Merge branch 'sched/urgent' into sched/core, to merge fixes before applying new changes
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
65cc8e48 336 if (likely(rq == task_rq(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
b29739f9 339 }
b29739f9
IM
340}
341
1da177e4 342/*
0122ec5b 343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 344 */
70b97a7f 345static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 346 __acquires(p->pi_lock)
1da177e4
LT
347 __acquires(rq->lock)
348{
70b97a7f 349 struct rq *rq;
1da177e4 350
3a5c359a 351 for (;;) {
0122ec5b 352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 353 rq = task_rq(p);
05fa785c 354 raw_spin_lock(&rq->lock);
65cc8e48 355 if (likely(rq == task_rq(p)))
3a5c359a 356 return rq;
0122ec5b
PZ
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 359 }
1da177e4
LT
360}
361
a9957449 362static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
363 __releases(rq->lock)
364{
05fa785c 365 raw_spin_unlock(&rq->lock);
b29739f9
IM
366}
367
0122ec5b
PZ
368static inline void
369task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 370 __releases(rq->lock)
0122ec5b 371 __releases(p->pi_lock)
1da177e4 372{
0122ec5b
PZ
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
375}
376
1da177e4 377/*
cc2a73b5 378 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 379 */
a9957449 380static struct rq *this_rq_lock(void)
1da177e4
LT
381 __acquires(rq->lock)
382{
70b97a7f 383 struct rq *rq;
1da177e4
LT
384
385 local_irq_disable();
386 rq = this_rq();
05fa785c 387 raw_spin_lock(&rq->lock);
1da177e4
LT
388
389 return rq;
390}
391
8f4d37ec
PZ
392#ifdef CONFIG_SCHED_HRTICK
393/*
394 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 395 */
8f4d37ec 396
8f4d37ec
PZ
397static void hrtick_clear(struct rq *rq)
398{
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
401}
402
8f4d37ec
PZ
403/*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407static enum hrtimer_restart hrtick(struct hrtimer *timer)
408{
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
05fa785c 413 raw_spin_lock(&rq->lock);
3e51f33f 414 update_rq_clock(rq);
8f4d37ec 415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 416 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
417
418 return HRTIMER_NORESTART;
419}
420
95e904c7 421#ifdef CONFIG_SMP
971ee28c
PZ
422
423static int __hrtick_restart(struct rq *rq)
424{
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
427
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429}
430
31656519
PZ
431/*
432 * called from hardirq (IPI) context
433 */
434static void __hrtick_start(void *arg)
b328ca18 435{
31656519 436 struct rq *rq = arg;
b328ca18 437
05fa785c 438 raw_spin_lock(&rq->lock);
971ee28c 439 __hrtick_restart(rq);
31656519 440 rq->hrtick_csd_pending = 0;
05fa785c 441 raw_spin_unlock(&rq->lock);
b328ca18
PZ
442}
443
31656519
PZ
444/*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
029632fb 449void hrtick_start(struct rq *rq, u64 delay)
b328ca18 450{
31656519
PZ
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 453
cc584b21 454 hrtimer_set_expires(timer, time);
31656519
PZ
455
456 if (rq == this_rq()) {
971ee28c 457 __hrtick_restart(rq);
31656519 458 } else if (!rq->hrtick_csd_pending) {
c46fff2a 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
460 rq->hrtick_csd_pending = 1;
461 }
b328ca18
PZ
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
31656519 476 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481}
482
fa748203 483static __init void init_hrtick(void)
b328ca18
PZ
484{
485 hotcpu_notifier(hotplug_hrtick, 0);
486}
31656519
PZ
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
029632fb 493void hrtick_start(struct rq *rq, u64 delay)
31656519 494{
7f1e2ca9 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 496 HRTIMER_MODE_REL_PINNED, 0);
31656519 497}
b328ca18 498
006c75f1 499static inline void init_hrtick(void)
8f4d37ec 500{
8f4d37ec 501}
31656519 502#endif /* CONFIG_SMP */
8f4d37ec 503
31656519 504static void init_rq_hrtick(struct rq *rq)
8f4d37ec 505{
31656519
PZ
506#ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
8f4d37ec 508
31656519
PZ
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512#endif
8f4d37ec 513
31656519
PZ
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
8f4d37ec 516}
006c75f1 517#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
8f4d37ec
PZ
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
b328ca18
PZ
526static inline void init_hrtick(void)
527{
528}
006c75f1 529#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 530
fd99f91a
PZ
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val) \
535({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543})
544
e3baac47 545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
e3baac47
PZ
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579}
580
fd99f91a
PZ
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584 set_tsk_need_resched(p);
585 return true;
586}
e3baac47
PZ
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591 return false;
592}
593#endif
fd99f91a
PZ
594#endif
595
c24d20db 596/*
8875125e 597 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
8875125e 603void resched_curr(struct rq *rq)
c24d20db 604{
8875125e 605 struct task_struct *curr = rq->curr;
c24d20db
IM
606 int cpu;
607
8875125e 608 lockdep_assert_held(&rq->lock);
c24d20db 609
8875125e 610 if (test_tsk_need_resched(curr))
c24d20db
IM
611 return;
612
8875125e 613 cpu = cpu_of(rq);
fd99f91a 614
f27dde8d 615 if (cpu == smp_processor_id()) {
8875125e 616 set_tsk_need_resched(curr);
f27dde8d 617 set_preempt_need_resched();
c24d20db 618 return;
f27dde8d 619 }
c24d20db 620
8875125e 621 if (set_nr_and_not_polling(curr))
c24d20db 622 smp_send_reschedule(cpu);
dfc68f29
AL
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
625}
626
029632fb 627void resched_cpu(int cpu)
c24d20db
IM
628{
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
05fa785c 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 633 return;
8875125e 634 resched_curr(rq);
05fa785c 635 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 636}
06d8308c 637
b021fe3e 638#ifdef CONFIG_SMP
3451d024 639#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
6201b4d6 648int get_nohz_timer_target(int pinned)
83cd4fe2
VP
649{
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
6201b4d6
VK
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
057f3fad
PZ
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
83cd4fe2 665 }
057f3fad
PZ
666unlock:
667 rcu_read_unlock();
83cd4fe2
VP
668 return cpu;
669}
06d8308c
TG
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
1c20091e 680static void wake_up_idle_cpu(int cpu)
06d8308c
TG
681{
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
67b9ca70 687 if (set_nr_and_not_polling(rq->idle))
06d8308c 688 smp_send_reschedule(cpu);
dfc68f29
AL
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
691}
692
c5bfece2 693static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 694{
53c5fa16
FW
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
c5bfece2 701 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
53c5fa16 704 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
705 return true;
706 }
707
708 return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
c5bfece2 713 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
714 wake_up_idle_cpu(cpu);
715}
716
ca38062e 717static inline bool got_nohz_idle_kick(void)
45bf76df 718{
1c792db7 719 int cpu = smp_processor_id();
873b4c65
VG
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
45bf76df
IM
733}
734
3451d024 735#else /* CONFIG_NO_HZ_COMMON */
45bf76df 736
ca38062e 737static inline bool got_nohz_idle_kick(void)
2069dd75 738{
ca38062e 739 return false;
2069dd75
PZ
740}
741
3451d024 742#endif /* CONFIG_NO_HZ_COMMON */
d842de87 743
ce831b38
FW
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
3882ec64
FW
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
541b8264
VK
752 if (this_rq()->nr_running > 1)
753 return false;
ce831b38 754
541b8264 755 return true;
ce831b38
FW
756}
757#endif /* CONFIG_NO_HZ_FULL */
d842de87 758
029632fb 759void sched_avg_update(struct rq *rq)
18d95a28 760{
e9e9250b
PZ
761 s64 period = sched_avg_period();
762
78becc27 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
18d95a28
PZ
773}
774
6d6bc0ad 775#endif /* CONFIG_SMP */
18d95a28 776
a790de99
PT
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 779/*
8277434e
PT
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 784 */
029632fb 785int walk_tg_tree_from(struct task_group *from,
8277434e 786 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
787{
788 struct task_group *parent, *child;
eb755805 789 int ret;
c09595f6 790
8277434e
PT
791 parent = from;
792
c09595f6 793down:
eb755805
PZ
794 ret = (*down)(parent, data);
795 if (ret)
8277434e 796 goto out;
c09595f6
PZ
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801up:
802 continue;
803 }
eb755805 804 ret = (*up)(parent, data);
8277434e
PT
805 if (ret || parent == from)
806 goto out;
c09595f6
PZ
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
8277434e 812out:
eb755805 813 return ret;
c09595f6
PZ
814}
815
029632fb 816int tg_nop(struct task_group *tg, void *data)
eb755805 817{
e2b245f8 818 return 0;
eb755805 819}
18d95a28
PZ
820#endif
821
45bf76df
IM
822static void set_load_weight(struct task_struct *p)
823{
f05998d4
NR
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
dd41f596
IM
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
c8b28116 831 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 832 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
833 return;
834 }
71f8bd46 835
c8b28116 836 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 837 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
838}
839
371fd7e7 840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 841{
a64692a3 842 update_rq_clock(rq);
43148951 843 sched_info_queued(rq, p);
371fd7e7 844 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
845}
846
371fd7e7 847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 848{
a64692a3 849 update_rq_clock(rq);
43148951 850 sched_info_dequeued(rq, p);
371fd7e7 851 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
852}
853
029632fb 854void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
371fd7e7 859 enqueue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
029632fb 862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
863{
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
371fd7e7 867 dequeue_task(rq, p, flags);
1e3c88bd
PZ
868}
869
fe44d621 870static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 871{
095c0aa8
GC
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
095c0aa8
GC
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 904 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
095c0aa8 911 rq->prev_steal_time_rq += steal;
095c0aa8
GC
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8 918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
34f971f6
PZ
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952}
953
14531189 954/*
dd41f596 955 * __normal_prio - return the priority that is based on the static prio
14531189 956 */
14531189
IM
957static inline int __normal_prio(struct task_struct *p)
958{
dd41f596 959 return p->static_prio;
14531189
IM
960}
961
b29739f9
IM
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
36c8b586 969static inline int normal_prio(struct task_struct *p)
b29739f9
IM
970{
971 int prio;
972
aab03e05
DF
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
b29739f9
IM
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
36c8b586 989static int effective_prio(struct task_struct *p)
b29739f9
IM
990{
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000}
1001
1da177e4
LT
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
e69f6186
YB
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1007 */
36c8b586 1008inline int task_curr(const struct task_struct *p)
1da177e4
LT
1009{
1010 return cpu_curr(task_cpu(p)) == p;
1011}
1012
cb469845
SR
1013static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
da7a735e 1015 int oldprio)
cb469845
SR
1016{
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
da7a735e
PZ
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
fd2f4419 1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1047 rq->skip_clock_update = 1;
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
dd41f596 1051void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1052{
e2912009
PZ
1053#ifdef CONFIG_SCHED_DEBUG
1054 /*
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1057 */
077614ee 1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1060
1061#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1062 /*
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 *
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1067 * see task_group().
6c6c54e1
PZ
1068 *
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1071 */
0122ec5b
PZ
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074#endif
e2912009
PZ
1075#endif
1076
de1d7286 1077 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1078
0c69774e 1079 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1082 p->se.nr_migrations++;
a8b0ca17 1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1084 }
dd41f596
IM
1085
1086 __set_task_cpu(p, new_cpu);
c65cc870
IM
1087}
1088
ac66f547
PZ
1089static void __migrate_swap_task(struct task_struct *p, int cpu)
1090{
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1093
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1096
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1102 /*
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1106 */
1107 p->wake_cpu = cpu;
1108 }
1109}
1110
1111struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1114};
1115
1116static int migrate_swap_stop(void *data)
1117{
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1121
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1124
74602315
PZ
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
ac66f547
PZ
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1130
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1133
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1136
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1139
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143 ret = 0;
1144
1145unlock:
1146 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1149
1150 return ret;
1151}
1152
1153/*
1154 * Cross migrate two tasks
1155 */
1156int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157{
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1160
ac66f547
PZ
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1166 };
1167
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1170
6acce3ef
PZ
1171 /*
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1174 */
ac66f547
PZ
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1177
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1180
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1183
286549dc 1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187out:
ac66f547
PZ
1188 return ret;
1189}
1190
969c7921 1191struct migration_arg {
36c8b586 1192 struct task_struct *task;
1da177e4 1193 int dest_cpu;
70b97a7f 1194};
1da177e4 1195
969c7921
TH
1196static int migration_cpu_stop(void *data);
1197
1da177e4
LT
1198/*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
85ba2d86
RM
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1da177e4
LT
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
85ba2d86 1214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1215{
1216 unsigned long flags;
dd41f596 1217 int running, on_rq;
85ba2d86 1218 unsigned long ncsw;
70b97a7f 1219 struct rq *rq;
1da177e4 1220
3a5c359a
AK
1221 for (;;) {
1222 /*
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1227 */
1228 rq = task_rq(p);
fa490cfd 1229
3a5c359a
AK
1230 /*
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1234 *
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1240 */
85ba2d86
RM
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
3a5c359a 1244 cpu_relax();
85ba2d86 1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1251 */
1252 rq = task_rq_lock(p, &flags);
27a9da65 1253 trace_sched_wait_task(p);
3a5c359a 1254 running = task_running(rq, p);
fd2f4419 1255 on_rq = p->on_rq;
85ba2d86 1256 ncsw = 0;
f31e11d8 1257 if (!match_state || p->state == match_state)
93dcf55f 1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1259 task_rq_unlock(rq, p, &flags);
fa490cfd 1260
85ba2d86
RM
1261 /*
1262 * If it changed from the expected state, bail out now.
1263 */
1264 if (unlikely(!ncsw))
1265 break;
1266
3a5c359a
AK
1267 /*
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1270 *
1271 * Oops. Go back and try again..
1272 */
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1276 }
fa490cfd 1277
3a5c359a
AK
1278 /*
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1282 *
80dd99b3 1283 * So if it was still runnable (but just not actively
3a5c359a
AK
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1286 */
1287 if (unlikely(on_rq)) {
8eb90c30
TG
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1292 continue;
1293 }
fa490cfd 1294
3a5c359a
AK
1295 /*
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1299 */
1300 break;
1301 }
85ba2d86
RM
1302
1303 return ncsw;
1da177e4
LT
1304}
1305
1306/***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
25985edc 1313 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
36c8b586 1319void kick_process(struct task_struct *p)
1da177e4
LT
1320{
1321 int cpu;
1322
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1328}
b43e3521 1329EXPORT_SYMBOL_GPL(kick_process);
476d139c 1330#endif /* CONFIG_SMP */
1da177e4 1331
970b13ba 1332#ifdef CONFIG_SMP
30da688e 1333/*
013fdb80 1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1335 */
5da9a0fb
PZ
1336static int select_fallback_rq(int cpu, struct task_struct *p)
1337{
aa00d89c
TC
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
5da9a0fb 1342
aa00d89c
TC
1343 /*
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1347 */
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1350
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1359 }
2baab4e9 1360 }
5da9a0fb 1361
2baab4e9
PZ
1362 for (;;) {
1363 /* Any allowed, online CPU? */
e3831edd 1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1370 }
5da9a0fb 1371
2baab4e9
PZ
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1378
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1383
1384 case fail:
1385 BUG();
1386 break;
1387 }
1388 }
1389
1390out:
1391 if (state != cpuset) {
1392 /*
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1396 */
1397 if (p->mm && printk_ratelimit()) {
aac74dc4 1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1399 task_pid_nr(p), p->comm, cpu);
1400 }
5da9a0fb
PZ
1401 }
1402
1403 return dest_cpu;
1404}
1405
e2912009 1406/*
013fdb80 1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1408 */
970b13ba 1409static inline
ac66f547 1410int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1411{
ac66f547 1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1413
1414 /*
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1418 *
1419 * Since this is common to all placement strategies, this lives here.
1420 *
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1423 */
fa17b507 1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1425 !cpu_online(cpu)))
5da9a0fb 1426 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1427
1428 return cpu;
970b13ba 1429}
09a40af5
MG
1430
1431static void update_avg(u64 *avg, u64 sample)
1432{
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1435}
970b13ba
PZ
1436#endif
1437
d7c01d27 1438static void
b84cb5df 1439ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1440{
d7c01d27 1441#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1442 struct rq *rq = this_rq();
1443
d7c01d27
PZ
1444#ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1446
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1452
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1454 rcu_read_lock();
d7c01d27
PZ
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1459 }
1460 }
057f3fad 1461 rcu_read_unlock();
d7c01d27 1462 }
f339b9dc
PZ
1463
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
d7c01d27
PZ
1467#endif /* CONFIG_SMP */
1468
1469 schedstat_inc(rq, ttwu_count);
9ed3811a 1470 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1471
1472 if (wake_flags & WF_SYNC)
9ed3811a 1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1474
d7c01d27
PZ
1475#endif /* CONFIG_SCHEDSTATS */
1476}
1477
1478static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479{
9ed3811a 1480 activate_task(rq, p, en_flags);
fd2f4419 1481 p->on_rq = 1;
c2f7115e
PZ
1482
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1486}
1487
23f41eeb
PZ
1488/*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
89363381 1491static void
23f41eeb 1492ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1493{
9ed3811a 1494 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1495 trace_sched_wakeup(p, true);
9ed3811a
TH
1496
1497 p->state = TASK_RUNNING;
1498#ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1501
e69c6341 1502 if (rq->idle_stamp) {
78becc27 1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1504 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1505
abfafa54
JL
1506 update_avg(&rq->avg_idle, delta);
1507
1508 if (rq->avg_idle > max)
9ed3811a 1509 rq->avg_idle = max;
abfafa54 1510
9ed3811a
TH
1511 rq->idle_stamp = 0;
1512 }
1513#endif
1514}
1515
c05fbafb
PZ
1516static void
1517ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518{
1519#ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522#endif
1523
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1526}
1527
1528/*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534static int ttwu_remote(struct task_struct *p, int wake_flags)
1535{
1536 struct rq *rq;
1537 int ret = 0;
1538
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1ad4ec0d
FW
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
c05fbafb
PZ
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1545 }
1546 __task_rq_unlock(rq);
1547
1548 return ret;
1549}
1550
317f3941 1551#ifdef CONFIG_SMP
e3baac47 1552void sched_ttwu_pending(void)
317f3941
PZ
1553{
1554 struct rq *rq = this_rq();
fa14ff4a
PZ
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
e3baac47 1557 unsigned long flags;
317f3941 1558
e3baac47
PZ
1559 if (!llist)
1560 return;
1561
1562 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1563
fa14ff4a
PZ
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
317f3941
PZ
1567 ttwu_do_activate(rq, p, 0);
1568 }
1569
e3baac47 1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1571}
1572
1573void scheduler_ipi(void)
1574{
f27dde8d
PZ
1575 /*
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1579 */
8cb75e0c 1580 preempt_fold_need_resched();
f27dde8d 1581
fd2ac4f4 1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1583 return;
1584
1585 /*
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1590 *
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1593 *
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1597 */
1598 irq_enter();
fa14ff4a 1599 sched_ttwu_pending();
ca38062e
SS
1600
1601 /*
1602 * Check if someone kicked us for doing the nohz idle load balance.
1603 */
873b4c65 1604 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1605 this_rq()->idle_balance = 1;
ca38062e 1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1607 }
c5d753a5 1608 irq_exit();
317f3941
PZ
1609}
1610
1611static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612{
e3baac47
PZ
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1620 }
317f3941 1621}
d6aa8f85 1622
39be3501 1623bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1624{
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626}
d6aa8f85 1627#endif /* CONFIG_SMP */
317f3941 1628
c05fbafb
PZ
1629static void ttwu_queue(struct task_struct *p, int cpu)
1630{
1631 struct rq *rq = cpu_rq(cpu);
1632
17d9f311 1633#if defined(CONFIG_SMP)
39be3501 1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1636 ttwu_queue_remote(p, cpu);
1637 return;
1638 }
1639#endif
1640
c05fbafb
PZ
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1644}
1645
1646/**
1da177e4 1647 * try_to_wake_up - wake up a thread
9ed3811a 1648 * @p: the thread to be awakened
1da177e4 1649 * @state: the mask of task states that can be woken
9ed3811a 1650 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
e69f6186 1658 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1659 * or @state didn't match @p's state.
1da177e4 1660 */
e4a52bcb
PZ
1661static int
1662try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1663{
1da177e4 1664 unsigned long flags;
c05fbafb 1665 int cpu, success = 0;
2398f2c6 1666
e0acd0a6
ON
1667 /*
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1672 */
1673 smp_mb__before_spinlock();
013fdb80 1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1675 if (!(p->state & state))
1da177e4
LT
1676 goto out;
1677
c05fbafb 1678 success = 1; /* we're going to change ->state */
1da177e4 1679 cpu = task_cpu(p);
1da177e4 1680
c05fbafb
PZ
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1da177e4 1683
1da177e4 1684#ifdef CONFIG_SMP
e9c84311 1685 /*
c05fbafb
PZ
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
e9c84311 1688 */
f3e94786 1689 while (p->on_cpu)
e4a52bcb 1690 cpu_relax();
0970d299 1691 /*
e4a52bcb 1692 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1693 */
e4a52bcb 1694 smp_rmb();
1da177e4 1695
a8e4f2ea 1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1697 p->state = TASK_WAKING;
e7693a36 1698
e4a52bcb 1699 if (p->sched_class->task_waking)
74f8e4b2 1700 p->sched_class->task_waking(p);
efbbd05a 1701
ac66f547 1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
e4a52bcb 1705 set_task_cpu(p, cpu);
f339b9dc 1706 }
1da177e4 1707#endif /* CONFIG_SMP */
1da177e4 1708
c05fbafb
PZ
1709 ttwu_queue(p, cpu);
1710stat:
b84cb5df 1711 ttwu_stat(p, cpu, wake_flags);
1da177e4 1712out:
013fdb80 1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1714
1715 return success;
1716}
1717
21aa9af0
TH
1718/**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
2acca55e 1722 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1724 * the current task.
21aa9af0
TH
1725 */
1726static void try_to_wake_up_local(struct task_struct *p)
1727{
1728 struct rq *rq = task_rq(p);
21aa9af0 1729
383efcd0
TH
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1733
21aa9af0
TH
1734 lockdep_assert_held(&rq->lock);
1735
2acca55e
PZ
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1740 }
1741
21aa9af0 1742 if (!(p->state & TASK_NORMAL))
2acca55e 1743 goto out;
21aa9af0 1744
fd2f4419 1745 if (!p->on_rq)
d7c01d27
PZ
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
23f41eeb 1748 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1749 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1750out:
1751 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1752}
1753
50fa610a
DH
1754/**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
7ad5b3a5 1766int wake_up_process(struct task_struct *p)
1da177e4 1767{
9067ac85
ON
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1770}
1da177e4
LT
1771EXPORT_SYMBOL(wake_up_process);
1772
7ad5b3a5 1773int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1774{
1775 return try_to_wake_up(p, state, 0);
1776}
1777
1da177e4
LT
1778/*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
dd41f596
IM
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
5e1576ed 1784static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1785{
fd2f4419
PZ
1786 p->on_rq = 0;
1787
1788 p->se.on_rq = 0;
dd41f596
IM
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
f6cf891c 1791 p->se.prev_sum_exec_runtime = 0;
6c594c21 1792 p->se.nr_migrations = 0;
da7a735e 1793 p->se.vruntime = 0;
fd2f4419 1794 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1795
1796#ifdef CONFIG_SCHEDSTATS
41acab88 1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1798#endif
476d139c 1799
aab03e05
DF
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1804 p->dl.dl_period = 0;
aab03e05
DF
1805 p->dl.flags = 0;
1806
fa717060 1807 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1808
e107be36
AK
1809#ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811#endif
cbee9f88
PZ
1812
1813#ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1816 p->mm->numa_scan_seq = 0;
1817 }
1818
5e1576ed
RR
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1823
cbee9f88
PZ
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1827 p->numa_work.next = &p->numa_work;
ff1df896
RR
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1832
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
cbee9f88 1835#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1836}
1837
1a687c2e 1838#ifdef CONFIG_NUMA_BALANCING
3105b86a 1839#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1840void set_numabalancing_state(bool enabled)
1841{
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1846}
3105b86a
MG
1847#else
1848__read_mostly bool numabalancing_enabled;
1849
1850void set_numabalancing_state(bool enabled)
1851{
1852 numabalancing_enabled = enabled;
dd41f596 1853}
3105b86a 1854#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1855
1856#ifdef CONFIG_PROC_SYSCTL
1857int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1859{
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1863
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1866
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1875}
1876#endif
1877#endif
dd41f596
IM
1878
1879/*
1880 * fork()/clone()-time setup:
1881 */
aab03e05 1882int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1883{
0122ec5b 1884 unsigned long flags;
dd41f596
IM
1885 int cpu = get_cpu();
1886
5e1576ed 1887 __sched_fork(clone_flags, p);
06b83b5f 1888 /*
0017d735 1889 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1892 */
0017d735 1893 p->state = TASK_RUNNING;
dd41f596 1894
c350a04e
MG
1895 /*
1896 * Make sure we do not leak PI boosting priority to the child.
1897 */
1898 p->prio = current->normal_prio;
1899
b9dc29e7
MG
1900 /*
1901 * Revert to default priority/policy on fork if requested.
1902 */
1903 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1905 p->policy = SCHED_NORMAL;
6c697bdf 1906 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1910
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
6c697bdf 1913
b9dc29e7
MG
1914 /*
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1917 */
1918 p->sched_reset_on_fork = 0;
1919 }
ca94c442 1920
aab03e05
DF
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
2ddbf952 1927 p->sched_class = &fair_sched_class;
aab03e05 1928 }
b29739f9 1929
cd29fe6f
PZ
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1932
86951599
PZ
1933 /*
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1937 *
1938 * Silence PROVE_RCU.
