hlist: drop the node parameter from iterators
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
aa00d89c
TC
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
5da9a0fb 1139
aa00d89c
TC
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
2baab4e9 1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 for (;;) {
1160 /* Any allowed, online CPU? */
e3831edd 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
5da9a0fb 1168
2baab4e9
PZ
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
5da9a0fb
PZ
1198 }
1199
1200 return dest_cpu;
1201}
1202
e2912009 1203/*
013fdb80 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1205 */
970b13ba 1206static inline
7608dec2 1207int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1208{
7608dec2 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
fa17b507 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1222 !cpu_online(cpu)))
5da9a0fb 1223 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1224
1225 return cpu;
970b13ba 1226}
09a40af5
MG
1227
1228static void update_avg(u64 *avg, u64 sample)
1229{
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232}
970b13ba
PZ
1233#endif
1234
d7c01d27 1235static void
b84cb5df 1236ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1237{
d7c01d27 1238#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1239 struct rq *rq = this_rq();
1240
d7c01d27
PZ
1241#ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1251 rcu_read_lock();
d7c01d27
PZ
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
057f3fad 1258 rcu_read_unlock();
d7c01d27 1259 }
f339b9dc
PZ
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
d7c01d27
PZ
1264#endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
9ed3811a 1267 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1268
1269 if (wake_flags & WF_SYNC)
9ed3811a 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1271
d7c01d27
PZ
1272#endif /* CONFIG_SCHEDSTATS */
1273}
1274
1275static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276{
9ed3811a 1277 activate_task(rq, p, en_flags);
fd2f4419 1278 p->on_rq = 1;
c2f7115e
PZ
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1283}
1284
23f41eeb
PZ
1285/*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
89363381 1288static void
23f41eeb 1289ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1290{
89363381 1291 trace_sched_wakeup(p, true);
9ed3811a
TH
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295#ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
e69c6341 1299 if (rq->idle_stamp) {
9ed3811a
TH
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309#endif
1310}
1311
c05fbafb
PZ
1312static void
1313ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314{
1315#ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318#endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322}
1323
1324/*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330static int ttwu_remote(struct task_struct *p, int wake_flags)
1331{
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343}
1344
317f3941 1345#ifdef CONFIG_SMP
fa14ff4a 1346static void sched_ttwu_pending(void)
317f3941
PZ
1347{
1348 struct rq *rq = this_rq();
fa14ff4a
PZ
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
317f3941
PZ
1351
1352 raw_spin_lock(&rq->lock);
1353
fa14ff4a
PZ
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
317f3941
PZ
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361}
1362
1363void scheduler_ipi(void)
1364{
ca38062e 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
fa14ff4a 1382 sched_ttwu_pending();
ca38062e
SS
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
6eb57e0d
SS
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
ca38062e 1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1390 }
c5d753a5 1391 irq_exit();
317f3941
PZ
1392}
1393
1394static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395{
fa14ff4a 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1397 smp_send_reschedule(cpu);
1398}
d6aa8f85 1399
39be3501 1400bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1401{
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403}
d6aa8f85 1404#endif /* CONFIG_SMP */
317f3941 1405
c05fbafb
PZ
1406static void ttwu_queue(struct task_struct *p, int cpu)
1407{
1408 struct rq *rq = cpu_rq(cpu);
1409
17d9f311 1410#if defined(CONFIG_SMP)
39be3501 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416#endif
1417
c05fbafb
PZ
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1421}
1422
1423/**
1da177e4 1424 * try_to_wake_up - wake up a thread
9ed3811a 1425 * @p: the thread to be awakened
1da177e4 1426 * @state: the mask of task states that can be woken
9ed3811a 1427 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
9ed3811a
TH
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1da177e4 1437 */
e4a52bcb
PZ
1438static int
1439try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1440{
1da177e4 1441 unsigned long flags;
c05fbafb 1442 int cpu, success = 0;
2398f2c6 1443
04e2f174 1444 smp_wmb();
013fdb80 1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1446 if (!(p->state & state))
1da177e4
LT
1447 goto out;
1448
c05fbafb 1449 success = 1; /* we're going to change ->state */
1da177e4 1450 cpu = task_cpu(p);
1da177e4 1451
c05fbafb
PZ
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1da177e4 1454
1da177e4 1455#ifdef CONFIG_SMP
e9c84311 1456 /*
c05fbafb
PZ
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
e9c84311 1459 */
f3e94786 1460 while (p->on_cpu)
e4a52bcb 1461 cpu_relax();
0970d299 1462 /*
e4a52bcb 1463 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1464 */
e4a52bcb 1465 smp_rmb();
1da177e4 1466
a8e4f2ea 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1468 p->state = TASK_WAKING;
e7693a36 1469
e4a52bcb 1470 if (p->sched_class->task_waking)
74f8e4b2 1471 p->sched_class->task_waking(p);
efbbd05a 1472
7608dec2 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
e4a52bcb 1476 set_task_cpu(p, cpu);
f339b9dc 1477 }
1da177e4 1478#endif /* CONFIG_SMP */
1da177e4 1479
c05fbafb
PZ
1480 ttwu_queue(p, cpu);
1481stat:
b84cb5df 1482 ttwu_stat(p, cpu, wake_flags);
1da177e4 1483out:
013fdb80 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1485
1486 return success;
1487}
1488
21aa9af0
TH
1489/**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
2acca55e 1493 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1495 * the current task.
21aa9af0
TH
1496 */
1497static void try_to_wake_up_local(struct task_struct *p)
1498{
1499 struct rq *rq = task_rq(p);
21aa9af0
TH
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
2acca55e
PZ
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
21aa9af0 1511 if (!(p->state & TASK_NORMAL))
2acca55e 1512 goto out;
21aa9af0 1513
fd2f4419 1514 if (!p->on_rq)
d7c01d27
PZ
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
23f41eeb 1517 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1518 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1519out:
1520 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1521}
1522
50fa610a
DH
1523/**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
7ad5b3a5 1534int wake_up_process(struct task_struct *p)
1da177e4 1535{
9067ac85
ON
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1538}
1da177e4
LT
1539EXPORT_SYMBOL(wake_up_process);
1540
7ad5b3a5 1541int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1542{
1543 return try_to_wake_up(p, state, 0);
1544}
1545
1da177e4
LT
1546/*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
dd41f596
IM
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552static void __sched_fork(struct task_struct *p)
1553{
fd2f4419
PZ
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
dd41f596
IM
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
f6cf891c 1559 p->se.prev_sum_exec_runtime = 0;
6c594c21 1560 p->se.nr_migrations = 0;
da7a735e 1561 p->se.vruntime = 0;
fd2f4419 1562 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1563
f4e26b12
PT
1564/*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572#endif
6cfb0d5d 1573#ifdef CONFIG_SCHEDSTATS
41acab88 1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1575#endif
476d139c 1576
fa717060 1577 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1578
e107be36
AK
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
cbee9f88
PZ
1582
1583#ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
b8593bfd 1586 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1594 p->numa_work.next = &p->numa_work;
1595#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1596}
1597
1a687c2e 1598#ifdef CONFIG_NUMA_BALANCING
3105b86a 1599#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1600void set_numabalancing_state(bool enabled)
1601{
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606}
3105b86a
MG
1607#else
1608__read_mostly bool numabalancing_enabled;
1609
1610void set_numabalancing_state(bool enabled)
1611{
1612 numabalancing_enabled = enabled;
dd41f596 1613}
3105b86a 1614#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1615#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
3e51e3ed 1620void sched_fork(struct task_struct *p)
dd41f596 1621{
0122ec5b 1622 unsigned long flags;
dd41f596
IM
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
06b83b5f 1626 /*
0017d735 1627 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
0017d735 1631 p->state = TASK_RUNNING;
dd41f596 1632
c350a04e
MG
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
b9dc29e7
MG
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1642 if (task_has_rt_policy(p)) {
b9dc29e7 1643 p->policy = SCHED_NORMAL;
6c697bdf 1644 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
6c697bdf 1651
b9dc29e7
MG
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
ca94c442 1658
2ddbf952
HS
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
b29739f9 1661
cd29fe6f
PZ
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
86951599
PZ
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
0122ec5b 1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1673 set_task_cpu(p, cpu);
0122ec5b 1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1675
52f17b6c 1676#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1677 if (likely(sched_info_on()))
52f17b6c 1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1679#endif
3ca7a440
PZ
1680#if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
4866cde0 1682#endif
bdd4e85d 1683#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1684 /* Want to start with kernel preemption disabled. */
a1261f54 1685 task_thread_info(p)->preempt_count = 1;
1da177e4 1686#endif
806c09a7 1687#ifdef CONFIG_SMP
917b627d 1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1689#endif
917b627d 1690
476d139c 1691 put_cpu();
1da177e4
LT
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
3e51e3ed 1701void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1702{
1703 unsigned long flags;
dd41f596 1704 struct rq *rq;
fabf318e 1705
ab2515c4 1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1707#ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
fabf318e 1712 */
ab2515c4 1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1714#endif
1715
ab2515c4 1716 rq = __task_rq_lock(p);
cd29fe6f 1717 activate_task(rq, p, 0);
fd2f4419 1718 p->on_rq = 1;
89363381 1719 trace_sched_wakeup_new(p, true);
a7558e01 1720 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1721#ifdef CONFIG_SMP
efbbd05a
PZ
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
9a897c5a 1724#endif
0122ec5b 1725 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1726}
1727
e107be36
AK
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730/**
80dd99b3 1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1732 * @notifier: notifier struct to register
e107be36
AK
1733 */
1734void preempt_notifier_register(struct preempt_notifier *notifier)
1735{
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737}
1738EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740/**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1742 * @notifier: notifier struct to unregister
e107be36
AK
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747{
1748 hlist_del(&notifier->link);
1749}
1750EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754 struct preempt_notifier *notifier;
e107be36 1755
b67bfe0d 1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763{
1764 struct preempt_notifier *notifier;
e107be36 1765
b67bfe0d 1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1767 notifier->ops->sched_out(notifier, next);
1768}
1769
6d6bc0ad 1770#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1771
1772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773{
1774}
1775
1776static void
1777fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779{
1780}
1781
6d6bc0ad 1782#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1783
4866cde0
NP
1784/**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
421cee29 1787 * @prev: the current task that is being switched out
4866cde0
NP
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
e107be36
AK
1797static inline void
1798prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
4866cde0 1800{
895dd92c 1801 trace_sched_switch(prev, next);
fe4b04fa
PZ
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
e107be36 1804 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807}
1808
1da177e4
LT
1809/**
1810 * finish_task_switch - clean up after a task-switch
344babaa 1811 * @rq: runqueue associated with task-switch
1da177e4
LT
1812 * @prev: the thread we just switched away from.
1813 *
4866cde0
NP
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1820 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
a9957449 1824static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1825 __releases(rq->lock)
1826{
1da177e4 1827 struct mm_struct *mm = rq->prev_mm;
55a101f8 1828 long prev_state;
1da177e4
LT
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
c394cc9f 1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
c394cc9f 1837 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
55a101f8 1843 prev_state = prev->state;
bf9fae9f 1844 vtime_task_switch(prev);
4866cde0 1845 finish_arch_switch(prev);
a8d757ef 1846 perf_event_task_sched_in(prev, current);
4866cde0 1847 finish_lock_switch(rq, prev);
01f23e16 1848 finish_arch_post_lock_switch();
e8fa1362 1849
e107be36 1850 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1851 if (mm)
1852 mmdrop(mm);
c394cc9f 1853 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
9761eea8 1857 */
c6fd91f0 1858 kprobe_flush_task(prev);
1da177e4 1859 put_task_struct(prev);
c6fd91f0 1860 }
1da177e4
LT
1861}
1862
3f029d3c
GH
1863#ifdef CONFIG_SMP
1864
1865/* assumes rq->lock is held */
1866static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867{
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1870}
1871
1872/* rq->lock is NOT held, but preemption is disabled */
1873static inline void post_schedule(struct rq *rq)
1874{
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1877
05fa785c 1878 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
05fa785c 1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1882
1883 rq->post_schedule = 0;
1884 }
1885}
1886
1887#else
da19ab51 1888
3f029d3c
GH
1889static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890{
1891}
1892
1893static inline void post_schedule(struct rq *rq)
1894{
1da177e4
LT
1895}
1896
3f029d3c
GH
1897#endif
1898
1da177e4
LT
1899/**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
36c8b586 1903asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1904 __releases(rq->lock)
1905{
70b97a7f
IM
1906 struct rq *rq = this_rq();
1907
4866cde0 1908 finish_task_switch(rq, prev);
da19ab51 1909
3f029d3c
GH
1910 /*
1911 * FIXME: do we need to worry about rq being invalidated by the
1912 * task_switch?
1913 */
1914 post_schedule(rq);
70b97a7f 1915
4866cde0
NP
1916#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1918 preempt_enable();
1919#endif
1da177e4 1920 if (current->set_child_tid)
b488893a 1921 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1922}
1923
1924/*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
dd41f596 1928static inline void
70b97a7f 1929context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1930 struct task_struct *next)
1da177e4 1931{
dd41f596 1932 struct mm_struct *mm, *oldmm;
1da177e4 1933
e107be36 1934 prepare_task_switch(rq, prev, next);
fe4b04fa 1935
dd41f596
IM
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
9226d125
ZA
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
224101ed 1943 arch_start_context_switch(prev);
9226d125 1944
31915ab4 1945 if (!mm) {
1da177e4
LT
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
31915ab4 1952 if (!prev->mm) {
1da177e4 1953 prev->active_mm = NULL;
1da177e4
LT
1954 rq->prev_mm = oldmm;
1955 }
3a5f5e48
IM
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1964#endif
1da177e4 1965
91d1aa43 1966 context_tracking_task_switch(prev, next);
1da177e4
LT
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
dd41f596
IM
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1da177e4
LT
1977}
1978
1979/*
1c3e8264 1980 * nr_running and nr_context_switches:
1da177e4
LT
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1c3e8264 1983 * threads, total number of context switches performed since bootup.
1da177e4
LT
1984 */
1985unsigned long nr_running(void)
1986{
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
f711f609 1993}
1da177e4 1994
1da177e4 1995unsigned long long nr_context_switches(void)
46cb4b7c 1996{
cc94abfc
SR
1997 int i;
1998 unsigned long long sum = 0;
46cb4b7c 1999
0a945022 2000 for_each_possible_cpu(i)
1da177e4 2001 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2002
1da177e4
LT
2003 return sum;
2004}
483b4ee6 2005
1da177e4
LT
2006unsigned long nr_iowait(void)
2007{
2008 unsigned long i, sum = 0;
483b4ee6 2009
0a945022 2010 for_each_possible_cpu(i)
1da177e4 2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2012
1da177e4
LT
2013 return sum;
2014}
483b4ee6 2015
8c215bd3 2016unsigned long nr_iowait_cpu(int cpu)
69d25870 2017{
8c215bd3 2018 struct rq *this = cpu_rq(cpu);
69d25870
AV
2019 return atomic_read(&this->nr_iowait);
2020}
46cb4b7c 2021
69d25870
AV
2022unsigned long this_cpu_load(void)
2023{
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2026}
e790fb0b 2027
46cb4b7c 2028
5167e8d5
PZ
2029/*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 * nr_active = 0;
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2051 *
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2058 *
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2062 *
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2072 *
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
dce48a84
TG
2076/* Variables and functions for calc_load */
2077static atomic_long_t calc_load_tasks;
2078static unsigned long calc_load_update;
2079unsigned long avenrun[3];
5167e8d5
PZ
2080EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082/**
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091{
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2095}
46cb4b7c 2096
74f5187a
PZ
2097static long calc_load_fold_active(struct rq *this_rq)
2098{
2099 long nr_active, delta = 0;
2100
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2103
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2107 }
2108
2109 return delta;
2110}
2111
5167e8d5
PZ
2112/*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
0f004f5a
PZ
2115static unsigned long
2116calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117{
2118 load *= exp;
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2122}
2123
74f5187a
PZ
2124#ifdef CONFIG_NO_HZ
2125/*
5167e8d5
PZ
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2140 *
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 * The only trick is the slight shift in index flip for read vs write.
2145 *
2146 * 0s 5s 10s 15s
2147 * +10 +10 +10 +10
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2151 *
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2154 *
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2157 * busy state.
2158 *
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
74f5187a
PZ
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
5167e8d5
PZ
2167static atomic_long_t calc_load_idle[2];
2168static int calc_load_idx;
74f5187a 2169
5167e8d5 2170static inline int calc_load_write_idx(void)
74f5187a 2171{
5167e8d5
PZ
2172 int idx = calc_load_idx;
2173
2174 /*
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2177 */
2178 smp_rmb();
2179
2180 /*
2181 * If the folding window started, make sure we start writing in the
2182 * next idle-delta.
2183 */
2184 if (!time_before(jiffies, calc_load_update))
2185 idx++;
2186
2187 return idx & 1;
2188}
2189
2190static inline int calc_load_read_idx(void)
2191{
2192 return calc_load_idx & 1;
2193}
2194
2195void calc_load_enter_idle(void)
2196{
2197 struct rq *this_rq = this_rq();
74f5187a
PZ
2198 long delta;
2199
5167e8d5
PZ
2200 /*
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2203 */
74f5187a 2204 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2205 if (delta) {
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2208 }
74f5187a
PZ
2209}
2210
5167e8d5 2211void calc_load_exit_idle(void)
74f5187a 2212{
5167e8d5
PZ
2213 struct rq *this_rq = this_rq();
2214
2215 /*
2216 * If we're still before the sample window, we're done.
2217 */
2218 if (time_before(jiffies, this_rq->calc_load_update))
2219 return;
74f5187a
PZ
2220
2221 /*
5167e8d5
PZ
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
74f5187a 2225 */
5167e8d5
PZ
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2229}
2230
2231static long calc_load_fold_idle(void)
2232{
2233 int idx = calc_load_read_idx();
2234 long delta = 0;
2235
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2238
2239 return delta;
2240}
0f004f5a
PZ
2241
2242/**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257static unsigned long
2258fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259{
2260 unsigned long result = 1UL << frac_bits;
2261
2262 if (n) for (;;) {
2263 if (n & 1) {
2264 result *= x;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2267 }
2268 n >>= 1;
2269 if (!n)
2270 break;
2271 x *= x;
2272 x += 1UL << (frac_bits - 1);
2273 x >>= frac_bits;
2274 }
2275
2276 return result;
2277}
2278
2279/*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 * ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 * n 1 - x^(n+1)
2299 * S_n := \Sum x^i = -------------
2300 * i=0 1 - x
2301 */
2302static unsigned long
2303calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2305{
2306
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308}
2309
2310/*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
c308b56b 2319static void calc_global_nohz(void)
0f004f5a
PZ
2320{
2321 long delta, active, n;
2322
5167e8d5
PZ
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2324 /*
2325 * Catch-up, fold however many we are behind still
2326 */
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2329
5167e8d5
PZ
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2332
5167e8d5
PZ
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2336
5167e8d5
PZ
2337 calc_load_update += n * LOAD_FREQ;
2338 }
74f5187a 2339
5167e8d5
PZ
2340 /*
2341 * Flip the idle index...
2342 *
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2346 */
2347 smp_wmb();
2348 calc_load_idx++;
74f5187a 2349}
5167e8d5 2350#else /* !CONFIG_NO_HZ */
0f004f5a 2351
5167e8d5
PZ
2352static inline long calc_load_fold_idle(void) { return 0; }
2353static inline void calc_global_nohz(void) { }
74f5187a 2354
5167e8d5 2355#endif /* CONFIG_NO_HZ */
46cb4b7c 2356
46cb4b7c 2357/*
dce48a84
TG
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
7835b98b 2360 */
0f004f5a 2361void calc_global_load(unsigned long ticks)
7835b98b 2362{
5167e8d5 2363 long active, delta;
1da177e4 2364
0f004f5a 2365 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2366 return;
1da177e4 2367
5167e8d5
PZ
2368 /*
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 */
2371 delta = calc_load_fold_idle();
2372 if (delta)
2373 atomic_long_add(delta, &calc_load_tasks);
2374
dce48a84
TG
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2377
dce48a84
TG
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2381
dce48a84 2382 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2383
2384 /*
5167e8d5 2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2386 */
2387 calc_global_nohz();
dce48a84 2388}
1da177e4 2389
dce48a84 2390/*
74f5187a
PZ
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
dce48a84
TG
2393 */
2394static void calc_load_account_active(struct rq *this_rq)
2395{
74f5187a 2396 long delta;
08c183f3 2397
74f5187a
PZ
2398 if (time_before(jiffies, this_rq->calc_load_update))
2399 return;
783609c6 2400
74f5187a 2401 delta = calc_load_fold_active(this_rq);
74f5187a 2402 if (delta)
dce48a84 2403 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2404
2405 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2406}
2407
5167e8d5
PZ
2408/*
2409 * End of global load-average stuff
2410 */
2411
fdf3e95d
VP
2412/*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439#define DEGRADE_SHIFT 7
2440static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2449
2450/*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455static unsigned long
2456decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457{
2458 int j = 0;
2459
2460 if (!missed_updates)
2461 return load;
2462
2463 if (missed_updates >= degrade_zero_ticks[idx])
2464 return 0;
2465
2466 if (idx == 1)
2467 return load >> missed_updates;
2468
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473 missed_updates >>= 1;
2474 j++;
2475 }
2476 return load;
2477}
2478
46cb4b7c 2479/*
dd41f596 2480 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
46cb4b7c 2483 */
556061b0
PZ
2484static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
46cb4b7c 2486{
dd41f596 2487 int i, scale;
46cb4b7c 2488
dd41f596 2489 this_rq->nr_load_updates++;
46cb4b7c 2490
dd41f596 2491 /* Update our load: */
fdf3e95d
VP
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2494 unsigned long old_load, new_load;
7d1e6a9b 2495
dd41f596 2496 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2497
dd41f596 2498 old_load = this_rq->cpu_load[i];
fdf3e95d 2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2500 new_load = this_load;
a25707f3
IM
2501 /*
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2504 * example.
2505 */
2506 if (new_load > old_load)
fdf3e95d
VP
2507 new_load += scale - 1;
2508
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2510 }
da2b71ed
SS
2511
2512 sched_avg_update(this_rq);
fdf3e95d
VP
2513}
2514
5aaa0b7a
PZ
2515#ifdef CONFIG_NO_HZ
2516/*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
556061b0
PZ
2529/*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533void update_idle_cpu_load(struct rq *this_rq)
2534{
5aaa0b7a 2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2538
2539 /*
5aaa0b7a 2540 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2541 */
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 return;
2544
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2547
2548 __update_cpu_load(this_rq, load, pending_updates);
2549}
2550
5aaa0b7a
PZ
2551/*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554void update_cpu_load_nohz(void)
2555{
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2559
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2567 /*
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2570 */
2571 __update_cpu_load(this_rq, 0, pending_updates);
2572 }
2573 raw_spin_unlock(&this_rq->lock);
2574}
2575#endif /* CONFIG_NO_HZ */
2576
556061b0
PZ
2577/*
2578 * Called from scheduler_tick()
2579 */
fdf3e95d
VP
2580static void update_cpu_load_active(struct rq *this_rq)
2581{
556061b0 2582 /*
5aaa0b7a 2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2584 */
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2587
74f5187a 2588 calc_load_account_active(this_rq);
46cb4b7c
SS
2589}
2590
dd41f596 2591#ifdef CONFIG_SMP
8a0be9ef 2592
46cb4b7c 2593/*
38022906
PZ
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2596 */
38022906 2597void sched_exec(void)
46cb4b7c 2598{
38022906 2599 struct task_struct *p = current;
1da177e4 2600 unsigned long flags;
0017d735 2601 int dest_cpu;
46cb4b7c 2602
8f42ced9 2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2605 if (dest_cpu == smp_processor_id())
2606 goto unlock;
38022906 2607
8f42ced9 2608 if (likely(cpu_active(dest_cpu))) {
969c7921 2609 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2610
8f42ced9
PZ
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2613 return;
2614 }
0017d735 2615unlock:
8f42ced9 2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2617}
dd41f596 2618
1da177e4
LT
2619#endif
2620
1da177e4 2621DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2622DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2623
2624EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2625EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2626
2627/*
c5f8d995 2628 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2629 * @p in case that task is currently running.
c5f8d995
HS
2630 *
2631 * Called with task_rq_lock() held on @rq.
