cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
fa85ae24 79/*
d1ccc66d 80 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
81 * default: 1s
82 */
9f0c1e56 83unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 84
029632fb 85__read_mostly int scheduler_running;
6892b75e 86
9edeaea1
PZ
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
8a311c74
PZ
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
c6047c2e 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
c6047c2e
JFG
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
c6047c2e 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
8a311c74
PZ
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
6e33cad0 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
6e33cad0 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
181{
182 rq->core->core_task_seq++;
183
6e33cad0 184 if (!sched_core_enqueued(p))
8a311c74
PZ
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
6e33cad0 188 RB_CLEAR_NODE(&p->core_node);
8a311c74
PZ
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
d2dfa17b
PZ
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
9edeaea1
PZ
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
875feb41 237static atomic_t sched_core_count;
9edeaea1
PZ
238static struct cpumask sched_core_mask;
239
240static void __sched_core_flip(bool enabled)
241{
242 int cpu, t, i;
243
244 cpus_read_lock();
245
246 /*
247 * Toggle the online cores, one by one.
248 */
249 cpumask_copy(&sched_core_mask, cpu_online_mask);
250 for_each_cpu(cpu, &sched_core_mask) {
251 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252
253 i = 0;
254 local_irq_disable();
255 for_each_cpu(t, smt_mask) {
256 /* supports up to SMT8 */
257 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 }
259
260 for_each_cpu(t, smt_mask)
261 cpu_rq(t)->core_enabled = enabled;
262
263 for_each_cpu(t, smt_mask)
264 raw_spin_unlock(&cpu_rq(t)->__lock);
265 local_irq_enable();
266
267 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 }
269
270 /*
271 * Toggle the offline CPUs.
272 */
273 cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275
276 for_each_cpu(cpu, &sched_core_mask)
277 cpu_rq(cpu)->core_enabled = enabled;
278
279 cpus_read_unlock();
280}
281
8a311c74 282static void sched_core_assert_empty(void)
9edeaea1 283{
8a311c74 284 int cpu;
9edeaea1 285
8a311c74
PZ
286 for_each_possible_cpu(cpu)
287 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288}
289
290static void __sched_core_enable(void)
291{
9edeaea1
PZ
292 static_branch_enable(&__sched_core_enabled);
293 /*
294 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 * and future ones will observe !sched_core_disabled().
296 */
297 synchronize_rcu();
298 __sched_core_flip(true);
8a311c74 299 sched_core_assert_empty();
9edeaea1
PZ
300}
301
302static void __sched_core_disable(void)
303{
8a311c74 304 sched_core_assert_empty();
9edeaea1
PZ
305 __sched_core_flip(false);
306 static_branch_disable(&__sched_core_enabled);
307}
308
309void sched_core_get(void)
310{
875feb41
PZ
311 if (atomic_inc_not_zero(&sched_core_count))
312 return;
313
9edeaea1 314 mutex_lock(&sched_core_mutex);
875feb41 315 if (!atomic_read(&sched_core_count))
9edeaea1 316 __sched_core_enable();
875feb41
PZ
317
318 smp_mb__before_atomic();
319 atomic_inc(&sched_core_count);
9edeaea1
PZ
320 mutex_unlock(&sched_core_mutex);
321}
322
875feb41 323static void __sched_core_put(struct work_struct *work)
9edeaea1 324{
875feb41 325 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 326 __sched_core_disable();
875feb41
PZ
327 mutex_unlock(&sched_core_mutex);
328 }
329}
330
331void sched_core_put(void)
332{
333 static DECLARE_WORK(_work, __sched_core_put);
334
335 /*
336 * "There can be only one"
337 *
338 * Either this is the last one, or we don't actually need to do any
339 * 'work'. If it is the last *again*, we rely on
340 * WORK_STRUCT_PENDING_BIT.
341 */
342 if (!atomic_add_unless(&sched_core_count, -1, 1))
343 schedule_work(&_work);
9edeaea1
PZ
344}
345
8a311c74
PZ
346#else /* !CONFIG_SCHED_CORE */
347
348static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350
9edeaea1
PZ
351#endif /* CONFIG_SCHED_CORE */
352
9f0c1e56
PZ
353/*
354 * part of the period that we allow rt tasks to run in us.
355 * default: 0.95s
356 */
357int sysctl_sched_rt_runtime = 950000;
fa85ae24 358
58877d34
PZ
359
360/*
361 * Serialization rules:
362 *
363 * Lock order:
364 *
365 * p->pi_lock
366 * rq->lock
367 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368 *
369 * rq1->lock
370 * rq2->lock where: rq1 < rq2
371 *
372 * Regular state:
373 *
374 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 376 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
377 * to run next.
378 *
379 * Task enqueue is also under rq->lock, possibly taken from another CPU.
380 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381 * the local CPU to avoid bouncing the runqueue state around [ see
382 * ttwu_queue_wakelist() ]
383 *
384 * Task wakeup, specifically wakeups that involve migration, are horribly
385 * complicated to avoid having to take two rq->locks.
386 *
387 * Special state:
388 *
389 * System-calls and anything external will use task_rq_lock() which acquires
390 * both p->pi_lock and rq->lock. As a consequence the state they change is
391 * stable while holding either lock:
392 *
393 * - sched_setaffinity()/
394 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
395 * - set_user_nice(): p->se.load, p->*prio
396 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
397 * p->se.load, p->rt_priority,
398 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
399 * - sched_setnuma(): p->numa_preferred_nid
400 * - sched_move_task()/
401 * cpu_cgroup_fork(): p->sched_task_group
402 * - uclamp_update_active() p->uclamp*
403 *
404 * p->state <- TASK_*:
405 *
406 * is changed locklessly using set_current_state(), __set_current_state() or
407 * set_special_state(), see their respective comments, or by
408 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
409 * concurrent self.
410 *
411 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412 *
413 * is set by activate_task() and cleared by deactivate_task(), under
414 * rq->lock. Non-zero indicates the task is runnable, the special
415 * ON_RQ_MIGRATING state is used for migration without holding both
416 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417 *
418 * p->on_cpu <- { 0, 1 }:
419 *
420 * is set by prepare_task() and cleared by finish_task() such that it will be
421 * set before p is scheduled-in and cleared after p is scheduled-out, both
422 * under rq->lock. Non-zero indicates the task is running on its CPU.
423 *
424 * [ The astute reader will observe that it is possible for two tasks on one
425 * CPU to have ->on_cpu = 1 at the same time. ]
426 *
427 * task_cpu(p): is changed by set_task_cpu(), the rules are:
428 *
429 * - Don't call set_task_cpu() on a blocked task:
430 *
431 * We don't care what CPU we're not running on, this simplifies hotplug,
432 * the CPU assignment of blocked tasks isn't required to be valid.
433 *
434 * - for try_to_wake_up(), called under p->pi_lock:
435 *
436 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
437 *
438 * - for migration called under rq->lock:
439 * [ see task_on_rq_migrating() in task_rq_lock() ]
440 *
441 * o move_queued_task()
442 * o detach_task()
443 *
444 * - for migration called under double_rq_lock():
445 *
446 * o __migrate_swap_task()
447 * o push_rt_task() / pull_rt_task()
448 * o push_dl_task() / pull_dl_task()
449 * o dl_task_offline_migration()
450 *
451 */
452
39d371b7
PZ
453void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454{
d66f1b06
PZ
455 raw_spinlock_t *lock;
456
9edeaea1
PZ
457 /* Matches synchronize_rcu() in __sched_core_enable() */
458 preempt_disable();
d66f1b06
PZ
459 if (sched_core_disabled()) {
460 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
461 /* preempt_count *MUST* be > 1 */
462 preempt_enable_no_resched();
d66f1b06
PZ
463 return;
464 }
465
466 for (;;) {
9ef7e7e3 467 lock = __rq_lockp(rq);
d66f1b06 468 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 469 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
470 /* preempt_count *MUST* be > 1 */
471 preempt_enable_no_resched();
d66f1b06 472 return;
9edeaea1 473 }
d66f1b06
PZ
474 raw_spin_unlock(lock);
475 }
39d371b7
PZ
476}
477
478bool raw_spin_rq_trylock(struct rq *rq)
479{
d66f1b06
PZ
480 raw_spinlock_t *lock;
481 bool ret;
482
9edeaea1
PZ
483 /* Matches synchronize_rcu() in __sched_core_enable() */
484 preempt_disable();
485 if (sched_core_disabled()) {
486 ret = raw_spin_trylock(&rq->__lock);
487 preempt_enable();
488 return ret;
489 }
d66f1b06
PZ
490
491 for (;;) {
9ef7e7e3 492 lock = __rq_lockp(rq);
d66f1b06 493 ret = raw_spin_trylock(lock);
9ef7e7e3 494 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 495 preempt_enable();
d66f1b06 496 return ret;
9edeaea1 497 }
d66f1b06
PZ
498 raw_spin_unlock(lock);
499 }
39d371b7
PZ
500}
501
502void raw_spin_rq_unlock(struct rq *rq)
503{
504 raw_spin_unlock(rq_lockp(rq));
505}
506
d66f1b06
PZ
507#ifdef CONFIG_SMP
508/*
509 * double_rq_lock - safely lock two runqueues
510 */
511void double_rq_lock(struct rq *rq1, struct rq *rq2)
512{
513 lockdep_assert_irqs_disabled();
514
515 if (rq_order_less(rq2, rq1))
516 swap(rq1, rq2);
517
518 raw_spin_rq_lock(rq1);
9ef7e7e3 519 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
520 return;
521
522 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523}
524#endif
525
3e71a462
PZ
526/*
527 * __task_rq_lock - lock the rq @p resides on.
528 */
eb580751 529struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
530 __acquires(rq->lock)
531{
532 struct rq *rq;
533
534 lockdep_assert_held(&p->pi_lock);
535
536 for (;;) {
537 rq = task_rq(p);
5cb9eaa3 538 raw_spin_rq_lock(rq);
3e71a462 539 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 540 rq_pin_lock(rq, rf);
3e71a462
PZ
541 return rq;
542 }
5cb9eaa3 543 raw_spin_rq_unlock(rq);
3e71a462
PZ
544
545 while (unlikely(task_on_rq_migrating(p)))
546 cpu_relax();
547 }
548}
549
550/*
551 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552 */
eb580751 553struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
554 __acquires(p->pi_lock)
555 __acquires(rq->lock)
556{
557 struct rq *rq;
558
559 for (;;) {
eb580751 560 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 561 rq = task_rq(p);
5cb9eaa3 562 raw_spin_rq_lock(rq);
3e71a462
PZ
563 /*
564 * move_queued_task() task_rq_lock()
565 *
566 * ACQUIRE (rq->lock)
567 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
568 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
569 * [S] ->cpu = new_cpu [L] task_rq()
570 * [L] ->on_rq
571 * RELEASE (rq->lock)
572 *
c546951d 573 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
574 * the old rq->lock will fully serialize against the stores.
575 *
c546951d
AP
576 * If we observe the new CPU in task_rq_lock(), the address
577 * dependency headed by '[L] rq = task_rq()' and the acquire
578 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
579 */
580 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 581 rq_pin_lock(rq, rf);
3e71a462
PZ
582 return rq;
583 }
5cb9eaa3 584 raw_spin_rq_unlock(rq);
eb580751 585 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
586
587 while (unlikely(task_on_rq_migrating(p)))
588 cpu_relax();
589 }
590}
591
535b9552
IM
592/*
593 * RQ-clock updating methods:
594 */
595
596static void update_rq_clock_task(struct rq *rq, s64 delta)
597{
598/*
599 * In theory, the compile should just see 0 here, and optimize out the call
600 * to sched_rt_avg_update. But I don't trust it...
601 */
11d4afd4
VG
602 s64 __maybe_unused steal = 0, irq_delta = 0;
603
535b9552
IM
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606
607 /*
608 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 * this case when a previous update_rq_clock() happened inside a
610 * {soft,}irq region.
611 *
612 * When this happens, we stop ->clock_task and only update the
613 * prev_irq_time stamp to account for the part that fit, so that a next
614 * update will consume the rest. This ensures ->clock_task is
615 * monotonic.
616 *
617 * It does however cause some slight miss-attribution of {soft,}irq
618 * time, a more accurate solution would be to update the irq_time using
619 * the current rq->clock timestamp, except that would require using
620 * atomic ops.
621 */
622 if (irq_delta > delta)
623 irq_delta = delta;
624
625 rq->prev_irq_time += irq_delta;
626 delta -= irq_delta;
627#endif
628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 if (static_key_false((&paravirt_steal_rq_enabled))) {
630 steal = paravirt_steal_clock(cpu_of(rq));
631 steal -= rq->prev_steal_time_rq;
632
633 if (unlikely(steal > delta))
634 steal = delta;
635
636 rq->prev_steal_time_rq += steal;
637 delta -= steal;
638 }
639#endif
640
641 rq->clock_task += delta;
642
11d4afd4 643#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 644 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 645 update_irq_load_avg(rq, irq_delta + steal);
535b9552 646#endif
23127296 647 update_rq_clock_pelt(rq, delta);
535b9552
IM
648}
649
650void update_rq_clock(struct rq *rq)
651{
652 s64 delta;
653
5cb9eaa3 654 lockdep_assert_rq_held(rq);
535b9552
IM
655
656 if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 return;
658
659#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
660 if (sched_feat(WARN_DOUBLE_CLOCK))
661 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
662 rq->clock_update_flags |= RQCF_UPDATED;
663#endif
26ae58d2 664
535b9552
IM
665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 if (delta < 0)
667 return;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
670}
671
8f4d37ec
PZ
672#ifdef CONFIG_SCHED_HRTICK
673/*
674 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 675 */
8f4d37ec 676
8f4d37ec
PZ
677static void hrtick_clear(struct rq *rq)
678{
679 if (hrtimer_active(&rq->hrtick_timer))
680 hrtimer_cancel(&rq->hrtick_timer);
681}
682
8f4d37ec
PZ
683/*
684 * High-resolution timer tick.
685 * Runs from hardirq context with interrupts disabled.
686 */
687static enum hrtimer_restart hrtick(struct hrtimer *timer)
688{
689 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 690 struct rq_flags rf;
8f4d37ec
PZ
691
692 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693
8a8c69c3 694 rq_lock(rq, &rf);
3e51f33f 695 update_rq_clock(rq);
8f4d37ec 696 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 697 rq_unlock(rq, &rf);
8f4d37ec
PZ
698
699 return HRTIMER_NORESTART;
700}
701
95e904c7 702#ifdef CONFIG_SMP
971ee28c 703
4961b6e1 704static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
705{
706 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 707 ktime_t time = rq->hrtick_time;
971ee28c 708
156ec6f4 709 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
710}
711
31656519
PZ
712/*
713 * called from hardirq (IPI) context
714 */
715static void __hrtick_start(void *arg)
b328ca18 716{
31656519 717 struct rq *rq = arg;
8a8c69c3 718 struct rq_flags rf;
b328ca18 719
8a8c69c3 720 rq_lock(rq, &rf);
971ee28c 721 __hrtick_restart(rq);
8a8c69c3 722 rq_unlock(rq, &rf);
b328ca18
PZ
723}
724
31656519
PZ
725/*
726 * Called to set the hrtick timer state.
727 *
728 * called with rq->lock held and irqs disabled
729 */
029632fb 730void hrtick_start(struct rq *rq, u64 delay)
b328ca18 731{
31656519 732 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 733 s64 delta;
734
735 /*
736 * Don't schedule slices shorter than 10000ns, that just
737 * doesn't make sense and can cause timer DoS.
738 */
739 delta = max_t(s64, delay, 10000LL);
156ec6f4 740 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 741
fd3eafda 742 if (rq == this_rq())
971ee28c 743 __hrtick_restart(rq);
fd3eafda 744 else
c46fff2a 745 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
746}
747
31656519
PZ
748#else
749/*
750 * Called to set the hrtick timer state.
751 *
752 * called with rq->lock held and irqs disabled
753 */
029632fb 754void hrtick_start(struct rq *rq, u64 delay)
31656519 755{
86893335
WL
756 /*
757 * Don't schedule slices shorter than 10000ns, that just
758 * doesn't make sense. Rely on vruntime for fairness.
759 */
760 delay = max_t(u64, delay, 10000LL);
4961b6e1 761 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 762 HRTIMER_MODE_REL_PINNED_HARD);
31656519 763}
90b5363a 764
31656519 765#endif /* CONFIG_SMP */
8f4d37ec 766
77a021be 767static void hrtick_rq_init(struct rq *rq)
8f4d37ec 768{
31656519 769#ifdef CONFIG_SMP
545b8c8d 770 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 771#endif
d5096aa6 772 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 773 rq->hrtick_timer.function = hrtick;
8f4d37ec 774}
006c75f1 775#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
776static inline void hrtick_clear(struct rq *rq)
777{
778}
779
77a021be 780static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
781{
782}
006c75f1 783#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 784
5529578a
FW
785/*
786 * cmpxchg based fetch_or, macro so it works for different integer types
787 */
788#define fetch_or(ptr, mask) \
789 ({ \
790 typeof(ptr) _ptr = (ptr); \
791 typeof(mask) _mask = (mask); \
792 typeof(*_ptr) _old, _val = *_ptr; \
793 \
794 for (;;) { \
795 _old = cmpxchg(_ptr, _val, _val | _mask); \
796 if (_old == _val) \
797 break; \
798 _val = _old; \
799 } \
800 _old; \
801})
802
e3baac47 803#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
804/*
805 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806 * this avoids any races wrt polling state changes and thereby avoids
807 * spurious IPIs.
808 */
809static bool set_nr_and_not_polling(struct task_struct *p)
810{
811 struct thread_info *ti = task_thread_info(p);
812 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813}
e3baac47
PZ
814
815/*
816 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817 *
818 * If this returns true, then the idle task promises to call
819 * sched_ttwu_pending() and reschedule soon.
820 */
821static bool set_nr_if_polling(struct task_struct *p)
822{
823 struct thread_info *ti = task_thread_info(p);
316c1608 824 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
825
826 for (;;) {
827 if (!(val & _TIF_POLLING_NRFLAG))
828 return false;
829 if (val & _TIF_NEED_RESCHED)
830 return true;
831 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 if (old == val)
833 break;
834 val = old;
835 }
836 return true;
837}
838
fd99f91a
PZ
839#else
840static bool set_nr_and_not_polling(struct task_struct *p)
841{
842 set_tsk_need_resched(p);
843 return true;
844}
e3baac47
PZ
845
846#ifdef CONFIG_SMP
847static bool set_nr_if_polling(struct task_struct *p)
848{
849 return false;
850}
851#endif
fd99f91a
PZ
852#endif
853
07879c6a 854static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
855{
856 struct wake_q_node *node = &task->wake_q;
857
858 /*
859 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 860 * it's already queued (either by us or someone else) and will get the
76751049
PZ
861 * wakeup due to that.
862 *
4c4e3731
PZ
863 * In order to ensure that a pending wakeup will observe our pending
864 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 865 */
4c4e3731 866 smp_mb__before_atomic();
87ff19cb 867 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 868 return false;
76751049
PZ
869
870 /*
871 * The head is context local, there can be no concurrency.
872 */
873 *head->lastp = node;
874 head->lastp = &node->next;
07879c6a
DB
875 return true;
876}
877
878/**
879 * wake_q_add() - queue a wakeup for 'later' waking.
880 * @head: the wake_q_head to add @task to
881 * @task: the task to queue for 'later' wakeup
882 *
883 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885 * instantly.
886 *
887 * This function must be used as-if it were wake_up_process(); IOW the task
888 * must be ready to be woken at this location.
889 */
890void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891{
892 if (__wake_q_add(head, task))
893 get_task_struct(task);
894}
895
896/**
897 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898 * @head: the wake_q_head to add @task to
899 * @task: the task to queue for 'later' wakeup
900 *
901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903 * instantly.
904 *
905 * This function must be used as-if it were wake_up_process(); IOW the task
906 * must be ready to be woken at this location.
907 *
908 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909 * that already hold reference to @task can call the 'safe' version and trust
910 * wake_q to do the right thing depending whether or not the @task is already
911 * queued for wakeup.
912 */
913void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914{
915 if (!__wake_q_add(head, task))
916 put_task_struct(task);
76751049
PZ
917}
918
919void wake_up_q(struct wake_q_head *head)
920{
921 struct wake_q_node *node = head->first;
922
923 while (node != WAKE_Q_TAIL) {
924 struct task_struct *task;
925
926 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 927 /* Task can safely be re-inserted now: */
76751049
PZ
928 node = node->next;
929 task->wake_q.next = NULL;
930
931 /*
7696f991
AP
932 * wake_up_process() executes a full barrier, which pairs with
933 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
934 */
935 wake_up_process(task);
936 put_task_struct(task);
937 }
938}
939
c24d20db 940/*
8875125e 941 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
942 *
943 * On UP this means the setting of the need_resched flag, on SMP it
944 * might also involve a cross-CPU call to trigger the scheduler on
945 * the target CPU.
946 */
8875125e 947void resched_curr(struct rq *rq)
c24d20db 948{
8875125e 949 struct task_struct *curr = rq->curr;
c24d20db
IM
950 int cpu;
951
5cb9eaa3 952 lockdep_assert_rq_held(rq);
c24d20db 953
8875125e 954 if (test_tsk_need_resched(curr))
c24d20db
IM
955 return;
956
8875125e 957 cpu = cpu_of(rq);
fd99f91a 958
f27dde8d 959 if (cpu == smp_processor_id()) {
8875125e 960 set_tsk_need_resched(curr);
f27dde8d 961 set_preempt_need_resched();
c24d20db 962 return;
f27dde8d 963 }
c24d20db 964
8875125e 965 if (set_nr_and_not_polling(curr))
c24d20db 966 smp_send_reschedule(cpu);
dfc68f29
AL
967 else
968 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
969}
970
029632fb 971void resched_cpu(int cpu)
c24d20db
IM
972{
973 struct rq *rq = cpu_rq(cpu);
974 unsigned long flags;
975
5cb9eaa3 976 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
977 if (cpu_online(cpu) || cpu == smp_processor_id())
978 resched_curr(rq);
5cb9eaa3 979 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 980}
06d8308c 981
b021fe3e 982#ifdef CONFIG_SMP
3451d024 983#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 984/*
d1ccc66d
IM
985 * In the semi idle case, use the nearest busy CPU for migrating timers
986 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
987 *
988 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
989 * selecting an idle CPU will add more delays to the timers than intended
990 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 991 */
bc7a34b8 992int get_nohz_timer_target(void)
83cd4fe2 993{
e938b9c9 994 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 995 struct sched_domain *sd;
031e3bd8 996 const struct cpumask *hk_mask;
83cd4fe2 997
e938b9c9
WL
998 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
999 if (!idle_cpu(cpu))
1000 return cpu;
1001 default_cpu = cpu;
1002 }
6201b4d6 1003
031e3bd8
YZ
1004 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1005
057f3fad 1006 rcu_read_lock();
83cd4fe2 1007 for_each_domain(cpu, sd) {
031e3bd8 1008 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1009 if (cpu == i)
1010 continue;
1011
e938b9c9 1012 if (!idle_cpu(i)) {
057f3fad
PZ
1013 cpu = i;
1014 goto unlock;
1015 }
1016 }
83cd4fe2 1017 }
9642d18e 1018
e938b9c9
WL
1019 if (default_cpu == -1)
1020 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1021 cpu = default_cpu;
057f3fad
PZ
1022unlock:
1023 rcu_read_unlock();
83cd4fe2
VP
1024 return cpu;
1025}
d1ccc66d 1026
06d8308c
TG
1027/*
1028 * When add_timer_on() enqueues a timer into the timer wheel of an
1029 * idle CPU then this timer might expire before the next timer event
1030 * which is scheduled to wake up that CPU. In case of a completely
1031 * idle system the next event might even be infinite time into the
1032 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1033 * leaves the inner idle loop so the newly added timer is taken into
1034 * account when the CPU goes back to idle and evaluates the timer
1035 * wheel for the next timer event.
1036 */
1c20091e 1037static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1038{
1039 struct rq *rq = cpu_rq(cpu);
1040
1041 if (cpu == smp_processor_id())
1042 return;
1043
67b9ca70 1044 if (set_nr_and_not_polling(rq->idle))
06d8308c 1045 smp_send_reschedule(cpu);
dfc68f29
AL
1046 else
1047 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1048}
1049
c5bfece2 1050static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1051{
53c5fa16
FW
1052 /*
1053 * We just need the target to call irq_exit() and re-evaluate
1054 * the next tick. The nohz full kick at least implies that.
1055 * If needed we can still optimize that later with an
1056 * empty IRQ.
1057 */
379d9ecb
PM
1058 if (cpu_is_offline(cpu))
1059 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1060 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1061 if (cpu != smp_processor_id() ||
1062 tick_nohz_tick_stopped())
53c5fa16 1063 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1064 return true;
1065 }
1066
1067 return false;
1068}
1069
379d9ecb
PM
1070/*
1071 * Wake up the specified CPU. If the CPU is going offline, it is the
1072 * caller's responsibility to deal with the lost wakeup, for example,
1073 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1074 */
1c20091e
FW
1075void wake_up_nohz_cpu(int cpu)
1076{
c5bfece2 1077 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1078 wake_up_idle_cpu(cpu);
1079}
1080
19a1f5ec 1081static void nohz_csd_func(void *info)
45bf76df 1082{
19a1f5ec
PZ
1083 struct rq *rq = info;
1084 int cpu = cpu_of(rq);
1085 unsigned int flags;
873b4c65
VG
1086
1087 /*
19a1f5ec 1088 * Release the rq::nohz_csd.
873b4c65 1089 */
c6f88654 1090 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1091 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1092
19a1f5ec
PZ
1093 rq->idle_balance = idle_cpu(cpu);
1094 if (rq->idle_balance && !need_resched()) {
1095 rq->nohz_idle_balance = flags;
90b5363a
PZI
1096 raise_softirq_irqoff(SCHED_SOFTIRQ);
1097 }
2069dd75
PZ
1098}
1099
3451d024 1100#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1101
ce831b38 1102#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1103bool sched_can_stop_tick(struct rq *rq)
ce831b38 1104{
76d92ac3
FW
1105 int fifo_nr_running;
1106
1107 /* Deadline tasks, even if single, need the tick */
1108 if (rq->dl.dl_nr_running)
1109 return false;
1110
1e78cdbd 1111 /*
b19a888c 1112 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1113 * actual RR behaviour.
1e78cdbd 1114 */
76d92ac3
FW
1115 if (rq->rt.rr_nr_running) {
1116 if (rq->rt.rr_nr_running == 1)
1117 return true;
1118 else
1119 return false;
1e78cdbd
RR
1120 }
1121
2548d546
PZ
1122 /*
1123 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1124 * forced preemption between FIFO tasks.
1125 */
1126 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1127 if (fifo_nr_running)
1128 return true;
1129
1130 /*
1131 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1132 * if there's more than one we need the tick for involuntary
1133 * preemption.
1134 */
1135 if (rq->nr_running > 1)
541b8264 1136 return false;
ce831b38 1137
541b8264 1138 return true;
ce831b38
FW
1139}
1140#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1141#endif /* CONFIG_SMP */
18d95a28 1142
a790de99
PT
1143#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1144 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1145/*
8277434e
PT
1146 * Iterate task_group tree rooted at *from, calling @down when first entering a
1147 * node and @up when leaving it for the final time.
1148 *
1149 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1150 */
029632fb 1151int walk_tg_tree_from(struct task_group *from,
8277434e 1152 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1153{
1154 struct task_group *parent, *child;
eb755805 1155 int ret;
c09595f6 1156
8277434e
PT
1157 parent = from;
1158
c09595f6 1159down:
eb755805
PZ
1160 ret = (*down)(parent, data);
1161 if (ret)
8277434e 1162 goto out;
c09595f6
PZ
1163 list_for_each_entry_rcu(child, &parent->children, siblings) {
1164 parent = child;
1165 goto down;
1166
1167up:
1168 continue;
1169 }
eb755805 1170 ret = (*up)(parent, data);
8277434e
PT
1171 if (ret || parent == from)
1172 goto out;
c09595f6
PZ
1173
1174 child = parent;
1175 parent = parent->parent;
1176 if (parent)
1177 goto up;
8277434e 1178out:
eb755805 1179 return ret;
c09595f6
PZ
1180}
1181
029632fb 1182int tg_nop(struct task_group *tg, void *data)
eb755805 1183{
e2b245f8 1184 return 0;
eb755805 1185}
18d95a28
PZ
1186#endif
1187
9059393e 1188static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1189{
f05998d4
NR
1190 int prio = p->static_prio - MAX_RT_PRIO;
1191 struct load_weight *load = &p->se.load;
1192
dd41f596
IM
1193 /*
1194 * SCHED_IDLE tasks get minimal weight:
1195 */
1da1843f 1196 if (task_has_idle_policy(p)) {
c8b28116 1197 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1198 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1199 return;
1200 }
71f8bd46 1201
9059393e
VG
1202 /*
1203 * SCHED_OTHER tasks have to update their load when changing their
1204 * weight
1205 */
1206 if (update_load && p->sched_class == &fair_sched_class) {
1207 reweight_task(p, prio);
1208 } else {
1209 load->weight = scale_load(sched_prio_to_weight[prio]);
1210 load->inv_weight = sched_prio_to_wmult[prio];
1211 }
71f8bd46
IM
1212}
1213
69842cba 1214#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1215/*
1216 * Serializes updates of utilization clamp values
1217 *
1218 * The (slow-path) user-space triggers utilization clamp value updates which
1219 * can require updates on (fast-path) scheduler's data structures used to
1220 * support enqueue/dequeue operations.
1221 * While the per-CPU rq lock protects fast-path update operations, user-space
1222 * requests are serialized using a mutex to reduce the risk of conflicting
1223 * updates or API abuses.
1224 */
1225static DEFINE_MUTEX(uclamp_mutex);
1226
e8f14172
PB
1227/* Max allowed minimum utilization */
1228unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1229
1230/* Max allowed maximum utilization */
1231unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1232
13685c4a
QY
1233/*
1234 * By default RT tasks run at the maximum performance point/capacity of the
1235 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1236 * SCHED_CAPACITY_SCALE.
1237 *
1238 * This knob allows admins to change the default behavior when uclamp is being
1239 * used. In battery powered devices, particularly, running at the maximum
1240 * capacity and frequency will increase energy consumption and shorten the
1241 * battery life.
1242 *
1243 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1244 *
1245 * This knob will not override the system default sched_util_clamp_min defined
1246 * above.
1247 */
1248unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1249
e8f14172
PB
1250/* All clamps are required to be less or equal than these values */
1251static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1252
46609ce2
QY
1253/*
1254 * This static key is used to reduce the uclamp overhead in the fast path. It
1255 * primarily disables the call to uclamp_rq_{inc, dec}() in
1256 * enqueue/dequeue_task().
1257 *
1258 * This allows users to continue to enable uclamp in their kernel config with
1259 * minimum uclamp overhead in the fast path.
1260 *
1261 * As soon as userspace modifies any of the uclamp knobs, the static key is
1262 * enabled, since we have an actual users that make use of uclamp
1263 * functionality.
1264 *
1265 * The knobs that would enable this static key are:
1266 *
1267 * * A task modifying its uclamp value with sched_setattr().
1268 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1269 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1270 */
1271DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1272
69842cba
PB
1273/* Integer rounded range for each bucket */
1274#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1275
1276#define for_each_clamp_id(clamp_id) \
1277 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1278
1279static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1280{
6d2f8909 1281 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1282}
1283
7763baac 1284static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1285{
1286 if (clamp_id == UCLAMP_MIN)
1287 return 0;
1288 return SCHED_CAPACITY_SCALE;
1289}
1290
a509a7cd
PB
1291static inline void uclamp_se_set(struct uclamp_se *uc_se,
1292 unsigned int value, bool user_defined)
69842cba
PB
1293{
1294 uc_se->value = value;
1295 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1296 uc_se->user_defined = user_defined;
69842cba
PB
1297}
1298
e496187d 1299static inline unsigned int
0413d7f3 1300uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1301 unsigned int clamp_value)
1302{
1303 /*
1304 * Avoid blocked utilization pushing up the frequency when we go
1305 * idle (which drops the max-clamp) by retaining the last known
1306 * max-clamp.
1307 */
1308 if (clamp_id == UCLAMP_MAX) {
1309 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1310 return clamp_value;
1311 }
1312
1313 return uclamp_none(UCLAMP_MIN);
1314}
1315
0413d7f3 1316static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1317 unsigned int clamp_value)
1318{
1319 /* Reset max-clamp retention only on idle exit */
1320 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1321 return;
1322
1323 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1324}
1325
69842cba 1326static inline
7763baac 1327unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1328 unsigned int clamp_value)
69842cba
PB
1329{
1330 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1331 int bucket_id = UCLAMP_BUCKETS - 1;
1332
1333 /*
1334 * Since both min and max clamps are max aggregated, find the
1335 * top most bucket with tasks in.
1336 */
1337 for ( ; bucket_id >= 0; bucket_id--) {
1338 if (!bucket[bucket_id].tasks)
1339 continue;
1340 return bucket[bucket_id].value;
1341 }
1342
1343 /* No tasks -- default clamp values */
e496187d 1344 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1345}
1346
13685c4a
QY
1347static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1348{
1349 unsigned int default_util_min;
1350 struct uclamp_se *uc_se;
1351
1352 lockdep_assert_held(&p->pi_lock);
1353
1354 uc_se = &p->uclamp_req[UCLAMP_MIN];
1355
1356 /* Only sync if user didn't override the default */
1357 if (uc_se->user_defined)
1358 return;
1359
1360 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1361 uclamp_se_set(uc_se, default_util_min, false);
1362}
1363
1364static void uclamp_update_util_min_rt_default(struct task_struct *p)
1365{
1366 struct rq_flags rf;
1367 struct rq *rq;
1368
1369 if (!rt_task(p))
1370 return;
1371
1372 /* Protect updates to p->uclamp_* */
1373 rq = task_rq_lock(p, &rf);
1374 __uclamp_update_util_min_rt_default(p);
1375 task_rq_unlock(rq, p, &rf);
1376}
1377
1378static void uclamp_sync_util_min_rt_default(void)
1379{
1380 struct task_struct *g, *p;
1381
1382 /*
1383 * copy_process() sysctl_uclamp
1384 * uclamp_min_rt = X;
1385 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1386 * // link thread smp_mb__after_spinlock()
1387 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1388 * sched_post_fork() for_each_process_thread()
1389 * __uclamp_sync_rt() __uclamp_sync_rt()
1390 *
1391 * Ensures that either sched_post_fork() will observe the new
1392 * uclamp_min_rt or for_each_process_thread() will observe the new
1393 * task.
1394 */
1395 read_lock(&tasklist_lock);
1396 smp_mb__after_spinlock();
1397 read_unlock(&tasklist_lock);
1398
1399 rcu_read_lock();
1400 for_each_process_thread(g, p)
1401 uclamp_update_util_min_rt_default(p);
1402 rcu_read_unlock();
1403}
1404
3eac870a 1405static inline struct uclamp_se
0413d7f3 1406uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1407{
0213b708 1408 /* Copy by value as we could modify it */
3eac870a
PB
1409 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1410#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1411 unsigned int tg_min, tg_max, value;
3eac870a
PB
1412
1413 /*
1414 * Tasks in autogroups or root task group will be
1415 * restricted by system defaults.
1416 */
1417 if (task_group_is_autogroup(task_group(p)))
1418 return uc_req;
1419 if (task_group(p) == &root_task_group)
1420 return uc_req;
1421
0213b708
QY
1422 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1423 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1424 value = uc_req.value;
1425 value = clamp(value, tg_min, tg_max);
1426 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1427#endif
1428
1429 return uc_req;
1430}
1431
e8f14172
PB
1432/*
1433 * The effective clamp bucket index of a task depends on, by increasing
1434 * priority:
1435 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1436 * - the task group effective clamp value, for tasks not either in the root
1437 * group or in an autogroup
e8f14172
PB
1438 * - the system default clamp value, defined by the sysadmin
1439 */
1440static inline struct uclamp_se
0413d7f3 1441uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1442{
3eac870a 1443 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1444 struct uclamp_se uc_max = uclamp_default[clamp_id];
1445
1446 /* System default restrictions always apply */
1447 if (unlikely(uc_req.value > uc_max.value))
1448 return uc_max;
1449
1450 return uc_req;
1451}
1452
686516b5 1453unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1454{
1455 struct uclamp_se uc_eff;
1456
1457 /* Task currently refcounted: use back-annotated (effective) value */
1458 if (p->uclamp[clamp_id].active)
686516b5 1459 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1460
1461 uc_eff = uclamp_eff_get(p, clamp_id);
1462
686516b5 1463 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1464}
1465
69842cba
PB
1466/*
1467 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1468 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1469 * updates the rq's clamp value if required.
60daf9c1
PB
1470 *
1471 * Tasks can have a task-specific value requested from user-space, track
1472 * within each bucket the maximum value for tasks refcounted in it.
1473 * This "local max aggregation" allows to track the exact "requested" value
1474 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1475 */
1476static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1477 enum uclamp_id clamp_id)
69842cba
PB
1478{
1479 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1480 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1481 struct uclamp_bucket *bucket;
1482
5cb9eaa3 1483 lockdep_assert_rq_held(rq);
69842cba 1484
e8f14172
PB
1485 /* Update task effective clamp */
1486 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1487
69842cba
PB
1488 bucket = &uc_rq->bucket[uc_se->bucket_id];
1489 bucket->tasks++;
e8f14172 1490 uc_se->active = true;
69842cba 1491
e496187d
PB
1492 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1493
60daf9c1
PB
1494 /*
1495 * Local max aggregation: rq buckets always track the max
1496 * "requested" clamp value of its RUNNABLE tasks.
1497 */
1498 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1499 bucket->value = uc_se->value;
1500
69842cba 1501 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1502 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1503}
1504
1505/*
1506 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1507 * is released. If this is the last task reference counting the rq's max
1508 * active clamp value, then the rq's clamp value is updated.
1509 *
1510 * Both refcounted tasks and rq's cached clamp values are expected to be
1511 * always valid. If it's detected they are not, as defensive programming,
1512 * enforce the expected state and warn.
1513 */
1514static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1515 enum uclamp_id clamp_id)
69842cba
PB
1516{
1517 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1518 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1519 struct uclamp_bucket *bucket;
e496187d 1520 unsigned int bkt_clamp;
69842cba
PB
1521 unsigned int rq_clamp;
1522
5cb9eaa3 1523 lockdep_assert_rq_held(rq);
69842cba 1524
46609ce2
QY
1525 /*
1526 * If sched_uclamp_used was enabled after task @p was enqueued,
1527 * we could end up with unbalanced call to uclamp_rq_dec_id().
1528 *
1529 * In this case the uc_se->active flag should be false since no uclamp
1530 * accounting was performed at enqueue time and we can just return
1531 * here.
1532 *
b19a888c 1533 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1534 * problem too
1535 *
1536 * enqueue(taskA)
1537 * // sched_uclamp_used gets enabled
1538 * enqueue(taskB)
1539 * dequeue(taskA)
b19a888c 1540 * // Must not decrement bucket->tasks here
46609ce2
QY
1541 * dequeue(taskB)
1542 *
1543 * where we could end up with stale data in uc_se and
1544 * bucket[uc_se->bucket_id].
1545 *
1546 * The following check here eliminates the possibility of such race.
1547 */
1548 if (unlikely(!uc_se->active))
1549 return;
1550
69842cba 1551 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1552
69842cba
PB
1553 SCHED_WARN_ON(!bucket->tasks);
1554 if (likely(bucket->tasks))
1555 bucket->tasks--;
46609ce2 1556
e8f14172 1557 uc_se->active = false;
69842cba 1558
60daf9c1
PB
1559 /*
1560 * Keep "local max aggregation" simple and accept to (possibly)
1561 * overboost some RUNNABLE tasks in the same bucket.
1562 * The rq clamp bucket value is reset to its base value whenever
1563 * there are no more RUNNABLE tasks refcounting it.
1564 */
69842cba
PB
1565 if (likely(bucket->tasks))
1566 return;
1567
1568 rq_clamp = READ_ONCE(uc_rq->value);
1569 /*
1570 * Defensive programming: this should never happen. If it happens,
1571 * e.g. due to future modification, warn and fixup the expected value.
1572 */
1573 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1574 if (bucket->value >= rq_clamp) {
1575 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1576 WRITE_ONCE(uc_rq->value, bkt_clamp);
1577 }
69842cba
PB
1578}
1579
1580static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1581{
0413d7f3 1582 enum uclamp_id clamp_id;
69842cba 1583
46609ce2
QY
1584 /*
1585 * Avoid any overhead until uclamp is actually used by the userspace.
