sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
1da177e4 9#include <linux/cpuset.h>
0ff92245 10#include <linux/delayacct.h>
f1c6f1a7 11#include <linux/init_task.h>
91d1aa43 12#include <linux/context_tracking.h>
f9411ebe 13#include <linux/rcupdate_wait.h>
004172bd
IM
14
15#include <linux/blkdev.h>
16#include <linux/kprobes.h>
17#include <linux/mmu_context.h>
18#include <linux/module.h>
19#include <linux/nmi.h>
6075620b 20#include <linux/prefetch.h>
004172bd
IM
21#include <linux/profile.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
1da177e4 24
96f951ed 25#include <asm/switch_to.h>
5517d86b 26#include <asm/tlb.h>
fd4a61e0
MB
27#ifdef CONFIG_PARAVIRT
28#include <asm/paravirt.h>
29#endif
1da177e4 30
029632fb 31#include "sched.h"
ea138446 32#include "../workqueue_internal.h"
29d5e047 33#include "../smpboot.h"
6e0534f2 34
a8d154b0 35#define CREATE_TRACE_POINTS
ad8d75ff 36#include <trace/events/sched.h>
a8d154b0 37
029632fb 38DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 39
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
42 */
f00b45c1 43
f00b45c1
PZ
44#define SCHED_FEAT(name, enabled) \
45 (1UL << __SCHED_FEAT_##name) * enabled |
46
bf5c91ba 47const_debug unsigned int sysctl_sched_features =
391e43da 48#include "features.h"
f00b45c1
PZ
49 0;
50
51#undef SCHED_FEAT
52
b82d9fdd
PZ
53/*
54 * Number of tasks to iterate in a single balance run.
55 * Limited because this is done with IRQs disabled.
56 */
57const_debug unsigned int sysctl_sched_nr_migrate = 32;
58
e9e9250b
PZ
59/*
60 * period over which we average the RT time consumption, measured
61 * in ms.
62 *
63 * default: 1s
64 */
65const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
66
fa85ae24 67/*
d1ccc66d 68 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
69 * default: 1s
70 */
9f0c1e56 71unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 72
029632fb 73__read_mostly int scheduler_running;
6892b75e 74
9f0c1e56
PZ
75/*
76 * part of the period that we allow rt tasks to run in us.
77 * default: 0.95s
78 */
79int sysctl_sched_rt_runtime = 950000;
fa85ae24 80
d1ccc66d 81/* CPUs with isolated domains */
3fa0818b
RR
82cpumask_var_t cpu_isolated_map;
83
1da177e4 84/*
cc2a73b5 85 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 86 */
a9957449 87static struct rq *this_rq_lock(void)
1da177e4
LT
88 __acquires(rq->lock)
89{
70b97a7f 90 struct rq *rq;
1da177e4
LT
91
92 local_irq_disable();
93 rq = this_rq();
05fa785c 94 raw_spin_lock(&rq->lock);
1da177e4
LT
95
96 return rq;
97}
98
3e71a462
PZ
99/*
100 * __task_rq_lock - lock the rq @p resides on.
101 */
eb580751 102struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(rq->lock)
104{
105 struct rq *rq;
106
107 lockdep_assert_held(&p->pi_lock);
108
109 for (;;) {
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 113 rq_pin_lock(rq, rf);
3e71a462
PZ
114 return rq;
115 }
116 raw_spin_unlock(&rq->lock);
117
118 while (unlikely(task_on_rq_migrating(p)))
119 cpu_relax();
120 }
121}
122
123/*
124 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
125 */
eb580751 126struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
127 __acquires(p->pi_lock)
128 __acquires(rq->lock)
129{
130 struct rq *rq;
131
132 for (;;) {
eb580751 133 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
134 rq = task_rq(p);
135 raw_spin_lock(&rq->lock);
136 /*
137 * move_queued_task() task_rq_lock()
138 *
139 * ACQUIRE (rq->lock)
140 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
141 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
142 * [S] ->cpu = new_cpu [L] task_rq()
143 * [L] ->on_rq
144 * RELEASE (rq->lock)
145 *
146 * If we observe the old cpu in task_rq_lock, the acquire of
147 * the old rq->lock will fully serialize against the stores.
148 *
d1ccc66d 149 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
150 * pair with the WMB to ensure we must then also see migrating.
151 */
152 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 153 rq_pin_lock(rq, rf);
3e71a462
PZ
154 return rq;
155 }
156 raw_spin_unlock(&rq->lock);
eb580751 157 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
158
159 while (unlikely(task_on_rq_migrating(p)))
160 cpu_relax();
161 }
162}
163
535b9552
IM
164/*
165 * RQ-clock updating methods:
166 */
167
168static void update_rq_clock_task(struct rq *rq, s64 delta)
169{
170/*
171 * In theory, the compile should just see 0 here, and optimize out the call
172 * to sched_rt_avg_update. But I don't trust it...
173 */
174#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
175 s64 steal = 0, irq_delta = 0;
176#endif
177#ifdef CONFIG_IRQ_TIME_ACCOUNTING
178 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
179
180 /*
181 * Since irq_time is only updated on {soft,}irq_exit, we might run into
182 * this case when a previous update_rq_clock() happened inside a
183 * {soft,}irq region.
184 *
185 * When this happens, we stop ->clock_task and only update the
186 * prev_irq_time stamp to account for the part that fit, so that a next
187 * update will consume the rest. This ensures ->clock_task is
188 * monotonic.
189 *
190 * It does however cause some slight miss-attribution of {soft,}irq
191 * time, a more accurate solution would be to update the irq_time using
192 * the current rq->clock timestamp, except that would require using
193 * atomic ops.
194 */
195 if (irq_delta > delta)
196 irq_delta = delta;
197
198 rq->prev_irq_time += irq_delta;
199 delta -= irq_delta;
200#endif
201#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
202 if (static_key_false((&paravirt_steal_rq_enabled))) {
203 steal = paravirt_steal_clock(cpu_of(rq));
204 steal -= rq->prev_steal_time_rq;
205
206 if (unlikely(steal > delta))
207 steal = delta;
208
209 rq->prev_steal_time_rq += steal;
210 delta -= steal;
211 }
212#endif
213
214 rq->clock_task += delta;
215
216#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
217 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
218 sched_rt_avg_update(rq, irq_delta + steal);
219#endif
220}
221
222void update_rq_clock(struct rq *rq)
223{
224 s64 delta;
225
226 lockdep_assert_held(&rq->lock);
227
228 if (rq->clock_update_flags & RQCF_ACT_SKIP)
229 return;
230
231#ifdef CONFIG_SCHED_DEBUG
232 rq->clock_update_flags |= RQCF_UPDATED;
233#endif
234 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
235 if (delta < 0)
236 return;
237 rq->clock += delta;
238 update_rq_clock_task(rq, delta);
239}
240
241
8f4d37ec
PZ
242#ifdef CONFIG_SCHED_HRTICK
243/*
244 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 245 */
8f4d37ec 246
8f4d37ec
PZ
247static void hrtick_clear(struct rq *rq)
248{
249 if (hrtimer_active(&rq->hrtick_timer))
250 hrtimer_cancel(&rq->hrtick_timer);
251}
252
8f4d37ec
PZ
253/*
254 * High-resolution timer tick.
255 * Runs from hardirq context with interrupts disabled.
256 */
257static enum hrtimer_restart hrtick(struct hrtimer *timer)
258{
259 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
260
261 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
262
05fa785c 263 raw_spin_lock(&rq->lock);
3e51f33f 264 update_rq_clock(rq);
8f4d37ec 265 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 266 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
267
268 return HRTIMER_NORESTART;
269}
270
95e904c7 271#ifdef CONFIG_SMP
971ee28c 272
4961b6e1 273static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
274{
275 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 276
4961b6e1 277 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
278}
279
31656519
PZ
280/*
281 * called from hardirq (IPI) context
282 */
283static void __hrtick_start(void *arg)
b328ca18 284{
31656519 285 struct rq *rq = arg;
b328ca18 286
05fa785c 287 raw_spin_lock(&rq->lock);
971ee28c 288 __hrtick_restart(rq);
31656519 289 rq->hrtick_csd_pending = 0;
05fa785c 290 raw_spin_unlock(&rq->lock);
b328ca18
PZ
291}
292
31656519
PZ
293/*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
029632fb 298void hrtick_start(struct rq *rq, u64 delay)
b328ca18 299{
31656519 300 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 301 ktime_t time;
302 s64 delta;
303
304 /*
305 * Don't schedule slices shorter than 10000ns, that just
306 * doesn't make sense and can cause timer DoS.
307 */
308 delta = max_t(s64, delay, 10000LL);
309 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 310
cc584b21 311 hrtimer_set_expires(timer, time);
31656519
PZ
312
313 if (rq == this_rq()) {
971ee28c 314 __hrtick_restart(rq);
31656519 315 } else if (!rq->hrtick_csd_pending) {
c46fff2a 316 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
317 rq->hrtick_csd_pending = 1;
318 }
b328ca18
PZ
319}
320
31656519
PZ
321#else
322/*
323 * Called to set the hrtick timer state.
324 *
325 * called with rq->lock held and irqs disabled
326 */
029632fb 327void hrtick_start(struct rq *rq, u64 delay)
31656519 328{
86893335
WL
329 /*
330 * Don't schedule slices shorter than 10000ns, that just
331 * doesn't make sense. Rely on vruntime for fairness.
332 */
333 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
334 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
335 HRTIMER_MODE_REL_PINNED);
31656519 336}
31656519 337#endif /* CONFIG_SMP */
8f4d37ec 338
31656519 339static void init_rq_hrtick(struct rq *rq)
8f4d37ec 340{
31656519
PZ
341#ifdef CONFIG_SMP
342 rq->hrtick_csd_pending = 0;
8f4d37ec 343
31656519
PZ
344 rq->hrtick_csd.flags = 0;
345 rq->hrtick_csd.func = __hrtick_start;
346 rq->hrtick_csd.info = rq;
347#endif
8f4d37ec 348
31656519
PZ
349 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
350 rq->hrtick_timer.function = hrtick;
8f4d37ec 351}
006c75f1 352#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
353static inline void hrtick_clear(struct rq *rq)
354{
355}
356
8f4d37ec
PZ
357static inline void init_rq_hrtick(struct rq *rq)
358{
359}
006c75f1 360#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 361
5529578a
FW
362/*
363 * cmpxchg based fetch_or, macro so it works for different integer types
364 */
365#define fetch_or(ptr, mask) \
366 ({ \
367 typeof(ptr) _ptr = (ptr); \
368 typeof(mask) _mask = (mask); \
369 typeof(*_ptr) _old, _val = *_ptr; \
370 \
371 for (;;) { \
372 _old = cmpxchg(_ptr, _val, _val | _mask); \
373 if (_old == _val) \
374 break; \
375 _val = _old; \
376 } \
377 _old; \
378})
379
e3baac47 380#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
381/*
382 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
383 * this avoids any races wrt polling state changes and thereby avoids
384 * spurious IPIs.
385 */
386static bool set_nr_and_not_polling(struct task_struct *p)
387{
388 struct thread_info *ti = task_thread_info(p);
389 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390}
e3baac47
PZ
391
392/*
393 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
394 *
395 * If this returns true, then the idle task promises to call
396 * sched_ttwu_pending() and reschedule soon.
397 */
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 struct thread_info *ti = task_thread_info(p);
316c1608 401 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
402
403 for (;;) {
404 if (!(val & _TIF_POLLING_NRFLAG))
405 return false;
406 if (val & _TIF_NEED_RESCHED)
407 return true;
408 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
409 if (old == val)
410 break;
411 val = old;
412 }
413 return true;
414}
415
fd99f91a
PZ
416#else
417static bool set_nr_and_not_polling(struct task_struct *p)
418{
419 set_tsk_need_resched(p);
420 return true;
421}
e3baac47
PZ
422
423#ifdef CONFIG_SMP
424static bool set_nr_if_polling(struct task_struct *p)
425{
426 return false;
427}
428#endif
fd99f91a
PZ
429#endif
430
76751049
PZ
431void wake_q_add(struct wake_q_head *head, struct task_struct *task)
432{
433 struct wake_q_node *node = &task->wake_q;
434
435 /*
436 * Atomically grab the task, if ->wake_q is !nil already it means
437 * its already queued (either by us or someone else) and will get the
438 * wakeup due to that.
439 *
440 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 441 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
442 */
443 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
444 return;
445
446 get_task_struct(task);
447
448 /*
449 * The head is context local, there can be no concurrency.
450 */
451 *head->lastp = node;
452 head->lastp = &node->next;
453}
454
455void wake_up_q(struct wake_q_head *head)
456{
457 struct wake_q_node *node = head->first;
458
459 while (node != WAKE_Q_TAIL) {
460 struct task_struct *task;
461
462 task = container_of(node, struct task_struct, wake_q);
463 BUG_ON(!task);
d1ccc66d 464 /* Task can safely be re-inserted now: */
76751049
PZ
465 node = node->next;
466 task->wake_q.next = NULL;
467
468 /*
469 * wake_up_process() implies a wmb() to pair with the queueing
470 * in wake_q_add() so as not to miss wakeups.
471 */
472 wake_up_process(task);
473 put_task_struct(task);
474 }
475}
476
c24d20db 477/*
8875125e 478 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
479 *
480 * On UP this means the setting of the need_resched flag, on SMP it
481 * might also involve a cross-CPU call to trigger the scheduler on
482 * the target CPU.
483 */
8875125e 484void resched_curr(struct rq *rq)
c24d20db 485{
8875125e 486 struct task_struct *curr = rq->curr;
c24d20db
IM
487 int cpu;
488
8875125e 489 lockdep_assert_held(&rq->lock);
c24d20db 490
8875125e 491 if (test_tsk_need_resched(curr))
c24d20db
IM
492 return;
493
8875125e 494 cpu = cpu_of(rq);
fd99f91a 495
f27dde8d 496 if (cpu == smp_processor_id()) {
8875125e 497 set_tsk_need_resched(curr);
f27dde8d 498 set_preempt_need_resched();
c24d20db 499 return;
f27dde8d 500 }
c24d20db 501
8875125e 502 if (set_nr_and_not_polling(curr))
c24d20db 503 smp_send_reschedule(cpu);
dfc68f29
AL
504 else
505 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
506}
507
029632fb 508void resched_cpu(int cpu)
c24d20db
IM
509{
510 struct rq *rq = cpu_rq(cpu);
511 unsigned long flags;
512
05fa785c 513 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 514 return;
8875125e 515 resched_curr(rq);
05fa785c 516 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 517}
06d8308c 518
b021fe3e 519#ifdef CONFIG_SMP
3451d024 520#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 521/*
d1ccc66d
IM
522 * In the semi idle case, use the nearest busy CPU for migrating timers
523 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
524 *
525 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
526 * selecting an idle CPU will add more delays to the timers than intended
527 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 528 */
bc7a34b8 529int get_nohz_timer_target(void)
83cd4fe2 530{
bc7a34b8 531 int i, cpu = smp_processor_id();
83cd4fe2
VP
532 struct sched_domain *sd;
533
9642d18e 534 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
535 return cpu;
536
057f3fad 537 rcu_read_lock();
83cd4fe2 538 for_each_domain(cpu, sd) {
057f3fad 539 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
540 if (cpu == i)
541 continue;
542
543 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
544 cpu = i;
545 goto unlock;
546 }
547 }
83cd4fe2 548 }
9642d18e
VH
549
550 if (!is_housekeeping_cpu(cpu))
551 cpu = housekeeping_any_cpu();
057f3fad
PZ
552unlock:
553 rcu_read_unlock();
83cd4fe2
VP
554 return cpu;
555}
d1ccc66d 556
06d8308c
TG
557/*
558 * When add_timer_on() enqueues a timer into the timer wheel of an
559 * idle CPU then this timer might expire before the next timer event
560 * which is scheduled to wake up that CPU. In case of a completely
561 * idle system the next event might even be infinite time into the
562 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
563 * leaves the inner idle loop so the newly added timer is taken into
564 * account when the CPU goes back to idle and evaluates the timer
565 * wheel for the next timer event.
