sched/idle: Add support for tasks that inject idle
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
379d9ecb
PM
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
c5bfece2 586 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
53c5fa16 589 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
590 return true;
591 }
592
593 return false;
594}
595
379d9ecb
PM
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
1c20091e
FW
601void wake_up_nohz_cpu(int cpu)
602{
c5bfece2 603 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
604 wake_up_idle_cpu(cpu);
605}
606
ca38062e 607static inline bool got_nohz_idle_kick(void)
45bf76df 608{
1c792db7 609 int cpu = smp_processor_id();
873b4c65
VG
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
45bf76df
IM
623}
624
3451d024 625#else /* CONFIG_NO_HZ_COMMON */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
3451d024 632#endif /* CONFIG_NO_HZ_COMMON */
d842de87 633
ce831b38 634#ifdef CONFIG_NO_HZ_FULL
76d92ac3 635bool sched_can_stop_tick(struct rq *rq)
ce831b38 636{
76d92ac3
FW
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
1e78cdbd 643 /*
2548d546
PZ
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
1e78cdbd 646 */
76d92ac3
FW
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
1e78cdbd
RR
652 }
653
2548d546
PZ
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
541b8264 668 return false;
ce831b38 669
541b8264 670 return true;
ce831b38
FW
671}
672#endif /* CONFIG_NO_HZ_FULL */
d842de87 673
029632fb 674void sched_avg_update(struct rq *rq)
18d95a28 675{
e9e9250b
PZ
676 s64 period = sched_avg_period();
677
78becc27 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
18d95a28
PZ
688}
689
6d6bc0ad 690#endif /* CONFIG_SMP */
18d95a28 691
a790de99
PT
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 694/*
8277434e
PT
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 699 */
029632fb 700int walk_tg_tree_from(struct task_group *from,
8277434e 701 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
702{
703 struct task_group *parent, *child;
eb755805 704 int ret;
c09595f6 705
8277434e
PT
706 parent = from;
707
c09595f6 708down:
eb755805
PZ
709 ret = (*down)(parent, data);
710 if (ret)
8277434e 711 goto out;
c09595f6
PZ
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
eb755805 719 ret = (*up)(parent, data);
8277434e
PT
720 if (ret || parent == from)
721 goto out;
c09595f6
PZ
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
8277434e 727out:
eb755805 728 return ret;
c09595f6
PZ
729}
730
029632fb 731int tg_nop(struct task_group *tg, void *data)
eb755805 732{
e2b245f8 733 return 0;
eb755805 734}
18d95a28
PZ
735#endif
736
45bf76df
IM
737static void set_load_weight(struct task_struct *p)
738{
f05998d4
NR
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
dd41f596
IM
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
20f9cd2a 745 if (idle_policy(p->policy)) {
c8b28116 746 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 747 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
748 return;
749 }
71f8bd46 750
ed82b8a1
AK
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
753}
754
1de64443 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
371fd7e7 760 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
761}
762
1de64443 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
371fd7e7 768 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
769}
770
029632fb 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
371fd7e7 776 enqueue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
029632fb 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
371fd7e7 784 dequeue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
fe44d621 787static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 788{
095c0aa8
GC
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
095c0aa8
GC
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 821 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
095c0aa8 828 rq->prev_steal_time_rq += steal;
095c0aa8
GC
829 delta -= steal;
830 }
831#endif
832
fe44d621
PZ
833 rq->clock_task += delta;
834
095c0aa8 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
aa483808
VP
839}
840
34f971f6
PZ
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
14531189 871/*
dd41f596 872 * __normal_prio - return the priority that is based on the static prio
14531189 873 */
14531189
IM
874static inline int __normal_prio(struct task_struct *p)
875{
dd41f596 876 return p->static_prio;
14531189
IM
877}
878
b29739f9
IM
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
36c8b586 886static inline int normal_prio(struct task_struct *p)
b29739f9
IM
887{
888 int prio;
889
aab03e05
DF
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
e69f6186
YB
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 924 */
36c8b586 925inline int task_curr(const struct task_struct *p)
1da177e4
LT
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
67dfa1b7 930/*
4c9a4bc8
PZ
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
67dfa1b7 936 */
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e 943 prev_class->switched_from(rq, p);
4c9a4bc8 944
da7a735e 945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
8875125e 961 resched_curr(rq);
1e5a7405
PZ
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
da0c1e65 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 972 rq_clock_skip_update(rq, true);
1e5a7405
PZ
973}
974
1da177e4 975#ifdef CONFIG_SMP
5cc389bc
PZ
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
5e16bbc2 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 996{
5cc389bc
PZ
997 lockdep_assert_held(&rq->lock);
998
5cc389bc 999 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1000 dequeue_task(rq, p, 0);
5cc389bc
PZ
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1008 enqueue_task(rq, p, 0);
3ea94de1 1009 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
5cc389bc 1028 */
5e16bbc2 1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1030{
5cc389bc 1031 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1032 return rq;
5cc389bc
PZ
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1036 return rq;
5cc389bc 1037
5e16bbc2
PZ
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
5cc389bc
PZ
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
5e16bbc2
PZ
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
5cc389bc
PZ
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
5e16bbc2
PZ
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
bf89a304
CC
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
5e16bbc2
PZ
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
5cc389bc
PZ
1082 local_irq_enable();
1083 return 0;
1084}
1085
c5b28038
PZ
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1091{
5cc389bc
PZ
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
c5b28038
PZ
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
6c37067e
PZ
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
c5b28038 1101 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1de64443 1112 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
c5b28038 1117 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1118
6c37067e 1119 if (queued)
1de64443 1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1121 if (running)
b2bf6c31 1122 set_curr_task(rq, p);
c5b28038
PZ
1123}
1124
5cc389bc
PZ
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
25834c73
PZ
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
5cc389bc 1136{
e9d867a6 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1138 unsigned int dest_cpu;
eb580751
PZ
1139 struct rq_flags rf;
1140 struct rq *rq;
5cc389bc
PZ
1141 int ret = 0;
1142
eb580751 1143 rq = task_rq_lock(p, &rf);
5cc389bc 1144
e9d867a6
PZI
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
25834c73
PZ
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
5cc389bc
PZ
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
e9d867a6 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
e9d867a6
PZI
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
5cc389bc
PZ
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
e9d867a6 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
eb580751 1189 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
cbce1a68
PZ
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
e7904a28 1198 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1199 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1200 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1201 }
5cc389bc 1202out:
eb580751 1203 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1204
1205 return ret;
1206}
25834c73
PZ
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
5cc389bc
PZ
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
dd41f596 1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1215{
e2912009
PZ
1216#ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
077614ee 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1222 !p->on_rq);
0122ec5b 1223
3ea94de1
JP
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
0122ec5b 1233#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1239 * see task_group().
6c6c54e1
PZ
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
0122ec5b
PZ
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
e2912009
PZ
1247#endif
1248
de1d7286 1249 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1250
0c69774e 1251 if (task_cpu(p) != new_cpu) {
0a74bef8 1252 if (p->sched_class->migrate_task_rq)
5a4fd036 1253 p->sched_class->migrate_task_rq(p);
0c69774e 1254 p->se.nr_migrations++;
ff303e66 1255 perf_event_task_migrate(p);
0c69774e 1256 }
dd41f596
IM
1257
1258 __set_task_cpu(p, new_cpu);
c65cc870
IM
1259}
1260
ac66f547
PZ
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
da0c1e65 1263 if (task_on_rq_queued(p)) {
ac66f547
PZ
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
3ea94de1 1269 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
3ea94de1 1273 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1279 * previous cpu our target instead of where it really is.
ac66f547
PZ
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283}
1284
1285struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
62694cd5
PZ
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
ac66f547
PZ
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
74602315
PZ
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
ac66f547 1304 double_rq_lock(src_rq, dst_rq);
62694cd5 1305
ac66f547
PZ
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323unlock:
1324 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1327
1328 return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
ac66f547
PZ
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
6acce3ef
PZ
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
ac66f547
PZ
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
286549dc 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
ac66f547
PZ
1366 return ret;
1367}
1368
1da177e4
LT
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
85ba2d86
RM
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1da177e4
LT
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
85ba2d86 1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1386{
da0c1e65 1387 int running, queued;
eb580751 1388 struct rq_flags rf;
85ba2d86 1389 unsigned long ncsw;
70b97a7f 1390 struct rq *rq;
1da177e4 1391
3a5c359a
AK
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
fa490cfd 1400
3a5c359a
AK
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
85ba2d86
RM
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
3a5c359a 1415 cpu_relax();
85ba2d86 1416 }
fa490cfd 1417
3a5c359a
AK
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
eb580751 1423 rq = task_rq_lock(p, &rf);
27a9da65 1424 trace_sched_wait_task(p);
3a5c359a 1425 running = task_running(rq, p);
da0c1e65 1426 queued = task_on_rq_queued(p);
85ba2d86 1427 ncsw = 0;
f31e11d8 1428 if (!match_state || p->state == match_state)
93dcf55f 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1430 task_rq_unlock(rq, p, &rf);
fa490cfd 1431
85ba2d86
RM
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
3a5c359a
AK
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
fa490cfd 1448
3a5c359a
AK
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
80dd99b3 1454 * So if it was still runnable (but just not actively
3a5c359a
AK
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
da0c1e65 1458 if (unlikely(queued)) {
8eb90c30
TG
1459 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1463 continue;
1464 }
fa490cfd 1465
3a5c359a
AK
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
85ba2d86
RM
1473
1474 return ncsw;
1da177e4
LT
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
25985edc 1484 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
36c8b586 1490void kick_process(struct task_struct *p)
1da177e4
LT
1491{
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499}
b43e3521 1500EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1501
30da688e 1502/*
013fdb80 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
30da688e 1523 */
5da9a0fb
PZ
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
aa00d89c
TC
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
5da9a0fb 1530
aa00d89c
TC
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
2baab4e9 1546 }
5da9a0fb 1547
2baab4e9
PZ
1548 for (;;) {
1549 /* Any allowed, online CPU? */
e3831edd 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1554 continue;
1555 goto out;
1556 }
5da9a0fb 1557
e73e85f0 1558 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1559 switch (state) {
1560 case cpuset:
e73e85f0
ON
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
2baab4e9
PZ
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
aac74dc4 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1587 task_pid_nr(p), p->comm, cpu);
1588 }
5da9a0fb
PZ
1589 }
1590
1591 return dest_cpu;
1592}
1593
e2912009 1594/*
013fdb80 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1596 */
970b13ba 1597static inline
ac66f547 1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1599{
cbce1a68
PZ
1600 lockdep_assert_held(&p->pi_lock);
1601
50605ffb 1602 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
fa17b507 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1618 !cpu_online(cpu)))
5da9a0fb 1619 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1620
1621 return cpu;
970b13ba 1622}
09a40af5
MG
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628}
25834c73
PZ
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634{
1635 return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
5cc389bc 1638#endif /* CONFIG_SMP */
970b13ba 1639
d7c01d27 1640static void
b84cb5df 1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1642{
4fa8d299 1643 struct rq *rq;
b84cb5df 1644
4fa8d299
JP
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
d7c01d27 1649
4fa8d299
JP
1650#ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
ae92882e
JP
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1654 } else {
1655 struct sched_domain *sd;
1656
ae92882e 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1658 rcu_read_lock();
4fa8d299 1659 for_each_domain(rq->cpu, sd) {
d7c01d27 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1661 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1662 break;
1663 }
1664 }
057f3fad 1665 rcu_read_unlock();
d7c01d27 1666 }
f339b9dc
PZ
1667
1668 if (wake_flags & WF_MIGRATED)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1670#endif /* CONFIG_SMP */
1671
ae92882e
JP
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1674
1675 if (wake_flags & WF_SYNC)
ae92882e 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1677}
1678
1de64443 1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1680{
9ed3811a 1681 activate_task(rq, p, en_flags);
da0c1e65 1682 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1687}
1688
23f41eeb
PZ
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
e7904a28
PZ
1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct pin_cookie cookie)
9ed3811a 1694{
9ed3811a 1695 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1696 p->state = TASK_RUNNING;
fbd705a0
PZ
1697 trace_sched_wakeup(p);
1698
9ed3811a 1699#ifdef CONFIG_SMP
4c9a4bc8
PZ
1700 if (p->sched_class->task_woken) {
1701 /*
cbce1a68
PZ
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1704 */
e7904a28 1705 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1706 p->sched_class->task_woken(rq, p);
e7904a28 1707 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1708 }
9ed3811a 1709
e69c6341 1710 if (rq->idle_stamp) {
78becc27 1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1712 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1713
abfafa54
JL
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
9ed3811a 1717 rq->avg_idle = max;
abfafa54 1718
9ed3811a
TH
1719 rq->idle_stamp = 0;
1720 }
1721#endif
1722}
1723
c05fbafb 1724static void
e7904a28
PZ
1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct pin_cookie cookie)
c05fbafb 1727{
b5179ac7
PZ
1728 int en_flags = ENQUEUE_WAKEUP;
1729
cbce1a68
PZ
1730 lockdep_assert_held(&rq->lock);
1731
c05fbafb
PZ
1732#ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
b5179ac7 1735
b5179ac7 1736 if (wake_flags & WF_MIGRATED)
59efa0ba 1737 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1738#endif
1739
b5179ac7 1740 ttwu_activate(rq, p, en_flags);
e7904a28 1741 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
eb580751 1752 struct rq_flags rf;
c05fbafb
PZ
1753 struct rq *rq;
1754 int ret = 0;
1755
eb580751 1756 rq = __task_rq_lock(p, &rf);
da0c1e65 1757 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
e7904a28 1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1761 ret = 1;
1762 }
eb580751 1763 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1764
1765 return ret;
1766}
1767
317f3941 1768#ifdef CONFIG_SMP
e3baac47 1769void sched_ttwu_pending(void)
317f3941
PZ
1770{
1771 struct rq *rq = this_rq();
fa14ff4a 1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1773 struct pin_cookie cookie;
fa14ff4a 1774 struct task_struct *p;
e3baac47 1775 unsigned long flags;
317f3941 1776
e3baac47
PZ
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1781 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1782
fa14ff4a 1783 while (llist) {
b7e7ade3
PZ
1784 int wake_flags = 0;
1785
fa14ff4a
PZ
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
b7e7ade3
PZ
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1793 }
1794
e7904a28 1795 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1797}
1798
1799void scheduler_ipi(void)
1800{
f27dde8d
PZ
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
8cb75e0c 1806 preempt_fold_need_resched();
f27dde8d 1807
fd2ac4f4 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
fa14ff4a 1825 sched_ttwu_pending();
ca38062e
SS
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
873b4c65 1830 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1831 this_rq()->idle_balance = 1;
ca38062e 1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1833 }
c5d753a5 1834 irq_exit();
317f3941
PZ
1835}
1836
b7e7ade3 1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1838{
e3baac47
PZ
1839 struct rq *rq = cpu_rq(cpu);
1840
b7e7ade3
PZ
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
e3baac47
PZ
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
b5179ac7 1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1882{
1883 struct rq *rq = cpu_rq(cpu);
e7904a28 1884 struct pin_cookie cookie;
c05fbafb 1885
17d9f311 1886#if defined(CONFIG_SMP)
39be3501 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1889 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1890 return;
1891 }
1892#endif
1893
c05fbafb 1894 raw_spin_lock(&rq->lock);
e7904a28 1895 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1896 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1897 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1898 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1899}
1900
8643cda5
PZ
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1951 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1f03e8d2 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1989 *
1990 */
1991
9ed3811a 1992/**
1da177e4 1993 * try_to_wake_up - wake up a thread
9ed3811a 1994 * @p: the thread to be awakened
1da177e4 1995 * @state: the mask of task states that can be woken
9ed3811a 1996 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1997 *
1998 * Put it on the run-queue if it's not already there. The "current"
1999 * thread is always on the run-queue (except when the actual
2000 * re-schedule is in progress), and as such you're allowed to do
2001 * the simpler "current->state = TASK_RUNNING" to mark yourself
2002 * runnable without the overhead of this.
2003 *
e69f6186 2004 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 2005 * or @state didn't match @p's state.
1da177e4 2006 */
e4a52bcb
PZ
2007static int
2008try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2009{
1da177e4 2010 unsigned long flags;
c05fbafb 2011 int cpu, success = 0;
2398f2c6 2012
e0acd0a6
ON
2013 /*
2014 * If we are going to wake up a thread waiting for CONDITION we
2015 * need to ensure that CONDITION=1 done by the caller can not be
2016 * reordered with p->state check below. This pairs with mb() in
2017 * set_current_state() the waiting thread does.
2018 */
2019 smp_mb__before_spinlock();
013fdb80 2020 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2021 if (!(p->state & state))
1da177e4
LT
2022 goto out;
2023
fbd705a0
PZ
2024 trace_sched_waking(p);
2025
c05fbafb 2026 success = 1; /* we're going to change ->state */
1da177e4 2027 cpu = task_cpu(p);
1da177e4 2028
135e8c92
BS
2029 /*
2030 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2031 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2032 * in smp_cond_load_acquire() below.
2033 *
2034 * sched_ttwu_pending() try_to_wake_up()
2035 * [S] p->on_rq = 1; [L] P->state
2036 * UNLOCK rq->lock -----.
2037 * \
2038 * +--- RMB
2039 * schedule() /
2040 * LOCK rq->lock -----'
2041 * UNLOCK rq->lock
2042 *
2043 * [task p]
2044 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2045 *
2046 * Pairs with the UNLOCK+LOCK on rq->lock from the
2047 * last wakeup of our task and the schedule that got our task
2048 * current.
2049 */
2050 smp_rmb();
c05fbafb
PZ
2051 if (p->on_rq && ttwu_remote(p, wake_flags))
2052 goto stat;
1da177e4 2053
1da177e4 2054#ifdef CONFIG_SMP
ecf7d01c
PZ
2055 /*
2056 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2057 * possible to, falsely, observe p->on_cpu == 0.
2058 *
2059 * One must be running (->on_cpu == 1) in order to remove oneself
2060 * from the runqueue.
2061 *
2062 * [S] ->on_cpu = 1; [L] ->on_rq
2063 * UNLOCK rq->lock
2064 * RMB
2065 * LOCK rq->lock
2066 * [S] ->on_rq = 0; [L] ->on_cpu
2067 *
2068 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2069 * from the consecutive calls to schedule(); the first switching to our
2070 * task, the second putting it to sleep.
2071 */
2072 smp_rmb();
2073
e9c84311 2074 /*
c05fbafb
PZ
2075 * If the owning (remote) cpu is still in the middle of schedule() with
2076 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2077 *
2078 * Pairs with the smp_store_release() in finish_lock_switch().
2079 *
2080 * This ensures that tasks getting woken will be fully ordered against
2081 * their previous state and preserve Program Order.
0970d299 2082 */
1f03e8d2 2083 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2084
a8e4f2ea 2085 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2086 p->state = TASK_WAKING;
e7693a36 2087
ac66f547 2088 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2089 if (task_cpu(p) != cpu) {
2090 wake_flags |= WF_MIGRATED;
e4a52bcb 2091 set_task_cpu(p, cpu);
f339b9dc 2092 }
1da177e4 2093#endif /* CONFIG_SMP */
1da177e4 2094
b5179ac7 2095 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2096stat:
4fa8d299 2097 ttwu_stat(p, cpu, wake_flags);
1da177e4 2098out:
013fdb80 2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2100
2101 return success;
2102}
2103
21aa9af0
TH
2104/**
2105 * try_to_wake_up_local - try to wake up a local task with rq lock held
2106 * @p: the thread to be awakened
9279e0d2 2107 * @cookie: context's cookie for pinning
21aa9af0 2108 *
2acca55e 2109 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2110 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2111 * the current task.
21aa9af0 2112 */
e7904a28 2113static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2114{
2115 struct rq *rq = task_rq(p);
21aa9af0 2116
383efcd0
TH
2117 if (WARN_ON_ONCE(rq != this_rq()) ||
2118 WARN_ON_ONCE(p == current))
2119 return;
2120
21aa9af0
TH
2121 lockdep_assert_held(&rq->lock);
2122
2acca55e 2123 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2124 /*
2125 * This is OK, because current is on_cpu, which avoids it being
2126 * picked for load-balance and preemption/IRQs are still
2127 * disabled avoiding further scheduler activity on it and we've
2128 * not yet picked a replacement task.
2129 */
e7904a28 2130 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2131 raw_spin_unlock(&rq->lock);
2132 raw_spin_lock(&p->pi_lock);
2133 raw_spin_lock(&rq->lock);
e7904a28 2134 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2135 }
2136
21aa9af0 2137 if (!(p->state & TASK_NORMAL))
2acca55e 2138 goto out;
21aa9af0 2139
fbd705a0
PZ
2140 trace_sched_waking(p);
2141
da0c1e65 2142 if (!task_on_rq_queued(p))
d7c01d27
PZ
2143 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2144
e7904a28 2145 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2146 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2147out:
2148 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2149}
2150
50fa610a
DH
2151/**
2152 * wake_up_process - Wake up a specific process
2153 * @p: The process to be woken up.
2154 *
2155 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2156 * processes.
2157 *
2158 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2159 *
2160 * It may be assumed that this function implies a write memory barrier before
2161 * changing the task state if and only if any tasks are woken up.
2162 */
7ad5b3a5 2163int wake_up_process(struct task_struct *p)
1da177e4 2164{
9067ac85 2165 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2166}
1da177e4
LT
2167EXPORT_SYMBOL(wake_up_process);
2168
7ad5b3a5 2169int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2170{
2171 return try_to_wake_up(p, state, 0);
2172}
2173
a5e7be3b
JL
2174/*
2175 * This function clears the sched_dl_entity static params.
2176 */
2177void __dl_clear_params(struct task_struct *p)
2178{
2179 struct sched_dl_entity *dl_se = &p->dl;
2180
2181 dl_se->dl_runtime = 0;
2182 dl_se->dl_deadline = 0;
2183 dl_se->dl_period = 0;
2184 dl_se->flags = 0;
2185 dl_se->dl_bw = 0;
40767b0d
PZ
2186
2187 dl_se->dl_throttled = 0;
40767b0d 2188 dl_se->dl_yielded = 0;
a5e7be3b
JL
2189}
2190
1da177e4
LT
2191/*
2192 * Perform scheduler related setup for a newly forked process p.
2193 * p is forked by current.
dd41f596
IM
2194 *
2195 * __sched_fork() is basic setup used by init_idle() too:
2196 */
5e1576ed 2197static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2198{
fd2f4419
PZ
2199 p->on_rq = 0;
2200
2201 p->se.on_rq = 0;
dd41f596
IM
2202 p->se.exec_start = 0;
2203 p->se.sum_exec_runtime = 0;
f6cf891c 2204 p->se.prev_sum_exec_runtime = 0;
6c594c21 2205 p->se.nr_migrations = 0;
da7a735e 2206 p->se.vruntime = 0;
fd2f4419 2207 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2208
ad936d86
BP
2209#ifdef CONFIG_FAIR_GROUP_SCHED
2210 p->se.cfs_rq = NULL;
2211#endif
2212
6cfb0d5d 2213#ifdef CONFIG_SCHEDSTATS
cb251765 2214 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2215 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2216#endif
476d139c 2217
aab03e05 2218 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2219 init_dl_task_timer(&p->dl);
a5e7be3b 2220 __dl_clear_params(p);
aab03e05 2221
fa717060 2222 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2223 p->rt.timeout = 0;
2224 p->rt.time_slice = sched_rr_timeslice;
2225 p->rt.on_rq = 0;
2226 p->rt.on_list = 0;
476d139c 2227
e107be36
AK
2228#ifdef CONFIG_PREEMPT_NOTIFIERS
2229 INIT_HLIST_HEAD(&p->preempt_notifiers);
2230#endif
cbee9f88
PZ
2231
2232#ifdef CONFIG_NUMA_BALANCING
2233 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2234 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2235 p->mm->numa_scan_seq = 0;
2236 }
2237
5e1576ed
RR
2238 if (clone_flags & CLONE_VM)
2239 p->numa_preferred_nid = current->numa_preferred_nid;
2240 else
2241 p->numa_preferred_nid = -1;
2242
cbee9f88
PZ
2243 p->node_stamp = 0ULL;
2244 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2245 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2246 p->numa_work.next = &p->numa_work;
44dba3d5 2247 p->numa_faults = NULL;
7e2703e6
RR
2248 p->last_task_numa_placement = 0;
2249 p->last_sum_exec_runtime = 0;
8c8a743c 2250
8c8a743c 2251 p->numa_group = NULL;
cbee9f88 2252#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2253}
2254
2a595721
SD
2255DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2256
1a687c2e 2257#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2258
1a687c2e
MG
2259void set_numabalancing_state(bool enabled)
2260{
2261 if (enabled)
2a595721 2262 static_branch_enable(&sched_numa_balancing);
1a687c2e 2263 else
2a595721 2264 static_branch_disable(&sched_numa_balancing);
1a687c2e 2265}
54a43d54
AK
2266
2267#ifdef CONFIG_PROC_SYSCTL
2268int sysctl_numa_balancing(struct ctl_table *table, int write,
2269 void __user *buffer, size_t *lenp, loff_t *ppos)
2270{
2271 struct ctl_table t;
2272 int err;
2a595721 2273 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2274
2275 if (write && !capable(CAP_SYS_ADMIN))
2276 return -EPERM;
2277
2278 t = *table;
2279 t.data = &state;
2280 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2281 if (err < 0)
2282 return err;
2283 if (write)
2284 set_numabalancing_state(state);
2285 return err;
2286}
2287#endif
2288#endif
dd41f596 2289
4698f88c
JP
2290#ifdef CONFIG_SCHEDSTATS
2291
cb251765 2292DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2293static bool __initdata __sched_schedstats = false;
cb251765 2294
cb251765
MG
2295static void set_schedstats(bool enabled)
2296{
2297 if (enabled)
2298 static_branch_enable(&sched_schedstats);
2299 else
2300 static_branch_disable(&sched_schedstats);
2301}
2302
2303void force_schedstat_enabled(void)
2304{
2305 if (!schedstat_enabled()) {
2306 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2307 static_branch_enable(&sched_schedstats);
2308 }
2309}
2310
2311static int __init setup_schedstats(char *str)
2312{
2313 int ret = 0;
2314 if (!str)
2315 goto out;
2316
4698f88c
JP
2317 /*
2318 * This code is called before jump labels have been set up, so we can't
2319 * change the static branch directly just yet. Instead set a temporary
2320 * variable so init_schedstats() can do it later.
2321 */
cb251765 2322 if (!strcmp(str, "enable")) {
4698f88c 2323 __sched_schedstats = true;
cb251765
MG
2324 ret = 1;
2325 } else if (!strcmp(str, "disable")) {
4698f88c 2326 __sched_schedstats = false;
cb251765
MG
2327 ret = 1;
2328 }
2329out:
2330 if (!ret)
2331 pr_warn("Unable to parse schedstats=\n");
2332
2333 return ret;
2334}
2335__setup("schedstats=", setup_schedstats);
2336
4698f88c
JP
2337static void __init init_schedstats(void)
2338{
2339 set_schedstats(__sched_schedstats);
2340}
2341
cb251765
MG
2342#ifdef CONFIG_PROC_SYSCTL
2343int sysctl_schedstats(struct ctl_table *table, int write,
2344 void __user *buffer, size_t *lenp, loff_t *ppos)
2345{
2346 struct ctl_table t;
2347 int err;
2348 int state = static_branch_likely(&sched_schedstats);
2349
2350 if (write && !capable(CAP_SYS_ADMIN))
2351 return -EPERM;
2352
2353 t = *table;
2354 t.data = &state;
2355 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2356 if (err < 0)
2357 return err;
2358 if (write)
2359 set_schedstats(state);
2360 return err;
2361}
4698f88c
JP
2362#endif /* CONFIG_PROC_SYSCTL */
2363#else /* !CONFIG_SCHEDSTATS */
2364static inline void init_schedstats(void) {}
2365#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2366
2367/*
2368 * fork()/clone()-time setup:
2369 */
aab03e05 2370int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2371{
0122ec5b 2372 unsigned long flags;
dd41f596
IM
2373 int cpu = get_cpu();
2374
5e1576ed 2375 __sched_fork(clone_flags, p);
06b83b5f 2376 /*
7dc603c9 2377 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2378 * nobody will actually run it, and a signal or other external
2379 * event cannot wake it up and insert it on the runqueue either.
2380 */
7dc603c9 2381 p->state = TASK_NEW;
dd41f596 2382
c350a04e
MG
2383 /*
2384 * Make sure we do not leak PI boosting priority to the child.
2385 */
2386 p->prio = current->normal_prio;
2387
b9dc29e7
MG
2388 /*
2389 * Revert to default priority/policy on fork if requested.