1586 *
1587 * The condition is constructed such that a NOP is generated when
1588 * sched_uclamp_used is disabled.
1589 */
1590 if (!static_branch_unlikely(&sched_uclamp_used))
1591 return;
1592
69842cba
PB
1593 if (unlikely(!p->sched_class->uclamp_enabled))
1594 return;
1595
1596 for_each_clamp_id(clamp_id)
1597 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1598
1599 /* Reset clamp idle holding when there is one RUNNABLE task */
1600 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1601 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1602}
1603
1604static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1605{
0413d7f3 1606 enum uclamp_id clamp_id;
69842cba 1607
46609ce2
QY
1608 /*
1609 * Avoid any overhead until uclamp is actually used by the userspace.
1610 *
1611 * The condition is constructed such that a NOP is generated when
1612 * sched_uclamp_used is disabled.
1613 */
1614 if (!static_branch_unlikely(&sched_uclamp_used))
1615 return;
1616
69842cba
PB
1617 if (unlikely(!p->sched_class->uclamp_enabled))
1618 return;
1619
1620 for_each_clamp_id(clamp_id)
1621 uclamp_rq_dec_id(rq, p, clamp_id);
1622}
1623
ca4984a7
QP
1624static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1625 enum uclamp_id clamp_id)
1626{
1627 if (!p->uclamp[clamp_id].active)
1628 return;
1629
1630 uclamp_rq_dec_id(rq, p, clamp_id);
1631 uclamp_rq_inc_id(rq, p, clamp_id);
1632
1633 /*
1634 * Make sure to clear the idle flag if we've transiently reached 0
1635 * active tasks on rq.
1636 */
1637 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1638 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1639}
1640
babbe170 1641static inline void
0213b708 1642uclamp_update_active(struct task_struct *p)
babbe170 1643{
0213b708 1644 enum uclamp_id clamp_id;
babbe170
PB
1645 struct rq_flags rf;
1646 struct rq *rq;
1647
1648 /*
1649 * Lock the task and the rq where the task is (or was) queued.
1650 *
1651 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1652 * price to pay to safely serialize util_{min,max} updates with
1653 * enqueues, dequeues and migration operations.
1654 * This is the same locking schema used by __set_cpus_allowed_ptr().
1655 */
1656 rq = task_rq_lock(p, &rf);
1657
1658 /*
1659 * Setting the clamp bucket is serialized by task_rq_lock().
1660 * If the task is not yet RUNNABLE and its task_struct is not
1661 * affecting a valid clamp bucket, the next time it's enqueued,
1662 * it will already see the updated clamp bucket value.
1663 */
ca4984a7
QP
1664 for_each_clamp_id(clamp_id)
1665 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1666
1667 task_rq_unlock(rq, p, &rf);
1668}
1669
e3b8b6a0 1670#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1671static inline void
0213b708 1672uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1673{
1674 struct css_task_iter it;
1675 struct task_struct *p;
babbe170
PB
1676
1677 css_task_iter_start(css, 0, &it);
0213b708
QY
1678 while ((p = css_task_iter_next(&it)))
1679 uclamp_update_active(p);
babbe170
PB
1680 css_task_iter_end(&it);
1681}
1682
7274a5c1
PB
1683static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1684static void uclamp_update_root_tg(void)
1685{
1686 struct task_group *tg = &root_task_group;
1687
1688 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1689 sysctl_sched_uclamp_util_min, false);
1690 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1691 sysctl_sched_uclamp_util_max, false);
1692
1693 rcu_read_lock();
1694 cpu_util_update_eff(&root_task_group.css);
1695 rcu_read_unlock();
1696}
1697#else
1698static void uclamp_update_root_tg(void) { }
1699#endif
1700
e8f14172 1701int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1702 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1703{
7274a5c1 1704 bool update_root_tg = false;
13685c4a 1705 int old_min, old_max, old_min_rt;
e8f14172
PB
1706 int result;
1707
2480c093 1708 mutex_lock(&uclamp_mutex);
e8f14172
PB
1709 old_min = sysctl_sched_uclamp_util_min;
1710 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1711 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1712
1713 result = proc_dointvec(table, write, buffer, lenp, ppos);
1714 if (result)
1715 goto undo;
1716 if (!write)
1717 goto done;
1718
1719 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1720 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1721 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1722
e8f14172
PB
1723 result = -EINVAL;
1724 goto undo;
1725 }
1726
1727 if (old_min != sysctl_sched_uclamp_util_min) {
1728 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1729 sysctl_sched_uclamp_util_min, false);
7274a5c1 1730 update_root_tg = true;
e8f14172
PB
1731 }
1732 if (old_max != sysctl_sched_uclamp_util_max) {
1733 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1734 sysctl_sched_uclamp_util_max, false);
7274a5c1 1735 update_root_tg = true;
e8f14172
PB
1736 }
1737
46609ce2
QY
1738 if (update_root_tg) {
1739 static_branch_enable(&sched_uclamp_used);
7274a5c1 1740 uclamp_update_root_tg();
46609ce2 1741 }
7274a5c1 1742
13685c4a
QY
1743 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1744 static_branch_enable(&sched_uclamp_used);
1745 uclamp_sync_util_min_rt_default();
1746 }
7274a5c1 1747
e8f14172 1748 /*
7274a5c1
PB
1749 * We update all RUNNABLE tasks only when task groups are in use.
1750 * Otherwise, keep it simple and do just a lazy update at each next
1751 * task enqueue time.
e8f14172 1752 */
7274a5c1 1753
e8f14172
PB
1754 goto done;
1755
1756undo:
1757 sysctl_sched_uclamp_util_min = old_min;
1758 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1759 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1760done:
2480c093 1761 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1762
1763 return result;
1764}
1765
a509a7cd
PB
1766static int uclamp_validate(struct task_struct *p,
1767 const struct sched_attr *attr)
1768{
480a6ca2
DE
1769 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1770 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1771
480a6ca2
DE
1772 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1773 util_min = attr->sched_util_min;
a509a7cd 1774
480a6ca2
DE
1775 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1776 return -EINVAL;
1777 }
1778
1779 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1780 util_max = attr->sched_util_max;
1781
1782 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1783 return -EINVAL;
1784 }
1785
1786 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1787 return -EINVAL;
1788
e65855a5
QY
1789 /*
1790 * We have valid uclamp attributes; make sure uclamp is enabled.
1791 *
1792 * We need to do that here, because enabling static branches is a
1793 * blocking operation which obviously cannot be done while holding
1794 * scheduler locks.
1795 */
1796 static_branch_enable(&sched_uclamp_used);
1797
a509a7cd
PB
1798 return 0;
1799}
1800
480a6ca2
DE
1801static bool uclamp_reset(const struct sched_attr *attr,
1802 enum uclamp_id clamp_id,
1803 struct uclamp_se *uc_se)
1804{
1805 /* Reset on sched class change for a non user-defined clamp value. */
1806 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1807 !uc_se->user_defined)
1808 return true;
1809
1810 /* Reset on sched_util_{min,max} == -1. */
1811 if (clamp_id == UCLAMP_MIN &&
1812 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1813 attr->sched_util_min == -1) {
1814 return true;
1815 }
1816
1817 if (clamp_id == UCLAMP_MAX &&
1818 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1819 attr->sched_util_max == -1) {
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
a509a7cd
PB
1826static void __setscheduler_uclamp(struct task_struct *p,
1827 const struct sched_attr *attr)
1828{
0413d7f3 1829 enum uclamp_id clamp_id;
1a00d999 1830
1a00d999
PB
1831 for_each_clamp_id(clamp_id) {
1832 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1833 unsigned int value;
1a00d999 1834
480a6ca2 1835 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1836 continue;
1837
13685c4a
QY
1838 /*
1839 * RT by default have a 100% boost value that could be modified
1840 * at runtime.
1841 */
1a00d999 1842 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1843 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1844 else
480a6ca2
DE
1845 value = uclamp_none(clamp_id);
1846
1847 uclamp_se_set(uc_se, value, false);
1a00d999 1848
1a00d999
PB
1849 }
1850
a509a7cd
PB
1851 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1852 return;
1853
480a6ca2
DE
1854 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1855 attr->sched_util_min != -1) {
a509a7cd
PB
1856 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1857 attr->sched_util_min, true);
1858 }
1859
480a6ca2
DE
1860 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1861 attr->sched_util_max != -1) {
a509a7cd
PB
1862 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1863 attr->sched_util_max, true);
1864 }
1865}
1866
e8f14172
PB
1867static void uclamp_fork(struct task_struct *p)
1868{
0413d7f3 1869 enum uclamp_id clamp_id;
e8f14172 1870
13685c4a
QY
1871 /*
1872 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1873 * as the task is still at its early fork stages.
1874 */
e8f14172
PB
1875 for_each_clamp_id(clamp_id)
1876 p->uclamp[clamp_id].active = false;
a87498ac
PB
1877
1878 if (likely(!p->sched_reset_on_fork))
1879 return;
1880
1881 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1882 uclamp_se_set(&p->uclamp_req[clamp_id],
1883 uclamp_none(clamp_id), false);
a87498ac 1884 }
e8f14172
PB
1885}
1886
13685c4a
QY
1887static void uclamp_post_fork(struct task_struct *p)
1888{
1889 uclamp_update_util_min_rt_default(p);
1890}
1891
d81ae8aa
QY
1892static void __init init_uclamp_rq(struct rq *rq)
1893{
1894 enum uclamp_id clamp_id;
1895 struct uclamp_rq *uc_rq = rq->uclamp;
1896
1897 for_each_clamp_id(clamp_id) {
1898 uc_rq[clamp_id] = (struct uclamp_rq) {
1899 .value = uclamp_none(clamp_id)
1900 };
1901 }
1902
1903 rq->uclamp_flags = 0;
1904}
1905
69842cba
PB
1906static void __init init_uclamp(void)
1907{
e8f14172 1908 struct uclamp_se uc_max = {};
0413d7f3 1909 enum uclamp_id clamp_id;
69842cba
PB
1910 int cpu;
1911
d81ae8aa
QY
1912 for_each_possible_cpu(cpu)
1913 init_uclamp_rq(cpu_rq(cpu));
69842cba 1914
69842cba 1915 for_each_clamp_id(clamp_id) {
e8f14172 1916 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1917 uclamp_none(clamp_id), false);
69842cba 1918 }
e8f14172
PB
1919
1920 /* System defaults allow max clamp values for both indexes */
a509a7cd 1921 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1922 for_each_clamp_id(clamp_id) {
e8f14172 1923 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1924#ifdef CONFIG_UCLAMP_TASK_GROUP
1925 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1926 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1927#endif
1928 }
69842cba
PB
1929}
1930
1931#else /* CONFIG_UCLAMP_TASK */
1932static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1933static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1934static inline int uclamp_validate(struct task_struct *p,
1935 const struct sched_attr *attr)
1936{
1937 return -EOPNOTSUPP;
1938}
1939static void __setscheduler_uclamp(struct task_struct *p,
1940 const struct sched_attr *attr) { }
e8f14172 1941static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1942static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1943static inline void init_uclamp(void) { }
1944#endif /* CONFIG_UCLAMP_TASK */
1945
1de64443 1946static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1947{
0a67d1ee
PZ
1948 if (!(flags & ENQUEUE_NOCLOCK))
1949 update_rq_clock(rq);
1950
eb414681 1951 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 1952 sched_info_enqueue(rq, p);
eb414681
JW
1953 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1954 }
0a67d1ee 1955
69842cba 1956 uclamp_rq_inc(rq, p);
371fd7e7 1957 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
1958
1959 if (sched_core_enabled(rq))
1960 sched_core_enqueue(rq, p);
71f8bd46
IM
1961}
1962
1de64443 1963static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1964{
8a311c74
PZ
1965 if (sched_core_enabled(rq))
1966 sched_core_dequeue(rq, p);
1967
0a67d1ee
PZ
1968 if (!(flags & DEQUEUE_NOCLOCK))
1969 update_rq_clock(rq);
1970
eb414681 1971 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 1972 sched_info_dequeue(rq, p);
eb414681
JW
1973 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1974 }
0a67d1ee 1975
69842cba 1976 uclamp_rq_dec(rq, p);
371fd7e7 1977 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1978}
1979
029632fb 1980void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1981{
371fd7e7 1982 enqueue_task(rq, p, flags);
7dd77884
PZ
1983
1984 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1985}
1986
029632fb 1987void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1988{
7dd77884
PZ
1989 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1990
371fd7e7 1991 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1992}
1993
14531189 1994/*
dd41f596 1995 * __normal_prio - return the priority that is based on the static prio
14531189 1996 */
14531189
IM
1997static inline int __normal_prio(struct task_struct *p)
1998{
dd41f596 1999 return p->static_prio;
14531189
IM
2000}
2001
b29739f9
IM
2002/*
2003 * Calculate the expected normal priority: i.e. priority
2004 * without taking RT-inheritance into account. Might be
2005 * boosted by interactivity modifiers. Changes upon fork,
2006 * setprio syscalls, and whenever the interactivity
2007 * estimator recalculates.
2008 */
36c8b586 2009static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2010{
2011 int prio;
2012
aab03e05
DF
2013 if (task_has_dl_policy(p))
2014 prio = MAX_DL_PRIO-1;
2015 else if (task_has_rt_policy(p))
b29739f9
IM
2016 prio = MAX_RT_PRIO-1 - p->rt_priority;
2017 else
2018 prio = __normal_prio(p);
2019 return prio;
2020}
2021
2022/*
2023 * Calculate the current priority, i.e. the priority
2024 * taken into account by the scheduler. This value might
2025 * be boosted by RT tasks, or might be boosted by
2026 * interactivity modifiers. Will be RT if the task got
2027 * RT-boosted. If not then it returns p->normal_prio.
2028 */
36c8b586 2029static int effective_prio(struct task_struct *p)
b29739f9
IM
2030{
2031 p->normal_prio = normal_prio(p);
2032 /*
2033 * If we are RT tasks or we were boosted to RT priority,
2034 * keep the priority unchanged. Otherwise, update priority
2035 * to the normal priority:
2036 */
2037 if (!rt_prio(p->prio))
2038 return p->normal_prio;
2039 return p->prio;
2040}
2041
1da177e4
LT
2042/**
2043 * task_curr - is this task currently executing on a CPU?
2044 * @p: the task in question.
e69f6186
YB
2045 *
2046 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2047 */
36c8b586 2048inline int task_curr(const struct task_struct *p)
1da177e4
LT
2049{
2050 return cpu_curr(task_cpu(p)) == p;
2051}
2052
67dfa1b7 2053/*
4c9a4bc8
PZ
2054 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2055 * use the balance_callback list if you want balancing.
2056 *
2057 * this means any call to check_class_changed() must be followed by a call to
2058 * balance_callback().
67dfa1b7 2059 */
cb469845
SR
2060static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2061 const struct sched_class *prev_class,
da7a735e 2062 int oldprio)
cb469845
SR
2063{
2064 if (prev_class != p->sched_class) {
2065 if (prev_class->switched_from)
da7a735e 2066 prev_class->switched_from(rq, p);
4c9a4bc8 2067
da7a735e 2068 p->sched_class->switched_to(rq, p);
2d3d891d 2069 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2070 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2071}
2072
029632fb 2073void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2074{
aa93cd53 2075 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2076 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2077 else if (p->sched_class > rq->curr->sched_class)
2078 resched_curr(rq);
1e5a7405
PZ
2079
2080 /*
2081 * A queue event has occurred, and we're going to schedule. In
2082 * this case, we can save a useless back to back clock update.
2083 */
da0c1e65 2084 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2085 rq_clock_skip_update(rq);
1e5a7405
PZ
2086}
2087
1da177e4 2088#ifdef CONFIG_SMP
175f0e25 2089
af449901
PZ
2090static void
2091__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2092
2093static int __set_cpus_allowed_ptr(struct task_struct *p,
2094 const struct cpumask *new_mask,
2095 u32 flags);
2096
2097static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2098{
2099 if (likely(!p->migration_disabled))
2100 return;
2101
2102 if (p->cpus_ptr != &p->cpus_mask)
2103 return;
2104
2105 /*
2106 * Violates locking rules! see comment in __do_set_cpus_allowed().
2107 */
2108 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2109}
2110
2111void migrate_disable(void)
2112{
3015ef4b
TG
2113 struct task_struct *p = current;
2114
2115 if (p->migration_disabled) {
2116 p->migration_disabled++;
af449901 2117 return;
3015ef4b 2118 }
af449901 2119
3015ef4b
TG
2120 preempt_disable();
2121 this_rq()->nr_pinned++;
2122 p->migration_disabled = 1;
2123 preempt_enable();
af449901
PZ
2124}
2125EXPORT_SYMBOL_GPL(migrate_disable);
2126
2127void migrate_enable(void)
2128{
2129 struct task_struct *p = current;
2130
6d337eab
PZ
2131 if (p->migration_disabled > 1) {
2132 p->migration_disabled--;
af449901 2133 return;
6d337eab 2134 }
af449901 2135
6d337eab
PZ
2136 /*
2137 * Ensure stop_task runs either before or after this, and that
2138 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2139 */
2140 preempt_disable();
2141 if (p->cpus_ptr != &p->cpus_mask)
2142 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2143 /*
2144 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2145 * regular cpus_mask, otherwise things that race (eg.
2146 * select_fallback_rq) get confused.
2147 */
af449901 2148 barrier();
6d337eab 2149 p->migration_disabled = 0;
3015ef4b 2150 this_rq()->nr_pinned--;
6d337eab 2151 preempt_enable();
af449901
PZ
2152}
2153EXPORT_SYMBOL_GPL(migrate_enable);
2154
3015ef4b
TG
2155static inline bool rq_has_pinned_tasks(struct rq *rq)
2156{
2157 return rq->nr_pinned;
2158}
2159
175f0e25 2160/*
bee98539 2161 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2162 * __set_cpus_allowed_ptr() and select_fallback_rq().
2163 */
2164static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2165{
5ba2ffba 2166 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2167 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2168 return false;
2169
5ba2ffba
PZ
2170 /* migrate_disabled() must be allowed to finish. */
2171 if (is_migration_disabled(p))
175f0e25
PZ
2172 return cpu_online(cpu);
2173
5ba2ffba
PZ
2174 /* Non kernel threads are not allowed during either online or offline. */
2175 if (!(p->flags & PF_KTHREAD))
9ae606bc 2176 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2177
2178 /* KTHREAD_IS_PER_CPU is always allowed. */
2179 if (kthread_is_per_cpu(p))
2180 return cpu_online(cpu);
2181
2182 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2183 if (cpu_dying(cpu))
5ba2ffba
PZ
2184 return false;
2185
2186 /* But are allowed during online. */
2187 return cpu_online(cpu);
175f0e25
PZ
2188}
2189
5cc389bc
PZ
2190/*
2191 * This is how migration works:
2192 *
2193 * 1) we invoke migration_cpu_stop() on the target CPU using
2194 * stop_one_cpu().
2195 * 2) stopper starts to run (implicitly forcing the migrated thread
2196 * off the CPU)
2197 * 3) it checks whether the migrated task is still in the wrong runqueue.
2198 * 4) if it's in the wrong runqueue then the migration thread removes
2199 * it and puts it into the right queue.
2200 * 5) stopper completes and stop_one_cpu() returns and the migration
2201 * is done.
2202 */
2203
2204/*
2205 * move_queued_task - move a queued task to new rq.
2206 *
2207 * Returns (locked) new rq. Old rq's lock is released.
2208 */
8a8c69c3
PZ
2209static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2210 struct task_struct *p, int new_cpu)
5cc389bc 2211{
5cb9eaa3 2212 lockdep_assert_rq_held(rq);
5cc389bc 2213
58877d34 2214 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2215 set_task_cpu(p, new_cpu);
8a8c69c3 2216 rq_unlock(rq, rf);
5cc389bc
PZ
2217
2218 rq = cpu_rq(new_cpu);
2219
8a8c69c3 2220 rq_lock(rq, rf);
5cc389bc 2221 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2222 activate_task(rq, p, 0);
5cc389bc
PZ
2223 check_preempt_curr(rq, p, 0);
2224
2225 return rq;
2226}
2227
2228struct migration_arg {
6d337eab
PZ
2229 struct task_struct *task;
2230 int dest_cpu;
2231 struct set_affinity_pending *pending;
2232};
2233
50caf9c1
PZ
2234/*
2235 * @refs: number of wait_for_completion()
2236 * @stop_pending: is @stop_work in use
2237 */
6d337eab
PZ
2238struct set_affinity_pending {
2239 refcount_t refs;
9e81889c 2240 unsigned int stop_pending;
6d337eab
PZ
2241 struct completion done;
2242 struct cpu_stop_work stop_work;
2243 struct migration_arg arg;
5cc389bc
PZ
2244};
2245
2246/*
d1ccc66d 2247 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2248 * this because either it can't run here any more (set_cpus_allowed()
2249 * away from this CPU, or CPU going down), or because we're
2250 * attempting to rebalance this task on exec (sched_exec).
2251 *
2252 * So we race with normal scheduler movements, but that's OK, as long
2253 * as the task is no longer on this CPU.
5cc389bc 2254 */
8a8c69c3
PZ
2255static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2256 struct task_struct *p, int dest_cpu)
5cc389bc 2257{
5cc389bc 2258 /* Affinity changed (again). */
175f0e25 2259 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2260 return rq;
5cc389bc 2261
15ff991e 2262 update_rq_clock(rq);
8a8c69c3 2263 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2264
2265 return rq;
5cc389bc
PZ
2266}
2267
2268/*
2269 * migration_cpu_stop - this will be executed by a highprio stopper thread
2270 * and performs thread migration by bumping thread off CPU then
2271 * 'pushing' onto another runqueue.
2272 */
2273static int migration_cpu_stop(void *data)
2274{
2275 struct migration_arg *arg = data;
c20cf065 2276 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2277 struct task_struct *p = arg->task;
2278 struct rq *rq = this_rq();
6d337eab 2279 bool complete = false;
8a8c69c3 2280 struct rq_flags rf;
5cc389bc
PZ
2281
2282 /*
d1ccc66d
IM
2283 * The original target CPU might have gone down and we might
2284 * be on another CPU but it doesn't matter.
5cc389bc 2285 */
6d337eab 2286 local_irq_save(rf.flags);
5cc389bc
PZ
2287 /*
2288 * We need to explicitly wake pending tasks before running
3bd37062 2289 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2290 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2291 */
a1488664 2292 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2293
2294 raw_spin_lock(&p->pi_lock);
8a8c69c3 2295 rq_lock(rq, &rf);
6d337eab 2296
e140749c
VS
2297 /*
2298 * If we were passed a pending, then ->stop_pending was set, thus
2299 * p->migration_pending must have remained stable.
2300 */
2301 WARN_ON_ONCE(pending && pending != p->migration_pending);
2302
5e16bbc2
PZ
2303 /*
2304 * If task_rq(p) != rq, it cannot be migrated here, because we're
2305 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2306 * we're holding p->pi_lock.
2307 */
bf89a304 2308 if (task_rq(p) == rq) {
6d337eab
PZ
2309 if (is_migration_disabled(p))
2310 goto out;
2311
2312 if (pending) {
e140749c 2313 p->migration_pending = NULL;
6d337eab 2314 complete = true;
6d337eab 2315
3f1bc119
PZ
2316 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2317 goto out;
3f1bc119 2318 }
6d337eab 2319
bf89a304 2320 if (task_on_rq_queued(p))
475ea6c6 2321 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2322 else
475ea6c6 2323 p->wake_cpu = arg->dest_cpu;
6d337eab 2324
3f1bc119
PZ
2325 /*
2326 * XXX __migrate_task() can fail, at which point we might end
2327 * up running on a dodgy CPU, AFAICT this can only happen
2328 * during CPU hotplug, at which point we'll get pushed out
2329 * anyway, so it's probably not a big deal.
2330 */
2331
c20cf065 2332 } else if (pending) {
6d337eab
PZ
2333 /*
2334 * This happens when we get migrated between migrate_enable()'s
2335 * preempt_enable() and scheduling the stopper task. At that
2336 * point we're a regular task again and not current anymore.
2337 *
2338 * A !PREEMPT kernel has a giant hole here, which makes it far
2339 * more likely.
2340 */
2341
d707faa6
VS
2342 /*
2343 * The task moved before the stopper got to run. We're holding
2344 * ->pi_lock, so the allowed mask is stable - if it got
2345 * somewhere allowed, we're done.
2346 */
c20cf065 2347 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2348 p->migration_pending = NULL;
d707faa6
VS
2349 complete = true;
2350 goto out;
2351 }
2352
6d337eab
PZ
2353 /*
2354 * When migrate_enable() hits a rq mis-match we can't reliably
2355 * determine is_migration_disabled() and so have to chase after
2356 * it.
2357 */
9e81889c 2358 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2359 task_rq_unlock(rq, p, &rf);
2360 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2361 &pending->arg, &pending->stop_work);
2362 return 0;
bf89a304 2363 }
6d337eab 2364out:
9e81889c
PZ
2365 if (pending)
2366 pending->stop_pending = false;
6d337eab
PZ
2367 task_rq_unlock(rq, p, &rf);
2368
2369 if (complete)
2370 complete_all(&pending->done);
2371
5cc389bc
PZ
2372 return 0;
2373}
2374
a7c81556
PZ
2375int push_cpu_stop(void *arg)
2376{
2377 struct rq *lowest_rq = NULL, *rq = this_rq();
2378 struct task_struct *p = arg;
2379
2380 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2381 raw_spin_rq_lock(rq);
a7c81556
PZ
2382
2383 if (task_rq(p) != rq)
2384 goto out_unlock;
2385
2386 if (is_migration_disabled(p)) {
2387 p->migration_flags |= MDF_PUSH;
2388 goto out_unlock;
2389 }
2390
2391 p->migration_flags &= ~MDF_PUSH;
2392
2393 if (p->sched_class->find_lock_rq)
2394 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2395
a7c81556
PZ
2396 if (!lowest_rq)
2397 goto out_unlock;
2398
2399 // XXX validate p is still the highest prio task
2400 if (task_rq(p) == rq) {
2401 deactivate_task(rq, p, 0);
2402 set_task_cpu(p, lowest_rq->cpu);
2403 activate_task(lowest_rq, p, 0);
2404 resched_curr(lowest_rq);
2405 }
2406
2407 double_unlock_balance(rq, lowest_rq);
2408
2409out_unlock:
2410 rq->push_busy = false;
5cb9eaa3 2411 raw_spin_rq_unlock(rq);
a7c81556
PZ
2412 raw_spin_unlock_irq(&p->pi_lock);
2413
2414 put_task_struct(p);
5cc389bc
PZ
2415 return 0;
2416}
2417
c5b28038
PZ
2418/*
2419 * sched_class::set_cpus_allowed must do the below, but is not required to
2420 * actually call this function.
2421 */
9cfc3e18 2422void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2423{
af449901
PZ
2424 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2425 p->cpus_ptr = new_mask;
2426 return;
2427 }
2428
3bd37062 2429 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2430 p->nr_cpus_allowed = cpumask_weight(new_mask);
2431}
2432
9cfc3e18
PZ
2433static void
2434__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2435{
6c37067e
PZ
2436 struct rq *rq = task_rq(p);
2437 bool queued, running;
2438
af449901
PZ
2439 /*
2440 * This here violates the locking rules for affinity, since we're only
2441 * supposed to change these variables while holding both rq->lock and
2442 * p->pi_lock.
2443 *
2444 * HOWEVER, it magically works, because ttwu() is the only code that
2445 * accesses these variables under p->pi_lock and only does so after
2446 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2447 * before finish_task().
2448 *
2449 * XXX do further audits, this smells like something putrid.
2450 */
2451 if (flags & SCA_MIGRATE_DISABLE)
2452 SCHED_WARN_ON(!p->on_cpu);
2453 else
2454 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2455
2456 queued = task_on_rq_queued(p);
2457 running = task_current(rq, p);
2458
2459 if (queued) {
2460 /*
2461 * Because __kthread_bind() calls this on blocked tasks without
2462 * holding rq->lock.
2463 */
5cb9eaa3 2464 lockdep_assert_rq_held(rq);
7a57f32a 2465 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2466 }
2467 if (running)
2468 put_prev_task(rq, p);
2469
9cfc3e18 2470 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2471
6c37067e 2472 if (queued)
7134b3e9 2473 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2474 if (running)
03b7fad1 2475 set_next_task(rq, p);
c5b28038
PZ
2476}
2477
9cfc3e18
PZ
2478void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2479{
2480 __do_set_cpus_allowed(p, new_mask, 0);
2481}
2482
6d337eab 2483/*
c777d847
VS
2484 * This function is wildly self concurrent; here be dragons.
2485 *
2486 *
2487 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2488 * designated task is enqueued on an allowed CPU. If that task is currently
2489 * running, we have to kick it out using the CPU stopper.
2490 *
2491 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2492 * Consider:
2493 *
2494 * Initial conditions: P0->cpus_mask = [0, 1]
2495 *
2496 * P0@CPU0 P1
2497 *
2498 * migrate_disable();
2499 * <preempted>
2500 * set_cpus_allowed_ptr(P0, [1]);
2501 *
2502 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2503 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2504 * This means we need the following scheme:
2505 *
2506 * P0@CPU0 P1
2507 *
2508 * migrate_disable();
2509 * <preempted>
2510 * set_cpus_allowed_ptr(P0, [1]);
2511 * <blocks>
2512 * <resumes>
2513 * migrate_enable();
2514 * __set_cpus_allowed_ptr();
2515 * <wakes local stopper>
2516 * `--> <woken on migration completion>
2517 *
2518 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2519 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2520 * task p are serialized by p->pi_lock, which we can leverage: the one that
2521 * should come into effect at the end of the Migrate-Disable region is the last
2522 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2523 * but we still need to properly signal those waiting tasks at the appropriate
2524 * moment.
2525 *
2526 * This is implemented using struct set_affinity_pending. The first
2527 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2528 * setup an instance of that struct and install it on the targeted task_struct.
2529 * Any and all further callers will reuse that instance. Those then wait for
2530 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2531 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2532 *
2533 *
2534 * (1) In the cases covered above. There is one more where the completion is
2535 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2536 * occurs after the stopper bailed out due to the targeted task still being
2537 * Migrate-Disable. Consider:
c777d847
VS
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
e140749c
VS
2541 * CPU0 P1 P2
2542 * <P0>
2543 * migrate_disable();
2544 * <preempted>
c777d847
VS
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 * <blocks>
e140749c
VS
2547 * <migration/0>
2548 * migration_cpu_stop()
2549 * is_migration_disabled()
2550 * <bails>
c777d847
VS
2551 * set_cpus_allowed_ptr(P0, [0, 1]);
2552 * <signal completion>
2553 * <awakes>
2554 *
2555 * Note that the above is safe vs a concurrent migrate_enable(), as any
2556 * pending affinity completion is preceded by an uninstallation of
2557 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2558 */
2559static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2560 int dest_cpu, unsigned int flags)
2561{
2562 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2563 bool stop_pending, complete = false;
6d337eab
PZ
2564
2565 /* Can the task run on the task's current CPU? If so, we're done */
2566 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2567 struct task_struct *push_task = NULL;
2568
2569 if ((flags & SCA_MIGRATE_ENABLE) &&
2570 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2571 rq->push_busy = true;
2572 push_task = get_task_struct(p);
2573 }
2574
50caf9c1
PZ
2575 /*
2576 * If there are pending waiters, but no pending stop_work,
2577 * then complete now.
2578 */
6d337eab 2579 pending = p->migration_pending;
50caf9c1 2580 if (pending && !pending->stop_pending) {
6d337eab
PZ
2581 p->migration_pending = NULL;
2582 complete = true;
2583 }
50caf9c1 2584
6d337eab
PZ
2585 task_rq_unlock(rq, p, rf);
2586
a7c81556
PZ
2587 if (push_task) {
2588 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2589 p, &rq->push_work);
2590 }
2591
6d337eab 2592 if (complete)
50caf9c1 2593 complete_all(&pending->done);
6d337eab
PZ
2594
2595 return 0;
2596 }
2597
2598 if (!(flags & SCA_MIGRATE_ENABLE)) {
2599 /* serialized by p->pi_lock */
2600 if (!p->migration_pending) {
c777d847 2601 /* Install the request */
6d337eab
PZ
2602 refcount_set(&my_pending.refs, 1);
2603 init_completion(&my_pending.done);
8a6edb52
PZ
2604 my_pending.arg = (struct migration_arg) {
2605 .task = p,
475ea6c6 2606 .dest_cpu = dest_cpu,
8a6edb52
PZ
2607 .pending = &my_pending,
2608 };
2609
6d337eab
PZ
2610 p->migration_pending = &my_pending;
2611 } else {
2612 pending = p->migration_pending;
2613 refcount_inc(&pending->refs);
475ea6c6
VS
2614 /*
2615 * Affinity has changed, but we've already installed a
2616 * pending. migration_cpu_stop() *must* see this, else
2617 * we risk a completion of the pending despite having a
2618 * task on a disallowed CPU.
2619 *
2620 * Serialized by p->pi_lock, so this is safe.
2621 */
2622 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2623 }
2624 }
2625 pending = p->migration_pending;
2626 /*
2627 * - !MIGRATE_ENABLE:
2628 * we'll have installed a pending if there wasn't one already.
2629 *
2630 * - MIGRATE_ENABLE:
2631 * we're here because the current CPU isn't matching anymore,
2632 * the only way that can happen is because of a concurrent
2633 * set_cpus_allowed_ptr() call, which should then still be
2634 * pending completion.
2635 *
2636 * Either way, we really should have a @pending here.
2637 */
2638 if (WARN_ON_ONCE(!pending)) {
2639 task_rq_unlock(rq, p, rf);
2640 return -EINVAL;
2641 }
2642
2f064a59 2643 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2644 /*
58b1a450
PZ
2645 * MIGRATE_ENABLE gets here because 'p == current', but for
2646 * anything else we cannot do is_migration_disabled(), punt
2647 * and have the stopper function handle it all race-free.
c777d847 2648 */
9e81889c
PZ
2649 stop_pending = pending->stop_pending;
2650 if (!stop_pending)
2651 pending->stop_pending = true;
58b1a450 2652
58b1a450
PZ
2653 if (flags & SCA_MIGRATE_ENABLE)
2654 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2655
6d337eab 2656 task_rq_unlock(rq, p, rf);
8a6edb52 2657
9e81889c
PZ
2658 if (!stop_pending) {
2659 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2660 &pending->arg, &pending->stop_work);
2661 }
6d337eab 2662
58b1a450
PZ
2663 if (flags & SCA_MIGRATE_ENABLE)
2664 return 0;
6d337eab
PZ
2665 } else {
2666
2667 if (!is_migration_disabled(p)) {
2668 if (task_on_rq_queued(p))
2669 rq = move_queued_task(rq, rf, p, dest_cpu);
2670
50caf9c1
PZ
2671 if (!pending->stop_pending) {
2672 p->migration_pending = NULL;
2673 complete = true;
2674 }
6d337eab
PZ
2675 }
2676 task_rq_unlock(rq, p, rf);
2677
6d337eab
PZ
2678 if (complete)
2679 complete_all(&pending->done);
2680 }
2681
2682 wait_for_completion(&pending->done);
2683
2684 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2685 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2686
c777d847
VS
2687 /*
2688 * Block the original owner of &pending until all subsequent callers
2689 * have seen the completion and decremented the refcount
2690 */
6d337eab
PZ
2691 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2692
50caf9c1
PZ
2693 /* ARGH */
2694 WARN_ON_ONCE(my_pending.stop_pending);
2695
6d337eab
PZ
2696 return 0;
2697}
2698
5cc389bc
PZ
2699/*
2700 * Change a given task's CPU affinity. Migrate the thread to a
2701 * proper CPU and schedule it away if the CPU it's executing on
2702 * is removed from the allowed bitmask.
2703 *
2704 * NOTE: the caller must have a valid reference to the task, the
2705 * task must not exit() & deallocate itself prematurely. The
2706 * call is not atomic; no spinlocks may be held.
2707 */
25834c73 2708static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2709 const struct cpumask *new_mask,
2710 u32 flags)
5cc389bc 2711{
e9d867a6 2712 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2713 unsigned int dest_cpu;
eb580751
PZ
2714 struct rq_flags rf;
2715 struct rq *rq;
5cc389bc
PZ
2716 int ret = 0;
2717
eb580751 2718 rq = task_rq_lock(p, &rf);
a499c3ea 2719 update_rq_clock(rq);
5cc389bc 2720
af449901 2721 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2722 /*
741ba80f
PZ
2723 * Kernel threads are allowed on online && !active CPUs,
2724 * however, during cpu-hot-unplug, even these might get pushed
2725 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2726 *
2727 * Specifically, migration_disabled() tasks must not fail the
2728 * cpumask_any_and_distribute() pick below, esp. so on
2729 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2730 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2731 */
2732 cpu_valid_mask = cpu_online_mask;
2733 }
2734
25834c73
PZ
2735 /*
2736 * Must re-check here, to close a race against __kthread_bind(),
2737 * sched_setaffinity() is not guaranteed to observe the flag.
2738 */
9cfc3e18 2739 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2740 ret = -EINVAL;
2741 goto out;
2742 }
2743
885b3ba4
VS
2744 if (!(flags & SCA_MIGRATE_ENABLE)) {
2745 if (cpumask_equal(&p->cpus_mask, new_mask))
2746 goto out;
2747
2748 if (WARN_ON_ONCE(p == current &&
2749 is_migration_disabled(p) &&
2750 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2751 ret = -EBUSY;
2752 goto out;
2753 }
2754 }
5cc389bc 2755
46a87b38
PT
2756 /*
2757 * Picking a ~random cpu helps in cases where we are changing affinity
2758 * for groups of tasks (ie. cpuset), so that load balancing is not
2759 * immediately required to distribute the tasks within their new mask.
2760 */
2761 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2762 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2763 ret = -EINVAL;
2764 goto out;
2765 }
2766
9cfc3e18 2767 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2768
6d337eab 2769 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2770
5cc389bc 2771out:
eb580751 2772 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2773
2774 return ret;
2775}
25834c73
PZ
2776
2777int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2778{
9cfc3e18 2779 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2780}
5cc389bc
PZ
2781EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2782
dd41f596 2783void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2784{
e2912009 2785#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
2786 unsigned int state = READ_ONCE(p->__state);
2787
e2912009
PZ
2788 /*
2789 * We should never call set_task_cpu() on a blocked task,
2790 * ttwu() will sort out the placement.
2791 */
2f064a59 2792 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 2793
3ea94de1
JP
2794 /*
2795 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2796 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2797 * time relying on p->on_rq.
2798 */
2f064a59 2799 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
2800 p->sched_class == &fair_sched_class &&
2801 (p->on_rq && !task_on_rq_migrating(p)));
2802
0122ec5b 2803#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2804 /*
2805 * The caller should hold either p->pi_lock or rq->lock, when changing
2806 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2807 *
2808 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2809 * see task_group().
6c6c54e1
PZ
2810 *
2811 * Furthermore, all task_rq users should acquire both locks, see
2812 * task_rq_lock().
