raw_spin_unlock_irq(&rq->lock);
8322 }
1ee14e6c
BS
8323 if (runtime_was_enabled && !runtime_enabled)
8324 cfs_bandwidth_usage_dec();
a790de99
PT
8325out_unlock:
8326 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8327 put_online_cpus();
ab84d31e 8328
a790de99 8329 return ret;
ab84d31e
PT
8330}
8331
8332int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8333{
8334 u64 quota, period;
8335
029632fb 8336 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8337 if (cfs_quota_us < 0)
8338 quota = RUNTIME_INF;
8339 else
8340 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8341
8342 return tg_set_cfs_bandwidth(tg, period, quota);
8343}
8344
8345long tg_get_cfs_quota(struct task_group *tg)
8346{
8347 u64 quota_us;
8348
029632fb 8349 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8350 return -1;
8351
029632fb 8352 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8353 do_div(quota_us, NSEC_PER_USEC);
8354
8355 return quota_us;
8356}
8357
8358int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8359{
8360 u64 quota, period;
8361
8362 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8363 quota = tg->cfs_bandwidth.quota;
ab84d31e 8364
ab84d31e
PT
8365 return tg_set_cfs_bandwidth(tg, period, quota);
8366}
8367
8368long tg_get_cfs_period(struct task_group *tg)
8369{
8370 u64 cfs_period_us;
8371
029632fb 8372 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8373 do_div(cfs_period_us, NSEC_PER_USEC);
8374
8375 return cfs_period_us;
8376}
8377
182446d0
TH
8378static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8379 struct cftype *cft)
ab84d31e 8380{
182446d0 8381 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8382}
8383
182446d0
TH
8384static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8385 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8386{
182446d0 8387 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8388}
8389
182446d0
TH
8390static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8391 struct cftype *cft)
ab84d31e 8392{
182446d0 8393 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8394}
8395
182446d0
TH
8396static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8397 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8398{
182446d0 8399 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8400}
8401
a790de99
PT
8402struct cfs_schedulable_data {
8403 struct task_group *tg;
8404 u64 period, quota;
8405};
8406
8407/*
8408 * normalize group quota/period to be quota/max_period
8409 * note: units are usecs
8410 */
8411static u64 normalize_cfs_quota(struct task_group *tg,
8412 struct cfs_schedulable_data *d)
8413{
8414 u64 quota, period;
8415
8416 if (tg == d->tg) {
8417 period = d->period;
8418 quota = d->quota;
8419 } else {
8420 period = tg_get_cfs_period(tg);
8421 quota = tg_get_cfs_quota(tg);
8422 }
8423
8424 /* note: these should typically be equivalent */
8425 if (quota == RUNTIME_INF || quota == -1)
8426 return RUNTIME_INF;
8427
8428 return to_ratio(period, quota);
8429}
8430
8431static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8432{
8433 struct cfs_schedulable_data *d = data;
029632fb 8434 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8435 s64 quota = 0, parent_quota = -1;
8436
8437 if (!tg->parent) {
8438 quota = RUNTIME_INF;
8439 } else {
029632fb 8440 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8441
8442 quota = normalize_cfs_quota(tg, d);
9c58c79a 8443 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8444
8445 /*
8446 * ensure max(child_quota) <= parent_quota, inherit when no
8447 * limit is set
8448 */
8449 if (quota == RUNTIME_INF)
8450 quota = parent_quota;
8451 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8452 return -EINVAL;
8453 }
9c58c79a 8454 cfs_b->hierarchical_quota = quota;
a790de99
PT
8455
8456 return 0;
8457}
8458
8459static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8460{
8277434e 8461 int ret;
a790de99
PT
8462 struct cfs_schedulable_data data = {
8463 .tg = tg,
8464 .period = period,
8465 .quota = quota,
8466 };
8467
8468 if (quota != RUNTIME_INF) {
8469 do_div(data.period, NSEC_PER_USEC);
8470 do_div(data.quota, NSEC_PER_USEC);
8471 }
8472
8277434e
PT
8473 rcu_read_lock();
8474 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8475 rcu_read_unlock();
8476
8477 return ret;
a790de99 8478}
e8da1b18 8479
2da8ca82 8480static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8481{
2da8ca82 8482 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8483 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8484
44ffc75b
TH
8485 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8486 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8487 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8488
