sched/fair: Use __schedstat_set() in set_next_entity()
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
fa85ae24 79/*
d1ccc66d 80 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
81 * default: 1s
82 */
9f0c1e56 83unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 84
029632fb 85__read_mostly int scheduler_running;
6892b75e 86
9edeaea1
PZ
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
8a311c74
PZ
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
c6047c2e 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
c6047c2e
JFG
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
c6047c2e 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
8a311c74
PZ
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
6e33cad0 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
6e33cad0 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
181{
182 rq->core->core_task_seq++;
183
6e33cad0 184 if (!sched_core_enqueued(p))
8a311c74
PZ
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
6e33cad0 188 RB_CLEAR_NODE(&p->core_node);
8a311c74
PZ
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
d2dfa17b
PZ
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
9edeaea1
PZ
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
875feb41 237static atomic_t sched_core_count;
9edeaea1
PZ
238static struct cpumask sched_core_mask;
239
3c474b32
PZ
240static void sched_core_lock(int cpu, unsigned long *flags)
241{
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248}
249
250static void sched_core_unlock(int cpu, unsigned long *flags)
251{
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258}
259
9edeaea1
PZ
260static void __sched_core_flip(bool enabled)
261{
3c474b32
PZ
262 unsigned long flags;
263 int cpu, t;
9edeaea1
PZ
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
3c474b32 274 sched_core_lock(cpu, &flags);
9edeaea1
PZ
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
3c474b32 279 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294}
295
8a311c74 296static void sched_core_assert_empty(void)
9edeaea1 297{
8a311c74 298 int cpu;
9edeaea1 299
8a311c74
PZ
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302}
303
304static void __sched_core_enable(void)
305{
9edeaea1
PZ
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
8a311c74 313 sched_core_assert_empty();
9edeaea1
PZ
314}
315
316static void __sched_core_disable(void)
317{
8a311c74 318 sched_core_assert_empty();
9edeaea1
PZ
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321}
322
323void sched_core_get(void)
324{
875feb41
PZ
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
9edeaea1 328 mutex_lock(&sched_core_mutex);
875feb41 329 if (!atomic_read(&sched_core_count))
9edeaea1 330 __sched_core_enable();
875feb41
PZ
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
9edeaea1
PZ
334 mutex_unlock(&sched_core_mutex);
335}
336
875feb41 337static void __sched_core_put(struct work_struct *work)
9edeaea1 338{
875feb41 339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 340 __sched_core_disable();
875feb41
PZ
341 mutex_unlock(&sched_core_mutex);
342 }
343}
344
345void sched_core_put(void)
346{
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
9edeaea1
PZ
358}
359
8a311c74
PZ
360#else /* !CONFIG_SCHED_CORE */
361
362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
9edeaea1
PZ
365#endif /* CONFIG_SCHED_CORE */
366
9f0c1e56
PZ
367/*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371int sysctl_sched_rt_runtime = 950000;
fa85ae24 372
58877d34
PZ
373
374/*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 390 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
39d371b7
PZ
467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468{
d66f1b06
PZ
469 raw_spinlock_t *lock;
470
9edeaea1
PZ
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
d66f1b06
PZ
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
d66f1b06
PZ
477 return;
478 }
479
480 for (;;) {
9ef7e7e3 481 lock = __rq_lockp(rq);
d66f1b06 482 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 483 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
d66f1b06 486 return;
9edeaea1 487 }
d66f1b06
PZ
488 raw_spin_unlock(lock);
489 }
39d371b7
PZ
490}
491
492bool raw_spin_rq_trylock(struct rq *rq)
493{
d66f1b06
PZ
494 raw_spinlock_t *lock;
495 bool ret;
496
9edeaea1
PZ
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
d66f1b06
PZ
504
505 for (;;) {
9ef7e7e3 506 lock = __rq_lockp(rq);
d66f1b06 507 ret = raw_spin_trylock(lock);
9ef7e7e3 508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 509 preempt_enable();
d66f1b06 510 return ret;
9edeaea1 511 }
d66f1b06
PZ
512 raw_spin_unlock(lock);
513 }
39d371b7
PZ
514}
515
516void raw_spin_rq_unlock(struct rq *rq)
517{
518 raw_spin_unlock(rq_lockp(rq));
519}
520
d66f1b06
PZ
521#ifdef CONFIG_SMP
522/*
523 * double_rq_lock - safely lock two runqueues
524 */
525void double_rq_lock(struct rq *rq1, struct rq *rq2)
526{
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
9ef7e7e3 533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537}
538#endif
539
3e71a462
PZ
540/*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
eb580751 543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
544 __acquires(rq->lock)
545{
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
5cb9eaa3 552 raw_spin_rq_lock(rq);
3e71a462 553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 554 rq_pin_lock(rq, rf);
3e71a462
PZ
555 return rq;
556 }
5cb9eaa3 557 raw_spin_rq_unlock(rq);
3e71a462
PZ
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562}
563
564/*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
eb580751 567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570{
571 struct rq *rq;
572
573 for (;;) {
eb580751 574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 575 rq = task_rq(p);
5cb9eaa3 576 raw_spin_rq_lock(rq);
3e71a462
PZ
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
c546951d 587 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
588 * the old rq->lock will fully serialize against the stores.
589 *
c546951d
AP
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 595 rq_pin_lock(rq, rf);
3e71a462
PZ
596 return rq;
597 }
5cb9eaa3 598 raw_spin_rq_unlock(rq);
eb580751 599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604}
605
535b9552
IM
606/*
607 * RQ-clock updating methods:
608 */
609
610static void update_rq_clock_task(struct rq *rq, s64 delta)
611{
612/*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
11d4afd4
VG
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
535b9552
IM
618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641#endif
642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((&paravirt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653#endif
654
655 rq->clock_task += delta;
656
11d4afd4 657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 659 update_irq_load_avg(rq, irq_delta + steal);
535b9552 660#endif
23127296 661 update_rq_clock_pelt(rq, delta);
535b9552
IM
662}
663
664void update_rq_clock(struct rq *rq)
665{
666 s64 delta;
667
5cb9eaa3 668 lockdep_assert_rq_held(rq);
535b9552
IM
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
676 rq->clock_update_flags |= RQCF_UPDATED;
677#endif
26ae58d2 678
535b9552
IM
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684}
685
8f4d37ec
PZ
686#ifdef CONFIG_SCHED_HRTICK
687/*
688 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 689 */
8f4d37ec 690
8f4d37ec
PZ
691static void hrtick_clear(struct rq *rq)
692{
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695}
696
8f4d37ec
PZ
697/*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
701static enum hrtimer_restart hrtick(struct hrtimer *timer)
702{
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 704 struct rq_flags rf;
8f4d37ec
PZ
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
8a8c69c3 708 rq_lock(rq, &rf);
3e51f33f 709 update_rq_clock(rq);
8f4d37ec 710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 711 rq_unlock(rq, &rf);
8f4d37ec
PZ
712
713 return HRTIMER_NORESTART;
714}
715
95e904c7 716#ifdef CONFIG_SMP
971ee28c 717
4961b6e1 718static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
719{
720 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 721 ktime_t time = rq->hrtick_time;
971ee28c 722
156ec6f4 723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
724}
725
31656519
PZ
726/*
727 * called from hardirq (IPI) context
728 */
729static void __hrtick_start(void *arg)
b328ca18 730{
31656519 731 struct rq *rq = arg;
8a8c69c3 732 struct rq_flags rf;
b328ca18 733
8a8c69c3 734 rq_lock(rq, &rf);
971ee28c 735 __hrtick_restart(rq);
8a8c69c3 736 rq_unlock(rq, &rf);
b328ca18
PZ
737}
738
31656519
PZ
739/*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
029632fb 744void hrtick_start(struct rq *rq, u64 delay)
b328ca18 745{
31656519 746 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
156ec6f4 754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 755
fd3eafda 756 if (rq == this_rq())
971ee28c 757 __hrtick_restart(rq);
fd3eafda 758 else
c46fff2a 759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
760}
761
31656519
PZ
762#else
763/*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
029632fb 768void hrtick_start(struct rq *rq, u64 delay)
31656519 769{
86893335
WL
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
4961b6e1 775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 776 HRTIMER_MODE_REL_PINNED_HARD);
31656519 777}
90b5363a 778
31656519 779#endif /* CONFIG_SMP */
8f4d37ec 780
77a021be 781static void hrtick_rq_init(struct rq *rq)
8f4d37ec 782{
31656519 783#ifdef CONFIG_SMP
545b8c8d 784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 785#endif
d5096aa6 786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 787 rq->hrtick_timer.function = hrtick;
8f4d37ec 788}
006c75f1 789#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
790static inline void hrtick_clear(struct rq *rq)
791{
792}
793
77a021be 794static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
795{
796}
006c75f1 797#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 798
5529578a
FW
799/*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802#define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815})
816
e3baac47 817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
818/*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
823static bool set_nr_and_not_polling(struct task_struct *p)
824{
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827}
e3baac47
PZ
828
829/*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
835static bool set_nr_if_polling(struct task_struct *p)
836{
837 struct thread_info *ti = task_thread_info(p);
316c1608 838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851}
852
fd99f91a
PZ
853#else
854static bool set_nr_and_not_polling(struct task_struct *p)
855{
856 set_tsk_need_resched(p);
857 return true;
858}
e3baac47
PZ
859
860#ifdef CONFIG_SMP
861static bool set_nr_if_polling(struct task_struct *p)
862{
863 return false;
864}
865#endif
fd99f91a
PZ
866#endif
867
07879c6a 868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
869{
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 874 * it's already queued (either by us or someone else) and will get the
76751049
PZ
875 * wakeup due to that.
876 *
4c4e3731
PZ
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 879 */
4c4e3731 880 smp_mb__before_atomic();
87ff19cb 881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 882 return false;
76751049
PZ
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
07879c6a
DB
889 return true;
890}
891
892/**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905{
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908}
909
910/**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928{
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
76751049
PZ
931}
932
933void wake_up_q(struct wake_q_head *head)
934{
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 941 /* Task can safely be re-inserted now: */
76751049
PZ
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
7696f991
AP
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952}
953
c24d20db 954/*
8875125e 955 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
8875125e 961void resched_curr(struct rq *rq)
c24d20db 962{
8875125e 963 struct task_struct *curr = rq->curr;
c24d20db
IM
964 int cpu;
965
5cb9eaa3 966 lockdep_assert_rq_held(rq);
c24d20db 967
8875125e 968 if (test_tsk_need_resched(curr))
c24d20db
IM
969 return;
970
8875125e 971 cpu = cpu_of(rq);
fd99f91a 972
f27dde8d 973 if (cpu == smp_processor_id()) {
8875125e 974 set_tsk_need_resched(curr);
f27dde8d 975 set_preempt_need_resched();
c24d20db 976 return;
f27dde8d 977 }
c24d20db 978
8875125e 979 if (set_nr_and_not_polling(curr))
c24d20db 980 smp_send_reschedule(cpu);
dfc68f29
AL
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
983}
984
029632fb 985void resched_cpu(int cpu)
c24d20db
IM
986{
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
5cb9eaa3 990 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
5cb9eaa3 993 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 994}
06d8308c 995
b021fe3e 996#ifdef CONFIG_SMP
3451d024 997#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 998/*
d1ccc66d
IM
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1001 *
1002 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1005 */
bc7a34b8 1006int get_nohz_timer_target(void)
83cd4fe2 1007{
e938b9c9 1008 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1009 struct sched_domain *sd;
031e3bd8 1010 const struct cpumask *hk_mask;
83cd4fe2 1011
e938b9c9
WL
1012 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1013 if (!idle_cpu(cpu))
1014 return cpu;
1015 default_cpu = cpu;
1016 }
6201b4d6 1017
031e3bd8
YZ
1018 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1019
057f3fad 1020 rcu_read_lock();
83cd4fe2 1021 for_each_domain(cpu, sd) {
031e3bd8 1022 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1023 if (cpu == i)
1024 continue;
1025
e938b9c9 1026 if (!idle_cpu(i)) {
057f3fad
PZ
1027 cpu = i;
1028 goto unlock;
1029 }
1030 }
83cd4fe2 1031 }
9642d18e 1032
e938b9c9
WL
1033 if (default_cpu == -1)
1034 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1035 cpu = default_cpu;
057f3fad
PZ
1036unlock:
1037 rcu_read_unlock();
83cd4fe2
VP
1038 return cpu;
1039}
d1ccc66d 1040
06d8308c
TG
1041/*
1042 * When add_timer_on() enqueues a timer into the timer wheel of an
1043 * idle CPU then this timer might expire before the next timer event
1044 * which is scheduled to wake up that CPU. In case of a completely
1045 * idle system the next event might even be infinite time into the
1046 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1047 * leaves the inner idle loop so the newly added timer is taken into
1048 * account when the CPU goes back to idle and evaluates the timer
1049 * wheel for the next timer event.
1050 */
1c20091e 1051static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1052{
1053 struct rq *rq = cpu_rq(cpu);
1054
1055 if (cpu == smp_processor_id())
1056 return;
1057
67b9ca70 1058 if (set_nr_and_not_polling(rq->idle))
06d8308c 1059 smp_send_reschedule(cpu);
dfc68f29
AL
1060 else
1061 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1062}
1063
c5bfece2 1064static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1065{
53c5fa16
FW
1066 /*
1067 * We just need the target to call irq_exit() and re-evaluate
1068 * the next tick. The nohz full kick at least implies that.
1069 * If needed we can still optimize that later with an
1070 * empty IRQ.
1071 */
379d9ecb
PM
1072 if (cpu_is_offline(cpu))
1073 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1074 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1075 if (cpu != smp_processor_id() ||
1076 tick_nohz_tick_stopped())
53c5fa16 1077 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1078 return true;
1079 }
1080
1081 return false;
1082}
1083
379d9ecb
PM
1084/*
1085 * Wake up the specified CPU. If the CPU is going offline, it is the
1086 * caller's responsibility to deal with the lost wakeup, for example,
1087 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1088 */
1c20091e
FW
1089void wake_up_nohz_cpu(int cpu)
1090{
c5bfece2 1091 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1092 wake_up_idle_cpu(cpu);
1093}
1094
19a1f5ec 1095static void nohz_csd_func(void *info)
45bf76df 1096{
19a1f5ec
PZ
1097 struct rq *rq = info;
1098 int cpu = cpu_of(rq);
1099 unsigned int flags;
873b4c65
VG
1100
1101 /*
19a1f5ec 1102 * Release the rq::nohz_csd.
873b4c65 1103 */
c6f88654 1104 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1105 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1106
19a1f5ec
PZ
1107 rq->idle_balance = idle_cpu(cpu);
1108 if (rq->idle_balance && !need_resched()) {
1109 rq->nohz_idle_balance = flags;
90b5363a
PZI
1110 raise_softirq_irqoff(SCHED_SOFTIRQ);
1111 }
2069dd75
PZ
1112}
1113
3451d024 1114#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1115
ce831b38 1116#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1117bool sched_can_stop_tick(struct rq *rq)
ce831b38 1118{
76d92ac3
FW
1119 int fifo_nr_running;
1120
1121 /* Deadline tasks, even if single, need the tick */
1122 if (rq->dl.dl_nr_running)
1123 return false;
1124
1e78cdbd 1125 /*
b19a888c 1126 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1127 * actual RR behaviour.
1e78cdbd 1128 */
76d92ac3
FW
1129 if (rq->rt.rr_nr_running) {
1130 if (rq->rt.rr_nr_running == 1)
1131 return true;
1132 else
1133 return false;
1e78cdbd
RR
1134 }
1135
2548d546
PZ
1136 /*
1137 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1138 * forced preemption between FIFO tasks.
1139 */
1140 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1141 if (fifo_nr_running)
1142 return true;
1143
1144 /*
1145 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1146 * if there's more than one we need the tick for involuntary
1147 * preemption.
1148 */
1149 if (rq->nr_running > 1)
541b8264 1150 return false;
ce831b38 1151
541b8264 1152 return true;
ce831b38
FW
1153}
1154#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1155#endif /* CONFIG_SMP */
18d95a28 1156
a790de99
PT
1157#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1158 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1159/*
8277434e
PT
1160 * Iterate task_group tree rooted at *from, calling @down when first entering a
1161 * node and @up when leaving it for the final time.
1162 *
1163 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1164 */
029632fb 1165int walk_tg_tree_from(struct task_group *from,
8277434e 1166 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1167{
1168 struct task_group *parent, *child;
eb755805 1169 int ret;
c09595f6 1170
8277434e
PT
1171 parent = from;
1172
c09595f6 1173down:
eb755805
PZ
1174 ret = (*down)(parent, data);
1175 if (ret)
8277434e 1176 goto out;
c09595f6
PZ
1177 list_for_each_entry_rcu(child, &parent->children, siblings) {
1178 parent = child;
1179 goto down;
1180
1181up:
1182 continue;
1183 }
eb755805 1184 ret = (*up)(parent, data);
8277434e
PT
1185 if (ret || parent == from)
1186 goto out;
c09595f6
PZ
1187
1188 child = parent;
1189 parent = parent->parent;
1190 if (parent)
1191 goto up;
8277434e 1192out:
eb755805 1193 return ret;
c09595f6
PZ
1194}
1195
029632fb 1196int tg_nop(struct task_group *tg, void *data)
eb755805 1197{
e2b245f8 1198 return 0;
eb755805 1199}
18d95a28
PZ
1200#endif
1201
9059393e 1202static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1203{
f05998d4
NR
1204 int prio = p->static_prio - MAX_RT_PRIO;
1205 struct load_weight *load = &p->se.load;
1206
dd41f596
IM
1207 /*
1208 * SCHED_IDLE tasks get minimal weight:
1209 */
1da1843f 1210 if (task_has_idle_policy(p)) {
c8b28116 1211 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1212 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1213 return;
1214 }
71f8bd46 1215
9059393e
VG
1216 /*
1217 * SCHED_OTHER tasks have to update their load when changing their
1218 * weight
1219 */
1220 if (update_load && p->sched_class == &fair_sched_class) {
1221 reweight_task(p, prio);
1222 } else {
1223 load->weight = scale_load(sched_prio_to_weight[prio]);
1224 load->inv_weight = sched_prio_to_wmult[prio];
1225 }
71f8bd46
IM
1226}
1227
69842cba 1228#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1229/*
1230 * Serializes updates of utilization clamp values
1231 *
1232 * The (slow-path) user-space triggers utilization clamp value updates which
1233 * can require updates on (fast-path) scheduler's data structures used to
1234 * support enqueue/dequeue operations.
1235 * While the per-CPU rq lock protects fast-path update operations, user-space
1236 * requests are serialized using a mutex to reduce the risk of conflicting
1237 * updates or API abuses.
1238 */
1239static DEFINE_MUTEX(uclamp_mutex);
1240
e8f14172
PB
1241/* Max allowed minimum utilization */
1242unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1243
1244/* Max allowed maximum utilization */
1245unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1246
13685c4a
QY
1247/*
1248 * By default RT tasks run at the maximum performance point/capacity of the
1249 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1250 * SCHED_CAPACITY_SCALE.
1251 *
1252 * This knob allows admins to change the default behavior when uclamp is being
1253 * used. In battery powered devices, particularly, running at the maximum
1254 * capacity and frequency will increase energy consumption and shorten the
1255 * battery life.
1256 *
1257 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1258 *
1259 * This knob will not override the system default sched_util_clamp_min defined
1260 * above.
1261 */
1262unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1263
e8f14172
PB
1264/* All clamps are required to be less or equal than these values */
1265static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1266
46609ce2
QY
1267/*
1268 * This static key is used to reduce the uclamp overhead in the fast path. It
1269 * primarily disables the call to uclamp_rq_{inc, dec}() in
1270 * enqueue/dequeue_task().
1271 *
1272 * This allows users to continue to enable uclamp in their kernel config with
1273 * minimum uclamp overhead in the fast path.
1274 *
1275 * As soon as userspace modifies any of the uclamp knobs, the static key is
1276 * enabled, since we have an actual users that make use of uclamp
1277 * functionality.
1278 *
1279 * The knobs that would enable this static key are:
1280 *
1281 * * A task modifying its uclamp value with sched_setattr().
1282 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1283 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1284 */
1285DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1286
69842cba
PB
1287/* Integer rounded range for each bucket */
1288#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1289
1290#define for_each_clamp_id(clamp_id) \
1291 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1292
1293static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1294{
6d2f8909 1295 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1296}
1297
7763baac 1298static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1299{
1300 if (clamp_id == UCLAMP_MIN)
1301 return 0;
1302 return SCHED_CAPACITY_SCALE;
1303}
1304
a509a7cd
PB
1305static inline void uclamp_se_set(struct uclamp_se *uc_se,
1306 unsigned int value, bool user_defined)
69842cba
PB
1307{
1308 uc_se->value = value;
1309 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1310 uc_se->user_defined = user_defined;
69842cba
PB
1311}
1312
e496187d 1313static inline unsigned int
0413d7f3 1314uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1315 unsigned int clamp_value)
1316{
1317 /*
1318 * Avoid blocked utilization pushing up the frequency when we go
1319 * idle (which drops the max-clamp) by retaining the last known
1320 * max-clamp.
1321 */
1322 if (clamp_id == UCLAMP_MAX) {
1323 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1324 return clamp_value;
1325 }
1326
1327 return uclamp_none(UCLAMP_MIN);
1328}
1329
0413d7f3 1330static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1331 unsigned int clamp_value)
1332{
1333 /* Reset max-clamp retention only on idle exit */
1334 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1335 return;
1336
1337 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1338}
1339
69842cba 1340static inline
7763baac 1341unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1342 unsigned int clamp_value)
69842cba
PB
1343{
1344 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1345 int bucket_id = UCLAMP_BUCKETS - 1;
1346
1347 /*
1348 * Since both min and max clamps are max aggregated, find the
1349 * top most bucket with tasks in.
1350 */
1351 for ( ; bucket_id >= 0; bucket_id--) {
1352 if (!bucket[bucket_id].tasks)
1353 continue;
1354 return bucket[bucket_id].value;
1355 }
1356
1357 /* No tasks -- default clamp values */
e496187d 1358 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1359}
1360
13685c4a
QY
1361static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1362{
1363 unsigned int default_util_min;
1364 struct uclamp_se *uc_se;
1365
1366 lockdep_assert_held(&p->pi_lock);
1367
1368 uc_se = &p->uclamp_req[UCLAMP_MIN];
1369
1370 /* Only sync if user didn't override the default */
1371 if (uc_se->user_defined)
1372 return;
1373
1374 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1375 uclamp_se_set(uc_se, default_util_min, false);
1376}
1377
1378static void uclamp_update_util_min_rt_default(struct task_struct *p)
1379{
1380 struct rq_flags rf;
1381 struct rq *rq;
1382
1383 if (!rt_task(p))
1384 return;
1385
1386 /* Protect updates to p->uclamp_* */
1387 rq = task_rq_lock(p, &rf);
1388 __uclamp_update_util_min_rt_default(p);
1389 task_rq_unlock(rq, p, &rf);
1390}
1391
1392static void uclamp_sync_util_min_rt_default(void)
1393{
1394 struct task_struct *g, *p;
1395
1396 /*
1397 * copy_process() sysctl_uclamp
1398 * uclamp_min_rt = X;
1399 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1400 * // link thread smp_mb__after_spinlock()
1401 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1402 * sched_post_fork() for_each_process_thread()
1403 * __uclamp_sync_rt() __uclamp_sync_rt()
1404 *
1405 * Ensures that either sched_post_fork() will observe the new
1406 * uclamp_min_rt or for_each_process_thread() will observe the new
1407 * task.
1408 */
1409 read_lock(&tasklist_lock);
1410 smp_mb__after_spinlock();
1411 read_unlock(&tasklist_lock);
1412
1413 rcu_read_lock();
1414 for_each_process_thread(g, p)
1415 uclamp_update_util_min_rt_default(p);
1416 rcu_read_unlock();
1417}
1418
3eac870a 1419static inline struct uclamp_se
0413d7f3 1420uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1421{
0213b708 1422 /* Copy by value as we could modify it */
3eac870a
PB
1423 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1424#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1425 unsigned int tg_min, tg_max, value;
3eac870a
PB
1426
1427 /*
1428 * Tasks in autogroups or root task group will be
1429 * restricted by system defaults.
1430 */
1431 if (task_group_is_autogroup(task_group(p)))
1432 return uc_req;
1433 if (task_group(p) == &root_task_group)
1434 return uc_req;
1435
0213b708
QY
1436 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1437 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1438 value = uc_req.value;
1439 value = clamp(value, tg_min, tg_max);
1440 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1441#endif
1442
1443 return uc_req;
1444}
1445
e8f14172
PB
1446/*
1447 * The effective clamp bucket index of a task depends on, by increasing
1448 * priority:
1449 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1450 * - the task group effective clamp value, for tasks not either in the root
1451 * group or in an autogroup
e8f14172
PB
1452 * - the system default clamp value, defined by the sysadmin
1453 */
1454static inline struct uclamp_se
0413d7f3 1455uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1456{
3eac870a 1457 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1458 struct uclamp_se uc_max = uclamp_default[clamp_id];
1459
1460 /* System default restrictions always apply */
1461 if (unlikely(uc_req.value > uc_max.value))
1462 return uc_max;
1463
1464 return uc_req;
1465}
1466
686516b5 1467unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1468{
1469 struct uclamp_se uc_eff;
1470
1471 /* Task currently refcounted: use back-annotated (effective) value */
1472 if (p->uclamp[clamp_id].active)
686516b5 1473 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1474
1475 uc_eff = uclamp_eff_get(p, clamp_id);
1476
686516b5 1477 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1478}
1479
69842cba
PB
1480/*
1481 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1482 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1483 * updates the rq's clamp value if required.
60daf9c1
PB
1484 *
1485 * Tasks can have a task-specific value requested from user-space, track
1486 * within each bucket the maximum value for tasks refcounted in it.
1487 * This "local max aggregation" allows to track the exact "requested" value
1488 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1489 */
1490static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1491 enum uclamp_id clamp_id)
69842cba
PB
1492{
1493 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1494 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1495 struct uclamp_bucket *bucket;
1496
5cb9eaa3 1497 lockdep_assert_rq_held(rq);
69842cba 1498
e8f14172
PB
1499 /* Update task effective clamp */
1500 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1501
69842cba
PB
1502 bucket = &uc_rq->bucket[uc_se->bucket_id];
1503 bucket->tasks++;
e8f14172 1504 uc_se->active = true;
69842cba 1505
e496187d
PB
1506 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1507
60daf9c1
PB
1508 /*
1509 * Local max aggregation: rq buckets always track the max
1510 * "requested" clamp value of its RUNNABLE tasks.
1511 */
1512 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1513 bucket->value = uc_se->value;
1514
69842cba 1515 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1516 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1517}
1518
1519/*
1520 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1521 * is released. If this is the last task reference counting the rq's max
1522 * active clamp value, then the rq's clamp value is updated.
1523 *
1524 * Both refcounted tasks and rq's cached clamp values are expected to be
1525 * always valid. If it's detected they are not, as defensive programming,
1526 * enforce the expected state and warn.
1527 */
1528static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1529 enum uclamp_id clamp_id)
69842cba
PB
1530{
1531 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533 struct uclamp_bucket *bucket;
e496187d 1534 unsigned int bkt_clamp;
69842cba
PB
1535 unsigned int rq_clamp;
1536
5cb9eaa3 1537 lockdep_assert_rq_held(rq);
69842cba 1538
46609ce2
QY
1539 /*
1540 * If sched_uclamp_used was enabled after task @p was enqueued,
1541 * we could end up with unbalanced call to uclamp_rq_dec_id().
1542 *
1543 * In this case the uc_se->active flag should be false since no uclamp
1544 * accounting was performed at enqueue time and we can just return
1545 * here.
1546 *
b19a888c 1547 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1548 * problem too
1549 *
1550 * enqueue(taskA)
1551 * // sched_uclamp_used gets enabled
1552 * enqueue(taskB)
1553 * dequeue(taskA)
b19a888c 1554 * // Must not decrement bucket->tasks here
46609ce2
QY
1555 * dequeue(taskB)
1556 *
1557 * where we could end up with stale data in uc_se and
1558 * bucket[uc_se->bucket_id].
1559 *
1560 * The following check here eliminates the possibility of such race.
1561 */
1562 if (unlikely(!uc_se->active))
1563 return;
1564
69842cba 1565 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1566
69842cba
PB
1567 SCHED_WARN_ON(!bucket->tasks);
1568 if (likely(bucket->tasks))
1569 bucket->tasks--;
46609ce2 1570
e8f14172 1571 uc_se->active = false;
69842cba 1572
60daf9c1
PB
1573 /*
1574 * Keep "local max aggregation" simple and accept to (possibly)
1575 * overboost some RUNNABLE tasks in the same bucket.
1576 * The rq clamp bucket value is reset to its base value whenever
1577 * there are no more RUNNABLE tasks refcounting it.
1578 */
69842cba
PB
1579 if (likely(bucket->tasks))
1580 return;
1581
1582 rq_clamp = READ_ONCE(uc_rq->value);
1583 /*
1584 * Defensive programming: this should never happen. If it happens,
1585 * e.g. due to future modification, warn and fixup the expected value.
1586 */
1587 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1588 if (bucket->value >= rq_clamp) {
1589 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1590 WRITE_ONCE(uc_rq->value, bkt_clamp);
1591 }
69842cba
PB
1592}
1593
1594static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1595{
0413d7f3 1596 enum uclamp_id clamp_id;
69842cba 1597
46609ce2
QY
1598 /*
1599 * Avoid any overhead until uclamp is actually used by the userspace.
1600 *
1601 * The condition is constructed such that a NOP is generated when
1602 * sched_uclamp_used is disabled.
1603 */
1604 if (!static_branch_unlikely(&sched_uclamp_used))
1605 return;
1606
69842cba
PB
1607 if (unlikely(!p->sched_class->uclamp_enabled))
1608 return;
1609
1610 for_each_clamp_id(clamp_id)
1611 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1612
1613 /* Reset clamp idle holding when there is one RUNNABLE task */
1614 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1615 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1616}
1617
1618static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1619{
0413d7f3 1620 enum uclamp_id clamp_id;
69842cba 1621
46609ce2
QY
1622 /*
1623 * Avoid any overhead until uclamp is actually used by the userspace.
1624 *
1625 * The condition is constructed such that a NOP is generated when
1626 * sched_uclamp_used is disabled.
1627 */
1628 if (!static_branch_unlikely(&sched_uclamp_used))
1629 return;
1630
69842cba
PB
1631 if (unlikely(!p->sched_class->uclamp_enabled))
1632 return;
1633
1634 for_each_clamp_id(clamp_id)
1635 uclamp_rq_dec_id(rq, p, clamp_id);
1636}
1637
ca4984a7
QP
1638static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1639 enum uclamp_id clamp_id)
1640{
1641 if (!p->uclamp[clamp_id].active)
1642 return;
1643
1644 uclamp_rq_dec_id(rq, p, clamp_id);
1645 uclamp_rq_inc_id(rq, p, clamp_id);
1646
1647 /*
1648 * Make sure to clear the idle flag if we've transiently reached 0
1649 * active tasks on rq.
1650 */
1651 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1652 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653}
1654
babbe170 1655static inline void
0213b708 1656uclamp_update_active(struct task_struct *p)
babbe170 1657{
0213b708 1658 enum uclamp_id clamp_id;
babbe170
PB
1659 struct rq_flags rf;
1660 struct rq *rq;
1661
1662 /*
1663 * Lock the task and the rq where the task is (or was) queued.
1664 *
1665 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1666 * price to pay to safely serialize util_{min,max} updates with
1667 * enqueues, dequeues and migration operations.
1668 * This is the same locking schema used by __set_cpus_allowed_ptr().
1669 */
1670 rq = task_rq_lock(p, &rf);
1671
1672 /*
1673 * Setting the clamp bucket is serialized by task_rq_lock().
1674 * If the task is not yet RUNNABLE and its task_struct is not
1675 * affecting a valid clamp bucket, the next time it's enqueued,
1676 * it will already see the updated clamp bucket value.
1677 */
ca4984a7
QP
1678 for_each_clamp_id(clamp_id)
1679 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1680
1681 task_rq_unlock(rq, p, &rf);
1682}
1683
e3b8b6a0 1684#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1685static inline void
0213b708 1686uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1687{
1688 struct css_task_iter it;
1689 struct task_struct *p;
babbe170
PB
1690
1691 css_task_iter_start(css, 0, &it);
0213b708
QY
1692 while ((p = css_task_iter_next(&it)))
1693 uclamp_update_active(p);
babbe170
PB
1694 css_task_iter_end(&it);
1695}
1696
7274a5c1
PB
1697static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1698static void uclamp_update_root_tg(void)
1699{
1700 struct task_group *tg = &root_task_group;
1701
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1703 sysctl_sched_uclamp_util_min, false);
1704 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1705 sysctl_sched_uclamp_util_max, false);
1706
1707 rcu_read_lock();
1708 cpu_util_update_eff(&root_task_group.css);
1709 rcu_read_unlock();
1710}
1711#else
1712static void uclamp_update_root_tg(void) { }
1713#endif
1714
e8f14172 1715int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1716 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1717{
7274a5c1 1718 bool update_root_tg = false;
13685c4a 1719 int old_min, old_max, old_min_rt;
e8f14172
PB
1720 int result;
1721
2480c093 1722 mutex_lock(&uclamp_mutex);
e8f14172
PB
1723 old_min = sysctl_sched_uclamp_util_min;
1724 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1725 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1726
1727 result = proc_dointvec(table, write, buffer, lenp, ppos);
1728 if (result)
1729 goto undo;
1730 if (!write)
1731 goto done;
1732
1733 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1734 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1735 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1736
e8f14172
PB
1737 result = -EINVAL;
1738 goto undo;
1739 }
1740
1741 if (old_min != sysctl_sched_uclamp_util_min) {
1742 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1743 sysctl_sched_uclamp_util_min, false);
7274a5c1 1744 update_root_tg = true;
e8f14172
PB
1745 }
1746 if (old_max != sysctl_sched_uclamp_util_max) {
1747 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1748 sysctl_sched_uclamp_util_max, false);
7274a5c1 1749 update_root_tg = true;
e8f14172
PB
1750 }
1751
46609ce2
QY
1752 if (update_root_tg) {
1753 static_branch_enable(&sched_uclamp_used);
7274a5c1 1754 uclamp_update_root_tg();
46609ce2 1755 }
7274a5c1 1756
13685c4a
QY
1757 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1758 static_branch_enable(&sched_uclamp_used);
1759 uclamp_sync_util_min_rt_default();
1760 }
7274a5c1 1761
e8f14172 1762 /*
7274a5c1
PB
1763 * We update all RUNNABLE tasks only when task groups are in use.
1764 * Otherwise, keep it simple and do just a lazy update at each next
1765 * task enqueue time.
e8f14172 1766 */
7274a5c1 1767
e8f14172
PB
1768 goto done;
1769
1770undo:
1771 sysctl_sched_uclamp_util_min = old_min;
1772 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1773 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1774done:
2480c093 1775 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1776
1777 return result;
1778}
1779
a509a7cd
PB
1780static int uclamp_validate(struct task_struct *p,
1781 const struct sched_attr *attr)
1782{
480a6ca2
DE
1783 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1784 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1785
480a6ca2
DE
1786 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1787 util_min = attr->sched_util_min;
a509a7cd 1788
480a6ca2
DE
1789 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1790 return -EINVAL;
1791 }
1792
1793 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1794 util_max = attr->sched_util_max;
1795
1796 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1797 return -EINVAL;
1798 }
1799
1800 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1801 return -EINVAL;
1802
e65855a5
QY
1803 /*
1804 * We have valid uclamp attributes; make sure uclamp is enabled.
1805 *
1806 * We need to do that here, because enabling static branches is a
1807 * blocking operation which obviously cannot be done while holding
1808 * scheduler locks.
1809 */
1810 static_branch_enable(&sched_uclamp_used);
1811
a509a7cd
PB
1812 return 0;
1813}
1814
480a6ca2
DE
1815static bool uclamp_reset(const struct sched_attr *attr,
1816 enum uclamp_id clamp_id,
1817 struct uclamp_se *uc_se)
1818{
1819 /* Reset on sched class change for a non user-defined clamp value. */
1820 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1821 !uc_se->user_defined)
1822 return true;
1823
1824 /* Reset on sched_util_{min,max} == -1. */
1825 if (clamp_id == UCLAMP_MIN &&
1826 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1827 attr->sched_util_min == -1) {
1828 return true;
1829 }
1830
1831 if (clamp_id == UCLAMP_MAX &&
1832 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1833 attr->sched_util_max == -1) {
1834 return true;
1835 }
1836
1837 return false;
1838}
1839
a509a7cd
PB
1840static void __setscheduler_uclamp(struct task_struct *p,
1841 const struct sched_attr *attr)
1842{
0413d7f3 1843 enum uclamp_id clamp_id;
1a00d999 1844
1a00d999
PB
1845 for_each_clamp_id(clamp_id) {
1846 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1847 unsigned int value;
1a00d999 1848
480a6ca2 1849 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1850 continue;
1851
13685c4a
QY
1852 /*
1853 * RT by default have a 100% boost value that could be modified
1854 * at runtime.
1855 */
1a00d999 1856 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1857 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1858 else
480a6ca2
DE
1859 value = uclamp_none(clamp_id);
1860
1861 uclamp_se_set(uc_se, value, false);
1a00d999 1862
1a00d999
PB
1863 }
1864
a509a7cd
PB
1865 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1866 return;
1867
480a6ca2
DE
1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1869 attr->sched_util_min != -1) {
a509a7cd
PB
1870 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1871 attr->sched_util_min, true);
1872 }
1873
480a6ca2
DE
1874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1875 attr->sched_util_max != -1) {
a509a7cd
PB
1876 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1877 attr->sched_util_max, true);
1878 }
1879}
1880
e8f14172
PB
1881static void uclamp_fork(struct task_struct *p)
1882{
0413d7f3 1883 enum uclamp_id clamp_id;
e8f14172 1884
13685c4a
QY
1885 /*
1886 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1887 * as the task is still at its early fork stages.