2813 */
0122ec5b 2814 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 2815 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 2816#endif
4ff9083b
PZ
2817 /*
2818 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2819 */
2820 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2821
2822 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2823#endif
2824
de1d7286 2825 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2826
0c69774e 2827 if (task_cpu(p) != new_cpu) {
0a74bef8 2828 if (p->sched_class->migrate_task_rq)
1327237a 2829 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2830 p->se.nr_migrations++;
d7822b1e 2831 rseq_migrate(p);
ff303e66 2832 perf_event_task_migrate(p);
0c69774e 2833 }
dd41f596
IM
2834
2835 __set_task_cpu(p, new_cpu);
c65cc870
IM
2836}
2837
0ad4e3df 2838#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2839static void __migrate_swap_task(struct task_struct *p, int cpu)
2840{
da0c1e65 2841 if (task_on_rq_queued(p)) {
ac66f547 2842 struct rq *src_rq, *dst_rq;
8a8c69c3 2843 struct rq_flags srf, drf;
ac66f547
PZ
2844
2845 src_rq = task_rq(p);
2846 dst_rq = cpu_rq(cpu);
2847
8a8c69c3
PZ
2848 rq_pin_lock(src_rq, &srf);
2849 rq_pin_lock(dst_rq, &drf);
2850
ac66f547
PZ
2851 deactivate_task(src_rq, p, 0);
2852 set_task_cpu(p, cpu);
2853 activate_task(dst_rq, p, 0);
2854 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2855
2856 rq_unpin_lock(dst_rq, &drf);
2857 rq_unpin_lock(src_rq, &srf);
2858
ac66f547
PZ
2859 } else {
2860 /*
2861 * Task isn't running anymore; make it appear like we migrated
2862 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2863 * previous CPU our target instead of where it really is.
ac66f547
PZ
2864 */
2865 p->wake_cpu = cpu;
2866 }
2867}
2868
2869struct migration_swap_arg {
2870 struct task_struct *src_task, *dst_task;
2871 int src_cpu, dst_cpu;
2872};
2873
2874static int migrate_swap_stop(void *data)
2875{
2876 struct migration_swap_arg *arg = data;
2877 struct rq *src_rq, *dst_rq;
2878 int ret = -EAGAIN;
2879
62694cd5
PZ
2880 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2881 return -EAGAIN;
2882
ac66f547
PZ
2883 src_rq = cpu_rq(arg->src_cpu);
2884 dst_rq = cpu_rq(arg->dst_cpu);
2885
74602315
PZ
2886 double_raw_lock(&arg->src_task->pi_lock,
2887 &arg->dst_task->pi_lock);
ac66f547 2888 double_rq_lock(src_rq, dst_rq);
62694cd5 2889
ac66f547
PZ
2890 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2891 goto unlock;
2892
2893 if (task_cpu(arg->src_task) != arg->src_cpu)
2894 goto unlock;
2895
3bd37062 2896 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2897 goto unlock;
2898
3bd37062 2899 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2900 goto unlock;
2901
2902 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2903 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2904
2905 ret = 0;
2906
2907unlock:
2908 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2909 raw_spin_unlock(&arg->dst_task->pi_lock);
2910 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2911
2912 return ret;
2913}
2914
2915/*
2916 * Cross migrate two tasks
2917 */
0ad4e3df
SD
2918int migrate_swap(struct task_struct *cur, struct task_struct *p,
2919 int target_cpu, int curr_cpu)
ac66f547
PZ
2920{
2921 struct migration_swap_arg arg;
2922 int ret = -EINVAL;
2923
ac66f547
PZ
2924 arg = (struct migration_swap_arg){
2925 .src_task = cur,
0ad4e3df 2926 .src_cpu = curr_cpu,
ac66f547 2927 .dst_task = p,
0ad4e3df 2928 .dst_cpu = target_cpu,
ac66f547
PZ
2929 };
2930
2931 if (arg.src_cpu == arg.dst_cpu)
2932 goto out;
2933
6acce3ef
PZ
2934 /*
2935 * These three tests are all lockless; this is OK since all of them
2936 * will be re-checked with proper locks held further down the line.
2937 */
ac66f547
PZ
2938 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2939 goto out;
2940
3bd37062 2941 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2942 goto out;
2943
3bd37062 2944 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2945 goto out;
2946
286549dc 2947 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2948 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2949
2950out:
ac66f547
PZ
2951 return ret;
2952}
0ad4e3df 2953#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2954
1da177e4
LT
2955/*
2956 * wait_task_inactive - wait for a thread to unschedule.
2957 *
85ba2d86
RM
2958 * If @match_state is nonzero, it's the @p->state value just checked and
2959 * not expected to change. If it changes, i.e. @p might have woken up,
2960 * then return zero. When we succeed in waiting for @p to be off its CPU,
2961 * we return a positive number (its total switch count). If a second call
2962 * a short while later returns the same number, the caller can be sure that
2963 * @p has remained unscheduled the whole time.
2964 *
1da177e4
LT
2965 * The caller must ensure that the task *will* unschedule sometime soon,
2966 * else this function might spin for a *long* time. This function can't
2967 * be called with interrupts off, or it may introduce deadlock with
2968 * smp_call_function() if an IPI is sent by the same process we are
2969 * waiting to become inactive.
2970 */
2f064a59 2971unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 2972{
da0c1e65 2973 int running, queued;
eb580751 2974 struct rq_flags rf;
85ba2d86 2975 unsigned long ncsw;
70b97a7f 2976 struct rq *rq;
1da177e4 2977
3a5c359a
AK
2978 for (;;) {
2979 /*
2980 * We do the initial early heuristics without holding
2981 * any task-queue locks at all. We'll only try to get
2982 * the runqueue lock when things look like they will
2983 * work out!
2984 */
2985 rq = task_rq(p);
fa490cfd 2986
3a5c359a
AK
2987 /*
2988 * If the task is actively running on another CPU
2989 * still, just relax and busy-wait without holding
2990 * any locks.
2991 *
2992 * NOTE! Since we don't hold any locks, it's not
2993 * even sure that "rq" stays as the right runqueue!
2994 * But we don't care, since "task_running()" will
2995 * return false if the runqueue has changed and p
2996 * is actually now running somewhere else!
2997 */
85ba2d86 2998 while (task_running(rq, p)) {
2f064a59 2999 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
85ba2d86 3000 return 0;
3a5c359a 3001 cpu_relax();
85ba2d86 3002 }
fa490cfd 3003
3a5c359a
AK
3004 /*
3005 * Ok, time to look more closely! We need the rq
3006 * lock now, to be *sure*. If we're wrong, we'll
3007 * just go back and repeat.
3008 */
eb580751 3009 rq = task_rq_lock(p, &rf);
27a9da65 3010 trace_sched_wait_task(p);
3a5c359a 3011 running = task_running(rq, p);
da0c1e65 3012 queued = task_on_rq_queued(p);
85ba2d86 3013 ncsw = 0;
2f064a59 3014 if (!match_state || READ_ONCE(p->__state) == match_state)
93dcf55f 3015 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3016 task_rq_unlock(rq, p, &rf);
fa490cfd 3017
85ba2d86
RM
3018 /*
3019 * If it changed from the expected state, bail out now.
3020 */
3021 if (unlikely(!ncsw))
3022 break;
3023
3a5c359a
AK
3024 /*
3025 * Was it really running after all now that we
3026 * checked with the proper locks actually held?
3027 *
3028 * Oops. Go back and try again..
3029 */
3030 if (unlikely(running)) {
3031 cpu_relax();
3032 continue;
3033 }
fa490cfd 3034
3a5c359a
AK
3035 /*
3036 * It's not enough that it's not actively running,
3037 * it must be off the runqueue _entirely_, and not
3038 * preempted!
3039 *
80dd99b3 3040 * So if it was still runnable (but just not actively
3a5c359a
AK
3041 * running right now), it's preempted, and we should
3042 * yield - it could be a while.
3043 */
da0c1e65 3044 if (unlikely(queued)) {
8b0e1953 3045 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3046
3047 set_current_state(TASK_UNINTERRUPTIBLE);
3048 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
3049 continue;
3050 }
fa490cfd 3051
3a5c359a
AK
3052 /*
3053 * Ahh, all good. It wasn't running, and it wasn't
3054 * runnable, which means that it will never become
3055 * running in the future either. We're all done!
3056 */
3057 break;
3058 }
85ba2d86
RM
3059
3060 return ncsw;
1da177e4
LT
3061}
3062
3063/***
3064 * kick_process - kick a running thread to enter/exit the kernel
3065 * @p: the to-be-kicked thread
3066 *
3067 * Cause a process which is running on another CPU to enter
3068 * kernel-mode, without any delay. (to get signals handled.)
3069 *
25985edc 3070 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3071 * because all it wants to ensure is that the remote task enters
3072 * the kernel. If the IPI races and the task has been migrated
3073 * to another CPU then no harm is done and the purpose has been
3074 * achieved as well.
3075 */
36c8b586 3076void kick_process(struct task_struct *p)
1da177e4
LT
3077{
3078 int cpu;
3079
3080 preempt_disable();
3081 cpu = task_cpu(p);
3082 if ((cpu != smp_processor_id()) && task_curr(p))
3083 smp_send_reschedule(cpu);
3084 preempt_enable();
3085}
b43e3521 3086EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3087
30da688e 3088/*
3bd37062 3089 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3090 *
3091 * A few notes on cpu_active vs cpu_online:
3092 *
3093 * - cpu_active must be a subset of cpu_online
3094 *
97fb7a0a 3095 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3096 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3097 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3098 * see it.
3099 *
d1ccc66d 3100 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3101 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3102 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3103 * off.
3104 *
3105 * This means that fallback selection must not select !active CPUs.
3106 * And can assume that any active CPU must be online. Conversely
3107 * select_task_rq() below may allow selection of !active CPUs in order
3108 * to satisfy the above rules.
30da688e 3109 */
5da9a0fb
PZ
3110static int select_fallback_rq(int cpu, struct task_struct *p)
3111{
aa00d89c
TC
3112 int nid = cpu_to_node(cpu);
3113 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3114 enum { cpuset, possible, fail } state = cpuset;
3115 int dest_cpu;
5da9a0fb 3116
aa00d89c 3117 /*
d1ccc66d
IM
3118 * If the node that the CPU is on has been offlined, cpu_to_node()
3119 * will return -1. There is no CPU on the node, and we should
3120 * select the CPU on the other node.
aa00d89c
TC
3121 */
3122 if (nid != -1) {
3123 nodemask = cpumask_of_node(nid);
3124
3125 /* Look for allowed, online CPU in same node. */
3126 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3127 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3128 return dest_cpu;
3129 }
2baab4e9 3130 }
5da9a0fb 3131
2baab4e9
PZ
3132 for (;;) {
3133 /* Any allowed, online CPU? */
3bd37062 3134 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3135 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3136 continue;
175f0e25 3137
2baab4e9
PZ
3138 goto out;
3139 }
5da9a0fb 3140
e73e85f0 3141 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3142 switch (state) {
3143 case cpuset:
97c0054d 3144 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3145 state = possible;
3146 break;
3147 }
df561f66 3148 fallthrough;
2baab4e9 3149 case possible:
af449901
PZ
3150 /*
3151 * XXX When called from select_task_rq() we only
3152 * hold p->pi_lock and again violate locking order.
3153 *
3154 * More yuck to audit.
3155 */
9ae606bc 3156 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3157 state = fail;
3158 break;
2baab4e9
PZ
3159 case fail:
3160 BUG();
3161 break;
3162 }
3163 }
3164
3165out:
3166 if (state != cpuset) {
3167 /*
3168 * Don't tell them about moving exiting tasks or
3169 * kernel threads (both mm NULL), since they never
3170 * leave kernel.
3171 */
3172 if (p->mm && printk_ratelimit()) {
aac74dc4 3173 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3174 task_pid_nr(p), p->comm, cpu);
3175 }
5da9a0fb
PZ
3176 }
3177
3178 return dest_cpu;
3179}
3180
e2912009 3181/*
3bd37062 3182 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3183 */
970b13ba 3184static inline
3aef1551 3185int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3186{
cbce1a68
PZ
3187 lockdep_assert_held(&p->pi_lock);
3188
af449901 3189 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3190 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3191 else
3bd37062 3192 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3193
3194 /*
3195 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3196 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3197 * CPU.
e2912009
PZ
3198 *
3199 * Since this is common to all placement strategies, this lives here.
3200 *
3201 * [ this allows ->select_task() to simply return task_cpu(p) and
3202 * not worry about this generic constraint ]
3203 */
7af443ee 3204 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3205 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3206
3207 return cpu;
970b13ba 3208}
09a40af5 3209
f5832c19
NP
3210void sched_set_stop_task(int cpu, struct task_struct *stop)
3211{
ded467dc 3212 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3213 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3214 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3215
3216 if (stop) {
3217 /*
3218 * Make it appear like a SCHED_FIFO task, its something
3219 * userspace knows about and won't get confused about.
3220 *
3221 * Also, it will make PI more or less work without too
3222 * much confusion -- but then, stop work should not
3223 * rely on PI working anyway.
3224 */
3225 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3226
3227 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3228
3229 /*
3230 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3231 * adjust the effective priority of a task. As a result,
3232 * rt_mutex_setprio() can trigger (RT) balancing operations,
3233 * which can then trigger wakeups of the stop thread to push
3234 * around the current task.
3235 *
3236 * The stop task itself will never be part of the PI-chain, it
3237 * never blocks, therefore that ->pi_lock recursion is safe.
3238 * Tell lockdep about this by placing the stop->pi_lock in its
3239 * own class.
3240 */
3241 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3242 }
3243
3244 cpu_rq(cpu)->stop = stop;
3245
3246 if (old_stop) {
3247 /*
3248 * Reset it back to a normal scheduling class so that
3249 * it can die in pieces.
3250 */
3251 old_stop->sched_class = &rt_sched_class;
3252 }
3253}
3254
74d862b6 3255#else /* CONFIG_SMP */
25834c73
PZ
3256
3257static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3258 const struct cpumask *new_mask,
3259 u32 flags)
25834c73
PZ
3260{
3261 return set_cpus_allowed_ptr(p, new_mask);
3262}
3263
af449901
PZ
3264static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3265
3015ef4b
TG
3266static inline bool rq_has_pinned_tasks(struct rq *rq)
3267{
3268 return false;
3269}
3270
74d862b6 3271#endif /* !CONFIG_SMP */
970b13ba 3272
d7c01d27 3273static void
b84cb5df 3274ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3275{
4fa8d299 3276 struct rq *rq;
b84cb5df 3277
4fa8d299
JP
3278 if (!schedstat_enabled())
3279 return;
3280
3281 rq = this_rq();
d7c01d27 3282
4fa8d299
JP
3283#ifdef CONFIG_SMP
3284 if (cpu == rq->cpu) {
b85c8b71
PZ
3285 __schedstat_inc(rq->ttwu_local);
3286 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
3287 } else {
3288 struct sched_domain *sd;
3289
b85c8b71 3290 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 3291 rcu_read_lock();
4fa8d299 3292 for_each_domain(rq->cpu, sd) {
d7c01d27 3293 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3294 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3295 break;
3296 }
3297 }
057f3fad 3298 rcu_read_unlock();
d7c01d27 3299 }
f339b9dc
PZ
3300
3301 if (wake_flags & WF_MIGRATED)
b85c8b71 3302 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
3303#endif /* CONFIG_SMP */
3304
b85c8b71
PZ
3305 __schedstat_inc(rq->ttwu_count);
3306 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
3307
3308 if (wake_flags & WF_SYNC)
b85c8b71 3309 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
3310}
3311
23f41eeb
PZ
3312/*
3313 * Mark the task runnable and perform wakeup-preemption.
3314 */
e7904a28 3315static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3316 struct rq_flags *rf)
9ed3811a 3317{
9ed3811a 3318 check_preempt_curr(rq, p, wake_flags);
2f064a59 3319 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3320 trace_sched_wakeup(p);
3321
9ed3811a 3322#ifdef CONFIG_SMP
4c9a4bc8
PZ
3323 if (p->sched_class->task_woken) {
3324 /*
b19a888c 3325 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3326 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3327 */
d8ac8971 3328 rq_unpin_lock(rq, rf);
9ed3811a 3329 p->sched_class->task_woken(rq, p);
d8ac8971 3330 rq_repin_lock(rq, rf);
4c9a4bc8 3331 }
9ed3811a 3332
e69c6341 3333 if (rq->idle_stamp) {
78becc27 3334 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3335 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3336
abfafa54
JL
3337 update_avg(&rq->avg_idle, delta);
3338
3339 if (rq->avg_idle > max)
9ed3811a 3340 rq->avg_idle = max;
abfafa54 3341
94aafc3e
PZ
3342 rq->wake_stamp = jiffies;
3343 rq->wake_avg_idle = rq->avg_idle / 2;
3344
9ed3811a
TH
3345 rq->idle_stamp = 0;
3346 }
3347#endif
3348}
3349
c05fbafb 3350static void
e7904a28 3351ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3352 struct rq_flags *rf)
c05fbafb 3353{
77558e4d 3354 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3355
5cb9eaa3 3356 lockdep_assert_rq_held(rq);
cbce1a68 3357
c05fbafb
PZ
3358 if (p->sched_contributes_to_load)
3359 rq->nr_uninterruptible--;
b5179ac7 3360
dbfb089d 3361#ifdef CONFIG_SMP
b5179ac7 3362 if (wake_flags & WF_MIGRATED)
59efa0ba 3363 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3364 else
c05fbafb 3365#endif
ec618b84
PZ
3366 if (p->in_iowait) {
3367 delayacct_blkio_end(p);
3368 atomic_dec(&task_rq(p)->nr_iowait);
3369 }
c05fbafb 3370
1b174a2c 3371 activate_task(rq, p, en_flags);
d8ac8971 3372 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3373}
3374
3375/*
58877d34
PZ
3376 * Consider @p being inside a wait loop:
3377 *
3378 * for (;;) {
3379 * set_current_state(TASK_UNINTERRUPTIBLE);
3380 *
3381 * if (CONDITION)
3382 * break;
3383 *
3384 * schedule();
3385 * }
3386 * __set_current_state(TASK_RUNNING);
3387 *
3388 * between set_current_state() and schedule(). In this case @p is still
3389 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3390 * an atomic manner.
3391 *
3392 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3393 * then schedule() must still happen and p->state can be changed to
3394 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3395 * need to do a full wakeup with enqueue.
3396 *
3397 * Returns: %true when the wakeup is done,
3398 * %false otherwise.
c05fbafb 3399 */
58877d34 3400static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3401{
eb580751 3402 struct rq_flags rf;
c05fbafb
PZ
3403 struct rq *rq;
3404 int ret = 0;
3405
eb580751 3406 rq = __task_rq_lock(p, &rf);
da0c1e65 3407 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3408 /* check_preempt_curr() may use rq clock */
3409 update_rq_clock(rq);
d8ac8971 3410 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3411 ret = 1;
3412 }
eb580751 3413 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3414
3415 return ret;
3416}
3417
317f3941 3418#ifdef CONFIG_SMP
a1488664 3419void sched_ttwu_pending(void *arg)
317f3941 3420{
a1488664 3421 struct llist_node *llist = arg;
317f3941 3422 struct rq *rq = this_rq();
73215849 3423 struct task_struct *p, *t;
d8ac8971 3424 struct rq_flags rf;
317f3941 3425
e3baac47
PZ
3426 if (!llist)
3427 return;
3428
126c2092
PZ
3429 /*
3430 * rq::ttwu_pending racy indication of out-standing wakeups.
3431 * Races such that false-negatives are possible, since they
3432 * are shorter lived that false-positives would be.
3433 */
3434 WRITE_ONCE(rq->ttwu_pending, 0);
3435
8a8c69c3 3436 rq_lock_irqsave(rq, &rf);
77558e4d 3437 update_rq_clock(rq);
317f3941 3438
8c4890d1 3439 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3440 if (WARN_ON_ONCE(p->on_cpu))
3441 smp_cond_load_acquire(&p->on_cpu, !VAL);
3442
3443 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3444 set_task_cpu(p, cpu_of(rq));
3445
73215849 3446 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3447 }
317f3941 3448
8a8c69c3 3449 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3450}
3451
b2a02fc4 3452void send_call_function_single_ipi(int cpu)
317f3941 3453{
b2a02fc4 3454 struct rq *rq = cpu_rq(cpu);
ca38062e 3455
b2a02fc4
PZ
3456 if (!set_nr_if_polling(rq->idle))
3457 arch_send_call_function_single_ipi(cpu);
3458 else
3459 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3460}
3461
2ebb1771
MG
3462/*
3463 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3464 * necessary. The wakee CPU on receipt of the IPI will queue the task
3465 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3466 * of the wakeup instead of the waker.
3467 */
3468static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3469{
e3baac47
PZ
3470 struct rq *rq = cpu_rq(cpu);
3471
b7e7ade3
PZ
3472 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3473
126c2092 3474 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3475 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3476}
d6aa8f85 3477
f6be8af1
CL
3478void wake_up_if_idle(int cpu)
3479{
3480 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3481 struct rq_flags rf;
f6be8af1 3482
fd7de1e8
AL
3483 rcu_read_lock();
3484
3485 if (!is_idle_task(rcu_dereference(rq->curr)))
3486 goto out;
f6be8af1
CL
3487
3488 if (set_nr_if_polling(rq->idle)) {
3489 trace_sched_wake_idle_without_ipi(cpu);
3490 } else {
8a8c69c3 3491 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3492 if (is_idle_task(rq->curr))
3493 smp_send_reschedule(cpu);
d1ccc66d 3494 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3495 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3496 }
fd7de1e8
AL
3497
3498out:
3499 rcu_read_unlock();
f6be8af1
CL
3500}
3501
39be3501 3502bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3503{
3504 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3505}
c6e7bd7a 3506
2ebb1771
MG
3507static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3508{
5ba2ffba
PZ
3509 /*
3510 * Do not complicate things with the async wake_list while the CPU is
3511 * in hotplug state.
3512 */
3513 if (!cpu_active(cpu))
3514 return false;
3515
2ebb1771
MG
3516 /*
3517 * If the CPU does not share cache, then queue the task on the
3518 * remote rqs wakelist to avoid accessing remote data.
3519 */
3520 if (!cpus_share_cache(smp_processor_id(), cpu))
3521 return true;
3522
3523 /*
3524 * If the task is descheduling and the only running task on the
3525 * CPU then use the wakelist to offload the task activation to
3526 * the soon-to-be-idle CPU as the current CPU is likely busy.
3527 * nr_running is checked to avoid unnecessary task stacking.
3528 */
739f70b4 3529 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3530 return true;
3531
3532 return false;
3533}
3534
3535static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3536{
2ebb1771 3537 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3538 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3539 return false;
3540
c6e7bd7a 3541 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3542 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3543 return true;
3544 }
3545
3546 return false;
3547}
58877d34
PZ
3548
3549#else /* !CONFIG_SMP */
3550
3551static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3552{
3553 return false;
3554}
3555
d6aa8f85 3556#endif /* CONFIG_SMP */
317f3941 3557
b5179ac7 3558static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3559{
3560 struct rq *rq = cpu_rq(cpu);
d8ac8971 3561 struct rq_flags rf;
c05fbafb 3562
2ebb1771 3563 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3564 return;
317f3941 3565
8a8c69c3 3566 rq_lock(rq, &rf);
77558e4d 3567 update_rq_clock(rq);
d8ac8971 3568 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3569 rq_unlock(rq, &rf);
9ed3811a
TH
3570}
3571
8643cda5
PZ
3572/*
3573 * Notes on Program-Order guarantees on SMP systems.
3574 *
3575 * MIGRATION
3576 *
3577 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3578 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3579 * execution on its new CPU [c1].
8643cda5
PZ
3580 *
3581 * For migration (of runnable tasks) this is provided by the following means:
3582 *
3583 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3584 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3585 * rq(c1)->lock (if not at the same time, then in that order).
3586 * C) LOCK of the rq(c1)->lock scheduling in task
3587 *
7696f991 3588 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3589 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3590 *
3591 * Example:
3592 *
3593 * CPU0 CPU1 CPU2
3594 *
3595 * LOCK rq(0)->lock
3596 * sched-out X
3597 * sched-in Y
3598 * UNLOCK rq(0)->lock
3599 *
3600 * LOCK rq(0)->lock // orders against CPU0
3601 * dequeue X
3602 * UNLOCK rq(0)->lock
3603 *
3604 * LOCK rq(1)->lock
3605 * enqueue X
3606 * UNLOCK rq(1)->lock
3607 *
3608 * LOCK rq(1)->lock // orders against CPU2
3609 * sched-out Z
3610 * sched-in X
3611 * UNLOCK rq(1)->lock
3612 *
3613 *
3614 * BLOCKING -- aka. SLEEP + WAKEUP
3615 *
3616 * For blocking we (obviously) need to provide the same guarantee as for
3617 * migration. However the means are completely different as there is no lock
3618 * chain to provide order. Instead we do:
3619 *
58877d34
PZ
3620 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3621 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3622 *
3623 * Example:
3624 *
3625 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3626 *
3627 * LOCK rq(0)->lock LOCK X->pi_lock
3628 * dequeue X
3629 * sched-out X
3630 * smp_store_release(X->on_cpu, 0);
3631 *
1f03e8d2 3632 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3633 * X->state = WAKING
3634 * set_task_cpu(X,2)
3635 *
3636 * LOCK rq(2)->lock
3637 * enqueue X
3638 * X->state = RUNNING
3639 * UNLOCK rq(2)->lock
3640 *
3641 * LOCK rq(2)->lock // orders against CPU1
3642 * sched-out Z
3643 * sched-in X
3644 * UNLOCK rq(2)->lock
3645 *
3646 * UNLOCK X->pi_lock
3647 * UNLOCK rq(0)->lock
3648 *
3649 *
7696f991
AP
3650 * However, for wakeups there is a second guarantee we must provide, namely we
3651 * must ensure that CONDITION=1 done by the caller can not be reordered with
3652 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3653 */
3654
9ed3811a 3655/**
1da177e4 3656 * try_to_wake_up - wake up a thread
9ed3811a 3657 * @p: the thread to be awakened
1da177e4 3658 * @state: the mask of task states that can be woken
9ed3811a 3659 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3660 *
58877d34
PZ
3661 * Conceptually does:
3662 *
3663 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3664 *
a2250238
PZ
3665 * If the task was not queued/runnable, also place it back on a runqueue.
3666 *
58877d34
PZ
3667 * This function is atomic against schedule() which would dequeue the task.
3668 *
3669 * It issues a full memory barrier before accessing @p->state, see the comment
3670 * with set_current_state().
a2250238 3671 *
58877d34 3672 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3673 *
58877d34
PZ
3674 * Relies on p->pi_lock stabilizing:
3675 * - p->sched_class
3676 * - p->cpus_ptr
3677 * - p->sched_task_group
3678 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3679 *
3680 * Tries really hard to only take one task_rq(p)->lock for performance.
3681 * Takes rq->lock in:
3682 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3683 * - ttwu_queue() -- new rq, for enqueue of the task;
3684 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3685 *
3686 * As a consequence we race really badly with just about everything. See the
3687 * many memory barriers and their comments for details.
7696f991 3688 *
a2250238
PZ
3689 * Return: %true if @p->state changes (an actual wakeup was done),
3690 * %false otherwise.
1da177e4 3691 */
e4a52bcb
PZ
3692static int
3693try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3694{
1da177e4 3695 unsigned long flags;
c05fbafb 3696 int cpu, success = 0;
2398f2c6 3697
e3d85487 3698 preempt_disable();
aacedf26
PZ
3699 if (p == current) {
3700 /*
3701 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3702 * == smp_processor_id()'. Together this means we can special
58877d34 3703 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3704 * without taking any locks.
3705 *
3706 * In particular:
3707 * - we rely on Program-Order guarantees for all the ordering,
3708 * - we're serialized against set_special_state() by virtue of
3709 * it disabling IRQs (this allows not taking ->pi_lock).
3710 */
2f064a59 3711 if (!(READ_ONCE(p->__state) & state))
e3d85487 3712 goto out;
aacedf26
PZ
3713
3714 success = 1;
aacedf26 3715 trace_sched_waking(p);
2f064a59 3716 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
3717 trace_sched_wakeup(p);
3718 goto out;
3719 }
3720
e0acd0a6
ON
3721 /*
3722 * If we are going to wake up a thread waiting for CONDITION we
3723 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3724 * reordered with p->state check below. This pairs with smp_store_mb()
3725 * in set_current_state() that the waiting thread does.
e0acd0a6 3726 */
013fdb80 3727 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3728 smp_mb__after_spinlock();
2f064a59 3729 if (!(READ_ONCE(p->__state) & state))
aacedf26 3730 goto unlock;
1da177e4 3731
fbd705a0
PZ
3732 trace_sched_waking(p);
3733
d1ccc66d
IM
3734 /* We're going to change ->state: */
3735 success = 1;
1da177e4 3736
135e8c92
BS
3737 /*
3738 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3739 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3740 * in smp_cond_load_acquire() below.
3741 *
3d85b270
AP
3742 * sched_ttwu_pending() try_to_wake_up()
3743 * STORE p->on_rq = 1 LOAD p->state
3744 * UNLOCK rq->lock
3745 *
3746 * __schedule() (switch to task 'p')
3747 * LOCK rq->lock smp_rmb();
3748 * smp_mb__after_spinlock();
3749 * UNLOCK rq->lock
135e8c92
BS
3750 *
3751 * [task p]
3d85b270 3752 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3753 *
3d85b270
AP
3754 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3755 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3756 *
3757 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3758 */
3759 smp_rmb();
58877d34 3760 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3761 goto unlock;
1da177e4 3762
1da177e4 3763#ifdef CONFIG_SMP
ecf7d01c
PZ
3764 /*
3765 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3766 * possible to, falsely, observe p->on_cpu == 0.
3767 *
3768 * One must be running (->on_cpu == 1) in order to remove oneself
3769 * from the runqueue.
3770 *
3d85b270
AP
3771 * __schedule() (switch to task 'p') try_to_wake_up()
3772 * STORE p->on_cpu = 1 LOAD p->on_rq
3773 * UNLOCK rq->lock
3774 *
3775 * __schedule() (put 'p' to sleep)
3776 * LOCK rq->lock smp_rmb();
3777 * smp_mb__after_spinlock();
3778 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3779 *
3d85b270
AP
3780 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3781 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3782 *
3783 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3784 * schedule()'s deactivate_task() has 'happened' and p will no longer
3785 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3786 */
dbfb089d
PZ
3787 smp_acquire__after_ctrl_dep();
3788
3789 /*
3790 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3791 * == 0), which means we need to do an enqueue, change p->state to
3792 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3793 * enqueue, such as ttwu_queue_wakelist().
3794 */
2f064a59 3795 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 3796
c6e7bd7a
PZ
3797 /*
3798 * If the owning (remote) CPU is still in the middle of schedule() with
3799 * this task as prev, considering queueing p on the remote CPUs wake_list
3800 * which potentially sends an IPI instead of spinning on p->on_cpu to
3801 * let the waker make forward progress. This is safe because IRQs are
3802 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3803 *
3804 * Ensure we load task_cpu(p) after p->on_cpu:
3805 *
3806 * set_task_cpu(p, cpu);
3807 * STORE p->cpu = @cpu
3808 * __schedule() (switch to task 'p')
3809 * LOCK rq->lock
3810 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3811 * STORE p->on_cpu = 1 LOAD p->cpu
3812 *
3813 * to ensure we observe the correct CPU on which the task is currently
3814 * scheduling.
c6e7bd7a 3815 */
b6e13e85 3816 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3817 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3818 goto unlock;
3819
e9c84311 3820 /*
d1ccc66d 3821 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3822 * this task as prev, wait until it's done referencing the task.
b75a2253 3823 *
31cb1bc0 3824 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3825 *
3826 * This ensures that tasks getting woken will be fully ordered against
3827 * their previous state and preserve Program Order.
0970d299 3828 */
1f03e8d2 3829 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3830
3aef1551 3831 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3832 if (task_cpu(p) != cpu) {
ec618b84
PZ
3833 if (p->in_iowait) {
3834 delayacct_blkio_end(p);
3835 atomic_dec(&task_rq(p)->nr_iowait);
3836 }
3837
f339b9dc 3838 wake_flags |= WF_MIGRATED;
eb414681 3839 psi_ttwu_dequeue(p);
e4a52bcb 3840 set_task_cpu(p, cpu);
f339b9dc 3841 }
b6e13e85
PZ
3842#else
3843 cpu = task_cpu(p);
1da177e4 3844#endif /* CONFIG_SMP */
1da177e4 3845
b5179ac7 3846 ttwu_queue(p, cpu, wake_flags);
aacedf26 3847unlock:
013fdb80 3848 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3849out:
3850 if (success)
b6e13e85 3851 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3852 preempt_enable();
1da177e4
LT
3853
3854 return success;
3855}
3856
2beaf328
PM
3857/**
3858 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3859 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3860 * @func: Function to invoke.
3861 * @arg: Argument to function.
3862 *
3863 * If the specified task can be quickly locked into a definite state
3864 * (either sleeping or on a given runqueue), arrange to keep it in that
3865 * state while invoking @func(@arg). This function can use ->on_rq and
3866 * task_curr() to work out what the state is, if required. Given that
3867 * @func can be invoked with a runqueue lock held, it had better be quite
3868 * lightweight.
3869 *
3870 * Returns:
3871 * @false if the task slipped out from under the locks.
3872 * @true if the task was locked onto a runqueue or is sleeping.
3873 * However, @func can override this by returning @false.
3874 */
3875bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3876{
2beaf328 3877 struct rq_flags rf;
1b7af295 3878 bool ret = false;
2beaf328
PM
3879 struct rq *rq;
3880
1b7af295 3881 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3882 if (p->on_rq) {
3883 rq = __task_rq_lock(p, &rf);
3884 if (task_rq(p) == rq)
3885 ret = func(p, arg);
3886 rq_unlock(rq, &rf);
3887 } else {
2f064a59 3888 switch (READ_ONCE(p->__state)) {
2beaf328
PM
3889 case TASK_RUNNING:
3890 case TASK_WAKING:
3891 break;
3892 default:
3893 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3894 if (!p->on_rq)
3895 ret = func(p, arg);
3896 }
3897 }
1b7af295 3898 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3899 return ret;
3900}
3901
50fa610a
DH
3902/**
3903 * wake_up_process - Wake up a specific process
3904 * @p: The process to be woken up.
3905 *
3906 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3907 * processes.
3908 *
3909 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3910 *
7696f991 3911 * This function executes a full memory barrier before accessing the task state.
50fa610a 3912 */
7ad5b3a5 3913int wake_up_process(struct task_struct *p)
1da177e4 3914{
9067ac85 3915 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3916}
1da177e4
LT
3917EXPORT_SYMBOL(wake_up_process);
3918
7ad5b3a5 3919int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3920{
3921 return try_to_wake_up(p, state, 0);
3922}
3923
1da177e4
LT
3924/*
3925 * Perform scheduler related setup for a newly forked process p.
3926 * p is forked by current.
dd41f596
IM
3927 *
3928 * __sched_fork() is basic setup used by init_idle() too:
3929 */
5e1576ed 3930static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3931{
fd2f4419
PZ
3932 p->on_rq = 0;
3933
3934 p->se.on_rq = 0;
dd41f596
IM
3935 p->se.exec_start = 0;
3936 p->se.sum_exec_runtime = 0;
f6cf891c 3937 p->se.prev_sum_exec_runtime = 0;
6c594c21 3938 p->se.nr_migrations = 0;
da7a735e 3939 p->se.vruntime = 0;
fd2f4419 3940 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3941
ad936d86
BP
3942#ifdef CONFIG_FAIR_GROUP_SCHED
3943 p->se.cfs_rq = NULL;
3944#endif
3945
6cfb0d5d 3946#ifdef CONFIG_SCHEDSTATS
cb251765 3947 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3948 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3949#endif
476d139c 3950
aab03e05 3951 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3952 init_dl_task_timer(&p->dl);
209a0cbd 3953 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3954 __dl_clear_params(p);
aab03e05 3955
fa717060 3956 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3957 p->rt.timeout = 0;
3958 p->rt.time_slice = sched_rr_timeslice;
3959 p->rt.on_rq = 0;
3960 p->rt.on_list = 0;
476d139c 3961
e107be36
AK
3962#ifdef CONFIG_PREEMPT_NOTIFIERS
3963 INIT_HLIST_HEAD(&p->preempt_notifiers);
3964#endif
cbee9f88 3965
5e1f0f09
MG
3966#ifdef CONFIG_COMPACTION
3967 p->capture_control = NULL;
3968#endif
13784475 3969 init_numa_balancing(clone_flags, p);
a1488664 3970#ifdef CONFIG_SMP
8c4890d1 3971 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3972 p->migration_pending = NULL;
a1488664 3973#endif
dd41f596
IM
3974}
3975
2a595721
SD
3976DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3977
1a687c2e 3978#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3979
1a687c2e
MG
3980void set_numabalancing_state(bool enabled)
3981{
3982 if (enabled)
2a595721 3983 static_branch_enable(&sched_numa_balancing);
1a687c2e 3984 else
2a595721 3985 static_branch_disable(&sched_numa_balancing);
1a687c2e 3986}
54a43d54
AK
3987
3988#ifdef CONFIG_PROC_SYSCTL
3989int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3990 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3991{
3992 struct ctl_table t;
3993 int err;
2a595721 3994 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3995
3996 if (write && !capable(CAP_SYS_ADMIN))
3997 return -EPERM;
3998
3999 t = *table;
4000 t.data = &state;
4001 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4002 if (err < 0)
4003 return err;
4004 if (write)
4005 set_numabalancing_state(state);
4006 return err;
4007}
4008#endif
4009#endif
dd41f596 4010
4698f88c
JP
4011#ifdef CONFIG_SCHEDSTATS
4012
cb251765
MG
4013DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4014
cb251765
MG
4015static void set_schedstats(bool enabled)
4016{
4017 if (enabled)
4018 static_branch_enable(&sched_schedstats);
4019 else
4020 static_branch_disable(&sched_schedstats);
4021}
4022
4023void force_schedstat_enabled(void)
4024{
4025 if (!schedstat_enabled()) {
4026 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4027 static_branch_enable(&sched_schedstats);
4028 }
4029}
4030
4031static int __init setup_schedstats(char *str)
4032{
4033 int ret = 0;
4034 if (!str)
4035 goto out;
4036
4037 if (!strcmp(str, "enable")) {
1faa491a 4038 set_schedstats(true);
cb251765
MG
4039 ret = 1;
4040 } else if (!strcmp(str, "disable")) {
1faa491a 4041 set_schedstats(false);
cb251765
MG
4042 ret = 1;
4043 }
4044out:
4045 if (!ret)
4046 pr_warn("Unable to parse schedstats=\n");
4047
4048 return ret;
4049}
4050__setup("schedstats=", setup_schedstats);
4051
4052#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4053int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4054 size_t *lenp, loff_t *ppos)
cb251765
MG
4055{
4056 struct ctl_table t;
4057 int err;
4058 int state = static_branch_likely(&sched_schedstats);
4059
4060 if (write && !capable(CAP_SYS_ADMIN))
4061 return -EPERM;
4062
4063 t = *table;
4064 t.data = &state;
4065 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4066 if (err < 0)
4067 return err;
4068 if (write)
4069 set_schedstats(state);
4070 return err;
4071}
4698f88c 4072#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4073#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4074
4075/*
4076 * fork()/clone()-time setup:
4077 */
aab03e05 4078int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4079{
0122ec5b 4080 unsigned long flags;
dd41f596 4081
5e1576ed 4082 __sched_fork(clone_flags, p);
06b83b5f 4083 /*
7dc603c9 4084 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4085 * nobody will actually run it, and a signal or other external
4086 * event cannot wake it up and insert it on the runqueue either.
4087 */
2f064a59 4088 p->__state = TASK_NEW;
dd41f596 4089
c350a04e
MG
4090 /*
4091 * Make sure we do not leak PI boosting priority to the child.
4092 */
4093 p->prio = current->normal_prio;
4094
e8f14172
PB
4095 uclamp_fork(p);
4096
b9dc29e7
MG
4097 /*
4098 * Revert to default priority/policy on fork if requested.
4099 */
4100 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4101 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4102 p->policy = SCHED_NORMAL;
6c697bdf 4103 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4104 p->rt_priority = 0;
4105 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4106 p->static_prio = NICE_TO_PRIO(0);
4107
4108 p->prio = p->normal_prio = __normal_prio(p);
9059393e 4109 set_load_weight(p, false);
6c697bdf 4110
b9dc29e7
MG
4111 /*
4112 * We don't need the reset flag anymore after the fork. It has
4113 * fulfilled its duty:
4114 */
4115 p->sched_reset_on_fork = 0;
4116 }
ca94c442 4117
af0fffd9 4118 if (dl_prio(p->prio))
aab03e05 4119 return -EAGAIN;
af0fffd9 4120 else if (rt_prio(p->prio))
aab03e05 4121 p->sched_class = &rt_sched_class;
af0fffd9 4122 else
2ddbf952 4123 p->sched_class = &fair_sched_class;
b29739f9 4124
7dc603c9 4125 init_entity_runnable_average(&p->se);
cd29fe6f 4126
86951599
PZ
4127 /*
4128 * The child is not yet in the pid-hash so no cgroup attach races,
4129 * and the cgroup is pinned to this child due to cgroup_fork()
4130 * is ran before sched_fork().
4131 *
4132 * Silence PROVE_RCU.
4133 */
0122ec5b 4134 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 4135 rseq_migrate(p);
e210bffd 4136 /*
d1ccc66d 4137 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
4138 * so use __set_task_cpu().