1939 */
0122ec5b 1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1941 set_task_cpu(p, cpu);
0122ec5b 1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1943
52f17b6c 1944#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1945 if (likely(sched_info_on()))
52f17b6c 1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1947#endif
3ca7a440
PZ
1948#if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
4866cde0 1950#endif
01028747 1951 init_task_preempt_count(p);
806c09a7 1952#ifdef CONFIG_SMP
917b627d 1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1955#endif
917b627d 1956
476d139c 1957 put_cpu();
aab03e05 1958 return 0;
1da177e4
LT
1959}
1960
332ac17e
DF
1961unsigned long to_ratio(u64 period, u64 runtime)
1962{
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1965
1966 /*
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1970 */
1971 if (period == 0)
1972 return 0;
1973
1974 return div64_u64(runtime << 20, period);
1975}
1976
1977#ifdef CONFIG_SMP
1978inline struct dl_bw *dl_bw_of(int i)
1979{
1980 return &cpu_rq(i)->rd->dl_bw;
1981}
1982
de212f18 1983static inline int dl_bw_cpus(int i)
332ac17e 1984{
de212f18
PZ
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1987
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1990
1991 return cpus;
332ac17e
DF
1992}
1993#else
1994inline struct dl_bw *dl_bw_of(int i)
1995{
1996 return &cpu_rq(i)->dl.dl_bw;
1997}
1998
de212f18 1999static inline int dl_bw_cpus(int i)
332ac17e
DF
2000{
2001 return 1;
2002}
2003#endif
2004
2005static inline
2006void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007{
2008 dl_b->total_bw -= tsk_bw;
2009}
2010
2011static inline
2012void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013{
2014 dl_b->total_bw += tsk_bw;
2015}
2016
2017static inline
2018bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019{
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022}
2023
2024/*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2034{
2035
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2037 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2040 int cpus, err = -1;
332ac17e
DF
2041
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2044
2045 /*
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2049 */
2050 raw_spin_lock(&dl_b->lock);
de212f18 2051 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2064 }
2065 raw_spin_unlock(&dl_b->lock);
2066
2067 return err;
2068}
2069
2070extern void init_dl_bw(struct dl_bw *dl_b);
2071
1da177e4
LT
2072/*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
3e51e3ed 2079void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2080{
2081 unsigned long flags;
dd41f596 2082 struct rq *rq;
fabf318e 2083
ab2515c4 2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2085#ifdef CONFIG_SMP
2086 /*
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
fabf318e 2090 */
ac66f547 2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2092#endif
2093
a75cdaa9
AS
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
ab2515c4 2096 rq = __task_rq_lock(p);
cd29fe6f 2097 activate_task(rq, p, 0);
fd2f4419 2098 p->on_rq = 1;
89363381 2099 trace_sched_wakeup_new(p, true);
a7558e01 2100 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2101#ifdef CONFIG_SMP
efbbd05a
PZ
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
9a897c5a 2104#endif
0122ec5b 2105 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2106}
2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110/**
80dd99b3 2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2112 * @notifier: notifier struct to register
e107be36
AK
2113 */
2114void preempt_notifier_register(struct preempt_notifier *notifier)
2115{
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117}
2118EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120/**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2122 * @notifier: notifier struct to unregister
e107be36
AK
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127{
2128 hlist_del(&notifier->link);
2129}
2130EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133{
2134 struct preempt_notifier *notifier;
e107be36 2135
b67bfe0d 2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138}
2139
2140static void
2141fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143{
2144 struct preempt_notifier *notifier;
e107be36 2145
b67bfe0d 2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2147 notifier->ops->sched_out(notifier, next);
2148}
2149
6d6bc0ad 2150#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2151
2152static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153{
2154}
2155
2156static void
2157fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159{
2160}
2161
6d6bc0ad 2162#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2163
4866cde0
NP
2164/**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
421cee29 2167 * @prev: the current task that is being switched out
4866cde0
NP
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
e107be36
AK
2177static inline void
2178prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
4866cde0 2180{
895dd92c 2181 trace_sched_switch(prev, next);
43148951 2182 sched_info_switch(rq, prev, next);
fe4b04fa 2183 perf_event_task_sched_out(prev, next);
e107be36 2184 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2187}
2188
1da177e4
LT
2189/**
2190 * finish_task_switch - clean up after a task-switch
344babaa 2191 * @rq: runqueue associated with task-switch
1da177e4
LT
2192 * @prev: the thread we just switched away from.
2193 *
4866cde0
NP
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2200 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
a9957449 2204static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2205 __releases(rq->lock)
2206{
1da177e4 2207 struct mm_struct *mm = rq->prev_mm;
55a101f8 2208 long prev_state;
1da177e4
LT
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
c394cc9f 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
c394cc9f 2217 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
55a101f8 2223 prev_state = prev->state;
bf9fae9f 2224 vtime_task_switch(prev);
4866cde0 2225 finish_arch_switch(prev);
a8d757ef 2226 perf_event_task_sched_in(prev, current);
4866cde0 2227 finish_lock_switch(rq, prev);
01f23e16 2228 finish_arch_post_lock_switch();
e8fa1362 2229
e107be36 2230 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2231 if (mm)
2232 mmdrop(mm);
c394cc9f 2233 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
c6fd91f0 2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
9761eea8 2240 */
c6fd91f0 2241 kprobe_flush_task(prev);
1da177e4 2242 put_task_struct(prev);
c6fd91f0 2243 }
99e5ada9
FW
2244
2245 tick_nohz_task_switch(current);
1da177e4
LT
2246}
2247
3f029d3c
GH
2248#ifdef CONFIG_SMP
2249
3f029d3c
GH
2250/* rq->lock is NOT held, but preemption is disabled */
2251static inline void post_schedule(struct rq *rq)
2252{
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2255
05fa785c 2256 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
05fa785c 2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2260
2261 rq->post_schedule = 0;
2262 }
2263}
2264
2265#else
da19ab51 2266
3f029d3c
GH
2267static inline void post_schedule(struct rq *rq)
2268{
1da177e4
LT
2269}
2270
3f029d3c
GH
2271#endif
2272
1da177e4
LT
2273/**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
722a9f92 2277asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2278 __releases(rq->lock)
2279{
70b97a7f
IM
2280 struct rq *rq = this_rq();
2281
4866cde0 2282 finish_task_switch(rq, prev);
da19ab51 2283
3f029d3c
GH
2284 /*
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2287 */
2288 post_schedule(rq);
70b97a7f 2289
4866cde0
NP
2290#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293#endif
1da177e4 2294 if (current->set_child_tid)
b488893a 2295 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2296}
2297
2298/*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
dd41f596 2302static inline void
70b97a7f 2303context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2304 struct task_struct *next)
1da177e4 2305{
dd41f596 2306 struct mm_struct *mm, *oldmm;
1da177e4 2307
e107be36 2308 prepare_task_switch(rq, prev, next);
fe4b04fa 2309
dd41f596
IM
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
9226d125
ZA
2312 /*
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2316 */
224101ed 2317 arch_start_context_switch(prev);
9226d125 2318
31915ab4 2319 if (!mm) {
1da177e4
LT
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2325
31915ab4 2326 if (!prev->mm) {
1da177e4 2327 prev->active_mm = NULL;
1da177e4
LT
2328 rq->prev_mm = oldmm;
2329 }
3a5f5e48
IM
2330 /*
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2335 */
2336#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2338#endif
1da177e4 2339
91d1aa43 2340 context_tracking_task_switch(prev, next);
1da177e4
LT
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2343
dd41f596
IM
2344 barrier();
2345 /*
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2349 */
2350 finish_task_switch(this_rq(), prev);
1da177e4
LT
2351}
2352
2353/*
1c3e8264 2354 * nr_running and nr_context_switches:
1da177e4
LT
2355 *
2356 * externally visible scheduler statistics: current number of runnable
1c3e8264 2357 * threads, total number of context switches performed since bootup.
1da177e4
LT
2358 */
2359unsigned long nr_running(void)
2360{
2361 unsigned long i, sum = 0;
2362
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2365
2366 return sum;
f711f609 2367}
1da177e4 2368
1da177e4 2369unsigned long long nr_context_switches(void)
46cb4b7c 2370{
cc94abfc
SR
2371 int i;
2372 unsigned long long sum = 0;
46cb4b7c 2373
0a945022 2374 for_each_possible_cpu(i)
1da177e4 2375 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2376
1da177e4
LT
2377 return sum;
2378}
483b4ee6 2379
1da177e4
LT
2380unsigned long nr_iowait(void)
2381{
2382 unsigned long i, sum = 0;
483b4ee6 2383
0a945022 2384 for_each_possible_cpu(i)
1da177e4 2385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2386
1da177e4
LT
2387 return sum;
2388}
483b4ee6 2389
8c215bd3 2390unsigned long nr_iowait_cpu(int cpu)
69d25870 2391{
8c215bd3 2392 struct rq *this = cpu_rq(cpu);
69d25870
AV
2393 return atomic_read(&this->nr_iowait);
2394}
46cb4b7c 2395
dd41f596 2396#ifdef CONFIG_SMP
8a0be9ef 2397
46cb4b7c 2398/*
38022906
PZ
2399 * sched_exec - execve() is a valuable balancing opportunity, because at
2400 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2401 */
38022906 2402void sched_exec(void)
46cb4b7c 2403{
38022906 2404 struct task_struct *p = current;
1da177e4 2405 unsigned long flags;
0017d735 2406 int dest_cpu;
46cb4b7c 2407
8f42ced9 2408 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2409 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2410 if (dest_cpu == smp_processor_id())
2411 goto unlock;
38022906 2412
8f42ced9 2413 if (likely(cpu_active(dest_cpu))) {
969c7921 2414 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2415
8f42ced9
PZ
2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2418 return;
2419 }
0017d735 2420unlock:
8f42ced9 2421 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2422}
dd41f596 2423
1da177e4
LT
2424#endif
2425
1da177e4 2426DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2427DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2428
2429EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2430EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2431
2432/*
c5f8d995 2433 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2434 * @p in case that task is currently running.
c5f8d995
HS
2435 *
2436 * Called with task_rq_lock() held on @rq.
1da177e4 2437 */
c5f8d995
HS
2438static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2439{
2440 u64 ns = 0;
2441
4036ac15
MG
2442 /*
2443 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2444 * project cycles that may never be accounted to this
2445 * thread, breaking clock_gettime().
2446 */
2447 if (task_current(rq, p) && p->on_rq) {
c5f8d995 2448 update_rq_clock(rq);
78becc27 2449 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2450 if ((s64)ns < 0)
2451 ns = 0;
2452 }
2453
2454 return ns;
2455}
2456
bb34d92f 2457unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2458{
1da177e4 2459 unsigned long flags;
41b86e9c 2460 struct rq *rq;
bb34d92f 2461 u64 ns = 0;
48f24c4d 2462
41b86e9c 2463 rq = task_rq_lock(p, &flags);
c5f8d995 2464 ns = do_task_delta_exec(p, rq);
0122ec5b 2465 task_rq_unlock(rq, p, &flags);
1508487e 2466
c5f8d995
HS
2467 return ns;
2468}
f06febc9 2469
c5f8d995
HS
2470/*
2471 * Return accounted runtime for the task.
2472 * In case the task is currently running, return the runtime plus current's
2473 * pending runtime that have not been accounted yet.
2474 */
2475unsigned long long task_sched_runtime(struct task_struct *p)
2476{
2477 unsigned long flags;
2478 struct rq *rq;
2479 u64 ns = 0;
2480
911b2898
PZ
2481#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2482 /*
2483 * 64-bit doesn't need locks to atomically read a 64bit value.
2484 * So we have a optimization chance when the task's delta_exec is 0.
2485 * Reading ->on_cpu is racy, but this is ok.
2486 *
2487 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2488 * If we race with it entering cpu, unaccounted time is 0. This is
2489 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2491 * been accounted, so we're correct here as well.
911b2898 2492 */
4036ac15 2493 if (!p->on_cpu || !p->on_rq)
911b2898
PZ
2494 return p->se.sum_exec_runtime;
2495#endif
2496
c5f8d995
HS
2497 rq = task_rq_lock(p, &flags);
2498 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2499 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2500
2501 return ns;
2502}
48f24c4d 2503
7835b98b
CL
2504/*
2505 * This function gets called by the timer code, with HZ frequency.
2506 * We call it with interrupts disabled.
7835b98b
CL
2507 */
2508void scheduler_tick(void)
2509{
7835b98b
CL
2510 int cpu = smp_processor_id();
2511 struct rq *rq = cpu_rq(cpu);
dd41f596 2512 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2513
2514 sched_clock_tick();
dd41f596 2515
05fa785c 2516 raw_spin_lock(&rq->lock);
3e51f33f 2517 update_rq_clock(rq);
fa85ae24 2518 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2519 update_cpu_load_active(rq);
05fa785c 2520 raw_spin_unlock(&rq->lock);
7835b98b 2521
e9d2b064 2522 perf_event_task_tick();
e220d2dc 2523
e418e1c2 2524#ifdef CONFIG_SMP
6eb57e0d 2525 rq->idle_balance = idle_cpu(cpu);
7caff66f 2526 trigger_load_balance(rq);
e418e1c2 2527#endif
265f22a9 2528 rq_last_tick_reset(rq);
1da177e4
LT
2529}
2530
265f22a9
FW
2531#ifdef CONFIG_NO_HZ_FULL
2532/**
2533 * scheduler_tick_max_deferment
2534 *
2535 * Keep at least one tick per second when a single
2536 * active task is running because the scheduler doesn't
2537 * yet completely support full dynticks environment.
2538 *
2539 * This makes sure that uptime, CFS vruntime, load
2540 * balancing, etc... continue to move forward, even
2541 * with a very low granularity.
e69f6186
YB
2542 *
2543 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2544 */
2545u64 scheduler_tick_max_deferment(void)
2546{
2547 struct rq *rq = this_rq();
2548 unsigned long next, now = ACCESS_ONCE(jiffies);
2549
2550 next = rq->last_sched_tick + HZ;
2551
2552 if (time_before_eq(next, now))
2553 return 0;
2554
8fe8ff09 2555 return jiffies_to_nsecs(next - now);
1da177e4 2556}
265f22a9 2557#endif
1da177e4 2558
132380a0 2559notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2560{
2561 if (in_lock_functions(addr)) {
2562 addr = CALLER_ADDR2;
2563 if (in_lock_functions(addr))
2564 addr = CALLER_ADDR3;
2565 }
2566 return addr;
2567}
1da177e4 2568
7e49fcce
SR
2569#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2570 defined(CONFIG_PREEMPT_TRACER))
2571
edafe3a5 2572void preempt_count_add(int val)
1da177e4 2573{
6cd8a4bb 2574#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2575 /*
2576 * Underflow?
2577 */
9a11b49a
IM
2578 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2579 return;
6cd8a4bb 2580#endif
bdb43806 2581 __preempt_count_add(val);
6cd8a4bb 2582#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2583 /*
2584 * Spinlock count overflowing soon?
2585 */
33859f7f
MOS
2586 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2587 PREEMPT_MASK - 10);
6cd8a4bb 2588#endif
8f47b187
TG
2589 if (preempt_count() == val) {
2590 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2591#ifdef CONFIG_DEBUG_PREEMPT
2592 current->preempt_disable_ip = ip;
2593#endif
2594 trace_preempt_off(CALLER_ADDR0, ip);
2595 }
1da177e4 2596}
bdb43806 2597EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2598NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2599
edafe3a5 2600void preempt_count_sub(int val)
1da177e4 2601{
6cd8a4bb 2602#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2603 /*
2604 * Underflow?
2605 */
01e3eb82 2606 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2607 return;
1da177e4
LT
2608 /*
2609 * Is the spinlock portion underflowing?
2610 */
9a11b49a
IM
2611 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2612 !(preempt_count() & PREEMPT_MASK)))
2613 return;
6cd8a4bb 2614#endif
9a11b49a 2615
6cd8a4bb
SR
2616 if (preempt_count() == val)
2617 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2618 __preempt_count_sub(val);
1da177e4 2619}
bdb43806 2620EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2621NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2622
2623#endif
2624
2625/*
dd41f596 2626 * Print scheduling while atomic bug:
1da177e4 2627 */
dd41f596 2628static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2629{
664dfa65
DJ
2630 if (oops_in_progress)
2631 return;
2632
3df0fc5b
PZ
2633 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2634 prev->comm, prev->pid, preempt_count());
838225b4 2635
dd41f596 2636 debug_show_held_locks(prev);
e21f5b15 2637 print_modules();
dd41f596
IM
2638 if (irqs_disabled())
2639 print_irqtrace_events(prev);
8f47b187
TG
2640#ifdef CONFIG_DEBUG_PREEMPT
2641 if (in_atomic_preempt_off()) {
2642 pr_err("Preemption disabled at:");
2643 print_ip_sym(current->preempt_disable_ip);
2644 pr_cont("\n");
2645 }
2646#endif
6135fc1e 2647 dump_stack();
373d4d09 2648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2649}
1da177e4 2650
dd41f596
IM
2651/*
2652 * Various schedule()-time debugging checks and statistics:
2653 */
2654static inline void schedule_debug(struct task_struct *prev)
2655{
1da177e4 2656 /*
41a2d6cf 2657 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2658 * schedule() atomically, we ignore that path. Otherwise whine
2659 * if we are scheduling when we should not.
1da177e4 2660 */
192301e7 2661 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2662 __schedule_bug(prev);
b3fbab05 2663 rcu_sleep_check();
dd41f596 2664
1da177e4
LT
2665 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2666
2d72376b 2667 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2668}
2669
2670/*
2671 * Pick up the highest-prio task:
2672 */
2673static inline struct task_struct *
606dba2e 2674pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2675{
37e117c0 2676 const struct sched_class *class = &fair_sched_class;
dd41f596 2677 struct task_struct *p;
1da177e4
LT
2678
2679 /*
dd41f596
IM
2680 * Optimization: we know that if all tasks are in
2681 * the fair class we can call that function directly:
1da177e4 2682 */
37e117c0 2683 if (likely(prev->sched_class == class &&
38033c37 2684 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2685 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2686 if (unlikely(p == RETRY_TASK))
2687 goto again;
2688
2689 /* assumes fair_sched_class->next == idle_sched_class */
2690 if (unlikely(!p))
2691 p = idle_sched_class.pick_next_task(rq, prev);
2692
2693 return p;
1da177e4
LT
2694 }
2695
37e117c0 2696again:
34f971f6 2697 for_each_class(class) {
606dba2e 2698 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2699 if (p) {
2700 if (unlikely(p == RETRY_TASK))
2701 goto again;
dd41f596 2702 return p;
37e117c0 2703 }
dd41f596 2704 }
34f971f6
PZ
2705
2706 BUG(); /* the idle class will always have a runnable task */
dd41f596 2707}
1da177e4 2708
dd41f596 2709/*
c259e01a 2710 * __schedule() is the main scheduler function.
edde96ea
PE
2711 *
2712 * The main means of driving the scheduler and thus entering this function are:
2713 *
2714 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2715 *
2716 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2717 * paths. For example, see arch/x86/entry_64.S.
2718 *
2719 * To drive preemption between tasks, the scheduler sets the flag in timer
2720 * interrupt handler scheduler_tick().
2721 *
2722 * 3. Wakeups don't really cause entry into schedule(). They add a
2723 * task to the run-queue and that's it.
2724 *
2725 * Now, if the new task added to the run-queue preempts the current
2726 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2727 * called on the nearest possible occasion:
2728 *
2729 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2730 *
2731 * - in syscall or exception context, at the next outmost
2732 * preempt_enable(). (this might be as soon as the wake_up()'s
2733 * spin_unlock()!)
2734 *
2735 * - in IRQ context, return from interrupt-handler to
2736 * preemptible context
2737 *
2738 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2739 * then at the next:
2740 *
2741 * - cond_resched() call
2742 * - explicit schedule() call
2743 * - return from syscall or exception to user-space
2744 * - return from interrupt-handler to user-space
dd41f596 2745 */
c259e01a 2746static void __sched __schedule(void)
dd41f596
IM
2747{
2748 struct task_struct *prev, *next;
67ca7bde 2749 unsigned long *switch_count;
dd41f596 2750 struct rq *rq;
31656519 2751 int cpu;
dd41f596 2752
ff743345
PZ
2753need_resched:
2754 preempt_disable();
dd41f596
IM
2755 cpu = smp_processor_id();
2756 rq = cpu_rq(cpu);
25502a6c 2757 rcu_note_context_switch(cpu);
dd41f596 2758 prev = rq->curr;
dd41f596 2759
dd41f596 2760 schedule_debug(prev);
1da177e4 2761
31656519 2762 if (sched_feat(HRTICK))
f333fdc9 2763 hrtick_clear(rq);
8f4d37ec 2764
e0acd0a6
ON
2765 /*
2766 * Make sure that signal_pending_state()->signal_pending() below
2767 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2768 * done by the caller to avoid the race with signal_wake_up().
2769 */
2770 smp_mb__before_spinlock();
05fa785c 2771 raw_spin_lock_irq(&rq->lock);
1da177e4 2772
246d86b5 2773 switch_count = &prev->nivcsw;
1da177e4 2774 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2775 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2776 prev->state = TASK_RUNNING;
21aa9af0 2777 } else {
2acca55e
PZ
2778 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2779 prev->on_rq = 0;
2780
21aa9af0 2781 /*
2acca55e
PZ
2782 * If a worker went to sleep, notify and ask workqueue
2783 * whether it wants to wake up a task to maintain
2784 * concurrency.
21aa9af0
TH
2785 */
2786 if (prev->flags & PF_WQ_WORKER) {
2787 struct task_struct *to_wakeup;
2788
2789 to_wakeup = wq_worker_sleeping(prev, cpu);
2790 if (to_wakeup)
2791 try_to_wake_up_local(to_wakeup);
2792 }
21aa9af0 2793 }
dd41f596 2794 switch_count = &prev->nvcsw;
1da177e4
LT
2795 }
2796
606dba2e
PZ
2797 if (prev->on_rq || rq->skip_clock_update < 0)
2798 update_rq_clock(rq);
2799
2800 next = pick_next_task(rq, prev);
f26f9aff 2801 clear_tsk_need_resched(prev);
f27dde8d 2802 clear_preempt_need_resched();
f26f9aff 2803 rq->skip_clock_update = 0;
1da177e4 2804
1da177e4 2805 if (likely(prev != next)) {
1da177e4
LT
2806 rq->nr_switches++;
2807 rq->curr = next;
2808 ++*switch_count;
2809
dd41f596 2810 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2811 /*
246d86b5
ON
2812 * The context switch have flipped the stack from under us
2813 * and restored the local variables which were saved when
2814 * this task called schedule() in the past. prev == current
2815 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2816 */
2817 cpu = smp_processor_id();
2818 rq = cpu_rq(cpu);
1da177e4 2819 } else
05fa785c 2820 raw_spin_unlock_irq(&rq->lock);
1da177e4 2821
3f029d3c 2822 post_schedule(rq);
1da177e4 2823
ba74c144 2824 sched_preempt_enable_no_resched();
ff743345 2825 if (need_resched())
1da177e4
LT
2826 goto need_resched;
2827}
c259e01a 2828
9c40cef2
TG
2829static inline void sched_submit_work(struct task_struct *tsk)
2830{
3c7d5184 2831 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2832 return;
2833 /*
2834 * If we are going to sleep and we have plugged IO queued,
2835 * make sure to submit it to avoid deadlocks.
2836 */
2837 if (blk_needs_flush_plug(tsk))
2838 blk_schedule_flush_plug(tsk);
2839}
2840
722a9f92 2841asmlinkage __visible void __sched schedule(void)
c259e01a 2842{
9c40cef2
TG
2843 struct task_struct *tsk = current;
2844
2845 sched_submit_work(tsk);
c259e01a
TG
2846 __schedule();
2847}
1da177e4
LT
2848EXPORT_SYMBOL(schedule);
2849
91d1aa43 2850#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2851asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2852{
2853 /*
2854 * If we come here after a random call to set_need_resched(),
2855 * or we have been woken up remotely but the IPI has not yet arrived,
2856 * we haven't yet exited the RCU idle mode. Do it here manually until
2857 * we find a better solution.
2858 */
91d1aa43 2859 user_exit();
20ab65e3 2860 schedule();
91d1aa43 2861 user_enter();
20ab65e3
FW
2862}
2863#endif
2864
c5491ea7
TG
2865/**
2866 * schedule_preempt_disabled - called with preemption disabled
2867 *
2868 * Returns with preemption disabled. Note: preempt_count must be 1
2869 */
2870void __sched schedule_preempt_disabled(void)
2871{
ba74c144 2872 sched_preempt_enable_no_resched();
c5491ea7
TG
2873 schedule();
2874 preempt_disable();
2875}
2876
1da177e4
LT
2877#ifdef CONFIG_PREEMPT
2878/*
2ed6e34f 2879 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2880 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2881 * occur there and call schedule directly.
2882 */
722a9f92 2883asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2884{
1da177e4
LT
2885 /*
2886 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2887 * we do not want to preempt the current task. Just return..
1da177e4 2888 */
fbb00b56 2889 if (likely(!preemptible()))
1da177e4
LT
2890 return;
2891
3a5c359a 2892 do {
bdb43806 2893 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2894 __schedule();
bdb43806 2895 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2896
3a5c359a
AK
2897 /*
2898 * Check again in case we missed a preemption opportunity
2899 * between schedule and now.
2900 */
2901 barrier();
5ed0cec0 2902 } while (need_resched());
1da177e4 2903}
376e2424 2904NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2905EXPORT_SYMBOL(preempt_schedule);
32e475d7 2906#endif /* CONFIG_PREEMPT */
1da177e4
LT
2907
2908/*
2ed6e34f 2909 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2910 * off of irq context.
2911 * Note, that this is called and return with irqs disabled. This will
2912 * protect us against recursive calling from irq.
2913 */
722a9f92 2914asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2915{
b22366cd 2916 enum ctx_state prev_state;
6478d880 2917
2ed6e34f 2918 /* Catch callers which need to be fixed */
f27dde8d 2919 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2920
b22366cd
FW
2921 prev_state = exception_enter();
2922
3a5c359a 2923 do {
bdb43806 2924 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2925 local_irq_enable();
c259e01a 2926 __schedule();
3a5c359a 2927 local_irq_disable();
bdb43806 2928 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2929
3a5c359a
AK
2930 /*
2931 * Check again in case we missed a preemption opportunity
2932 * between schedule and now.
2933 */
2934 barrier();
5ed0cec0 2935 } while (need_resched());
b22366cd
FW
2936
2937 exception_exit(prev_state);
1da177e4
LT
2938}
2939
63859d4f 2940int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2941 void *key)
1da177e4 2942{
63859d4f 2943 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2944}
1da177e4
LT
2945EXPORT_SYMBOL(default_wake_function);
2946
b29739f9
IM
2947#ifdef CONFIG_RT_MUTEXES
2948
2949/*
2950 * rt_mutex_setprio - set the current priority of a task
2951 * @p: task
2952 * @prio: prio value (kernel-internal form)
2953 *
2954 * This function changes the 'effective' priority of a task. It does
2955 * not touch ->normal_prio like __setscheduler().
2956 *
c365c292
TG
2957 * Used by the rt_mutex code to implement priority inheritance
2958 * logic. Call site only calls if the priority of the task changed.
b29739f9 2959 */
36c8b586 2960void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2961{
2d3d891d 2962 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2963 struct rq *rq;
83ab0aa0 2964 const struct sched_class *prev_class;
b29739f9 2965
aab03e05 2966 BUG_ON(prio > MAX_PRIO);
b29739f9 2967
0122ec5b 2968 rq = __task_rq_lock(p);
b29739f9 2969
1c4dd99b
TG
2970 /*
2971 * Idle task boosting is a nono in general. There is one
2972 * exception, when PREEMPT_RT and NOHZ is active:
2973 *
2974 * The idle task calls get_next_timer_interrupt() and holds
2975 * the timer wheel base->lock on the CPU and another CPU wants
2976 * to access the timer (probably to cancel it). We can safely
2977 * ignore the boosting request, as the idle CPU runs this code
2978 * with interrupts disabled and will complete the lock
2979 * protected section without being interrupted. So there is no
2980 * real need to boost.