1888 */
e8f14172
PB
1889 for_each_clamp_id(clamp_id)
1890 p->uclamp[clamp_id].active = false;
a87498ac
PB
1891
1892 if (likely(!p->sched_reset_on_fork))
1893 return;
1894
1895 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1896 uclamp_se_set(&p->uclamp_req[clamp_id],
1897 uclamp_none(clamp_id), false);
a87498ac 1898 }
e8f14172
PB
1899}
1900
13685c4a
QY
1901static void uclamp_post_fork(struct task_struct *p)
1902{
1903 uclamp_update_util_min_rt_default(p);
1904}
1905
d81ae8aa
QY
1906static void __init init_uclamp_rq(struct rq *rq)
1907{
1908 enum uclamp_id clamp_id;
1909 struct uclamp_rq *uc_rq = rq->uclamp;
1910
1911 for_each_clamp_id(clamp_id) {
1912 uc_rq[clamp_id] = (struct uclamp_rq) {
1913 .value = uclamp_none(clamp_id)
1914 };
1915 }
1916
1917 rq->uclamp_flags = 0;
1918}
1919
69842cba
PB
1920static void __init init_uclamp(void)
1921{
e8f14172 1922 struct uclamp_se uc_max = {};
0413d7f3 1923 enum uclamp_id clamp_id;
69842cba
PB
1924 int cpu;
1925
d81ae8aa
QY
1926 for_each_possible_cpu(cpu)
1927 init_uclamp_rq(cpu_rq(cpu));
69842cba 1928
69842cba 1929 for_each_clamp_id(clamp_id) {
e8f14172 1930 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1931 uclamp_none(clamp_id), false);
69842cba 1932 }
e8f14172
PB
1933
1934 /* System defaults allow max clamp values for both indexes */
a509a7cd 1935 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1936 for_each_clamp_id(clamp_id) {
e8f14172 1937 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1938#ifdef CONFIG_UCLAMP_TASK_GROUP
1939 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1940 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1941#endif
1942 }
69842cba
PB
1943}
1944
1945#else /* CONFIG_UCLAMP_TASK */
1946static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1947static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1948static inline int uclamp_validate(struct task_struct *p,
1949 const struct sched_attr *attr)
1950{
1951 return -EOPNOTSUPP;
1952}
1953static void __setscheduler_uclamp(struct task_struct *p,
1954 const struct sched_attr *attr) { }
e8f14172 1955static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1956static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1957static inline void init_uclamp(void) { }
1958#endif /* CONFIG_UCLAMP_TASK */
1959
a1dfb631
MT
1960bool sched_task_on_rq(struct task_struct *p)
1961{
1962 return task_on_rq_queued(p);
1963}
1964
1de64443 1965static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1966{
0a67d1ee
PZ
1967 if (!(flags & ENQUEUE_NOCLOCK))
1968 update_rq_clock(rq);
1969
eb414681 1970 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 1971 sched_info_enqueue(rq, p);
eb414681
JW
1972 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1973 }
0a67d1ee 1974
69842cba 1975 uclamp_rq_inc(rq, p);
371fd7e7 1976 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
1977
1978 if (sched_core_enabled(rq))
1979 sched_core_enqueue(rq, p);
71f8bd46
IM
1980}
1981
1de64443 1982static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1983{
8a311c74
PZ
1984 if (sched_core_enabled(rq))
1985 sched_core_dequeue(rq, p);
1986
0a67d1ee
PZ
1987 if (!(flags & DEQUEUE_NOCLOCK))
1988 update_rq_clock(rq);
1989
eb414681 1990 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 1991 sched_info_dequeue(rq, p);
eb414681
JW
1992 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1993 }
0a67d1ee 1994
69842cba 1995 uclamp_rq_dec(rq, p);
371fd7e7 1996 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1997}
1998
029632fb 1999void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2000{
371fd7e7 2001 enqueue_task(rq, p, flags);
7dd77884
PZ
2002
2003 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2004}
2005
029632fb 2006void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2007{
7dd77884
PZ
2008 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2009
371fd7e7 2010 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2011}
2012
f558c2b8 2013static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2014{
f558c2b8
PZ
2015 int prio;
2016
2017 if (dl_policy(policy))
2018 prio = MAX_DL_PRIO - 1;
2019 else if (rt_policy(policy))
2020 prio = MAX_RT_PRIO - 1 - rt_prio;
2021 else
2022 prio = NICE_TO_PRIO(nice);
2023
2024 return prio;
14531189
IM
2025}
2026
b29739f9
IM
2027/*
2028 * Calculate the expected normal priority: i.e. priority
2029 * without taking RT-inheritance into account. Might be
2030 * boosted by interactivity modifiers. Changes upon fork,
2031 * setprio syscalls, and whenever the interactivity
2032 * estimator recalculates.
2033 */
36c8b586 2034static inline int normal_prio(struct task_struct *p)
b29739f9 2035{
f558c2b8 2036 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2037}
2038
2039/*
2040 * Calculate the current priority, i.e. the priority
2041 * taken into account by the scheduler. This value might
2042 * be boosted by RT tasks, or might be boosted by
2043 * interactivity modifiers. Will be RT if the task got
2044 * RT-boosted. If not then it returns p->normal_prio.
2045 */
36c8b586 2046static int effective_prio(struct task_struct *p)
b29739f9
IM
2047{
2048 p->normal_prio = normal_prio(p);
2049 /*
2050 * If we are RT tasks or we were boosted to RT priority,
2051 * keep the priority unchanged. Otherwise, update priority
2052 * to the normal priority:
2053 */
2054 if (!rt_prio(p->prio))
2055 return p->normal_prio;
2056 return p->prio;
2057}
2058
1da177e4
LT
2059/**
2060 * task_curr - is this task currently executing on a CPU?
2061 * @p: the task in question.
e69f6186
YB
2062 *
2063 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2064 */
36c8b586 2065inline int task_curr(const struct task_struct *p)
1da177e4
LT
2066{
2067 return cpu_curr(task_cpu(p)) == p;
2068}
2069
67dfa1b7 2070/*
4c9a4bc8
PZ
2071 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2072 * use the balance_callback list if you want balancing.
2073 *
2074 * this means any call to check_class_changed() must be followed by a call to
2075 * balance_callback().
67dfa1b7 2076 */
cb469845
SR
2077static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2078 const struct sched_class *prev_class,
da7a735e 2079 int oldprio)
cb469845
SR
2080{
2081 if (prev_class != p->sched_class) {
2082 if (prev_class->switched_from)
da7a735e 2083 prev_class->switched_from(rq, p);
4c9a4bc8 2084
da7a735e 2085 p->sched_class->switched_to(rq, p);
2d3d891d 2086 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2087 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2088}
2089
029632fb 2090void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2091{
aa93cd53 2092 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2093 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2094 else if (p->sched_class > rq->curr->sched_class)
2095 resched_curr(rq);
1e5a7405
PZ
2096
2097 /*
2098 * A queue event has occurred, and we're going to schedule. In
2099 * this case, we can save a useless back to back clock update.
2100 */
da0c1e65 2101 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2102 rq_clock_skip_update(rq);
1e5a7405
PZ
2103}
2104
1da177e4 2105#ifdef CONFIG_SMP
175f0e25 2106
af449901
PZ
2107static void
2108__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2109
2110static int __set_cpus_allowed_ptr(struct task_struct *p,
2111 const struct cpumask *new_mask,
2112 u32 flags);
2113
2114static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2115{
2116 if (likely(!p->migration_disabled))
2117 return;
2118
2119 if (p->cpus_ptr != &p->cpus_mask)
2120 return;
2121
2122 /*
2123 * Violates locking rules! see comment in __do_set_cpus_allowed().
2124 */
2125 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2126}
2127
2128void migrate_disable(void)
2129{
3015ef4b
TG
2130 struct task_struct *p = current;
2131
2132 if (p->migration_disabled) {
2133 p->migration_disabled++;
af449901 2134 return;
3015ef4b 2135 }
af449901 2136
3015ef4b
TG
2137 preempt_disable();
2138 this_rq()->nr_pinned++;
2139 p->migration_disabled = 1;
2140 preempt_enable();
af449901
PZ
2141}
2142EXPORT_SYMBOL_GPL(migrate_disable);
2143
2144void migrate_enable(void)
2145{
2146 struct task_struct *p = current;
2147
6d337eab
PZ
2148 if (p->migration_disabled > 1) {
2149 p->migration_disabled--;
af449901 2150 return;
6d337eab 2151 }
af449901 2152
6d337eab
PZ
2153 /*
2154 * Ensure stop_task runs either before or after this, and that
2155 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2156 */
2157 preempt_disable();
2158 if (p->cpus_ptr != &p->cpus_mask)
2159 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2160 /*
2161 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2162 * regular cpus_mask, otherwise things that race (eg.
2163 * select_fallback_rq) get confused.
2164 */
af449901 2165 barrier();
6d337eab 2166 p->migration_disabled = 0;
3015ef4b 2167 this_rq()->nr_pinned--;
6d337eab 2168 preempt_enable();
af449901
PZ
2169}
2170EXPORT_SYMBOL_GPL(migrate_enable);
2171
3015ef4b
TG
2172static inline bool rq_has_pinned_tasks(struct rq *rq)
2173{
2174 return rq->nr_pinned;
2175}
2176
175f0e25 2177/*
bee98539 2178 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2179 * __set_cpus_allowed_ptr() and select_fallback_rq().
2180 */
2181static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2182{
5ba2ffba 2183 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2184 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2185 return false;
2186
5ba2ffba
PZ
2187 /* migrate_disabled() must be allowed to finish. */
2188 if (is_migration_disabled(p))
175f0e25
PZ
2189 return cpu_online(cpu);
2190
5ba2ffba
PZ
2191 /* Non kernel threads are not allowed during either online or offline. */
2192 if (!(p->flags & PF_KTHREAD))
9ae606bc 2193 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2194
2195 /* KTHREAD_IS_PER_CPU is always allowed. */
2196 if (kthread_is_per_cpu(p))
2197 return cpu_online(cpu);
2198
2199 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2200 if (cpu_dying(cpu))
5ba2ffba
PZ
2201 return false;
2202
2203 /* But are allowed during online. */
2204 return cpu_online(cpu);
175f0e25
PZ
2205}
2206
5cc389bc
PZ
2207/*
2208 * This is how migration works:
2209 *
2210 * 1) we invoke migration_cpu_stop() on the target CPU using
2211 * stop_one_cpu().
2212 * 2) stopper starts to run (implicitly forcing the migrated thread
2213 * off the CPU)
2214 * 3) it checks whether the migrated task is still in the wrong runqueue.
2215 * 4) if it's in the wrong runqueue then the migration thread removes
2216 * it and puts it into the right queue.
2217 * 5) stopper completes and stop_one_cpu() returns and the migration
2218 * is done.
2219 */
2220
2221/*
2222 * move_queued_task - move a queued task to new rq.
2223 *
2224 * Returns (locked) new rq. Old rq's lock is released.
2225 */
8a8c69c3
PZ
2226static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2227 struct task_struct *p, int new_cpu)
5cc389bc 2228{
5cb9eaa3 2229 lockdep_assert_rq_held(rq);
5cc389bc 2230
58877d34 2231 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2232 set_task_cpu(p, new_cpu);
8a8c69c3 2233 rq_unlock(rq, rf);
5cc389bc
PZ
2234
2235 rq = cpu_rq(new_cpu);
2236
8a8c69c3 2237 rq_lock(rq, rf);
5cc389bc 2238 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2239 activate_task(rq, p, 0);
5cc389bc
PZ
2240 check_preempt_curr(rq, p, 0);
2241
2242 return rq;
2243}
2244
2245struct migration_arg {
6d337eab
PZ
2246 struct task_struct *task;
2247 int dest_cpu;
2248 struct set_affinity_pending *pending;
2249};
2250
50caf9c1
PZ
2251/*
2252 * @refs: number of wait_for_completion()
2253 * @stop_pending: is @stop_work in use
2254 */
6d337eab
PZ
2255struct set_affinity_pending {
2256 refcount_t refs;
9e81889c 2257 unsigned int stop_pending;
6d337eab
PZ
2258 struct completion done;
2259 struct cpu_stop_work stop_work;
2260 struct migration_arg arg;
5cc389bc
PZ
2261};
2262
2263/*
d1ccc66d 2264 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2265 * this because either it can't run here any more (set_cpus_allowed()
2266 * away from this CPU, or CPU going down), or because we're
2267 * attempting to rebalance this task on exec (sched_exec).
2268 *
2269 * So we race with normal scheduler movements, but that's OK, as long
2270 * as the task is no longer on this CPU.
5cc389bc 2271 */
8a8c69c3
PZ
2272static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2273 struct task_struct *p, int dest_cpu)
5cc389bc 2274{
5cc389bc 2275 /* Affinity changed (again). */
175f0e25 2276 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2277 return rq;
5cc389bc 2278
15ff991e 2279 update_rq_clock(rq);
8a8c69c3 2280 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2281
2282 return rq;
5cc389bc
PZ
2283}
2284
2285/*
2286 * migration_cpu_stop - this will be executed by a highprio stopper thread
2287 * and performs thread migration by bumping thread off CPU then
2288 * 'pushing' onto another runqueue.
2289 */
2290static int migration_cpu_stop(void *data)
2291{
2292 struct migration_arg *arg = data;
c20cf065 2293 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2294 struct task_struct *p = arg->task;
2295 struct rq *rq = this_rq();
6d337eab 2296 bool complete = false;
8a8c69c3 2297 struct rq_flags rf;
5cc389bc
PZ
2298
2299 /*
d1ccc66d
IM
2300 * The original target CPU might have gone down and we might
2301 * be on another CPU but it doesn't matter.
5cc389bc 2302 */
6d337eab 2303 local_irq_save(rf.flags);
5cc389bc
PZ
2304 /*
2305 * We need to explicitly wake pending tasks before running
3bd37062 2306 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2307 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2308 */
a1488664 2309 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2310
2311 raw_spin_lock(&p->pi_lock);
8a8c69c3 2312 rq_lock(rq, &rf);
6d337eab 2313
e140749c
VS
2314 /*
2315 * If we were passed a pending, then ->stop_pending was set, thus
2316 * p->migration_pending must have remained stable.
2317 */
2318 WARN_ON_ONCE(pending && pending != p->migration_pending);
2319
5e16bbc2
PZ
2320 /*
2321 * If task_rq(p) != rq, it cannot be migrated here, because we're
2322 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2323 * we're holding p->pi_lock.
2324 */
bf89a304 2325 if (task_rq(p) == rq) {
6d337eab
PZ
2326 if (is_migration_disabled(p))
2327 goto out;
2328
2329 if (pending) {
e140749c 2330 p->migration_pending = NULL;
6d337eab 2331 complete = true;
6d337eab 2332
3f1bc119
PZ
2333 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2334 goto out;
3f1bc119 2335 }
6d337eab 2336
bf89a304 2337 if (task_on_rq_queued(p))
475ea6c6 2338 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2339 else
475ea6c6 2340 p->wake_cpu = arg->dest_cpu;
6d337eab 2341
3f1bc119
PZ
2342 /*
2343 * XXX __migrate_task() can fail, at which point we might end
2344 * up running on a dodgy CPU, AFAICT this can only happen
2345 * during CPU hotplug, at which point we'll get pushed out
2346 * anyway, so it's probably not a big deal.
2347 */
2348
c20cf065 2349 } else if (pending) {
6d337eab
PZ
2350 /*
2351 * This happens when we get migrated between migrate_enable()'s
2352 * preempt_enable() and scheduling the stopper task. At that
2353 * point we're a regular task again and not current anymore.
2354 *
2355 * A !PREEMPT kernel has a giant hole here, which makes it far
2356 * more likely.
2357 */
2358
d707faa6
VS
2359 /*
2360 * The task moved before the stopper got to run. We're holding
2361 * ->pi_lock, so the allowed mask is stable - if it got
2362 * somewhere allowed, we're done.
2363 */
c20cf065 2364 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2365 p->migration_pending = NULL;
d707faa6
VS
2366 complete = true;
2367 goto out;
2368 }
2369
6d337eab
PZ
2370 /*
2371 * When migrate_enable() hits a rq mis-match we can't reliably
2372 * determine is_migration_disabled() and so have to chase after
2373 * it.
2374 */
9e81889c 2375 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2376 task_rq_unlock(rq, p, &rf);
2377 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2378 &pending->arg, &pending->stop_work);
2379 return 0;
bf89a304 2380 }
6d337eab 2381out:
9e81889c
PZ
2382 if (pending)
2383 pending->stop_pending = false;
6d337eab
PZ
2384 task_rq_unlock(rq, p, &rf);
2385
2386 if (complete)
2387 complete_all(&pending->done);
2388
5cc389bc
PZ
2389 return 0;
2390}
2391
a7c81556
PZ
2392int push_cpu_stop(void *arg)
2393{
2394 struct rq *lowest_rq = NULL, *rq = this_rq();
2395 struct task_struct *p = arg;
2396
2397 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2398 raw_spin_rq_lock(rq);
a7c81556
PZ
2399
2400 if (task_rq(p) != rq)
2401 goto out_unlock;
2402
2403 if (is_migration_disabled(p)) {
2404 p->migration_flags |= MDF_PUSH;
2405 goto out_unlock;
2406 }
2407
2408 p->migration_flags &= ~MDF_PUSH;
2409
2410 if (p->sched_class->find_lock_rq)
2411 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2412
a7c81556
PZ
2413 if (!lowest_rq)
2414 goto out_unlock;
2415
2416 // XXX validate p is still the highest prio task
2417 if (task_rq(p) == rq) {
2418 deactivate_task(rq, p, 0);
2419 set_task_cpu(p, lowest_rq->cpu);
2420 activate_task(lowest_rq, p, 0);
2421 resched_curr(lowest_rq);
2422 }
2423
2424 double_unlock_balance(rq, lowest_rq);
2425
2426out_unlock:
2427 rq->push_busy = false;
5cb9eaa3 2428 raw_spin_rq_unlock(rq);
a7c81556
PZ
2429 raw_spin_unlock_irq(&p->pi_lock);
2430
2431 put_task_struct(p);
5cc389bc
PZ
2432 return 0;
2433}
2434
c5b28038
PZ
2435/*
2436 * sched_class::set_cpus_allowed must do the below, but is not required to
2437 * actually call this function.
2438 */
9cfc3e18 2439void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2440{
af449901
PZ
2441 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2442 p->cpus_ptr = new_mask;
2443 return;
2444 }
2445
3bd37062 2446 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2447 p->nr_cpus_allowed = cpumask_weight(new_mask);
2448}
2449
9cfc3e18
PZ
2450static void
2451__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2452{
6c37067e
PZ
2453 struct rq *rq = task_rq(p);
2454 bool queued, running;
2455
af449901
PZ
2456 /*
2457 * This here violates the locking rules for affinity, since we're only
2458 * supposed to change these variables while holding both rq->lock and
2459 * p->pi_lock.
2460 *
2461 * HOWEVER, it magically works, because ttwu() is the only code that
2462 * accesses these variables under p->pi_lock and only does so after
2463 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2464 * before finish_task().
2465 *
2466 * XXX do further audits, this smells like something putrid.
2467 */
2468 if (flags & SCA_MIGRATE_DISABLE)
2469 SCHED_WARN_ON(!p->on_cpu);
2470 else
2471 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2472
2473 queued = task_on_rq_queued(p);
2474 running = task_current(rq, p);
2475
2476 if (queued) {
2477 /*
2478 * Because __kthread_bind() calls this on blocked tasks without
2479 * holding rq->lock.
2480 */
5cb9eaa3 2481 lockdep_assert_rq_held(rq);
7a57f32a 2482 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2483 }
2484 if (running)
2485 put_prev_task(rq, p);
2486
9cfc3e18 2487 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2488
6c37067e 2489 if (queued)
7134b3e9 2490 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2491 if (running)
03b7fad1 2492 set_next_task(rq, p);
c5b28038
PZ
2493}
2494
9cfc3e18
PZ
2495void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2496{
2497 __do_set_cpus_allowed(p, new_mask, 0);
2498}
2499
b90ca8ba
WD
2500int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2501 int node)
2502{
2503 if (!src->user_cpus_ptr)
2504 return 0;
2505
2506 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2507 if (!dst->user_cpus_ptr)
2508 return -ENOMEM;
2509
2510 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2511 return 0;
2512}
2513
07ec77a1
WD
2514static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2515{
2516 struct cpumask *user_mask = NULL;
2517
2518 swap(p->user_cpus_ptr, user_mask);
2519
2520 return user_mask;
2521}
2522
b90ca8ba
WD
2523void release_user_cpus_ptr(struct task_struct *p)
2524{
07ec77a1 2525 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2526}
2527
6d337eab 2528/*
c777d847
VS
2529 * This function is wildly self concurrent; here be dragons.
2530 *
2531 *
2532 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2533 * designated task is enqueued on an allowed CPU. If that task is currently
2534 * running, we have to kick it out using the CPU stopper.
2535 *
2536 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2537 * Consider:
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
2541 * P0@CPU0 P1
2542 *
2543 * migrate_disable();
2544 * <preempted>
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 *
2547 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2548 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2549 * This means we need the following scheme:
2550 *
2551 * P0@CPU0 P1
2552 *
2553 * migrate_disable();
2554 * <preempted>
2555 * set_cpus_allowed_ptr(P0, [1]);
2556 * <blocks>
2557 * <resumes>
2558 * migrate_enable();
2559 * __set_cpus_allowed_ptr();
2560 * <wakes local stopper>
2561 * `--> <woken on migration completion>
2562 *
2563 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2564 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2565 * task p are serialized by p->pi_lock, which we can leverage: the one that
2566 * should come into effect at the end of the Migrate-Disable region is the last
2567 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2568 * but we still need to properly signal those waiting tasks at the appropriate
2569 * moment.
2570 *
2571 * This is implemented using struct set_affinity_pending. The first
2572 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2573 * setup an instance of that struct and install it on the targeted task_struct.
2574 * Any and all further callers will reuse that instance. Those then wait for
2575 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2576 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2577 *
2578 *
2579 * (1) In the cases covered above. There is one more where the completion is
2580 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2581 * occurs after the stopper bailed out due to the targeted task still being
2582 * Migrate-Disable. Consider:
c777d847
VS
2583 *
2584 * Initial conditions: P0->cpus_mask = [0, 1]
2585 *
e140749c
VS
2586 * CPU0 P1 P2
2587 * <P0>
2588 * migrate_disable();
2589 * <preempted>
c777d847
VS
2590 * set_cpus_allowed_ptr(P0, [1]);
2591 * <blocks>
e140749c
VS
2592 * <migration/0>
2593 * migration_cpu_stop()
2594 * is_migration_disabled()
2595 * <bails>
c777d847
VS
2596 * set_cpus_allowed_ptr(P0, [0, 1]);
2597 * <signal completion>
2598 * <awakes>
2599 *
2600 * Note that the above is safe vs a concurrent migrate_enable(), as any
2601 * pending affinity completion is preceded by an uninstallation of
2602 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2603 */
2604static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2605 int dest_cpu, unsigned int flags)
2606{
2607 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2608 bool stop_pending, complete = false;
6d337eab
PZ
2609
2610 /* Can the task run on the task's current CPU? If so, we're done */
2611 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2612 struct task_struct *push_task = NULL;
2613
2614 if ((flags & SCA_MIGRATE_ENABLE) &&
2615 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2616 rq->push_busy = true;
2617 push_task = get_task_struct(p);
2618 }
2619
50caf9c1
PZ
2620 /*
2621 * If there are pending waiters, but no pending stop_work,
2622 * then complete now.
2623 */
6d337eab 2624 pending = p->migration_pending;
50caf9c1 2625 if (pending && !pending->stop_pending) {
6d337eab
PZ
2626 p->migration_pending = NULL;
2627 complete = true;
2628 }
50caf9c1 2629
6d337eab
PZ
2630 task_rq_unlock(rq, p, rf);
2631
a7c81556
PZ
2632 if (push_task) {
2633 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2634 p, &rq->push_work);
2635 }
2636
6d337eab 2637 if (complete)
50caf9c1 2638 complete_all(&pending->done);
6d337eab
PZ
2639
2640 return 0;
2641 }
2642
2643 if (!(flags & SCA_MIGRATE_ENABLE)) {
2644 /* serialized by p->pi_lock */
2645 if (!p->migration_pending) {
c777d847 2646 /* Install the request */
6d337eab
PZ
2647 refcount_set(&my_pending.refs, 1);
2648 init_completion(&my_pending.done);
8a6edb52
PZ
2649 my_pending.arg = (struct migration_arg) {
2650 .task = p,
475ea6c6 2651 .dest_cpu = dest_cpu,
8a6edb52
PZ
2652 .pending = &my_pending,
2653 };
2654
6d337eab
PZ
2655 p->migration_pending = &my_pending;
2656 } else {
2657 pending = p->migration_pending;
2658 refcount_inc(&pending->refs);
475ea6c6
VS
2659 /*
2660 * Affinity has changed, but we've already installed a
2661 * pending. migration_cpu_stop() *must* see this, else
2662 * we risk a completion of the pending despite having a
2663 * task on a disallowed CPU.
2664 *
2665 * Serialized by p->pi_lock, so this is safe.
2666 */
2667 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2668 }
2669 }
2670 pending = p->migration_pending;
2671 /*
2672 * - !MIGRATE_ENABLE:
2673 * we'll have installed a pending if there wasn't one already.
2674 *
2675 * - MIGRATE_ENABLE:
2676 * we're here because the current CPU isn't matching anymore,
2677 * the only way that can happen is because of a concurrent
2678 * set_cpus_allowed_ptr() call, which should then still be
2679 * pending completion.
2680 *
2681 * Either way, we really should have a @pending here.
2682 */
2683 if (WARN_ON_ONCE(!pending)) {
2684 task_rq_unlock(rq, p, rf);
2685 return -EINVAL;
2686 }
2687
2f064a59 2688 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2689 /*
58b1a450
PZ
2690 * MIGRATE_ENABLE gets here because 'p == current', but for
2691 * anything else we cannot do is_migration_disabled(), punt
2692 * and have the stopper function handle it all race-free.
c777d847 2693 */
9e81889c
PZ
2694 stop_pending = pending->stop_pending;
2695 if (!stop_pending)
2696 pending->stop_pending = true;
58b1a450 2697
58b1a450
PZ
2698 if (flags & SCA_MIGRATE_ENABLE)
2699 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2700
6d337eab 2701 task_rq_unlock(rq, p, rf);
8a6edb52 2702
9e81889c
PZ
2703 if (!stop_pending) {
2704 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2705 &pending->arg, &pending->stop_work);
2706 }
6d337eab 2707
58b1a450
PZ
2708 if (flags & SCA_MIGRATE_ENABLE)
2709 return 0;
6d337eab
PZ
2710 } else {
2711
2712 if (!is_migration_disabled(p)) {
2713 if (task_on_rq_queued(p))
2714 rq = move_queued_task(rq, rf, p, dest_cpu);
2715
50caf9c1
PZ
2716 if (!pending->stop_pending) {
2717 p->migration_pending = NULL;
2718 complete = true;
2719 }
6d337eab
PZ
2720 }
2721 task_rq_unlock(rq, p, rf);
2722
6d337eab
PZ
2723 if (complete)
2724 complete_all(&pending->done);
2725 }
2726
2727 wait_for_completion(&pending->done);
2728
2729 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2730 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2731
c777d847
VS
2732 /*
2733 * Block the original owner of &pending until all subsequent callers
2734 * have seen the completion and decremented the refcount
2735 */
6d337eab
PZ
2736 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2737
50caf9c1
PZ
2738 /* ARGH */
2739 WARN_ON_ONCE(my_pending.stop_pending);
2740
6d337eab
PZ
2741 return 0;
2742}
2743
5cc389bc 2744/*
07ec77a1 2745 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2746 */
07ec77a1
WD
2747static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2748 const struct cpumask *new_mask,
2749 u32 flags,
2750 struct rq *rq,
2751 struct rq_flags *rf)
2752 __releases(rq->lock)
2753 __releases(p->pi_lock)
5cc389bc 2754{
234a503e 2755 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2756 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2757 bool kthread = p->flags & PF_KTHREAD;
07ec77a1 2758 struct cpumask *user_mask = NULL;
5cc389bc
PZ
2759 unsigned int dest_cpu;
2760 int ret = 0;
2761
a499c3ea 2762 update_rq_clock(rq);
5cc389bc 2763
234a503e 2764 if (kthread || is_migration_disabled(p)) {
e9d867a6 2765 /*
741ba80f
PZ
2766 * Kernel threads are allowed on online && !active CPUs,
2767 * however, during cpu-hot-unplug, even these might get pushed
2768 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2769 *
2770 * Specifically, migration_disabled() tasks must not fail the
2771 * cpumask_any_and_distribute() pick below, esp. so on
2772 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2773 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2774 */
2775 cpu_valid_mask = cpu_online_mask;
2776 }
2777
234a503e
WD
2778 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782
25834c73
PZ
2783 /*
2784 * Must re-check here, to close a race against __kthread_bind(),
2785 * sched_setaffinity() is not guaranteed to observe the flag.
2786 */
9cfc3e18 2787 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2788 ret = -EINVAL;
2789 goto out;
2790 }
2791
885b3ba4
VS
2792 if (!(flags & SCA_MIGRATE_ENABLE)) {
2793 if (cpumask_equal(&p->cpus_mask, new_mask))
2794 goto out;
2795
2796 if (WARN_ON_ONCE(p == current &&
2797 is_migration_disabled(p) &&
2798 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2799 ret = -EBUSY;
2800 goto out;
2801 }
2802 }
5cc389bc 2803
46a87b38
PT
2804 /*
2805 * Picking a ~random cpu helps in cases where we are changing affinity
2806 * for groups of tasks (ie. cpuset), so that load balancing is not
2807 * immediately required to distribute the tasks within their new mask.
2808 */
2809 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2810 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2811 ret = -EINVAL;
2812 goto out;
2813 }
2814
9cfc3e18 2815 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2816
07ec77a1
WD
2817 if (flags & SCA_USER)
2818 user_mask = clear_user_cpus_ptr(p);
2819
2820 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2821
2822 kfree(user_mask);
2823
2824 return ret;
5cc389bc 2825
5cc389bc 2826out:
07ec77a1 2827 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
2828
2829 return ret;
2830}
25834c73 2831
07ec77a1
WD
2832/*
2833 * Change a given task's CPU affinity. Migrate the thread to a
2834 * proper CPU and schedule it away if the CPU it's executing on
2835 * is removed from the allowed bitmask.
2836 *
2837 * NOTE: the caller must have a valid reference to the task, the
2838 * task must not exit() & deallocate itself prematurely. The
2839 * call is not atomic; no spinlocks may be held.
2840 */
2841static int __set_cpus_allowed_ptr(struct task_struct *p,
2842 const struct cpumask *new_mask, u32 flags)
2843{
2844 struct rq_flags rf;
2845 struct rq *rq;
2846
2847 rq = task_rq_lock(p, &rf);
2848 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2849}
2850
25834c73
PZ
2851int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2852{
9cfc3e18 2853 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2854}
5cc389bc
PZ
2855EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2856
07ec77a1
WD
2857/*
2858 * Change a given task's CPU affinity to the intersection of its current
2859 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2860 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2861 * If the resulting mask is empty, leave the affinity unchanged and return
2862 * -EINVAL.
2863 */
2864static int restrict_cpus_allowed_ptr(struct task_struct *p,
2865 struct cpumask *new_mask,
2866 const struct cpumask *subset_mask)
2867{
2868 struct cpumask *user_mask = NULL;
2869 struct rq_flags rf;
2870 struct rq *rq;
2871 int err;
2872
2873 if (!p->user_cpus_ptr) {
2874 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2875 if (!user_mask)
2876 return -ENOMEM;
2877 }
2878
2879 rq = task_rq_lock(p, &rf);
2880
2881 /*
2882 * Forcefully restricting the affinity of a deadline task is
2883 * likely to cause problems, so fail and noisily override the
2884 * mask entirely.
2885 */
2886 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2887 err = -EPERM;
2888 goto err_unlock;
2889 }
2890
2891 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2892 err = -EINVAL;
2893 goto err_unlock;
2894 }
2895
2896 /*
2897 * We're about to butcher the task affinity, so keep track of what
2898 * the user asked for in case we're able to restore it later on.
2899 */
2900 if (user_mask) {
2901 cpumask_copy(user_mask, p->cpus_ptr);
2902 p->user_cpus_ptr = user_mask;
2903 }
2904
2905 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2906
2907err_unlock:
2908 task_rq_unlock(rq, p, &rf);
2909 kfree(user_mask);
2910 return err;
2911}
2912
2913/*
2914 * Restrict the CPU affinity of task @p so that it is a subset of
2915 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2916 * old affinity mask. If the resulting mask is empty, we warn and walk
2917 * up the cpuset hierarchy until we find a suitable mask.
2918 */
2919void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2920{
2921 cpumask_var_t new_mask;
2922 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2923
2924 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2925
2926 /*
2927 * __migrate_task() can fail silently in the face of concurrent
2928 * offlining of the chosen destination CPU, so take the hotplug
2929 * lock to ensure that the migration succeeds.
2930 */
2931 cpus_read_lock();
2932 if (!cpumask_available(new_mask))
2933 goto out_set_mask;
2934
2935 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2936 goto out_free_mask;
2937
2938 /*
2939 * We failed to find a valid subset of the affinity mask for the
2940 * task, so override it based on its cpuset hierarchy.
2941 */
2942 cpuset_cpus_allowed(p, new_mask);
2943 override_mask = new_mask;
2944
2945out_set_mask:
2946 if (printk_ratelimit()) {
2947 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2948 task_pid_nr(p), p->comm,
2949 cpumask_pr_args(override_mask));
2950 }
2951
2952 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2953out_free_mask:
2954 cpus_read_unlock();
2955 free_cpumask_var(new_mask);
2956}
2957
2958static int
2959__sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2960
2961/*
2962 * Restore the affinity of a task @p which was previously restricted by a
2963 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2964 * @p->user_cpus_ptr.
2965 *
2966 * It is the caller's responsibility to serialise this with any calls to
2967 * force_compatible_cpus_allowed_ptr(@p).
2968 */
2969void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2970{
2971 struct cpumask *user_mask = p->user_cpus_ptr;
2972 unsigned long flags;
2973
2974 /*
2975 * Try to restore the old affinity mask. If this fails, then
2976 * we free the mask explicitly to avoid it being inherited across
2977 * a subsequent fork().
2978 */
2979 if (!user_mask || !__sched_setaffinity(p, user_mask))
2980 return;
2981
2982 raw_spin_lock_irqsave(&p->pi_lock, flags);
2983 user_mask = clear_user_cpus_ptr(p);
2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2985
2986 kfree(user_mask);
2987}
2988
dd41f596 2989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2990{
e2912009 2991#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
2992 unsigned int state = READ_ONCE(p->__state);
2993
e2912009
PZ
2994 /*
2995 * We should never call set_task_cpu() on a blocked task,
2996 * ttwu() will sort out the placement.
2997 */
2f064a59 2998 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 2999
3ea94de1
JP
3000 /*
3001 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3002 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3003 * time relying on p->on_rq.
3004 */
2f064a59 3005 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3006 p->sched_class == &fair_sched_class &&
3007 (p->on_rq && !task_on_rq_migrating(p)));
3008
0122ec5b 3009#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3010 /*
3011 * The caller should hold either p->pi_lock or rq->lock, when changing
3012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3013 *
3014 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3015 * see task_group().
6c6c54e1
PZ
3016 *
3017 * Furthermore, all task_rq users should acquire both locks, see
3018 * task_rq_lock().
3019 */
0122ec5b 3020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3021 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3022#endif
4ff9083b
PZ
3023 /*
3024 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3025 */
3026 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3027
3028 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3029#endif
3030
de1d7286 3031 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3032
0c69774e 3033 if (task_cpu(p) != new_cpu) {
0a74bef8 3034 if (p->sched_class->migrate_task_rq)
1327237a 3035 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3036 p->se.nr_migrations++;
d7822b1e 3037 rseq_migrate(p);
ff303e66 3038 perf_event_task_migrate(p);
0c69774e 3039 }
dd41f596
IM
3040
3041 __set_task_cpu(p, new_cpu);
c65cc870
IM
3042}
3043
0ad4e3df 3044#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3045static void __migrate_swap_task(struct task_struct *p, int cpu)
3046{
da0c1e65 3047 if (task_on_rq_queued(p)) {
ac66f547 3048 struct rq *src_rq, *dst_rq;
8a8c69c3 3049 struct rq_flags srf, drf;
ac66f547
PZ
3050
3051 src_rq = task_rq(p);
3052 dst_rq = cpu_rq(cpu);
3053
8a8c69c3
PZ
3054 rq_pin_lock(src_rq, &srf);
3055 rq_pin_lock(dst_rq, &drf);
3056
ac66f547
PZ
3057 deactivate_task(src_rq, p, 0);
3058 set_task_cpu(p, cpu);
3059 activate_task(dst_rq, p, 0);
3060 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3061
3062 rq_unpin_lock(dst_rq, &drf);
3063 rq_unpin_lock(src_rq, &srf);
3064
ac66f547
PZ
3065 } else {
3066 /*
3067 * Task isn't running anymore; make it appear like we migrated
3068 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3069 * previous CPU our target instead of where it really is.
ac66f547
PZ
3070 */
3071 p->wake_cpu = cpu;
3072 }
3073}
3074
3075struct migration_swap_arg {
3076 struct task_struct *src_task, *dst_task;
3077 int src_cpu, dst_cpu;
3078};
3079
3080static int migrate_swap_stop(void *data)
3081{
3082 struct migration_swap_arg *arg = data;
3083 struct rq *src_rq, *dst_rq;
3084 int ret = -EAGAIN;
3085
62694cd5
PZ
3086 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3087 return -EAGAIN;
3088
ac66f547
PZ
3089 src_rq = cpu_rq(arg->src_cpu);
3090 dst_rq = cpu_rq(arg->dst_cpu);
3091
74602315
PZ
3092 double_raw_lock(&arg->src_task->pi_lock,
3093 &arg->dst_task->pi_lock);
ac66f547 3094 double_rq_lock(src_rq, dst_rq);
62694cd5 3095
ac66f547
PZ
3096 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3097 goto unlock;
3098
3099 if (task_cpu(arg->src_task) != arg->src_cpu)
3100 goto unlock;
3101
3bd37062 3102 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3103 goto unlock;
3104
3bd37062 3105 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3106 goto unlock;
3107
3108 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3109 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3110
3111 ret = 0;
3112
3113unlock:
3114 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3115 raw_spin_unlock(&arg->dst_task->pi_lock);
3116 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3117
3118 return ret;
3119}
3120
3121/*
3122 * Cross migrate two tasks
3123 */
0ad4e3df
SD
3124int migrate_swap(struct task_struct *cur, struct task_struct *p,
3125 int target_cpu, int curr_cpu)
ac66f547
PZ
3126{
3127 struct migration_swap_arg arg;
3128 int ret = -EINVAL;
3129
ac66f547
PZ
3130 arg = (struct migration_swap_arg){
3131 .src_task = cur,
0ad4e3df 3132 .src_cpu = curr_cpu,
ac66f547 3133 .dst_task = p,
0ad4e3df 3134 .dst_cpu = target_cpu,
ac66f547
PZ
3135 };
3136
3137 if (arg.src_cpu == arg.dst_cpu)
3138 goto out;
3139
6acce3ef
PZ
3140 /*
3141 * These three tests are all lockless; this is OK since all of them
3142 * will be re-checked with proper locks held further down the line.
3143 */
ac66f547
PZ
3144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3145 goto out;
3146
3bd37062 3147 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3148 goto out;
3149
3bd37062 3150 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3151 goto out;
3152
286549dc 3153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3155
3156out:
ac66f547
PZ
3157 return ret;
3158}
0ad4e3df 3159#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3160
1da177e4
LT
3161/*
3162 * wait_task_inactive - wait for a thread to unschedule.
3163 *
85ba2d86
RM
3164 * If @match_state is nonzero, it's the @p->state value just checked and
3165 * not expected to change. If it changes, i.e. @p might have woken up,
3166 * then return zero. When we succeed in waiting for @p to be off its CPU,
3167 * we return a positive number (its total switch count). If a second call
3168 * a short while later returns the same number, the caller can be sure that
3169 * @p has remained unscheduled the whole time.
3170 *
1da177e4
LT
3171 * The caller must ensure that the task *will* unschedule sometime soon,
3172 * else this function might spin for a *long* time. This function can't
3173 * be called with interrupts off, or it may introduce deadlock with
3174 * smp_call_function() if an IPI is sent by the same process we are
3175 * waiting to become inactive.
3176 */
2f064a59 3177unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3178{
da0c1e65 3179 int running, queued;
eb580751 3180 struct rq_flags rf;
85ba2d86 3181 unsigned long ncsw;
70b97a7f 3182 struct rq *rq;
1da177e4 3183
3a5c359a
AK
3184 for (;;) {
3185 /*
3186 * We do the initial early heuristics without holding
3187 * any task-queue locks at all. We'll only try to get
3188 * the runqueue lock when things look like they will
3189 * work out!
3190 */
3191 rq = task_rq(p);
fa490cfd 3192
3a5c359a
AK
3193 /*
3194 * If the task is actively running on another CPU
3195 * still, just relax and busy-wait without holding
3196 * any locks.
3197 *
3198 * NOTE! Since we don't hold any locks, it's not
3199 * even sure that "rq" stays as the right runqueue!
3200 * But we don't care, since "task_running()" will
3201 * return false if the runqueue has changed and p
3202 * is actually now running somewhere else!
3203 */
85ba2d86 3204 while (task_running(rq, p)) {
2f064a59 3205 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
85ba2d86 3206 return 0;
3a5c359a 3207 cpu_relax();
85ba2d86 3208 }
fa490cfd 3209
3a5c359a
AK
3210 /*
3211 * Ok, time to look more closely! We need the rq
3212 * lock now, to be *sure*. If we're wrong, we'll
3213 * just go back and repeat.