566 */
1c20091e 567static void wake_up_idle_cpu(int cpu)
06d8308c
TG
568{
569 struct rq *rq = cpu_rq(cpu);
570
571 if (cpu == smp_processor_id())
572 return;
573
67b9ca70 574 if (set_nr_and_not_polling(rq->idle))
06d8308c 575 smp_send_reschedule(cpu);
dfc68f29
AL
576 else
577 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
578}
579
c5bfece2 580static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 581{
53c5fa16
FW
582 /*
583 * We just need the target to call irq_exit() and re-evaluate
584 * the next tick. The nohz full kick at least implies that.
585 * If needed we can still optimize that later with an
586 * empty IRQ.
587 */
379d9ecb
PM
588 if (cpu_is_offline(cpu))
589 return true; /* Don't try to wake offline CPUs. */
c5bfece2 590 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
591 if (cpu != smp_processor_id() ||
592 tick_nohz_tick_stopped())
53c5fa16 593 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
594 return true;
595 }
596
597 return false;
598}
599
379d9ecb
PM
600/*
601 * Wake up the specified CPU. If the CPU is going offline, it is the
602 * caller's responsibility to deal with the lost wakeup, for example,
603 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
604 */
1c20091e
FW
605void wake_up_nohz_cpu(int cpu)
606{
c5bfece2 607 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
608 wake_up_idle_cpu(cpu);
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7 613 int cpu = smp_processor_id();
873b4c65
VG
614
615 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
616 return false;
617
618 if (idle_cpu(cpu) && !need_resched())
619 return true;
620
621 /*
622 * We can't run Idle Load Balance on this CPU for this time so we
623 * cancel it and clear NOHZ_BALANCE_KICK
624 */
625 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
626 return false;
45bf76df
IM
627}
628
3451d024 629#else /* CONFIG_NO_HZ_COMMON */
45bf76df 630
ca38062e 631static inline bool got_nohz_idle_kick(void)
2069dd75 632{
ca38062e 633 return false;
2069dd75
PZ
634}
635
3451d024 636#endif /* CONFIG_NO_HZ_COMMON */
d842de87 637
ce831b38 638#ifdef CONFIG_NO_HZ_FULL
76d92ac3 639bool sched_can_stop_tick(struct rq *rq)
ce831b38 640{
76d92ac3
FW
641 int fifo_nr_running;
642
643 /* Deadline tasks, even if single, need the tick */
644 if (rq->dl.dl_nr_running)
645 return false;
646
1e78cdbd 647 /*
2548d546
PZ
648 * If there are more than one RR tasks, we need the tick to effect the
649 * actual RR behaviour.
1e78cdbd 650 */
76d92ac3
FW
651 if (rq->rt.rr_nr_running) {
652 if (rq->rt.rr_nr_running == 1)
653 return true;
654 else
655 return false;
1e78cdbd
RR
656 }
657
2548d546
PZ
658 /*
659 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
660 * forced preemption between FIFO tasks.
661 */
662 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
663 if (fifo_nr_running)
664 return true;
665
666 /*
667 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
668 * if there's more than one we need the tick for involuntary
669 * preemption.
670 */
671 if (rq->nr_running > 1)
541b8264 672 return false;
ce831b38 673
541b8264 674 return true;
ce831b38
FW
675}
676#endif /* CONFIG_NO_HZ_FULL */
d842de87 677
029632fb 678void sched_avg_update(struct rq *rq)
18d95a28 679{
e9e9250b
PZ
680 s64 period = sched_avg_period();
681
78becc27 682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
18d95a28
PZ
692}
693
6d6bc0ad 694#endif /* CONFIG_SMP */
18d95a28 695
a790de99
PT
696#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
697 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 698/*
8277434e
PT
699 * Iterate task_group tree rooted at *from, calling @down when first entering a
700 * node and @up when leaving it for the final time.
701 *
702 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 703 */
029632fb 704int walk_tg_tree_from(struct task_group *from,
8277434e 705 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
706{
707 struct task_group *parent, *child;
eb755805 708 int ret;
c09595f6 709
8277434e
PT
710 parent = from;
711
c09595f6 712down:
eb755805
PZ
713 ret = (*down)(parent, data);
714 if (ret)
8277434e 715 goto out;
c09595f6
PZ
716 list_for_each_entry_rcu(child, &parent->children, siblings) {
717 parent = child;
718 goto down;
719
720up:
721 continue;
722 }
eb755805 723 ret = (*up)(parent, data);
8277434e
PT
724 if (ret || parent == from)
725 goto out;
c09595f6
PZ
726
727 child = parent;
728 parent = parent->parent;
729 if (parent)
730 goto up;
8277434e 731out:
eb755805 732 return ret;
c09595f6
PZ
733}
734
029632fb 735int tg_nop(struct task_group *tg, void *data)
eb755805 736{
e2b245f8 737 return 0;
eb755805 738}
18d95a28
PZ
739#endif
740
45bf76df
IM
741static void set_load_weight(struct task_struct *p)
742{
f05998d4
NR
743 int prio = p->static_prio - MAX_RT_PRIO;
744 struct load_weight *load = &p->se.load;
745
dd41f596
IM
746 /*
747 * SCHED_IDLE tasks get minimal weight:
748 */
20f9cd2a 749 if (idle_policy(p->policy)) {
c8b28116 750 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 751 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
752 return;
753 }
71f8bd46 754
ed82b8a1
AK
755 load->weight = scale_load(sched_prio_to_weight[prio]);
756 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
757}
758
1de64443 759static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 760{
a64692a3 761 update_rq_clock(rq);
1de64443
PZ
762 if (!(flags & ENQUEUE_RESTORE))
763 sched_info_queued(rq, p);
371fd7e7 764 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
765}
766
1de64443 767static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 768{
a64692a3 769 update_rq_clock(rq);
1de64443
PZ
770 if (!(flags & DEQUEUE_SAVE))
771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
34f971f6
PZ
791void sched_set_stop_task(int cpu, struct task_struct *stop)
792{
793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 struct task_struct *old_stop = cpu_rq(cpu)->stop;
795
796 if (stop) {
797 /*
798 * Make it appear like a SCHED_FIFO task, its something
799 * userspace knows about and won't get confused about.
800 *
801 * Also, it will make PI more or less work without too
802 * much confusion -- but then, stop work should not
803 * rely on PI working anyway.
804 */
805 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806
807 stop->sched_class = &stop_sched_class;
808 }
809
810 cpu_rq(cpu)->stop = stop;
811
812 if (old_stop) {
813 /*
814 * Reset it back to a normal scheduling class so that
815 * it can die in pieces.
816 */
817 old_stop->sched_class = &rt_sched_class;
818 }
819}
820
14531189 821/*
dd41f596 822 * __normal_prio - return the priority that is based on the static prio
14531189 823 */
14531189
IM
824static inline int __normal_prio(struct task_struct *p)
825{
dd41f596 826 return p->static_prio;
14531189
IM
827}
828
b29739f9
IM
829/*
830 * Calculate the expected normal priority: i.e. priority
831 * without taking RT-inheritance into account. Might be
832 * boosted by interactivity modifiers. Changes upon fork,
833 * setprio syscalls, and whenever the interactivity
834 * estimator recalculates.
835 */
36c8b586 836static inline int normal_prio(struct task_struct *p)
b29739f9
IM
837{
838 int prio;
839
aab03e05
DF
840 if (task_has_dl_policy(p))
841 prio = MAX_DL_PRIO-1;
842 else if (task_has_rt_policy(p))
b29739f9
IM
843 prio = MAX_RT_PRIO-1 - p->rt_priority;
844 else
845 prio = __normal_prio(p);
846 return prio;
847}
848
849/*
850 * Calculate the current priority, i.e. the priority
851 * taken into account by the scheduler. This value might
852 * be boosted by RT tasks, or might be boosted by
853 * interactivity modifiers. Will be RT if the task got
854 * RT-boosted. If not then it returns p->normal_prio.
855 */
36c8b586 856static int effective_prio(struct task_struct *p)
b29739f9
IM
857{
858 p->normal_prio = normal_prio(p);
859 /*
860 * If we are RT tasks or we were boosted to RT priority,
861 * keep the priority unchanged. Otherwise, update priority
862 * to the normal priority:
863 */
864 if (!rt_prio(p->prio))
865 return p->normal_prio;
866 return p->prio;
867}
868
1da177e4
LT
869/**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
e69f6186
YB
872 *
873 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 874 */
36c8b586 875inline int task_curr(const struct task_struct *p)
1da177e4
LT
876{
877 return cpu_curr(task_cpu(p)) == p;
878}
879
67dfa1b7 880/*
4c9a4bc8
PZ
881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882 * use the balance_callback list if you want balancing.
883 *
884 * this means any call to check_class_changed() must be followed by a call to
885 * balance_callback().
67dfa1b7 886 */
cb469845
SR
887static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 const struct sched_class *prev_class,
da7a735e 889 int oldprio)
cb469845
SR
890{
891 if (prev_class != p->sched_class) {
892 if (prev_class->switched_from)
da7a735e 893 prev_class->switched_from(rq, p);
4c9a4bc8 894
da7a735e 895 p->sched_class->switched_to(rq, p);
2d3d891d 896 } else if (oldprio != p->prio || dl_task(p))
da7a735e 897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
8875125e 911 resched_curr(rq);
1e5a7405
PZ
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
da0c1e65 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 922 rq_clock_skip_update(rq, true);
1e5a7405
PZ
923}
924
1da177e4 925#ifdef CONFIG_SMP
5cc389bc
PZ
926/*
927 * This is how migration works:
928 *
929 * 1) we invoke migration_cpu_stop() on the target CPU using
930 * stop_one_cpu().
931 * 2) stopper starts to run (implicitly forcing the migrated thread
932 * off the CPU)
933 * 3) it checks whether the migrated task is still in the wrong runqueue.
934 * 4) if it's in the wrong runqueue then the migration thread removes
935 * it and puts it into the right queue.
936 * 5) stopper completes and stop_one_cpu() returns and the migration
937 * is done.
938 */
939
940/*
941 * move_queued_task - move a queued task to new rq.
942 *
943 * Returns (locked) new rq. Old rq's lock is released.
944 */
5e16bbc2 945static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 946{
5cc389bc
PZ
947 lockdep_assert_held(&rq->lock);
948
5cc389bc 949 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 950 dequeue_task(rq, p, 0);
5cc389bc
PZ
951 set_task_cpu(p, new_cpu);
952 raw_spin_unlock(&rq->lock);
953
954 rq = cpu_rq(new_cpu);
955
956 raw_spin_lock(&rq->lock);
957 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 958 enqueue_task(rq, p, 0);
3ea94de1 959 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
960 check_preempt_curr(rq, p, 0);
961
962 return rq;
963}
964
965struct migration_arg {
966 struct task_struct *task;
967 int dest_cpu;
968};
969
970/*
d1ccc66d 971 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
972 * this because either it can't run here any more (set_cpus_allowed()
973 * away from this CPU, or CPU going down), or because we're
974 * attempting to rebalance this task on exec (sched_exec).
975 *
976 * So we race with normal scheduler movements, but that's OK, as long
977 * as the task is no longer on this CPU.
5cc389bc 978 */
5e16bbc2 979static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 980{
5cc389bc 981 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 982 return rq;
5cc389bc
PZ
983
984 /* Affinity changed (again). */
0c98d344 985 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 986 return rq;
5cc389bc 987
5e16bbc2
PZ
988 rq = move_queued_task(rq, p, dest_cpu);
989
990 return rq;
5cc389bc
PZ
991}
992
993/*
994 * migration_cpu_stop - this will be executed by a highprio stopper thread
995 * and performs thread migration by bumping thread off CPU then
996 * 'pushing' onto another runqueue.
997 */
998static int migration_cpu_stop(void *data)
999{
1000 struct migration_arg *arg = data;
5e16bbc2
PZ
1001 struct task_struct *p = arg->task;
1002 struct rq *rq = this_rq();
5cc389bc
PZ
1003
1004 /*
d1ccc66d
IM
1005 * The original target CPU might have gone down and we might
1006 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1007 */
1008 local_irq_disable();
1009 /*
1010 * We need to explicitly wake pending tasks before running
1011 * __migrate_task() such that we will not miss enforcing cpus_allowed
1012 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1013 */
1014 sched_ttwu_pending();
5e16bbc2
PZ
1015
1016 raw_spin_lock(&p->pi_lock);
1017 raw_spin_lock(&rq->lock);
1018 /*
1019 * If task_rq(p) != rq, it cannot be migrated here, because we're
1020 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1021 * we're holding p->pi_lock.
1022 */
bf89a304
CC
1023 if (task_rq(p) == rq) {
1024 if (task_on_rq_queued(p))
1025 rq = __migrate_task(rq, p, arg->dest_cpu);
1026 else
1027 p->wake_cpu = arg->dest_cpu;
1028 }
5e16bbc2
PZ
1029 raw_spin_unlock(&rq->lock);
1030 raw_spin_unlock(&p->pi_lock);
1031
5cc389bc
PZ
1032 local_irq_enable();
1033 return 0;
1034}
1035
c5b28038
PZ
1036/*
1037 * sched_class::set_cpus_allowed must do the below, but is not required to
1038 * actually call this function.
1039 */
1040void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1041{
5cc389bc
PZ
1042 cpumask_copy(&p->cpus_allowed, new_mask);
1043 p->nr_cpus_allowed = cpumask_weight(new_mask);
1044}
1045
c5b28038
PZ
1046void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1047{
6c37067e
PZ
1048 struct rq *rq = task_rq(p);
1049 bool queued, running;
1050
c5b28038 1051 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1052
1053 queued = task_on_rq_queued(p);
1054 running = task_current(rq, p);
1055
1056 if (queued) {
1057 /*
1058 * Because __kthread_bind() calls this on blocked tasks without
1059 * holding rq->lock.
1060 */
1061 lockdep_assert_held(&rq->lock);
1de64443 1062 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1063 }
1064 if (running)
1065 put_prev_task(rq, p);
1066
c5b28038 1067 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1068
6c37067e 1069 if (queued)
1de64443 1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1071 if (running)
b2bf6c31 1072 set_curr_task(rq, p);
c5b28038
PZ
1073}
1074
5cc389bc
PZ
1075/*
1076 * Change a given task's CPU affinity. Migrate the thread to a
1077 * proper CPU and schedule it away if the CPU it's executing on
1078 * is removed from the allowed bitmask.