2981 */
2982 if (unlikely(p == rq->idle)) {
2983 WARN_ON(p != rq->curr);
2984 WARN_ON(p->pi_blocked_on);
2985 goto out_unlock;
2986 }
2987
a8027073 2988 trace_sched_pi_setprio(p, prio);
d5f9f942 2989 oldprio = p->prio;
83ab0aa0 2990 prev_class = p->sched_class;
fd2f4419 2991 on_rq = p->on_rq;
051a1d1a 2992 running = task_current(rq, p);
0e1f3483 2993 if (on_rq)
69be72c1 2994 dequeue_task(rq, p, 0);
0e1f3483
HS
2995 if (running)
2996 p->sched_class->put_prev_task(rq, p);
dd41f596 2997
2d3d891d
DF
2998 /*
2999 * Boosting condition are:
3000 * 1. -rt task is running and holds mutex A
3001 * --> -dl task blocks on mutex A
3002 *
3003 * 2. -dl task is running and holds mutex A
3004 * --> -dl task blocks on mutex A and could preempt the
3005 * running task
3006 */
3007 if (dl_prio(prio)) {
466af29b
ON
3008 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3009 if (!dl_prio(p->normal_prio) ||
3010 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3011 p->dl.dl_boosted = 1;
3012 p->dl.dl_throttled = 0;
3013 enqueue_flag = ENQUEUE_REPLENISH;
3014 } else
3015 p->dl.dl_boosted = 0;
aab03e05 3016 p->sched_class = &dl_sched_class;
2d3d891d
DF
3017 } else if (rt_prio(prio)) {
3018 if (dl_prio(oldprio))
3019 p->dl.dl_boosted = 0;
3020 if (oldprio < prio)
3021 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3022 p->sched_class = &rt_sched_class;
2d3d891d
DF
3023 } else {
3024 if (dl_prio(oldprio))
3025 p->dl.dl_boosted = 0;
dd41f596 3026 p->sched_class = &fair_sched_class;
2d3d891d 3027 }
dd41f596 3028
b29739f9
IM
3029 p->prio = prio;
3030
0e1f3483
HS
3031 if (running)
3032 p->sched_class->set_curr_task(rq);
da7a735e 3033 if (on_rq)
2d3d891d 3034 enqueue_task(rq, p, enqueue_flag);
cb469845 3035
da7a735e 3036 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3037out_unlock:
0122ec5b 3038 __task_rq_unlock(rq);
b29739f9 3039}
b29739f9 3040#endif
d50dde5a 3041
36c8b586 3042void set_user_nice(struct task_struct *p, long nice)
1da177e4 3043{
dd41f596 3044 int old_prio, delta, on_rq;
1da177e4 3045 unsigned long flags;
70b97a7f 3046 struct rq *rq;
1da177e4 3047
75e45d51 3048 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3049 return;
3050 /*
3051 * We have to be careful, if called from sys_setpriority(),
3052 * the task might be in the middle of scheduling on another CPU.
3053 */
3054 rq = task_rq_lock(p, &flags);
3055 /*
3056 * The RT priorities are set via sched_setscheduler(), but we still
3057 * allow the 'normal' nice value to be set - but as expected
3058 * it wont have any effect on scheduling until the task is
aab03e05 3059 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3060 */
aab03e05 3061 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3062 p->static_prio = NICE_TO_PRIO(nice);
3063 goto out_unlock;
3064 }
fd2f4419 3065 on_rq = p->on_rq;
c09595f6 3066 if (on_rq)
69be72c1 3067 dequeue_task(rq, p, 0);
1da177e4 3068
1da177e4 3069 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3070 set_load_weight(p);
b29739f9
IM
3071 old_prio = p->prio;
3072 p->prio = effective_prio(p);
3073 delta = p->prio - old_prio;
1da177e4 3074
dd41f596 3075 if (on_rq) {
371fd7e7 3076 enqueue_task(rq, p, 0);
1da177e4 3077 /*
d5f9f942
AM
3078 * If the task increased its priority or is running and
3079 * lowered its priority, then reschedule its CPU:
1da177e4 3080 */
d5f9f942 3081 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3082 resched_curr(rq);
1da177e4
LT
3083 }
3084out_unlock:
0122ec5b 3085 task_rq_unlock(rq, p, &flags);
1da177e4 3086}
1da177e4
LT
3087EXPORT_SYMBOL(set_user_nice);
3088
e43379f1
MM
3089/*
3090 * can_nice - check if a task can reduce its nice value
3091 * @p: task
3092 * @nice: nice value
3093 */
36c8b586 3094int can_nice(const struct task_struct *p, const int nice)
e43379f1 3095{
024f4747 3096 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3097 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3098
78d7d407 3099 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3100 capable(CAP_SYS_NICE));
3101}
3102
1da177e4
LT
3103#ifdef __ARCH_WANT_SYS_NICE
3104
3105/*
3106 * sys_nice - change the priority of the current process.
3107 * @increment: priority increment
3108 *
3109 * sys_setpriority is a more generic, but much slower function that
3110 * does similar things.
3111 */
5add95d4 3112SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3113{
48f24c4d 3114 long nice, retval;
1da177e4
LT
3115
3116 /*
3117 * Setpriority might change our priority at the same moment.
3118 * We don't have to worry. Conceptually one call occurs first
3119 * and we have a single winner.
3120 */
a9467fa3 3121 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3122 nice = task_nice(current) + increment;
1da177e4 3123
a9467fa3 3124 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3125 if (increment < 0 && !can_nice(current, nice))
3126 return -EPERM;
3127
1da177e4
LT
3128 retval = security_task_setnice(current, nice);
3129 if (retval)
3130 return retval;
3131
3132 set_user_nice(current, nice);
3133 return 0;
3134}
3135
3136#endif
3137
3138/**
3139 * task_prio - return the priority value of a given task.
3140 * @p: the task in question.
3141 *
e69f6186 3142 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3143 * RT tasks are offset by -200. Normal tasks are centered
3144 * around 0, value goes from -16 to +15.
3145 */
36c8b586 3146int task_prio(const struct task_struct *p)
1da177e4
LT
3147{
3148 return p->prio - MAX_RT_PRIO;
3149}
3150
1da177e4
LT
3151/**
3152 * idle_cpu - is a given cpu idle currently?
3153 * @cpu: the processor in question.
e69f6186
YB
3154 *
3155 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3156 */
3157int idle_cpu(int cpu)
3158{
908a3283
TG
3159 struct rq *rq = cpu_rq(cpu);
3160
3161 if (rq->curr != rq->idle)
3162 return 0;
3163
3164 if (rq->nr_running)
3165 return 0;
3166
3167#ifdef CONFIG_SMP
3168 if (!llist_empty(&rq->wake_list))
3169 return 0;
3170#endif
3171
3172 return 1;
1da177e4
LT
3173}
3174
1da177e4
LT
3175/**
3176 * idle_task - return the idle task for a given cpu.
3177 * @cpu: the processor in question.
e69f6186
YB
3178 *
3179 * Return: The idle task for the cpu @cpu.
1da177e4 3180 */
36c8b586 3181struct task_struct *idle_task(int cpu)
1da177e4
LT
3182{
3183 return cpu_rq(cpu)->idle;
3184}
3185
3186/**
3187 * find_process_by_pid - find a process with a matching PID value.
3188 * @pid: the pid in question.
e69f6186
YB
3189 *
3190 * The task of @pid, if found. %NULL otherwise.
1da177e4 3191 */
a9957449 3192static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3193{
228ebcbe 3194 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3195}
3196
aab03e05
DF
3197/*
3198 * This function initializes the sched_dl_entity of a newly becoming
3199 * SCHED_DEADLINE task.
3200 *
3201 * Only the static values are considered here, the actual runtime and the
3202 * absolute deadline will be properly calculated when the task is enqueued
3203 * for the first time with its new policy.
3204 */
3205static void
3206__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3207{
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 init_dl_task_timer(dl_se);
3211 dl_se->dl_runtime = attr->sched_runtime;
3212 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3213 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3214 dl_se->flags = attr->sched_flags;
332ac17e 3215 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3216 dl_se->dl_throttled = 0;
3217 dl_se->dl_new = 1;
5bfd126e 3218 dl_se->dl_yielded = 0;
aab03e05
DF
3219}
3220
c365c292
TG
3221static void __setscheduler_params(struct task_struct *p,
3222 const struct sched_attr *attr)
1da177e4 3223{
d50dde5a
DF
3224 int policy = attr->sched_policy;
3225
39fd8fd2
PZ
3226 if (policy == -1) /* setparam */
3227 policy = p->policy;
3228
1da177e4 3229 p->policy = policy;
d50dde5a 3230
aab03e05
DF
3231 if (dl_policy(policy))
3232 __setparam_dl(p, attr);
39fd8fd2 3233 else if (fair_policy(policy))
d50dde5a
DF
3234 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3235
39fd8fd2
PZ
3236 /*
3237 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3238 * !rt_policy. Always setting this ensures that things like
3239 * getparam()/getattr() don't report silly values for !rt tasks.
3240 */
3241 p->rt_priority = attr->sched_priority;
383afd09 3242 p->normal_prio = normal_prio(p);
c365c292
TG
3243 set_load_weight(p);
3244}
39fd8fd2 3245
c365c292
TG
3246/* Actually do priority change: must hold pi & rq lock. */
3247static void __setscheduler(struct rq *rq, struct task_struct *p,
3248 const struct sched_attr *attr)
3249{
3250 __setscheduler_params(p, attr);
d50dde5a 3251
383afd09
SR
3252 /*
3253 * If we get here, there was no pi waiters boosting the
3254 * task. It is safe to use the normal prio.
3255 */
3256 p->prio = normal_prio(p);
3257
aab03e05
DF
3258 if (dl_prio(p->prio))
3259 p->sched_class = &dl_sched_class;
3260 else if (rt_prio(p->prio))
ffd44db5
PZ
3261 p->sched_class = &rt_sched_class;
3262 else
3263 p->sched_class = &fair_sched_class;
1da177e4 3264}
aab03e05
DF
3265
3266static void
3267__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3268{
3269 struct sched_dl_entity *dl_se = &p->dl;
3270
3271 attr->sched_priority = p->rt_priority;
3272 attr->sched_runtime = dl_se->dl_runtime;
3273 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3274 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3275 attr->sched_flags = dl_se->flags;
3276}
3277
3278/*
3279 * This function validates the new parameters of a -deadline task.
3280 * We ask for the deadline not being zero, and greater or equal
755378a4 3281 * than the runtime, as well as the period of being zero or
332ac17e 3282 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3283 * user parameters are above the internal resolution of 1us (we
3284 * check sched_runtime only since it is always the smaller one) and
3285 * below 2^63 ns (we have to check both sched_deadline and
3286 * sched_period, as the latter can be zero).
aab03e05
DF
3287 */
3288static bool
3289__checkparam_dl(const struct sched_attr *attr)
3290{
b0827819
JL
3291 /* deadline != 0 */
3292 if (attr->sched_deadline == 0)
3293 return false;
3294
3295 /*
3296 * Since we truncate DL_SCALE bits, make sure we're at least
3297 * that big.
3298 */
3299 if (attr->sched_runtime < (1ULL << DL_SCALE))
3300 return false;
3301
3302 /*
3303 * Since we use the MSB for wrap-around and sign issues, make
3304 * sure it's not set (mind that period can be equal to zero).
3305 */
3306 if (attr->sched_deadline & (1ULL << 63) ||
3307 attr->sched_period & (1ULL << 63))
3308 return false;
3309
3310 /* runtime <= deadline <= period (if period != 0) */
3311 if ((attr->sched_period != 0 &&
3312 attr->sched_period < attr->sched_deadline) ||
3313 attr->sched_deadline < attr->sched_runtime)
3314 return false;
3315
3316 return true;
aab03e05
DF
3317}
3318
c69e8d9c
DH
3319/*
3320 * check the target process has a UID that matches the current process's
3321 */
3322static bool check_same_owner(struct task_struct *p)
3323{
3324 const struct cred *cred = current_cred(), *pcred;
3325 bool match;
3326
3327 rcu_read_lock();
3328 pcred = __task_cred(p);
9c806aa0
EB
3329 match = (uid_eq(cred->euid, pcred->euid) ||
3330 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3331 rcu_read_unlock();
3332 return match;
3333}
3334
d50dde5a
DF
3335static int __sched_setscheduler(struct task_struct *p,
3336 const struct sched_attr *attr,
3337 bool user)
1da177e4 3338{
383afd09
SR
3339 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3340 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3341 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3342 int policy = attr->sched_policy;
1da177e4 3343 unsigned long flags;
83ab0aa0 3344 const struct sched_class *prev_class;
70b97a7f 3345 struct rq *rq;
ca94c442 3346 int reset_on_fork;
1da177e4 3347
66e5393a
SR
3348 /* may grab non-irq protected spin_locks */
3349 BUG_ON(in_interrupt());
1da177e4
LT
3350recheck:
3351 /* double check policy once rq lock held */
ca94c442
LP
3352 if (policy < 0) {
3353 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3354 policy = oldpolicy = p->policy;
ca94c442 3355 } else {
7479f3c9 3356 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3357
aab03e05
DF
3358 if (policy != SCHED_DEADLINE &&
3359 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3360 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3361 policy != SCHED_IDLE)
3362 return -EINVAL;
3363 }
3364
7479f3c9
PZ
3365 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3366 return -EINVAL;
3367
1da177e4
LT
3368 /*
3369 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3370 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3371 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3372 */
0bb040a4 3373 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3374 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3375 return -EINVAL;
aab03e05
DF
3376 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3377 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3378 return -EINVAL;
3379
37e4ab3f
OC
3380 /*
3381 * Allow unprivileged RT tasks to decrease priority:
3382 */
961ccddd 3383 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3384 if (fair_policy(policy)) {
d0ea0268 3385 if (attr->sched_nice < task_nice(p) &&
eaad4513 3386 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3387 return -EPERM;
3388 }
3389
e05606d3 3390 if (rt_policy(policy)) {
a44702e8
ON
3391 unsigned long rlim_rtprio =
3392 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3393
3394 /* can't set/change the rt policy */
3395 if (policy != p->policy && !rlim_rtprio)
3396 return -EPERM;
3397
3398 /* can't increase priority */
d50dde5a
DF
3399 if (attr->sched_priority > p->rt_priority &&
3400 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3401 return -EPERM;
3402 }
c02aa73b 3403
d44753b8
JL
3404 /*
3405 * Can't set/change SCHED_DEADLINE policy at all for now
3406 * (safest behavior); in the future we would like to allow
3407 * unprivileged DL tasks to increase their relative deadline
3408 * or reduce their runtime (both ways reducing utilization)
3409 */
3410 if (dl_policy(policy))
3411 return -EPERM;
3412
dd41f596 3413 /*
c02aa73b
DH
3414 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3415 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3416 */
c02aa73b 3417 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3418 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3419 return -EPERM;
3420 }
5fe1d75f 3421
37e4ab3f 3422 /* can't change other user's priorities */
c69e8d9c 3423 if (!check_same_owner(p))
37e4ab3f 3424 return -EPERM;
ca94c442
LP
3425
3426 /* Normal users shall not reset the sched_reset_on_fork flag */
3427 if (p->sched_reset_on_fork && !reset_on_fork)
3428 return -EPERM;
37e4ab3f 3429 }
1da177e4 3430
725aad24 3431 if (user) {
b0ae1981 3432 retval = security_task_setscheduler(p);
725aad24
JF
3433 if (retval)
3434 return retval;
3435 }
3436
b29739f9
IM
3437 /*
3438 * make sure no PI-waiters arrive (or leave) while we are
3439 * changing the priority of the task:
0122ec5b 3440 *
25985edc 3441 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3442 * runqueue lock must be held.
3443 */
0122ec5b 3444 rq = task_rq_lock(p, &flags);
dc61b1d6 3445
34f971f6
PZ
3446 /*
3447 * Changing the policy of the stop threads its a very bad idea
3448 */
3449 if (p == rq->stop) {
0122ec5b 3450 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3451 return -EINVAL;
3452 }
3453
a51e9198 3454 /*
d6b1e911
TG
3455 * If not changing anything there's no need to proceed further,
3456 * but store a possible modification of reset_on_fork.
a51e9198 3457 */
d50dde5a 3458 if (unlikely(policy == p->policy)) {
d0ea0268 3459 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3460 goto change;
3461 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3462 goto change;
aab03e05
DF
3463 if (dl_policy(policy))
3464 goto change;
d50dde5a 3465
d6b1e911 3466 p->sched_reset_on_fork = reset_on_fork;
45afb173 3467 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3468 return 0;
3469 }
d50dde5a 3470change:
a51e9198 3471
dc61b1d6 3472 if (user) {
332ac17e 3473#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3474 /*
3475 * Do not allow realtime tasks into groups that have no runtime
3476 * assigned.
3477 */
3478 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3479 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3480 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3481 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3482 return -EPERM;
3483 }
dc61b1d6 3484#endif
332ac17e
DF
3485#ifdef CONFIG_SMP
3486 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3487 cpumask_t *span = rq->rd->span;
332ac17e
DF
3488
3489 /*
3490 * Don't allow tasks with an affinity mask smaller than
3491 * the entire root_domain to become SCHED_DEADLINE. We
3492 * will also fail if there's no bandwidth available.
3493 */
e4099a5e
PZ
3494 if (!cpumask_subset(span, &p->cpus_allowed) ||
3495 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3496 task_rq_unlock(rq, p, &flags);
3497 return -EPERM;
3498 }
3499 }
3500#endif
3501 }
dc61b1d6 3502
1da177e4
LT
3503 /* recheck policy now with rq lock held */
3504 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3505 policy = oldpolicy = -1;
0122ec5b 3506 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3507 goto recheck;
3508 }
332ac17e
DF
3509
3510 /*
3511 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3512 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3513 * is available.
3514 */
e4099a5e 3515 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3516 task_rq_unlock(rq, p, &flags);
3517 return -EBUSY;
3518 }
3519
c365c292
TG
3520 p->sched_reset_on_fork = reset_on_fork;
3521 oldprio = p->prio;
3522
3523 /*
3524 * Special case for priority boosted tasks.
3525 *
3526 * If the new priority is lower or equal (user space view)
3527 * than the current (boosted) priority, we just store the new
3528 * normal parameters and do not touch the scheduler class and
3529 * the runqueue. This will be done when the task deboost
3530 * itself.
3531 */
3532 if (rt_mutex_check_prio(p, newprio)) {
3533 __setscheduler_params(p, attr);
3534 task_rq_unlock(rq, p, &flags);
3535 return 0;
3536 }
3537
fd2f4419 3538 on_rq = p->on_rq;
051a1d1a 3539 running = task_current(rq, p);
0e1f3483 3540 if (on_rq)
4ca9b72b 3541 dequeue_task(rq, p, 0);
0e1f3483
HS
3542 if (running)
3543 p->sched_class->put_prev_task(rq, p);
f6b53205 3544
83ab0aa0 3545 prev_class = p->sched_class;
d50dde5a 3546 __setscheduler(rq, p, attr);
f6b53205 3547
0e1f3483
HS
3548 if (running)
3549 p->sched_class->set_curr_task(rq);
81a44c54
TG
3550 if (on_rq) {
3551 /*
3552 * We enqueue to tail when the priority of a task is
3553 * increased (user space view).
3554 */
3555 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3556 }
cb469845 3557
da7a735e 3558 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3559 task_rq_unlock(rq, p, &flags);
b29739f9 3560
95e02ca9
TG
3561 rt_mutex_adjust_pi(p);
3562
1da177e4
LT
3563 return 0;
3564}
961ccddd 3565
7479f3c9
PZ
3566static int _sched_setscheduler(struct task_struct *p, int policy,
3567 const struct sched_param *param, bool check)
3568{
3569 struct sched_attr attr = {
3570 .sched_policy = policy,
3571 .sched_priority = param->sched_priority,
3572 .sched_nice = PRIO_TO_NICE(p->static_prio),
3573 };
3574
3575 /*
d8d28c8f
DBO
3576 * Fixup the legacy SCHED_RESET_ON_FORK hack, except if
3577 * the policy=-1 was passed by sched_setparam().
7479f3c9 3578 */
d8d28c8f 3579 if ((policy != -1) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3580 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3581 policy &= ~SCHED_RESET_ON_FORK;
3582 attr.sched_policy = policy;
3583 }
3584
3585 return __sched_setscheduler(p, &attr, check);
3586}
961ccddd
RR
3587/**
3588 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3589 * @p: the task in question.
3590 * @policy: new policy.
3591 * @param: structure containing the new RT priority.
3592 *
e69f6186
YB
3593 * Return: 0 on success. An error code otherwise.
3594 *
961ccddd
RR
3595 * NOTE that the task may be already dead.
3596 */
3597int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3598 const struct sched_param *param)
961ccddd 3599{
7479f3c9 3600 return _sched_setscheduler(p, policy, param, true);
961ccddd 3601}
1da177e4
LT
3602EXPORT_SYMBOL_GPL(sched_setscheduler);
3603
d50dde5a
DF
3604int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3605{
3606 return __sched_setscheduler(p, attr, true);
3607}
3608EXPORT_SYMBOL_GPL(sched_setattr);
3609
961ccddd
RR
3610/**
3611 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3612 * @p: the task in question.
3613 * @policy: new policy.
3614 * @param: structure containing the new RT priority.
3615 *
3616 * Just like sched_setscheduler, only don't bother checking if the
3617 * current context has permission. For example, this is needed in
3618 * stop_machine(): we create temporary high priority worker threads,
3619 * but our caller might not have that capability.
e69f6186
YB
3620 *
3621 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3622 */
3623int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3624 const struct sched_param *param)
961ccddd 3625{
7479f3c9 3626 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3627}
3628
95cdf3b7
IM
3629static int
3630do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3631{
1da177e4
LT
3632 struct sched_param lparam;
3633 struct task_struct *p;
36c8b586 3634 int retval;
1da177e4
LT
3635
3636 if (!param || pid < 0)
3637 return -EINVAL;
3638 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3639 return -EFAULT;
5fe1d75f
ON
3640
3641 rcu_read_lock();
3642 retval = -ESRCH;
1da177e4 3643 p = find_process_by_pid(pid);
5fe1d75f
ON
3644 if (p != NULL)
3645 retval = sched_setscheduler(p, policy, &lparam);
3646 rcu_read_unlock();
36c8b586 3647
1da177e4
LT
3648 return retval;
3649}
3650
d50dde5a
DF
3651/*
3652 * Mimics kernel/events/core.c perf_copy_attr().
3653 */
3654static int sched_copy_attr(struct sched_attr __user *uattr,
3655 struct sched_attr *attr)
3656{
3657 u32 size;
3658 int ret;
3659
3660 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3661 return -EFAULT;
3662
3663 /*
3664 * zero the full structure, so that a short copy will be nice.
3665 */
3666 memset(attr, 0, sizeof(*attr));
3667
3668 ret = get_user(size, &uattr->size);
3669 if (ret)
3670 return ret;
3671
3672 if (size > PAGE_SIZE) /* silly large */
3673 goto err_size;
3674
3675 if (!size) /* abi compat */
3676 size = SCHED_ATTR_SIZE_VER0;
3677
3678 if (size < SCHED_ATTR_SIZE_VER0)
3679 goto err_size;
3680
3681 /*
3682 * If we're handed a bigger struct than we know of,
3683 * ensure all the unknown bits are 0 - i.e. new
3684 * user-space does not rely on any kernel feature
3685 * extensions we dont know about yet.
3686 */
3687 if (size > sizeof(*attr)) {
3688 unsigned char __user *addr;
3689 unsigned char __user *end;
3690 unsigned char val;
3691
3692 addr = (void __user *)uattr + sizeof(*attr);
3693 end = (void __user *)uattr + size;
3694
3695 for (; addr < end; addr++) {
3696 ret = get_user(val, addr);
3697 if (ret)
3698 return ret;
3699 if (val)
3700 goto err_size;
3701 }
3702 size = sizeof(*attr);
3703 }
3704
3705 ret = copy_from_user(attr, uattr, size);
3706 if (ret)
3707 return -EFAULT;
3708
3709 /*
3710 * XXX: do we want to be lenient like existing syscalls; or do we want
3711 * to be strict and return an error on out-of-bounds values?
3712 */
75e45d51 3713 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3714
e78c7bca 3715 return 0;
d50dde5a
DF
3716
3717err_size:
3718 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3719 return -E2BIG;
d50dde5a
DF
3720}
3721
1da177e4
LT
3722/**
3723 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3724 * @pid: the pid in question.
3725 * @policy: new policy.
3726 * @param: structure containing the new RT priority.
e69f6186
YB
3727 *
3728 * Return: 0 on success. An error code otherwise.
1da177e4 3729 */
5add95d4
HC
3730SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3731 struct sched_param __user *, param)
1da177e4 3732{
c21761f1
JB
3733 /* negative values for policy are not valid */
3734 if (policy < 0)
3735 return -EINVAL;
3736
1da177e4
LT
3737 return do_sched_setscheduler(pid, policy, param);
3738}
3739
3740/**
3741 * sys_sched_setparam - set/change the RT priority of a thread
3742 * @pid: the pid in question.
3743 * @param: structure containing the new RT priority.
e69f6186
YB
3744 *
3745 * Return: 0 on success. An error code otherwise.
1da177e4 3746 */
5add95d4 3747SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3748{
3749 return do_sched_setscheduler(pid, -1, param);
3750}
3751
d50dde5a
DF
3752/**
3753 * sys_sched_setattr - same as above, but with extended sched_attr
3754 * @pid: the pid in question.
5778fccf 3755 * @uattr: structure containing the extended parameters.
db66d756 3756 * @flags: for future extension.
d50dde5a 3757 */
6d35ab48
PZ
3758SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3759 unsigned int, flags)
d50dde5a
DF
3760{
3761 struct sched_attr attr;
3762 struct task_struct *p;
3763 int retval;
3764
6d35ab48 3765 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3766 return -EINVAL;
3767
143cf23d
MK
3768 retval = sched_copy_attr(uattr, &attr);
3769 if (retval)
3770 return retval;
d50dde5a 3771
b14ed2c2 3772 if ((int)attr.sched_policy < 0)
dbdb2275 3773 return -EINVAL;
d50dde5a
DF
3774
3775 rcu_read_lock();
3776 retval = -ESRCH;
3777 p = find_process_by_pid(pid);
3778 if (p != NULL)
3779 retval = sched_setattr(p, &attr);
3780 rcu_read_unlock();
3781
3782 return retval;
3783}
3784
1da177e4
LT
3785/**
3786 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3787 * @pid: the pid in question.
e69f6186
YB
3788 *
3789 * Return: On success, the policy of the thread. Otherwise, a negative error
3790 * code.