3214 */
eb580751 3215 rq = task_rq_lock(p, &rf);
27a9da65 3216 trace_sched_wait_task(p);
3a5c359a 3217 running = task_running(rq, p);
da0c1e65 3218 queued = task_on_rq_queued(p);
85ba2d86 3219 ncsw = 0;
2f064a59 3220 if (!match_state || READ_ONCE(p->__state) == match_state)
93dcf55f 3221 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3222 task_rq_unlock(rq, p, &rf);
fa490cfd 3223
85ba2d86
RM
3224 /*
3225 * If it changed from the expected state, bail out now.
3226 */
3227 if (unlikely(!ncsw))
3228 break;
3229
3a5c359a
AK
3230 /*
3231 * Was it really running after all now that we
3232 * checked with the proper locks actually held?
3233 *
3234 * Oops. Go back and try again..
3235 */
3236 if (unlikely(running)) {
3237 cpu_relax();
3238 continue;
3239 }
fa490cfd 3240
3a5c359a
AK
3241 /*
3242 * It's not enough that it's not actively running,
3243 * it must be off the runqueue _entirely_, and not
3244 * preempted!
3245 *
80dd99b3 3246 * So if it was still runnable (but just not actively
3a5c359a
AK
3247 * running right now), it's preempted, and we should
3248 * yield - it could be a while.
3249 */
da0c1e65 3250 if (unlikely(queued)) {
8b0e1953 3251 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3252
3253 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3254 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3255 continue;
3256 }
fa490cfd 3257
3a5c359a
AK
3258 /*
3259 * Ahh, all good. It wasn't running, and it wasn't
3260 * runnable, which means that it will never become
3261 * running in the future either. We're all done!
3262 */
3263 break;
3264 }
85ba2d86
RM
3265
3266 return ncsw;
1da177e4
LT
3267}
3268
3269/***
3270 * kick_process - kick a running thread to enter/exit the kernel
3271 * @p: the to-be-kicked thread
3272 *
3273 * Cause a process which is running on another CPU to enter
3274 * kernel-mode, without any delay. (to get signals handled.)
3275 *
25985edc 3276 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3277 * because all it wants to ensure is that the remote task enters
3278 * the kernel. If the IPI races and the task has been migrated
3279 * to another CPU then no harm is done and the purpose has been
3280 * achieved as well.
3281 */
36c8b586 3282void kick_process(struct task_struct *p)
1da177e4
LT
3283{
3284 int cpu;
3285
3286 preempt_disable();
3287 cpu = task_cpu(p);
3288 if ((cpu != smp_processor_id()) && task_curr(p))
3289 smp_send_reschedule(cpu);
3290 preempt_enable();
3291}
b43e3521 3292EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3293
30da688e 3294/*
3bd37062 3295 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3296 *
3297 * A few notes on cpu_active vs cpu_online:
3298 *
3299 * - cpu_active must be a subset of cpu_online
3300 *
97fb7a0a 3301 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3302 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3303 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3304 * see it.
3305 *
d1ccc66d 3306 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3307 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3308 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3309 * off.
3310 *
3311 * This means that fallback selection must not select !active CPUs.
3312 * And can assume that any active CPU must be online. Conversely
3313 * select_task_rq() below may allow selection of !active CPUs in order
3314 * to satisfy the above rules.
30da688e 3315 */
5da9a0fb
PZ
3316static int select_fallback_rq(int cpu, struct task_struct *p)
3317{
aa00d89c
TC
3318 int nid = cpu_to_node(cpu);
3319 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3320 enum { cpuset, possible, fail } state = cpuset;
3321 int dest_cpu;
5da9a0fb 3322
aa00d89c 3323 /*
d1ccc66d
IM
3324 * If the node that the CPU is on has been offlined, cpu_to_node()
3325 * will return -1. There is no CPU on the node, and we should
3326 * select the CPU on the other node.
aa00d89c
TC
3327 */
3328 if (nid != -1) {
3329 nodemask = cpumask_of_node(nid);
3330
3331 /* Look for allowed, online CPU in same node. */
3332 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3333 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3334 return dest_cpu;
3335 }
2baab4e9 3336 }
5da9a0fb 3337
2baab4e9
PZ
3338 for (;;) {
3339 /* Any allowed, online CPU? */
3bd37062 3340 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3341 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3342 continue;
175f0e25 3343
2baab4e9
PZ
3344 goto out;
3345 }
5da9a0fb 3346
e73e85f0 3347 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3348 switch (state) {
3349 case cpuset:
97c0054d 3350 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3351 state = possible;
3352 break;
3353 }
df561f66 3354 fallthrough;
2baab4e9 3355 case possible:
af449901
PZ
3356 /*
3357 * XXX When called from select_task_rq() we only
3358 * hold p->pi_lock and again violate locking order.
3359 *
3360 * More yuck to audit.
3361 */
9ae606bc 3362 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3363 state = fail;
3364 break;
2baab4e9
PZ
3365 case fail:
3366 BUG();
3367 break;
3368 }
3369 }
3370
3371out:
3372 if (state != cpuset) {
3373 /*
3374 * Don't tell them about moving exiting tasks or
3375 * kernel threads (both mm NULL), since they never
3376 * leave kernel.
3377 */
3378 if (p->mm && printk_ratelimit()) {
aac74dc4 3379 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3380 task_pid_nr(p), p->comm, cpu);
3381 }
5da9a0fb
PZ
3382 }
3383
3384 return dest_cpu;
3385}
3386
e2912009 3387/*
3bd37062 3388 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3389 */
970b13ba 3390static inline
3aef1551 3391int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3392{
cbce1a68
PZ
3393 lockdep_assert_held(&p->pi_lock);
3394
af449901 3395 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3396 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3397 else
3bd37062 3398 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3399
3400 /*
3401 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3402 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3403 * CPU.
e2912009
PZ
3404 *
3405 * Since this is common to all placement strategies, this lives here.
3406 *
3407 * [ this allows ->select_task() to simply return task_cpu(p) and
3408 * not worry about this generic constraint ]
3409 */
7af443ee 3410 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3411 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3412
3413 return cpu;
970b13ba 3414}
09a40af5 3415
f5832c19
NP
3416void sched_set_stop_task(int cpu, struct task_struct *stop)
3417{
ded467dc 3418 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3419 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3420 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3421
3422 if (stop) {
3423 /*
3424 * Make it appear like a SCHED_FIFO task, its something
3425 * userspace knows about and won't get confused about.
3426 *
3427 * Also, it will make PI more or less work without too
3428 * much confusion -- but then, stop work should not
3429 * rely on PI working anyway.
3430 */
3431 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3432
3433 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3434
3435 /*
3436 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3437 * adjust the effective priority of a task. As a result,
3438 * rt_mutex_setprio() can trigger (RT) balancing operations,
3439 * which can then trigger wakeups of the stop thread to push
3440 * around the current task.
3441 *
3442 * The stop task itself will never be part of the PI-chain, it
3443 * never blocks, therefore that ->pi_lock recursion is safe.
3444 * Tell lockdep about this by placing the stop->pi_lock in its
3445 * own class.
3446 */
3447 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3448 }
3449
3450 cpu_rq(cpu)->stop = stop;
3451
3452 if (old_stop) {
3453 /*
3454 * Reset it back to a normal scheduling class so that
3455 * it can die in pieces.
3456 */
3457 old_stop->sched_class = &rt_sched_class;
3458 }
3459}
3460
74d862b6 3461#else /* CONFIG_SMP */
25834c73
PZ
3462
3463static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3464 const struct cpumask *new_mask,
3465 u32 flags)
25834c73
PZ
3466{
3467 return set_cpus_allowed_ptr(p, new_mask);
3468}
3469
af449901
PZ
3470static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3471
3015ef4b
TG
3472static inline bool rq_has_pinned_tasks(struct rq *rq)
3473{
3474 return false;
3475}
3476
74d862b6 3477#endif /* !CONFIG_SMP */
970b13ba 3478
d7c01d27 3479static void
b84cb5df 3480ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3481{
4fa8d299 3482 struct rq *rq;
b84cb5df 3483
4fa8d299
JP
3484 if (!schedstat_enabled())
3485 return;
3486
3487 rq = this_rq();
d7c01d27 3488
4fa8d299
JP
3489#ifdef CONFIG_SMP
3490 if (cpu == rq->cpu) {
b85c8b71
PZ
3491 __schedstat_inc(rq->ttwu_local);
3492 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
3493 } else {
3494 struct sched_domain *sd;
3495
b85c8b71 3496 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 3497 rcu_read_lock();
4fa8d299 3498 for_each_domain(rq->cpu, sd) {
d7c01d27 3499 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3500 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3501 break;
3502 }
3503 }
057f3fad 3504 rcu_read_unlock();
d7c01d27 3505 }
f339b9dc
PZ
3506
3507 if (wake_flags & WF_MIGRATED)
b85c8b71 3508 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
3509#endif /* CONFIG_SMP */
3510
b85c8b71
PZ
3511 __schedstat_inc(rq->ttwu_count);
3512 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
3513
3514 if (wake_flags & WF_SYNC)
b85c8b71 3515 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
3516}
3517
23f41eeb
PZ
3518/*
3519 * Mark the task runnable and perform wakeup-preemption.
3520 */
e7904a28 3521static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3522 struct rq_flags *rf)
9ed3811a 3523{
9ed3811a 3524 check_preempt_curr(rq, p, wake_flags);
2f064a59 3525 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3526 trace_sched_wakeup(p);
3527
9ed3811a 3528#ifdef CONFIG_SMP
4c9a4bc8
PZ
3529 if (p->sched_class->task_woken) {
3530 /*
b19a888c 3531 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3532 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3533 */
d8ac8971 3534 rq_unpin_lock(rq, rf);
9ed3811a 3535 p->sched_class->task_woken(rq, p);
d8ac8971 3536 rq_repin_lock(rq, rf);
4c9a4bc8 3537 }
9ed3811a 3538
e69c6341 3539 if (rq->idle_stamp) {
78becc27 3540 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3541 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3542
abfafa54
JL
3543 update_avg(&rq->avg_idle, delta);
3544
3545 if (rq->avg_idle > max)
9ed3811a 3546 rq->avg_idle = max;
abfafa54 3547
94aafc3e
PZ
3548 rq->wake_stamp = jiffies;
3549 rq->wake_avg_idle = rq->avg_idle / 2;
3550
9ed3811a
TH
3551 rq->idle_stamp = 0;
3552 }
3553#endif
3554}
3555
c05fbafb 3556static void
e7904a28 3557ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3558 struct rq_flags *rf)
c05fbafb 3559{
77558e4d 3560 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3561
5cb9eaa3 3562 lockdep_assert_rq_held(rq);
cbce1a68 3563
c05fbafb
PZ
3564 if (p->sched_contributes_to_load)
3565 rq->nr_uninterruptible--;
b5179ac7 3566
dbfb089d 3567#ifdef CONFIG_SMP
b5179ac7 3568 if (wake_flags & WF_MIGRATED)
59efa0ba 3569 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3570 else
c05fbafb 3571#endif
ec618b84
PZ
3572 if (p->in_iowait) {
3573 delayacct_blkio_end(p);
3574 atomic_dec(&task_rq(p)->nr_iowait);
3575 }
c05fbafb 3576
1b174a2c 3577 activate_task(rq, p, en_flags);
d8ac8971 3578 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3579}
3580
3581/*
58877d34
PZ
3582 * Consider @p being inside a wait loop:
3583 *
3584 * for (;;) {
3585 * set_current_state(TASK_UNINTERRUPTIBLE);
3586 *
3587 * if (CONDITION)
3588 * break;
3589 *
3590 * schedule();
3591 * }
3592 * __set_current_state(TASK_RUNNING);
3593 *
3594 * between set_current_state() and schedule(). In this case @p is still
3595 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3596 * an atomic manner.
3597 *
3598 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3599 * then schedule() must still happen and p->state can be changed to
3600 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3601 * need to do a full wakeup with enqueue.
3602 *
3603 * Returns: %true when the wakeup is done,
3604 * %false otherwise.
c05fbafb 3605 */
58877d34 3606static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3607{
eb580751 3608 struct rq_flags rf;
c05fbafb
PZ
3609 struct rq *rq;
3610 int ret = 0;
3611
eb580751 3612 rq = __task_rq_lock(p, &rf);
da0c1e65 3613 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3614 /* check_preempt_curr() may use rq clock */
3615 update_rq_clock(rq);
d8ac8971 3616 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3617 ret = 1;
3618 }
eb580751 3619 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3620
3621 return ret;
3622}
3623
317f3941 3624#ifdef CONFIG_SMP
a1488664 3625void sched_ttwu_pending(void *arg)
317f3941 3626{
a1488664 3627 struct llist_node *llist = arg;
317f3941 3628 struct rq *rq = this_rq();
73215849 3629 struct task_struct *p, *t;
d8ac8971 3630 struct rq_flags rf;
317f3941 3631
e3baac47
PZ
3632 if (!llist)
3633 return;
3634
126c2092
PZ
3635 /*
3636 * rq::ttwu_pending racy indication of out-standing wakeups.
3637 * Races such that false-negatives are possible, since they
3638 * are shorter lived that false-positives would be.
3639 */
3640 WRITE_ONCE(rq->ttwu_pending, 0);
3641
8a8c69c3 3642 rq_lock_irqsave(rq, &rf);
77558e4d 3643 update_rq_clock(rq);
317f3941 3644
8c4890d1 3645 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3646 if (WARN_ON_ONCE(p->on_cpu))
3647 smp_cond_load_acquire(&p->on_cpu, !VAL);
3648
3649 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3650 set_task_cpu(p, cpu_of(rq));
3651
73215849 3652 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3653 }
317f3941 3654
8a8c69c3 3655 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3656}
3657
b2a02fc4 3658void send_call_function_single_ipi(int cpu)
317f3941 3659{
b2a02fc4 3660 struct rq *rq = cpu_rq(cpu);
ca38062e 3661
b2a02fc4
PZ
3662 if (!set_nr_if_polling(rq->idle))
3663 arch_send_call_function_single_ipi(cpu);
3664 else
3665 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3666}
3667
2ebb1771
MG
3668/*
3669 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3670 * necessary. The wakee CPU on receipt of the IPI will queue the task
3671 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3672 * of the wakeup instead of the waker.
3673 */
3674static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3675{
e3baac47
PZ
3676 struct rq *rq = cpu_rq(cpu);
3677
b7e7ade3
PZ
3678 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3679
126c2092 3680 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3681 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3682}
d6aa8f85 3683
f6be8af1
CL
3684void wake_up_if_idle(int cpu)
3685{
3686 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3687 struct rq_flags rf;
f6be8af1 3688
fd7de1e8
AL
3689 rcu_read_lock();
3690
3691 if (!is_idle_task(rcu_dereference(rq->curr)))
3692 goto out;
f6be8af1
CL
3693
3694 if (set_nr_if_polling(rq->idle)) {
3695 trace_sched_wake_idle_without_ipi(cpu);
3696 } else {
8a8c69c3 3697 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3698 if (is_idle_task(rq->curr))
3699 smp_send_reschedule(cpu);
d1ccc66d 3700 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3701 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3702 }
fd7de1e8
AL
3703
3704out:
3705 rcu_read_unlock();
f6be8af1
CL
3706}
3707
39be3501 3708bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3709{
3710 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3711}
c6e7bd7a 3712
2ebb1771
MG
3713static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3714{
5ba2ffba
PZ
3715 /*
3716 * Do not complicate things with the async wake_list while the CPU is
3717 * in hotplug state.
3718 */
3719 if (!cpu_active(cpu))
3720 return false;
3721
2ebb1771
MG
3722 /*
3723 * If the CPU does not share cache, then queue the task on the
3724 * remote rqs wakelist to avoid accessing remote data.
3725 */
3726 if (!cpus_share_cache(smp_processor_id(), cpu))
3727 return true;
3728
3729 /*
3730 * If the task is descheduling and the only running task on the
3731 * CPU then use the wakelist to offload the task activation to
3732 * the soon-to-be-idle CPU as the current CPU is likely busy.
3733 * nr_running is checked to avoid unnecessary task stacking.
3734 */
739f70b4 3735 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3736 return true;
3737
3738 return false;
3739}
3740
3741static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3742{
2ebb1771 3743 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3744 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3745 return false;
3746
c6e7bd7a 3747 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3748 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3749 return true;
3750 }
3751
3752 return false;
3753}
58877d34
PZ
3754
3755#else /* !CONFIG_SMP */
3756
3757static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3758{
3759 return false;
3760}
3761
d6aa8f85 3762#endif /* CONFIG_SMP */
317f3941 3763
b5179ac7 3764static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3765{
3766 struct rq *rq = cpu_rq(cpu);
d8ac8971 3767 struct rq_flags rf;
c05fbafb 3768
2ebb1771 3769 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3770 return;
317f3941 3771
8a8c69c3 3772 rq_lock(rq, &rf);
77558e4d 3773 update_rq_clock(rq);
d8ac8971 3774 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3775 rq_unlock(rq, &rf);
9ed3811a
TH
3776}
3777
43295d73
TG
3778/*
3779 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3780 *
3781 * The caller holds p::pi_lock if p != current or has preemption
3782 * disabled when p == current.
5f220be2
TG
3783 *
3784 * The rules of PREEMPT_RT saved_state:
3785 *
3786 * The related locking code always holds p::pi_lock when updating
3787 * p::saved_state, which means the code is fully serialized in both cases.
3788 *
3789 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3790 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
3791 */
3792static __always_inline
3793bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3794{
5f220be2
TG
3795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3796 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3797 state != TASK_RTLOCK_WAIT);
3798 }
3799
43295d73
TG
3800 if (READ_ONCE(p->__state) & state) {
3801 *success = 1;
3802 return true;
3803 }
5f220be2
TG
3804
3805#ifdef CONFIG_PREEMPT_RT
3806 /*
3807 * Saved state preserves the task state across blocking on
3808 * an RT lock. If the state matches, set p::saved_state to
3809 * TASK_RUNNING, but do not wake the task because it waits
3810 * for a lock wakeup. Also indicate success because from
3811 * the regular waker's point of view this has succeeded.
3812 *
3813 * After acquiring the lock the task will restore p::__state
3814 * from p::saved_state which ensures that the regular
3815 * wakeup is not lost. The restore will also set
3816 * p::saved_state to TASK_RUNNING so any further tests will
3817 * not result in false positives vs. @success
3818 */
3819 if (p->saved_state & state) {
3820 p->saved_state = TASK_RUNNING;
3821 *success = 1;
3822 }
3823#endif
43295d73
TG
3824 return false;
3825}
3826
8643cda5
PZ
3827/*
3828 * Notes on Program-Order guarantees on SMP systems.
3829 *
3830 * MIGRATION
3831 *
3832 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3833 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3834 * execution on its new CPU [c1].
8643cda5
PZ
3835 *
3836 * For migration (of runnable tasks) this is provided by the following means:
3837 *
3838 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3839 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3840 * rq(c1)->lock (if not at the same time, then in that order).
3841 * C) LOCK of the rq(c1)->lock scheduling in task
3842 *
7696f991 3843 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3844 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3845 *
3846 * Example:
3847 *
3848 * CPU0 CPU1 CPU2
3849 *
3850 * LOCK rq(0)->lock
3851 * sched-out X
3852 * sched-in Y
3853 * UNLOCK rq(0)->lock
3854 *
3855 * LOCK rq(0)->lock // orders against CPU0
3856 * dequeue X
3857 * UNLOCK rq(0)->lock
3858 *
3859 * LOCK rq(1)->lock
3860 * enqueue X
3861 * UNLOCK rq(1)->lock
3862 *
3863 * LOCK rq(1)->lock // orders against CPU2
3864 * sched-out Z
3865 * sched-in X
3866 * UNLOCK rq(1)->lock
3867 *
3868 *
3869 * BLOCKING -- aka. SLEEP + WAKEUP
3870 *
3871 * For blocking we (obviously) need to provide the same guarantee as for
3872 * migration. However the means are completely different as there is no lock
3873 * chain to provide order. Instead we do:
3874 *
58877d34
PZ
3875 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3876 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3877 *
3878 * Example:
3879 *
3880 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3881 *
3882 * LOCK rq(0)->lock LOCK X->pi_lock
3883 * dequeue X
3884 * sched-out X
3885 * smp_store_release(X->on_cpu, 0);
3886 *
1f03e8d2 3887 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3888 * X->state = WAKING
3889 * set_task_cpu(X,2)
3890 *
3891 * LOCK rq(2)->lock
3892 * enqueue X
3893 * X->state = RUNNING
3894 * UNLOCK rq(2)->lock
3895 *
3896 * LOCK rq(2)->lock // orders against CPU1
3897 * sched-out Z
3898 * sched-in X
3899 * UNLOCK rq(2)->lock
3900 *
3901 * UNLOCK X->pi_lock
3902 * UNLOCK rq(0)->lock
3903 *
3904 *
7696f991
AP
3905 * However, for wakeups there is a second guarantee we must provide, namely we
3906 * must ensure that CONDITION=1 done by the caller can not be reordered with
3907 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3908 */
3909
9ed3811a 3910/**
1da177e4 3911 * try_to_wake_up - wake up a thread
9ed3811a 3912 * @p: the thread to be awakened
1da177e4 3913 * @state: the mask of task states that can be woken
9ed3811a 3914 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3915 *
58877d34
PZ
3916 * Conceptually does:
3917 *
3918 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3919 *
a2250238
PZ
3920 * If the task was not queued/runnable, also place it back on a runqueue.
3921 *
58877d34
PZ
3922 * This function is atomic against schedule() which would dequeue the task.
3923 *
3924 * It issues a full memory barrier before accessing @p->state, see the comment
3925 * with set_current_state().
a2250238 3926 *
58877d34 3927 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3928 *
58877d34
PZ
3929 * Relies on p->pi_lock stabilizing:
3930 * - p->sched_class
3931 * - p->cpus_ptr
3932 * - p->sched_task_group
3933 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3934 *
3935 * Tries really hard to only take one task_rq(p)->lock for performance.
3936 * Takes rq->lock in:
3937 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3938 * - ttwu_queue() -- new rq, for enqueue of the task;
3939 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3940 *
3941 * As a consequence we race really badly with just about everything. See the
3942 * many memory barriers and their comments for details.
7696f991 3943 *
a2250238
PZ
3944 * Return: %true if @p->state changes (an actual wakeup was done),
3945 * %false otherwise.
1da177e4 3946 */
e4a52bcb
PZ
3947static int
3948try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3949{
1da177e4 3950 unsigned long flags;
c05fbafb 3951 int cpu, success = 0;
2398f2c6 3952
e3d85487 3953 preempt_disable();
aacedf26
PZ
3954 if (p == current) {
3955 /*
3956 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3957 * == smp_processor_id()'. Together this means we can special
58877d34 3958 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3959 * without taking any locks.
3960 *
3961 * In particular:
3962 * - we rely on Program-Order guarantees for all the ordering,
3963 * - we're serialized against set_special_state() by virtue of
3964 * it disabling IRQs (this allows not taking ->pi_lock).
3965 */
43295d73 3966 if (!ttwu_state_match(p, state, &success))
e3d85487 3967 goto out;
aacedf26 3968
aacedf26 3969 trace_sched_waking(p);
2f064a59 3970 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
3971 trace_sched_wakeup(p);
3972 goto out;
3973 }
3974
e0acd0a6
ON
3975 /*
3976 * If we are going to wake up a thread waiting for CONDITION we
3977 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3978 * reordered with p->state check below. This pairs with smp_store_mb()
3979 * in set_current_state() that the waiting thread does.
e0acd0a6 3980 */
013fdb80 3981 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3982 smp_mb__after_spinlock();
43295d73 3983 if (!ttwu_state_match(p, state, &success))
aacedf26 3984 goto unlock;
1da177e4 3985
fbd705a0
PZ
3986 trace_sched_waking(p);
3987
135e8c92
BS
3988 /*
3989 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3990 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3991 * in smp_cond_load_acquire() below.
3992 *
3d85b270
AP
3993 * sched_ttwu_pending() try_to_wake_up()
3994 * STORE p->on_rq = 1 LOAD p->state
3995 * UNLOCK rq->lock
3996 *
3997 * __schedule() (switch to task 'p')
3998 * LOCK rq->lock smp_rmb();
3999 * smp_mb__after_spinlock();
4000 * UNLOCK rq->lock
135e8c92
BS
4001 *
4002 * [task p]
3d85b270 4003 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4004 *
3d85b270
AP
4005 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4006 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4007 *
4008 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4009 */
4010 smp_rmb();
58877d34 4011 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4012 goto unlock;
1da177e4 4013
1da177e4 4014#ifdef CONFIG_SMP
ecf7d01c
PZ
4015 /*
4016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4017 * possible to, falsely, observe p->on_cpu == 0.
4018 *
4019 * One must be running (->on_cpu == 1) in order to remove oneself
4020 * from the runqueue.
4021 *
3d85b270
AP
4022 * __schedule() (switch to task 'p') try_to_wake_up()
4023 * STORE p->on_cpu = 1 LOAD p->on_rq
4024 * UNLOCK rq->lock
4025 *
4026 * __schedule() (put 'p' to sleep)
4027 * LOCK rq->lock smp_rmb();
4028 * smp_mb__after_spinlock();
4029 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4030 *
3d85b270
AP
4031 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4032 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4033 *
4034 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4035 * schedule()'s deactivate_task() has 'happened' and p will no longer
4036 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4037 */
dbfb089d
PZ
4038 smp_acquire__after_ctrl_dep();
4039
4040 /*
4041 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4042 * == 0), which means we need to do an enqueue, change p->state to
4043 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4044 * enqueue, such as ttwu_queue_wakelist().
4045 */
2f064a59 4046 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4047
c6e7bd7a
PZ
4048 /*
4049 * If the owning (remote) CPU is still in the middle of schedule() with
4050 * this task as prev, considering queueing p on the remote CPUs wake_list
4051 * which potentially sends an IPI instead of spinning on p->on_cpu to
4052 * let the waker make forward progress. This is safe because IRQs are
4053 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4054 *
4055 * Ensure we load task_cpu(p) after p->on_cpu:
4056 *
4057 * set_task_cpu(p, cpu);
4058 * STORE p->cpu = @cpu
4059 * __schedule() (switch to task 'p')
4060 * LOCK rq->lock
4061 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4062 * STORE p->on_cpu = 1 LOAD p->cpu
4063 *
4064 * to ensure we observe the correct CPU on which the task is currently
4065 * scheduling.
c6e7bd7a 4066 */
b6e13e85 4067 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 4068 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
4069 goto unlock;
4070
e9c84311 4071 /*
d1ccc66d 4072 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4073 * this task as prev, wait until it's done referencing the task.
b75a2253 4074 *
31cb1bc0 4075 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4076 *
4077 * This ensures that tasks getting woken will be fully ordered against
4078 * their previous state and preserve Program Order.
0970d299 4079 */
1f03e8d2 4080 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4081
3aef1551 4082 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4083 if (task_cpu(p) != cpu) {
ec618b84
PZ
4084 if (p->in_iowait) {
4085 delayacct_blkio_end(p);
4086 atomic_dec(&task_rq(p)->nr_iowait);
4087 }
4088
f339b9dc 4089 wake_flags |= WF_MIGRATED;
eb414681 4090 psi_ttwu_dequeue(p);
e4a52bcb 4091 set_task_cpu(p, cpu);
f339b9dc 4092 }
b6e13e85
PZ
4093#else
4094 cpu = task_cpu(p);
1da177e4 4095#endif /* CONFIG_SMP */
1da177e4 4096
b5179ac7 4097 ttwu_queue(p, cpu, wake_flags);
aacedf26 4098unlock:
013fdb80 4099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4100out:
4101 if (success)
b6e13e85 4102 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4103 preempt_enable();
1da177e4
LT
4104
4105 return success;
4106}
4107
2beaf328
PM
4108/**
4109 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 4110 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4111 * @func: Function to invoke.
4112 * @arg: Argument to function.
4113 *
4114 * If the specified task can be quickly locked into a definite state
4115 * (either sleeping or on a given runqueue), arrange to keep it in that
4116 * state while invoking @func(@arg). This function can use ->on_rq and
4117 * task_curr() to work out what the state is, if required. Given that
4118 * @func can be invoked with a runqueue lock held, it had better be quite
4119 * lightweight.
4120 *
4121 * Returns:
4122 * @false if the task slipped out from under the locks.
4123 * @true if the task was locked onto a runqueue or is sleeping.
4124 * However, @func can override this by returning @false.
4125 */
4126bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4127{
2beaf328 4128 struct rq_flags rf;
1b7af295 4129 bool ret = false;
2beaf328
PM
4130 struct rq *rq;
4131
1b7af295 4132 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
4133 if (p->on_rq) {
4134 rq = __task_rq_lock(p, &rf);
4135 if (task_rq(p) == rq)
4136 ret = func(p, arg);
4137 rq_unlock(rq, &rf);
4138 } else {
2f064a59 4139 switch (READ_ONCE(p->__state)) {
2beaf328
PM
4140 case TASK_RUNNING:
4141 case TASK_WAKING:
4142 break;
4143 default:
4144 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4145 if (!p->on_rq)
4146 ret = func(p, arg);
4147 }
4148 }
1b7af295 4149 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4150 return ret;
4151}
4152
50fa610a
DH
4153/**
4154 * wake_up_process - Wake up a specific process
4155 * @p: The process to be woken up.
4156 *
4157 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4158 * processes.
4159 *
4160 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4161 *
7696f991 4162 * This function executes a full memory barrier before accessing the task state.
50fa610a 4163 */
7ad5b3a5 4164int wake_up_process(struct task_struct *p)
1da177e4 4165{
9067ac85 4166 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4167}
1da177e4
LT
4168EXPORT_SYMBOL(wake_up_process);
4169
7ad5b3a5 4170int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4171{
4172 return try_to_wake_up(p, state, 0);
4173}
4174
1da177e4
LT
4175/*
4176 * Perform scheduler related setup for a newly forked process p.
4177 * p is forked by current.
dd41f596
IM
4178 *
4179 * __sched_fork() is basic setup used by init_idle() too:
4180 */
5e1576ed 4181static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4182{
fd2f4419
PZ
4183 p->on_rq = 0;
4184
4185 p->se.on_rq = 0;
dd41f596
IM
4186 p->se.exec_start = 0;
4187 p->se.sum_exec_runtime = 0;
f6cf891c 4188 p->se.prev_sum_exec_runtime = 0;
6c594c21 4189 p->se.nr_migrations = 0;
da7a735e 4190 p->se.vruntime = 0;
fd2f4419 4191 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4192
ad936d86
BP
4193#ifdef CONFIG_FAIR_GROUP_SCHED
4194 p->se.cfs_rq = NULL;
4195#endif
4196
6cfb0d5d 4197#ifdef CONFIG_SCHEDSTATS
cb251765 4198 /* Even if schedstat is disabled, there should not be garbage */
41acab88 4199 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 4200#endif
476d139c 4201
aab03e05 4202 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4203 init_dl_task_timer(&p->dl);
209a0cbd 4204 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4205 __dl_clear_params(p);
aab03e05 4206
fa717060 4207 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4208 p->rt.timeout = 0;
4209 p->rt.time_slice = sched_rr_timeslice;
4210 p->rt.on_rq = 0;
4211 p->rt.on_list = 0;
476d139c 4212
e107be36
AK
4213#ifdef CONFIG_PREEMPT_NOTIFIERS
4214 INIT_HLIST_HEAD(&p->preempt_notifiers);
4215#endif
cbee9f88 4216
5e1f0f09
MG
4217#ifdef CONFIG_COMPACTION
4218 p->capture_control = NULL;
4219#endif
13784475 4220 init_numa_balancing(clone_flags, p);
a1488664 4221#ifdef CONFIG_SMP
8c4890d1 4222 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4223 p->migration_pending = NULL;
a1488664 4224#endif
dd41f596
IM
4225}
4226
2a595721
SD
4227DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4228
1a687c2e 4229#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4230
1a687c2e
MG
4231void set_numabalancing_state(bool enabled)
4232{
4233 if (enabled)
2a595721 4234 static_branch_enable(&sched_numa_balancing);
1a687c2e 4235 else
2a595721 4236 static_branch_disable(&sched_numa_balancing);
1a687c2e 4237}
54a43d54
AK
4238
4239#ifdef CONFIG_PROC_SYSCTL
4240int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4241 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4242{
4243 struct ctl_table t;
4244 int err;
2a595721 4245 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
4246
4247 if (write && !capable(CAP_SYS_ADMIN))
4248 return -EPERM;
4249
4250 t = *table;
4251 t.data = &state;
4252 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4253 if (err < 0)
4254 return err;
4255 if (write)
4256 set_numabalancing_state(state);
4257 return err;
4258}
4259#endif
4260#endif
dd41f596 4261
4698f88c
JP
4262#ifdef CONFIG_SCHEDSTATS
4263
cb251765
MG
4264DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4265
cb251765
MG
4266static void set_schedstats(bool enabled)
4267{
4268 if (enabled)
4269 static_branch_enable(&sched_schedstats);
4270 else
4271 static_branch_disable(&sched_schedstats);
4272}
4273
4274void force_schedstat_enabled(void)
4275{
4276 if (!schedstat_enabled()) {
4277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4278 static_branch_enable(&sched_schedstats);
4279 }
4280}
4281
4282static int __init setup_schedstats(char *str)
4283{
4284 int ret = 0;
4285 if (!str)
4286 goto out;
4287
4288 if (!strcmp(str, "enable")) {
1faa491a 4289 set_schedstats(true);
cb251765
MG
4290 ret = 1;
4291 } else if (!strcmp(str, "disable")) {
1faa491a 4292 set_schedstats(false);
cb251765
MG
4293 ret = 1;
4294 }
4295out:
4296 if (!ret)
4297 pr_warn("Unable to parse schedstats=\n");
4298
4299 return ret;
4300}
4301__setup("schedstats=", setup_schedstats);
4302
4303#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4304int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4305 size_t *lenp, loff_t *ppos)
cb251765
MG
4306{
4307 struct ctl_table t;
4308 int err;
4309 int state = static_branch_likely(&sched_schedstats);
4310
4311 if (write && !capable(CAP_SYS_ADMIN))
4312 return -EPERM;
4313
4314 t = *table;
4315 t.data = &state;
4316 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4317 if (err < 0)
4318 return err;
4319 if (write)
4320 set_schedstats(state);
4321 return err;
4322}
4698f88c 4323#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4324#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4325
4326/*
4327 * fork()/clone()-time setup:
4328 */
aab03e05 4329int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4330{
0122ec5b 4331 unsigned long flags;
dd41f596 4332
5e1576ed 4333 __sched_fork(clone_flags, p);
06b83b5f 4334 /*
7dc603c9 4335 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4336 * nobody will actually run it, and a signal or other external
4337 * event cannot wake it up and insert it on the runqueue either.
4338 */
2f064a59 4339 p->__state = TASK_NEW;
dd41f596 4340
c350a04e
MG
4341 /*
4342 * Make sure we do not leak PI boosting priority to the child.
4343 */
4344 p->prio = current->normal_prio;
4345
e8f14172
PB
4346 uclamp_fork(p);
4347
b9dc29e7
MG
4348 /*
4349 * Revert to default priority/policy on fork if requested.
4350 */
4351 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4352 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4353 p->policy = SCHED_NORMAL;
6c697bdf 4354 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4355 p->rt_priority = 0;
4356 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4357 p->static_prio = NICE_TO_PRIO(0);
4358
f558c2b8 4359 p->prio = p->normal_prio = p->static_prio;
9059393e 4360 set_load_weight(p, false);
6c697bdf 4361
b9dc29e7
MG
4362 /*
4363 * We don't need the reset flag anymore after the fork. It has
4364 * fulfilled its duty:
4365 */
4366 p->sched_reset_on_fork = 0;
4367 }
ca94c442 4368
af0fffd9 4369 if (dl_prio(p->prio))
aab03e05 4370 return -EAGAIN;
af0fffd9 4371 else if (rt_prio(p->prio))
aab03e05 4372 p->sched_class = &rt_sched_class;
af0fffd9 4373 else
2ddbf952 4374 p->sched_class = &fair_sched_class;
b29739f9 4375
7dc603c9 4376 init_entity_runnable_average(&p->se);
cd29fe6f 4377
86951599
PZ
4378 /*
4379 * The child is not yet in the pid-hash so no cgroup attach races,
4380 * and the cgroup is pinned to this child due to cgroup_fork()
4381 * is ran before sched_fork().
4382 *
4383 * Silence PROVE_RCU.
4384 */
0122ec5b 4385 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 4386 rseq_migrate(p);
e210bffd 4387 /*
d1ccc66d 4388 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
4389 * so use __set_task_cpu().
4390 */
af0fffd9 4391 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
4392 if (p->sched_class->task_fork)
4393 p->sched_class->task_fork(p);
0122ec5b 4394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 4395
f6db8347 4396#ifdef CONFIG_SCHED_INFO
dd41f596 4397 if (likely(sched_info_on()))
52f17b6c 4398 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4399#endif
3ca7a440
PZ
4400#if defined(CONFIG_SMP)
4401 p->on_cpu = 0;
4866cde0 4402#endif
01028747 4403 init_task_preempt_count(p);
806c09a7 4404#ifdef CONFIG_SMP
917b627d 4405 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4406 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4407#endif
aab03e05 4408 return 0;
1da177e4
LT
4409}
4410
13685c4a
QY
4411void sched_post_fork(struct task_struct *p)
4412{
4413 uclamp_post_fork(p);
4414}
4415
332ac17e
DF
4416unsigned long to_ratio(u64 period, u64 runtime)
4417{
4418 if (runtime == RUNTIME_INF)
c52f14d3 4419 return BW_UNIT;
332ac17e
DF
4420
4421 /*
4422 * Doing this here saves a lot of checks in all
4423 * the calling paths, and returning zero seems
4424 * safe for them anyway.
4425 */
4426 if (period == 0)
4427 return 0;
4428
c52f14d3 4429 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4430}
4431
1da177e4
LT
4432/*
4433 * wake_up_new_task - wake up a newly created task for the first time.
4434 *
4435 * This function will do some initial scheduler statistics housekeeping
4436 * that must be done for every newly created context, then puts the task
4437 * on the runqueue and wakes it.
4438 */
3e51e3ed 4439void wake_up_new_task(struct task_struct *p)
1da177e4 4440{
eb580751 4441 struct rq_flags rf;
dd41f596 4442 struct rq *rq;
fabf318e 4443
eb580751 4444 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4445 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4446#ifdef CONFIG_SMP
4447 /*
4448 * Fork balancing, do it here and not earlier because:
3bd37062 4449 * - cpus_ptr can change in the fork path
d1ccc66d 4450 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4451 *
4452 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4453 * as we're not fully set-up yet.
fabf318e 4454 */
32e839dd 4455 p->recent_used_cpu = task_cpu(p);
ce3614da 4456 rseq_migrate(p);
3aef1551 4457 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4458#endif
b7fa30c9 4459 rq = __task_rq_lock(p, &rf);
4126bad6 4460 update_rq_clock(rq);
d0fe0b9c 4461 post_init_entity_util_avg(p);
0017d735 4462
7a57f32a 4463 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4464 trace_sched_wakeup_new(p);
a7558e01 4465 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4466#ifdef CONFIG_SMP
0aaafaab
PZ
4467 if (p->sched_class->task_woken) {
4468 /*
b19a888c 4469 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4470 * drop it.