1da177e4 2632 */
c5f8d995
HS
2633static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634{
2635 u64 ns = 0;
2636
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
305e6835 2639 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2640 if ((s64)ns < 0)
2641 ns = 0;
2642 }
2643
2644 return ns;
2645}
2646
bb34d92f 2647unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2648{
1da177e4 2649 unsigned long flags;
41b86e9c 2650 struct rq *rq;
bb34d92f 2651 u64 ns = 0;
48f24c4d 2652
41b86e9c 2653 rq = task_rq_lock(p, &flags);
c5f8d995 2654 ns = do_task_delta_exec(p, rq);
0122ec5b 2655 task_rq_unlock(rq, p, &flags);
1508487e 2656
c5f8d995
HS
2657 return ns;
2658}
f06febc9 2659
c5f8d995
HS
2660/*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665unsigned long long task_sched_runtime(struct task_struct *p)
2666{
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2673 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2674
2675 return ns;
2676}
48f24c4d 2677
7835b98b
CL
2678/*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
7835b98b
CL
2681 */
2682void scheduler_tick(void)
2683{
7835b98b
CL
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
dd41f596 2686 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2687
2688 sched_clock_tick();
dd41f596 2689
05fa785c 2690 raw_spin_lock(&rq->lock);
3e51f33f 2691 update_rq_clock(rq);
fdf3e95d 2692 update_cpu_load_active(rq);
fa85ae24 2693 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2694 raw_spin_unlock(&rq->lock);
7835b98b 2695
e9d2b064 2696 perf_event_task_tick();
e220d2dc 2697
e418e1c2 2698#ifdef CONFIG_SMP
6eb57e0d 2699 rq->idle_balance = idle_cpu(cpu);
dd41f596 2700 trigger_load_balance(rq, cpu);
e418e1c2 2701#endif
1da177e4
LT
2702}
2703
132380a0 2704notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2705{
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2710 }
2711 return addr;
2712}
1da177e4 2713
7e49fcce
SR
2714#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2716
43627582 2717void __kprobes add_preempt_count(int val)
1da177e4 2718{
6cd8a4bb 2719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2720 /*
2721 * Underflow?
2722 */
9a11b49a
IM
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 return;
6cd8a4bb 2725#endif
1da177e4 2726 preempt_count() += val;
6cd8a4bb 2727#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2728 /*
2729 * Spinlock count overflowing soon?
2730 */
33859f7f
MOS
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 PREEMPT_MASK - 10);
6cd8a4bb
SR
2733#endif
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2736}
2737EXPORT_SYMBOL(add_preempt_count);
2738
43627582 2739void __kprobes sub_preempt_count(int val)
1da177e4 2740{
6cd8a4bb 2741#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2742 /*
2743 * Underflow?
2744 */
01e3eb82 2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2746 return;
1da177e4
LT
2747 /*
2748 * Is the spinlock portion underflowing?
2749 */
9a11b49a
IM
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2752 return;
6cd8a4bb 2753#endif
9a11b49a 2754
6cd8a4bb
SR
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2757 preempt_count() -= val;
2758}
2759EXPORT_SYMBOL(sub_preempt_count);
2760
2761#endif
2762
2763/*
dd41f596 2764 * Print scheduling while atomic bug:
1da177e4 2765 */
dd41f596 2766static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2767{
664dfa65
DJ
2768 if (oops_in_progress)
2769 return;
2770
3df0fc5b
PZ
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
838225b4 2773
dd41f596 2774 debug_show_held_locks(prev);
e21f5b15 2775 print_modules();
dd41f596
IM
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
6135fc1e 2778 dump_stack();
373d4d09 2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2780}
1da177e4 2781
dd41f596
IM
2782/*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785static inline void schedule_debug(struct task_struct *prev)
2786{
1da177e4 2787 /*
41a2d6cf 2788 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2791 */
3f33a7ce 2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2793 __schedule_bug(prev);
b3fbab05 2794 rcu_sleep_check();
dd41f596 2795
1da177e4
LT
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2d72376b 2798 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2799}
2800
6cecd084 2801static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2802{
61eadef6 2803 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2804 update_rq_clock(rq);
6cecd084 2805 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2806}
2807
dd41f596
IM
2808/*
2809 * Pick up the highest-prio task:
2810 */
2811static inline struct task_struct *
b67802ea 2812pick_next_task(struct rq *rq)
dd41f596 2813{
5522d5d5 2814 const struct sched_class *class;
dd41f596 2815 struct task_struct *p;
1da177e4
LT
2816
2817 /*
dd41f596
IM
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
1da177e4 2820 */
953bfcd1 2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2822 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2823 if (likely(p))
2824 return p;
1da177e4
LT
2825 }
2826
34f971f6 2827 for_each_class(class) {
fb8d4724 2828 p = class->pick_next_task(rq);
dd41f596
IM
2829 if (p)
2830 return p;
dd41f596 2831 }
34f971f6
PZ
2832
2833 BUG(); /* the idle class will always have a runnable task */
dd41f596 2834}
1da177e4 2835
dd41f596 2836/*
c259e01a 2837 * __schedule() is the main scheduler function.
edde96ea
PE
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2845 *
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2848 *
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2851 *
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2855 *
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2860 * spin_unlock()!)
2861 *
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2864 *
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 * then at the next:
2867 *
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
dd41f596 2872 */
c259e01a 2873static void __sched __schedule(void)
dd41f596
IM
2874{
2875 struct task_struct *prev, *next;
67ca7bde 2876 unsigned long *switch_count;
dd41f596 2877 struct rq *rq;
31656519 2878 int cpu;
dd41f596 2879
ff743345
PZ
2880need_resched:
2881 preempt_disable();
dd41f596
IM
2882 cpu = smp_processor_id();
2883 rq = cpu_rq(cpu);
25502a6c 2884 rcu_note_context_switch(cpu);
dd41f596 2885 prev = rq->curr;
dd41f596 2886
dd41f596 2887 schedule_debug(prev);
1da177e4 2888
31656519 2889 if (sched_feat(HRTICK))
f333fdc9 2890 hrtick_clear(rq);
8f4d37ec 2891
05fa785c 2892 raw_spin_lock_irq(&rq->lock);
1da177e4 2893
246d86b5 2894 switch_count = &prev->nivcsw;
1da177e4 2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2896 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2897 prev->state = TASK_RUNNING;
21aa9af0 2898 } else {
2acca55e
PZ
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 prev->on_rq = 0;
2901
21aa9af0 2902 /*
2acca55e
PZ
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2905 * concurrency.
21aa9af0
TH
2906 */
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2909
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2911 if (to_wakeup)
2912 try_to_wake_up_local(to_wakeup);
2913 }
21aa9af0 2914 }
dd41f596 2915 switch_count = &prev->nvcsw;
1da177e4
LT
2916 }
2917
3f029d3c 2918 pre_schedule(rq, prev);
f65eda4f 2919
dd41f596 2920 if (unlikely(!rq->nr_running))
1da177e4 2921 idle_balance(cpu, rq);
1da177e4 2922
df1c99d4 2923 put_prev_task(rq, prev);
b67802ea 2924 next = pick_next_task(rq);
f26f9aff
MG
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
1da177e4 2927
1da177e4 2928 if (likely(prev != next)) {
1da177e4
LT
2929 rq->nr_switches++;
2930 rq->curr = next;
2931 ++*switch_count;
2932
dd41f596 2933 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2934 /*
246d86b5
ON
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2939 */
2940 cpu = smp_processor_id();
2941 rq = cpu_rq(cpu);
1da177e4 2942 } else
05fa785c 2943 raw_spin_unlock_irq(&rq->lock);
1da177e4 2944
3f029d3c 2945 post_schedule(rq);
1da177e4 2946
ba74c144 2947 sched_preempt_enable_no_resched();
ff743345 2948 if (need_resched())
1da177e4
LT
2949 goto need_resched;
2950}
c259e01a 2951
9c40cef2
TG
2952static inline void sched_submit_work(struct task_struct *tsk)
2953{
3c7d5184 2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2955 return;
2956 /*
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2959 */
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2962}
2963
6ebbe7a0 2964asmlinkage void __sched schedule(void)
c259e01a 2965{
9c40cef2
TG
2966 struct task_struct *tsk = current;
2967
2968 sched_submit_work(tsk);
c259e01a
TG
2969 __schedule();
2970}
1da177e4
LT
2971EXPORT_SYMBOL(schedule);
2972
91d1aa43 2973#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2974asmlinkage void __sched schedule_user(void)
2975{
2976 /*
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2981 */
91d1aa43 2982 user_exit();
20ab65e3 2983 schedule();
91d1aa43 2984 user_enter();
20ab65e3
FW
2985}
2986#endif
2987
c5491ea7
TG
2988/**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993void __sched schedule_preempt_disabled(void)
2994{
ba74c144 2995 sched_preempt_enable_no_resched();
c5491ea7
TG
2996 schedule();
2997 preempt_disable();
2998}
2999
c08f7829 3000#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3001
c6eb3dda
PZ
3002static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003{
c6eb3dda 3004 if (lock->owner != owner)
307bf980 3005 return false;
0d66bf6d
PZ
3006
3007 /*
c6eb3dda
PZ
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
0d66bf6d 3012 */
c6eb3dda 3013 barrier();
0d66bf6d 3014
307bf980 3015 return owner->on_cpu;
c6eb3dda 3016}
0d66bf6d 3017
c6eb3dda
PZ
3018/*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023{
3024 if (!sched_feat(OWNER_SPIN))
3025 return 0;
0d66bf6d 3026
307bf980 3027 rcu_read_lock();
c6eb3dda
PZ
3028 while (owner_running(lock, owner)) {
3029 if (need_resched())
307bf980 3030 break;
0d66bf6d 3031
335d7afb 3032 arch_mutex_cpu_relax();
0d66bf6d 3033 }
307bf980 3034 rcu_read_unlock();
4b402210 3035
c6eb3dda 3036 /*
307bf980
TG
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
c6eb3dda 3040 */
307bf980 3041 return lock->owner == NULL;
0d66bf6d
PZ
3042}
3043#endif
3044
1da177e4
LT
3045#ifdef CONFIG_PREEMPT
3046/*
2ed6e34f 3047 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3048 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3049 * occur there and call schedule directly.
3050 */
d1f74e20 3051asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3052{
3053 struct thread_info *ti = current_thread_info();
6478d880 3054
1da177e4
LT
3055 /*
3056 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3057 * we do not want to preempt the current task. Just return..
1da177e4 3058 */
beed33a8 3059 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3060 return;
3061
3a5c359a 3062 do {
d1f74e20 3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3064 __schedule();
d1f74e20 3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3066
3a5c359a
AK
3067 /*
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3070 */
3071 barrier();
5ed0cec0 3072 } while (need_resched());
1da177e4 3073}
1da177e4
LT
3074EXPORT_SYMBOL(preempt_schedule);
3075
3076/*
2ed6e34f 3077 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082asmlinkage void __sched preempt_schedule_irq(void)
3083{
3084 struct thread_info *ti = current_thread_info();
6478d880 3085
2ed6e34f 3086 /* Catch callers which need to be fixed */
1da177e4
LT
3087 BUG_ON(ti->preempt_count || !irqs_disabled());
3088
91d1aa43 3089 user_exit();
3a5c359a
AK
3090 do {
3091 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3092 local_irq_enable();
c259e01a 3093 __schedule();
3a5c359a 3094 local_irq_disable();
3a5c359a 3095 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3096
3a5c359a
AK
3097 /*
3098 * Check again in case we missed a preemption opportunity
3099 * between schedule and now.
3100 */
3101 barrier();
5ed0cec0 3102 } while (need_resched());
1da177e4
LT
3103}
3104
3105#endif /* CONFIG_PREEMPT */
3106
63859d4f 3107int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3108 void *key)
1da177e4 3109{
63859d4f 3110 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3111}
1da177e4
LT
3112EXPORT_SYMBOL(default_wake_function);
3113
3114/*
41a2d6cf
IM
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3118 *
3119 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122 */
78ddb08f 3123static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3124 int nr_exclusive, int wake_flags, void *key)
1da177e4 3125{
2e45874c 3126 wait_queue_t *curr, *next;
1da177e4 3127
2e45874c 3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3129 unsigned flags = curr->flags;
3130
63859d4f 3131 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3133 break;
3134 }
3135}
3136
3137/**
3138 * __wake_up - wake up threads blocked on a waitqueue.
3139 * @q: the waitqueue
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3142 * @key: is directly passed to the wakeup function
50fa610a
DH
3143 *
3144 * It may be assumed that this function implies a write memory barrier before
3145 * changing the task state if and only if any tasks are woken up.
1da177e4 3146 */
7ad5b3a5 3147void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3148 int nr_exclusive, void *key)
1da177e4
LT
3149{
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3155}
1da177e4
LT
3156EXPORT_SYMBOL(__wake_up);
3157
3158/*
3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3160 */
63b20011 3161void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3162{
63b20011 3163 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3164}
22c43c81 3165EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3166
4ede816a
DL
3167void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3168{
3169 __wake_up_common(q, mode, 1, 0, key);
3170}
bf294b41 3171EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3172
1da177e4 3173/**
4ede816a 3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3175 * @q: the waitqueue
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3178 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3179 *
3180 * The sync wakeup differs that the waker knows that it will schedule
3181 * away soon, so while the target thread will be woken up, it will not
3182 * be migrated to another CPU - ie. the two threads are 'synchronized'
3183 * with each other. This can prevent needless bouncing between CPUs.
3184 *
3185 * On UP it can prevent extra preemption.
50fa610a
DH
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
1da177e4 3189 */
4ede816a
DL
3190void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 int nr_exclusive, void *key)
1da177e4
LT
3192{
3193 unsigned long flags;
7d478721 3194 int wake_flags = WF_SYNC;
1da177e4
LT
3195
3196 if (unlikely(!q))
3197 return;
3198
3199 if (unlikely(!nr_exclusive))
7d478721 3200 wake_flags = 0;
1da177e4
LT
3201
3202 spin_lock_irqsave(&q->lock, flags);
7d478721 3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3204 spin_unlock_irqrestore(&q->lock, flags);
3205}
4ede816a
DL
3206EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3207
3208/*
3209 * __wake_up_sync - see __wake_up_sync_key()
3210 */
3211void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3212{
3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3214}
1da177e4
LT
3215EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3216
65eb3dc6
KD
3217/**
3218 * complete: - signals a single thread waiting on this completion
3219 * @x: holds the state of this particular completion
3220 *
3221 * This will wake up a single thread waiting on this completion. Threads will be
3222 * awakened in the same order in which they were queued.
3223 *
3224 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3225 *
3226 * It may be assumed that this function implies a write memory barrier before
3227 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3228 */
b15136e9 3229void complete(struct completion *x)
1da177e4
LT
3230{
3231 unsigned long flags;
3232
3233 spin_lock_irqsave(&x->wait.lock, flags);
3234 x->done++;
d9514f6c 3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3236 spin_unlock_irqrestore(&x->wait.lock, flags);
3237}
3238EXPORT_SYMBOL(complete);
3239
65eb3dc6
KD
3240/**
3241 * complete_all: - signals all threads waiting on this completion
3242 * @x: holds the state of this particular completion
3243 *
3244 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3248 */
b15136e9 3249void complete_all(struct completion *x)
1da177e4
LT
3250{
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done += UINT_MAX/2;
d9514f6c 3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257}
3258EXPORT_SYMBOL(complete_all);
3259
8cbbe86d
AK
3260static inline long __sched
3261do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3262{
1da177e4
LT
3263 if (!x->done) {
3264 DECLARE_WAITQUEUE(wait, current);
3265
a93d2f17 3266 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3267 do {
94d3d824 3268 if (signal_pending_state(state, current)) {
ea71a546
ON
3269 timeout = -ERESTARTSYS;
3270 break;
8cbbe86d
AK
3271 }
3272 __set_current_state(state);
1da177e4
LT
3273 spin_unlock_irq(&x->wait.lock);
3274 timeout = schedule_timeout(timeout);
3275 spin_lock_irq(&x->wait.lock);
ea71a546 3276 } while (!x->done && timeout);
1da177e4 3277 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3278 if (!x->done)
3279 return timeout;
1da177e4
LT
3280 }
3281 x->done--;
ea71a546 3282 return timeout ?: 1;
1da177e4 3283}
1da177e4 3284
8cbbe86d
AK
3285static long __sched
3286wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3287{
1da177e4
LT
3288 might_sleep();
3289
3290 spin_lock_irq(&x->wait.lock);
8cbbe86d 3291 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3292 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3293 return timeout;
3294}
1da177e4 3295
65eb3dc6
KD
3296/**
3297 * wait_for_completion: - waits for completion of a task
3298 * @x: holds the state of this particular completion
3299 *
3300 * This waits to be signaled for completion of a specific task. It is NOT
3301 * interruptible and there is no timeout.
3302 *
3303 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3304 * and interrupt capability. Also see complete().
3305 */
b15136e9 3306void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3307{
3308 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3309}
8cbbe86d 3310EXPORT_SYMBOL(wait_for_completion);
1da177e4 3311
65eb3dc6
KD
3312/**
3313 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3314 * @x: holds the state of this particular completion
3315 * @timeout: timeout value in jiffies
3316 *
3317 * This waits for either a completion of a specific task to be signaled or for a
3318 * specified timeout to expire. The timeout is in jiffies. It is not
3319 * interruptible.
c6dc7f05
BF
3320 *
3321 * The return value is 0 if timed out, and positive (at least 1, or number of
3322 * jiffies left till timeout) if completed.
65eb3dc6 3323 */
b15136e9 3324unsigned long __sched
8cbbe86d 3325wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3326{
8cbbe86d 3327 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3328}
8cbbe86d 3329EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3330
65eb3dc6
KD
3331/**
3332 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3333 * @x: holds the state of this particular completion
3334 *
3335 * This waits for completion of a specific task to be signaled. It is
3336 * interruptible.
c6dc7f05
BF
3337 *
3338 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3339 */
8cbbe86d 3340int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3341{
51e97990
AK
3342 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3343 if (t == -ERESTARTSYS)
3344 return t;
3345 return 0;
0fec171c 3346}
8cbbe86d 3347EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3348
65eb3dc6
KD
3349/**
3350 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3351 * @x: holds the state of this particular completion
3352 * @timeout: timeout value in jiffies
3353 *
3354 * This waits for either a completion of a specific task to be signaled or for a
3355 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3356 *
3357 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3358 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3359 */
6bf41237 3360long __sched
8cbbe86d
AK
3361wait_for_completion_interruptible_timeout(struct completion *x,
3362 unsigned long timeout)
0fec171c 3363{
8cbbe86d 3364 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3365}
8cbbe86d 3366EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3367
65eb3dc6
KD
3368/**
3369 * wait_for_completion_killable: - waits for completion of a task (killable)
3370 * @x: holds the state of this particular completion
3371 *
3372 * This waits to be signaled for completion of a specific task. It can be
3373 * interrupted by a kill signal.
c6dc7f05
BF
3374 *
3375 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3376 */
009e577e
MW
3377int __sched wait_for_completion_killable(struct completion *x)
3378{
3379 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3380 if (t == -ERESTARTSYS)
3381 return t;
3382 return 0;
3383}
3384EXPORT_SYMBOL(wait_for_completion_killable);
3385
0aa12fb4
SW
3386/**
3387 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3388 * @x: holds the state of this particular completion
3389 * @timeout: timeout value in jiffies
3390 *
3391 * This waits for either a completion of a specific task to be
3392 * signaled or for a specified timeout to expire. It can be
3393 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3394 *
3395 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3396 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3397 */
6bf41237 3398long __sched
0aa12fb4
SW
3399wait_for_completion_killable_timeout(struct completion *x,
3400 unsigned long timeout)
3401{
3402 return wait_for_common(x, timeout, TASK_KILLABLE);
3403}
3404EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3405
be4de352
DC
3406/**
3407 * try_wait_for_completion - try to decrement a completion without blocking
3408 * @x: completion structure
3409 *
3410 * Returns: 0 if a decrement cannot be done without blocking
3411 * 1 if a decrement succeeded.
3412 *
3413 * If a completion is being used as a counting completion,
3414 * attempt to decrement the counter without blocking. This
3415 * enables us to avoid waiting if the resource the completion
3416 * is protecting is not available.
3417 */
3418bool try_wait_for_completion(struct completion *x)
3419{
7539a3b3 3420 unsigned long flags;
be4de352
DC
3421 int ret = 1;
3422
7539a3b3 3423 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3424 if (!x->done)
3425 ret = 0;
3426 else
3427 x->done--;
7539a3b3 3428 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3429 return ret;
3430}
3431EXPORT_SYMBOL(try_wait_for_completion);
3432
3433/**
3434 * completion_done - Test to see if a completion has any waiters
3435 * @x: completion structure
3436 *
3437 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3438 * 1 if there are no waiters.
3439 *
3440 */
3441bool completion_done(struct completion *x)
3442{
7539a3b3 3443 unsigned long flags;
be4de352
DC
3444 int ret = 1;
3445
7539a3b3 3446 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3447 if (!x->done)
3448 ret = 0;
7539a3b3 3449 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3450 return ret;
3451}
3452EXPORT_SYMBOL(completion_done);
3453
8cbbe86d
AK
3454static long __sched
3455sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3456{
0fec171c
IM
3457 unsigned long flags;
3458 wait_queue_t wait;
3459
3460 init_waitqueue_entry(&wait, current);
1da177e4 3461
8cbbe86d 3462 __set_current_state(state);
1da177e4 3463
8cbbe86d
AK
3464 spin_lock_irqsave(&q->lock, flags);
3465 __add_wait_queue(q, &wait);
3466 spin_unlock(&q->lock);
3467 timeout = schedule_timeout(timeout);
3468 spin_lock_irq(&q->lock);
3469 __remove_wait_queue(q, &wait);
3470 spin_unlock_irqrestore(&q->lock, flags);
3471
3472 return timeout;
3473}
3474
3475void __sched interruptible_sleep_on(wait_queue_head_t *q)
3476{
3477 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3478}
1da177e4
LT
3479EXPORT_SYMBOL(interruptible_sleep_on);
3480
0fec171c 3481long __sched
95cdf3b7 3482interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3483{
8cbbe86d 3484 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3485}
1da177e4
LT
3486EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3487
0fec171c 3488void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3489{
8cbbe86d 3490 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3491}
1da177e4
LT
3492EXPORT_SYMBOL(sleep_on);
3493
0fec171c 3494long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3495{
8cbbe86d 3496 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3497}
1da177e4
LT
3498EXPORT_SYMBOL(sleep_on_timeout);
3499
b29739f9
IM
3500#ifdef CONFIG_RT_MUTEXES
3501
3502/*
3503 * rt_mutex_setprio - set the current priority of a task
3504 * @p: task
3505 * @prio: prio value (kernel-internal form)
3506 *
3507 * This function changes the 'effective' priority of a task. It does
3508 * not touch ->normal_prio like __setscheduler().
3509 *
3510 * Used by the rt_mutex code to implement priority inheritance logic.
3511 */
36c8b586 3512void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3513{
83b699ed 3514 int oldprio, on_rq, running;
70b97a7f 3515 struct rq *rq;
83ab0aa0 3516 const struct sched_class *prev_class;
b29739f9
IM
3517
3518 BUG_ON(prio < 0 || prio > MAX_PRIO);
3519
0122ec5b 3520 rq = __task_rq_lock(p);
b29739f9 3521
1c4dd99b
TG
3522 /*
3523 * Idle task boosting is a nono in general. There is one
3524 * exception, when PREEMPT_RT and NOHZ is active:
3525 *
3526 * The idle task calls get_next_timer_interrupt() and holds
3527 * the timer wheel base->lock on the CPU and another CPU wants
3528 * to access the timer (probably to cancel it). We can safely
3529 * ignore the boosting request, as the idle CPU runs this code
3530 * with interrupts disabled and will complete the lock
3531 * protected section without being interrupted. So there is no
3532 * real need to boost.