8489 return 0;
8490}
ab84d31e 8491#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8492#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8493
052f1dc7 8494#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8495static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8496 struct cftype *cft, s64 val)
6f505b16 8497{
182446d0 8498 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8499}
8500
182446d0
TH
8501static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8502 struct cftype *cft)
6f505b16 8503{
182446d0 8504 return sched_group_rt_runtime(css_tg(css));
6f505b16 8505}
d0b27fa7 8506
182446d0
TH
8507static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8508 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8509{
182446d0 8510 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8511}
8512
182446d0
TH
8513static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8514 struct cftype *cft)
d0b27fa7 8515{
182446d0 8516 return sched_group_rt_period(css_tg(css));
d0b27fa7 8517}
6d6bc0ad 8518#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8519
fe5c7cc2 8520static struct cftype cpu_files[] = {
052f1dc7 8521#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8522 {
8523 .name = "shares",
f4c753b7
PM
8524 .read_u64 = cpu_shares_read_u64,
8525 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8526 },
052f1dc7 8527#endif
ab84d31e
PT
8528#ifdef CONFIG_CFS_BANDWIDTH
8529 {
8530 .name = "cfs_quota_us",
8531 .read_s64 = cpu_cfs_quota_read_s64,
8532 .write_s64 = cpu_cfs_quota_write_s64,
8533 },
8534 {
8535 .name = "cfs_period_us",
8536 .read_u64 = cpu_cfs_period_read_u64,
8537 .write_u64 = cpu_cfs_period_write_u64,
8538 },
e8da1b18
NR
8539 {
8540 .name = "stat",
2da8ca82 8541 .seq_show = cpu_stats_show,
e8da1b18 8542 },
ab84d31e 8543#endif
052f1dc7 8544#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8545 {
9f0c1e56 8546 .name = "rt_runtime_us",
06ecb27c
PM
8547 .read_s64 = cpu_rt_runtime_read,
8548 .write_s64 = cpu_rt_runtime_write,
6f505b16 8549 },
d0b27fa7
PZ
8550 {
8551 .name = "rt_period_us",
f4c753b7
PM
8552 .read_u64 = cpu_rt_period_read_uint,
8553 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8554 },
052f1dc7 8555#endif
4baf6e33 8556 { } /* terminate */
68318b8e
SV
8557};
8558
073219e9 8559struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8560 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8561 .css_released = cpu_cgroup_css_released,
92fb9748 8562 .css_free = cpu_cgroup_css_free,
eeb61e53 8563 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8564 .can_attach = cpu_cgroup_can_attach,
8565 .attach = cpu_cgroup_attach,
5577964e 8566 .legacy_cftypes = cpu_files,
b38e42e9 8567 .early_init = true,
68318b8e
SV
8568};
8569
052f1dc7 8570#endif /* CONFIG_CGROUP_SCHED */
d842de87 8571
b637a328
PM
8572void dump_cpu_task(int cpu)
8573{
8574 pr_info("Task dump for CPU %d:\n", cpu);
8575 sched_show_task(cpu_curr(cpu));
8576}
ed82b8a1
AK
8577
8578/*
8579 * Nice levels are multiplicative, with a gentle 10% change for every
8580 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8581 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8582 * that remained on nice 0.
8583 *
8584 * The "10% effect" is relative and cumulative: from _any_ nice level,
8585 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8586 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8587 * If a task goes up by ~10% and another task goes down by ~10% then
8588 * the relative distance between them is ~25%.)
8589 */
8590const int sched_prio_to_weight[40] = {
8591 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8592 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8593 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8594 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8595 /* 0 */ 1024, 820, 655, 526, 423,
8596 /* 5 */ 335, 272, 215, 172, 137,
8597 /* 10 */ 110, 87, 70, 56, 45,
8598 /* 15 */ 36, 29, 23, 18, 15,
8599};
8600
8601/*
8602 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8603 *
8604 * In cases where the weight does not change often, we can use the
8605 * precalculated inverse to speed up arithmetics by turning divisions
8606 * into multiplications:
8607 */
8608const u32 sched_prio_to_wmult[40] = {
8609 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8610 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8611 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8612 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8613 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8614 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8615 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8616 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8617};