2390 */
2391 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2392 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2393 p->policy = SCHED_NORMAL;
6c697bdf 2394 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2395 p->rt_priority = 0;
2396 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2397 p->static_prio = NICE_TO_PRIO(0);
2398
2399 p->prio = p->normal_prio = __normal_prio(p);
2400 set_load_weight(p);
6c697bdf 2401
b9dc29e7
MG
2402 /*
2403 * We don't need the reset flag anymore after the fork. It has
2404 * fulfilled its duty:
2405 */
2406 p->sched_reset_on_fork = 0;
2407 }
ca94c442 2408
aab03e05
DF
2409 if (dl_prio(p->prio)) {
2410 put_cpu();
2411 return -EAGAIN;
2412 } else if (rt_prio(p->prio)) {
2413 p->sched_class = &rt_sched_class;
2414 } else {
2ddbf952 2415 p->sched_class = &fair_sched_class;
aab03e05 2416 }
b29739f9 2417
7dc603c9 2418 init_entity_runnable_average(&p->se);
cd29fe6f 2419
86951599
PZ
2420 /*
2421 * The child is not yet in the pid-hash so no cgroup attach races,
2422 * and the cgroup is pinned to this child due to cgroup_fork()
2423 * is ran before sched_fork().
2424 *
2425 * Silence PROVE_RCU.
2426 */
0122ec5b 2427 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2428 /*
2429 * We're setting the cpu for the first time, we don't migrate,
2430 * so use __set_task_cpu().
2431 */
2432 __set_task_cpu(p, cpu);
2433 if (p->sched_class->task_fork)
2434 p->sched_class->task_fork(p);
0122ec5b 2435 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2436
f6db8347 2437#ifdef CONFIG_SCHED_INFO
dd41f596 2438 if (likely(sched_info_on()))
52f17b6c 2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2440#endif
3ca7a440
PZ
2441#if defined(CONFIG_SMP)
2442 p->on_cpu = 0;
4866cde0 2443#endif
01028747 2444 init_task_preempt_count(p);
806c09a7 2445#ifdef CONFIG_SMP
917b627d 2446 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2447 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2448#endif
917b627d 2449
476d139c 2450 put_cpu();
aab03e05 2451 return 0;
1da177e4
LT
2452}
2453
332ac17e
DF
2454unsigned long to_ratio(u64 period, u64 runtime)
2455{
2456 if (runtime == RUNTIME_INF)
2457 return 1ULL << 20;
2458
2459 /*
2460 * Doing this here saves a lot of checks in all
2461 * the calling paths, and returning zero seems
2462 * safe for them anyway.
2463 */
2464 if (period == 0)
2465 return 0;
2466
2467 return div64_u64(runtime << 20, period);
2468}
2469
2470#ifdef CONFIG_SMP
2471inline struct dl_bw *dl_bw_of(int i)
2472{
f78f5b90
PM
2473 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2474 "sched RCU must be held");
332ac17e
DF
2475 return &cpu_rq(i)->rd->dl_bw;
2476}
2477
de212f18 2478static inline int dl_bw_cpus(int i)
332ac17e 2479{
de212f18
PZ
2480 struct root_domain *rd = cpu_rq(i)->rd;
2481 int cpus = 0;
2482
f78f5b90
PM
2483 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2484 "sched RCU must be held");
de212f18
PZ
2485 for_each_cpu_and(i, rd->span, cpu_active_mask)
2486 cpus++;
2487
2488 return cpus;
332ac17e
DF
2489}
2490#else
2491inline struct dl_bw *dl_bw_of(int i)
2492{
2493 return &cpu_rq(i)->dl.dl_bw;
2494}
2495
de212f18 2496static inline int dl_bw_cpus(int i)
332ac17e
DF
2497{
2498 return 1;
2499}
2500#endif
2501
332ac17e
DF
2502/*
2503 * We must be sure that accepting a new task (or allowing changing the
2504 * parameters of an existing one) is consistent with the bandwidth
2505 * constraints. If yes, this function also accordingly updates the currently
2506 * allocated bandwidth to reflect the new situation.
2507 *
2508 * This function is called while holding p's rq->lock.
40767b0d
PZ
2509 *
2510 * XXX we should delay bw change until the task's 0-lag point, see
2511 * __setparam_dl().
332ac17e
DF
2512 */
2513static int dl_overflow(struct task_struct *p, int policy,
2514 const struct sched_attr *attr)
2515{
2516
2517 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2518 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2519 u64 runtime = attr->sched_runtime;
2520 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2521 int cpus, err = -1;
332ac17e 2522
fec148c0
XP
2523 /* !deadline task may carry old deadline bandwidth */
2524 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2525 return 0;
2526
2527 /*
2528 * Either if a task, enters, leave, or stays -deadline but changes
2529 * its parameters, we may need to update accordingly the total
2530 * allocated bandwidth of the container.
2531 */
2532 raw_spin_lock(&dl_b->lock);
de212f18 2533 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2534 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2536 __dl_add(dl_b, new_bw);
2537 err = 0;
2538 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2539 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2540 __dl_clear(dl_b, p->dl.dl_bw);
2541 __dl_add(dl_b, new_bw);
2542 err = 0;
2543 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2544 __dl_clear(dl_b, p->dl.dl_bw);
2545 err = 0;
2546 }
2547 raw_spin_unlock(&dl_b->lock);
2548
2549 return err;
2550}
2551
2552extern void init_dl_bw(struct dl_bw *dl_b);
2553
1da177e4
LT
2554/*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
3e51e3ed 2561void wake_up_new_task(struct task_struct *p)
1da177e4 2562{
eb580751 2563 struct rq_flags rf;
dd41f596 2564 struct rq *rq;
fabf318e 2565
eb580751 2566 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2567 p->state = TASK_RUNNING;
fabf318e
PZ
2568#ifdef CONFIG_SMP
2569 /*
2570 * Fork balancing, do it here and not earlier because:
2571 * - cpus_allowed can change in the fork path
2572 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2573 *
2574 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2575 * as we're not fully set-up yet.
fabf318e 2576 */
e210bffd 2577 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2578#endif
b7fa30c9 2579 rq = __task_rq_lock(p, &rf);
2b8c41da 2580 post_init_entity_util_avg(&p->se);
0017d735 2581
cd29fe6f 2582 activate_task(rq, p, 0);
da0c1e65 2583 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2584 trace_sched_wakeup_new(p);
a7558e01 2585 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2586#ifdef CONFIG_SMP
0aaafaab
PZ
2587 if (p->sched_class->task_woken) {
2588 /*
2589 * Nothing relies on rq->lock after this, so its fine to
2590 * drop it.
2591 */
e7904a28 2592 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2593 p->sched_class->task_woken(rq, p);
e7904a28 2594 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2595 }
9a897c5a 2596#endif
eb580751 2597 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2598}
2599
e107be36
AK
2600#ifdef CONFIG_PREEMPT_NOTIFIERS
2601
1cde2930
PZ
2602static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2603
2ecd9d29
PZ
2604void preempt_notifier_inc(void)
2605{
2606 static_key_slow_inc(&preempt_notifier_key);
2607}
2608EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2609
2610void preempt_notifier_dec(void)
2611{
2612 static_key_slow_dec(&preempt_notifier_key);
2613}
2614EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2615
e107be36 2616/**
80dd99b3 2617 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2618 * @notifier: notifier struct to register
e107be36
AK
2619 */
2620void preempt_notifier_register(struct preempt_notifier *notifier)
2621{
2ecd9d29
PZ
2622 if (!static_key_false(&preempt_notifier_key))
2623 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2624
e107be36
AK
2625 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2626}
2627EXPORT_SYMBOL_GPL(preempt_notifier_register);
2628
2629/**
2630 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2631 * @notifier: notifier struct to unregister
e107be36 2632 *
d84525a8 2633 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2634 */
2635void preempt_notifier_unregister(struct preempt_notifier *notifier)
2636{
2637 hlist_del(&notifier->link);
2638}
2639EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2640
1cde2930 2641static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2642{
2643 struct preempt_notifier *notifier;
e107be36 2644
b67bfe0d 2645 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2646 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2647}
2648
1cde2930
PZ
2649static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2650{
2651 if (static_key_false(&preempt_notifier_key))
2652 __fire_sched_in_preempt_notifiers(curr);
2653}
2654
e107be36 2655static void
1cde2930
PZ
2656__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
e107be36
AK
2658{
2659 struct preempt_notifier *notifier;
e107be36 2660
b67bfe0d 2661 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2662 notifier->ops->sched_out(notifier, next);
2663}
2664
1cde2930
PZ
2665static __always_inline void
2666fire_sched_out_preempt_notifiers(struct task_struct *curr,
2667 struct task_struct *next)
2668{
2669 if (static_key_false(&preempt_notifier_key))
2670 __fire_sched_out_preempt_notifiers(curr, next);
2671}
2672
6d6bc0ad 2673#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2674
1cde2930 2675static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2676{
2677}
2678
1cde2930 2679static inline void
e107be36
AK
2680fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682{
2683}
2684
6d6bc0ad 2685#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2686
4866cde0
NP
2687/**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
421cee29 2690 * @prev: the current task that is being switched out
4866cde0
NP
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
e107be36
AK
2700static inline void
2701prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
4866cde0 2703{
43148951 2704 sched_info_switch(rq, prev, next);
fe4b04fa 2705 perf_event_task_sched_out(prev, next);
e107be36 2706 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2707 prepare_lock_switch(rq, next);
2708 prepare_arch_switch(next);
2709}
2710
1da177e4
LT
2711/**
2712 * finish_task_switch - clean up after a task-switch
2713 * @prev: the thread we just switched away from.
2714 *
4866cde0
NP
2715 * finish_task_switch must be called after the context switch, paired
2716 * with a prepare_task_switch call before the context switch.
2717 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2718 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2719 *
2720 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2721 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2722 * with the lock held can cause deadlocks; see schedule() for
2723 * details.)
dfa50b60
ON
2724 *
2725 * The context switch have flipped the stack from under us and restored the
2726 * local variables which were saved when this task called schedule() in the
2727 * past. prev == current is still correct but we need to recalculate this_rq
2728 * because prev may have moved to another CPU.
1da177e4 2729 */
dfa50b60 2730static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2731 __releases(rq->lock)
2732{
dfa50b60 2733 struct rq *rq = this_rq();
1da177e4 2734 struct mm_struct *mm = rq->prev_mm;
55a101f8 2735 long prev_state;
1da177e4 2736
609ca066
PZ
2737 /*
2738 * The previous task will have left us with a preempt_count of 2
2739 * because it left us after:
2740 *
2741 * schedule()
2742 * preempt_disable(); // 1
2743 * __schedule()
2744 * raw_spin_lock_irq(&rq->lock) // 2
2745 *
2746 * Also, see FORK_PREEMPT_COUNT.
2747 */
e2bf1c4b
PZ
2748 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2749 "corrupted preempt_count: %s/%d/0x%x\n",
2750 current->comm, current->pid, preempt_count()))
2751 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2752
1da177e4
LT
2753 rq->prev_mm = NULL;
2754
2755 /*
2756 * A task struct has one reference for the use as "current".
c394cc9f 2757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2758 * schedule one last time. The schedule call will never return, and
2759 * the scheduled task must drop that reference.
95913d97
PZ
2760 *
2761 * We must observe prev->state before clearing prev->on_cpu (in
2762 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2763 * running on another CPU and we could rave with its RUNNING -> DEAD
2764 * transition, resulting in a double drop.
1da177e4 2765 */
55a101f8 2766 prev_state = prev->state;
bf9fae9f 2767 vtime_task_switch(prev);
a8d757ef 2768 perf_event_task_sched_in(prev, current);
4866cde0 2769 finish_lock_switch(rq, prev);
01f23e16 2770 finish_arch_post_lock_switch();
e8fa1362 2771
e107be36 2772 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2773 if (mm)
2774 mmdrop(mm);
c394cc9f 2775 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2776 if (prev->sched_class->task_dead)
2777 prev->sched_class->task_dead(prev);
2778
c6fd91f0 2779 /*
2780 * Remove function-return probe instances associated with this
2781 * task and put them back on the free list.
9761eea8 2782 */
c6fd91f0 2783 kprobe_flush_task(prev);
68f24b08
AL
2784
2785 /* Task is done with its stack. */
2786 put_task_stack(prev);
2787
1da177e4 2788 put_task_struct(prev);
c6fd91f0 2789 }
99e5ada9 2790
de734f89 2791 tick_nohz_task_switch();
dfa50b60 2792 return rq;
1da177e4
LT
2793}
2794
3f029d3c
GH
2795#ifdef CONFIG_SMP
2796
3f029d3c 2797/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2798static void __balance_callback(struct rq *rq)
3f029d3c 2799{
e3fca9e7
PZ
2800 struct callback_head *head, *next;
2801 void (*func)(struct rq *rq);
2802 unsigned long flags;
3f029d3c 2803
e3fca9e7
PZ
2804 raw_spin_lock_irqsave(&rq->lock, flags);
2805 head = rq->balance_callback;
2806 rq->balance_callback = NULL;
2807 while (head) {
2808 func = (void (*)(struct rq *))head->func;
2809 next = head->next;
2810 head->next = NULL;
2811 head = next;
3f029d3c 2812
e3fca9e7 2813 func(rq);
3f029d3c 2814 }
e3fca9e7
PZ
2815 raw_spin_unlock_irqrestore(&rq->lock, flags);
2816}
2817
2818static inline void balance_callback(struct rq *rq)
2819{
2820 if (unlikely(rq->balance_callback))
2821 __balance_callback(rq);
3f029d3c
GH
2822}
2823
2824#else
da19ab51 2825
e3fca9e7 2826static inline void balance_callback(struct rq *rq)
3f029d3c 2827{
1da177e4
LT
2828}
2829
3f029d3c
GH
2830#endif
2831
1da177e4
LT
2832/**
2833 * schedule_tail - first thing a freshly forked thread must call.
2834 * @prev: the thread we just switched away from.
2835 */
722a9f92 2836asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2837 __releases(rq->lock)
2838{
1a43a14a 2839 struct rq *rq;
da19ab51 2840
609ca066
PZ
2841 /*
2842 * New tasks start with FORK_PREEMPT_COUNT, see there and
2843 * finish_task_switch() for details.
2844 *
2845 * finish_task_switch() will drop rq->lock() and lower preempt_count
2846 * and the preempt_enable() will end up enabling preemption (on
2847 * PREEMPT_COUNT kernels).
2848 */
2849
dfa50b60 2850 rq = finish_task_switch(prev);
e3fca9e7 2851 balance_callback(rq);
1a43a14a 2852 preempt_enable();
70b97a7f 2853
1da177e4 2854 if (current->set_child_tid)
b488893a 2855 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2856}
2857
2858/*
dfa50b60 2859 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2860 */
04936948 2861static __always_inline struct rq *
70b97a7f 2862context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2863 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2864{
dd41f596 2865 struct mm_struct *mm, *oldmm;
1da177e4 2866
e107be36 2867 prepare_task_switch(rq, prev, next);
fe4b04fa 2868
dd41f596
IM
2869 mm = next->mm;
2870 oldmm = prev->active_mm;
9226d125
ZA
2871 /*
2872 * For paravirt, this is coupled with an exit in switch_to to
2873 * combine the page table reload and the switch backend into
2874 * one hypercall.
2875 */
224101ed 2876 arch_start_context_switch(prev);
9226d125 2877
31915ab4 2878 if (!mm) {
1da177e4
LT
2879 next->active_mm = oldmm;
2880 atomic_inc(&oldmm->mm_count);
2881 enter_lazy_tlb(oldmm, next);
2882 } else
f98db601 2883 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2884
31915ab4 2885 if (!prev->mm) {
1da177e4 2886 prev->active_mm = NULL;
1da177e4
LT
2887 rq->prev_mm = oldmm;
2888 }
3a5f5e48
IM
2889 /*
2890 * Since the runqueue lock will be released by the next
2891 * task (which is an invalid locking op but in the case
2892 * of the scheduler it's an obvious special-case), so we
2893 * do an early lockdep release here:
2894 */
e7904a28 2895 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2897
2898 /* Here we just switch the register state and the stack. */
2899 switch_to(prev, next, prev);
dd41f596 2900 barrier();
dfa50b60
ON
2901
2902 return finish_task_switch(prev);
1da177e4
LT
2903}
2904
2905/*
1c3e8264 2906 * nr_running and nr_context_switches:
1da177e4
LT
2907 *
2908 * externally visible scheduler statistics: current number of runnable
1c3e8264 2909 * threads, total number of context switches performed since bootup.
1da177e4
LT
2910 */
2911unsigned long nr_running(void)
2912{
2913 unsigned long i, sum = 0;
2914
2915 for_each_online_cpu(i)
2916 sum += cpu_rq(i)->nr_running;
2917
2918 return sum;
f711f609 2919}
1da177e4 2920
2ee507c4
TC
2921/*
2922 * Check if only the current task is running on the cpu.
00cc1633
DD
2923 *
2924 * Caution: this function does not check that the caller has disabled
2925 * preemption, thus the result might have a time-of-check-to-time-of-use
2926 * race. The caller is responsible to use it correctly, for example:
2927 *
2928 * - from a non-preemptable section (of course)
2929 *
2930 * - from a thread that is bound to a single CPU
2931 *
2932 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2933 */
2934bool single_task_running(void)
2935{
00cc1633 2936 return raw_rq()->nr_running == 1;
2ee507c4
TC
2937}
2938EXPORT_SYMBOL(single_task_running);
2939
1da177e4 2940unsigned long long nr_context_switches(void)
46cb4b7c 2941{
cc94abfc
SR
2942 int i;
2943 unsigned long long sum = 0;
46cb4b7c 2944
0a945022 2945 for_each_possible_cpu(i)
1da177e4 2946 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2947
1da177e4
LT
2948 return sum;
2949}
483b4ee6 2950
1da177e4
LT
2951unsigned long nr_iowait(void)
2952{
2953 unsigned long i, sum = 0;
483b4ee6 2954
0a945022 2955 for_each_possible_cpu(i)
1da177e4 2956 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2957
1da177e4
LT
2958 return sum;
2959}
483b4ee6 2960
8c215bd3 2961unsigned long nr_iowait_cpu(int cpu)
69d25870 2962{
8c215bd3 2963 struct rq *this = cpu_rq(cpu);
69d25870
AV
2964 return atomic_read(&this->nr_iowait);
2965}
46cb4b7c 2966
372ba8cb
MG
2967void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2968{
3289bdb4
PZ
2969 struct rq *rq = this_rq();
2970 *nr_waiters = atomic_read(&rq->nr_iowait);
2971 *load = rq->load.weight;
372ba8cb
MG
2972}
2973
dd41f596 2974#ifdef CONFIG_SMP
8a0be9ef 2975
46cb4b7c 2976/*
38022906
PZ
2977 * sched_exec - execve() is a valuable balancing opportunity, because at
2978 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2979 */
38022906 2980void sched_exec(void)
46cb4b7c 2981{
38022906 2982 struct task_struct *p = current;
1da177e4 2983 unsigned long flags;
0017d735 2984 int dest_cpu;
46cb4b7c 2985
8f42ced9 2986 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2988 if (dest_cpu == smp_processor_id())
2989 goto unlock;
38022906 2990
8f42ced9 2991 if (likely(cpu_active(dest_cpu))) {
969c7921 2992 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2993
8f42ced9
PZ
2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2996 return;
2997 }
0017d735 2998unlock:
8f42ced9 2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3000}
dd41f596 3001
1da177e4
LT
3002#endif
3003
1da177e4 3004DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3005DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3006
3007EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3008EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3009
6075620b
GG
3010/*
3011 * The function fair_sched_class.update_curr accesses the struct curr
3012 * and its field curr->exec_start; when called from task_sched_runtime(),
3013 * we observe a high rate of cache misses in practice.
3014 * Prefetching this data results in improved performance.
3015 */
3016static inline void prefetch_curr_exec_start(struct task_struct *p)
3017{
3018#ifdef CONFIG_FAIR_GROUP_SCHED
3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020#else
3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022#endif
3023 prefetch(curr);
3024 prefetch(&curr->exec_start);
3025}
3026
c5f8d995
HS
3027/*
3028 * Return accounted runtime for the task.
3029 * In case the task is currently running, return the runtime plus current's
3030 * pending runtime that have not been accounted yet.
3031 */
3032unsigned long long task_sched_runtime(struct task_struct *p)
3033{
eb580751 3034 struct rq_flags rf;
c5f8d995 3035 struct rq *rq;
6e998916 3036 u64 ns;
c5f8d995 3037
911b2898
PZ
3038#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3039 /*
3040 * 64-bit doesn't need locks to atomically read a 64bit value.
3041 * So we have a optimization chance when the task's delta_exec is 0.
3042 * Reading ->on_cpu is racy, but this is ok.
3043 *
3044 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3045 * If we race with it entering cpu, unaccounted time is 0. This is
3046 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 * been accounted, so we're correct here as well.
911b2898 3049 */
da0c1e65 3050 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3051 return p->se.sum_exec_runtime;
3052#endif
3053
eb580751 3054 rq = task_rq_lock(p, &rf);
6e998916
SG
3055 /*
3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3057 * project cycles that may never be accounted to this
3058 * thread, breaking clock_gettime().
3059 */
3060 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3061 prefetch_curr_exec_start(p);
6e998916
SG
3062 update_rq_clock(rq);
3063 p->sched_class->update_curr(rq);
3064 }
3065 ns = p->se.sum_exec_runtime;
eb580751 3066 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3067
3068 return ns;
3069}
48f24c4d 3070
7835b98b
CL
3071/*
3072 * This function gets called by the timer code, with HZ frequency.
3073 * We call it with interrupts disabled.
7835b98b
CL
3074 */
3075void scheduler_tick(void)
3076{
7835b98b
CL
3077 int cpu = smp_processor_id();
3078 struct rq *rq = cpu_rq(cpu);
dd41f596 3079 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3080
3081 sched_clock_tick();
dd41f596 3082
05fa785c 3083 raw_spin_lock(&rq->lock);
3e51f33f 3084 update_rq_clock(rq);
fa85ae24 3085 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3086 cpu_load_update_active(rq);
3289bdb4 3087 calc_global_load_tick(rq);
05fa785c 3088 raw_spin_unlock(&rq->lock);
7835b98b 3089
e9d2b064 3090 perf_event_task_tick();
e220d2dc 3091
e418e1c2 3092#ifdef CONFIG_SMP
6eb57e0d 3093 rq->idle_balance = idle_cpu(cpu);
7caff66f 3094 trigger_load_balance(rq);
e418e1c2 3095#endif
265f22a9 3096 rq_last_tick_reset(rq);
1da177e4
LT
3097}
3098
265f22a9
FW
3099#ifdef CONFIG_NO_HZ_FULL
3100/**
3101 * scheduler_tick_max_deferment
3102 *
3103 * Keep at least one tick per second when a single
3104 * active task is running because the scheduler doesn't
3105 * yet completely support full dynticks environment.
3106 *
3107 * This makes sure that uptime, CFS vruntime, load
3108 * balancing, etc... continue to move forward, even
3109 * with a very low granularity.
e69f6186
YB
3110 *
3111 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3112 */
3113u64 scheduler_tick_max_deferment(void)
3114{
3115 struct rq *rq = this_rq();
316c1608 3116 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3117
3118 next = rq->last_sched_tick + HZ;
3119
3120 if (time_before_eq(next, now))
3121 return 0;
3122
8fe8ff09 3123 return jiffies_to_nsecs(next - now);
1da177e4 3124}
265f22a9 3125#endif
1da177e4 3126
7e49fcce
SR
3127#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3128 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3129/*
3130 * If the value passed in is equal to the current preempt count
3131 * then we just disabled preemption. Start timing the latency.
3132 */
3133static inline void preempt_latency_start(int val)
3134{
3135 if (preempt_count() == val) {
3136 unsigned long ip = get_lock_parent_ip();
3137#ifdef CONFIG_DEBUG_PREEMPT
3138 current->preempt_disable_ip = ip;
3139#endif
3140 trace_preempt_off(CALLER_ADDR0, ip);
3141 }
3142}
7e49fcce 3143
edafe3a5 3144void preempt_count_add(int val)
1da177e4 3145{
6cd8a4bb 3146#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3147 /*
3148 * Underflow?
3149 */
9a11b49a
IM
3150 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3151 return;
6cd8a4bb 3152#endif
bdb43806 3153 __preempt_count_add(val);
6cd8a4bb 3154#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3155 /*
3156 * Spinlock count overflowing soon?
3157 */
33859f7f
MOS
3158 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3159 PREEMPT_MASK - 10);
6cd8a4bb 3160#endif
47252cfb 3161 preempt_latency_start(val);
1da177e4 3162}
bdb43806 3163EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3164NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3165
47252cfb
SR
3166/*
3167 * If the value passed in equals to the current preempt count
3168 * then we just enabled preemption. Stop timing the latency.
3169 */
3170static inline void preempt_latency_stop(int val)
3171{
3172 if (preempt_count() == val)
3173 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3174}
3175
edafe3a5 3176void preempt_count_sub(int val)
1da177e4 3177{
6cd8a4bb 3178#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3179 /*
3180 * Underflow?
3181 */
01e3eb82 3182 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3183 return;
1da177e4
LT
3184 /*
3185 * Is the spinlock portion underflowing?
3186 */
9a11b49a
IM
3187 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3188 !(preempt_count() & PREEMPT_MASK)))
3189 return;
6cd8a4bb 3190#endif
9a11b49a 3191
47252cfb 3192 preempt_latency_stop(val);
bdb43806 3193 __preempt_count_sub(val);
1da177e4 3194}
bdb43806 3195EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3196NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3197
47252cfb
SR
3198#else
3199static inline void preempt_latency_start(int val) { }
3200static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3201#endif
3202
3203/*
dd41f596 3204 * Print scheduling while atomic bug:
1da177e4 3205 */
dd41f596 3206static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3207{
d1c6d149
VN
3208 /* Save this before calling printk(), since that will clobber it */
3209 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3210
664dfa65
DJ
3211 if (oops_in_progress)
3212 return;
3213
3df0fc5b
PZ
3214 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3215 prev->comm, prev->pid, preempt_count());
838225b4 3216
dd41f596 3217 debug_show_held_locks(prev);
e21f5b15 3218 print_modules();
dd41f596
IM
3219 if (irqs_disabled())
3220 print_irqtrace_events(prev);
d1c6d149
VN
3221 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3222 && in_atomic_preempt_off()) {
8f47b187 3223 pr_err("Preemption disabled at:");
d1c6d149 3224 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3225 pr_cont("\n");
3226 }
748c7201
DBO
3227 if (panic_on_warn)
3228 panic("scheduling while atomic\n");
3229
6135fc1e 3230 dump_stack();
373d4d09 3231 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3232}
1da177e4 3233
dd41f596
IM
3234/*
3235 * Various schedule()-time debugging checks and statistics:
3236 */
3237static inline void schedule_debug(struct task_struct *prev)
3238{
0d9e2632 3239#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3240 if (task_stack_end_corrupted(prev))
3241 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3242#endif
b99def8b 3243
1dc0fffc 3244 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3245 __schedule_bug(prev);
1dc0fffc
PZ
3246 preempt_count_set(PREEMPT_DISABLED);
3247 }
b3fbab05 3248 rcu_sleep_check();
dd41f596 3249
1da177e4
LT
3250 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3251
ae92882e 3252 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3253}
3254
3255/*
3256 * Pick up the highest-prio task:
3257 */
3258static inline struct task_struct *
e7904a28 3259pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3260{
37e117c0 3261 const struct sched_class *class = &fair_sched_class;
dd41f596 3262 struct task_struct *p;
1da177e4
LT
3263
3264 /*
dd41f596
IM
3265 * Optimization: we know that if all tasks are in
3266 * the fair class we can call that function directly:
1da177e4 3267 */
37e117c0 3268 if (likely(prev->sched_class == class &&
38033c37 3269 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3270 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3271 if (unlikely(p == RETRY_TASK))
3272 goto again;
3273
3274 /* assumes fair_sched_class->next == idle_sched_class */
3275 if (unlikely(!p))
e7904a28 3276 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3277
3278 return p;
1da177e4
LT
3279 }
3280
37e117c0 3281again:
34f971f6 3282 for_each_class(class) {
e7904a28 3283 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3284 if (p) {
3285 if (unlikely(p == RETRY_TASK))
3286 goto again;
dd41f596 3287 return p;
37e117c0 3288 }
dd41f596 3289 }
34f971f6
PZ
3290
3291 BUG(); /* the idle class will always have a runnable task */
dd41f596 3292}
1da177e4 3293
dd41f596 3294/*
c259e01a 3295 * __schedule() is the main scheduler function.
edde96ea
PE
3296 *
3297 * The main means of driving the scheduler and thus entering this function are:
3298 *
3299 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3300 *
3301 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3302 * paths. For example, see arch/x86/entry_64.S.
3303 *
3304 * To drive preemption between tasks, the scheduler sets the flag in timer
3305 * interrupt handler scheduler_tick().
3306 *
3307 * 3. Wakeups don't really cause entry into schedule(). They add a
3308 * task to the run-queue and that's it.
3309 *
3310 * Now, if the new task added to the run-queue preempts the current
3311 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3312 * called on the nearest possible occasion:
3313 *
3314 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3315 *
3316 * - in syscall or exception context, at the next outmost
3317 * preempt_enable(). (this might be as soon as the wake_up()'s
3318 * spin_unlock()!)