1079 *
1080 * NOTE: the caller must have a valid reference to the task, the
1081 * task must not exit() & deallocate itself prematurely. The
1082 * call is not atomic; no spinlocks may be held.
1083 */
25834c73
PZ
1084static int __set_cpus_allowed_ptr(struct task_struct *p,
1085 const struct cpumask *new_mask, bool check)
5cc389bc 1086{
e9d867a6 1087 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1088 unsigned int dest_cpu;
eb580751
PZ
1089 struct rq_flags rf;
1090 struct rq *rq;
5cc389bc
PZ
1091 int ret = 0;
1092
eb580751 1093 rq = task_rq_lock(p, &rf);
a499c3ea 1094 update_rq_clock(rq);
5cc389bc 1095
e9d867a6
PZI
1096 if (p->flags & PF_KTHREAD) {
1097 /*
1098 * Kernel threads are allowed on online && !active CPUs
1099 */
1100 cpu_valid_mask = cpu_online_mask;
1101 }
1102
25834c73
PZ
1103 /*
1104 * Must re-check here, to close a race against __kthread_bind(),
1105 * sched_setaffinity() is not guaranteed to observe the flag.
1106 */
1107 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
5cc389bc
PZ
1112 if (cpumask_equal(&p->cpus_allowed, new_mask))
1113 goto out;
1114
e9d867a6 1115 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1116 ret = -EINVAL;
1117 goto out;
1118 }
1119
1120 do_set_cpus_allowed(p, new_mask);
1121
e9d867a6
PZI
1122 if (p->flags & PF_KTHREAD) {
1123 /*
1124 * For kernel threads that do indeed end up on online &&
d1ccc66d 1125 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1126 */
1127 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1128 !cpumask_intersects(new_mask, cpu_active_mask) &&
1129 p->nr_cpus_allowed != 1);
1130 }
1131
5cc389bc
PZ
1132 /* Can the task run on the task's current CPU? If so, we're done */
1133 if (cpumask_test_cpu(task_cpu(p), new_mask))
1134 goto out;
1135
e9d867a6 1136 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1137 if (task_running(rq, p) || p->state == TASK_WAKING) {
1138 struct migration_arg arg = { p, dest_cpu };
1139 /* Need help from migration thread: drop lock and wait. */
eb580751 1140 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1141 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1142 tlb_migrate_finish(p->mm);
1143 return 0;
cbce1a68
PZ
1144 } else if (task_on_rq_queued(p)) {
1145 /*
1146 * OK, since we're going to drop the lock immediately
1147 * afterwards anyway.
1148 */
d8ac8971 1149 rq_unpin_lock(rq, &rf);
5e16bbc2 1150 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1151 rq_repin_lock(rq, &rf);
cbce1a68 1152 }
5cc389bc 1153out:
eb580751 1154 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1155
1156 return ret;
1157}
25834c73
PZ
1158
1159int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1160{
1161 return __set_cpus_allowed_ptr(p, new_mask, false);
1162}
5cc389bc
PZ
1163EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1164
dd41f596 1165void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1166{
e2912009
PZ
1167#ifdef CONFIG_SCHED_DEBUG
1168 /*
1169 * We should never call set_task_cpu() on a blocked task,
1170 * ttwu() will sort out the placement.
1171 */
077614ee 1172 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1173 !p->on_rq);
0122ec5b 1174
3ea94de1
JP
1175 /*
1176 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1177 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1178 * time relying on p->on_rq.
1179 */
1180 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1181 p->sched_class == &fair_sched_class &&
1182 (p->on_rq && !task_on_rq_migrating(p)));
1183
0122ec5b 1184#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1185 /*
1186 * The caller should hold either p->pi_lock or rq->lock, when changing
1187 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1188 *
1189 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1190 * see task_group().
6c6c54e1
PZ
1191 *
1192 * Furthermore, all task_rq users should acquire both locks, see
1193 * task_rq_lock().
1194 */
0122ec5b
PZ
1195 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1196 lockdep_is_held(&task_rq(p)->lock)));
1197#endif
e2912009
PZ
1198#endif
1199
de1d7286 1200 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1201
0c69774e 1202 if (task_cpu(p) != new_cpu) {
0a74bef8 1203 if (p->sched_class->migrate_task_rq)
5a4fd036 1204 p->sched_class->migrate_task_rq(p);
0c69774e 1205 p->se.nr_migrations++;
ff303e66 1206 perf_event_task_migrate(p);
0c69774e 1207 }
dd41f596
IM
1208
1209 __set_task_cpu(p, new_cpu);
c65cc870
IM
1210}
1211
ac66f547
PZ
1212static void __migrate_swap_task(struct task_struct *p, int cpu)
1213{
da0c1e65 1214 if (task_on_rq_queued(p)) {
ac66f547
PZ
1215 struct rq *src_rq, *dst_rq;
1216
1217 src_rq = task_rq(p);
1218 dst_rq = cpu_rq(cpu);
1219
3ea94de1 1220 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1221 deactivate_task(src_rq, p, 0);
1222 set_task_cpu(p, cpu);
1223 activate_task(dst_rq, p, 0);
3ea94de1 1224 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1225 check_preempt_curr(dst_rq, p, 0);
1226 } else {
1227 /*
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1230 * previous CPU our target instead of where it really is.
ac66f547
PZ
1231 */
1232 p->wake_cpu = cpu;
1233 }
1234}
1235
1236struct migration_swap_arg {
1237 struct task_struct *src_task, *dst_task;
1238 int src_cpu, dst_cpu;
1239};
1240
1241static int migrate_swap_stop(void *data)
1242{
1243 struct migration_swap_arg *arg = data;
1244 struct rq *src_rq, *dst_rq;
1245 int ret = -EAGAIN;
1246
62694cd5
PZ
1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 return -EAGAIN;
1249
ac66f547
PZ
1250 src_rq = cpu_rq(arg->src_cpu);
1251 dst_rq = cpu_rq(arg->dst_cpu);
1252
74602315
PZ
1253 double_raw_lock(&arg->src_task->pi_lock,
1254 &arg->dst_task->pi_lock);
ac66f547 1255 double_rq_lock(src_rq, dst_rq);
62694cd5 1256
ac66f547
PZ
1257 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 goto unlock;
1259
1260 if (task_cpu(arg->src_task) != arg->src_cpu)
1261 goto unlock;
1262
0c98d344 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1264 goto unlock;
1265
0c98d344 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1267 goto unlock;
1268
1269 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1271
1272 ret = 0;
1273
1274unlock:
1275 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1276 raw_spin_unlock(&arg->dst_task->pi_lock);
1277 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1278
1279 return ret;
1280}
1281
1282/*
1283 * Cross migrate two tasks
1284 */
1285int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286{
1287 struct migration_swap_arg arg;
1288 int ret = -EINVAL;
1289
ac66f547
PZ
1290 arg = (struct migration_swap_arg){
1291 .src_task = cur,
1292 .src_cpu = task_cpu(cur),
1293 .dst_task = p,
1294 .dst_cpu = task_cpu(p),
1295 };
1296
1297 if (arg.src_cpu == arg.dst_cpu)
1298 goto out;
1299
6acce3ef
PZ
1300 /*
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1303 */
ac66f547
PZ
1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 goto out;
1306
0c98d344 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1308 goto out;
1309
0c98d344 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1311 goto out;
1312
286549dc 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315
1316out:
ac66f547
PZ
1317 return ret;
1318}
1319
1da177e4
LT
1320/*
1321 * wait_task_inactive - wait for a thread to unschedule.
1322 *
85ba2d86
RM
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1329 *
1da177e4
LT
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1335 */
85ba2d86 1336unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1337{
da0c1e65 1338 int running, queued;
eb580751 1339 struct rq_flags rf;
85ba2d86 1340 unsigned long ncsw;
70b97a7f 1341 struct rq *rq;
1da177e4 1342
3a5c359a
AK
1343 for (;;) {
1344 /*
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1348 * work out!
1349 */
1350 rq = task_rq(p);
fa490cfd 1351
3a5c359a
AK
1352 /*
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1355 * any locks.
1356 *
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1362 */
85ba2d86
RM
1363 while (task_running(rq, p)) {
1364 if (match_state && unlikely(p->state != match_state))
1365 return 0;
3a5c359a 1366 cpu_relax();
85ba2d86 1367 }
fa490cfd 1368
3a5c359a
AK
1369 /*
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1373 */
eb580751 1374 rq = task_rq_lock(p, &rf);
27a9da65 1375 trace_sched_wait_task(p);
3a5c359a 1376 running = task_running(rq, p);
da0c1e65 1377 queued = task_on_rq_queued(p);
85ba2d86 1378 ncsw = 0;
f31e11d8 1379 if (!match_state || p->state == match_state)
93dcf55f 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1381 task_rq_unlock(rq, p, &rf);
fa490cfd 1382
85ba2d86
RM
1383 /*
1384 * If it changed from the expected state, bail out now.
1385 */
1386 if (unlikely(!ncsw))
1387 break;
1388
3a5c359a
AK
1389 /*
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1392 *
1393 * Oops. Go back and try again..
1394 */
1395 if (unlikely(running)) {
1396 cpu_relax();
1397 continue;
1398 }
fa490cfd 1399
3a5c359a
AK
1400 /*
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1403 * preempted!
1404 *
80dd99b3 1405 * So if it was still runnable (but just not actively
3a5c359a
AK
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1408 */
da0c1e65 1409 if (unlikely(queued)) {
8b0e1953 1410 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1411
1412 set_current_state(TASK_UNINTERRUPTIBLE);
1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1414 continue;
1415 }
fa490cfd 1416
3a5c359a
AK
1417 /*
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1421 */
1422 break;
1423 }
85ba2d86
RM
1424
1425 return ncsw;
1da177e4
LT
1426}
1427
1428/***
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1431 *
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1434 *
25985edc 1435 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1439 * achieved as well.
1440 */
36c8b586 1441void kick_process(struct task_struct *p)
1da177e4
LT
1442{
1443 int cpu;
1444
1445 preempt_disable();
1446 cpu = task_cpu(p);
1447 if ((cpu != smp_processor_id()) && task_curr(p))
1448 smp_send_reschedule(cpu);
1449 preempt_enable();
1450}
b43e3521 1451EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1452
30da688e 1453/*
013fdb80 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1455 *
1456 * A few notes on cpu_active vs cpu_online:
1457 *
1458 * - cpu_active must be a subset of cpu_online
1459 *
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1462 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1463 * see it.
1464 *
d1ccc66d 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1466 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1467 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1468 * off.
1469 *
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
30da688e 1474 */
5da9a0fb
PZ
1475static int select_fallback_rq(int cpu, struct task_struct *p)
1476{
aa00d89c
TC
1477 int nid = cpu_to_node(cpu);
1478 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1479 enum { cpuset, possible, fail } state = cpuset;
1480 int dest_cpu;
5da9a0fb 1481
aa00d89c 1482 /*
d1ccc66d
IM
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
aa00d89c
TC
1486 */
1487 if (nid != -1) {
1488 nodemask = cpumask_of_node(nid);
1489
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1492 if (!cpu_active(dest_cpu))
1493 continue;
0c98d344 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1495 return dest_cpu;
1496 }
2baab4e9 1497 }
5da9a0fb 1498
2baab4e9
PZ
1499 for (;;) {
1500 /* Any allowed, online CPU? */
0c98d344 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 continue;
1504 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1505 continue;
1506 goto out;
1507 }
5da9a0fb 1508
e73e85f0 1509 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1510 switch (state) {
1511 case cpuset:
e73e85f0
ON
1512 if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 cpuset_cpus_allowed_fallback(p);
1514 state = possible;
1515 break;
1516 }
d1ccc66d 1517 /* Fall-through */
2baab4e9
PZ
1518 case possible:
1519 do_set_cpus_allowed(p, cpu_possible_mask);
1520 state = fail;
1521 break;
1522
1523 case fail:
1524 BUG();
1525 break;
1526 }
1527 }
1528
1529out:
1530 if (state != cpuset) {
1531 /*
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1534 * leave kernel.
1535 */
1536 if (p->mm && printk_ratelimit()) {
aac74dc4 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1538 task_pid_nr(p), p->comm, cpu);
1539 }
5da9a0fb
PZ
1540 }
1541
1542 return dest_cpu;
1543}
1544
e2912009 1545/*
013fdb80 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1547 */
970b13ba 1548static inline
ac66f547 1549int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1550{
cbce1a68
PZ
1551 lockdep_assert_held(&p->pi_lock);
1552
4b53a341 1553 if (p->nr_cpus_allowed > 1)
6c1d9410 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1555 else
0c98d344 1556 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1557
1558 /*
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1561 * CPU.
e2912009
PZ
1562 *
1563 * Since this is common to all placement strategies, this lives here.
1564 *
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1567 */
0c98d344 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1569 !cpu_online(cpu)))
5da9a0fb 1570 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1571
1572 return cpu;
970b13ba 1573}
09a40af5
MG
1574
1575static void update_avg(u64 *avg, u64 sample)
1576{
1577 s64 diff = sample - *avg;
1578 *avg += diff >> 3;
1579}
25834c73
PZ
1580
1581#else
1582
1583static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1584 const struct cpumask *new_mask, bool check)
1585{
1586 return set_cpus_allowed_ptr(p, new_mask);
1587}
1588
5cc389bc 1589#endif /* CONFIG_SMP */
970b13ba 1590
d7c01d27 1591static void
b84cb5df 1592ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1593{
4fa8d299 1594 struct rq *rq;
b84cb5df 1595
4fa8d299
JP
1596 if (!schedstat_enabled())
1597 return;
1598
1599 rq = this_rq();
d7c01d27 1600
4fa8d299
JP
1601#ifdef CONFIG_SMP
1602 if (cpu == rq->cpu) {
ae92882e
JP
1603 schedstat_inc(rq->ttwu_local);
1604 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1605 } else {
1606 struct sched_domain *sd;
1607
ae92882e 1608 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1609 rcu_read_lock();
4fa8d299 1610 for_each_domain(rq->cpu, sd) {
d7c01d27 1611 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1612 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1613 break;
1614 }
1615 }
057f3fad 1616 rcu_read_unlock();
d7c01d27 1617 }
f339b9dc
PZ
1618
1619 if (wake_flags & WF_MIGRATED)
ae92882e 1620 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1621#endif /* CONFIG_SMP */
1622
ae92882e
JP
1623 schedstat_inc(rq->ttwu_count);
1624 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1625
1626 if (wake_flags & WF_SYNC)
ae92882e 1627 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1628}
1629
1de64443 1630static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1631{
9ed3811a 1632 activate_task(rq, p, en_flags);
da0c1e65 1633 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1634
d1ccc66d 1635 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1636 if (p->flags & PF_WQ_WORKER)
1637 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1638}
1639
23f41eeb
PZ
1640/*
1641 * Mark the task runnable and perform wakeup-preemption.