3533 */
3534 if (unlikely(p == rq->idle)) {
3535 WARN_ON(p != rq->curr);
3536 WARN_ON(p->pi_blocked_on);
3537 goto out_unlock;
3538 }
3539
a8027073 3540 trace_sched_pi_setprio(p, prio);
d5f9f942 3541 oldprio = p->prio;
83ab0aa0 3542 prev_class = p->sched_class;
fd2f4419 3543 on_rq = p->on_rq;
051a1d1a 3544 running = task_current(rq, p);
0e1f3483 3545 if (on_rq)
69be72c1 3546 dequeue_task(rq, p, 0);
0e1f3483
HS
3547 if (running)
3548 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3549
3550 if (rt_prio(prio))
3551 p->sched_class = &rt_sched_class;
3552 else
3553 p->sched_class = &fair_sched_class;
3554
b29739f9
IM
3555 p->prio = prio;
3556
0e1f3483
HS
3557 if (running)
3558 p->sched_class->set_curr_task(rq);
da7a735e 3559 if (on_rq)
371fd7e7 3560 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3561
da7a735e 3562 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3563out_unlock:
0122ec5b 3564 __task_rq_unlock(rq);
b29739f9 3565}
b29739f9 3566#endif
36c8b586 3567void set_user_nice(struct task_struct *p, long nice)
1da177e4 3568{
dd41f596 3569 int old_prio, delta, on_rq;
1da177e4 3570 unsigned long flags;
70b97a7f 3571 struct rq *rq;
1da177e4
LT
3572
3573 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3574 return;
3575 /*
3576 * We have to be careful, if called from sys_setpriority(),
3577 * the task might be in the middle of scheduling on another CPU.
3578 */
3579 rq = task_rq_lock(p, &flags);
3580 /*
3581 * The RT priorities are set via sched_setscheduler(), but we still
3582 * allow the 'normal' nice value to be set - but as expected
3583 * it wont have any effect on scheduling until the task is
dd41f596 3584 * SCHED_FIFO/SCHED_RR:
1da177e4 3585 */
e05606d3 3586 if (task_has_rt_policy(p)) {
1da177e4
LT
3587 p->static_prio = NICE_TO_PRIO(nice);
3588 goto out_unlock;
3589 }
fd2f4419 3590 on_rq = p->on_rq;
c09595f6 3591 if (on_rq)
69be72c1 3592 dequeue_task(rq, p, 0);
1da177e4 3593
1da177e4 3594 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3595 set_load_weight(p);
b29739f9
IM
3596 old_prio = p->prio;
3597 p->prio = effective_prio(p);
3598 delta = p->prio - old_prio;
1da177e4 3599
dd41f596 3600 if (on_rq) {
371fd7e7 3601 enqueue_task(rq, p, 0);
1da177e4 3602 /*
d5f9f942
AM
3603 * If the task increased its priority or is running and
3604 * lowered its priority, then reschedule its CPU:
1da177e4 3605 */
d5f9f942 3606 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3607 resched_task(rq->curr);
3608 }
3609out_unlock:
0122ec5b 3610 task_rq_unlock(rq, p, &flags);
1da177e4 3611}
1da177e4
LT
3612EXPORT_SYMBOL(set_user_nice);
3613
e43379f1
MM
3614/*
3615 * can_nice - check if a task can reduce its nice value
3616 * @p: task
3617 * @nice: nice value
3618 */
36c8b586 3619int can_nice(const struct task_struct *p, const int nice)
e43379f1 3620{
024f4747
MM
3621 /* convert nice value [19,-20] to rlimit style value [1,40] */
3622 int nice_rlim = 20 - nice;
48f24c4d 3623
78d7d407 3624 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3625 capable(CAP_SYS_NICE));
3626}
3627
1da177e4
LT
3628#ifdef __ARCH_WANT_SYS_NICE
3629
3630/*
3631 * sys_nice - change the priority of the current process.
3632 * @increment: priority increment
3633 *
3634 * sys_setpriority is a more generic, but much slower function that
3635 * does similar things.
3636 */
5add95d4 3637SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3638{
48f24c4d 3639 long nice, retval;
1da177e4
LT
3640
3641 /*
3642 * Setpriority might change our priority at the same moment.
3643 * We don't have to worry. Conceptually one call occurs first
3644 * and we have a single winner.
3645 */
e43379f1
MM
3646 if (increment < -40)
3647 increment = -40;
1da177e4
LT
3648 if (increment > 40)
3649 increment = 40;
3650
2b8f836f 3651 nice = TASK_NICE(current) + increment;
1da177e4
LT
3652 if (nice < -20)
3653 nice = -20;
3654 if (nice > 19)
3655 nice = 19;
3656
e43379f1
MM
3657 if (increment < 0 && !can_nice(current, nice))
3658 return -EPERM;
3659
1da177e4
LT
3660 retval = security_task_setnice(current, nice);
3661 if (retval)
3662 return retval;
3663
3664 set_user_nice(current, nice);
3665 return 0;
3666}
3667
3668#endif
3669
3670/**
3671 * task_prio - return the priority value of a given task.
3672 * @p: the task in question.
3673 *
3674 * This is the priority value as seen by users in /proc.
3675 * RT tasks are offset by -200. Normal tasks are centered
3676 * around 0, value goes from -16 to +15.
3677 */
36c8b586 3678int task_prio(const struct task_struct *p)
1da177e4
LT
3679{
3680 return p->prio - MAX_RT_PRIO;
3681}
3682
3683/**
3684 * task_nice - return the nice value of a given task.
3685 * @p: the task in question.
3686 */
36c8b586 3687int task_nice(const struct task_struct *p)
1da177e4
LT
3688{
3689 return TASK_NICE(p);
3690}
150d8bed 3691EXPORT_SYMBOL(task_nice);
1da177e4
LT
3692
3693/**
3694 * idle_cpu - is a given cpu idle currently?
3695 * @cpu: the processor in question.
3696 */
3697int idle_cpu(int cpu)
3698{
908a3283
TG
3699 struct rq *rq = cpu_rq(cpu);
3700
3701 if (rq->curr != rq->idle)
3702 return 0;
3703
3704 if (rq->nr_running)
3705 return 0;
3706
3707#ifdef CONFIG_SMP
3708 if (!llist_empty(&rq->wake_list))
3709 return 0;
3710#endif
3711
3712 return 1;
1da177e4
LT
3713}
3714
1da177e4
LT
3715/**
3716 * idle_task - return the idle task for a given cpu.
3717 * @cpu: the processor in question.
3718 */
36c8b586 3719struct task_struct *idle_task(int cpu)
1da177e4
LT
3720{
3721 return cpu_rq(cpu)->idle;
3722}
3723
3724/**
3725 * find_process_by_pid - find a process with a matching PID value.
3726 * @pid: the pid in question.
3727 */
a9957449 3728static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3729{
228ebcbe 3730 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3731}
3732
3733/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3734static void
3735__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3736{
1da177e4
LT
3737 p->policy = policy;
3738 p->rt_priority = prio;
b29739f9
IM
3739 p->normal_prio = normal_prio(p);
3740 /* we are holding p->pi_lock already */
3741 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3742 if (rt_prio(p->prio))
3743 p->sched_class = &rt_sched_class;
3744 else
3745 p->sched_class = &fair_sched_class;
2dd73a4f 3746 set_load_weight(p);
1da177e4
LT
3747}
3748
c69e8d9c
DH
3749/*
3750 * check the target process has a UID that matches the current process's
3751 */
3752static bool check_same_owner(struct task_struct *p)
3753{
3754 const struct cred *cred = current_cred(), *pcred;
3755 bool match;
3756
3757 rcu_read_lock();
3758 pcred = __task_cred(p);
9c806aa0
EB
3759 match = (uid_eq(cred->euid, pcred->euid) ||
3760 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3761 rcu_read_unlock();
3762 return match;
3763}
3764
961ccddd 3765static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3766 const struct sched_param *param, bool user)
1da177e4 3767{
83b699ed 3768 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3769 unsigned long flags;
83ab0aa0 3770 const struct sched_class *prev_class;
70b97a7f 3771 struct rq *rq;
ca94c442 3772 int reset_on_fork;
1da177e4 3773
66e5393a
SR
3774 /* may grab non-irq protected spin_locks */
3775 BUG_ON(in_interrupt());
1da177e4
LT
3776recheck:
3777 /* double check policy once rq lock held */
ca94c442
LP
3778 if (policy < 0) {
3779 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3780 policy = oldpolicy = p->policy;
ca94c442
LP
3781 } else {
3782 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3783 policy &= ~SCHED_RESET_ON_FORK;
3784
3785 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3786 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3787 policy != SCHED_IDLE)
3788 return -EINVAL;
3789 }
3790
1da177e4
LT
3791 /*
3792 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3793 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3794 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3795 */
3796 if (param->sched_priority < 0 ||
95cdf3b7 3797 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3798 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3799 return -EINVAL;
e05606d3 3800 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3801 return -EINVAL;
3802
37e4ab3f
OC
3803 /*
3804 * Allow unprivileged RT tasks to decrease priority:
3805 */
961ccddd 3806 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3807 if (rt_policy(policy)) {
a44702e8
ON
3808 unsigned long rlim_rtprio =
3809 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3810
3811 /* can't set/change the rt policy */
3812 if (policy != p->policy && !rlim_rtprio)
3813 return -EPERM;
3814
3815 /* can't increase priority */
3816 if (param->sched_priority > p->rt_priority &&
3817 param->sched_priority > rlim_rtprio)
3818 return -EPERM;
3819 }
c02aa73b 3820
dd41f596 3821 /*
c02aa73b
DH
3822 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3823 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3824 */
c02aa73b
DH
3825 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3826 if (!can_nice(p, TASK_NICE(p)))
3827 return -EPERM;
3828 }
5fe1d75f 3829
37e4ab3f 3830 /* can't change other user's priorities */
c69e8d9c 3831 if (!check_same_owner(p))
37e4ab3f 3832 return -EPERM;
ca94c442
LP
3833
3834 /* Normal users shall not reset the sched_reset_on_fork flag */
3835 if (p->sched_reset_on_fork && !reset_on_fork)
3836 return -EPERM;
37e4ab3f 3837 }
1da177e4 3838
725aad24 3839 if (user) {
b0ae1981 3840 retval = security_task_setscheduler(p);
725aad24
JF
3841 if (retval)
3842 return retval;
3843 }
3844
b29739f9
IM
3845 /*
3846 * make sure no PI-waiters arrive (or leave) while we are
3847 * changing the priority of the task:
0122ec5b 3848 *
25985edc 3849 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3850 * runqueue lock must be held.
3851 */
0122ec5b 3852 rq = task_rq_lock(p, &flags);
dc61b1d6 3853
34f971f6
PZ
3854 /*
3855 * Changing the policy of the stop threads its a very bad idea
3856 */
3857 if (p == rq->stop) {
0122ec5b 3858 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3859 return -EINVAL;
3860 }
3861
a51e9198
DF
3862 /*
3863 * If not changing anything there's no need to proceed further:
3864 */
3865 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3866 param->sched_priority == p->rt_priority))) {
45afb173 3867 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3868 return 0;
3869 }
3870
dc61b1d6
PZ
3871#ifdef CONFIG_RT_GROUP_SCHED
3872 if (user) {
3873 /*
3874 * Do not allow realtime tasks into groups that have no runtime
3875 * assigned.
3876 */
3877 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3878 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3879 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3880 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3881 return -EPERM;
3882 }
3883 }
3884#endif
3885
1da177e4
LT
3886 /* recheck policy now with rq lock held */
3887 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3888 policy = oldpolicy = -1;
0122ec5b 3889 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3890 goto recheck;
3891 }
fd2f4419 3892 on_rq = p->on_rq;
051a1d1a 3893 running = task_current(rq, p);
0e1f3483 3894 if (on_rq)
4ca9b72b 3895 dequeue_task(rq, p, 0);
0e1f3483
HS
3896 if (running)
3897 p->sched_class->put_prev_task(rq, p);
f6b53205 3898
ca94c442
LP
3899 p->sched_reset_on_fork = reset_on_fork;
3900
1da177e4 3901 oldprio = p->prio;
83ab0aa0 3902 prev_class = p->sched_class;
dd41f596 3903 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3904
0e1f3483
HS
3905 if (running)
3906 p->sched_class->set_curr_task(rq);
da7a735e 3907 if (on_rq)
4ca9b72b 3908 enqueue_task(rq, p, 0);
cb469845 3909
da7a735e 3910 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3911 task_rq_unlock(rq, p, &flags);
b29739f9 3912
95e02ca9
TG
3913 rt_mutex_adjust_pi(p);
3914
1da177e4
LT
3915 return 0;
3916}
961ccddd
RR
3917
3918/**
3919 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3920 * @p: the task in question.
3921 * @policy: new policy.
3922 * @param: structure containing the new RT priority.
3923 *
3924 * NOTE that the task may be already dead.
3925 */
3926int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3927 const struct sched_param *param)
961ccddd
RR
3928{
3929 return __sched_setscheduler(p, policy, param, true);
3930}
1da177e4
LT
3931EXPORT_SYMBOL_GPL(sched_setscheduler);
3932
961ccddd
RR
3933/**
3934 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3935 * @p: the task in question.
3936 * @policy: new policy.
3937 * @param: structure containing the new RT priority.
3938 *
3939 * Just like sched_setscheduler, only don't bother checking if the
3940 * current context has permission. For example, this is needed in
3941 * stop_machine(): we create temporary high priority worker threads,
3942 * but our caller might not have that capability.
3943 */
3944int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3945 const struct sched_param *param)
961ccddd
RR
3946{
3947 return __sched_setscheduler(p, policy, param, false);
3948}
3949
95cdf3b7
IM
3950static int
3951do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3952{
1da177e4
LT
3953 struct sched_param lparam;
3954 struct task_struct *p;
36c8b586 3955 int retval;
1da177e4
LT
3956
3957 if (!param || pid < 0)
3958 return -EINVAL;
3959 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3960 return -EFAULT;
5fe1d75f
ON
3961
3962 rcu_read_lock();
3963 retval = -ESRCH;
1da177e4 3964 p = find_process_by_pid(pid);
5fe1d75f
ON
3965 if (p != NULL)
3966 retval = sched_setscheduler(p, policy, &lparam);
3967 rcu_read_unlock();
36c8b586 3968
1da177e4
LT
3969 return retval;
3970}
3971
3972/**
3973 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3974 * @pid: the pid in question.
3975 * @policy: new policy.
3976 * @param: structure containing the new RT priority.
3977 */
5add95d4
HC
3978SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3979 struct sched_param __user *, param)
1da177e4 3980{
c21761f1
JB
3981 /* negative values for policy are not valid */
3982 if (policy < 0)
3983 return -EINVAL;
3984
1da177e4
LT
3985 return do_sched_setscheduler(pid, policy, param);
3986}
3987
3988/**
3989 * sys_sched_setparam - set/change the RT priority of a thread
3990 * @pid: the pid in question.
3991 * @param: structure containing the new RT priority.
3992 */
5add95d4 3993SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3994{
3995 return do_sched_setscheduler(pid, -1, param);
3996}
3997
3998/**
3999 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4000 * @pid: the pid in question.
4001 */
5add95d4 4002SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4003{
36c8b586 4004 struct task_struct *p;
3a5c359a 4005 int retval;
1da177e4
LT
4006
4007 if (pid < 0)
3a5c359a 4008 return -EINVAL;
1da177e4
LT
4009
4010 retval = -ESRCH;
5fe85be0 4011 rcu_read_lock();
1da177e4
LT
4012 p = find_process_by_pid(pid);
4013 if (p) {
4014 retval = security_task_getscheduler(p);
4015 if (!retval)
ca94c442
LP
4016 retval = p->policy
4017 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4018 }
5fe85be0 4019 rcu_read_unlock();
1da177e4
LT
4020 return retval;
4021}
4022
4023/**
ca94c442 4024 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4025 * @pid: the pid in question.
4026 * @param: structure containing the RT priority.
4027 */
5add95d4 4028SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4029{
4030 struct sched_param lp;
36c8b586 4031 struct task_struct *p;
3a5c359a 4032 int retval;
1da177e4
LT
4033
4034 if (!param || pid < 0)
3a5c359a 4035 return -EINVAL;
1da177e4 4036
5fe85be0 4037 rcu_read_lock();
1da177e4
LT
4038 p = find_process_by_pid(pid);
4039 retval = -ESRCH;
4040 if (!p)
4041 goto out_unlock;
4042
4043 retval = security_task_getscheduler(p);
4044 if (retval)
4045 goto out_unlock;
4046
4047 lp.sched_priority = p->rt_priority;
5fe85be0 4048 rcu_read_unlock();
1da177e4
LT
4049
4050 /*
4051 * This one might sleep, we cannot do it with a spinlock held ...
4052 */
4053 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4054
1da177e4
LT
4055 return retval;
4056
4057out_unlock:
5fe85be0 4058 rcu_read_unlock();
1da177e4
LT
4059 return retval;
4060}
4061
96f874e2 4062long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4063{
5a16f3d3 4064 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4065 struct task_struct *p;
4066 int retval;
1da177e4 4067
95402b38 4068 get_online_cpus();
23f5d142 4069 rcu_read_lock();
1da177e4
LT
4070
4071 p = find_process_by_pid(pid);
4072 if (!p) {
23f5d142 4073 rcu_read_unlock();
95402b38 4074 put_online_cpus();
1da177e4
LT
4075 return -ESRCH;
4076 }
4077
23f5d142 4078 /* Prevent p going away */
1da177e4 4079 get_task_struct(p);
23f5d142 4080 rcu_read_unlock();
1da177e4 4081
5a16f3d3
RR
4082 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4083 retval = -ENOMEM;
4084 goto out_put_task;
4085 }
4086 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4087 retval = -ENOMEM;
4088 goto out_free_cpus_allowed;
4089 }
1da177e4 4090 retval = -EPERM;
4c44aaaf
EB
4091 if (!check_same_owner(p)) {
4092 rcu_read_lock();
4093 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4094 rcu_read_unlock();
4095 goto out_unlock;
4096 }
4097 rcu_read_unlock();
4098 }
1da177e4 4099
b0ae1981 4100 retval = security_task_setscheduler(p);
e7834f8f
DQ
4101 if (retval)
4102 goto out_unlock;
4103
5a16f3d3
RR
4104 cpuset_cpus_allowed(p, cpus_allowed);
4105 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4106again:
5a16f3d3 4107 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4108
8707d8b8 4109 if (!retval) {
5a16f3d3
RR
4110 cpuset_cpus_allowed(p, cpus_allowed);
4111 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4112 /*
4113 * We must have raced with a concurrent cpuset
4114 * update. Just reset the cpus_allowed to the
4115 * cpuset's cpus_allowed
4116 */
5a16f3d3 4117 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4118 goto again;
4119 }
4120 }
1da177e4 4121out_unlock:
5a16f3d3
RR
4122 free_cpumask_var(new_mask);
4123out_free_cpus_allowed:
4124 free_cpumask_var(cpus_allowed);
4125out_put_task:
1da177e4 4126 put_task_struct(p);
95402b38 4127 put_online_cpus();
1da177e4
LT
4128 return retval;
4129}
4130
4131static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4132 struct cpumask *new_mask)
1da177e4 4133{
96f874e2
RR
4134 if (len < cpumask_size())
4135 cpumask_clear(new_mask);
4136 else if (len > cpumask_size())
4137 len = cpumask_size();
4138
1da177e4
LT
4139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4140}
4141
4142/**
4143 * sys_sched_setaffinity - set the cpu affinity of a process
4144 * @pid: pid of the process
4145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4146 * @user_mask_ptr: user-space pointer to the new cpu mask
4147 */
5add95d4
HC
4148SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4149 unsigned long __user *, user_mask_ptr)
1da177e4 4150{
5a16f3d3 4151 cpumask_var_t new_mask;
1da177e4
LT
4152 int retval;
4153
5a16f3d3
RR
4154 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4155 return -ENOMEM;
1da177e4 4156
5a16f3d3
RR
4157 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4158 if (retval == 0)
4159 retval = sched_setaffinity(pid, new_mask);
4160 free_cpumask_var(new_mask);
4161 return retval;
1da177e4
LT
4162}
4163
96f874e2 4164long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4165{
36c8b586 4166 struct task_struct *p;
31605683 4167 unsigned long flags;
1da177e4 4168 int retval;
1da177e4 4169
95402b38 4170 get_online_cpus();
23f5d142 4171 rcu_read_lock();
1da177e4
LT
4172
4173 retval = -ESRCH;
4174 p = find_process_by_pid(pid);
4175 if (!p)
4176 goto out_unlock;
4177
e7834f8f
DQ
4178 retval = security_task_getscheduler(p);
4179 if (retval)
4180 goto out_unlock;
4181
013fdb80 4182 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4183 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4184 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4185
4186out_unlock:
23f5d142 4187 rcu_read_unlock();
95402b38 4188 put_online_cpus();
1da177e4 4189
9531b62f 4190 return retval;
1da177e4
LT
4191}
4192
4193/**
4194 * sys_sched_getaffinity - get the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4198 */
5add95d4
HC
4199SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4200 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4201{
4202 int ret;
f17c8607 4203 cpumask_var_t mask;
1da177e4 4204
84fba5ec 4205 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4206 return -EINVAL;
4207 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4208 return -EINVAL;
4209
f17c8607
RR
4210 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4211 return -ENOMEM;
1da177e4 4212
f17c8607
RR
4213 ret = sched_getaffinity(pid, mask);
4214 if (ret == 0) {
8bc037fb 4215 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4216
4217 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4218 ret = -EFAULT;
4219 else
cd3d8031 4220 ret = retlen;
f17c8607
RR
4221 }
4222 free_cpumask_var(mask);
1da177e4 4223
f17c8607 4224 return ret;
1da177e4
LT
4225}
4226
4227/**
4228 * sys_sched_yield - yield the current processor to other threads.
4229 *
dd41f596
IM
4230 * This function yields the current CPU to other tasks. If there are no
4231 * other threads running on this CPU then this function will return.
1da177e4 4232 */
5add95d4 4233SYSCALL_DEFINE0(sched_yield)
1da177e4 4234{
70b97a7f 4235 struct rq *rq = this_rq_lock();
1da177e4 4236
2d72376b 4237 schedstat_inc(rq, yld_count);
4530d7ab 4238 current->sched_class->yield_task(rq);
1da177e4
LT
4239
4240 /*
4241 * Since we are going to call schedule() anyway, there's
4242 * no need to preempt or enable interrupts:
4243 */
4244 __release(rq->lock);
8a25d5de 4245 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4246 do_raw_spin_unlock(&rq->lock);
ba74c144 4247 sched_preempt_enable_no_resched();
1da177e4
LT
4248
4249 schedule();
4250
4251 return 0;
4252}
4253
d86ee480
PZ
4254static inline int should_resched(void)
4255{
4256 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4257}
4258
e7b38404 4259static void __cond_resched(void)
1da177e4 4260{
e7aaaa69 4261 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4262 __schedule();
e7aaaa69 4263 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4264}
4265
02b67cc3 4266int __sched _cond_resched(void)
1da177e4 4267{
d86ee480 4268 if (should_resched()) {
1da177e4
LT
4269 __cond_resched();
4270 return 1;
4271 }
4272 return 0;
4273}
02b67cc3 4274EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4275
4276/*
613afbf8 4277 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4278 * call schedule, and on return reacquire the lock.
4279 *
41a2d6cf 4280 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4281 * operations here to prevent schedule() from being called twice (once via
4282 * spin_unlock(), once by hand).