3319 *
3320 * - in IRQ context, return from interrupt-handler to
3321 * preemptible context
3322 *
3323 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3324 * then at the next:
3325 *
3326 * - cond_resched() call
3327 * - explicit schedule() call
3328 * - return from syscall or exception to user-space
3329 * - return from interrupt-handler to user-space
bfd9b2b5 3330 *
b30f0e3f 3331 * WARNING: must be called with preemption disabled!
dd41f596 3332 */
499d7955 3333static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3334{
3335 struct task_struct *prev, *next;
67ca7bde 3336 unsigned long *switch_count;
e7904a28 3337 struct pin_cookie cookie;
dd41f596 3338 struct rq *rq;
31656519 3339 int cpu;
dd41f596 3340
dd41f596
IM
3341 cpu = smp_processor_id();
3342 rq = cpu_rq(cpu);
dd41f596 3343 prev = rq->curr;
dd41f596 3344
dd41f596 3345 schedule_debug(prev);
1da177e4 3346
31656519 3347 if (sched_feat(HRTICK))
f333fdc9 3348 hrtick_clear(rq);
8f4d37ec 3349
46a5d164
PM
3350 local_irq_disable();
3351 rcu_note_context_switch();
3352
e0acd0a6
ON
3353 /*
3354 * Make sure that signal_pending_state()->signal_pending() below
3355 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3356 * done by the caller to avoid the race with signal_wake_up().
3357 */
3358 smp_mb__before_spinlock();
46a5d164 3359 raw_spin_lock(&rq->lock);
e7904a28 3360 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3361
9edfbfed
PZ
3362 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3363
246d86b5 3364 switch_count = &prev->nivcsw;
fc13aeba 3365 if (!preempt && prev->state) {
21aa9af0 3366 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3367 prev->state = TASK_RUNNING;
21aa9af0 3368 } else {
2acca55e
PZ
3369 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3370 prev->on_rq = 0;
3371
21aa9af0 3372 /*
2acca55e
PZ
3373 * If a worker went to sleep, notify and ask workqueue
3374 * whether it wants to wake up a task to maintain
3375 * concurrency.
21aa9af0
TH
3376 */
3377 if (prev->flags & PF_WQ_WORKER) {
3378 struct task_struct *to_wakeup;
3379
9b7f6597 3380 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3381 if (to_wakeup)
e7904a28 3382 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3383 }
21aa9af0 3384 }
dd41f596 3385 switch_count = &prev->nvcsw;
1da177e4
LT
3386 }
3387
9edfbfed 3388 if (task_on_rq_queued(prev))
606dba2e
PZ
3389 update_rq_clock(rq);
3390
e7904a28 3391 next = pick_next_task(rq, prev, cookie);
f26f9aff 3392 clear_tsk_need_resched(prev);
f27dde8d 3393 clear_preempt_need_resched();
9edfbfed 3394 rq->clock_skip_update = 0;
1da177e4 3395
1da177e4 3396 if (likely(prev != next)) {
1da177e4
LT
3397 rq->nr_switches++;
3398 rq->curr = next;
3399 ++*switch_count;
3400
c73464b1 3401 trace_sched_switch(preempt, prev, next);
e7904a28 3402 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3403 } else {
e7904a28 3404 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3405 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3406 }
1da177e4 3407
e3fca9e7 3408 balance_callback(rq);
1da177e4 3409}
c259e01a 3410
9af6528e
PZ
3411void __noreturn do_task_dead(void)
3412{
3413 /*
3414 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3415 * when the following two conditions become true.
3416 * - There is race condition of mmap_sem (It is acquired by
3417 * exit_mm()), and
3418 * - SMI occurs before setting TASK_RUNINNG.
3419 * (or hypervisor of virtual machine switches to other guest)
3420 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3421 *
3422 * To avoid it, we have to wait for releasing tsk->pi_lock which
3423 * is held by try_to_wake_up()
3424 */
3425 smp_mb();
3426 raw_spin_unlock_wait(&current->pi_lock);
3427
3428 /* causes final put_task_struct in finish_task_switch(). */
3429 __set_current_state(TASK_DEAD);
3430 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3431 __schedule(false);
3432 BUG();
3433 /* Avoid "noreturn function does return". */
3434 for (;;)
3435 cpu_relax(); /* For when BUG is null */
3436}
3437
9c40cef2
TG
3438static inline void sched_submit_work(struct task_struct *tsk)
3439{
3c7d5184 3440 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3441 return;
3442 /*
3443 * If we are going to sleep and we have plugged IO queued,
3444 * make sure to submit it to avoid deadlocks.
3445 */
3446 if (blk_needs_flush_plug(tsk))
3447 blk_schedule_flush_plug(tsk);
3448}
3449
722a9f92 3450asmlinkage __visible void __sched schedule(void)
c259e01a 3451{
9c40cef2
TG
3452 struct task_struct *tsk = current;
3453
3454 sched_submit_work(tsk);
bfd9b2b5 3455 do {
b30f0e3f 3456 preempt_disable();
fc13aeba 3457 __schedule(false);
b30f0e3f 3458 sched_preempt_enable_no_resched();
bfd9b2b5 3459 } while (need_resched());
c259e01a 3460}
1da177e4
LT
3461EXPORT_SYMBOL(schedule);
3462
91d1aa43 3463#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3464asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3465{
3466 /*
3467 * If we come here after a random call to set_need_resched(),
3468 * or we have been woken up remotely but the IPI has not yet arrived,
3469 * we haven't yet exited the RCU idle mode. Do it here manually until
3470 * we find a better solution.
7cc78f8f
AL
3471 *
3472 * NB: There are buggy callers of this function. Ideally we
c467ea76 3473 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3474 * too frequently to make sense yet.
20ab65e3 3475 */
7cc78f8f 3476 enum ctx_state prev_state = exception_enter();
20ab65e3 3477 schedule();
7cc78f8f 3478 exception_exit(prev_state);
20ab65e3
FW
3479}
3480#endif
3481
c5491ea7
TG
3482/**
3483 * schedule_preempt_disabled - called with preemption disabled
3484 *
3485 * Returns with preemption disabled. Note: preempt_count must be 1
3486 */
3487void __sched schedule_preempt_disabled(void)
3488{
ba74c144 3489 sched_preempt_enable_no_resched();
c5491ea7
TG
3490 schedule();
3491 preempt_disable();
3492}
3493
06b1f808 3494static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3495{
3496 do {
47252cfb
SR
3497 /*
3498 * Because the function tracer can trace preempt_count_sub()
3499 * and it also uses preempt_enable/disable_notrace(), if
3500 * NEED_RESCHED is set, the preempt_enable_notrace() called
3501 * by the function tracer will call this function again and
3502 * cause infinite recursion.
3503 *
3504 * Preemption must be disabled here before the function
3505 * tracer can trace. Break up preempt_disable() into two
3506 * calls. One to disable preemption without fear of being
3507 * traced. The other to still record the preemption latency,
3508 * which can also be traced by the function tracer.
3509 */
499d7955 3510 preempt_disable_notrace();
47252cfb 3511 preempt_latency_start(1);
fc13aeba 3512 __schedule(true);
47252cfb 3513 preempt_latency_stop(1);
499d7955 3514 preempt_enable_no_resched_notrace();
a18b5d01
FW
3515
3516 /*
3517 * Check again in case we missed a preemption opportunity
3518 * between schedule and now.
3519 */
a18b5d01
FW
3520 } while (need_resched());
3521}
3522
1da177e4
LT
3523#ifdef CONFIG_PREEMPT
3524/*
2ed6e34f 3525 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3526 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3527 * occur there and call schedule directly.
3528 */
722a9f92 3529asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3530{
1da177e4
LT
3531 /*
3532 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3533 * we do not want to preempt the current task. Just return..
1da177e4 3534 */
fbb00b56 3535 if (likely(!preemptible()))
1da177e4
LT
3536 return;
3537
a18b5d01 3538 preempt_schedule_common();
1da177e4 3539}
376e2424 3540NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3541EXPORT_SYMBOL(preempt_schedule);
009f60e2 3542
009f60e2 3543/**
4eaca0a8 3544 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3545 *
3546 * The tracing infrastructure uses preempt_enable_notrace to prevent
3547 * recursion and tracing preempt enabling caused by the tracing
3548 * infrastructure itself. But as tracing can happen in areas coming
3549 * from userspace or just about to enter userspace, a preempt enable
3550 * can occur before user_exit() is called. This will cause the scheduler
3551 * to be called when the system is still in usermode.
3552 *
3553 * To prevent this, the preempt_enable_notrace will use this function
3554 * instead of preempt_schedule() to exit user context if needed before
3555 * calling the scheduler.
3556 */
4eaca0a8 3557asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3558{
3559 enum ctx_state prev_ctx;
3560
3561 if (likely(!preemptible()))
3562 return;
3563
3564 do {
47252cfb
SR
3565 /*
3566 * Because the function tracer can trace preempt_count_sub()
3567 * and it also uses preempt_enable/disable_notrace(), if
3568 * NEED_RESCHED is set, the preempt_enable_notrace() called
3569 * by the function tracer will call this function again and
3570 * cause infinite recursion.
3571 *
3572 * Preemption must be disabled here before the function
3573 * tracer can trace. Break up preempt_disable() into two
3574 * calls. One to disable preemption without fear of being
3575 * traced. The other to still record the preemption latency,
3576 * which can also be traced by the function tracer.
3577 */
3d8f74dd 3578 preempt_disable_notrace();
47252cfb 3579 preempt_latency_start(1);
009f60e2
ON
3580 /*
3581 * Needs preempt disabled in case user_exit() is traced
3582 * and the tracer calls preempt_enable_notrace() causing
3583 * an infinite recursion.
3584 */
3585 prev_ctx = exception_enter();
fc13aeba 3586 __schedule(true);
009f60e2
ON
3587 exception_exit(prev_ctx);
3588
47252cfb 3589 preempt_latency_stop(1);
3d8f74dd 3590 preempt_enable_no_resched_notrace();
009f60e2
ON
3591 } while (need_resched());
3592}
4eaca0a8 3593EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3594
32e475d7 3595#endif /* CONFIG_PREEMPT */
1da177e4
LT
3596
3597/*
2ed6e34f 3598 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3599 * off of irq context.
3600 * Note, that this is called and return with irqs disabled. This will
3601 * protect us against recursive calling from irq.
3602 */
722a9f92 3603asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3604{
b22366cd 3605 enum ctx_state prev_state;
6478d880 3606
2ed6e34f 3607 /* Catch callers which need to be fixed */
f27dde8d 3608 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3609
b22366cd
FW
3610 prev_state = exception_enter();
3611
3a5c359a 3612 do {
3d8f74dd 3613 preempt_disable();
3a5c359a 3614 local_irq_enable();
fc13aeba 3615 __schedule(true);
3a5c359a 3616 local_irq_disable();
3d8f74dd 3617 sched_preempt_enable_no_resched();
5ed0cec0 3618 } while (need_resched());
b22366cd
FW
3619
3620 exception_exit(prev_state);
1da177e4
LT
3621}
3622
63859d4f 3623int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3624 void *key)
1da177e4 3625{
63859d4f 3626 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3627}
1da177e4
LT
3628EXPORT_SYMBOL(default_wake_function);
3629
b29739f9
IM
3630#ifdef CONFIG_RT_MUTEXES
3631
3632/*
3633 * rt_mutex_setprio - set the current priority of a task
3634 * @p: task
3635 * @prio: prio value (kernel-internal form)
3636 *
3637 * This function changes the 'effective' priority of a task. It does
3638 * not touch ->normal_prio like __setscheduler().
3639 *
c365c292
TG
3640 * Used by the rt_mutex code to implement priority inheritance
3641 * logic. Call site only calls if the priority of the task changed.
b29739f9 3642 */
36c8b586 3643void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3644{
ff77e468 3645 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3646 const struct sched_class *prev_class;
eb580751
PZ
3647 struct rq_flags rf;
3648 struct rq *rq;
b29739f9 3649
aab03e05 3650 BUG_ON(prio > MAX_PRIO);
b29739f9 3651
eb580751 3652 rq = __task_rq_lock(p, &rf);
b29739f9 3653
1c4dd99b
TG
3654 /*
3655 * Idle task boosting is a nono in general. There is one
3656 * exception, when PREEMPT_RT and NOHZ is active:
3657 *
3658 * The idle task calls get_next_timer_interrupt() and holds
3659 * the timer wheel base->lock on the CPU and another CPU wants
3660 * to access the timer (probably to cancel it). We can safely
3661 * ignore the boosting request, as the idle CPU runs this code
3662 * with interrupts disabled and will complete the lock
3663 * protected section without being interrupted. So there is no
3664 * real need to boost.
3665 */
3666 if (unlikely(p == rq->idle)) {
3667 WARN_ON(p != rq->curr);
3668 WARN_ON(p->pi_blocked_on);
3669 goto out_unlock;
3670 }
3671
a8027073 3672 trace_sched_pi_setprio(p, prio);
d5f9f942 3673 oldprio = p->prio;
ff77e468
PZ
3674
3675 if (oldprio == prio)
3676 queue_flag &= ~DEQUEUE_MOVE;
3677
83ab0aa0 3678 prev_class = p->sched_class;
da0c1e65 3679 queued = task_on_rq_queued(p);
051a1d1a 3680 running = task_current(rq, p);
da0c1e65 3681 if (queued)
ff77e468 3682 dequeue_task(rq, p, queue_flag);
0e1f3483 3683 if (running)
f3cd1c4e 3684 put_prev_task(rq, p);
dd41f596 3685
2d3d891d
DF
3686 /*
3687 * Boosting condition are:
3688 * 1. -rt task is running and holds mutex A
3689 * --> -dl task blocks on mutex A
3690 *
3691 * 2. -dl task is running and holds mutex A
3692 * --> -dl task blocks on mutex A and could preempt the
3693 * running task
3694 */
3695 if (dl_prio(prio)) {
466af29b
ON
3696 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3697 if (!dl_prio(p->normal_prio) ||
3698 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3699 p->dl.dl_boosted = 1;
ff77e468 3700 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3701 } else
3702 p->dl.dl_boosted = 0;
aab03e05 3703 p->sched_class = &dl_sched_class;
2d3d891d
DF
3704 } else if (rt_prio(prio)) {
3705 if (dl_prio(oldprio))
3706 p->dl.dl_boosted = 0;
3707 if (oldprio < prio)
ff77e468 3708 queue_flag |= ENQUEUE_HEAD;
dd41f596 3709 p->sched_class = &rt_sched_class;
2d3d891d
DF
3710 } else {
3711 if (dl_prio(oldprio))
3712 p->dl.dl_boosted = 0;
746db944
BS
3713 if (rt_prio(oldprio))
3714 p->rt.timeout = 0;
dd41f596 3715 p->sched_class = &fair_sched_class;
2d3d891d 3716 }
dd41f596 3717
b29739f9
IM
3718 p->prio = prio;
3719
da0c1e65 3720 if (queued)
ff77e468 3721 enqueue_task(rq, p, queue_flag);
a399d233 3722 if (running)
b2bf6c31 3723 set_curr_task(rq, p);
cb469845 3724
da7a735e 3725 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3726out_unlock:
4c9a4bc8 3727 preempt_disable(); /* avoid rq from going away on us */
eb580751 3728 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3729
3730 balance_callback(rq);
3731 preempt_enable();
b29739f9 3732}
b29739f9 3733#endif
d50dde5a 3734
36c8b586 3735void set_user_nice(struct task_struct *p, long nice)
1da177e4 3736{
49bd21ef
PZ
3737 bool queued, running;
3738 int old_prio, delta;
eb580751 3739 struct rq_flags rf;
70b97a7f 3740 struct rq *rq;
1da177e4 3741
75e45d51 3742 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3743 return;
3744 /*
3745 * We have to be careful, if called from sys_setpriority(),
3746 * the task might be in the middle of scheduling on another CPU.
3747 */
eb580751 3748 rq = task_rq_lock(p, &rf);
1da177e4
LT
3749 /*
3750 * The RT priorities are set via sched_setscheduler(), but we still
3751 * allow the 'normal' nice value to be set - but as expected
3752 * it wont have any effect on scheduling until the task is
aab03e05 3753 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3754 */
aab03e05 3755 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3756 p->static_prio = NICE_TO_PRIO(nice);
3757 goto out_unlock;
3758 }
da0c1e65 3759 queued = task_on_rq_queued(p);
49bd21ef 3760 running = task_current(rq, p);
da0c1e65 3761 if (queued)
1de64443 3762 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3763 if (running)
3764 put_prev_task(rq, p);
1da177e4 3765
1da177e4 3766 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3767 set_load_weight(p);
b29739f9
IM
3768 old_prio = p->prio;
3769 p->prio = effective_prio(p);
3770 delta = p->prio - old_prio;
1da177e4 3771
da0c1e65 3772 if (queued) {
1de64443 3773 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3774 /*
d5f9f942
AM
3775 * If the task increased its priority or is running and
3776 * lowered its priority, then reschedule its CPU:
1da177e4 3777 */
d5f9f942 3778 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3779 resched_curr(rq);
1da177e4 3780 }
49bd21ef
PZ
3781 if (running)
3782 set_curr_task(rq, p);
1da177e4 3783out_unlock:
eb580751 3784 task_rq_unlock(rq, p, &rf);
1da177e4 3785}
1da177e4
LT
3786EXPORT_SYMBOL(set_user_nice);
3787
e43379f1
MM
3788/*
3789 * can_nice - check if a task can reduce its nice value
3790 * @p: task
3791 * @nice: nice value
3792 */
36c8b586 3793int can_nice(const struct task_struct *p, const int nice)
e43379f1 3794{
024f4747 3795 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3796 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3797
78d7d407 3798 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3799 capable(CAP_SYS_NICE));
3800}
3801
1da177e4
LT
3802#ifdef __ARCH_WANT_SYS_NICE
3803
3804/*
3805 * sys_nice - change the priority of the current process.
3806 * @increment: priority increment
3807 *
3808 * sys_setpriority is a more generic, but much slower function that
3809 * does similar things.
3810 */
5add95d4 3811SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3812{
48f24c4d 3813 long nice, retval;
1da177e4
LT
3814
3815 /*
3816 * Setpriority might change our priority at the same moment.
3817 * We don't have to worry. Conceptually one call occurs first
3818 * and we have a single winner.
3819 */
a9467fa3 3820 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3821 nice = task_nice(current) + increment;
1da177e4 3822
a9467fa3 3823 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3824 if (increment < 0 && !can_nice(current, nice))
3825 return -EPERM;
3826
1da177e4
LT
3827 retval = security_task_setnice(current, nice);
3828 if (retval)
3829 return retval;
3830
3831 set_user_nice(current, nice);
3832 return 0;
3833}
3834
3835#endif
3836
3837/**
3838 * task_prio - return the priority value of a given task.
3839 * @p: the task in question.
3840 *
e69f6186 3841 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3842 * RT tasks are offset by -200. Normal tasks are centered
3843 * around 0, value goes from -16 to +15.
3844 */
36c8b586 3845int task_prio(const struct task_struct *p)
1da177e4
LT
3846{
3847 return p->prio - MAX_RT_PRIO;
3848}
3849
1da177e4
LT
3850/**
3851 * idle_cpu - is a given cpu idle currently?
3852 * @cpu: the processor in question.
e69f6186
YB
3853 *
3854 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3855 */
3856int idle_cpu(int cpu)
3857{
908a3283
TG
3858 struct rq *rq = cpu_rq(cpu);
3859
3860 if (rq->curr != rq->idle)
3861 return 0;
3862
3863 if (rq->nr_running)
3864 return 0;
3865
3866#ifdef CONFIG_SMP
3867 if (!llist_empty(&rq->wake_list))
3868 return 0;
3869#endif
3870
3871 return 1;
1da177e4
LT
3872}
3873
1da177e4
LT
3874/**
3875 * idle_task - return the idle task for a given cpu.
3876 * @cpu: the processor in question.
e69f6186
YB
3877 *
3878 * Return: The idle task for the cpu @cpu.
1da177e4 3879 */
36c8b586 3880struct task_struct *idle_task(int cpu)
1da177e4
LT
3881{
3882 return cpu_rq(cpu)->idle;
3883}
3884
3885/**
3886 * find_process_by_pid - find a process with a matching PID value.
3887 * @pid: the pid in question.
e69f6186
YB
3888 *
3889 * The task of @pid, if found. %NULL otherwise.
1da177e4 3890 */
a9957449 3891static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3892{
228ebcbe 3893 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3894}
3895
aab03e05
DF
3896/*
3897 * This function initializes the sched_dl_entity of a newly becoming
3898 * SCHED_DEADLINE task.
3899 *
3900 * Only the static values are considered here, the actual runtime and the
3901 * absolute deadline will be properly calculated when the task is enqueued
3902 * for the first time with its new policy.
3903 */
3904static void
3905__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3906{
3907 struct sched_dl_entity *dl_se = &p->dl;
3908
aab03e05
DF
3909 dl_se->dl_runtime = attr->sched_runtime;
3910 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3911 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3912 dl_se->flags = attr->sched_flags;
332ac17e 3913 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3914
3915 /*
3916 * Changing the parameters of a task is 'tricky' and we're not doing
3917 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3918 *
3919 * What we SHOULD do is delay the bandwidth release until the 0-lag
3920 * point. This would include retaining the task_struct until that time
3921 * and change dl_overflow() to not immediately decrement the current
3922 * amount.
3923 *
3924 * Instead we retain the current runtime/deadline and let the new
3925 * parameters take effect after the current reservation period lapses.
3926 * This is safe (albeit pessimistic) because the 0-lag point is always
3927 * before the current scheduling deadline.
3928 *
3929 * We can still have temporary overloads because we do not delay the
3930 * change in bandwidth until that time; so admission control is
3931 * not on the safe side. It does however guarantee tasks will never
3932 * consume more than promised.
3933 */
aab03e05
DF
3934}
3935
c13db6b1
SR
3936/*
3937 * sched_setparam() passes in -1 for its policy, to let the functions
3938 * it calls know not to change it.
3939 */
3940#define SETPARAM_POLICY -1
3941
c365c292
TG
3942static void __setscheduler_params(struct task_struct *p,
3943 const struct sched_attr *attr)
1da177e4 3944{
d50dde5a
DF
3945 int policy = attr->sched_policy;
3946
c13db6b1 3947 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3948 policy = p->policy;
3949
1da177e4 3950 p->policy = policy;
d50dde5a 3951
aab03e05
DF
3952 if (dl_policy(policy))
3953 __setparam_dl(p, attr);
39fd8fd2 3954 else if (fair_policy(policy))
d50dde5a
DF
3955 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3956
39fd8fd2
PZ
3957 /*
3958 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3959 * !rt_policy. Always setting this ensures that things like
3960 * getparam()/getattr() don't report silly values for !rt tasks.
3961 */
3962 p->rt_priority = attr->sched_priority;
383afd09 3963 p->normal_prio = normal_prio(p);
c365c292
TG
3964 set_load_weight(p);
3965}
39fd8fd2 3966
c365c292
TG
3967/* Actually do priority change: must hold pi & rq lock. */
3968static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3969 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3970{
3971 __setscheduler_params(p, attr);
d50dde5a 3972
383afd09 3973 /*
0782e63b
TG
3974 * Keep a potential priority boosting if called from
3975 * sched_setscheduler().
383afd09 3976 */
0782e63b
TG
3977 if (keep_boost)
3978 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3979 else
3980 p->prio = normal_prio(p);
383afd09 3981
aab03e05
DF
3982 if (dl_prio(p->prio))
3983 p->sched_class = &dl_sched_class;
3984 else if (rt_prio(p->prio))
ffd44db5
PZ
3985 p->sched_class = &rt_sched_class;
3986 else
3987 p->sched_class = &fair_sched_class;
1da177e4 3988}
aab03e05
DF
3989
3990static void
3991__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3992{
3993 struct sched_dl_entity *dl_se = &p->dl;
3994
3995 attr->sched_priority = p->rt_priority;
3996 attr->sched_runtime = dl_se->dl_runtime;
3997 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3998 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3999 attr->sched_flags = dl_se->flags;
4000}
4001
4002/*
4003 * This function validates the new parameters of a -deadline task.
4004 * We ask for the deadline not being zero, and greater or equal
755378a4 4005 * than the runtime, as well as the period of being zero or
332ac17e 4006 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4007 * user parameters are above the internal resolution of 1us (we
4008 * check sched_runtime only since it is always the smaller one) and
4009 * below 2^63 ns (we have to check both sched_deadline and
4010 * sched_period, as the latter can be zero).
aab03e05
DF
4011 */
4012static bool
4013__checkparam_dl(const struct sched_attr *attr)
4014{
b0827819
JL
4015 /* deadline != 0 */
4016 if (attr->sched_deadline == 0)
4017 return false;
4018
4019 /*
4020 * Since we truncate DL_SCALE bits, make sure we're at least
4021 * that big.
4022 */
4023 if (attr->sched_runtime < (1ULL << DL_SCALE))
4024 return false;
4025
4026 /*
4027 * Since we use the MSB for wrap-around and sign issues, make
4028 * sure it's not set (mind that period can be equal to zero).
4029 */
4030 if (attr->sched_deadline & (1ULL << 63) ||
4031 attr->sched_period & (1ULL << 63))
4032 return false;
4033
4034 /* runtime <= deadline <= period (if period != 0) */
4035 if ((attr->sched_period != 0 &&
4036 attr->sched_period < attr->sched_deadline) ||
4037 attr->sched_deadline < attr->sched_runtime)
4038 return false;
4039
4040 return true;
aab03e05
DF
4041}
4042
c69e8d9c
DH
4043/*
4044 * check the target process has a UID that matches the current process's
4045 */
4046static bool check_same_owner(struct task_struct *p)
4047{
4048 const struct cred *cred = current_cred(), *pcred;
4049 bool match;
4050
4051 rcu_read_lock();
4052 pcred = __task_cred(p);
9c806aa0
EB
4053 match = (uid_eq(cred->euid, pcred->euid) ||
4054 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4055 rcu_read_unlock();
4056 return match;
4057}
4058
75381608
WL
4059static bool dl_param_changed(struct task_struct *p,
4060 const struct sched_attr *attr)
4061{
4062 struct sched_dl_entity *dl_se = &p->dl;
4063
4064 if (dl_se->dl_runtime != attr->sched_runtime ||
4065 dl_se->dl_deadline != attr->sched_deadline ||
4066 dl_se->dl_period != attr->sched_period ||
4067 dl_se->flags != attr->sched_flags)
4068 return true;
4069
4070 return false;
4071}
4072
d50dde5a
DF
4073static int __sched_setscheduler(struct task_struct *p,
4074 const struct sched_attr *attr,
dbc7f069 4075 bool user, bool pi)
1da177e4 4076{
383afd09
SR
4077 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4078 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4079 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4080 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4081 const struct sched_class *prev_class;
eb580751 4082 struct rq_flags rf;
ca94c442 4083 int reset_on_fork;
ff77e468 4084 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4085 struct rq *rq;
1da177e4 4086
66e5393a
SR
4087 /* may grab non-irq protected spin_locks */
4088 BUG_ON(in_interrupt());
1da177e4
LT
4089recheck:
4090 /* double check policy once rq lock held */
ca94c442
LP
4091 if (policy < 0) {
4092 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4093 policy = oldpolicy = p->policy;
ca94c442 4094 } else {
7479f3c9 4095 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4096
20f9cd2a 4097 if (!valid_policy(policy))
ca94c442
LP
4098 return -EINVAL;
4099 }
4100
7479f3c9
PZ
4101 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4102 return -EINVAL;
4103
1da177e4
LT
4104 /*
4105 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4106 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4107 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4108 */
0bb040a4 4109 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4110 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4111 return -EINVAL;
aab03e05
DF
4112 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4113 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4114 return -EINVAL;
4115
37e4ab3f
OC
4116 /*
4117 * Allow unprivileged RT tasks to decrease priority:
4118 */
961ccddd 4119 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4120 if (fair_policy(policy)) {
d0ea0268 4121 if (attr->sched_nice < task_nice(p) &&
eaad4513 4122 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4123 return -EPERM;
4124 }
4125
e05606d3 4126 if (rt_policy(policy)) {
a44702e8
ON
4127 unsigned long rlim_rtprio =
4128 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4129
4130 /* can't set/change the rt policy */
4131 if (policy != p->policy && !rlim_rtprio)
4132 return -EPERM;
4133
4134 /* can't increase priority */
d50dde5a
DF
4135 if (attr->sched_priority > p->rt_priority &&
4136 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4137 return -EPERM;
4138 }
c02aa73b 4139
d44753b8
JL
4140 /*
4141 * Can't set/change SCHED_DEADLINE policy at all for now
4142 * (safest behavior); in the future we would like to allow
4143 * unprivileged DL tasks to increase their relative deadline
4144 * or reduce their runtime (both ways reducing utilization)
4145 */
4146 if (dl_policy(policy))
4147 return -EPERM;
4148
dd41f596 4149 /*
c02aa73b
DH
4150 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4151 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4152 */
20f9cd2a 4153 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4154 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4155 return -EPERM;
4156 }
5fe1d75f 4157
37e4ab3f 4158 /* can't change other user's priorities */
c69e8d9c 4159 if (!check_same_owner(p))
37e4ab3f 4160 return -EPERM;
ca94c442
LP
4161
4162 /* Normal users shall not reset the sched_reset_on_fork flag */
4163 if (p->sched_reset_on_fork && !reset_on_fork)
4164 return -EPERM;
37e4ab3f 4165 }
1da177e4 4166
725aad24 4167 if (user) {
b0ae1981 4168 retval = security_task_setscheduler(p);
725aad24
JF
4169 if (retval)
4170 return retval;
4171 }
4172
b29739f9
IM
4173 /*
4174 * make sure no PI-waiters arrive (or leave) while we are
4175 * changing the priority of the task:
0122ec5b 4176 *
25985edc 4177 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4178 * runqueue lock must be held.