1642 */
e7904a28 1643static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1644 struct rq_flags *rf)
9ed3811a 1645{
9ed3811a 1646 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1647 p->state = TASK_RUNNING;
fbd705a0
PZ
1648 trace_sched_wakeup(p);
1649
9ed3811a 1650#ifdef CONFIG_SMP
4c9a4bc8
PZ
1651 if (p->sched_class->task_woken) {
1652 /*
cbce1a68
PZ
1653 * Our task @p is fully woken up and running; so its safe to
1654 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1655 */
d8ac8971 1656 rq_unpin_lock(rq, rf);
9ed3811a 1657 p->sched_class->task_woken(rq, p);
d8ac8971 1658 rq_repin_lock(rq, rf);
4c9a4bc8 1659 }
9ed3811a 1660
e69c6341 1661 if (rq->idle_stamp) {
78becc27 1662 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1663 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1664
abfafa54
JL
1665 update_avg(&rq->avg_idle, delta);
1666
1667 if (rq->avg_idle > max)
9ed3811a 1668 rq->avg_idle = max;
abfafa54 1669
9ed3811a
TH
1670 rq->idle_stamp = 0;
1671 }
1672#endif
1673}
1674
c05fbafb 1675static void
e7904a28 1676ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1677 struct rq_flags *rf)
c05fbafb 1678{
b5179ac7
PZ
1679 int en_flags = ENQUEUE_WAKEUP;
1680
cbce1a68
PZ
1681 lockdep_assert_held(&rq->lock);
1682
c05fbafb
PZ
1683#ifdef CONFIG_SMP
1684 if (p->sched_contributes_to_load)
1685 rq->nr_uninterruptible--;
b5179ac7 1686
b5179ac7 1687 if (wake_flags & WF_MIGRATED)
59efa0ba 1688 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1689#endif
1690
b5179ac7 1691 ttwu_activate(rq, p, en_flags);
d8ac8971 1692 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1693}
1694
1695/*
1696 * Called in case the task @p isn't fully descheduled from its runqueue,
1697 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1698 * since all we need to do is flip p->state to TASK_RUNNING, since
1699 * the task is still ->on_rq.
1700 */
1701static int ttwu_remote(struct task_struct *p, int wake_flags)
1702{
eb580751 1703 struct rq_flags rf;
c05fbafb
PZ
1704 struct rq *rq;
1705 int ret = 0;
1706
eb580751 1707 rq = __task_rq_lock(p, &rf);
da0c1e65 1708 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1709 /* check_preempt_curr() may use rq clock */
1710 update_rq_clock(rq);
d8ac8971 1711 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1712 ret = 1;
1713 }
eb580751 1714 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1715
1716 return ret;
1717}
1718
317f3941 1719#ifdef CONFIG_SMP
e3baac47 1720void sched_ttwu_pending(void)
317f3941
PZ
1721{
1722 struct rq *rq = this_rq();
fa14ff4a
PZ
1723 struct llist_node *llist = llist_del_all(&rq->wake_list);
1724 struct task_struct *p;
e3baac47 1725 unsigned long flags;
d8ac8971 1726 struct rq_flags rf;
317f3941 1727
e3baac47
PZ
1728 if (!llist)
1729 return;
1730
1731 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1732 rq_pin_lock(rq, &rf);
317f3941 1733
fa14ff4a 1734 while (llist) {
b7e7ade3
PZ
1735 int wake_flags = 0;
1736
fa14ff4a
PZ
1737 p = llist_entry(llist, struct task_struct, wake_entry);
1738 llist = llist_next(llist);
b7e7ade3
PZ
1739
1740 if (p->sched_remote_wakeup)
1741 wake_flags = WF_MIGRATED;
1742
d8ac8971 1743 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1744 }
1745
d8ac8971 1746 rq_unpin_lock(rq, &rf);
e3baac47 1747 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1748}
1749
1750void scheduler_ipi(void)
1751{
f27dde8d
PZ
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
8cb75e0c 1757 preempt_fold_need_resched();
f27dde8d 1758
fd2ac4f4 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
fa14ff4a 1776 sched_ttwu_pending();
ca38062e
SS
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
873b4c65 1781 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1782 this_rq()->idle_balance = 1;
ca38062e 1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1784 }
c5d753a5 1785 irq_exit();
317f3941
PZ
1786}
1787
b7e7ade3 1788static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1789{
e3baac47
PZ
1790 struct rq *rq = cpu_rq(cpu);
1791
b7e7ade3
PZ
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
e3baac47
PZ
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
317f3941 1800}
d6aa8f85 1801
f6be8af1
CL
1802void wake_up_if_idle(int cpu)
1803{
1804 struct rq *rq = cpu_rq(cpu);
1805 unsigned long flags;
1806
fd7de1e8
AL
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
f6be8af1
CL
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
1815 raw_spin_lock_irqsave(&rq->lock, flags);
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
d1ccc66d 1818 /* Else CPU is not idle, do nothing here: */
f6be8af1
CL
1819 raw_spin_unlock_irqrestore(&rq->lock, flags);
1820 }
fd7de1e8
AL
1821
1822out:
1823 rcu_read_unlock();
f6be8af1
CL
1824}
1825
39be3501 1826bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1827{
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829}
d6aa8f85 1830#endif /* CONFIG_SMP */
317f3941 1831
b5179ac7 1832static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1833{
1834 struct rq *rq = cpu_rq(cpu);
d8ac8971 1835 struct rq_flags rf;
c05fbafb 1836
17d9f311 1837#if defined(CONFIG_SMP)
39be3501 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1840 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1841 return;
1842 }
1843#endif
1844
c05fbafb 1845 raw_spin_lock(&rq->lock);
d8ac8971
MF
1846 rq_pin_lock(rq, &rf);
1847 ttwu_do_activate(rq, p, wake_flags, &rf);
1848 rq_unpin_lock(rq, &rf);
c05fbafb 1849 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1850}
1851
8643cda5
PZ
1852/*
1853 * Notes on Program-Order guarantees on SMP systems.
1854 *
1855 * MIGRATION
1856 *
1857 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1858 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1859 * execution on its new CPU [c1].
8643cda5
PZ
1860 *
1861 * For migration (of runnable tasks) this is provided by the following means:
1862 *
1863 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1864 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1865 * rq(c1)->lock (if not at the same time, then in that order).
1866 * C) LOCK of the rq(c1)->lock scheduling in task
1867 *
1868 * Transitivity guarantees that B happens after A and C after B.
1869 * Note: we only require RCpc transitivity.
d1ccc66d 1870 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1871 *
1872 * Example:
1873 *
1874 * CPU0 CPU1 CPU2
1875 *
1876 * LOCK rq(0)->lock
1877 * sched-out X
1878 * sched-in Y
1879 * UNLOCK rq(0)->lock
1880 *
1881 * LOCK rq(0)->lock // orders against CPU0
1882 * dequeue X
1883 * UNLOCK rq(0)->lock
1884 *
1885 * LOCK rq(1)->lock
1886 * enqueue X
1887 * UNLOCK rq(1)->lock
1888 *
1889 * LOCK rq(1)->lock // orders against CPU2
1890 * sched-out Z
1891 * sched-in X
1892 * UNLOCK rq(1)->lock
1893 *
1894 *
1895 * BLOCKING -- aka. SLEEP + WAKEUP
1896 *
1897 * For blocking we (obviously) need to provide the same guarantee as for
1898 * migration. However the means are completely different as there is no lock
1899 * chain to provide order. Instead we do:
1900 *
1901 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1902 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1903 *
1904 * Example:
1905 *
1906 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1907 *
1908 * LOCK rq(0)->lock LOCK X->pi_lock
1909 * dequeue X
1910 * sched-out X
1911 * smp_store_release(X->on_cpu, 0);
1912 *
1f03e8d2 1913 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1914 * X->state = WAKING
1915 * set_task_cpu(X,2)
1916 *
1917 * LOCK rq(2)->lock
1918 * enqueue X
1919 * X->state = RUNNING
1920 * UNLOCK rq(2)->lock
1921 *
1922 * LOCK rq(2)->lock // orders against CPU1
1923 * sched-out Z
1924 * sched-in X
1925 * UNLOCK rq(2)->lock
1926 *
1927 * UNLOCK X->pi_lock
1928 * UNLOCK rq(0)->lock
1929 *
1930 *
1931 * However; for wakeups there is a second guarantee we must provide, namely we
1932 * must observe the state that lead to our wakeup. That is, not only must our
1933 * task observe its own prior state, it must also observe the stores prior to
1934 * its wakeup.
1935 *
1936 * This means that any means of doing remote wakeups must order the CPU doing
1937 * the wakeup against the CPU the task is going to end up running on. This,
1938 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1939 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1940 *
1941 */
1942
9ed3811a 1943/**
1da177e4 1944 * try_to_wake_up - wake up a thread
9ed3811a 1945 * @p: the thread to be awakened
1da177e4 1946 * @state: the mask of task states that can be woken
9ed3811a 1947 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1948 *
a2250238 1949 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1950 *
a2250238
PZ
1951 * If the task was not queued/runnable, also place it back on a runqueue.
1952 *
1953 * Atomic against schedule() which would dequeue a task, also see
1954 * set_current_state().
1955 *
1956 * Return: %true if @p->state changes (an actual wakeup was done),
1957 * %false otherwise.
1da177e4 1958 */
e4a52bcb
PZ
1959static int
1960try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1961{
1da177e4 1962 unsigned long flags;
c05fbafb 1963 int cpu, success = 0;
2398f2c6 1964
e0acd0a6
ON
1965 /*
1966 * If we are going to wake up a thread waiting for CONDITION we
1967 * need to ensure that CONDITION=1 done by the caller can not be
1968 * reordered with p->state check below. This pairs with mb() in
1969 * set_current_state() the waiting thread does.
1970 */
1971 smp_mb__before_spinlock();
013fdb80 1972 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1973 if (!(p->state & state))
1da177e4
LT
1974 goto out;
1975
fbd705a0
PZ
1976 trace_sched_waking(p);
1977
d1ccc66d
IM
1978 /* We're going to change ->state: */
1979 success = 1;
1da177e4 1980 cpu = task_cpu(p);
1da177e4 1981
135e8c92
BS
1982 /*
1983 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1984 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1985 * in smp_cond_load_acquire() below.
1986 *
1987 * sched_ttwu_pending() try_to_wake_up()
1988 * [S] p->on_rq = 1; [L] P->state
1989 * UNLOCK rq->lock -----.
1990 * \
1991 * +--- RMB
1992 * schedule() /
1993 * LOCK rq->lock -----'
1994 * UNLOCK rq->lock
1995 *
1996 * [task p]
1997 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1998 *
1999 * Pairs with the UNLOCK+LOCK on rq->lock from the
2000 * last wakeup of our task and the schedule that got our task
2001 * current.
2002 */
2003 smp_rmb();
c05fbafb
PZ
2004 if (p->on_rq && ttwu_remote(p, wake_flags))
2005 goto stat;
1da177e4 2006
1da177e4 2007#ifdef CONFIG_SMP
ecf7d01c
PZ
2008 /*
2009 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2010 * possible to, falsely, observe p->on_cpu == 0.
2011 *
2012 * One must be running (->on_cpu == 1) in order to remove oneself
2013 * from the runqueue.
2014 *
2015 * [S] ->on_cpu = 1; [L] ->on_rq
2016 * UNLOCK rq->lock
2017 * RMB
2018 * LOCK rq->lock
2019 * [S] ->on_rq = 0; [L] ->on_cpu
2020 *
2021 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2022 * from the consecutive calls to schedule(); the first switching to our
2023 * task, the second putting it to sleep.
2024 */
2025 smp_rmb();
2026
e9c84311 2027 /*
d1ccc66d 2028 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2029 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2030 *
2031 * Pairs with the smp_store_release() in finish_lock_switch().
2032 *
2033 * This ensures that tasks getting woken will be fully ordered against
2034 * their previous state and preserve Program Order.
0970d299 2035 */
1f03e8d2 2036 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2037
a8e4f2ea 2038 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2039 p->state = TASK_WAKING;
e7693a36 2040
e33a9bba
TH
2041 if (p->in_iowait) {
2042 delayacct_blkio_end();
2043 atomic_dec(&task_rq(p)->nr_iowait);
2044 }
2045
ac66f547 2046 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2047 if (task_cpu(p) != cpu) {
2048 wake_flags |= WF_MIGRATED;
e4a52bcb 2049 set_task_cpu(p, cpu);
f339b9dc 2050 }
e33a9bba
TH
2051
2052#else /* CONFIG_SMP */
2053
2054 if (p->in_iowait) {
2055 delayacct_blkio_end();
2056 atomic_dec(&task_rq(p)->nr_iowait);
2057 }
2058
1da177e4 2059#endif /* CONFIG_SMP */
1da177e4 2060
b5179ac7 2061 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2062stat:
4fa8d299 2063 ttwu_stat(p, cpu, wake_flags);
1da177e4 2064out:
013fdb80 2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2066
2067 return success;
2068}
2069
21aa9af0
TH
2070/**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
9279e0d2 2073 * @cookie: context's cookie for pinning
21aa9af0 2074 *
2acca55e 2075 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2076 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2077 * the current task.
21aa9af0 2078 */
d8ac8971 2079static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2080{
2081 struct rq *rq = task_rq(p);
21aa9af0 2082
383efcd0
TH
2083 if (WARN_ON_ONCE(rq != this_rq()) ||
2084 WARN_ON_ONCE(p == current))
2085 return;
2086
21aa9af0
TH
2087 lockdep_assert_held(&rq->lock);
2088
2acca55e 2089 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2090 /*
2091 * This is OK, because current is on_cpu, which avoids it being
2092 * picked for load-balance and preemption/IRQs are still
2093 * disabled avoiding further scheduler activity on it and we've
2094 * not yet picked a replacement task.
2095 */
d8ac8971 2096 rq_unpin_lock(rq, rf);
2acca55e
PZ
2097 raw_spin_unlock(&rq->lock);
2098 raw_spin_lock(&p->pi_lock);
2099 raw_spin_lock(&rq->lock);
d8ac8971 2100 rq_repin_lock(rq, rf);
2acca55e
PZ
2101 }
2102
21aa9af0 2103 if (!(p->state & TASK_NORMAL))
2acca55e 2104 goto out;
21aa9af0 2105
fbd705a0
PZ
2106 trace_sched_waking(p);
2107
e33a9bba
TH
2108 if (!task_on_rq_queued(p)) {
2109 if (p->in_iowait) {
2110 delayacct_blkio_end();
2111 atomic_dec(&rq->nr_iowait);
2112 }
d7c01d27 2113 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
e33a9bba 2114 }
d7c01d27 2115
d8ac8971 2116 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2117 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2118out:
2119 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2120}
2121
50fa610a
DH
2122/**
2123 * wake_up_process - Wake up a specific process
2124 * @p: The process to be woken up.
2125 *
2126 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2127 * processes.
2128 *
2129 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2130 *
2131 * It may be assumed that this function implies a write memory barrier before
2132 * changing the task state if and only if any tasks are woken up.