4283 */
613afbf8 4284int __cond_resched_lock(spinlock_t *lock)
1da177e4 4285{
d86ee480 4286 int resched = should_resched();
6df3cecb
JK
4287 int ret = 0;
4288
f607c668
PZ
4289 lockdep_assert_held(lock);
4290
95c354fe 4291 if (spin_needbreak(lock) || resched) {
1da177e4 4292 spin_unlock(lock);
d86ee480 4293 if (resched)
95c354fe
NP
4294 __cond_resched();
4295 else
4296 cpu_relax();
6df3cecb 4297 ret = 1;
1da177e4 4298 spin_lock(lock);
1da177e4 4299 }
6df3cecb 4300 return ret;
1da177e4 4301}
613afbf8 4302EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4303
613afbf8 4304int __sched __cond_resched_softirq(void)
1da177e4
LT
4305{
4306 BUG_ON(!in_softirq());
4307
d86ee480 4308 if (should_resched()) {
98d82567 4309 local_bh_enable();
1da177e4
LT
4310 __cond_resched();
4311 local_bh_disable();
4312 return 1;
4313 }
4314 return 0;
4315}
613afbf8 4316EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4317
1da177e4
LT
4318/**
4319 * yield - yield the current processor to other threads.
4320 *
8e3fabfd
PZ
4321 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4322 *
4323 * The scheduler is at all times free to pick the calling task as the most
4324 * eligible task to run, if removing the yield() call from your code breaks
4325 * it, its already broken.
4326 *
4327 * Typical broken usage is:
4328 *
4329 * while (!event)
4330 * yield();
4331 *
4332 * where one assumes that yield() will let 'the other' process run that will
4333 * make event true. If the current task is a SCHED_FIFO task that will never
4334 * happen. Never use yield() as a progress guarantee!!
4335 *
4336 * If you want to use yield() to wait for something, use wait_event().
4337 * If you want to use yield() to be 'nice' for others, use cond_resched().
4338 * If you still want to use yield(), do not!
1da177e4
LT
4339 */
4340void __sched yield(void)
4341{
4342 set_current_state(TASK_RUNNING);
4343 sys_sched_yield();
4344}
1da177e4
LT
4345EXPORT_SYMBOL(yield);
4346
d95f4122
MG
4347/**
4348 * yield_to - yield the current processor to another thread in
4349 * your thread group, or accelerate that thread toward the
4350 * processor it's on.
16addf95
RD
4351 * @p: target task
4352 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4353 *
4354 * It's the caller's job to ensure that the target task struct
4355 * can't go away on us before we can do any checks.
4356 *
7b270f60
PZ
4357 * Returns:
4358 * true (>0) if we indeed boosted the target task.
4359 * false (0) if we failed to boost the target.
4360 * -ESRCH if there's no task to yield to.
d95f4122
MG
4361 */
4362bool __sched yield_to(struct task_struct *p, bool preempt)
4363{
4364 struct task_struct *curr = current;
4365 struct rq *rq, *p_rq;
4366 unsigned long flags;
c3c18640 4367 int yielded = 0;
d95f4122
MG
4368
4369 local_irq_save(flags);
4370 rq = this_rq();
4371
4372again:
4373 p_rq = task_rq(p);
7b270f60
PZ
4374 /*
4375 * If we're the only runnable task on the rq and target rq also
4376 * has only one task, there's absolutely no point in yielding.
4377 */
4378 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4379 yielded = -ESRCH;
4380 goto out_irq;
4381 }
4382
d95f4122
MG
4383 double_rq_lock(rq, p_rq);
4384 while (task_rq(p) != p_rq) {
4385 double_rq_unlock(rq, p_rq);
4386 goto again;
4387 }
4388
4389 if (!curr->sched_class->yield_to_task)
7b270f60 4390 goto out_unlock;
d95f4122
MG
4391
4392 if (curr->sched_class != p->sched_class)
7b270f60 4393 goto out_unlock;
d95f4122
MG
4394
4395 if (task_running(p_rq, p) || p->state)
7b270f60 4396 goto out_unlock;
d95f4122
MG
4397
4398 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4399 if (yielded) {
d95f4122 4400 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4401 /*
4402 * Make p's CPU reschedule; pick_next_entity takes care of
4403 * fairness.
4404 */
4405 if (preempt && rq != p_rq)
4406 resched_task(p_rq->curr);
4407 }
d95f4122 4408
7b270f60 4409out_unlock:
d95f4122 4410 double_rq_unlock(rq, p_rq);
7b270f60 4411out_irq:
d95f4122
MG
4412 local_irq_restore(flags);
4413
7b270f60 4414 if (yielded > 0)
d95f4122
MG
4415 schedule();
4416
4417 return yielded;
4418}
4419EXPORT_SYMBOL_GPL(yield_to);
4420
1da177e4 4421/*
41a2d6cf 4422 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4423 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4424 */
4425void __sched io_schedule(void)
4426{
54d35f29 4427 struct rq *rq = raw_rq();
1da177e4 4428
0ff92245 4429 delayacct_blkio_start();
1da177e4 4430 atomic_inc(&rq->nr_iowait);
73c10101 4431 blk_flush_plug(current);
8f0dfc34 4432 current->in_iowait = 1;
1da177e4 4433 schedule();
8f0dfc34 4434 current->in_iowait = 0;
1da177e4 4435 atomic_dec(&rq->nr_iowait);
0ff92245 4436 delayacct_blkio_end();
1da177e4 4437}
1da177e4
LT
4438EXPORT_SYMBOL(io_schedule);
4439
4440long __sched io_schedule_timeout(long timeout)
4441{
54d35f29 4442 struct rq *rq = raw_rq();
1da177e4
LT
4443 long ret;
4444
0ff92245 4445 delayacct_blkio_start();
1da177e4 4446 atomic_inc(&rq->nr_iowait);
73c10101 4447 blk_flush_plug(current);
8f0dfc34 4448 current->in_iowait = 1;
1da177e4 4449 ret = schedule_timeout(timeout);
8f0dfc34 4450 current->in_iowait = 0;
1da177e4 4451 atomic_dec(&rq->nr_iowait);
0ff92245 4452 delayacct_blkio_end();
1da177e4
LT
4453 return ret;
4454}
4455
4456/**
4457 * sys_sched_get_priority_max - return maximum RT priority.
4458 * @policy: scheduling class.
4459 *
4460 * this syscall returns the maximum rt_priority that can be used
4461 * by a given scheduling class.
4462 */
5add95d4 4463SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4464{
4465 int ret = -EINVAL;
4466
4467 switch (policy) {
4468 case SCHED_FIFO:
4469 case SCHED_RR:
4470 ret = MAX_USER_RT_PRIO-1;
4471 break;
4472 case SCHED_NORMAL:
b0a9499c 4473 case SCHED_BATCH:
dd41f596 4474 case SCHED_IDLE:
1da177e4
LT
4475 ret = 0;
4476 break;
4477 }
4478 return ret;
4479}
4480
4481/**
4482 * sys_sched_get_priority_min - return minimum RT priority.
4483 * @policy: scheduling class.
4484 *
4485 * this syscall returns the minimum rt_priority that can be used
4486 * by a given scheduling class.
4487 */
5add95d4 4488SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4489{
4490 int ret = -EINVAL;
4491
4492 switch (policy) {
4493 case SCHED_FIFO:
4494 case SCHED_RR:
4495 ret = 1;
4496 break;
4497 case SCHED_NORMAL:
b0a9499c 4498 case SCHED_BATCH:
dd41f596 4499 case SCHED_IDLE:
1da177e4
LT
4500 ret = 0;
4501 }
4502 return ret;
4503}
4504
4505/**
4506 * sys_sched_rr_get_interval - return the default timeslice of a process.
4507 * @pid: pid of the process.
4508 * @interval: userspace pointer to the timeslice value.
4509 *
4510 * this syscall writes the default timeslice value of a given process
4511 * into the user-space timespec buffer. A value of '0' means infinity.
4512 */
17da2bd9 4513SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4514 struct timespec __user *, interval)
1da177e4 4515{
36c8b586 4516 struct task_struct *p;
a4ec24b4 4517 unsigned int time_slice;
dba091b9
TG
4518 unsigned long flags;
4519 struct rq *rq;
3a5c359a 4520 int retval;
1da177e4 4521 struct timespec t;
1da177e4
LT
4522
4523 if (pid < 0)
3a5c359a 4524 return -EINVAL;
1da177e4
LT
4525
4526 retval = -ESRCH;
1a551ae7 4527 rcu_read_lock();
1da177e4
LT
4528 p = find_process_by_pid(pid);
4529 if (!p)
4530 goto out_unlock;
4531
4532 retval = security_task_getscheduler(p);
4533 if (retval)
4534 goto out_unlock;
4535
dba091b9
TG
4536 rq = task_rq_lock(p, &flags);
4537 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4538 task_rq_unlock(rq, p, &flags);
a4ec24b4 4539
1a551ae7 4540 rcu_read_unlock();
a4ec24b4 4541 jiffies_to_timespec(time_slice, &t);
1da177e4 4542 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4543 return retval;
3a5c359a 4544
1da177e4 4545out_unlock:
1a551ae7 4546 rcu_read_unlock();
1da177e4
LT
4547 return retval;
4548}
4549
7c731e0a 4550static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4551
82a1fcb9 4552void sched_show_task(struct task_struct *p)
1da177e4 4553{
1da177e4 4554 unsigned long free = 0;
4e79752c 4555 int ppid;
36c8b586 4556 unsigned state;
1da177e4 4557
1da177e4 4558 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4559 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4560 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4561#if BITS_PER_LONG == 32
1da177e4 4562 if (state == TASK_RUNNING)
3df0fc5b 4563 printk(KERN_CONT " running ");
1da177e4 4564 else
3df0fc5b 4565 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4566#else
4567 if (state == TASK_RUNNING)
3df0fc5b 4568 printk(KERN_CONT " running task ");
1da177e4 4569 else
3df0fc5b 4570 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4571#endif
4572#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4573 free = stack_not_used(p);
1da177e4 4574#endif
4e79752c
PM
4575 rcu_read_lock();
4576 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577 rcu_read_unlock();
3df0fc5b 4578 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4579 task_pid_nr(p), ppid,
aa47b7e0 4580 (unsigned long)task_thread_info(p)->flags);
1da177e4 4581
5fb5e6de 4582 show_stack(p, NULL);
1da177e4
LT
4583}
4584
e59e2ae2 4585void show_state_filter(unsigned long state_filter)
1da177e4 4586{
36c8b586 4587 struct task_struct *g, *p;
1da177e4 4588
4bd77321 4589#if BITS_PER_LONG == 32
3df0fc5b
PZ
4590 printk(KERN_INFO
4591 " task PC stack pid father\n");
1da177e4 4592#else
3df0fc5b
PZ
4593 printk(KERN_INFO
4594 " task PC stack pid father\n");
1da177e4 4595#endif
510f5acc 4596 rcu_read_lock();
1da177e4
LT
4597 do_each_thread(g, p) {
4598 /*
4599 * reset the NMI-timeout, listing all files on a slow
25985edc 4600 * console might take a lot of time:
1da177e4
LT
4601 */
4602 touch_nmi_watchdog();
39bc89fd 4603 if (!state_filter || (p->state & state_filter))
82a1fcb9 4604 sched_show_task(p);
1da177e4
LT
4605 } while_each_thread(g, p);
4606
04c9167f
JF
4607 touch_all_softlockup_watchdogs();
4608
dd41f596
IM
4609#ifdef CONFIG_SCHED_DEBUG
4610 sysrq_sched_debug_show();
4611#endif
510f5acc 4612 rcu_read_unlock();
e59e2ae2
IM
4613 /*
4614 * Only show locks if all tasks are dumped:
4615 */
93335a21 4616 if (!state_filter)
e59e2ae2 4617 debug_show_all_locks();
1da177e4
LT
4618}
4619
1df21055
IM
4620void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4621{
dd41f596 4622 idle->sched_class = &idle_sched_class;
1df21055
IM
4623}
4624
f340c0d1
IM
4625/**
4626 * init_idle - set up an idle thread for a given CPU
4627 * @idle: task in question
4628 * @cpu: cpu the idle task belongs to
4629 *
4630 * NOTE: this function does not set the idle thread's NEED_RESCHED
4631 * flag, to make booting more robust.
4632 */
5c1e1767 4633void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4634{
70b97a7f 4635 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4636 unsigned long flags;
4637
05fa785c 4638 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4639
dd41f596 4640 __sched_fork(idle);
06b83b5f 4641 idle->state = TASK_RUNNING;
dd41f596
IM
4642 idle->se.exec_start = sched_clock();
4643
1e1b6c51 4644 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4645 /*
4646 * We're having a chicken and egg problem, even though we are
4647 * holding rq->lock, the cpu isn't yet set to this cpu so the
4648 * lockdep check in task_group() will fail.
4649 *
4650 * Similar case to sched_fork(). / Alternatively we could
4651 * use task_rq_lock() here and obtain the other rq->lock.
4652 *
4653 * Silence PROVE_RCU
4654 */
4655 rcu_read_lock();
dd41f596 4656 __set_task_cpu(idle, cpu);
6506cf6c 4657 rcu_read_unlock();
1da177e4 4658
1da177e4 4659 rq->curr = rq->idle = idle;
3ca7a440
PZ
4660#if defined(CONFIG_SMP)
4661 idle->on_cpu = 1;
4866cde0 4662#endif
05fa785c 4663 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4664
4665 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4666 task_thread_info(idle)->preempt_count = 0;
55cd5340 4667
dd41f596
IM
4668 /*
4669 * The idle tasks have their own, simple scheduling class:
4670 */
4671 idle->sched_class = &idle_sched_class;
868baf07 4672 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4673 vtime_init_idle(idle);
f1c6f1a7
CE
4674#if defined(CONFIG_SMP)
4675 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4676#endif
19978ca6
IM
4677}
4678
1da177e4 4679#ifdef CONFIG_SMP
1e1b6c51
KM
4680void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4681{
4682 if (p->sched_class && p->sched_class->set_cpus_allowed)
4683 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4684
4685 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4686 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4687}
4688
1da177e4
LT
4689/*
4690 * This is how migration works:
4691 *
969c7921
TH
4692 * 1) we invoke migration_cpu_stop() on the target CPU using
4693 * stop_one_cpu().
4694 * 2) stopper starts to run (implicitly forcing the migrated thread
4695 * off the CPU)
4696 * 3) it checks whether the migrated task is still in the wrong runqueue.
4697 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4698 * it and puts it into the right queue.
969c7921
TH
4699 * 5) stopper completes and stop_one_cpu() returns and the migration
4700 * is done.
1da177e4
LT
4701 */
4702
4703/*
4704 * Change a given task's CPU affinity. Migrate the thread to a
4705 * proper CPU and schedule it away if the CPU it's executing on
4706 * is removed from the allowed bitmask.
4707 *
4708 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4709 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4710 * call is not atomic; no spinlocks may be held.
4711 */
96f874e2 4712int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4713{
4714 unsigned long flags;
70b97a7f 4715 struct rq *rq;
969c7921 4716 unsigned int dest_cpu;
48f24c4d 4717 int ret = 0;
1da177e4
LT
4718
4719 rq = task_rq_lock(p, &flags);
e2912009 4720
db44fc01
YZ
4721 if (cpumask_equal(&p->cpus_allowed, new_mask))
4722 goto out;
4723
6ad4c188 4724 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4725 ret = -EINVAL;
4726 goto out;
4727 }
4728
db44fc01 4729 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4730 ret = -EINVAL;
4731 goto out;
4732 }
4733
1e1b6c51 4734 do_set_cpus_allowed(p, new_mask);
73fe6aae 4735
1da177e4 4736 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4737 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4738 goto out;
4739
969c7921 4740 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4741 if (p->on_rq) {
969c7921 4742 struct migration_arg arg = { p, dest_cpu };
1da177e4 4743 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4744 task_rq_unlock(rq, p, &flags);
969c7921 4745 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4746 tlb_migrate_finish(p->mm);
4747 return 0;
4748 }
4749out:
0122ec5b 4750 task_rq_unlock(rq, p, &flags);
48f24c4d 4751
1da177e4
LT
4752 return ret;
4753}
cd8ba7cd 4754EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4755
4756/*
41a2d6cf 4757 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4758 * this because either it can't run here any more (set_cpus_allowed()
4759 * away from this CPU, or CPU going down), or because we're
4760 * attempting to rebalance this task on exec (sched_exec).
4761 *
4762 * So we race with normal scheduler movements, but that's OK, as long
4763 * as the task is no longer on this CPU.
efc30814
KK
4764 *
4765 * Returns non-zero if task was successfully migrated.
1da177e4 4766 */
efc30814 4767static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4768{
70b97a7f 4769 struct rq *rq_dest, *rq_src;
e2912009 4770 int ret = 0;
1da177e4 4771
e761b772 4772 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4773 return ret;
1da177e4
LT
4774
4775 rq_src = cpu_rq(src_cpu);
4776 rq_dest = cpu_rq(dest_cpu);
4777
0122ec5b 4778 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4779 double_rq_lock(rq_src, rq_dest);
4780 /* Already moved. */
4781 if (task_cpu(p) != src_cpu)
b1e38734 4782 goto done;
1da177e4 4783 /* Affinity changed (again). */
fa17b507 4784 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4785 goto fail;
1da177e4 4786
e2912009
PZ
4787 /*
4788 * If we're not on a rq, the next wake-up will ensure we're
4789 * placed properly.
4790 */
fd2f4419 4791 if (p->on_rq) {
4ca9b72b 4792 dequeue_task(rq_src, p, 0);
e2912009 4793 set_task_cpu(p, dest_cpu);
4ca9b72b 4794 enqueue_task(rq_dest, p, 0);
15afe09b 4795 check_preempt_curr(rq_dest, p, 0);
1da177e4 4796 }
b1e38734 4797done:
efc30814 4798 ret = 1;
b1e38734 4799fail:
1da177e4 4800 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4801 raw_spin_unlock(&p->pi_lock);
efc30814 4802 return ret;
1da177e4
LT
4803}
4804
4805/*
969c7921
TH
4806 * migration_cpu_stop - this will be executed by a highprio stopper thread
4807 * and performs thread migration by bumping thread off CPU then
4808 * 'pushing' onto another runqueue.
1da177e4 4809 */
969c7921 4810static int migration_cpu_stop(void *data)
1da177e4 4811{
969c7921 4812 struct migration_arg *arg = data;
f7b4cddc 4813
969c7921
TH
4814 /*
4815 * The original target cpu might have gone down and we might
4816 * be on another cpu but it doesn't matter.
4817 */
f7b4cddc 4818 local_irq_disable();
969c7921 4819 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4820 local_irq_enable();
1da177e4 4821 return 0;
f7b4cddc
ON
4822}
4823
1da177e4 4824#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4825
054b9108 4826/*
48c5ccae
PZ
4827 * Ensures that the idle task is using init_mm right before its cpu goes
4828 * offline.
054b9108 4829 */
48c5ccae 4830void idle_task_exit(void)
1da177e4 4831{
48c5ccae 4832 struct mm_struct *mm = current->active_mm;
e76bd8d9 4833
48c5ccae 4834 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4835
48c5ccae
PZ
4836 if (mm != &init_mm)
4837 switch_mm(mm, &init_mm, current);
4838 mmdrop(mm);
1da177e4
LT
4839}
4840
4841/*
5d180232
PZ
4842 * Since this CPU is going 'away' for a while, fold any nr_active delta
4843 * we might have. Assumes we're called after migrate_tasks() so that the
4844 * nr_active count is stable.
4845 *
4846 * Also see the comment "Global load-average calculations".
1da177e4 4847 */
5d180232 4848static void calc_load_migrate(struct rq *rq)
1da177e4 4849{
5d180232
PZ
4850 long delta = calc_load_fold_active(rq);
4851 if (delta)
4852 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4853}
4854
48f24c4d 4855/*
48c5ccae
PZ
4856 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4857 * try_to_wake_up()->select_task_rq().
4858 *
4859 * Called with rq->lock held even though we'er in stop_machine() and
4860 * there's no concurrency possible, we hold the required locks anyway
4861 * because of lock validation efforts.
1da177e4 4862 */
48c5ccae 4863static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4864{
70b97a7f 4865 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4866 struct task_struct *next, *stop = rq->stop;
4867 int dest_cpu;
1da177e4
LT
4868
4869 /*
48c5ccae
PZ
4870 * Fudge the rq selection such that the below task selection loop
4871 * doesn't get stuck on the currently eligible stop task.
4872 *
4873 * We're currently inside stop_machine() and the rq is either stuck
4874 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4875 * either way we should never end up calling schedule() until we're
4876 * done here.
1da177e4 4877 */
48c5ccae 4878 rq->stop = NULL;
48f24c4d 4879
dd41f596 4880 for ( ; ; ) {
48c5ccae
PZ
4881 /*
4882 * There's this thread running, bail when that's the only
4883 * remaining thread.
4884 */
4885 if (rq->nr_running == 1)
dd41f596 4886 break;
48c5ccae 4887
b67802ea 4888 next = pick_next_task(rq);
48c5ccae 4889 BUG_ON(!next);
79c53799 4890 next->sched_class->put_prev_task(rq, next);
e692ab53 4891
48c5ccae
PZ
4892 /* Find suitable destination for @next, with force if needed. */
4893 dest_cpu = select_fallback_rq(dead_cpu, next);
4894 raw_spin_unlock(&rq->lock);
4895
4896 __migrate_task(next, dead_cpu, dest_cpu);
4897
4898 raw_spin_lock(&rq->lock);
1da177e4 4899 }
dce48a84 4900
48c5ccae 4901 rq->stop = stop;
dce48a84 4902}
48c5ccae 4903
1da177e4
LT
4904#endif /* CONFIG_HOTPLUG_CPU */
4905
e692ab53
NP
4906#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4907
4908static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4909 {
4910 .procname = "sched_domain",
c57baf1e 4911 .mode = 0555,
e0361851 4912 },
56992309 4913 {}
e692ab53
NP
4914};
4915
4916static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4917 {
4918 .procname = "kernel",
c57baf1e 4919 .mode = 0555,
e0361851
AD
4920 .child = sd_ctl_dir,
4921 },
56992309 4922 {}
e692ab53
NP
4923};
4924
4925static struct ctl_table *sd_alloc_ctl_entry(int n)
4926{
4927 struct ctl_table *entry =
5cf9f062 4928 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4929
e692ab53
NP
4930 return entry;
4931}
4932
6382bc90
MM
4933static void sd_free_ctl_entry(struct ctl_table **tablep)
4934{
cd790076 4935 struct ctl_table *entry;
6382bc90 4936
cd790076
MM
4937 /*
4938 * In the intermediate directories, both the child directory and
4939 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4940 * will always be set. In the lowest directory the names are
cd790076
MM
4941 * static strings and all have proc handlers.