4139 */
af0fffd9 4140 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
4141 if (p->sched_class->task_fork)
4142 p->sched_class->task_fork(p);
0122ec5b 4143 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 4144
f6db8347 4145#ifdef CONFIG_SCHED_INFO
dd41f596 4146 if (likely(sched_info_on()))
52f17b6c 4147 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4148#endif
3ca7a440
PZ
4149#if defined(CONFIG_SMP)
4150 p->on_cpu = 0;
4866cde0 4151#endif
01028747 4152 init_task_preempt_count(p);
806c09a7 4153#ifdef CONFIG_SMP
917b627d 4154 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4155 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4156#endif
aab03e05 4157 return 0;
1da177e4
LT
4158}
4159
13685c4a
QY
4160void sched_post_fork(struct task_struct *p)
4161{
4162 uclamp_post_fork(p);
4163}
4164
332ac17e
DF
4165unsigned long to_ratio(u64 period, u64 runtime)
4166{
4167 if (runtime == RUNTIME_INF)
c52f14d3 4168 return BW_UNIT;
332ac17e
DF
4169
4170 /*
4171 * Doing this here saves a lot of checks in all
4172 * the calling paths, and returning zero seems
4173 * safe for them anyway.
4174 */
4175 if (period == 0)
4176 return 0;
4177
c52f14d3 4178 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4179}
4180
1da177e4
LT
4181/*
4182 * wake_up_new_task - wake up a newly created task for the first time.
4183 *
4184 * This function will do some initial scheduler statistics housekeeping
4185 * that must be done for every newly created context, then puts the task
4186 * on the runqueue and wakes it.
4187 */
3e51e3ed 4188void wake_up_new_task(struct task_struct *p)
1da177e4 4189{
eb580751 4190 struct rq_flags rf;
dd41f596 4191 struct rq *rq;
fabf318e 4192
eb580751 4193 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4194 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4195#ifdef CONFIG_SMP
4196 /*
4197 * Fork balancing, do it here and not earlier because:
3bd37062 4198 * - cpus_ptr can change in the fork path
d1ccc66d 4199 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4200 *
4201 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4202 * as we're not fully set-up yet.
fabf318e 4203 */
32e839dd 4204 p->recent_used_cpu = task_cpu(p);
ce3614da 4205 rseq_migrate(p);
3aef1551 4206 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4207#endif
b7fa30c9 4208 rq = __task_rq_lock(p, &rf);
4126bad6 4209 update_rq_clock(rq);
d0fe0b9c 4210 post_init_entity_util_avg(p);
0017d735 4211
7a57f32a 4212 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4213 trace_sched_wakeup_new(p);
a7558e01 4214 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4215#ifdef CONFIG_SMP
0aaafaab
PZ
4216 if (p->sched_class->task_woken) {
4217 /*
b19a888c 4218 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4219 * drop it.
4220 */
d8ac8971 4221 rq_unpin_lock(rq, &rf);
efbbd05a 4222 p->sched_class->task_woken(rq, p);
d8ac8971 4223 rq_repin_lock(rq, &rf);
0aaafaab 4224 }
9a897c5a 4225#endif
eb580751 4226 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4227}
4228
e107be36
AK
4229#ifdef CONFIG_PREEMPT_NOTIFIERS
4230
b7203428 4231static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4232
2ecd9d29
PZ
4233void preempt_notifier_inc(void)
4234{
b7203428 4235 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4236}
4237EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4238
4239void preempt_notifier_dec(void)
4240{
b7203428 4241 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4242}
4243EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4244
e107be36 4245/**
80dd99b3 4246 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4247 * @notifier: notifier struct to register
e107be36
AK
4248 */
4249void preempt_notifier_register(struct preempt_notifier *notifier)
4250{
b7203428 4251 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4252 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4253
e107be36
AK
4254 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4255}
4256EXPORT_SYMBOL_GPL(preempt_notifier_register);
4257
4258/**
4259 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4260 * @notifier: notifier struct to unregister
e107be36 4261 *
d84525a8 4262 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4263 */
4264void preempt_notifier_unregister(struct preempt_notifier *notifier)
4265{
4266 hlist_del(&notifier->link);
4267}
4268EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4269
1cde2930 4270static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4271{
4272 struct preempt_notifier *notifier;
e107be36 4273
b67bfe0d 4274 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4275 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4276}
4277
1cde2930
PZ
4278static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4279{
b7203428 4280 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4281 __fire_sched_in_preempt_notifiers(curr);
4282}
4283
e107be36 4284static void
1cde2930
PZ
4285__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4286 struct task_struct *next)
e107be36
AK
4287{
4288 struct preempt_notifier *notifier;
e107be36 4289
b67bfe0d 4290 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4291 notifier->ops->sched_out(notifier, next);
4292}
4293
1cde2930
PZ
4294static __always_inline void
4295fire_sched_out_preempt_notifiers(struct task_struct *curr,
4296 struct task_struct *next)
4297{
b7203428 4298 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4299 __fire_sched_out_preempt_notifiers(curr, next);
4300}
4301
6d6bc0ad 4302#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4303
1cde2930 4304static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4305{
4306}
4307
1cde2930 4308static inline void
e107be36
AK
4309fire_sched_out_preempt_notifiers(struct task_struct *curr,
4310 struct task_struct *next)
4311{
4312}
4313
6d6bc0ad 4314#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4315
31cb1bc0 4316static inline void prepare_task(struct task_struct *next)
4317{
4318#ifdef CONFIG_SMP
4319 /*
4320 * Claim the task as running, we do this before switching to it
4321 * such that any running task will have this set.
58877d34
PZ
4322 *
4323 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4324 */
58877d34 4325 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4326#endif
4327}
4328
4329static inline void finish_task(struct task_struct *prev)
4330{
4331#ifdef CONFIG_SMP
4332 /*
58877d34
PZ
4333 * This must be the very last reference to @prev from this CPU. After
4334 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4335 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4336 * finished.
4337 *
4338 * In particular, the load of prev->state in finish_task_switch() must
4339 * happen before this.
4340 *
4341 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4342 */
4343 smp_store_release(&prev->on_cpu, 0);
4344#endif
4345}
4346
565790d2
PZ
4347#ifdef CONFIG_SMP
4348
4349static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4350{
4351 void (*func)(struct rq *rq);
4352 struct callback_head *next;
4353
5cb9eaa3 4354 lockdep_assert_rq_held(rq);
565790d2
PZ
4355
4356 while (head) {
4357 func = (void (*)(struct rq *))head->func;
4358 next = head->next;
4359 head->next = NULL;
4360 head = next;
4361
4362 func(rq);
4363 }
4364}
4365
ae792702
PZ
4366static void balance_push(struct rq *rq);
4367
4368struct callback_head balance_push_callback = {
4369 .next = NULL,
4370 .func = (void (*)(struct callback_head *))balance_push,
4371};
4372
565790d2
PZ
4373static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4374{
4375 struct callback_head *head = rq->balance_callback;
4376
5cb9eaa3 4377 lockdep_assert_rq_held(rq);
ae792702 4378 if (head)
565790d2
PZ
4379 rq->balance_callback = NULL;
4380
4381 return head;
4382}
4383
4384static void __balance_callbacks(struct rq *rq)
4385{
4386 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4387}
4388
4389static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4390{
4391 unsigned long flags;
4392
4393 if (unlikely(head)) {
5cb9eaa3 4394 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4395 do_balance_callbacks(rq, head);
5cb9eaa3 4396 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4397 }
4398}
4399
4400#else
4401
4402static inline void __balance_callbacks(struct rq *rq)
4403{
4404}
4405
4406static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4407{
4408 return NULL;
4409}
4410
4411static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4412{
4413}
4414
4415#endif
4416
269d5992
PZ
4417static inline void
4418prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4419{
269d5992
PZ
4420 /*
4421 * Since the runqueue lock will be released by the next
4422 * task (which is an invalid locking op but in the case
4423 * of the scheduler it's an obvious special-case), so we
4424 * do an early lockdep release here:
4425 */
4426 rq_unpin_lock(rq, rf);
9ef7e7e3 4427 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4428#ifdef CONFIG_DEBUG_SPINLOCK
4429 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4430 rq_lockp(rq)->owner = next;
31cb1bc0 4431#endif
269d5992
PZ
4432}
4433
4434static inline void finish_lock_switch(struct rq *rq)
4435{
31cb1bc0 4436 /*
4437 * If we are tracking spinlock dependencies then we have to
4438 * fix up the runqueue lock - which gets 'carried over' from
4439 * prev into current:
4440 */
9ef7e7e3 4441 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4442 __balance_callbacks(rq);
5cb9eaa3 4443 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4444}
4445
325ea10c
IM
4446/*
4447 * NOP if the arch has not defined these:
4448 */
4449
4450#ifndef prepare_arch_switch
4451# define prepare_arch_switch(next) do { } while (0)
4452#endif
4453
4454#ifndef finish_arch_post_lock_switch
4455# define finish_arch_post_lock_switch() do { } while (0)
4456#endif
4457
5fbda3ec
TG
4458static inline void kmap_local_sched_out(void)
4459{
4460#ifdef CONFIG_KMAP_LOCAL
4461 if (unlikely(current->kmap_ctrl.idx))
4462 __kmap_local_sched_out();
4463#endif
4464}
4465
4466static inline void kmap_local_sched_in(void)
4467{
4468#ifdef CONFIG_KMAP_LOCAL
4469 if (unlikely(current->kmap_ctrl.idx))
4470 __kmap_local_sched_in();
4471#endif
4472}
4473
4866cde0
NP
4474/**
4475 * prepare_task_switch - prepare to switch tasks
4476 * @rq: the runqueue preparing to switch
421cee29 4477 * @prev: the current task that is being switched out
4866cde0
NP
4478 * @next: the task we are going to switch to.
4479 *
4480 * This is called with the rq lock held and interrupts off. It must
4481 * be paired with a subsequent finish_task_switch after the context
4482 * switch.
4483 *
4484 * prepare_task_switch sets up locking and calls architecture specific
4485 * hooks.
4486 */
e107be36
AK
4487static inline void
4488prepare_task_switch(struct rq *rq, struct task_struct *prev,
4489 struct task_struct *next)
4866cde0 4490{
0ed557aa 4491 kcov_prepare_switch(prev);
43148951 4492 sched_info_switch(rq, prev, next);
fe4b04fa 4493 perf_event_task_sched_out(prev, next);
d7822b1e 4494 rseq_preempt(prev);
e107be36 4495 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4496 kmap_local_sched_out();
31cb1bc0 4497 prepare_task(next);
4866cde0
NP
4498 prepare_arch_switch(next);
4499}
4500
1da177e4
LT
4501/**
4502 * finish_task_switch - clean up after a task-switch
4503 * @prev: the thread we just switched away from.
4504 *
4866cde0
NP
4505 * finish_task_switch must be called after the context switch, paired
4506 * with a prepare_task_switch call before the context switch.
4507 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4508 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4509 *
4510 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4511 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4512 * with the lock held can cause deadlocks; see schedule() for
4513 * details.)
dfa50b60
ON
4514 *
4515 * The context switch have flipped the stack from under us and restored the
4516 * local variables which were saved when this task called schedule() in the
4517 * past. prev == current is still correct but we need to recalculate this_rq
4518 * because prev may have moved to another CPU.
1da177e4 4519 */
dfa50b60 4520static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4521 __releases(rq->lock)
4522{
dfa50b60 4523 struct rq *rq = this_rq();
1da177e4 4524 struct mm_struct *mm = rq->prev_mm;
55a101f8 4525 long prev_state;
1da177e4 4526
609ca066
PZ
4527 /*
4528 * The previous task will have left us with a preempt_count of 2
4529 * because it left us after:
4530 *
4531 * schedule()
4532 * preempt_disable(); // 1
4533 * __schedule()
4534 * raw_spin_lock_irq(&rq->lock) // 2
4535 *
4536 * Also, see FORK_PREEMPT_COUNT.
4537 */
e2bf1c4b
PZ
4538 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4539 "corrupted preempt_count: %s/%d/0x%x\n",
4540 current->comm, current->pid, preempt_count()))
4541 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4542
1da177e4
LT
4543 rq->prev_mm = NULL;
4544
4545 /*
4546 * A task struct has one reference for the use as "current".
c394cc9f 4547 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4548 * schedule one last time. The schedule call will never return, and
4549 * the scheduled task must drop that reference.
95913d97
PZ
4550 *
4551 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4552 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4553 * running on another CPU and we could rave with its RUNNING -> DEAD
4554 * transition, resulting in a double drop.
1da177e4 4555 */
2f064a59 4556 prev_state = READ_ONCE(prev->__state);
bf9fae9f 4557 vtime_task_switch(prev);
a8d757ef 4558 perf_event_task_sched_in(prev, current);
31cb1bc0 4559 finish_task(prev);
4560 finish_lock_switch(rq);
01f23e16 4561 finish_arch_post_lock_switch();
0ed557aa 4562 kcov_finish_switch(current);
5fbda3ec
TG
4563 /*
4564 * kmap_local_sched_out() is invoked with rq::lock held and
4565 * interrupts disabled. There is no requirement for that, but the
4566 * sched out code does not have an interrupt enabled section.
4567 * Restoring the maps on sched in does not require interrupts being
4568 * disabled either.
4569 */
4570 kmap_local_sched_in();
e8fa1362 4571
e107be36 4572 fire_sched_in_preempt_notifiers(current);
306e0604 4573 /*
70216e18
MD
4574 * When switching through a kernel thread, the loop in
4575 * membarrier_{private,global}_expedited() may have observed that
4576 * kernel thread and not issued an IPI. It is therefore possible to
4577 * schedule between user->kernel->user threads without passing though
4578 * switch_mm(). Membarrier requires a barrier after storing to
4579 * rq->curr, before returning to userspace, so provide them here:
4580 *
4581 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4582 * provided by mmdrop(),
4583 * - a sync_core for SYNC_CORE.
306e0604 4584 */
70216e18
MD
4585 if (mm) {
4586 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4587 mmdrop(mm);
70216e18 4588 }
1cef1150
PZ
4589 if (unlikely(prev_state == TASK_DEAD)) {
4590 if (prev->sched_class->task_dead)
4591 prev->sched_class->task_dead(prev);
68f24b08 4592
1cef1150
PZ
4593 /*
4594 * Remove function-return probe instances associated with this
4595 * task and put them back on the free list.
4596 */
4597 kprobe_flush_task(prev);
4598
4599 /* Task is done with its stack. */
4600 put_task_stack(prev);
4601
0ff7b2cf 4602 put_task_struct_rcu_user(prev);
c6fd91f0 4603 }
99e5ada9 4604
de734f89 4605 tick_nohz_task_switch();
dfa50b60 4606 return rq;
1da177e4
LT
4607}
4608
4609/**
4610 * schedule_tail - first thing a freshly forked thread must call.
4611 * @prev: the thread we just switched away from.
4612 */
722a9f92 4613asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4614 __releases(rq->lock)
4615{
609ca066
PZ
4616 /*
4617 * New tasks start with FORK_PREEMPT_COUNT, see there and
4618 * finish_task_switch() for details.
4619 *
4620 * finish_task_switch() will drop rq->lock() and lower preempt_count
4621 * and the preempt_enable() will end up enabling preemption (on
4622 * PREEMPT_COUNT kernels).
4623 */
4624
13c2235b 4625 finish_task_switch(prev);
1a43a14a 4626 preempt_enable();
70b97a7f 4627
1da177e4 4628 if (current->set_child_tid)
b488893a 4629 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4630
4631 calculate_sigpending();
1da177e4
LT
4632}
4633
4634/*
dfa50b60 4635 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4636 */
04936948 4637static __always_inline struct rq *
70b97a7f 4638context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4639 struct task_struct *next, struct rq_flags *rf)
1da177e4 4640{
e107be36 4641 prepare_task_switch(rq, prev, next);
fe4b04fa 4642
9226d125
ZA
4643 /*
4644 * For paravirt, this is coupled with an exit in switch_to to
4645 * combine the page table reload and the switch backend into
4646 * one hypercall.
4647 */
224101ed 4648 arch_start_context_switch(prev);
9226d125 4649
306e0604 4650 /*
139d025c
PZ
4651 * kernel -> kernel lazy + transfer active
4652 * user -> kernel lazy + mmgrab() active
4653 *
4654 * kernel -> user switch + mmdrop() active
4655 * user -> user switch
306e0604 4656 */
139d025c
PZ
4657 if (!next->mm) { // to kernel
4658 enter_lazy_tlb(prev->active_mm, next);
4659
4660 next->active_mm = prev->active_mm;
4661 if (prev->mm) // from user
4662 mmgrab(prev->active_mm);
4663 else
4664 prev->active_mm = NULL;
4665 } else { // to user
227a4aad 4666 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4667 /*
4668 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4669 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4670 *
4671 * The below provides this either through switch_mm(), or in
4672 * case 'prev->active_mm == next->mm' through
4673 * finish_task_switch()'s mmdrop().
4674 */
139d025c 4675 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4676
139d025c
PZ
4677 if (!prev->mm) { // from kernel
4678 /* will mmdrop() in finish_task_switch(). */
4679 rq->prev_mm = prev->active_mm;
4680 prev->active_mm = NULL;
4681 }
1da177e4 4682 }
92509b73 4683
cb42c9a3 4684 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4685
269d5992 4686 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4687
4688 /* Here we just switch the register state and the stack. */
4689 switch_to(prev, next, prev);
dd41f596 4690 barrier();
dfa50b60
ON
4691
4692 return finish_task_switch(prev);
1da177e4
LT
4693}
4694
4695/*
1c3e8264 4696 * nr_running and nr_context_switches:
1da177e4
LT
4697 *
4698 * externally visible scheduler statistics: current number of runnable
1c3e8264 4699 * threads, total number of context switches performed since bootup.
1da177e4 4700 */
01aee8fd 4701unsigned int nr_running(void)
1da177e4 4702{
01aee8fd 4703 unsigned int i, sum = 0;
1da177e4
LT
4704
4705 for_each_online_cpu(i)
4706 sum += cpu_rq(i)->nr_running;
4707
4708 return sum;
f711f609 4709}
1da177e4 4710
2ee507c4 4711/*
d1ccc66d 4712 * Check if only the current task is running on the CPU.
00cc1633
DD
4713 *
4714 * Caution: this function does not check that the caller has disabled
4715 * preemption, thus the result might have a time-of-check-to-time-of-use
4716 * race. The caller is responsible to use it correctly, for example:
4717 *
dfcb245e 4718 * - from a non-preemptible section (of course)
00cc1633
DD
4719 *
4720 * - from a thread that is bound to a single CPU
4721 *
4722 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4723 */
4724bool single_task_running(void)
4725{
00cc1633 4726 return raw_rq()->nr_running == 1;
2ee507c4
TC
4727}
4728EXPORT_SYMBOL(single_task_running);
4729
1da177e4 4730unsigned long long nr_context_switches(void)
46cb4b7c 4731{
cc94abfc
SR
4732 int i;
4733 unsigned long long sum = 0;
46cb4b7c 4734
0a945022 4735 for_each_possible_cpu(i)
1da177e4 4736 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4737
1da177e4
LT
4738 return sum;
4739}
483b4ee6 4740
145d952a
DL
4741/*
4742 * Consumers of these two interfaces, like for example the cpuidle menu
4743 * governor, are using nonsensical data. Preferring shallow idle state selection
4744 * for a CPU that has IO-wait which might not even end up running the task when
4745 * it does become runnable.
4746 */
4747
8fc2858e 4748unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
4749{
4750 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4751}
4752
e33a9bba 4753/*
b19a888c 4754 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4755 *
4756 * The idea behind IO-wait account is to account the idle time that we could
4757 * have spend running if it were not for IO. That is, if we were to improve the
4758 * storage performance, we'd have a proportional reduction in IO-wait time.
4759 *
4760 * This all works nicely on UP, where, when a task blocks on IO, we account
4761 * idle time as IO-wait, because if the storage were faster, it could've been
4762 * running and we'd not be idle.
4763 *
4764 * This has been extended to SMP, by doing the same for each CPU. This however
4765 * is broken.
4766 *
4767 * Imagine for instance the case where two tasks block on one CPU, only the one
4768 * CPU will have IO-wait accounted, while the other has regular idle. Even
4769 * though, if the storage were faster, both could've ran at the same time,
4770 * utilising both CPUs.
4771 *
4772 * This means, that when looking globally, the current IO-wait accounting on
4773 * SMP is a lower bound, by reason of under accounting.
4774 *
4775 * Worse, since the numbers are provided per CPU, they are sometimes
4776 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4777 * associated with any one particular CPU, it can wake to another CPU than it
4778 * blocked on. This means the per CPU IO-wait number is meaningless.
4779 *
4780 * Task CPU affinities can make all that even more 'interesting'.
4781 */
4782
97455168 4783unsigned int nr_iowait(void)
1da177e4 4784{
97455168 4785 unsigned int i, sum = 0;
483b4ee6 4786
0a945022 4787 for_each_possible_cpu(i)
145d952a 4788 sum += nr_iowait_cpu(i);
46cb4b7c 4789
1da177e4
LT
4790 return sum;
4791}
483b4ee6 4792
dd41f596 4793#ifdef CONFIG_SMP
8a0be9ef 4794
46cb4b7c 4795/*
38022906
PZ
4796 * sched_exec - execve() is a valuable balancing opportunity, because at
4797 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4798 */
38022906 4799void sched_exec(void)
46cb4b7c 4800{
38022906 4801 struct task_struct *p = current;
1da177e4 4802 unsigned long flags;
0017d735 4803 int dest_cpu;
46cb4b7c 4804
8f42ced9 4805 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4806 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4807 if (dest_cpu == smp_processor_id())
4808 goto unlock;
38022906 4809
8f42ced9 4810 if (likely(cpu_active(dest_cpu))) {
969c7921 4811 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4812
8f42ced9
PZ
4813 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4814 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4815 return;
4816 }
0017d735 4817unlock:
8f42ced9 4818 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4819}
dd41f596 4820
1da177e4
LT
4821#endif
4822
1da177e4 4823DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4824DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4825
4826EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4827EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4828
6075620b
GG
4829/*
4830 * The function fair_sched_class.update_curr accesses the struct curr
4831 * and its field curr->exec_start; when called from task_sched_runtime(),
4832 * we observe a high rate of cache misses in practice.
4833 * Prefetching this data results in improved performance.
4834 */
4835static inline void prefetch_curr_exec_start(struct task_struct *p)
4836{
4837#ifdef CONFIG_FAIR_GROUP_SCHED
4838 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4839#else
4840 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4841#endif
4842 prefetch(curr);
4843 prefetch(&curr->exec_start);
4844}
4845
c5f8d995
HS
4846/*
4847 * Return accounted runtime for the task.
4848 * In case the task is currently running, return the runtime plus current's
4849 * pending runtime that have not been accounted yet.
4850 */
4851unsigned long long task_sched_runtime(struct task_struct *p)
4852{
eb580751 4853 struct rq_flags rf;
c5f8d995 4854 struct rq *rq;
6e998916 4855 u64 ns;
c5f8d995 4856
911b2898
PZ
4857#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4858 /*
97fb7a0a 4859 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4860 * So we have a optimization chance when the task's delta_exec is 0.
4861 * Reading ->on_cpu is racy, but this is ok.
4862 *
d1ccc66d
IM
4863 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4864 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4865 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4866 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4867 * been accounted, so we're correct here as well.
911b2898 4868 */
da0c1e65 4869 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4870 return p->se.sum_exec_runtime;
4871#endif
4872
eb580751 4873 rq = task_rq_lock(p, &rf);
6e998916
SG
4874 /*
4875 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4876 * project cycles that may never be accounted to this
4877 * thread, breaking clock_gettime().
4878 */
4879 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4880 prefetch_curr_exec_start(p);
6e998916
SG
4881 update_rq_clock(rq);
4882 p->sched_class->update_curr(rq);
4883 }
4884 ns = p->se.sum_exec_runtime;
eb580751 4885 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4886
4887 return ns;
4888}
48f24c4d 4889
c006fac5
PT
4890#ifdef CONFIG_SCHED_DEBUG
4891static u64 cpu_resched_latency(struct rq *rq)
4892{
4893 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4894 u64 resched_latency, now = rq_clock(rq);
4895 static bool warned_once;
4896
4897 if (sysctl_resched_latency_warn_once && warned_once)
4898 return 0;
4899
4900 if (!need_resched() || !latency_warn_ms)
4901 return 0;
4902
4903 if (system_state == SYSTEM_BOOTING)
4904 return 0;
4905
4906 if (!rq->last_seen_need_resched_ns) {
4907 rq->last_seen_need_resched_ns = now;
4908 rq->ticks_without_resched = 0;
4909 return 0;
4910 }
4911
4912 rq->ticks_without_resched++;
4913 resched_latency = now - rq->last_seen_need_resched_ns;
4914 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4915 return 0;
4916
4917 warned_once = true;
4918
4919 return resched_latency;
4920}
4921
4922static int __init setup_resched_latency_warn_ms(char *str)
4923{
4924 long val;
4925
4926 if ((kstrtol(str, 0, &val))) {
4927 pr_warn("Unable to set resched_latency_warn_ms\n");
4928 return 1;
4929 }
4930
4931 sysctl_resched_latency_warn_ms = val;
4932 return 1;
4933}
4934__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4935#else
4936static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4937#endif /* CONFIG_SCHED_DEBUG */
4938
7835b98b
CL
4939/*
4940 * This function gets called by the timer code, with HZ frequency.
4941 * We call it with interrupts disabled.
7835b98b
CL
4942 */
4943void scheduler_tick(void)
4944{
7835b98b
CL
4945 int cpu = smp_processor_id();
4946 struct rq *rq = cpu_rq(cpu);
dd41f596 4947 struct task_struct *curr = rq->curr;
8a8c69c3 4948 struct rq_flags rf;
b4eccf5f 4949 unsigned long thermal_pressure;
c006fac5 4950 u64 resched_latency;
3e51f33f 4951
1567c3e3 4952 arch_scale_freq_tick();
3e51f33f 4953 sched_clock_tick();
dd41f596 4954
8a8c69c3
PZ
4955 rq_lock(rq, &rf);
4956
3e51f33f 4957 update_rq_clock(rq);
b4eccf5f 4958 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4959 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4960 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
4961 if (sched_feat(LATENCY_WARN))
4962 resched_latency = cpu_resched_latency(rq);
3289bdb4 4963 calc_global_load_tick(rq);
8a8c69c3
PZ
4964
4965 rq_unlock(rq, &rf);
7835b98b 4966
c006fac5
PT
4967 if (sched_feat(LATENCY_WARN) && resched_latency)
4968 resched_latency_warn(cpu, resched_latency);
4969
e9d2b064 4970 perf_event_task_tick();
e220d2dc 4971
e418e1c2 4972#ifdef CONFIG_SMP
6eb57e0d 4973 rq->idle_balance = idle_cpu(cpu);
7caff66f 4974 trigger_load_balance(rq);
e418e1c2 4975#endif
1da177e4
LT
4976}
4977
265f22a9 4978#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4979
4980struct tick_work {
4981 int cpu;
b55bd585 4982 atomic_t state;
d84b3131
FW
4983 struct delayed_work work;
4984};
b55bd585
PM
4985/* Values for ->state, see diagram below. */
4986#define TICK_SCHED_REMOTE_OFFLINE 0
4987#define TICK_SCHED_REMOTE_OFFLINING 1
4988#define TICK_SCHED_REMOTE_RUNNING 2
4989
4990/*
4991 * State diagram for ->state:
4992 *
4993 *
4994 * TICK_SCHED_REMOTE_OFFLINE
4995 * | ^
4996 * | |
4997 * | | sched_tick_remote()
4998 * | |
4999 * | |
5000 * +--TICK_SCHED_REMOTE_OFFLINING
5001 * | ^
5002 * | |
5003 * sched_tick_start() | | sched_tick_stop()
5004 * | |
5005 * V |
5006 * TICK_SCHED_REMOTE_RUNNING
5007 *
5008 *
5009 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5010 * and sched_tick_start() are happy to leave the state in RUNNING.
5011 */
d84b3131
FW
5012
5013static struct tick_work __percpu *tick_work_cpu;
5014
5015static void sched_tick_remote(struct work_struct *work)
5016{
5017 struct delayed_work *dwork = to_delayed_work(work);
5018 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5019 int cpu = twork->cpu;
5020 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5021 struct task_struct *curr;
d84b3131 5022 struct rq_flags rf;
d9c0ffca 5023 u64 delta;
b55bd585 5024 int os;
d84b3131
FW
5025
5026 /*
5027 * Handle the tick only if it appears the remote CPU is running in full
5028 * dynticks mode. The check is racy by nature, but missing a tick or
5029 * having one too much is no big deal because the scheduler tick updates
5030 * statistics and checks timeslices in a time-independent way, regardless
5031 * of when exactly it is running.
5032 */
488603b8 5033 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5034 goto out_requeue;
d84b3131 5035
d9c0ffca
FW
5036 rq_lock_irq(rq, &rf);
5037 curr = rq->curr;
488603b8 5038 if (cpu_is_offline(cpu))
d9c0ffca 5039 goto out_unlock;
d84b3131 5040
d9c0ffca 5041 update_rq_clock(rq);
d9c0ffca 5042
488603b8
SW
5043 if (!is_idle_task(curr)) {
5044 /*
5045 * Make sure the next tick runs within a reasonable
5046 * amount of time.
5047 */
5048 delta = rq_clock_task(rq) - curr->se.exec_start;
5049 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5050 }
d9c0ffca
FW
5051 curr->sched_class->task_tick(rq, curr, 0);
5052
ebc0f83c 5053 calc_load_nohz_remote(rq);
d9c0ffca
FW
5054out_unlock:
5055 rq_unlock_irq(rq, &rf);
d9c0ffca 5056out_requeue:
ebc0f83c 5057
d84b3131
FW
5058 /*
5059 * Run the remote tick once per second (1Hz). This arbitrary
5060 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5061 * to keep scheduler internal stats reasonably up to date. But
5062 * first update state to reflect hotplug activity if required.
d84b3131 5063 */
b55bd585
PM
5064 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5065 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5066 if (os == TICK_SCHED_REMOTE_RUNNING)
5067 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5068}
5069
5070static void sched_tick_start(int cpu)
5071{
b55bd585 5072 int os;
d84b3131
FW
5073 struct tick_work *twork;
5074
5075 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5076 return;
5077
5078 WARN_ON_ONCE(!tick_work_cpu);
5079
5080 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5081 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5082 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5083 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5084 twork->cpu = cpu;
5085 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5086 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5087 }
d84b3131
FW
5088}
5089
5090#ifdef CONFIG_HOTPLUG_CPU
5091static void sched_tick_stop(int cpu)
5092{
5093 struct tick_work *twork;
b55bd585 5094 int os;
d84b3131
FW
5095
5096 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5097 return;
5098
5099 WARN_ON_ONCE(!tick_work_cpu);
5100
5101 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5102 /* There cannot be competing actions, but don't rely on stop-machine. */
5103 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5104 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5105 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5106}
5107#endif /* CONFIG_HOTPLUG_CPU */
5108
5109int __init sched_tick_offload_init(void)
5110{
5111 tick_work_cpu = alloc_percpu(struct tick_work);
5112 BUG_ON(!tick_work_cpu);
d84b3131
FW
5113 return 0;
5114}
5115
5116#else /* !CONFIG_NO_HZ_FULL */
5117static inline void sched_tick_start(int cpu) { }
5118static inline void sched_tick_stop(int cpu) { }
265f22a9 5119#endif
1da177e4 5120
c1a280b6 5121#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5122 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5123/*
5124 * If the value passed in is equal to the current preempt count
5125 * then we just disabled preemption. Start timing the latency.
5126 */
5127static inline void preempt_latency_start(int val)
5128{
5129 if (preempt_count() == val) {
5130 unsigned long ip = get_lock_parent_ip();
5131#ifdef CONFIG_DEBUG_PREEMPT
5132 current->preempt_disable_ip = ip;
5133#endif
5134 trace_preempt_off(CALLER_ADDR0, ip);
5135 }
5136}
7e49fcce 5137
edafe3a5 5138void preempt_count_add(int val)
1da177e4 5139{
6cd8a4bb 5140#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5141 /*
5142 * Underflow?
5143 */
9a11b49a
IM
5144 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5145 return;
6cd8a4bb 5146#endif
bdb43806 5147 __preempt_count_add(val);
6cd8a4bb 5148#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5149 /*
5150 * Spinlock count overflowing soon?
5151 */
33859f7f
MOS
5152 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5153 PREEMPT_MASK - 10);
6cd8a4bb 5154#endif
47252cfb 5155 preempt_latency_start(val);
1da177e4 5156}
bdb43806 5157EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5158NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5159
47252cfb
SR
5160/*
5161 * If the value passed in equals to the current preempt count
5162 * then we just enabled preemption. Stop timing the latency.
5163 */
5164static inline void preempt_latency_stop(int val)
5165{
5166 if (preempt_count() == val)
5167 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5168}
5169
edafe3a5 5170void preempt_count_sub(int val)
1da177e4 5171{
6cd8a4bb 5172#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5173 /*
5174 * Underflow?
5175 */
01e3eb82 5176 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5177 return;
1da177e4
LT
5178 /*
5179 * Is the spinlock portion underflowing?
5180 */
9a11b49a
IM
5181 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5182 !(preempt_count() & PREEMPT_MASK)))
5183 return;
6cd8a4bb 5184#endif
9a11b49a 5185
47252cfb 5186 preempt_latency_stop(val);
bdb43806 5187 __preempt_count_sub(val);
1da177e4 5188}
bdb43806 5189EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5190NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5191
47252cfb
SR
5192#else
5193static inline void preempt_latency_start(int val) { }
5194static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5195#endif
5196
59ddbcb2
IM
5197static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5198{
5199#ifdef CONFIG_DEBUG_PREEMPT
5200 return p->preempt_disable_ip;
5201#else
5202 return 0;
5203#endif
5204}
5205
1da177e4 5206/*
dd41f596 5207 * Print scheduling while atomic bug:
1da177e4 5208 */
dd41f596 5209static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5210{
d1c6d149
VN
5211 /* Save this before calling printk(), since that will clobber it */
5212 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5213
664dfa65
DJ
5214 if (oops_in_progress)
5215 return;
5216
3df0fc5b
PZ
5217 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5218 prev->comm, prev->pid, preempt_count());
838225b4 5219
dd41f596 5220 debug_show_held_locks(prev);
e21f5b15 5221 print_modules();
dd41f596
IM
5222 if (irqs_disabled())
5223 print_irqtrace_events(prev);
d1c6d149
VN
5224 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5225 && in_atomic_preempt_off()) {
8f47b187 5226 pr_err("Preemption disabled at:");
2062a4e8 5227 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5228 }
748c7201
DBO
5229 if (panic_on_warn)
5230 panic("scheduling while atomic\n");
5231
6135fc1e 5232 dump_stack();
373d4d09 5233 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5234}
1da177e4 5235
dd41f596
IM
5236/*
5237 * Various schedule()-time debugging checks and statistics:
5238 */
312364f3 5239static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5240{
0d9e2632 5241#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5242 if (task_stack_end_corrupted(prev))
5243 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5244
5245 if (task_scs_end_corrupted(prev))
5246 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5247#endif
b99def8b 5248
312364f3 5249#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5250 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5251 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5252 prev->comm, prev->pid, prev->non_block_count);
5253 dump_stack();
5254 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5255 }
5256#endif
5257
1dc0fffc 5258 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5259 __schedule_bug(prev);
1dc0fffc
PZ
5260 preempt_count_set(PREEMPT_DISABLED);
5261 }
b3fbab05 5262 rcu_sleep_check();
9f68b5b7 5263 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5264
1da177e4
LT
5265 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5266
ae92882e 5267 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5268}
5269
457d1f46
CY
5270static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5271 struct rq_flags *rf)
5272{
5273#ifdef CONFIG_SMP
5274 const struct sched_class *class;
5275 /*
5276 * We must do the balancing pass before put_prev_task(), such
5277 * that when we release the rq->lock the task is in the same
5278 * state as before we took rq->lock.
5279 *
5280 * We can terminate the balance pass as soon as we know there is
5281 * a runnable task of @class priority or higher.
5282 */
5283 for_class_range(class, prev->sched_class, &idle_sched_class) {
5284 if (class->balance(rq, prev, rf))
5285 break;
5286 }
5287#endif
5288
5289 put_prev_task(rq, prev);
5290}
5291
dd41f596
IM
5292/*
5293 * Pick up the highest-prio task:
5294 */
5295static inline struct task_struct *
539f6512 5296__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5297{
49ee5768 5298 const struct sched_class *class;
dd41f596 5299 struct task_struct *p;
1da177e4
LT
5300
5301 /*
0ba87bb2
PZ
5302 * Optimization: we know that if all tasks are in the fair class we can
5303 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5304 * higher scheduling class, because otherwise those lose the
0ba87bb2 5305 * opportunity to pull in more work from other CPUs.
1da177e4 5306 */
aa93cd53 5307 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5308 rq->nr_running == rq->cfs.h_nr_running)) {
5309
5d7d6056 5310 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5311 if (unlikely(p == RETRY_TASK))
67692435 5312 goto restart;
6ccdc84b 5313
1699949d 5314 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5315 if (!p) {
f488e105 5316 put_prev_task(rq, prev);
98c2f700 5317 p = pick_next_task_idle(rq);
f488e105 5318 }
6ccdc84b
PZ
5319
5320 return p;
1da177e4
LT
5321 }
5322
67692435 5323restart:
457d1f46 5324 put_prev_task_balance(rq, prev, rf);
67692435 5325
34f971f6 5326 for_each_class(class) {
98c2f700 5327 p = class->pick_next_task(rq);
67692435 5328 if (p)
dd41f596 5329 return p;
dd41f596 5330 }
34f971f6 5331
d1ccc66d
IM
5332 /* The idle class should always have a runnable task: */
5333 BUG();
dd41f596 5334}
1da177e4 5335
9edeaea1 5336#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5337static inline bool is_task_rq_idle(struct task_struct *t)
5338{
5339 return (task_rq(t)->idle == t);
5340}
5341
5342static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5343{
5344 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5345}
5346
5347static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5348{
5349 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5350 return true;
5351
5352 return a->core_cookie == b->core_cookie;
5353}
5354
5355// XXX fairness/fwd progress conditions
5356/*
5357 * Returns
5358 * - NULL if there is no runnable task for this class.
5359 * - the highest priority task for this runqueue if it matches
5360 * rq->core->core_cookie or its priority is greater than max.
5361 * - Else returns idle_task.
5362 */
5363static struct task_struct *
c6047c2e 5364pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
539f6512
PZ
5365{
5366 struct task_struct *class_pick, *cookie_pick;
5367 unsigned long cookie = rq->core->core_cookie;
5368
5369 class_pick = class->pick_task(rq);
5370 if (!class_pick)
5371 return NULL;
5372
5373 if (!cookie) {
5374 /*
5375 * If class_pick is tagged, return it only if it has
5376 * higher priority than max.
5377 */
5378 if (max && class_pick->core_cookie &&
c6047c2e 5379 prio_less(class_pick, max, in_fi))
539f6512
PZ
5380 return idle_sched_class.pick_task(rq);
5381
5382 return class_pick;
5383 }
5384
5385 /*
5386 * If class_pick is idle or matches cookie, return early.
5387 */
5388 if (cookie_equals(class_pick, cookie))
5389 return class_pick;
5390
5391 cookie_pick = sched_core_find(rq, cookie);
5392
5393 /*
5394 * If class > max && class > cookie, it is the highest priority task on
5395 * the core (so far) and it must be selected, otherwise we must go with
5396 * the cookie pick in order to satisfy the constraint.
5397 */
c6047c2e
JFG
5398 if (prio_less(cookie_pick, class_pick, in_fi) &&
5399 (!max || prio_less(max, class_pick, in_fi)))
539f6512
PZ
5400 return class_pick;
5401
5402 return cookie_pick;
5403}
5404
c6047c2e
JFG
5405extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5406
539f6512
PZ
5407static struct task_struct *
5408pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5409{
5410 struct task_struct *next, *max = NULL;
5411 const struct sched_class *class;
5412 const struct cpumask *smt_mask;
c6047c2e 5413 bool fi_before = false;
d2dfa17b 5414 int i, j, cpu, occ = 0;
539f6512 5415 bool need_sync;
539f6512
PZ
5416
5417 if (!sched_core_enabled(rq))
5418 return __pick_next_task(rq, prev, rf);
5419
5420 cpu = cpu_of(rq);
5421
5422 /* Stopper task is switching into idle, no need core-wide selection. */
5423 if (cpu_is_offline(cpu)) {
5424 /*
5425 * Reset core_pick so that we don't enter the fastpath when
5426 * coming online. core_pick would already be migrated to
5427 * another cpu during offline.