4179 */
eb580751 4180 rq = task_rq_lock(p, &rf);
dc61b1d6 4181
34f971f6
PZ
4182 /*
4183 * Changing the policy of the stop threads its a very bad idea
4184 */
4185 if (p == rq->stop) {
eb580751 4186 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4187 return -EINVAL;
4188 }
4189
a51e9198 4190 /*
d6b1e911
TG
4191 * If not changing anything there's no need to proceed further,
4192 * but store a possible modification of reset_on_fork.
a51e9198 4193 */
d50dde5a 4194 if (unlikely(policy == p->policy)) {
d0ea0268 4195 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4196 goto change;
4197 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4198 goto change;
75381608 4199 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4200 goto change;
d50dde5a 4201
d6b1e911 4202 p->sched_reset_on_fork = reset_on_fork;
eb580751 4203 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4204 return 0;
4205 }
d50dde5a 4206change:
a51e9198 4207
dc61b1d6 4208 if (user) {
332ac17e 4209#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4210 /*
4211 * Do not allow realtime tasks into groups that have no runtime
4212 * assigned.
4213 */
4214 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4215 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4216 !task_group_is_autogroup(task_group(p))) {
eb580751 4217 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4218 return -EPERM;
4219 }
dc61b1d6 4220#endif
332ac17e
DF
4221#ifdef CONFIG_SMP
4222 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4223 cpumask_t *span = rq->rd->span;
332ac17e
DF
4224
4225 /*
4226 * Don't allow tasks with an affinity mask smaller than
4227 * the entire root_domain to become SCHED_DEADLINE. We
4228 * will also fail if there's no bandwidth available.
4229 */
e4099a5e
PZ
4230 if (!cpumask_subset(span, &p->cpus_allowed) ||
4231 rq->rd->dl_bw.bw == 0) {
eb580751 4232 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4233 return -EPERM;
4234 }
4235 }
4236#endif
4237 }
dc61b1d6 4238
1da177e4
LT
4239 /* recheck policy now with rq lock held */
4240 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4241 policy = oldpolicy = -1;
eb580751 4242 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4243 goto recheck;
4244 }
332ac17e
DF
4245
4246 /*
4247 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4248 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4249 * is available.
4250 */
e4099a5e 4251 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4252 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4253 return -EBUSY;
4254 }
4255
c365c292
TG
4256 p->sched_reset_on_fork = reset_on_fork;
4257 oldprio = p->prio;
4258
dbc7f069
PZ
4259 if (pi) {
4260 /*
4261 * Take priority boosted tasks into account. If the new
4262 * effective priority is unchanged, we just store the new
4263 * normal parameters and do not touch the scheduler class and
4264 * the runqueue. This will be done when the task deboost
4265 * itself.
4266 */
4267 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4268 if (new_effective_prio == oldprio)
4269 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4270 }
4271
da0c1e65 4272 queued = task_on_rq_queued(p);
051a1d1a 4273 running = task_current(rq, p);
da0c1e65 4274 if (queued)
ff77e468 4275 dequeue_task(rq, p, queue_flags);
0e1f3483 4276 if (running)
f3cd1c4e 4277 put_prev_task(rq, p);
f6b53205 4278
83ab0aa0 4279 prev_class = p->sched_class;
dbc7f069 4280 __setscheduler(rq, p, attr, pi);
f6b53205 4281
da0c1e65 4282 if (queued) {
81a44c54
TG
4283 /*
4284 * We enqueue to tail when the priority of a task is
4285 * increased (user space view).
4286 */
ff77e468
PZ
4287 if (oldprio < p->prio)
4288 queue_flags |= ENQUEUE_HEAD;
1de64443 4289
ff77e468 4290 enqueue_task(rq, p, queue_flags);
81a44c54 4291 }
a399d233 4292 if (running)
b2bf6c31 4293 set_curr_task(rq, p);
cb469845 4294
da7a735e 4295 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4296 preempt_disable(); /* avoid rq from going away on us */
eb580751 4297 task_rq_unlock(rq, p, &rf);
b29739f9 4298
dbc7f069
PZ
4299 if (pi)
4300 rt_mutex_adjust_pi(p);
95e02ca9 4301
4c9a4bc8
PZ
4302 /*
4303 * Run balance callbacks after we've adjusted the PI chain.
4304 */
4305 balance_callback(rq);
4306 preempt_enable();
95e02ca9 4307
1da177e4
LT
4308 return 0;
4309}
961ccddd 4310
7479f3c9
PZ
4311static int _sched_setscheduler(struct task_struct *p, int policy,
4312 const struct sched_param *param, bool check)
4313{
4314 struct sched_attr attr = {
4315 .sched_policy = policy,
4316 .sched_priority = param->sched_priority,
4317 .sched_nice = PRIO_TO_NICE(p->static_prio),
4318 };
4319
c13db6b1
SR
4320 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4321 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4322 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4323 policy &= ~SCHED_RESET_ON_FORK;
4324 attr.sched_policy = policy;
4325 }
4326
dbc7f069 4327 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4328}
961ccddd
RR
4329/**
4330 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4331 * @p: the task in question.
4332 * @policy: new policy.
4333 * @param: structure containing the new RT priority.
4334 *
e69f6186
YB
4335 * Return: 0 on success. An error code otherwise.
4336 *
961ccddd
RR
4337 * NOTE that the task may be already dead.
4338 */
4339int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4340 const struct sched_param *param)
961ccddd 4341{
7479f3c9 4342 return _sched_setscheduler(p, policy, param, true);
961ccddd 4343}
1da177e4
LT
4344EXPORT_SYMBOL_GPL(sched_setscheduler);
4345
d50dde5a
DF
4346int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4347{
dbc7f069 4348 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4349}
4350EXPORT_SYMBOL_GPL(sched_setattr);
4351
961ccddd
RR
4352/**
4353 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4354 * @p: the task in question.
4355 * @policy: new policy.
4356 * @param: structure containing the new RT priority.
4357 *
4358 * Just like sched_setscheduler, only don't bother checking if the
4359 * current context has permission. For example, this is needed in
4360 * stop_machine(): we create temporary high priority worker threads,
4361 * but our caller might not have that capability.
e69f6186
YB
4362 *
4363 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4364 */
4365int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4366 const struct sched_param *param)
961ccddd 4367{
7479f3c9 4368 return _sched_setscheduler(p, policy, param, false);
961ccddd 4369}
84778472 4370EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4371
95cdf3b7
IM
4372static int
4373do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4374{
1da177e4
LT
4375 struct sched_param lparam;
4376 struct task_struct *p;
36c8b586 4377 int retval;
1da177e4
LT
4378
4379 if (!param || pid < 0)
4380 return -EINVAL;
4381 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4382 return -EFAULT;
5fe1d75f
ON
4383
4384 rcu_read_lock();
4385 retval = -ESRCH;
1da177e4 4386 p = find_process_by_pid(pid);
5fe1d75f
ON
4387 if (p != NULL)
4388 retval = sched_setscheduler(p, policy, &lparam);
4389 rcu_read_unlock();
36c8b586 4390
1da177e4
LT
4391 return retval;
4392}
4393
d50dde5a
DF
4394/*
4395 * Mimics kernel/events/core.c perf_copy_attr().
4396 */
4397static int sched_copy_attr(struct sched_attr __user *uattr,
4398 struct sched_attr *attr)
4399{
4400 u32 size;
4401 int ret;
4402
4403 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4404 return -EFAULT;
4405
4406 /*
4407 * zero the full structure, so that a short copy will be nice.
4408 */
4409 memset(attr, 0, sizeof(*attr));
4410
4411 ret = get_user(size, &uattr->size);
4412 if (ret)
4413 return ret;
4414
4415 if (size > PAGE_SIZE) /* silly large */
4416 goto err_size;
4417
4418 if (!size) /* abi compat */
4419 size = SCHED_ATTR_SIZE_VER0;
4420
4421 if (size < SCHED_ATTR_SIZE_VER0)
4422 goto err_size;
4423
4424 /*
4425 * If we're handed a bigger struct than we know of,
4426 * ensure all the unknown bits are 0 - i.e. new
4427 * user-space does not rely on any kernel feature
4428 * extensions we dont know about yet.
4429 */
4430 if (size > sizeof(*attr)) {
4431 unsigned char __user *addr;
4432 unsigned char __user *end;
4433 unsigned char val;
4434
4435 addr = (void __user *)uattr + sizeof(*attr);
4436 end = (void __user *)uattr + size;
4437
4438 for (; addr < end; addr++) {
4439 ret = get_user(val, addr);
4440 if (ret)
4441 return ret;
4442 if (val)
4443 goto err_size;
4444 }
4445 size = sizeof(*attr);
4446 }
4447
4448 ret = copy_from_user(attr, uattr, size);
4449 if (ret)
4450 return -EFAULT;
4451
4452 /*
4453 * XXX: do we want to be lenient like existing syscalls; or do we want
4454 * to be strict and return an error on out-of-bounds values?
4455 */
75e45d51 4456 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4457
e78c7bca 4458 return 0;
d50dde5a
DF
4459
4460err_size:
4461 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4462 return -E2BIG;
d50dde5a
DF
4463}
4464
1da177e4
LT
4465/**
4466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4467 * @pid: the pid in question.
4468 * @policy: new policy.
4469 * @param: structure containing the new RT priority.
e69f6186
YB
4470 *
4471 * Return: 0 on success. An error code otherwise.
1da177e4 4472 */
5add95d4
HC
4473SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4474 struct sched_param __user *, param)
1da177e4 4475{
c21761f1
JB
4476 /* negative values for policy are not valid */
4477 if (policy < 0)
4478 return -EINVAL;
4479
1da177e4
LT
4480 return do_sched_setscheduler(pid, policy, param);
4481}
4482
4483/**
4484 * sys_sched_setparam - set/change the RT priority of a thread
4485 * @pid: the pid in question.
4486 * @param: structure containing the new RT priority.
e69f6186
YB
4487 *
4488 * Return: 0 on success. An error code otherwise.
1da177e4 4489 */
5add95d4 4490SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4491{
c13db6b1 4492 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4493}
4494
d50dde5a
DF
4495/**
4496 * sys_sched_setattr - same as above, but with extended sched_attr
4497 * @pid: the pid in question.
5778fccf 4498 * @uattr: structure containing the extended parameters.
db66d756 4499 * @flags: for future extension.
d50dde5a 4500 */
6d35ab48
PZ
4501SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4502 unsigned int, flags)
d50dde5a
DF
4503{
4504 struct sched_attr attr;
4505 struct task_struct *p;
4506 int retval;
4507
6d35ab48 4508 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4509 return -EINVAL;
4510
143cf23d
MK
4511 retval = sched_copy_attr(uattr, &attr);
4512 if (retval)
4513 return retval;
d50dde5a 4514
b14ed2c2 4515 if ((int)attr.sched_policy < 0)
dbdb2275 4516 return -EINVAL;
d50dde5a
DF
4517
4518 rcu_read_lock();
4519 retval = -ESRCH;
4520 p = find_process_by_pid(pid);
4521 if (p != NULL)
4522 retval = sched_setattr(p, &attr);
4523 rcu_read_unlock();
4524
4525 return retval;
4526}
4527
1da177e4
LT
4528/**
4529 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4530 * @pid: the pid in question.
e69f6186
YB
4531 *
4532 * Return: On success, the policy of the thread. Otherwise, a negative error
4533 * code.
1da177e4 4534 */
5add95d4 4535SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4536{
36c8b586 4537 struct task_struct *p;
3a5c359a 4538 int retval;
1da177e4
LT
4539
4540 if (pid < 0)
3a5c359a 4541 return -EINVAL;
1da177e4
LT
4542
4543 retval = -ESRCH;
5fe85be0 4544 rcu_read_lock();
1da177e4
LT
4545 p = find_process_by_pid(pid);
4546 if (p) {
4547 retval = security_task_getscheduler(p);
4548 if (!retval)
ca94c442
LP
4549 retval = p->policy
4550 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4551 }
5fe85be0 4552 rcu_read_unlock();
1da177e4
LT
4553 return retval;
4554}
4555
4556/**
ca94c442 4557 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4558 * @pid: the pid in question.
4559 * @param: structure containing the RT priority.
e69f6186
YB
4560 *
4561 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4562 * code.
1da177e4 4563 */
5add95d4 4564SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4565{
ce5f7f82 4566 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4567 struct task_struct *p;
3a5c359a 4568 int retval;
1da177e4
LT
4569
4570 if (!param || pid < 0)
3a5c359a 4571 return -EINVAL;
1da177e4 4572
5fe85be0 4573 rcu_read_lock();
1da177e4
LT
4574 p = find_process_by_pid(pid);
4575 retval = -ESRCH;
4576 if (!p)
4577 goto out_unlock;
4578
4579 retval = security_task_getscheduler(p);
4580 if (retval)
4581 goto out_unlock;
4582
ce5f7f82
PZ
4583 if (task_has_rt_policy(p))
4584 lp.sched_priority = p->rt_priority;
5fe85be0 4585 rcu_read_unlock();
1da177e4
LT
4586
4587 /*
4588 * This one might sleep, we cannot do it with a spinlock held ...
4589 */
4590 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4591
1da177e4
LT
4592 return retval;
4593
4594out_unlock:
5fe85be0 4595 rcu_read_unlock();
1da177e4
LT
4596 return retval;
4597}
4598
d50dde5a
DF
4599static int sched_read_attr(struct sched_attr __user *uattr,
4600 struct sched_attr *attr,
4601 unsigned int usize)
4602{
4603 int ret;
4604
4605 if (!access_ok(VERIFY_WRITE, uattr, usize))
4606 return -EFAULT;
4607
4608 /*
4609 * If we're handed a smaller struct than we know of,
4610 * ensure all the unknown bits are 0 - i.e. old
4611 * user-space does not get uncomplete information.
4612 */
4613 if (usize < sizeof(*attr)) {
4614 unsigned char *addr;
4615 unsigned char *end;
4616
4617 addr = (void *)attr + usize;
4618 end = (void *)attr + sizeof(*attr);
4619
4620 for (; addr < end; addr++) {
4621 if (*addr)
22400674 4622 return -EFBIG;
d50dde5a
DF
4623 }
4624
4625 attr->size = usize;
4626 }
4627
4efbc454 4628 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4629 if (ret)
4630 return -EFAULT;
4631
22400674 4632 return 0;
d50dde5a
DF
4633}
4634
4635/**
aab03e05 4636 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4637 * @pid: the pid in question.
5778fccf 4638 * @uattr: structure containing the extended parameters.
d50dde5a 4639 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4640 * @flags: for future extension.
d50dde5a 4641 */
6d35ab48
PZ
4642SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4643 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4644{
4645 struct sched_attr attr = {
4646 .size = sizeof(struct sched_attr),
4647 };
4648 struct task_struct *p;
4649 int retval;
4650
4651 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4652 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4653 return -EINVAL;
4654
4655 rcu_read_lock();
4656 p = find_process_by_pid(pid);
4657 retval = -ESRCH;
4658 if (!p)
4659 goto out_unlock;
4660
4661 retval = security_task_getscheduler(p);
4662 if (retval)
4663 goto out_unlock;
4664
4665 attr.sched_policy = p->policy;
7479f3c9
PZ
4666 if (p->sched_reset_on_fork)
4667 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4668 if (task_has_dl_policy(p))
4669 __getparam_dl(p, &attr);
4670 else if (task_has_rt_policy(p))
d50dde5a
DF
4671 attr.sched_priority = p->rt_priority;
4672 else
d0ea0268 4673 attr.sched_nice = task_nice(p);
d50dde5a
DF
4674
4675 rcu_read_unlock();
4676
4677 retval = sched_read_attr(uattr, &attr, size);
4678 return retval;
4679
4680out_unlock:
4681 rcu_read_unlock();
4682 return retval;
4683}
4684
96f874e2 4685long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4686{
5a16f3d3 4687 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4688 struct task_struct *p;
4689 int retval;
1da177e4 4690
23f5d142 4691 rcu_read_lock();
1da177e4
LT
4692
4693 p = find_process_by_pid(pid);
4694 if (!p) {
23f5d142 4695 rcu_read_unlock();
1da177e4
LT
4696 return -ESRCH;
4697 }
4698
23f5d142 4699 /* Prevent p going away */
1da177e4 4700 get_task_struct(p);
23f5d142 4701 rcu_read_unlock();
1da177e4 4702
14a40ffc
TH
4703 if (p->flags & PF_NO_SETAFFINITY) {
4704 retval = -EINVAL;
4705 goto out_put_task;
4706 }
5a16f3d3
RR
4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4708 retval = -ENOMEM;
4709 goto out_put_task;
4710 }
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_free_cpus_allowed;
4714 }
1da177e4 4715 retval = -EPERM;
4c44aaaf
EB
4716 if (!check_same_owner(p)) {
4717 rcu_read_lock();
4718 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4719 rcu_read_unlock();
16303ab2 4720 goto out_free_new_mask;
4c44aaaf
EB
4721 }
4722 rcu_read_unlock();
4723 }
1da177e4 4724
b0ae1981 4725 retval = security_task_setscheduler(p);
e7834f8f 4726 if (retval)
16303ab2 4727 goto out_free_new_mask;
e7834f8f 4728
e4099a5e
PZ
4729
4730 cpuset_cpus_allowed(p, cpus_allowed);
4731 cpumask_and(new_mask, in_mask, cpus_allowed);
4732
332ac17e
DF
4733 /*
4734 * Since bandwidth control happens on root_domain basis,
4735 * if admission test is enabled, we only admit -deadline
4736 * tasks allowed to run on all the CPUs in the task's
4737 * root_domain.
4738 */
4739#ifdef CONFIG_SMP
f1e3a093
KT
4740 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4741 rcu_read_lock();
4742 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4743 retval = -EBUSY;
f1e3a093 4744 rcu_read_unlock();
16303ab2 4745 goto out_free_new_mask;
332ac17e 4746 }
f1e3a093 4747 rcu_read_unlock();
332ac17e
DF
4748 }
4749#endif
49246274 4750again:
25834c73 4751 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4752
8707d8b8 4753 if (!retval) {
5a16f3d3
RR
4754 cpuset_cpus_allowed(p, cpus_allowed);
4755 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4756 /*
4757 * We must have raced with a concurrent cpuset
4758 * update. Just reset the cpus_allowed to the
4759 * cpuset's cpus_allowed
4760 */
5a16f3d3 4761 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4762 goto again;
4763 }
4764 }
16303ab2 4765out_free_new_mask:
5a16f3d3
RR
4766 free_cpumask_var(new_mask);
4767out_free_cpus_allowed:
4768 free_cpumask_var(cpus_allowed);
4769out_put_task:
1da177e4 4770 put_task_struct(p);
1da177e4
LT
4771 return retval;
4772}
4773
4774static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4775 struct cpumask *new_mask)
1da177e4 4776{
96f874e2
RR
4777 if (len < cpumask_size())
4778 cpumask_clear(new_mask);
4779 else if (len > cpumask_size())
4780 len = cpumask_size();
4781
1da177e4
LT
4782 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4783}
4784
4785/**
4786 * sys_sched_setaffinity - set the cpu affinity of a process
4787 * @pid: pid of the process
4788 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4789 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4790 *
4791 * Return: 0 on success. An error code otherwise.
1da177e4 4792 */
5add95d4
HC
4793SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4794 unsigned long __user *, user_mask_ptr)
1da177e4 4795{
5a16f3d3 4796 cpumask_var_t new_mask;
1da177e4
LT
4797 int retval;
4798
5a16f3d3
RR
4799 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4800 return -ENOMEM;
1da177e4 4801
5a16f3d3
RR
4802 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4803 if (retval == 0)
4804 retval = sched_setaffinity(pid, new_mask);
4805 free_cpumask_var(new_mask);
4806 return retval;
1da177e4
LT
4807}
4808
96f874e2 4809long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4810{
36c8b586 4811 struct task_struct *p;
31605683 4812 unsigned long flags;
1da177e4 4813 int retval;
1da177e4 4814
23f5d142 4815 rcu_read_lock();
1da177e4
LT
4816
4817 retval = -ESRCH;
4818 p = find_process_by_pid(pid);
4819 if (!p)
4820 goto out_unlock;
4821
e7834f8f
DQ
4822 retval = security_task_getscheduler(p);
4823 if (retval)
4824 goto out_unlock;
4825
013fdb80 4826 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4827 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4828 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4829
4830out_unlock:
23f5d142 4831 rcu_read_unlock();
1da177e4 4832
9531b62f 4833 return retval;
1da177e4
LT
4834}
4835
4836/**
4837 * sys_sched_getaffinity - get the cpu affinity of a process
4838 * @pid: pid of the process
4839 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4840 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4841 *
599b4840
ZW
4842 * Return: size of CPU mask copied to user_mask_ptr on success. An
4843 * error code otherwise.
1da177e4 4844 */
5add95d4
HC
4845SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4846 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4847{
4848 int ret;
f17c8607 4849 cpumask_var_t mask;
1da177e4 4850
84fba5ec 4851 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4852 return -EINVAL;
4853 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4854 return -EINVAL;
4855
f17c8607
RR
4856 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4857 return -ENOMEM;
1da177e4 4858
f17c8607
RR
4859 ret = sched_getaffinity(pid, mask);
4860 if (ret == 0) {
8bc037fb 4861 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4862
4863 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4864 ret = -EFAULT;
4865 else
cd3d8031 4866 ret = retlen;
f17c8607
RR
4867 }
4868 free_cpumask_var(mask);
1da177e4 4869
f17c8607 4870 return ret;
1da177e4
LT
4871}
4872
4873/**
4874 * sys_sched_yield - yield the current processor to other threads.
4875 *
dd41f596
IM
4876 * This function yields the current CPU to other tasks. If there are no
4877 * other threads running on this CPU then this function will return.
e69f6186
YB
4878 *
4879 * Return: 0.
1da177e4 4880 */
5add95d4 4881SYSCALL_DEFINE0(sched_yield)
1da177e4 4882{
70b97a7f 4883 struct rq *rq = this_rq_lock();
1da177e4 4884
ae92882e 4885 schedstat_inc(rq->yld_count);
4530d7ab 4886 current->sched_class->yield_task(rq);
1da177e4
LT
4887
4888 /*
4889 * Since we are going to call schedule() anyway, there's
4890 * no need to preempt or enable interrupts:
4891 */
4892 __release(rq->lock);
8a25d5de 4893 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4894 do_raw_spin_unlock(&rq->lock);
ba74c144 4895 sched_preempt_enable_no_resched();
1da177e4
LT
4896
4897 schedule();
4898
4899 return 0;
4900}
4901
35a773a0 4902#ifndef CONFIG_PREEMPT
02b67cc3 4903int __sched _cond_resched(void)
1da177e4 4904{
fe32d3cd 4905 if (should_resched(0)) {
a18b5d01 4906 preempt_schedule_common();
1da177e4
LT
4907 return 1;
4908 }
4909 return 0;
4910}
02b67cc3 4911EXPORT_SYMBOL(_cond_resched);
35a773a0 4912#endif
1da177e4
LT
4913
4914/*
613afbf8 4915 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4916 * call schedule, and on return reacquire the lock.
4917 *
41a2d6cf 4918 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4919 * operations here to prevent schedule() from being called twice (once via
4920 * spin_unlock(), once by hand).
4921 */
613afbf8 4922int __cond_resched_lock(spinlock_t *lock)
1da177e4 4923{
fe32d3cd 4924 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4925 int ret = 0;
4926
f607c668
PZ
4927 lockdep_assert_held(lock);
4928
4a81e832 4929 if (spin_needbreak(lock) || resched) {
1da177e4 4930 spin_unlock(lock);
d86ee480 4931 if (resched)
a18b5d01 4932 preempt_schedule_common();
95c354fe
NP
4933 else
4934 cpu_relax();
6df3cecb 4935 ret = 1;
1da177e4 4936 spin_lock(lock);
1da177e4 4937 }
6df3cecb 4938 return ret;
1da177e4 4939}
613afbf8 4940EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4941
613afbf8 4942int __sched __cond_resched_softirq(void)
1da177e4
LT
4943{
4944 BUG_ON(!in_softirq());
4945
fe32d3cd 4946 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4947 local_bh_enable();
a18b5d01 4948 preempt_schedule_common();
1da177e4
LT
4949 local_bh_disable();
4950 return 1;
4951 }
4952 return 0;
4953}
613afbf8 4954EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4955
1da177e4
LT
4956/**
4957 * yield - yield the current processor to other threads.
4958 *
8e3fabfd
PZ
4959 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4960 *
4961 * The scheduler is at all times free to pick the calling task as the most
4962 * eligible task to run, if removing the yield() call from your code breaks
4963 * it, its already broken.
4964 *
4965 * Typical broken usage is:
4966 *
4967 * while (!event)
4968 * yield();
4969 *
4970 * where one assumes that yield() will let 'the other' process run that will
4971 * make event true. If the current task is a SCHED_FIFO task that will never
4972 * happen. Never use yield() as a progress guarantee!!
4973 *
4974 * If you want to use yield() to wait for something, use wait_event().
4975 * If you want to use yield() to be 'nice' for others, use cond_resched().
4976 * If you still want to use yield(), do not!
1da177e4
LT
4977 */
4978void __sched yield(void)
4979{
4980 set_current_state(TASK_RUNNING);
4981 sys_sched_yield();
4982}
1da177e4
LT
4983EXPORT_SYMBOL(yield);
4984
d95f4122
MG
4985/**
4986 * yield_to - yield the current processor to another thread in
4987 * your thread group, or accelerate that thread toward the
4988 * processor it's on.
16addf95
RD
4989 * @p: target task
4990 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4991 *
4992 * It's the caller's job to ensure that the target task struct
4993 * can't go away on us before we can do any checks.
4994 *
e69f6186 4995 * Return:
7b270f60
PZ
4996 * true (>0) if we indeed boosted the target task.
4997 * false (0) if we failed to boost the target.
4998 * -ESRCH if there's no task to yield to.
d95f4122 4999 */
fa93384f 5000int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5001{
5002 struct task_struct *curr = current;
5003 struct rq *rq, *p_rq;
5004 unsigned long flags;
c3c18640 5005 int yielded = 0;
d95f4122
MG
5006
5007 local_irq_save(flags);
5008 rq = this_rq();
5009
5010again:
5011 p_rq = task_rq(p);
7b270f60
PZ
5012 /*
5013 * If we're the only runnable task on the rq and target rq also
5014 * has only one task, there's absolutely no point in yielding.
5015 */
5016 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5017 yielded = -ESRCH;
5018 goto out_irq;
5019 }
5020
d95f4122 5021 double_rq_lock(rq, p_rq);
39e24d8f 5022 if (task_rq(p) != p_rq) {
d95f4122
MG
5023 double_rq_unlock(rq, p_rq);
5024 goto again;
5025 }
5026
5027 if (!curr->sched_class->yield_to_task)
7b270f60 5028 goto out_unlock;
d95f4122
MG
5029
5030 if (curr->sched_class != p->sched_class)
7b270f60 5031 goto out_unlock;
d95f4122
MG
5032
5033 if (task_running(p_rq, p) || p->state)
7b270f60 5034 goto out_unlock;
d95f4122
MG
5035
5036 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5037 if (yielded) {
ae92882e 5038 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5039 /*
5040 * Make p's CPU reschedule; pick_next_entity takes care of
5041 * fairness.
5042 */
5043 if (preempt && rq != p_rq)
8875125e 5044 resched_curr(p_rq);
6d1cafd8 5045 }
d95f4122 5046
7b270f60 5047out_unlock:
d95f4122 5048 double_rq_unlock(rq, p_rq);
7b270f60 5049out_irq:
d95f4122
MG
5050 local_irq_restore(flags);
5051
7b270f60 5052 if (yielded > 0)
d95f4122
MG
5053 schedule();
5054
5055 return yielded;
5056}
5057EXPORT_SYMBOL_GPL(yield_to);
5058
1da177e4 5059/*
41a2d6cf 5060 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5061 * that process accounting knows that this is a task in IO wait state.
1da177e4 5062 */
1da177e4
LT
5063long __sched io_schedule_timeout(long timeout)
5064{
9cff8ade
N
5065 int old_iowait = current->in_iowait;
5066 struct rq *rq;
1da177e4
LT
5067 long ret;
5068
9cff8ade 5069 current->in_iowait = 1;
10d784ea 5070 blk_schedule_flush_plug(current);
9cff8ade 5071
0ff92245 5072 delayacct_blkio_start();
9cff8ade 5073 rq = raw_rq();
1da177e4
LT
5074 atomic_inc(&rq->nr_iowait);
5075 ret = schedule_timeout(timeout);
9cff8ade 5076 current->in_iowait = old_iowait;
1da177e4 5077 atomic_dec(&rq->nr_iowait);
0ff92245 5078 delayacct_blkio_end();
9cff8ade 5079
1da177e4
LT
5080 return ret;
5081}
9cff8ade 5082EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5083
5084/**
5085 * sys_sched_get_priority_max - return maximum RT priority.