2133 */
7ad5b3a5 2134int wake_up_process(struct task_struct *p)
1da177e4 2135{
9067ac85 2136 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2137}
1da177e4
LT
2138EXPORT_SYMBOL(wake_up_process);
2139
7ad5b3a5 2140int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2141{
2142 return try_to_wake_up(p, state, 0);
2143}
2144
a5e7be3b
JL
2145/*
2146 * This function clears the sched_dl_entity static params.
2147 */
2148void __dl_clear_params(struct task_struct *p)
2149{
2150 struct sched_dl_entity *dl_se = &p->dl;
2151
2152 dl_se->dl_runtime = 0;
2153 dl_se->dl_deadline = 0;
2154 dl_se->dl_period = 0;
2155 dl_se->flags = 0;
2156 dl_se->dl_bw = 0;
40767b0d
PZ
2157
2158 dl_se->dl_throttled = 0;
40767b0d 2159 dl_se->dl_yielded = 0;
a5e7be3b
JL
2160}
2161
1da177e4
LT
2162/*
2163 * Perform scheduler related setup for a newly forked process p.
2164 * p is forked by current.
dd41f596
IM
2165 *
2166 * __sched_fork() is basic setup used by init_idle() too:
2167 */
5e1576ed 2168static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2169{
fd2f4419
PZ
2170 p->on_rq = 0;
2171
2172 p->se.on_rq = 0;
dd41f596
IM
2173 p->se.exec_start = 0;
2174 p->se.sum_exec_runtime = 0;
f6cf891c 2175 p->se.prev_sum_exec_runtime = 0;
6c594c21 2176 p->se.nr_migrations = 0;
da7a735e 2177 p->se.vruntime = 0;
fd2f4419 2178 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2179
ad936d86
BP
2180#ifdef CONFIG_FAIR_GROUP_SCHED
2181 p->se.cfs_rq = NULL;
2182#endif
2183
6cfb0d5d 2184#ifdef CONFIG_SCHEDSTATS
cb251765 2185 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2186 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2187#endif
476d139c 2188
aab03e05 2189 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2190 init_dl_task_timer(&p->dl);
a5e7be3b 2191 __dl_clear_params(p);
aab03e05 2192
fa717060 2193 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2194 p->rt.timeout = 0;
2195 p->rt.time_slice = sched_rr_timeslice;
2196 p->rt.on_rq = 0;
2197 p->rt.on_list = 0;
476d139c 2198
e107be36
AK
2199#ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2201#endif
cbee9f88
PZ
2202
2203#ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2206 p->mm->numa_scan_seq = 0;
2207 }
2208
5e1576ed
RR
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2211 else
2212 p->numa_preferred_nid = -1;
2213
cbee9f88
PZ
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2217 p->numa_work.next = &p->numa_work;
44dba3d5 2218 p->numa_faults = NULL;
7e2703e6
RR
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
8c8a743c 2221
8c8a743c 2222 p->numa_group = NULL;
cbee9f88 2223#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2224}
2225
2a595721
SD
2226DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227
1a687c2e 2228#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2229
1a687c2e
MG
2230void set_numabalancing_state(bool enabled)
2231{
2232 if (enabled)
2a595721 2233 static_branch_enable(&sched_numa_balancing);
1a687c2e 2234 else
2a595721 2235 static_branch_disable(&sched_numa_balancing);
1a687c2e 2236}
54a43d54
AK
2237
2238#ifdef CONFIG_PROC_SYSCTL
2239int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2241{
2242 struct ctl_table t;
2243 int err;
2a595721 2244 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2245
2246 if (write && !capable(CAP_SYS_ADMIN))
2247 return -EPERM;
2248
2249 t = *table;
2250 t.data = &state;
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 if (err < 0)
2253 return err;
2254 if (write)
2255 set_numabalancing_state(state);
2256 return err;
2257}
2258#endif
2259#endif
dd41f596 2260
4698f88c
JP
2261#ifdef CONFIG_SCHEDSTATS
2262
cb251765 2263DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2264static bool __initdata __sched_schedstats = false;
cb251765 2265
cb251765
MG
2266static void set_schedstats(bool enabled)
2267{
2268 if (enabled)
2269 static_branch_enable(&sched_schedstats);
2270 else
2271 static_branch_disable(&sched_schedstats);
2272}
2273
2274void force_schedstat_enabled(void)
2275{
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2279 }
2280}
2281
2282static int __init setup_schedstats(char *str)
2283{
2284 int ret = 0;
2285 if (!str)
2286 goto out;
2287
4698f88c
JP
2288 /*
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2292 */
cb251765 2293 if (!strcmp(str, "enable")) {
4698f88c 2294 __sched_schedstats = true;
cb251765
MG
2295 ret = 1;
2296 } else if (!strcmp(str, "disable")) {
4698f88c 2297 __sched_schedstats = false;
cb251765
MG
2298 ret = 1;
2299 }
2300out:
2301 if (!ret)
2302 pr_warn("Unable to parse schedstats=\n");
2303
2304 return ret;
2305}
2306__setup("schedstats=", setup_schedstats);
2307
4698f88c
JP
2308static void __init init_schedstats(void)
2309{
2310 set_schedstats(__sched_schedstats);
2311}
2312
cb251765
MG
2313#ifdef CONFIG_PROC_SYSCTL
2314int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2316{
2317 struct ctl_table t;
2318 int err;
2319 int state = static_branch_likely(&sched_schedstats);
2320
2321 if (write && !capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2323
2324 t = *table;
2325 t.data = &state;
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 if (err < 0)
2328 return err;
2329 if (write)
2330 set_schedstats(state);
2331 return err;
2332}
4698f88c
JP
2333#endif /* CONFIG_PROC_SYSCTL */
2334#else /* !CONFIG_SCHEDSTATS */
2335static inline void init_schedstats(void) {}
2336#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2337
2338/*
2339 * fork()/clone()-time setup:
2340 */
aab03e05 2341int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2342{
0122ec5b 2343 unsigned long flags;
dd41f596
IM
2344 int cpu = get_cpu();
2345
5e1576ed 2346 __sched_fork(clone_flags, p);
06b83b5f 2347 /*
7dc603c9 2348 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2351 */
7dc603c9 2352 p->state = TASK_NEW;
dd41f596 2353
c350a04e
MG
2354 /*
2355 * Make sure we do not leak PI boosting priority to the child.
2356 */
2357 p->prio = current->normal_prio;
2358
b9dc29e7
MG
2359 /*
2360 * Revert to default priority/policy on fork if requested.
2361 */
2362 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2364 p->policy = SCHED_NORMAL;
6c697bdf 2365 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2366 p->rt_priority = 0;
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2369
2370 p->prio = p->normal_prio = __normal_prio(p);
2371 set_load_weight(p);
6c697bdf 2372
b9dc29e7
MG
2373 /*
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2376 */
2377 p->sched_reset_on_fork = 0;
2378 }
ca94c442 2379
aab03e05
DF
2380 if (dl_prio(p->prio)) {
2381 put_cpu();
2382 return -EAGAIN;
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2385 } else {
2ddbf952 2386 p->sched_class = &fair_sched_class;
aab03e05 2387 }
b29739f9 2388
7dc603c9 2389 init_entity_runnable_average(&p->se);
cd29fe6f 2390
86951599
PZ
2391 /*
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2395 *
2396 * Silence PROVE_RCU.
2397 */
0122ec5b 2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2399 /*
d1ccc66d 2400 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2401 * so use __set_task_cpu().
2402 */
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
0122ec5b 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2407
f6db8347 2408#ifdef CONFIG_SCHED_INFO
dd41f596 2409 if (likely(sched_info_on()))
52f17b6c 2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2411#endif
3ca7a440
PZ
2412#if defined(CONFIG_SMP)
2413 p->on_cpu = 0;
4866cde0 2414#endif
01028747 2415 init_task_preempt_count(p);
806c09a7 2416#ifdef CONFIG_SMP
917b627d 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2419#endif
917b627d 2420
476d139c 2421 put_cpu();
aab03e05 2422 return 0;
1da177e4
LT
2423}
2424
332ac17e
DF
2425unsigned long to_ratio(u64 period, u64 runtime)
2426{
2427 if (runtime == RUNTIME_INF)
2428 return 1ULL << 20;
2429
2430 /*
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2434 */
2435 if (period == 0)
2436 return 0;
2437
2438 return div64_u64(runtime << 20, period);
2439}
2440
2441#ifdef CONFIG_SMP
2442inline struct dl_bw *dl_bw_of(int i)
2443{
f78f5b90
PM
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
332ac17e
DF
2446 return &cpu_rq(i)->rd->dl_bw;
2447}
2448
de212f18 2449static inline int dl_bw_cpus(int i)
332ac17e 2450{
de212f18
PZ
2451 struct root_domain *rd = cpu_rq(i)->rd;
2452 int cpus = 0;
2453
f78f5b90
PM
2454 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2455 "sched RCU must be held");
de212f18
PZ
2456 for_each_cpu_and(i, rd->span, cpu_active_mask)
2457 cpus++;
2458
2459 return cpus;
332ac17e
DF
2460}
2461#else
2462inline struct dl_bw *dl_bw_of(int i)
2463{
2464 return &cpu_rq(i)->dl.dl_bw;
2465}
2466
de212f18 2467static inline int dl_bw_cpus(int i)
332ac17e
DF
2468{
2469 return 1;
2470}
2471#endif
2472
332ac17e
DF
2473/*
2474 * We must be sure that accepting a new task (or allowing changing the
2475 * parameters of an existing one) is consistent with the bandwidth
2476 * constraints. If yes, this function also accordingly updates the currently
2477 * allocated bandwidth to reflect the new situation.
2478 *
2479 * This function is called while holding p's rq->lock.
40767b0d
PZ
2480 *
2481 * XXX we should delay bw change until the task's 0-lag point, see
2482 * __setparam_dl().
332ac17e
DF
2483 */
2484static int dl_overflow(struct task_struct *p, int policy,
2485 const struct sched_attr *attr)
2486{
2487
2488 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2489 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2490 u64 runtime = attr->sched_runtime;
2491 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2492 int cpus, err = -1;
332ac17e 2493
fec148c0
XP
2494 /* !deadline task may carry old deadline bandwidth */
2495 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2496 return 0;
2497
2498 /*
2499 * Either if a task, enters, leave, or stays -deadline but changes
2500 * its parameters, we may need to update accordingly the total
2501 * allocated bandwidth of the container.
2502 */
2503 raw_spin_lock(&dl_b->lock);
de212f18 2504 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2505 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2506 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2507 __dl_add(dl_b, new_bw);
2508 err = 0;
2509 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2510 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2511 __dl_clear(dl_b, p->dl.dl_bw);
2512 __dl_add(dl_b, new_bw);
2513 err = 0;
2514 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2515 __dl_clear(dl_b, p->dl.dl_bw);
2516 err = 0;
2517 }
2518 raw_spin_unlock(&dl_b->lock);
2519
2520 return err;
2521}
2522
2523extern void init_dl_bw(struct dl_bw *dl_b);
2524
1da177e4
LT
2525/*
2526 * wake_up_new_task - wake up a newly created task for the first time.
2527 *
2528 * This function will do some initial scheduler statistics housekeeping
2529 * that must be done for every newly created context, then puts the task
2530 * on the runqueue and wakes it.
2531 */
3e51e3ed 2532void wake_up_new_task(struct task_struct *p)
1da177e4 2533{
eb580751 2534 struct rq_flags rf;
dd41f596 2535 struct rq *rq;
fabf318e 2536
eb580751 2537 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2538 p->state = TASK_RUNNING;
fabf318e
PZ
2539#ifdef CONFIG_SMP
2540 /*
2541 * Fork balancing, do it here and not earlier because:
2542 * - cpus_allowed can change in the fork path
d1ccc66d 2543 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2544 *
2545 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2546 * as we're not fully set-up yet.
fabf318e 2547 */
e210bffd 2548 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2549#endif
b7fa30c9 2550 rq = __task_rq_lock(p, &rf);
4126bad6 2551 update_rq_clock(rq);
2b8c41da 2552 post_init_entity_util_avg(&p->se);
0017d735 2553
cd29fe6f 2554 activate_task(rq, p, 0);
da0c1e65 2555 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2556 trace_sched_wakeup_new(p);
a7558e01 2557 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2558#ifdef CONFIG_SMP
0aaafaab
PZ
2559 if (p->sched_class->task_woken) {
2560 /*
2561 * Nothing relies on rq->lock after this, so its fine to
2562 * drop it.
2563 */
d8ac8971 2564 rq_unpin_lock(rq, &rf);
efbbd05a 2565 p->sched_class->task_woken(rq, p);
d8ac8971 2566 rq_repin_lock(rq, &rf);
0aaafaab 2567 }
9a897c5a 2568#endif
eb580751 2569 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2570}
2571
e107be36
AK
2572#ifdef CONFIG_PREEMPT_NOTIFIERS
2573
1cde2930
PZ
2574static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2575
2ecd9d29
PZ
2576void preempt_notifier_inc(void)
2577{
2578 static_key_slow_inc(&preempt_notifier_key);
2579}
2580EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2581
2582void preempt_notifier_dec(void)
2583{
2584 static_key_slow_dec(&preempt_notifier_key);
2585}
2586EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2587
e107be36 2588/**
80dd99b3 2589 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2590 * @notifier: notifier struct to register
e107be36
AK
2591 */
2592void preempt_notifier_register(struct preempt_notifier *notifier)
2593{
2ecd9d29
PZ
2594 if (!static_key_false(&preempt_notifier_key))
2595 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2596
e107be36
AK
2597 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2598}
2599EXPORT_SYMBOL_GPL(preempt_notifier_register);
2600
2601/**
2602 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2603 * @notifier: notifier struct to unregister
e107be36 2604 *
d84525a8 2605 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2606 */
2607void preempt_notifier_unregister(struct preempt_notifier *notifier)
2608{
2609 hlist_del(&notifier->link);
2610}
2611EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2612
1cde2930 2613static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2614{
2615 struct preempt_notifier *notifier;
e107be36 2616
b67bfe0d 2617 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2618 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2619}
2620
1cde2930
PZ
2621static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622{
2623 if (static_key_false(&preempt_notifier_key))
2624 __fire_sched_in_preempt_notifiers(curr);
2625}
2626
e107be36 2627static void
1cde2930
PZ
2628__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2629 struct task_struct *next)
e107be36
AK
2630{
2631 struct preempt_notifier *notifier;
e107be36 2632
b67bfe0d 2633 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2634 notifier->ops->sched_out(notifier, next);
2635}
2636
1cde2930
PZ
2637static __always_inline void
2638fire_sched_out_preempt_notifiers(struct task_struct *curr,
2639 struct task_struct *next)
2640{
2641 if (static_key_false(&preempt_notifier_key))
2642 __fire_sched_out_preempt_notifiers(curr, next);
2643}
2644
6d6bc0ad 2645#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2646
1cde2930 2647static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2648{
2649}
2650
1cde2930 2651static inline void
e107be36
AK
2652fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654{
2655}
2656
6d6bc0ad 2657#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2658
4866cde0
NP
2659/**
2660 * prepare_task_switch - prepare to switch tasks
2661 * @rq: the runqueue preparing to switch
421cee29 2662 * @prev: the current task that is being switched out
4866cde0
NP
2663 * @next: the task we are going to switch to.