5428 */
5429 rq->core_pick = NULL;
5430 return __pick_next_task(rq, prev, rf);
5431 }
5432
5433 /*
5434 * If there were no {en,de}queues since we picked (IOW, the task
5435 * pointers are all still valid), and we haven't scheduled the last
5436 * pick yet, do so now.
5437 *
5438 * rq->core_pick can be NULL if no selection was made for a CPU because
5439 * it was either offline or went offline during a sibling's core-wide
5440 * selection. In this case, do a core-wide selection.
5441 */
5442 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5443 rq->core->core_pick_seq != rq->core_sched_seq &&
5444 rq->core_pick) {
5445 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5446
5447 next = rq->core_pick;
5448 if (next != prev) {
5449 put_prev_task(rq, prev);
5450 set_next_task(rq, next);
5451 }
5452
5453 rq->core_pick = NULL;
5454 return next;
5455 }
5456
5457 put_prev_task_balance(rq, prev, rf);
5458
5459 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5460 need_sync = !!rq->core->core_cookie;
5461
5462 /* reset state */
5463 rq->core->core_cookie = 0UL;
5464 if (rq->core->core_forceidle) {
5465 need_sync = true;
5466 fi_before = true;
5467 rq->core->core_forceidle = false;
5468 }
539f6512
PZ
5469
5470 /*
5471 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5472 *
5473 * @task_seq guards the task state ({en,de}queues)
5474 * @pick_seq is the @task_seq we did a selection on
5475 * @sched_seq is the @pick_seq we scheduled
5476 *
5477 * However, preemptions can cause multiple picks on the same task set.
5478 * 'Fix' this by also increasing @task_seq for every pick.
5479 */
5480 rq->core->core_task_seq++;
539f6512 5481
7afbba11
JFG
5482 /*
5483 * Optimize for common case where this CPU has no cookies
5484 * and there are no cookied tasks running on siblings.
5485 */
5486 if (!need_sync) {
5487 for_each_class(class) {
5488 next = class->pick_task(rq);
5489 if (next)
5490 break;
5491 }
5492
5493 if (!next->core_cookie) {
5494 rq->core_pick = NULL;
c6047c2e
JFG
5495 /*
5496 * For robustness, update the min_vruntime_fi for
5497 * unconstrained picks as well.
5498 */
5499 WARN_ON_ONCE(fi_before);
5500 task_vruntime_update(rq, next, false);
7afbba11
JFG
5501 goto done;
5502 }
8039e96f 5503 }
7afbba11 5504
539f6512
PZ
5505 for_each_cpu(i, smt_mask) {
5506 struct rq *rq_i = cpu_rq(i);
5507
5508 rq_i->core_pick = NULL;
5509
539f6512
PZ
5510 if (i != cpu)
5511 update_rq_clock(rq_i);
5512 }
5513
5514 /*
cc00c198 5515 * Try and select tasks for each sibling in descending sched_class
539f6512
PZ
5516 * order.
5517 */
5518 for_each_class(class) {
5519again:
5520 for_each_cpu_wrap(i, smt_mask, cpu) {
5521 struct rq *rq_i = cpu_rq(i);
5522 struct task_struct *p;
5523
5524 if (rq_i->core_pick)
5525 continue;
5526
5527 /*
5528 * If this sibling doesn't yet have a suitable task to
cc00c198 5529 * run; ask for the most eligible task, given the
539f6512
PZ
5530 * highest priority task already selected for this
5531 * core.
5532 */
c6047c2e 5533 p = pick_task(rq_i, class, max, fi_before);
7afbba11 5534 if (!p)
539f6512 5535 continue;
539f6512 5536
d2dfa17b
PZ
5537 if (!is_task_rq_idle(p))
5538 occ++;
5539
539f6512 5540 rq_i->core_pick = p;
c6047c2e
JFG
5541 if (rq_i->idle == p && rq_i->nr_running) {
5542 rq->core->core_forceidle = true;
5543 if (!fi_before)
5544 rq->core->core_forceidle_seq++;
5545 }
539f6512
PZ
5546
5547 /*
5548 * If this new candidate is of higher priority than the
5549 * previous; and they're incompatible; we need to wipe
5550 * the slate and start over. pick_task makes sure that
5551 * p's priority is more than max if it doesn't match
5552 * max's cookie.
5553 *
5554 * NOTE: this is a linear max-filter and is thus bounded
5555 * in execution time.
5556 */
5557 if (!max || !cookie_match(max, p)) {
5558 struct task_struct *old_max = max;
5559
5560 rq->core->core_cookie = p->core_cookie;
5561 max = p;
5562
5563 if (old_max) {
c6047c2e 5564 rq->core->core_forceidle = false;
539f6512
PZ
5565 for_each_cpu(j, smt_mask) {
5566 if (j == i)
5567 continue;
5568
5569 cpu_rq(j)->core_pick = NULL;
5570 }
d2dfa17b 5571 occ = 1;
539f6512 5572 goto again;
539f6512 5573 }
539f6512
PZ
5574 }
5575 }
539f6512
PZ
5576 }
5577
5578 rq->core->core_pick_seq = rq->core->core_task_seq;
5579 next = rq->core_pick;
5580 rq->core_sched_seq = rq->core->core_pick_seq;
5581
5582 /* Something should have been selected for current CPU */
5583 WARN_ON_ONCE(!next);
5584
5585 /*
5586 * Reschedule siblings
5587 *
5588 * NOTE: L1TF -- at this point we're no longer running the old task and
5589 * sending an IPI (below) ensures the sibling will no longer be running
5590 * their task. This ensures there is no inter-sibling overlap between
5591 * non-matching user state.
5592 */
5593 for_each_cpu(i, smt_mask) {
5594 struct rq *rq_i = cpu_rq(i);
5595
5596 /*
5597 * An online sibling might have gone offline before a task
5598 * could be picked for it, or it might be offline but later
5599 * happen to come online, but its too late and nothing was
5600 * picked for it. That's Ok - it will pick tasks for itself,
5601 * so ignore it.
5602 */
5603 if (!rq_i->core_pick)
5604 continue;
5605
c6047c2e
JFG
5606 /*
5607 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5608 * fi_before fi update?
5609 * 0 0 1
5610 * 0 1 1
5611 * 1 0 1
5612 * 1 1 0
5613 */
5614 if (!(fi_before && rq->core->core_forceidle))
5615 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
539f6512 5616
d2dfa17b
PZ
5617 rq_i->core_pick->core_occupation = occ;
5618
539f6512
PZ
5619 if (i == cpu) {
5620 rq_i->core_pick = NULL;
5621 continue;
5622 }
5623
5624 /* Did we break L1TF mitigation requirements? */
5625 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5626
5627 if (rq_i->curr == rq_i->core_pick) {
5628 rq_i->core_pick = NULL;
5629 continue;
5630 }
5631
5632 resched_curr(rq_i);
5633 }
5634
5635done:
5636 set_next_task(rq, next);
5637 return next;
5638}
9edeaea1 5639
d2dfa17b
PZ
5640static bool try_steal_cookie(int this, int that)
5641{
5642 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5643 struct task_struct *p;
5644 unsigned long cookie;
5645 bool success = false;
5646
5647 local_irq_disable();
5648 double_rq_lock(dst, src);
5649
5650 cookie = dst->core->core_cookie;
5651 if (!cookie)
5652 goto unlock;
5653
5654 if (dst->curr != dst->idle)
5655 goto unlock;
5656
5657 p = sched_core_find(src, cookie);
5658 if (p == src->idle)
5659 goto unlock;
5660
5661 do {
5662 if (p == src->core_pick || p == src->curr)
5663 goto next;
5664
5665 if (!cpumask_test_cpu(this, &p->cpus_mask))
5666 goto next;
5667
5668 if (p->core_occupation > dst->idle->core_occupation)
5669 goto next;
5670
d2dfa17b
PZ
5671 deactivate_task(src, p, 0);
5672 set_task_cpu(p, this);
5673 activate_task(dst, p, 0);
d2dfa17b
PZ
5674
5675 resched_curr(dst);
5676
5677 success = true;
5678 break;
5679
5680next:
5681 p = sched_core_next(p, cookie);
5682 } while (p);
5683
5684unlock:
5685 double_rq_unlock(dst, src);
5686 local_irq_enable();
5687
5688 return success;
5689}
5690
5691static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5692{
5693 int i;
5694
5695 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5696 if (i == cpu)
5697 continue;
5698
5699 if (need_resched())
5700 break;
5701
5702 if (try_steal_cookie(cpu, i))
5703 return true;
5704 }
5705
5706 return false;
5707}
5708
5709static void sched_core_balance(struct rq *rq)
5710{
5711 struct sched_domain *sd;
5712 int cpu = cpu_of(rq);
5713
5714 preempt_disable();
5715 rcu_read_lock();
5716 raw_spin_rq_unlock_irq(rq);
5717 for_each_domain(cpu, sd) {
5718 if (need_resched())
5719 break;
5720
5721 if (steal_cookie_task(cpu, sd))
5722 break;
5723 }
5724 raw_spin_rq_lock_irq(rq);
5725 rcu_read_unlock();
5726 preempt_enable();
5727}
5728
5729static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5730
5731void queue_core_balance(struct rq *rq)
5732{
5733 if (!sched_core_enabled(rq))
5734 return;
5735
5736 if (!rq->core->core_cookie)
5737 return;
5738
5739 if (!rq->nr_running) /* not forced idle */
5740 return;
5741
5742 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5743}
5744
9edeaea1
PZ
5745static inline void sched_core_cpu_starting(unsigned int cpu)
5746{
5747 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5748 struct rq *rq, *core_rq = NULL;
5749 int i;
5750
5751 core_rq = cpu_rq(cpu)->core;
5752
5753 if (!core_rq) {
5754 for_each_cpu(i, smt_mask) {
5755 rq = cpu_rq(i);
5756 if (rq->core && rq->core == rq)
5757 core_rq = rq;
5758 }
5759
5760 if (!core_rq)
5761 core_rq = cpu_rq(cpu);
5762
5763 for_each_cpu(i, smt_mask) {
5764 rq = cpu_rq(i);
5765
5766 WARN_ON_ONCE(rq->core && rq->core != core_rq);
5767 rq->core = core_rq;
5768 }
5769 }
5770}
5771#else /* !CONFIG_SCHED_CORE */
5772
5773static inline void sched_core_cpu_starting(unsigned int cpu) {}
5774
539f6512
PZ
5775static struct task_struct *
5776pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5777{
5778 return __pick_next_task(rq, prev, rf);
5779}
5780
9edeaea1
PZ
5781#endif /* CONFIG_SCHED_CORE */
5782
dd41f596 5783/*
c259e01a 5784 * __schedule() is the main scheduler function.
edde96ea
PE
5785 *
5786 * The main means of driving the scheduler and thus entering this function are:
5787 *
5788 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5789 *
5790 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5791 * paths. For example, see arch/x86/entry_64.S.
5792 *
5793 * To drive preemption between tasks, the scheduler sets the flag in timer
5794 * interrupt handler scheduler_tick().
5795 *
5796 * 3. Wakeups don't really cause entry into schedule(). They add a
5797 * task to the run-queue and that's it.
5798 *
5799 * Now, if the new task added to the run-queue preempts the current
5800 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5801 * called on the nearest possible occasion:
5802 *
c1a280b6 5803 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
5804 *
5805 * - in syscall or exception context, at the next outmost
5806 * preempt_enable(). (this might be as soon as the wake_up()'s
5807 * spin_unlock()!)
5808 *
5809 * - in IRQ context, return from interrupt-handler to
5810 * preemptible context
5811 *
c1a280b6 5812 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
5813 * then at the next:
5814 *
5815 * - cond_resched() call
5816 * - explicit schedule() call
5817 * - return from syscall or exception to user-space
5818 * - return from interrupt-handler to user-space
bfd9b2b5 5819 *
b30f0e3f 5820 * WARNING: must be called with preemption disabled!
dd41f596 5821 */
499d7955 5822static void __sched notrace __schedule(bool preempt)
dd41f596
IM
5823{
5824 struct task_struct *prev, *next;
67ca7bde 5825 unsigned long *switch_count;
dbfb089d 5826 unsigned long prev_state;
d8ac8971 5827 struct rq_flags rf;
dd41f596 5828 struct rq *rq;
31656519 5829 int cpu;
dd41f596 5830
dd41f596
IM
5831 cpu = smp_processor_id();
5832 rq = cpu_rq(cpu);
dd41f596 5833 prev = rq->curr;
dd41f596 5834
312364f3 5835 schedule_debug(prev, preempt);
1da177e4 5836
e0ee463c 5837 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 5838 hrtick_clear(rq);
8f4d37ec 5839
46a5d164 5840 local_irq_disable();
bcbfdd01 5841 rcu_note_context_switch(preempt);
46a5d164 5842
e0acd0a6
ON
5843 /*
5844 * Make sure that signal_pending_state()->signal_pending() below
5845 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
5846 * done by the caller to avoid the race with signal_wake_up():
5847 *
5848 * __set_current_state(@state) signal_wake_up()
5849 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5850 * wake_up_state(p, state)
5851 * LOCK rq->lock LOCK p->pi_state
5852 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5853 * if (signal_pending_state()) if (p->state & @state)
306e0604 5854 *
dbfb089d 5855 * Also, the membarrier system call requires a full memory barrier
306e0604 5856 * after coming from user-space, before storing to rq->curr.
e0acd0a6 5857 */
8a8c69c3 5858 rq_lock(rq, &rf);
d89e588c 5859 smp_mb__after_spinlock();
1da177e4 5860
d1ccc66d
IM
5861 /* Promote REQ to ACT */
5862 rq->clock_update_flags <<= 1;
bce4dc80 5863 update_rq_clock(rq);
9edfbfed 5864
246d86b5 5865 switch_count = &prev->nivcsw;
d136122f 5866
dbfb089d 5867 /*
d136122f
PZ
5868 * We must load prev->state once (task_struct::state is volatile), such
5869 * that:
5870 *
5871 * - we form a control dependency vs deactivate_task() below.
5872 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5873 */
2f064a59 5874 prev_state = READ_ONCE(prev->__state);
d136122f 5875 if (!preempt && prev_state) {
dbfb089d 5876 if (signal_pending_state(prev_state, prev)) {
2f064a59 5877 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 5878 } else {
dbfb089d
PZ
5879 prev->sched_contributes_to_load =
5880 (prev_state & TASK_UNINTERRUPTIBLE) &&
5881 !(prev_state & TASK_NOLOAD) &&
5882 !(prev->flags & PF_FROZEN);
5883
5884 if (prev->sched_contributes_to_load)
5885 rq->nr_uninterruptible++;
5886
5887 /*
5888 * __schedule() ttwu()
d136122f
PZ
5889 * prev_state = prev->state; if (p->on_rq && ...)
5890 * if (prev_state) goto out;
5891 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5892 * p->state = TASK_WAKING
5893 *
5894 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5895 *
5896 * After this, schedule() must not care about p->state any more.
5897 */
bce4dc80 5898 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5899
e33a9bba
TH
5900 if (prev->in_iowait) {
5901 atomic_inc(&rq->nr_iowait);
5902 delayacct_blkio_start();
5903 }
21aa9af0 5904 }
dd41f596 5905 switch_count = &prev->nvcsw;
1da177e4
LT
5906 }
5907
d8ac8971 5908 next = pick_next_task(rq, prev, &rf);
f26f9aff 5909 clear_tsk_need_resched(prev);
f27dde8d 5910 clear_preempt_need_resched();
c006fac5
PT
5911#ifdef CONFIG_SCHED_DEBUG
5912 rq->last_seen_need_resched_ns = 0;
5913#endif
1da177e4 5914
1da177e4 5915 if (likely(prev != next)) {
1da177e4 5916 rq->nr_switches++;
5311a98f
EB
5917 /*
5918 * RCU users of rcu_dereference(rq->curr) may not see
5919 * changes to task_struct made by pick_next_task().
5920 */
5921 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5922 /*
5923 * The membarrier system call requires each architecture
5924 * to have a full memory barrier after updating
306e0604
MD
5925 * rq->curr, before returning to user-space.
5926 *
5927 * Here are the schemes providing that barrier on the
5928 * various architectures:
5929 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5930 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5931 * - finish_lock_switch() for weakly-ordered
5932 * architectures where spin_unlock is a full barrier,
5933 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5934 * is a RELEASE barrier),
22e4ebb9 5935 */
1da177e4
LT
5936 ++*switch_count;
5937
af449901 5938 migrate_disable_switch(rq, prev);
b05e75d6
JW
5939 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5940
c73464b1 5941 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5942
5943 /* Also unlocks the rq: */
5944 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5945 } else {
cb42c9a3 5946 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5947
565790d2
PZ
5948 rq_unpin_lock(rq, &rf);
5949 __balance_callbacks(rq);
5cb9eaa3 5950 raw_spin_rq_unlock_irq(rq);
565790d2 5951 }
1da177e4 5952}
c259e01a 5953
9af6528e
PZ
5954void __noreturn do_task_dead(void)
5955{
d1ccc66d 5956 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5957 set_special_state(TASK_DEAD);
d1ccc66d
IM
5958
5959 /* Tell freezer to ignore us: */
5960 current->flags |= PF_NOFREEZE;
5961
9af6528e
PZ
5962 __schedule(false);
5963 BUG();
d1ccc66d
IM
5964
5965 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5966 for (;;)
d1ccc66d 5967 cpu_relax();
9af6528e
PZ
5968}
5969
9c40cef2
TG
5970static inline void sched_submit_work(struct task_struct *tsk)
5971{
c1cecf88
SAS
5972 unsigned int task_flags;
5973
b03fbd4f 5974 if (task_is_running(tsk))
9c40cef2 5975 return;
6d25be57 5976
c1cecf88 5977 task_flags = tsk->flags;
6d25be57
TG
5978 /*
5979 * If a worker went to sleep, notify and ask workqueue whether
5980 * it wants to wake up a task to maintain concurrency.
5981 * As this function is called inside the schedule() context,
5982 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5983 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5984 * requires it.
6d25be57 5985 */
c1cecf88 5986 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5987 preempt_disable();
c1cecf88 5988 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5989 wq_worker_sleeping(tsk);
5990 else
5991 io_wq_worker_sleeping(tsk);
6d25be57
TG
5992 preempt_enable_no_resched();
5993 }
5994
b0fdc013
SAS
5995 if (tsk_is_pi_blocked(tsk))
5996 return;
5997
9c40cef2
TG
5998 /*
5999 * If we are going to sleep and we have plugged IO queued,
6000 * make sure to submit it to avoid deadlocks.
6001 */
6002 if (blk_needs_flush_plug(tsk))
6003 blk_schedule_flush_plug(tsk);
6004}
6005
6d25be57
TG
6006static void sched_update_worker(struct task_struct *tsk)
6007{
771b53d0
JA
6008 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6009 if (tsk->flags & PF_WQ_WORKER)
6010 wq_worker_running(tsk);
6011 else
6012 io_wq_worker_running(tsk);
6013 }
6d25be57
TG
6014}
6015
722a9f92 6016asmlinkage __visible void __sched schedule(void)
c259e01a 6017{
9c40cef2
TG
6018 struct task_struct *tsk = current;
6019
6020 sched_submit_work(tsk);
bfd9b2b5 6021 do {
b30f0e3f 6022 preempt_disable();
fc13aeba 6023 __schedule(false);
b30f0e3f 6024 sched_preempt_enable_no_resched();
bfd9b2b5 6025 } while (need_resched());
6d25be57 6026 sched_update_worker(tsk);
c259e01a 6027}
1da177e4
LT
6028EXPORT_SYMBOL(schedule);
6029
8663effb
SRV
6030/*
6031 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6032 * state (have scheduled out non-voluntarily) by making sure that all
6033 * tasks have either left the run queue or have gone into user space.
6034 * As idle tasks do not do either, they must not ever be preempted
6035 * (schedule out non-voluntarily).
6036 *
6037 * schedule_idle() is similar to schedule_preempt_disable() except that it
6038 * never enables preemption because it does not call sched_submit_work().
6039 */
6040void __sched schedule_idle(void)
6041{
6042 /*
6043 * As this skips calling sched_submit_work(), which the idle task does
6044 * regardless because that function is a nop when the task is in a
6045 * TASK_RUNNING state, make sure this isn't used someplace that the
6046 * current task can be in any other state. Note, idle is always in the
6047 * TASK_RUNNING state.
6048 */
2f064a59 6049 WARN_ON_ONCE(current->__state);
8663effb
SRV
6050 do {
6051 __schedule(false);
6052 } while (need_resched());
6053}
6054
6775de49 6055#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6056asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6057{
6058 /*
6059 * If we come here after a random call to set_need_resched(),
6060 * or we have been woken up remotely but the IPI has not yet arrived,
6061 * we haven't yet exited the RCU idle mode. Do it here manually until
6062 * we find a better solution.
7cc78f8f
AL
6063 *
6064 * NB: There are buggy callers of this function. Ideally we
c467ea76 6065 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6066 * too frequently to make sense yet.
20ab65e3 6067 */
7cc78f8f 6068 enum ctx_state prev_state = exception_enter();
20ab65e3 6069 schedule();
7cc78f8f 6070 exception_exit(prev_state);
20ab65e3
FW
6071}
6072#endif
6073
c5491ea7
TG
6074/**
6075 * schedule_preempt_disabled - called with preemption disabled
6076 *
6077 * Returns with preemption disabled. Note: preempt_count must be 1
6078 */
6079void __sched schedule_preempt_disabled(void)
6080{
ba74c144 6081 sched_preempt_enable_no_resched();
c5491ea7
TG
6082 schedule();
6083 preempt_disable();
6084}
6085
06b1f808 6086static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6087{
6088 do {
47252cfb
SR
6089 /*
6090 * Because the function tracer can trace preempt_count_sub()
6091 * and it also uses preempt_enable/disable_notrace(), if
6092 * NEED_RESCHED is set, the preempt_enable_notrace() called
6093 * by the function tracer will call this function again and
6094 * cause infinite recursion.
6095 *
6096 * Preemption must be disabled here before the function
6097 * tracer can trace. Break up preempt_disable() into two
6098 * calls. One to disable preemption without fear of being
6099 * traced. The other to still record the preemption latency,
6100 * which can also be traced by the function tracer.
6101 */
499d7955 6102 preempt_disable_notrace();
47252cfb 6103 preempt_latency_start(1);
fc13aeba 6104 __schedule(true);
47252cfb 6105 preempt_latency_stop(1);
499d7955 6106 preempt_enable_no_resched_notrace();
a18b5d01
FW
6107
6108 /*
6109 * Check again in case we missed a preemption opportunity
6110 * between schedule and now.
6111 */
a18b5d01
FW
6112 } while (need_resched());
6113}
6114
c1a280b6 6115#ifdef CONFIG_PREEMPTION
1da177e4 6116/*
a49b4f40
VS
6117 * This is the entry point to schedule() from in-kernel preemption
6118 * off of preempt_enable.
1da177e4 6119 */
722a9f92 6120asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6121{
1da177e4
LT
6122 /*
6123 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6124 * we do not want to preempt the current task. Just return..
1da177e4 6125 */
fbb00b56 6126 if (likely(!preemptible()))
1da177e4
LT
6127 return;
6128
a18b5d01 6129 preempt_schedule_common();
1da177e4 6130}
376e2424 6131NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6132EXPORT_SYMBOL(preempt_schedule);
009f60e2 6133
2c9a98d3
PZI
6134#ifdef CONFIG_PREEMPT_DYNAMIC
6135DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6136EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6137#endif
6138
6139
009f60e2 6140/**
4eaca0a8 6141 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6142 *
6143 * The tracing infrastructure uses preempt_enable_notrace to prevent
6144 * recursion and tracing preempt enabling caused by the tracing
6145 * infrastructure itself. But as tracing can happen in areas coming
6146 * from userspace or just about to enter userspace, a preempt enable
6147 * can occur before user_exit() is called. This will cause the scheduler
6148 * to be called when the system is still in usermode.
6149 *
6150 * To prevent this, the preempt_enable_notrace will use this function
6151 * instead of preempt_schedule() to exit user context if needed before
6152 * calling the scheduler.
6153 */
4eaca0a8 6154asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6155{
6156 enum ctx_state prev_ctx;
6157
6158 if (likely(!preemptible()))
6159 return;
6160
6161 do {
47252cfb
SR
6162 /*
6163 * Because the function tracer can trace preempt_count_sub()
6164 * and it also uses preempt_enable/disable_notrace(), if
6165 * NEED_RESCHED is set, the preempt_enable_notrace() called
6166 * by the function tracer will call this function again and
6167 * cause infinite recursion.
6168 *
6169 * Preemption must be disabled here before the function
6170 * tracer can trace. Break up preempt_disable() into two
6171 * calls. One to disable preemption without fear of being
6172 * traced. The other to still record the preemption latency,
6173 * which can also be traced by the function tracer.
6174 */
3d8f74dd 6175 preempt_disable_notrace();
47252cfb 6176 preempt_latency_start(1);
009f60e2
ON
6177 /*
6178 * Needs preempt disabled in case user_exit() is traced
6179 * and the tracer calls preempt_enable_notrace() causing
6180 * an infinite recursion.
6181 */
6182 prev_ctx = exception_enter();
fc13aeba 6183 __schedule(true);
009f60e2
ON
6184 exception_exit(prev_ctx);
6185
47252cfb 6186 preempt_latency_stop(1);
3d8f74dd 6187 preempt_enable_no_resched_notrace();
009f60e2
ON
6188 } while (need_resched());
6189}
4eaca0a8 6190EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6191
2c9a98d3
PZI
6192#ifdef CONFIG_PREEMPT_DYNAMIC
6193DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6194EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6195#endif
6196
c1a280b6 6197#endif /* CONFIG_PREEMPTION */
1da177e4 6198
826bfeb3
PZI
6199#ifdef CONFIG_PREEMPT_DYNAMIC
6200
6201#include <linux/entry-common.h>
6202
6203/*
6204 * SC:cond_resched
6205 * SC:might_resched
6206 * SC:preempt_schedule
6207 * SC:preempt_schedule_notrace
6208 * SC:irqentry_exit_cond_resched
6209 *
6210 *
6211 * NONE:
6212 * cond_resched <- __cond_resched
6213 * might_resched <- RET0
6214 * preempt_schedule <- NOP
6215 * preempt_schedule_notrace <- NOP
6216 * irqentry_exit_cond_resched <- NOP
6217 *
6218 * VOLUNTARY:
6219 * cond_resched <- __cond_resched
6220 * might_resched <- __cond_resched
6221 * preempt_schedule <- NOP
6222 * preempt_schedule_notrace <- NOP
6223 * irqentry_exit_cond_resched <- NOP
6224 *
6225 * FULL:
6226 * cond_resched <- RET0
6227 * might_resched <- RET0
6228 * preempt_schedule <- preempt_schedule
6229 * preempt_schedule_notrace <- preempt_schedule_notrace
6230 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6231 */
e59e10f8
PZ
6232
6233enum {
6234 preempt_dynamic_none = 0,
6235 preempt_dynamic_voluntary,
6236 preempt_dynamic_full,
6237};
6238
1011dcce 6239int preempt_dynamic_mode = preempt_dynamic_full;
e59e10f8 6240
1011dcce 6241int sched_dynamic_mode(const char *str)
826bfeb3 6242{
e59e10f8 6243 if (!strcmp(str, "none"))
7e1b2eb7 6244 return preempt_dynamic_none;
e59e10f8
PZ
6245
6246 if (!strcmp(str, "voluntary"))
7e1b2eb7 6247 return preempt_dynamic_voluntary;
e59e10f8
PZ
6248
6249 if (!strcmp(str, "full"))
7e1b2eb7 6250 return preempt_dynamic_full;
e59e10f8 6251
c4681f3f 6252 return -EINVAL;
e59e10f8
PZ
6253}
6254
1011dcce 6255void sched_dynamic_update(int mode)
e59e10f8
PZ
6256{
6257 /*
6258 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6259 * the ZERO state, which is invalid.
6260 */
6261 static_call_update(cond_resched, __cond_resched);
6262 static_call_update(might_resched, __cond_resched);
6263 static_call_update(preempt_schedule, __preempt_schedule_func);
6264 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6265 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6266
6267 switch (mode) {
6268 case preempt_dynamic_none:
826bfeb3 6269 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6270 static_call_update(might_resched, (void *)&__static_call_return0);
6271 static_call_update(preempt_schedule, NULL);
6272 static_call_update(preempt_schedule_notrace, NULL);
6273 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6274 pr_info("Dynamic Preempt: none\n");
6275 break;
6276
6277 case preempt_dynamic_voluntary:
826bfeb3
PZI
6278 static_call_update(cond_resched, __cond_resched);
6279 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6280 static_call_update(preempt_schedule, NULL);
6281 static_call_update(preempt_schedule_notrace, NULL);
6282 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6283 pr_info("Dynamic Preempt: voluntary\n");
6284 break;
6285
6286 case preempt_dynamic_full:
9432bbd9
PZ
6287 static_call_update(cond_resched, (void *)&__static_call_return0);
6288 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6289 static_call_update(preempt_schedule, __preempt_schedule_func);
6290 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6291 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6292 pr_info("Dynamic Preempt: full\n");
6293 break;
6294 }
6295
6296 preempt_dynamic_mode = mode;
6297}
6298
6299static int __init setup_preempt_mode(char *str)
6300{
6301 int mode = sched_dynamic_mode(str);
6302 if (mode < 0) {
6303 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
6304 return 1;
6305 }
e59e10f8
PZ
6306
6307 sched_dynamic_update(mode);
826bfeb3
PZI
6308 return 0;
6309}
6310__setup("preempt=", setup_preempt_mode);
6311
6312#endif /* CONFIG_PREEMPT_DYNAMIC */
6313
1da177e4 6314/*
a49b4f40 6315 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6316 * off of irq context.
6317 * Note, that this is called and return with irqs disabled. This will
6318 * protect us against recursive calling from irq.
6319 */
722a9f92 6320asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6321{
b22366cd 6322 enum ctx_state prev_state;
6478d880 6323
2ed6e34f 6324 /* Catch callers which need to be fixed */
f27dde8d 6325 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6326
b22366cd
FW
6327 prev_state = exception_enter();
6328
3a5c359a 6329 do {
3d8f74dd 6330 preempt_disable();
3a5c359a 6331 local_irq_enable();
fc13aeba 6332 __schedule(true);
3a5c359a 6333 local_irq_disable();
3d8f74dd 6334 sched_preempt_enable_no_resched();
5ed0cec0 6335 } while (need_resched());
b22366cd
FW
6336
6337 exception_exit(prev_state);
1da177e4
LT
6338}
6339
ac6424b9 6340int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6341 void *key)
1da177e4 6342{
062d3f95 6343 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6344 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6345}
1da177e4
LT
6346EXPORT_SYMBOL(default_wake_function);
6347
b29739f9
IM
6348#ifdef CONFIG_RT_MUTEXES
6349
acd58620
PZ
6350static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6351{
6352 if (pi_task)
6353 prio = min(prio, pi_task->prio);
6354
6355 return prio;
6356}
6357
6358static inline int rt_effective_prio(struct task_struct *p, int prio)
6359{
6360 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6361
6362 return __rt_effective_prio(pi_task, prio);
6363}
6364
b29739f9
IM
6365/*
6366 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6367 * @p: task to boost
6368 * @pi_task: donor task
b29739f9
IM
6369 *
6370 * This function changes the 'effective' priority of a task. It does
6371 * not touch ->normal_prio like __setscheduler().
6372 *
c365c292
TG
6373 * Used by the rt_mutex code to implement priority inheritance
6374 * logic. Call site only calls if the priority of the task changed.
b29739f9 6375 */
acd58620 6376void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6377{
acd58620 6378 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6379 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6380 const struct sched_class *prev_class;
eb580751
PZ
6381 struct rq_flags rf;
6382 struct rq *rq;
b29739f9 6383
acd58620
PZ
6384 /* XXX used to be waiter->prio, not waiter->task->prio */
6385 prio = __rt_effective_prio(pi_task, p->normal_prio);
6386
6387 /*
6388 * If nothing changed; bail early.
6389 */
6390 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6391 return;
b29739f9 6392
eb580751 6393 rq = __task_rq_lock(p, &rf);
80f5c1b8 6394 update_rq_clock(rq);
acd58620
PZ
6395 /*
6396 * Set under pi_lock && rq->lock, such that the value can be used under
6397 * either lock.
6398 *
6399 * Note that there is loads of tricky to make this pointer cache work
6400 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6401 * ensure a task is de-boosted (pi_task is set to NULL) before the
6402 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6403 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6404 */
6405 p->pi_top_task = pi_task;
6406
6407 /*
6408 * For FIFO/RR we only need to set prio, if that matches we're done.
6409 */
6410 if (prio == p->prio && !dl_prio(prio))
6411 goto out_unlock;
b29739f9 6412
1c4dd99b
TG
6413 /*
6414 * Idle task boosting is a nono in general. There is one
6415 * exception, when PREEMPT_RT and NOHZ is active:
6416 *
6417 * The idle task calls get_next_timer_interrupt() and holds
6418 * the timer wheel base->lock on the CPU and another CPU wants
6419 * to access the timer (probably to cancel it). We can safely
6420 * ignore the boosting request, as the idle CPU runs this code
6421 * with interrupts disabled and will complete the lock
6422 * protected section without being interrupted. So there is no
6423 * real need to boost.
6424 */
6425 if (unlikely(p == rq->idle)) {
6426 WARN_ON(p != rq->curr);
6427 WARN_ON(p->pi_blocked_on);
6428 goto out_unlock;
6429 }
6430
b91473ff 6431 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6432 oldprio = p->prio;
ff77e468
PZ
6433
6434 if (oldprio == prio)
6435 queue_flag &= ~DEQUEUE_MOVE;
6436
83ab0aa0 6437 prev_class = p->sched_class;
da0c1e65 6438 queued = task_on_rq_queued(p);
051a1d1a 6439 running = task_current(rq, p);
da0c1e65 6440 if (queued)
ff77e468 6441 dequeue_task(rq, p, queue_flag);
0e1f3483 6442 if (running)
f3cd1c4e 6443 put_prev_task(rq, p);
dd41f596 6444
2d3d891d
DF
6445 /*
6446 * Boosting condition are:
6447 * 1. -rt task is running and holds mutex A
6448 * --> -dl task blocks on mutex A
6449 *
6450 * 2. -dl task is running and holds mutex A
6451 * --> -dl task blocks on mutex A and could preempt the
6452 * running task
6453 */
6454 if (dl_prio(prio)) {
466af29b 6455 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6456 (pi_task && dl_prio(pi_task->prio) &&
6457 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6458 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6459 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6460 } else {
6461 p->dl.pi_se = &p->dl;
6462 }
aab03e05 6463 p->sched_class = &dl_sched_class;
2d3d891d
DF
6464 } else if (rt_prio(prio)) {
6465 if (dl_prio(oldprio))
2279f540 6466 p->dl.pi_se = &p->dl;
2d3d891d 6467 if (oldprio < prio)
ff77e468 6468 queue_flag |= ENQUEUE_HEAD;
dd41f596 6469 p->sched_class = &rt_sched_class;
2d3d891d
DF
6470 } else {
6471 if (dl_prio(oldprio))
2279f540 6472 p->dl.pi_se = &p->dl;
746db944
BS
6473 if (rt_prio(oldprio))
6474 p->rt.timeout = 0;
dd41f596 6475 p->sched_class = &fair_sched_class;
2d3d891d 6476 }
dd41f596 6477
b29739f9
IM
6478 p->prio = prio;
6479
da0c1e65 6480 if (queued)
ff77e468 6481 enqueue_task(rq, p, queue_flag);
a399d233 6482 if (running)
03b7fad1 6483 set_next_task(rq, p);
cb469845 6484
da7a735e 6485 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6486out_unlock:
d1ccc66d
IM
6487 /* Avoid rq from going away on us: */
6488 preempt_disable();
4c9a4bc8 6489
565790d2
PZ
6490 rq_unpin_lock(rq, &rf);
6491 __balance_callbacks(rq);
5cb9eaa3 6492 raw_spin_rq_unlock(rq);
565790d2 6493
4c9a4bc8 6494 preempt_enable();
b29739f9 6495}
acd58620
PZ
6496#else
6497static inline int rt_effective_prio(struct task_struct *p, int prio)
6498{
6499 return prio;
6500}
b29739f9 6501#endif
d50dde5a 6502
36c8b586 6503void set_user_nice(struct task_struct *p, long nice)
1da177e4 6504{
49bd21ef 6505 bool queued, running;
53a23364 6506 int old_prio;
eb580751 6507 struct rq_flags rf;
70b97a7f 6508 struct rq *rq;
1da177e4 6509
75e45d51 6510 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6511 return;
6512 /*
6513 * We have to be careful, if called from sys_setpriority(),
6514 * the task might be in the middle of scheduling on another CPU.
6515 */
eb580751 6516 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6517 update_rq_clock(rq);
6518
1da177e4
LT
6519 /*
6520 * The RT priorities are set via sched_setscheduler(), but we still
6521 * allow the 'normal' nice value to be set - but as expected
b19a888c 6522 * it won't have any effect on scheduling until the task is
aab03e05 6523 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6524 */
aab03e05 6525 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6526 p->static_prio = NICE_TO_PRIO(nice);
6527 goto out_unlock;
6528 }
da0c1e65 6529 queued = task_on_rq_queued(p);
49bd21ef 6530 running = task_current(rq, p);
da0c1e65 6531 if (queued)
7a57f32a 6532 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6533 if (running)
6534 put_prev_task(rq, p);
1da177e4 6535
1da177e4 6536 p->static_prio = NICE_TO_PRIO(nice);
9059393e 6537 set_load_weight(p, true);
b29739f9
IM
6538 old_prio = p->prio;
6539 p->prio = effective_prio(p);
1da177e4 6540
5443a0be 6541 if (queued)
7134b3e9 6542 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6543 if (running)
03b7fad1 6544 set_next_task(rq, p);
5443a0be
FW
6545
6546 /*
6547 * If the task increased its priority or is running and
6548 * lowered its priority, then reschedule its CPU:
6549 */
6550 p->sched_class->prio_changed(rq, p, old_prio);
6551
1da177e4 6552out_unlock:
eb580751 6553 task_rq_unlock(rq, p, &rf);
1da177e4 6554}
1da177e4
LT
6555EXPORT_SYMBOL(set_user_nice);
6556
e43379f1
MM
6557/*
6558 * can_nice - check if a task can reduce its nice value
6559 * @p: task
6560 * @nice: nice value
6561 */
36c8b586 6562int can_nice(const struct task_struct *p, const int nice)
e43379f1 6563{
d1ccc66d 6564 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6565 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6566
78d7d407 6567 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6568 capable(CAP_SYS_NICE));
6569}
6570
1da177e4
LT
6571#ifdef __ARCH_WANT_SYS_NICE
6572
6573/*
6574 * sys_nice - change the priority of the current process.
6575 * @increment: priority increment
6576 *
6577 * sys_setpriority is a more generic, but much slower function that
6578 * does similar things.
6579 */
5add95d4 6580SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6581{
48f24c4d 6582 long nice, retval;
1da177e4
LT
6583
6584 /*
6585 * Setpriority might change our priority at the same moment.
6586 * We don't have to worry. Conceptually one call occurs first
6587 * and we have a single winner.
6588 */
a9467fa3 6589 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6590 nice = task_nice(current) + increment;
1da177e4 6591
a9467fa3 6592 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6593 if (increment < 0 && !can_nice(current, nice))
6594 return -EPERM;
6595
1da177e4
LT
6596 retval = security_task_setnice(current, nice);
6597 if (retval)
6598 return retval;
6599
6600 set_user_nice(current, nice);
6601 return 0;
6602}
6603
6604#endif
6605
6606/**
6607 * task_prio - return the priority value of a given task.
6608 * @p: the task in question.
6609 *
e69f6186 6610 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6611 *
6612 * sched policy return value kernel prio user prio/nice
6613 *
6614 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6615 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6616 * deadline -101 -1 0
1da177e4 6617 */
36c8b586 6618int task_prio(const struct task_struct *p)
1da177e4
LT
6619{
6620 return p->prio - MAX_RT_PRIO;
6621}
6622
1da177e4 6623/**
d1ccc66d 6624 * idle_cpu - is a given CPU idle currently?