1da177e4 3791 */
5add95d4 3792SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3793{
36c8b586 3794 struct task_struct *p;
3a5c359a 3795 int retval;
1da177e4
LT
3796
3797 if (pid < 0)
3a5c359a 3798 return -EINVAL;
1da177e4
LT
3799
3800 retval = -ESRCH;
5fe85be0 3801 rcu_read_lock();
1da177e4
LT
3802 p = find_process_by_pid(pid);
3803 if (p) {
3804 retval = security_task_getscheduler(p);
3805 if (!retval)
ca94c442
LP
3806 retval = p->policy
3807 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3808 }
5fe85be0 3809 rcu_read_unlock();
1da177e4
LT
3810 return retval;
3811}
3812
3813/**
ca94c442 3814 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3815 * @pid: the pid in question.
3816 * @param: structure containing the RT priority.
e69f6186
YB
3817 *
3818 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3819 * code.
1da177e4 3820 */
5add95d4 3821SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3822{
ce5f7f82 3823 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3824 struct task_struct *p;
3a5c359a 3825 int retval;
1da177e4
LT
3826
3827 if (!param || pid < 0)
3a5c359a 3828 return -EINVAL;
1da177e4 3829
5fe85be0 3830 rcu_read_lock();
1da177e4
LT
3831 p = find_process_by_pid(pid);
3832 retval = -ESRCH;
3833 if (!p)
3834 goto out_unlock;
3835
3836 retval = security_task_getscheduler(p);
3837 if (retval)
3838 goto out_unlock;
3839
ce5f7f82
PZ
3840 if (task_has_rt_policy(p))
3841 lp.sched_priority = p->rt_priority;
5fe85be0 3842 rcu_read_unlock();
1da177e4
LT
3843
3844 /*
3845 * This one might sleep, we cannot do it with a spinlock held ...
3846 */
3847 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3848
1da177e4
LT
3849 return retval;
3850
3851out_unlock:
5fe85be0 3852 rcu_read_unlock();
1da177e4
LT
3853 return retval;
3854}
3855
d50dde5a
DF
3856static int sched_read_attr(struct sched_attr __user *uattr,
3857 struct sched_attr *attr,
3858 unsigned int usize)
3859{
3860 int ret;
3861
3862 if (!access_ok(VERIFY_WRITE, uattr, usize))
3863 return -EFAULT;
3864
3865 /*
3866 * If we're handed a smaller struct than we know of,
3867 * ensure all the unknown bits are 0 - i.e. old
3868 * user-space does not get uncomplete information.
3869 */
3870 if (usize < sizeof(*attr)) {
3871 unsigned char *addr;
3872 unsigned char *end;
3873
3874 addr = (void *)attr + usize;
3875 end = (void *)attr + sizeof(*attr);
3876
3877 for (; addr < end; addr++) {
3878 if (*addr)
22400674 3879 return -EFBIG;
d50dde5a
DF
3880 }
3881
3882 attr->size = usize;
3883 }
3884
4efbc454 3885 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3886 if (ret)
3887 return -EFAULT;
3888
22400674 3889 return 0;
d50dde5a
DF
3890}
3891
3892/**
aab03e05 3893 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3894 * @pid: the pid in question.
5778fccf 3895 * @uattr: structure containing the extended parameters.
d50dde5a 3896 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3897 * @flags: for future extension.
d50dde5a 3898 */
6d35ab48
PZ
3899SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3900 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3901{
3902 struct sched_attr attr = {
3903 .size = sizeof(struct sched_attr),
3904 };
3905 struct task_struct *p;
3906 int retval;
3907
3908 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3909 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3910 return -EINVAL;
3911
3912 rcu_read_lock();
3913 p = find_process_by_pid(pid);
3914 retval = -ESRCH;
3915 if (!p)
3916 goto out_unlock;
3917
3918 retval = security_task_getscheduler(p);
3919 if (retval)
3920 goto out_unlock;
3921
3922 attr.sched_policy = p->policy;
7479f3c9
PZ
3923 if (p->sched_reset_on_fork)
3924 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3925 if (task_has_dl_policy(p))
3926 __getparam_dl(p, &attr);
3927 else if (task_has_rt_policy(p))
d50dde5a
DF
3928 attr.sched_priority = p->rt_priority;
3929 else
d0ea0268 3930 attr.sched_nice = task_nice(p);
d50dde5a
DF
3931
3932 rcu_read_unlock();
3933
3934 retval = sched_read_attr(uattr, &attr, size);
3935 return retval;
3936
3937out_unlock:
3938 rcu_read_unlock();
3939 return retval;
3940}
3941
96f874e2 3942long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3943{
5a16f3d3 3944 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3945 struct task_struct *p;
3946 int retval;
1da177e4 3947
23f5d142 3948 rcu_read_lock();
1da177e4
LT
3949
3950 p = find_process_by_pid(pid);
3951 if (!p) {
23f5d142 3952 rcu_read_unlock();
1da177e4
LT
3953 return -ESRCH;
3954 }
3955
23f5d142 3956 /* Prevent p going away */
1da177e4 3957 get_task_struct(p);
23f5d142 3958 rcu_read_unlock();
1da177e4 3959
14a40ffc
TH
3960 if (p->flags & PF_NO_SETAFFINITY) {
3961 retval = -EINVAL;
3962 goto out_put_task;
3963 }
5a16f3d3
RR
3964 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3965 retval = -ENOMEM;
3966 goto out_put_task;
3967 }
3968 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3969 retval = -ENOMEM;
3970 goto out_free_cpus_allowed;
3971 }
1da177e4 3972 retval = -EPERM;
4c44aaaf
EB
3973 if (!check_same_owner(p)) {
3974 rcu_read_lock();
3975 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3976 rcu_read_unlock();
3977 goto out_unlock;
3978 }
3979 rcu_read_unlock();
3980 }
1da177e4 3981
b0ae1981 3982 retval = security_task_setscheduler(p);
e7834f8f
DQ
3983 if (retval)
3984 goto out_unlock;
3985
e4099a5e
PZ
3986
3987 cpuset_cpus_allowed(p, cpus_allowed);
3988 cpumask_and(new_mask, in_mask, cpus_allowed);
3989
332ac17e
DF
3990 /*
3991 * Since bandwidth control happens on root_domain basis,
3992 * if admission test is enabled, we only admit -deadline
3993 * tasks allowed to run on all the CPUs in the task's
3994 * root_domain.
3995 */
3996#ifdef CONFIG_SMP
3997 if (task_has_dl_policy(p)) {
3998 const struct cpumask *span = task_rq(p)->rd->span;
3999
e4099a5e 4000 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4001 retval = -EBUSY;
4002 goto out_unlock;
4003 }
4004 }
4005#endif
49246274 4006again:
5a16f3d3 4007 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4008
8707d8b8 4009 if (!retval) {
5a16f3d3
RR
4010 cpuset_cpus_allowed(p, cpus_allowed);
4011 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4012 /*
4013 * We must have raced with a concurrent cpuset
4014 * update. Just reset the cpus_allowed to the
4015 * cpuset's cpus_allowed
4016 */
5a16f3d3 4017 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4018 goto again;
4019 }
4020 }
1da177e4 4021out_unlock:
5a16f3d3
RR
4022 free_cpumask_var(new_mask);
4023out_free_cpus_allowed:
4024 free_cpumask_var(cpus_allowed);
4025out_put_task:
1da177e4 4026 put_task_struct(p);
1da177e4
LT
4027 return retval;
4028}
4029
4030static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4031 struct cpumask *new_mask)
1da177e4 4032{
96f874e2
RR
4033 if (len < cpumask_size())
4034 cpumask_clear(new_mask);
4035 else if (len > cpumask_size())
4036 len = cpumask_size();
4037
1da177e4
LT
4038 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4039}
4040
4041/**
4042 * sys_sched_setaffinity - set the cpu affinity of a process
4043 * @pid: pid of the process
4044 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4045 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4046 *
4047 * Return: 0 on success. An error code otherwise.
1da177e4 4048 */
5add95d4
HC
4049SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4050 unsigned long __user *, user_mask_ptr)
1da177e4 4051{
5a16f3d3 4052 cpumask_var_t new_mask;
1da177e4
LT
4053 int retval;
4054
5a16f3d3
RR
4055 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4056 return -ENOMEM;
1da177e4 4057
5a16f3d3
RR
4058 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4059 if (retval == 0)
4060 retval = sched_setaffinity(pid, new_mask);
4061 free_cpumask_var(new_mask);
4062 return retval;
1da177e4
LT
4063}
4064
96f874e2 4065long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4066{
36c8b586 4067 struct task_struct *p;
31605683 4068 unsigned long flags;
1da177e4 4069 int retval;
1da177e4 4070
23f5d142 4071 rcu_read_lock();
1da177e4
LT
4072
4073 retval = -ESRCH;
4074 p = find_process_by_pid(pid);
4075 if (!p)
4076 goto out_unlock;
4077
e7834f8f
DQ
4078 retval = security_task_getscheduler(p);
4079 if (retval)
4080 goto out_unlock;
4081
013fdb80 4082 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4083 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4084 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4085
4086out_unlock:
23f5d142 4087 rcu_read_unlock();
1da177e4 4088
9531b62f 4089 return retval;
1da177e4
LT
4090}
4091
4092/**
4093 * sys_sched_getaffinity - get the cpu affinity of a process
4094 * @pid: pid of the process
4095 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4096 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4097 *
4098 * Return: 0 on success. An error code otherwise.
1da177e4 4099 */
5add95d4
HC
4100SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4101 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4102{
4103 int ret;
f17c8607 4104 cpumask_var_t mask;
1da177e4 4105
84fba5ec 4106 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4107 return -EINVAL;
4108 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4109 return -EINVAL;
4110
f17c8607
RR
4111 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4112 return -ENOMEM;
1da177e4 4113
f17c8607
RR
4114 ret = sched_getaffinity(pid, mask);
4115 if (ret == 0) {
8bc037fb 4116 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4117
4118 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4119 ret = -EFAULT;
4120 else
cd3d8031 4121 ret = retlen;
f17c8607
RR
4122 }
4123 free_cpumask_var(mask);
1da177e4 4124
f17c8607 4125 return ret;
1da177e4
LT
4126}
4127
4128/**
4129 * sys_sched_yield - yield the current processor to other threads.
4130 *
dd41f596
IM
4131 * This function yields the current CPU to other tasks. If there are no
4132 * other threads running on this CPU then this function will return.
e69f6186
YB
4133 *
4134 * Return: 0.
1da177e4 4135 */
5add95d4 4136SYSCALL_DEFINE0(sched_yield)
1da177e4 4137{
70b97a7f 4138 struct rq *rq = this_rq_lock();
1da177e4 4139
2d72376b 4140 schedstat_inc(rq, yld_count);
4530d7ab 4141 current->sched_class->yield_task(rq);
1da177e4
LT
4142
4143 /*
4144 * Since we are going to call schedule() anyway, there's
4145 * no need to preempt or enable interrupts:
4146 */
4147 __release(rq->lock);
8a25d5de 4148 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4149 do_raw_spin_unlock(&rq->lock);
ba74c144 4150 sched_preempt_enable_no_resched();
1da177e4
LT
4151
4152 schedule();
4153
4154 return 0;
4155}
4156
e7b38404 4157static void __cond_resched(void)
1da177e4 4158{
bdb43806 4159 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4160 __schedule();
bdb43806 4161 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4162}
4163
02b67cc3 4164int __sched _cond_resched(void)
1da177e4 4165{
d86ee480 4166 if (should_resched()) {
1da177e4
LT
4167 __cond_resched();
4168 return 1;
4169 }
4170 return 0;
4171}
02b67cc3 4172EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4173
4174/*
613afbf8 4175 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4176 * call schedule, and on return reacquire the lock.
4177 *
41a2d6cf 4178 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4179 * operations here to prevent schedule() from being called twice (once via
4180 * spin_unlock(), once by hand).
4181 */
613afbf8 4182int __cond_resched_lock(spinlock_t *lock)
1da177e4 4183{
d86ee480 4184 int resched = should_resched();
6df3cecb
JK
4185 int ret = 0;
4186
f607c668
PZ
4187 lockdep_assert_held(lock);
4188
4a81e832 4189 if (spin_needbreak(lock) || resched) {
1da177e4 4190 spin_unlock(lock);
d86ee480 4191 if (resched)
95c354fe
NP
4192 __cond_resched();
4193 else
4194 cpu_relax();
6df3cecb 4195 ret = 1;
1da177e4 4196 spin_lock(lock);
1da177e4 4197 }
6df3cecb 4198 return ret;
1da177e4 4199}
613afbf8 4200EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4201
613afbf8 4202int __sched __cond_resched_softirq(void)
1da177e4
LT
4203{
4204 BUG_ON(!in_softirq());
4205
d86ee480 4206 if (should_resched()) {
98d82567 4207 local_bh_enable();
1da177e4
LT
4208 __cond_resched();
4209 local_bh_disable();
4210 return 1;
4211 }
4212 return 0;
4213}
613afbf8 4214EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4215
1da177e4
LT
4216/**
4217 * yield - yield the current processor to other threads.
4218 *
8e3fabfd
PZ
4219 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4220 *
4221 * The scheduler is at all times free to pick the calling task as the most
4222 * eligible task to run, if removing the yield() call from your code breaks
4223 * it, its already broken.
4224 *
4225 * Typical broken usage is:
4226 *
4227 * while (!event)
4228 * yield();
4229 *
4230 * where one assumes that yield() will let 'the other' process run that will
4231 * make event true. If the current task is a SCHED_FIFO task that will never
4232 * happen. Never use yield() as a progress guarantee!!
4233 *
4234 * If you want to use yield() to wait for something, use wait_event().
4235 * If you want to use yield() to be 'nice' for others, use cond_resched().
4236 * If you still want to use yield(), do not!
1da177e4
LT
4237 */
4238void __sched yield(void)
4239{
4240 set_current_state(TASK_RUNNING);
4241 sys_sched_yield();
4242}
1da177e4
LT
4243EXPORT_SYMBOL(yield);
4244
d95f4122
MG
4245/**
4246 * yield_to - yield the current processor to another thread in
4247 * your thread group, or accelerate that thread toward the
4248 * processor it's on.
16addf95
RD
4249 * @p: target task
4250 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4251 *
4252 * It's the caller's job to ensure that the target task struct
4253 * can't go away on us before we can do any checks.
4254 *
e69f6186 4255 * Return:
7b270f60
PZ
4256 * true (>0) if we indeed boosted the target task.
4257 * false (0) if we failed to boost the target.
4258 * -ESRCH if there's no task to yield to.
d95f4122 4259 */
fa93384f 4260int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4261{
4262 struct task_struct *curr = current;
4263 struct rq *rq, *p_rq;
4264 unsigned long flags;
c3c18640 4265 int yielded = 0;
d95f4122
MG
4266
4267 local_irq_save(flags);
4268 rq = this_rq();
4269
4270again:
4271 p_rq = task_rq(p);
7b270f60
PZ
4272 /*
4273 * If we're the only runnable task on the rq and target rq also
4274 * has only one task, there's absolutely no point in yielding.
4275 */
4276 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4277 yielded = -ESRCH;
4278 goto out_irq;
4279 }
4280
d95f4122 4281 double_rq_lock(rq, p_rq);
39e24d8f 4282 if (task_rq(p) != p_rq) {
d95f4122
MG
4283 double_rq_unlock(rq, p_rq);
4284 goto again;
4285 }
4286
4287 if (!curr->sched_class->yield_to_task)
7b270f60 4288 goto out_unlock;
d95f4122
MG
4289
4290 if (curr->sched_class != p->sched_class)
7b270f60 4291 goto out_unlock;
d95f4122
MG
4292
4293 if (task_running(p_rq, p) || p->state)
7b270f60 4294 goto out_unlock;
d95f4122
MG
4295
4296 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4297 if (yielded) {
d95f4122 4298 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4299 /*
4300 * Make p's CPU reschedule; pick_next_entity takes care of
4301 * fairness.
4302 */
4303 if (preempt && rq != p_rq)
8875125e 4304 resched_curr(p_rq);
6d1cafd8 4305 }
d95f4122 4306
7b270f60 4307out_unlock:
d95f4122 4308 double_rq_unlock(rq, p_rq);
7b270f60 4309out_irq:
d95f4122
MG
4310 local_irq_restore(flags);
4311
7b270f60 4312 if (yielded > 0)
d95f4122
MG
4313 schedule();
4314
4315 return yielded;
4316}
4317EXPORT_SYMBOL_GPL(yield_to);
4318
1da177e4 4319/*
41a2d6cf 4320 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4321 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4322 */
4323void __sched io_schedule(void)
4324{
54d35f29 4325 struct rq *rq = raw_rq();
1da177e4 4326
0ff92245 4327 delayacct_blkio_start();
1da177e4 4328 atomic_inc(&rq->nr_iowait);
73c10101 4329 blk_flush_plug(current);
8f0dfc34 4330 current->in_iowait = 1;
1da177e4 4331 schedule();
8f0dfc34 4332 current->in_iowait = 0;
1da177e4 4333 atomic_dec(&rq->nr_iowait);
0ff92245 4334 delayacct_blkio_end();
1da177e4 4335}
1da177e4
LT
4336EXPORT_SYMBOL(io_schedule);
4337
4338long __sched io_schedule_timeout(long timeout)
4339{
54d35f29 4340 struct rq *rq = raw_rq();
1da177e4
LT
4341 long ret;
4342
0ff92245 4343 delayacct_blkio_start();
1da177e4 4344 atomic_inc(&rq->nr_iowait);
73c10101 4345 blk_flush_plug(current);
8f0dfc34 4346 current->in_iowait = 1;
1da177e4 4347 ret = schedule_timeout(timeout);
8f0dfc34 4348 current->in_iowait = 0;
1da177e4 4349 atomic_dec(&rq->nr_iowait);
0ff92245 4350 delayacct_blkio_end();
1da177e4
LT
4351 return ret;
4352}
4353
4354/**
4355 * sys_sched_get_priority_max - return maximum RT priority.
4356 * @policy: scheduling class.
4357 *
e69f6186
YB
4358 * Return: On success, this syscall returns the maximum
4359 * rt_priority that can be used by a given scheduling class.
4360 * On failure, a negative error code is returned.
1da177e4 4361 */
5add95d4 4362SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4363{
4364 int ret = -EINVAL;
4365
4366 switch (policy) {
4367 case SCHED_FIFO:
4368 case SCHED_RR:
4369 ret = MAX_USER_RT_PRIO-1;
4370 break;
aab03e05 4371 case SCHED_DEADLINE:
1da177e4 4372 case SCHED_NORMAL:
b0a9499c 4373 case SCHED_BATCH:
dd41f596 4374 case SCHED_IDLE:
1da177e4
LT
4375 ret = 0;
4376 break;
4377 }
4378 return ret;
4379}
4380
4381/**
4382 * sys_sched_get_priority_min - return minimum RT priority.
4383 * @policy: scheduling class.
4384 *
e69f6186
YB
4385 * Return: On success, this syscall returns the minimum
4386 * rt_priority that can be used by a given scheduling class.
4387 * On failure, a negative error code is returned.
1da177e4 4388 */
5add95d4 4389SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4390{
4391 int ret = -EINVAL;
4392
4393 switch (policy) {
4394 case SCHED_FIFO:
4395 case SCHED_RR:
4396 ret = 1;
4397 break;
aab03e05 4398 case SCHED_DEADLINE:
1da177e4 4399 case SCHED_NORMAL:
b0a9499c 4400 case SCHED_BATCH:
dd41f596 4401 case SCHED_IDLE:
1da177e4
LT
4402 ret = 0;
4403 }
4404 return ret;
4405}
4406
4407/**
4408 * sys_sched_rr_get_interval - return the default timeslice of a process.
4409 * @pid: pid of the process.
4410 * @interval: userspace pointer to the timeslice value.
4411 *
4412 * this syscall writes the default timeslice value of a given process
4413 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4414 *
4415 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4416 * an error code.
1da177e4 4417 */
17da2bd9 4418SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4419 struct timespec __user *, interval)
1da177e4 4420{
36c8b586 4421 struct task_struct *p;
a4ec24b4 4422 unsigned int time_slice;
dba091b9
TG
4423 unsigned long flags;
4424 struct rq *rq;
3a5c359a 4425 int retval;
1da177e4 4426 struct timespec t;
1da177e4
LT
4427
4428 if (pid < 0)
3a5c359a 4429 return -EINVAL;
1da177e4
LT
4430
4431 retval = -ESRCH;
1a551ae7 4432 rcu_read_lock();
1da177e4
LT
4433 p = find_process_by_pid(pid);
4434 if (!p)
4435 goto out_unlock;
4436
4437 retval = security_task_getscheduler(p);
4438 if (retval)
4439 goto out_unlock;
4440
dba091b9 4441 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4442 time_slice = 0;
4443 if (p->sched_class->get_rr_interval)
4444 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4445 task_rq_unlock(rq, p, &flags);
a4ec24b4 4446
1a551ae7 4447 rcu_read_unlock();
a4ec24b4 4448 jiffies_to_timespec(time_slice, &t);
1da177e4 4449 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4450 return retval;
3a5c359a 4451
1da177e4 4452out_unlock:
1a551ae7 4453 rcu_read_unlock();
1da177e4
LT
4454 return retval;
4455}
4456
7c731e0a 4457static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4458
82a1fcb9 4459void sched_show_task(struct task_struct *p)
1da177e4 4460{
1da177e4 4461 unsigned long free = 0;
4e79752c 4462 int ppid;
36c8b586 4463 unsigned state;
1da177e4 4464
1da177e4 4465 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4466 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4467 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4468#if BITS_PER_LONG == 32
1da177e4 4469 if (state == TASK_RUNNING)
3df0fc5b 4470 printk(KERN_CONT " running ");
1da177e4 4471 else
3df0fc5b 4472 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4473#else
4474 if (state == TASK_RUNNING)
3df0fc5b 4475 printk(KERN_CONT " running task ");
1da177e4 4476 else
3df0fc5b 4477 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4478#endif
4479#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4480 free = stack_not_used(p);
1da177e4 4481#endif
4e79752c
PM
4482 rcu_read_lock();
4483 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4484 rcu_read_unlock();
3df0fc5b 4485 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4486 task_pid_nr(p), ppid,
aa47b7e0 4487 (unsigned long)task_thread_info(p)->flags);
1da177e4 4488
3d1cb205 4489 print_worker_info(KERN_INFO, p);
5fb5e6de 4490 show_stack(p, NULL);
1da177e4
LT
4491}
4492
e59e2ae2 4493void show_state_filter(unsigned long state_filter)
1da177e4 4494{
36c8b586 4495 struct task_struct *g, *p;
1da177e4 4496
4bd77321 4497#if BITS_PER_LONG == 32
3df0fc5b
PZ
4498 printk(KERN_INFO
4499 " task PC stack pid father\n");
1da177e4 4500#else
3df0fc5b
PZ
4501 printk(KERN_INFO
4502 " task PC stack pid father\n");
1da177e4 4503#endif
510f5acc 4504 rcu_read_lock();
1da177e4
LT
4505 do_each_thread(g, p) {
4506 /*
4507 * reset the NMI-timeout, listing all files on a slow
25985edc 4508 * console might take a lot of time:
1da177e4
LT
4509 */
4510 touch_nmi_watchdog();
39bc89fd 4511 if (!state_filter || (p->state & state_filter))
82a1fcb9 4512 sched_show_task(p);
1da177e4
LT
4513 } while_each_thread(g, p);
4514
04c9167f
JF
4515 touch_all_softlockup_watchdogs();
4516
dd41f596
IM
4517#ifdef CONFIG_SCHED_DEBUG
4518 sysrq_sched_debug_show();
4519#endif
510f5acc 4520 rcu_read_unlock();
e59e2ae2
IM
4521 /*
4522 * Only show locks if all tasks are dumped:
4523 */
93335a21 4524 if (!state_filter)
e59e2ae2 4525 debug_show_all_locks();
1da177e4
LT
4526}
4527
0db0628d 4528void init_idle_bootup_task(struct task_struct *idle)
1df21055 4529{
dd41f596 4530 idle->sched_class = &idle_sched_class;
1df21055
IM
4531}
4532
f340c0d1
IM
4533/**
4534 * init_idle - set up an idle thread for a given CPU
4535 * @idle: task in question
4536 * @cpu: cpu the idle task belongs to
4537 *
4538 * NOTE: this function does not set the idle thread's NEED_RESCHED
4539 * flag, to make booting more robust.
4540 */
0db0628d 4541void init_idle(struct task_struct *idle, int cpu)
1da177e4 4542{
70b97a7f 4543 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4544 unsigned long flags;
4545
05fa785c 4546 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4547
5e1576ed 4548 __sched_fork(0, idle);
06b83b5f 4549 idle->state = TASK_RUNNING;
dd41f596
IM
4550 idle->se.exec_start = sched_clock();
4551
1e1b6c51 4552 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4553 /*
4554 * We're having a chicken and egg problem, even though we are
4555 * holding rq->lock, the cpu isn't yet set to this cpu so the
4556 * lockdep check in task_group() will fail.
4557 *
4558 * Similar case to sched_fork(). / Alternatively we could
4559 * use task_rq_lock() here and obtain the other rq->lock.
4560 *
4561 * Silence PROVE_RCU
4562 */
4563 rcu_read_lock();
dd41f596 4564 __set_task_cpu(idle, cpu);
6506cf6c 4565 rcu_read_unlock();
1da177e4 4566
1da177e4 4567 rq->curr = rq->idle = idle;
77177856 4568 idle->on_rq = 1;
3ca7a440
PZ
4569#if defined(CONFIG_SMP)
4570 idle->on_cpu = 1;
4866cde0 4571#endif
05fa785c 4572 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4573
4574 /* Set the preempt count _outside_ the spinlocks! */
01028747 4575 init_idle_preempt_count(idle, cpu);
55cd5340 4576
dd41f596
IM
4577 /*
4578 * The idle tasks have their own, simple scheduling class:
4579 */
4580 idle->sched_class = &idle_sched_class;
868baf07 4581 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4582 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4583#if defined(CONFIG_SMP)
4584 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4585#endif
19978ca6
IM
4586}
4587
1da177e4 4588#ifdef CONFIG_SMP
1e1b6c51
KM
4589void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4590{
4591 if (p->sched_class && p->sched_class->set_cpus_allowed)
4592 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4593
4594 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4595 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4596}
4597
1da177e4
LT
4598/*
4599 * This is how migration works:
4600 *
969c7921
TH
4601 * 1) we invoke migration_cpu_stop() on the target CPU using
4602 * stop_one_cpu().