4942 */
4943 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4944 if (entry->child)
4945 sd_free_ctl_entry(&entry->child);
cd790076
MM
4946 if (entry->proc_handler == NULL)
4947 kfree(entry->procname);
4948 }
6382bc90
MM
4949
4950 kfree(*tablep);
4951 *tablep = NULL;
4952}
4953
201c373e
NK
4954static int min_load_idx = 0;
4955static int max_load_idx = CPU_LOAD_IDX_MAX;
4956
e692ab53 4957static void
e0361851 4958set_table_entry(struct ctl_table *entry,
e692ab53 4959 const char *procname, void *data, int maxlen,
201c373e
NK
4960 umode_t mode, proc_handler *proc_handler,
4961 bool load_idx)
e692ab53 4962{
e692ab53
NP
4963 entry->procname = procname;
4964 entry->data = data;
4965 entry->maxlen = maxlen;
4966 entry->mode = mode;
4967 entry->proc_handler = proc_handler;
201c373e
NK
4968
4969 if (load_idx) {
4970 entry->extra1 = &min_load_idx;
4971 entry->extra2 = &max_load_idx;
4972 }
e692ab53
NP
4973}
4974
4975static struct ctl_table *
4976sd_alloc_ctl_domain_table(struct sched_domain *sd)
4977{
a5d8c348 4978 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4979
ad1cdc1d
MM
4980 if (table == NULL)
4981 return NULL;
4982
e0361851 4983 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4984 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4985 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4986 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4987 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4988 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4989 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4990 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4991 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4992 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4993 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4994 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4995 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4996 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4997 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4998 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4999 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5000 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5001 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5002 &sd->cache_nice_tries,
201c373e 5003 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5004 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5005 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5006 set_table_entry(&table[11], "name", sd->name,
201c373e 5007 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5008 /* &table[12] is terminator */
e692ab53
NP
5009
5010 return table;
5011}
5012
9a4e7159 5013static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5014{
5015 struct ctl_table *entry, *table;
5016 struct sched_domain *sd;
5017 int domain_num = 0, i;
5018 char buf[32];
5019
5020 for_each_domain(cpu, sd)
5021 domain_num++;
5022 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5023 if (table == NULL)
5024 return NULL;
e692ab53
NP
5025
5026 i = 0;
5027 for_each_domain(cpu, sd) {
5028 snprintf(buf, 32, "domain%d", i);
e692ab53 5029 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5030 entry->mode = 0555;
e692ab53
NP
5031 entry->child = sd_alloc_ctl_domain_table(sd);
5032 entry++;
5033 i++;
5034 }
5035 return table;
5036}
5037
5038static struct ctl_table_header *sd_sysctl_header;
6382bc90 5039static void register_sched_domain_sysctl(void)
e692ab53 5040{
6ad4c188 5041 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5042 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5043 char buf[32];
5044
7378547f
MM
5045 WARN_ON(sd_ctl_dir[0].child);
5046 sd_ctl_dir[0].child = entry;
5047
ad1cdc1d
MM
5048 if (entry == NULL)
5049 return;
5050
6ad4c188 5051 for_each_possible_cpu(i) {
e692ab53 5052 snprintf(buf, 32, "cpu%d", i);
e692ab53 5053 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5054 entry->mode = 0555;
e692ab53 5055 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5056 entry++;
e692ab53 5057 }
7378547f
MM
5058
5059 WARN_ON(sd_sysctl_header);
e692ab53
NP
5060 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5061}
6382bc90 5062
7378547f 5063/* may be called multiple times per register */
6382bc90
MM
5064static void unregister_sched_domain_sysctl(void)
5065{
7378547f
MM
5066 if (sd_sysctl_header)
5067 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5068 sd_sysctl_header = NULL;
7378547f
MM
5069 if (sd_ctl_dir[0].child)
5070 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5071}
e692ab53 5072#else
6382bc90
MM
5073static void register_sched_domain_sysctl(void)
5074{
5075}
5076static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5077{
5078}
5079#endif
5080
1f11eb6a
GH
5081static void set_rq_online(struct rq *rq)
5082{
5083 if (!rq->online) {
5084 const struct sched_class *class;
5085
c6c4927b 5086 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5087 rq->online = 1;
5088
5089 for_each_class(class) {
5090 if (class->rq_online)
5091 class->rq_online(rq);
5092 }
5093 }
5094}
5095
5096static void set_rq_offline(struct rq *rq)
5097{
5098 if (rq->online) {
5099 const struct sched_class *class;
5100
5101 for_each_class(class) {
5102 if (class->rq_offline)
5103 class->rq_offline(rq);
5104 }
5105
c6c4927b 5106 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5107 rq->online = 0;
5108 }
5109}
5110
1da177e4
LT
5111/*
5112 * migration_call - callback that gets triggered when a CPU is added.
5113 * Here we can start up the necessary migration thread for the new CPU.
5114 */
48f24c4d
IM
5115static int __cpuinit
5116migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5117{
48f24c4d 5118 int cpu = (long)hcpu;
1da177e4 5119 unsigned long flags;
969c7921 5120 struct rq *rq = cpu_rq(cpu);
1da177e4 5121
48c5ccae 5122 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5123
1da177e4 5124 case CPU_UP_PREPARE:
a468d389 5125 rq->calc_load_update = calc_load_update;
1da177e4 5126 break;
48f24c4d 5127
1da177e4 5128 case CPU_ONLINE:
1f94ef59 5129 /* Update our root-domain */
05fa785c 5130 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5131 if (rq->rd) {
c6c4927b 5132 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5133
5134 set_rq_online(rq);
1f94ef59 5135 }
05fa785c 5136 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5137 break;
48f24c4d 5138
1da177e4 5139#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5140 case CPU_DYING:
317f3941 5141 sched_ttwu_pending();
57d885fe 5142 /* Update our root-domain */
05fa785c 5143 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5144 if (rq->rd) {
c6c4927b 5145 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5146 set_rq_offline(rq);
57d885fe 5147 }
48c5ccae
PZ
5148 migrate_tasks(cpu);
5149 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5150 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5151 break;
48c5ccae 5152
5d180232 5153 case CPU_DEAD:
f319da0c 5154 calc_load_migrate(rq);
57d885fe 5155 break;
1da177e4
LT
5156#endif
5157 }
49c022e6
PZ
5158
5159 update_max_interval();
5160
1da177e4
LT
5161 return NOTIFY_OK;
5162}
5163
f38b0820
PM
5164/*
5165 * Register at high priority so that task migration (migrate_all_tasks)
5166 * happens before everything else. This has to be lower priority than
cdd6c482 5167 * the notifier in the perf_event subsystem, though.
1da177e4 5168 */
26c2143b 5169static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5170 .notifier_call = migration_call,
50a323b7 5171 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5172};
5173
3a101d05
TH
5174static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5175 unsigned long action, void *hcpu)
5176{
5177 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5178 case CPU_STARTING:
3a101d05
TH
5179 case CPU_DOWN_FAILED:
5180 set_cpu_active((long)hcpu, true);
5181 return NOTIFY_OK;
5182 default:
5183 return NOTIFY_DONE;
5184 }
5185}
5186
5187static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5188 unsigned long action, void *hcpu)
5189{
5190 switch (action & ~CPU_TASKS_FROZEN) {
5191 case CPU_DOWN_PREPARE:
5192 set_cpu_active((long)hcpu, false);
5193 return NOTIFY_OK;
5194 default:
5195 return NOTIFY_DONE;
5196 }
5197}
5198
7babe8db 5199static int __init migration_init(void)
1da177e4
LT
5200{
5201 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5202 int err;
48f24c4d 5203
3a101d05 5204 /* Initialize migration for the boot CPU */
07dccf33
AM
5205 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5206 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5207 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5208 register_cpu_notifier(&migration_notifier);
7babe8db 5209
3a101d05
TH
5210 /* Register cpu active notifiers */
5211 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5212 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5213
a004cd42 5214 return 0;
1da177e4 5215}
7babe8db 5216early_initcall(migration_init);
1da177e4
LT
5217#endif
5218
5219#ifdef CONFIG_SMP
476f3534 5220
4cb98839
PZ
5221static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5222
3e9830dc 5223#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5224
d039ac60 5225static __read_mostly int sched_debug_enabled;
f6630114 5226
d039ac60 5227static int __init sched_debug_setup(char *str)
f6630114 5228{
d039ac60 5229 sched_debug_enabled = 1;
f6630114
MT
5230
5231 return 0;
5232}
d039ac60
PZ
5233early_param("sched_debug", sched_debug_setup);
5234
5235static inline bool sched_debug(void)
5236{
5237 return sched_debug_enabled;
5238}
f6630114 5239
7c16ec58 5240static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5241 struct cpumask *groupmask)
1da177e4 5242{
4dcf6aff 5243 struct sched_group *group = sd->groups;
434d53b0 5244 char str[256];
1da177e4 5245
968ea6d8 5246 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5247 cpumask_clear(groupmask);
4dcf6aff
IM
5248
5249 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5250
5251 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5252 printk("does not load-balance\n");
4dcf6aff 5253 if (sd->parent)
3df0fc5b
PZ
5254 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5255 " has parent");
4dcf6aff 5256 return -1;
41c7ce9a
NP
5257 }
5258
3df0fc5b 5259 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5260
758b2cdc 5261 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5262 printk(KERN_ERR "ERROR: domain->span does not contain "
5263 "CPU%d\n", cpu);
4dcf6aff 5264 }
758b2cdc 5265 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5266 printk(KERN_ERR "ERROR: domain->groups does not contain"
5267 " CPU%d\n", cpu);
4dcf6aff 5268 }
1da177e4 5269
4dcf6aff 5270 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5271 do {
4dcf6aff 5272 if (!group) {
3df0fc5b
PZ
5273 printk("\n");
5274 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5275 break;
5276 }
5277
c3decf0d
PZ
5278 /*
5279 * Even though we initialize ->power to something semi-sane,
5280 * we leave power_orig unset. This allows us to detect if
5281 * domain iteration is still funny without causing /0 traps.
5282 */
5283 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5284 printk(KERN_CONT "\n");
5285 printk(KERN_ERR "ERROR: domain->cpu_power not "
5286 "set\n");
4dcf6aff
IM
5287 break;
5288 }
1da177e4 5289
758b2cdc 5290 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5291 printk(KERN_CONT "\n");
5292 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5293 break;
5294 }
1da177e4 5295
cb83b629
PZ
5296 if (!(sd->flags & SD_OVERLAP) &&
5297 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5298 printk(KERN_CONT "\n");
5299 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5300 break;
5301 }
1da177e4 5302
758b2cdc 5303 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5304
968ea6d8 5305 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5306
3df0fc5b 5307 printk(KERN_CONT " %s", str);
9c3f75cb 5308 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5309 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5310 group->sgp->power);
381512cf 5311 }
1da177e4 5312
4dcf6aff
IM
5313 group = group->next;
5314 } while (group != sd->groups);
3df0fc5b 5315 printk(KERN_CONT "\n");
1da177e4 5316
758b2cdc 5317 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5318 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5319
758b2cdc
RR
5320 if (sd->parent &&
5321 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5322 printk(KERN_ERR "ERROR: parent span is not a superset "
5323 "of domain->span\n");
4dcf6aff
IM
5324 return 0;
5325}
1da177e4 5326
4dcf6aff
IM
5327static void sched_domain_debug(struct sched_domain *sd, int cpu)
5328{
5329 int level = 0;
1da177e4 5330
d039ac60 5331 if (!sched_debug_enabled)
f6630114
MT
5332 return;
5333
4dcf6aff
IM
5334 if (!sd) {
5335 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5336 return;
5337 }
1da177e4 5338
4dcf6aff
IM
5339 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5340
5341 for (;;) {
4cb98839 5342 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5343 break;
1da177e4
LT
5344 level++;
5345 sd = sd->parent;
33859f7f 5346 if (!sd)
4dcf6aff
IM
5347 break;
5348 }
1da177e4 5349}
6d6bc0ad 5350#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5351# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5352static inline bool sched_debug(void)
5353{
5354 return false;
5355}
6d6bc0ad 5356#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5357
1a20ff27 5358static int sd_degenerate(struct sched_domain *sd)
245af2c7 5359{
758b2cdc 5360 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5361 return 1;
5362
5363 /* Following flags need at least 2 groups */
5364 if (sd->flags & (SD_LOAD_BALANCE |
5365 SD_BALANCE_NEWIDLE |
5366 SD_BALANCE_FORK |
89c4710e
SS
5367 SD_BALANCE_EXEC |
5368 SD_SHARE_CPUPOWER |
5369 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5370 if (sd->groups != sd->groups->next)
5371 return 0;
5372 }
5373
5374 /* Following flags don't use groups */
c88d5910 5375 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5376 return 0;
5377
5378 return 1;
5379}
5380
48f24c4d
IM
5381static int
5382sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5383{
5384 unsigned long cflags = sd->flags, pflags = parent->flags;
5385
5386 if (sd_degenerate(parent))
5387 return 1;
5388
758b2cdc 5389 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5390 return 0;
5391
245af2c7
SS
5392 /* Flags needing groups don't count if only 1 group in parent */
5393 if (parent->groups == parent->groups->next) {
5394 pflags &= ~(SD_LOAD_BALANCE |
5395 SD_BALANCE_NEWIDLE |
5396 SD_BALANCE_FORK |
89c4710e
SS
5397 SD_BALANCE_EXEC |
5398 SD_SHARE_CPUPOWER |
5399 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5400 if (nr_node_ids == 1)
5401 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5402 }
5403 if (~cflags & pflags)
5404 return 0;
5405
5406 return 1;
5407}
5408
dce840a0 5409static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5410{
dce840a0 5411 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5412
68e74568 5413 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5414 free_cpumask_var(rd->rto_mask);
5415 free_cpumask_var(rd->online);
5416 free_cpumask_var(rd->span);
5417 kfree(rd);
5418}
5419
57d885fe
GH
5420static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5421{
a0490fa3 5422 struct root_domain *old_rd = NULL;
57d885fe 5423 unsigned long flags;
57d885fe 5424
05fa785c 5425 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5426
5427 if (rq->rd) {
a0490fa3 5428 old_rd = rq->rd;
57d885fe 5429
c6c4927b 5430 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5431 set_rq_offline(rq);
57d885fe 5432
c6c4927b 5433 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5434
a0490fa3
IM
5435 /*
5436 * If we dont want to free the old_rt yet then
5437 * set old_rd to NULL to skip the freeing later
5438 * in this function:
5439 */
5440 if (!atomic_dec_and_test(&old_rd->refcount))
5441 old_rd = NULL;
57d885fe
GH
5442 }
5443
5444 atomic_inc(&rd->refcount);
5445 rq->rd = rd;
5446
c6c4927b 5447 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5448 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5449 set_rq_online(rq);
57d885fe 5450
05fa785c 5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5452
5453 if (old_rd)
dce840a0 5454 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5455}
5456
68c38fc3 5457static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5458{
5459 memset(rd, 0, sizeof(*rd));
5460
68c38fc3 5461 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5462 goto out;
68c38fc3 5463 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5464 goto free_span;
68c38fc3 5465 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5466 goto free_online;
6e0534f2 5467
68c38fc3 5468 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5469 goto free_rto_mask;
c6c4927b 5470 return 0;
6e0534f2 5471
68e74568
RR
5472free_rto_mask:
5473 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5474free_online:
5475 free_cpumask_var(rd->online);
5476free_span:
5477 free_cpumask_var(rd->span);
0c910d28 5478out:
c6c4927b 5479 return -ENOMEM;
57d885fe
GH
5480}
5481
029632fb
PZ
5482/*
5483 * By default the system creates a single root-domain with all cpus as
5484 * members (mimicking the global state we have today).
5485 */
5486struct root_domain def_root_domain;
5487
57d885fe
GH
5488static void init_defrootdomain(void)
5489{
68c38fc3 5490 init_rootdomain(&def_root_domain);
c6c4927b 5491
57d885fe
GH
5492 atomic_set(&def_root_domain.refcount, 1);
5493}
5494
dc938520 5495static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5496{
5497 struct root_domain *rd;
5498
5499 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5500 if (!rd)
5501 return NULL;
5502
68c38fc3 5503 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5504 kfree(rd);
5505 return NULL;
5506 }
57d885fe
GH
5507
5508 return rd;
5509}
5510
e3589f6c
PZ
5511static void free_sched_groups(struct sched_group *sg, int free_sgp)
5512{
5513 struct sched_group *tmp, *first;
5514
5515 if (!sg)
5516 return;
5517
5518 first = sg;
5519 do {
5520 tmp = sg->next;
5521
5522 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5523 kfree(sg->sgp);
5524
5525 kfree(sg);
5526 sg = tmp;
5527 } while (sg != first);
5528}
5529
dce840a0
PZ
5530static void free_sched_domain(struct rcu_head *rcu)
5531{
5532 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5533
5534 /*
5535 * If its an overlapping domain it has private groups, iterate and
5536 * nuke them all.
5537 */
5538 if (sd->flags & SD_OVERLAP) {
5539 free_sched_groups(sd->groups, 1);
5540 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5541 kfree(sd->groups->sgp);
dce840a0 5542 kfree(sd->groups);
9c3f75cb 5543 }
dce840a0
PZ
5544 kfree(sd);
5545}
5546
5547static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5548{
5549 call_rcu(&sd->rcu, free_sched_domain);
5550}
5551
5552static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5553{
5554 for (; sd; sd = sd->parent)
5555 destroy_sched_domain(sd, cpu);
5556}
5557
518cd623
PZ
5558/*
5559 * Keep a special pointer to the highest sched_domain that has
5560 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5561 * allows us to avoid some pointer chasing select_idle_sibling().
5562 *
5563 * Also keep a unique ID per domain (we use the first cpu number in
5564 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5565 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5566 */
5567DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5568DEFINE_PER_CPU(int, sd_llc_id);
5569
5570static void update_top_cache_domain(int cpu)
5571{
5572 struct sched_domain *sd;
5573 int id = cpu;
5574
5575 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5576 if (sd)
518cd623
PZ
5577 id = cpumask_first(sched_domain_span(sd));
5578
5579 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5580 per_cpu(sd_llc_id, cpu) = id;
5581}
5582
1da177e4 5583/*
0eab9146 5584 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5585 * hold the hotplug lock.
5586 */
0eab9146
IM
5587static void
5588cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5589{
70b97a7f 5590 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5591 struct sched_domain *tmp;
5592
5593 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5594 for (tmp = sd; tmp; ) {
245af2c7
SS
5595 struct sched_domain *parent = tmp->parent;
5596 if (!parent)
5597 break;
f29c9b1c 5598
1a848870 5599 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5600 tmp->parent = parent->parent;
1a848870
SS
5601 if (parent->parent)
5602 parent->parent->child = tmp;
dce840a0 5603 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5604 } else
5605 tmp = tmp->parent;
245af2c7
SS
5606 }
5607
1a848870 5608 if (sd && sd_degenerate(sd)) {
dce840a0 5609 tmp = sd;
245af2c7 5610 sd = sd->parent;
dce840a0 5611 destroy_sched_domain(tmp, cpu);
1a848870
SS
5612 if (sd)
5613 sd->child = NULL;
5614 }
1da177e4 5615
4cb98839 5616 sched_domain_debug(sd, cpu);
1da177e4 5617
57d885fe 5618 rq_attach_root(rq, rd);
dce840a0 5619 tmp = rq->sd;
674311d5 5620 rcu_assign_pointer(rq->sd, sd);
dce840a0 5621 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5622
5623 update_top_cache_domain(cpu);
1da177e4
LT
5624}
5625
5626/* cpus with isolated domains */
dcc30a35 5627static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5628
5629/* Setup the mask of cpus configured for isolated domains */
5630static int __init isolated_cpu_setup(char *str)
5631{
bdddd296 5632 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5633 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5634 return 1;
5635}
5636
8927f494 5637__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5638
d3081f52
PZ
5639static const struct cpumask *cpu_cpu_mask(int cpu)
5640{
5641 return cpumask_of_node(cpu_to_node(cpu));
5642}
5643
dce840a0
PZ
5644struct sd_data {
5645 struct sched_domain **__percpu sd;
5646 struct sched_group **__percpu sg;
9c3f75cb 5647 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5648};
5649
49a02c51 5650struct s_data {
21d42ccf 5651 struct sched_domain ** __percpu sd;
49a02c51
AH
5652 struct root_domain *rd;
5653};
5654
2109b99e 5655enum s_alloc {
2109b99e 5656 sa_rootdomain,
21d42ccf 5657 sa_sd,
dce840a0 5658 sa_sd_storage,
2109b99e
AH
5659 sa_none,
5660};
5661
54ab4ff4
PZ
5662struct sched_domain_topology_level;
5663
5664typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5665typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5666
e3589f6c
PZ
5667#define SDTL_OVERLAP 0x01
5668
eb7a74e6 5669struct sched_domain_topology_level {
2c402dc3
PZ
5670 sched_domain_init_f init;
5671 sched_domain_mask_f mask;
e3589f6c 5672 int flags;
cb83b629 5673 int numa_level;
54ab4ff4 5674 struct sd_data data;
eb7a74e6
PZ
5675};
5676
c1174876
PZ
5677/*
5678 * Build an iteration mask that can exclude certain CPUs from the upwards
5679 * domain traversal.
5680 *
5681 * Asymmetric node setups can result in situations where the domain tree is of
5682 * unequal depth, make sure to skip domains that already cover the entire
5683 * range.
5684 *
5685 * In that case build_sched_domains() will have terminated the iteration early
5686 * and our sibling sd spans will be empty. Domains should always include the
5687 * cpu they're built on, so check that.
5688 *
5689 */
5690static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5691{
5692 const struct cpumask *span = sched_domain_span(sd);
5693 struct sd_data *sdd = sd->private;
5694 struct sched_domain *sibling;
5695 int i;
5696
5697 for_each_cpu(i, span) {
5698 sibling = *per_cpu_ptr(sdd->sd, i);
5699 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5700 continue;
5701
5702 cpumask_set_cpu(i, sched_group_mask(sg));
5703 }
5704}
5705
5706/*
5707 * Return the canonical balance cpu for this group, this is the first cpu
5708 * of this group that's also in the iteration mask.
5709 */
5710int group_balance_cpu(struct sched_group *sg)
5711{
5712 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5713}
5714
e3589f6c
PZ
5715static int
5716build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5717{
5718 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5719 const struct cpumask *span = sched_domain_span(sd);
5720 struct cpumask *covered = sched_domains_tmpmask;
5721 struct sd_data *sdd = sd->private;
5722 struct sched_domain *child;
5723 int i;
5724
5725 cpumask_clear(covered);
5726
5727 for_each_cpu(i, span) {
5728 struct cpumask *sg_span;
5729
5730 if (cpumask_test_cpu(i, covered))
5731 continue;
5732
c1174876
PZ
5733 child = *per_cpu_ptr(sdd->sd, i);
5734
5735 /* See the comment near build_group_mask(). */
5736 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5737 continue;
5738
e3589f6c 5739 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5740 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5741
5742 if (!sg)
5743 goto fail;
5744
5745 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5746 if (child->child) {
5747 child = child->child;
5748 cpumask_copy(sg_span, sched_domain_span(child));
5749 } else
5750 cpumask_set_cpu(i, sg_span);
5751
5752 cpumask_or(covered, covered, sg_span);
5753
74a5ce20 5754 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5755 if (atomic_inc_return(&sg->sgp->ref) == 1)
5756 build_group_mask(sd, sg);
5757
c3decf0d
PZ
5758 /*
5759 * Initialize sgp->power such that even if we mess up the
5760 * domains and no possible iteration will get us here, we won't
5761 * die on a /0 trap.
5762 */
5763 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5764
c1174876
PZ
5765 /*
5766 * Make sure the first group of this domain contains the
5767 * canonical balance cpu. Otherwise the sched_domain iteration
5768 * breaks. See update_sg_lb_stats().