1da177e4 6625 * @cpu: the processor in question.
e69f6186
YB
6626 *
6627 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
6628 */
6629int idle_cpu(int cpu)
6630{
908a3283
TG
6631 struct rq *rq = cpu_rq(cpu);
6632
6633 if (rq->curr != rq->idle)
6634 return 0;
6635
6636 if (rq->nr_running)
6637 return 0;
6638
6639#ifdef CONFIG_SMP
126c2092 6640 if (rq->ttwu_pending)
908a3283
TG
6641 return 0;
6642#endif
6643
6644 return 1;
1da177e4
LT
6645}
6646
943d355d
RJ
6647/**
6648 * available_idle_cpu - is a given CPU idle for enqueuing work.
6649 * @cpu: the CPU in question.
6650 *
6651 * Return: 1 if the CPU is currently idle. 0 otherwise.
6652 */
6653int available_idle_cpu(int cpu)
6654{
6655 if (!idle_cpu(cpu))
6656 return 0;
6657
247f2f6f
RJ
6658 if (vcpu_is_preempted(cpu))
6659 return 0;
6660
908a3283 6661 return 1;
1da177e4
LT
6662}
6663
1da177e4 6664/**
d1ccc66d 6665 * idle_task - return the idle task for a given CPU.
1da177e4 6666 * @cpu: the processor in question.
e69f6186 6667 *
d1ccc66d 6668 * Return: The idle task for the CPU @cpu.
1da177e4 6669 */
36c8b586 6670struct task_struct *idle_task(int cpu)
1da177e4
LT
6671{
6672 return cpu_rq(cpu)->idle;
6673}
6674
7d6a905f
VK
6675#ifdef CONFIG_SMP
6676/*
6677 * This function computes an effective utilization for the given CPU, to be
6678 * used for frequency selection given the linear relation: f = u * f_max.
6679 *
6680 * The scheduler tracks the following metrics:
6681 *
6682 * cpu_util_{cfs,rt,dl,irq}()
6683 * cpu_bw_dl()
6684 *
6685 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6686 * synchronized windows and are thus directly comparable.
6687 *
6688 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6689 * which excludes things like IRQ and steal-time. These latter are then accrued
6690 * in the irq utilization.
6691 *
6692 * The DL bandwidth number otoh is not a measured metric but a value computed
6693 * based on the task model parameters and gives the minimal utilization
6694 * required to meet deadlines.
6695 */
a5418be9
VK
6696unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6697 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
6698 struct task_struct *p)
6699{
6700 unsigned long dl_util, util, irq;
6701 struct rq *rq = cpu_rq(cpu);
6702
6703 if (!uclamp_is_used() &&
6704 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6705 return max;
6706 }
6707
6708 /*
6709 * Early check to see if IRQ/steal time saturates the CPU, can be
6710 * because of inaccuracies in how we track these -- see
6711 * update_irq_load_avg().
6712 */
6713 irq = cpu_util_irq(rq);
6714 if (unlikely(irq >= max))
6715 return max;
6716
6717 /*
6718 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6719 * CFS tasks and we use the same metric to track the effective
6720 * utilization (PELT windows are synchronized) we can directly add them
6721 * to obtain the CPU's actual utilization.
6722 *
6723 * CFS and RT utilization can be boosted or capped, depending on
6724 * utilization clamp constraints requested by currently RUNNABLE
6725 * tasks.
6726 * When there are no CFS RUNNABLE tasks, clamps are released and
6727 * frequency will be gracefully reduced with the utilization decay.
6728 */
6729 util = util_cfs + cpu_util_rt(rq);
6730 if (type == FREQUENCY_UTIL)
6731 util = uclamp_rq_util_with(rq, util, p);
6732
6733 dl_util = cpu_util_dl(rq);
6734
6735 /*
6736 * For frequency selection we do not make cpu_util_dl() a permanent part
6737 * of this sum because we want to use cpu_bw_dl() later on, but we need
6738 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6739 * that we select f_max when there is no idle time.
6740 *
6741 * NOTE: numerical errors or stop class might cause us to not quite hit
6742 * saturation when we should -- something for later.
6743 */
6744 if (util + dl_util >= max)
6745 return max;
6746
6747 /*
6748 * OTOH, for energy computation we need the estimated running time, so
6749 * include util_dl and ignore dl_bw.
6750 */
6751 if (type == ENERGY_UTIL)
6752 util += dl_util;
6753
6754 /*
6755 * There is still idle time; further improve the number by using the
6756 * irq metric. Because IRQ/steal time is hidden from the task clock we
6757 * need to scale the task numbers:
6758 *
6759 * max - irq
6760 * U' = irq + --------- * U
6761 * max
6762 */
6763 util = scale_irq_capacity(util, irq, max);
6764 util += irq;
6765
6766 /*
6767 * Bandwidth required by DEADLINE must always be granted while, for
6768 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6769 * to gracefully reduce the frequency when no tasks show up for longer
6770 * periods of time.
6771 *
6772 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6773 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6774 * an interface. So, we only do the latter for now.
6775 */
6776 if (type == FREQUENCY_UTIL)
6777 util += cpu_bw_dl(rq);
6778
6779 return min(max, util);
6780}
a5418be9
VK
6781
6782unsigned long sched_cpu_util(int cpu, unsigned long max)
6783{
6784 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6785 ENERGY_UTIL, NULL);
6786}
7d6a905f
VK
6787#endif /* CONFIG_SMP */
6788
1da177e4
LT
6789/**
6790 * find_process_by_pid - find a process with a matching PID value.
6791 * @pid: the pid in question.
e69f6186
YB
6792 *
6793 * The task of @pid, if found. %NULL otherwise.
1da177e4 6794 */
a9957449 6795static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6796{
228ebcbe 6797 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6798}
6799
c13db6b1
SR
6800/*
6801 * sched_setparam() passes in -1 for its policy, to let the functions
6802 * it calls know not to change it.
6803 */
6804#define SETPARAM_POLICY -1
6805
c365c292
TG
6806static void __setscheduler_params(struct task_struct *p,
6807 const struct sched_attr *attr)
1da177e4 6808{
d50dde5a
DF
6809 int policy = attr->sched_policy;
6810
c13db6b1 6811 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6812 policy = p->policy;
6813
1da177e4 6814 p->policy = policy;
d50dde5a 6815
aab03e05
DF
6816 if (dl_policy(policy))
6817 __setparam_dl(p, attr);
39fd8fd2 6818 else if (fair_policy(policy))
d50dde5a
DF
6819 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6820
39fd8fd2
PZ
6821 /*
6822 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6823 * !rt_policy. Always setting this ensures that things like
6824 * getparam()/getattr() don't report silly values for !rt tasks.
6825 */
6826 p->rt_priority = attr->sched_priority;
383afd09 6827 p->normal_prio = normal_prio(p);
9059393e 6828 set_load_weight(p, true);
c365c292 6829}
39fd8fd2 6830
c365c292
TG
6831/* Actually do priority change: must hold pi & rq lock. */
6832static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6833 const struct sched_attr *attr, bool keep_boost)
c365c292 6834{
a509a7cd
PB
6835 /*
6836 * If params can't change scheduling class changes aren't allowed
6837 * either.
6838 */
6839 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6840 return;
6841
c365c292 6842 __setscheduler_params(p, attr);
d50dde5a 6843
383afd09 6844 /*
0782e63b
TG
6845 * Keep a potential priority boosting if called from
6846 * sched_setscheduler().
383afd09 6847 */
acd58620 6848 p->prio = normal_prio(p);
0782e63b 6849 if (keep_boost)
acd58620 6850 p->prio = rt_effective_prio(p, p->prio);
383afd09 6851
aab03e05
DF
6852 if (dl_prio(p->prio))
6853 p->sched_class = &dl_sched_class;
6854 else if (rt_prio(p->prio))
ffd44db5
PZ
6855 p->sched_class = &rt_sched_class;
6856 else
6857 p->sched_class = &fair_sched_class;
1da177e4 6858}
aab03e05 6859
c69e8d9c 6860/*
d1ccc66d 6861 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6862 */
6863static bool check_same_owner(struct task_struct *p)
6864{
6865 const struct cred *cred = current_cred(), *pcred;
6866 bool match;
6867
6868 rcu_read_lock();
6869 pcred = __task_cred(p);
9c806aa0
EB
6870 match = (uid_eq(cred->euid, pcred->euid) ||
6871 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6872 rcu_read_unlock();
6873 return match;
6874}
6875
d50dde5a
DF
6876static int __sched_setscheduler(struct task_struct *p,
6877 const struct sched_attr *attr,
dbc7f069 6878 bool user, bool pi)
1da177e4 6879{
383afd09
SR
6880 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6881 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6882 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6883 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6884 const struct sched_class *prev_class;
565790d2 6885 struct callback_head *head;
eb580751 6886 struct rq_flags rf;
ca94c442 6887 int reset_on_fork;
7a57f32a 6888 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6889 struct rq *rq;
1da177e4 6890
896bbb25
SRV
6891 /* The pi code expects interrupts enabled */
6892 BUG_ON(pi && in_interrupt());
1da177e4 6893recheck:
d1ccc66d 6894 /* Double check policy once rq lock held: */
ca94c442
LP
6895 if (policy < 0) {
6896 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6897 policy = oldpolicy = p->policy;
ca94c442 6898 } else {
7479f3c9 6899 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6900
20f9cd2a 6901 if (!valid_policy(policy))
ca94c442
LP
6902 return -EINVAL;
6903 }
6904
794a56eb 6905 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6906 return -EINVAL;
6907
1da177e4
LT
6908 /*
6909 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6910 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6911 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6912 */
ae18ad28 6913 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6914 return -EINVAL;
aab03e05
DF
6915 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6916 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6917 return -EINVAL;
6918
37e4ab3f
OC
6919 /*
6920 * Allow unprivileged RT tasks to decrease priority:
6921 */
961ccddd 6922 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6923 if (fair_policy(policy)) {
d0ea0268 6924 if (attr->sched_nice < task_nice(p) &&
eaad4513 6925 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6926 return -EPERM;
6927 }
6928
e05606d3 6929 if (rt_policy(policy)) {
a44702e8
ON
6930 unsigned long rlim_rtprio =
6931 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6932
d1ccc66d 6933 /* Can't set/change the rt policy: */
8dc3e909
ON
6934 if (policy != p->policy && !rlim_rtprio)
6935 return -EPERM;
6936
d1ccc66d 6937 /* Can't increase priority: */
d50dde5a
DF
6938 if (attr->sched_priority > p->rt_priority &&
6939 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6940 return -EPERM;
6941 }
c02aa73b 6942
d44753b8
JL
6943 /*
6944 * Can't set/change SCHED_DEADLINE policy at all for now
6945 * (safest behavior); in the future we would like to allow
6946 * unprivileged DL tasks to increase their relative deadline
6947 * or reduce their runtime (both ways reducing utilization)
6948 */
6949 if (dl_policy(policy))
6950 return -EPERM;
6951
dd41f596 6952 /*
c02aa73b
DH
6953 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6954 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6955 */
1da1843f 6956 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6957 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6958 return -EPERM;
6959 }
5fe1d75f 6960
d1ccc66d 6961 /* Can't change other user's priorities: */
c69e8d9c 6962 if (!check_same_owner(p))
37e4ab3f 6963 return -EPERM;
ca94c442 6964
d1ccc66d 6965 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6966 if (p->sched_reset_on_fork && !reset_on_fork)
6967 return -EPERM;
37e4ab3f 6968 }
1da177e4 6969
725aad24 6970 if (user) {
794a56eb
JL
6971 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6972 return -EINVAL;
6973
b0ae1981 6974 retval = security_task_setscheduler(p);
725aad24
JF
6975 if (retval)
6976 return retval;
6977 }
6978
a509a7cd
PB
6979 /* Update task specific "requested" clamps */
6980 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6981 retval = uclamp_validate(p, attr);
6982 if (retval)
6983 return retval;
6984 }
6985
710da3c8
JL
6986 if (pi)
6987 cpuset_read_lock();
6988
b29739f9 6989 /*
d1ccc66d 6990 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6991 * changing the priority of the task:
0122ec5b 6992 *
25985edc 6993 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6994 * runqueue lock must be held.
6995 */
eb580751 6996 rq = task_rq_lock(p, &rf);
80f5c1b8 6997 update_rq_clock(rq);
dc61b1d6 6998
34f971f6 6999 /*
d1ccc66d 7000 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7001 */
7002 if (p == rq->stop) {
4b211f2b
MP
7003 retval = -EINVAL;
7004 goto unlock;
34f971f6
PZ
7005 }
7006
a51e9198 7007 /*
d6b1e911
TG
7008 * If not changing anything there's no need to proceed further,
7009 * but store a possible modification of reset_on_fork.
a51e9198 7010 */
d50dde5a 7011 if (unlikely(policy == p->policy)) {
d0ea0268 7012 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7013 goto change;
7014 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7015 goto change;
75381608 7016 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7017 goto change;
a509a7cd
PB
7018 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7019 goto change;
d50dde5a 7020
d6b1e911 7021 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7022 retval = 0;
7023 goto unlock;
a51e9198 7024 }
d50dde5a 7025change:
a51e9198 7026
dc61b1d6 7027 if (user) {
332ac17e 7028#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7029 /*
7030 * Do not allow realtime tasks into groups that have no runtime
7031 * assigned.
7032 */
7033 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7034 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7035 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7036 retval = -EPERM;
7037 goto unlock;
dc61b1d6 7038 }
dc61b1d6 7039#endif
332ac17e 7040#ifdef CONFIG_SMP
794a56eb
JL
7041 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7042 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7043 cpumask_t *span = rq->rd->span;
332ac17e
DF
7044
7045 /*
7046 * Don't allow tasks with an affinity mask smaller than
7047 * the entire root_domain to become SCHED_DEADLINE. We
7048 * will also fail if there's no bandwidth available.
7049 */
3bd37062 7050 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7051 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7052 retval = -EPERM;
7053 goto unlock;
332ac17e
DF
7054 }
7055 }
7056#endif
7057 }
dc61b1d6 7058
d1ccc66d 7059 /* Re-check policy now with rq lock held: */
1da177e4
LT
7060 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7061 policy = oldpolicy = -1;
eb580751 7062 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7063 if (pi)
7064 cpuset_read_unlock();
1da177e4
LT
7065 goto recheck;
7066 }
332ac17e
DF
7067
7068 /*
7069 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7070 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7071 * is available.
7072 */
06a76fe0 7073 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7074 retval = -EBUSY;
7075 goto unlock;
332ac17e
DF
7076 }
7077
c365c292
TG
7078 p->sched_reset_on_fork = reset_on_fork;
7079 oldprio = p->prio;
7080
dbc7f069
PZ
7081 if (pi) {
7082 /*
7083 * Take priority boosted tasks into account. If the new
7084 * effective priority is unchanged, we just store the new
7085 * normal parameters and do not touch the scheduler class and
7086 * the runqueue. This will be done when the task deboost
7087 * itself.
7088 */
acd58620 7089 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
7090 if (new_effective_prio == oldprio)
7091 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7092 }
7093
da0c1e65 7094 queued = task_on_rq_queued(p);
051a1d1a 7095 running = task_current(rq, p);
da0c1e65 7096 if (queued)
ff77e468 7097 dequeue_task(rq, p, queue_flags);
0e1f3483 7098 if (running)
f3cd1c4e 7099 put_prev_task(rq, p);
f6b53205 7100
83ab0aa0 7101 prev_class = p->sched_class;
a509a7cd 7102
dbc7f069 7103 __setscheduler(rq, p, attr, pi);
a509a7cd 7104 __setscheduler_uclamp(p, attr);
f6b53205 7105
da0c1e65 7106 if (queued) {
81a44c54
TG
7107 /*
7108 * We enqueue to tail when the priority of a task is
7109 * increased (user space view).
7110 */
ff77e468
PZ
7111 if (oldprio < p->prio)
7112 queue_flags |= ENQUEUE_HEAD;
1de64443 7113
ff77e468 7114 enqueue_task(rq, p, queue_flags);
81a44c54 7115 }
a399d233 7116 if (running)
03b7fad1 7117 set_next_task(rq, p);
cb469845 7118
da7a735e 7119 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7120
7121 /* Avoid rq from going away on us: */
7122 preempt_disable();
565790d2 7123 head = splice_balance_callbacks(rq);
eb580751 7124 task_rq_unlock(rq, p, &rf);
b29739f9 7125
710da3c8
JL
7126 if (pi) {
7127 cpuset_read_unlock();
dbc7f069 7128 rt_mutex_adjust_pi(p);
710da3c8 7129 }
95e02ca9 7130
d1ccc66d 7131 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7132 balance_callbacks(rq, head);
4c9a4bc8 7133 preempt_enable();
95e02ca9 7134
1da177e4 7135 return 0;
4b211f2b
MP
7136
7137unlock:
7138 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7139 if (pi)
7140 cpuset_read_unlock();
4b211f2b 7141 return retval;
1da177e4 7142}
961ccddd 7143
7479f3c9
PZ
7144static int _sched_setscheduler(struct task_struct *p, int policy,
7145 const struct sched_param *param, bool check)
7146{
7147 struct sched_attr attr = {
7148 .sched_policy = policy,
7149 .sched_priority = param->sched_priority,
7150 .sched_nice = PRIO_TO_NICE(p->static_prio),
7151 };
7152
c13db6b1
SR
7153 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7154 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7155 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7156 policy &= ~SCHED_RESET_ON_FORK;
7157 attr.sched_policy = policy;
7158 }
7159
dbc7f069 7160 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7161}
961ccddd
RR
7162/**
7163 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7164 * @p: the task in question.
7165 * @policy: new policy.
7166 * @param: structure containing the new RT priority.
7167 *
7318d4cc
PZ
7168 * Use sched_set_fifo(), read its comment.
7169 *
e69f6186
YB
7170 * Return: 0 on success. An error code otherwise.
7171 *
961ccddd
RR
7172 * NOTE that the task may be already dead.
7173 */
7174int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7175 const struct sched_param *param)
961ccddd 7176{
7479f3c9 7177 return _sched_setscheduler(p, policy, param, true);
961ccddd 7178}
1da177e4 7179
d50dde5a
DF
7180int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7181{
dbc7f069 7182 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7183}
d50dde5a 7184
794a56eb
JL
7185int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7186{
7187 return __sched_setscheduler(p, attr, false, true);
7188}
4c38f2df 7189EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7190
961ccddd
RR
7191/**
7192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7193 * @p: the task in question.
7194 * @policy: new policy.
7195 * @param: structure containing the new RT priority.
7196 *
7197 * Just like sched_setscheduler, only don't bother checking if the
7198 * current context has permission. For example, this is needed in
7199 * stop_machine(): we create temporary high priority worker threads,
7200 * but our caller might not have that capability.
e69f6186
YB
7201 *
7202 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7203 */
7204int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7205 const struct sched_param *param)
961ccddd 7206{
7479f3c9 7207 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7208}
7209
7318d4cc
PZ
7210/*
7211 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7212 * incapable of resource management, which is the one thing an OS really should
7213 * be doing.
7214 *
7215 * This is of course the reason it is limited to privileged users only.
7216 *
7217 * Worse still; it is fundamentally impossible to compose static priority
7218 * workloads. You cannot take two correctly working static prio workloads
7219 * and smash them together and still expect them to work.
7220 *
7221 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7222 *
7223 * MAX_RT_PRIO / 2
7224 *
7225 * The administrator _MUST_ configure the system, the kernel simply doesn't
7226 * know enough information to make a sensible choice.
7227 */
8b700983 7228void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7229{
7230 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7231 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7232}
7233EXPORT_SYMBOL_GPL(sched_set_fifo);
7234
7235/*
7236 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7237 */
8b700983 7238void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7239{
7240 struct sched_param sp = { .sched_priority = 1 };
8b700983 7241 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7242}
7243EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7244
8b700983 7245void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7246{
7247 struct sched_attr attr = {
7248 .sched_policy = SCHED_NORMAL,
7249 .sched_nice = nice,
7250 };
8b700983 7251 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7252}
7253EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7254
95cdf3b7
IM
7255static int
7256do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7257{
1da177e4
LT
7258 struct sched_param lparam;
7259 struct task_struct *p;
36c8b586 7260 int retval;
1da177e4
LT
7261
7262 if (!param || pid < 0)
7263 return -EINVAL;
7264 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7265 return -EFAULT;
5fe1d75f
ON
7266
7267 rcu_read_lock();
7268 retval = -ESRCH;
1da177e4 7269 p = find_process_by_pid(pid);
710da3c8
JL
7270 if (likely(p))
7271 get_task_struct(p);
5fe1d75f 7272 rcu_read_unlock();
36c8b586 7273
710da3c8
JL
7274 if (likely(p)) {
7275 retval = sched_setscheduler(p, policy, &lparam);
7276 put_task_struct(p);
7277 }
7278
1da177e4
LT
7279 return retval;
7280}
7281
d50dde5a
DF
7282/*
7283 * Mimics kernel/events/core.c perf_copy_attr().
7284 */
d1ccc66d 7285static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7286{
7287 u32 size;
7288 int ret;
7289
d1ccc66d 7290 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7291 memset(attr, 0, sizeof(*attr));
7292
7293 ret = get_user(size, &uattr->size);
7294 if (ret)
7295 return ret;
7296
d1ccc66d
IM
7297 /* ABI compatibility quirk: */
7298 if (!size)
d50dde5a 7299 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7300 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7301 goto err_size;
7302
dff3a85f
AS
7303 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7304 if (ret) {
7305 if (ret == -E2BIG)
7306 goto err_size;
7307 return ret;
d50dde5a
DF
7308 }
7309
a509a7cd
PB
7310 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7311 size < SCHED_ATTR_SIZE_VER1)
7312 return -EINVAL;
7313
d50dde5a 7314 /*
d1ccc66d 7315 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7316 * to be strict and return an error on out-of-bounds values?
7317 */
75e45d51 7318 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7319
e78c7bca 7320 return 0;
d50dde5a
DF
7321
7322err_size:
7323 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7324 return -E2BIG;
d50dde5a
DF
7325}
7326
f4dddf90
QP
7327static void get_params(struct task_struct *p, struct sched_attr *attr)
7328{
7329 if (task_has_dl_policy(p))
7330 __getparam_dl(p, attr);
7331 else if (task_has_rt_policy(p))
7332 attr->sched_priority = p->rt_priority;
7333 else
7334 attr->sched_nice = task_nice(p);
7335}
7336
1da177e4
LT
7337/**
7338 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7339 * @pid: the pid in question.
7340 * @policy: new policy.
7341 * @param: structure containing the new RT priority.
e69f6186
YB
7342 *
7343 * Return: 0 on success. An error code otherwise.
1da177e4 7344 */
d1ccc66d 7345SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7346{
c21761f1
JB
7347 if (policy < 0)
7348 return -EINVAL;
7349
1da177e4
LT
7350 return do_sched_setscheduler(pid, policy, param);
7351}
7352
7353/**
7354 * sys_sched_setparam - set/change the RT priority of a thread
7355 * @pid: the pid in question.
7356 * @param: structure containing the new RT priority.
e69f6186
YB
7357 *
7358 * Return: 0 on success. An error code otherwise.
1da177e4 7359 */
5add95d4 7360SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7361{
c13db6b1 7362 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7363}
7364
d50dde5a
DF
7365/**
7366 * sys_sched_setattr - same as above, but with extended sched_attr
7367 * @pid: the pid in question.
5778fccf 7368 * @uattr: structure containing the extended parameters.
db66d756 7369 * @flags: for future extension.
d50dde5a 7370 */
6d35ab48
PZ
7371SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7372 unsigned int, flags)
d50dde5a
DF
7373{
7374 struct sched_attr attr;
7375 struct task_struct *p;
7376 int retval;
7377
6d35ab48 7378 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7379 return -EINVAL;
7380
143cf23d
MK
7381 retval = sched_copy_attr(uattr, &attr);
7382 if (retval)
7383 return retval;
d50dde5a 7384
b14ed2c2 7385 if ((int)attr.sched_policy < 0)
dbdb2275 7386 return -EINVAL;
1d6362fa
PB
7387 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7388 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7389
7390 rcu_read_lock();
7391 retval = -ESRCH;
7392 p = find_process_by_pid(pid);
a509a7cd
PB
7393 if (likely(p))
7394 get_task_struct(p);
d50dde5a
DF
7395 rcu_read_unlock();
7396
a509a7cd 7397 if (likely(p)) {
f4dddf90
QP
7398 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7399 get_params(p, &attr);
a509a7cd
PB
7400 retval = sched_setattr(p, &attr);
7401 put_task_struct(p);
7402 }
7403
d50dde5a
DF
7404 return retval;
7405}
7406
1da177e4
LT
7407/**
7408 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7409 * @pid: the pid in question.
e69f6186
YB
7410 *
7411 * Return: On success, the policy of the thread. Otherwise, a negative error
7412 * code.
1da177e4 7413 */
5add95d4 7414SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7415{
36c8b586 7416 struct task_struct *p;
3a5c359a 7417 int retval;
1da177e4
LT
7418
7419 if (pid < 0)
3a5c359a 7420 return -EINVAL;
1da177e4
LT
7421
7422 retval = -ESRCH;
5fe85be0 7423 rcu_read_lock();
1da177e4
LT
7424 p = find_process_by_pid(pid);
7425 if (p) {
7426 retval = security_task_getscheduler(p);
7427 if (!retval)
ca94c442
LP
7428 retval = p->policy
7429 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7430 }
5fe85be0 7431 rcu_read_unlock();
1da177e4
LT
7432 return retval;
7433}
7434
7435/**
ca94c442 7436 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7437 * @pid: the pid in question.
7438 * @param: structure containing the RT priority.
e69f6186
YB
7439 *
7440 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7441 * code.
1da177e4 7442 */
5add95d4 7443SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7444{
ce5f7f82 7445 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7446 struct task_struct *p;
3a5c359a 7447 int retval;
1da177e4
LT
7448
7449 if (!param || pid < 0)
3a5c359a 7450 return -EINVAL;
1da177e4 7451
5fe85be0 7452 rcu_read_lock();
1da177e4
LT
7453 p = find_process_by_pid(pid);
7454 retval = -ESRCH;
7455 if (!p)
7456 goto out_unlock;
7457
7458 retval = security_task_getscheduler(p);
7459 if (retval)
7460 goto out_unlock;
7461
ce5f7f82
PZ
7462 if (task_has_rt_policy(p))
7463 lp.sched_priority = p->rt_priority;
5fe85be0 7464 rcu_read_unlock();
1da177e4
LT
7465
7466 /*
7467 * This one might sleep, we cannot do it with a spinlock held ...
7468 */
7469 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7470
1da177e4
LT
7471 return retval;
7472
7473out_unlock:
5fe85be0 7474 rcu_read_unlock();
1da177e4
LT
7475 return retval;
7476}
7477
1251201c
IM
7478/*
7479 * Copy the kernel size attribute structure (which might be larger
7480 * than what user-space knows about) to user-space.
7481 *
7482 * Note that all cases are valid: user-space buffer can be larger or
7483 * smaller than the kernel-space buffer. The usual case is that both
7484 * have the same size.
7485 */
7486static int
7487sched_attr_copy_to_user(struct sched_attr __user *uattr,
7488 struct sched_attr *kattr,
7489 unsigned int usize)
d50dde5a 7490{
1251201c 7491 unsigned int ksize = sizeof(*kattr);
d50dde5a 7492
96d4f267 7493 if (!access_ok(uattr, usize))
d50dde5a
DF
7494 return -EFAULT;
7495
7496 /*
1251201c
IM
7497 * sched_getattr() ABI forwards and backwards compatibility:
7498 *
7499 * If usize == ksize then we just copy everything to user-space and all is good.
7500 *
7501 * If usize < ksize then we only copy as much as user-space has space for,
7502 * this keeps ABI compatibility as well. We skip the rest.
7503 *
7504 * If usize > ksize then user-space is using a newer version of the ABI,
7505 * which part the kernel doesn't know about. Just ignore it - tooling can
7506 * detect the kernel's knowledge of attributes from the attr->size value
7507 * which is set to ksize in this case.
d50dde5a 7508 */
1251201c 7509 kattr->size = min(usize, ksize);
d50dde5a 7510
1251201c 7511 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7512 return -EFAULT;
7513
22400674 7514 return 0;
d50dde5a
DF
7515}
7516
7517/**
aab03e05 7518 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7519 * @pid: the pid in question.
5778fccf 7520 * @uattr: structure containing the extended parameters.
dff3a85f 7521 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7522 * @flags: for future extension.
d50dde5a 7523 */
6d35ab48 7524SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7525 unsigned int, usize, unsigned int, flags)
d50dde5a 7526{
1251201c 7527 struct sched_attr kattr = { };
d50dde5a
DF
7528 struct task_struct *p;
7529 int retval;
7530
1251201c
IM
7531 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7532 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7533 return -EINVAL;
7534
7535 rcu_read_lock();
7536 p = find_process_by_pid(pid);
7537 retval = -ESRCH;
7538 if (!p)
7539 goto out_unlock;
7540
7541 retval = security_task_getscheduler(p);
7542 if (retval)
7543 goto out_unlock;
7544
1251201c 7545 kattr.sched_policy = p->policy;
7479f3c9 7546 if (p->sched_reset_on_fork)
1251201c 7547 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 7548 get_params(p, &kattr);
7ad721bf 7549 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 7550
a509a7cd 7551#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7552 /*
7553 * This could race with another potential updater, but this is fine
7554 * because it'll correctly read the old or the new value. We don't need
7555 * to guarantee who wins the race as long as it doesn't return garbage.
7556 */
1251201c
IM
7557 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7558 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7559#endif
7560
d50dde5a
DF
7561 rcu_read_unlock();
7562
1251201c 7563 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7564
7565out_unlock:
7566 rcu_read_unlock();
7567 return retval;
7568}
7569
96f874e2 7570long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 7571{
5a16f3d3 7572 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
7573 struct task_struct *p;
7574 int retval;
1da177e4 7575
23f5d142 7576 rcu_read_lock();
1da177e4
LT
7577
7578 p = find_process_by_pid(pid);
7579 if (!p) {
23f5d142 7580 rcu_read_unlock();
1da177e4
LT
7581 return -ESRCH;
7582 }
7583
23f5d142 7584 /* Prevent p going away */
1da177e4 7585 get_task_struct(p);
23f5d142 7586 rcu_read_unlock();
1da177e4 7587
14a40ffc
TH
7588 if (p->flags & PF_NO_SETAFFINITY) {
7589 retval = -EINVAL;
7590 goto out_put_task;
7591 }
5a16f3d3
RR
7592 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7593 retval = -ENOMEM;
7594 goto out_put_task;
7595 }
7596 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7597 retval = -ENOMEM;
7598 goto out_free_cpus_allowed;
7599 }
1da177e4 7600 retval = -EPERM;
4c44aaaf
EB
7601 if (!check_same_owner(p)) {
7602 rcu_read_lock();
7603 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7604 rcu_read_unlock();
16303ab2 7605 goto out_free_new_mask;
4c44aaaf
EB
7606 }
7607 rcu_read_unlock();
7608 }
1da177e4 7609
b0ae1981 7610 retval = security_task_setscheduler(p);
e7834f8f 7611 if (retval)
16303ab2 7612 goto out_free_new_mask;
e7834f8f 7613
e4099a5e
PZ
7614
7615 cpuset_cpus_allowed(p, cpus_allowed);
7616 cpumask_and(new_mask, in_mask, cpus_allowed);
7617
332ac17e
DF
7618 /*
7619 * Since bandwidth control happens on root_domain basis,
7620 * if admission test is enabled, we only admit -deadline
7621 * tasks allowed to run on all the CPUs in the task's
7622 * root_domain.
7623 */
7624#ifdef CONFIG_SMP
f1e3a093
KT
7625 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7626 rcu_read_lock();
7627 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 7628 retval = -EBUSY;
f1e3a093 7629 rcu_read_unlock();
16303ab2 7630 goto out_free_new_mask;
332ac17e 7631 }
f1e3a093 7632 rcu_read_unlock();
332ac17e
DF
7633 }
7634#endif
49246274 7635again:
9cfc3e18 7636 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 7637
8707d8b8 7638 if (!retval) {
5a16f3d3
RR
7639 cpuset_cpus_allowed(p, cpus_allowed);
7640 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
7641 /*
7642 * We must have raced with a concurrent cpuset
7643 * update. Just reset the cpus_allowed to the
7644 * cpuset's cpus_allowed
7645 */
5a16f3d3 7646 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
7647 goto again;
7648 }
7649 }
16303ab2 7650out_free_new_mask:
5a16f3d3
RR
7651 free_cpumask_var(new_mask);
7652out_free_cpus_allowed:
7653 free_cpumask_var(cpus_allowed);
7654out_put_task:
1da177e4 7655 put_task_struct(p);
1da177e4
LT
7656 return retval;
7657}
7658
7659static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 7660 struct cpumask *new_mask)
1da177e4 7661{
96f874e2
RR
7662 if (len < cpumask_size())
7663 cpumask_clear(new_mask);
7664 else if (len > cpumask_size())
7665 len = cpumask_size();
7666
1da177e4
LT
7667 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7668}
7669
7670/**
d1ccc66d 7671 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
7672 * @pid: pid of the process
7673 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7674 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
7675 *
7676 * Return: 0 on success. An error code otherwise.
1da177e4 7677 */
5add95d4
HC
7678SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7679 unsigned long __user *, user_mask_ptr)
1da177e4 7680{
5a16f3d3 7681 cpumask_var_t new_mask;
1da177e4
LT
7682 int retval;
7683
5a16f3d3
RR
7684 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7685 return -ENOMEM;
1da177e4 7686
5a16f3d3
RR
7687 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7688 if (retval == 0)
7689 retval = sched_setaffinity(pid, new_mask);
7690 free_cpumask_var(new_mask);
7691 return retval;
1da177e4
LT
7692}
7693
96f874e2 7694long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 7695{
36c8b586 7696 struct task_struct *p;
31605683 7697 unsigned long flags;
1da177e4 7698 int retval;
1da177e4 7699
23f5d142 7700 rcu_read_lock();
1da177e4
LT
7701
7702 retval = -ESRCH;
7703 p = find_process_by_pid(pid);
7704 if (!p)
7705 goto out_unlock;
7706
e7834f8f
DQ
7707 retval = security_task_getscheduler(p);
7708 if (retval)
7709 goto out_unlock;
7710
013fdb80 7711 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 7712 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 7713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7714
7715out_unlock:
23f5d142 7716 rcu_read_unlock();
1da177e4 7717
9531b62f 7718 return retval;
1da177e4
LT
7719}
7720
7721/**
d1ccc66d 7722 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
7723 * @pid: pid of the process
7724 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7725 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 7726 *
599b4840
ZW
7727 * Return: size of CPU mask copied to user_mask_ptr on success. An
7728 * error code otherwise.
1da177e4 7729 */
5add95d4
HC
7730SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7731 unsigned long __user *, user_mask_ptr)
1da177e4
LT
7732{
7733 int ret;
f17c8607 7734 cpumask_var_t mask;
1da177e4 7735
84fba5ec 7736 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
7737 return -EINVAL;
7738 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
7739 return -EINVAL;
7740
f17c8607
RR
7741 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7742 return -ENOMEM;
1da177e4 7743
f17c8607
RR
7744 ret = sched_getaffinity(pid, mask);
7745 if (ret == 0) {
4de373a1 7746 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
7747
7748 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
7749 ret = -EFAULT;
7750 else
cd3d8031 7751 ret = retlen;
f17c8607
RR
7752 }
7753 free_cpumask_var(mask);
1da177e4 7754
f17c8607 7755 return ret;
1da177e4
LT
7756}
7757
7d4dd4f1 7758static void do_sched_yield(void)
1da177e4 7759{
8a8c69c3
PZ
7760 struct rq_flags rf;
7761 struct rq *rq;
7762
246b3b33 7763 rq = this_rq_lock_irq(&rf);
1da177e4 7764
ae92882e 7765 schedstat_inc(rq->yld_count);
4530d7ab 7766 current->sched_class->yield_task(rq);
1da177e4 7767
8a8c69c3 7768 preempt_disable();
345a957f 7769 rq_unlock_irq(rq, &rf);
ba74c144 7770 sched_preempt_enable_no_resched();
1da177e4
LT
7771
7772 schedule();
7d4dd4f1 7773}
1da177e4 7774
59a74b15
MCC
7775/**
7776 * sys_sched_yield - yield the current processor to other threads.
7777 *
7778 * This function yields the current CPU to other tasks. If there are no
7779 * other threads running on this CPU then this function will return.
7780 *
7781 * Return: 0.
7782 */
7d4dd4f1
DB
7783SYSCALL_DEFINE0(sched_yield)
7784{
7785 do_sched_yield();
1da177e4
LT
7786 return 0;
7787}
7788
b965f1dd
PZI
7789#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7790int __sched __cond_resched(void)
1da177e4 7791{
fe32d3cd 7792 if (should_resched(0)) {
a18b5d01 7793 preempt_schedule_common();
1da177e4
LT
7794 return 1;
7795 }
b965f1dd 7796#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 7797 rcu_all_qs();
b965f1dd 7798#endif
1da177e4
LT
7799 return 0;
7800}
b965f1dd
PZI
7801EXPORT_SYMBOL(__cond_resched);
7802#endif
7803
7804#ifdef CONFIG_PREEMPT_DYNAMIC
7805DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 7806EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
7807
7808DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 7809EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 7810#endif
1da177e4
LT
7811
7812/*
613afbf8 7813 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7814 * call schedule, and on return reacquire the lock.
7815 *
c1a280b6 7816 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7817 * operations here to prevent schedule() from being called twice (once via
7818 * spin_unlock(), once by hand).
7819 */
613afbf8 7820int __cond_resched_lock(spinlock_t *lock)
1da177e4 7821{
fe32d3cd 7822 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7823 int ret = 0;
7824
f607c668
PZ
7825 lockdep_assert_held(lock);
7826
4a81e832 7827 if (spin_needbreak(lock) || resched) {
1da177e4 7828 spin_unlock(lock);
d86ee480 7829 if (resched)
a18b5d01 7830 preempt_schedule_common();
95c354fe
NP
7831 else
7832 cpu_relax();
6df3cecb 7833 ret = 1;
1da177e4 7834 spin_lock(lock);
1da177e4 7835 }
6df3cecb 7836 return ret;
1da177e4 7837}
613afbf8 7838EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7839
f3d4b4b1
BG
7840int __cond_resched_rwlock_read(rwlock_t *lock)
7841{
7842 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7843 int ret = 0;
7844
7845 lockdep_assert_held_read(lock);
7846
7847 if (rwlock_needbreak(lock) || resched) {
7848 read_unlock(lock);
7849 if (resched)
7850 preempt_schedule_common();
7851 else
7852 cpu_relax();
7853 ret = 1;
7854 read_lock(lock);
7855 }
7856 return ret;
7857}
7858EXPORT_SYMBOL(__cond_resched_rwlock_read);
7859
7860int __cond_resched_rwlock_write(rwlock_t *lock)
7861{
7862 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7863 int ret = 0;
7864
7865 lockdep_assert_held_write(lock);
7866
7867 if (rwlock_needbreak(lock) || resched) {
7868 write_unlock(lock);
7869 if (resched)
7870 preempt_schedule_common();
7871 else
7872 cpu_relax();
7873 ret = 1;
7874 write_lock(lock);
7875 }
7876 return ret;
7877}
7878EXPORT_SYMBOL(__cond_resched_rwlock_write);
7879
1da177e4
LT
7880/**
7881 * yield - yield the current processor to other threads.
7882 *
8e3fabfd
PZ
7883 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7884 *
7885 * The scheduler is at all times free to pick the calling task as the most
7886 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7887 * it, it's already broken.
8e3fabfd
PZ
7888 *
7889 * Typical broken usage is:
7890 *
7891 * while (!event)
d1ccc66d 7892 * yield();
8e3fabfd
PZ
7893 *
7894 * where one assumes that yield() will let 'the other' process run that will
7895 * make event true. If the current task is a SCHED_FIFO task that will never
7896 * happen. Never use yield() as a progress guarantee!!
7897 *
7898 * If you want to use yield() to wait for something, use wait_event().
7899 * If you want to use yield() to be 'nice' for others, use cond_resched().
7900 * If you still want to use yield(), do not!
1da177e4
LT
7901 */
7902void __sched yield(void)
7903{
7904 set_current_state(TASK_RUNNING);
7d4dd4f1 7905 do_sched_yield();
1da177e4 7906}
1da177e4
LT
7907EXPORT_SYMBOL(yield);
7908
d95f4122
MG
7909/**
7910 * yield_to - yield the current processor to another thread in
7911 * your thread group, or accelerate that thread toward the
7912 * processor it's on.