4603 * 2) stopper starts to run (implicitly forcing the migrated thread
4604 * off the CPU)
4605 * 3) it checks whether the migrated task is still in the wrong runqueue.
4606 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4607 * it and puts it into the right queue.
969c7921
TH
4608 * 5) stopper completes and stop_one_cpu() returns and the migration
4609 * is done.
1da177e4
LT
4610 */
4611
4612/*
4613 * Change a given task's CPU affinity. Migrate the thread to a
4614 * proper CPU and schedule it away if the CPU it's executing on
4615 * is removed from the allowed bitmask.
4616 *
4617 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4618 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4619 * call is not atomic; no spinlocks may be held.
4620 */
96f874e2 4621int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4622{
4623 unsigned long flags;
70b97a7f 4624 struct rq *rq;
969c7921 4625 unsigned int dest_cpu;
48f24c4d 4626 int ret = 0;
1da177e4
LT
4627
4628 rq = task_rq_lock(p, &flags);
e2912009 4629
db44fc01
YZ
4630 if (cpumask_equal(&p->cpus_allowed, new_mask))
4631 goto out;
4632
6ad4c188 4633 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4634 ret = -EINVAL;
4635 goto out;
4636 }
4637
1e1b6c51 4638 do_set_cpus_allowed(p, new_mask);
73fe6aae 4639
1da177e4 4640 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4641 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4642 goto out;
4643
969c7921 4644 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4645 if (p->on_rq) {
969c7921 4646 struct migration_arg arg = { p, dest_cpu };
1da177e4 4647 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4648 task_rq_unlock(rq, p, &flags);
969c7921 4649 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4650 tlb_migrate_finish(p->mm);
4651 return 0;
4652 }
4653out:
0122ec5b 4654 task_rq_unlock(rq, p, &flags);
48f24c4d 4655
1da177e4
LT
4656 return ret;
4657}
cd8ba7cd 4658EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4659
4660/*
41a2d6cf 4661 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4662 * this because either it can't run here any more (set_cpus_allowed()
4663 * away from this CPU, or CPU going down), or because we're
4664 * attempting to rebalance this task on exec (sched_exec).
4665 *
4666 * So we race with normal scheduler movements, but that's OK, as long
4667 * as the task is no longer on this CPU.
efc30814
KK
4668 *
4669 * Returns non-zero if task was successfully migrated.
1da177e4 4670 */
efc30814 4671static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4672{
70b97a7f 4673 struct rq *rq_dest, *rq_src;
e2912009 4674 int ret = 0;
1da177e4 4675
e761b772 4676 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4677 return ret;
1da177e4
LT
4678
4679 rq_src = cpu_rq(src_cpu);
4680 rq_dest = cpu_rq(dest_cpu);
4681
0122ec5b 4682 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4683 double_rq_lock(rq_src, rq_dest);
4684 /* Already moved. */
4685 if (task_cpu(p) != src_cpu)
b1e38734 4686 goto done;
1da177e4 4687 /* Affinity changed (again). */
fa17b507 4688 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4689 goto fail;
1da177e4 4690
e2912009
PZ
4691 /*
4692 * If we're not on a rq, the next wake-up will ensure we're
4693 * placed properly.
4694 */
fd2f4419 4695 if (p->on_rq) {
4ca9b72b 4696 dequeue_task(rq_src, p, 0);
e2912009 4697 set_task_cpu(p, dest_cpu);
4ca9b72b 4698 enqueue_task(rq_dest, p, 0);
15afe09b 4699 check_preempt_curr(rq_dest, p, 0);
1da177e4 4700 }
b1e38734 4701done:
efc30814 4702 ret = 1;
b1e38734 4703fail:
1da177e4 4704 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4705 raw_spin_unlock(&p->pi_lock);
efc30814 4706 return ret;
1da177e4
LT
4707}
4708
e6628d5b
MG
4709#ifdef CONFIG_NUMA_BALANCING
4710/* Migrate current task p to target_cpu */
4711int migrate_task_to(struct task_struct *p, int target_cpu)
4712{
4713 struct migration_arg arg = { p, target_cpu };
4714 int curr_cpu = task_cpu(p);
4715
4716 if (curr_cpu == target_cpu)
4717 return 0;
4718
4719 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4720 return -EINVAL;
4721
4722 /* TODO: This is not properly updating schedstats */
4723
286549dc 4724 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4725 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4726}
0ec8aa00
PZ
4727
4728/*
4729 * Requeue a task on a given node and accurately track the number of NUMA
4730 * tasks on the runqueues
4731 */
4732void sched_setnuma(struct task_struct *p, int nid)
4733{
4734 struct rq *rq;
4735 unsigned long flags;
4736 bool on_rq, running;
4737
4738 rq = task_rq_lock(p, &flags);
4739 on_rq = p->on_rq;
4740 running = task_current(rq, p);
4741
4742 if (on_rq)
4743 dequeue_task(rq, p, 0);
4744 if (running)
4745 p->sched_class->put_prev_task(rq, p);
4746
4747 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4748
4749 if (running)
4750 p->sched_class->set_curr_task(rq);
4751 if (on_rq)
4752 enqueue_task(rq, p, 0);
4753 task_rq_unlock(rq, p, &flags);
4754}
e6628d5b
MG
4755#endif
4756
1da177e4 4757/*
969c7921
TH
4758 * migration_cpu_stop - this will be executed by a highprio stopper thread
4759 * and performs thread migration by bumping thread off CPU then
4760 * 'pushing' onto another runqueue.
1da177e4 4761 */
969c7921 4762static int migration_cpu_stop(void *data)
1da177e4 4763{
969c7921 4764 struct migration_arg *arg = data;
f7b4cddc 4765
969c7921
TH
4766 /*
4767 * The original target cpu might have gone down and we might
4768 * be on another cpu but it doesn't matter.
4769 */
f7b4cddc 4770 local_irq_disable();
969c7921 4771 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4772 local_irq_enable();
1da177e4 4773 return 0;
f7b4cddc
ON
4774}
4775
1da177e4 4776#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4777
054b9108 4778/*
48c5ccae
PZ
4779 * Ensures that the idle task is using init_mm right before its cpu goes
4780 * offline.
054b9108 4781 */
48c5ccae 4782void idle_task_exit(void)
1da177e4 4783{
48c5ccae 4784 struct mm_struct *mm = current->active_mm;
e76bd8d9 4785
48c5ccae 4786 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4787
a53efe5f 4788 if (mm != &init_mm) {
48c5ccae 4789 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4790 finish_arch_post_lock_switch();
4791 }
48c5ccae 4792 mmdrop(mm);
1da177e4
LT
4793}
4794
4795/*
5d180232
PZ
4796 * Since this CPU is going 'away' for a while, fold any nr_active delta
4797 * we might have. Assumes we're called after migrate_tasks() so that the
4798 * nr_active count is stable.
4799 *
4800 * Also see the comment "Global load-average calculations".
1da177e4 4801 */
5d180232 4802static void calc_load_migrate(struct rq *rq)
1da177e4 4803{
5d180232
PZ
4804 long delta = calc_load_fold_active(rq);
4805 if (delta)
4806 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4807}
4808
3f1d2a31
PZ
4809static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4810{
4811}
4812
4813static const struct sched_class fake_sched_class = {
4814 .put_prev_task = put_prev_task_fake,
4815};
4816
4817static struct task_struct fake_task = {
4818 /*
4819 * Avoid pull_{rt,dl}_task()
4820 */
4821 .prio = MAX_PRIO + 1,
4822 .sched_class = &fake_sched_class,
4823};
4824
48f24c4d 4825/*
48c5ccae
PZ
4826 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4827 * try_to_wake_up()->select_task_rq().
4828 *
4829 * Called with rq->lock held even though we'er in stop_machine() and
4830 * there's no concurrency possible, we hold the required locks anyway
4831 * because of lock validation efforts.
1da177e4 4832 */
48c5ccae 4833static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4834{
70b97a7f 4835 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4836 struct task_struct *next, *stop = rq->stop;
4837 int dest_cpu;
1da177e4
LT
4838
4839 /*
48c5ccae
PZ
4840 * Fudge the rq selection such that the below task selection loop
4841 * doesn't get stuck on the currently eligible stop task.
4842 *
4843 * We're currently inside stop_machine() and the rq is either stuck
4844 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4845 * either way we should never end up calling schedule() until we're
4846 * done here.
1da177e4 4847 */
48c5ccae 4848 rq->stop = NULL;
48f24c4d 4849
77bd3970
FW
4850 /*
4851 * put_prev_task() and pick_next_task() sched
4852 * class method both need to have an up-to-date
4853 * value of rq->clock[_task]
4854 */
4855 update_rq_clock(rq);
4856
dd41f596 4857 for ( ; ; ) {
48c5ccae
PZ
4858 /*
4859 * There's this thread running, bail when that's the only
4860 * remaining thread.
4861 */
4862 if (rq->nr_running == 1)
dd41f596 4863 break;
48c5ccae 4864
3f1d2a31 4865 next = pick_next_task(rq, &fake_task);
48c5ccae 4866 BUG_ON(!next);
79c53799 4867 next->sched_class->put_prev_task(rq, next);
e692ab53 4868
48c5ccae
PZ
4869 /* Find suitable destination for @next, with force if needed. */
4870 dest_cpu = select_fallback_rq(dead_cpu, next);
4871 raw_spin_unlock(&rq->lock);
4872
4873 __migrate_task(next, dead_cpu, dest_cpu);
4874
4875 raw_spin_lock(&rq->lock);
1da177e4 4876 }
dce48a84 4877
48c5ccae 4878 rq->stop = stop;
dce48a84 4879}
48c5ccae 4880
1da177e4
LT
4881#endif /* CONFIG_HOTPLUG_CPU */
4882
e692ab53
NP
4883#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4884
4885static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4886 {
4887 .procname = "sched_domain",
c57baf1e 4888 .mode = 0555,
e0361851 4889 },
56992309 4890 {}
e692ab53
NP
4891};
4892
4893static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4894 {
4895 .procname = "kernel",
c57baf1e 4896 .mode = 0555,
e0361851
AD
4897 .child = sd_ctl_dir,
4898 },
56992309 4899 {}
e692ab53
NP
4900};
4901
4902static struct ctl_table *sd_alloc_ctl_entry(int n)
4903{
4904 struct ctl_table *entry =
5cf9f062 4905 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4906
e692ab53
NP
4907 return entry;
4908}
4909
6382bc90
MM
4910static void sd_free_ctl_entry(struct ctl_table **tablep)
4911{
cd790076 4912 struct ctl_table *entry;
6382bc90 4913
cd790076
MM
4914 /*
4915 * In the intermediate directories, both the child directory and
4916 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4917 * will always be set. In the lowest directory the names are
cd790076
MM
4918 * static strings and all have proc handlers.
4919 */
4920 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4921 if (entry->child)
4922 sd_free_ctl_entry(&entry->child);
cd790076
MM
4923 if (entry->proc_handler == NULL)
4924 kfree(entry->procname);
4925 }
6382bc90
MM
4926
4927 kfree(*tablep);
4928 *tablep = NULL;
4929}
4930
201c373e 4931static int min_load_idx = 0;
fd9b86d3 4932static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4933
e692ab53 4934static void
e0361851 4935set_table_entry(struct ctl_table *entry,
e692ab53 4936 const char *procname, void *data, int maxlen,
201c373e
NK
4937 umode_t mode, proc_handler *proc_handler,
4938 bool load_idx)
e692ab53 4939{
e692ab53
NP
4940 entry->procname = procname;
4941 entry->data = data;
4942 entry->maxlen = maxlen;
4943 entry->mode = mode;
4944 entry->proc_handler = proc_handler;
201c373e
NK
4945
4946 if (load_idx) {
4947 entry->extra1 = &min_load_idx;
4948 entry->extra2 = &max_load_idx;
4949 }
e692ab53
NP
4950}
4951
4952static struct ctl_table *
4953sd_alloc_ctl_domain_table(struct sched_domain *sd)
4954{
37e6bae8 4955 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4956
ad1cdc1d
MM
4957 if (table == NULL)
4958 return NULL;
4959
e0361851 4960 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4961 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4962 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4963 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4964 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4965 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4966 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4967 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4968 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4969 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4970 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4971 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4972 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4973 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4974 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4975 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4976 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4977 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4978 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4979 &sd->cache_nice_tries,
201c373e 4980 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4981 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4982 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4983 set_table_entry(&table[11], "max_newidle_lb_cost",
4984 &sd->max_newidle_lb_cost,
4985 sizeof(long), 0644, proc_doulongvec_minmax, false);
4986 set_table_entry(&table[12], "name", sd->name,
201c373e 4987 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4988 /* &table[13] is terminator */
e692ab53
NP
4989
4990 return table;
4991}
4992
be7002e6 4993static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4994{
4995 struct ctl_table *entry, *table;
4996 struct sched_domain *sd;
4997 int domain_num = 0, i;
4998 char buf[32];
4999
5000 for_each_domain(cpu, sd)
5001 domain_num++;
5002 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5003 if (table == NULL)
5004 return NULL;
e692ab53
NP
5005
5006 i = 0;
5007 for_each_domain(cpu, sd) {
5008 snprintf(buf, 32, "domain%d", i);
e692ab53 5009 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5010 entry->mode = 0555;
e692ab53
NP
5011 entry->child = sd_alloc_ctl_domain_table(sd);
5012 entry++;
5013 i++;
5014 }
5015 return table;
5016}
5017
5018static struct ctl_table_header *sd_sysctl_header;
6382bc90 5019static void register_sched_domain_sysctl(void)
e692ab53 5020{
6ad4c188 5021 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5022 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5023 char buf[32];
5024
7378547f
MM
5025 WARN_ON(sd_ctl_dir[0].child);
5026 sd_ctl_dir[0].child = entry;
5027
ad1cdc1d
MM
5028 if (entry == NULL)
5029 return;
5030
6ad4c188 5031 for_each_possible_cpu(i) {
e692ab53 5032 snprintf(buf, 32, "cpu%d", i);
e692ab53 5033 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5034 entry->mode = 0555;
e692ab53 5035 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5036 entry++;
e692ab53 5037 }
7378547f
MM
5038
5039 WARN_ON(sd_sysctl_header);
e692ab53
NP
5040 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5041}
6382bc90 5042
7378547f 5043/* may be called multiple times per register */
6382bc90
MM
5044static void unregister_sched_domain_sysctl(void)
5045{
7378547f
MM
5046 if (sd_sysctl_header)
5047 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5048 sd_sysctl_header = NULL;
7378547f
MM
5049 if (sd_ctl_dir[0].child)
5050 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5051}
e692ab53 5052#else
6382bc90
MM
5053static void register_sched_domain_sysctl(void)
5054{
5055}
5056static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5057{
5058}
5059#endif
5060
1f11eb6a
GH
5061static void set_rq_online(struct rq *rq)
5062{
5063 if (!rq->online) {
5064 const struct sched_class *class;
5065
c6c4927b 5066 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5067 rq->online = 1;
5068
5069 for_each_class(class) {
5070 if (class->rq_online)
5071 class->rq_online(rq);
5072 }
5073 }
5074}
5075
5076static void set_rq_offline(struct rq *rq)
5077{
5078 if (rq->online) {
5079 const struct sched_class *class;
5080
5081 for_each_class(class) {
5082 if (class->rq_offline)
5083 class->rq_offline(rq);
5084 }
5085
c6c4927b 5086 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5087 rq->online = 0;
5088 }
5089}
5090
1da177e4
LT
5091/*
5092 * migration_call - callback that gets triggered when a CPU is added.
5093 * Here we can start up the necessary migration thread for the new CPU.
5094 */
0db0628d 5095static int
48f24c4d 5096migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5097{
48f24c4d 5098 int cpu = (long)hcpu;
1da177e4 5099 unsigned long flags;
969c7921 5100 struct rq *rq = cpu_rq(cpu);
1da177e4 5101
48c5ccae 5102 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5103
1da177e4 5104 case CPU_UP_PREPARE:
a468d389 5105 rq->calc_load_update = calc_load_update;
1da177e4 5106 break;
48f24c4d 5107
1da177e4 5108 case CPU_ONLINE:
1f94ef59 5109 /* Update our root-domain */
05fa785c 5110 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5111 if (rq->rd) {
c6c4927b 5112 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5113
5114 set_rq_online(rq);
1f94ef59 5115 }
05fa785c 5116 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5117 break;
48f24c4d 5118
1da177e4 5119#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5120 case CPU_DYING:
317f3941 5121 sched_ttwu_pending();
57d885fe 5122 /* Update our root-domain */
05fa785c 5123 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5124 if (rq->rd) {
c6c4927b 5125 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5126 set_rq_offline(rq);
57d885fe 5127 }
48c5ccae
PZ
5128 migrate_tasks(cpu);
5129 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5130 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5131 break;
48c5ccae 5132
5d180232 5133 case CPU_DEAD:
f319da0c 5134 calc_load_migrate(rq);
57d885fe 5135 break;
1da177e4
LT
5136#endif
5137 }
49c022e6
PZ
5138
5139 update_max_interval();
5140
1da177e4
LT
5141 return NOTIFY_OK;
5142}
5143
f38b0820
PM
5144/*
5145 * Register at high priority so that task migration (migrate_all_tasks)
5146 * happens before everything else. This has to be lower priority than
cdd6c482 5147 * the notifier in the perf_event subsystem, though.
1da177e4 5148 */
0db0628d 5149static struct notifier_block migration_notifier = {
1da177e4 5150 .notifier_call = migration_call,
50a323b7 5151 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5152};
5153
a803f026
CM
5154static void __cpuinit set_cpu_rq_start_time(void)
5155{
5156 int cpu = smp_processor_id();
5157 struct rq *rq = cpu_rq(cpu);
5158 rq->age_stamp = sched_clock_cpu(cpu);
5159}
5160
0db0628d 5161static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5162 unsigned long action, void *hcpu)
5163{
5164 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5165 case CPU_STARTING:
5166 set_cpu_rq_start_time();
5167 return NOTIFY_OK;
3a101d05
TH
5168 case CPU_DOWN_FAILED:
5169 set_cpu_active((long)hcpu, true);
5170 return NOTIFY_OK;
5171 default:
5172 return NOTIFY_DONE;
5173 }
5174}
5175
0db0628d 5176static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5177 unsigned long action, void *hcpu)
5178{
de212f18
PZ
5179 unsigned long flags;
5180 long cpu = (long)hcpu;
5181
3a101d05
TH
5182 switch (action & ~CPU_TASKS_FROZEN) {
5183 case CPU_DOWN_PREPARE:
de212f18
PZ
5184 set_cpu_active(cpu, false);
5185
5186 /* explicitly allow suspend */
5187 if (!(action & CPU_TASKS_FROZEN)) {
5188 struct dl_bw *dl_b = dl_bw_of(cpu);
5189 bool overflow;
5190 int cpus;
5191
5192 raw_spin_lock_irqsave(&dl_b->lock, flags);
5193 cpus = dl_bw_cpus(cpu);
5194 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5195 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5196
5197 if (overflow)
5198 return notifier_from_errno(-EBUSY);
5199 }
3a101d05 5200 return NOTIFY_OK;
3a101d05 5201 }
de212f18
PZ
5202
5203 return NOTIFY_DONE;
3a101d05
TH
5204}
5205
7babe8db 5206static int __init migration_init(void)
1da177e4
LT
5207{
5208 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5209 int err;
48f24c4d 5210
3a101d05 5211 /* Initialize migration for the boot CPU */
07dccf33
AM
5212 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5213 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5214 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5215 register_cpu_notifier(&migration_notifier);
7babe8db 5216
3a101d05
TH
5217 /* Register cpu active notifiers */
5218 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5219 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5220
a004cd42 5221 return 0;
1da177e4 5222}
7babe8db 5223early_initcall(migration_init);
1da177e4
LT
5224#endif
5225
5226#ifdef CONFIG_SMP
476f3534 5227
4cb98839
PZ
5228static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5229
3e9830dc 5230#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5231
d039ac60 5232static __read_mostly int sched_debug_enabled;
f6630114 5233
d039ac60 5234static int __init sched_debug_setup(char *str)
f6630114 5235{
d039ac60 5236 sched_debug_enabled = 1;
f6630114
MT
5237
5238 return 0;
5239}
d039ac60
PZ
5240early_param("sched_debug", sched_debug_setup);
5241
5242static inline bool sched_debug(void)
5243{
5244 return sched_debug_enabled;
5245}
f6630114 5246
7c16ec58 5247static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5248 struct cpumask *groupmask)
1da177e4 5249{
4dcf6aff 5250 struct sched_group *group = sd->groups;
434d53b0 5251 char str[256];
1da177e4 5252
968ea6d8 5253 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5254 cpumask_clear(groupmask);
4dcf6aff
IM
5255
5256 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5257
5258 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5259 printk("does not load-balance\n");
4dcf6aff 5260 if (sd->parent)
3df0fc5b
PZ
5261 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5262 " has parent");
4dcf6aff 5263 return -1;
41c7ce9a
NP
5264 }
5265
3df0fc5b 5266 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5267
758b2cdc 5268 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5269 printk(KERN_ERR "ERROR: domain->span does not contain "
5270 "CPU%d\n", cpu);
4dcf6aff 5271 }
758b2cdc 5272 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5273 printk(KERN_ERR "ERROR: domain->groups does not contain"
5274 " CPU%d\n", cpu);
4dcf6aff 5275 }
1da177e4 5276
4dcf6aff 5277 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5278 do {
4dcf6aff 5279 if (!group) {
3df0fc5b
PZ
5280 printk("\n");
5281 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5282 break;
5283 }
5284
c3decf0d 5285 /*
63b2ca30
NP
5286 * Even though we initialize ->capacity to something semi-sane,
5287 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5288 * domain iteration is still funny without causing /0 traps.
5289 */
63b2ca30 5290 if (!group->sgc->capacity_orig) {
3df0fc5b 5291 printk(KERN_CONT "\n");
63b2ca30 5292 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5293 break;
5294 }
1da177e4 5295
758b2cdc 5296 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5297 printk(KERN_CONT "\n");
5298 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5299 break;
5300 }
1da177e4 5301
cb83b629
PZ
5302 if (!(sd->flags & SD_OVERLAP) &&
5303 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5304 printk(KERN_CONT "\n");
5305 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5306 break;
5307 }
1da177e4 5308
758b2cdc 5309 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5310
968ea6d8 5311 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5312
3df0fc5b 5313 printk(KERN_CONT " %s", str);
ca8ce3d0 5314 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5315 printk(KERN_CONT " (cpu_capacity = %d)",
5316 group->sgc->capacity);
381512cf 5317 }
1da177e4 5318
4dcf6aff
IM
5319 group = group->next;
5320 } while (group != sd->groups);
3df0fc5b 5321 printk(KERN_CONT "\n");
1da177e4 5322
758b2cdc 5323 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5324 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5325
758b2cdc
RR
5326 if (sd->parent &&
5327 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5328 printk(KERN_ERR "ERROR: parent span is not a superset "
5329 "of domain->span\n");
4dcf6aff
IM
5330 return 0;
5331}
1da177e4 5332
4dcf6aff
IM
5333static void sched_domain_debug(struct sched_domain *sd, int cpu)
5334{
5335 int level = 0;
1da177e4 5336
d039ac60 5337 if (!sched_debug_enabled)
f6630114
MT
5338 return;
5339
4dcf6aff
IM
5340 if (!sd) {
5341 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5342 return;
5343 }
1da177e4 5344
4dcf6aff
IM
5345 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5346
5347 for (;;) {
4cb98839 5348 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5349 break;
1da177e4
LT
5350 level++;
5351 sd = sd->parent;
33859f7f 5352 if (!sd)
4dcf6aff
IM
5353 break;
5354 }
1da177e4 5355}
6d6bc0ad 5356#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5357# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5358static inline bool sched_debug(void)
5359{
5360 return false;
5361}
6d6bc0ad 5362#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5363
1a20ff27 5364static int sd_degenerate(struct sched_domain *sd)
245af2c7 5365{
758b2cdc 5366 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5367 return 1;
5368
5369 /* Following flags need at least 2 groups */
5370 if (sd->flags & (SD_LOAD_BALANCE |
5371 SD_BALANCE_NEWIDLE |
5372 SD_BALANCE_FORK |
89c4710e 5373 SD_BALANCE_EXEC |
5d4dfddd 5374 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5375 SD_SHARE_PKG_RESOURCES |
5376 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5377 if (sd->groups != sd->groups->next)
5378 return 0;
5379 }
5380
5381 /* Following flags don't use groups */
c88d5910 5382 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5383 return 0;
5384
5385 return 1;
5386}
5387
48f24c4d
IM
5388static int
5389sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5390{
5391 unsigned long cflags = sd->flags, pflags = parent->flags;
5392
5393 if (sd_degenerate(parent))
5394 return 1;
5395
758b2cdc 5396 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5397 return 0;
5398
245af2c7
SS
5399 /* Flags needing groups don't count if only 1 group in parent */
5400 if (parent->groups == parent->groups->next) {
5401 pflags &= ~(SD_LOAD_BALANCE |
5402 SD_BALANCE_NEWIDLE |
5403 SD_BALANCE_FORK |
89c4710e 5404 SD_BALANCE_EXEC |
5d4dfddd 5405 SD_SHARE_CPUCAPACITY |
10866e62 5406 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5407 SD_PREFER_SIBLING |
5408 SD_SHARE_POWERDOMAIN);
5436499e
KC
5409 if (nr_node_ids == 1)
5410 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5411 }
5412 if (~cflags & pflags)
5413 return 0;
5414
5415 return 1;
5416}
5417
dce840a0 5418static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5419{
dce840a0 5420 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5421
68e74568 5422 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5423 cpudl_cleanup(&rd->cpudl);
1baca4ce 5424 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5425 free_cpumask_var(rd->rto_mask);
5426 free_cpumask_var(rd->online);
5427 free_cpumask_var(rd->span);
5428 kfree(rd);
5429}
5430
57d885fe
GH
5431static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5432{
a0490fa3 5433 struct root_domain *old_rd = NULL;
57d885fe 5434 unsigned long flags;
57d885fe 5435
05fa785c 5436 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5437
5438 if (rq->rd) {
a0490fa3 5439 old_rd = rq->rd;
57d885fe 5440
c6c4927b 5441 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5442 set_rq_offline(rq);
57d885fe 5443
c6c4927b 5444 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5445
a0490fa3 5446 /*
0515973f 5447 * If we dont want to free the old_rd yet then
a0490fa3
IM
5448 * set old_rd to NULL to skip the freeing later
5449 * in this function:
5450 */
5451 if (!atomic_dec_and_test(&old_rd->refcount))
5452 old_rd = NULL;
57d885fe
GH
5453 }
5454
5455 atomic_inc(&rd->refcount);
5456 rq->rd = rd;
5457
c6c4927b 5458 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5459 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5460 set_rq_online(rq);
57d885fe 5461
05fa785c 5462 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5463
5464 if (old_rd)
dce840a0 5465 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5466}
5467
68c38fc3 5468static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5469{
5470 memset(rd, 0, sizeof(*rd));
5471
68c38fc3 5472 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5473 goto out;
68c38fc3 5474 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5475 goto free_span;
1baca4ce 5476 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5477 goto free_online;
1baca4ce
JL
5478 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5479 goto free_dlo_mask;
6e0534f2 5480
332ac17e 5481 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5482 if (cpudl_init(&rd->cpudl) != 0)
5483 goto free_dlo_mask;
332ac17e 5484
68c38fc3 5485 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5486 goto free_rto_mask;
c6c4927b 5487 return 0;
6e0534f2 5488
68e74568
RR
5489free_rto_mask:
5490 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5491free_dlo_mask:
5492 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5493free_online:
5494 free_cpumask_var(rd->online);
5495free_span:
5496 free_cpumask_var(rd->span);
0c910d28 5497out:
c6c4927b 5498 return -ENOMEM;
57d885fe
GH
5499}
5500
029632fb
PZ
5501/*
5502 * By default the system creates a single root-domain with all cpus as
5503 * members (mimicking the global state we have today).