5769 */
74a5ce20 5770 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5771 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5772 groups = sg;
5773
5774 if (!first)
5775 first = sg;
5776 if (last)
5777 last->next = sg;
5778 last = sg;
5779 last->next = first;
5780 }
5781 sd->groups = groups;
5782
5783 return 0;
5784
5785fail:
5786 free_sched_groups(first, 0);
5787
5788 return -ENOMEM;
5789}
5790
dce840a0 5791static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5792{
dce840a0
PZ
5793 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5794 struct sched_domain *child = sd->child;
1da177e4 5795
dce840a0
PZ
5796 if (child)
5797 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5798
9c3f75cb 5799 if (sg) {
dce840a0 5800 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5801 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5802 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5803 }
dce840a0
PZ
5804
5805 return cpu;
1e9f28fa 5806}
1e9f28fa 5807
01a08546 5808/*
dce840a0
PZ
5809 * build_sched_groups will build a circular linked list of the groups
5810 * covered by the given span, and will set each group's ->cpumask correctly,
5811 * and ->cpu_power to 0.
e3589f6c
PZ
5812 *
5813 * Assumes the sched_domain tree is fully constructed
01a08546 5814 */
e3589f6c
PZ
5815static int
5816build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5817{
dce840a0
PZ
5818 struct sched_group *first = NULL, *last = NULL;
5819 struct sd_data *sdd = sd->private;
5820 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5821 struct cpumask *covered;
dce840a0 5822 int i;
9c1cfda2 5823
e3589f6c
PZ
5824 get_group(cpu, sdd, &sd->groups);
5825 atomic_inc(&sd->groups->ref);
5826
5827 if (cpu != cpumask_first(sched_domain_span(sd)))
5828 return 0;
5829
f96225fd
PZ
5830 lockdep_assert_held(&sched_domains_mutex);
5831 covered = sched_domains_tmpmask;
5832
dce840a0 5833 cpumask_clear(covered);
6711cab4 5834
dce840a0
PZ
5835 for_each_cpu(i, span) {
5836 struct sched_group *sg;
5837 int group = get_group(i, sdd, &sg);
5838 int j;
6711cab4 5839
dce840a0
PZ
5840 if (cpumask_test_cpu(i, covered))
5841 continue;
6711cab4 5842
dce840a0 5843 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5844 sg->sgp->power = 0;
c1174876 5845 cpumask_setall(sched_group_mask(sg));
0601a88d 5846
dce840a0
PZ
5847 for_each_cpu(j, span) {
5848 if (get_group(j, sdd, NULL) != group)
5849 continue;
0601a88d 5850
dce840a0
PZ
5851 cpumask_set_cpu(j, covered);
5852 cpumask_set_cpu(j, sched_group_cpus(sg));
5853 }
0601a88d 5854
dce840a0
PZ
5855 if (!first)
5856 first = sg;
5857 if (last)
5858 last->next = sg;
5859 last = sg;
5860 }
5861 last->next = first;
e3589f6c
PZ
5862
5863 return 0;
0601a88d 5864}
51888ca2 5865
89c4710e
SS
5866/*
5867 * Initialize sched groups cpu_power.
5868 *
5869 * cpu_power indicates the capacity of sched group, which is used while
5870 * distributing the load between different sched groups in a sched domain.
5871 * Typically cpu_power for all the groups in a sched domain will be same unless
5872 * there are asymmetries in the topology. If there are asymmetries, group
5873 * having more cpu_power will pickup more load compared to the group having
5874 * less cpu_power.
89c4710e
SS
5875 */
5876static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5877{
e3589f6c 5878 struct sched_group *sg = sd->groups;
89c4710e 5879
e3589f6c
PZ
5880 WARN_ON(!sd || !sg);
5881
5882 do {
5883 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5884 sg = sg->next;
5885 } while (sg != sd->groups);
89c4710e 5886
c1174876 5887 if (cpu != group_balance_cpu(sg))
e3589f6c 5888 return;
aae6d3dd 5889
d274cb30 5890 update_group_power(sd, cpu);
69e1e811 5891 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5892}
5893
029632fb
PZ
5894int __weak arch_sd_sibling_asym_packing(void)
5895{
5896 return 0*SD_ASYM_PACKING;
89c4710e
SS
5897}
5898
7c16ec58
MT
5899/*
5900 * Initializers for schedule domains
5901 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5902 */
5903
a5d8c348
IM
5904#ifdef CONFIG_SCHED_DEBUG
5905# define SD_INIT_NAME(sd, type) sd->name = #type
5906#else
5907# define SD_INIT_NAME(sd, type) do { } while (0)
5908#endif
5909
54ab4ff4
PZ
5910#define SD_INIT_FUNC(type) \
5911static noinline struct sched_domain * \
5912sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5913{ \
5914 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5915 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5916 SD_INIT_NAME(sd, type); \
5917 sd->private = &tl->data; \
5918 return sd; \
7c16ec58
MT
5919}
5920
5921SD_INIT_FUNC(CPU)
7c16ec58
MT
5922#ifdef CONFIG_SCHED_SMT
5923 SD_INIT_FUNC(SIBLING)
5924#endif
5925#ifdef CONFIG_SCHED_MC
5926 SD_INIT_FUNC(MC)
5927#endif
01a08546
HC
5928#ifdef CONFIG_SCHED_BOOK
5929 SD_INIT_FUNC(BOOK)
5930#endif
7c16ec58 5931
1d3504fc 5932static int default_relax_domain_level = -1;
60495e77 5933int sched_domain_level_max;
1d3504fc
HS
5934
5935static int __init setup_relax_domain_level(char *str)
5936{
a841f8ce
DS
5937 if (kstrtoint(str, 0, &default_relax_domain_level))
5938 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5939
1d3504fc
HS
5940 return 1;
5941}
5942__setup("relax_domain_level=", setup_relax_domain_level);
5943
5944static void set_domain_attribute(struct sched_domain *sd,
5945 struct sched_domain_attr *attr)
5946{
5947 int request;
5948
5949 if (!attr || attr->relax_domain_level < 0) {
5950 if (default_relax_domain_level < 0)
5951 return;
5952 else
5953 request = default_relax_domain_level;
5954 } else
5955 request = attr->relax_domain_level;
5956 if (request < sd->level) {
5957 /* turn off idle balance on this domain */
c88d5910 5958 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5959 } else {
5960 /* turn on idle balance on this domain */
c88d5910 5961 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5962 }
5963}
5964
54ab4ff4
PZ
5965static void __sdt_free(const struct cpumask *cpu_map);
5966static int __sdt_alloc(const struct cpumask *cpu_map);
5967
2109b99e
AH
5968static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5969 const struct cpumask *cpu_map)
5970{
5971 switch (what) {
2109b99e 5972 case sa_rootdomain:
822ff793
PZ
5973 if (!atomic_read(&d->rd->refcount))
5974 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5975 case sa_sd:
5976 free_percpu(d->sd); /* fall through */
dce840a0 5977 case sa_sd_storage:
54ab4ff4 5978 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5979 case sa_none:
5980 break;
5981 }
5982}
3404c8d9 5983
2109b99e
AH
5984static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5985 const struct cpumask *cpu_map)
5986{
dce840a0
PZ
5987 memset(d, 0, sizeof(*d));
5988
54ab4ff4
PZ
5989 if (__sdt_alloc(cpu_map))
5990 return sa_sd_storage;
dce840a0
PZ
5991 d->sd = alloc_percpu(struct sched_domain *);
5992 if (!d->sd)
5993 return sa_sd_storage;
2109b99e 5994 d->rd = alloc_rootdomain();
dce840a0 5995 if (!d->rd)
21d42ccf 5996 return sa_sd;
2109b99e
AH
5997 return sa_rootdomain;
5998}
57d885fe 5999
dce840a0
PZ
6000/*
6001 * NULL the sd_data elements we've used to build the sched_domain and
6002 * sched_group structure so that the subsequent __free_domain_allocs()
6003 * will not free the data we're using.
6004 */
6005static void claim_allocations(int cpu, struct sched_domain *sd)
6006{
6007 struct sd_data *sdd = sd->private;
dce840a0
PZ
6008
6009 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6010 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6011
e3589f6c 6012 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6013 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6014
6015 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6016 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6017}
6018
2c402dc3
PZ
6019#ifdef CONFIG_SCHED_SMT
6020static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6021{
2c402dc3 6022 return topology_thread_cpumask(cpu);
3bd65a80 6023}
2c402dc3 6024#endif
7f4588f3 6025
d069b916
PZ
6026/*
6027 * Topology list, bottom-up.
6028 */
2c402dc3 6029static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6030#ifdef CONFIG_SCHED_SMT
6031 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6032#endif
1e9f28fa 6033#ifdef CONFIG_SCHED_MC
2c402dc3 6034 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6035#endif
d069b916
PZ
6036#ifdef CONFIG_SCHED_BOOK
6037 { sd_init_BOOK, cpu_book_mask, },
6038#endif
6039 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6040 { NULL, },
6041};
6042
6043static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6044
cb83b629
PZ
6045#ifdef CONFIG_NUMA
6046
6047static int sched_domains_numa_levels;
cb83b629
PZ
6048static int *sched_domains_numa_distance;
6049static struct cpumask ***sched_domains_numa_masks;
6050static int sched_domains_curr_level;
6051
cb83b629
PZ
6052static inline int sd_local_flags(int level)
6053{
10717dcd 6054 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6055 return 0;
6056
6057 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6058}
6059
6060static struct sched_domain *
6061sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6062{
6063 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6064 int level = tl->numa_level;
6065 int sd_weight = cpumask_weight(
6066 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6067
6068 *sd = (struct sched_domain){
6069 .min_interval = sd_weight,
6070 .max_interval = 2*sd_weight,
6071 .busy_factor = 32,
870a0bb5 6072 .imbalance_pct = 125,
cb83b629
PZ
6073 .cache_nice_tries = 2,
6074 .busy_idx = 3,
6075 .idle_idx = 2,
6076 .newidle_idx = 0,
6077 .wake_idx = 0,
6078 .forkexec_idx = 0,
6079
6080 .flags = 1*SD_LOAD_BALANCE
6081 | 1*SD_BALANCE_NEWIDLE
6082 | 0*SD_BALANCE_EXEC
6083 | 0*SD_BALANCE_FORK
6084 | 0*SD_BALANCE_WAKE
6085 | 0*SD_WAKE_AFFINE
cb83b629 6086 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6087 | 0*SD_SHARE_PKG_RESOURCES
6088 | 1*SD_SERIALIZE
6089 | 0*SD_PREFER_SIBLING
6090 | sd_local_flags(level)
6091 ,
6092 .last_balance = jiffies,
6093 .balance_interval = sd_weight,
6094 };
6095 SD_INIT_NAME(sd, NUMA);
6096 sd->private = &tl->data;
6097
6098 /*
6099 * Ugly hack to pass state to sd_numa_mask()...
6100 */
6101 sched_domains_curr_level = tl->numa_level;
6102
6103 return sd;
6104}
6105
6106static const struct cpumask *sd_numa_mask(int cpu)
6107{
6108 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6109}
6110
d039ac60
PZ
6111static void sched_numa_warn(const char *str)
6112{
6113 static int done = false;
6114 int i,j;
6115
6116 if (done)
6117 return;
6118
6119 done = true;
6120
6121 printk(KERN_WARNING "ERROR: %s\n\n", str);
6122
6123 for (i = 0; i < nr_node_ids; i++) {
6124 printk(KERN_WARNING " ");
6125 for (j = 0; j < nr_node_ids; j++)
6126 printk(KERN_CONT "%02d ", node_distance(i,j));
6127 printk(KERN_CONT "\n");
6128 }
6129 printk(KERN_WARNING "\n");
6130}
6131
6132static bool find_numa_distance(int distance)
6133{
6134 int i;
6135
6136 if (distance == node_distance(0, 0))
6137 return true;
6138
6139 for (i = 0; i < sched_domains_numa_levels; i++) {
6140 if (sched_domains_numa_distance[i] == distance)
6141 return true;
6142 }
6143
6144 return false;
6145}
6146
cb83b629
PZ
6147static void sched_init_numa(void)
6148{
6149 int next_distance, curr_distance = node_distance(0, 0);
6150 struct sched_domain_topology_level *tl;
6151 int level = 0;
6152 int i, j, k;
6153
cb83b629
PZ
6154 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6155 if (!sched_domains_numa_distance)
6156 return;
6157
6158 /*
6159 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6160 * unique distances in the node_distance() table.
6161 *
6162 * Assumes node_distance(0,j) includes all distances in
6163 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6164 */
6165 next_distance = curr_distance;
6166 for (i = 0; i < nr_node_ids; i++) {
6167 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6168 for (k = 0; k < nr_node_ids; k++) {
6169 int distance = node_distance(i, k);
6170
6171 if (distance > curr_distance &&
6172 (distance < next_distance ||
6173 next_distance == curr_distance))
6174 next_distance = distance;
6175
6176 /*
6177 * While not a strong assumption it would be nice to know
6178 * about cases where if node A is connected to B, B is not
6179 * equally connected to A.
6180 */
6181 if (sched_debug() && node_distance(k, i) != distance)
6182 sched_numa_warn("Node-distance not symmetric");
6183
6184 if (sched_debug() && i && !find_numa_distance(distance))
6185 sched_numa_warn("Node-0 not representative");
6186 }
6187 if (next_distance != curr_distance) {
6188 sched_domains_numa_distance[level++] = next_distance;
6189 sched_domains_numa_levels = level;
6190 curr_distance = next_distance;
6191 } else break;
cb83b629 6192 }
d039ac60
PZ
6193
6194 /*
6195 * In case of sched_debug() we verify the above assumption.
6196 */
6197 if (!sched_debug())
6198 break;
cb83b629
PZ
6199 }
6200 /*
6201 * 'level' contains the number of unique distances, excluding the
6202 * identity distance node_distance(i,i).
6203 *
6204 * The sched_domains_nume_distance[] array includes the actual distance
6205 * numbers.
6206 */
6207
5f7865f3
TC
6208 /*
6209 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6210 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6211 * the array will contain less then 'level' members. This could be
6212 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6213 * in other functions.
6214 *
6215 * We reset it to 'level' at the end of this function.
6216 */
6217 sched_domains_numa_levels = 0;
6218
cb83b629
PZ
6219 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6220 if (!sched_domains_numa_masks)
6221 return;
6222
6223 /*
6224 * Now for each level, construct a mask per node which contains all
6225 * cpus of nodes that are that many hops away from us.
6226 */
6227 for (i = 0; i < level; i++) {
6228 sched_domains_numa_masks[i] =
6229 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6230 if (!sched_domains_numa_masks[i])
6231 return;
6232
6233 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6234 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6235 if (!mask)
6236 return;
6237
6238 sched_domains_numa_masks[i][j] = mask;
6239
6240 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6241 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6242 continue;
6243
6244 cpumask_or(mask, mask, cpumask_of_node(k));
6245 }
6246 }
6247 }
6248
6249 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6250 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6251 if (!tl)
6252 return;
6253
6254 /*
6255 * Copy the default topology bits..
6256 */
6257 for (i = 0; default_topology[i].init; i++)
6258 tl[i] = default_topology[i];
6259
6260 /*
6261 * .. and append 'j' levels of NUMA goodness.
6262 */
6263 for (j = 0; j < level; i++, j++) {
6264 tl[i] = (struct sched_domain_topology_level){
6265 .init = sd_numa_init,
6266 .mask = sd_numa_mask,
6267 .flags = SDTL_OVERLAP,
6268 .numa_level = j,
6269 };
6270 }
6271
6272 sched_domain_topology = tl;
5f7865f3
TC
6273
6274 sched_domains_numa_levels = level;
cb83b629 6275}
301a5cba
TC
6276
6277static void sched_domains_numa_masks_set(int cpu)
6278{
6279 int i, j;
6280 int node = cpu_to_node(cpu);
6281
6282 for (i = 0; i < sched_domains_numa_levels; i++) {
6283 for (j = 0; j < nr_node_ids; j++) {
6284 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6285 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6286 }
6287 }
6288}
6289
6290static void sched_domains_numa_masks_clear(int cpu)
6291{
6292 int i, j;
6293 for (i = 0; i < sched_domains_numa_levels; i++) {
6294 for (j = 0; j < nr_node_ids; j++)
6295 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6296 }
6297}
6298
6299/*
6300 * Update sched_domains_numa_masks[level][node] array when new cpus
6301 * are onlined.
6302 */
6303static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6304 unsigned long action,
6305 void *hcpu)
6306{
6307 int cpu = (long)hcpu;
6308
6309 switch (action & ~CPU_TASKS_FROZEN) {
6310 case CPU_ONLINE:
6311 sched_domains_numa_masks_set(cpu);
6312 break;
6313
6314 case CPU_DEAD:
6315 sched_domains_numa_masks_clear(cpu);
6316 break;
6317
6318 default:
6319 return NOTIFY_DONE;
6320 }
6321
6322 return NOTIFY_OK;
cb83b629
PZ
6323}
6324#else
6325static inline void sched_init_numa(void)
6326{
6327}
301a5cba
TC
6328
6329static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6330 unsigned long action,
6331 void *hcpu)
6332{
6333 return 0;
6334}
cb83b629
PZ
6335#endif /* CONFIG_NUMA */
6336
54ab4ff4
PZ
6337static int __sdt_alloc(const struct cpumask *cpu_map)
6338{
6339 struct sched_domain_topology_level *tl;
6340 int j;
6341
6342 for (tl = sched_domain_topology; tl->init; tl++) {
6343 struct sd_data *sdd = &tl->data;
6344
6345 sdd->sd = alloc_percpu(struct sched_domain *);
6346 if (!sdd->sd)
6347 return -ENOMEM;
6348
6349 sdd->sg = alloc_percpu(struct sched_group *);
6350 if (!sdd->sg)
6351 return -ENOMEM;
6352
9c3f75cb
PZ
6353 sdd->sgp = alloc_percpu(struct sched_group_power *);
6354 if (!sdd->sgp)
6355 return -ENOMEM;
6356
54ab4ff4
PZ
6357 for_each_cpu(j, cpu_map) {
6358 struct sched_domain *sd;
6359 struct sched_group *sg;
9c3f75cb 6360 struct sched_group_power *sgp;
54ab4ff4
PZ
6361
6362 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6363 GFP_KERNEL, cpu_to_node(j));
6364 if (!sd)
6365 return -ENOMEM;
6366
6367 *per_cpu_ptr(sdd->sd, j) = sd;
6368
6369 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6370 GFP_KERNEL, cpu_to_node(j));
6371 if (!sg)
6372 return -ENOMEM;
6373
30b4e9eb
IM
6374 sg->next = sg;
6375
54ab4ff4 6376 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6377
c1174876 6378 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6379 GFP_KERNEL, cpu_to_node(j));
6380 if (!sgp)
6381 return -ENOMEM;
6382
6383 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6384 }
6385 }
6386
6387 return 0;
6388}
6389
6390static void __sdt_free(const struct cpumask *cpu_map)
6391{
6392 struct sched_domain_topology_level *tl;
6393 int j;
6394
6395 for (tl = sched_domain_topology; tl->init; tl++) {
6396 struct sd_data *sdd = &tl->data;
6397
6398 for_each_cpu(j, cpu_map) {
fb2cf2c6 6399 struct sched_domain *sd;
6400
6401 if (sdd->sd) {
6402 sd = *per_cpu_ptr(sdd->sd, j);
6403 if (sd && (sd->flags & SD_OVERLAP))
6404 free_sched_groups(sd->groups, 0);
6405 kfree(*per_cpu_ptr(sdd->sd, j));
6406 }
6407
6408 if (sdd->sg)
6409 kfree(*per_cpu_ptr(sdd->sg, j));
6410 if (sdd->sgp)
6411 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6412 }
6413 free_percpu(sdd->sd);
fb2cf2c6 6414 sdd->sd = NULL;
54ab4ff4 6415 free_percpu(sdd->sg);
fb2cf2c6 6416 sdd->sg = NULL;
9c3f75cb 6417 free_percpu(sdd->sgp);
fb2cf2c6 6418 sdd->sgp = NULL;
54ab4ff4
PZ
6419 }
6420}
6421
2c402dc3
PZ
6422struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6423 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6424 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6425 int cpu)
6426{
54ab4ff4 6427 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6428 if (!sd)
d069b916 6429 return child;
2c402dc3 6430
2c402dc3 6431 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6432 if (child) {
6433 sd->level = child->level + 1;
6434 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6435 child->parent = sd;
60495e77 6436 }
d069b916 6437 sd->child = child;
a841f8ce 6438 set_domain_attribute(sd, attr);
2c402dc3
PZ
6439
6440 return sd;
6441}
6442
2109b99e
AH
6443/*
6444 * Build sched domains for a given set of cpus and attach the sched domains
6445 * to the individual cpus
6446 */
dce840a0
PZ
6447static int build_sched_domains(const struct cpumask *cpu_map,
6448 struct sched_domain_attr *attr)
2109b99e
AH
6449{
6450 enum s_alloc alloc_state = sa_none;
dce840a0 6451 struct sched_domain *sd;
2109b99e 6452 struct s_data d;
822ff793 6453 int i, ret = -ENOMEM;
9c1cfda2 6454
2109b99e
AH
6455 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6456 if (alloc_state != sa_rootdomain)
6457 goto error;
9c1cfda2 6458
dce840a0 6459 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6460 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6461 struct sched_domain_topology_level *tl;
6462
3bd65a80 6463 sd = NULL;
e3589f6c 6464 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6465 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6466 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6467 sd->flags |= SD_OVERLAP;
d110235d
PZ
6468 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6469 break;
e3589f6c 6470 }
d274cb30 6471
d069b916
PZ
6472 while (sd->child)
6473 sd = sd->child;
6474
21d42ccf 6475 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6476 }
6477
6478 /* Build the groups for the domains */
6479 for_each_cpu(i, cpu_map) {
6480 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6481 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6482 if (sd->flags & SD_OVERLAP) {
6483 if (build_overlap_sched_groups(sd, i))
6484 goto error;
6485 } else {
6486 if (build_sched_groups(sd, i))
6487 goto error;
6488 }
1cf51902 6489 }
a06dadbe 6490 }
9c1cfda2 6491
1da177e4 6492 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6493 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6494 if (!cpumask_test_cpu(i, cpu_map))
6495 continue;
9c1cfda2 6496
dce840a0
PZ
6497 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6498 claim_allocations(i, sd);
cd4ea6ae 6499 init_sched_groups_power(i, sd);
dce840a0 6500 }
f712c0c7 6501 }
9c1cfda2 6502
1da177e4 6503 /* Attach the domains */
dce840a0 6504 rcu_read_lock();
abcd083a 6505 for_each_cpu(i, cpu_map) {
21d42ccf 6506 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6507 cpu_attach_domain(sd, d.rd, i);
1da177e4 6508 }
dce840a0 6509 rcu_read_unlock();
51888ca2 6510
822ff793 6511 ret = 0;
51888ca2 6512error:
2109b99e 6513 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6514 return ret;
1da177e4 6515}
029190c5 6516
acc3f5d7 6517static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6518static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6519static struct sched_domain_attr *dattr_cur;
6520 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6521
6522/*
6523 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6524 * cpumask) fails, then fallback to a single sched domain,
6525 * as determined by the single cpumask fallback_doms.
029190c5 6526 */
4212823f 6527static cpumask_var_t fallback_doms;
029190c5 6528
ee79d1bd
HC
6529/*
6530 * arch_update_cpu_topology lets virtualized architectures update the
6531 * cpu core maps. It is supposed to return 1 if the topology changed
6532 * or 0 if it stayed the same.
6533 */
6534int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6535{
ee79d1bd 6536 return 0;
22e52b07
HC
6537}
6538
acc3f5d7
RR
6539cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6540{
6541 int i;
6542 cpumask_var_t *doms;
6543
6544 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6545 if (!doms)
6546 return NULL;
6547 for (i = 0; i < ndoms; i++) {
6548 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6549 free_sched_domains(doms, i);
6550 return NULL;
6551 }
6552 }
6553 return doms;
6554}
6555
6556void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6557{
6558 unsigned int i;
6559 for (i = 0; i < ndoms; i++)
6560 free_cpumask_var(doms[i]);
6561 kfree(doms);
6562}
6563
1a20ff27 6564/*
41a2d6cf 6565 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6566 * For now this just excludes isolated cpus, but could be used to
6567 * exclude other special cases in the future.
1a20ff27 6568 */
c4a8849a 6569static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6570{
7378547f
MM
6571 int err;
6572
22e52b07 6573 arch_update_cpu_topology();
029190c5 6574 ndoms_cur = 1;
acc3f5d7 6575 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6576 if (!doms_cur)
acc3f5d7
RR
6577 doms_cur = &fallback_doms;
6578 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6579 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6580 register_sched_domain_sysctl();
7378547f
MM
6581
6582 return err;
1a20ff27
DG
6583}
6584
1a20ff27
DG
6585/*
6586 * Detach sched domains from a group of cpus specified in cpu_map
6587 * These cpus will now be attached to the NULL domain
6588 */
96f874e2 6589static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6590{
6591 int i;
6592
dce840a0 6593 rcu_read_lock();
abcd083a 6594 for_each_cpu(i, cpu_map)
57d885fe 6595 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6596 rcu_read_unlock();
1a20ff27
DG
6597}
6598
1d3504fc
HS
6599/* handle null as "default" */
6600static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6601 struct sched_domain_attr *new, int idx_new)
6602{
6603 struct sched_domain_attr tmp;
6604
6605 /* fast path */
6606 if (!new && !cur)
6607 return 1;
6608
6609 tmp = SD_ATTR_INIT;
6610 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6611 new ? (new + idx_new) : &tmp,
6612 sizeof(struct sched_domain_attr));
6613}
6614
029190c5
PJ
6615/*
6616 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6617 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6618 * doms_new[] to the current sched domain partitioning, doms_cur[].