5086 * @policy: scheduling class.
5087 *
e69f6186
YB
5088 * Return: On success, this syscall returns the maximum
5089 * rt_priority that can be used by a given scheduling class.
5090 * On failure, a negative error code is returned.
1da177e4 5091 */
5add95d4 5092SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5093{
5094 int ret = -EINVAL;
5095
5096 switch (policy) {
5097 case SCHED_FIFO:
5098 case SCHED_RR:
5099 ret = MAX_USER_RT_PRIO-1;
5100 break;
aab03e05 5101 case SCHED_DEADLINE:
1da177e4 5102 case SCHED_NORMAL:
b0a9499c 5103 case SCHED_BATCH:
dd41f596 5104 case SCHED_IDLE:
1da177e4
LT
5105 ret = 0;
5106 break;
5107 }
5108 return ret;
5109}
5110
5111/**
5112 * sys_sched_get_priority_min - return minimum RT priority.
5113 * @policy: scheduling class.
5114 *
e69f6186
YB
5115 * Return: On success, this syscall returns the minimum
5116 * rt_priority that can be used by a given scheduling class.
5117 * On failure, a negative error code is returned.
1da177e4 5118 */
5add95d4 5119SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5120{
5121 int ret = -EINVAL;
5122
5123 switch (policy) {
5124 case SCHED_FIFO:
5125 case SCHED_RR:
5126 ret = 1;
5127 break;
aab03e05 5128 case SCHED_DEADLINE:
1da177e4 5129 case SCHED_NORMAL:
b0a9499c 5130 case SCHED_BATCH:
dd41f596 5131 case SCHED_IDLE:
1da177e4
LT
5132 ret = 0;
5133 }
5134 return ret;
5135}
5136
5137/**
5138 * sys_sched_rr_get_interval - return the default timeslice of a process.
5139 * @pid: pid of the process.
5140 * @interval: userspace pointer to the timeslice value.
5141 *
5142 * this syscall writes the default timeslice value of a given process
5143 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5144 *
5145 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5146 * an error code.
1da177e4 5147 */
17da2bd9 5148SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5149 struct timespec __user *, interval)
1da177e4 5150{
36c8b586 5151 struct task_struct *p;
a4ec24b4 5152 unsigned int time_slice;
eb580751
PZ
5153 struct rq_flags rf;
5154 struct timespec t;
dba091b9 5155 struct rq *rq;
3a5c359a 5156 int retval;
1da177e4
LT
5157
5158 if (pid < 0)
3a5c359a 5159 return -EINVAL;
1da177e4
LT
5160
5161 retval = -ESRCH;
1a551ae7 5162 rcu_read_lock();
1da177e4
LT
5163 p = find_process_by_pid(pid);
5164 if (!p)
5165 goto out_unlock;
5166
5167 retval = security_task_getscheduler(p);
5168 if (retval)
5169 goto out_unlock;
5170
eb580751 5171 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5172 time_slice = 0;
5173 if (p->sched_class->get_rr_interval)
5174 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5175 task_rq_unlock(rq, p, &rf);
a4ec24b4 5176
1a551ae7 5177 rcu_read_unlock();
a4ec24b4 5178 jiffies_to_timespec(time_slice, &t);
1da177e4 5179 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5180 return retval;
3a5c359a 5181
1da177e4 5182out_unlock:
1a551ae7 5183 rcu_read_unlock();
1da177e4
LT
5184 return retval;
5185}
5186
7c731e0a 5187static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5188
82a1fcb9 5189void sched_show_task(struct task_struct *p)
1da177e4 5190{
1da177e4 5191 unsigned long free = 0;
4e79752c 5192 int ppid;
1f8a7633 5193 unsigned long state = p->state;
1da177e4 5194
1f8a7633
TH
5195 if (state)
5196 state = __ffs(state) + 1;
28d0686c 5197 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5198 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5199#if BITS_PER_LONG == 32
1da177e4 5200 if (state == TASK_RUNNING)
3df0fc5b 5201 printk(KERN_CONT " running ");
1da177e4 5202 else
3df0fc5b 5203 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5204#else
5205 if (state == TASK_RUNNING)
3df0fc5b 5206 printk(KERN_CONT " running task ");
1da177e4 5207 else
3df0fc5b 5208 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5209#endif
5210#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5211 free = stack_not_used(p);
1da177e4 5212#endif
a90e984c 5213 ppid = 0;
4e79752c 5214 rcu_read_lock();
a90e984c
ON
5215 if (pid_alive(p))
5216 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5217 rcu_read_unlock();
3df0fc5b 5218 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5219 task_pid_nr(p), ppid,
aa47b7e0 5220 (unsigned long)task_thread_info(p)->flags);
1da177e4 5221
3d1cb205 5222 print_worker_info(KERN_INFO, p);
5fb5e6de 5223 show_stack(p, NULL);
1da177e4
LT
5224}
5225
e59e2ae2 5226void show_state_filter(unsigned long state_filter)
1da177e4 5227{
36c8b586 5228 struct task_struct *g, *p;
1da177e4 5229
4bd77321 5230#if BITS_PER_LONG == 32
3df0fc5b
PZ
5231 printk(KERN_INFO
5232 " task PC stack pid father\n");
1da177e4 5233#else
3df0fc5b
PZ
5234 printk(KERN_INFO
5235 " task PC stack pid father\n");
1da177e4 5236#endif
510f5acc 5237 rcu_read_lock();
5d07f420 5238 for_each_process_thread(g, p) {
1da177e4
LT
5239 /*
5240 * reset the NMI-timeout, listing all files on a slow
25985edc 5241 * console might take a lot of time:
57675cb9
AR
5242 * Also, reset softlockup watchdogs on all CPUs, because
5243 * another CPU might be blocked waiting for us to process
5244 * an IPI.
1da177e4
LT
5245 */
5246 touch_nmi_watchdog();
57675cb9 5247 touch_all_softlockup_watchdogs();
39bc89fd 5248 if (!state_filter || (p->state & state_filter))
82a1fcb9 5249 sched_show_task(p);
5d07f420 5250 }
1da177e4 5251
dd41f596 5252#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5253 if (!state_filter)
5254 sysrq_sched_debug_show();
dd41f596 5255#endif
510f5acc 5256 rcu_read_unlock();
e59e2ae2
IM
5257 /*
5258 * Only show locks if all tasks are dumped:
5259 */
93335a21 5260 if (!state_filter)
e59e2ae2 5261 debug_show_all_locks();
1da177e4
LT
5262}
5263
0db0628d 5264void init_idle_bootup_task(struct task_struct *idle)
1df21055 5265{
dd41f596 5266 idle->sched_class = &idle_sched_class;
1df21055
IM
5267}
5268
f340c0d1
IM
5269/**
5270 * init_idle - set up an idle thread for a given CPU
5271 * @idle: task in question
5272 * @cpu: cpu the idle task belongs to
5273 *
5274 * NOTE: this function does not set the idle thread's NEED_RESCHED
5275 * flag, to make booting more robust.
5276 */
0db0628d 5277void init_idle(struct task_struct *idle, int cpu)
1da177e4 5278{
70b97a7f 5279 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5280 unsigned long flags;
5281
25834c73
PZ
5282 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5283 raw_spin_lock(&rq->lock);
5cbd54ef 5284
5e1576ed 5285 __sched_fork(0, idle);
06b83b5f 5286 idle->state = TASK_RUNNING;
dd41f596 5287 idle->se.exec_start = sched_clock();
c1de45ca 5288 idle->flags |= PF_IDLE;
dd41f596 5289
e1b77c92
MR
5290 kasan_unpoison_task_stack(idle);
5291
de9b8f5d
PZ
5292#ifdef CONFIG_SMP
5293 /*
5294 * Its possible that init_idle() gets called multiple times on a task,
5295 * in that case do_set_cpus_allowed() will not do the right thing.
5296 *
5297 * And since this is boot we can forgo the serialization.
5298 */
5299 set_cpus_allowed_common(idle, cpumask_of(cpu));
5300#endif
6506cf6c
PZ
5301 /*
5302 * We're having a chicken and egg problem, even though we are
5303 * holding rq->lock, the cpu isn't yet set to this cpu so the
5304 * lockdep check in task_group() will fail.
5305 *
5306 * Similar case to sched_fork(). / Alternatively we could
5307 * use task_rq_lock() here and obtain the other rq->lock.
5308 *
5309 * Silence PROVE_RCU
5310 */
5311 rcu_read_lock();
dd41f596 5312 __set_task_cpu(idle, cpu);
6506cf6c 5313 rcu_read_unlock();
1da177e4 5314
1da177e4 5315 rq->curr = rq->idle = idle;
da0c1e65 5316 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5317#ifdef CONFIG_SMP
3ca7a440 5318 idle->on_cpu = 1;
4866cde0 5319#endif
25834c73
PZ
5320 raw_spin_unlock(&rq->lock);
5321 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5322
5323 /* Set the preempt count _outside_ the spinlocks! */
01028747 5324 init_idle_preempt_count(idle, cpu);
55cd5340 5325
dd41f596
IM
5326 /*
5327 * The idle tasks have their own, simple scheduling class:
5328 */
5329 idle->sched_class = &idle_sched_class;
868baf07 5330 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5331 vtime_init_idle(idle, cpu);
de9b8f5d 5332#ifdef CONFIG_SMP
f1c6f1a7
CE
5333 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5334#endif
19978ca6
IM
5335}
5336
f82f8042
JL
5337int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5338 const struct cpumask *trial)
5339{
5340 int ret = 1, trial_cpus;
5341 struct dl_bw *cur_dl_b;
5342 unsigned long flags;
5343
bb2bc55a
MG
5344 if (!cpumask_weight(cur))
5345 return ret;
5346
75e23e49 5347 rcu_read_lock_sched();
f82f8042
JL
5348 cur_dl_b = dl_bw_of(cpumask_any(cur));
5349 trial_cpus = cpumask_weight(trial);
5350
5351 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5352 if (cur_dl_b->bw != -1 &&
5353 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5354 ret = 0;
5355 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5356 rcu_read_unlock_sched();
f82f8042
JL
5357
5358 return ret;
5359}
5360
7f51412a
JL
5361int task_can_attach(struct task_struct *p,
5362 const struct cpumask *cs_cpus_allowed)
5363{
5364 int ret = 0;
5365
5366 /*
5367 * Kthreads which disallow setaffinity shouldn't be moved
5368 * to a new cpuset; we don't want to change their cpu
5369 * affinity and isolating such threads by their set of
5370 * allowed nodes is unnecessary. Thus, cpusets are not
5371 * applicable for such threads. This prevents checking for
5372 * success of set_cpus_allowed_ptr() on all attached tasks
5373 * before cpus_allowed may be changed.
5374 */
5375 if (p->flags & PF_NO_SETAFFINITY) {
5376 ret = -EINVAL;
5377 goto out;
5378 }
5379
5380#ifdef CONFIG_SMP
5381 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5382 cs_cpus_allowed)) {
5383 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5384 cs_cpus_allowed);
75e23e49 5385 struct dl_bw *dl_b;
7f51412a
JL
5386 bool overflow;
5387 int cpus;
5388 unsigned long flags;
5389
75e23e49
JL
5390 rcu_read_lock_sched();
5391 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5392 raw_spin_lock_irqsave(&dl_b->lock, flags);
5393 cpus = dl_bw_cpus(dest_cpu);
5394 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5395 if (overflow)
5396 ret = -EBUSY;
5397 else {
5398 /*
5399 * We reserve space for this task in the destination
5400 * root_domain, as we can't fail after this point.
5401 * We will free resources in the source root_domain
5402 * later on (see set_cpus_allowed_dl()).
5403 */
5404 __dl_add(dl_b, p->dl.dl_bw);
5405 }
5406 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5407 rcu_read_unlock_sched();
7f51412a
JL
5408
5409 }
5410#endif
5411out:
5412 return ret;
5413}
5414
1da177e4 5415#ifdef CONFIG_SMP
1da177e4 5416
e26fbffd
TG
5417static bool sched_smp_initialized __read_mostly;
5418
e6628d5b
MG
5419#ifdef CONFIG_NUMA_BALANCING
5420/* Migrate current task p to target_cpu */
5421int migrate_task_to(struct task_struct *p, int target_cpu)
5422{
5423 struct migration_arg arg = { p, target_cpu };
5424 int curr_cpu = task_cpu(p);
5425
5426 if (curr_cpu == target_cpu)
5427 return 0;
5428
5429 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5430 return -EINVAL;
5431
5432 /* TODO: This is not properly updating schedstats */
5433
286549dc 5434 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5435 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5436}
0ec8aa00
PZ
5437
5438/*
5439 * Requeue a task on a given node and accurately track the number of NUMA
5440 * tasks on the runqueues
5441 */
5442void sched_setnuma(struct task_struct *p, int nid)
5443{
da0c1e65 5444 bool queued, running;
eb580751
PZ
5445 struct rq_flags rf;
5446 struct rq *rq;
0ec8aa00 5447
eb580751 5448 rq = task_rq_lock(p, &rf);
da0c1e65 5449 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5450 running = task_current(rq, p);
5451
da0c1e65 5452 if (queued)
1de64443 5453 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5454 if (running)
f3cd1c4e 5455 put_prev_task(rq, p);
0ec8aa00
PZ
5456
5457 p->numa_preferred_nid = nid;
0ec8aa00 5458
da0c1e65 5459 if (queued)
1de64443 5460 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5461 if (running)
b2bf6c31 5462 set_curr_task(rq, p);
eb580751 5463 task_rq_unlock(rq, p, &rf);
0ec8aa00 5464}
5cc389bc 5465#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5466
1da177e4 5467#ifdef CONFIG_HOTPLUG_CPU
054b9108 5468/*
48c5ccae
PZ
5469 * Ensures that the idle task is using init_mm right before its cpu goes
5470 * offline.
054b9108 5471 */
48c5ccae 5472void idle_task_exit(void)
1da177e4 5473{
48c5ccae 5474 struct mm_struct *mm = current->active_mm;
e76bd8d9 5475
48c5ccae 5476 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5477
a53efe5f 5478 if (mm != &init_mm) {
f98db601 5479 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5480 finish_arch_post_lock_switch();
5481 }
48c5ccae 5482 mmdrop(mm);
1da177e4
LT
5483}
5484
5485/*
5d180232
PZ
5486 * Since this CPU is going 'away' for a while, fold any nr_active delta
5487 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5488 * nr_active count is stable. We need to take the teardown thread which
5489 * is calling this into account, so we hand in adjust = 1 to the load
5490 * calculation.
5d180232
PZ
5491 *
5492 * Also see the comment "Global load-average calculations".
1da177e4 5493 */
5d180232 5494static void calc_load_migrate(struct rq *rq)
1da177e4 5495{
d60585c5 5496 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5497 if (delta)
5498 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5499}
5500
3f1d2a31
PZ
5501static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5502{
5503}
5504
5505static const struct sched_class fake_sched_class = {
5506 .put_prev_task = put_prev_task_fake,
5507};
5508
5509static struct task_struct fake_task = {
5510 /*
5511 * Avoid pull_{rt,dl}_task()
5512 */
5513 .prio = MAX_PRIO + 1,
5514 .sched_class = &fake_sched_class,
5515};
5516
48f24c4d 5517/*
48c5ccae
PZ
5518 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5519 * try_to_wake_up()->select_task_rq().
5520 *
5521 * Called with rq->lock held even though we'er in stop_machine() and
5522 * there's no concurrency possible, we hold the required locks anyway
5523 * because of lock validation efforts.
1da177e4 5524 */
5e16bbc2 5525static void migrate_tasks(struct rq *dead_rq)
1da177e4 5526{
5e16bbc2 5527 struct rq *rq = dead_rq;
48c5ccae 5528 struct task_struct *next, *stop = rq->stop;
e7904a28 5529 struct pin_cookie cookie;
48c5ccae 5530 int dest_cpu;
1da177e4
LT
5531
5532 /*
48c5ccae
PZ
5533 * Fudge the rq selection such that the below task selection loop
5534 * doesn't get stuck on the currently eligible stop task.
5535 *
5536 * We're currently inside stop_machine() and the rq is either stuck
5537 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5538 * either way we should never end up calling schedule() until we're
5539 * done here.
1da177e4 5540 */
48c5ccae 5541 rq->stop = NULL;
48f24c4d 5542
77bd3970
FW
5543 /*
5544 * put_prev_task() and pick_next_task() sched
5545 * class method both need to have an up-to-date
5546 * value of rq->clock[_task]
5547 */
5548 update_rq_clock(rq);
5549
5e16bbc2 5550 for (;;) {
48c5ccae
PZ
5551 /*
5552 * There's this thread running, bail when that's the only
5553 * remaining thread.
5554 */
5555 if (rq->nr_running == 1)
dd41f596 5556 break;
48c5ccae 5557
cbce1a68 5558 /*
5473e0cc 5559 * pick_next_task assumes pinned rq->lock.
cbce1a68 5560 */
e7904a28
PZ
5561 cookie = lockdep_pin_lock(&rq->lock);
5562 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5563 BUG_ON(!next);
79c53799 5564 next->sched_class->put_prev_task(rq, next);
e692ab53 5565
5473e0cc
WL
5566 /*
5567 * Rules for changing task_struct::cpus_allowed are holding
5568 * both pi_lock and rq->lock, such that holding either
5569 * stabilizes the mask.
5570 *
5571 * Drop rq->lock is not quite as disastrous as it usually is
5572 * because !cpu_active at this point, which means load-balance
5573 * will not interfere. Also, stop-machine.
5574 */
e7904a28 5575 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5576 raw_spin_unlock(&rq->lock);
5577 raw_spin_lock(&next->pi_lock);
5578 raw_spin_lock(&rq->lock);
5579
5580 /*
5581 * Since we're inside stop-machine, _nothing_ should have
5582 * changed the task, WARN if weird stuff happened, because in
5583 * that case the above rq->lock drop is a fail too.
5584 */
5585 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5586 raw_spin_unlock(&next->pi_lock);
5587 continue;
5588 }
5589
48c5ccae 5590 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5591 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5592
5e16bbc2
PZ
5593 rq = __migrate_task(rq, next, dest_cpu);
5594 if (rq != dead_rq) {
5595 raw_spin_unlock(&rq->lock);
5596 rq = dead_rq;
5597 raw_spin_lock(&rq->lock);
5598 }
5473e0cc 5599 raw_spin_unlock(&next->pi_lock);
1da177e4 5600 }
dce48a84 5601
48c5ccae 5602 rq->stop = stop;
dce48a84 5603}
1da177e4
LT
5604#endif /* CONFIG_HOTPLUG_CPU */
5605
1f11eb6a
GH
5606static void set_rq_online(struct rq *rq)
5607{
5608 if (!rq->online) {
5609 const struct sched_class *class;
5610
c6c4927b 5611 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5612 rq->online = 1;
5613
5614 for_each_class(class) {
5615 if (class->rq_online)
5616 class->rq_online(rq);
5617 }
5618 }
5619}
5620
5621static void set_rq_offline(struct rq *rq)
5622{
5623 if (rq->online) {
5624 const struct sched_class *class;
5625
5626 for_each_class(class) {
5627 if (class->rq_offline)
5628 class->rq_offline(rq);
5629 }
5630
c6c4927b 5631 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5632 rq->online = 0;
5633 }
5634}
5635
9cf7243d 5636static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5637{
969c7921 5638 struct rq *rq = cpu_rq(cpu);
1da177e4 5639
a803f026
CM
5640 rq->age_stamp = sched_clock_cpu(cpu);
5641}
5642
4cb98839
PZ
5643static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5644
3e9830dc 5645#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5646
d039ac60 5647static __read_mostly int sched_debug_enabled;
f6630114 5648
d039ac60 5649static int __init sched_debug_setup(char *str)
f6630114 5650{
d039ac60 5651 sched_debug_enabled = 1;
f6630114
MT
5652
5653 return 0;
5654}
d039ac60
PZ
5655early_param("sched_debug", sched_debug_setup);
5656
5657static inline bool sched_debug(void)
5658{
5659 return sched_debug_enabled;
5660}
f6630114 5661
7c16ec58 5662static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5663 struct cpumask *groupmask)
1da177e4 5664{
4dcf6aff 5665 struct sched_group *group = sd->groups;
1da177e4 5666
96f874e2 5667 cpumask_clear(groupmask);
4dcf6aff
IM
5668
5669 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5670
5671 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5672 printk("does not load-balance\n");
4dcf6aff 5673 if (sd->parent)
3df0fc5b
PZ
5674 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5675 " has parent");
4dcf6aff 5676 return -1;
41c7ce9a
NP
5677 }
5678
333470ee
TH
5679 printk(KERN_CONT "span %*pbl level %s\n",
5680 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5681
758b2cdc 5682 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5683 printk(KERN_ERR "ERROR: domain->span does not contain "
5684 "CPU%d\n", cpu);
4dcf6aff 5685 }
758b2cdc 5686 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5687 printk(KERN_ERR "ERROR: domain->groups does not contain"
5688 " CPU%d\n", cpu);
4dcf6aff 5689 }
1da177e4 5690
4dcf6aff 5691 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5692 do {
4dcf6aff 5693 if (!group) {
3df0fc5b
PZ
5694 printk("\n");
5695 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5696 break;
5697 }
5698
758b2cdc 5699 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5700 printk(KERN_CONT "\n");
5701 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5702 break;
5703 }
1da177e4 5704
cb83b629
PZ
5705 if (!(sd->flags & SD_OVERLAP) &&
5706 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5707 printk(KERN_CONT "\n");
5708 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5709 break;
5710 }
1da177e4 5711
758b2cdc 5712 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5713
333470ee
TH
5714 printk(KERN_CONT " %*pbl",
5715 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5716 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5717 printk(KERN_CONT " (cpu_capacity = %d)",
5718 group->sgc->capacity);
381512cf 5719 }
1da177e4 5720
4dcf6aff
IM
5721 group = group->next;
5722 } while (group != sd->groups);
3df0fc5b 5723 printk(KERN_CONT "\n");
1da177e4 5724
758b2cdc 5725 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5726 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5727
758b2cdc
RR
5728 if (sd->parent &&
5729 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5730 printk(KERN_ERR "ERROR: parent span is not a superset "
5731 "of domain->span\n");
4dcf6aff
IM
5732 return 0;
5733}
1da177e4 5734
4dcf6aff
IM
5735static void sched_domain_debug(struct sched_domain *sd, int cpu)
5736{
5737 int level = 0;
1da177e4 5738
d039ac60 5739 if (!sched_debug_enabled)
f6630114
MT
5740 return;
5741
4dcf6aff
IM
5742 if (!sd) {
5743 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5744 return;
5745 }
1da177e4 5746
4dcf6aff
IM
5747 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5748
5749 for (;;) {
4cb98839 5750 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5751 break;
1da177e4
LT
5752 level++;
5753 sd = sd->parent;
33859f7f 5754 if (!sd)
4dcf6aff
IM
5755 break;
5756 }
1da177e4 5757}
6d6bc0ad 5758#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5759
5760# define sched_debug_enabled 0
48f24c4d 5761# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5762static inline bool sched_debug(void)
5763{
5764 return false;
5765}
6d6bc0ad 5766#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5767
1a20ff27 5768static int sd_degenerate(struct sched_domain *sd)
245af2c7 5769{
758b2cdc 5770 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5771 return 1;
5772
5773 /* Following flags need at least 2 groups */
5774 if (sd->flags & (SD_LOAD_BALANCE |
5775 SD_BALANCE_NEWIDLE |
5776 SD_BALANCE_FORK |
89c4710e 5777 SD_BALANCE_EXEC |
5d4dfddd 5778 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5779 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5780 SD_SHARE_PKG_RESOURCES |
5781 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5782 if (sd->groups != sd->groups->next)
5783 return 0;
5784 }
5785
5786 /* Following flags don't use groups */
c88d5910 5787 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5788 return 0;
5789
5790 return 1;
5791}
5792
48f24c4d
IM
5793static int
5794sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5795{
5796 unsigned long cflags = sd->flags, pflags = parent->flags;
5797
5798 if (sd_degenerate(parent))
5799 return 1;
5800
758b2cdc 5801 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5802 return 0;
5803
245af2c7
SS
5804 /* Flags needing groups don't count if only 1 group in parent */
5805 if (parent->groups == parent->groups->next) {
5806 pflags &= ~(SD_LOAD_BALANCE |
5807 SD_BALANCE_NEWIDLE |
5808 SD_BALANCE_FORK |
89c4710e 5809 SD_BALANCE_EXEC |
1f6e6c7c 5810 SD_ASYM_CPUCAPACITY |
5d4dfddd 5811 SD_SHARE_CPUCAPACITY |
10866e62 5812 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5813 SD_PREFER_SIBLING |
5814 SD_SHARE_POWERDOMAIN);
5436499e
KC
5815 if (nr_node_ids == 1)
5816 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5817 }
5818 if (~cflags & pflags)
5819 return 0;
5820
5821 return 1;
5822}
5823
dce840a0 5824static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5825{
dce840a0 5826 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5827
68e74568 5828 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5829 cpudl_cleanup(&rd->cpudl);
1baca4ce 5830 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5831 free_cpumask_var(rd->rto_mask);
5832 free_cpumask_var(rd->online);
5833 free_cpumask_var(rd->span);
5834 kfree(rd);
5835}
5836
57d885fe
GH
5837static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5838{
a0490fa3 5839 struct root_domain *old_rd = NULL;
57d885fe 5840 unsigned long flags;
57d885fe 5841
05fa785c 5842 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5843
5844 if (rq->rd) {
a0490fa3 5845 old_rd = rq->rd;
57d885fe 5846
c6c4927b 5847 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5848 set_rq_offline(rq);
57d885fe 5849
c6c4927b 5850 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5851
a0490fa3 5852 /*
0515973f 5853 * If we dont want to free the old_rd yet then
a0490fa3
IM
5854 * set old_rd to NULL to skip the freeing later
5855 * in this function:
5856 */
5857 if (!atomic_dec_and_test(&old_rd->refcount))
5858 old_rd = NULL;
57d885fe
GH
5859 }
5860
5861 atomic_inc(&rd->refcount);
5862 rq->rd = rd;
5863
c6c4927b 5864 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5865 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5866 set_rq_online(rq);
57d885fe 5867
05fa785c 5868 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5869
5870 if (old_rd)
dce840a0 5871 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5872}
5873
68c38fc3 5874static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5875{
5876 memset(rd, 0, sizeof(*rd));
5877
8295c699 5878 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5879 goto out;
8295c699 5880 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5881 goto free_span;
8295c699 5882 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5883 goto free_online;
8295c699 5884 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5885 goto free_dlo_mask;
6e0534f2 5886
332ac17e 5887 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5888 if (cpudl_init(&rd->cpudl) != 0)
5889 goto free_dlo_mask;
332ac17e 5890
68c38fc3 5891 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5892 goto free_rto_mask;
c6c4927b 5893 return 0;
6e0534f2 5894
68e74568
RR
5895free_rto_mask:
5896 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5897free_dlo_mask:
5898 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5899free_online:
5900 free_cpumask_var(rd->online);
5901free_span:
5902 free_cpumask_var(rd->span);
0c910d28 5903out:
c6c4927b 5904 return -ENOMEM;
57d885fe
GH
5905}
5906
029632fb
PZ
5907/*
5908 * By default the system creates a single root-domain with all cpus as
5909 * members (mimicking the global state we have today).
5910 */
5911struct root_domain def_root_domain;
5912
57d885fe
GH
5913static void init_defrootdomain(void)
5914{
68c38fc3 5915 init_rootdomain(&def_root_domain);
c6c4927b 5916
57d885fe
GH
5917 atomic_set(&def_root_domain.refcount, 1);
5918}
5919
dc938520 5920static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5921{
5922 struct root_domain *rd;
5923
5924 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5925 if (!rd)
5926 return NULL;
5927
68c38fc3 5928 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5929 kfree(rd);
5930 return NULL;
5931 }
57d885fe
GH
5932
5933 return rd;
5934}
5935
63b2ca30 5936static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5937{
5938 struct sched_group *tmp, *first;
5939
5940 if (!sg)
5941 return;
5942
5943 first = sg;
5944 do {
5945 tmp = sg->next;
5946
63b2ca30
NP
5947 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5948 kfree(sg->sgc);
e3589f6c
PZ
5949
5950 kfree(sg);
5951 sg = tmp;
5952 } while (sg != first);
5953}
5954
16f3ef46 5955static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5956{
e3589f6c
PZ
5957 /*
5958 * If its an overlapping domain it has private groups, iterate and
5959 * nuke them all.