4471 */
d8ac8971 4472 rq_unpin_lock(rq, &rf);
efbbd05a 4473 p->sched_class->task_woken(rq, p);
d8ac8971 4474 rq_repin_lock(rq, &rf);
0aaafaab 4475 }
9a897c5a 4476#endif
eb580751 4477 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4478}
4479
e107be36
AK
4480#ifdef CONFIG_PREEMPT_NOTIFIERS
4481
b7203428 4482static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4483
2ecd9d29
PZ
4484void preempt_notifier_inc(void)
4485{
b7203428 4486 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4487}
4488EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4489
4490void preempt_notifier_dec(void)
4491{
b7203428 4492 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4493}
4494EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4495
e107be36 4496/**
80dd99b3 4497 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4498 * @notifier: notifier struct to register
e107be36
AK
4499 */
4500void preempt_notifier_register(struct preempt_notifier *notifier)
4501{
b7203428 4502 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4503 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4504
e107be36
AK
4505 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4506}
4507EXPORT_SYMBOL_GPL(preempt_notifier_register);
4508
4509/**
4510 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4511 * @notifier: notifier struct to unregister
e107be36 4512 *
d84525a8 4513 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4514 */
4515void preempt_notifier_unregister(struct preempt_notifier *notifier)
4516{
4517 hlist_del(&notifier->link);
4518}
4519EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4520
1cde2930 4521static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4522{
4523 struct preempt_notifier *notifier;
e107be36 4524
b67bfe0d 4525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4526 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4527}
4528
1cde2930
PZ
4529static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4530{
b7203428 4531 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4532 __fire_sched_in_preempt_notifiers(curr);
4533}
4534
e107be36 4535static void
1cde2930
PZ
4536__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4537 struct task_struct *next)
e107be36
AK
4538{
4539 struct preempt_notifier *notifier;
e107be36 4540
b67bfe0d 4541 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4542 notifier->ops->sched_out(notifier, next);
4543}
4544
1cde2930
PZ
4545static __always_inline void
4546fire_sched_out_preempt_notifiers(struct task_struct *curr,
4547 struct task_struct *next)
4548{
b7203428 4549 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4550 __fire_sched_out_preempt_notifiers(curr, next);
4551}
4552
6d6bc0ad 4553#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4554
1cde2930 4555static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4556{
4557}
4558
1cde2930 4559static inline void
e107be36
AK
4560fire_sched_out_preempt_notifiers(struct task_struct *curr,
4561 struct task_struct *next)
4562{
4563}
4564
6d6bc0ad 4565#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4566
31cb1bc0 4567static inline void prepare_task(struct task_struct *next)
4568{
4569#ifdef CONFIG_SMP
4570 /*
4571 * Claim the task as running, we do this before switching to it
4572 * such that any running task will have this set.
58877d34
PZ
4573 *
4574 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4575 */
58877d34 4576 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4577#endif
4578}
4579
4580static inline void finish_task(struct task_struct *prev)
4581{
4582#ifdef CONFIG_SMP
4583 /*
58877d34
PZ
4584 * This must be the very last reference to @prev from this CPU. After
4585 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4586 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4587 * finished.
4588 *
4589 * In particular, the load of prev->state in finish_task_switch() must
4590 * happen before this.
4591 *
4592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4593 */
4594 smp_store_release(&prev->on_cpu, 0);
4595#endif
4596}
4597
565790d2
PZ
4598#ifdef CONFIG_SMP
4599
4600static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4601{
4602 void (*func)(struct rq *rq);
4603 struct callback_head *next;
4604
5cb9eaa3 4605 lockdep_assert_rq_held(rq);
565790d2
PZ
4606
4607 while (head) {
4608 func = (void (*)(struct rq *))head->func;
4609 next = head->next;
4610 head->next = NULL;
4611 head = next;
4612
4613 func(rq);
4614 }
4615}
4616
ae792702
PZ
4617static void balance_push(struct rq *rq);
4618
4619struct callback_head balance_push_callback = {
4620 .next = NULL,
4621 .func = (void (*)(struct callback_head *))balance_push,
4622};
4623
565790d2
PZ
4624static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4625{
4626 struct callback_head *head = rq->balance_callback;
4627
5cb9eaa3 4628 lockdep_assert_rq_held(rq);
ae792702 4629 if (head)
565790d2
PZ
4630 rq->balance_callback = NULL;
4631
4632 return head;
4633}
4634
4635static void __balance_callbacks(struct rq *rq)
4636{
4637 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4638}
4639
4640static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4641{
4642 unsigned long flags;
4643
4644 if (unlikely(head)) {
5cb9eaa3 4645 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4646 do_balance_callbacks(rq, head);
5cb9eaa3 4647 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4648 }
4649}
4650
4651#else
4652
4653static inline void __balance_callbacks(struct rq *rq)
4654{
4655}
4656
4657static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4658{
4659 return NULL;
4660}
4661
4662static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4663{
4664}
4665
4666#endif
4667
269d5992
PZ
4668static inline void
4669prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4670{
269d5992
PZ
4671 /*
4672 * Since the runqueue lock will be released by the next
4673 * task (which is an invalid locking op but in the case
4674 * of the scheduler it's an obvious special-case), so we
4675 * do an early lockdep release here:
4676 */
4677 rq_unpin_lock(rq, rf);
9ef7e7e3 4678 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4679#ifdef CONFIG_DEBUG_SPINLOCK
4680 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4681 rq_lockp(rq)->owner = next;
31cb1bc0 4682#endif
269d5992
PZ
4683}
4684
4685static inline void finish_lock_switch(struct rq *rq)
4686{
31cb1bc0 4687 /*
4688 * If we are tracking spinlock dependencies then we have to
4689 * fix up the runqueue lock - which gets 'carried over' from
4690 * prev into current:
4691 */
9ef7e7e3 4692 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4693 __balance_callbacks(rq);
5cb9eaa3 4694 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4695}
4696
325ea10c
IM
4697/*
4698 * NOP if the arch has not defined these:
4699 */
4700
4701#ifndef prepare_arch_switch
4702# define prepare_arch_switch(next) do { } while (0)
4703#endif
4704
4705#ifndef finish_arch_post_lock_switch
4706# define finish_arch_post_lock_switch() do { } while (0)
4707#endif
4708
5fbda3ec
TG
4709static inline void kmap_local_sched_out(void)
4710{
4711#ifdef CONFIG_KMAP_LOCAL
4712 if (unlikely(current->kmap_ctrl.idx))
4713 __kmap_local_sched_out();
4714#endif
4715}
4716
4717static inline void kmap_local_sched_in(void)
4718{
4719#ifdef CONFIG_KMAP_LOCAL
4720 if (unlikely(current->kmap_ctrl.idx))
4721 __kmap_local_sched_in();
4722#endif
4723}
4724
4866cde0
NP
4725/**
4726 * prepare_task_switch - prepare to switch tasks
4727 * @rq: the runqueue preparing to switch
421cee29 4728 * @prev: the current task that is being switched out
4866cde0
NP
4729 * @next: the task we are going to switch to.
4730 *
4731 * This is called with the rq lock held and interrupts off. It must
4732 * be paired with a subsequent finish_task_switch after the context
4733 * switch.
4734 *
4735 * prepare_task_switch sets up locking and calls architecture specific
4736 * hooks.
4737 */
e107be36
AK
4738static inline void
4739prepare_task_switch(struct rq *rq, struct task_struct *prev,
4740 struct task_struct *next)
4866cde0 4741{
0ed557aa 4742 kcov_prepare_switch(prev);
43148951 4743 sched_info_switch(rq, prev, next);
fe4b04fa 4744 perf_event_task_sched_out(prev, next);
d7822b1e 4745 rseq_preempt(prev);
e107be36 4746 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4747 kmap_local_sched_out();
31cb1bc0 4748 prepare_task(next);
4866cde0
NP
4749 prepare_arch_switch(next);
4750}
4751
1da177e4
LT
4752/**
4753 * finish_task_switch - clean up after a task-switch
4754 * @prev: the thread we just switched away from.
4755 *
4866cde0
NP
4756 * finish_task_switch must be called after the context switch, paired
4757 * with a prepare_task_switch call before the context switch.
4758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4759 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4760 *
4761 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4762 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4763 * with the lock held can cause deadlocks; see schedule() for
4764 * details.)
dfa50b60
ON
4765 *
4766 * The context switch have flipped the stack from under us and restored the
4767 * local variables which were saved when this task called schedule() in the
4768 * past. prev == current is still correct but we need to recalculate this_rq
4769 * because prev may have moved to another CPU.
1da177e4 4770 */
dfa50b60 4771static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4772 __releases(rq->lock)
4773{
dfa50b60 4774 struct rq *rq = this_rq();
1da177e4 4775 struct mm_struct *mm = rq->prev_mm;
55a101f8 4776 long prev_state;
1da177e4 4777
609ca066
PZ
4778 /*
4779 * The previous task will have left us with a preempt_count of 2
4780 * because it left us after:
4781 *
4782 * schedule()
4783 * preempt_disable(); // 1
4784 * __schedule()
4785 * raw_spin_lock_irq(&rq->lock) // 2
4786 *
4787 * Also, see FORK_PREEMPT_COUNT.
4788 */
e2bf1c4b
PZ
4789 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4790 "corrupted preempt_count: %s/%d/0x%x\n",
4791 current->comm, current->pid, preempt_count()))
4792 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4793
1da177e4
LT
4794 rq->prev_mm = NULL;
4795
4796 /*
4797 * A task struct has one reference for the use as "current".
c394cc9f 4798 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4799 * schedule one last time. The schedule call will never return, and
4800 * the scheduled task must drop that reference.
95913d97
PZ
4801 *
4802 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4803 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4804 * running on another CPU and we could rave with its RUNNING -> DEAD
4805 * transition, resulting in a double drop.
1da177e4 4806 */
2f064a59 4807 prev_state = READ_ONCE(prev->__state);
bf9fae9f 4808 vtime_task_switch(prev);
a8d757ef 4809 perf_event_task_sched_in(prev, current);
31cb1bc0 4810 finish_task(prev);
0fdcccfa 4811 tick_nohz_task_switch();
31cb1bc0 4812 finish_lock_switch(rq);
01f23e16 4813 finish_arch_post_lock_switch();
0ed557aa 4814 kcov_finish_switch(current);
5fbda3ec
TG
4815 /*
4816 * kmap_local_sched_out() is invoked with rq::lock held and
4817 * interrupts disabled. There is no requirement for that, but the
4818 * sched out code does not have an interrupt enabled section.
4819 * Restoring the maps on sched in does not require interrupts being
4820 * disabled either.
4821 */
4822 kmap_local_sched_in();
e8fa1362 4823
e107be36 4824 fire_sched_in_preempt_notifiers(current);
306e0604 4825 /*
70216e18
MD
4826 * When switching through a kernel thread, the loop in
4827 * membarrier_{private,global}_expedited() may have observed that
4828 * kernel thread and not issued an IPI. It is therefore possible to
4829 * schedule between user->kernel->user threads without passing though
4830 * switch_mm(). Membarrier requires a barrier after storing to
4831 * rq->curr, before returning to userspace, so provide them here:
4832 *
4833 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4834 * provided by mmdrop(),
4835 * - a sync_core for SYNC_CORE.
306e0604 4836 */
70216e18
MD
4837 if (mm) {
4838 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4839 mmdrop(mm);
70216e18 4840 }
1cef1150
PZ
4841 if (unlikely(prev_state == TASK_DEAD)) {
4842 if (prev->sched_class->task_dead)
4843 prev->sched_class->task_dead(prev);
68f24b08 4844
1cef1150
PZ
4845 /*
4846 * Remove function-return probe instances associated with this
4847 * task and put them back on the free list.
4848 */
4849 kprobe_flush_task(prev);
4850
4851 /* Task is done with its stack. */
4852 put_task_stack(prev);
4853
0ff7b2cf 4854 put_task_struct_rcu_user(prev);
c6fd91f0 4855 }
99e5ada9 4856
dfa50b60 4857 return rq;
1da177e4
LT
4858}
4859
4860/**
4861 * schedule_tail - first thing a freshly forked thread must call.
4862 * @prev: the thread we just switched away from.
4863 */
722a9f92 4864asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4865 __releases(rq->lock)
4866{
609ca066
PZ
4867 /*
4868 * New tasks start with FORK_PREEMPT_COUNT, see there and
4869 * finish_task_switch() for details.
4870 *
4871 * finish_task_switch() will drop rq->lock() and lower preempt_count
4872 * and the preempt_enable() will end up enabling preemption (on
4873 * PREEMPT_COUNT kernels).
4874 */
4875
13c2235b 4876 finish_task_switch(prev);
1a43a14a 4877 preempt_enable();
70b97a7f 4878
1da177e4 4879 if (current->set_child_tid)
b488893a 4880 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4881
4882 calculate_sigpending();
1da177e4
LT
4883}
4884
4885/*
dfa50b60 4886 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4887 */
04936948 4888static __always_inline struct rq *
70b97a7f 4889context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4890 struct task_struct *next, struct rq_flags *rf)
1da177e4 4891{
e107be36 4892 prepare_task_switch(rq, prev, next);
fe4b04fa 4893
9226d125
ZA
4894 /*
4895 * For paravirt, this is coupled with an exit in switch_to to
4896 * combine the page table reload and the switch backend into
4897 * one hypercall.
4898 */
224101ed 4899 arch_start_context_switch(prev);
9226d125 4900
306e0604 4901 /*
139d025c
PZ
4902 * kernel -> kernel lazy + transfer active
4903 * user -> kernel lazy + mmgrab() active
4904 *
4905 * kernel -> user switch + mmdrop() active
4906 * user -> user switch
306e0604 4907 */
139d025c
PZ
4908 if (!next->mm) { // to kernel
4909 enter_lazy_tlb(prev->active_mm, next);
4910
4911 next->active_mm = prev->active_mm;
4912 if (prev->mm) // from user
4913 mmgrab(prev->active_mm);
4914 else
4915 prev->active_mm = NULL;
4916 } else { // to user
227a4aad 4917 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4918 /*
4919 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4920 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4921 *
4922 * The below provides this either through switch_mm(), or in
4923 * case 'prev->active_mm == next->mm' through
4924 * finish_task_switch()'s mmdrop().
4925 */
139d025c 4926 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4927
139d025c
PZ
4928 if (!prev->mm) { // from kernel
4929 /* will mmdrop() in finish_task_switch(). */
4930 rq->prev_mm = prev->active_mm;
4931 prev->active_mm = NULL;
4932 }
1da177e4 4933 }
92509b73 4934
cb42c9a3 4935 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4936
269d5992 4937 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4938
4939 /* Here we just switch the register state and the stack. */
4940 switch_to(prev, next, prev);
dd41f596 4941 barrier();
dfa50b60
ON
4942
4943 return finish_task_switch(prev);
1da177e4
LT
4944}
4945
4946/*
1c3e8264 4947 * nr_running and nr_context_switches:
1da177e4
LT
4948 *
4949 * externally visible scheduler statistics: current number of runnable
1c3e8264 4950 * threads, total number of context switches performed since bootup.
1da177e4 4951 */
01aee8fd 4952unsigned int nr_running(void)
1da177e4 4953{
01aee8fd 4954 unsigned int i, sum = 0;
1da177e4
LT
4955
4956 for_each_online_cpu(i)
4957 sum += cpu_rq(i)->nr_running;
4958
4959 return sum;
f711f609 4960}
1da177e4 4961
2ee507c4 4962/*
d1ccc66d 4963 * Check if only the current task is running on the CPU.
00cc1633
DD
4964 *
4965 * Caution: this function does not check that the caller has disabled
4966 * preemption, thus the result might have a time-of-check-to-time-of-use
4967 * race. The caller is responsible to use it correctly, for example:
4968 *
dfcb245e 4969 * - from a non-preemptible section (of course)
00cc1633
DD
4970 *
4971 * - from a thread that is bound to a single CPU
4972 *
4973 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4974 */
4975bool single_task_running(void)
4976{
00cc1633 4977 return raw_rq()->nr_running == 1;
2ee507c4
TC
4978}
4979EXPORT_SYMBOL(single_task_running);
4980
1da177e4 4981unsigned long long nr_context_switches(void)
46cb4b7c 4982{
cc94abfc
SR
4983 int i;
4984 unsigned long long sum = 0;
46cb4b7c 4985
0a945022 4986 for_each_possible_cpu(i)
1da177e4 4987 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4988
1da177e4
LT
4989 return sum;
4990}
483b4ee6 4991
145d952a
DL
4992/*
4993 * Consumers of these two interfaces, like for example the cpuidle menu
4994 * governor, are using nonsensical data. Preferring shallow idle state selection
4995 * for a CPU that has IO-wait which might not even end up running the task when
4996 * it does become runnable.
4997 */
4998
8fc2858e 4999unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5000{
5001 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5002}
5003
e33a9bba 5004/*
b19a888c 5005 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5006 *
5007 * The idea behind IO-wait account is to account the idle time that we could
5008 * have spend running if it were not for IO. That is, if we were to improve the
5009 * storage performance, we'd have a proportional reduction in IO-wait time.
5010 *
5011 * This all works nicely on UP, where, when a task blocks on IO, we account
5012 * idle time as IO-wait, because if the storage were faster, it could've been
5013 * running and we'd not be idle.
5014 *
5015 * This has been extended to SMP, by doing the same for each CPU. This however
5016 * is broken.
5017 *
5018 * Imagine for instance the case where two tasks block on one CPU, only the one
5019 * CPU will have IO-wait accounted, while the other has regular idle. Even
5020 * though, if the storage were faster, both could've ran at the same time,
5021 * utilising both CPUs.
5022 *
5023 * This means, that when looking globally, the current IO-wait accounting on
5024 * SMP is a lower bound, by reason of under accounting.
5025 *
5026 * Worse, since the numbers are provided per CPU, they are sometimes
5027 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5028 * associated with any one particular CPU, it can wake to another CPU than it
5029 * blocked on. This means the per CPU IO-wait number is meaningless.
5030 *
5031 * Task CPU affinities can make all that even more 'interesting'.
5032 */
5033
97455168 5034unsigned int nr_iowait(void)
1da177e4 5035{
97455168 5036 unsigned int i, sum = 0;
483b4ee6 5037
0a945022 5038 for_each_possible_cpu(i)
145d952a 5039 sum += nr_iowait_cpu(i);
46cb4b7c 5040
1da177e4
LT
5041 return sum;
5042}
483b4ee6 5043
dd41f596 5044#ifdef CONFIG_SMP
8a0be9ef 5045
46cb4b7c 5046/*
38022906
PZ
5047 * sched_exec - execve() is a valuable balancing opportunity, because at
5048 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5049 */
38022906 5050void sched_exec(void)
46cb4b7c 5051{
38022906 5052 struct task_struct *p = current;
1da177e4 5053 unsigned long flags;
0017d735 5054 int dest_cpu;
46cb4b7c 5055
8f42ced9 5056 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5057 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5058 if (dest_cpu == smp_processor_id())
5059 goto unlock;
38022906 5060
8f42ced9 5061 if (likely(cpu_active(dest_cpu))) {
969c7921 5062 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5063
8f42ced9
PZ
5064 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5065 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5066 return;
5067 }
0017d735 5068unlock:
8f42ced9 5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5070}
dd41f596 5071
1da177e4
LT
5072#endif
5073
1da177e4 5074DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5075DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5076
5077EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5078EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5079
6075620b
GG
5080/*
5081 * The function fair_sched_class.update_curr accesses the struct curr
5082 * and its field curr->exec_start; when called from task_sched_runtime(),
5083 * we observe a high rate of cache misses in practice.
5084 * Prefetching this data results in improved performance.
5085 */
5086static inline void prefetch_curr_exec_start(struct task_struct *p)
5087{
5088#ifdef CONFIG_FAIR_GROUP_SCHED
5089 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5090#else
5091 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5092#endif
5093 prefetch(curr);
5094 prefetch(&curr->exec_start);
5095}
5096
c5f8d995
HS
5097/*
5098 * Return accounted runtime for the task.
5099 * In case the task is currently running, return the runtime plus current's
5100 * pending runtime that have not been accounted yet.
5101 */
5102unsigned long long task_sched_runtime(struct task_struct *p)
5103{
eb580751 5104 struct rq_flags rf;
c5f8d995 5105 struct rq *rq;
6e998916 5106 u64 ns;
c5f8d995 5107
911b2898
PZ
5108#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5109 /*
97fb7a0a 5110 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5111 * So we have a optimization chance when the task's delta_exec is 0.
5112 * Reading ->on_cpu is racy, but this is ok.
5113 *
d1ccc66d
IM
5114 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5115 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5116 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5117 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5118 * been accounted, so we're correct here as well.
911b2898 5119 */
da0c1e65 5120 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5121 return p->se.sum_exec_runtime;
5122#endif
5123
eb580751 5124 rq = task_rq_lock(p, &rf);
6e998916
SG
5125 /*
5126 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5127 * project cycles that may never be accounted to this
5128 * thread, breaking clock_gettime().
5129 */
5130 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5131 prefetch_curr_exec_start(p);
6e998916
SG
5132 update_rq_clock(rq);
5133 p->sched_class->update_curr(rq);
5134 }
5135 ns = p->se.sum_exec_runtime;
eb580751 5136 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5137
5138 return ns;
5139}
48f24c4d 5140
c006fac5
PT
5141#ifdef CONFIG_SCHED_DEBUG
5142static u64 cpu_resched_latency(struct rq *rq)
5143{
5144 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5145 u64 resched_latency, now = rq_clock(rq);
5146 static bool warned_once;
5147
5148 if (sysctl_resched_latency_warn_once && warned_once)
5149 return 0;
5150
5151 if (!need_resched() || !latency_warn_ms)
5152 return 0;
5153
5154 if (system_state == SYSTEM_BOOTING)
5155 return 0;
5156
5157 if (!rq->last_seen_need_resched_ns) {
5158 rq->last_seen_need_resched_ns = now;
5159 rq->ticks_without_resched = 0;
5160 return 0;
5161 }
5162
5163 rq->ticks_without_resched++;
5164 resched_latency = now - rq->last_seen_need_resched_ns;
5165 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5166 return 0;
5167
5168 warned_once = true;
5169
5170 return resched_latency;
5171}
5172
5173static int __init setup_resched_latency_warn_ms(char *str)
5174{
5175 long val;
5176
5177 if ((kstrtol(str, 0, &val))) {
5178 pr_warn("Unable to set resched_latency_warn_ms\n");
5179 return 1;
5180 }
5181
5182 sysctl_resched_latency_warn_ms = val;
5183 return 1;
5184}
5185__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5186#else
5187static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5188#endif /* CONFIG_SCHED_DEBUG */
5189
7835b98b
CL
5190/*
5191 * This function gets called by the timer code, with HZ frequency.
5192 * We call it with interrupts disabled.
7835b98b
CL
5193 */
5194void scheduler_tick(void)
5195{
7835b98b
CL
5196 int cpu = smp_processor_id();
5197 struct rq *rq = cpu_rq(cpu);
dd41f596 5198 struct task_struct *curr = rq->curr;
8a8c69c3 5199 struct rq_flags rf;
b4eccf5f 5200 unsigned long thermal_pressure;
c006fac5 5201 u64 resched_latency;
3e51f33f 5202
1567c3e3 5203 arch_scale_freq_tick();
3e51f33f 5204 sched_clock_tick();
dd41f596 5205
8a8c69c3
PZ
5206 rq_lock(rq, &rf);
5207
3e51f33f 5208 update_rq_clock(rq);
b4eccf5f 5209 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5210 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5211 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5212 if (sched_feat(LATENCY_WARN))
5213 resched_latency = cpu_resched_latency(rq);
3289bdb4 5214 calc_global_load_tick(rq);
8a8c69c3
PZ
5215
5216 rq_unlock(rq, &rf);
7835b98b 5217
c006fac5
PT
5218 if (sched_feat(LATENCY_WARN) && resched_latency)
5219 resched_latency_warn(cpu, resched_latency);
5220
e9d2b064 5221 perf_event_task_tick();
e220d2dc 5222
e418e1c2 5223#ifdef CONFIG_SMP
6eb57e0d 5224 rq->idle_balance = idle_cpu(cpu);
7caff66f 5225 trigger_load_balance(rq);
e418e1c2 5226#endif
1da177e4
LT
5227}
5228
265f22a9 5229#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5230
5231struct tick_work {
5232 int cpu;
b55bd585 5233 atomic_t state;
d84b3131
FW
5234 struct delayed_work work;
5235};
b55bd585
PM
5236/* Values for ->state, see diagram below. */
5237#define TICK_SCHED_REMOTE_OFFLINE 0
5238#define TICK_SCHED_REMOTE_OFFLINING 1
5239#define TICK_SCHED_REMOTE_RUNNING 2
5240
5241/*
5242 * State diagram for ->state:
5243 *
5244 *
5245 * TICK_SCHED_REMOTE_OFFLINE
5246 * | ^
5247 * | |
5248 * | | sched_tick_remote()
5249 * | |
5250 * | |
5251 * +--TICK_SCHED_REMOTE_OFFLINING
5252 * | ^
5253 * | |
5254 * sched_tick_start() | | sched_tick_stop()
5255 * | |
5256 * V |
5257 * TICK_SCHED_REMOTE_RUNNING
5258 *
5259 *
5260 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5261 * and sched_tick_start() are happy to leave the state in RUNNING.
5262 */
d84b3131
FW
5263
5264static struct tick_work __percpu *tick_work_cpu;
5265
5266static void sched_tick_remote(struct work_struct *work)
5267{
5268 struct delayed_work *dwork = to_delayed_work(work);
5269 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5270 int cpu = twork->cpu;
5271 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5272 struct task_struct *curr;
d84b3131 5273 struct rq_flags rf;
d9c0ffca 5274 u64 delta;
b55bd585 5275 int os;
d84b3131
FW
5276
5277 /*
5278 * Handle the tick only if it appears the remote CPU is running in full
5279 * dynticks mode. The check is racy by nature, but missing a tick or
5280 * having one too much is no big deal because the scheduler tick updates
5281 * statistics and checks timeslices in a time-independent way, regardless
5282 * of when exactly it is running.
5283 */
488603b8 5284 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5285 goto out_requeue;
d84b3131 5286
d9c0ffca
FW
5287 rq_lock_irq(rq, &rf);
5288 curr = rq->curr;
488603b8 5289 if (cpu_is_offline(cpu))
d9c0ffca 5290 goto out_unlock;
d84b3131 5291
d9c0ffca 5292 update_rq_clock(rq);
d9c0ffca 5293
488603b8
SW
5294 if (!is_idle_task(curr)) {
5295 /*
5296 * Make sure the next tick runs within a reasonable
5297 * amount of time.
5298 */
5299 delta = rq_clock_task(rq) - curr->se.exec_start;
5300 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5301 }
d9c0ffca
FW
5302 curr->sched_class->task_tick(rq, curr, 0);
5303
ebc0f83c 5304 calc_load_nohz_remote(rq);
d9c0ffca
FW
5305out_unlock:
5306 rq_unlock_irq(rq, &rf);
d9c0ffca 5307out_requeue:
ebc0f83c 5308
d84b3131
FW
5309 /*
5310 * Run the remote tick once per second (1Hz). This arbitrary
5311 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5312 * to keep scheduler internal stats reasonably up to date. But
5313 * first update state to reflect hotplug activity if required.
d84b3131 5314 */
b55bd585
PM
5315 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5316 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5317 if (os == TICK_SCHED_REMOTE_RUNNING)
5318 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5319}
5320
5321static void sched_tick_start(int cpu)
5322{
b55bd585 5323 int os;
d84b3131
FW
5324 struct tick_work *twork;
5325
5326 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5327 return;
5328
5329 WARN_ON_ONCE(!tick_work_cpu);
5330
5331 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5332 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5333 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5334 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5335 twork->cpu = cpu;
5336 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5337 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5338 }
d84b3131
FW
5339}
5340
5341#ifdef CONFIG_HOTPLUG_CPU
5342static void sched_tick_stop(int cpu)
5343{
5344 struct tick_work *twork;
b55bd585 5345 int os;
d84b3131
FW
5346
5347 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5348 return;
5349
5350 WARN_ON_ONCE(!tick_work_cpu);
5351
5352 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5353 /* There cannot be competing actions, but don't rely on stop-machine. */
5354 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5355 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5356 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5357}
5358#endif /* CONFIG_HOTPLUG_CPU */
5359
5360int __init sched_tick_offload_init(void)
5361{
5362 tick_work_cpu = alloc_percpu(struct tick_work);
5363 BUG_ON(!tick_work_cpu);
d84b3131
FW
5364 return 0;
5365}
5366
5367#else /* !CONFIG_NO_HZ_FULL */
5368static inline void sched_tick_start(int cpu) { }
5369static inline void sched_tick_stop(int cpu) { }
265f22a9 5370#endif
1da177e4 5371
c1a280b6 5372#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5373 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5374/*
5375 * If the value passed in is equal to the current preempt count
5376 * then we just disabled preemption. Start timing the latency.
5377 */
5378static inline void preempt_latency_start(int val)
5379{
5380 if (preempt_count() == val) {
5381 unsigned long ip = get_lock_parent_ip();
5382#ifdef CONFIG_DEBUG_PREEMPT
5383 current->preempt_disable_ip = ip;
5384#endif
5385 trace_preempt_off(CALLER_ADDR0, ip);
5386 }
5387}
7e49fcce 5388
edafe3a5 5389void preempt_count_add(int val)
1da177e4 5390{
6cd8a4bb 5391#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5392 /*
5393 * Underflow?
5394 */
9a11b49a
IM
5395 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5396 return;
6cd8a4bb 5397#endif
bdb43806 5398 __preempt_count_add(val);
6cd8a4bb 5399#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5400 /*
5401 * Spinlock count overflowing soon?
5402 */
33859f7f
MOS
5403 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5404 PREEMPT_MASK - 10);
6cd8a4bb 5405#endif
47252cfb 5406 preempt_latency_start(val);
1da177e4 5407}
bdb43806 5408EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5409NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5410
47252cfb
SR
5411/*
5412 * If the value passed in equals to the current preempt count
5413 * then we just enabled preemption. Stop timing the latency.
5414 */
5415static inline void preempt_latency_stop(int val)
5416{
5417 if (preempt_count() == val)
5418 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5419}
5420
edafe3a5 5421void preempt_count_sub(int val)
1da177e4 5422{
6cd8a4bb 5423#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5424 /*
5425 * Underflow?
5426 */
01e3eb82 5427 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5428 return;
1da177e4
LT
5429 /*
5430 * Is the spinlock portion underflowing?
5431 */
9a11b49a
IM
5432 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5433 !(preempt_count() & PREEMPT_MASK)))
5434 return;
6cd8a4bb 5435#endif
9a11b49a 5436
47252cfb 5437 preempt_latency_stop(val);
bdb43806 5438 __preempt_count_sub(val);
1da177e4 5439}
bdb43806 5440EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5441NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5442
47252cfb
SR
5443#else
5444static inline void preempt_latency_start(int val) { }
5445static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5446#endif
5447
59ddbcb2
IM
5448static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5449{
5450#ifdef CONFIG_DEBUG_PREEMPT
5451 return p->preempt_disable_ip;
5452#else
5453 return 0;
5454#endif
5455}
5456
1da177e4 5457/*
dd41f596 5458 * Print scheduling while atomic bug:
1da177e4 5459 */
dd41f596 5460static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5461{
d1c6d149
VN
5462 /* Save this before calling printk(), since that will clobber it */
5463 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5464
664dfa65
DJ
5465 if (oops_in_progress)
5466 return;
5467
3df0fc5b
PZ
5468 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5469 prev->comm, prev->pid, preempt_count());
838225b4 5470
dd41f596 5471 debug_show_held_locks(prev);
e21f5b15 5472 print_modules();
dd41f596
IM
5473 if (irqs_disabled())
5474 print_irqtrace_events(prev);
d1c6d149
VN
5475 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5476 && in_atomic_preempt_off()) {
8f47b187 5477 pr_err("Preemption disabled at:");
2062a4e8 5478 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5479 }
748c7201
DBO
5480 if (panic_on_warn)
5481 panic("scheduling while atomic\n");
5482
6135fc1e 5483 dump_stack();
373d4d09 5484 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5485}
1da177e4 5486
dd41f596
IM
5487/*
5488 * Various schedule()-time debugging checks and statistics:
5489 */
312364f3 5490static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5491{
0d9e2632 5492#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5493 if (task_stack_end_corrupted(prev))
5494 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5495
5496 if (task_scs_end_corrupted(prev))
5497 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5498#endif
b99def8b 5499
312364f3 5500#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5501 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5502 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5503 prev->comm, prev->pid, prev->non_block_count);
5504 dump_stack();
5505 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5506 }
5507#endif
5508
1dc0fffc 5509 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5510 __schedule_bug(prev);
1dc0fffc
PZ
5511 preempt_count_set(PREEMPT_DISABLED);
5512 }
b3fbab05 5513 rcu_sleep_check();
9f68b5b7 5514 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5515
1da177e4
LT
5516 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5517
ae92882e 5518 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5519}
5520
457d1f46
CY
5521static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5522 struct rq_flags *rf)
5523{
5524#ifdef CONFIG_SMP
5525 const struct sched_class *class;
5526 /*
5527 * We must do the balancing pass before put_prev_task(), such
5528 * that when we release the rq->lock the task is in the same
5529 * state as before we took rq->lock.
5530 *
5531 * We can terminate the balance pass as soon as we know there is
5532 * a runnable task of @class priority or higher.
5533 */
5534 for_class_range(class, prev->sched_class, &idle_sched_class) {
5535 if (class->balance(rq, prev, rf))
5536 break;
5537 }
5538#endif
5539
5540 put_prev_task(rq, prev);
5541}
5542
dd41f596
IM
5543/*
5544 * Pick up the highest-prio task:
5545 */
5546static inline struct task_struct *
539f6512 5547__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5548{
49ee5768 5549 const struct sched_class *class;
dd41f596 5550 struct task_struct *p;
1da177e4
LT
5551
5552 /*
0ba87bb2
PZ
5553 * Optimization: we know that if all tasks are in the fair class we can
5554 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5555 * higher scheduling class, because otherwise those lose the
0ba87bb2 5556 * opportunity to pull in more work from other CPUs.
1da177e4 5557 */
aa93cd53 5558 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5559 rq->nr_running == rq->cfs.h_nr_running)) {
5560
5d7d6056 5561 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5562 if (unlikely(p == RETRY_TASK))
67692435 5563 goto restart;
6ccdc84b 5564
1699949d 5565 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5566 if (!p) {
f488e105 5567 put_prev_task(rq, prev);
98c2f700 5568 p = pick_next_task_idle(rq);
f488e105 5569 }
6ccdc84b
PZ
5570
5571 return p;
1da177e4
LT
5572 }
5573
67692435 5574restart:
457d1f46 5575 put_prev_task_balance(rq, prev, rf);
67692435 5576
34f971f6 5577 for_each_class(class) {
98c2f700 5578 p = class->pick_next_task(rq);
67692435 5579 if (p)
dd41f596 5580 return p;
dd41f596 5581 }
34f971f6 5582
bc9ffef3 5583 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5584}
1da177e4 5585
9edeaea1 5586#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5587static inline bool is_task_rq_idle(struct task_struct *t)
5588{
5589 return (task_rq(t)->idle == t);
5590}
5591
5592static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5593{
5594 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5595}
5596
5597static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5598{
5599 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5600 return true;
5601
5602 return a->core_cookie == b->core_cookie;
5603}
5604
bc9ffef3 5605static inline struct task_struct *pick_task(struct rq *rq)
539f6512 5606{
bc9ffef3
PZ
5607 const struct sched_class *class;
5608 struct task_struct *p;
539f6512 5609
bc9ffef3
PZ
5610 for_each_class(class) {
5611 p = class->pick_task(rq);
5612 if (p)
5613 return p;
539f6512
PZ
5614 }
5615
bc9ffef3 5616 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
5617}
5618
c6047c2e
JFG
5619extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5620
539f6512
PZ
5621static struct task_struct *
5622pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5623{
bc9ffef3 5624 struct task_struct *next, *p, *max = NULL;
539f6512 5625 const struct cpumask *smt_mask;
c6047c2e 5626 bool fi_before = false;
bc9ffef3
PZ
5627 unsigned long cookie;
5628 int i, cpu, occ = 0;
5629 struct rq *rq_i;
539f6512 5630 bool need_sync;
539f6512
PZ
5631
5632 if (!sched_core_enabled(rq))
5633 return __pick_next_task(rq, prev, rf);
5634
5635 cpu = cpu_of(rq);
5636
5637 /* Stopper task is switching into idle, no need core-wide selection. */
5638 if (cpu_is_offline(cpu)) {
5639 /*
5640 * Reset core_pick so that we don't enter the fastpath when
5641 * coming online. core_pick would already be migrated to
5642 * another cpu during offline.
5643 */
5644 rq->core_pick = NULL;
5645 return __pick_next_task(rq, prev, rf);
5646 }
5647
5648 /*
5649 * If there were no {en,de}queues since we picked (IOW, the task
5650 * pointers are all still valid), and we haven't scheduled the last
5651 * pick yet, do so now.
5652 *
5653 * rq->core_pick can be NULL if no selection was made for a CPU because
5654 * it was either offline or went offline during a sibling's core-wide
5655 * selection. In this case, do a core-wide selection.
5656 */
5657 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5658 rq->core->core_pick_seq != rq->core_sched_seq &&
5659 rq->core_pick) {
5660 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5661
5662 next = rq->core_pick;
5663 if (next != prev) {
5664 put_prev_task(rq, prev);
5665 set_next_task(rq, next);
5666 }
5667
5668 rq->core_pick = NULL;
5669 return next;
5670 }
5671
5672 put_prev_task_balance(rq, prev, rf);
5673
5674 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5675 need_sync = !!rq->core->core_cookie;
5676
5677 /* reset state */
5678 rq->core->core_cookie = 0UL;
5679 if (rq->core->core_forceidle) {
5680 need_sync = true;
5681 fi_before = true;
5682 rq->core->core_forceidle = false;
5683 }
539f6512
PZ
5684
5685 /*
5686 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5687 *
5688 * @task_seq guards the task state ({en,de}queues)
5689 * @pick_seq is the @task_seq we did a selection on
5690 * @sched_seq is the @pick_seq we scheduled
5691 *
5692 * However, preemptions can cause multiple picks on the same task set.
5693 * 'Fix' this by also increasing @task_seq for every pick.
5694 */
5695 rq->core->core_task_seq++;
539f6512 5696
7afbba11
JFG
5697 /*
5698 * Optimize for common case where this CPU has no cookies
5699 * and there are no cookied tasks running on siblings.
5700 */
5701 if (!need_sync) {
bc9ffef3 5702 next = pick_task(rq);
7afbba11
JFG
5703 if (!next->core_cookie) {
5704 rq->core_pick = NULL;
c6047c2e
JFG
5705 /*
5706 * For robustness, update the min_vruntime_fi for
5707 * unconstrained picks as well.
5708 */
5709 WARN_ON_ONCE(fi_before);
5710 task_vruntime_update(rq, next, false);
7afbba11
JFG
5711 goto done;
5712 }
8039e96f 5713 }
7afbba11 5714
bc9ffef3
PZ
5715 /*
5716 * For each thread: do the regular task pick and find the max prio task
5717 * amongst them.
5718 *
5719 * Tie-break prio towards the current CPU
5720 */
5721 for_each_cpu_wrap(i, smt_mask, cpu) {
5722 rq_i = cpu_rq(i);
539f6512 5723
539f6512
PZ
5724 if (i != cpu)
5725 update_rq_clock(rq_i);
bc9ffef3
PZ
5726
5727 p = rq_i->core_pick = pick_task(rq_i);
5728 if (!max || prio_less(max, p, fi_before))
5729 max = p;
539f6512
PZ
5730 }
5731
bc9ffef3
PZ
5732 cookie = rq->core->core_cookie = max->core_cookie;
5733
539f6512 5734 /*
bc9ffef3
PZ
5735 * For each thread: try and find a runnable task that matches @max or
5736 * force idle.
539f6512 5737 */
bc9ffef3
PZ
5738 for_each_cpu(i, smt_mask) {
5739 rq_i = cpu_rq(i);
5740 p = rq_i->core_pick;
539f6512 5741
bc9ffef3
PZ
5742 if (!cookie_equals(p, cookie)) {
5743 p = NULL;
5744 if (cookie)
5745 p = sched_core_find(rq_i, cookie);
7afbba11 5746 if (!p)
bc9ffef3
PZ
5747 p = idle_sched_class.pick_task(rq_i);
5748 }
539f6512 5749
bc9ffef3 5750 rq_i->core_pick = p;
d2dfa17b 5751
bc9ffef3
PZ
5752 if (p == rq_i->idle) {
5753 if (rq_i->nr_running) {
c6047c2e
JFG
5754 rq->core->core_forceidle = true;
5755 if (!fi_before)
5756 rq->core->core_forceidle_seq++;
5757 }
bc9ffef3
PZ
5758 } else {
5759 occ++;
539f6512 5760 }
539f6512
PZ
5761 }
5762
5763 rq->core->core_pick_seq = rq->core->core_task_seq;
5764 next = rq->core_pick;
5765 rq->core_sched_seq = rq->core->core_pick_seq;
5766
5767 /* Something should have been selected for current CPU */
5768 WARN_ON_ONCE(!next);
5769
5770 /*
5771 * Reschedule siblings
5772 *
5773 * NOTE: L1TF -- at this point we're no longer running the old task and
5774 * sending an IPI (below) ensures the sibling will no longer be running
5775 * their task. This ensures there is no inter-sibling overlap between
5776 * non-matching user state.