2664 *
2665 * This is called with the rq lock held and interrupts off. It must
2666 * be paired with a subsequent finish_task_switch after the context
2667 * switch.
2668 *
2669 * prepare_task_switch sets up locking and calls architecture specific
2670 * hooks.
2671 */
e107be36
AK
2672static inline void
2673prepare_task_switch(struct rq *rq, struct task_struct *prev,
2674 struct task_struct *next)
4866cde0 2675{
43148951 2676 sched_info_switch(rq, prev, next);
fe4b04fa 2677 perf_event_task_sched_out(prev, next);
e107be36 2678 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2679 prepare_lock_switch(rq, next);
2680 prepare_arch_switch(next);
2681}
2682
1da177e4
LT
2683/**
2684 * finish_task_switch - clean up after a task-switch
2685 * @prev: the thread we just switched away from.
2686 *
4866cde0
NP
2687 * finish_task_switch must be called after the context switch, paired
2688 * with a prepare_task_switch call before the context switch.
2689 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2690 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2691 *
2692 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2693 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2694 * with the lock held can cause deadlocks; see schedule() for
2695 * details.)
dfa50b60
ON
2696 *
2697 * The context switch have flipped the stack from under us and restored the
2698 * local variables which were saved when this task called schedule() in the
2699 * past. prev == current is still correct but we need to recalculate this_rq
2700 * because prev may have moved to another CPU.
1da177e4 2701 */
dfa50b60 2702static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2703 __releases(rq->lock)
2704{
dfa50b60 2705 struct rq *rq = this_rq();
1da177e4 2706 struct mm_struct *mm = rq->prev_mm;
55a101f8 2707 long prev_state;
1da177e4 2708
609ca066
PZ
2709 /*
2710 * The previous task will have left us with a preempt_count of 2
2711 * because it left us after:
2712 *
2713 * schedule()
2714 * preempt_disable(); // 1
2715 * __schedule()
2716 * raw_spin_lock_irq(&rq->lock) // 2
2717 *
2718 * Also, see FORK_PREEMPT_COUNT.
2719 */
e2bf1c4b
PZ
2720 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2721 "corrupted preempt_count: %s/%d/0x%x\n",
2722 current->comm, current->pid, preempt_count()))
2723 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2724
1da177e4
LT
2725 rq->prev_mm = NULL;
2726
2727 /*
2728 * A task struct has one reference for the use as "current".
c394cc9f 2729 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2730 * schedule one last time. The schedule call will never return, and
2731 * the scheduled task must drop that reference.
95913d97
PZ
2732 *
2733 * We must observe prev->state before clearing prev->on_cpu (in
2734 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2735 * running on another CPU and we could rave with its RUNNING -> DEAD
2736 * transition, resulting in a double drop.
1da177e4 2737 */
55a101f8 2738 prev_state = prev->state;
bf9fae9f 2739 vtime_task_switch(prev);
a8d757ef 2740 perf_event_task_sched_in(prev, current);
4866cde0 2741 finish_lock_switch(rq, prev);
01f23e16 2742 finish_arch_post_lock_switch();
e8fa1362 2743
e107be36 2744 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2745 if (mm)
2746 mmdrop(mm);
c394cc9f 2747 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2748 if (prev->sched_class->task_dead)
2749 prev->sched_class->task_dead(prev);
2750
c6fd91f0 2751 /*
2752 * Remove function-return probe instances associated with this
2753 * task and put them back on the free list.
9761eea8 2754 */
c6fd91f0 2755 kprobe_flush_task(prev);
68f24b08
AL
2756
2757 /* Task is done with its stack. */
2758 put_task_stack(prev);
2759
1da177e4 2760 put_task_struct(prev);
c6fd91f0 2761 }
99e5ada9 2762
de734f89 2763 tick_nohz_task_switch();
dfa50b60 2764 return rq;
1da177e4
LT
2765}
2766
3f029d3c
GH
2767#ifdef CONFIG_SMP
2768
3f029d3c 2769/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2770static void __balance_callback(struct rq *rq)
3f029d3c 2771{
e3fca9e7
PZ
2772 struct callback_head *head, *next;
2773 void (*func)(struct rq *rq);
2774 unsigned long flags;
3f029d3c 2775
e3fca9e7
PZ
2776 raw_spin_lock_irqsave(&rq->lock, flags);
2777 head = rq->balance_callback;
2778 rq->balance_callback = NULL;
2779 while (head) {
2780 func = (void (*)(struct rq *))head->func;
2781 next = head->next;
2782 head->next = NULL;
2783 head = next;
3f029d3c 2784
e3fca9e7 2785 func(rq);
3f029d3c 2786 }
e3fca9e7
PZ
2787 raw_spin_unlock_irqrestore(&rq->lock, flags);
2788}
2789
2790static inline void balance_callback(struct rq *rq)
2791{
2792 if (unlikely(rq->balance_callback))
2793 __balance_callback(rq);
3f029d3c
GH
2794}
2795
2796#else
da19ab51 2797
e3fca9e7 2798static inline void balance_callback(struct rq *rq)
3f029d3c 2799{
1da177e4
LT
2800}
2801
3f029d3c
GH
2802#endif
2803
1da177e4
LT
2804/**
2805 * schedule_tail - first thing a freshly forked thread must call.
2806 * @prev: the thread we just switched away from.
2807 */
722a9f92 2808asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2809 __releases(rq->lock)
2810{
1a43a14a 2811 struct rq *rq;
da19ab51 2812
609ca066
PZ
2813 /*
2814 * New tasks start with FORK_PREEMPT_COUNT, see there and
2815 * finish_task_switch() for details.
2816 *
2817 * finish_task_switch() will drop rq->lock() and lower preempt_count
2818 * and the preempt_enable() will end up enabling preemption (on
2819 * PREEMPT_COUNT kernels).
2820 */
2821
dfa50b60 2822 rq = finish_task_switch(prev);
e3fca9e7 2823 balance_callback(rq);
1a43a14a 2824 preempt_enable();
70b97a7f 2825
1da177e4 2826 if (current->set_child_tid)
b488893a 2827 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2828}
2829
2830/*
dfa50b60 2831 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2832 */
04936948 2833static __always_inline struct rq *
70b97a7f 2834context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2835 struct task_struct *next, struct rq_flags *rf)
1da177e4 2836{
dd41f596 2837 struct mm_struct *mm, *oldmm;
1da177e4 2838
e107be36 2839 prepare_task_switch(rq, prev, next);
fe4b04fa 2840
dd41f596
IM
2841 mm = next->mm;
2842 oldmm = prev->active_mm;
9226d125
ZA
2843 /*
2844 * For paravirt, this is coupled with an exit in switch_to to
2845 * combine the page table reload and the switch backend into
2846 * one hypercall.
2847 */
224101ed 2848 arch_start_context_switch(prev);
9226d125 2849
31915ab4 2850 if (!mm) {
1da177e4 2851 next->active_mm = oldmm;
f1f10076 2852 mmgrab(oldmm);
1da177e4
LT
2853 enter_lazy_tlb(oldmm, next);
2854 } else
f98db601 2855 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2856
31915ab4 2857 if (!prev->mm) {
1da177e4 2858 prev->active_mm = NULL;
1da177e4
LT
2859 rq->prev_mm = oldmm;
2860 }
92509b73 2861
cb42c9a3 2862 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2863
3a5f5e48
IM
2864 /*
2865 * Since the runqueue lock will be released by the next
2866 * task (which is an invalid locking op but in the case
2867 * of the scheduler it's an obvious special-case), so we
2868 * do an early lockdep release here:
2869 */
d8ac8971 2870 rq_unpin_lock(rq, rf);
8a25d5de 2871 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2872
2873 /* Here we just switch the register state and the stack. */
2874 switch_to(prev, next, prev);
dd41f596 2875 barrier();
dfa50b60
ON
2876
2877 return finish_task_switch(prev);
1da177e4
LT
2878}
2879
2880/*
1c3e8264 2881 * nr_running and nr_context_switches:
1da177e4
LT
2882 *
2883 * externally visible scheduler statistics: current number of runnable
1c3e8264 2884 * threads, total number of context switches performed since bootup.
1da177e4
LT
2885 */
2886unsigned long nr_running(void)
2887{
2888 unsigned long i, sum = 0;
2889
2890 for_each_online_cpu(i)
2891 sum += cpu_rq(i)->nr_running;
2892
2893 return sum;
f711f609 2894}
1da177e4 2895
2ee507c4 2896/*
d1ccc66d 2897 * Check if only the current task is running on the CPU.
00cc1633
DD
2898 *
2899 * Caution: this function does not check that the caller has disabled
2900 * preemption, thus the result might have a time-of-check-to-time-of-use
2901 * race. The caller is responsible to use it correctly, for example:
2902 *
2903 * - from a non-preemptable section (of course)
2904 *
2905 * - from a thread that is bound to a single CPU
2906 *
2907 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2908 */
2909bool single_task_running(void)
2910{
00cc1633 2911 return raw_rq()->nr_running == 1;
2ee507c4
TC
2912}
2913EXPORT_SYMBOL(single_task_running);
2914
1da177e4 2915unsigned long long nr_context_switches(void)
46cb4b7c 2916{
cc94abfc
SR
2917 int i;
2918 unsigned long long sum = 0;
46cb4b7c 2919
0a945022 2920 for_each_possible_cpu(i)
1da177e4 2921 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2922
1da177e4
LT
2923 return sum;
2924}
483b4ee6 2925
e33a9bba
TH
2926/*
2927 * IO-wait accounting, and how its mostly bollocks (on SMP).
2928 *
2929 * The idea behind IO-wait account is to account the idle time that we could
2930 * have spend running if it were not for IO. That is, if we were to improve the
2931 * storage performance, we'd have a proportional reduction in IO-wait time.
2932 *
2933 * This all works nicely on UP, where, when a task blocks on IO, we account
2934 * idle time as IO-wait, because if the storage were faster, it could've been
2935 * running and we'd not be idle.
2936 *
2937 * This has been extended to SMP, by doing the same for each CPU. This however
2938 * is broken.
2939 *
2940 * Imagine for instance the case where two tasks block on one CPU, only the one
2941 * CPU will have IO-wait accounted, while the other has regular idle. Even
2942 * though, if the storage were faster, both could've ran at the same time,
2943 * utilising both CPUs.
2944 *
2945 * This means, that when looking globally, the current IO-wait accounting on
2946 * SMP is a lower bound, by reason of under accounting.
2947 *
2948 * Worse, since the numbers are provided per CPU, they are sometimes
2949 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2950 * associated with any one particular CPU, it can wake to another CPU than it
2951 * blocked on. This means the per CPU IO-wait number is meaningless.
2952 *
2953 * Task CPU affinities can make all that even more 'interesting'.
2954 */
2955
1da177e4
LT
2956unsigned long nr_iowait(void)
2957{
2958 unsigned long i, sum = 0;
483b4ee6 2959
0a945022 2960 for_each_possible_cpu(i)
1da177e4 2961 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2962
1da177e4
LT
2963 return sum;
2964}
483b4ee6 2965
e33a9bba
TH
2966/*
2967 * Consumers of these two interfaces, like for example the cpufreq menu
2968 * governor are using nonsensical data. Boosting frequency for a CPU that has
2969 * IO-wait which might not even end up running the task when it does become
2970 * runnable.
2971 */
2972
8c215bd3 2973unsigned long nr_iowait_cpu(int cpu)
69d25870 2974{
8c215bd3 2975 struct rq *this = cpu_rq(cpu);
69d25870
AV
2976 return atomic_read(&this->nr_iowait);
2977}
46cb4b7c 2978
372ba8cb
MG
2979void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2980{
3289bdb4
PZ
2981 struct rq *rq = this_rq();
2982 *nr_waiters = atomic_read(&rq->nr_iowait);
2983 *load = rq->load.weight;
372ba8cb
MG
2984}
2985
dd41f596 2986#ifdef CONFIG_SMP
8a0be9ef 2987
46cb4b7c 2988/*
38022906
PZ
2989 * sched_exec - execve() is a valuable balancing opportunity, because at
2990 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2991 */
38022906 2992void sched_exec(void)
46cb4b7c 2993{
38022906 2994 struct task_struct *p = current;
1da177e4 2995 unsigned long flags;
0017d735 2996 int dest_cpu;
46cb4b7c 2997
8f42ced9 2998 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2999 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3000 if (dest_cpu == smp_processor_id())
3001 goto unlock;
38022906 3002
8f42ced9 3003 if (likely(cpu_active(dest_cpu))) {
969c7921 3004 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3005
8f42ced9
PZ
3006 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3007 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3008 return;
3009 }
0017d735 3010unlock:
8f42ced9 3011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3012}
dd41f596 3013
1da177e4
LT
3014#endif
3015
1da177e4 3016DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3017DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3018
3019EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3020EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3021
6075620b
GG
3022/*
3023 * The function fair_sched_class.update_curr accesses the struct curr
3024 * and its field curr->exec_start; when called from task_sched_runtime(),
3025 * we observe a high rate of cache misses in practice.
3026 * Prefetching this data results in improved performance.
3027 */
3028static inline void prefetch_curr_exec_start(struct task_struct *p)
3029{
3030#ifdef CONFIG_FAIR_GROUP_SCHED
3031 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3032#else
3033 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3034#endif
3035 prefetch(curr);
3036 prefetch(&curr->exec_start);
3037}
3038
c5f8d995
HS
3039/*
3040 * Return accounted runtime for the task.
3041 * In case the task is currently running, return the runtime plus current's
3042 * pending runtime that have not been accounted yet.
3043 */
3044unsigned long long task_sched_runtime(struct task_struct *p)
3045{
eb580751 3046 struct rq_flags rf;
c5f8d995 3047 struct rq *rq;
6e998916 3048 u64 ns;
c5f8d995 3049
911b2898
PZ
3050#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3051 /*
3052 * 64-bit doesn't need locks to atomically read a 64bit value.
3053 * So we have a optimization chance when the task's delta_exec is 0.
3054 * Reading ->on_cpu is racy, but this is ok.
3055 *
d1ccc66d
IM
3056 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3057 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3058 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3059 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3060 * been accounted, so we're correct here as well.
911b2898 3061 */
da0c1e65 3062 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3063 return p->se.sum_exec_runtime;
3064#endif
3065
eb580751 3066 rq = task_rq_lock(p, &rf);
6e998916
SG
3067 /*
3068 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3069 * project cycles that may never be accounted to this
3070 * thread, breaking clock_gettime().
3071 */
3072 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3073 prefetch_curr_exec_start(p);
6e998916
SG
3074 update_rq_clock(rq);
3075 p->sched_class->update_curr(rq);
3076 }
3077 ns = p->se.sum_exec_runtime;
eb580751 3078 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3079
3080 return ns;
3081}
48f24c4d 3082
7835b98b
CL
3083/*
3084 * This function gets called by the timer code, with HZ frequency.
3085 * We call it with interrupts disabled.