5960 */
5961 if (sd->flags & SD_OVERLAP) {
5962 free_sched_groups(sd->groups, 1);
5963 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5964 kfree(sd->groups->sgc);
dce840a0 5965 kfree(sd->groups);
9c3f75cb 5966 }
24fc7edb
PZ
5967 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5968 kfree(sd->shared);
dce840a0
PZ
5969 kfree(sd);
5970}
5971
16f3ef46 5972static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5973{
16f3ef46
PZ
5974 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5975
5976 while (sd) {
5977 struct sched_domain *parent = sd->parent;
5978 destroy_sched_domain(sd);
5979 sd = parent;
5980 }
dce840a0
PZ
5981}
5982
f39180ef 5983static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5984{
16f3ef46
PZ
5985 if (sd)
5986 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5987}
5988
518cd623
PZ
5989/*
5990 * Keep a special pointer to the highest sched_domain that has
5991 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5992 * allows us to avoid some pointer chasing select_idle_sibling().
5993 *
5994 * Also keep a unique ID per domain (we use the first cpu number in
5995 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5996 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5997 */
5998DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5999DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6000DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 6001DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 6002DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 6003DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6004
6005static void update_top_cache_domain(int cpu)
6006{
0e369d75 6007 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6008 struct sched_domain *sd;
6009 int id = cpu;
7d9ffa89 6010 int size = 1;
518cd623
PZ
6011
6012 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6013 if (sd) {
518cd623 6014 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6015 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6016 sds = sd->shared;
7d9ffa89 6017 }
518cd623
PZ
6018
6019 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6020 per_cpu(sd_llc_size, cpu) = size;
518cd623 6021 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6022 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6023
6024 sd = lowest_flag_domain(cpu, SD_NUMA);
6025 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6026
6027 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6028 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6029}
6030
1da177e4 6031/*
0eab9146 6032 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6033 * hold the hotplug lock.
6034 */
0eab9146
IM
6035static void
6036cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6037{
70b97a7f 6038 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6039 struct sched_domain *tmp;
6040
6041 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6042 for (tmp = sd; tmp; ) {
245af2c7
SS
6043 struct sched_domain *parent = tmp->parent;
6044 if (!parent)
6045 break;
f29c9b1c 6046
1a848870 6047 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6048 tmp->parent = parent->parent;
1a848870
SS
6049 if (parent->parent)
6050 parent->parent->child = tmp;
10866e62
PZ
6051 /*
6052 * Transfer SD_PREFER_SIBLING down in case of a
6053 * degenerate parent; the spans match for this
6054 * so the property transfers.
6055 */
6056 if (parent->flags & SD_PREFER_SIBLING)
6057 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6058 destroy_sched_domain(parent);
f29c9b1c
LZ
6059 } else
6060 tmp = tmp->parent;
245af2c7
SS
6061 }
6062
1a848870 6063 if (sd && sd_degenerate(sd)) {
dce840a0 6064 tmp = sd;
245af2c7 6065 sd = sd->parent;
f39180ef 6066 destroy_sched_domain(tmp);
1a848870
SS
6067 if (sd)
6068 sd->child = NULL;
6069 }
1da177e4 6070
4cb98839 6071 sched_domain_debug(sd, cpu);
1da177e4 6072
57d885fe 6073 rq_attach_root(rq, rd);
dce840a0 6074 tmp = rq->sd;
674311d5 6075 rcu_assign_pointer(rq->sd, sd);
f39180ef 6076 destroy_sched_domains(tmp);
518cd623
PZ
6077
6078 update_top_cache_domain(cpu);
1da177e4
LT
6079}
6080
1da177e4
LT
6081/* Setup the mask of cpus configured for isolated domains */
6082static int __init isolated_cpu_setup(char *str)
6083{
a6e4491c
PB
6084 int ret;
6085
bdddd296 6086 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6087 ret = cpulist_parse(str, cpu_isolated_map);
6088 if (ret) {
6089 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6090 return 0;
6091 }
1da177e4
LT
6092 return 1;
6093}
8927f494 6094__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6095
49a02c51 6096struct s_data {
21d42ccf 6097 struct sched_domain ** __percpu sd;
49a02c51
AH
6098 struct root_domain *rd;
6099};
6100
2109b99e 6101enum s_alloc {
2109b99e 6102 sa_rootdomain,
21d42ccf 6103 sa_sd,
dce840a0 6104 sa_sd_storage,
2109b99e
AH
6105 sa_none,
6106};
6107
c1174876
PZ
6108/*
6109 * Build an iteration mask that can exclude certain CPUs from the upwards
6110 * domain traversal.
6111 *
6112 * Asymmetric node setups can result in situations where the domain tree is of
6113 * unequal depth, make sure to skip domains that already cover the entire
6114 * range.
6115 *
6116 * In that case build_sched_domains() will have terminated the iteration early
6117 * and our sibling sd spans will be empty. Domains should always include the
6118 * cpu they're built on, so check that.
6119 *
6120 */
6121static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6122{
6123 const struct cpumask *span = sched_domain_span(sd);
6124 struct sd_data *sdd = sd->private;
6125 struct sched_domain *sibling;
6126 int i;
6127
6128 for_each_cpu(i, span) {
6129 sibling = *per_cpu_ptr(sdd->sd, i);
6130 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6131 continue;
6132
6133 cpumask_set_cpu(i, sched_group_mask(sg));
6134 }
6135}
6136
6137/*
6138 * Return the canonical balance cpu for this group, this is the first cpu
6139 * of this group that's also in the iteration mask.
6140 */
6141int group_balance_cpu(struct sched_group *sg)
6142{
6143 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6144}
6145
e3589f6c
PZ
6146static int
6147build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6148{
6149 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6150 const struct cpumask *span = sched_domain_span(sd);
6151 struct cpumask *covered = sched_domains_tmpmask;
6152 struct sd_data *sdd = sd->private;
aaecac4a 6153 struct sched_domain *sibling;
e3589f6c
PZ
6154 int i;
6155
6156 cpumask_clear(covered);
6157
6158 for_each_cpu(i, span) {
6159 struct cpumask *sg_span;
6160
6161 if (cpumask_test_cpu(i, covered))
6162 continue;
6163
aaecac4a 6164 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6165
6166 /* See the comment near build_group_mask(). */
aaecac4a 6167 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6168 continue;
6169
e3589f6c 6170 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6171 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6172
6173 if (!sg)
6174 goto fail;
6175
6176 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6177 if (sibling->child)
6178 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6179 else
e3589f6c
PZ
6180 cpumask_set_cpu(i, sg_span);
6181
6182 cpumask_or(covered, covered, sg_span);
6183
63b2ca30
NP
6184 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6185 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6186 build_group_mask(sd, sg);
6187
c3decf0d 6188 /*
63b2ca30 6189 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6190 * domains and no possible iteration will get us here, we won't
6191 * die on a /0 trap.
6192 */
ca8ce3d0 6193 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6194
c1174876
PZ
6195 /*
6196 * Make sure the first group of this domain contains the
6197 * canonical balance cpu. Otherwise the sched_domain iteration
6198 * breaks. See update_sg_lb_stats().
6199 */
74a5ce20 6200 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6201 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6202 groups = sg;
6203
6204 if (!first)
6205 first = sg;
6206 if (last)
6207 last->next = sg;
6208 last = sg;
6209 last->next = first;
6210 }
6211 sd->groups = groups;
6212
6213 return 0;
6214
6215fail:
6216 free_sched_groups(first, 0);
6217
6218 return -ENOMEM;
6219}
6220
dce840a0 6221static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6222{
dce840a0
PZ
6223 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6224 struct sched_domain *child = sd->child;
1da177e4 6225
dce840a0
PZ
6226 if (child)
6227 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6228
9c3f75cb 6229 if (sg) {
dce840a0 6230 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6231 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6232 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6233 }
dce840a0
PZ
6234
6235 return cpu;
1e9f28fa 6236}
1e9f28fa 6237
01a08546 6238/*
dce840a0
PZ
6239 * build_sched_groups will build a circular linked list of the groups
6240 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6241 * and ->cpu_capacity to 0.
e3589f6c
PZ
6242 *
6243 * Assumes the sched_domain tree is fully constructed
01a08546 6244 */
e3589f6c
PZ
6245static int
6246build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6247{
dce840a0
PZ
6248 struct sched_group *first = NULL, *last = NULL;
6249 struct sd_data *sdd = sd->private;
6250 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6251 struct cpumask *covered;
dce840a0 6252 int i;
9c1cfda2 6253
e3589f6c
PZ
6254 get_group(cpu, sdd, &sd->groups);
6255 atomic_inc(&sd->groups->ref);
6256
0936629f 6257 if (cpu != cpumask_first(span))
e3589f6c
PZ
6258 return 0;
6259
f96225fd
PZ
6260 lockdep_assert_held(&sched_domains_mutex);
6261 covered = sched_domains_tmpmask;
6262
dce840a0 6263 cpumask_clear(covered);
6711cab4 6264
dce840a0
PZ
6265 for_each_cpu(i, span) {
6266 struct sched_group *sg;
cd08e923 6267 int group, j;
6711cab4 6268
dce840a0
PZ
6269 if (cpumask_test_cpu(i, covered))
6270 continue;
6711cab4 6271
cd08e923 6272 group = get_group(i, sdd, &sg);
c1174876 6273 cpumask_setall(sched_group_mask(sg));
0601a88d 6274
dce840a0
PZ
6275 for_each_cpu(j, span) {
6276 if (get_group(j, sdd, NULL) != group)
6277 continue;
0601a88d 6278
dce840a0
PZ
6279 cpumask_set_cpu(j, covered);
6280 cpumask_set_cpu(j, sched_group_cpus(sg));
6281 }
0601a88d 6282
dce840a0
PZ
6283 if (!first)
6284 first = sg;
6285 if (last)
6286 last->next = sg;
6287 last = sg;
6288 }
6289 last->next = first;
e3589f6c
PZ
6290
6291 return 0;
0601a88d 6292}
51888ca2 6293
89c4710e 6294/*
63b2ca30 6295 * Initialize sched groups cpu_capacity.
89c4710e 6296 *
63b2ca30 6297 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6298 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6299 * Typically cpu_capacity for all the groups in a sched domain will be same
6300 * unless there are asymmetries in the topology. If there are asymmetries,
6301 * group having more cpu_capacity will pickup more load compared to the
6302 * group having less cpu_capacity.
89c4710e 6303 */
63b2ca30 6304static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6305{
e3589f6c 6306 struct sched_group *sg = sd->groups;
89c4710e 6307
94c95ba6 6308 WARN_ON(!sg);
e3589f6c
PZ
6309
6310 do {
6311 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6312 sg = sg->next;
6313 } while (sg != sd->groups);
89c4710e 6314
c1174876 6315 if (cpu != group_balance_cpu(sg))
e3589f6c 6316 return;
aae6d3dd 6317
63b2ca30 6318 update_group_capacity(sd, cpu);
89c4710e
SS
6319}
6320
7c16ec58
MT
6321/*
6322 * Initializers for schedule domains
6323 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6324 */
6325
1d3504fc 6326static int default_relax_domain_level = -1;
60495e77 6327int sched_domain_level_max;
1d3504fc
HS
6328
6329static int __init setup_relax_domain_level(char *str)
6330{
a841f8ce
DS
6331 if (kstrtoint(str, 0, &default_relax_domain_level))
6332 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6333
1d3504fc
HS
6334 return 1;
6335}
6336__setup("relax_domain_level=", setup_relax_domain_level);
6337
6338static void set_domain_attribute(struct sched_domain *sd,
6339 struct sched_domain_attr *attr)
6340{
6341 int request;
6342
6343 if (!attr || attr->relax_domain_level < 0) {
6344 if (default_relax_domain_level < 0)
6345 return;
6346 else
6347 request = default_relax_domain_level;
6348 } else
6349 request = attr->relax_domain_level;
6350 if (request < sd->level) {
6351 /* turn off idle balance on this domain */
c88d5910 6352 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6353 } else {
6354 /* turn on idle balance on this domain */
c88d5910 6355 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6356 }
6357}
6358
54ab4ff4
PZ
6359static void __sdt_free(const struct cpumask *cpu_map);
6360static int __sdt_alloc(const struct cpumask *cpu_map);
6361
2109b99e
AH
6362static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6363 const struct cpumask *cpu_map)
6364{
6365 switch (what) {
2109b99e 6366 case sa_rootdomain:
822ff793
PZ
6367 if (!atomic_read(&d->rd->refcount))
6368 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6369 case sa_sd:
6370 free_percpu(d->sd); /* fall through */
dce840a0 6371 case sa_sd_storage:
54ab4ff4 6372 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6373 case sa_none:
6374 break;
6375 }
6376}
3404c8d9 6377
2109b99e
AH
6378static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6379 const struct cpumask *cpu_map)
6380{
dce840a0
PZ
6381 memset(d, 0, sizeof(*d));
6382
54ab4ff4
PZ
6383 if (__sdt_alloc(cpu_map))
6384 return sa_sd_storage;
dce840a0
PZ
6385 d->sd = alloc_percpu(struct sched_domain *);
6386 if (!d->sd)
6387 return sa_sd_storage;
2109b99e 6388 d->rd = alloc_rootdomain();
dce840a0 6389 if (!d->rd)
21d42ccf 6390 return sa_sd;
2109b99e
AH
6391 return sa_rootdomain;
6392}
57d885fe 6393
dce840a0
PZ
6394/*
6395 * NULL the sd_data elements we've used to build the sched_domain and
6396 * sched_group structure so that the subsequent __free_domain_allocs()
6397 * will not free the data we're using.
6398 */
6399static void claim_allocations(int cpu, struct sched_domain *sd)
6400{
6401 struct sd_data *sdd = sd->private;
dce840a0
PZ
6402
6403 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6404 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6405
24fc7edb
PZ
6406 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6407 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6408
e3589f6c 6409 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6410 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6411
63b2ca30
NP
6412 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6413 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6414}
6415
cb83b629 6416#ifdef CONFIG_NUMA
cb83b629 6417static int sched_domains_numa_levels;
e3fe70b1 6418enum numa_topology_type sched_numa_topology_type;
cb83b629 6419static int *sched_domains_numa_distance;
9942f79b 6420int sched_max_numa_distance;
cb83b629
PZ
6421static struct cpumask ***sched_domains_numa_masks;
6422static int sched_domains_curr_level;
143e1e28 6423#endif
cb83b629 6424
143e1e28
VG
6425/*
6426 * SD_flags allowed in topology descriptions.
6427 *
94f438c8
PZ
6428 * These flags are purely descriptive of the topology and do not prescribe
6429 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6430 * function:
143e1e28 6431 *
94f438c8
PZ
6432 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6433 * SD_SHARE_PKG_RESOURCES - describes shared caches
6434 * SD_NUMA - describes NUMA topologies
6435 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6436 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6437 *
6438 * Odd one out, which beside describing the topology has a quirk also
6439 * prescribes the desired behaviour that goes along with it:
143e1e28 6440 *
94f438c8 6441 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6442 */
6443#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6444 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6445 SD_SHARE_PKG_RESOURCES | \
6446 SD_NUMA | \
d77b3ed5 6447 SD_ASYM_PACKING | \
1f6e6c7c 6448 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6449 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6450
6451static struct sched_domain *
3676b13e 6452sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6453 const struct cpumask *cpu_map,
3676b13e 6454 struct sched_domain *child, int cpu)
cb83b629 6455{
24fc7edb
PZ
6456 struct sd_data *sdd = &tl->data;
6457 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6458 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6459
6460#ifdef CONFIG_NUMA
6461 /*
6462 * Ugly hack to pass state to sd_numa_mask()...
6463 */
6464 sched_domains_curr_level = tl->numa_level;
6465#endif
6466
6467 sd_weight = cpumask_weight(tl->mask(cpu));
6468
6469 if (tl->sd_flags)
6470 sd_flags = (*tl->sd_flags)();
6471 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6472 "wrong sd_flags in topology description\n"))
6473 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6474
6475 *sd = (struct sched_domain){
6476 .min_interval = sd_weight,
6477 .max_interval = 2*sd_weight,
6478 .busy_factor = 32,
870a0bb5 6479 .imbalance_pct = 125,
143e1e28
VG
6480
6481 .cache_nice_tries = 0,
6482 .busy_idx = 0,
6483 .idle_idx = 0,
cb83b629
PZ
6484 .newidle_idx = 0,
6485 .wake_idx = 0,
6486 .forkexec_idx = 0,
6487
6488 .flags = 1*SD_LOAD_BALANCE
6489 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6490 | 1*SD_BALANCE_EXEC
6491 | 1*SD_BALANCE_FORK
cb83b629 6492 | 0*SD_BALANCE_WAKE
143e1e28 6493 | 1*SD_WAKE_AFFINE
5d4dfddd 6494 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6495 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6496 | 0*SD_SERIALIZE
cb83b629 6497 | 0*SD_PREFER_SIBLING
143e1e28
VG
6498 | 0*SD_NUMA
6499 | sd_flags
cb83b629 6500 ,
143e1e28 6501
cb83b629
PZ
6502 .last_balance = jiffies,
6503 .balance_interval = sd_weight,
143e1e28 6504 .smt_gain = 0,
2b4cfe64
JL
6505 .max_newidle_lb_cost = 0,
6506 .next_decay_max_lb_cost = jiffies,
3676b13e 6507 .child = child,
143e1e28
VG
6508#ifdef CONFIG_SCHED_DEBUG
6509 .name = tl->name,
6510#endif
cb83b629 6511 };
cb83b629 6512
24fc7edb
PZ
6513 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6514 sd_id = cpumask_first(sched_domain_span(sd));
6515
cb83b629 6516 /*
143e1e28 6517 * Convert topological properties into behaviour.
cb83b629 6518 */
143e1e28 6519
9ee1cda5
MR
6520 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6521 struct sched_domain *t = sd;
6522
6523 for_each_lower_domain(t)
6524 t->flags |= SD_BALANCE_WAKE;
6525 }
6526
5d4dfddd 6527 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6528 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6529 sd->imbalance_pct = 110;
6530 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6531
6532 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6533 sd->imbalance_pct = 117;
6534 sd->cache_nice_tries = 1;
6535 sd->busy_idx = 2;
6536
6537#ifdef CONFIG_NUMA
6538 } else if (sd->flags & SD_NUMA) {
6539 sd->cache_nice_tries = 2;
6540 sd->busy_idx = 3;
6541 sd->idle_idx = 2;
6542
6543 sd->flags |= SD_SERIALIZE;
6544 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6545 sd->flags &= ~(SD_BALANCE_EXEC |
6546 SD_BALANCE_FORK |
6547 SD_WAKE_AFFINE);
6548 }
6549
6550#endif
6551 } else {
6552 sd->flags |= SD_PREFER_SIBLING;
6553 sd->cache_nice_tries = 1;
6554 sd->busy_idx = 2;
6555 sd->idle_idx = 1;
6556 }
6557
24fc7edb
PZ
6558 /*
6559 * For all levels sharing cache; connect a sched_domain_shared
6560 * instance.
6561 */
6562 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6563 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6564 atomic_inc(&sd->shared->ref);
0e369d75 6565 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6566 }
6567
6568 sd->private = sdd;
cb83b629
PZ
6569
6570 return sd;
6571}
6572
143e1e28
VG
6573/*
6574 * Topology list, bottom-up.
6575 */
6576static struct sched_domain_topology_level default_topology[] = {
6577#ifdef CONFIG_SCHED_SMT
6578 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6579#endif
6580#ifdef CONFIG_SCHED_MC
6581 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6582#endif
6583 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6584 { NULL, },
6585};
6586
c6e1e7b5
JG
6587static struct sched_domain_topology_level *sched_domain_topology =
6588 default_topology;
143e1e28
VG
6589
6590#define for_each_sd_topology(tl) \
6591 for (tl = sched_domain_topology; tl->mask; tl++)
6592
6593void set_sched_topology(struct sched_domain_topology_level *tl)
6594{
8f37961c
TC
6595 if (WARN_ON_ONCE(sched_smp_initialized))
6596 return;
6597
143e1e28
VG
6598 sched_domain_topology = tl;
6599}
6600
6601#ifdef CONFIG_NUMA
6602
cb83b629
PZ
6603static const struct cpumask *sd_numa_mask(int cpu)
6604{
6605 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6606}
6607
d039ac60
PZ
6608static void sched_numa_warn(const char *str)
6609{
6610 static int done = false;
6611 int i,j;
6612
6613 if (done)
6614 return;
6615
6616 done = true;
6617
6618 printk(KERN_WARNING "ERROR: %s\n\n", str);
6619
6620 for (i = 0; i < nr_node_ids; i++) {
6621 printk(KERN_WARNING " ");
6622 for (j = 0; j < nr_node_ids; j++)
6623 printk(KERN_CONT "%02d ", node_distance(i,j));
6624 printk(KERN_CONT "\n");
6625 }
6626 printk(KERN_WARNING "\n");
6627}
6628
9942f79b 6629bool find_numa_distance(int distance)
d039ac60
PZ
6630{
6631 int i;
6632
6633 if (distance == node_distance(0, 0))
6634 return true;
6635
6636 for (i = 0; i < sched_domains_numa_levels; i++) {
6637 if (sched_domains_numa_distance[i] == distance)
6638 return true;
6639 }
6640
6641 return false;
6642}
6643
e3fe70b1
RR
6644/*
6645 * A system can have three types of NUMA topology:
6646 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6647 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6648 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6649 *
6650 * The difference between a glueless mesh topology and a backplane
6651 * topology lies in whether communication between not directly
6652 * connected nodes goes through intermediary nodes (where programs
6653 * could run), or through backplane controllers. This affects
6654 * placement of programs.
6655 *
6656 * The type of topology can be discerned with the following tests:
6657 * - If the maximum distance between any nodes is 1 hop, the system
6658 * is directly connected.
6659 * - If for two nodes A and B, located N > 1 hops away from each other,
6660 * there is an intermediary node C, which is < N hops away from both
6661 * nodes A and B, the system is a glueless mesh.
6662 */
6663static void init_numa_topology_type(void)
6664{
6665 int a, b, c, n;
6666
6667 n = sched_max_numa_distance;
6668
e237882b 6669 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6670 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6671 return;
6672 }
e3fe70b1
RR
6673
6674 for_each_online_node(a) {
6675 for_each_online_node(b) {
6676 /* Find two nodes furthest removed from each other. */
6677 if (node_distance(a, b) < n)
6678 continue;
6679
6680 /* Is there an intermediary node between a and b? */
6681 for_each_online_node(c) {
6682 if (node_distance(a, c) < n &&
6683 node_distance(b, c) < n) {
6684 sched_numa_topology_type =
6685 NUMA_GLUELESS_MESH;
6686 return;
6687 }
6688 }
6689
6690 sched_numa_topology_type = NUMA_BACKPLANE;
6691 return;
6692 }
6693 }
6694}
6695
cb83b629
PZ
6696static void sched_init_numa(void)
6697{
6698 int next_distance, curr_distance = node_distance(0, 0);
6699 struct sched_domain_topology_level *tl;
6700 int level = 0;
6701 int i, j, k;
6702
cb83b629
PZ
6703 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6704 if (!sched_domains_numa_distance)
6705 return;
6706
6707 /*
6708 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6709 * unique distances in the node_distance() table.
6710 *
6711 * Assumes node_distance(0,j) includes all distances in
6712 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6713 */
6714 next_distance = curr_distance;
6715 for (i = 0; i < nr_node_ids; i++) {
6716 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6717 for (k = 0; k < nr_node_ids; k++) {
6718 int distance = node_distance(i, k);
6719
6720 if (distance > curr_distance &&
6721 (distance < next_distance ||
6722 next_distance == curr_distance))
6723 next_distance = distance;
6724
6725 /*
6726 * While not a strong assumption it would be nice to know
6727 * about cases where if node A is connected to B, B is not
6728 * equally connected to A.
6729 */
6730 if (sched_debug() && node_distance(k, i) != distance)
6731 sched_numa_warn("Node-distance not symmetric");
6732
6733 if (sched_debug() && i && !find_numa_distance(distance))
6734 sched_numa_warn("Node-0 not representative");
6735 }
6736 if (next_distance != curr_distance) {
6737 sched_domains_numa_distance[level++] = next_distance;
6738 sched_domains_numa_levels = level;
6739 curr_distance = next_distance;
6740 } else break;
cb83b629 6741 }
d039ac60
PZ
6742
6743 /*
6744 * In case of sched_debug() we verify the above assumption.
6745 */
6746 if (!sched_debug())
6747 break;
cb83b629 6748 }
c123588b
AR
6749
6750 if (!level)
6751 return;
6752
cb83b629
PZ
6753 /*
6754 * 'level' contains the number of unique distances, excluding the
6755 * identity distance node_distance(i,i).
6756 *
28b4a521 6757 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6758 * numbers.
6759 */
6760
5f7865f3
TC
6761 /*
6762 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6763 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6764 * the array will contain less then 'level' members. This could be
6765 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6766 * in other functions.
6767 *
6768 * We reset it to 'level' at the end of this function.
6769 */
6770 sched_domains_numa_levels = 0;
6771
cb83b629
PZ
6772 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6773 if (!sched_domains_numa_masks)
6774 return;
6775
6776 /*
6777 * Now for each level, construct a mask per node which contains all
6778 * cpus of nodes that are that many hops away from us.
6779 */
6780 for (i = 0; i < level; i++) {
6781 sched_domains_numa_masks[i] =
6782 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6783 if (!sched_domains_numa_masks[i])
6784 return;
6785
6786 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6787 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6788 if (!mask)
6789 return;
6790
6791 sched_domains_numa_masks[i][j] = mask;
6792
9c03ee14 6793 for_each_node(k) {
dd7d8634 6794 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6795 continue;
6796
6797 cpumask_or(mask, mask, cpumask_of_node(k));
6798 }
6799 }
6800 }
6801
143e1e28
VG
6802 /* Compute default topology size */
6803 for (i = 0; sched_domain_topology[i].mask; i++);
6804
c515db8c 6805 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6806 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6807 if (!tl)
6808 return;
6809
6810 /*
6811 * Copy the default topology bits..
6812 */
143e1e28
VG
6813 for (i = 0; sched_domain_topology[i].mask; i++)
6814 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6815
6816 /*
6817 * .. and append 'j' levels of NUMA goodness.