5777 */
5778 for_each_cpu(i, smt_mask) {
bc9ffef3 5779 rq_i = cpu_rq(i);
539f6512
PZ
5780
5781 /*
5782 * An online sibling might have gone offline before a task
5783 * could be picked for it, or it might be offline but later
5784 * happen to come online, but its too late and nothing was
5785 * picked for it. That's Ok - it will pick tasks for itself,
5786 * so ignore it.
5787 */
5788 if (!rq_i->core_pick)
5789 continue;
5790
c6047c2e
JFG
5791 /*
5792 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5793 * fi_before fi update?
5794 * 0 0 1
5795 * 0 1 1
5796 * 1 0 1
5797 * 1 1 0
5798 */
5799 if (!(fi_before && rq->core->core_forceidle))
5800 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
539f6512 5801
d2dfa17b
PZ
5802 rq_i->core_pick->core_occupation = occ;
5803
539f6512
PZ
5804 if (i == cpu) {
5805 rq_i->core_pick = NULL;
5806 continue;
5807 }
5808
5809 /* Did we break L1TF mitigation requirements? */
5810 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5811
5812 if (rq_i->curr == rq_i->core_pick) {
5813 rq_i->core_pick = NULL;
5814 continue;
5815 }
5816
5817 resched_curr(rq_i);
5818 }
5819
5820done:
5821 set_next_task(rq, next);
5822 return next;
5823}
9edeaea1 5824
d2dfa17b
PZ
5825static bool try_steal_cookie(int this, int that)
5826{
5827 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5828 struct task_struct *p;
5829 unsigned long cookie;
5830 bool success = false;
5831
5832 local_irq_disable();
5833 double_rq_lock(dst, src);
5834
5835 cookie = dst->core->core_cookie;
5836 if (!cookie)
5837 goto unlock;
5838
5839 if (dst->curr != dst->idle)
5840 goto unlock;
5841
5842 p = sched_core_find(src, cookie);
5843 if (p == src->idle)
5844 goto unlock;
5845
5846 do {
5847 if (p == src->core_pick || p == src->curr)
5848 goto next;
5849
5850 if (!cpumask_test_cpu(this, &p->cpus_mask))
5851 goto next;
5852
5853 if (p->core_occupation > dst->idle->core_occupation)
5854 goto next;
5855
d2dfa17b
PZ
5856 deactivate_task(src, p, 0);
5857 set_task_cpu(p, this);
5858 activate_task(dst, p, 0);
d2dfa17b
PZ
5859
5860 resched_curr(dst);
5861
5862 success = true;
5863 break;
5864
5865next:
5866 p = sched_core_next(p, cookie);
5867 } while (p);
5868
5869unlock:
5870 double_rq_unlock(dst, src);
5871 local_irq_enable();
5872
5873 return success;
5874}
5875
5876static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5877{
5878 int i;
5879
5880 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5881 if (i == cpu)
5882 continue;
5883
5884 if (need_resched())
5885 break;
5886
5887 if (try_steal_cookie(cpu, i))
5888 return true;
5889 }
5890
5891 return false;
5892}
5893
5894static void sched_core_balance(struct rq *rq)
5895{
5896 struct sched_domain *sd;
5897 int cpu = cpu_of(rq);
5898
5899 preempt_disable();
5900 rcu_read_lock();
5901 raw_spin_rq_unlock_irq(rq);
5902 for_each_domain(cpu, sd) {
5903 if (need_resched())
5904 break;
5905
5906 if (steal_cookie_task(cpu, sd))
5907 break;
5908 }
5909 raw_spin_rq_lock_irq(rq);
5910 rcu_read_unlock();
5911 preempt_enable();
5912}
5913
5914static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5915
5916void queue_core_balance(struct rq *rq)
5917{
5918 if (!sched_core_enabled(rq))
5919 return;
5920
5921 if (!rq->core->core_cookie)
5922 return;
5923
5924 if (!rq->nr_running) /* not forced idle */
5925 return;
5926
5927 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5928}
5929
3c474b32 5930static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
5931{
5932 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
5933 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5934 unsigned long flags;
5935 int t;
9edeaea1 5936
3c474b32 5937 sched_core_lock(cpu, &flags);
9edeaea1 5938
3c474b32
PZ
5939 WARN_ON_ONCE(rq->core != rq);
5940
5941 /* if we're the first, we'll be our own leader */
5942 if (cpumask_weight(smt_mask) == 1)
5943 goto unlock;
5944
5945 /* find the leader */
5946 for_each_cpu(t, smt_mask) {
5947 if (t == cpu)
5948 continue;
5949 rq = cpu_rq(t);
5950 if (rq->core == rq) {
5951 core_rq = rq;
5952 break;
9edeaea1 5953 }
3c474b32 5954 }
9edeaea1 5955
3c474b32
PZ
5956 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5957 goto unlock;
9edeaea1 5958
3c474b32
PZ
5959 /* install and validate core_rq */
5960 for_each_cpu(t, smt_mask) {
5961 rq = cpu_rq(t);
9edeaea1 5962
3c474b32 5963 if (t == cpu)
9edeaea1 5964 rq->core = core_rq;
3c474b32
PZ
5965
5966 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 5967 }
3c474b32
PZ
5968
5969unlock:
5970 sched_core_unlock(cpu, &flags);
9edeaea1 5971}
3c474b32
PZ
5972
5973static void sched_core_cpu_deactivate(unsigned int cpu)
5974{
5975 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5976 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5977 unsigned long flags;
5978 int t;
5979
5980 sched_core_lock(cpu, &flags);
5981
5982 /* if we're the last man standing, nothing to do */
5983 if (cpumask_weight(smt_mask) == 1) {
5984 WARN_ON_ONCE(rq->core != rq);
5985 goto unlock;
5986 }
5987
5988 /* if we're not the leader, nothing to do */
5989 if (rq->core != rq)
5990 goto unlock;
5991
5992 /* find a new leader */
5993 for_each_cpu(t, smt_mask) {
5994 if (t == cpu)
5995 continue;
5996 core_rq = cpu_rq(t);
5997 break;
5998 }
5999
6000 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6001 goto unlock;
6002
6003 /* copy the shared state to the new leader */
6004 core_rq->core_task_seq = rq->core_task_seq;
6005 core_rq->core_pick_seq = rq->core_pick_seq;
6006 core_rq->core_cookie = rq->core_cookie;
6007 core_rq->core_forceidle = rq->core_forceidle;
6008 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6009
6010 /* install new leader */
6011 for_each_cpu(t, smt_mask) {
6012 rq = cpu_rq(t);
6013 rq->core = core_rq;
6014 }
6015
6016unlock:
6017 sched_core_unlock(cpu, &flags);
6018}
6019
6020static inline void sched_core_cpu_dying(unsigned int cpu)
6021{
6022 struct rq *rq = cpu_rq(cpu);
6023
6024 if (rq->core != rq)
6025 rq->core = rq;
6026}
6027
9edeaea1
PZ
6028#else /* !CONFIG_SCHED_CORE */
6029
6030static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6031static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6032static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6033
539f6512
PZ
6034static struct task_struct *
6035pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6036{
6037 return __pick_next_task(rq, prev, rf);
6038}
6039
9edeaea1
PZ
6040#endif /* CONFIG_SCHED_CORE */
6041
b4bfa3fc
TG
6042/*
6043 * Constants for the sched_mode argument of __schedule().
6044 *
6045 * The mode argument allows RT enabled kernels to differentiate a
6046 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6047 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6048 * optimize the AND operation out and just check for zero.
6049 */
6050#define SM_NONE 0x0
6051#define SM_PREEMPT 0x1
6991436c
TG
6052#define SM_RTLOCK_WAIT 0x2
6053
6054#ifndef CONFIG_PREEMPT_RT
6055# define SM_MASK_PREEMPT (~0U)
6056#else
6057# define SM_MASK_PREEMPT SM_PREEMPT
6058#endif
b4bfa3fc 6059
dd41f596 6060/*
c259e01a 6061 * __schedule() is the main scheduler function.
edde96ea
PE
6062 *
6063 * The main means of driving the scheduler and thus entering this function are:
6064 *
6065 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6066 *
6067 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6068 * paths. For example, see arch/x86/entry_64.S.
6069 *
6070 * To drive preemption between tasks, the scheduler sets the flag in timer
6071 * interrupt handler scheduler_tick().
6072 *
6073 * 3. Wakeups don't really cause entry into schedule(). They add a
6074 * task to the run-queue and that's it.
6075 *
6076 * Now, if the new task added to the run-queue preempts the current
6077 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6078 * called on the nearest possible occasion:
6079 *
c1a280b6 6080 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6081 *
6082 * - in syscall or exception context, at the next outmost
6083 * preempt_enable(). (this might be as soon as the wake_up()'s
6084 * spin_unlock()!)
6085 *
6086 * - in IRQ context, return from interrupt-handler to
6087 * preemptible context
6088 *
c1a280b6 6089 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6090 * then at the next:
6091 *
6092 * - cond_resched() call
6093 * - explicit schedule() call
6094 * - return from syscall or exception to user-space
6095 * - return from interrupt-handler to user-space
bfd9b2b5 6096 *
b30f0e3f 6097 * WARNING: must be called with preemption disabled!
dd41f596 6098 */
b4bfa3fc 6099static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6100{
6101 struct task_struct *prev, *next;
67ca7bde 6102 unsigned long *switch_count;
dbfb089d 6103 unsigned long prev_state;
d8ac8971 6104 struct rq_flags rf;
dd41f596 6105 struct rq *rq;
31656519 6106 int cpu;
dd41f596 6107
dd41f596
IM
6108 cpu = smp_processor_id();
6109 rq = cpu_rq(cpu);
dd41f596 6110 prev = rq->curr;
dd41f596 6111
b4bfa3fc 6112 schedule_debug(prev, !!sched_mode);
1da177e4 6113
e0ee463c 6114 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6115 hrtick_clear(rq);
8f4d37ec 6116
46a5d164 6117 local_irq_disable();
b4bfa3fc 6118 rcu_note_context_switch(!!sched_mode);
46a5d164 6119
e0acd0a6
ON
6120 /*
6121 * Make sure that signal_pending_state()->signal_pending() below
6122 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6123 * done by the caller to avoid the race with signal_wake_up():
6124 *
6125 * __set_current_state(@state) signal_wake_up()
6126 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6127 * wake_up_state(p, state)
6128 * LOCK rq->lock LOCK p->pi_state
6129 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6130 * if (signal_pending_state()) if (p->state & @state)
306e0604 6131 *
dbfb089d 6132 * Also, the membarrier system call requires a full memory barrier
306e0604 6133 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6134 */
8a8c69c3 6135 rq_lock(rq, &rf);
d89e588c 6136 smp_mb__after_spinlock();
1da177e4 6137
d1ccc66d
IM
6138 /* Promote REQ to ACT */
6139 rq->clock_update_flags <<= 1;
bce4dc80 6140 update_rq_clock(rq);
9edfbfed 6141
246d86b5 6142 switch_count = &prev->nivcsw;
d136122f 6143
dbfb089d 6144 /*
d136122f
PZ
6145 * We must load prev->state once (task_struct::state is volatile), such
6146 * that:
6147 *
6148 * - we form a control dependency vs deactivate_task() below.
6149 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 6150 */
2f064a59 6151 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6152 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6153 if (signal_pending_state(prev_state, prev)) {
2f064a59 6154 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6155 } else {
dbfb089d
PZ
6156 prev->sched_contributes_to_load =
6157 (prev_state & TASK_UNINTERRUPTIBLE) &&
6158 !(prev_state & TASK_NOLOAD) &&
6159 !(prev->flags & PF_FROZEN);
6160
6161 if (prev->sched_contributes_to_load)
6162 rq->nr_uninterruptible++;
6163
6164 /*
6165 * __schedule() ttwu()
d136122f
PZ
6166 * prev_state = prev->state; if (p->on_rq && ...)
6167 * if (prev_state) goto out;
6168 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6169 * p->state = TASK_WAKING
6170 *
6171 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6172 *
6173 * After this, schedule() must not care about p->state any more.
6174 */
bce4dc80 6175 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6176
e33a9bba
TH
6177 if (prev->in_iowait) {
6178 atomic_inc(&rq->nr_iowait);
6179 delayacct_blkio_start();
6180 }
21aa9af0 6181 }
dd41f596 6182 switch_count = &prev->nvcsw;
1da177e4
LT
6183 }
6184
d8ac8971 6185 next = pick_next_task(rq, prev, &rf);
f26f9aff 6186 clear_tsk_need_resched(prev);
f27dde8d 6187 clear_preempt_need_resched();
c006fac5
PT
6188#ifdef CONFIG_SCHED_DEBUG
6189 rq->last_seen_need_resched_ns = 0;
6190#endif
1da177e4 6191
1da177e4 6192 if (likely(prev != next)) {
1da177e4 6193 rq->nr_switches++;
5311a98f
EB
6194 /*
6195 * RCU users of rcu_dereference(rq->curr) may not see
6196 * changes to task_struct made by pick_next_task().
6197 */
6198 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6199 /*
6200 * The membarrier system call requires each architecture
6201 * to have a full memory barrier after updating
306e0604
MD
6202 * rq->curr, before returning to user-space.
6203 *
6204 * Here are the schemes providing that barrier on the
6205 * various architectures:
6206 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6207 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6208 * - finish_lock_switch() for weakly-ordered
6209 * architectures where spin_unlock is a full barrier,
6210 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6211 * is a RELEASE barrier),
22e4ebb9 6212 */
1da177e4
LT
6213 ++*switch_count;
6214
af449901 6215 migrate_disable_switch(rq, prev);
b05e75d6
JW
6216 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6217
b4bfa3fc 6218 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
d1ccc66d
IM
6219
6220 /* Also unlocks the rq: */
6221 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6222 } else {
cb42c9a3 6223 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6224
565790d2
PZ
6225 rq_unpin_lock(rq, &rf);
6226 __balance_callbacks(rq);
5cb9eaa3 6227 raw_spin_rq_unlock_irq(rq);
565790d2 6228 }
1da177e4 6229}
c259e01a 6230
9af6528e
PZ
6231void __noreturn do_task_dead(void)
6232{
d1ccc66d 6233 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6234 set_special_state(TASK_DEAD);
d1ccc66d
IM
6235
6236 /* Tell freezer to ignore us: */
6237 current->flags |= PF_NOFREEZE;
6238
b4bfa3fc 6239 __schedule(SM_NONE);
9af6528e 6240 BUG();
d1ccc66d
IM
6241
6242 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6243 for (;;)
d1ccc66d 6244 cpu_relax();
9af6528e
PZ
6245}
6246
9c40cef2
TG
6247static inline void sched_submit_work(struct task_struct *tsk)
6248{
c1cecf88
SAS
6249 unsigned int task_flags;
6250
b03fbd4f 6251 if (task_is_running(tsk))
9c40cef2 6252 return;
6d25be57 6253
c1cecf88 6254 task_flags = tsk->flags;
6d25be57
TG
6255 /*
6256 * If a worker went to sleep, notify and ask workqueue whether
6257 * it wants to wake up a task to maintain concurrency.
6258 * As this function is called inside the schedule() context,
6259 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
6260 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6261 * requires it.
6d25be57 6262 */
c1cecf88 6263 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 6264 preempt_disable();
c1cecf88 6265 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6266 wq_worker_sleeping(tsk);
6267 else
6268 io_wq_worker_sleeping(tsk);
6d25be57
TG
6269 preempt_enable_no_resched();
6270 }
6271
b0fdc013
SAS
6272 if (tsk_is_pi_blocked(tsk))
6273 return;
6274
9c40cef2
TG
6275 /*
6276 * If we are going to sleep and we have plugged IO queued,
6277 * make sure to submit it to avoid deadlocks.
6278 */
6279 if (blk_needs_flush_plug(tsk))
6280 blk_schedule_flush_plug(tsk);
6281}
6282
6d25be57
TG
6283static void sched_update_worker(struct task_struct *tsk)
6284{
771b53d0
JA
6285 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6286 if (tsk->flags & PF_WQ_WORKER)
6287 wq_worker_running(tsk);
6288 else
6289 io_wq_worker_running(tsk);
6290 }
6d25be57
TG
6291}
6292
722a9f92 6293asmlinkage __visible void __sched schedule(void)
c259e01a 6294{
9c40cef2
TG
6295 struct task_struct *tsk = current;
6296
6297 sched_submit_work(tsk);
bfd9b2b5 6298 do {
b30f0e3f 6299 preempt_disable();
b4bfa3fc 6300 __schedule(SM_NONE);
b30f0e3f 6301 sched_preempt_enable_no_resched();
bfd9b2b5 6302 } while (need_resched());
6d25be57 6303 sched_update_worker(tsk);
c259e01a 6304}
1da177e4
LT
6305EXPORT_SYMBOL(schedule);
6306
8663effb
SRV
6307/*
6308 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6309 * state (have scheduled out non-voluntarily) by making sure that all
6310 * tasks have either left the run queue or have gone into user space.
6311 * As idle tasks do not do either, they must not ever be preempted
6312 * (schedule out non-voluntarily).
6313 *
6314 * schedule_idle() is similar to schedule_preempt_disable() except that it
6315 * never enables preemption because it does not call sched_submit_work().
6316 */
6317void __sched schedule_idle(void)
6318{
6319 /*
6320 * As this skips calling sched_submit_work(), which the idle task does
6321 * regardless because that function is a nop when the task is in a
6322 * TASK_RUNNING state, make sure this isn't used someplace that the
6323 * current task can be in any other state. Note, idle is always in the
6324 * TASK_RUNNING state.
6325 */
2f064a59 6326 WARN_ON_ONCE(current->__state);
8663effb 6327 do {
b4bfa3fc 6328 __schedule(SM_NONE);
8663effb
SRV
6329 } while (need_resched());
6330}
6331
6775de49 6332#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6333asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6334{
6335 /*
6336 * If we come here after a random call to set_need_resched(),
6337 * or we have been woken up remotely but the IPI has not yet arrived,
6338 * we haven't yet exited the RCU idle mode. Do it here manually until
6339 * we find a better solution.
7cc78f8f
AL
6340 *
6341 * NB: There are buggy callers of this function. Ideally we
c467ea76 6342 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6343 * too frequently to make sense yet.
20ab65e3 6344 */
7cc78f8f 6345 enum ctx_state prev_state = exception_enter();
20ab65e3 6346 schedule();
7cc78f8f 6347 exception_exit(prev_state);
20ab65e3
FW
6348}
6349#endif
6350
c5491ea7
TG
6351/**
6352 * schedule_preempt_disabled - called with preemption disabled
6353 *
6354 * Returns with preemption disabled. Note: preempt_count must be 1
6355 */
6356void __sched schedule_preempt_disabled(void)
6357{
ba74c144 6358 sched_preempt_enable_no_resched();
c5491ea7
TG
6359 schedule();
6360 preempt_disable();
6361}
6362
6991436c
TG
6363#ifdef CONFIG_PREEMPT_RT
6364void __sched notrace schedule_rtlock(void)
6365{
6366 do {
6367 preempt_disable();
6368 __schedule(SM_RTLOCK_WAIT);
6369 sched_preempt_enable_no_resched();
6370 } while (need_resched());
6371}
6372NOKPROBE_SYMBOL(schedule_rtlock);
6373#endif
6374
06b1f808 6375static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6376{
6377 do {
47252cfb
SR
6378 /*
6379 * Because the function tracer can trace preempt_count_sub()
6380 * and it also uses preempt_enable/disable_notrace(), if
6381 * NEED_RESCHED is set, the preempt_enable_notrace() called
6382 * by the function tracer will call this function again and
6383 * cause infinite recursion.
6384 *
6385 * Preemption must be disabled here before the function
6386 * tracer can trace. Break up preempt_disable() into two
6387 * calls. One to disable preemption without fear of being
6388 * traced. The other to still record the preemption latency,
6389 * which can also be traced by the function tracer.
6390 */
499d7955 6391 preempt_disable_notrace();
47252cfb 6392 preempt_latency_start(1);
b4bfa3fc 6393 __schedule(SM_PREEMPT);
47252cfb 6394 preempt_latency_stop(1);
499d7955 6395 preempt_enable_no_resched_notrace();
a18b5d01
FW
6396
6397 /*
6398 * Check again in case we missed a preemption opportunity
6399 * between schedule and now.
6400 */
a18b5d01
FW
6401 } while (need_resched());
6402}
6403
c1a280b6 6404#ifdef CONFIG_PREEMPTION
1da177e4 6405/*
a49b4f40
VS
6406 * This is the entry point to schedule() from in-kernel preemption
6407 * off of preempt_enable.
1da177e4 6408 */
722a9f92 6409asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6410{
1da177e4
LT
6411 /*
6412 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6413 * we do not want to preempt the current task. Just return..
1da177e4 6414 */
fbb00b56 6415 if (likely(!preemptible()))
1da177e4
LT
6416 return;
6417
a18b5d01 6418 preempt_schedule_common();
1da177e4 6419}
376e2424 6420NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6421EXPORT_SYMBOL(preempt_schedule);
009f60e2 6422
2c9a98d3
PZI
6423#ifdef CONFIG_PREEMPT_DYNAMIC
6424DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6425EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6426#endif
6427
6428
009f60e2 6429/**
4eaca0a8 6430 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6431 *
6432 * The tracing infrastructure uses preempt_enable_notrace to prevent
6433 * recursion and tracing preempt enabling caused by the tracing
6434 * infrastructure itself. But as tracing can happen in areas coming
6435 * from userspace or just about to enter userspace, a preempt enable
6436 * can occur before user_exit() is called. This will cause the scheduler
6437 * to be called when the system is still in usermode.
6438 *
6439 * To prevent this, the preempt_enable_notrace will use this function
6440 * instead of preempt_schedule() to exit user context if needed before
6441 * calling the scheduler.
6442 */
4eaca0a8 6443asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6444{
6445 enum ctx_state prev_ctx;
6446
6447 if (likely(!preemptible()))
6448 return;
6449
6450 do {
47252cfb
SR
6451 /*
6452 * Because the function tracer can trace preempt_count_sub()
6453 * and it also uses preempt_enable/disable_notrace(), if
6454 * NEED_RESCHED is set, the preempt_enable_notrace() called
6455 * by the function tracer will call this function again and
6456 * cause infinite recursion.
6457 *
6458 * Preemption must be disabled here before the function
6459 * tracer can trace. Break up preempt_disable() into two
6460 * calls. One to disable preemption without fear of being
6461 * traced. The other to still record the preemption latency,
6462 * which can also be traced by the function tracer.
6463 */
3d8f74dd 6464 preempt_disable_notrace();
47252cfb 6465 preempt_latency_start(1);
009f60e2
ON
6466 /*
6467 * Needs preempt disabled in case user_exit() is traced
6468 * and the tracer calls preempt_enable_notrace() causing
6469 * an infinite recursion.
6470 */
6471 prev_ctx = exception_enter();
b4bfa3fc 6472 __schedule(SM_PREEMPT);
009f60e2
ON
6473 exception_exit(prev_ctx);
6474
47252cfb 6475 preempt_latency_stop(1);
3d8f74dd 6476 preempt_enable_no_resched_notrace();
009f60e2
ON
6477 } while (need_resched());
6478}
4eaca0a8 6479EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6480
2c9a98d3
PZI
6481#ifdef CONFIG_PREEMPT_DYNAMIC
6482DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6483EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6484#endif
6485
c1a280b6 6486#endif /* CONFIG_PREEMPTION */
1da177e4 6487
826bfeb3
PZI
6488#ifdef CONFIG_PREEMPT_DYNAMIC
6489
6490#include <linux/entry-common.h>
6491
6492/*
6493 * SC:cond_resched
6494 * SC:might_resched
6495 * SC:preempt_schedule
6496 * SC:preempt_schedule_notrace
6497 * SC:irqentry_exit_cond_resched
6498 *
6499 *
6500 * NONE:
6501 * cond_resched <- __cond_resched
6502 * might_resched <- RET0
6503 * preempt_schedule <- NOP
6504 * preempt_schedule_notrace <- NOP
6505 * irqentry_exit_cond_resched <- NOP
6506 *
6507 * VOLUNTARY:
6508 * cond_resched <- __cond_resched
6509 * might_resched <- __cond_resched
6510 * preempt_schedule <- NOP
6511 * preempt_schedule_notrace <- NOP
6512 * irqentry_exit_cond_resched <- NOP
6513 *
6514 * FULL:
6515 * cond_resched <- RET0
6516 * might_resched <- RET0
6517 * preempt_schedule <- preempt_schedule
6518 * preempt_schedule_notrace <- preempt_schedule_notrace
6519 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6520 */
e59e10f8
PZ
6521
6522enum {
6523 preempt_dynamic_none = 0,
6524 preempt_dynamic_voluntary,
6525 preempt_dynamic_full,
6526};
6527
1011dcce 6528int preempt_dynamic_mode = preempt_dynamic_full;
e59e10f8 6529
1011dcce 6530int sched_dynamic_mode(const char *str)
826bfeb3 6531{
e59e10f8 6532 if (!strcmp(str, "none"))
7e1b2eb7 6533 return preempt_dynamic_none;
e59e10f8
PZ
6534
6535 if (!strcmp(str, "voluntary"))
7e1b2eb7 6536 return preempt_dynamic_voluntary;
e59e10f8
PZ
6537
6538 if (!strcmp(str, "full"))
7e1b2eb7 6539 return preempt_dynamic_full;
e59e10f8 6540
c4681f3f 6541 return -EINVAL;
e59e10f8
PZ
6542}
6543
1011dcce 6544void sched_dynamic_update(int mode)
e59e10f8
PZ
6545{
6546 /*
6547 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6548 * the ZERO state, which is invalid.
6549 */
6550 static_call_update(cond_resched, __cond_resched);
6551 static_call_update(might_resched, __cond_resched);
6552 static_call_update(preempt_schedule, __preempt_schedule_func);
6553 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6554 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6555
6556 switch (mode) {
6557 case preempt_dynamic_none:
826bfeb3 6558 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6559 static_call_update(might_resched, (void *)&__static_call_return0);
6560 static_call_update(preempt_schedule, NULL);
6561 static_call_update(preempt_schedule_notrace, NULL);
6562 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6563 pr_info("Dynamic Preempt: none\n");
6564 break;
6565
6566 case preempt_dynamic_voluntary:
826bfeb3
PZI
6567 static_call_update(cond_resched, __cond_resched);
6568 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6569 static_call_update(preempt_schedule, NULL);
6570 static_call_update(preempt_schedule_notrace, NULL);
6571 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6572 pr_info("Dynamic Preempt: voluntary\n");
6573 break;
6574
6575 case preempt_dynamic_full:
9432bbd9
PZ
6576 static_call_update(cond_resched, (void *)&__static_call_return0);
6577 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6578 static_call_update(preempt_schedule, __preempt_schedule_func);
6579 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6580 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6581 pr_info("Dynamic Preempt: full\n");
6582 break;
6583 }
6584
6585 preempt_dynamic_mode = mode;
6586}
6587
6588static int __init setup_preempt_mode(char *str)
6589{
6590 int mode = sched_dynamic_mode(str);
6591 if (mode < 0) {
6592 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
6593 return 1;
6594 }
e59e10f8
PZ
6595
6596 sched_dynamic_update(mode);
826bfeb3
PZI
6597 return 0;
6598}
6599__setup("preempt=", setup_preempt_mode);
6600
6601#endif /* CONFIG_PREEMPT_DYNAMIC */
6602
1da177e4 6603/*
a49b4f40 6604 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6605 * off of irq context.
6606 * Note, that this is called and return with irqs disabled. This will
6607 * protect us against recursive calling from irq.
6608 */
722a9f92 6609asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6610{
b22366cd 6611 enum ctx_state prev_state;
6478d880 6612
2ed6e34f 6613 /* Catch callers which need to be fixed */
f27dde8d 6614 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6615
b22366cd
FW
6616 prev_state = exception_enter();
6617
3a5c359a 6618 do {
3d8f74dd 6619 preempt_disable();
3a5c359a 6620 local_irq_enable();
b4bfa3fc 6621 __schedule(SM_PREEMPT);
3a5c359a 6622 local_irq_disable();
3d8f74dd 6623 sched_preempt_enable_no_resched();
5ed0cec0 6624 } while (need_resched());
b22366cd
FW
6625
6626 exception_exit(prev_state);
1da177e4
LT
6627}
6628
ac6424b9 6629int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6630 void *key)
1da177e4 6631{
062d3f95 6632 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6633 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6634}
1da177e4
LT
6635EXPORT_SYMBOL(default_wake_function);
6636
f558c2b8
PZ
6637static void __setscheduler_prio(struct task_struct *p, int prio)
6638{
6639 if (dl_prio(prio))
6640 p->sched_class = &dl_sched_class;
6641 else if (rt_prio(prio))
6642 p->sched_class = &rt_sched_class;
6643 else
6644 p->sched_class = &fair_sched_class;
6645
6646 p->prio = prio;
6647}
6648
b29739f9
IM
6649#ifdef CONFIG_RT_MUTEXES
6650
acd58620
PZ
6651static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6652{
6653 if (pi_task)
6654 prio = min(prio, pi_task->prio);
6655
6656 return prio;
6657}
6658
6659static inline int rt_effective_prio(struct task_struct *p, int prio)
6660{
6661 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6662
6663 return __rt_effective_prio(pi_task, prio);
6664}
6665
b29739f9
IM
6666/*
6667 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6668 * @p: task to boost
6669 * @pi_task: donor task
b29739f9
IM
6670 *
6671 * This function changes the 'effective' priority of a task. It does
6672 * not touch ->normal_prio like __setscheduler().
6673 *
c365c292
TG
6674 * Used by the rt_mutex code to implement priority inheritance
6675 * logic. Call site only calls if the priority of the task changed.
b29739f9 6676 */
acd58620 6677void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6678{
acd58620 6679 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6680 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6681 const struct sched_class *prev_class;
eb580751
PZ
6682 struct rq_flags rf;
6683 struct rq *rq;
b29739f9 6684
acd58620
PZ
6685 /* XXX used to be waiter->prio, not waiter->task->prio */
6686 prio = __rt_effective_prio(pi_task, p->normal_prio);
6687
6688 /*
6689 * If nothing changed; bail early.
6690 */
6691 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6692 return;
b29739f9 6693
eb580751 6694 rq = __task_rq_lock(p, &rf);
80f5c1b8 6695 update_rq_clock(rq);
acd58620
PZ
6696 /*
6697 * Set under pi_lock && rq->lock, such that the value can be used under
6698 * either lock.
6699 *
6700 * Note that there is loads of tricky to make this pointer cache work
6701 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6702 * ensure a task is de-boosted (pi_task is set to NULL) before the
6703 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6704 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6705 */
6706 p->pi_top_task = pi_task;
6707
6708 /*
6709 * For FIFO/RR we only need to set prio, if that matches we're done.
6710 */
6711 if (prio == p->prio && !dl_prio(prio))
6712 goto out_unlock;
b29739f9 6713
1c4dd99b
TG
6714 /*
6715 * Idle task boosting is a nono in general. There is one
6716 * exception, when PREEMPT_RT and NOHZ is active:
6717 *
6718 * The idle task calls get_next_timer_interrupt() and holds
6719 * the timer wheel base->lock on the CPU and another CPU wants
6720 * to access the timer (probably to cancel it). We can safely
6721 * ignore the boosting request, as the idle CPU runs this code
6722 * with interrupts disabled and will complete the lock
6723 * protected section without being interrupted. So there is no
6724 * real need to boost.
6725 */
6726 if (unlikely(p == rq->idle)) {
6727 WARN_ON(p != rq->curr);
6728 WARN_ON(p->pi_blocked_on);
6729 goto out_unlock;
6730 }
6731
b91473ff 6732 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6733 oldprio = p->prio;
ff77e468
PZ
6734
6735 if (oldprio == prio)
6736 queue_flag &= ~DEQUEUE_MOVE;
6737
83ab0aa0 6738 prev_class = p->sched_class;
da0c1e65 6739 queued = task_on_rq_queued(p);
051a1d1a 6740 running = task_current(rq, p);
da0c1e65 6741 if (queued)
ff77e468 6742 dequeue_task(rq, p, queue_flag);
0e1f3483 6743 if (running)
f3cd1c4e 6744 put_prev_task(rq, p);
dd41f596 6745
2d3d891d
DF
6746 /*
6747 * Boosting condition are:
6748 * 1. -rt task is running and holds mutex A
6749 * --> -dl task blocks on mutex A
6750 *
6751 * 2. -dl task is running and holds mutex A
6752 * --> -dl task blocks on mutex A and could preempt the
6753 * running task
6754 */
6755 if (dl_prio(prio)) {
466af29b 6756 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6757 (pi_task && dl_prio(pi_task->prio) &&
6758 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6759 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6760 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6761 } else {
6762 p->dl.pi_se = &p->dl;
6763 }
2d3d891d
DF
6764 } else if (rt_prio(prio)) {
6765 if (dl_prio(oldprio))
2279f540 6766 p->dl.pi_se = &p->dl;
2d3d891d 6767 if (oldprio < prio)
ff77e468 6768 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
6769 } else {
6770 if (dl_prio(oldprio))
2279f540 6771 p->dl.pi_se = &p->dl;
746db944
BS
6772 if (rt_prio(oldprio))
6773 p->rt.timeout = 0;
2d3d891d 6774 }
dd41f596 6775
f558c2b8 6776 __setscheduler_prio(p, prio);
b29739f9 6777
da0c1e65 6778 if (queued)
ff77e468 6779 enqueue_task(rq, p, queue_flag);
a399d233 6780 if (running)
03b7fad1 6781 set_next_task(rq, p);
cb469845 6782
da7a735e 6783 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6784out_unlock:
d1ccc66d
IM
6785 /* Avoid rq from going away on us: */
6786 preempt_disable();
4c9a4bc8 6787
565790d2
PZ
6788 rq_unpin_lock(rq, &rf);
6789 __balance_callbacks(rq);
5cb9eaa3 6790 raw_spin_rq_unlock(rq);
565790d2 6791
4c9a4bc8 6792 preempt_enable();
b29739f9 6793}
acd58620
PZ
6794#else
6795static inline int rt_effective_prio(struct task_struct *p, int prio)
6796{
6797 return prio;
6798}
b29739f9 6799#endif
d50dde5a 6800
36c8b586 6801void set_user_nice(struct task_struct *p, long nice)
1da177e4 6802{
49bd21ef 6803 bool queued, running;
53a23364 6804 int old_prio;
eb580751 6805 struct rq_flags rf;
70b97a7f 6806 struct rq *rq;
1da177e4 6807
75e45d51 6808 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6809 return;
6810 /*
6811 * We have to be careful, if called from sys_setpriority(),
6812 * the task might be in the middle of scheduling on another CPU.
6813 */
eb580751 6814 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6815 update_rq_clock(rq);
6816
1da177e4
LT
6817 /*
6818 * The RT priorities are set via sched_setscheduler(), but we still
6819 * allow the 'normal' nice value to be set - but as expected
b19a888c 6820 * it won't have any effect on scheduling until the task is
aab03e05 6821 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6822 */
aab03e05 6823 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6824 p->static_prio = NICE_TO_PRIO(nice);
6825 goto out_unlock;
6826 }
da0c1e65 6827 queued = task_on_rq_queued(p);
49bd21ef 6828 running = task_current(rq, p);
da0c1e65 6829 if (queued)
7a57f32a 6830 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6831 if (running)
6832 put_prev_task(rq, p);
1da177e4 6833
1da177e4 6834 p->static_prio = NICE_TO_PRIO(nice);
9059393e 6835 set_load_weight(p, true);
b29739f9
IM
6836 old_prio = p->prio;
6837 p->prio = effective_prio(p);
1da177e4 6838
5443a0be 6839 if (queued)
7134b3e9 6840 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6841 if (running)
03b7fad1 6842 set_next_task(rq, p);
5443a0be
FW
6843
6844 /*
6845 * If the task increased its priority or is running and
6846 * lowered its priority, then reschedule its CPU:
6847 */
6848 p->sched_class->prio_changed(rq, p, old_prio);
6849
1da177e4 6850out_unlock:
eb580751 6851 task_rq_unlock(rq, p, &rf);
1da177e4 6852}
1da177e4
LT
6853EXPORT_SYMBOL(set_user_nice);
6854
e43379f1
MM
6855/*
6856 * can_nice - check if a task can reduce its nice value
6857 * @p: task
6858 * @nice: nice value
6859 */
36c8b586 6860int can_nice(const struct task_struct *p, const int nice)
e43379f1 6861{
d1ccc66d 6862 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6863 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6864
78d7d407 6865 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6866 capable(CAP_SYS_NICE));
6867}
6868
1da177e4
LT
6869#ifdef __ARCH_WANT_SYS_NICE
6870
6871/*
6872 * sys_nice - change the priority of the current process.
6873 * @increment: priority increment
6874 *
6875 * sys_setpriority is a more generic, but much slower function that
6876 * does similar things.
6877 */
5add95d4 6878SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6879{
48f24c4d 6880 long nice, retval;
1da177e4
LT
6881
6882 /*
6883 * Setpriority might change our priority at the same moment.
6884 * We don't have to worry. Conceptually one call occurs first
6885 * and we have a single winner.
6886 */
a9467fa3 6887 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6888 nice = task_nice(current) + increment;
1da177e4 6889
a9467fa3 6890 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6891 if (increment < 0 && !can_nice(current, nice))
6892 return -EPERM;
6893
1da177e4
LT
6894 retval = security_task_setnice(current, nice);
6895 if (retval)
6896 return retval;
6897
6898 set_user_nice(current, nice);
6899 return 0;
6900}
6901
6902#endif
6903
6904/**
6905 * task_prio - return the priority value of a given task.
6906 * @p: the task in question.
6907 *
e69f6186 6908 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6909 *
6910 * sched policy return value kernel prio user prio/nice
6911 *
6912 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6913 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6914 * deadline -101 -1 0
1da177e4 6915 */
36c8b586 6916int task_prio(const struct task_struct *p)
1da177e4
LT
6917{
6918 return p->prio - MAX_RT_PRIO;
6919}
6920
1da177e4 6921/**
d1ccc66d 6922 * idle_cpu - is a given CPU idle currently?
1da177e4 6923 * @cpu: the processor in question.
e69f6186
YB
6924 *
6925 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
6926 */
6927int idle_cpu(int cpu)
6928{
908a3283
TG
6929 struct rq *rq = cpu_rq(cpu);
6930
6931 if (rq->curr != rq->idle)
6932 return 0;
6933
6934 if (rq->nr_running)
6935 return 0;
6936
6937#ifdef CONFIG_SMP
126c2092 6938 if (rq->ttwu_pending)
908a3283
TG
6939 return 0;
6940#endif
6941
6942 return 1;
1da177e4
LT
6943}
6944
943d355d
RJ
6945/**
6946 * available_idle_cpu - is a given CPU idle for enqueuing work.
6947 * @cpu: the CPU in question.
6948 *
6949 * Return: 1 if the CPU is currently idle. 0 otherwise.
6950 */
6951int available_idle_cpu(int cpu)
6952{
6953 if (!idle_cpu(cpu))
6954 return 0;
6955
247f2f6f
RJ
6956 if (vcpu_is_preempted(cpu))
6957 return 0;
6958
908a3283 6959 return 1;
1da177e4
LT
6960}
6961
1da177e4 6962/**
d1ccc66d 6963 * idle_task - return the idle task for a given CPU.
1da177e4 6964 * @cpu: the processor in question.
e69f6186 6965 *
d1ccc66d 6966 * Return: The idle task for the CPU @cpu.