16addf95
RD
7913 * @p: target task
7914 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7915 *
7916 * It's the caller's job to ensure that the target task struct
7917 * can't go away on us before we can do any checks.
7918 *
e69f6186 7919 * Return:
7b270f60
PZ
7920 * true (>0) if we indeed boosted the target task.
7921 * false (0) if we failed to boost the target.
7922 * -ESRCH if there's no task to yield to.
d95f4122 7923 */
fa93384f 7924int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7925{
7926 struct task_struct *curr = current;
7927 struct rq *rq, *p_rq;
7928 unsigned long flags;
c3c18640 7929 int yielded = 0;
d95f4122
MG
7930
7931 local_irq_save(flags);
7932 rq = this_rq();
7933
7934again:
7935 p_rq = task_rq(p);
7b270f60
PZ
7936 /*
7937 * If we're the only runnable task on the rq and target rq also
7938 * has only one task, there's absolutely no point in yielding.
7939 */
7940 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7941 yielded = -ESRCH;
7942 goto out_irq;
7943 }
7944
d95f4122 7945 double_rq_lock(rq, p_rq);
39e24d8f 7946 if (task_rq(p) != p_rq) {
d95f4122
MG
7947 double_rq_unlock(rq, p_rq);
7948 goto again;
7949 }
7950
7951 if (!curr->sched_class->yield_to_task)
7b270f60 7952 goto out_unlock;
d95f4122
MG
7953
7954 if (curr->sched_class != p->sched_class)
7b270f60 7955 goto out_unlock;
d95f4122 7956
b03fbd4f 7957 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 7958 goto out_unlock;
d95f4122 7959
0900acf2 7960 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7961 if (yielded) {
ae92882e 7962 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7963 /*
7964 * Make p's CPU reschedule; pick_next_entity takes care of
7965 * fairness.
7966 */
7967 if (preempt && rq != p_rq)
8875125e 7968 resched_curr(p_rq);
6d1cafd8 7969 }
d95f4122 7970
7b270f60 7971out_unlock:
d95f4122 7972 double_rq_unlock(rq, p_rq);
7b270f60 7973out_irq:
d95f4122
MG
7974 local_irq_restore(flags);
7975
7b270f60 7976 if (yielded > 0)
d95f4122
MG
7977 schedule();
7978
7979 return yielded;
7980}
7981EXPORT_SYMBOL_GPL(yield_to);
7982
10ab5643
TH
7983int io_schedule_prepare(void)
7984{
7985 int old_iowait = current->in_iowait;
7986
7987 current->in_iowait = 1;
7988 blk_schedule_flush_plug(current);
7989
7990 return old_iowait;
7991}
7992
7993void io_schedule_finish(int token)
7994{
7995 current->in_iowait = token;
7996}
7997
1da177e4 7998/*
41a2d6cf 7999 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8000 * that process accounting knows that this is a task in IO wait state.
1da177e4 8001 */
1da177e4
LT
8002long __sched io_schedule_timeout(long timeout)
8003{
10ab5643 8004 int token;
1da177e4
LT
8005 long ret;
8006
10ab5643 8007 token = io_schedule_prepare();
1da177e4 8008 ret = schedule_timeout(timeout);
10ab5643 8009 io_schedule_finish(token);
9cff8ade 8010
1da177e4
LT
8011 return ret;
8012}
9cff8ade 8013EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8014
e3b929b0 8015void __sched io_schedule(void)
10ab5643
TH
8016{
8017 int token;
8018
8019 token = io_schedule_prepare();
8020 schedule();
8021 io_schedule_finish(token);
8022}
8023EXPORT_SYMBOL(io_schedule);
8024
1da177e4
LT
8025/**
8026 * sys_sched_get_priority_max - return maximum RT priority.
8027 * @policy: scheduling class.
8028 *
e69f6186
YB
8029 * Return: On success, this syscall returns the maximum
8030 * rt_priority that can be used by a given scheduling class.
8031 * On failure, a negative error code is returned.
1da177e4 8032 */
5add95d4 8033SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8034{
8035 int ret = -EINVAL;
8036
8037 switch (policy) {
8038 case SCHED_FIFO:
8039 case SCHED_RR:
ae18ad28 8040 ret = MAX_RT_PRIO-1;
1da177e4 8041 break;
aab03e05 8042 case SCHED_DEADLINE:
1da177e4 8043 case SCHED_NORMAL:
b0a9499c 8044 case SCHED_BATCH:
dd41f596 8045 case SCHED_IDLE:
1da177e4
LT
8046 ret = 0;
8047 break;
8048 }
8049 return ret;
8050}
8051
8052/**
8053 * sys_sched_get_priority_min - return minimum RT priority.
8054 * @policy: scheduling class.
8055 *
e69f6186
YB
8056 * Return: On success, this syscall returns the minimum
8057 * rt_priority that can be used by a given scheduling class.
8058 * On failure, a negative error code is returned.
1da177e4 8059 */
5add95d4 8060SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8061{
8062 int ret = -EINVAL;
8063
8064 switch (policy) {
8065 case SCHED_FIFO:
8066 case SCHED_RR:
8067 ret = 1;
8068 break;
aab03e05 8069 case SCHED_DEADLINE:
1da177e4 8070 case SCHED_NORMAL:
b0a9499c 8071 case SCHED_BATCH:
dd41f596 8072 case SCHED_IDLE:
1da177e4
LT
8073 ret = 0;
8074 }
8075 return ret;
8076}
8077
abca5fc5 8078static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8079{
36c8b586 8080 struct task_struct *p;
a4ec24b4 8081 unsigned int time_slice;
eb580751 8082 struct rq_flags rf;
dba091b9 8083 struct rq *rq;
3a5c359a 8084 int retval;
1da177e4
LT
8085
8086 if (pid < 0)
3a5c359a 8087 return -EINVAL;
1da177e4
LT
8088
8089 retval = -ESRCH;
1a551ae7 8090 rcu_read_lock();
1da177e4
LT
8091 p = find_process_by_pid(pid);
8092 if (!p)
8093 goto out_unlock;
8094
8095 retval = security_task_getscheduler(p);
8096 if (retval)
8097 goto out_unlock;
8098
eb580751 8099 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8100 time_slice = 0;
8101 if (p->sched_class->get_rr_interval)
8102 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8103 task_rq_unlock(rq, p, &rf);
a4ec24b4 8104
1a551ae7 8105 rcu_read_unlock();
abca5fc5
AV
8106 jiffies_to_timespec64(time_slice, t);
8107 return 0;
3a5c359a 8108
1da177e4 8109out_unlock:
1a551ae7 8110 rcu_read_unlock();
1da177e4
LT
8111 return retval;
8112}
8113
2064a5ab
RD
8114/**
8115 * sys_sched_rr_get_interval - return the default timeslice of a process.
8116 * @pid: pid of the process.
8117 * @interval: userspace pointer to the timeslice value.
8118 *
8119 * this syscall writes the default timeslice value of a given process
8120 * into the user-space timespec buffer. A value of '0' means infinity.
8121 *
8122 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8123 * an error code.
8124 */
abca5fc5 8125SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8126 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8127{
8128 struct timespec64 t;
8129 int retval = sched_rr_get_interval(pid, &t);
8130
8131 if (retval == 0)
8132 retval = put_timespec64(&t, interval);
8133
8134 return retval;
8135}
8136
474b9c77 8137#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8138SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8139 struct old_timespec32 __user *, interval)
abca5fc5
AV
8140{
8141 struct timespec64 t;
8142 int retval = sched_rr_get_interval(pid, &t);
8143
8144 if (retval == 0)
9afc5eee 8145 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8146 return retval;
8147}
8148#endif
8149
82a1fcb9 8150void sched_show_task(struct task_struct *p)
1da177e4 8151{
1da177e4 8152 unsigned long free = 0;
4e79752c 8153 int ppid;
c930b2c0 8154
38200502
TH
8155 if (!try_get_task_stack(p))
8156 return;
20435d84 8157
cc172ff3 8158 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8159
b03fbd4f 8160 if (task_is_running(p))
cc172ff3 8161 pr_cont(" running task ");
1da177e4 8162#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8163 free = stack_not_used(p);
1da177e4 8164#endif
a90e984c 8165 ppid = 0;
4e79752c 8166 rcu_read_lock();
a90e984c
ON
8167 if (pid_alive(p))
8168 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8169 rcu_read_unlock();
cc172ff3
LZ
8170 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8171 free, task_pid_nr(p), ppid,
aa47b7e0 8172 (unsigned long)task_thread_info(p)->flags);
1da177e4 8173
3d1cb205 8174 print_worker_info(KERN_INFO, p);
a8b62fd0 8175 print_stop_info(KERN_INFO, p);
9cb8f069 8176 show_stack(p, NULL, KERN_INFO);
38200502 8177 put_task_stack(p);
1da177e4 8178}
0032f4e8 8179EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8180
5d68cc95
PZ
8181static inline bool
8182state_filter_match(unsigned long state_filter, struct task_struct *p)
8183{
2f064a59
PZ
8184 unsigned int state = READ_ONCE(p->__state);
8185
5d68cc95
PZ
8186 /* no filter, everything matches */
8187 if (!state_filter)
8188 return true;
8189
8190 /* filter, but doesn't match */
2f064a59 8191 if (!(state & state_filter))
5d68cc95
PZ
8192 return false;
8193
8194 /*
8195 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8196 * TASK_KILLABLE).
8197 */
2f064a59 8198 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
5d68cc95
PZ
8199 return false;
8200
8201 return true;
8202}
8203
8204
2f064a59 8205void show_state_filter(unsigned int state_filter)
1da177e4 8206{
36c8b586 8207 struct task_struct *g, *p;
1da177e4 8208
510f5acc 8209 rcu_read_lock();
5d07f420 8210 for_each_process_thread(g, p) {
1da177e4
LT
8211 /*
8212 * reset the NMI-timeout, listing all files on a slow
25985edc 8213 * console might take a lot of time:
57675cb9
AR
8214 * Also, reset softlockup watchdogs on all CPUs, because
8215 * another CPU might be blocked waiting for us to process
8216 * an IPI.
1da177e4
LT
8217 */
8218 touch_nmi_watchdog();
57675cb9 8219 touch_all_softlockup_watchdogs();
5d68cc95 8220 if (state_filter_match(state_filter, p))
82a1fcb9 8221 sched_show_task(p);
5d07f420 8222 }
1da177e4 8223
dd41f596 8224#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8225 if (!state_filter)
8226 sysrq_sched_debug_show();
dd41f596 8227#endif
510f5acc 8228 rcu_read_unlock();
e59e2ae2
IM
8229 /*
8230 * Only show locks if all tasks are dumped:
8231 */
93335a21 8232 if (!state_filter)
e59e2ae2 8233 debug_show_all_locks();
1da177e4
LT
8234}
8235
f340c0d1
IM
8236/**
8237 * init_idle - set up an idle thread for a given CPU
8238 * @idle: task in question
d1ccc66d 8239 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8240 *
8241 * NOTE: this function does not set the idle thread's NEED_RESCHED
8242 * flag, to make booting more robust.
8243 */
f1a0a376 8244void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8245{
70b97a7f 8246 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8247 unsigned long flags;
8248
ff51ff84
PZ
8249 __sched_fork(0, idle);
8250
00b89fe0
VS
8251 /*
8252 * The idle task doesn't need the kthread struct to function, but it
8253 * is dressed up as a per-CPU kthread and thus needs to play the part
8254 * if we want to avoid special-casing it in code that deals with per-CPU
8255 * kthreads.
8256 */
8257 set_kthread_struct(idle);
8258
25834c73 8259 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8260 raw_spin_rq_lock(rq);
5cbd54ef 8261
2f064a59 8262 idle->__state = TASK_RUNNING;
dd41f596 8263 idle->se.exec_start = sched_clock();
00b89fe0
VS
8264 /*
8265 * PF_KTHREAD should already be set at this point; regardless, make it
8266 * look like a proper per-CPU kthread.
8267 */
8268 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8269 kthread_set_per_cpu(idle, cpu);
dd41f596 8270
d08b9f0c 8271 scs_task_reset(idle);
e1b77c92
MR
8272 kasan_unpoison_task_stack(idle);
8273
de9b8f5d
PZ
8274#ifdef CONFIG_SMP
8275 /*
b19a888c 8276 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8277 * in that case do_set_cpus_allowed() will not do the right thing.
8278 *
8279 * And since this is boot we can forgo the serialization.
8280 */
9cfc3e18 8281 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8282#endif
6506cf6c
PZ
8283 /*
8284 * We're having a chicken and egg problem, even though we are
d1ccc66d 8285 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8286 * lockdep check in task_group() will fail.
8287 *
8288 * Similar case to sched_fork(). / Alternatively we could
8289 * use task_rq_lock() here and obtain the other rq->lock.
8290 *
8291 * Silence PROVE_RCU
8292 */
8293 rcu_read_lock();
dd41f596 8294 __set_task_cpu(idle, cpu);
6506cf6c 8295 rcu_read_unlock();
1da177e4 8296
5311a98f
EB
8297 rq->idle = idle;
8298 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8299 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8300#ifdef CONFIG_SMP
3ca7a440 8301 idle->on_cpu = 1;
4866cde0 8302#endif
5cb9eaa3 8303 raw_spin_rq_unlock(rq);
25834c73 8304 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8305
8306 /* Set the preempt count _outside_ the spinlocks! */
01028747 8307 init_idle_preempt_count(idle, cpu);
55cd5340 8308
dd41f596
IM
8309 /*
8310 * The idle tasks have their own, simple scheduling class:
8311 */
8312 idle->sched_class = &idle_sched_class;
868baf07 8313 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8314 vtime_init_idle(idle, cpu);
de9b8f5d 8315#ifdef CONFIG_SMP
f1c6f1a7
CE
8316 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8317#endif
19978ca6
IM
8318}
8319
e1d4eeec
NP
8320#ifdef CONFIG_SMP
8321
f82f8042
JL
8322int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8323 const struct cpumask *trial)
8324{
06a76fe0 8325 int ret = 1;
f82f8042 8326
bb2bc55a
MG
8327 if (!cpumask_weight(cur))
8328 return ret;
8329
06a76fe0 8330 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8331
8332 return ret;
8333}
8334
7f51412a
JL
8335int task_can_attach(struct task_struct *p,
8336 const struct cpumask *cs_cpus_allowed)
8337{
8338 int ret = 0;
8339
8340 /*
8341 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8342 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8343 * affinity and isolating such threads by their set of
8344 * allowed nodes is unnecessary. Thus, cpusets are not
8345 * applicable for such threads. This prevents checking for
8346 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8347 * before cpus_mask may be changed.
7f51412a
JL
8348 */
8349 if (p->flags & PF_NO_SETAFFINITY) {
8350 ret = -EINVAL;
8351 goto out;
8352 }
8353
7f51412a 8354 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8355 cs_cpus_allowed))
8356 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8357
7f51412a
JL
8358out:
8359 return ret;
8360}
8361
f2cb1360 8362bool sched_smp_initialized __read_mostly;
e26fbffd 8363
e6628d5b
MG
8364#ifdef CONFIG_NUMA_BALANCING
8365/* Migrate current task p to target_cpu */
8366int migrate_task_to(struct task_struct *p, int target_cpu)
8367{
8368 struct migration_arg arg = { p, target_cpu };
8369 int curr_cpu = task_cpu(p);
8370
8371 if (curr_cpu == target_cpu)
8372 return 0;
8373
3bd37062 8374 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8375 return -EINVAL;
8376
8377 /* TODO: This is not properly updating schedstats */
8378
286549dc 8379 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8380 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8381}
0ec8aa00
PZ
8382
8383/*
8384 * Requeue a task on a given node and accurately track the number of NUMA
8385 * tasks on the runqueues
8386 */
8387void sched_setnuma(struct task_struct *p, int nid)
8388{
da0c1e65 8389 bool queued, running;
eb580751
PZ
8390 struct rq_flags rf;
8391 struct rq *rq;
0ec8aa00 8392
eb580751 8393 rq = task_rq_lock(p, &rf);
da0c1e65 8394 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8395 running = task_current(rq, p);
8396
da0c1e65 8397 if (queued)
1de64443 8398 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8399 if (running)
f3cd1c4e 8400 put_prev_task(rq, p);
0ec8aa00
PZ
8401
8402 p->numa_preferred_nid = nid;
0ec8aa00 8403
da0c1e65 8404 if (queued)
7134b3e9 8405 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8406 if (running)
03b7fad1 8407 set_next_task(rq, p);
eb580751 8408 task_rq_unlock(rq, p, &rf);
0ec8aa00 8409}
5cc389bc 8410#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8411
1da177e4 8412#ifdef CONFIG_HOTPLUG_CPU
054b9108 8413/*
d1ccc66d 8414 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8415 * offline.
054b9108 8416 */
48c5ccae 8417void idle_task_exit(void)
1da177e4 8418{
48c5ccae 8419 struct mm_struct *mm = current->active_mm;
e76bd8d9 8420
48c5ccae 8421 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8422 BUG_ON(current != this_rq()->idle);
e76bd8d9 8423
a53efe5f 8424 if (mm != &init_mm) {
252d2a41 8425 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8426 finish_arch_post_lock_switch();
8427 }
bf2c59fc
PZ
8428
8429 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8430}
8431
2558aacf 8432static int __balance_push_cpu_stop(void *arg)
1da177e4 8433{
2558aacf
PZ
8434 struct task_struct *p = arg;
8435 struct rq *rq = this_rq();
8436 struct rq_flags rf;
8437 int cpu;
1da177e4 8438
2558aacf
PZ
8439 raw_spin_lock_irq(&p->pi_lock);
8440 rq_lock(rq, &rf);
3f1d2a31 8441
2558aacf
PZ
8442 update_rq_clock(rq);
8443
8444 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8445 cpu = select_fallback_rq(rq->cpu, p);
8446 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8447 }
3f1d2a31 8448
2558aacf
PZ
8449 rq_unlock(rq, &rf);
8450 raw_spin_unlock_irq(&p->pi_lock);
8451
8452 put_task_struct(p);
8453
8454 return 0;
10e7071b 8455}
3f1d2a31 8456
2558aacf
PZ
8457static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8458
48f24c4d 8459/*
2558aacf 8460 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8461 *
8462 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8463 * effective when the hotplug motion is down.
1da177e4 8464 */
2558aacf 8465static void balance_push(struct rq *rq)
1da177e4 8466{
2558aacf
PZ
8467 struct task_struct *push_task = rq->curr;
8468
5cb9eaa3 8469 lockdep_assert_rq_held(rq);
2558aacf 8470 SCHED_WARN_ON(rq->cpu != smp_processor_id());
b5c44773 8471
ae792702
PZ
8472 /*
8473 * Ensure the thing is persistent until balance_push_set(.on = false);
8474 */
8475 rq->balance_callback = &balance_push_callback;
1da177e4 8476
b5c44773
PZ
8477 /*
8478 * Only active while going offline.
8479 */
8480 if (!cpu_dying(rq->cpu))
8481 return;
8482
1da177e4 8483 /*
2558aacf
PZ
8484 * Both the cpu-hotplug and stop task are in this case and are
8485 * required to complete the hotplug process.
1da177e4 8486 */
00b89fe0 8487 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8488 is_migration_disabled(push_task)) {
8489
f2469a1f
TG
8490 /*
8491 * If this is the idle task on the outgoing CPU try to wake
8492 * up the hotplug control thread which might wait for the
8493 * last task to vanish. The rcuwait_active() check is
8494 * accurate here because the waiter is pinned on this CPU
8495 * and can't obviously be running in parallel.
3015ef4b
TG
8496 *
8497 * On RT kernels this also has to check whether there are
8498 * pinned and scheduled out tasks on the runqueue. They
8499 * need to leave the migrate disabled section first.
f2469a1f 8500 */
3015ef4b
TG
8501 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8502 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8503 raw_spin_rq_unlock(rq);
f2469a1f 8504 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8505 raw_spin_rq_lock(rq);
f2469a1f 8506 }
2558aacf 8507 return;
f2469a1f 8508 }
48f24c4d 8509
2558aacf 8510 get_task_struct(push_task);
77bd3970 8511 /*
2558aacf
PZ
8512 * Temporarily drop rq->lock such that we can wake-up the stop task.
8513 * Both preemption and IRQs are still disabled.
77bd3970 8514 */
5cb9eaa3 8515 raw_spin_rq_unlock(rq);
2558aacf
PZ
8516 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8517 this_cpu_ptr(&push_work));
8518 /*
8519 * At this point need_resched() is true and we'll take the loop in
8520 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8521 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8522 */
5cb9eaa3 8523 raw_spin_rq_lock(rq);
2558aacf 8524}
77bd3970 8525
2558aacf
PZ
8526static void balance_push_set(int cpu, bool on)
8527{
8528 struct rq *rq = cpu_rq(cpu);
8529 struct rq_flags rf;
48c5ccae 8530
2558aacf 8531 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8532 if (on) {
8533 WARN_ON_ONCE(rq->balance_callback);
ae792702 8534 rq->balance_callback = &balance_push_callback;
22f667c9 8535 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8536 rq->balance_callback = NULL;
22f667c9 8537 }
2558aacf
PZ
8538 rq_unlock_irqrestore(rq, &rf);
8539}
e692ab53 8540
f2469a1f
TG
8541/*
8542 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8543 * inactive. All tasks which are not per CPU kernel threads are either
8544 * pushed off this CPU now via balance_push() or placed on a different CPU
8545 * during wakeup. Wait until the CPU is quiescent.
8546 */
8547static void balance_hotplug_wait(void)
8548{
8549 struct rq *rq = this_rq();
5473e0cc 8550
3015ef4b
TG
8551 rcuwait_wait_event(&rq->hotplug_wait,
8552 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8553 TASK_UNINTERRUPTIBLE);
8554}
5473e0cc 8555
2558aacf 8556#else
dce48a84 8557
2558aacf
PZ
8558static inline void balance_push(struct rq *rq)
8559{
dce48a84 8560}
dce48a84 8561
2558aacf
PZ
8562static inline void balance_push_set(int cpu, bool on)
8563{
8564}
8565
f2469a1f
TG
8566static inline void balance_hotplug_wait(void)
8567{
dce48a84 8568}
f2469a1f 8569
1da177e4
LT
8570#endif /* CONFIG_HOTPLUG_CPU */
8571
f2cb1360 8572void set_rq_online(struct rq *rq)
1f11eb6a
GH
8573{
8574 if (!rq->online) {
8575 const struct sched_class *class;
8576
c6c4927b 8577 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8578 rq->online = 1;
8579
8580 for_each_class(class) {
8581 if (class->rq_online)
8582 class->rq_online(rq);
8583 }
8584 }
8585}
8586
f2cb1360 8587void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8588{
8589 if (rq->online) {
8590 const struct sched_class *class;
8591
8592 for_each_class(class) {
8593 if (class->rq_offline)
8594 class->rq_offline(rq);
8595 }
8596
c6c4927b 8597 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8598 rq->online = 0;
8599 }
8600}
8601
d1ccc66d
IM
8602/*
8603 * used to mark begin/end of suspend/resume:
8604 */
8605static int num_cpus_frozen;
d35be8ba 8606
1da177e4 8607/*
3a101d05
TH
8608 * Update cpusets according to cpu_active mask. If cpusets are
8609 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8610 * around partition_sched_domains().
d35be8ba
SB
8611 *
8612 * If we come here as part of a suspend/resume, don't touch cpusets because we
8613 * want to restore it back to its original state upon resume anyway.
1da177e4 8614 */
40190a78 8615static void cpuset_cpu_active(void)
e761b772 8616{
40190a78 8617 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8618 /*
8619 * num_cpus_frozen tracks how many CPUs are involved in suspend
8620 * resume sequence. As long as this is not the last online
8621 * operation in the resume sequence, just build a single sched
8622 * domain, ignoring cpusets.
8623 */
50e76632
PZ
8624 partition_sched_domains(1, NULL, NULL);
8625 if (--num_cpus_frozen)
135fb3e1 8626 return;
d35be8ba
SB
8627 /*
8628 * This is the last CPU online operation. So fall through and
8629 * restore the original sched domains by considering the
8630 * cpuset configurations.
8631 */
50e76632 8632 cpuset_force_rebuild();
3a101d05 8633 }
30e03acd 8634 cpuset_update_active_cpus();
3a101d05 8635}
e761b772 8636
40190a78 8637static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 8638{
40190a78 8639 if (!cpuhp_tasks_frozen) {
06a76fe0 8640 if (dl_cpu_busy(cpu))
135fb3e1 8641 return -EBUSY;
30e03acd 8642 cpuset_update_active_cpus();
135fb3e1 8643 } else {
d35be8ba
SB
8644 num_cpus_frozen++;
8645 partition_sched_domains(1, NULL, NULL);
e761b772 8646 }
135fb3e1 8647 return 0;
e761b772 8648}
e761b772 8649
40190a78 8650int sched_cpu_activate(unsigned int cpu)
135fb3e1 8651{
7d976699 8652 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8653 struct rq_flags rf;
7d976699 8654
22f667c9 8655 /*
b5c44773
PZ
8656 * Clear the balance_push callback and prepare to schedule
8657 * regular tasks.
22f667c9 8658 */
2558aacf
PZ
8659 balance_push_set(cpu, false);
8660
ba2591a5
PZ
8661#ifdef CONFIG_SCHED_SMT
8662 /*
c5511d03 8663 * When going up, increment the number of cores with SMT present.
ba2591a5 8664 */
c5511d03
PZI
8665 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8666 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 8667#endif
40190a78 8668 set_cpu_active(cpu, true);
135fb3e1 8669
40190a78 8670 if (sched_smp_initialized) {
135fb3e1 8671 sched_domains_numa_masks_set(cpu);
40190a78 8672 cpuset_cpu_active();
e761b772 8673 }
7d976699
TG
8674
8675 /*
8676 * Put the rq online, if not already. This happens:
8677 *
8678 * 1) In the early boot process, because we build the real domains
d1ccc66d 8679 * after all CPUs have been brought up.
7d976699
TG
8680 *
8681 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8682 * domains.
8683 */
8a8c69c3 8684 rq_lock_irqsave(rq, &rf);
7d976699
TG
8685 if (rq->rd) {
8686 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8687 set_rq_online(rq);
8688 }
8a8c69c3 8689 rq_unlock_irqrestore(rq, &rf);
7d976699 8690
40190a78 8691 return 0;
135fb3e1
TG
8692}
8693
40190a78 8694int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 8695{
120455c5
PZ
8696 struct rq *rq = cpu_rq(cpu);
8697 struct rq_flags rf;
135fb3e1
TG
8698 int ret;
8699
e0b257c3
AMB
8700 /*
8701 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8702 * load balancing when not active
8703 */
8704 nohz_balance_exit_idle(rq);
8705
40190a78 8706 set_cpu_active(cpu, false);
741ba80f
PZ
8707
8708 /*
8709 * From this point forward, this CPU will refuse to run any task that
8710 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8711 * push those tasks away until this gets cleared, see
8712 * sched_cpu_dying().
8713 */
975707f2
PZ
8714 balance_push_set(cpu, true);
8715
b2454caa 8716 /*
975707f2
PZ
8717 * We've cleared cpu_active_mask / set balance_push, wait for all
8718 * preempt-disabled and RCU users of this state to go away such that
8719 * all new such users will observe it.
b2454caa 8720 *
5ba2ffba
PZ
8721 * Specifically, we rely on ttwu to no longer target this CPU, see
8722 * ttwu_queue_cond() and is_cpu_allowed().
8723 *
b2454caa
PZ
8724 * Do sync before park smpboot threads to take care the rcu boost case.
8725 */
309ba859 8726 synchronize_rcu();
40190a78 8727
120455c5
PZ
8728 rq_lock_irqsave(rq, &rf);
8729 if (rq->rd) {
8730 update_rq_clock(rq);
8731 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8732 set_rq_offline(rq);
8733 }
8734 rq_unlock_irqrestore(rq, &rf);
8735
c5511d03
PZI
8736#ifdef CONFIG_SCHED_SMT
8737 /*
8738 * When going down, decrement the number of cores with SMT present.
8739 */
8740 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8741 static_branch_dec_cpuslocked(&sched_smt_present);
8742#endif
8743
40190a78
TG
8744 if (!sched_smp_initialized)
8745 return 0;
8746
8747 ret = cpuset_cpu_inactive(cpu);
8748 if (ret) {
2558aacf 8749 balance_push_set(cpu, false);
40190a78
TG
8750 set_cpu_active(cpu, true);
8751 return ret;
135fb3e1 8752 }
40190a78
TG
8753 sched_domains_numa_masks_clear(cpu);
8754 return 0;
135fb3e1
TG
8755}
8756
94baf7a5
TG
8757static void sched_rq_cpu_starting(unsigned int cpu)
8758{
8759 struct rq *rq = cpu_rq(cpu);
8760
8761 rq->calc_load_update = calc_load_update;
94baf7a5
TG
8762 update_max_interval();
8763}
8764
135fb3e1
TG
8765int sched_cpu_starting(unsigned int cpu)
8766{
9edeaea1 8767 sched_core_cpu_starting(cpu);
94baf7a5 8768 sched_rq_cpu_starting(cpu);
d84b3131 8769 sched_tick_start(cpu);
135fb3e1 8770 return 0;
e761b772 8771}
e761b772 8772
f2785ddb 8773#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
8774
8775/*
8776 * Invoked immediately before the stopper thread is invoked to bring the
8777 * CPU down completely. At this point all per CPU kthreads except the
8778 * hotplug thread (current) and the stopper thread (inactive) have been
8779 * either parked or have been unbound from the outgoing CPU. Ensure that
8780 * any of those which might be on the way out are gone.
8781 *
8782 * If after this point a bound task is being woken on this CPU then the
8783 * responsible hotplug callback has failed to do it's job.
8784 * sched_cpu_dying() will catch it with the appropriate fireworks.
8785 */
8786int sched_cpu_wait_empty(unsigned int cpu)
8787{
8788 balance_hotplug_wait();
8789 return 0;
8790}
8791
8792/*
8793 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8794 * might have. Called from the CPU stopper task after ensuring that the
8795 * stopper is the last running task on the CPU, so nr_active count is
8796 * stable. We need to take the teardown thread which is calling this into
8797 * account, so we hand in adjust = 1 to the load calculation.
8798 *
8799 * Also see the comment "Global load-average calculations".
8800 */
8801static void calc_load_migrate(struct rq *rq)
8802{
8803 long delta = calc_load_fold_active(rq, 1);
8804
8805 if (delta)
8806 atomic_long_add(delta, &calc_load_tasks);
8807}
8808
36c6e17b
VS
8809static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8810{
8811 struct task_struct *g, *p;
8812 int cpu = cpu_of(rq);
8813
5cb9eaa3 8814 lockdep_assert_rq_held(rq);
36c6e17b
VS
8815
8816 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8817 for_each_process_thread(g, p) {
8818 if (task_cpu(p) != cpu)
8819 continue;
8820
8821 if (!task_on_rq_queued(p))
8822 continue;
8823
8824 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8825 }
8826}
8827
f2785ddb
TG
8828int sched_cpu_dying(unsigned int cpu)
8829{
8830 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8831 struct rq_flags rf;
f2785ddb
TG
8832
8833 /* Handle pending wakeups and then migrate everything off */
d84b3131 8834 sched_tick_stop(cpu);
8a8c69c3
PZ
8835
8836 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8837 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8838 WARN(true, "Dying CPU not properly vacated!");
8839 dump_rq_tasks(rq, KERN_WARNING);
8840 }
8a8c69c3
PZ
8841 rq_unlock_irqrestore(rq, &rf);
8842
f2785ddb
TG
8843 calc_load_migrate(rq);
8844 update_max_interval();
e5ef27d0 8845 hrtick_clear(rq);
f2785ddb
TG
8846 return 0;
8847}
8848#endif
8849
1da177e4
LT
8850void __init sched_init_smp(void)
8851{
cb83b629
PZ
8852 sched_init_numa();
8853
6acce3ef
PZ
8854 /*
8855 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8856 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8857 * happen.
6acce3ef 8858 */
712555ee 8859 mutex_lock(&sched_domains_mutex);
8d5dc512 8860 sched_init_domains(cpu_active_mask);
712555ee 8861 mutex_unlock(&sched_domains_mutex);
e761b772 8862
5c1e1767 8863 /* Move init over to a non-isolated CPU */
edb93821 8864 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8865 BUG();
15faafc6 8866 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 8867 sched_init_granularity();
4212823f 8868
0e3900e6 8869 init_sched_rt_class();
1baca4ce 8870 init_sched_dl_class();
1b568f0a 8871
e26fbffd 8872 sched_smp_initialized = true;
1da177e4 8873}
e26fbffd
TG
8874
8875static int __init migration_init(void)
8876{
77a5352b 8877 sched_cpu_starting(smp_processor_id());
e26fbffd 8878 return 0;
1da177e4 8879}
e26fbffd
TG
8880early_initcall(migration_init);
8881
1da177e4
LT
8882#else
8883void __init sched_init_smp(void)
8884{
19978ca6 8885 sched_init_granularity();
1da177e4
LT
8886}
8887#endif /* CONFIG_SMP */
8888
8889int in_sched_functions(unsigned long addr)
8890{
1da177e4
LT
8891 return in_lock_functions(addr) ||
8892 (addr >= (unsigned long)__sched_text_start
8893 && addr < (unsigned long)__sched_text_end);
8894}
8895
029632fb 8896#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8897/*
8898 * Default task group.
8899 * Every task in system belongs to this group at bootup.
8900 */
029632fb 8901struct task_group root_task_group;
35cf4e50 8902LIST_HEAD(task_groups);
b0367629
WL
8903
8904/* Cacheline aligned slab cache for task_group */
8905static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8906#endif
6f505b16 8907
e6252c3e 8908DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8909DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8910
1da177e4
LT
8911void __init sched_init(void)
8912{
a1dc0446 8913 unsigned long ptr = 0;
55627e3c 8914 int i;
434d53b0 8915
c3a340f7
SRV
8916 /* Make sure the linker didn't screw up */
8917 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8918 &fair_sched_class + 1 != &rt_sched_class ||
8919 &rt_sched_class + 1 != &dl_sched_class);
8920#ifdef CONFIG_SMP
8921 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8922#endif
8923
5822a454 8924 wait_bit_init();
9dcb8b68 8925
434d53b0 8926#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8927 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8928#endif
8929#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8930 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8931#endif
a1dc0446
QC
8932 if (ptr) {
8933 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8934
8935#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8936 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8937 ptr += nr_cpu_ids * sizeof(void **);
8938
07e06b01 8939 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8940 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8941
b1d1779e
WY
8942 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8943 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8944#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8945#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8946 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8947 ptr += nr_cpu_ids * sizeof(void **);
8948
07e06b01 8949 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8950 ptr += nr_cpu_ids * sizeof(void **);
8951
6d6bc0ad 8952#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8953 }
df7c8e84 8954#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8955 for_each_possible_cpu(i) {
8956 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8957 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8958 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8959 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8960 }
b74e6278 8961#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8962
d1ccc66d
IM
8963 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8964 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8965
57d885fe
GH
8966#ifdef CONFIG_SMP
8967 init_defrootdomain();
8968#endif
8969
d0b27fa7 8970#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8971 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8972 global_rt_period(), global_rt_runtime());
6d6bc0ad 8973#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8974
7c941438 8975#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8976 task_group_cache = KMEM_CACHE(task_group, 0);
8977
07e06b01
YZ
8978 list_add(&root_task_group.list, &task_groups);
8979 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8980 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8981 autogroup_init(&init_task);
7c941438 8982#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8983
0a945022 8984 for_each_possible_cpu(i) {
70b97a7f 8985 struct rq *rq;
1da177e4
LT
8986
8987 rq = cpu_rq(i);
5cb9eaa3 8988 raw_spin_lock_init(&rq->__lock);
7897986b 8989 rq->nr_running = 0;
dce48a84
TG
8990 rq->calc_load_active = 0;
8991 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8992 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8993 init_rt_rq(&rq->rt);
8994 init_dl_rq(&rq->dl);
dd41f596 8995#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 8996 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 8997 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 8998 /*
d1ccc66d 8999 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9000 *
9001 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9002 * gets 100% of the CPU resources in the system. This overall
9003 * system CPU resource is divided among the tasks of
07e06b01 9004 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9005 * based on each entity's (task or task-group's) weight
9006 * (se->load.weight).
9007 *
07e06b01 9008 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9009 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9010 * then A0's share of the CPU resource is:
354d60c2 9011 *
0d905bca 9012 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9013 *
07e06b01
YZ
9014 * We achieve this by letting root_task_group's tasks sit
9015 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9016 */
07e06b01 9017 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9018#endif /* CONFIG_FAIR_GROUP_SCHED */
9019
9020 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9021#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9022 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9023#endif
1da177e4 9024#ifdef CONFIG_SMP
41c7ce9a 9025 rq->sd = NULL;
57d885fe 9026 rq->rd = NULL;
ca6d75e6 9027 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9028 rq->balance_callback = &balance_push_callback;
1da177e4 9029 rq->active_balance = 0;
dd41f596 9030 rq->next_balance = jiffies;
1da177e4 9031 rq->push_cpu = 0;
0a2966b4 9032 rq->cpu = i;
1f11eb6a 9033 rq->online = 0;
eae0c9df
MG
9034 rq->idle_stamp = 0;
9035 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9036 rq->wake_stamp = jiffies;
9037 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9038 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9039
9040 INIT_LIST_HEAD(&rq->cfs_tasks);
9041
dc938520 9042 rq_attach_root(rq, &def_root_domain);
3451d024 9043#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9044 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9045 atomic_set(&rq->nohz_flags, 0);
90b5363a 9046
545b8c8d 9047 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9048#endif
f2469a1f
TG
9049#ifdef CONFIG_HOTPLUG_CPU
9050 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9051#endif
9fd81dd5 9052#endif /* CONFIG_SMP */
77a021be 9053 hrtick_rq_init(rq);
1da177e4 9054 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9055
9056#ifdef CONFIG_SCHED_CORE
9057 rq->core = NULL;
539f6512 9058 rq->core_pick = NULL;
9edeaea1 9059 rq->core_enabled = 0;
539f6512
PZ
9060 rq->core_tree = RB_ROOT;
9061 rq->core_forceidle = false;
9062
9063 rq->core_cookie = 0UL;
9edeaea1 9064#endif
1da177e4
LT
9065 }
9066
9059393e 9067 set_load_weight(&init_task, false);
b50f60ce 9068
1da177e4
LT
9069 /*
9070 * The boot idle thread does lazy MMU switching as well:
9071 */
f1f10076 9072 mmgrab(&init_mm);
1da177e4
LT
9073 enter_lazy_tlb(&init_mm, current);
9074
9075 /*
9076 * Make us the idle thread. Technically, schedule() should not be
9077 * called from this thread, however somewhere below it might be,
9078 * but because we are the idle thread, we just pick up running again
9079 * when this runqueue becomes "idle".
9080 */
9081 init_idle(current, smp_processor_id());
dce48a84
TG
9082
9083 calc_load_update = jiffies + LOAD_FREQ;
9084
bf4d83f6 9085#ifdef CONFIG_SMP
29d5e047 9086 idle_thread_set_boot_cpu();
b5c44773 9087 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9088#endif
9089 init_sched_fair_class();
6a7b3dc3 9090
eb414681
JW
9091 psi_init();
9092
69842cba
PB
9093 init_uclamp();
9094
6892b75e 9095 scheduler_running = 1;
1da177e4
LT
9096}
9097
d902db1e 9098#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
9099static inline int preempt_count_equals(int preempt_offset)
9100{
da7142e2 9101 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 9102
4ba8216c 9103 return (nested == preempt_offset);
e4aafea2
FW
9104}
9105
d894837f 9106void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9107{
d6c23bb3 9108 unsigned int state = get_current_state();
8eb23b9f
PZ
9109 /*
9110 * Blocking primitives will set (and therefore destroy) current->state,
9111 * since we will exit with TASK_RUNNING make sure we enter with it,
9112 * otherwise we will destroy state.