6619 * It destroys each deleted domain and builds each new domain.
6620 *
acc3f5d7 6621 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6622 * The masks don't intersect (don't overlap.) We should setup one
6623 * sched domain for each mask. CPUs not in any of the cpumasks will
6624 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6625 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6626 * it as it is.
6627 *
acc3f5d7
RR
6628 * The passed in 'doms_new' should be allocated using
6629 * alloc_sched_domains. This routine takes ownership of it and will
6630 * free_sched_domains it when done with it. If the caller failed the
6631 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6632 * and partition_sched_domains() will fallback to the single partition
6633 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6634 *
96f874e2 6635 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6636 * ndoms_new == 0 is a special case for destroying existing domains,
6637 * and it will not create the default domain.
dfb512ec 6638 *
029190c5
PJ
6639 * Call with hotplug lock held
6640 */
acc3f5d7 6641void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6642 struct sched_domain_attr *dattr_new)
029190c5 6643{
dfb512ec 6644 int i, j, n;
d65bd5ec 6645 int new_topology;
029190c5 6646
712555ee 6647 mutex_lock(&sched_domains_mutex);
a1835615 6648
7378547f
MM
6649 /* always unregister in case we don't destroy any domains */
6650 unregister_sched_domain_sysctl();
6651
d65bd5ec
HC
6652 /* Let architecture update cpu core mappings. */
6653 new_topology = arch_update_cpu_topology();
6654
dfb512ec 6655 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6656
6657 /* Destroy deleted domains */
6658 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6659 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6660 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6661 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6662 goto match1;
6663 }
6664 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6665 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6666match1:
6667 ;
6668 }
6669
e761b772
MK
6670 if (doms_new == NULL) {
6671 ndoms_cur = 0;
acc3f5d7 6672 doms_new = &fallback_doms;
6ad4c188 6673 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6674 WARN_ON_ONCE(dattr_new);
e761b772
MK
6675 }
6676
029190c5
PJ
6677 /* Build new domains */
6678 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6679 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6680 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6681 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6682 goto match2;
6683 }
6684 /* no match - add a new doms_new */
dce840a0 6685 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6686match2:
6687 ;
6688 }
6689
6690 /* Remember the new sched domains */
acc3f5d7
RR
6691 if (doms_cur != &fallback_doms)
6692 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6693 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6694 doms_cur = doms_new;
1d3504fc 6695 dattr_cur = dattr_new;
029190c5 6696 ndoms_cur = ndoms_new;
7378547f
MM
6697
6698 register_sched_domain_sysctl();
a1835615 6699
712555ee 6700 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6701}
6702
d35be8ba
SB
6703static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6704
1da177e4 6705/*
3a101d05
TH
6706 * Update cpusets according to cpu_active mask. If cpusets are
6707 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6708 * around partition_sched_domains().
d35be8ba
SB
6709 *
6710 * If we come here as part of a suspend/resume, don't touch cpusets because we
6711 * want to restore it back to its original state upon resume anyway.
1da177e4 6712 */
0b2e918a
TH
6713static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6714 void *hcpu)
e761b772 6715{
d35be8ba
SB
6716 switch (action) {
6717 case CPU_ONLINE_FROZEN:
6718 case CPU_DOWN_FAILED_FROZEN:
6719
6720 /*
6721 * num_cpus_frozen tracks how many CPUs are involved in suspend
6722 * resume sequence. As long as this is not the last online
6723 * operation in the resume sequence, just build a single sched
6724 * domain, ignoring cpusets.
6725 */
6726 num_cpus_frozen--;
6727 if (likely(num_cpus_frozen)) {
6728 partition_sched_domains(1, NULL, NULL);
6729 break;
6730 }
6731
6732 /*
6733 * This is the last CPU online operation. So fall through and
6734 * restore the original sched domains by considering the
6735 * cpuset configurations.
6736 */
6737
e761b772 6738 case CPU_ONLINE:
6ad4c188 6739 case CPU_DOWN_FAILED:
7ddf96b0 6740 cpuset_update_active_cpus(true);
d35be8ba 6741 break;
3a101d05
TH
6742 default:
6743 return NOTIFY_DONE;
6744 }
d35be8ba 6745 return NOTIFY_OK;
3a101d05 6746}
e761b772 6747
0b2e918a
TH
6748static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6749 void *hcpu)
3a101d05 6750{
d35be8ba 6751 switch (action) {
3a101d05 6752 case CPU_DOWN_PREPARE:
7ddf96b0 6753 cpuset_update_active_cpus(false);
d35be8ba
SB
6754 break;
6755 case CPU_DOWN_PREPARE_FROZEN:
6756 num_cpus_frozen++;
6757 partition_sched_domains(1, NULL, NULL);
6758 break;
e761b772
MK
6759 default:
6760 return NOTIFY_DONE;
6761 }
d35be8ba 6762 return NOTIFY_OK;
e761b772 6763}
e761b772 6764
1da177e4
LT
6765void __init sched_init_smp(void)
6766{
dcc30a35
RR
6767 cpumask_var_t non_isolated_cpus;
6768
6769 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6770 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6771
cb83b629
PZ
6772 sched_init_numa();
6773
95402b38 6774 get_online_cpus();
712555ee 6775 mutex_lock(&sched_domains_mutex);
c4a8849a 6776 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6777 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6778 if (cpumask_empty(non_isolated_cpus))
6779 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6780 mutex_unlock(&sched_domains_mutex);
95402b38 6781 put_online_cpus();
e761b772 6782
301a5cba 6783 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6784 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6785 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6786
6787 /* RT runtime code needs to handle some hotplug events */
6788 hotcpu_notifier(update_runtime, 0);
6789
b328ca18 6790 init_hrtick();
5c1e1767
NP
6791
6792 /* Move init over to a non-isolated CPU */
dcc30a35 6793 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6794 BUG();
19978ca6 6795 sched_init_granularity();
dcc30a35 6796 free_cpumask_var(non_isolated_cpus);
4212823f 6797
0e3900e6 6798 init_sched_rt_class();
1da177e4
LT
6799}
6800#else
6801void __init sched_init_smp(void)
6802{
19978ca6 6803 sched_init_granularity();
1da177e4
LT
6804}
6805#endif /* CONFIG_SMP */
6806
cd1bb94b
AB
6807const_debug unsigned int sysctl_timer_migration = 1;
6808
1da177e4
LT
6809int in_sched_functions(unsigned long addr)
6810{
1da177e4
LT
6811 return in_lock_functions(addr) ||
6812 (addr >= (unsigned long)__sched_text_start
6813 && addr < (unsigned long)__sched_text_end);
6814}
6815
029632fb
PZ
6816#ifdef CONFIG_CGROUP_SCHED
6817struct task_group root_task_group;
35cf4e50 6818LIST_HEAD(task_groups);
052f1dc7 6819#endif
6f505b16 6820
029632fb 6821DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6822
1da177e4
LT
6823void __init sched_init(void)
6824{
dd41f596 6825 int i, j;
434d53b0
MT
6826 unsigned long alloc_size = 0, ptr;
6827
6828#ifdef CONFIG_FAIR_GROUP_SCHED
6829 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6830#endif
6831#ifdef CONFIG_RT_GROUP_SCHED
6832 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6833#endif
df7c8e84 6834#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6835 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6836#endif
434d53b0 6837 if (alloc_size) {
36b7b6d4 6838 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6839
6840#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6841 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6842 ptr += nr_cpu_ids * sizeof(void **);
6843
07e06b01 6844 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6845 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6846
6d6bc0ad 6847#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6848#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6849 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6850 ptr += nr_cpu_ids * sizeof(void **);
6851
07e06b01 6852 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6853 ptr += nr_cpu_ids * sizeof(void **);
6854
6d6bc0ad 6855#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6856#ifdef CONFIG_CPUMASK_OFFSTACK
6857 for_each_possible_cpu(i) {
6858 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6859 ptr += cpumask_size();
6860 }
6861#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6862 }
dd41f596 6863
57d885fe
GH
6864#ifdef CONFIG_SMP
6865 init_defrootdomain();
6866#endif
6867
d0b27fa7
PZ
6868 init_rt_bandwidth(&def_rt_bandwidth,
6869 global_rt_period(), global_rt_runtime());
6870
6871#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6872 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6873 global_rt_period(), global_rt_runtime());
6d6bc0ad 6874#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6875
7c941438 6876#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6877 list_add(&root_task_group.list, &task_groups);
6878 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6879 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6880 autogroup_init(&init_task);
54c707e9 6881
7c941438 6882#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6883
54c707e9
GC
6884#ifdef CONFIG_CGROUP_CPUACCT
6885 root_cpuacct.cpustat = &kernel_cpustat;
6886 root_cpuacct.cpuusage = alloc_percpu(u64);
6887 /* Too early, not expected to fail */
6888 BUG_ON(!root_cpuacct.cpuusage);
6889#endif
0a945022 6890 for_each_possible_cpu(i) {
70b97a7f 6891 struct rq *rq;
1da177e4
LT
6892
6893 rq = cpu_rq(i);
05fa785c 6894 raw_spin_lock_init(&rq->lock);
7897986b 6895 rq->nr_running = 0;
dce48a84
TG
6896 rq->calc_load_active = 0;
6897 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6898 init_cfs_rq(&rq->cfs);
6f505b16 6899 init_rt_rq(&rq->rt, rq);
dd41f596 6900#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6901 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6902 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6903 /*
07e06b01 6904 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6905 *
6906 * In case of task-groups formed thr' the cgroup filesystem, it
6907 * gets 100% of the cpu resources in the system. This overall
6908 * system cpu resource is divided among the tasks of
07e06b01 6909 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6910 * based on each entity's (task or task-group's) weight
6911 * (se->load.weight).
6912 *
07e06b01 6913 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6914 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6915 * then A0's share of the cpu resource is:
6916 *
0d905bca 6917 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6918 *
07e06b01
YZ
6919 * We achieve this by letting root_task_group's tasks sit
6920 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6921 */
ab84d31e 6922 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6923 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6924#endif /* CONFIG_FAIR_GROUP_SCHED */
6925
6926 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6927#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6928 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6929 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6930#endif
1da177e4 6931
dd41f596
IM
6932 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6933 rq->cpu_load[j] = 0;
fdf3e95d
VP
6934
6935 rq->last_load_update_tick = jiffies;
6936
1da177e4 6937#ifdef CONFIG_SMP
41c7ce9a 6938 rq->sd = NULL;
57d885fe 6939 rq->rd = NULL;
1399fa78 6940 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6941 rq->post_schedule = 0;
1da177e4 6942 rq->active_balance = 0;
dd41f596 6943 rq->next_balance = jiffies;
1da177e4 6944 rq->push_cpu = 0;
0a2966b4 6945 rq->cpu = i;
1f11eb6a 6946 rq->online = 0;
eae0c9df
MG
6947 rq->idle_stamp = 0;
6948 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6949
6950 INIT_LIST_HEAD(&rq->cfs_tasks);
6951
dc938520 6952 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6953#ifdef CONFIG_NO_HZ
1c792db7 6954 rq->nohz_flags = 0;
83cd4fe2 6955#endif
1da177e4 6956#endif
8f4d37ec 6957 init_rq_hrtick(rq);
1da177e4 6958 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6959 }
6960
2dd73a4f 6961 set_load_weight(&init_task);
b50f60ce 6962
e107be36
AK
6963#ifdef CONFIG_PREEMPT_NOTIFIERS
6964 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6965#endif
6966
b50f60ce 6967#ifdef CONFIG_RT_MUTEXES
732375c6 6968 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6969#endif
6970
1da177e4
LT
6971 /*
6972 * The boot idle thread does lazy MMU switching as well:
6973 */
6974 atomic_inc(&init_mm.mm_count);
6975 enter_lazy_tlb(&init_mm, current);
6976
6977 /*
6978 * Make us the idle thread. Technically, schedule() should not be
6979 * called from this thread, however somewhere below it might be,
6980 * but because we are the idle thread, we just pick up running again
6981 * when this runqueue becomes "idle".
6982 */
6983 init_idle(current, smp_processor_id());
dce48a84
TG
6984
6985 calc_load_update = jiffies + LOAD_FREQ;
6986
dd41f596
IM
6987 /*
6988 * During early bootup we pretend to be a normal task:
6989 */
6990 current->sched_class = &fair_sched_class;
6892b75e 6991
bf4d83f6 6992#ifdef CONFIG_SMP
4cb98839 6993 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6994 /* May be allocated at isolcpus cmdline parse time */
6995 if (cpu_isolated_map == NULL)
6996 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6997 idle_thread_set_boot_cpu();
029632fb
PZ
6998#endif
6999 init_sched_fair_class();
6a7b3dc3 7000
6892b75e 7001 scheduler_running = 1;
1da177e4
LT
7002}
7003
d902db1e 7004#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7005static inline int preempt_count_equals(int preempt_offset)
7006{
234da7bc 7007 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7008
4ba8216c 7009 return (nested == preempt_offset);
e4aafea2
FW
7010}
7011
d894837f 7012void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7013{
1da177e4
LT
7014 static unsigned long prev_jiffy; /* ratelimiting */
7015
b3fbab05 7016 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7017 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7018 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7019 return;
7020 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7021 return;
7022 prev_jiffy = jiffies;
7023
3df0fc5b
PZ
7024 printk(KERN_ERR
7025 "BUG: sleeping function called from invalid context at %s:%d\n",
7026 file, line);
7027 printk(KERN_ERR
7028 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7029 in_atomic(), irqs_disabled(),
7030 current->pid, current->comm);
aef745fc
IM
7031
7032 debug_show_held_locks(current);
7033 if (irqs_disabled())
7034 print_irqtrace_events(current);
7035 dump_stack();
1da177e4
LT
7036}
7037EXPORT_SYMBOL(__might_sleep);
7038#endif
7039
7040#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7041static void normalize_task(struct rq *rq, struct task_struct *p)
7042{
da7a735e
PZ
7043 const struct sched_class *prev_class = p->sched_class;
7044 int old_prio = p->prio;
3a5e4dc1 7045 int on_rq;
3e51f33f 7046
fd2f4419 7047 on_rq = p->on_rq;
3a5e4dc1 7048 if (on_rq)
4ca9b72b 7049 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7050 __setscheduler(rq, p, SCHED_NORMAL, 0);
7051 if (on_rq) {
4ca9b72b 7052 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7053 resched_task(rq->curr);
7054 }
da7a735e
PZ
7055
7056 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7057}
7058
1da177e4
LT
7059void normalize_rt_tasks(void)
7060{
a0f98a1c 7061 struct task_struct *g, *p;
1da177e4 7062 unsigned long flags;
70b97a7f 7063 struct rq *rq;
1da177e4 7064
4cf5d77a 7065 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7066 do_each_thread(g, p) {
178be793
IM
7067 /*
7068 * Only normalize user tasks:
7069 */
7070 if (!p->mm)
7071 continue;
7072
6cfb0d5d 7073 p->se.exec_start = 0;
6cfb0d5d 7074#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7075 p->se.statistics.wait_start = 0;
7076 p->se.statistics.sleep_start = 0;
7077 p->se.statistics.block_start = 0;
6cfb0d5d 7078#endif
dd41f596
IM
7079
7080 if (!rt_task(p)) {
7081 /*
7082 * Renice negative nice level userspace
7083 * tasks back to 0:
7084 */
7085 if (TASK_NICE(p) < 0 && p->mm)
7086 set_user_nice(p, 0);
1da177e4 7087 continue;
dd41f596 7088 }
1da177e4 7089
1d615482 7090 raw_spin_lock(&p->pi_lock);
b29739f9 7091 rq = __task_rq_lock(p);
1da177e4 7092
178be793 7093 normalize_task(rq, p);
3a5e4dc1 7094
b29739f9 7095 __task_rq_unlock(rq);
1d615482 7096 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7097 } while_each_thread(g, p);
7098
4cf5d77a 7099 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7100}
7101
7102#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7103
67fc4e0c 7104#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7105/*
67fc4e0c 7106 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7107 *
7108 * They can only be called when the whole system has been
7109 * stopped - every CPU needs to be quiescent, and no scheduling
7110 * activity can take place. Using them for anything else would
7111 * be a serious bug, and as a result, they aren't even visible
7112 * under any other configuration.
7113 */
7114
7115/**
7116 * curr_task - return the current task for a given cpu.
7117 * @cpu: the processor in question.
7118 *
7119 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7120 */
36c8b586 7121struct task_struct *curr_task(int cpu)
1df5c10a
LT
7122{
7123 return cpu_curr(cpu);
7124}
7125
67fc4e0c
JW
7126#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7127
7128#ifdef CONFIG_IA64
1df5c10a
LT
7129/**
7130 * set_curr_task - set the current task for a given cpu.
7131 * @cpu: the processor in question.
7132 * @p: the task pointer to set.
7133 *
7134 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7135 * are serviced on a separate stack. It allows the architecture to switch the
7136 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7137 * must be called with all CPU's synchronized, and interrupts disabled, the
7138 * and caller must save the original value of the current task (see
7139 * curr_task() above) and restore that value before reenabling interrupts and
7140 * re-starting the system.
7141 *
7142 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7143 */
36c8b586 7144void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7145{
7146 cpu_curr(cpu) = p;
7147}
7148
7149#endif
29f59db3 7150
7c941438 7151#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7152/* task_group_lock serializes the addition/removal of task groups */
7153static DEFINE_SPINLOCK(task_group_lock);
7154
bccbe08a
PZ
7155static void free_sched_group(struct task_group *tg)
7156{
7157 free_fair_sched_group(tg);
7158 free_rt_sched_group(tg);
e9aa1dd1 7159 autogroup_free(tg);
bccbe08a
PZ
7160 kfree(tg);
7161}
7162
7163/* allocate runqueue etc for a new task group */
ec7dc8ac 7164struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7165{
7166 struct task_group *tg;
bccbe08a
PZ
7167
7168 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7169 if (!tg)
7170 return ERR_PTR(-ENOMEM);
7171
ec7dc8ac 7172 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7173 goto err;
7174
ec7dc8ac 7175 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7176 goto err;
7177
ace783b9
LZ
7178 return tg;
7179
7180err:
7181 free_sched_group(tg);
7182 return ERR_PTR(-ENOMEM);
7183}
7184
7185void sched_online_group(struct task_group *tg, struct task_group *parent)
7186{
7187 unsigned long flags;
7188
8ed36996 7189 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7190 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7191
7192 WARN_ON(!parent); /* root should already exist */
7193
7194 tg->parent = parent;
f473aa5e 7195 INIT_LIST_HEAD(&tg->children);
09f2724a 7196 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7197 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7198}
7199
9b5b7751 7200/* rcu callback to free various structures associated with a task group */
6f505b16 7201static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7202{
29f59db3 7203 /* now it should be safe to free those cfs_rqs */
6f505b16 7204 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7205}
7206
9b5b7751 7207/* Destroy runqueue etc associated with a task group */
4cf86d77 7208void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7209{
7210 /* wait for possible concurrent references to cfs_rqs complete */
7211 call_rcu(&tg->rcu, free_sched_group_rcu);
7212}
7213
7214void sched_offline_group(struct task_group *tg)
29f59db3 7215{
8ed36996 7216 unsigned long flags;
9b5b7751 7217 int i;
29f59db3 7218
3d4b47b4
PZ
7219 /* end participation in shares distribution */
7220 for_each_possible_cpu(i)
bccbe08a 7221 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7222
7223 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7224 list_del_rcu(&tg->list);
f473aa5e 7225 list_del_rcu(&tg->siblings);
8ed36996 7226 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7227}
7228
9b5b7751 7229/* change task's runqueue when it moves between groups.
3a252015
IM
7230 * The caller of this function should have put the task in its new group
7231 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7232 * reflect its new group.
9b5b7751
SV
7233 */
7234void sched_move_task(struct task_struct *tsk)
29f59db3 7235{
8323f26c 7236 struct task_group *tg;
29f59db3
SV
7237 int on_rq, running;
7238 unsigned long flags;
7239 struct rq *rq;
7240
7241 rq = task_rq_lock(tsk, &flags);
7242
051a1d1a 7243 running = task_current(rq, tsk);
fd2f4419 7244 on_rq = tsk->on_rq;
29f59db3 7245
0e1f3483 7246 if (on_rq)
29f59db3 7247 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7248 if (unlikely(running))
7249 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7250
8323f26c
PZ
7251 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7252 lockdep_is_held(&tsk->sighand->siglock)),
7253 struct task_group, css);
7254 tg = autogroup_task_group(tsk, tg);
7255 tsk->sched_task_group = tg;
7256
810b3817 7257#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7258 if (tsk->sched_class->task_move_group)
7259 tsk->sched_class->task_move_group(tsk, on_rq);
7260 else
810b3817 7261#endif
b2b5ce02 7262 set_task_rq(tsk, task_cpu(tsk));
810b3817 7263
0e1f3483
HS
7264 if (unlikely(running))
7265 tsk->sched_class->set_curr_task(rq);
7266 if (on_rq)
371fd7e7 7267 enqueue_task(rq, tsk, 0);
29f59db3 7268
0122ec5b 7269 task_rq_unlock(rq, tsk, &flags);
29f59db3 7270}
7c941438 7271#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7272
a790de99 7273#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7274static unsigned long to_ratio(u64 period, u64 runtime)
7275{
7276 if (runtime == RUNTIME_INF)
9a7e0b18 7277 return 1ULL << 20;
9f0c1e56 7278
9a7e0b18 7279 return div64_u64(runtime << 20, period);
9f0c1e56 7280}
a790de99
PT
7281#endif
7282
7283#ifdef CONFIG_RT_GROUP_SCHED
7284/*
7285 * Ensure that the real time constraints are schedulable.
7286 */
7287static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7288
9a7e0b18
PZ
7289/* Must be called with tasklist_lock held */
7290static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7291{
9a7e0b18 7292 struct task_struct *g, *p;
b40b2e8e 7293
9a7e0b18 7294 do_each_thread(g, p) {
029632fb 7295 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7296 return 1;
7297 } while_each_thread(g, p);
b40b2e8e 7298
9a7e0b18
PZ
7299 return 0;
7300}
b40b2e8e 7301
9a7e0b18
PZ
7302struct rt_schedulable_data {
7303 struct task_group *tg;
7304 u64 rt_period;
7305 u64 rt_runtime;
7306};
b40b2e8e 7307
a790de99 7308static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7309{
7310 struct rt_schedulable_data *d = data;
7311 struct task_group *child;
7312 unsigned long total, sum = 0;
7313 u64 period, runtime;
b40b2e8e 7314
9a7e0b18
PZ
7315 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7316 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7317
9a7e0b18
PZ
7318 if (tg == d->tg) {
7319 period = d->rt_period;
7320 runtime = d->rt_runtime;
b40b2e8e 7321 }
b40b2e8e 7322
4653f803
PZ
7323 /*
7324 * Cannot have more runtime than the period.
7325 */
7326 if (runtime > period && runtime != RUNTIME_INF)
7327 return -EINVAL;
6f505b16 7328
4653f803
PZ
7329 /*
7330 * Ensure we don't starve existing RT tasks.
7331 */
9a7e0b18
PZ
7332 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7333 return -EBUSY;
6f505b16 7334
9a7e0b18 7335 total = to_ratio(period, runtime);
6f505b16 7336
4653f803
PZ
7337 /*
7338 * Nobody can have more than the global setting allows.
7339 */
7340 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7341 return -EINVAL;
6f505b16 7342
4653f803
PZ
7343 /*
7344 * The sum of our children's runtime should not exceed our own.