1da177e4 6967 */
36c8b586 6968struct task_struct *idle_task(int cpu)
1da177e4
LT
6969{
6970 return cpu_rq(cpu)->idle;
6971}
6972
7d6a905f
VK
6973#ifdef CONFIG_SMP
6974/*
6975 * This function computes an effective utilization for the given CPU, to be
6976 * used for frequency selection given the linear relation: f = u * f_max.
6977 *
6978 * The scheduler tracks the following metrics:
6979 *
6980 * cpu_util_{cfs,rt,dl,irq}()
6981 * cpu_bw_dl()
6982 *
6983 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6984 * synchronized windows and are thus directly comparable.
6985 *
6986 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6987 * which excludes things like IRQ and steal-time. These latter are then accrued
6988 * in the irq utilization.
6989 *
6990 * The DL bandwidth number otoh is not a measured metric but a value computed
6991 * based on the task model parameters and gives the minimal utilization
6992 * required to meet deadlines.
6993 */
a5418be9
VK
6994unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6995 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
6996 struct task_struct *p)
6997{
6998 unsigned long dl_util, util, irq;
6999 struct rq *rq = cpu_rq(cpu);
7000
7001 if (!uclamp_is_used() &&
7002 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7003 return max;
7004 }
7005
7006 /*
7007 * Early check to see if IRQ/steal time saturates the CPU, can be
7008 * because of inaccuracies in how we track these -- see
7009 * update_irq_load_avg().
7010 */
7011 irq = cpu_util_irq(rq);
7012 if (unlikely(irq >= max))
7013 return max;
7014
7015 /*
7016 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7017 * CFS tasks and we use the same metric to track the effective
7018 * utilization (PELT windows are synchronized) we can directly add them
7019 * to obtain the CPU's actual utilization.
7020 *
7021 * CFS and RT utilization can be boosted or capped, depending on
7022 * utilization clamp constraints requested by currently RUNNABLE
7023 * tasks.
7024 * When there are no CFS RUNNABLE tasks, clamps are released and
7025 * frequency will be gracefully reduced with the utilization decay.
7026 */
7027 util = util_cfs + cpu_util_rt(rq);
7028 if (type == FREQUENCY_UTIL)
7029 util = uclamp_rq_util_with(rq, util, p);
7030
7031 dl_util = cpu_util_dl(rq);
7032
7033 /*
7034 * For frequency selection we do not make cpu_util_dl() a permanent part
7035 * of this sum because we want to use cpu_bw_dl() later on, but we need
7036 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7037 * that we select f_max when there is no idle time.
7038 *
7039 * NOTE: numerical errors or stop class might cause us to not quite hit
7040 * saturation when we should -- something for later.
7041 */
7042 if (util + dl_util >= max)
7043 return max;
7044
7045 /*
7046 * OTOH, for energy computation we need the estimated running time, so
7047 * include util_dl and ignore dl_bw.
7048 */
7049 if (type == ENERGY_UTIL)
7050 util += dl_util;
7051
7052 /*
7053 * There is still idle time; further improve the number by using the
7054 * irq metric. Because IRQ/steal time is hidden from the task clock we
7055 * need to scale the task numbers:
7056 *
7057 * max - irq
7058 * U' = irq + --------- * U
7059 * max
7060 */
7061 util = scale_irq_capacity(util, irq, max);
7062 util += irq;
7063
7064 /*
7065 * Bandwidth required by DEADLINE must always be granted while, for
7066 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7067 * to gracefully reduce the frequency when no tasks show up for longer
7068 * periods of time.
7069 *
7070 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7071 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7072 * an interface. So, we only do the latter for now.
7073 */
7074 if (type == FREQUENCY_UTIL)
7075 util += cpu_bw_dl(rq);
7076
7077 return min(max, util);
7078}
a5418be9
VK
7079
7080unsigned long sched_cpu_util(int cpu, unsigned long max)
7081{
7082 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7083 ENERGY_UTIL, NULL);
7084}
7d6a905f
VK
7085#endif /* CONFIG_SMP */
7086
1da177e4
LT
7087/**
7088 * find_process_by_pid - find a process with a matching PID value.
7089 * @pid: the pid in question.
e69f6186
YB
7090 *
7091 * The task of @pid, if found. %NULL otherwise.
1da177e4 7092 */
a9957449 7093static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7094{
228ebcbe 7095 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7096}
7097
c13db6b1
SR
7098/*
7099 * sched_setparam() passes in -1 for its policy, to let the functions
7100 * it calls know not to change it.
7101 */
7102#define SETPARAM_POLICY -1
7103
c365c292
TG
7104static void __setscheduler_params(struct task_struct *p,
7105 const struct sched_attr *attr)
1da177e4 7106{
d50dde5a
DF
7107 int policy = attr->sched_policy;
7108
c13db6b1 7109 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7110 policy = p->policy;
7111
1da177e4 7112 p->policy = policy;
d50dde5a 7113
aab03e05
DF
7114 if (dl_policy(policy))
7115 __setparam_dl(p, attr);
39fd8fd2 7116 else if (fair_policy(policy))
d50dde5a
DF
7117 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7118
39fd8fd2
PZ
7119 /*
7120 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7121 * !rt_policy. Always setting this ensures that things like
7122 * getparam()/getattr() don't report silly values for !rt tasks.
7123 */
7124 p->rt_priority = attr->sched_priority;
383afd09 7125 p->normal_prio = normal_prio(p);
9059393e 7126 set_load_weight(p, true);
c365c292 7127}
39fd8fd2 7128
c69e8d9c 7129/*
d1ccc66d 7130 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7131 */
7132static bool check_same_owner(struct task_struct *p)
7133{
7134 const struct cred *cred = current_cred(), *pcred;
7135 bool match;
7136
7137 rcu_read_lock();
7138 pcred = __task_cred(p);
9c806aa0
EB
7139 match = (uid_eq(cred->euid, pcred->euid) ||
7140 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7141 rcu_read_unlock();
7142 return match;
7143}
7144
d50dde5a
DF
7145static int __sched_setscheduler(struct task_struct *p,
7146 const struct sched_attr *attr,
dbc7f069 7147 bool user, bool pi)
1da177e4 7148{
f558c2b8
PZ
7149 int oldpolicy = -1, policy = attr->sched_policy;
7150 int retval, oldprio, newprio, queued, running;
83ab0aa0 7151 const struct sched_class *prev_class;
565790d2 7152 struct callback_head *head;
eb580751 7153 struct rq_flags rf;
ca94c442 7154 int reset_on_fork;
7a57f32a 7155 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7156 struct rq *rq;
1da177e4 7157
896bbb25
SRV
7158 /* The pi code expects interrupts enabled */
7159 BUG_ON(pi && in_interrupt());
1da177e4 7160recheck:
d1ccc66d 7161 /* Double check policy once rq lock held: */
ca94c442
LP
7162 if (policy < 0) {
7163 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7164 policy = oldpolicy = p->policy;
ca94c442 7165 } else {
7479f3c9 7166 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7167
20f9cd2a 7168 if (!valid_policy(policy))
ca94c442
LP
7169 return -EINVAL;
7170 }
7171
794a56eb 7172 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7173 return -EINVAL;
7174
1da177e4
LT
7175 /*
7176 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7177 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7178 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7179 */
ae18ad28 7180 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7181 return -EINVAL;
aab03e05
DF
7182 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7183 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7184 return -EINVAL;
7185
37e4ab3f
OC
7186 /*
7187 * Allow unprivileged RT tasks to decrease priority:
7188 */
961ccddd 7189 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 7190 if (fair_policy(policy)) {
d0ea0268 7191 if (attr->sched_nice < task_nice(p) &&
eaad4513 7192 !can_nice(p, attr->sched_nice))
d50dde5a
DF
7193 return -EPERM;
7194 }
7195
e05606d3 7196 if (rt_policy(policy)) {
a44702e8
ON
7197 unsigned long rlim_rtprio =
7198 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 7199
d1ccc66d 7200 /* Can't set/change the rt policy: */
8dc3e909
ON
7201 if (policy != p->policy && !rlim_rtprio)
7202 return -EPERM;
7203
d1ccc66d 7204 /* Can't increase priority: */
d50dde5a
DF
7205 if (attr->sched_priority > p->rt_priority &&
7206 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
7207 return -EPERM;
7208 }
c02aa73b 7209
d44753b8
JL
7210 /*
7211 * Can't set/change SCHED_DEADLINE policy at all for now
7212 * (safest behavior); in the future we would like to allow
7213 * unprivileged DL tasks to increase their relative deadline
7214 * or reduce their runtime (both ways reducing utilization)
7215 */
7216 if (dl_policy(policy))
7217 return -EPERM;
7218
dd41f596 7219 /*
c02aa73b
DH
7220 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 7222 */
1da1843f 7223 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 7224 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
7225 return -EPERM;
7226 }
5fe1d75f 7227
d1ccc66d 7228 /* Can't change other user's priorities: */
c69e8d9c 7229 if (!check_same_owner(p))
37e4ab3f 7230 return -EPERM;
ca94c442 7231
d1ccc66d 7232 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
7233 if (p->sched_reset_on_fork && !reset_on_fork)
7234 return -EPERM;
37e4ab3f 7235 }
1da177e4 7236
725aad24 7237 if (user) {
794a56eb
JL
7238 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7239 return -EINVAL;
7240
b0ae1981 7241 retval = security_task_setscheduler(p);
725aad24
JF
7242 if (retval)
7243 return retval;
7244 }
7245
a509a7cd
PB
7246 /* Update task specific "requested" clamps */
7247 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7248 retval = uclamp_validate(p, attr);
7249 if (retval)
7250 return retval;
7251 }
7252
710da3c8
JL
7253 if (pi)
7254 cpuset_read_lock();
7255
b29739f9 7256 /*
d1ccc66d 7257 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7258 * changing the priority of the task:
0122ec5b 7259 *
25985edc 7260 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7261 * runqueue lock must be held.
7262 */
eb580751 7263 rq = task_rq_lock(p, &rf);
80f5c1b8 7264 update_rq_clock(rq);
dc61b1d6 7265
34f971f6 7266 /*
d1ccc66d 7267 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7268 */
7269 if (p == rq->stop) {
4b211f2b
MP
7270 retval = -EINVAL;
7271 goto unlock;
34f971f6
PZ
7272 }
7273
a51e9198 7274 /*
d6b1e911
TG
7275 * If not changing anything there's no need to proceed further,
7276 * but store a possible modification of reset_on_fork.
a51e9198 7277 */
d50dde5a 7278 if (unlikely(policy == p->policy)) {
d0ea0268 7279 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7280 goto change;
7281 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7282 goto change;
75381608 7283 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7284 goto change;
a509a7cd
PB
7285 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7286 goto change;
d50dde5a 7287
d6b1e911 7288 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7289 retval = 0;
7290 goto unlock;
a51e9198 7291 }
d50dde5a 7292change:
a51e9198 7293
dc61b1d6 7294 if (user) {
332ac17e 7295#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7296 /*
7297 * Do not allow realtime tasks into groups that have no runtime
7298 * assigned.
7299 */
7300 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7301 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7302 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7303 retval = -EPERM;
7304 goto unlock;
dc61b1d6 7305 }
dc61b1d6 7306#endif
332ac17e 7307#ifdef CONFIG_SMP
794a56eb
JL
7308 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7309 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7310 cpumask_t *span = rq->rd->span;
332ac17e
DF
7311
7312 /*
7313 * Don't allow tasks with an affinity mask smaller than
7314 * the entire root_domain to become SCHED_DEADLINE. We
7315 * will also fail if there's no bandwidth available.
7316 */
3bd37062 7317 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7318 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7319 retval = -EPERM;
7320 goto unlock;
332ac17e
DF
7321 }
7322 }
7323#endif
7324 }
dc61b1d6 7325
d1ccc66d 7326 /* Re-check policy now with rq lock held: */
1da177e4
LT
7327 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7328 policy = oldpolicy = -1;
eb580751 7329 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7330 if (pi)
7331 cpuset_read_unlock();
1da177e4
LT
7332 goto recheck;
7333 }
332ac17e
DF
7334
7335 /*
7336 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7337 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7338 * is available.
7339 */
06a76fe0 7340 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7341 retval = -EBUSY;
7342 goto unlock;
332ac17e
DF
7343 }
7344
c365c292
TG
7345 p->sched_reset_on_fork = reset_on_fork;
7346 oldprio = p->prio;
7347
f558c2b8 7348 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7349 if (pi) {
7350 /*
7351 * Take priority boosted tasks into account. If the new
7352 * effective priority is unchanged, we just store the new
7353 * normal parameters and do not touch the scheduler class and
7354 * the runqueue. This will be done when the task deboost
7355 * itself.
7356 */
f558c2b8
PZ
7357 newprio = rt_effective_prio(p, newprio);
7358 if (newprio == oldprio)
ff77e468 7359 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7360 }
7361
da0c1e65 7362 queued = task_on_rq_queued(p);
051a1d1a 7363 running = task_current(rq, p);
da0c1e65 7364 if (queued)
ff77e468 7365 dequeue_task(rq, p, queue_flags);
0e1f3483 7366 if (running)
f3cd1c4e 7367 put_prev_task(rq, p);
f6b53205 7368
83ab0aa0 7369 prev_class = p->sched_class;
a509a7cd 7370
f558c2b8
PZ
7371 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7372 __setscheduler_params(p, attr);
7373 __setscheduler_prio(p, newprio);
7374 }
a509a7cd 7375 __setscheduler_uclamp(p, attr);
f6b53205 7376
da0c1e65 7377 if (queued) {
81a44c54
TG
7378 /*
7379 * We enqueue to tail when the priority of a task is
7380 * increased (user space view).
7381 */
ff77e468
PZ
7382 if (oldprio < p->prio)
7383 queue_flags |= ENQUEUE_HEAD;
1de64443 7384
ff77e468 7385 enqueue_task(rq, p, queue_flags);
81a44c54 7386 }
a399d233 7387 if (running)
03b7fad1 7388 set_next_task(rq, p);
cb469845 7389
da7a735e 7390 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7391
7392 /* Avoid rq from going away on us: */
7393 preempt_disable();
565790d2 7394 head = splice_balance_callbacks(rq);
eb580751 7395 task_rq_unlock(rq, p, &rf);
b29739f9 7396
710da3c8
JL
7397 if (pi) {
7398 cpuset_read_unlock();
dbc7f069 7399 rt_mutex_adjust_pi(p);
710da3c8 7400 }
95e02ca9 7401
d1ccc66d 7402 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7403 balance_callbacks(rq, head);
4c9a4bc8 7404 preempt_enable();
95e02ca9 7405
1da177e4 7406 return 0;
4b211f2b
MP
7407
7408unlock:
7409 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7410 if (pi)
7411 cpuset_read_unlock();
4b211f2b 7412 return retval;
1da177e4 7413}
961ccddd 7414
7479f3c9
PZ
7415static int _sched_setscheduler(struct task_struct *p, int policy,
7416 const struct sched_param *param, bool check)
7417{
7418 struct sched_attr attr = {
7419 .sched_policy = policy,
7420 .sched_priority = param->sched_priority,
7421 .sched_nice = PRIO_TO_NICE(p->static_prio),
7422 };
7423
c13db6b1
SR
7424 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7425 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7426 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7427 policy &= ~SCHED_RESET_ON_FORK;
7428 attr.sched_policy = policy;
7429 }
7430
dbc7f069 7431 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7432}
961ccddd
RR
7433/**
7434 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7435 * @p: the task in question.
7436 * @policy: new policy.
7437 * @param: structure containing the new RT priority.
7438 *
7318d4cc
PZ
7439 * Use sched_set_fifo(), read its comment.
7440 *
e69f6186
YB
7441 * Return: 0 on success. An error code otherwise.
7442 *
961ccddd
RR
7443 * NOTE that the task may be already dead.
7444 */
7445int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7446 const struct sched_param *param)
961ccddd 7447{
7479f3c9 7448 return _sched_setscheduler(p, policy, param, true);
961ccddd 7449}
1da177e4 7450
d50dde5a
DF
7451int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7452{
dbc7f069 7453 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7454}
d50dde5a 7455
794a56eb
JL
7456int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7457{
7458 return __sched_setscheduler(p, attr, false, true);
7459}
1eb5dde6 7460EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7461
961ccddd
RR
7462/**
7463 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7464 * @p: the task in question.
7465 * @policy: new policy.
7466 * @param: structure containing the new RT priority.
7467 *
7468 * Just like sched_setscheduler, only don't bother checking if the
7469 * current context has permission. For example, this is needed in
7470 * stop_machine(): we create temporary high priority worker threads,
7471 * but our caller might not have that capability.
e69f6186
YB
7472 *
7473 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7474 */
7475int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7476 const struct sched_param *param)
961ccddd 7477{
7479f3c9 7478 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7479}
7480
7318d4cc
PZ
7481/*
7482 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7483 * incapable of resource management, which is the one thing an OS really should
7484 * be doing.
7485 *
7486 * This is of course the reason it is limited to privileged users only.
7487 *
7488 * Worse still; it is fundamentally impossible to compose static priority
7489 * workloads. You cannot take two correctly working static prio workloads
7490 * and smash them together and still expect them to work.
7491 *
7492 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7493 *
7494 * MAX_RT_PRIO / 2
7495 *
7496 * The administrator _MUST_ configure the system, the kernel simply doesn't
7497 * know enough information to make a sensible choice.
7498 */
8b700983 7499void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7500{
7501 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7502 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7503}
7504EXPORT_SYMBOL_GPL(sched_set_fifo);
7505
7506/*
7507 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7508 */
8b700983 7509void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7510{
7511 struct sched_param sp = { .sched_priority = 1 };
8b700983 7512 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7513}
7514EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7515
8b700983 7516void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7517{
7518 struct sched_attr attr = {
7519 .sched_policy = SCHED_NORMAL,
7520 .sched_nice = nice,
7521 };
8b700983 7522 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7523}
7524EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7525
95cdf3b7
IM
7526static int
7527do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7528{
1da177e4
LT
7529 struct sched_param lparam;
7530 struct task_struct *p;
36c8b586 7531 int retval;
1da177e4
LT
7532
7533 if (!param || pid < 0)
7534 return -EINVAL;
7535 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7536 return -EFAULT;
5fe1d75f
ON
7537
7538 rcu_read_lock();
7539 retval = -ESRCH;
1da177e4 7540 p = find_process_by_pid(pid);
710da3c8
JL
7541 if (likely(p))
7542 get_task_struct(p);
5fe1d75f 7543 rcu_read_unlock();
36c8b586 7544
710da3c8
JL
7545 if (likely(p)) {
7546 retval = sched_setscheduler(p, policy, &lparam);
7547 put_task_struct(p);
7548 }
7549
1da177e4
LT
7550 return retval;
7551}
7552
d50dde5a
DF
7553/*
7554 * Mimics kernel/events/core.c perf_copy_attr().
7555 */
d1ccc66d 7556static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7557{
7558 u32 size;
7559 int ret;
7560
d1ccc66d 7561 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7562 memset(attr, 0, sizeof(*attr));
7563
7564 ret = get_user(size, &uattr->size);
7565 if (ret)
7566 return ret;
7567
d1ccc66d
IM
7568 /* ABI compatibility quirk: */
7569 if (!size)
d50dde5a 7570 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7571 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7572 goto err_size;
7573
dff3a85f
AS
7574 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7575 if (ret) {
7576 if (ret == -E2BIG)
7577 goto err_size;
7578 return ret;
d50dde5a
DF
7579 }
7580
a509a7cd
PB
7581 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7582 size < SCHED_ATTR_SIZE_VER1)
7583 return -EINVAL;
7584
d50dde5a 7585 /*
d1ccc66d 7586 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7587 * to be strict and return an error on out-of-bounds values?
7588 */
75e45d51 7589 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7590
e78c7bca 7591 return 0;
d50dde5a
DF
7592
7593err_size:
7594 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7595 return -E2BIG;
d50dde5a
DF
7596}
7597
f4dddf90
QP
7598static void get_params(struct task_struct *p, struct sched_attr *attr)
7599{
7600 if (task_has_dl_policy(p))
7601 __getparam_dl(p, attr);
7602 else if (task_has_rt_policy(p))
7603 attr->sched_priority = p->rt_priority;
7604 else
7605 attr->sched_nice = task_nice(p);
7606}
7607
1da177e4
LT
7608/**
7609 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7610 * @pid: the pid in question.
7611 * @policy: new policy.
7612 * @param: structure containing the new RT priority.
e69f6186
YB
7613 *
7614 * Return: 0 on success. An error code otherwise.
1da177e4 7615 */
d1ccc66d 7616SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7617{
c21761f1
JB
7618 if (policy < 0)
7619 return -EINVAL;
7620
1da177e4
LT
7621 return do_sched_setscheduler(pid, policy, param);
7622}
7623
7624/**
7625 * sys_sched_setparam - set/change the RT priority of a thread
7626 * @pid: the pid in question.
7627 * @param: structure containing the new RT priority.
e69f6186
YB
7628 *
7629 * Return: 0 on success. An error code otherwise.
1da177e4 7630 */
5add95d4 7631SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7632{
c13db6b1 7633 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7634}
7635
d50dde5a
DF
7636/**
7637 * sys_sched_setattr - same as above, but with extended sched_attr
7638 * @pid: the pid in question.
5778fccf 7639 * @uattr: structure containing the extended parameters.
db66d756 7640 * @flags: for future extension.
d50dde5a 7641 */
6d35ab48
PZ
7642SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7643 unsigned int, flags)
d50dde5a
DF
7644{
7645 struct sched_attr attr;
7646 struct task_struct *p;
7647 int retval;
7648
6d35ab48 7649 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7650 return -EINVAL;
7651
143cf23d
MK
7652 retval = sched_copy_attr(uattr, &attr);
7653 if (retval)
7654 return retval;
d50dde5a 7655
b14ed2c2 7656 if ((int)attr.sched_policy < 0)
dbdb2275 7657 return -EINVAL;
1d6362fa
PB
7658 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7659 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7660
7661 rcu_read_lock();
7662 retval = -ESRCH;
7663 p = find_process_by_pid(pid);
a509a7cd
PB
7664 if (likely(p))
7665 get_task_struct(p);
d50dde5a
DF
7666 rcu_read_unlock();
7667
a509a7cd 7668 if (likely(p)) {
f4dddf90
QP
7669 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7670 get_params(p, &attr);
a509a7cd
PB
7671 retval = sched_setattr(p, &attr);
7672 put_task_struct(p);
7673 }
7674
d50dde5a
DF
7675 return retval;
7676}
7677
1da177e4
LT
7678/**
7679 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7680 * @pid: the pid in question.
e69f6186
YB
7681 *
7682 * Return: On success, the policy of the thread. Otherwise, a negative error
7683 * code.
1da177e4 7684 */
5add95d4 7685SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7686{
36c8b586 7687 struct task_struct *p;
3a5c359a 7688 int retval;
1da177e4
LT
7689
7690 if (pid < 0)
3a5c359a 7691 return -EINVAL;
1da177e4
LT
7692
7693 retval = -ESRCH;
5fe85be0 7694 rcu_read_lock();
1da177e4
LT
7695 p = find_process_by_pid(pid);
7696 if (p) {
7697 retval = security_task_getscheduler(p);
7698 if (!retval)
ca94c442
LP
7699 retval = p->policy
7700 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7701 }
5fe85be0 7702 rcu_read_unlock();
1da177e4
LT
7703 return retval;
7704}
7705
7706/**
ca94c442 7707 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7708 * @pid: the pid in question.
7709 * @param: structure containing the RT priority.
e69f6186
YB
7710 *
7711 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7712 * code.
1da177e4 7713 */
5add95d4 7714SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7715{
ce5f7f82 7716 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7717 struct task_struct *p;
3a5c359a 7718 int retval;
1da177e4
LT
7719
7720 if (!param || pid < 0)
3a5c359a 7721 return -EINVAL;
1da177e4 7722
5fe85be0 7723 rcu_read_lock();
1da177e4
LT
7724 p = find_process_by_pid(pid);
7725 retval = -ESRCH;
7726 if (!p)
7727 goto out_unlock;
7728
7729 retval = security_task_getscheduler(p);
7730 if (retval)
7731 goto out_unlock;
7732
ce5f7f82
PZ
7733 if (task_has_rt_policy(p))
7734 lp.sched_priority = p->rt_priority;
5fe85be0 7735 rcu_read_unlock();
1da177e4
LT
7736
7737 /*
7738 * This one might sleep, we cannot do it with a spinlock held ...
7739 */
7740 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7741
1da177e4
LT
7742 return retval;
7743
7744out_unlock:
5fe85be0 7745 rcu_read_unlock();
1da177e4
LT
7746 return retval;
7747}
7748
1251201c
IM
7749/*
7750 * Copy the kernel size attribute structure (which might be larger
7751 * than what user-space knows about) to user-space.
7752 *
7753 * Note that all cases are valid: user-space buffer can be larger or
7754 * smaller than the kernel-space buffer. The usual case is that both
7755 * have the same size.
7756 */
7757static int
7758sched_attr_copy_to_user(struct sched_attr __user *uattr,
7759 struct sched_attr *kattr,
7760 unsigned int usize)
d50dde5a 7761{
1251201c 7762 unsigned int ksize = sizeof(*kattr);
d50dde5a 7763
96d4f267 7764 if (!access_ok(uattr, usize))
d50dde5a
DF
7765 return -EFAULT;
7766
7767 /*
1251201c
IM
7768 * sched_getattr() ABI forwards and backwards compatibility:
7769 *
7770 * If usize == ksize then we just copy everything to user-space and all is good.
7771 *
7772 * If usize < ksize then we only copy as much as user-space has space for,
7773 * this keeps ABI compatibility as well. We skip the rest.
7774 *
7775 * If usize > ksize then user-space is using a newer version of the ABI,
7776 * which part the kernel doesn't know about. Just ignore it - tooling can
7777 * detect the kernel's knowledge of attributes from the attr->size value
7778 * which is set to ksize in this case.
d50dde5a 7779 */
1251201c 7780 kattr->size = min(usize, ksize);
d50dde5a 7781
1251201c 7782 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7783 return -EFAULT;
7784
22400674 7785 return 0;
d50dde5a
DF
7786}
7787
7788/**
aab03e05 7789 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7790 * @pid: the pid in question.
5778fccf 7791 * @uattr: structure containing the extended parameters.
dff3a85f 7792 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7793 * @flags: for future extension.
d50dde5a 7794 */
6d35ab48 7795SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7796 unsigned int, usize, unsigned int, flags)
d50dde5a 7797{
1251201c 7798 struct sched_attr kattr = { };
d50dde5a
DF
7799 struct task_struct *p;
7800 int retval;
7801
1251201c
IM
7802 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7803 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7804 return -EINVAL;
7805
7806 rcu_read_lock();
7807 p = find_process_by_pid(pid);
7808 retval = -ESRCH;
7809 if (!p)
7810 goto out_unlock;
7811
7812 retval = security_task_getscheduler(p);
7813 if (retval)
7814 goto out_unlock;
7815
1251201c 7816 kattr.sched_policy = p->policy;
7479f3c9 7817 if (p->sched_reset_on_fork)
1251201c 7818 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 7819 get_params(p, &kattr);
7ad721bf 7820 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 7821
a509a7cd 7822#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7823 /*
7824 * This could race with another potential updater, but this is fine
7825 * because it'll correctly read the old or the new value. We don't need
7826 * to guarantee who wins the race as long as it doesn't return garbage.
7827 */
1251201c
IM
7828 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7829 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7830#endif
7831
d50dde5a
DF
7832 rcu_read_unlock();
7833
1251201c 7834 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7835
7836out_unlock:
7837 rcu_read_unlock();
7838 return retval;
7839}
7840
234b8ab6
WD
7841#ifdef CONFIG_SMP
7842int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 7843{
234b8ab6
WD
7844 int ret = 0;
7845
7846 /*
7847 * If the task isn't a deadline task or admission control is
7848 * disabled then we don't care about affinity changes.
7849 */
7850 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7851 return 0;
7852
7853 /*
7854 * Since bandwidth control happens on root_domain basis,
7855 * if admission test is enabled, we only admit -deadline
7856 * tasks allowed to run on all the CPUs in the task's
7857 * root_domain.
7858 */
7859 rcu_read_lock();
7860 if (!cpumask_subset(task_rq(p)->rd->span, mask))
7861 ret = -EBUSY;
7862 rcu_read_unlock();
7863 return ret;
7864}
7865#endif
7866
db3b02ae
WD
7867static int
7868__sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 7869{
36c8b586 7870 int retval;
5a16f3d3 7871 cpumask_var_t cpus_allowed, new_mask;
1da177e4 7872
db3b02ae
WD
7873 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7874 return -ENOMEM;
1da177e4 7875
5a16f3d3
RR
7876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7877 retval = -ENOMEM;
7878 goto out_free_cpus_allowed;
7879 }
e4099a5e
PZ
7880
7881 cpuset_cpus_allowed(p, cpus_allowed);
db3b02ae 7882 cpumask_and(new_mask, mask, cpus_allowed);
e4099a5e 7883
234b8ab6
WD
7884 retval = dl_task_check_affinity(p, new_mask);
7885 if (retval)
7886 goto out_free_new_mask;
49246274 7887again:
07ec77a1 7888 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
db3b02ae
WD
7889 if (retval)
7890 goto out_free_new_mask;
1da177e4 7891
db3b02ae
WD
7892 cpuset_cpus_allowed(p, cpus_allowed);
7893 if (!cpumask_subset(new_mask, cpus_allowed)) {
7894 /*
7895 * We must have raced with a concurrent cpuset update.
7896 * Just reset the cpumask to the cpuset's cpus_allowed.
7897 */
7898 cpumask_copy(new_mask, cpus_allowed);
7899 goto again;
8707d8b8 7900 }
db3b02ae 7901
16303ab2 7902out_free_new_mask:
5a16f3d3
RR
7903 free_cpumask_var(new_mask);
7904out_free_cpus_allowed:
7905 free_cpumask_var(cpus_allowed);
db3b02ae
WD
7906 return retval;
7907}
7908
7909long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7910{
36c8b586
IM
7911 struct task_struct *p;
7912 int retval;
1da177e4 7913
23f5d142 7914 rcu_read_lock();
1da177e4
LT
7915
7916 p = find_process_by_pid(pid);
7917 if (!p) {
23f5d142 7918 rcu_read_unlock();
1da177e4
LT
7919 return -ESRCH;
7920 }
7921
23f5d142 7922 /* Prevent p going away */
1da177e4 7923 get_task_struct(p);
23f5d142 7924 rcu_read_unlock();
1da177e4 7925
14a40ffc
TH
7926 if (p->flags & PF_NO_SETAFFINITY) {
7927 retval = -EINVAL;
7928 goto out_put_task;
7929 }
db3b02ae 7930
4c44aaaf
EB
7931 if (!check_same_owner(p)) {
7932 rcu_read_lock();
7933 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7934 rcu_read_unlock();
db3b02ae
WD
7935 retval = -EPERM;
7936 goto out_put_task;
4c44aaaf
EB
7937 }
7938 rcu_read_unlock();
7939 }
1da177e4 7940
b0ae1981 7941 retval = security_task_setscheduler(p);
e7834f8f 7942 if (retval)
db3b02ae 7943 goto out_put_task;
1da177e4 7944
db3b02ae 7945 retval = __sched_setaffinity(p, in_mask);
5a16f3d3 7946out_put_task:
1da177e4 7947 put_task_struct(p);
1da177e4
LT
7948 return retval;
7949}
7950
7951static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 7952 struct cpumask *new_mask)
1da177e4 7953{
96f874e2
RR
7954 if (len < cpumask_size())
7955 cpumask_clear(new_mask);
7956 else if (len > cpumask_size())
7957 len = cpumask_size();
7958
1da177e4
LT
7959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7960}
7961
7962/**
d1ccc66d 7963 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
7964 * @pid: pid of the process
7965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7966 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
7967 *
7968 * Return: 0 on success. An error code otherwise.
1da177e4 7969 */
5add95d4
HC
7970SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7971 unsigned long __user *, user_mask_ptr)
1da177e4 7972{
5a16f3d3 7973 cpumask_var_t new_mask;
1da177e4
LT
7974 int retval;
7975
5a16f3d3
RR
7976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7977 return -ENOMEM;
1da177e4 7978
5a16f3d3
RR
7979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7980 if (retval == 0)
7981 retval = sched_setaffinity(pid, new_mask);
7982 free_cpumask_var(new_mask);
7983 return retval;
1da177e4
LT
7984}
7985
96f874e2 7986long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 7987{
36c8b586 7988 struct task_struct *p;
31605683 7989 unsigned long flags;
1da177e4 7990 int retval;
1da177e4 7991
23f5d142 7992 rcu_read_lock();
1da177e4
LT
7993
7994 retval = -ESRCH;
7995 p = find_process_by_pid(pid);
7996 if (!p)
7997 goto out_unlock;
7998
e7834f8f
DQ
7999 retval = security_task_getscheduler(p);
8000 if (retval)
8001 goto out_unlock;
8002
013fdb80 8003 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8004 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8006
8007out_unlock:
23f5d142 8008 rcu_read_unlock();
1da177e4 8009
9531b62f 8010 return retval;
1da177e4
LT
8011}
8012
8013/**
d1ccc66d 8014 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8015 * @pid: pid of the process
8016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8017 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8018 *
599b4840
ZW
8019 * Return: size of CPU mask copied to user_mask_ptr on success. An
8020 * error code otherwise.
1da177e4 8021 */
5add95d4
HC
8022SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8023 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8024{
8025 int ret;
f17c8607 8026 cpumask_var_t mask;
1da177e4 8027
84fba5ec 8028 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8029 return -EINVAL;
8030 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8031 return -EINVAL;
8032
f17c8607
RR
8033 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8034 return -ENOMEM;
1da177e4 8035
f17c8607
RR
8036 ret = sched_getaffinity(pid, mask);
8037 if (ret == 0) {
4de373a1 8038 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
8039
8040 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
8041 ret = -EFAULT;
8042 else
cd3d8031 8043 ret = retlen;
f17c8607
RR
8044 }
8045 free_cpumask_var(mask);
1da177e4 8046
f17c8607 8047 return ret;
1da177e4
LT
8048}
8049
7d4dd4f1 8050static void do_sched_yield(void)
1da177e4 8051{
8a8c69c3
PZ
8052 struct rq_flags rf;
8053 struct rq *rq;
8054
246b3b33 8055 rq = this_rq_lock_irq(&rf);
1da177e4 8056
ae92882e 8057 schedstat_inc(rq->yld_count);
4530d7ab 8058 current->sched_class->yield_task(rq);
1da177e4 8059
8a8c69c3 8060 preempt_disable();
345a957f 8061 rq_unlock_irq(rq, &rf);
ba74c144 8062 sched_preempt_enable_no_resched();
1da177e4
LT
8063
8064 schedule();
7d4dd4f1 8065}
1da177e4 8066
59a74b15
MCC
8067/**
8068 * sys_sched_yield - yield the current processor to other threads.
8069 *
8070 * This function yields the current CPU to other tasks. If there are no
8071 * other threads running on this CPU then this function will return.
8072 *
8073 * Return: 0.
8074 */
7d4dd4f1
DB
8075SYSCALL_DEFINE0(sched_yield)
8076{
8077 do_sched_yield();
1da177e4
LT
8078 return 0;
8079}
8080
b965f1dd
PZI
8081#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8082int __sched __cond_resched(void)
1da177e4 8083{
fe32d3cd 8084 if (should_resched(0)) {
a18b5d01 8085 preempt_schedule_common();
1da177e4
LT
8086 return 1;
8087 }
50895825
FW
8088 /*
8089 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8090 * whether the current CPU is in an RCU read-side critical section,
8091 * so the tick can report quiescent states even for CPUs looping
8092 * in kernel context. In contrast, in non-preemptible kernels,
8093 * RCU readers leave no in-memory hints, which means that CPU-bound
8094 * processes executing in kernel context might never report an
8095 * RCU quiescent state. Therefore, the following code causes
8096 * cond_resched() to report a quiescent state, but only when RCU
8097 * is in urgent need of one.
8098 */
b965f1dd 8099#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8100 rcu_all_qs();
b965f1dd 8101#endif
1da177e4
LT
8102 return 0;
8103}
b965f1dd
PZI
8104EXPORT_SYMBOL(__cond_resched);
8105#endif
8106
8107#ifdef CONFIG_PREEMPT_DYNAMIC
8108DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8109EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
8110
8111DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8112EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 8113#endif
1da177e4
LT
8114
8115/*
613afbf8 8116 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8117 * call schedule, and on return reacquire the lock.
8118 *
c1a280b6 8119 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8120 * operations here to prevent schedule() from being called twice (once via
8121 * spin_unlock(), once by hand).
8122 */
613afbf8 8123int __cond_resched_lock(spinlock_t *lock)
1da177e4 8124{
fe32d3cd 8125 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8126 int ret = 0;
8127
f607c668
PZ
8128 lockdep_assert_held(lock);
8129
4a81e832 8130 if (spin_needbreak(lock) || resched) {
1da177e4 8131 spin_unlock(lock);
d86ee480 8132 if (resched)
a18b5d01 8133 preempt_schedule_common();
95c354fe
NP
8134 else
8135 cpu_relax();
6df3cecb 8136 ret = 1;
1da177e4 8137 spin_lock(lock);
1da177e4 8138 }
6df3cecb 8139 return ret;
1da177e4 8140}
613afbf8 8141EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8142
f3d4b4b1
BG
8143int __cond_resched_rwlock_read(rwlock_t *lock)
8144{
8145 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8146 int ret = 0;
8147
8148 lockdep_assert_held_read(lock);
8149
8150 if (rwlock_needbreak(lock) || resched) {
8151 read_unlock(lock);
8152 if (resched)
8153 preempt_schedule_common();
8154 else
8155 cpu_relax();
8156 ret = 1;
8157 read_lock(lock);
8158 }
8159 return ret;
8160}
8161EXPORT_SYMBOL(__cond_resched_rwlock_read);
8162
8163int __cond_resched_rwlock_write(rwlock_t *lock)
8164{
8165 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8166 int ret = 0;
8167
8168 lockdep_assert_held_write(lock);
8169
8170 if (rwlock_needbreak(lock) || resched) {
8171 write_unlock(lock);
8172 if (resched)
8173 preempt_schedule_common();
8174 else
8175 cpu_relax();
8176 ret = 1;
8177 write_lock(lock);
8178 }
8179 return ret;
8180}
8181EXPORT_SYMBOL(__cond_resched_rwlock_write);
8182
1da177e4
LT
8183/**
8184 * yield - yield the current processor to other threads.
8185 *
8e3fabfd
PZ
8186 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8187 *
8188 * The scheduler is at all times free to pick the calling task as the most
8189 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8190 * it, it's already broken.
8e3fabfd
PZ
8191 *
8192 * Typical broken usage is:
8193 *
8194 * while (!event)
d1ccc66d 8195 * yield();
8e3fabfd
PZ
8196 *
8197 * where one assumes that yield() will let 'the other' process run that will
8198 * make event true. If the current task is a SCHED_FIFO task that will never
8199 * happen. Never use yield() as a progress guarantee!!
8200 *
8201 * If you want to use yield() to wait for something, use wait_event().
8202 * If you want to use yield() to be 'nice' for others, use cond_resched().
8203 * If you still want to use yield(), do not!
1da177e4
LT
8204 */
8205void __sched yield(void)
8206{
8207 set_current_state(TASK_RUNNING);
7d4dd4f1 8208 do_sched_yield();
1da177e4 8209}
1da177e4
LT
8210EXPORT_SYMBOL(yield);
8211
d95f4122
MG
8212/**
8213 * yield_to - yield the current processor to another thread in
8214 * your thread group, or accelerate that thread toward the
8215 * processor it's on.
16addf95
RD
8216 * @p: target task
8217 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8218 *
8219 * It's the caller's job to ensure that the target task struct
8220 * can't go away on us before we can do any checks.
8221 *
e69f6186 8222 * Return:
7b270f60
PZ
8223 * true (>0) if we indeed boosted the target task.
8224 * false (0) if we failed to boost the target.