7835b98b
CL
3086 */
3087void scheduler_tick(void)
3088{
7835b98b
CL
3089 int cpu = smp_processor_id();
3090 struct rq *rq = cpu_rq(cpu);
dd41f596 3091 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3092
3093 sched_clock_tick();
dd41f596 3094
05fa785c 3095 raw_spin_lock(&rq->lock);
3e51f33f 3096 update_rq_clock(rq);
fa85ae24 3097 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3098 cpu_load_update_active(rq);
3289bdb4 3099 calc_global_load_tick(rq);
05fa785c 3100 raw_spin_unlock(&rq->lock);
7835b98b 3101
e9d2b064 3102 perf_event_task_tick();
e220d2dc 3103
e418e1c2 3104#ifdef CONFIG_SMP
6eb57e0d 3105 rq->idle_balance = idle_cpu(cpu);
7caff66f 3106 trigger_load_balance(rq);
e418e1c2 3107#endif
265f22a9 3108 rq_last_tick_reset(rq);
1da177e4
LT
3109}
3110
265f22a9
FW
3111#ifdef CONFIG_NO_HZ_FULL
3112/**
3113 * scheduler_tick_max_deferment
3114 *
3115 * Keep at least one tick per second when a single
3116 * active task is running because the scheduler doesn't
3117 * yet completely support full dynticks environment.
3118 *
3119 * This makes sure that uptime, CFS vruntime, load
3120 * balancing, etc... continue to move forward, even
3121 * with a very low granularity.
e69f6186
YB
3122 *
3123 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3124 */
3125u64 scheduler_tick_max_deferment(void)
3126{
3127 struct rq *rq = this_rq();
316c1608 3128 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3129
3130 next = rq->last_sched_tick + HZ;
3131
3132 if (time_before_eq(next, now))
3133 return 0;
3134
8fe8ff09 3135 return jiffies_to_nsecs(next - now);
1da177e4 3136}
265f22a9 3137#endif
1da177e4 3138
7e49fcce
SR
3139#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3140 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3141/*
3142 * If the value passed in is equal to the current preempt count
3143 * then we just disabled preemption. Start timing the latency.
3144 */
3145static inline void preempt_latency_start(int val)
3146{
3147 if (preempt_count() == val) {
3148 unsigned long ip = get_lock_parent_ip();
3149#ifdef CONFIG_DEBUG_PREEMPT
3150 current->preempt_disable_ip = ip;
3151#endif
3152 trace_preempt_off(CALLER_ADDR0, ip);
3153 }
3154}
7e49fcce 3155
edafe3a5 3156void preempt_count_add(int val)
1da177e4 3157{
6cd8a4bb 3158#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3159 /*
3160 * Underflow?
3161 */
9a11b49a
IM
3162 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3163 return;
6cd8a4bb 3164#endif
bdb43806 3165 __preempt_count_add(val);
6cd8a4bb 3166#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3167 /*
3168 * Spinlock count overflowing soon?
3169 */
33859f7f
MOS
3170 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3171 PREEMPT_MASK - 10);
6cd8a4bb 3172#endif
47252cfb 3173 preempt_latency_start(val);
1da177e4 3174}
bdb43806 3175EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3176NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3177
47252cfb
SR
3178/*
3179 * If the value passed in equals to the current preempt count
3180 * then we just enabled preemption. Stop timing the latency.
3181 */
3182static inline void preempt_latency_stop(int val)
3183{
3184 if (preempt_count() == val)
3185 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3186}
3187
edafe3a5 3188void preempt_count_sub(int val)
1da177e4 3189{
6cd8a4bb 3190#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3191 /*
3192 * Underflow?
3193 */
01e3eb82 3194 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3195 return;
1da177e4
LT
3196 /*
3197 * Is the spinlock portion underflowing?
3198 */
9a11b49a
IM
3199 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3200 !(preempt_count() & PREEMPT_MASK)))
3201 return;
6cd8a4bb 3202#endif
9a11b49a 3203
47252cfb 3204 preempt_latency_stop(val);
bdb43806 3205 __preempt_count_sub(val);
1da177e4 3206}
bdb43806 3207EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3208NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3209
47252cfb
SR
3210#else
3211static inline void preempt_latency_start(int val) { }
3212static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3213#endif
3214
59ddbcb2
IM
3215static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3216{
3217#ifdef CONFIG_DEBUG_PREEMPT
3218 return p->preempt_disable_ip;
3219#else
3220 return 0;
3221#endif
3222}
3223
1da177e4 3224/*
dd41f596 3225 * Print scheduling while atomic bug:
1da177e4 3226 */
dd41f596 3227static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3228{
d1c6d149
VN
3229 /* Save this before calling printk(), since that will clobber it */
3230 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3231
664dfa65
DJ
3232 if (oops_in_progress)
3233 return;
3234
3df0fc5b
PZ
3235 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3236 prev->comm, prev->pid, preempt_count());
838225b4 3237
dd41f596 3238 debug_show_held_locks(prev);
e21f5b15 3239 print_modules();
dd41f596
IM
3240 if (irqs_disabled())
3241 print_irqtrace_events(prev);
d1c6d149
VN
3242 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3243 && in_atomic_preempt_off()) {
8f47b187 3244 pr_err("Preemption disabled at:");
d1c6d149 3245 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3246 pr_cont("\n");
3247 }
748c7201
DBO
3248 if (panic_on_warn)
3249 panic("scheduling while atomic\n");
3250
6135fc1e 3251 dump_stack();
373d4d09 3252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3253}
1da177e4 3254
dd41f596
IM
3255/*
3256 * Various schedule()-time debugging checks and statistics:
3257 */
3258static inline void schedule_debug(struct task_struct *prev)
3259{
0d9e2632 3260#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3261 if (task_stack_end_corrupted(prev))
3262 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3263#endif
b99def8b 3264
1dc0fffc 3265 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3266 __schedule_bug(prev);
1dc0fffc
PZ
3267 preempt_count_set(PREEMPT_DISABLED);
3268 }
b3fbab05 3269 rcu_sleep_check();
dd41f596 3270
1da177e4
LT
3271 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3272
ae92882e 3273 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3274}
3275
3276/*
3277 * Pick up the highest-prio task:
3278 */
3279static inline struct task_struct *
d8ac8971 3280pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3281{
49ee5768 3282 const struct sched_class *class;
dd41f596 3283 struct task_struct *p;
1da177e4
LT
3284
3285 /*
dd41f596
IM
3286 * Optimization: we know that if all tasks are in
3287 * the fair class we can call that function directly:
1da177e4 3288 */
49ee5768 3289 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3290 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3291 if (unlikely(p == RETRY_TASK))
3292 goto again;
3293
d1ccc66d 3294 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3295 if (unlikely(!p))
d8ac8971 3296 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3297
3298 return p;
1da177e4
LT
3299 }
3300
37e117c0 3301again:
34f971f6 3302 for_each_class(class) {
d8ac8971 3303 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3304 if (p) {
3305 if (unlikely(p == RETRY_TASK))
3306 goto again;
dd41f596 3307 return p;
37e117c0 3308 }
dd41f596 3309 }
34f971f6 3310
d1ccc66d
IM
3311 /* The idle class should always have a runnable task: */
3312 BUG();
dd41f596 3313}
1da177e4 3314
dd41f596 3315/*
c259e01a 3316 * __schedule() is the main scheduler function.
edde96ea
PE
3317 *
3318 * The main means of driving the scheduler and thus entering this function are:
3319 *
3320 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3321 *
3322 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3323 * paths. For example, see arch/x86/entry_64.S.
3324 *
3325 * To drive preemption between tasks, the scheduler sets the flag in timer
3326 * interrupt handler scheduler_tick().
3327 *
3328 * 3. Wakeups don't really cause entry into schedule(). They add a
3329 * task to the run-queue and that's it.
3330 *
3331 * Now, if the new task added to the run-queue preempts the current
3332 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3333 * called on the nearest possible occasion:
3334 *
3335 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3336 *
3337 * - in syscall or exception context, at the next outmost
3338 * preempt_enable(). (this might be as soon as the wake_up()'s
3339 * spin_unlock()!)
3340 *
3341 * - in IRQ context, return from interrupt-handler to
3342 * preemptible context
3343 *
3344 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3345 * then at the next:
3346 *
3347 * - cond_resched() call
3348 * - explicit schedule() call
3349 * - return from syscall or exception to user-space
3350 * - return from interrupt-handler to user-space
bfd9b2b5 3351 *
b30f0e3f 3352 * WARNING: must be called with preemption disabled!
dd41f596 3353 */
499d7955 3354static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3355{
3356 struct task_struct *prev, *next;
67ca7bde 3357 unsigned long *switch_count;
d8ac8971 3358 struct rq_flags rf;
dd41f596 3359 struct rq *rq;
31656519 3360 int cpu;
dd41f596 3361
dd41f596
IM
3362 cpu = smp_processor_id();
3363 rq = cpu_rq(cpu);
dd41f596 3364 prev = rq->curr;
dd41f596 3365
dd41f596 3366 schedule_debug(prev);
1da177e4 3367
31656519 3368 if (sched_feat(HRTICK))
f333fdc9 3369 hrtick_clear(rq);
8f4d37ec 3370
46a5d164
PM
3371 local_irq_disable();
3372 rcu_note_context_switch();
3373
e0acd0a6
ON
3374 /*
3375 * Make sure that signal_pending_state()->signal_pending() below
3376 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3377 * done by the caller to avoid the race with signal_wake_up().
3378 */
3379 smp_mb__before_spinlock();
46a5d164 3380 raw_spin_lock(&rq->lock);
d8ac8971 3381 rq_pin_lock(rq, &rf);
1da177e4 3382
d1ccc66d
IM
3383 /* Promote REQ to ACT */
3384 rq->clock_update_flags <<= 1;
9edfbfed 3385
246d86b5 3386 switch_count = &prev->nivcsw;
fc13aeba 3387 if (!preempt && prev->state) {
21aa9af0 3388 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3389 prev->state = TASK_RUNNING;
21aa9af0 3390 } else {
2acca55e
PZ
3391 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3392 prev->on_rq = 0;
3393
e33a9bba
TH
3394 if (prev->in_iowait) {
3395 atomic_inc(&rq->nr_iowait);
3396 delayacct_blkio_start();
3397 }
3398
21aa9af0 3399 /*
2acca55e
PZ
3400 * If a worker went to sleep, notify and ask workqueue
3401 * whether it wants to wake up a task to maintain
3402 * concurrency.
21aa9af0
TH
3403 */
3404 if (prev->flags & PF_WQ_WORKER) {
3405 struct task_struct *to_wakeup;
3406
9b7f6597 3407 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3408 if (to_wakeup)
d8ac8971 3409 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3410 }
21aa9af0 3411 }
dd41f596 3412 switch_count = &prev->nvcsw;
1da177e4
LT
3413 }
3414
9edfbfed 3415 if (task_on_rq_queued(prev))
606dba2e
PZ
3416 update_rq_clock(rq);
3417
d8ac8971 3418 next = pick_next_task(rq, prev, &rf);
f26f9aff 3419 clear_tsk_need_resched(prev);
f27dde8d 3420 clear_preempt_need_resched();
1da177e4 3421
1da177e4 3422 if (likely(prev != next)) {
1da177e4
LT
3423 rq->nr_switches++;
3424 rq->curr = next;
3425 ++*switch_count;
3426
c73464b1 3427 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3428
3429 /* Also unlocks the rq: */
3430 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3431 } else {
cb42c9a3 3432 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
d8ac8971 3433 rq_unpin_lock(rq, &rf);
05fa785c 3434 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3435 }
1da177e4 3436
e3fca9e7 3437 balance_callback(rq);
1da177e4 3438}
c259e01a 3439
9af6528e
PZ
3440void __noreturn do_task_dead(void)
3441{
3442 /*
3443 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3444 * when the following two conditions become true.
3445 * - There is race condition of mmap_sem (It is acquired by
3446 * exit_mm()), and
3447 * - SMI occurs before setting TASK_RUNINNG.
3448 * (or hypervisor of virtual machine switches to other guest)
3449 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3450 *
3451 * To avoid it, we have to wait for releasing tsk->pi_lock which
3452 * is held by try_to_wake_up()
3453 */
3454 smp_mb();
3455 raw_spin_unlock_wait(&current->pi_lock);
3456
d1ccc66d 3457 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3458 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3459
3460 /* Tell freezer to ignore us: */
3461 current->flags |= PF_NOFREEZE;
3462
9af6528e
PZ
3463 __schedule(false);
3464 BUG();
d1ccc66d
IM
3465
3466 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3467 for (;;)
d1ccc66d 3468 cpu_relax();
9af6528e
PZ
3469}
3470
9c40cef2
TG
3471static inline void sched_submit_work(struct task_struct *tsk)
3472{
3c7d5184 3473 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3474 return;
3475 /*
3476 * If we are going to sleep and we have plugged IO queued,
3477 * make sure to submit it to avoid deadlocks.
3478 */
3479 if (blk_needs_flush_plug(tsk))
3480 blk_schedule_flush_plug(tsk);
3481}
3482
722a9f92 3483asmlinkage __visible void __sched schedule(void)
c259e01a 3484{
9c40cef2
TG
3485 struct task_struct *tsk = current;
3486
3487 sched_submit_work(tsk);
bfd9b2b5 3488 do {
b30f0e3f 3489 preempt_disable();
fc13aeba 3490 __schedule(false);
b30f0e3f 3491 sched_preempt_enable_no_resched();
bfd9b2b5 3492 } while (need_resched());
c259e01a 3493}
1da177e4
LT
3494EXPORT_SYMBOL(schedule);
3495
91d1aa43 3496#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3497asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3498{
3499 /*
3500 * If we come here after a random call to set_need_resched(),
3501 * or we have been woken up remotely but the IPI has not yet arrived,
3502 * we haven't yet exited the RCU idle mode. Do it here manually until
3503 * we find a better solution.
7cc78f8f
AL
3504 *
3505 * NB: There are buggy callers of this function. Ideally we
c467ea76 3506 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3507 * too frequently to make sense yet.
20ab65e3 3508 */
7cc78f8f 3509 enum ctx_state prev_state = exception_enter();
20ab65e3 3510 schedule();
7cc78f8f 3511 exception_exit(prev_state);
20ab65e3
FW
3512}
3513#endif
3514
c5491ea7
TG
3515/**
3516 * schedule_preempt_disabled - called with preemption disabled
3517 *
3518 * Returns with preemption disabled. Note: preempt_count must be 1
3519 */
3520void __sched schedule_preempt_disabled(void)
3521{
ba74c144 3522 sched_preempt_enable_no_resched();
c5491ea7
TG
3523 schedule();
3524 preempt_disable();
3525}
3526
06b1f808 3527static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3528{
3529 do {
47252cfb
SR
3530 /*
3531 * Because the function tracer can trace preempt_count_sub()
3532 * and it also uses preempt_enable/disable_notrace(), if
3533 * NEED_RESCHED is set, the preempt_enable_notrace() called
3534 * by the function tracer will call this function again and
3535 * cause infinite recursion.
3536 *
3537 * Preemption must be disabled here before the function
3538 * tracer can trace. Break up preempt_disable() into two
3539 * calls. One to disable preemption without fear of being
3540 * traced. The other to still record the preemption latency,
3541 * which can also be traced by the function tracer.