5504 */
5505struct root_domain def_root_domain;
5506
57d885fe
GH
5507static void init_defrootdomain(void)
5508{
68c38fc3 5509 init_rootdomain(&def_root_domain);
c6c4927b 5510
57d885fe
GH
5511 atomic_set(&def_root_domain.refcount, 1);
5512}
5513
dc938520 5514static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5515{
5516 struct root_domain *rd;
5517
5518 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5519 if (!rd)
5520 return NULL;
5521
68c38fc3 5522 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5523 kfree(rd);
5524 return NULL;
5525 }
57d885fe
GH
5526
5527 return rd;
5528}
5529
63b2ca30 5530static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5531{
5532 struct sched_group *tmp, *first;
5533
5534 if (!sg)
5535 return;
5536
5537 first = sg;
5538 do {
5539 tmp = sg->next;
5540
63b2ca30
NP
5541 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5542 kfree(sg->sgc);
e3589f6c
PZ
5543
5544 kfree(sg);
5545 sg = tmp;
5546 } while (sg != first);
5547}
5548
dce840a0
PZ
5549static void free_sched_domain(struct rcu_head *rcu)
5550{
5551 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5552
5553 /*
5554 * If its an overlapping domain it has private groups, iterate and
5555 * nuke them all.
5556 */
5557 if (sd->flags & SD_OVERLAP) {
5558 free_sched_groups(sd->groups, 1);
5559 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5560 kfree(sd->groups->sgc);
dce840a0 5561 kfree(sd->groups);
9c3f75cb 5562 }
dce840a0
PZ
5563 kfree(sd);
5564}
5565
5566static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5567{
5568 call_rcu(&sd->rcu, free_sched_domain);
5569}
5570
5571static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5572{
5573 for (; sd; sd = sd->parent)
5574 destroy_sched_domain(sd, cpu);
5575}
5576
518cd623
PZ
5577/*
5578 * Keep a special pointer to the highest sched_domain that has
5579 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5580 * allows us to avoid some pointer chasing select_idle_sibling().
5581 *
5582 * Also keep a unique ID per domain (we use the first cpu number in
5583 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5584 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5585 */
5586DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5587DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5588DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5589DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5590DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5591DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5592
5593static void update_top_cache_domain(int cpu)
5594{
5595 struct sched_domain *sd;
5d4cf996 5596 struct sched_domain *busy_sd = NULL;
518cd623 5597 int id = cpu;
7d9ffa89 5598 int size = 1;
518cd623
PZ
5599
5600 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5601 if (sd) {
518cd623 5602 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5603 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5604 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5605 }
5d4cf996 5606 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5607
5608 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5609 per_cpu(sd_llc_size, cpu) = size;
518cd623 5610 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5611
5612 sd = lowest_flag_domain(cpu, SD_NUMA);
5613 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5614
5615 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5616 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5617}
5618
1da177e4 5619/*
0eab9146 5620 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5621 * hold the hotplug lock.
5622 */
0eab9146
IM
5623static void
5624cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5625{
70b97a7f 5626 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5627 struct sched_domain *tmp;
5628
5629 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5630 for (tmp = sd; tmp; ) {
245af2c7
SS
5631 struct sched_domain *parent = tmp->parent;
5632 if (!parent)
5633 break;
f29c9b1c 5634
1a848870 5635 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5636 tmp->parent = parent->parent;
1a848870
SS
5637 if (parent->parent)
5638 parent->parent->child = tmp;
10866e62
PZ
5639 /*
5640 * Transfer SD_PREFER_SIBLING down in case of a
5641 * degenerate parent; the spans match for this
5642 * so the property transfers.
5643 */
5644 if (parent->flags & SD_PREFER_SIBLING)
5645 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5646 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5647 } else
5648 tmp = tmp->parent;
245af2c7
SS
5649 }
5650
1a848870 5651 if (sd && sd_degenerate(sd)) {
dce840a0 5652 tmp = sd;
245af2c7 5653 sd = sd->parent;
dce840a0 5654 destroy_sched_domain(tmp, cpu);
1a848870
SS
5655 if (sd)
5656 sd->child = NULL;
5657 }
1da177e4 5658
4cb98839 5659 sched_domain_debug(sd, cpu);
1da177e4 5660
57d885fe 5661 rq_attach_root(rq, rd);
dce840a0 5662 tmp = rq->sd;
674311d5 5663 rcu_assign_pointer(rq->sd, sd);
dce840a0 5664 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5665
5666 update_top_cache_domain(cpu);
1da177e4
LT
5667}
5668
5669/* cpus with isolated domains */
dcc30a35 5670static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5671
5672/* Setup the mask of cpus configured for isolated domains */
5673static int __init isolated_cpu_setup(char *str)
5674{
bdddd296 5675 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5676 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5677 return 1;
5678}
5679
8927f494 5680__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5681
49a02c51 5682struct s_data {
21d42ccf 5683 struct sched_domain ** __percpu sd;
49a02c51
AH
5684 struct root_domain *rd;
5685};
5686
2109b99e 5687enum s_alloc {
2109b99e 5688 sa_rootdomain,
21d42ccf 5689 sa_sd,
dce840a0 5690 sa_sd_storage,
2109b99e
AH
5691 sa_none,
5692};
5693
c1174876
PZ
5694/*
5695 * Build an iteration mask that can exclude certain CPUs from the upwards
5696 * domain traversal.
5697 *
5698 * Asymmetric node setups can result in situations where the domain tree is of
5699 * unequal depth, make sure to skip domains that already cover the entire
5700 * range.
5701 *
5702 * In that case build_sched_domains() will have terminated the iteration early
5703 * and our sibling sd spans will be empty. Domains should always include the
5704 * cpu they're built on, so check that.
5705 *
5706 */
5707static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5708{
5709 const struct cpumask *span = sched_domain_span(sd);
5710 struct sd_data *sdd = sd->private;
5711 struct sched_domain *sibling;
5712 int i;
5713
5714 for_each_cpu(i, span) {
5715 sibling = *per_cpu_ptr(sdd->sd, i);
5716 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5717 continue;
5718
5719 cpumask_set_cpu(i, sched_group_mask(sg));
5720 }
5721}
5722
5723/*
5724 * Return the canonical balance cpu for this group, this is the first cpu
5725 * of this group that's also in the iteration mask.
5726 */
5727int group_balance_cpu(struct sched_group *sg)
5728{
5729 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5730}
5731
e3589f6c
PZ
5732static int
5733build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5734{
5735 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5736 const struct cpumask *span = sched_domain_span(sd);
5737 struct cpumask *covered = sched_domains_tmpmask;
5738 struct sd_data *sdd = sd->private;
5739 struct sched_domain *child;
5740 int i;
5741
5742 cpumask_clear(covered);
5743
5744 for_each_cpu(i, span) {
5745 struct cpumask *sg_span;
5746
5747 if (cpumask_test_cpu(i, covered))
5748 continue;
5749
c1174876
PZ
5750 child = *per_cpu_ptr(sdd->sd, i);
5751
5752 /* See the comment near build_group_mask(). */
5753 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5754 continue;
5755
e3589f6c 5756 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5757 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5758
5759 if (!sg)
5760 goto fail;
5761
5762 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5763 if (child->child) {
5764 child = child->child;
5765 cpumask_copy(sg_span, sched_domain_span(child));
5766 } else
5767 cpumask_set_cpu(i, sg_span);
5768
5769 cpumask_or(covered, covered, sg_span);
5770
63b2ca30
NP
5771 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5772 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5773 build_group_mask(sd, sg);
5774
c3decf0d 5775 /*
63b2ca30 5776 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5777 * domains and no possible iteration will get us here, we won't
5778 * die on a /0 trap.
5779 */
ca8ce3d0 5780 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5781 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5782
c1174876
PZ
5783 /*
5784 * Make sure the first group of this domain contains the
5785 * canonical balance cpu. Otherwise the sched_domain iteration
5786 * breaks. See update_sg_lb_stats().
5787 */
74a5ce20 5788 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5789 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5790 groups = sg;
5791
5792 if (!first)
5793 first = sg;
5794 if (last)
5795 last->next = sg;
5796 last = sg;
5797 last->next = first;
5798 }
5799 sd->groups = groups;
5800
5801 return 0;
5802
5803fail:
5804 free_sched_groups(first, 0);
5805
5806 return -ENOMEM;
5807}
5808
dce840a0 5809static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5810{
dce840a0
PZ
5811 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5812 struct sched_domain *child = sd->child;
1da177e4 5813
dce840a0
PZ
5814 if (child)
5815 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5816
9c3f75cb 5817 if (sg) {
dce840a0 5818 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5819 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5820 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5821 }
dce840a0
PZ
5822
5823 return cpu;
1e9f28fa 5824}
1e9f28fa 5825
01a08546 5826/*
dce840a0
PZ
5827 * build_sched_groups will build a circular linked list of the groups
5828 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5829 * and ->cpu_capacity to 0.
e3589f6c
PZ
5830 *
5831 * Assumes the sched_domain tree is fully constructed
01a08546 5832 */
e3589f6c
PZ
5833static int
5834build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5835{
dce840a0
PZ
5836 struct sched_group *first = NULL, *last = NULL;
5837 struct sd_data *sdd = sd->private;
5838 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5839 struct cpumask *covered;
dce840a0 5840 int i;
9c1cfda2 5841
e3589f6c
PZ
5842 get_group(cpu, sdd, &sd->groups);
5843 atomic_inc(&sd->groups->ref);
5844
0936629f 5845 if (cpu != cpumask_first(span))
e3589f6c
PZ
5846 return 0;
5847
f96225fd
PZ
5848 lockdep_assert_held(&sched_domains_mutex);
5849 covered = sched_domains_tmpmask;
5850
dce840a0 5851 cpumask_clear(covered);
6711cab4 5852
dce840a0
PZ
5853 for_each_cpu(i, span) {
5854 struct sched_group *sg;
cd08e923 5855 int group, j;
6711cab4 5856
dce840a0
PZ
5857 if (cpumask_test_cpu(i, covered))
5858 continue;
6711cab4 5859
cd08e923 5860 group = get_group(i, sdd, &sg);
c1174876 5861 cpumask_setall(sched_group_mask(sg));
0601a88d 5862
dce840a0
PZ
5863 for_each_cpu(j, span) {
5864 if (get_group(j, sdd, NULL) != group)
5865 continue;
0601a88d 5866
dce840a0
PZ
5867 cpumask_set_cpu(j, covered);
5868 cpumask_set_cpu(j, sched_group_cpus(sg));
5869 }
0601a88d 5870
dce840a0
PZ
5871 if (!first)
5872 first = sg;
5873 if (last)
5874 last->next = sg;
5875 last = sg;
5876 }
5877 last->next = first;
e3589f6c
PZ
5878
5879 return 0;
0601a88d 5880}
51888ca2 5881
89c4710e 5882/*
63b2ca30 5883 * Initialize sched groups cpu_capacity.
89c4710e 5884 *
63b2ca30 5885 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5886 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5887 * Typically cpu_capacity for all the groups in a sched domain will be same
5888 * unless there are asymmetries in the topology. If there are asymmetries,
5889 * group having more cpu_capacity will pickup more load compared to the
5890 * group having less cpu_capacity.
89c4710e 5891 */
63b2ca30 5892static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5893{
e3589f6c 5894 struct sched_group *sg = sd->groups;
89c4710e 5895
94c95ba6 5896 WARN_ON(!sg);
e3589f6c
PZ
5897
5898 do {
5899 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5900 sg = sg->next;
5901 } while (sg != sd->groups);
89c4710e 5902
c1174876 5903 if (cpu != group_balance_cpu(sg))
e3589f6c 5904 return;
aae6d3dd 5905
63b2ca30
NP
5906 update_group_capacity(sd, cpu);
5907 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5908}
5909
7c16ec58
MT
5910/*
5911 * Initializers for schedule domains
5912 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5913 */
5914
1d3504fc 5915static int default_relax_domain_level = -1;
60495e77 5916int sched_domain_level_max;
1d3504fc
HS
5917
5918static int __init setup_relax_domain_level(char *str)
5919{
a841f8ce
DS
5920 if (kstrtoint(str, 0, &default_relax_domain_level))
5921 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5922
1d3504fc
HS
5923 return 1;
5924}
5925__setup("relax_domain_level=", setup_relax_domain_level);
5926
5927static void set_domain_attribute(struct sched_domain *sd,
5928 struct sched_domain_attr *attr)
5929{
5930 int request;
5931
5932 if (!attr || attr->relax_domain_level < 0) {
5933 if (default_relax_domain_level < 0)
5934 return;
5935 else
5936 request = default_relax_domain_level;
5937 } else
5938 request = attr->relax_domain_level;
5939 if (request < sd->level) {
5940 /* turn off idle balance on this domain */
c88d5910 5941 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5942 } else {
5943 /* turn on idle balance on this domain */
c88d5910 5944 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5945 }
5946}
5947
54ab4ff4
PZ
5948static void __sdt_free(const struct cpumask *cpu_map);
5949static int __sdt_alloc(const struct cpumask *cpu_map);
5950
2109b99e
AH
5951static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5952 const struct cpumask *cpu_map)
5953{
5954 switch (what) {
2109b99e 5955 case sa_rootdomain:
822ff793
PZ
5956 if (!atomic_read(&d->rd->refcount))
5957 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5958 case sa_sd:
5959 free_percpu(d->sd); /* fall through */
dce840a0 5960 case sa_sd_storage:
54ab4ff4 5961 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5962 case sa_none:
5963 break;
5964 }
5965}
3404c8d9 5966
2109b99e
AH
5967static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5968 const struct cpumask *cpu_map)
5969{
dce840a0
PZ
5970 memset(d, 0, sizeof(*d));
5971
54ab4ff4
PZ
5972 if (__sdt_alloc(cpu_map))
5973 return sa_sd_storage;
dce840a0
PZ
5974 d->sd = alloc_percpu(struct sched_domain *);
5975 if (!d->sd)
5976 return sa_sd_storage;
2109b99e 5977 d->rd = alloc_rootdomain();
dce840a0 5978 if (!d->rd)
21d42ccf 5979 return sa_sd;
2109b99e
AH
5980 return sa_rootdomain;
5981}
57d885fe 5982
dce840a0
PZ
5983/*
5984 * NULL the sd_data elements we've used to build the sched_domain and
5985 * sched_group structure so that the subsequent __free_domain_allocs()
5986 * will not free the data we're using.
5987 */
5988static void claim_allocations(int cpu, struct sched_domain *sd)
5989{
5990 struct sd_data *sdd = sd->private;
dce840a0
PZ
5991
5992 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5993 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5994
e3589f6c 5995 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5996 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5997
63b2ca30
NP
5998 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5999 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6000}
6001
cb83b629 6002#ifdef CONFIG_NUMA
cb83b629 6003static int sched_domains_numa_levels;
cb83b629
PZ
6004static int *sched_domains_numa_distance;
6005static struct cpumask ***sched_domains_numa_masks;
6006static int sched_domains_curr_level;
143e1e28 6007#endif
cb83b629 6008
143e1e28
VG
6009/*
6010 * SD_flags allowed in topology descriptions.
6011 *
5d4dfddd 6012 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6013 * SD_SHARE_PKG_RESOURCES - describes shared caches
6014 * SD_NUMA - describes NUMA topologies
d77b3ed5 6015 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6016 *
6017 * Odd one out:
6018 * SD_ASYM_PACKING - describes SMT quirks
6019 */
6020#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6021 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6022 SD_SHARE_PKG_RESOURCES | \
6023 SD_NUMA | \
d77b3ed5
VG
6024 SD_ASYM_PACKING | \
6025 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6026
6027static struct sched_domain *
143e1e28 6028sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6029{
6030 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6031 int sd_weight, sd_flags = 0;
6032
6033#ifdef CONFIG_NUMA
6034 /*
6035 * Ugly hack to pass state to sd_numa_mask()...
6036 */
6037 sched_domains_curr_level = tl->numa_level;
6038#endif
6039
6040 sd_weight = cpumask_weight(tl->mask(cpu));
6041
6042 if (tl->sd_flags)
6043 sd_flags = (*tl->sd_flags)();
6044 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6045 "wrong sd_flags in topology description\n"))
6046 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6047
6048 *sd = (struct sched_domain){
6049 .min_interval = sd_weight,
6050 .max_interval = 2*sd_weight,
6051 .busy_factor = 32,
870a0bb5 6052 .imbalance_pct = 125,
143e1e28
VG
6053
6054 .cache_nice_tries = 0,
6055 .busy_idx = 0,
6056 .idle_idx = 0,
cb83b629
PZ
6057 .newidle_idx = 0,
6058 .wake_idx = 0,
6059 .forkexec_idx = 0,
6060
6061 .flags = 1*SD_LOAD_BALANCE
6062 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6063 | 1*SD_BALANCE_EXEC
6064 | 1*SD_BALANCE_FORK
cb83b629 6065 | 0*SD_BALANCE_WAKE
143e1e28 6066 | 1*SD_WAKE_AFFINE
5d4dfddd 6067 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6068 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6069 | 0*SD_SERIALIZE
cb83b629 6070 | 0*SD_PREFER_SIBLING
143e1e28
VG
6071 | 0*SD_NUMA
6072 | sd_flags
cb83b629 6073 ,
143e1e28 6074
cb83b629
PZ
6075 .last_balance = jiffies,
6076 .balance_interval = sd_weight,
143e1e28 6077 .smt_gain = 0,
2b4cfe64
JL
6078 .max_newidle_lb_cost = 0,
6079 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6080#ifdef CONFIG_SCHED_DEBUG
6081 .name = tl->name,
6082#endif
cb83b629 6083 };
cb83b629
PZ
6084
6085 /*
143e1e28 6086 * Convert topological properties into behaviour.
cb83b629 6087 */
143e1e28 6088
5d4dfddd 6089 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6090 sd->imbalance_pct = 110;
6091 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6092
6093 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6094 sd->imbalance_pct = 117;
6095 sd->cache_nice_tries = 1;
6096 sd->busy_idx = 2;
6097
6098#ifdef CONFIG_NUMA
6099 } else if (sd->flags & SD_NUMA) {
6100 sd->cache_nice_tries = 2;
6101 sd->busy_idx = 3;
6102 sd->idle_idx = 2;
6103
6104 sd->flags |= SD_SERIALIZE;
6105 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6106 sd->flags &= ~(SD_BALANCE_EXEC |
6107 SD_BALANCE_FORK |
6108 SD_WAKE_AFFINE);
6109 }
6110
6111#endif
6112 } else {
6113 sd->flags |= SD_PREFER_SIBLING;
6114 sd->cache_nice_tries = 1;
6115 sd->busy_idx = 2;
6116 sd->idle_idx = 1;
6117 }
6118
6119 sd->private = &tl->data;
cb83b629
PZ
6120
6121 return sd;
6122}
6123
143e1e28
VG
6124/*
6125 * Topology list, bottom-up.
6126 */
6127static struct sched_domain_topology_level default_topology[] = {
6128#ifdef CONFIG_SCHED_SMT
6129 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6130#endif
6131#ifdef CONFIG_SCHED_MC
6132 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6133#endif
6134 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6135 { NULL, },
6136};
6137
6138struct sched_domain_topology_level *sched_domain_topology = default_topology;
6139
6140#define for_each_sd_topology(tl) \
6141 for (tl = sched_domain_topology; tl->mask; tl++)
6142
6143void set_sched_topology(struct sched_domain_topology_level *tl)
6144{
6145 sched_domain_topology = tl;
6146}
6147
6148#ifdef CONFIG_NUMA
6149
cb83b629
PZ
6150static const struct cpumask *sd_numa_mask(int cpu)
6151{
6152 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6153}
6154
d039ac60
PZ
6155static void sched_numa_warn(const char *str)
6156{
6157 static int done = false;
6158 int i,j;
6159
6160 if (done)
6161 return;
6162
6163 done = true;
6164
6165 printk(KERN_WARNING "ERROR: %s\n\n", str);
6166
6167 for (i = 0; i < nr_node_ids; i++) {
6168 printk(KERN_WARNING " ");
6169 for (j = 0; j < nr_node_ids; j++)
6170 printk(KERN_CONT "%02d ", node_distance(i,j));
6171 printk(KERN_CONT "\n");
6172 }
6173 printk(KERN_WARNING "\n");
6174}
6175
6176static bool find_numa_distance(int distance)
6177{
6178 int i;
6179
6180 if (distance == node_distance(0, 0))
6181 return true;
6182
6183 for (i = 0; i < sched_domains_numa_levels; i++) {
6184 if (sched_domains_numa_distance[i] == distance)
6185 return true;
6186 }
6187
6188 return false;
6189}
6190
cb83b629
PZ
6191static void sched_init_numa(void)
6192{
6193 int next_distance, curr_distance = node_distance(0, 0);
6194 struct sched_domain_topology_level *tl;
6195 int level = 0;
6196 int i, j, k;
6197
cb83b629
PZ
6198 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6199 if (!sched_domains_numa_distance)
6200 return;
6201
6202 /*
6203 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6204 * unique distances in the node_distance() table.
6205 *
6206 * Assumes node_distance(0,j) includes all distances in
6207 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6208 */
6209 next_distance = curr_distance;
6210 for (i = 0; i < nr_node_ids; i++) {
6211 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6212 for (k = 0; k < nr_node_ids; k++) {
6213 int distance = node_distance(i, k);
6214
6215 if (distance > curr_distance &&
6216 (distance < next_distance ||
6217 next_distance == curr_distance))
6218 next_distance = distance;
6219
6220 /*
6221 * While not a strong assumption it would be nice to know
6222 * about cases where if node A is connected to B, B is not
6223 * equally connected to A.
6224 */
6225 if (sched_debug() && node_distance(k, i) != distance)
6226 sched_numa_warn("Node-distance not symmetric");
6227
6228 if (sched_debug() && i && !find_numa_distance(distance))
6229 sched_numa_warn("Node-0 not representative");
6230 }
6231 if (next_distance != curr_distance) {
6232 sched_domains_numa_distance[level++] = next_distance;
6233 sched_domains_numa_levels = level;
6234 curr_distance = next_distance;
6235 } else break;
cb83b629 6236 }
d039ac60
PZ
6237
6238 /*
6239 * In case of sched_debug() we verify the above assumption.
6240 */
6241 if (!sched_debug())
6242 break;
cb83b629
PZ
6243 }
6244 /*
6245 * 'level' contains the number of unique distances, excluding the
6246 * identity distance node_distance(i,i).
6247 *
28b4a521 6248 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6249 * numbers.
6250 */
6251
5f7865f3
TC
6252 /*
6253 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6254 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6255 * the array will contain less then 'level' members. This could be
6256 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6257 * in other functions.
6258 *
6259 * We reset it to 'level' at the end of this function.
6260 */
6261 sched_domains_numa_levels = 0;
6262
cb83b629
PZ
6263 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6264 if (!sched_domains_numa_masks)
6265 return;
6266
6267 /*
6268 * Now for each level, construct a mask per node which contains all
6269 * cpus of nodes that are that many hops away from us.
6270 */
6271 for (i = 0; i < level; i++) {
6272 sched_domains_numa_masks[i] =
6273 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6274 if (!sched_domains_numa_masks[i])
6275 return;
6276
6277 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6278 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6279 if (!mask)
6280 return;
6281
6282 sched_domains_numa_masks[i][j] = mask;
6283
6284 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6285 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6286 continue;
6287
6288 cpumask_or(mask, mask, cpumask_of_node(k));
6289 }
6290 }
6291 }
6292
143e1e28
VG
6293 /* Compute default topology size */
6294 for (i = 0; sched_domain_topology[i].mask; i++);
6295
c515db8c 6296 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6297 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6298 if (!tl)
6299 return;
6300
6301 /*
6302 * Copy the default topology bits..
6303 */
143e1e28
VG
6304 for (i = 0; sched_domain_topology[i].mask; i++)
6305 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6306
6307 /*
6308 * .. and append 'j' levels of NUMA goodness.
6309 */
6310 for (j = 0; j < level; i++, j++) {
6311 tl[i] = (struct sched_domain_topology_level){
cb83b629 6312 .mask = sd_numa_mask,
143e1e28 6313 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6314 .flags = SDTL_OVERLAP,
6315 .numa_level = j,
143e1e28 6316 SD_INIT_NAME(NUMA)
cb83b629
PZ
6317 };
6318 }
6319
6320 sched_domain_topology = tl;
5f7865f3
TC
6321
6322 sched_domains_numa_levels = level;
cb83b629 6323}
301a5cba
TC
6324
6325static void sched_domains_numa_masks_set(int cpu)
6326{
6327 int i, j;
6328 int node = cpu_to_node(cpu);
6329
6330 for (i = 0; i < sched_domains_numa_levels; i++) {
6331 for (j = 0; j < nr_node_ids; j++) {
6332 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6333 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6334 }
6335 }
6336}
6337
6338static void sched_domains_numa_masks_clear(int cpu)
6339{
6340 int i, j;
6341 for (i = 0; i < sched_domains_numa_levels; i++) {
6342 for (j = 0; j < nr_node_ids; j++)
6343 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6344 }
6345}
6346
6347/*
6348 * Update sched_domains_numa_masks[level][node] array when new cpus
6349 * are onlined.