7345 */
9a7e0b18
PZ
7346 list_for_each_entry_rcu(child, &tg->children, siblings) {
7347 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7348 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7349
9a7e0b18
PZ
7350 if (child == d->tg) {
7351 period = d->rt_period;
7352 runtime = d->rt_runtime;
7353 }
6f505b16 7354
9a7e0b18 7355 sum += to_ratio(period, runtime);
9f0c1e56 7356 }
6f505b16 7357
9a7e0b18
PZ
7358 if (sum > total)
7359 return -EINVAL;
7360
7361 return 0;
6f505b16
PZ
7362}
7363
9a7e0b18 7364static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7365{
8277434e
PT
7366 int ret;
7367
9a7e0b18
PZ
7368 struct rt_schedulable_data data = {
7369 .tg = tg,
7370 .rt_period = period,
7371 .rt_runtime = runtime,
7372 };
7373
8277434e
PT
7374 rcu_read_lock();
7375 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7376 rcu_read_unlock();
7377
7378 return ret;
521f1a24
DG
7379}
7380
ab84d31e 7381static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7382 u64 rt_period, u64 rt_runtime)
6f505b16 7383{
ac086bc2 7384 int i, err = 0;
9f0c1e56 7385
9f0c1e56 7386 mutex_lock(&rt_constraints_mutex);
521f1a24 7387 read_lock(&tasklist_lock);
9a7e0b18
PZ
7388 err = __rt_schedulable(tg, rt_period, rt_runtime);
7389 if (err)
9f0c1e56 7390 goto unlock;
ac086bc2 7391
0986b11b 7392 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7393 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7394 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7395
7396 for_each_possible_cpu(i) {
7397 struct rt_rq *rt_rq = tg->rt_rq[i];
7398
0986b11b 7399 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7400 rt_rq->rt_runtime = rt_runtime;
0986b11b 7401 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7402 }
0986b11b 7403 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7404unlock:
521f1a24 7405 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7406 mutex_unlock(&rt_constraints_mutex);
7407
7408 return err;
6f505b16
PZ
7409}
7410
d0b27fa7
PZ
7411int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7412{
7413 u64 rt_runtime, rt_period;
7414
7415 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7416 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7417 if (rt_runtime_us < 0)
7418 rt_runtime = RUNTIME_INF;
7419
ab84d31e 7420 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7421}
7422
9f0c1e56
PZ
7423long sched_group_rt_runtime(struct task_group *tg)
7424{
7425 u64 rt_runtime_us;
7426
d0b27fa7 7427 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7428 return -1;
7429
d0b27fa7 7430 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7431 do_div(rt_runtime_us, NSEC_PER_USEC);
7432 return rt_runtime_us;
7433}
d0b27fa7
PZ
7434
7435int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7436{
7437 u64 rt_runtime, rt_period;
7438
7439 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7440 rt_runtime = tg->rt_bandwidth.rt_runtime;
7441
619b0488
R
7442 if (rt_period == 0)
7443 return -EINVAL;
7444
ab84d31e 7445 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7446}
7447
7448long sched_group_rt_period(struct task_group *tg)
7449{
7450 u64 rt_period_us;
7451
7452 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7453 do_div(rt_period_us, NSEC_PER_USEC);
7454 return rt_period_us;
7455}
7456
7457static int sched_rt_global_constraints(void)
7458{
4653f803 7459 u64 runtime, period;
d0b27fa7
PZ
7460 int ret = 0;
7461
ec5d4989
HS
7462 if (sysctl_sched_rt_period <= 0)
7463 return -EINVAL;
7464
4653f803
PZ
7465 runtime = global_rt_runtime();
7466 period = global_rt_period();
7467
7468 /*
7469 * Sanity check on the sysctl variables.
7470 */
7471 if (runtime > period && runtime != RUNTIME_INF)
7472 return -EINVAL;
10b612f4 7473
d0b27fa7 7474 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7475 read_lock(&tasklist_lock);
4653f803 7476 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7477 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7478 mutex_unlock(&rt_constraints_mutex);
7479
7480 return ret;
7481}
54e99124
DG
7482
7483int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7484{
7485 /* Don't accept realtime tasks when there is no way for them to run */
7486 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7487 return 0;
7488
7489 return 1;
7490}
7491
6d6bc0ad 7492#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7493static int sched_rt_global_constraints(void)
7494{
ac086bc2
PZ
7495 unsigned long flags;
7496 int i;
7497
ec5d4989
HS
7498 if (sysctl_sched_rt_period <= 0)
7499 return -EINVAL;
7500
60aa605d
PZ
7501 /*
7502 * There's always some RT tasks in the root group
7503 * -- migration, kstopmachine etc..
7504 */
7505 if (sysctl_sched_rt_runtime == 0)
7506 return -EBUSY;
7507
0986b11b 7508 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7509 for_each_possible_cpu(i) {
7510 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7511
0986b11b 7512 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7513 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7514 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7515 }
0986b11b 7516 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7517
d0b27fa7
PZ
7518 return 0;
7519}
6d6bc0ad 7520#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7521
ce0dbbbb
CW
7522int sched_rr_handler(struct ctl_table *table, int write,
7523 void __user *buffer, size_t *lenp,
7524 loff_t *ppos)
7525{
7526 int ret;
7527 static DEFINE_MUTEX(mutex);
7528
7529 mutex_lock(&mutex);
7530 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7531 /* make sure that internally we keep jiffies */
7532 /* also, writing zero resets timeslice to default */
7533 if (!ret && write) {
7534 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7535 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7536 }
7537 mutex_unlock(&mutex);
7538 return ret;
7539}
7540
d0b27fa7 7541int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7542 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7543 loff_t *ppos)
7544{
7545 int ret;
7546 int old_period, old_runtime;
7547 static DEFINE_MUTEX(mutex);
7548
7549 mutex_lock(&mutex);
7550 old_period = sysctl_sched_rt_period;
7551 old_runtime = sysctl_sched_rt_runtime;
7552
8d65af78 7553 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7554
7555 if (!ret && write) {
7556 ret = sched_rt_global_constraints();
7557 if (ret) {
7558 sysctl_sched_rt_period = old_period;
7559 sysctl_sched_rt_runtime = old_runtime;
7560 } else {
7561 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7562 def_rt_bandwidth.rt_period =
7563 ns_to_ktime(global_rt_period());
7564 }
7565 }
7566 mutex_unlock(&mutex);
7567
7568 return ret;
7569}
68318b8e 7570
052f1dc7 7571#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7572
7573/* return corresponding task_group object of a cgroup */
2b01dfe3 7574static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7575{
2b01dfe3
PM
7576 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7577 struct task_group, css);
68318b8e
SV
7578}
7579
92fb9748 7580static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7581{
ec7dc8ac 7582 struct task_group *tg, *parent;
68318b8e 7583
2b01dfe3 7584 if (!cgrp->parent) {
68318b8e 7585 /* This is early initialization for the top cgroup */
07e06b01 7586 return &root_task_group.css;
68318b8e
SV
7587 }
7588
ec7dc8ac
DG
7589 parent = cgroup_tg(cgrp->parent);
7590 tg = sched_create_group(parent);
68318b8e
SV
7591 if (IS_ERR(tg))
7592 return ERR_PTR(-ENOMEM);
7593
68318b8e
SV
7594 return &tg->css;
7595}
7596
ace783b9
LZ
7597static int cpu_cgroup_css_online(struct cgroup *cgrp)
7598{
7599 struct task_group *tg = cgroup_tg(cgrp);
7600 struct task_group *parent;
7601
7602 if (!cgrp->parent)
7603 return 0;
7604
7605 parent = cgroup_tg(cgrp->parent);
7606 sched_online_group(tg, parent);
7607 return 0;
7608}
7609
92fb9748 7610static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7611{
2b01dfe3 7612 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7613
7614 sched_destroy_group(tg);
7615}
7616
ace783b9
LZ
7617static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7618{
7619 struct task_group *tg = cgroup_tg(cgrp);
7620
7621 sched_offline_group(tg);
7622}
7623
761b3ef5 7624static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7625 struct cgroup_taskset *tset)
68318b8e 7626{
bb9d97b6
TH
7627 struct task_struct *task;
7628
7629 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7630#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7631 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7632 return -EINVAL;
b68aa230 7633#else
bb9d97b6
TH
7634 /* We don't support RT-tasks being in separate groups */
7635 if (task->sched_class != &fair_sched_class)
7636 return -EINVAL;
b68aa230 7637#endif
bb9d97b6 7638 }
be367d09
BB
7639 return 0;
7640}
68318b8e 7641
761b3ef5 7642static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7643 struct cgroup_taskset *tset)
68318b8e 7644{
bb9d97b6
TH
7645 struct task_struct *task;
7646
7647 cgroup_taskset_for_each(task, cgrp, tset)
7648 sched_move_task(task);
68318b8e
SV
7649}
7650
068c5cc5 7651static void
761b3ef5
LZ
7652cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7653 struct task_struct *task)
068c5cc5
PZ
7654{
7655 /*
7656 * cgroup_exit() is called in the copy_process() failure path.
7657 * Ignore this case since the task hasn't ran yet, this avoids
7658 * trying to poke a half freed task state from generic code.
7659 */
7660 if (!(task->flags & PF_EXITING))
7661 return;
7662
7663 sched_move_task(task);
7664}
7665
052f1dc7 7666#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7667static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7668 u64 shareval)
68318b8e 7669{
c8b28116 7670 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7671}
7672
f4c753b7 7673static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7674{
2b01dfe3 7675 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7676
c8b28116 7677 return (u64) scale_load_down(tg->shares);
68318b8e 7678}
ab84d31e
PT
7679
7680#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7681static DEFINE_MUTEX(cfs_constraints_mutex);
7682
ab84d31e
PT
7683const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7684const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7685
a790de99
PT
7686static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7687
ab84d31e
PT
7688static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7689{
56f570e5 7690 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7692
7693 if (tg == &root_task_group)
7694 return -EINVAL;
7695
7696 /*
7697 * Ensure we have at some amount of bandwidth every period. This is
7698 * to prevent reaching a state of large arrears when throttled via
7699 * entity_tick() resulting in prolonged exit starvation.
7700 */
7701 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7702 return -EINVAL;
7703
7704 /*
7705 * Likewise, bound things on the otherside by preventing insane quota
7706 * periods. This also allows us to normalize in computing quota
7707 * feasibility.
7708 */
7709 if (period > max_cfs_quota_period)
7710 return -EINVAL;
7711
a790de99
PT
7712 mutex_lock(&cfs_constraints_mutex);
7713 ret = __cfs_schedulable(tg, period, quota);
7714 if (ret)
7715 goto out_unlock;
7716
58088ad0 7717 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7718 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7719 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7720 raw_spin_lock_irq(&cfs_b->lock);
7721 cfs_b->period = ns_to_ktime(period);
7722 cfs_b->quota = quota;
58088ad0 7723
a9cf55b2 7724 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7725 /* restart the period timer (if active) to handle new period expiry */
7726 if (runtime_enabled && cfs_b->timer_active) {
7727 /* force a reprogram */
7728 cfs_b->timer_active = 0;
7729 __start_cfs_bandwidth(cfs_b);
7730 }
ab84d31e
PT
7731 raw_spin_unlock_irq(&cfs_b->lock);
7732
7733 for_each_possible_cpu(i) {
7734 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7735 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7736
7737 raw_spin_lock_irq(&rq->lock);
58088ad0 7738 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7739 cfs_rq->runtime_remaining = 0;
671fd9da 7740
029632fb 7741 if (cfs_rq->throttled)
671fd9da 7742 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7743 raw_spin_unlock_irq(&rq->lock);
7744 }
a790de99
PT
7745out_unlock:
7746 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7747
a790de99 7748 return ret;
ab84d31e
PT
7749}
7750
7751int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7752{
7753 u64 quota, period;
7754
029632fb 7755 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7756 if (cfs_quota_us < 0)
7757 quota = RUNTIME_INF;
7758 else
7759 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7760
7761 return tg_set_cfs_bandwidth(tg, period, quota);
7762}
7763
7764long tg_get_cfs_quota(struct task_group *tg)
7765{
7766 u64 quota_us;
7767
029632fb 7768 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7769 return -1;
7770
029632fb 7771 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7772 do_div(quota_us, NSEC_PER_USEC);
7773
7774 return quota_us;
7775}
7776
7777int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7778{
7779 u64 quota, period;
7780
7781 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7782 quota = tg->cfs_bandwidth.quota;
ab84d31e 7783
ab84d31e
PT
7784 return tg_set_cfs_bandwidth(tg, period, quota);
7785}
7786
7787long tg_get_cfs_period(struct task_group *tg)
7788{
7789 u64 cfs_period_us;
7790
029632fb 7791 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7792 do_div(cfs_period_us, NSEC_PER_USEC);
7793
7794 return cfs_period_us;
7795}
7796
7797static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7798{
7799 return tg_get_cfs_quota(cgroup_tg(cgrp));
7800}
7801
7802static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7803 s64 cfs_quota_us)
7804{
7805 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7806}
7807
7808static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7809{
7810 return tg_get_cfs_period(cgroup_tg(cgrp));
7811}
7812
7813static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7814 u64 cfs_period_us)
7815{
7816 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7817}
7818
a790de99
PT
7819struct cfs_schedulable_data {
7820 struct task_group *tg;
7821 u64 period, quota;
7822};
7823
7824/*
7825 * normalize group quota/period to be quota/max_period
7826 * note: units are usecs
7827 */
7828static u64 normalize_cfs_quota(struct task_group *tg,
7829 struct cfs_schedulable_data *d)
7830{
7831 u64 quota, period;
7832
7833 if (tg == d->tg) {
7834 period = d->period;
7835 quota = d->quota;
7836 } else {
7837 period = tg_get_cfs_period(tg);
7838 quota = tg_get_cfs_quota(tg);
7839 }
7840
7841 /* note: these should typically be equivalent */
7842 if (quota == RUNTIME_INF || quota == -1)
7843 return RUNTIME_INF;
7844
7845 return to_ratio(period, quota);
7846}
7847
7848static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7849{
7850 struct cfs_schedulable_data *d = data;
029632fb 7851 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7852 s64 quota = 0, parent_quota = -1;
7853
7854 if (!tg->parent) {
7855 quota = RUNTIME_INF;
7856 } else {
029632fb 7857 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7858
7859 quota = normalize_cfs_quota(tg, d);
7860 parent_quota = parent_b->hierarchal_quota;
7861
7862 /*
7863 * ensure max(child_quota) <= parent_quota, inherit when no
7864 * limit is set
7865 */
7866 if (quota == RUNTIME_INF)
7867 quota = parent_quota;
7868 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7869 return -EINVAL;
7870 }
7871 cfs_b->hierarchal_quota = quota;
7872
7873 return 0;
7874}
7875
7876static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7877{
8277434e 7878 int ret;
a790de99
PT
7879 struct cfs_schedulable_data data = {
7880 .tg = tg,
7881 .period = period,
7882 .quota = quota,
7883 };
7884
7885 if (quota != RUNTIME_INF) {
7886 do_div(data.period, NSEC_PER_USEC);
7887 do_div(data.quota, NSEC_PER_USEC);
7888 }
7889
8277434e
PT
7890 rcu_read_lock();
7891 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7892 rcu_read_unlock();
7893
7894 return ret;
a790de99 7895}
e8da1b18
NR
7896
7897static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7898 struct cgroup_map_cb *cb)
7899{
7900 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7902
7903 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7904 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7905 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7906
7907 return 0;
7908}
ab84d31e 7909#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7910#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7911
052f1dc7 7912#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7913static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7914 s64 val)
6f505b16 7915{
06ecb27c 7916 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7917}
7918
06ecb27c 7919static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7920{
06ecb27c 7921 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7922}
d0b27fa7
PZ
7923
7924static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7925 u64 rt_period_us)
7926{
7927 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7928}
7929
7930static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7931{
7932 return sched_group_rt_period(cgroup_tg(cgrp));
7933}
6d6bc0ad 7934#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7935
fe5c7cc2 7936static struct cftype cpu_files[] = {
052f1dc7 7937#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7938 {
7939 .name = "shares",
f4c753b7
PM
7940 .read_u64 = cpu_shares_read_u64,
7941 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7942 },
052f1dc7 7943#endif
ab84d31e
PT
7944#ifdef CONFIG_CFS_BANDWIDTH
7945 {
7946 .name = "cfs_quota_us",
7947 .read_s64 = cpu_cfs_quota_read_s64,
7948 .write_s64 = cpu_cfs_quota_write_s64,
7949 },
7950 {
7951 .name = "cfs_period_us",
7952 .read_u64 = cpu_cfs_period_read_u64,
7953 .write_u64 = cpu_cfs_period_write_u64,
7954 },
e8da1b18
NR
7955 {
7956 .name = "stat",
7957 .read_map = cpu_stats_show,
7958 },
ab84d31e 7959#endif
052f1dc7 7960#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7961 {
9f0c1e56 7962 .name = "rt_runtime_us",
06ecb27c
PM
7963 .read_s64 = cpu_rt_runtime_read,
7964 .write_s64 = cpu_rt_runtime_write,
6f505b16 7965 },
d0b27fa7
PZ
7966 {
7967 .name = "rt_period_us",
f4c753b7
PM
7968 .read_u64 = cpu_rt_period_read_uint,
7969 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7970 },
052f1dc7 7971#endif
4baf6e33 7972 { } /* terminate */
68318b8e
SV
7973};
7974
68318b8e 7975struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7976 .name = "cpu",
92fb9748
TH
7977 .css_alloc = cpu_cgroup_css_alloc,
7978 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7979 .css_online = cpu_cgroup_css_online,
7980 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7981 .can_attach = cpu_cgroup_can_attach,
7982 .attach = cpu_cgroup_attach,
068c5cc5 7983 .exit = cpu_cgroup_exit,
38605cae 7984 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7985 .base_cftypes = cpu_files,
68318b8e
SV
7986 .early_init = 1,
7987};
7988
052f1dc7 7989#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7990
7991#ifdef CONFIG_CGROUP_CPUACCT
7992
7993/*
7994 * CPU accounting code for task groups.
7995 *
7996 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7997 * (balbir@in.ibm.com).
7998 */
7999
73fbec60
FW
8000struct cpuacct root_cpuacct;
8001
d842de87 8002/* create a new cpu accounting group */
92fb9748 8003static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 8004{
54c707e9 8005 struct cpuacct *ca;
d842de87 8006
54c707e9
GC
8007 if (!cgrp->parent)
8008 return &root_cpuacct.css;
8009
8010 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8011 if (!ca)
ef12fefa 8012 goto out;
d842de87
SV
8013
8014 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8015 if (!ca->cpuusage)
8016 goto out_free_ca;
8017
54c707e9
GC
8018 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8019 if (!ca->cpustat)
8020 goto out_free_cpuusage;
934352f2 8021
d842de87 8022 return &ca->css;
ef12fefa 8023
54c707e9 8024out_free_cpuusage:
ef12fefa
BR
8025 free_percpu(ca->cpuusage);
8026out_free_ca:
8027 kfree(ca);
8028out:
8029 return ERR_PTR(-ENOMEM);
d842de87
SV
8030}
8031
8032/* destroy an existing cpu accounting group */
92fb9748 8033static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8034{
32cd756a 8035 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8036
54c707e9 8037 free_percpu(ca->cpustat);
d842de87
SV
8038 free_percpu(ca->cpuusage);
8039 kfree(ca);
8040}
8041
720f5498
KC
8042static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8043{
b36128c8 8044 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8045 u64 data;
8046
8047#ifndef CONFIG_64BIT
8048 /*
8049 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8050 */
05fa785c 8051 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8052 data = *cpuusage;
05fa785c 8053 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8054#else
8055 data = *cpuusage;
8056#endif
8057
8058 return data;
8059}
8060
8061static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8062{
b36128c8 8063 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8064
8065#ifndef CONFIG_64BIT
8066 /*
8067 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8068 */
05fa785c 8069 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8070 *cpuusage = val;
05fa785c 8071 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8072#else
8073 *cpuusage = val;
8074#endif
8075}
8076
d842de87 8077/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8078static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8079{
32cd756a 8080 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8081 u64 totalcpuusage = 0;
8082 int i;
8083
720f5498
KC
8084 for_each_present_cpu(i)
8085 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8086
8087 return totalcpuusage;
8088}
8089
0297b803
DG
8090static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8091 u64 reset)
8092{
8093 struct cpuacct *ca = cgroup_ca(cgrp);
8094 int err = 0;
8095 int i;
8096
8097 if (reset) {
8098 err = -EINVAL;
8099 goto out;
8100 }
8101
720f5498
KC
8102 for_each_present_cpu(i)
8103 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8104
0297b803
DG
8105out:
8106 return err;
8107}
8108
e9515c3c
KC
8109static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8110 struct seq_file *m)
8111{
8112 struct cpuacct *ca = cgroup_ca(cgroup);
8113 u64 percpu;
8114 int i;
8115
8116 for_each_present_cpu(i) {
8117 percpu = cpuacct_cpuusage_read(ca, i);
8118 seq_printf(m, "%llu ", (unsigned long long) percpu);
8119 }
8120 seq_printf(m, "\n");
8121 return 0;
8122}
8123
ef12fefa
BR
8124static const char *cpuacct_stat_desc[] = {
8125 [CPUACCT_STAT_USER] = "user",
8126 [CPUACCT_STAT_SYSTEM] = "system",
8127};
8128
8129static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8130 struct cgroup_map_cb *cb)
ef12fefa
BR
8131{
8132 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8133 int cpu;
8134 s64 val = 0;
ef12fefa 8135
54c707e9
GC
8136 for_each_online_cpu(cpu) {
8137 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8138 val += kcpustat->cpustat[CPUTIME_USER];
8139 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8140 }
54c707e9
GC
8141 val = cputime64_to_clock_t(val);
8142 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8143
54c707e9
GC
8144 val = 0;
8145 for_each_online_cpu(cpu) {
8146 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8147 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8148 val += kcpustat->cpustat[CPUTIME_IRQ];
8149 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8150 }
54c707e9
GC
8151
8152 val = cputime64_to_clock_t(val);
8153 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8154
ef12fefa
BR
8155 return 0;
8156}
8157
d842de87
SV
8158static struct cftype files[] = {
8159 {
8160 .name = "usage",
f4c753b7
PM
8161 .read_u64 = cpuusage_read,
8162 .write_u64 = cpuusage_write,
d842de87 8163 },
e9515c3c
KC
8164 {
8165 .name = "usage_percpu",
8166 .read_seq_string = cpuacct_percpu_seq_read,
8167 },
ef12fefa
BR
8168 {
8169 .name = "stat",
8170 .read_map = cpuacct_stats_show,
8171 },
4baf6e33 8172 { } /* terminate */
d842de87
SV
8173};
8174
d842de87
SV
8175/*
8176 * charge this task's execution time to its accounting group.
8177 *
8178 * called with rq->lock held.
8179 */
029632fb 8180void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8181{
8182 struct cpuacct *ca;
934352f2 8183 int cpu;
d842de87 8184
c40c6f85 8185 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8186 return;
8187
934352f2 8188 cpu = task_cpu(tsk);
a18b83b7
BR
8189
8190 rcu_read_lock();
8191
d842de87 8192 ca = task_ca(tsk);
d842de87 8193
44252e42 8194 for (; ca; ca = parent_ca(ca)) {
b36128c8 8195 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8196 *cpuusage += cputime;
8197 }
a18b83b7
BR
8198
8199 rcu_read_unlock();
d842de87
SV
8200}
8201
8202struct cgroup_subsys cpuacct_subsys = {
8203 .name = "cpuacct",
92fb9748
TH
8204 .css_alloc = cpuacct_css_alloc,
8205 .css_free = cpuacct_css_free,
d842de87 8206 .subsys_id = cpuacct_subsys_id,
4baf6e33 8207 .base_cftypes = files,
d842de87
SV
8208};
8209#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8210
8211void dump_cpu_task(int cpu)
8212{
8213 pr_info("Task dump for CPU %d:\n", cpu);
8214 sched_show_task(cpu_curr(cpu));
8215}