8225 * -ESRCH if there's no task to yield to.
d95f4122 8226 */
fa93384f 8227int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8228{
8229 struct task_struct *curr = current;
8230 struct rq *rq, *p_rq;
8231 unsigned long flags;
c3c18640 8232 int yielded = 0;
d95f4122
MG
8233
8234 local_irq_save(flags);
8235 rq = this_rq();
8236
8237again:
8238 p_rq = task_rq(p);
7b270f60
PZ
8239 /*
8240 * If we're the only runnable task on the rq and target rq also
8241 * has only one task, there's absolutely no point in yielding.
8242 */
8243 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8244 yielded = -ESRCH;
8245 goto out_irq;
8246 }
8247
d95f4122 8248 double_rq_lock(rq, p_rq);
39e24d8f 8249 if (task_rq(p) != p_rq) {
d95f4122
MG
8250 double_rq_unlock(rq, p_rq);
8251 goto again;
8252 }
8253
8254 if (!curr->sched_class->yield_to_task)
7b270f60 8255 goto out_unlock;
d95f4122
MG
8256
8257 if (curr->sched_class != p->sched_class)
7b270f60 8258 goto out_unlock;
d95f4122 8259
b03fbd4f 8260 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 8261 goto out_unlock;
d95f4122 8262
0900acf2 8263 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8264 if (yielded) {
ae92882e 8265 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8266 /*
8267 * Make p's CPU reschedule; pick_next_entity takes care of
8268 * fairness.
8269 */
8270 if (preempt && rq != p_rq)
8875125e 8271 resched_curr(p_rq);
6d1cafd8 8272 }
d95f4122 8273
7b270f60 8274out_unlock:
d95f4122 8275 double_rq_unlock(rq, p_rq);
7b270f60 8276out_irq:
d95f4122
MG
8277 local_irq_restore(flags);
8278
7b270f60 8279 if (yielded > 0)
d95f4122
MG
8280 schedule();
8281
8282 return yielded;
8283}
8284EXPORT_SYMBOL_GPL(yield_to);
8285
10ab5643
TH
8286int io_schedule_prepare(void)
8287{
8288 int old_iowait = current->in_iowait;
8289
8290 current->in_iowait = 1;
8291 blk_schedule_flush_plug(current);
8292
8293 return old_iowait;
8294}
8295
8296void io_schedule_finish(int token)
8297{
8298 current->in_iowait = token;
8299}
8300
1da177e4 8301/*
41a2d6cf 8302 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8303 * that process accounting knows that this is a task in IO wait state.
1da177e4 8304 */
1da177e4
LT
8305long __sched io_schedule_timeout(long timeout)
8306{
10ab5643 8307 int token;
1da177e4
LT
8308 long ret;
8309
10ab5643 8310 token = io_schedule_prepare();
1da177e4 8311 ret = schedule_timeout(timeout);
10ab5643 8312 io_schedule_finish(token);
9cff8ade 8313
1da177e4
LT
8314 return ret;
8315}
9cff8ade 8316EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8317
e3b929b0 8318void __sched io_schedule(void)
10ab5643
TH
8319{
8320 int token;
8321
8322 token = io_schedule_prepare();
8323 schedule();
8324 io_schedule_finish(token);
8325}
8326EXPORT_SYMBOL(io_schedule);
8327
1da177e4
LT
8328/**
8329 * sys_sched_get_priority_max - return maximum RT priority.
8330 * @policy: scheduling class.
8331 *
e69f6186
YB
8332 * Return: On success, this syscall returns the maximum
8333 * rt_priority that can be used by a given scheduling class.
8334 * On failure, a negative error code is returned.
1da177e4 8335 */
5add95d4 8336SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8337{
8338 int ret = -EINVAL;
8339
8340 switch (policy) {
8341 case SCHED_FIFO:
8342 case SCHED_RR:
ae18ad28 8343 ret = MAX_RT_PRIO-1;
1da177e4 8344 break;
aab03e05 8345 case SCHED_DEADLINE:
1da177e4 8346 case SCHED_NORMAL:
b0a9499c 8347 case SCHED_BATCH:
dd41f596 8348 case SCHED_IDLE:
1da177e4
LT
8349 ret = 0;
8350 break;
8351 }
8352 return ret;
8353}
8354
8355/**
8356 * sys_sched_get_priority_min - return minimum RT priority.
8357 * @policy: scheduling class.
8358 *
e69f6186
YB
8359 * Return: On success, this syscall returns the minimum
8360 * rt_priority that can be used by a given scheduling class.
8361 * On failure, a negative error code is returned.
1da177e4 8362 */
5add95d4 8363SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8364{
8365 int ret = -EINVAL;
8366
8367 switch (policy) {
8368 case SCHED_FIFO:
8369 case SCHED_RR:
8370 ret = 1;
8371 break;
aab03e05 8372 case SCHED_DEADLINE:
1da177e4 8373 case SCHED_NORMAL:
b0a9499c 8374 case SCHED_BATCH:
dd41f596 8375 case SCHED_IDLE:
1da177e4
LT
8376 ret = 0;
8377 }
8378 return ret;
8379}
8380
abca5fc5 8381static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8382{
36c8b586 8383 struct task_struct *p;
a4ec24b4 8384 unsigned int time_slice;
eb580751 8385 struct rq_flags rf;
dba091b9 8386 struct rq *rq;
3a5c359a 8387 int retval;
1da177e4
LT
8388
8389 if (pid < 0)
3a5c359a 8390 return -EINVAL;
1da177e4
LT
8391
8392 retval = -ESRCH;
1a551ae7 8393 rcu_read_lock();
1da177e4
LT
8394 p = find_process_by_pid(pid);
8395 if (!p)
8396 goto out_unlock;
8397
8398 retval = security_task_getscheduler(p);
8399 if (retval)
8400 goto out_unlock;
8401
eb580751 8402 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8403 time_slice = 0;
8404 if (p->sched_class->get_rr_interval)
8405 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8406 task_rq_unlock(rq, p, &rf);
a4ec24b4 8407
1a551ae7 8408 rcu_read_unlock();
abca5fc5
AV
8409 jiffies_to_timespec64(time_slice, t);
8410 return 0;
3a5c359a 8411
1da177e4 8412out_unlock:
1a551ae7 8413 rcu_read_unlock();
1da177e4
LT
8414 return retval;
8415}
8416
2064a5ab
RD
8417/**
8418 * sys_sched_rr_get_interval - return the default timeslice of a process.
8419 * @pid: pid of the process.
8420 * @interval: userspace pointer to the timeslice value.
8421 *
8422 * this syscall writes the default timeslice value of a given process
8423 * into the user-space timespec buffer. A value of '0' means infinity.
8424 *
8425 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8426 * an error code.
8427 */
abca5fc5 8428SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8429 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8430{
8431 struct timespec64 t;
8432 int retval = sched_rr_get_interval(pid, &t);
8433
8434 if (retval == 0)
8435 retval = put_timespec64(&t, interval);
8436
8437 return retval;
8438}
8439
474b9c77 8440#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8441SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8442 struct old_timespec32 __user *, interval)
abca5fc5
AV
8443{
8444 struct timespec64 t;
8445 int retval = sched_rr_get_interval(pid, &t);
8446
8447 if (retval == 0)
9afc5eee 8448 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8449 return retval;
8450}
8451#endif
8452
82a1fcb9 8453void sched_show_task(struct task_struct *p)
1da177e4 8454{
1da177e4 8455 unsigned long free = 0;
4e79752c 8456 int ppid;
c930b2c0 8457
38200502
TH
8458 if (!try_get_task_stack(p))
8459 return;
20435d84 8460
cc172ff3 8461 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8462
b03fbd4f 8463 if (task_is_running(p))
cc172ff3 8464 pr_cont(" running task ");
1da177e4 8465#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8466 free = stack_not_used(p);
1da177e4 8467#endif
a90e984c 8468 ppid = 0;
4e79752c 8469 rcu_read_lock();
a90e984c
ON
8470 if (pid_alive(p))
8471 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8472 rcu_read_unlock();
cc172ff3
LZ
8473 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8474 free, task_pid_nr(p), ppid,
aa47b7e0 8475 (unsigned long)task_thread_info(p)->flags);
1da177e4 8476
3d1cb205 8477 print_worker_info(KERN_INFO, p);
a8b62fd0 8478 print_stop_info(KERN_INFO, p);
9cb8f069 8479 show_stack(p, NULL, KERN_INFO);
38200502 8480 put_task_stack(p);
1da177e4 8481}
0032f4e8 8482EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8483
5d68cc95
PZ
8484static inline bool
8485state_filter_match(unsigned long state_filter, struct task_struct *p)
8486{
2f064a59
PZ
8487 unsigned int state = READ_ONCE(p->__state);
8488
5d68cc95
PZ
8489 /* no filter, everything matches */
8490 if (!state_filter)
8491 return true;
8492
8493 /* filter, but doesn't match */
2f064a59 8494 if (!(state & state_filter))
5d68cc95
PZ
8495 return false;
8496
8497 /*
8498 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8499 * TASK_KILLABLE).
8500 */
2f064a59 8501 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
5d68cc95
PZ
8502 return false;
8503
8504 return true;
8505}
8506
8507
2f064a59 8508void show_state_filter(unsigned int state_filter)
1da177e4 8509{
36c8b586 8510 struct task_struct *g, *p;
1da177e4 8511
510f5acc 8512 rcu_read_lock();
5d07f420 8513 for_each_process_thread(g, p) {
1da177e4
LT
8514 /*
8515 * reset the NMI-timeout, listing all files on a slow
25985edc 8516 * console might take a lot of time:
57675cb9
AR
8517 * Also, reset softlockup watchdogs on all CPUs, because
8518 * another CPU might be blocked waiting for us to process
8519 * an IPI.
1da177e4
LT
8520 */
8521 touch_nmi_watchdog();
57675cb9 8522 touch_all_softlockup_watchdogs();
5d68cc95 8523 if (state_filter_match(state_filter, p))
82a1fcb9 8524 sched_show_task(p);
5d07f420 8525 }
1da177e4 8526
dd41f596 8527#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8528 if (!state_filter)
8529 sysrq_sched_debug_show();
dd41f596 8530#endif
510f5acc 8531 rcu_read_unlock();
e59e2ae2
IM
8532 /*
8533 * Only show locks if all tasks are dumped:
8534 */
93335a21 8535 if (!state_filter)
e59e2ae2 8536 debug_show_all_locks();
1da177e4
LT
8537}
8538
f340c0d1
IM
8539/**
8540 * init_idle - set up an idle thread for a given CPU
8541 * @idle: task in question
d1ccc66d 8542 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8543 *
8544 * NOTE: this function does not set the idle thread's NEED_RESCHED
8545 * flag, to make booting more robust.
8546 */
f1a0a376 8547void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8548{
70b97a7f 8549 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8550 unsigned long flags;
8551
ff51ff84
PZ
8552 __sched_fork(0, idle);
8553
00b89fe0
VS
8554 /*
8555 * The idle task doesn't need the kthread struct to function, but it
8556 * is dressed up as a per-CPU kthread and thus needs to play the part
8557 * if we want to avoid special-casing it in code that deals with per-CPU
8558 * kthreads.
8559 */
8560 set_kthread_struct(idle);
8561
25834c73 8562 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8563 raw_spin_rq_lock(rq);
5cbd54ef 8564
2f064a59 8565 idle->__state = TASK_RUNNING;
dd41f596 8566 idle->se.exec_start = sched_clock();
00b89fe0
VS
8567 /*
8568 * PF_KTHREAD should already be set at this point; regardless, make it
8569 * look like a proper per-CPU kthread.
8570 */
8571 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8572 kthread_set_per_cpu(idle, cpu);
dd41f596 8573
d08b9f0c 8574 scs_task_reset(idle);
e1b77c92
MR
8575 kasan_unpoison_task_stack(idle);
8576
de9b8f5d
PZ
8577#ifdef CONFIG_SMP
8578 /*
b19a888c 8579 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8580 * in that case do_set_cpus_allowed() will not do the right thing.
8581 *
8582 * And since this is boot we can forgo the serialization.
8583 */
9cfc3e18 8584 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8585#endif
6506cf6c
PZ
8586 /*
8587 * We're having a chicken and egg problem, even though we are
d1ccc66d 8588 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8589 * lockdep check in task_group() will fail.
8590 *
8591 * Similar case to sched_fork(). / Alternatively we could
8592 * use task_rq_lock() here and obtain the other rq->lock.
8593 *
8594 * Silence PROVE_RCU
8595 */
8596 rcu_read_lock();
dd41f596 8597 __set_task_cpu(idle, cpu);
6506cf6c 8598 rcu_read_unlock();
1da177e4 8599
5311a98f
EB
8600 rq->idle = idle;
8601 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8602 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8603#ifdef CONFIG_SMP
3ca7a440 8604 idle->on_cpu = 1;
4866cde0 8605#endif
5cb9eaa3 8606 raw_spin_rq_unlock(rq);
25834c73 8607 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8608
8609 /* Set the preempt count _outside_ the spinlocks! */
01028747 8610 init_idle_preempt_count(idle, cpu);
55cd5340 8611
dd41f596
IM
8612 /*
8613 * The idle tasks have their own, simple scheduling class:
8614 */
8615 idle->sched_class = &idle_sched_class;
868baf07 8616 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8617 vtime_init_idle(idle, cpu);
de9b8f5d 8618#ifdef CONFIG_SMP
f1c6f1a7
CE
8619 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8620#endif
19978ca6
IM
8621}
8622
e1d4eeec
NP
8623#ifdef CONFIG_SMP
8624
f82f8042
JL
8625int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8626 const struct cpumask *trial)
8627{
06a76fe0 8628 int ret = 1;
f82f8042 8629
bb2bc55a
MG
8630 if (!cpumask_weight(cur))
8631 return ret;
8632
06a76fe0 8633 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8634
8635 return ret;
8636}
8637
7f51412a
JL
8638int task_can_attach(struct task_struct *p,
8639 const struct cpumask *cs_cpus_allowed)
8640{
8641 int ret = 0;
8642
8643 /*
8644 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8645 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8646 * affinity and isolating such threads by their set of
8647 * allowed nodes is unnecessary. Thus, cpusets are not
8648 * applicable for such threads. This prevents checking for
8649 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8650 * before cpus_mask may be changed.
7f51412a
JL
8651 */
8652 if (p->flags & PF_NO_SETAFFINITY) {
8653 ret = -EINVAL;
8654 goto out;
8655 }
8656
7f51412a 8657 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8658 cs_cpus_allowed))
8659 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8660
7f51412a
JL
8661out:
8662 return ret;
8663}
8664
f2cb1360 8665bool sched_smp_initialized __read_mostly;
e26fbffd 8666
e6628d5b
MG
8667#ifdef CONFIG_NUMA_BALANCING
8668/* Migrate current task p to target_cpu */
8669int migrate_task_to(struct task_struct *p, int target_cpu)
8670{
8671 struct migration_arg arg = { p, target_cpu };
8672 int curr_cpu = task_cpu(p);
8673
8674 if (curr_cpu == target_cpu)
8675 return 0;
8676
3bd37062 8677 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8678 return -EINVAL;
8679
8680 /* TODO: This is not properly updating schedstats */
8681
286549dc 8682 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8683 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8684}
0ec8aa00
PZ
8685
8686/*
8687 * Requeue a task on a given node and accurately track the number of NUMA
8688 * tasks on the runqueues
8689 */
8690void sched_setnuma(struct task_struct *p, int nid)
8691{
da0c1e65 8692 bool queued, running;
eb580751
PZ
8693 struct rq_flags rf;
8694 struct rq *rq;
0ec8aa00 8695
eb580751 8696 rq = task_rq_lock(p, &rf);
da0c1e65 8697 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8698 running = task_current(rq, p);
8699
da0c1e65 8700 if (queued)
1de64443 8701 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8702 if (running)
f3cd1c4e 8703 put_prev_task(rq, p);
0ec8aa00
PZ
8704
8705 p->numa_preferred_nid = nid;
0ec8aa00 8706
da0c1e65 8707 if (queued)
7134b3e9 8708 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8709 if (running)
03b7fad1 8710 set_next_task(rq, p);
eb580751 8711 task_rq_unlock(rq, p, &rf);
0ec8aa00 8712}
5cc389bc 8713#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8714
1da177e4 8715#ifdef CONFIG_HOTPLUG_CPU
054b9108 8716/*
d1ccc66d 8717 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8718 * offline.
054b9108 8719 */
48c5ccae 8720void idle_task_exit(void)
1da177e4 8721{
48c5ccae 8722 struct mm_struct *mm = current->active_mm;
e76bd8d9 8723
48c5ccae 8724 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8725 BUG_ON(current != this_rq()->idle);
e76bd8d9 8726
a53efe5f 8727 if (mm != &init_mm) {
252d2a41 8728 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8729 finish_arch_post_lock_switch();
8730 }
bf2c59fc
PZ
8731
8732 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8733}
8734
2558aacf 8735static int __balance_push_cpu_stop(void *arg)
1da177e4 8736{
2558aacf
PZ
8737 struct task_struct *p = arg;
8738 struct rq *rq = this_rq();
8739 struct rq_flags rf;
8740 int cpu;
1da177e4 8741
2558aacf
PZ
8742 raw_spin_lock_irq(&p->pi_lock);
8743 rq_lock(rq, &rf);
3f1d2a31 8744
2558aacf
PZ
8745 update_rq_clock(rq);
8746
8747 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8748 cpu = select_fallback_rq(rq->cpu, p);
8749 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8750 }
3f1d2a31 8751
2558aacf
PZ
8752 rq_unlock(rq, &rf);
8753 raw_spin_unlock_irq(&p->pi_lock);
8754
8755 put_task_struct(p);
8756
8757 return 0;
10e7071b 8758}
3f1d2a31 8759
2558aacf
PZ
8760static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8761
48f24c4d 8762/*
2558aacf 8763 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8764 *
8765 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8766 * effective when the hotplug motion is down.
1da177e4 8767 */
2558aacf 8768static void balance_push(struct rq *rq)
1da177e4 8769{
2558aacf
PZ
8770 struct task_struct *push_task = rq->curr;
8771
5cb9eaa3 8772 lockdep_assert_rq_held(rq);
b5c44773 8773
ae792702
PZ
8774 /*
8775 * Ensure the thing is persistent until balance_push_set(.on = false);
8776 */
8777 rq->balance_callback = &balance_push_callback;
1da177e4 8778
b5c44773 8779 /*
868ad33b
TG
8780 * Only active while going offline and when invoked on the outgoing
8781 * CPU.
b5c44773 8782 */
868ad33b 8783 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
8784 return;
8785
1da177e4 8786 /*
2558aacf
PZ
8787 * Both the cpu-hotplug and stop task are in this case and are
8788 * required to complete the hotplug process.
1da177e4 8789 */
00b89fe0 8790 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8791 is_migration_disabled(push_task)) {
8792
f2469a1f
TG
8793 /*
8794 * If this is the idle task on the outgoing CPU try to wake
8795 * up the hotplug control thread which might wait for the
8796 * last task to vanish. The rcuwait_active() check is
8797 * accurate here because the waiter is pinned on this CPU
8798 * and can't obviously be running in parallel.
3015ef4b
TG
8799 *
8800 * On RT kernels this also has to check whether there are
8801 * pinned and scheduled out tasks on the runqueue. They
8802 * need to leave the migrate disabled section first.
f2469a1f 8803 */
3015ef4b
TG
8804 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8805 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8806 raw_spin_rq_unlock(rq);
f2469a1f 8807 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8808 raw_spin_rq_lock(rq);
f2469a1f 8809 }
2558aacf 8810 return;
f2469a1f 8811 }
48f24c4d 8812
2558aacf 8813 get_task_struct(push_task);
77bd3970 8814 /*
2558aacf
PZ
8815 * Temporarily drop rq->lock such that we can wake-up the stop task.
8816 * Both preemption and IRQs are still disabled.
77bd3970 8817 */
5cb9eaa3 8818 raw_spin_rq_unlock(rq);
2558aacf
PZ
8819 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8820 this_cpu_ptr(&push_work));
8821 /*
8822 * At this point need_resched() is true and we'll take the loop in
8823 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8824 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8825 */
5cb9eaa3 8826 raw_spin_rq_lock(rq);
2558aacf 8827}
77bd3970 8828
2558aacf
PZ
8829static void balance_push_set(int cpu, bool on)
8830{
8831 struct rq *rq = cpu_rq(cpu);
8832 struct rq_flags rf;
48c5ccae 8833
2558aacf 8834 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8835 if (on) {
8836 WARN_ON_ONCE(rq->balance_callback);
ae792702 8837 rq->balance_callback = &balance_push_callback;
22f667c9 8838 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8839 rq->balance_callback = NULL;
22f667c9 8840 }
2558aacf
PZ
8841 rq_unlock_irqrestore(rq, &rf);
8842}
e692ab53 8843
f2469a1f
TG
8844/*
8845 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8846 * inactive. All tasks which are not per CPU kernel threads are either
8847 * pushed off this CPU now via balance_push() or placed on a different CPU
8848 * during wakeup. Wait until the CPU is quiescent.
8849 */
8850static void balance_hotplug_wait(void)
8851{
8852 struct rq *rq = this_rq();
5473e0cc 8853
3015ef4b
TG
8854 rcuwait_wait_event(&rq->hotplug_wait,
8855 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8856 TASK_UNINTERRUPTIBLE);
8857}
5473e0cc 8858
2558aacf 8859#else
dce48a84 8860
2558aacf
PZ
8861static inline void balance_push(struct rq *rq)
8862{
dce48a84 8863}
dce48a84 8864
2558aacf
PZ
8865static inline void balance_push_set(int cpu, bool on)
8866{
8867}
8868
f2469a1f
TG
8869static inline void balance_hotplug_wait(void)
8870{
dce48a84 8871}
f2469a1f 8872
1da177e4
LT
8873#endif /* CONFIG_HOTPLUG_CPU */
8874
f2cb1360 8875void set_rq_online(struct rq *rq)
1f11eb6a
GH
8876{
8877 if (!rq->online) {
8878 const struct sched_class *class;
8879
c6c4927b 8880 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8881 rq->online = 1;
8882
8883 for_each_class(class) {
8884 if (class->rq_online)
8885 class->rq_online(rq);
8886 }
8887 }
8888}
8889
f2cb1360 8890void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8891{
8892 if (rq->online) {
8893 const struct sched_class *class;
8894
8895 for_each_class(class) {
8896 if (class->rq_offline)
8897 class->rq_offline(rq);
8898 }
8899
c6c4927b 8900 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8901 rq->online = 0;
8902 }
8903}
8904
d1ccc66d
IM
8905/*
8906 * used to mark begin/end of suspend/resume:
8907 */
8908static int num_cpus_frozen;
d35be8ba 8909
1da177e4 8910/*
3a101d05
TH
8911 * Update cpusets according to cpu_active mask. If cpusets are
8912 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8913 * around partition_sched_domains().
d35be8ba
SB
8914 *
8915 * If we come here as part of a suspend/resume, don't touch cpusets because we
8916 * want to restore it back to its original state upon resume anyway.
1da177e4 8917 */
40190a78 8918static void cpuset_cpu_active(void)
e761b772 8919{
40190a78 8920 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8921 /*
8922 * num_cpus_frozen tracks how many CPUs are involved in suspend
8923 * resume sequence. As long as this is not the last online
8924 * operation in the resume sequence, just build a single sched
8925 * domain, ignoring cpusets.
8926 */
50e76632
PZ
8927 partition_sched_domains(1, NULL, NULL);
8928 if (--num_cpus_frozen)
135fb3e1 8929 return;
d35be8ba
SB
8930 /*
8931 * This is the last CPU online operation. So fall through and
8932 * restore the original sched domains by considering the
8933 * cpuset configurations.
8934 */
50e76632 8935 cpuset_force_rebuild();
3a101d05 8936 }
30e03acd 8937 cpuset_update_active_cpus();
3a101d05 8938}
e761b772 8939
40190a78 8940static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 8941{
40190a78 8942 if (!cpuhp_tasks_frozen) {
06a76fe0 8943 if (dl_cpu_busy(cpu))
135fb3e1 8944 return -EBUSY;
30e03acd 8945 cpuset_update_active_cpus();
135fb3e1 8946 } else {
d35be8ba
SB
8947 num_cpus_frozen++;
8948 partition_sched_domains(1, NULL, NULL);
e761b772 8949 }
135fb3e1 8950 return 0;
e761b772 8951}
e761b772 8952
40190a78 8953int sched_cpu_activate(unsigned int cpu)
135fb3e1 8954{
7d976699 8955 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8956 struct rq_flags rf;
7d976699 8957
22f667c9 8958 /*
b5c44773
PZ
8959 * Clear the balance_push callback and prepare to schedule
8960 * regular tasks.
22f667c9 8961 */
2558aacf
PZ
8962 balance_push_set(cpu, false);
8963
ba2591a5
PZ
8964#ifdef CONFIG_SCHED_SMT
8965 /*
c5511d03 8966 * When going up, increment the number of cores with SMT present.
ba2591a5 8967 */
c5511d03
PZI
8968 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8969 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 8970#endif
40190a78 8971 set_cpu_active(cpu, true);
135fb3e1 8972
40190a78 8973 if (sched_smp_initialized) {
135fb3e1 8974 sched_domains_numa_masks_set(cpu);
40190a78 8975 cpuset_cpu_active();
e761b772 8976 }
7d976699
TG
8977
8978 /*
8979 * Put the rq online, if not already. This happens:
8980 *
8981 * 1) In the early boot process, because we build the real domains
d1ccc66d 8982 * after all CPUs have been brought up.
7d976699
TG
8983 *
8984 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8985 * domains.
8986 */
8a8c69c3 8987 rq_lock_irqsave(rq, &rf);
7d976699
TG
8988 if (rq->rd) {
8989 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8990 set_rq_online(rq);
8991 }
8a8c69c3 8992 rq_unlock_irqrestore(rq, &rf);
7d976699 8993
40190a78 8994 return 0;
135fb3e1
TG
8995}
8996
40190a78 8997int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 8998{
120455c5
PZ
8999 struct rq *rq = cpu_rq(cpu);
9000 struct rq_flags rf;
135fb3e1
TG
9001 int ret;
9002
e0b257c3
AMB
9003 /*
9004 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9005 * load balancing when not active
9006 */
9007 nohz_balance_exit_idle(rq);
9008
40190a78 9009 set_cpu_active(cpu, false);
741ba80f
PZ
9010
9011 /*
9012 * From this point forward, this CPU will refuse to run any task that
9013 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9014 * push those tasks away until this gets cleared, see
9015 * sched_cpu_dying().
9016 */
975707f2
PZ
9017 balance_push_set(cpu, true);
9018
b2454caa 9019 /*
975707f2
PZ
9020 * We've cleared cpu_active_mask / set balance_push, wait for all
9021 * preempt-disabled and RCU users of this state to go away such that
9022 * all new such users will observe it.
b2454caa 9023 *
5ba2ffba
PZ
9024 * Specifically, we rely on ttwu to no longer target this CPU, see
9025 * ttwu_queue_cond() and is_cpu_allowed().
9026 *
b2454caa
PZ
9027 * Do sync before park smpboot threads to take care the rcu boost case.
9028 */
309ba859 9029 synchronize_rcu();
40190a78 9030
120455c5
PZ
9031 rq_lock_irqsave(rq, &rf);
9032 if (rq->rd) {
9033 update_rq_clock(rq);
9034 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9035 set_rq_offline(rq);
9036 }
9037 rq_unlock_irqrestore(rq, &rf);
9038
c5511d03
PZI
9039#ifdef CONFIG_SCHED_SMT
9040 /*
9041 * When going down, decrement the number of cores with SMT present.
9042 */
9043 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9044 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9045
9046 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9047#endif
9048
40190a78
TG
9049 if (!sched_smp_initialized)
9050 return 0;
9051
9052 ret = cpuset_cpu_inactive(cpu);
9053 if (ret) {
2558aacf 9054 balance_push_set(cpu, false);
40190a78
TG
9055 set_cpu_active(cpu, true);
9056 return ret;
135fb3e1 9057 }
40190a78
TG
9058 sched_domains_numa_masks_clear(cpu);
9059 return 0;
135fb3e1
TG
9060}
9061
94baf7a5
TG
9062static void sched_rq_cpu_starting(unsigned int cpu)
9063{
9064 struct rq *rq = cpu_rq(cpu);
9065
9066 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9067 update_max_interval();
9068}
9069
135fb3e1
TG
9070int sched_cpu_starting(unsigned int cpu)
9071{
9edeaea1 9072 sched_core_cpu_starting(cpu);
94baf7a5 9073 sched_rq_cpu_starting(cpu);
d84b3131 9074 sched_tick_start(cpu);
135fb3e1 9075 return 0;
e761b772 9076}
e761b772 9077
f2785ddb 9078#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9079
9080/*
9081 * Invoked immediately before the stopper thread is invoked to bring the
9082 * CPU down completely. At this point all per CPU kthreads except the
9083 * hotplug thread (current) and the stopper thread (inactive) have been
9084 * either parked or have been unbound from the outgoing CPU. Ensure that
9085 * any of those which might be on the way out are gone.
9086 *
9087 * If after this point a bound task is being woken on this CPU then the
9088 * responsible hotplug callback has failed to do it's job.
9089 * sched_cpu_dying() will catch it with the appropriate fireworks.
9090 */
9091int sched_cpu_wait_empty(unsigned int cpu)
9092{
9093 balance_hotplug_wait();
9094 return 0;
9095}
9096
9097/*
9098 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9099 * might have. Called from the CPU stopper task after ensuring that the
9100 * stopper is the last running task on the CPU, so nr_active count is
9101 * stable. We need to take the teardown thread which is calling this into
9102 * account, so we hand in adjust = 1 to the load calculation.
9103 *
9104 * Also see the comment "Global load-average calculations".
9105 */
9106static void calc_load_migrate(struct rq *rq)
9107{
9108 long delta = calc_load_fold_active(rq, 1);
9109
9110 if (delta)
9111 atomic_long_add(delta, &calc_load_tasks);
9112}
9113
36c6e17b
VS
9114static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9115{
9116 struct task_struct *g, *p;
9117 int cpu = cpu_of(rq);
9118
5cb9eaa3 9119 lockdep_assert_rq_held(rq);
36c6e17b
VS
9120
9121 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9122 for_each_process_thread(g, p) {
9123 if (task_cpu(p) != cpu)
9124 continue;
9125
9126 if (!task_on_rq_queued(p))
9127 continue;
9128
9129 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9130 }
9131}
9132
f2785ddb
TG
9133int sched_cpu_dying(unsigned int cpu)
9134{
9135 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9136 struct rq_flags rf;
f2785ddb
TG
9137
9138 /* Handle pending wakeups and then migrate everything off */
d84b3131 9139 sched_tick_stop(cpu);
8a8c69c3
PZ
9140
9141 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9142 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9143 WARN(true, "Dying CPU not properly vacated!");
9144 dump_rq_tasks(rq, KERN_WARNING);
9145 }
8a8c69c3
PZ
9146 rq_unlock_irqrestore(rq, &rf);
9147
f2785ddb
TG
9148 calc_load_migrate(rq);
9149 update_max_interval();
e5ef27d0 9150 hrtick_clear(rq);
3c474b32 9151 sched_core_cpu_dying(cpu);
f2785ddb
TG
9152 return 0;
9153}
9154#endif
9155
1da177e4
LT
9156void __init sched_init_smp(void)
9157{
cb83b629
PZ
9158 sched_init_numa();
9159
6acce3ef
PZ
9160 /*
9161 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9162 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9163 * happen.
6acce3ef 9164 */
712555ee 9165 mutex_lock(&sched_domains_mutex);
8d5dc512 9166 sched_init_domains(cpu_active_mask);
712555ee 9167 mutex_unlock(&sched_domains_mutex);
e761b772 9168
5c1e1767 9169 /* Move init over to a non-isolated CPU */
edb93821 9170 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 9171 BUG();
15faafc6 9172 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9173 sched_init_granularity();
4212823f 9174
0e3900e6 9175 init_sched_rt_class();
1baca4ce 9176 init_sched_dl_class();
1b568f0a 9177
e26fbffd 9178 sched_smp_initialized = true;
1da177e4 9179}
e26fbffd
TG
9180
9181static int __init migration_init(void)
9182{
77a5352b 9183 sched_cpu_starting(smp_processor_id());
e26fbffd 9184 return 0;
1da177e4 9185}
e26fbffd
TG
9186early_initcall(migration_init);
9187
1da177e4
LT
9188#else
9189void __init sched_init_smp(void)
9190{
19978ca6 9191 sched_init_granularity();
1da177e4
LT
9192}
9193#endif /* CONFIG_SMP */
9194
9195int in_sched_functions(unsigned long addr)
9196{
1da177e4
LT
9197 return in_lock_functions(addr) ||
9198 (addr >= (unsigned long)__sched_text_start
9199 && addr < (unsigned long)__sched_text_end);
9200}
9201
029632fb 9202#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9203/*
9204 * Default task group.
9205 * Every task in system belongs to this group at bootup.
9206 */
029632fb 9207struct task_group root_task_group;
35cf4e50 9208LIST_HEAD(task_groups);
b0367629
WL
9209
9210/* Cacheline aligned slab cache for task_group */
9211static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9212#endif
6f505b16 9213
e6252c3e 9214DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 9215DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 9216
1da177e4
LT
9217void __init sched_init(void)
9218{
a1dc0446 9219 unsigned long ptr = 0;
55627e3c 9220 int i;
434d53b0 9221
c3a340f7
SRV
9222 /* Make sure the linker didn't screw up */
9223 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9224 &fair_sched_class + 1 != &rt_sched_class ||
9225 &rt_sched_class + 1 != &dl_sched_class);
9226#ifdef CONFIG_SMP
9227 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9228#endif
9229
5822a454 9230 wait_bit_init();
9dcb8b68 9231
434d53b0 9232#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9233 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9234#endif
9235#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9236 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9237#endif
a1dc0446
QC
9238 if (ptr) {
9239 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9240
9241#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9242 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9243 ptr += nr_cpu_ids * sizeof(void **);
9244
07e06b01 9245 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9246 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9247
b1d1779e
WY
9248 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9249 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9250#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9251#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9252 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9253 ptr += nr_cpu_ids * sizeof(void **);
9254
07e06b01 9255 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9256 ptr += nr_cpu_ids * sizeof(void **);
9257
6d6bc0ad 9258#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9259 }
df7c8e84 9260#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
9261 for_each_possible_cpu(i) {
9262 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9263 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
9264 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9265 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 9266 }
b74e6278 9267#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 9268
d1ccc66d
IM
9269 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9270 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9271
57d885fe
GH
9272#ifdef CONFIG_SMP
9273 init_defrootdomain();
9274#endif
9275
d0b27fa7 9276#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9277 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9278 global_rt_period(), global_rt_runtime());
6d6bc0ad 9279#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9280
7c941438 9281#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9282 task_group_cache = KMEM_CACHE(task_group, 0);
9283
07e06b01
YZ
9284 list_add(&root_task_group.list, &task_groups);
9285 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9286 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9287 autogroup_init(&init_task);
7c941438 9288#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9289
0a945022 9290 for_each_possible_cpu(i) {
70b97a7f 9291 struct rq *rq;
1da177e4
LT
9292
9293 rq = cpu_rq(i);
5cb9eaa3 9294 raw_spin_lock_init(&rq->__lock);
7897986b 9295 rq->nr_running = 0;
dce48a84
TG
9296 rq->calc_load_active = 0;
9297 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9298 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9299 init_rt_rq(&rq->rt);
9300 init_dl_rq(&rq->dl);
dd41f596 9301#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9302 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9303 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9304 /*
d1ccc66d 9305 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9306 *
9307 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9308 * gets 100% of the CPU resources in the system. This overall
9309 * system CPU resource is divided among the tasks of
07e06b01 9310 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9311 * based on each entity's (task or task-group's) weight
9312 * (se->load.weight).
9313 *
07e06b01 9314 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9315 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9316 * then A0's share of the CPU resource is:
354d60c2 9317 *
0d905bca 9318 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9319 *
07e06b01
YZ
9320 * We achieve this by letting root_task_group's tasks sit
9321 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9322 */
07e06b01 9323 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9324#endif /* CONFIG_FAIR_GROUP_SCHED */
9325
9326 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9327#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9329#endif
1da177e4 9330#ifdef CONFIG_SMP
41c7ce9a 9331 rq->sd = NULL;
57d885fe 9332 rq->rd = NULL;
ca6d75e6 9333 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9334 rq->balance_callback = &balance_push_callback;
1da177e4 9335 rq->active_balance = 0;
dd41f596 9336 rq->next_balance = jiffies;
1da177e4 9337 rq->push_cpu = 0;
0a2966b4 9338 rq->cpu = i;
1f11eb6a 9339 rq->online = 0;
eae0c9df
MG
9340 rq->idle_stamp = 0;
9341 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9342 rq->wake_stamp = jiffies;
9343 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9344 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9345
9346 INIT_LIST_HEAD(&rq->cfs_tasks);
9347
dc938520 9348 rq_attach_root(rq, &def_root_domain);
3451d024 9349#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9350 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9351 atomic_set(&rq->nohz_flags, 0);
90b5363a 9352
545b8c8d 9353 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9354#endif
f2469a1f
TG
9355#ifdef CONFIG_HOTPLUG_CPU
9356 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9357#endif
9fd81dd5 9358#endif /* CONFIG_SMP */
77a021be 9359 hrtick_rq_init(rq);
1da177e4 9360 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9361
9362#ifdef CONFIG_SCHED_CORE
3c474b32 9363 rq->core = rq;
539f6512 9364 rq->core_pick = NULL;
9edeaea1 9365 rq->core_enabled = 0;
539f6512
PZ
9366 rq->core_tree = RB_ROOT;
9367 rq->core_forceidle = false;
9368
9369 rq->core_cookie = 0UL;
9edeaea1 9370#endif
1da177e4
LT
9371 }
9372
9059393e 9373 set_load_weight(&init_task, false);
b50f60ce 9374
1da177e4
LT
9375 /*
9376 * The boot idle thread does lazy MMU switching as well:
9377 */
f1f10076 9378 mmgrab(&init_mm);
1da177e4
LT
9379 enter_lazy_tlb(&init_mm, current);
9380
9381 /*
9382 * Make us the idle thread. Technically, schedule() should not be
9383 * called from this thread, however somewhere below it might be,
9384 * but because we are the idle thread, we just pick up running again
9385 * when this runqueue becomes "idle".
9386 */
9387 init_idle(current, smp_processor_id());
dce48a84
TG
9388
9389 calc_load_update = jiffies + LOAD_FREQ;
9390
bf4d83f6 9391#ifdef CONFIG_SMP
29d5e047 9392 idle_thread_set_boot_cpu();
b5c44773 9393 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9394#endif
9395 init_sched_fair_class();
6a7b3dc3 9396
eb414681
JW
9397 psi_init();
9398
69842cba
PB
9399 init_uclamp();
9400
6892b75e 9401 scheduler_running = 1;
1da177e4
LT
9402}
9403
d902db1e 9404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
9405static inline int preempt_count_equals(int preempt_offset)
9406{
da7142e2 9407 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 9408
4ba8216c 9409 return (nested == preempt_offset);
e4aafea2
FW
9410}
9411
d894837f 9412void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9413{
d6c23bb3 9414 unsigned int state = get_current_state();
8eb23b9f
PZ
9415 /*
9416 * Blocking primitives will set (and therefore destroy) current->state,
9417 * since we will exit with TASK_RUNNING make sure we enter with it,
9418 * otherwise we will destroy state.