6350 */
6351static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6352 unsigned long action,
6353 void *hcpu)
6354{
6355 int cpu = (long)hcpu;
6356
6357 switch (action & ~CPU_TASKS_FROZEN) {
6358 case CPU_ONLINE:
6359 sched_domains_numa_masks_set(cpu);
6360 break;
6361
6362 case CPU_DEAD:
6363 sched_domains_numa_masks_clear(cpu);
6364 break;
6365
6366 default:
6367 return NOTIFY_DONE;
6368 }
6369
6370 return NOTIFY_OK;
cb83b629
PZ
6371}
6372#else
6373static inline void sched_init_numa(void)
6374{
6375}
301a5cba
TC
6376
6377static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6378 unsigned long action,
6379 void *hcpu)
6380{
6381 return 0;
6382}
cb83b629
PZ
6383#endif /* CONFIG_NUMA */
6384
54ab4ff4
PZ
6385static int __sdt_alloc(const struct cpumask *cpu_map)
6386{
6387 struct sched_domain_topology_level *tl;
6388 int j;
6389
27723a68 6390 for_each_sd_topology(tl) {
54ab4ff4
PZ
6391 struct sd_data *sdd = &tl->data;
6392
6393 sdd->sd = alloc_percpu(struct sched_domain *);
6394 if (!sdd->sd)
6395 return -ENOMEM;
6396
6397 sdd->sg = alloc_percpu(struct sched_group *);
6398 if (!sdd->sg)
6399 return -ENOMEM;
6400
63b2ca30
NP
6401 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6402 if (!sdd->sgc)
9c3f75cb
PZ
6403 return -ENOMEM;
6404
54ab4ff4
PZ
6405 for_each_cpu(j, cpu_map) {
6406 struct sched_domain *sd;
6407 struct sched_group *sg;
63b2ca30 6408 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6409
6410 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6411 GFP_KERNEL, cpu_to_node(j));
6412 if (!sd)
6413 return -ENOMEM;
6414
6415 *per_cpu_ptr(sdd->sd, j) = sd;
6416
6417 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6418 GFP_KERNEL, cpu_to_node(j));
6419 if (!sg)
6420 return -ENOMEM;
6421
30b4e9eb
IM
6422 sg->next = sg;
6423
54ab4ff4 6424 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6425
63b2ca30 6426 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6427 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6428 if (!sgc)
9c3f75cb
PZ
6429 return -ENOMEM;
6430
63b2ca30 6431 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6432 }
6433 }
6434
6435 return 0;
6436}
6437
6438static void __sdt_free(const struct cpumask *cpu_map)
6439{
6440 struct sched_domain_topology_level *tl;
6441 int j;
6442
27723a68 6443 for_each_sd_topology(tl) {
54ab4ff4
PZ
6444 struct sd_data *sdd = &tl->data;
6445
6446 for_each_cpu(j, cpu_map) {
fb2cf2c6 6447 struct sched_domain *sd;
6448
6449 if (sdd->sd) {
6450 sd = *per_cpu_ptr(sdd->sd, j);
6451 if (sd && (sd->flags & SD_OVERLAP))
6452 free_sched_groups(sd->groups, 0);
6453 kfree(*per_cpu_ptr(sdd->sd, j));
6454 }
6455
6456 if (sdd->sg)
6457 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6458 if (sdd->sgc)
6459 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6460 }
6461 free_percpu(sdd->sd);
fb2cf2c6 6462 sdd->sd = NULL;
54ab4ff4 6463 free_percpu(sdd->sg);
fb2cf2c6 6464 sdd->sg = NULL;
63b2ca30
NP
6465 free_percpu(sdd->sgc);
6466 sdd->sgc = NULL;
54ab4ff4
PZ
6467 }
6468}
6469
2c402dc3 6470struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6471 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6472 struct sched_domain *child, int cpu)
2c402dc3 6473{
143e1e28 6474 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6475 if (!sd)
d069b916 6476 return child;
2c402dc3 6477
2c402dc3 6478 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6479 if (child) {
6480 sd->level = child->level + 1;
6481 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6482 child->parent = sd;
c75e0128 6483 sd->child = child;
60495e77 6484 }
a841f8ce 6485 set_domain_attribute(sd, attr);
2c402dc3
PZ
6486
6487 return sd;
6488}
6489
2109b99e
AH
6490/*
6491 * Build sched domains for a given set of cpus and attach the sched domains
6492 * to the individual cpus
6493 */
dce840a0
PZ
6494static int build_sched_domains(const struct cpumask *cpu_map,
6495 struct sched_domain_attr *attr)
2109b99e 6496{
1c632169 6497 enum s_alloc alloc_state;
dce840a0 6498 struct sched_domain *sd;
2109b99e 6499 struct s_data d;
822ff793 6500 int i, ret = -ENOMEM;
9c1cfda2 6501
2109b99e
AH
6502 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6503 if (alloc_state != sa_rootdomain)
6504 goto error;
9c1cfda2 6505
dce840a0 6506 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6507 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6508 struct sched_domain_topology_level *tl;
6509
3bd65a80 6510 sd = NULL;
27723a68 6511 for_each_sd_topology(tl) {
4a850cbe 6512 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6513 if (tl == sched_domain_topology)
6514 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6515 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6516 sd->flags |= SD_OVERLAP;
d110235d
PZ
6517 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6518 break;
e3589f6c 6519 }
dce840a0
PZ
6520 }
6521
6522 /* Build the groups for the domains */
6523 for_each_cpu(i, cpu_map) {
6524 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6525 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6526 if (sd->flags & SD_OVERLAP) {
6527 if (build_overlap_sched_groups(sd, i))
6528 goto error;
6529 } else {
6530 if (build_sched_groups(sd, i))
6531 goto error;
6532 }
1cf51902 6533 }
a06dadbe 6534 }
9c1cfda2 6535
ced549fa 6536 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6537 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6538 if (!cpumask_test_cpu(i, cpu_map))
6539 continue;
9c1cfda2 6540
dce840a0
PZ
6541 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6542 claim_allocations(i, sd);
63b2ca30 6543 init_sched_groups_capacity(i, sd);
dce840a0 6544 }
f712c0c7 6545 }
9c1cfda2 6546
1da177e4 6547 /* Attach the domains */
dce840a0 6548 rcu_read_lock();
abcd083a 6549 for_each_cpu(i, cpu_map) {
21d42ccf 6550 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6551 cpu_attach_domain(sd, d.rd, i);
1da177e4 6552 }
dce840a0 6553 rcu_read_unlock();
51888ca2 6554
822ff793 6555 ret = 0;
51888ca2 6556error:
2109b99e 6557 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6558 return ret;
1da177e4 6559}
029190c5 6560
acc3f5d7 6561static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6562static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6563static struct sched_domain_attr *dattr_cur;
6564 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6565
6566/*
6567 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6568 * cpumask) fails, then fallback to a single sched domain,
6569 * as determined by the single cpumask fallback_doms.
029190c5 6570 */
4212823f 6571static cpumask_var_t fallback_doms;
029190c5 6572
ee79d1bd
HC
6573/*
6574 * arch_update_cpu_topology lets virtualized architectures update the
6575 * cpu core maps. It is supposed to return 1 if the topology changed
6576 * or 0 if it stayed the same.
6577 */
52f5684c 6578int __weak arch_update_cpu_topology(void)
22e52b07 6579{
ee79d1bd 6580 return 0;
22e52b07
HC
6581}
6582
acc3f5d7
RR
6583cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6584{
6585 int i;
6586 cpumask_var_t *doms;
6587
6588 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6589 if (!doms)
6590 return NULL;
6591 for (i = 0; i < ndoms; i++) {
6592 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6593 free_sched_domains(doms, i);
6594 return NULL;
6595 }
6596 }
6597 return doms;
6598}
6599
6600void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6601{
6602 unsigned int i;
6603 for (i = 0; i < ndoms; i++)
6604 free_cpumask_var(doms[i]);
6605 kfree(doms);
6606}
6607
1a20ff27 6608/*
41a2d6cf 6609 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6610 * For now this just excludes isolated cpus, but could be used to
6611 * exclude other special cases in the future.
1a20ff27 6612 */
c4a8849a 6613static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6614{
7378547f
MM
6615 int err;
6616
22e52b07 6617 arch_update_cpu_topology();
029190c5 6618 ndoms_cur = 1;
acc3f5d7 6619 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6620 if (!doms_cur)
acc3f5d7
RR
6621 doms_cur = &fallback_doms;
6622 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6623 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6624 register_sched_domain_sysctl();
7378547f
MM
6625
6626 return err;
1a20ff27
DG
6627}
6628
1a20ff27
DG
6629/*
6630 * Detach sched domains from a group of cpus specified in cpu_map
6631 * These cpus will now be attached to the NULL domain
6632 */
96f874e2 6633static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6634{
6635 int i;
6636
dce840a0 6637 rcu_read_lock();
abcd083a 6638 for_each_cpu(i, cpu_map)
57d885fe 6639 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6640 rcu_read_unlock();
1a20ff27
DG
6641}
6642
1d3504fc
HS
6643/* handle null as "default" */
6644static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6645 struct sched_domain_attr *new, int idx_new)
6646{
6647 struct sched_domain_attr tmp;
6648
6649 /* fast path */
6650 if (!new && !cur)
6651 return 1;
6652
6653 tmp = SD_ATTR_INIT;
6654 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6655 new ? (new + idx_new) : &tmp,
6656 sizeof(struct sched_domain_attr));
6657}
6658
029190c5
PJ
6659/*
6660 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6661 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6662 * doms_new[] to the current sched domain partitioning, doms_cur[].
6663 * It destroys each deleted domain and builds each new domain.
6664 *
acc3f5d7 6665 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6666 * The masks don't intersect (don't overlap.) We should setup one
6667 * sched domain for each mask. CPUs not in any of the cpumasks will
6668 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6669 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6670 * it as it is.
6671 *
acc3f5d7
RR
6672 * The passed in 'doms_new' should be allocated using
6673 * alloc_sched_domains. This routine takes ownership of it and will
6674 * free_sched_domains it when done with it. If the caller failed the
6675 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6676 * and partition_sched_domains() will fallback to the single partition
6677 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6678 *
96f874e2 6679 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6680 * ndoms_new == 0 is a special case for destroying existing domains,
6681 * and it will not create the default domain.
dfb512ec 6682 *
029190c5
PJ
6683 * Call with hotplug lock held
6684 */
acc3f5d7 6685void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6686 struct sched_domain_attr *dattr_new)
029190c5 6687{
dfb512ec 6688 int i, j, n;
d65bd5ec 6689 int new_topology;
029190c5 6690
712555ee 6691 mutex_lock(&sched_domains_mutex);
a1835615 6692
7378547f
MM
6693 /* always unregister in case we don't destroy any domains */
6694 unregister_sched_domain_sysctl();
6695
d65bd5ec
HC
6696 /* Let architecture update cpu core mappings. */
6697 new_topology = arch_update_cpu_topology();
6698
dfb512ec 6699 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6700
6701 /* Destroy deleted domains */
6702 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6703 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6704 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6705 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6706 goto match1;
6707 }
6708 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6709 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6710match1:
6711 ;
6712 }
6713
c8d2d47a 6714 n = ndoms_cur;
e761b772 6715 if (doms_new == NULL) {
c8d2d47a 6716 n = 0;
acc3f5d7 6717 doms_new = &fallback_doms;
6ad4c188 6718 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6719 WARN_ON_ONCE(dattr_new);
e761b772
MK
6720 }
6721
029190c5
PJ
6722 /* Build new domains */
6723 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6724 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6725 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6726 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6727 goto match2;
6728 }
6729 /* no match - add a new doms_new */
dce840a0 6730 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6731match2:
6732 ;
6733 }
6734
6735 /* Remember the new sched domains */
acc3f5d7
RR
6736 if (doms_cur != &fallback_doms)
6737 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6738 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6739 doms_cur = doms_new;
1d3504fc 6740 dattr_cur = dattr_new;
029190c5 6741 ndoms_cur = ndoms_new;
7378547f
MM
6742
6743 register_sched_domain_sysctl();
a1835615 6744
712555ee 6745 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6746}
6747
d35be8ba
SB
6748static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6749
1da177e4 6750/*
3a101d05
TH
6751 * Update cpusets according to cpu_active mask. If cpusets are
6752 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6753 * around partition_sched_domains().
d35be8ba
SB
6754 *
6755 * If we come here as part of a suspend/resume, don't touch cpusets because we
6756 * want to restore it back to its original state upon resume anyway.
1da177e4 6757 */
0b2e918a
TH
6758static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6759 void *hcpu)
e761b772 6760{
d35be8ba
SB
6761 switch (action) {
6762 case CPU_ONLINE_FROZEN:
6763 case CPU_DOWN_FAILED_FROZEN:
6764
6765 /*
6766 * num_cpus_frozen tracks how many CPUs are involved in suspend
6767 * resume sequence. As long as this is not the last online
6768 * operation in the resume sequence, just build a single sched
6769 * domain, ignoring cpusets.
6770 */
6771 num_cpus_frozen--;
6772 if (likely(num_cpus_frozen)) {
6773 partition_sched_domains(1, NULL, NULL);
6774 break;
6775 }
6776
6777 /*
6778 * This is the last CPU online operation. So fall through and
6779 * restore the original sched domains by considering the
6780 * cpuset configurations.
6781 */
6782
e761b772 6783 case CPU_ONLINE:
6ad4c188 6784 case CPU_DOWN_FAILED:
7ddf96b0 6785 cpuset_update_active_cpus(true);
d35be8ba 6786 break;
3a101d05
TH
6787 default:
6788 return NOTIFY_DONE;
6789 }
d35be8ba 6790 return NOTIFY_OK;
3a101d05 6791}
e761b772 6792
0b2e918a
TH
6793static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6794 void *hcpu)
3a101d05 6795{
d35be8ba 6796 switch (action) {
3a101d05 6797 case CPU_DOWN_PREPARE:
7ddf96b0 6798 cpuset_update_active_cpus(false);
d35be8ba
SB
6799 break;
6800 case CPU_DOWN_PREPARE_FROZEN:
6801 num_cpus_frozen++;
6802 partition_sched_domains(1, NULL, NULL);
6803 break;
e761b772
MK
6804 default:
6805 return NOTIFY_DONE;
6806 }
d35be8ba 6807 return NOTIFY_OK;
e761b772 6808}
e761b772 6809
1da177e4
LT
6810void __init sched_init_smp(void)
6811{
dcc30a35
RR
6812 cpumask_var_t non_isolated_cpus;
6813
6814 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6815 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6816
cb83b629
PZ
6817 sched_init_numa();
6818
6acce3ef
PZ
6819 /*
6820 * There's no userspace yet to cause hotplug operations; hence all the
6821 * cpu masks are stable and all blatant races in the below code cannot
6822 * happen.
6823 */
712555ee 6824 mutex_lock(&sched_domains_mutex);
c4a8849a 6825 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6826 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6827 if (cpumask_empty(non_isolated_cpus))
6828 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6829 mutex_unlock(&sched_domains_mutex);
e761b772 6830
301a5cba 6831 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6832 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6833 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6834
b328ca18 6835 init_hrtick();
5c1e1767
NP
6836
6837 /* Move init over to a non-isolated CPU */
dcc30a35 6838 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6839 BUG();
19978ca6 6840 sched_init_granularity();
dcc30a35 6841 free_cpumask_var(non_isolated_cpus);
4212823f 6842
0e3900e6 6843 init_sched_rt_class();
1baca4ce 6844 init_sched_dl_class();
1da177e4
LT
6845}
6846#else
6847void __init sched_init_smp(void)
6848{
19978ca6 6849 sched_init_granularity();
1da177e4
LT
6850}
6851#endif /* CONFIG_SMP */
6852
cd1bb94b
AB
6853const_debug unsigned int sysctl_timer_migration = 1;
6854
1da177e4
LT
6855int in_sched_functions(unsigned long addr)
6856{
1da177e4
LT
6857 return in_lock_functions(addr) ||
6858 (addr >= (unsigned long)__sched_text_start
6859 && addr < (unsigned long)__sched_text_end);
6860}
6861
029632fb 6862#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6863/*
6864 * Default task group.
6865 * Every task in system belongs to this group at bootup.
6866 */
029632fb 6867struct task_group root_task_group;
35cf4e50 6868LIST_HEAD(task_groups);
052f1dc7 6869#endif
6f505b16 6870
e6252c3e 6871DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6872
1da177e4
LT
6873void __init sched_init(void)
6874{
dd41f596 6875 int i, j;
434d53b0
MT
6876 unsigned long alloc_size = 0, ptr;
6877
6878#ifdef CONFIG_FAIR_GROUP_SCHED
6879 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6880#endif
6881#ifdef CONFIG_RT_GROUP_SCHED
6882 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6883#endif
df7c8e84 6884#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6885 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6886#endif
434d53b0 6887 if (alloc_size) {
36b7b6d4 6888 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6889
6890#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6891 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6892 ptr += nr_cpu_ids * sizeof(void **);
6893
07e06b01 6894 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6895 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6896
6d6bc0ad 6897#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6898#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6899 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6900 ptr += nr_cpu_ids * sizeof(void **);
6901
07e06b01 6902 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6903 ptr += nr_cpu_ids * sizeof(void **);
6904
6d6bc0ad 6905#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6906#ifdef CONFIG_CPUMASK_OFFSTACK
6907 for_each_possible_cpu(i) {
e6252c3e 6908 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6909 ptr += cpumask_size();
6910 }
6911#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6912 }
dd41f596 6913
332ac17e
DF
6914 init_rt_bandwidth(&def_rt_bandwidth,
6915 global_rt_period(), global_rt_runtime());
6916 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6917 global_rt_period(), global_rt_runtime());
332ac17e 6918
57d885fe
GH
6919#ifdef CONFIG_SMP
6920 init_defrootdomain();
6921#endif
6922
d0b27fa7 6923#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6924 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6925 global_rt_period(), global_rt_runtime());
6d6bc0ad 6926#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6927
7c941438 6928#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6929 list_add(&root_task_group.list, &task_groups);
6930 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6931 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6932 autogroup_init(&init_task);
54c707e9 6933
7c941438 6934#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6935
0a945022 6936 for_each_possible_cpu(i) {
70b97a7f 6937 struct rq *rq;
1da177e4
LT
6938
6939 rq = cpu_rq(i);
05fa785c 6940 raw_spin_lock_init(&rq->lock);
7897986b 6941 rq->nr_running = 0;
dce48a84
TG
6942 rq->calc_load_active = 0;
6943 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6944 init_cfs_rq(&rq->cfs);
6f505b16 6945 init_rt_rq(&rq->rt, rq);
aab03e05 6946 init_dl_rq(&rq->dl, rq);
dd41f596 6947#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6948 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6949 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6950 /*
07e06b01 6951 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6952 *
6953 * In case of task-groups formed thr' the cgroup filesystem, it
6954 * gets 100% of the cpu resources in the system. This overall
6955 * system cpu resource is divided among the tasks of
07e06b01 6956 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6957 * based on each entity's (task or task-group's) weight
6958 * (se->load.weight).
6959 *
07e06b01 6960 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6961 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6962 * then A0's share of the cpu resource is:
6963 *
0d905bca 6964 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6965 *
07e06b01
YZ
6966 * We achieve this by letting root_task_group's tasks sit
6967 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6968 */
ab84d31e 6969 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6970 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6971#endif /* CONFIG_FAIR_GROUP_SCHED */
6972
6973 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6974#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6975 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6976#endif
1da177e4 6977
dd41f596
IM
6978 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6979 rq->cpu_load[j] = 0;
fdf3e95d
VP
6980
6981 rq->last_load_update_tick = jiffies;
6982
1da177e4 6983#ifdef CONFIG_SMP
41c7ce9a 6984 rq->sd = NULL;
57d885fe 6985 rq->rd = NULL;
ca8ce3d0 6986 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 6987 rq->post_schedule = 0;
1da177e4 6988 rq->active_balance = 0;
dd41f596 6989 rq->next_balance = jiffies;
1da177e4 6990 rq->push_cpu = 0;
0a2966b4 6991 rq->cpu = i;
1f11eb6a 6992 rq->online = 0;
eae0c9df
MG
6993 rq->idle_stamp = 0;
6994 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6995 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6996
6997 INIT_LIST_HEAD(&rq->cfs_tasks);
6998
dc938520 6999 rq_attach_root(rq, &def_root_domain);
3451d024 7000#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7001 rq->nohz_flags = 0;
83cd4fe2 7002#endif
265f22a9
FW
7003#ifdef CONFIG_NO_HZ_FULL
7004 rq->last_sched_tick = 0;
7005#endif
1da177e4 7006#endif
8f4d37ec 7007 init_rq_hrtick(rq);
1da177e4 7008 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7009 }
7010
2dd73a4f 7011 set_load_weight(&init_task);
b50f60ce 7012
e107be36
AK
7013#ifdef CONFIG_PREEMPT_NOTIFIERS
7014 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7015#endif
7016
1da177e4
LT
7017 /*
7018 * The boot idle thread does lazy MMU switching as well:
7019 */
7020 atomic_inc(&init_mm.mm_count);
7021 enter_lazy_tlb(&init_mm, current);
7022
7023 /*
7024 * Make us the idle thread. Technically, schedule() should not be
7025 * called from this thread, however somewhere below it might be,
7026 * but because we are the idle thread, we just pick up running again
7027 * when this runqueue becomes "idle".
7028 */
7029 init_idle(current, smp_processor_id());
dce48a84
TG
7030
7031 calc_load_update = jiffies + LOAD_FREQ;
7032
dd41f596
IM
7033 /*
7034 * During early bootup we pretend to be a normal task:
7035 */
7036 current->sched_class = &fair_sched_class;
6892b75e 7037
bf4d83f6 7038#ifdef CONFIG_SMP
4cb98839 7039 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7040 /* May be allocated at isolcpus cmdline parse time */
7041 if (cpu_isolated_map == NULL)
7042 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7043 idle_thread_set_boot_cpu();
a803f026 7044 set_cpu_rq_start_time();
029632fb
PZ
7045#endif
7046 init_sched_fair_class();
6a7b3dc3 7047
6892b75e 7048 scheduler_running = 1;
1da177e4
LT
7049}
7050
d902db1e 7051#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7052static inline int preempt_count_equals(int preempt_offset)
7053{
234da7bc 7054 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7055
4ba8216c 7056 return (nested == preempt_offset);
e4aafea2
FW
7057}
7058
d894837f 7059void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7060{
1da177e4
LT
7061 static unsigned long prev_jiffy; /* ratelimiting */
7062
b3fbab05 7063 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7064 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7065 !is_idle_task(current)) ||
e4aafea2 7066 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7067 return;
7068 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7069 return;
7070 prev_jiffy = jiffies;
7071
3df0fc5b
PZ
7072 printk(KERN_ERR
7073 "BUG: sleeping function called from invalid context at %s:%d\n",
7074 file, line);
7075 printk(KERN_ERR
7076 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7077 in_atomic(), irqs_disabled(),
7078 current->pid, current->comm);
aef745fc
IM
7079
7080 debug_show_held_locks(current);
7081 if (irqs_disabled())
7082 print_irqtrace_events(current);
8f47b187
TG
7083#ifdef CONFIG_DEBUG_PREEMPT
7084 if (!preempt_count_equals(preempt_offset)) {
7085 pr_err("Preemption disabled at:");
7086 print_ip_sym(current->preempt_disable_ip);
7087 pr_cont("\n");
7088 }
7089#endif
aef745fc 7090 dump_stack();
1da177e4
LT
7091}
7092EXPORT_SYMBOL(__might_sleep);
7093#endif
7094
7095#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7096static void normalize_task(struct rq *rq, struct task_struct *p)
7097{
da7a735e 7098 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7099 struct sched_attr attr = {
7100 .sched_policy = SCHED_NORMAL,
7101 };
da7a735e 7102 int old_prio = p->prio;
3a5e4dc1 7103 int on_rq;
3e51f33f 7104
fd2f4419 7105 on_rq = p->on_rq;
3a5e4dc1 7106 if (on_rq)
4ca9b72b 7107 dequeue_task(rq, p, 0);
d50dde5a 7108 __setscheduler(rq, p, &attr);
3a5e4dc1 7109 if (on_rq) {
4ca9b72b 7110 enqueue_task(rq, p, 0);
8875125e 7111 resched_curr(rq);
3a5e4dc1 7112 }
da7a735e
PZ
7113
7114 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7115}
7116
1da177e4
LT
7117void normalize_rt_tasks(void)
7118{
a0f98a1c 7119 struct task_struct *g, *p;
1da177e4 7120 unsigned long flags;
70b97a7f 7121 struct rq *rq;
1da177e4 7122
4cf5d77a 7123 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7124 do_each_thread(g, p) {
178be793
IM
7125 /*
7126 * Only normalize user tasks:
7127 */
7128 if (!p->mm)
7129 continue;
7130
6cfb0d5d 7131 p->se.exec_start = 0;
6cfb0d5d 7132#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7133 p->se.statistics.wait_start = 0;
7134 p->se.statistics.sleep_start = 0;
7135 p->se.statistics.block_start = 0;
6cfb0d5d 7136#endif
dd41f596 7137
aab03e05 7138 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7139 /*
7140 * Renice negative nice level userspace
7141 * tasks back to 0:
7142 */
d0ea0268 7143 if (task_nice(p) < 0 && p->mm)
dd41f596 7144 set_user_nice(p, 0);
1da177e4 7145 continue;
dd41f596 7146 }
1da177e4 7147
1d615482 7148 raw_spin_lock(&p->pi_lock);
b29739f9 7149 rq = __task_rq_lock(p);
1da177e4 7150
178be793 7151 normalize_task(rq, p);
3a5e4dc1 7152
b29739f9 7153 __task_rq_unlock(rq);
1d615482 7154 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7155 } while_each_thread(g, p);
7156
4cf5d77a 7157 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7158}
7159
7160#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7161
67fc4e0c 7162#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7163/*
67fc4e0c 7164 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7165 *
7166 * They can only be called when the whole system has been
7167 * stopped - every CPU needs to be quiescent, and no scheduling
7168 * activity can take place. Using them for anything else would
7169 * be a serious bug, and as a result, they aren't even visible
7170 * under any other configuration.
7171 */
7172
7173/**
7174 * curr_task - return the current task for a given cpu.
7175 * @cpu: the processor in question.
7176 *
7177 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7178 *
7179 * Return: The current task for @cpu.
1df5c10a 7180 */
36c8b586 7181struct task_struct *curr_task(int cpu)
1df5c10a
LT
7182{
7183 return cpu_curr(cpu);
7184}
7185
67fc4e0c
JW
7186#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7187
7188#ifdef CONFIG_IA64
1df5c10a
LT
7189/**
7190 * set_curr_task - set the current task for a given cpu.
7191 * @cpu: the processor in question.
7192 * @p: the task pointer to set.
7193 *
7194 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7195 * are serviced on a separate stack. It allows the architecture to switch the
7196 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7197 * must be called with all CPU's synchronized, and interrupts disabled, the
7198 * and caller must save the original value of the current task (see
7199 * curr_task() above) and restore that value before reenabling interrupts and
7200 * re-starting the system.