6818 */
6819 for (j = 0; j < level; i++, j++) {
6820 tl[i] = (struct sched_domain_topology_level){
cb83b629 6821 .mask = sd_numa_mask,
143e1e28 6822 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6823 .flags = SDTL_OVERLAP,
6824 .numa_level = j,
143e1e28 6825 SD_INIT_NAME(NUMA)
cb83b629
PZ
6826 };
6827 }
6828
6829 sched_domain_topology = tl;
5f7865f3
TC
6830
6831 sched_domains_numa_levels = level;
9942f79b 6832 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6833
6834 init_numa_topology_type();
cb83b629 6835}
301a5cba 6836
135fb3e1 6837static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6838{
301a5cba 6839 int node = cpu_to_node(cpu);
135fb3e1 6840 int i, j;
301a5cba
TC
6841
6842 for (i = 0; i < sched_domains_numa_levels; i++) {
6843 for (j = 0; j < nr_node_ids; j++) {
6844 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6845 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6846 }
6847 }
6848}
6849
135fb3e1 6850static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6851{
6852 int i, j;
135fb3e1 6853
301a5cba
TC
6854 for (i = 0; i < sched_domains_numa_levels; i++) {
6855 for (j = 0; j < nr_node_ids; j++)
6856 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6857 }
6858}
6859
cb83b629 6860#else
135fb3e1
TG
6861static inline void sched_init_numa(void) { }
6862static void sched_domains_numa_masks_set(unsigned int cpu) { }
6863static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6864#endif /* CONFIG_NUMA */
6865
54ab4ff4
PZ
6866static int __sdt_alloc(const struct cpumask *cpu_map)
6867{
6868 struct sched_domain_topology_level *tl;
6869 int j;
6870
27723a68 6871 for_each_sd_topology(tl) {
54ab4ff4
PZ
6872 struct sd_data *sdd = &tl->data;
6873
6874 sdd->sd = alloc_percpu(struct sched_domain *);
6875 if (!sdd->sd)
6876 return -ENOMEM;
6877
24fc7edb
PZ
6878 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6879 if (!sdd->sds)
6880 return -ENOMEM;
6881
54ab4ff4
PZ
6882 sdd->sg = alloc_percpu(struct sched_group *);
6883 if (!sdd->sg)
6884 return -ENOMEM;
6885
63b2ca30
NP
6886 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6887 if (!sdd->sgc)
9c3f75cb
PZ
6888 return -ENOMEM;
6889
54ab4ff4
PZ
6890 for_each_cpu(j, cpu_map) {
6891 struct sched_domain *sd;
24fc7edb 6892 struct sched_domain_shared *sds;
54ab4ff4 6893 struct sched_group *sg;
63b2ca30 6894 struct sched_group_capacity *sgc;
54ab4ff4 6895
5cc389bc 6896 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6897 GFP_KERNEL, cpu_to_node(j));
6898 if (!sd)
6899 return -ENOMEM;
6900
6901 *per_cpu_ptr(sdd->sd, j) = sd;
6902
24fc7edb
PZ
6903 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6904 GFP_KERNEL, cpu_to_node(j));
6905 if (!sds)
6906 return -ENOMEM;
6907
6908 *per_cpu_ptr(sdd->sds, j) = sds;
6909
54ab4ff4
PZ
6910 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6911 GFP_KERNEL, cpu_to_node(j));
6912 if (!sg)
6913 return -ENOMEM;
6914
30b4e9eb
IM
6915 sg->next = sg;
6916
54ab4ff4 6917 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6918
63b2ca30 6919 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6920 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6921 if (!sgc)
9c3f75cb
PZ
6922 return -ENOMEM;
6923
63b2ca30 6924 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6925 }
6926 }
6927
6928 return 0;
6929}
6930
6931static void __sdt_free(const struct cpumask *cpu_map)
6932{
6933 struct sched_domain_topology_level *tl;
6934 int j;
6935
27723a68 6936 for_each_sd_topology(tl) {
54ab4ff4
PZ
6937 struct sd_data *sdd = &tl->data;
6938
6939 for_each_cpu(j, cpu_map) {
fb2cf2c6 6940 struct sched_domain *sd;
6941
6942 if (sdd->sd) {
6943 sd = *per_cpu_ptr(sdd->sd, j);
6944 if (sd && (sd->flags & SD_OVERLAP))
6945 free_sched_groups(sd->groups, 0);
6946 kfree(*per_cpu_ptr(sdd->sd, j));
6947 }
6948
24fc7edb
PZ
6949 if (sdd->sds)
6950 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6951 if (sdd->sg)
6952 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6953 if (sdd->sgc)
6954 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6955 }
6956 free_percpu(sdd->sd);
fb2cf2c6 6957 sdd->sd = NULL;
24fc7edb
PZ
6958 free_percpu(sdd->sds);
6959 sdd->sds = NULL;
54ab4ff4 6960 free_percpu(sdd->sg);
fb2cf2c6 6961 sdd->sg = NULL;
63b2ca30
NP
6962 free_percpu(sdd->sgc);
6963 sdd->sgc = NULL;
54ab4ff4
PZ
6964 }
6965}
6966
2c402dc3 6967struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6968 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6969 struct sched_domain *child, int cpu)
2c402dc3 6970{
24fc7edb 6971 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6972
60495e77
PZ
6973 if (child) {
6974 sd->level = child->level + 1;
6975 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6976 child->parent = sd;
6ae72dff
PZ
6977
6978 if (!cpumask_subset(sched_domain_span(child),
6979 sched_domain_span(sd))) {
6980 pr_err("BUG: arch topology borken\n");
6981#ifdef CONFIG_SCHED_DEBUG
6982 pr_err(" the %s domain not a subset of the %s domain\n",
6983 child->name, sd->name);
6984#endif
6985 /* Fixup, ensure @sd has at least @child cpus. */
6986 cpumask_or(sched_domain_span(sd),
6987 sched_domain_span(sd),
6988 sched_domain_span(child));
6989 }
6990
60495e77 6991 }
a841f8ce 6992 set_domain_attribute(sd, attr);
2c402dc3
PZ
6993
6994 return sd;
6995}
6996
2109b99e
AH
6997/*
6998 * Build sched domains for a given set of cpus and attach the sched domains
6999 * to the individual cpus
7000 */
dce840a0
PZ
7001static int build_sched_domains(const struct cpumask *cpu_map,
7002 struct sched_domain_attr *attr)
2109b99e 7003{
1c632169 7004 enum s_alloc alloc_state;
dce840a0 7005 struct sched_domain *sd;
2109b99e 7006 struct s_data d;
cd92bfd3 7007 struct rq *rq = NULL;
822ff793 7008 int i, ret = -ENOMEM;
9c1cfda2 7009
2109b99e
AH
7010 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7011 if (alloc_state != sa_rootdomain)
7012 goto error;
9c1cfda2 7013
dce840a0 7014 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7015 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7016 struct sched_domain_topology_level *tl;
7017
3bd65a80 7018 sd = NULL;
27723a68 7019 for_each_sd_topology(tl) {
4a850cbe 7020 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7021 if (tl == sched_domain_topology)
7022 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7023 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7024 sd->flags |= SD_OVERLAP;
d110235d
PZ
7025 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7026 break;
e3589f6c 7027 }
dce840a0
PZ
7028 }
7029
7030 /* Build the groups for the domains */
7031 for_each_cpu(i, cpu_map) {
7032 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7033 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7034 if (sd->flags & SD_OVERLAP) {
7035 if (build_overlap_sched_groups(sd, i))
7036 goto error;
7037 } else {
7038 if (build_sched_groups(sd, i))
7039 goto error;
7040 }
1cf51902 7041 }
a06dadbe 7042 }
9c1cfda2 7043
ced549fa 7044 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7045 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7046 if (!cpumask_test_cpu(i, cpu_map))
7047 continue;
9c1cfda2 7048
dce840a0
PZ
7049 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7050 claim_allocations(i, sd);
63b2ca30 7051 init_sched_groups_capacity(i, sd);
dce840a0 7052 }
f712c0c7 7053 }
9c1cfda2 7054
1da177e4 7055 /* Attach the domains */
dce840a0 7056 rcu_read_lock();
abcd083a 7057 for_each_cpu(i, cpu_map) {
cd92bfd3 7058 rq = cpu_rq(i);
21d42ccf 7059 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7060
7061 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7062 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7063 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7064
49a02c51 7065 cpu_attach_domain(sd, d.rd, i);
1da177e4 7066 }
dce840a0 7067 rcu_read_unlock();
51888ca2 7068
a18a579e 7069 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7070 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7072 }
7073
822ff793 7074 ret = 0;
51888ca2 7075error:
2109b99e 7076 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7077 return ret;
1da177e4 7078}
029190c5 7079
acc3f5d7 7080static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7081static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7082static struct sched_domain_attr *dattr_cur;
7083 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7084
7085/*
7086 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7087 * cpumask) fails, then fallback to a single sched domain,
7088 * as determined by the single cpumask fallback_doms.
029190c5 7089 */
4212823f 7090static cpumask_var_t fallback_doms;
029190c5 7091
ee79d1bd
HC
7092/*
7093 * arch_update_cpu_topology lets virtualized architectures update the
7094 * cpu core maps. It is supposed to return 1 if the topology changed
7095 * or 0 if it stayed the same.
7096 */
52f5684c 7097int __weak arch_update_cpu_topology(void)
22e52b07 7098{
ee79d1bd 7099 return 0;
22e52b07
HC
7100}
7101
acc3f5d7
RR
7102cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7103{
7104 int i;
7105 cpumask_var_t *doms;
7106
7107 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7108 if (!doms)
7109 return NULL;
7110 for (i = 0; i < ndoms; i++) {
7111 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7112 free_sched_domains(doms, i);
7113 return NULL;
7114 }
7115 }
7116 return doms;
7117}
7118
7119void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7120{
7121 unsigned int i;
7122 for (i = 0; i < ndoms; i++)
7123 free_cpumask_var(doms[i]);
7124 kfree(doms);
7125}
7126
1a20ff27 7127/*
41a2d6cf 7128 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7129 * For now this just excludes isolated cpus, but could be used to
7130 * exclude other special cases in the future.
1a20ff27 7131 */
c4a8849a 7132static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7133{
7378547f
MM
7134 int err;
7135
22e52b07 7136 arch_update_cpu_topology();
029190c5 7137 ndoms_cur = 1;
acc3f5d7 7138 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7139 if (!doms_cur)
acc3f5d7
RR
7140 doms_cur = &fallback_doms;
7141 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7142 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7143 register_sched_domain_sysctl();
7378547f
MM
7144
7145 return err;
1a20ff27
DG
7146}
7147
1a20ff27
DG
7148/*
7149 * Detach sched domains from a group of cpus specified in cpu_map
7150 * These cpus will now be attached to the NULL domain
7151 */
96f874e2 7152static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7153{
7154 int i;
7155
dce840a0 7156 rcu_read_lock();
abcd083a 7157 for_each_cpu(i, cpu_map)
57d885fe 7158 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7159 rcu_read_unlock();
1a20ff27
DG
7160}
7161
1d3504fc
HS
7162/* handle null as "default" */
7163static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7164 struct sched_domain_attr *new, int idx_new)
7165{
7166 struct sched_domain_attr tmp;
7167
7168 /* fast path */
7169 if (!new && !cur)
7170 return 1;
7171
7172 tmp = SD_ATTR_INIT;
7173 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7174 new ? (new + idx_new) : &tmp,
7175 sizeof(struct sched_domain_attr));
7176}
7177
029190c5
PJ
7178/*
7179 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7180 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7181 * doms_new[] to the current sched domain partitioning, doms_cur[].
7182 * It destroys each deleted domain and builds each new domain.
7183 *
acc3f5d7 7184 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7185 * The masks don't intersect (don't overlap.) We should setup one
7186 * sched domain for each mask. CPUs not in any of the cpumasks will
7187 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7188 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7189 * it as it is.
7190 *
acc3f5d7
RR
7191 * The passed in 'doms_new' should be allocated using
7192 * alloc_sched_domains. This routine takes ownership of it and will
7193 * free_sched_domains it when done with it. If the caller failed the
7194 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7195 * and partition_sched_domains() will fallback to the single partition
7196 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7197 *
96f874e2 7198 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7199 * ndoms_new == 0 is a special case for destroying existing domains,
7200 * and it will not create the default domain.
dfb512ec 7201 *
029190c5
PJ
7202 * Call with hotplug lock held
7203 */
acc3f5d7 7204void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7205 struct sched_domain_attr *dattr_new)
029190c5 7206{
dfb512ec 7207 int i, j, n;
d65bd5ec 7208 int new_topology;
029190c5 7209
712555ee 7210 mutex_lock(&sched_domains_mutex);
a1835615 7211
7378547f
MM
7212 /* always unregister in case we don't destroy any domains */
7213 unregister_sched_domain_sysctl();
7214
d65bd5ec
HC
7215 /* Let architecture update cpu core mappings. */
7216 new_topology = arch_update_cpu_topology();
7217
dfb512ec 7218 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7219
7220 /* Destroy deleted domains */
7221 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7222 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7223 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7224 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7225 goto match1;
7226 }
7227 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7228 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7229match1:
7230 ;
7231 }
7232
c8d2d47a 7233 n = ndoms_cur;
e761b772 7234 if (doms_new == NULL) {
c8d2d47a 7235 n = 0;
acc3f5d7 7236 doms_new = &fallback_doms;
6ad4c188 7237 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7238 WARN_ON_ONCE(dattr_new);
e761b772
MK
7239 }
7240
029190c5
PJ
7241 /* Build new domains */
7242 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7243 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7244 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7245 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7246 goto match2;
7247 }
7248 /* no match - add a new doms_new */
dce840a0 7249 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7250match2:
7251 ;
7252 }
7253
7254 /* Remember the new sched domains */
acc3f5d7
RR
7255 if (doms_cur != &fallback_doms)
7256 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7257 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7258 doms_cur = doms_new;
1d3504fc 7259 dattr_cur = dattr_new;
029190c5 7260 ndoms_cur = ndoms_new;
7378547f
MM
7261
7262 register_sched_domain_sysctl();
a1835615 7263
712555ee 7264 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7265}
7266
d35be8ba
SB
7267static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7268
1da177e4 7269/*
3a101d05
TH
7270 * Update cpusets according to cpu_active mask. If cpusets are
7271 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7272 * around partition_sched_domains().
d35be8ba
SB
7273 *
7274 * If we come here as part of a suspend/resume, don't touch cpusets because we
7275 * want to restore it back to its original state upon resume anyway.
1da177e4 7276 */
40190a78 7277static void cpuset_cpu_active(void)
e761b772 7278{
40190a78 7279 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7280 /*
7281 * num_cpus_frozen tracks how many CPUs are involved in suspend
7282 * resume sequence. As long as this is not the last online
7283 * operation in the resume sequence, just build a single sched
7284 * domain, ignoring cpusets.
7285 */
7286 num_cpus_frozen--;
7287 if (likely(num_cpus_frozen)) {
7288 partition_sched_domains(1, NULL, NULL);
135fb3e1 7289 return;
d35be8ba 7290 }
d35be8ba
SB
7291 /*
7292 * This is the last CPU online operation. So fall through and
7293 * restore the original sched domains by considering the
7294 * cpuset configurations.
7295 */
3a101d05 7296 }
135fb3e1 7297 cpuset_update_active_cpus(true);
3a101d05 7298}
e761b772 7299
40190a78 7300static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7301{
3c18d447 7302 unsigned long flags;
3c18d447 7303 struct dl_bw *dl_b;
533445c6
OS
7304 bool overflow;
7305 int cpus;
3c18d447 7306
40190a78 7307 if (!cpuhp_tasks_frozen) {
533445c6
OS
7308 rcu_read_lock_sched();
7309 dl_b = dl_bw_of(cpu);
3c18d447 7310
533445c6
OS
7311 raw_spin_lock_irqsave(&dl_b->lock, flags);
7312 cpus = dl_bw_cpus(cpu);
7313 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7314 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7315
533445c6 7316 rcu_read_unlock_sched();
3c18d447 7317
533445c6 7318 if (overflow)
135fb3e1 7319 return -EBUSY;
7ddf96b0 7320 cpuset_update_active_cpus(false);
135fb3e1 7321 } else {
d35be8ba
SB
7322 num_cpus_frozen++;
7323 partition_sched_domains(1, NULL, NULL);
e761b772 7324 }
135fb3e1 7325 return 0;
e761b772 7326}
e761b772 7327
40190a78 7328int sched_cpu_activate(unsigned int cpu)
135fb3e1 7329{
7d976699
TG
7330 struct rq *rq = cpu_rq(cpu);
7331 unsigned long flags;
7332
40190a78 7333 set_cpu_active(cpu, true);
135fb3e1 7334
40190a78 7335 if (sched_smp_initialized) {
135fb3e1 7336 sched_domains_numa_masks_set(cpu);
40190a78 7337 cpuset_cpu_active();
e761b772 7338 }
7d976699
TG
7339
7340 /*
7341 * Put the rq online, if not already. This happens:
7342 *
7343 * 1) In the early boot process, because we build the real domains
7344 * after all cpus have been brought up.
7345 *
7346 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7347 * domains.
7348 */
7349 raw_spin_lock_irqsave(&rq->lock, flags);
7350 if (rq->rd) {
7351 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7352 set_rq_online(rq);
7353 }
7354 raw_spin_unlock_irqrestore(&rq->lock, flags);
7355
7356 update_max_interval();
7357
40190a78 7358 return 0;
135fb3e1
TG
7359}
7360
40190a78 7361int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7362{
135fb3e1
TG
7363 int ret;
7364
40190a78 7365 set_cpu_active(cpu, false);
b2454caa
PZ
7366 /*
7367 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7368 * users of this state to go away such that all new such users will
7369 * observe it.
7370 *
7371 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7372 * not imply sync_sched(), so wait for both.
7373 *
7374 * Do sync before park smpboot threads to take care the rcu boost case.
7375 */
7376 if (IS_ENABLED(CONFIG_PREEMPT))
7377 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7378 else
7379 synchronize_rcu();
40190a78
TG
7380
7381 if (!sched_smp_initialized)
7382 return 0;
7383
7384 ret = cpuset_cpu_inactive(cpu);
7385 if (ret) {
7386 set_cpu_active(cpu, true);
7387 return ret;
135fb3e1 7388 }
40190a78
TG
7389 sched_domains_numa_masks_clear(cpu);
7390 return 0;
135fb3e1
TG
7391}
7392
94baf7a5
TG
7393static void sched_rq_cpu_starting(unsigned int cpu)
7394{
7395 struct rq *rq = cpu_rq(cpu);
7396
7397 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7398 update_max_interval();
7399}
7400
135fb3e1
TG
7401int sched_cpu_starting(unsigned int cpu)
7402{
7403 set_cpu_rq_start_time(cpu);
94baf7a5 7404 sched_rq_cpu_starting(cpu);
135fb3e1 7405 return 0;
e761b772 7406}
e761b772 7407
f2785ddb
TG
7408#ifdef CONFIG_HOTPLUG_CPU
7409int sched_cpu_dying(unsigned int cpu)
7410{
7411 struct rq *rq = cpu_rq(cpu);
7412 unsigned long flags;
7413
7414 /* Handle pending wakeups and then migrate everything off */
7415 sched_ttwu_pending();
7416 raw_spin_lock_irqsave(&rq->lock, flags);
7417 if (rq->rd) {
7418 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7419 set_rq_offline(rq);
7420 }
7421 migrate_tasks(rq);
7422 BUG_ON(rq->nr_running != 1);
7423 raw_spin_unlock_irqrestore(&rq->lock, flags);
7424 calc_load_migrate(rq);
7425 update_max_interval();
20a5c8cc 7426 nohz_balance_exit_idle(cpu);
e5ef27d0 7427 hrtick_clear(rq);
f2785ddb
TG
7428 return 0;
7429}
7430#endif
7431
1b568f0a
PZ
7432#ifdef CONFIG_SCHED_SMT
7433DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7434
7435static void sched_init_smt(void)
7436{
7437 /*
7438 * We've enumerated all CPUs and will assume that if any CPU
7439 * has SMT siblings, CPU0 will too.
7440 */
7441 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7442 static_branch_enable(&sched_smt_present);
7443}
7444#else
7445static inline void sched_init_smt(void) { }
7446#endif
7447
1da177e4
LT
7448void __init sched_init_smp(void)
7449{
dcc30a35
RR
7450 cpumask_var_t non_isolated_cpus;
7451
7452 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7453 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7454
cb83b629
PZ
7455 sched_init_numa();
7456
6acce3ef
PZ
7457 /*
7458 * There's no userspace yet to cause hotplug operations; hence all the
7459 * cpu masks are stable and all blatant races in the below code cannot
7460 * happen.
7461 */
712555ee 7462 mutex_lock(&sched_domains_mutex);
c4a8849a 7463 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7464 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7465 if (cpumask_empty(non_isolated_cpus))
7466 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7467 mutex_unlock(&sched_domains_mutex);
e761b772 7468
5c1e1767 7469 /* Move init over to a non-isolated CPU */
dcc30a35 7470 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7471 BUG();
19978ca6 7472 sched_init_granularity();
dcc30a35 7473 free_cpumask_var(non_isolated_cpus);
4212823f 7474
0e3900e6 7475 init_sched_rt_class();
1baca4ce 7476 init_sched_dl_class();
1b568f0a
PZ
7477
7478 sched_init_smt();
7479
e26fbffd 7480 sched_smp_initialized = true;
1da177e4 7481}
e26fbffd
TG
7482
7483static int __init migration_init(void)
7484{
94baf7a5 7485 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7486 return 0;
1da177e4 7487}
e26fbffd
TG
7488early_initcall(migration_init);
7489
1da177e4
LT
7490#else
7491void __init sched_init_smp(void)
7492{
19978ca6 7493 sched_init_granularity();
1da177e4
LT
7494}
7495#endif /* CONFIG_SMP */
7496
7497int in_sched_functions(unsigned long addr)
7498{
1da177e4
LT
7499 return in_lock_functions(addr) ||
7500 (addr >= (unsigned long)__sched_text_start
7501 && addr < (unsigned long)__sched_text_end);
7502}
7503
029632fb 7504#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7505/*
7506 * Default task group.
7507 * Every task in system belongs to this group at bootup.
7508 */
029632fb 7509struct task_group root_task_group;
35cf4e50 7510LIST_HEAD(task_groups);
b0367629
WL
7511
7512/* Cacheline aligned slab cache for task_group */
7513static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7514#endif
6f505b16 7515
e6252c3e 7516DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7517DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7518
1da177e4
LT
7519void __init sched_init(void)
7520{
dd41f596 7521 int i, j;
434d53b0
MT
7522 unsigned long alloc_size = 0, ptr;
7523
7524#ifdef CONFIG_FAIR_GROUP_SCHED
7525 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7526#endif
7527#ifdef CONFIG_RT_GROUP_SCHED
7528 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7529#endif
434d53b0 7530 if (alloc_size) {
36b7b6d4 7531 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7532
7533#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7534 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7535 ptr += nr_cpu_ids * sizeof(void **);
7536
07e06b01 7537 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7538 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7539
6d6bc0ad 7540#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7541#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7542 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7543 ptr += nr_cpu_ids * sizeof(void **);
7544
07e06b01 7545 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7546 ptr += nr_cpu_ids * sizeof(void **);
7547
6d6bc0ad 7548#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7549 }
df7c8e84 7550#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7551 for_each_possible_cpu(i) {
7552 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7553 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7554 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7555 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7556 }
b74e6278 7557#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7558
332ac17e
DF
7559 init_rt_bandwidth(&def_rt_bandwidth,
7560 global_rt_period(), global_rt_runtime());
7561 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7562 global_rt_period(), global_rt_runtime());
332ac17e 7563
57d885fe
GH
7564#ifdef CONFIG_SMP
7565 init_defrootdomain();
7566#endif
7567
d0b27fa7 7568#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7569 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7570 global_rt_period(), global_rt_runtime());
6d6bc0ad 7571#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7572
7c941438 7573#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7574 task_group_cache = KMEM_CACHE(task_group, 0);
7575
07e06b01
YZ
7576 list_add(&root_task_group.list, &task_groups);
7577 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7578 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7579 autogroup_init(&init_task);
7c941438 7580#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7581
0a945022 7582 for_each_possible_cpu(i) {
70b97a7f 7583 struct rq *rq;
1da177e4
LT
7584
7585 rq = cpu_rq(i);
05fa785c 7586 raw_spin_lock_init(&rq->lock);
7897986b 7587 rq->nr_running = 0;
dce48a84
TG
7588 rq->calc_load_active = 0;
7589 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7590 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7591 init_rt_rq(&rq->rt);
7592 init_dl_rq(&rq->dl);
dd41f596 7593#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7594 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7595 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7596 /*
07e06b01 7597 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7598 *
7599 * In case of task-groups formed thr' the cgroup filesystem, it
7600 * gets 100% of the cpu resources in the system. This overall
7601 * system cpu resource is divided among the tasks of
07e06b01 7602 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7603 * based on each entity's (task or task-group's) weight
7604 * (se->load.weight).
7605 *
07e06b01 7606 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7607 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7608 * then A0's share of the cpu resource is:
7609 *
0d905bca 7610 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7611 *
07e06b01
YZ
7612 * We achieve this by letting root_task_group's tasks sit
7613 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7614 */
ab84d31e 7615 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7616 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7617#endif /* CONFIG_FAIR_GROUP_SCHED */
7618
7619 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7620#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7621 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7622#endif
1da177e4 7623
dd41f596
IM
7624 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7625 rq->cpu_load[j] = 0;
fdf3e95d 7626
1da177e4 7627#ifdef CONFIG_SMP
41c7ce9a 7628 rq->sd = NULL;
57d885fe 7629 rq->rd = NULL;
ca6d75e6 7630 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7631 rq->balance_callback = NULL;
1da177e4 7632 rq->active_balance = 0;
dd41f596 7633 rq->next_balance = jiffies;
1da177e4 7634 rq->push_cpu = 0;
0a2966b4 7635 rq->cpu = i;
1f11eb6a 7636 rq->online = 0;
eae0c9df
MG
7637 rq->idle_stamp = 0;
7638 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7639 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7640
7641 INIT_LIST_HEAD(&rq->cfs_tasks);
7642
dc938520 7643 rq_attach_root(rq, &def_root_domain);
3451d024 7644#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7645 rq->last_load_update_tick = jiffies;
1c792db7 7646 rq->nohz_flags = 0;
83cd4fe2 7647#endif
265f22a9
FW
7648#ifdef CONFIG_NO_HZ_FULL
7649 rq->last_sched_tick = 0;
7650#endif
9fd81dd5 7651#endif /* CONFIG_SMP */
8f4d37ec 7652 init_rq_hrtick(rq);
1da177e4 7653 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7654 }
7655
2dd73a4f 7656 set_load_weight(&init_task);
b50f60ce 7657
1da177e4
LT
7658 /*
7659 * The boot idle thread does lazy MMU switching as well:
7660 */
7661 atomic_inc(&init_mm.mm_count);
7662 enter_lazy_tlb(&init_mm, current);
7663
7664 /*
7665 * Make us the idle thread. Technically, schedule() should not be
7666 * called from this thread, however somewhere below it might be,
7667 * but because we are the idle thread, we just pick up running again
7668 * when this runqueue becomes "idle".
7669 */
7670 init_idle(current, smp_processor_id());
dce48a84
TG
7671
7672 calc_load_update = jiffies + LOAD_FREQ;
7673
bf4d83f6 7674#ifdef CONFIG_SMP
4cb98839 7675 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7676 /* May be allocated at isolcpus cmdline parse time */
7677 if (cpu_isolated_map == NULL)
7678 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7679 idle_thread_set_boot_cpu();
9cf7243d 7680 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7681#endif
7682 init_sched_fair_class();
6a7b3dc3 7683
4698f88c
JP
7684 init_schedstats();
7685
6892b75e 7686 scheduler_running = 1;
1da177e4
LT
7687}
7688
d902db1e 7689#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7690static inline int preempt_count_equals(int preempt_offset)
7691{
da7142e2 7692 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7693
4ba8216c 7694 return (nested == preempt_offset);
e4aafea2
FW
7695}
7696
d894837f 7697void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7698{
8eb23b9f
PZ
7699 /*
7700 * Blocking primitives will set (and therefore destroy) current->state,
7701 * since we will exit with TASK_RUNNING make sure we enter with it,
7702 * otherwise we will destroy state.
7703 */
00845eb9 7704 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7705 "do not call blocking ops when !TASK_RUNNING; "
7706 "state=%lx set at [<%p>] %pS\n",
7707 current->state,
7708 (void *)current->task_state_change,
00845eb9 7709 (void *)current->task_state_change);
8eb23b9f 7710
3427445a
PZ
7711 ___might_sleep(file, line, preempt_offset);
7712}
7713EXPORT_SYMBOL(__might_sleep);
7714
7715void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7716{
1da177e4 7717 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7718 unsigned long preempt_disable_ip;
1da177e4 7719
b3fbab05 7720 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7721 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7722 !is_idle_task(current)) ||
e4aafea2 7723 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7724 return;
7725 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7726 return;
7727 prev_jiffy = jiffies;
7728
d1c6d149
VN
7729 /* Save this before calling printk(), since that will clobber it */
7730 preempt_disable_ip = get_preempt_disable_ip(current);
7731
3df0fc5b
PZ
7732 printk(KERN_ERR
7733 "BUG: sleeping function called from invalid context at %s:%d\n",
7734 file, line);
7735 printk(KERN_ERR
7736 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7737 in_atomic(), irqs_disabled(),
7738 current->pid, current->comm);
aef745fc 7739
a8b686b3
ES
7740 if (task_stack_end_corrupted(current))
7741 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7742
aef745fc
IM
7743 debug_show_held_locks(current);
7744 if (irqs_disabled())
7745 print_irqtrace_events(current);
d1c6d149
VN
7746 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7747 && !preempt_count_equals(preempt_offset)) {
8f47b187 7748 pr_err("Preemption disabled at:");
d1c6d149 7749 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7750 pr_cont("\n");
7751 }
aef745fc 7752 dump_stack();
f0b22e39 7753 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7754}
3427445a 7755EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7756#endif
7757
7758#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7759void normalize_rt_tasks(void)
3a5e4dc1 7760{
dbc7f069 7761 struct task_struct *g, *p;
d50dde5a
DF
7762 struct sched_attr attr = {
7763 .sched_policy = SCHED_NORMAL,
7764 };
1da177e4 7765
3472eaa1 7766 read_lock(&tasklist_lock);
5d07f420 7767 for_each_process_thread(g, p) {
178be793
IM
7768 /*
7769 * Only normalize user tasks:
7770 */
3472eaa1 7771 if (p->flags & PF_KTHREAD)
178be793
IM
7772 continue;
7773
4fa8d299
JP
7774 p->se.exec_start = 0;
7775 schedstat_set(p->se.statistics.wait_start, 0);
7776 schedstat_set(p->se.statistics.sleep_start, 0);
7777 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7778
aab03e05 7779 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7780 /*
7781 * Renice negative nice level userspace
7782 * tasks back to 0:
7783 */
3472eaa1 7784 if (task_nice(p) < 0)
dd41f596 7785 set_user_nice(p, 0);
1da177e4 7786 continue;
dd41f596 7787 }
1da177e4 7788
dbc7f069 7789 __sched_setscheduler(p, &attr, false, false);
5d07f420 7790 }
3472eaa1 7791 read_unlock(&tasklist_lock);
1da177e4
LT
7792}
7793
7794#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7795
67fc4e0c 7796#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7797/*
67fc4e0c 7798 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7799 *
7800 * They can only be called when the whole system has been
7801 * stopped - every CPU needs to be quiescent, and no scheduling
7802 * activity can take place. Using them for anything else would
7803 * be a serious bug, and as a result, they aren't even visible
7804 * under any other configuration.
7805 */
7806
7807/**
7808 * curr_task - return the current task for a given cpu.
7809 * @cpu: the processor in question.
7810 *
7811 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7812 *
7813 * Return: The current task for @cpu.
1df5c10a 7814 */
36c8b586 7815struct task_struct *curr_task(int cpu)
1df5c10a
LT
7816{
7817 return cpu_curr(cpu);
7818}
7819
67fc4e0c
JW
7820#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7821
7822#ifdef CONFIG_IA64
1df5c10a
LT
7823/**
7824 * set_curr_task - set the current task for a given cpu.
7825 * @cpu: the processor in question.
7826 * @p: the task pointer to set.