9419 */
d6c23bb3 9420 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9421 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9422 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9423 (void *)current->task_state_change,
00845eb9 9424 (void *)current->task_state_change);
8eb23b9f 9425
3427445a
PZ
9426 ___might_sleep(file, line, preempt_offset);
9427}
9428EXPORT_SYMBOL(__might_sleep);
9429
9430void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9431{
d1ccc66d
IM
9432 /* Ratelimiting timestamp: */
9433 static unsigned long prev_jiffy;
9434
d1c6d149 9435 unsigned long preempt_disable_ip;
1da177e4 9436
d1ccc66d
IM
9437 /* WARN_ON_ONCE() by default, no rate limit required: */
9438 rcu_sleep_check();
9439
db273be2 9440 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 9441 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9442 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9443 oops_in_progress)
aef745fc 9444 return;
1c3c5eab 9445
aef745fc
IM
9446 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9447 return;
9448 prev_jiffy = jiffies;
9449
d1ccc66d 9450 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9451 preempt_disable_ip = get_preempt_disable_ip(current);
9452
3df0fc5b
PZ
9453 printk(KERN_ERR
9454 "BUG: sleeping function called from invalid context at %s:%d\n",
9455 file, line);
9456 printk(KERN_ERR
312364f3
DV
9457 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9458 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 9459 current->pid, current->comm);
aef745fc 9460
a8b686b3
ES
9461 if (task_stack_end_corrupted(current))
9462 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9463
aef745fc
IM
9464 debug_show_held_locks(current);
9465 if (irqs_disabled())
9466 print_irqtrace_events(current);
d1c6d149
VN
9467 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9468 && !preempt_count_equals(preempt_offset)) {
8f47b187 9469 pr_err("Preemption disabled at:");
2062a4e8 9470 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 9471 }
aef745fc 9472 dump_stack();
f0b22e39 9473 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9474}
3427445a 9475EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
9476
9477void __cant_sleep(const char *file, int line, int preempt_offset)
9478{
9479 static unsigned long prev_jiffy;
9480
9481 if (irqs_disabled())
9482 return;
9483
9484 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9485 return;
9486
9487 if (preempt_count() > preempt_offset)
9488 return;
9489
9490 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9491 return;
9492 prev_jiffy = jiffies;
9493
9494 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9495 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9496 in_atomic(), irqs_disabled(),
9497 current->pid, current->comm);
9498
9499 debug_show_held_locks(current);
9500 dump_stack();
9501 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9502}
9503EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9504
9505#ifdef CONFIG_SMP
9506void __cant_migrate(const char *file, int line)
9507{
9508 static unsigned long prev_jiffy;
9509
9510 if (irqs_disabled())
9511 return;
9512
9513 if (is_migration_disabled(current))
9514 return;
9515
9516 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9517 return;
9518
9519 if (preempt_count() > 0)
9520 return;
9521
9522 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9523 return;
9524 prev_jiffy = jiffies;
9525
9526 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9527 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9528 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9529 current->pid, current->comm);
9530
9531 debug_show_held_locks(current);
9532 dump_stack();
9533 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9534}
9535EXPORT_SYMBOL_GPL(__cant_migrate);
9536#endif
1da177e4
LT
9537#endif
9538
9539#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9540void normalize_rt_tasks(void)
3a5e4dc1 9541{
dbc7f069 9542 struct task_struct *g, *p;
d50dde5a
DF
9543 struct sched_attr attr = {
9544 .sched_policy = SCHED_NORMAL,
9545 };
1da177e4 9546
3472eaa1 9547 read_lock(&tasklist_lock);
5d07f420 9548 for_each_process_thread(g, p) {
178be793
IM
9549 /*
9550 * Only normalize user tasks:
9551 */
3472eaa1 9552 if (p->flags & PF_KTHREAD)
178be793
IM
9553 continue;
9554
4fa8d299
JP
9555 p->se.exec_start = 0;
9556 schedstat_set(p->se.statistics.wait_start, 0);
9557 schedstat_set(p->se.statistics.sleep_start, 0);
9558 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 9559
aab03e05 9560 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9561 /*
9562 * Renice negative nice level userspace
9563 * tasks back to 0:
9564 */
3472eaa1 9565 if (task_nice(p) < 0)
dd41f596 9566 set_user_nice(p, 0);
1da177e4 9567 continue;
dd41f596 9568 }
1da177e4 9569
dbc7f069 9570 __sched_setscheduler(p, &attr, false, false);
5d07f420 9571 }
3472eaa1 9572 read_unlock(&tasklist_lock);
1da177e4
LT
9573}
9574
9575#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9576
67fc4e0c 9577#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9578/*
67fc4e0c 9579 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9580 *
9581 * They can only be called when the whole system has been
9582 * stopped - every CPU needs to be quiescent, and no scheduling
9583 * activity can take place. Using them for anything else would
9584 * be a serious bug, and as a result, they aren't even visible
9585 * under any other configuration.
9586 */
9587
9588/**
d1ccc66d 9589 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9590 * @cpu: the processor in question.
9591 *
9592 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9593 *
9594 * Return: The current task for @cpu.
1df5c10a 9595 */
36c8b586 9596struct task_struct *curr_task(int cpu)
1df5c10a
LT
9597{
9598 return cpu_curr(cpu);
9599}
9600
67fc4e0c
JW
9601#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9602
9603#ifdef CONFIG_IA64
1df5c10a 9604/**
5feeb783 9605 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9606 * @cpu: the processor in question.
9607 * @p: the task pointer to set.
9608 *
9609 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9610 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9611 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9612 * must be called with all CPU's synchronized, and interrupts disabled, the
9613 * and caller must save the original value of the current task (see
9614 * curr_task() above) and restore that value before reenabling interrupts and
9615 * re-starting the system.
9616 *
9617 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9618 */
a458ae2e 9619void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9620{
9621 cpu_curr(cpu) = p;
9622}
9623
9624#endif
29f59db3 9625
7c941438 9626#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9627/* task_group_lock serializes the addition/removal of task groups */
9628static DEFINE_SPINLOCK(task_group_lock);
9629
2480c093
PB
9630static inline void alloc_uclamp_sched_group(struct task_group *tg,
9631 struct task_group *parent)
9632{
9633#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9634 enum uclamp_id clamp_id;
2480c093
PB
9635
9636 for_each_clamp_id(clamp_id) {
9637 uclamp_se_set(&tg->uclamp_req[clamp_id],
9638 uclamp_none(clamp_id), false);
0b60ba2d 9639 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9640 }
9641#endif
9642}
9643
2f5177f0 9644static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9645{
9646 free_fair_sched_group(tg);
9647 free_rt_sched_group(tg);
e9aa1dd1 9648 autogroup_free(tg);
b0367629 9649 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9650}
9651
9652/* allocate runqueue etc for a new task group */
ec7dc8ac 9653struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9654{
9655 struct task_group *tg;
bccbe08a 9656
b0367629 9657 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9658 if (!tg)
9659 return ERR_PTR(-ENOMEM);
9660
ec7dc8ac 9661 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9662 goto err;
9663
ec7dc8ac 9664 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9665 goto err;
9666
2480c093
PB
9667 alloc_uclamp_sched_group(tg, parent);
9668
ace783b9
LZ
9669 return tg;
9670
9671err:
2f5177f0 9672 sched_free_group(tg);
ace783b9
LZ
9673 return ERR_PTR(-ENOMEM);
9674}
9675
9676void sched_online_group(struct task_group *tg, struct task_group *parent)
9677{
9678 unsigned long flags;
9679
8ed36996 9680 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9681 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9682
d1ccc66d
IM
9683 /* Root should already exist: */
9684 WARN_ON(!parent);
f473aa5e
PZ
9685
9686 tg->parent = parent;
f473aa5e 9687 INIT_LIST_HEAD(&tg->children);
09f2724a 9688 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9689 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9690
9691 online_fair_sched_group(tg);
29f59db3
SV
9692}
9693
9b5b7751 9694/* rcu callback to free various structures associated with a task group */
2f5177f0 9695static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 9696{
d1ccc66d 9697 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 9698 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9699}
9700
4cf86d77 9701void sched_destroy_group(struct task_group *tg)
ace783b9 9702{
d1ccc66d 9703 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 9704 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
9705}
9706
9707void sched_offline_group(struct task_group *tg)
29f59db3 9708{
8ed36996 9709 unsigned long flags;
29f59db3 9710
d1ccc66d 9711 /* End participation in shares distribution: */
6fe1f348 9712 unregister_fair_sched_group(tg);
3d4b47b4
PZ
9713
9714 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9715 list_del_rcu(&tg->list);
f473aa5e 9716 list_del_rcu(&tg->siblings);
8ed36996 9717 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9718}
9719
ea86cb4b 9720static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9721{
8323f26c 9722 struct task_group *tg;
29f59db3 9723
f7b8a47d
KT
9724 /*
9725 * All callers are synchronized by task_rq_lock(); we do not use RCU
9726 * which is pointless here. Thus, we pass "true" to task_css_check()
9727 * to prevent lockdep warnings.
9728 */
9729 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9730 struct task_group, css);
9731 tg = autogroup_task_group(tsk, tg);
9732 tsk->sched_task_group = tg;
9733
810b3817 9734#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9735 if (tsk->sched_class->task_change_group)
9736 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9737 else
810b3817 9738#endif
b2b5ce02 9739 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9740}
9741
9742/*
9743 * Change task's runqueue when it moves between groups.
9744 *
9745 * The caller of this function should have put the task in its new group by
9746 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9747 * its new group.
9748 */
9749void sched_move_task(struct task_struct *tsk)
9750{
7a57f32a
PZ
9751 int queued, running, queue_flags =
9752 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9753 struct rq_flags rf;
9754 struct rq *rq;
9755
9756 rq = task_rq_lock(tsk, &rf);
1b1d6225 9757 update_rq_clock(rq);
ea86cb4b
VG
9758
9759 running = task_current(rq, tsk);
9760 queued = task_on_rq_queued(tsk);
9761
9762 if (queued)
7a57f32a 9763 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9764 if (running)
ea86cb4b
VG
9765 put_prev_task(rq, tsk);
9766
9767 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9768
da0c1e65 9769 if (queued)
7a57f32a 9770 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9771 if (running) {
03b7fad1 9772 set_next_task(rq, tsk);
2a4b03ff
VG
9773 /*
9774 * After changing group, the running task may have joined a
9775 * throttled one but it's still the running task. Trigger a
9776 * resched to make sure that task can still run.
9777 */
9778 resched_curr(rq);
9779 }
29f59db3 9780
eb580751 9781 task_rq_unlock(rq, tsk, &rf);
29f59db3 9782}
68318b8e 9783
a7c6d554 9784static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9785{
a7c6d554 9786 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9787}
9788
eb95419b
TH
9789static struct cgroup_subsys_state *
9790cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9791{
eb95419b
TH
9792 struct task_group *parent = css_tg(parent_css);
9793 struct task_group *tg;
68318b8e 9794
eb95419b 9795 if (!parent) {
68318b8e 9796 /* This is early initialization for the top cgroup */
07e06b01 9797 return &root_task_group.css;
68318b8e
SV
9798 }
9799
ec7dc8ac 9800 tg = sched_create_group(parent);
68318b8e
SV
9801 if (IS_ERR(tg))
9802 return ERR_PTR(-ENOMEM);
9803
68318b8e
SV
9804 return &tg->css;
9805}
9806
96b77745
KK
9807/* Expose task group only after completing cgroup initialization */
9808static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9809{
9810 struct task_group *tg = css_tg(css);
9811 struct task_group *parent = css_tg(css->parent);
9812
9813 if (parent)
9814 sched_online_group(tg, parent);
7226017a
QY
9815
9816#ifdef CONFIG_UCLAMP_TASK_GROUP
9817 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9818 mutex_lock(&uclamp_mutex);
9819 rcu_read_lock();
7226017a 9820 cpu_util_update_eff(css);
93b73858
QY
9821 rcu_read_unlock();
9822 mutex_unlock(&uclamp_mutex);
7226017a
QY
9823#endif
9824
96b77745
KK
9825 return 0;
9826}
9827
2f5177f0 9828static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9829{
eb95419b 9830 struct task_group *tg = css_tg(css);
ace783b9 9831
2f5177f0 9832 sched_offline_group(tg);
ace783b9
LZ
9833}
9834
eb95419b 9835static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9836{
eb95419b 9837 struct task_group *tg = css_tg(css);
68318b8e 9838
2f5177f0
PZ
9839 /*
9840 * Relies on the RCU grace period between css_released() and this.
9841 */
9842 sched_free_group(tg);
ace783b9
LZ
9843}
9844
ea86cb4b
VG
9845/*
9846 * This is called before wake_up_new_task(), therefore we really only
9847 * have to set its group bits, all the other stuff does not apply.
9848 */
b53202e6 9849static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9850{
ea86cb4b
VG
9851 struct rq_flags rf;
9852 struct rq *rq;
9853
9854 rq = task_rq_lock(task, &rf);
9855
80f5c1b8 9856 update_rq_clock(rq);
ea86cb4b
VG
9857 sched_change_group(task, TASK_SET_GROUP);
9858
9859 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9860}
9861
1f7dd3e5 9862static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9863{
bb9d97b6 9864 struct task_struct *task;
1f7dd3e5 9865 struct cgroup_subsys_state *css;
7dc603c9 9866 int ret = 0;
bb9d97b6 9867
1f7dd3e5 9868 cgroup_taskset_for_each(task, css, tset) {
b68aa230 9869#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 9870 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 9871 return -EINVAL;
b68aa230 9872#endif
7dc603c9 9873 /*
b19a888c 9874 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
9875 * running, we're sure to observe its full state.
9876 */
9877 raw_spin_lock_irq(&task->pi_lock);
9878 /*
9879 * Avoid calling sched_move_task() before wake_up_new_task()
9880 * has happened. This would lead to problems with PELT, due to
9881 * move wanting to detach+attach while we're not attached yet.
9882 */
2f064a59 9883 if (READ_ONCE(task->__state) == TASK_NEW)
7dc603c9
PZ
9884 ret = -EINVAL;
9885 raw_spin_unlock_irq(&task->pi_lock);
9886
9887 if (ret)
9888 break;
bb9d97b6 9889 }
7dc603c9 9890 return ret;
be367d09 9891}
68318b8e 9892
1f7dd3e5 9893static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 9894{
bb9d97b6 9895 struct task_struct *task;
1f7dd3e5 9896 struct cgroup_subsys_state *css;
bb9d97b6 9897
1f7dd3e5 9898 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9899 sched_move_task(task);
68318b8e
SV
9900}
9901
2480c093 9902#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
9903static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9904{
9905 struct cgroup_subsys_state *top_css = css;
9906 struct uclamp_se *uc_parent = NULL;
9907 struct uclamp_se *uc_se = NULL;
9908 unsigned int eff[UCLAMP_CNT];
0413d7f3 9909 enum uclamp_id clamp_id;
0b60ba2d
PB
9910 unsigned int clamps;
9911
93b73858
QY
9912 lockdep_assert_held(&uclamp_mutex);
9913 SCHED_WARN_ON(!rcu_read_lock_held());
9914
0b60ba2d
PB
9915 css_for_each_descendant_pre(css, top_css) {
9916 uc_parent = css_tg(css)->parent
9917 ? css_tg(css)->parent->uclamp : NULL;
9918
9919 for_each_clamp_id(clamp_id) {
9920 /* Assume effective clamps matches requested clamps */
9921 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9922 /* Cap effective clamps with parent's effective clamps */
9923 if (uc_parent &&
9924 eff[clamp_id] > uc_parent[clamp_id].value) {
9925 eff[clamp_id] = uc_parent[clamp_id].value;
9926 }
9927 }
9928 /* Ensure protection is always capped by limit */
9929 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9930
9931 /* Propagate most restrictive effective clamps */
9932 clamps = 0x0;
9933 uc_se = css_tg(css)->uclamp;
9934 for_each_clamp_id(clamp_id) {
9935 if (eff[clamp_id] == uc_se[clamp_id].value)
9936 continue;
9937 uc_se[clamp_id].value = eff[clamp_id];
9938 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9939 clamps |= (0x1 << clamp_id);
9940 }
babbe170 9941 if (!clamps) {
0b60ba2d 9942 css = css_rightmost_descendant(css);
babbe170
PB
9943 continue;
9944 }
9945
9946 /* Immediately update descendants RUNNABLE tasks */
0213b708 9947 uclamp_update_active_tasks(css);
0b60ba2d
PB
9948 }
9949}
2480c093
PB
9950
9951/*
9952 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9953 * C expression. Since there is no way to convert a macro argument (N) into a
9954 * character constant, use two levels of macros.
9955 */
9956#define _POW10(exp) ((unsigned int)1e##exp)
9957#define POW10(exp) _POW10(exp)
9958
9959struct uclamp_request {
9960#define UCLAMP_PERCENT_SHIFT 2
9961#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9962 s64 percent;
9963 u64 util;
9964 int ret;
9965};
9966
9967static inline struct uclamp_request
9968capacity_from_percent(char *buf)
9969{
9970 struct uclamp_request req = {
9971 .percent = UCLAMP_PERCENT_SCALE,
9972 .util = SCHED_CAPACITY_SCALE,
9973 .ret = 0,
9974 };
9975
9976 buf = strim(buf);
9977 if (strcmp(buf, "max")) {
9978 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9979 &req.percent);
9980 if (req.ret)
9981 return req;
b562d140 9982 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
9983 req.ret = -ERANGE;
9984 return req;
9985 }
9986
9987 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9988 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9989 }
9990
9991 return req;
9992}
9993
9994static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9995 size_t nbytes, loff_t off,
9996 enum uclamp_id clamp_id)
9997{
9998 struct uclamp_request req;
9999 struct task_group *tg;
10000
10001 req = capacity_from_percent(buf);
10002 if (req.ret)
10003 return req.ret;
10004
46609ce2
QY
10005 static_branch_enable(&sched_uclamp_used);
10006
2480c093
PB
10007 mutex_lock(&uclamp_mutex);
10008 rcu_read_lock();
10009
10010 tg = css_tg(of_css(of));
10011 if (tg->uclamp_req[clamp_id].value != req.util)
10012 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10013
10014 /*
10015 * Because of not recoverable conversion rounding we keep track of the
10016 * exact requested value
10017 */
10018 tg->uclamp_pct[clamp_id] = req.percent;
10019
0b60ba2d
PB
10020 /* Update effective clamps to track the most restrictive value */
10021 cpu_util_update_eff(of_css(of));
10022
2480c093
PB
10023 rcu_read_unlock();
10024 mutex_unlock(&uclamp_mutex);
10025
10026 return nbytes;
10027}
10028
10029static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10030 char *buf, size_t nbytes,
10031 loff_t off)
10032{
10033 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10034}
10035
10036static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10037 char *buf, size_t nbytes,
10038 loff_t off)
10039{
10040 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10041}
10042
10043static inline void cpu_uclamp_print(struct seq_file *sf,
10044 enum uclamp_id clamp_id)
10045{
10046 struct task_group *tg;
10047 u64 util_clamp;
10048 u64 percent;
10049 u32 rem;
10050
10051 rcu_read_lock();
10052 tg = css_tg(seq_css(sf));
10053 util_clamp = tg->uclamp_req[clamp_id].value;
10054 rcu_read_unlock();
10055
10056 if (util_clamp == SCHED_CAPACITY_SCALE) {
10057 seq_puts(sf, "max\n");
10058 return;
10059 }
10060
10061 percent = tg->uclamp_pct[clamp_id];
10062 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10063 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10064}
10065
10066static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10067{
10068 cpu_uclamp_print(sf, UCLAMP_MIN);
10069 return 0;
10070}
10071
10072static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10073{
10074 cpu_uclamp_print(sf, UCLAMP_MAX);
10075 return 0;
10076}
10077#endif /* CONFIG_UCLAMP_TASK_GROUP */
10078
052f1dc7 10079#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10080static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10081 struct cftype *cftype, u64 shareval)
68318b8e 10082{
5b61d50a
KK
10083 if (shareval > scale_load_down(ULONG_MAX))
10084 shareval = MAX_SHARES;
182446d0 10085 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10086}
10087
182446d0
TH
10088static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10089 struct cftype *cft)
68318b8e 10090{
182446d0 10091 struct task_group *tg = css_tg(css);
68318b8e 10092
c8b28116 10093 return (u64) scale_load_down(tg->shares);
68318b8e 10094}
ab84d31e
PT
10095
10096#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10097static DEFINE_MUTEX(cfs_constraints_mutex);
10098
ab84d31e 10099const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10100static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10101/* More than 203 days if BW_SHIFT equals 20. */
10102static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10103
a790de99
PT
10104static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10105
f4183717
HC
10106static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10107 u64 burst)
ab84d31e 10108{
56f570e5 10109 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10110 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10111
10112 if (tg == &root_task_group)
10113 return -EINVAL;
10114
10115 /*
10116 * Ensure we have at some amount of bandwidth every period. This is
10117 * to prevent reaching a state of large arrears when throttled via
10118 * entity_tick() resulting in prolonged exit starvation.
10119 */
10120 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10121 return -EINVAL;
10122
10123 /*
3b03706f 10124 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10125 * periods. This also allows us to normalize in computing quota
10126 * feasibility.
10127 */
10128 if (period > max_cfs_quota_period)
10129 return -EINVAL;
10130
d505b8af
HC
10131 /*
10132 * Bound quota to defend quota against overflow during bandwidth shift.
10133 */
10134 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10135 return -EINVAL;
10136
f4183717
HC
10137 if (quota != RUNTIME_INF && (burst > quota ||
10138 burst + quota > max_cfs_runtime))
10139 return -EINVAL;
10140
0e59bdae
KT
10141 /*
10142 * Prevent race between setting of cfs_rq->runtime_enabled and
10143 * unthrottle_offline_cfs_rqs().
10144 */
746f5ea9 10145 cpus_read_lock();
a790de99
PT
10146 mutex_lock(&cfs_constraints_mutex);
10147 ret = __cfs_schedulable(tg, period, quota);
10148 if (ret)
10149 goto out_unlock;
10150
58088ad0 10151 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10152 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10153 /*
10154 * If we need to toggle cfs_bandwidth_used, off->on must occur
10155 * before making related changes, and on->off must occur afterwards
10156 */
10157 if (runtime_enabled && !runtime_was_enabled)
10158 cfs_bandwidth_usage_inc();
ab84d31e
PT
10159 raw_spin_lock_irq(&cfs_b->lock);
10160 cfs_b->period = ns_to_ktime(period);
10161 cfs_b->quota = quota;
f4183717 10162 cfs_b->burst = burst;
58088ad0 10163
a9cf55b2 10164 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10165
10166 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10167 if (runtime_enabled)
10168 start_cfs_bandwidth(cfs_b);
d1ccc66d 10169
ab84d31e
PT
10170 raw_spin_unlock_irq(&cfs_b->lock);
10171
0e59bdae 10172 for_each_online_cpu(i) {
ab84d31e 10173 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10174 struct rq *rq = cfs_rq->rq;
8a8c69c3 10175 struct rq_flags rf;
ab84d31e 10176
8a8c69c3 10177 rq_lock_irq(rq, &rf);
58088ad0 10178 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10179 cfs_rq->runtime_remaining = 0;
671fd9da 10180
029632fb 10181 if (cfs_rq->throttled)
671fd9da 10182 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10183 rq_unlock_irq(rq, &rf);
ab84d31e 10184 }
1ee14e6c
BS
10185 if (runtime_was_enabled && !runtime_enabled)
10186 cfs_bandwidth_usage_dec();
a790de99
PT
10187out_unlock:
10188 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10189 cpus_read_unlock();
ab84d31e 10190
a790de99 10191 return ret;
ab84d31e
PT
10192}
10193
b1546edc 10194static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10195{
f4183717 10196 u64 quota, period, burst;
ab84d31e 10197
029632fb 10198 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10199 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10200 if (cfs_quota_us < 0)
10201 quota = RUNTIME_INF;
1a8b4540 10202 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10203 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10204 else
10205 return -EINVAL;
ab84d31e 10206
f4183717 10207 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10208}
10209
b1546edc 10210static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10211{
10212 u64 quota_us;
10213
029632fb 10214 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10215 return -1;
10216
029632fb 10217 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10218 do_div(quota_us, NSEC_PER_USEC);
10219
10220 return quota_us;
10221}
10222
b1546edc 10223static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10224{
f4183717 10225 u64 quota, period, burst;
ab84d31e 10226
1a8b4540
KK
10227 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10228 return -EINVAL;
10229
ab84d31e 10230 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10231 quota = tg->cfs_bandwidth.quota;
f4183717 10232 burst = tg->cfs_bandwidth.burst;
ab84d31e 10233
f4183717 10234 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10235}
10236
b1546edc 10237static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10238{
10239 u64 cfs_period_us;
10240
029632fb 10241 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10242 do_div(cfs_period_us, NSEC_PER_USEC);
10243
10244 return cfs_period_us;
10245}
10246
f4183717
HC
10247static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10248{
10249 u64 quota, period, burst;
10250
10251 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10252 return -EINVAL;
10253
10254 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10255 period = ktime_to_ns(tg->cfs_bandwidth.period);
10256 quota = tg->cfs_bandwidth.quota;
10257
10258 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10259}
10260
10261static long tg_get_cfs_burst(struct task_group *tg)
10262{
10263 u64 burst_us;
10264
10265 burst_us = tg->cfs_bandwidth.burst;
10266 do_div(burst_us, NSEC_PER_USEC);
10267
10268 return burst_us;
10269}
10270
182446d0
TH
10271static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10272 struct cftype *cft)
ab84d31e 10273{
182446d0 10274 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10275}
10276
182446d0
TH
10277static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10278 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10279{
182446d0 10280 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10281}
10282
182446d0
TH
10283static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10284 struct cftype *cft)
ab84d31e 10285{
182446d0 10286 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10287}
10288
182446d0
TH
10289static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10290 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10291{
182446d0 10292 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10293}
10294
f4183717
HC
10295static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10296 struct cftype *cft)
10297{
10298 return tg_get_cfs_burst(css_tg(css));
10299}
10300
10301static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10302 struct cftype *cftype, u64 cfs_burst_us)
10303{
10304 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10305}
10306
a790de99
PT
10307struct cfs_schedulable_data {
10308 struct task_group *tg;
10309 u64 period, quota;
10310};
10311
10312/*
10313 * normalize group quota/period to be quota/max_period
10314 * note: units are usecs
10315 */
10316static u64 normalize_cfs_quota(struct task_group *tg,
10317 struct cfs_schedulable_data *d)
10318{
10319 u64 quota, period;
10320
10321 if (tg == d->tg) {
10322 period = d->period;
10323 quota = d->quota;
10324 } else {
10325 period = tg_get_cfs_period(tg);
10326 quota = tg_get_cfs_quota(tg);
10327 }
10328
10329 /* note: these should typically be equivalent */
10330 if (quota == RUNTIME_INF || quota == -1)
10331 return RUNTIME_INF;
10332
10333 return to_ratio(period, quota);
10334}
10335
10336static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10337{
10338 struct cfs_schedulable_data *d = data;
029632fb 10339 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10340 s64 quota = 0, parent_quota = -1;
10341
10342 if (!tg->parent) {
10343 quota = RUNTIME_INF;
10344 } else {
029632fb 10345 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10346
10347 quota = normalize_cfs_quota(tg, d);
9c58c79a 10348 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10349
10350 /*
c53593e5
TH
10351 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10352 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10353 * limit is set:
a790de99 10354 */
c53593e5
TH
10355 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10356 quota = min(quota, parent_quota);
10357 } else {
10358 if (quota == RUNTIME_INF)
10359 quota = parent_quota;
10360 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10361 return -EINVAL;
10362 }
a790de99 10363 }
9c58c79a 10364 cfs_b->hierarchical_quota = quota;
a790de99
PT
10365
10366 return 0;
10367}
10368
10369static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10370{
8277434e 10371 int ret;
a790de99
PT
10372 struct cfs_schedulable_data data = {
10373 .tg = tg,
10374 .period = period,
10375 .quota = quota,
10376 };
10377
10378 if (quota != RUNTIME_INF) {
10379 do_div(data.period, NSEC_PER_USEC);
10380 do_div(data.quota, NSEC_PER_USEC);
10381 }
10382
8277434e
PT
10383 rcu_read_lock();
10384 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10385 rcu_read_unlock();
10386
10387 return ret;
a790de99 10388}
e8da1b18 10389
a1f7164c 10390static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10391{
2da8ca82 10392 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10393 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10394
44ffc75b
TH
10395 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10396 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10397 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10398
3d6c50c2
YW
10399 if (schedstat_enabled() && tg != &root_task_group) {
10400 u64 ws = 0;
10401 int i;
10402
10403 for_each_possible_cpu(i)
10404 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10405
10406 seq_printf(sf, "wait_sum %llu\n", ws);
10407 }
10408
bcb1704a
HC
10409 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10410 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10411
e8da1b18
NR
10412 return 0;
10413}
ab84d31e 10414#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10415#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10416
052f1dc7 10417#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10418static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10419 struct cftype *cft, s64 val)
6f505b16 10420{
182446d0 10421 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10422}
10423
182446d0
TH
10424static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10425 struct cftype *cft)
6f505b16 10426{
182446d0 10427 return sched_group_rt_runtime(css_tg(css));
6f505b16 10428}
d0b27fa7 10429
182446d0
TH
10430static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10431 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10432{
182446d0 10433 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10434}
10435
182446d0
TH
10436static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10437 struct cftype *cft)
d0b27fa7 10438{
182446d0 10439 return sched_group_rt_period(css_tg(css));
d0b27fa7 10440}
6d6bc0ad 10441#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10442
30400039
JD
10443#ifdef CONFIG_FAIR_GROUP_SCHED
10444static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10445 struct cftype *cft)
10446{
10447 return css_tg(css)->idle;
10448}
10449
10450static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10451 struct cftype *cft, s64 idle)
10452{
10453 return sched_group_set_idle(css_tg(css), idle);
10454}
10455#endif
10456
a1f7164c 10457static struct cftype cpu_legacy_files[] = {
052f1dc7 10458#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10459 {
10460 .name = "shares",
f4c753b7
PM
10461 .read_u64 = cpu_shares_read_u64,
10462 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10463 },
30400039
JD
10464 {
10465 .name = "idle",
10466 .read_s64 = cpu_idle_read_s64,
10467 .write_s64 = cpu_idle_write_s64,
10468 },
052f1dc7 10469#endif
ab84d31e
PT
10470#ifdef CONFIG_CFS_BANDWIDTH
10471 {
10472 .name = "cfs_quota_us",
10473 .read_s64 = cpu_cfs_quota_read_s64,
10474 .write_s64 = cpu_cfs_quota_write_s64,
10475 },
10476 {
10477 .name = "cfs_period_us",
10478 .read_u64 = cpu_cfs_period_read_u64,
10479 .write_u64 = cpu_cfs_period_write_u64,
10480 },
f4183717
HC
10481 {
10482 .name = "cfs_burst_us",
10483 .read_u64 = cpu_cfs_burst_read_u64,
10484 .write_u64 = cpu_cfs_burst_write_u64,
10485 },
e8da1b18
NR
10486 {
10487 .name = "stat",
a1f7164c 10488 .seq_show = cpu_cfs_stat_show,
e8da1b18 10489 },
ab84d31e 10490#endif
052f1dc7 10491#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10492 {
9f0c1e56 10493 .name = "rt_runtime_us",
06ecb27c
PM
10494 .read_s64 = cpu_rt_runtime_read,
10495 .write_s64 = cpu_rt_runtime_write,
6f505b16 10496 },
d0b27fa7
PZ
10497 {
10498 .name = "rt_period_us",
f4c753b7
PM
10499 .read_u64 = cpu_rt_period_read_uint,
10500 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10501 },
2480c093
PB
10502#endif
10503#ifdef CONFIG_UCLAMP_TASK_GROUP
10504 {
10505 .name = "uclamp.min",
10506 .flags = CFTYPE_NOT_ON_ROOT,
10507 .seq_show = cpu_uclamp_min_show,
10508 .write = cpu_uclamp_min_write,
10509 },
10510 {
10511 .name = "uclamp.max",
10512 .flags = CFTYPE_NOT_ON_ROOT,
10513 .seq_show = cpu_uclamp_max_show,
10514 .write = cpu_uclamp_max_write,
10515 },
052f1dc7 10516#endif
d1ccc66d 10517 { } /* Terminate */
68318b8e
SV
10518};
10519
d41bf8c9
TH
10520static int cpu_extra_stat_show(struct seq_file *sf,
10521 struct cgroup_subsys_state *css)
0d593634 10522{
0d593634
TH
10523#ifdef CONFIG_CFS_BANDWIDTH
10524 {
d41bf8c9 10525 struct task_group *tg = css_tg(css);
0d593634 10526 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 10527 u64 throttled_usec, burst_usec;
0d593634
TH
10528
10529 throttled_usec = cfs_b->throttled_time;
10530 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
10531 burst_usec = cfs_b->burst_time;
10532 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
10533
10534 seq_printf(sf, "nr_periods %d\n"
10535 "nr_throttled %d\n"
bcb1704a
HC
10536 "throttled_usec %llu\n"
10537 "nr_bursts %d\n"
10538 "burst_usec %llu\n",
0d593634 10539 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 10540 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
10541 }
10542#endif
10543 return 0;
10544}
10545
10546#ifdef CONFIG_FAIR_GROUP_SCHED
10547static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10548 struct cftype *cft)
10549{
10550 struct task_group *tg = css_tg(css);
10551 u64 weight = scale_load_down(tg->shares);
10552
10553 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10554}
10555
10556static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10557 struct cftype *cft, u64 weight)
10558{
10559 /*
10560 * cgroup weight knobs should use the common MIN, DFL and MAX
10561 * values which are 1, 100 and 10000 respectively. While it loses
10562 * a bit of range on both ends, it maps pretty well onto the shares
10563 * value used by scheduler and the round-trip conversions preserve
10564 * the original value over the entire range.
10565 */
10566 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10567 return -ERANGE;
10568
10569 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10570
10571 return sched_group_set_shares(css_tg(css), scale_load(weight));
10572}
10573
10574static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10575 struct cftype *cft)
10576{
10577 unsigned long weight = scale_load_down(css_tg(css)->shares);
10578 int last_delta = INT_MAX;
10579 int prio, delta;
10580
10581 /* find the closest nice value to the current weight */
10582 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10583 delta = abs(sched_prio_to_weight[prio] - weight);
10584 if (delta >= last_delta)
10585 break;
10586 last_delta = delta;
10587 }
10588
10589 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10590}
10591
10592static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10593 struct cftype *cft, s64 nice)
10594{
10595 unsigned long weight;
7281c8de 10596 int idx;
0d593634
TH
10597
10598 if (nice < MIN_NICE || nice > MAX_NICE)
10599 return -ERANGE;
10600
7281c8de
PZ
10601 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10602 idx = array_index_nospec(idx, 40);
10603 weight = sched_prio_to_weight[idx];
10604
0d593634
TH
10605 return sched_group_set_shares(css_tg(css), scale_load(weight));
10606}
10607#endif
10608
10609static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10610 long period, long quota)
10611{
10612 if (quota < 0)
10613 seq_puts(sf, "max");
10614 else
10615 seq_printf(sf, "%ld", quota);
10616
10617 seq_printf(sf, " %ld\n", period);
10618}
10619
10620/* caller should put the current value in *@periodp before calling */
10621static int __maybe_unused cpu_period_quota_parse(char *buf,
10622 u64 *periodp, u64 *quotap)
10623{
10624 char tok[21]; /* U64_MAX */
10625
4c47acd8 10626 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10627 return -EINVAL;
10628
10629 *periodp *= NSEC_PER_USEC;
10630
10631 if (sscanf(tok, "%llu", quotap))
10632 *quotap *= NSEC_PER_USEC;
10633 else if (!strcmp(tok, "max"))
10634 *quotap = RUNTIME_INF;
10635 else
10636 return -EINVAL;
10637
10638 return 0;
10639}
10640
10641#ifdef CONFIG_CFS_BANDWIDTH
10642static int cpu_max_show(struct seq_file *sf, void *v)
10643{
10644 struct task_group *tg = css_tg(seq_css(sf));
10645
10646 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10647 return 0;
10648}
10649
10650static ssize_t cpu_max_write(struct kernfs_open_file *of,
10651 char *buf, size_t nbytes, loff_t off)
10652{
10653 struct task_group *tg = css_tg(of_css(of));
10654 u64 period = tg_get_cfs_period(tg);
f4183717 10655 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
10656 u64 quota;
10657 int ret;
10658
10659 ret = cpu_period_quota_parse(buf, &period, &quota);
10660 if (!ret)
f4183717 10661 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
10662 return ret ?: nbytes;
10663}
10664#endif
10665
10666static struct cftype cpu_files[] = {
0d593634
TH
10667#ifdef CONFIG_FAIR_GROUP_SCHED
10668 {
10669 .name = "weight",
10670 .flags = CFTYPE_NOT_ON_ROOT,
10671 .read_u64 = cpu_weight_read_u64,
10672 .write_u64 = cpu_weight_write_u64,
10673 },
10674 {
10675 .name = "weight.nice",
10676 .flags = CFTYPE_NOT_ON_ROOT,
10677 .read_s64 = cpu_weight_nice_read_s64,
10678 .write_s64 = cpu_weight_nice_write_s64,
10679 },
30400039
JD
10680 {
10681 .name = "idle",
10682 .flags = CFTYPE_NOT_ON_ROOT,
10683 .read_s64 = cpu_idle_read_s64,
10684 .write_s64 = cpu_idle_write_s64,
10685 },
0d593634
TH
10686#endif
10687#ifdef CONFIG_CFS_BANDWIDTH
10688 {
10689 .name = "max",
10690 .flags = CFTYPE_NOT_ON_ROOT,
10691 .seq_show = cpu_max_show,
10692 .write = cpu_max_write,
10693 },
f4183717
HC
10694 {
10695 .name = "max.burst",
10696 .flags = CFTYPE_NOT_ON_ROOT,
10697 .read_u64 = cpu_cfs_burst_read_u64,
10698 .write_u64 = cpu_cfs_burst_write_u64,
10699 },
2480c093
PB
10700#endif
10701#ifdef CONFIG_UCLAMP_TASK_GROUP
10702 {
10703 .name = "uclamp.min",
10704 .flags = CFTYPE_NOT_ON_ROOT,
10705 .seq_show = cpu_uclamp_min_show,
10706 .write = cpu_uclamp_min_write,
10707 },
10708 {
10709 .name = "uclamp.max",
10710 .flags = CFTYPE_NOT_ON_ROOT,
10711 .seq_show = cpu_uclamp_max_show,
10712 .write = cpu_uclamp_max_write,
10713 },
0d593634
TH
10714#endif
10715 { } /* terminate */
10716};
10717
073219e9 10718struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10719 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10720 .css_online = cpu_cgroup_css_online,
2f5177f0 10721 .css_released = cpu_cgroup_css_released,
92fb9748 10722 .css_free = cpu_cgroup_css_free,
d41bf8c9 10723 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10724 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10725 .can_attach = cpu_cgroup_can_attach,
10726 .attach = cpu_cgroup_attach,
a1f7164c 10727 .legacy_cftypes = cpu_legacy_files,
0d593634 10728 .dfl_cftypes = cpu_files,
b38e42e9 10729 .early_init = true,
0d593634 10730 .threaded = true,
68318b8e
SV
10731};
10732
052f1dc7 10733#endif /* CONFIG_CGROUP_SCHED */
d842de87 10734
b637a328
PM
10735void dump_cpu_task(int cpu)
10736{
10737 pr_info("Task dump for CPU %d:\n", cpu);
10738 sched_show_task(cpu_curr(cpu));
10739}
ed82b8a1
AK
10740
10741/*
10742 * Nice levels are multiplicative, with a gentle 10% change for every
10743 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10744 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10745 * that remained on nice 0.
10746 *
10747 * The "10% effect" is relative and cumulative: from _any_ nice level,
10748 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10749 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10750 * If a task goes up by ~10% and another task goes down by ~10% then
10751 * the relative distance between them is ~25%.)
10752 */
10753const int sched_prio_to_weight[40] = {
10754 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10755 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10756 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10757 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10758 /* 0 */ 1024, 820, 655, 526, 423,
10759 /* 5 */ 335, 272, 215, 172, 137,
10760 /* 10 */ 110, 87, 70, 56, 45,
10761 /* 15 */ 36, 29, 23, 18, 15,
10762};
10763
10764/*
10765 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10766 *
10767 * In cases where the weight does not change often, we can use the
10768 * precalculated inverse to speed up arithmetics by turning divisions
10769 * into multiplications:
10770 */
10771const u32 sched_prio_to_wmult[40] = {
10772 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10773 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10774 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10775 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10776 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10777 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10778 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10779 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10780};
14a7405b 10781
9d246053
PA
10782void call_trace_sched_update_nr_running(struct rq *rq, int count)
10783{
10784 trace_sched_update_nr_running_tp(rq, count);
10785}