7201 *
7202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7203 */
36c8b586 7204void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7205{
7206 cpu_curr(cpu) = p;
7207}
7208
7209#endif
29f59db3 7210
7c941438 7211#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7212/* task_group_lock serializes the addition/removal of task groups */
7213static DEFINE_SPINLOCK(task_group_lock);
7214
bccbe08a
PZ
7215static void free_sched_group(struct task_group *tg)
7216{
7217 free_fair_sched_group(tg);
7218 free_rt_sched_group(tg);
e9aa1dd1 7219 autogroup_free(tg);
bccbe08a
PZ
7220 kfree(tg);
7221}
7222
7223/* allocate runqueue etc for a new task group */
ec7dc8ac 7224struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7225{
7226 struct task_group *tg;
bccbe08a
PZ
7227
7228 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7229 if (!tg)
7230 return ERR_PTR(-ENOMEM);
7231
ec7dc8ac 7232 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7233 goto err;
7234
ec7dc8ac 7235 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7236 goto err;
7237
ace783b9
LZ
7238 return tg;
7239
7240err:
7241 free_sched_group(tg);
7242 return ERR_PTR(-ENOMEM);
7243}
7244
7245void sched_online_group(struct task_group *tg, struct task_group *parent)
7246{
7247 unsigned long flags;
7248
8ed36996 7249 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7250 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7251
7252 WARN_ON(!parent); /* root should already exist */
7253
7254 tg->parent = parent;
f473aa5e 7255 INIT_LIST_HEAD(&tg->children);
09f2724a 7256 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7257 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7258}
7259
9b5b7751 7260/* rcu callback to free various structures associated with a task group */
6f505b16 7261static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7262{
29f59db3 7263 /* now it should be safe to free those cfs_rqs */
6f505b16 7264 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7265}
7266
9b5b7751 7267/* Destroy runqueue etc associated with a task group */
4cf86d77 7268void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7269{
7270 /* wait for possible concurrent references to cfs_rqs complete */
7271 call_rcu(&tg->rcu, free_sched_group_rcu);
7272}
7273
7274void sched_offline_group(struct task_group *tg)
29f59db3 7275{
8ed36996 7276 unsigned long flags;
9b5b7751 7277 int i;
29f59db3 7278
3d4b47b4
PZ
7279 /* end participation in shares distribution */
7280 for_each_possible_cpu(i)
bccbe08a 7281 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7282
7283 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7284 list_del_rcu(&tg->list);
f473aa5e 7285 list_del_rcu(&tg->siblings);
8ed36996 7286 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7287}
7288
9b5b7751 7289/* change task's runqueue when it moves between groups.
3a252015
IM
7290 * The caller of this function should have put the task in its new group
7291 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7292 * reflect its new group.
9b5b7751
SV
7293 */
7294void sched_move_task(struct task_struct *tsk)
29f59db3 7295{
8323f26c 7296 struct task_group *tg;
29f59db3
SV
7297 int on_rq, running;
7298 unsigned long flags;
7299 struct rq *rq;
7300
7301 rq = task_rq_lock(tsk, &flags);
7302
051a1d1a 7303 running = task_current(rq, tsk);
fd2f4419 7304 on_rq = tsk->on_rq;
29f59db3 7305
0e1f3483 7306 if (on_rq)
29f59db3 7307 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7308 if (unlikely(running))
7309 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7310
073219e9 7311 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7312 lockdep_is_held(&tsk->sighand->siglock)),
7313 struct task_group, css);
7314 tg = autogroup_task_group(tsk, tg);
7315 tsk->sched_task_group = tg;
7316
810b3817 7317#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7318 if (tsk->sched_class->task_move_group)
7319 tsk->sched_class->task_move_group(tsk, on_rq);
7320 else
810b3817 7321#endif
b2b5ce02 7322 set_task_rq(tsk, task_cpu(tsk));
810b3817 7323
0e1f3483
HS
7324 if (unlikely(running))
7325 tsk->sched_class->set_curr_task(rq);
7326 if (on_rq)
371fd7e7 7327 enqueue_task(rq, tsk, 0);
29f59db3 7328
0122ec5b 7329 task_rq_unlock(rq, tsk, &flags);
29f59db3 7330}
7c941438 7331#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7332
a790de99
PT
7333#ifdef CONFIG_RT_GROUP_SCHED
7334/*
7335 * Ensure that the real time constraints are schedulable.
7336 */
7337static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7338
9a7e0b18
PZ
7339/* Must be called with tasklist_lock held */
7340static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7341{
9a7e0b18 7342 struct task_struct *g, *p;
b40b2e8e 7343
9a7e0b18 7344 do_each_thread(g, p) {
029632fb 7345 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7346 return 1;
7347 } while_each_thread(g, p);
b40b2e8e 7348
9a7e0b18
PZ
7349 return 0;
7350}
b40b2e8e 7351
9a7e0b18
PZ
7352struct rt_schedulable_data {
7353 struct task_group *tg;
7354 u64 rt_period;
7355 u64 rt_runtime;
7356};
b40b2e8e 7357
a790de99 7358static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7359{
7360 struct rt_schedulable_data *d = data;
7361 struct task_group *child;
7362 unsigned long total, sum = 0;
7363 u64 period, runtime;
b40b2e8e 7364
9a7e0b18
PZ
7365 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7366 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7367
9a7e0b18
PZ
7368 if (tg == d->tg) {
7369 period = d->rt_period;
7370 runtime = d->rt_runtime;
b40b2e8e 7371 }
b40b2e8e 7372
4653f803
PZ
7373 /*
7374 * Cannot have more runtime than the period.
7375 */
7376 if (runtime > period && runtime != RUNTIME_INF)
7377 return -EINVAL;
6f505b16 7378
4653f803
PZ
7379 /*
7380 * Ensure we don't starve existing RT tasks.
7381 */
9a7e0b18
PZ
7382 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7383 return -EBUSY;
6f505b16 7384
9a7e0b18 7385 total = to_ratio(period, runtime);
6f505b16 7386
4653f803
PZ
7387 /*
7388 * Nobody can have more than the global setting allows.
7389 */
7390 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7391 return -EINVAL;
6f505b16 7392
4653f803
PZ
7393 /*
7394 * The sum of our children's runtime should not exceed our own.
7395 */
9a7e0b18
PZ
7396 list_for_each_entry_rcu(child, &tg->children, siblings) {
7397 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7398 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7399
9a7e0b18
PZ
7400 if (child == d->tg) {
7401 period = d->rt_period;
7402 runtime = d->rt_runtime;
7403 }
6f505b16 7404
9a7e0b18 7405 sum += to_ratio(period, runtime);
9f0c1e56 7406 }
6f505b16 7407
9a7e0b18
PZ
7408 if (sum > total)
7409 return -EINVAL;
7410
7411 return 0;
6f505b16
PZ
7412}
7413
9a7e0b18 7414static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7415{
8277434e
PT
7416 int ret;
7417
9a7e0b18
PZ
7418 struct rt_schedulable_data data = {
7419 .tg = tg,
7420 .rt_period = period,
7421 .rt_runtime = runtime,
7422 };
7423
8277434e
PT
7424 rcu_read_lock();
7425 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7426 rcu_read_unlock();
7427
7428 return ret;
521f1a24
DG
7429}
7430
ab84d31e 7431static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7432 u64 rt_period, u64 rt_runtime)
6f505b16 7433{
ac086bc2 7434 int i, err = 0;
9f0c1e56 7435
9f0c1e56 7436 mutex_lock(&rt_constraints_mutex);
521f1a24 7437 read_lock(&tasklist_lock);
9a7e0b18
PZ
7438 err = __rt_schedulable(tg, rt_period, rt_runtime);
7439 if (err)
9f0c1e56 7440 goto unlock;
ac086bc2 7441
0986b11b 7442 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7443 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7444 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7445
7446 for_each_possible_cpu(i) {
7447 struct rt_rq *rt_rq = tg->rt_rq[i];
7448
0986b11b 7449 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7450 rt_rq->rt_runtime = rt_runtime;
0986b11b 7451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7452 }
0986b11b 7453 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7454unlock:
521f1a24 7455 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7456 mutex_unlock(&rt_constraints_mutex);
7457
7458 return err;
6f505b16
PZ
7459}
7460
25cc7da7 7461static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7462{
7463 u64 rt_runtime, rt_period;
7464
7465 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7467 if (rt_runtime_us < 0)
7468 rt_runtime = RUNTIME_INF;
7469
ab84d31e 7470 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7471}
7472
25cc7da7 7473static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7474{
7475 u64 rt_runtime_us;
7476
d0b27fa7 7477 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7478 return -1;
7479
d0b27fa7 7480 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7481 do_div(rt_runtime_us, NSEC_PER_USEC);
7482 return rt_runtime_us;
7483}
d0b27fa7 7484
25cc7da7 7485static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7486{
7487 u64 rt_runtime, rt_period;
7488
7489 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7490 rt_runtime = tg->rt_bandwidth.rt_runtime;
7491
619b0488
R
7492 if (rt_period == 0)
7493 return -EINVAL;
7494
ab84d31e 7495 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7496}
7497
25cc7da7 7498static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7499{
7500 u64 rt_period_us;
7501
7502 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7503 do_div(rt_period_us, NSEC_PER_USEC);
7504 return rt_period_us;
7505}
332ac17e 7506#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7507
332ac17e 7508#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7509static int sched_rt_global_constraints(void)
7510{
7511 int ret = 0;
7512
7513 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7514 read_lock(&tasklist_lock);
4653f803 7515 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7516 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7517 mutex_unlock(&rt_constraints_mutex);
7518
7519 return ret;
7520}
54e99124 7521
25cc7da7 7522static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7523{
7524 /* Don't accept realtime tasks when there is no way for them to run */
7525 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7526 return 0;
7527
7528 return 1;
7529}
7530
6d6bc0ad 7531#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7532static int sched_rt_global_constraints(void)
7533{
ac086bc2 7534 unsigned long flags;
332ac17e 7535 int i, ret = 0;
ec5d4989 7536
0986b11b 7537 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7538 for_each_possible_cpu(i) {
7539 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7540
0986b11b 7541 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7542 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7543 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7544 }
0986b11b 7545 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7546
332ac17e 7547 return ret;
d0b27fa7 7548}
6d6bc0ad 7549#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7550
332ac17e
DF
7551static int sched_dl_global_constraints(void)
7552{
1724813d
PZ
7553 u64 runtime = global_rt_runtime();
7554 u64 period = global_rt_period();
332ac17e 7555 u64 new_bw = to_ratio(period, runtime);
1724813d 7556 int cpu, ret = 0;
49516342 7557 unsigned long flags;
332ac17e
DF
7558
7559 /*
7560 * Here we want to check the bandwidth not being set to some
7561 * value smaller than the currently allocated bandwidth in
7562 * any of the root_domains.
7563 *
7564 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7565 * cycling on root_domains... Discussion on different/better
7566 * solutions is welcome!
7567 */
1724813d
PZ
7568 for_each_possible_cpu(cpu) {
7569 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7570
49516342 7571 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7572 if (new_bw < dl_b->total_bw)
7573 ret = -EBUSY;
49516342 7574 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7575
7576 if (ret)
7577 break;
332ac17e
DF
7578 }
7579
1724813d 7580 return ret;
332ac17e
DF
7581}
7582
1724813d 7583static void sched_dl_do_global(void)
ce0dbbbb 7584{
1724813d
PZ
7585 u64 new_bw = -1;
7586 int cpu;
49516342 7587 unsigned long flags;
ce0dbbbb 7588
1724813d
PZ
7589 def_dl_bandwidth.dl_period = global_rt_period();
7590 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7591
7592 if (global_rt_runtime() != RUNTIME_INF)
7593 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7594
7595 /*
7596 * FIXME: As above...
7597 */
7598 for_each_possible_cpu(cpu) {
7599 struct dl_bw *dl_b = dl_bw_of(cpu);
7600
49516342 7601 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7602 dl_b->bw = new_bw;
49516342 7603 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7604 }
1724813d
PZ
7605}
7606
7607static int sched_rt_global_validate(void)
7608{
7609 if (sysctl_sched_rt_period <= 0)
7610 return -EINVAL;
7611
e9e7cb38
JL
7612 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7613 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7614 return -EINVAL;
7615
7616 return 0;
7617}
7618
7619static void sched_rt_do_global(void)
7620{
7621 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7622 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7623}
7624
d0b27fa7 7625int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7626 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7627 loff_t *ppos)
7628{
d0b27fa7
PZ
7629 int old_period, old_runtime;
7630 static DEFINE_MUTEX(mutex);
1724813d 7631 int ret;
d0b27fa7
PZ
7632
7633 mutex_lock(&mutex);
7634 old_period = sysctl_sched_rt_period;
7635 old_runtime = sysctl_sched_rt_runtime;
7636
8d65af78 7637 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7638
7639 if (!ret && write) {
1724813d
PZ
7640 ret = sched_rt_global_validate();
7641 if (ret)
7642 goto undo;
7643
d0b27fa7 7644 ret = sched_rt_global_constraints();
1724813d
PZ
7645 if (ret)
7646 goto undo;
7647
7648 ret = sched_dl_global_constraints();
7649 if (ret)
7650 goto undo;
7651
7652 sched_rt_do_global();
7653 sched_dl_do_global();
7654 }
7655 if (0) {
7656undo:
7657 sysctl_sched_rt_period = old_period;
7658 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7659 }
7660 mutex_unlock(&mutex);
7661
7662 return ret;
7663}
68318b8e 7664
1724813d 7665int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7666 void __user *buffer, size_t *lenp,
7667 loff_t *ppos)
7668{
7669 int ret;
332ac17e 7670 static DEFINE_MUTEX(mutex);
332ac17e
DF
7671
7672 mutex_lock(&mutex);
332ac17e 7673 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7674 /* make sure that internally we keep jiffies */
7675 /* also, writing zero resets timeslice to default */
332ac17e 7676 if (!ret && write) {
1724813d
PZ
7677 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7678 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7679 }
7680 mutex_unlock(&mutex);
332ac17e
DF
7681 return ret;
7682}
7683
052f1dc7 7684#ifdef CONFIG_CGROUP_SCHED
68318b8e 7685
a7c6d554 7686static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7687{
a7c6d554 7688 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7689}
7690
eb95419b
TH
7691static struct cgroup_subsys_state *
7692cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7693{
eb95419b
TH
7694 struct task_group *parent = css_tg(parent_css);
7695 struct task_group *tg;
68318b8e 7696
eb95419b 7697 if (!parent) {
68318b8e 7698 /* This is early initialization for the top cgroup */
07e06b01 7699 return &root_task_group.css;
68318b8e
SV
7700 }
7701
ec7dc8ac 7702 tg = sched_create_group(parent);
68318b8e
SV
7703 if (IS_ERR(tg))
7704 return ERR_PTR(-ENOMEM);
7705
68318b8e
SV
7706 return &tg->css;
7707}
7708
eb95419b 7709static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7710{
eb95419b 7711 struct task_group *tg = css_tg(css);
5c9d535b 7712 struct task_group *parent = css_tg(css->parent);
ace783b9 7713
63876986
TH
7714 if (parent)
7715 sched_online_group(tg, parent);
ace783b9
LZ
7716 return 0;
7717}
7718
eb95419b 7719static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7720{
eb95419b 7721 struct task_group *tg = css_tg(css);
68318b8e
SV
7722
7723 sched_destroy_group(tg);
7724}
7725
eb95419b 7726static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7727{
eb95419b 7728 struct task_group *tg = css_tg(css);
ace783b9
LZ
7729
7730 sched_offline_group(tg);
7731}
7732
eb95419b 7733static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7734 struct cgroup_taskset *tset)
68318b8e 7735{
bb9d97b6
TH
7736 struct task_struct *task;
7737
924f0d9a 7738 cgroup_taskset_for_each(task, tset) {
b68aa230 7739#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7740 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7741 return -EINVAL;
b68aa230 7742#else
bb9d97b6
TH
7743 /* We don't support RT-tasks being in separate groups */
7744 if (task->sched_class != &fair_sched_class)
7745 return -EINVAL;
b68aa230 7746#endif
bb9d97b6 7747 }
be367d09
BB
7748 return 0;
7749}
68318b8e 7750
eb95419b 7751static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7752 struct cgroup_taskset *tset)
68318b8e 7753{
bb9d97b6
TH
7754 struct task_struct *task;
7755
924f0d9a 7756 cgroup_taskset_for_each(task, tset)
bb9d97b6 7757 sched_move_task(task);
68318b8e
SV
7758}
7759
eb95419b
TH
7760static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7761 struct cgroup_subsys_state *old_css,
7762 struct task_struct *task)
068c5cc5
PZ
7763{
7764 /*
7765 * cgroup_exit() is called in the copy_process() failure path.
7766 * Ignore this case since the task hasn't ran yet, this avoids
7767 * trying to poke a half freed task state from generic code.
7768 */
7769 if (!(task->flags & PF_EXITING))
7770 return;
7771
7772 sched_move_task(task);
7773}
7774
052f1dc7 7775#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7776static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7777 struct cftype *cftype, u64 shareval)
68318b8e 7778{
182446d0 7779 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7780}
7781
182446d0
TH
7782static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7783 struct cftype *cft)
68318b8e 7784{
182446d0 7785 struct task_group *tg = css_tg(css);
68318b8e 7786
c8b28116 7787 return (u64) scale_load_down(tg->shares);
68318b8e 7788}
ab84d31e
PT
7789
7790#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7791static DEFINE_MUTEX(cfs_constraints_mutex);
7792
ab84d31e
PT
7793const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7794const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7795
a790de99
PT
7796static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7797
ab84d31e
PT
7798static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7799{
56f570e5 7800 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7801 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7802
7803 if (tg == &root_task_group)
7804 return -EINVAL;
7805
7806 /*
7807 * Ensure we have at some amount of bandwidth every period. This is
7808 * to prevent reaching a state of large arrears when throttled via
7809 * entity_tick() resulting in prolonged exit starvation.
7810 */
7811 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7812 return -EINVAL;
7813
7814 /*
7815 * Likewise, bound things on the otherside by preventing insane quota
7816 * periods. This also allows us to normalize in computing quota
7817 * feasibility.
7818 */
7819 if (period > max_cfs_quota_period)
7820 return -EINVAL;
7821
0e59bdae
KT
7822 /*
7823 * Prevent race between setting of cfs_rq->runtime_enabled and
7824 * unthrottle_offline_cfs_rqs().
7825 */
7826 get_online_cpus();
a790de99
PT
7827 mutex_lock(&cfs_constraints_mutex);
7828 ret = __cfs_schedulable(tg, period, quota);
7829 if (ret)
7830 goto out_unlock;
7831
58088ad0 7832 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7833 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7834 /*
7835 * If we need to toggle cfs_bandwidth_used, off->on must occur
7836 * before making related changes, and on->off must occur afterwards
7837 */
7838 if (runtime_enabled && !runtime_was_enabled)
7839 cfs_bandwidth_usage_inc();
ab84d31e
PT
7840 raw_spin_lock_irq(&cfs_b->lock);
7841 cfs_b->period = ns_to_ktime(period);
7842 cfs_b->quota = quota;
58088ad0 7843
a9cf55b2 7844 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7845 /* restart the period timer (if active) to handle new period expiry */
7846 if (runtime_enabled && cfs_b->timer_active) {
7847 /* force a reprogram */
09dc4ab0 7848 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7849 }
ab84d31e
PT
7850 raw_spin_unlock_irq(&cfs_b->lock);
7851
0e59bdae 7852 for_each_online_cpu(i) {
ab84d31e 7853 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7854 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7855
7856 raw_spin_lock_irq(&rq->lock);
58088ad0 7857 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7858 cfs_rq->runtime_remaining = 0;
671fd9da 7859
029632fb 7860 if (cfs_rq->throttled)
671fd9da 7861 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7862 raw_spin_unlock_irq(&rq->lock);
7863 }
1ee14e6c
BS
7864 if (runtime_was_enabled && !runtime_enabled)
7865 cfs_bandwidth_usage_dec();
a790de99
PT
7866out_unlock:
7867 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7868 put_online_cpus();
ab84d31e 7869
a790de99 7870 return ret;
ab84d31e
PT
7871}
7872
7873int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7874{
7875 u64 quota, period;
7876
029632fb 7877 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7878 if (cfs_quota_us < 0)
7879 quota = RUNTIME_INF;
7880 else
7881 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7882
7883 return tg_set_cfs_bandwidth(tg, period, quota);
7884}
7885
7886long tg_get_cfs_quota(struct task_group *tg)
7887{
7888 u64 quota_us;
7889
029632fb 7890 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7891 return -1;
7892
029632fb 7893 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7894 do_div(quota_us, NSEC_PER_USEC);
7895
7896 return quota_us;
7897}
7898
7899int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7900{
7901 u64 quota, period;
7902
7903 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7904 quota = tg->cfs_bandwidth.quota;
ab84d31e 7905
ab84d31e
PT
7906 return tg_set_cfs_bandwidth(tg, period, quota);
7907}
7908
7909long tg_get_cfs_period(struct task_group *tg)
7910{
7911 u64 cfs_period_us;
7912
029632fb 7913 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7914 do_div(cfs_period_us, NSEC_PER_USEC);
7915
7916 return cfs_period_us;
7917}
7918
182446d0
TH
7919static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7920 struct cftype *cft)
ab84d31e 7921{
182446d0 7922 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7923}
7924
182446d0
TH
7925static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7926 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7927{
182446d0 7928 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7929}
7930
182446d0
TH
7931static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7932 struct cftype *cft)
ab84d31e 7933{
182446d0 7934 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7935}
7936
182446d0
TH
7937static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7938 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7939{
182446d0 7940 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7941}
7942
a790de99
PT
7943struct cfs_schedulable_data {
7944 struct task_group *tg;
7945 u64 period, quota;
7946};
7947
7948/*
7949 * normalize group quota/period to be quota/max_period
7950 * note: units are usecs
7951 */
7952static u64 normalize_cfs_quota(struct task_group *tg,
7953 struct cfs_schedulable_data *d)
7954{
7955 u64 quota, period;
7956
7957 if (tg == d->tg) {
7958 period = d->period;
7959 quota = d->quota;
7960 } else {
7961 period = tg_get_cfs_period(tg);
7962 quota = tg_get_cfs_quota(tg);
7963 }
7964
7965 /* note: these should typically be equivalent */
7966 if (quota == RUNTIME_INF || quota == -1)
7967 return RUNTIME_INF;
7968
7969 return to_ratio(period, quota);
7970}
7971
7972static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7973{
7974 struct cfs_schedulable_data *d = data;
029632fb 7975 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7976 s64 quota = 0, parent_quota = -1;
7977
7978 if (!tg->parent) {
7979 quota = RUNTIME_INF;
7980 } else {
029632fb 7981 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7982
7983 quota = normalize_cfs_quota(tg, d);
7984 parent_quota = parent_b->hierarchal_quota;
7985
7986 /*
7987 * ensure max(child_quota) <= parent_quota, inherit when no
7988 * limit is set
7989 */
7990 if (quota == RUNTIME_INF)
7991 quota = parent_quota;
7992 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7993 return -EINVAL;
7994 }
7995 cfs_b->hierarchal_quota = quota;
7996
7997 return 0;
7998}
7999
8000static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8001{
8277434e 8002 int ret;
a790de99
PT
8003 struct cfs_schedulable_data data = {
8004 .tg = tg,
8005 .period = period,
8006 .quota = quota,
8007 };
8008
8009 if (quota != RUNTIME_INF) {
8010 do_div(data.period, NSEC_PER_USEC);
8011 do_div(data.quota, NSEC_PER_USEC);
8012 }
8013
8277434e
PT
8014 rcu_read_lock();
8015 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8016 rcu_read_unlock();
8017
8018 return ret;
a790de99 8019}
e8da1b18 8020
2da8ca82 8021static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8022{
2da8ca82 8023 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8024 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8025
44ffc75b
TH
8026 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8027 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8028 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8029
8030 return 0;
8031}
ab84d31e 8032#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8033#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8034
052f1dc7 8035#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8036static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8037 struct cftype *cft, s64 val)
6f505b16 8038{
182446d0 8039 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8040}
8041
182446d0
TH
8042static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8043 struct cftype *cft)
6f505b16 8044{
182446d0 8045 return sched_group_rt_runtime(css_tg(css));
6f505b16 8046}
d0b27fa7 8047
182446d0
TH
8048static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8049 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8050{
182446d0 8051 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8052}
8053
182446d0
TH
8054static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8055 struct cftype *cft)
d0b27fa7 8056{
182446d0 8057 return sched_group_rt_period(css_tg(css));
d0b27fa7 8058}
6d6bc0ad 8059#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8060
fe5c7cc2 8061static struct cftype cpu_files[] = {
052f1dc7 8062#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8063 {
8064 .name = "shares",
f4c753b7
PM
8065 .read_u64 = cpu_shares_read_u64,
8066 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8067 },
052f1dc7 8068#endif
ab84d31e
PT
8069#ifdef CONFIG_CFS_BANDWIDTH
8070 {
8071 .name = "cfs_quota_us",
8072 .read_s64 = cpu_cfs_quota_read_s64,
8073 .write_s64 = cpu_cfs_quota_write_s64,
8074 },
8075 {
8076 .name = "cfs_period_us",
8077 .read_u64 = cpu_cfs_period_read_u64,
8078 .write_u64 = cpu_cfs_period_write_u64,
8079 },
e8da1b18
NR
8080 {
8081 .name = "stat",
2da8ca82 8082 .seq_show = cpu_stats_show,
e8da1b18 8083 },
ab84d31e 8084#endif
052f1dc7 8085#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8086 {
9f0c1e56 8087 .name = "rt_runtime_us",
06ecb27c
PM
8088 .read_s64 = cpu_rt_runtime_read,
8089 .write_s64 = cpu_rt_runtime_write,
6f505b16 8090 },
d0b27fa7
PZ
8091 {
8092 .name = "rt_period_us",
f4c753b7
PM
8093 .read_u64 = cpu_rt_period_read_uint,
8094 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8095 },
052f1dc7 8096#endif
4baf6e33 8097 { } /* terminate */
68318b8e
SV
8098};
8099
073219e9 8100struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8101 .css_alloc = cpu_cgroup_css_alloc,
8102 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8103 .css_online = cpu_cgroup_css_online,
8104 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8105 .can_attach = cpu_cgroup_can_attach,
8106 .attach = cpu_cgroup_attach,
068c5cc5 8107 .exit = cpu_cgroup_exit,
4baf6e33 8108 .base_cftypes = cpu_files,
68318b8e
SV
8109 .early_init = 1,
8110};
8111
052f1dc7 8112#endif /* CONFIG_CGROUP_SCHED */
d842de87 8113
b637a328
PM
8114void dump_cpu_task(int cpu)
8115{
8116 pr_info("Task dump for CPU %d:\n", cpu);
8117 sched_show_task(cpu_curr(cpu));
8118}