7827 *
7828 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7829 * are serviced on a separate stack. It allows the architecture to switch the
7830 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7831 * must be called with all CPU's synchronized, and interrupts disabled, the
7832 * and caller must save the original value of the current task (see
7833 * curr_task() above) and restore that value before reenabling interrupts and
7834 * re-starting the system.
7835 *
7836 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7837 */
a458ae2e 7838void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7839{
7840 cpu_curr(cpu) = p;
7841}
7842
7843#endif
29f59db3 7844
7c941438 7845#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7846/* task_group_lock serializes the addition/removal of task groups */
7847static DEFINE_SPINLOCK(task_group_lock);
7848
2f5177f0 7849static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7850{
7851 free_fair_sched_group(tg);
7852 free_rt_sched_group(tg);
e9aa1dd1 7853 autogroup_free(tg);
b0367629 7854 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7855}
7856
7857/* allocate runqueue etc for a new task group */
ec7dc8ac 7858struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7859{
7860 struct task_group *tg;
bccbe08a 7861
b0367629 7862 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7863 if (!tg)
7864 return ERR_PTR(-ENOMEM);
7865
ec7dc8ac 7866 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7867 goto err;
7868
ec7dc8ac 7869 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7870 goto err;
7871
ace783b9
LZ
7872 return tg;
7873
7874err:
2f5177f0 7875 sched_free_group(tg);
ace783b9
LZ
7876 return ERR_PTR(-ENOMEM);
7877}
7878
7879void sched_online_group(struct task_group *tg, struct task_group *parent)
7880{
7881 unsigned long flags;
7882
8ed36996 7883 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7884 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7885
7886 WARN_ON(!parent); /* root should already exist */
7887
7888 tg->parent = parent;
f473aa5e 7889 INIT_LIST_HEAD(&tg->children);
09f2724a 7890 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7891 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7892
7893 online_fair_sched_group(tg);
29f59db3
SV
7894}
7895
9b5b7751 7896/* rcu callback to free various structures associated with a task group */
2f5177f0 7897static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7898{
29f59db3 7899 /* now it should be safe to free those cfs_rqs */
2f5177f0 7900 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7901}
7902
4cf86d77 7903void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7904{
7905 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7906 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7907}
7908
7909void sched_offline_group(struct task_group *tg)
29f59db3 7910{
8ed36996 7911 unsigned long flags;
29f59db3 7912
3d4b47b4 7913 /* end participation in shares distribution */
6fe1f348 7914 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7915
7916 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7917 list_del_rcu(&tg->list);
f473aa5e 7918 list_del_rcu(&tg->siblings);
8ed36996 7919 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7920}
7921
ea86cb4b 7922static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7923{
8323f26c 7924 struct task_group *tg;
29f59db3 7925
f7b8a47d
KT
7926 /*
7927 * All callers are synchronized by task_rq_lock(); we do not use RCU
7928 * which is pointless here. Thus, we pass "true" to task_css_check()
7929 * to prevent lockdep warnings.
7930 */
7931 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7932 struct task_group, css);
7933 tg = autogroup_task_group(tsk, tg);
7934 tsk->sched_task_group = tg;
7935
810b3817 7936#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7937 if (tsk->sched_class->task_change_group)
7938 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7939 else
810b3817 7940#endif
b2b5ce02 7941 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7942}
7943
7944/*
7945 * Change task's runqueue when it moves between groups.
7946 *
7947 * The caller of this function should have put the task in its new group by
7948 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7949 * its new group.
7950 */
7951void sched_move_task(struct task_struct *tsk)
7952{
7953 int queued, running;
7954 struct rq_flags rf;
7955 struct rq *rq;
7956
7957 rq = task_rq_lock(tsk, &rf);
7958
7959 running = task_current(rq, tsk);
7960 queued = task_on_rq_queued(tsk);
7961
7962 if (queued)
7963 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7964 if (unlikely(running))
7965 put_prev_task(rq, tsk);
7966
7967 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7968
da0c1e65 7969 if (queued)
ff77e468 7970 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 7971 if (unlikely(running))
b2bf6c31 7972 set_curr_task(rq, tsk);
29f59db3 7973
eb580751 7974 task_rq_unlock(rq, tsk, &rf);
29f59db3 7975}
7c941438 7976#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7977
a790de99
PT
7978#ifdef CONFIG_RT_GROUP_SCHED
7979/*
7980 * Ensure that the real time constraints are schedulable.
7981 */
7982static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7983
9a7e0b18
PZ
7984/* Must be called with tasklist_lock held */
7985static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7986{
9a7e0b18 7987 struct task_struct *g, *p;
b40b2e8e 7988
1fe89e1b
PZ
7989 /*
7990 * Autogroups do not have RT tasks; see autogroup_create().
7991 */
7992 if (task_group_is_autogroup(tg))
7993 return 0;
7994
5d07f420 7995 for_each_process_thread(g, p) {
8651c658 7996 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7997 return 1;
5d07f420 7998 }
b40b2e8e 7999
9a7e0b18
PZ
8000 return 0;
8001}
b40b2e8e 8002
9a7e0b18
PZ
8003struct rt_schedulable_data {
8004 struct task_group *tg;
8005 u64 rt_period;
8006 u64 rt_runtime;
8007};
b40b2e8e 8008
a790de99 8009static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8010{
8011 struct rt_schedulable_data *d = data;
8012 struct task_group *child;
8013 unsigned long total, sum = 0;
8014 u64 period, runtime;
b40b2e8e 8015
9a7e0b18
PZ
8016 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8017 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8018
9a7e0b18
PZ
8019 if (tg == d->tg) {
8020 period = d->rt_period;
8021 runtime = d->rt_runtime;
b40b2e8e 8022 }
b40b2e8e 8023
4653f803
PZ
8024 /*
8025 * Cannot have more runtime than the period.
8026 */
8027 if (runtime > period && runtime != RUNTIME_INF)
8028 return -EINVAL;
6f505b16 8029
4653f803
PZ
8030 /*
8031 * Ensure we don't starve existing RT tasks.
8032 */
9a7e0b18
PZ
8033 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8034 return -EBUSY;
6f505b16 8035
9a7e0b18 8036 total = to_ratio(period, runtime);
6f505b16 8037
4653f803
PZ
8038 /*
8039 * Nobody can have more than the global setting allows.
8040 */
8041 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8042 return -EINVAL;
6f505b16 8043
4653f803
PZ
8044 /*
8045 * The sum of our children's runtime should not exceed our own.
8046 */
9a7e0b18
PZ
8047 list_for_each_entry_rcu(child, &tg->children, siblings) {
8048 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8049 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8050
9a7e0b18
PZ
8051 if (child == d->tg) {
8052 period = d->rt_period;
8053 runtime = d->rt_runtime;
8054 }
6f505b16 8055
9a7e0b18 8056 sum += to_ratio(period, runtime);
9f0c1e56 8057 }
6f505b16 8058
9a7e0b18
PZ
8059 if (sum > total)
8060 return -EINVAL;
8061
8062 return 0;
6f505b16
PZ
8063}
8064
9a7e0b18 8065static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8066{
8277434e
PT
8067 int ret;
8068
9a7e0b18
PZ
8069 struct rt_schedulable_data data = {
8070 .tg = tg,
8071 .rt_period = period,
8072 .rt_runtime = runtime,
8073 };
8074
8277434e
PT
8075 rcu_read_lock();
8076 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8077 rcu_read_unlock();
8078
8079 return ret;
521f1a24
DG
8080}
8081
ab84d31e 8082static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8083 u64 rt_period, u64 rt_runtime)
6f505b16 8084{
ac086bc2 8085 int i, err = 0;
9f0c1e56 8086
2636ed5f
PZ
8087 /*
8088 * Disallowing the root group RT runtime is BAD, it would disallow the
8089 * kernel creating (and or operating) RT threads.
8090 */
8091 if (tg == &root_task_group && rt_runtime == 0)
8092 return -EINVAL;
8093
8094 /* No period doesn't make any sense. */
8095 if (rt_period == 0)
8096 return -EINVAL;
8097
9f0c1e56 8098 mutex_lock(&rt_constraints_mutex);
521f1a24 8099 read_lock(&tasklist_lock);
9a7e0b18
PZ
8100 err = __rt_schedulable(tg, rt_period, rt_runtime);
8101 if (err)
9f0c1e56 8102 goto unlock;
ac086bc2 8103
0986b11b 8104 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8105 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8106 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8107
8108 for_each_possible_cpu(i) {
8109 struct rt_rq *rt_rq = tg->rt_rq[i];
8110
0986b11b 8111 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8112 rt_rq->rt_runtime = rt_runtime;
0986b11b 8113 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8114 }
0986b11b 8115 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8116unlock:
521f1a24 8117 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8118 mutex_unlock(&rt_constraints_mutex);
8119
8120 return err;
6f505b16
PZ
8121}
8122
25cc7da7 8123static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8124{
8125 u64 rt_runtime, rt_period;
8126
8127 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8128 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8129 if (rt_runtime_us < 0)
8130 rt_runtime = RUNTIME_INF;
8131
ab84d31e 8132 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8133}
8134
25cc7da7 8135static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8136{
8137 u64 rt_runtime_us;
8138
d0b27fa7 8139 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8140 return -1;
8141
d0b27fa7 8142 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8143 do_div(rt_runtime_us, NSEC_PER_USEC);
8144 return rt_runtime_us;
8145}
d0b27fa7 8146
ce2f5fe4 8147static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8148{
8149 u64 rt_runtime, rt_period;
8150
ce2f5fe4 8151 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8152 rt_runtime = tg->rt_bandwidth.rt_runtime;
8153
ab84d31e 8154 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8155}
8156
25cc7da7 8157static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8158{
8159 u64 rt_period_us;
8160
8161 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8162 do_div(rt_period_us, NSEC_PER_USEC);
8163 return rt_period_us;
8164}
332ac17e 8165#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8166
332ac17e 8167#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8168static int sched_rt_global_constraints(void)
8169{
8170 int ret = 0;
8171
8172 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8173 read_lock(&tasklist_lock);
4653f803 8174 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8175 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8176 mutex_unlock(&rt_constraints_mutex);
8177
8178 return ret;
8179}
54e99124 8180
25cc7da7 8181static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8182{
8183 /* Don't accept realtime tasks when there is no way for them to run */
8184 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8185 return 0;
8186
8187 return 1;
8188}
8189
6d6bc0ad 8190#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8191static int sched_rt_global_constraints(void)
8192{
ac086bc2 8193 unsigned long flags;
8c5e9554 8194 int i;
ec5d4989 8195
0986b11b 8196 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8197 for_each_possible_cpu(i) {
8198 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8199
0986b11b 8200 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8201 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8202 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8203 }
0986b11b 8204 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8205
8c5e9554 8206 return 0;
d0b27fa7 8207}
6d6bc0ad 8208#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8209
a1963b81 8210static int sched_dl_global_validate(void)
332ac17e 8211{
1724813d
PZ
8212 u64 runtime = global_rt_runtime();
8213 u64 period = global_rt_period();
332ac17e 8214 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8215 struct dl_bw *dl_b;
1724813d 8216 int cpu, ret = 0;
49516342 8217 unsigned long flags;
332ac17e
DF
8218
8219 /*
8220 * Here we want to check the bandwidth not being set to some
8221 * value smaller than the currently allocated bandwidth in
8222 * any of the root_domains.
8223 *
8224 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8225 * cycling on root_domains... Discussion on different/better
8226 * solutions is welcome!
8227 */
1724813d 8228 for_each_possible_cpu(cpu) {
f10e00f4
KT
8229 rcu_read_lock_sched();
8230 dl_b = dl_bw_of(cpu);
332ac17e 8231
49516342 8232 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8233 if (new_bw < dl_b->total_bw)
8234 ret = -EBUSY;
49516342 8235 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8236
f10e00f4
KT
8237 rcu_read_unlock_sched();
8238
1724813d
PZ
8239 if (ret)
8240 break;
332ac17e
DF
8241 }
8242
1724813d 8243 return ret;
332ac17e
DF
8244}
8245
1724813d 8246static void sched_dl_do_global(void)
ce0dbbbb 8247{
1724813d 8248 u64 new_bw = -1;
f10e00f4 8249 struct dl_bw *dl_b;
1724813d 8250 int cpu;
49516342 8251 unsigned long flags;
ce0dbbbb 8252
1724813d
PZ
8253 def_dl_bandwidth.dl_period = global_rt_period();
8254 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8255
8256 if (global_rt_runtime() != RUNTIME_INF)
8257 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8258
8259 /*
8260 * FIXME: As above...
8261 */
8262 for_each_possible_cpu(cpu) {
f10e00f4
KT
8263 rcu_read_lock_sched();
8264 dl_b = dl_bw_of(cpu);
1724813d 8265
49516342 8266 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8267 dl_b->bw = new_bw;
49516342 8268 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8269
8270 rcu_read_unlock_sched();
ce0dbbbb 8271 }
1724813d
PZ
8272}
8273
8274static int sched_rt_global_validate(void)
8275{
8276 if (sysctl_sched_rt_period <= 0)
8277 return -EINVAL;
8278
e9e7cb38
JL
8279 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8280 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8281 return -EINVAL;
8282
8283 return 0;
8284}
8285
8286static void sched_rt_do_global(void)
8287{
8288 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8289 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8290}
8291
d0b27fa7 8292int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8293 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8294 loff_t *ppos)
8295{
d0b27fa7
PZ
8296 int old_period, old_runtime;
8297 static DEFINE_MUTEX(mutex);
1724813d 8298 int ret;
d0b27fa7
PZ
8299
8300 mutex_lock(&mutex);
8301 old_period = sysctl_sched_rt_period;
8302 old_runtime = sysctl_sched_rt_runtime;
8303
8d65af78 8304 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8305
8306 if (!ret && write) {
1724813d
PZ
8307 ret = sched_rt_global_validate();
8308 if (ret)
8309 goto undo;
8310
a1963b81 8311 ret = sched_dl_global_validate();
1724813d
PZ
8312 if (ret)
8313 goto undo;
8314
a1963b81 8315 ret = sched_rt_global_constraints();
1724813d
PZ
8316 if (ret)
8317 goto undo;
8318
8319 sched_rt_do_global();
8320 sched_dl_do_global();
8321 }
8322 if (0) {
8323undo:
8324 sysctl_sched_rt_period = old_period;
8325 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8326 }
8327 mutex_unlock(&mutex);
8328
8329 return ret;
8330}
68318b8e 8331
1724813d 8332int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8333 void __user *buffer, size_t *lenp,
8334 loff_t *ppos)
8335{
8336 int ret;
332ac17e 8337 static DEFINE_MUTEX(mutex);
332ac17e
DF
8338
8339 mutex_lock(&mutex);
332ac17e 8340 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8341 /* make sure that internally we keep jiffies */
8342 /* also, writing zero resets timeslice to default */
332ac17e 8343 if (!ret && write) {
1724813d
PZ
8344 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8345 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8346 }
8347 mutex_unlock(&mutex);
332ac17e
DF
8348 return ret;
8349}
8350
052f1dc7 8351#ifdef CONFIG_CGROUP_SCHED
68318b8e 8352
a7c6d554 8353static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8354{
a7c6d554 8355 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8356}
8357
eb95419b
TH
8358static struct cgroup_subsys_state *
8359cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8360{
eb95419b
TH
8361 struct task_group *parent = css_tg(parent_css);
8362 struct task_group *tg;
68318b8e 8363
eb95419b 8364 if (!parent) {
68318b8e 8365 /* This is early initialization for the top cgroup */
07e06b01 8366 return &root_task_group.css;
68318b8e
SV
8367 }
8368
ec7dc8ac 8369 tg = sched_create_group(parent);
68318b8e
SV
8370 if (IS_ERR(tg))
8371 return ERR_PTR(-ENOMEM);
8372
2f5177f0
PZ
8373 sched_online_group(tg, parent);
8374
68318b8e
SV
8375 return &tg->css;
8376}
8377
2f5177f0 8378static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8379{
eb95419b 8380 struct task_group *tg = css_tg(css);
ace783b9 8381
2f5177f0 8382 sched_offline_group(tg);
ace783b9
LZ
8383}
8384
eb95419b 8385static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8386{
eb95419b 8387 struct task_group *tg = css_tg(css);
68318b8e 8388
2f5177f0
PZ
8389 /*
8390 * Relies on the RCU grace period between css_released() and this.
8391 */
8392 sched_free_group(tg);
ace783b9
LZ
8393}
8394
ea86cb4b
VG
8395/*
8396 * This is called before wake_up_new_task(), therefore we really only
8397 * have to set its group bits, all the other stuff does not apply.
8398 */
b53202e6 8399static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8400{
ea86cb4b
VG
8401 struct rq_flags rf;
8402 struct rq *rq;
8403
8404 rq = task_rq_lock(task, &rf);
8405
8406 sched_change_group(task, TASK_SET_GROUP);
8407
8408 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8409}
8410
1f7dd3e5 8411static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8412{
bb9d97b6 8413 struct task_struct *task;
1f7dd3e5 8414 struct cgroup_subsys_state *css;
7dc603c9 8415 int ret = 0;
bb9d97b6 8416
1f7dd3e5 8417 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8418#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8419 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8420 return -EINVAL;
b68aa230 8421#else
bb9d97b6
TH
8422 /* We don't support RT-tasks being in separate groups */
8423 if (task->sched_class != &fair_sched_class)
8424 return -EINVAL;
b68aa230 8425#endif
7dc603c9
PZ
8426 /*
8427 * Serialize against wake_up_new_task() such that if its
8428 * running, we're sure to observe its full state.
8429 */
8430 raw_spin_lock_irq(&task->pi_lock);
8431 /*
8432 * Avoid calling sched_move_task() before wake_up_new_task()
8433 * has happened. This would lead to problems with PELT, due to
8434 * move wanting to detach+attach while we're not attached yet.
8435 */
8436 if (task->state == TASK_NEW)
8437 ret = -EINVAL;
8438 raw_spin_unlock_irq(&task->pi_lock);
8439
8440 if (ret)
8441 break;
bb9d97b6 8442 }
7dc603c9 8443 return ret;
be367d09 8444}
68318b8e 8445
1f7dd3e5 8446static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8447{
bb9d97b6 8448 struct task_struct *task;
1f7dd3e5 8449 struct cgroup_subsys_state *css;
bb9d97b6 8450
1f7dd3e5 8451 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8452 sched_move_task(task);
68318b8e
SV
8453}
8454
052f1dc7 8455#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8456static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8457 struct cftype *cftype, u64 shareval)
68318b8e 8458{
182446d0 8459 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8460}
8461
182446d0
TH
8462static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8463 struct cftype *cft)
68318b8e 8464{
182446d0 8465 struct task_group *tg = css_tg(css);
68318b8e 8466
c8b28116 8467 return (u64) scale_load_down(tg->shares);
68318b8e 8468}
ab84d31e
PT
8469
8470#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8471static DEFINE_MUTEX(cfs_constraints_mutex);
8472
ab84d31e
PT
8473const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8474const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8475
a790de99
PT
8476static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8477
ab84d31e
PT
8478static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8479{
56f570e5 8480 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8481 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8482
8483 if (tg == &root_task_group)
8484 return -EINVAL;
8485
8486 /*
8487 * Ensure we have at some amount of bandwidth every period. This is
8488 * to prevent reaching a state of large arrears when throttled via
8489 * entity_tick() resulting in prolonged exit starvation.
8490 */
8491 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8492 return -EINVAL;
8493
8494 /*
8495 * Likewise, bound things on the otherside by preventing insane quota
8496 * periods. This also allows us to normalize in computing quota
8497 * feasibility.
8498 */
8499 if (period > max_cfs_quota_period)
8500 return -EINVAL;
8501
0e59bdae
KT
8502 /*
8503 * Prevent race between setting of cfs_rq->runtime_enabled and
8504 * unthrottle_offline_cfs_rqs().
8505 */
8506 get_online_cpus();
a790de99
PT
8507 mutex_lock(&cfs_constraints_mutex);
8508 ret = __cfs_schedulable(tg, period, quota);
8509 if (ret)
8510 goto out_unlock;
8511
58088ad0 8512 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8513 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8514 /*
8515 * If we need to toggle cfs_bandwidth_used, off->on must occur
8516 * before making related changes, and on->off must occur afterwards
8517 */
8518 if (runtime_enabled && !runtime_was_enabled)
8519 cfs_bandwidth_usage_inc();
ab84d31e
PT
8520 raw_spin_lock_irq(&cfs_b->lock);
8521 cfs_b->period = ns_to_ktime(period);
8522 cfs_b->quota = quota;
58088ad0 8523
a9cf55b2 8524 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8525 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8526 if (runtime_enabled)
8527 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8528 raw_spin_unlock_irq(&cfs_b->lock);
8529
0e59bdae 8530 for_each_online_cpu(i) {
ab84d31e 8531 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8532 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8533
8534 raw_spin_lock_irq(&rq->lock);
58088ad0 8535 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8536 cfs_rq->runtime_remaining = 0;
671fd9da 8537
029632fb 8538 if (cfs_rq->throttled)
671fd9da 8539 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8540 raw_spin_unlock_irq(&rq->lock);
8541 }
1ee14e6c
BS
8542 if (runtime_was_enabled && !runtime_enabled)
8543 cfs_bandwidth_usage_dec();
a790de99
PT
8544out_unlock:
8545 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8546 put_online_cpus();
ab84d31e 8547
a790de99 8548 return ret;
ab84d31e
PT
8549}
8550
8551int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8552{
8553 u64 quota, period;
8554
029632fb 8555 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8556 if (cfs_quota_us < 0)
8557 quota = RUNTIME_INF;
8558 else
8559 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8560
8561 return tg_set_cfs_bandwidth(tg, period, quota);
8562}
8563
8564long tg_get_cfs_quota(struct task_group *tg)
8565{
8566 u64 quota_us;
8567
029632fb 8568 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8569 return -1;
8570
029632fb 8571 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8572 do_div(quota_us, NSEC_PER_USEC);
8573
8574 return quota_us;
8575}
8576
8577int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8578{
8579 u64 quota, period;
8580
8581 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8582 quota = tg->cfs_bandwidth.quota;
ab84d31e 8583
ab84d31e
PT
8584 return tg_set_cfs_bandwidth(tg, period, quota);
8585}
8586
8587long tg_get_cfs_period(struct task_group *tg)
8588{
8589 u64 cfs_period_us;
8590
029632fb 8591 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8592 do_div(cfs_period_us, NSEC_PER_USEC);
8593
8594 return cfs_period_us;
8595}
8596
182446d0
TH
8597static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8598 struct cftype *cft)
ab84d31e 8599{
182446d0 8600 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8601}
8602
182446d0
TH
8603static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8604 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8605{
182446d0 8606 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8607}
8608
182446d0
TH
8609static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8610 struct cftype *cft)
ab84d31e 8611{
182446d0 8612 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8613}
8614
182446d0
TH
8615static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8616 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8617{
182446d0 8618 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8619}
8620
a790de99
PT
8621struct cfs_schedulable_data {
8622 struct task_group *tg;
8623 u64 period, quota;
8624};
8625
8626/*
8627 * normalize group quota/period to be quota/max_period
8628 * note: units are usecs
8629 */
8630static u64 normalize_cfs_quota(struct task_group *tg,
8631 struct cfs_schedulable_data *d)
8632{
8633 u64 quota, period;
8634
8635 if (tg == d->tg) {
8636 period = d->period;
8637 quota = d->quota;
8638 } else {
8639 period = tg_get_cfs_period(tg);
8640 quota = tg_get_cfs_quota(tg);
8641 }
8642
8643 /* note: these should typically be equivalent */
8644 if (quota == RUNTIME_INF || quota == -1)
8645 return RUNTIME_INF;
8646
8647 return to_ratio(period, quota);
8648}
8649
8650static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8651{
8652 struct cfs_schedulable_data *d = data;
029632fb 8653 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8654 s64 quota = 0, parent_quota = -1;
8655
8656 if (!tg->parent) {
8657 quota = RUNTIME_INF;
8658 } else {
029632fb 8659 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8660
8661 quota = normalize_cfs_quota(tg, d);
9c58c79a 8662 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8663
8664 /*
8665 * ensure max(child_quota) <= parent_quota, inherit when no
8666 * limit is set
8667 */
8668 if (quota == RUNTIME_INF)
8669 quota = parent_quota;
8670 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8671 return -EINVAL;
8672 }
9c58c79a 8673 cfs_b->hierarchical_quota = quota;
a790de99
PT
8674
8675 return 0;
8676}
8677
8678static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8679{
8277434e 8680 int ret;
a790de99
PT
8681 struct cfs_schedulable_data data = {
8682 .tg = tg,
8683 .period = period,
8684 .quota = quota,
8685 };
8686
8687 if (quota != RUNTIME_INF) {
8688 do_div(data.period, NSEC_PER_USEC);
8689 do_div(data.quota, NSEC_PER_USEC);
8690 }
8691
8277434e
PT
8692 rcu_read_lock();
8693 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8694 rcu_read_unlock();
8695
8696 return ret;
a790de99 8697}
e8da1b18 8698
2da8ca82 8699static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8700{
2da8ca82 8701 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8702 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8703
44ffc75b
TH
8704 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8705 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8706 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8707
8708 return 0;
8709}
ab84d31e 8710#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8711#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8712
052f1dc7 8713#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8714static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8715 struct cftype *cft, s64 val)
6f505b16 8716{
182446d0 8717 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8718}
8719
182446d0
TH
8720static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8721 struct cftype *cft)
6f505b16 8722{
182446d0 8723 return sched_group_rt_runtime(css_tg(css));
6f505b16 8724}
d0b27fa7 8725
182446d0
TH
8726static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8727 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8728{
182446d0 8729 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8730}
8731
182446d0
TH
8732static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8733 struct cftype *cft)
d0b27fa7 8734{
182446d0 8735 return sched_group_rt_period(css_tg(css));
d0b27fa7 8736}
6d6bc0ad 8737#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8738
fe5c7cc2 8739static struct cftype cpu_files[] = {
052f1dc7 8740#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8741 {
8742 .name = "shares",
f4c753b7
PM
8743 .read_u64 = cpu_shares_read_u64,
8744 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8745 },
052f1dc7 8746#endif
ab84d31e
PT
8747#ifdef CONFIG_CFS_BANDWIDTH
8748 {
8749 .name = "cfs_quota_us",
8750 .read_s64 = cpu_cfs_quota_read_s64,
8751 .write_s64 = cpu_cfs_quota_write_s64,
8752 },
8753 {
8754 .name = "cfs_period_us",
8755 .read_u64 = cpu_cfs_period_read_u64,
8756 .write_u64 = cpu_cfs_period_write_u64,
8757 },
e8da1b18
NR
8758 {
8759 .name = "stat",
2da8ca82 8760 .seq_show = cpu_stats_show,
e8da1b18 8761 },
ab84d31e 8762#endif
052f1dc7 8763#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8764 {
9f0c1e56 8765 .name = "rt_runtime_us",
06ecb27c
PM
8766 .read_s64 = cpu_rt_runtime_read,
8767 .write_s64 = cpu_rt_runtime_write,
6f505b16 8768 },
d0b27fa7
PZ
8769 {
8770 .name = "rt_period_us",
f4c753b7
PM
8771 .read_u64 = cpu_rt_period_read_uint,
8772 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8773 },
052f1dc7 8774#endif
4baf6e33 8775 { } /* terminate */
68318b8e
SV
8776};
8777
073219e9 8778struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8779 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8780 .css_released = cpu_cgroup_css_released,
92fb9748 8781 .css_free = cpu_cgroup_css_free,
eeb61e53 8782 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8783 .can_attach = cpu_cgroup_can_attach,
8784 .attach = cpu_cgroup_attach,
5577964e 8785 .legacy_cftypes = cpu_files,
b38e42e9 8786 .early_init = true,
68318b8e
SV
8787};
8788
052f1dc7 8789#endif /* CONFIG_CGROUP_SCHED */
d842de87 8790
b637a328
PM
8791void dump_cpu_task(int cpu)
8792{
8793 pr_info("Task dump for CPU %d:\n", cpu);
8794 sched_show_task(cpu_curr(cpu));
8795}
ed82b8a1
AK
8796
8797/*
8798 * Nice levels are multiplicative, with a gentle 10% change for every
8799 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8800 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8801 * that remained on nice 0.
8802 *
8803 * The "10% effect" is relative and cumulative: from _any_ nice level,
8804 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8805 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8806 * If a task goes up by ~10% and another task goes down by ~10% then
8807 * the relative distance between them is ~25%.)
8808 */
8809const int sched_prio_to_weight[40] = {
8810 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8811 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8812 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8813 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8814 /* 0 */ 1024, 820, 655, 526, 423,
8815 /* 5 */ 335, 272, 215, 172, 137,
8816 /* 10 */ 110, 87, 70, 56, 45,
8817 /* 15 */ 36, 29, 23, 18, 15,
8818};
8819
8820/*
8821 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8822 *
8823 * In cases where the weight does not change often, we can use the
8824 * precalculated inverse to speed up arithmetics by turning divisions
8825 * into multiplications:
8826 */
8827const u32 sched_prio_to_wmult[40] = {
8828 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8829 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8830 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8831 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8832 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8833 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8834 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8835 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8836};