9113 */
d6c23bb3 9114 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9115 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9116 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9117 (void *)current->task_state_change,
00845eb9 9118 (void *)current->task_state_change);
8eb23b9f 9119
3427445a
PZ
9120 ___might_sleep(file, line, preempt_offset);
9121}
9122EXPORT_SYMBOL(__might_sleep);
9123
9124void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9125{
d1ccc66d
IM
9126 /* Ratelimiting timestamp: */
9127 static unsigned long prev_jiffy;
9128
d1c6d149 9129 unsigned long preempt_disable_ip;
1da177e4 9130
d1ccc66d
IM
9131 /* WARN_ON_ONCE() by default, no rate limit required: */
9132 rcu_sleep_check();
9133
db273be2 9134 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 9135 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9136 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9137 oops_in_progress)
aef745fc 9138 return;
1c3c5eab 9139
aef745fc
IM
9140 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9141 return;
9142 prev_jiffy = jiffies;
9143
d1ccc66d 9144 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9145 preempt_disable_ip = get_preempt_disable_ip(current);
9146
3df0fc5b
PZ
9147 printk(KERN_ERR
9148 "BUG: sleeping function called from invalid context at %s:%d\n",
9149 file, line);
9150 printk(KERN_ERR
312364f3
DV
9151 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9152 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 9153 current->pid, current->comm);
aef745fc 9154
a8b686b3
ES
9155 if (task_stack_end_corrupted(current))
9156 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9157
aef745fc
IM
9158 debug_show_held_locks(current);
9159 if (irqs_disabled())
9160 print_irqtrace_events(current);
d1c6d149
VN
9161 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9162 && !preempt_count_equals(preempt_offset)) {
8f47b187 9163 pr_err("Preemption disabled at:");
2062a4e8 9164 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 9165 }
aef745fc 9166 dump_stack();
f0b22e39 9167 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9168}
3427445a 9169EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
9170
9171void __cant_sleep(const char *file, int line, int preempt_offset)
9172{
9173 static unsigned long prev_jiffy;
9174
9175 if (irqs_disabled())
9176 return;
9177
9178 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9179 return;
9180
9181 if (preempt_count() > preempt_offset)
9182 return;
9183
9184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9185 return;
9186 prev_jiffy = jiffies;
9187
9188 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9189 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9190 in_atomic(), irqs_disabled(),
9191 current->pid, current->comm);
9192
9193 debug_show_held_locks(current);
9194 dump_stack();
9195 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9196}
9197EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9198
9199#ifdef CONFIG_SMP
9200void __cant_migrate(const char *file, int line)
9201{
9202 static unsigned long prev_jiffy;
9203
9204 if (irqs_disabled())
9205 return;
9206
9207 if (is_migration_disabled(current))
9208 return;
9209
9210 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9211 return;
9212
9213 if (preempt_count() > 0)
9214 return;
9215
9216 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9217 return;
9218 prev_jiffy = jiffies;
9219
9220 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9221 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9222 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9223 current->pid, current->comm);
9224
9225 debug_show_held_locks(current);
9226 dump_stack();
9227 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9228}
9229EXPORT_SYMBOL_GPL(__cant_migrate);
9230#endif
1da177e4
LT
9231#endif
9232
9233#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9234void normalize_rt_tasks(void)
3a5e4dc1 9235{
dbc7f069 9236 struct task_struct *g, *p;
d50dde5a
DF
9237 struct sched_attr attr = {
9238 .sched_policy = SCHED_NORMAL,
9239 };
1da177e4 9240
3472eaa1 9241 read_lock(&tasklist_lock);
5d07f420 9242 for_each_process_thread(g, p) {
178be793
IM
9243 /*
9244 * Only normalize user tasks:
9245 */
3472eaa1 9246 if (p->flags & PF_KTHREAD)
178be793
IM
9247 continue;
9248
4fa8d299
JP
9249 p->se.exec_start = 0;
9250 schedstat_set(p->se.statistics.wait_start, 0);
9251 schedstat_set(p->se.statistics.sleep_start, 0);
9252 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 9253
aab03e05 9254 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9255 /*
9256 * Renice negative nice level userspace
9257 * tasks back to 0:
9258 */
3472eaa1 9259 if (task_nice(p) < 0)
dd41f596 9260 set_user_nice(p, 0);
1da177e4 9261 continue;
dd41f596 9262 }
1da177e4 9263
dbc7f069 9264 __sched_setscheduler(p, &attr, false, false);
5d07f420 9265 }
3472eaa1 9266 read_unlock(&tasklist_lock);
1da177e4
LT
9267}
9268
9269#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9270
67fc4e0c 9271#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9272/*
67fc4e0c 9273 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9274 *
9275 * They can only be called when the whole system has been
9276 * stopped - every CPU needs to be quiescent, and no scheduling
9277 * activity can take place. Using them for anything else would
9278 * be a serious bug, and as a result, they aren't even visible
9279 * under any other configuration.
9280 */
9281
9282/**
d1ccc66d 9283 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9284 * @cpu: the processor in question.
9285 *
9286 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9287 *
9288 * Return: The current task for @cpu.
1df5c10a 9289 */
36c8b586 9290struct task_struct *curr_task(int cpu)
1df5c10a
LT
9291{
9292 return cpu_curr(cpu);
9293}
9294
67fc4e0c
JW
9295#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9296
9297#ifdef CONFIG_IA64
1df5c10a 9298/**
5feeb783 9299 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9300 * @cpu: the processor in question.
9301 * @p: the task pointer to set.
9302 *
9303 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9304 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9305 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9306 * must be called with all CPU's synchronized, and interrupts disabled, the
9307 * and caller must save the original value of the current task (see
9308 * curr_task() above) and restore that value before reenabling interrupts and
9309 * re-starting the system.
9310 *
9311 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9312 */
a458ae2e 9313void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9314{
9315 cpu_curr(cpu) = p;
9316}
9317
9318#endif
29f59db3 9319
7c941438 9320#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9321/* task_group_lock serializes the addition/removal of task groups */
9322static DEFINE_SPINLOCK(task_group_lock);
9323
2480c093
PB
9324static inline void alloc_uclamp_sched_group(struct task_group *tg,
9325 struct task_group *parent)
9326{
9327#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9328 enum uclamp_id clamp_id;
2480c093
PB
9329
9330 for_each_clamp_id(clamp_id) {
9331 uclamp_se_set(&tg->uclamp_req[clamp_id],
9332 uclamp_none(clamp_id), false);
0b60ba2d 9333 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9334 }
9335#endif
9336}
9337
2f5177f0 9338static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9339{
9340 free_fair_sched_group(tg);
9341 free_rt_sched_group(tg);
e9aa1dd1 9342 autogroup_free(tg);
b0367629 9343 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9344}
9345
9346/* allocate runqueue etc for a new task group */
ec7dc8ac 9347struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9348{
9349 struct task_group *tg;
bccbe08a 9350
b0367629 9351 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9352 if (!tg)
9353 return ERR_PTR(-ENOMEM);
9354
ec7dc8ac 9355 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9356 goto err;
9357
ec7dc8ac 9358 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9359 goto err;
9360
2480c093
PB
9361 alloc_uclamp_sched_group(tg, parent);
9362
ace783b9
LZ
9363 return tg;
9364
9365err:
2f5177f0 9366 sched_free_group(tg);
ace783b9
LZ
9367 return ERR_PTR(-ENOMEM);
9368}
9369
9370void sched_online_group(struct task_group *tg, struct task_group *parent)
9371{
9372 unsigned long flags;
9373
8ed36996 9374 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9375 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9376
d1ccc66d
IM
9377 /* Root should already exist: */
9378 WARN_ON(!parent);
f473aa5e
PZ
9379
9380 tg->parent = parent;
f473aa5e 9381 INIT_LIST_HEAD(&tg->children);
09f2724a 9382 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9383 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9384
9385 online_fair_sched_group(tg);
29f59db3
SV
9386}
9387
9b5b7751 9388/* rcu callback to free various structures associated with a task group */
2f5177f0 9389static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 9390{
d1ccc66d 9391 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 9392 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9393}
9394
4cf86d77 9395void sched_destroy_group(struct task_group *tg)
ace783b9 9396{
d1ccc66d 9397 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 9398 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
9399}
9400
9401void sched_offline_group(struct task_group *tg)
29f59db3 9402{
8ed36996 9403 unsigned long flags;
29f59db3 9404
d1ccc66d 9405 /* End participation in shares distribution: */
6fe1f348 9406 unregister_fair_sched_group(tg);
3d4b47b4
PZ
9407
9408 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9409 list_del_rcu(&tg->list);
f473aa5e 9410 list_del_rcu(&tg->siblings);
8ed36996 9411 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9412}
9413
ea86cb4b 9414static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9415{
8323f26c 9416 struct task_group *tg;
29f59db3 9417
f7b8a47d
KT
9418 /*
9419 * All callers are synchronized by task_rq_lock(); we do not use RCU
9420 * which is pointless here. Thus, we pass "true" to task_css_check()
9421 * to prevent lockdep warnings.
9422 */
9423 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9424 struct task_group, css);
9425 tg = autogroup_task_group(tsk, tg);
9426 tsk->sched_task_group = tg;
9427
810b3817 9428#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9429 if (tsk->sched_class->task_change_group)
9430 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9431 else
810b3817 9432#endif
b2b5ce02 9433 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9434}
9435
9436/*
9437 * Change task's runqueue when it moves between groups.
9438 *
9439 * The caller of this function should have put the task in its new group by
9440 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9441 * its new group.
9442 */
9443void sched_move_task(struct task_struct *tsk)
9444{
7a57f32a
PZ
9445 int queued, running, queue_flags =
9446 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9447 struct rq_flags rf;
9448 struct rq *rq;
9449
9450 rq = task_rq_lock(tsk, &rf);
1b1d6225 9451 update_rq_clock(rq);
ea86cb4b
VG
9452
9453 running = task_current(rq, tsk);
9454 queued = task_on_rq_queued(tsk);
9455
9456 if (queued)
7a57f32a 9457 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9458 if (running)
ea86cb4b
VG
9459 put_prev_task(rq, tsk);
9460
9461 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9462
da0c1e65 9463 if (queued)
7a57f32a 9464 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9465 if (running) {
03b7fad1 9466 set_next_task(rq, tsk);
2a4b03ff
VG
9467 /*
9468 * After changing group, the running task may have joined a
9469 * throttled one but it's still the running task. Trigger a
9470 * resched to make sure that task can still run.
9471 */
9472 resched_curr(rq);
9473 }
29f59db3 9474
eb580751 9475 task_rq_unlock(rq, tsk, &rf);
29f59db3 9476}
68318b8e 9477
a7c6d554 9478static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9479{
a7c6d554 9480 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9481}
9482
eb95419b
TH
9483static struct cgroup_subsys_state *
9484cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9485{
eb95419b
TH
9486 struct task_group *parent = css_tg(parent_css);
9487 struct task_group *tg;
68318b8e 9488
eb95419b 9489 if (!parent) {
68318b8e 9490 /* This is early initialization for the top cgroup */
07e06b01 9491 return &root_task_group.css;
68318b8e
SV
9492 }
9493
ec7dc8ac 9494 tg = sched_create_group(parent);
68318b8e
SV
9495 if (IS_ERR(tg))
9496 return ERR_PTR(-ENOMEM);
9497
68318b8e
SV
9498 return &tg->css;
9499}
9500
96b77745
KK
9501/* Expose task group only after completing cgroup initialization */
9502static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9503{
9504 struct task_group *tg = css_tg(css);
9505 struct task_group *parent = css_tg(css->parent);
9506
9507 if (parent)
9508 sched_online_group(tg, parent);
7226017a
QY
9509
9510#ifdef CONFIG_UCLAMP_TASK_GROUP
9511 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9512 mutex_lock(&uclamp_mutex);
9513 rcu_read_lock();
7226017a 9514 cpu_util_update_eff(css);
93b73858
QY
9515 rcu_read_unlock();
9516 mutex_unlock(&uclamp_mutex);
7226017a
QY
9517#endif
9518
96b77745
KK
9519 return 0;
9520}
9521
2f5177f0 9522static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9523{
eb95419b 9524 struct task_group *tg = css_tg(css);
ace783b9 9525
2f5177f0 9526 sched_offline_group(tg);
ace783b9
LZ
9527}
9528
eb95419b 9529static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9530{
eb95419b 9531 struct task_group *tg = css_tg(css);
68318b8e 9532
2f5177f0
PZ
9533 /*
9534 * Relies on the RCU grace period between css_released() and this.
9535 */
9536 sched_free_group(tg);
ace783b9
LZ
9537}
9538
ea86cb4b
VG
9539/*
9540 * This is called before wake_up_new_task(), therefore we really only
9541 * have to set its group bits, all the other stuff does not apply.
9542 */
b53202e6 9543static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9544{
ea86cb4b
VG
9545 struct rq_flags rf;
9546 struct rq *rq;
9547
9548 rq = task_rq_lock(task, &rf);
9549
80f5c1b8 9550 update_rq_clock(rq);
ea86cb4b
VG
9551 sched_change_group(task, TASK_SET_GROUP);
9552
9553 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9554}
9555
1f7dd3e5 9556static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9557{
bb9d97b6 9558 struct task_struct *task;
1f7dd3e5 9559 struct cgroup_subsys_state *css;
7dc603c9 9560 int ret = 0;
bb9d97b6 9561
1f7dd3e5 9562 cgroup_taskset_for_each(task, css, tset) {
b68aa230 9563#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 9564 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 9565 return -EINVAL;
b68aa230 9566#endif
7dc603c9 9567 /*
b19a888c 9568 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
9569 * running, we're sure to observe its full state.
9570 */
9571 raw_spin_lock_irq(&task->pi_lock);
9572 /*
9573 * Avoid calling sched_move_task() before wake_up_new_task()
9574 * has happened. This would lead to problems with PELT, due to
9575 * move wanting to detach+attach while we're not attached yet.
9576 */
2f064a59 9577 if (READ_ONCE(task->__state) == TASK_NEW)
7dc603c9
PZ
9578 ret = -EINVAL;
9579 raw_spin_unlock_irq(&task->pi_lock);
9580
9581 if (ret)
9582 break;
bb9d97b6 9583 }
7dc603c9 9584 return ret;
be367d09 9585}
68318b8e 9586
1f7dd3e5 9587static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 9588{
bb9d97b6 9589 struct task_struct *task;
1f7dd3e5 9590 struct cgroup_subsys_state *css;
bb9d97b6 9591
1f7dd3e5 9592 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9593 sched_move_task(task);
68318b8e
SV
9594}
9595
2480c093 9596#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
9597static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9598{
9599 struct cgroup_subsys_state *top_css = css;
9600 struct uclamp_se *uc_parent = NULL;
9601 struct uclamp_se *uc_se = NULL;
9602 unsigned int eff[UCLAMP_CNT];
0413d7f3 9603 enum uclamp_id clamp_id;
0b60ba2d
PB
9604 unsigned int clamps;
9605
93b73858
QY
9606 lockdep_assert_held(&uclamp_mutex);
9607 SCHED_WARN_ON(!rcu_read_lock_held());
9608
0b60ba2d
PB
9609 css_for_each_descendant_pre(css, top_css) {
9610 uc_parent = css_tg(css)->parent
9611 ? css_tg(css)->parent->uclamp : NULL;
9612
9613 for_each_clamp_id(clamp_id) {
9614 /* Assume effective clamps matches requested clamps */
9615 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9616 /* Cap effective clamps with parent's effective clamps */
9617 if (uc_parent &&
9618 eff[clamp_id] > uc_parent[clamp_id].value) {
9619 eff[clamp_id] = uc_parent[clamp_id].value;
9620 }
9621 }
9622 /* Ensure protection is always capped by limit */
9623 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9624
9625 /* Propagate most restrictive effective clamps */
9626 clamps = 0x0;
9627 uc_se = css_tg(css)->uclamp;
9628 for_each_clamp_id(clamp_id) {
9629 if (eff[clamp_id] == uc_se[clamp_id].value)
9630 continue;
9631 uc_se[clamp_id].value = eff[clamp_id];
9632 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9633 clamps |= (0x1 << clamp_id);
9634 }
babbe170 9635 if (!clamps) {
0b60ba2d 9636 css = css_rightmost_descendant(css);
babbe170
PB
9637 continue;
9638 }
9639
9640 /* Immediately update descendants RUNNABLE tasks */
0213b708 9641 uclamp_update_active_tasks(css);
0b60ba2d
PB
9642 }
9643}
2480c093
PB
9644
9645/*
9646 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9647 * C expression. Since there is no way to convert a macro argument (N) into a
9648 * character constant, use two levels of macros.
9649 */
9650#define _POW10(exp) ((unsigned int)1e##exp)
9651#define POW10(exp) _POW10(exp)
9652
9653struct uclamp_request {
9654#define UCLAMP_PERCENT_SHIFT 2
9655#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9656 s64 percent;
9657 u64 util;
9658 int ret;
9659};
9660
9661static inline struct uclamp_request
9662capacity_from_percent(char *buf)
9663{
9664 struct uclamp_request req = {
9665 .percent = UCLAMP_PERCENT_SCALE,
9666 .util = SCHED_CAPACITY_SCALE,
9667 .ret = 0,
9668 };
9669
9670 buf = strim(buf);
9671 if (strcmp(buf, "max")) {
9672 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9673 &req.percent);
9674 if (req.ret)
9675 return req;
b562d140 9676 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
9677 req.ret = -ERANGE;
9678 return req;
9679 }
9680
9681 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9682 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9683 }
9684
9685 return req;
9686}
9687
9688static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9689 size_t nbytes, loff_t off,
9690 enum uclamp_id clamp_id)
9691{
9692 struct uclamp_request req;
9693 struct task_group *tg;
9694
9695 req = capacity_from_percent(buf);
9696 if (req.ret)
9697 return req.ret;
9698
46609ce2
QY
9699 static_branch_enable(&sched_uclamp_used);
9700
2480c093
PB
9701 mutex_lock(&uclamp_mutex);
9702 rcu_read_lock();
9703
9704 tg = css_tg(of_css(of));
9705 if (tg->uclamp_req[clamp_id].value != req.util)
9706 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9707
9708 /*
9709 * Because of not recoverable conversion rounding we keep track of the
9710 * exact requested value
9711 */
9712 tg->uclamp_pct[clamp_id] = req.percent;
9713
0b60ba2d
PB
9714 /* Update effective clamps to track the most restrictive value */
9715 cpu_util_update_eff(of_css(of));
9716
2480c093
PB
9717 rcu_read_unlock();
9718 mutex_unlock(&uclamp_mutex);
9719
9720 return nbytes;
9721}
9722
9723static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9724 char *buf, size_t nbytes,
9725 loff_t off)
9726{
9727 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9728}
9729
9730static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9731 char *buf, size_t nbytes,
9732 loff_t off)
9733{
9734 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9735}
9736
9737static inline void cpu_uclamp_print(struct seq_file *sf,
9738 enum uclamp_id clamp_id)
9739{
9740 struct task_group *tg;
9741 u64 util_clamp;
9742 u64 percent;
9743 u32 rem;
9744
9745 rcu_read_lock();
9746 tg = css_tg(seq_css(sf));
9747 util_clamp = tg->uclamp_req[clamp_id].value;
9748 rcu_read_unlock();
9749
9750 if (util_clamp == SCHED_CAPACITY_SCALE) {
9751 seq_puts(sf, "max\n");
9752 return;
9753 }
9754
9755 percent = tg->uclamp_pct[clamp_id];
9756 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9757 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9758}
9759
9760static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9761{
9762 cpu_uclamp_print(sf, UCLAMP_MIN);
9763 return 0;
9764}
9765
9766static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9767{
9768 cpu_uclamp_print(sf, UCLAMP_MAX);
9769 return 0;
9770}
9771#endif /* CONFIG_UCLAMP_TASK_GROUP */
9772
052f1dc7 9773#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
9774static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9775 struct cftype *cftype, u64 shareval)
68318b8e 9776{
5b61d50a
KK
9777 if (shareval > scale_load_down(ULONG_MAX))
9778 shareval = MAX_SHARES;
182446d0 9779 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
9780}
9781
182446d0
TH
9782static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9783 struct cftype *cft)
68318b8e 9784{
182446d0 9785 struct task_group *tg = css_tg(css);
68318b8e 9786
c8b28116 9787 return (u64) scale_load_down(tg->shares);
68318b8e 9788}
ab84d31e
PT
9789
9790#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9791static DEFINE_MUTEX(cfs_constraints_mutex);
9792
ab84d31e 9793const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 9794static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
9795/* More than 203 days if BW_SHIFT equals 20. */
9796static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 9797
a790de99
PT
9798static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9799
f4183717
HC
9800static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9801 u64 burst)
ab84d31e 9802{
56f570e5 9803 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 9804 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
9805
9806 if (tg == &root_task_group)
9807 return -EINVAL;
9808
9809 /*
9810 * Ensure we have at some amount of bandwidth every period. This is
9811 * to prevent reaching a state of large arrears when throttled via
9812 * entity_tick() resulting in prolonged exit starvation.
9813 */
9814 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9815 return -EINVAL;
9816
9817 /*
3b03706f 9818 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
9819 * periods. This also allows us to normalize in computing quota
9820 * feasibility.
9821 */
9822 if (period > max_cfs_quota_period)
9823 return -EINVAL;
9824
d505b8af
HC
9825 /*
9826 * Bound quota to defend quota against overflow during bandwidth shift.
9827 */
9828 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9829 return -EINVAL;
9830
f4183717
HC
9831 if (quota != RUNTIME_INF && (burst > quota ||
9832 burst + quota > max_cfs_runtime))
9833 return -EINVAL;
9834
0e59bdae
KT
9835 /*
9836 * Prevent race between setting of cfs_rq->runtime_enabled and
9837 * unthrottle_offline_cfs_rqs().
9838 */
746f5ea9 9839 cpus_read_lock();
a790de99
PT
9840 mutex_lock(&cfs_constraints_mutex);
9841 ret = __cfs_schedulable(tg, period, quota);
9842 if (ret)
9843 goto out_unlock;
9844
58088ad0 9845 runtime_enabled = quota != RUNTIME_INF;
56f570e5 9846 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
9847 /*
9848 * If we need to toggle cfs_bandwidth_used, off->on must occur
9849 * before making related changes, and on->off must occur afterwards
9850 */
9851 if (runtime_enabled && !runtime_was_enabled)
9852 cfs_bandwidth_usage_inc();
ab84d31e
PT
9853 raw_spin_lock_irq(&cfs_b->lock);
9854 cfs_b->period = ns_to_ktime(period);
9855 cfs_b->quota = quota;
f4183717 9856 cfs_b->burst = burst;
58088ad0 9857
a9cf55b2 9858 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9859
9860 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9861 if (runtime_enabled)
9862 start_cfs_bandwidth(cfs_b);
d1ccc66d 9863
ab84d31e
PT
9864 raw_spin_unlock_irq(&cfs_b->lock);
9865
0e59bdae 9866 for_each_online_cpu(i) {
ab84d31e 9867 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9868 struct rq *rq = cfs_rq->rq;
8a8c69c3 9869 struct rq_flags rf;
ab84d31e 9870
8a8c69c3 9871 rq_lock_irq(rq, &rf);
58088ad0 9872 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9873 cfs_rq->runtime_remaining = 0;
671fd9da 9874
029632fb 9875 if (cfs_rq->throttled)
671fd9da 9876 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9877 rq_unlock_irq(rq, &rf);
ab84d31e 9878 }
1ee14e6c
BS
9879 if (runtime_was_enabled && !runtime_enabled)
9880 cfs_bandwidth_usage_dec();
a790de99
PT
9881out_unlock:
9882 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 9883 cpus_read_unlock();
ab84d31e 9884
a790de99 9885 return ret;
ab84d31e
PT
9886}
9887
b1546edc 9888static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 9889{
f4183717 9890 u64 quota, period, burst;
ab84d31e 9891
029632fb 9892 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 9893 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
9894 if (cfs_quota_us < 0)
9895 quota = RUNTIME_INF;
1a8b4540 9896 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9897 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9898 else
9899 return -EINVAL;
ab84d31e 9900
f4183717 9901 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9902}
9903
b1546edc 9904static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9905{
9906 u64 quota_us;
9907
029632fb 9908 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9909 return -1;
9910
029632fb 9911 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9912 do_div(quota_us, NSEC_PER_USEC);
9913
9914 return quota_us;
9915}
9916
b1546edc 9917static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 9918{
f4183717 9919 u64 quota, period, burst;
ab84d31e 9920
1a8b4540
KK
9921 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9922 return -EINVAL;
9923
ab84d31e 9924 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9925 quota = tg->cfs_bandwidth.quota;
f4183717 9926 burst = tg->cfs_bandwidth.burst;
ab84d31e 9927
f4183717 9928 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9929}
9930
b1546edc 9931static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9932{
9933 u64 cfs_period_us;
9934
029632fb 9935 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9936 do_div(cfs_period_us, NSEC_PER_USEC);
9937
9938 return cfs_period_us;
9939}
9940
f4183717
HC
9941static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9942{
9943 u64 quota, period, burst;
9944
9945 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9946 return -EINVAL;
9947
9948 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9949 period = ktime_to_ns(tg->cfs_bandwidth.period);
9950 quota = tg->cfs_bandwidth.quota;
9951
9952 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9953}
9954
9955static long tg_get_cfs_burst(struct task_group *tg)
9956{
9957 u64 burst_us;
9958
9959 burst_us = tg->cfs_bandwidth.burst;
9960 do_div(burst_us, NSEC_PER_USEC);
9961
9962 return burst_us;
9963}
9964
182446d0
TH
9965static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9966 struct cftype *cft)
ab84d31e 9967{
182446d0 9968 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9969}
9970
182446d0
TH
9971static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9972 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9973{
182446d0 9974 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9975}
9976
182446d0
TH
9977static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9978 struct cftype *cft)
ab84d31e 9979{
182446d0 9980 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9981}
9982
182446d0
TH
9983static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9984 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9985{
182446d0 9986 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9987}
9988
f4183717
HC
9989static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9990 struct cftype *cft)
9991{
9992 return tg_get_cfs_burst(css_tg(css));
9993}
9994
9995static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9996 struct cftype *cftype, u64 cfs_burst_us)
9997{
9998 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9999}
10000
a790de99
PT
10001struct cfs_schedulable_data {
10002 struct task_group *tg;
10003 u64 period, quota;
10004};
10005
10006/*
10007 * normalize group quota/period to be quota/max_period
10008 * note: units are usecs
10009 */
10010static u64 normalize_cfs_quota(struct task_group *tg,
10011 struct cfs_schedulable_data *d)
10012{
10013 u64 quota, period;
10014
10015 if (tg == d->tg) {
10016 period = d->period;
10017 quota = d->quota;
10018 } else {
10019 period = tg_get_cfs_period(tg);
10020 quota = tg_get_cfs_quota(tg);
10021 }
10022
10023 /* note: these should typically be equivalent */
10024 if (quota == RUNTIME_INF || quota == -1)
10025 return RUNTIME_INF;
10026
10027 return to_ratio(period, quota);
10028}
10029
10030static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10031{
10032 struct cfs_schedulable_data *d = data;
029632fb 10033 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10034 s64 quota = 0, parent_quota = -1;
10035
10036 if (!tg->parent) {
10037 quota = RUNTIME_INF;
10038 } else {
029632fb 10039 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10040
10041 quota = normalize_cfs_quota(tg, d);
9c58c79a 10042 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10043
10044 /*
c53593e5
TH
10045 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10046 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10047 * limit is set:
a790de99 10048 */
c53593e5
TH
10049 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10050 quota = min(quota, parent_quota);
10051 } else {
10052 if (quota == RUNTIME_INF)
10053 quota = parent_quota;
10054 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10055 return -EINVAL;
10056 }
a790de99 10057 }
9c58c79a 10058 cfs_b->hierarchical_quota = quota;
a790de99
PT
10059
10060 return 0;
10061}
10062
10063static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10064{
8277434e 10065 int ret;
a790de99
PT
10066 struct cfs_schedulable_data data = {
10067 .tg = tg,
10068 .period = period,
10069 .quota = quota,
10070 };
10071
10072 if (quota != RUNTIME_INF) {
10073 do_div(data.period, NSEC_PER_USEC);
10074 do_div(data.quota, NSEC_PER_USEC);
10075 }
10076
8277434e
PT
10077 rcu_read_lock();
10078 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10079 rcu_read_unlock();
10080
10081 return ret;
a790de99 10082}
e8da1b18 10083
a1f7164c 10084static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10085{
2da8ca82 10086 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10087 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10088
44ffc75b
TH
10089 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10090 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10091 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10092
3d6c50c2
YW
10093 if (schedstat_enabled() && tg != &root_task_group) {
10094 u64 ws = 0;
10095 int i;
10096
10097 for_each_possible_cpu(i)
10098 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10099
10100 seq_printf(sf, "wait_sum %llu\n", ws);
10101 }
10102
e8da1b18
NR
10103 return 0;
10104}
ab84d31e 10105#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10106#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10107
052f1dc7 10108#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10109static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10110 struct cftype *cft, s64 val)
6f505b16 10111{
182446d0 10112 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10113}
10114
182446d0
TH
10115static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10116 struct cftype *cft)
6f505b16 10117{
182446d0 10118 return sched_group_rt_runtime(css_tg(css));
6f505b16 10119}
d0b27fa7 10120
182446d0
TH
10121static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10122 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10123{
182446d0 10124 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10125}
10126
182446d0
TH
10127static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10128 struct cftype *cft)
d0b27fa7 10129{
182446d0 10130 return sched_group_rt_period(css_tg(css));
d0b27fa7 10131}
6d6bc0ad 10132#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10133
30400039
JD
10134#ifdef CONFIG_FAIR_GROUP_SCHED
10135static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10136 struct cftype *cft)
10137{
10138 return css_tg(css)->idle;
10139}
10140
10141static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10142 struct cftype *cft, s64 idle)
10143{
10144 return sched_group_set_idle(css_tg(css), idle);
10145}
10146#endif
10147
a1f7164c 10148static struct cftype cpu_legacy_files[] = {
052f1dc7 10149#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10150 {
10151 .name = "shares",
f4c753b7
PM
10152 .read_u64 = cpu_shares_read_u64,
10153 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10154 },
30400039
JD
10155 {
10156 .name = "idle",
10157 .read_s64 = cpu_idle_read_s64,
10158 .write_s64 = cpu_idle_write_s64,
10159 },
052f1dc7 10160#endif
ab84d31e
PT
10161#ifdef CONFIG_CFS_BANDWIDTH
10162 {
10163 .name = "cfs_quota_us",
10164 .read_s64 = cpu_cfs_quota_read_s64,
10165 .write_s64 = cpu_cfs_quota_write_s64,
10166 },
10167 {
10168 .name = "cfs_period_us",
10169 .read_u64 = cpu_cfs_period_read_u64,
10170 .write_u64 = cpu_cfs_period_write_u64,
10171 },
f4183717
HC
10172 {
10173 .name = "cfs_burst_us",
10174 .read_u64 = cpu_cfs_burst_read_u64,
10175 .write_u64 = cpu_cfs_burst_write_u64,
10176 },
e8da1b18
NR
10177 {
10178 .name = "stat",
a1f7164c 10179 .seq_show = cpu_cfs_stat_show,
e8da1b18 10180 },
ab84d31e 10181#endif
052f1dc7 10182#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10183 {
9f0c1e56 10184 .name = "rt_runtime_us",
06ecb27c
PM
10185 .read_s64 = cpu_rt_runtime_read,
10186 .write_s64 = cpu_rt_runtime_write,
6f505b16 10187 },
d0b27fa7
PZ
10188 {
10189 .name = "rt_period_us",
f4c753b7
PM
10190 .read_u64 = cpu_rt_period_read_uint,
10191 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10192 },
2480c093
PB
10193#endif
10194#ifdef CONFIG_UCLAMP_TASK_GROUP
10195 {
10196 .name = "uclamp.min",
10197 .flags = CFTYPE_NOT_ON_ROOT,
10198 .seq_show = cpu_uclamp_min_show,
10199 .write = cpu_uclamp_min_write,
10200 },
10201 {
10202 .name = "uclamp.max",
10203 .flags = CFTYPE_NOT_ON_ROOT,
10204 .seq_show = cpu_uclamp_max_show,
10205 .write = cpu_uclamp_max_write,
10206 },
052f1dc7 10207#endif
d1ccc66d 10208 { } /* Terminate */
68318b8e
SV
10209};
10210
d41bf8c9
TH
10211static int cpu_extra_stat_show(struct seq_file *sf,
10212 struct cgroup_subsys_state *css)
0d593634 10213{
0d593634
TH
10214#ifdef CONFIG_CFS_BANDWIDTH
10215 {
d41bf8c9 10216 struct task_group *tg = css_tg(css);
0d593634
TH
10217 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10218 u64 throttled_usec;
10219
10220 throttled_usec = cfs_b->throttled_time;
10221 do_div(throttled_usec, NSEC_PER_USEC);
10222
10223 seq_printf(sf, "nr_periods %d\n"
10224 "nr_throttled %d\n"
10225 "throttled_usec %llu\n",
10226 cfs_b->nr_periods, cfs_b->nr_throttled,
10227 throttled_usec);
10228 }
10229#endif
10230 return 0;
10231}
10232
10233#ifdef CONFIG_FAIR_GROUP_SCHED
10234static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10235 struct cftype *cft)
10236{
10237 struct task_group *tg = css_tg(css);
10238 u64 weight = scale_load_down(tg->shares);
10239
10240 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10241}
10242
10243static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10244 struct cftype *cft, u64 weight)
10245{
10246 /*
10247 * cgroup weight knobs should use the common MIN, DFL and MAX
10248 * values which are 1, 100 and 10000 respectively. While it loses
10249 * a bit of range on both ends, it maps pretty well onto the shares
10250 * value used by scheduler and the round-trip conversions preserve
10251 * the original value over the entire range.
10252 */
10253 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10254 return -ERANGE;
10255
10256 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10257
10258 return sched_group_set_shares(css_tg(css), scale_load(weight));
10259}
10260
10261static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10262 struct cftype *cft)
10263{
10264 unsigned long weight = scale_load_down(css_tg(css)->shares);
10265 int last_delta = INT_MAX;
10266 int prio, delta;
10267
10268 /* find the closest nice value to the current weight */
10269 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10270 delta = abs(sched_prio_to_weight[prio] - weight);
10271 if (delta >= last_delta)
10272 break;
10273 last_delta = delta;
10274 }
10275
10276 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10277}
10278
10279static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10280 struct cftype *cft, s64 nice)
10281{
10282 unsigned long weight;
7281c8de 10283 int idx;
0d593634
TH
10284
10285 if (nice < MIN_NICE || nice > MAX_NICE)
10286 return -ERANGE;
10287
7281c8de
PZ
10288 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10289 idx = array_index_nospec(idx, 40);
10290 weight = sched_prio_to_weight[idx];
10291
0d593634
TH
10292 return sched_group_set_shares(css_tg(css), scale_load(weight));
10293}
10294#endif
10295
10296static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10297 long period, long quota)
10298{
10299 if (quota < 0)
10300 seq_puts(sf, "max");
10301 else
10302 seq_printf(sf, "%ld", quota);
10303
10304 seq_printf(sf, " %ld\n", period);
10305}
10306
10307/* caller should put the current value in *@periodp before calling */
10308static int __maybe_unused cpu_period_quota_parse(char *buf,
10309 u64 *periodp, u64 *quotap)
10310{
10311 char tok[21]; /* U64_MAX */
10312
4c47acd8 10313 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10314 return -EINVAL;
10315
10316 *periodp *= NSEC_PER_USEC;
10317
10318 if (sscanf(tok, "%llu", quotap))
10319 *quotap *= NSEC_PER_USEC;
10320 else if (!strcmp(tok, "max"))
10321 *quotap = RUNTIME_INF;
10322 else
10323 return -EINVAL;
10324
10325 return 0;
10326}
10327
10328#ifdef CONFIG_CFS_BANDWIDTH
10329static int cpu_max_show(struct seq_file *sf, void *v)
10330{
10331 struct task_group *tg = css_tg(seq_css(sf));
10332
10333 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10334 return 0;
10335}
10336
10337static ssize_t cpu_max_write(struct kernfs_open_file *of,
10338 char *buf, size_t nbytes, loff_t off)
10339{
10340 struct task_group *tg = css_tg(of_css(of));
10341 u64 period = tg_get_cfs_period(tg);
f4183717 10342 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
10343 u64 quota;
10344 int ret;
10345
10346 ret = cpu_period_quota_parse(buf, &period, &quota);
10347 if (!ret)
f4183717 10348 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
10349 return ret ?: nbytes;
10350}
10351#endif
10352
10353static struct cftype cpu_files[] = {
0d593634
TH
10354#ifdef CONFIG_FAIR_GROUP_SCHED
10355 {
10356 .name = "weight",
10357 .flags = CFTYPE_NOT_ON_ROOT,
10358 .read_u64 = cpu_weight_read_u64,
10359 .write_u64 = cpu_weight_write_u64,
10360 },
10361 {
10362 .name = "weight.nice",
10363 .flags = CFTYPE_NOT_ON_ROOT,
10364 .read_s64 = cpu_weight_nice_read_s64,
10365 .write_s64 = cpu_weight_nice_write_s64,
10366 },
30400039
JD
10367 {
10368 .name = "idle",
10369 .flags = CFTYPE_NOT_ON_ROOT,
10370 .read_s64 = cpu_idle_read_s64,
10371 .write_s64 = cpu_idle_write_s64,
10372 },
0d593634
TH
10373#endif
10374#ifdef CONFIG_CFS_BANDWIDTH
10375 {
10376 .name = "max",
10377 .flags = CFTYPE_NOT_ON_ROOT,
10378 .seq_show = cpu_max_show,
10379 .write = cpu_max_write,
10380 },
f4183717
HC
10381 {
10382 .name = "max.burst",
10383 .flags = CFTYPE_NOT_ON_ROOT,
10384 .read_u64 = cpu_cfs_burst_read_u64,
10385 .write_u64 = cpu_cfs_burst_write_u64,
10386 },
2480c093
PB
10387#endif
10388#ifdef CONFIG_UCLAMP_TASK_GROUP
10389 {
10390 .name = "uclamp.min",
10391 .flags = CFTYPE_NOT_ON_ROOT,
10392 .seq_show = cpu_uclamp_min_show,
10393 .write = cpu_uclamp_min_write,
10394 },
10395 {
10396 .name = "uclamp.max",
10397 .flags = CFTYPE_NOT_ON_ROOT,
10398 .seq_show = cpu_uclamp_max_show,
10399 .write = cpu_uclamp_max_write,
10400 },
0d593634
TH
10401#endif
10402 { } /* terminate */
10403};
10404
073219e9 10405struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10406 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10407 .css_online = cpu_cgroup_css_online,
2f5177f0 10408 .css_released = cpu_cgroup_css_released,
92fb9748 10409 .css_free = cpu_cgroup_css_free,
d41bf8c9 10410 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10411 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10412 .can_attach = cpu_cgroup_can_attach,
10413 .attach = cpu_cgroup_attach,
a1f7164c 10414 .legacy_cftypes = cpu_legacy_files,
0d593634 10415 .dfl_cftypes = cpu_files,
b38e42e9 10416 .early_init = true,
0d593634 10417 .threaded = true,
68318b8e
SV
10418};
10419
052f1dc7 10420#endif /* CONFIG_CGROUP_SCHED */
d842de87 10421
b637a328
PM
10422void dump_cpu_task(int cpu)
10423{
10424 pr_info("Task dump for CPU %d:\n", cpu);
10425 sched_show_task(cpu_curr(cpu));
10426}
ed82b8a1
AK
10427
10428/*
10429 * Nice levels are multiplicative, with a gentle 10% change for every
10430 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10431 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10432 * that remained on nice 0.
10433 *
10434 * The "10% effect" is relative and cumulative: from _any_ nice level,
10435 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10436 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10437 * If a task goes up by ~10% and another task goes down by ~10% then
10438 * the relative distance between them is ~25%.)
10439 */
10440const int sched_prio_to_weight[40] = {
10441 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10442 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10443 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10444 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10445 /* 0 */ 1024, 820, 655, 526, 423,
10446 /* 5 */ 335, 272, 215, 172, 137,
10447 /* 10 */ 110, 87, 70, 56, 45,
10448 /* 15 */ 36, 29, 23, 18, 15,
10449};
10450
10451/*
10452 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10453 *
10454 * In cases where the weight does not change often, we can use the
10455 * precalculated inverse to speed up arithmetics by turning divisions
10456 * into multiplications:
10457 */
10458const u32 sched_prio_to_wmult[40] = {
10459 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10460 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10461 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10462 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10463 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10464 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10465 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10466 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10467};
14a7405b 10468
9d246053
PA
10469void call_trace_sched_update_nr_running(struct rq *rq, int count)
10470{
10471 trace_sched_update_nr_running_tp(rq, count);
10472}