3542 */
499d7955 3543 preempt_disable_notrace();
47252cfb 3544 preempt_latency_start(1);
fc13aeba 3545 __schedule(true);
47252cfb 3546 preempt_latency_stop(1);
499d7955 3547 preempt_enable_no_resched_notrace();
a18b5d01
FW
3548
3549 /*
3550 * Check again in case we missed a preemption opportunity
3551 * between schedule and now.
3552 */
a18b5d01
FW
3553 } while (need_resched());
3554}
3555
1da177e4
LT
3556#ifdef CONFIG_PREEMPT
3557/*
2ed6e34f 3558 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3559 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3560 * occur there and call schedule directly.
3561 */
722a9f92 3562asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3563{
1da177e4
LT
3564 /*
3565 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3566 * we do not want to preempt the current task. Just return..
1da177e4 3567 */
fbb00b56 3568 if (likely(!preemptible()))
1da177e4
LT
3569 return;
3570
a18b5d01 3571 preempt_schedule_common();
1da177e4 3572}
376e2424 3573NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3574EXPORT_SYMBOL(preempt_schedule);
009f60e2 3575
009f60e2 3576/**
4eaca0a8 3577 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3578 *
3579 * The tracing infrastructure uses preempt_enable_notrace to prevent
3580 * recursion and tracing preempt enabling caused by the tracing
3581 * infrastructure itself. But as tracing can happen in areas coming
3582 * from userspace or just about to enter userspace, a preempt enable
3583 * can occur before user_exit() is called. This will cause the scheduler
3584 * to be called when the system is still in usermode.
3585 *
3586 * To prevent this, the preempt_enable_notrace will use this function
3587 * instead of preempt_schedule() to exit user context if needed before
3588 * calling the scheduler.
3589 */
4eaca0a8 3590asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3591{
3592 enum ctx_state prev_ctx;
3593
3594 if (likely(!preemptible()))
3595 return;
3596
3597 do {
47252cfb
SR
3598 /*
3599 * Because the function tracer can trace preempt_count_sub()
3600 * and it also uses preempt_enable/disable_notrace(), if
3601 * NEED_RESCHED is set, the preempt_enable_notrace() called
3602 * by the function tracer will call this function again and
3603 * cause infinite recursion.
3604 *
3605 * Preemption must be disabled here before the function
3606 * tracer can trace. Break up preempt_disable() into two
3607 * calls. One to disable preemption without fear of being
3608 * traced. The other to still record the preemption latency,
3609 * which can also be traced by the function tracer.
3610 */
3d8f74dd 3611 preempt_disable_notrace();
47252cfb 3612 preempt_latency_start(1);
009f60e2
ON
3613 /*
3614 * Needs preempt disabled in case user_exit() is traced
3615 * and the tracer calls preempt_enable_notrace() causing
3616 * an infinite recursion.
3617 */
3618 prev_ctx = exception_enter();
fc13aeba 3619 __schedule(true);
009f60e2
ON
3620 exception_exit(prev_ctx);
3621
47252cfb 3622 preempt_latency_stop(1);
3d8f74dd 3623 preempt_enable_no_resched_notrace();
009f60e2
ON
3624 } while (need_resched());
3625}
4eaca0a8 3626EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3627
32e475d7 3628#endif /* CONFIG_PREEMPT */
1da177e4
LT
3629
3630/*
2ed6e34f 3631 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3632 * off of irq context.
3633 * Note, that this is called and return with irqs disabled. This will
3634 * protect us against recursive calling from irq.
3635 */
722a9f92 3636asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3637{
b22366cd 3638 enum ctx_state prev_state;
6478d880 3639
2ed6e34f 3640 /* Catch callers which need to be fixed */
f27dde8d 3641 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3642
b22366cd
FW
3643 prev_state = exception_enter();
3644
3a5c359a 3645 do {
3d8f74dd 3646 preempt_disable();
3a5c359a 3647 local_irq_enable();
fc13aeba 3648 __schedule(true);
3a5c359a 3649 local_irq_disable();
3d8f74dd 3650 sched_preempt_enable_no_resched();
5ed0cec0 3651 } while (need_resched());
b22366cd
FW
3652
3653 exception_exit(prev_state);
1da177e4
LT
3654}
3655
63859d4f 3656int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3657 void *key)
1da177e4 3658{
63859d4f 3659 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3660}
1da177e4
LT
3661EXPORT_SYMBOL(default_wake_function);
3662
b29739f9
IM
3663#ifdef CONFIG_RT_MUTEXES
3664
3665/*
3666 * rt_mutex_setprio - set the current priority of a task
3667 * @p: task
3668 * @prio: prio value (kernel-internal form)
3669 *
3670 * This function changes the 'effective' priority of a task. It does
3671 * not touch ->normal_prio like __setscheduler().
3672 *
c365c292
TG
3673 * Used by the rt_mutex code to implement priority inheritance
3674 * logic. Call site only calls if the priority of the task changed.
b29739f9 3675 */
36c8b586 3676void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3677{
ff77e468 3678 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3679 const struct sched_class *prev_class;
eb580751
PZ
3680 struct rq_flags rf;
3681 struct rq *rq;
b29739f9 3682
aab03e05 3683 BUG_ON(prio > MAX_PRIO);
b29739f9 3684
eb580751 3685 rq = __task_rq_lock(p, &rf);
80f5c1b8 3686 update_rq_clock(rq);
b29739f9 3687
1c4dd99b
TG
3688 /*
3689 * Idle task boosting is a nono in general. There is one
3690 * exception, when PREEMPT_RT and NOHZ is active:
3691 *
3692 * The idle task calls get_next_timer_interrupt() and holds
3693 * the timer wheel base->lock on the CPU and another CPU wants
3694 * to access the timer (probably to cancel it). We can safely
3695 * ignore the boosting request, as the idle CPU runs this code
3696 * with interrupts disabled and will complete the lock
3697 * protected section without being interrupted. So there is no
3698 * real need to boost.
3699 */
3700 if (unlikely(p == rq->idle)) {
3701 WARN_ON(p != rq->curr);
3702 WARN_ON(p->pi_blocked_on);
3703 goto out_unlock;
3704 }
3705
a8027073 3706 trace_sched_pi_setprio(p, prio);
d5f9f942 3707 oldprio = p->prio;
ff77e468
PZ
3708
3709 if (oldprio == prio)
3710 queue_flag &= ~DEQUEUE_MOVE;
3711
83ab0aa0 3712 prev_class = p->sched_class;
da0c1e65 3713 queued = task_on_rq_queued(p);
051a1d1a 3714 running = task_current(rq, p);
da0c1e65 3715 if (queued)
ff77e468 3716 dequeue_task(rq, p, queue_flag);
0e1f3483 3717 if (running)
f3cd1c4e 3718 put_prev_task(rq, p);
dd41f596 3719
2d3d891d
DF
3720 /*
3721 * Boosting condition are:
3722 * 1. -rt task is running and holds mutex A
3723 * --> -dl task blocks on mutex A
3724 *
3725 * 2. -dl task is running and holds mutex A
3726 * --> -dl task blocks on mutex A and could preempt the
3727 * running task
3728 */
3729 if (dl_prio(prio)) {
466af29b
ON
3730 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3731 if (!dl_prio(p->normal_prio) ||
3732 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3733 p->dl.dl_boosted = 1;
ff77e468 3734 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3735 } else
3736 p->dl.dl_boosted = 0;
aab03e05 3737 p->sched_class = &dl_sched_class;
2d3d891d
DF
3738 } else if (rt_prio(prio)) {
3739 if (dl_prio(oldprio))
3740 p->dl.dl_boosted = 0;
3741 if (oldprio < prio)
ff77e468 3742 queue_flag |= ENQUEUE_HEAD;
dd41f596 3743 p->sched_class = &rt_sched_class;
2d3d891d
DF
3744 } else {
3745 if (dl_prio(oldprio))
3746 p->dl.dl_boosted = 0;
746db944
BS
3747 if (rt_prio(oldprio))
3748 p->rt.timeout = 0;
dd41f596 3749 p->sched_class = &fair_sched_class;
2d3d891d 3750 }
dd41f596 3751
b29739f9
IM
3752 p->prio = prio;
3753
da0c1e65 3754 if (queued)
ff77e468 3755 enqueue_task(rq, p, queue_flag);
a399d233 3756 if (running)
b2bf6c31 3757 set_curr_task(rq, p);
cb469845 3758
da7a735e 3759 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3760out_unlock:
d1ccc66d
IM
3761 /* Avoid rq from going away on us: */
3762 preempt_disable();
eb580751 3763 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3764
3765 balance_callback(rq);
3766 preempt_enable();
b29739f9 3767}
b29739f9 3768#endif
d50dde5a 3769
36c8b586 3770void set_user_nice(struct task_struct *p, long nice)
1da177e4 3771{
49bd21ef
PZ
3772 bool queued, running;
3773 int old_prio, delta;
eb580751 3774 struct rq_flags rf;
70b97a7f 3775 struct rq *rq;
1da177e4 3776
75e45d51 3777 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3778 return;
3779 /*
3780 * We have to be careful, if called from sys_setpriority(),
3781 * the task might be in the middle of scheduling on another CPU.
3782 */
eb580751 3783 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3784 update_rq_clock(rq);
3785
1da177e4
LT
3786 /*
3787 * The RT priorities are set via sched_setscheduler(), but we still
3788 * allow the 'normal' nice value to be set - but as expected
3789 * it wont have any effect on scheduling until the task is
aab03e05 3790 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3791 */
aab03e05 3792 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3793 p->static_prio = NICE_TO_PRIO(nice);
3794 goto out_unlock;
3795 }
da0c1e65 3796 queued = task_on_rq_queued(p);
49bd21ef 3797 running = task_current(rq, p);
da0c1e65 3798 if (queued)
1de64443 3799 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3800 if (running)
3801 put_prev_task(rq, p);
1da177e4 3802
1da177e4 3803 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3804 set_load_weight(p);
b29739f9
IM
3805 old_prio = p->prio;
3806 p->prio = effective_prio(p);
3807 delta = p->prio - old_prio;
1da177e4 3808
da0c1e65 3809 if (queued) {
1de64443 3810 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3811 /*
d5f9f942
AM
3812 * If the task increased its priority or is running and
3813 * lowered its priority, then reschedule its CPU:
1da177e4 3814 */
d5f9f942 3815 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3816 resched_curr(rq);
1da177e4 3817 }
49bd21ef
PZ
3818 if (running)
3819 set_curr_task(rq, p);
1da177e4 3820out_unlock:
eb580751 3821 task_rq_unlock(rq, p, &rf);
1da177e4 3822}
1da177e4
LT
3823EXPORT_SYMBOL(set_user_nice);
3824
e43379f1
MM
3825/*
3826 * can_nice - check if a task can reduce its nice value
3827 * @p: task
3828 * @nice: nice value
3829 */
36c8b586 3830int can_nice(const struct task_struct *p, const int nice)
e43379f1 3831{
d1ccc66d 3832 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3833 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3834
78d7d407 3835 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3836 capable(CAP_SYS_NICE));
3837}
3838
1da177e4
LT
3839#ifdef __ARCH_WANT_SYS_NICE
3840
3841/*
3842 * sys_nice - change the priority of the current process.
3843 * @increment: priority increment
3844 *
3845 * sys_setpriority is a more generic, but much slower function that
3846 * does similar things.
3847 */
5add95d4 3848SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3849{
48f24c4d 3850 long nice, retval;
1da177e4
LT
3851
3852 /*
3853 * Setpriority might change our priority at the same moment.
3854 * We don't have to worry. Conceptually one call occurs first
3855 * and we have a single winner.
3856 */
a9467fa3 3857 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3858 nice = task_nice(current) + increment;
1da177e4 3859
a9467fa3 3860 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3861 if (increment < 0 && !can_nice(current, nice))
3862 return -EPERM;
3863
1da177e4
LT
3864 retval = security_task_setnice(current, nice);
3865 if (retval)
3866 return retval;
3867
3868 set_user_nice(current, nice);
3869 return 0;
3870}
3871
3872#endif
3873
3874/**
3875 * task_prio - return the priority value of a given task.
3876 * @p: the task in question.
3877 *
e69f6186 3878 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3879 * RT tasks are offset by -200. Normal tasks are centered
3880 * around 0, value goes from -16 to +15.
3881 */
36c8b586 3882int task_prio(const struct task_struct *p)
1da177e4
LT
3883{
3884 return p->prio - MAX_RT_PRIO;
3885}
3886
1da177e4 3887/**
d1ccc66d 3888 * idle_cpu - is a given CPU idle currently?
1da177e4 3889 * @cpu: the processor in question.
e69f6186
YB
3890 *
3891 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3892 */
3893int idle_cpu(int cpu)
3894{
908a3283
TG
3895 struct rq *rq = cpu_rq(cpu);
3896
3897 if (rq->curr != rq->idle)
3898 return 0;
3899
3900 if (rq->nr_running)
3901 return 0;
3902
3903#ifdef CONFIG_SMP
3904 if (!llist_empty(&rq->wake_list))
3905 return 0;
3906#endif
3907
3908 return 1;
1da177e4
LT
3909}
3910
1da177e4 3911/**
d1ccc66d 3912 * idle_task - return the idle task for a given CPU.
1da177e4 3913 * @cpu: the processor in question.
e69f6186 3914 *
d1ccc66d 3915 * Return: The idle task for the CPU @cpu.
1da177e4 3916 */
36c8b586 3917struct task_struct *idle_task(int cpu)
1da177e4
LT
3918{
3919 return cpu_rq(cpu)->idle;
3920}
3921
3922/**
3923 * find_process_by_pid - find a process with a matching PID value.
3924 * @pid: the pid in question.
e69f6186
YB
3925 *
3926 * The task of @pid, if found. %NULL otherwise.
1da177e4 3927 */
a9957449 3928static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3929{
228ebcbe 3930 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3931}
3932
aab03e05
DF
3933/*
3934 * This function initializes the sched_dl_entity of a newly becoming
3935 * SCHED_DEADLINE task.
3936 *
3937 * Only the static values are considered here, the actual runtime and the
3938 * absolute deadline will be properly calculated when the task is enqueued
3939 * for the first time with its new policy.
3940 */
3941static void
3942__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3943{
3944 struct sched_dl_entity *dl_se = &p->dl;
3945
aab03e05
DF
3946 dl_se->dl_runtime = attr->sched_runtime;
3947 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3948 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3949 dl_se->flags = attr->sched_flags;
332ac17e 3950 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3951
3952 /*
3953 * Changing the parameters of a task is 'tricky' and we're not doing
3954 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3955 *
3956 * What we SHOULD do is delay the bandwidth release until the 0-lag
3957 * point. This would include retaining the task_struct until that time
3958 * and change dl_overflow() to not immediately decrement the current
3959 * amount.
3960 *
3961 * Instead we retain the current runtime/deadline and let the new
3962 * parameters take effect after the current reservation period lapses.
3963 * This is safe (albeit pessimistic) because the 0-lag point is always
3964 * before the current scheduling deadline.
3965 *
3966 * We can still have temporary overloads because we do not delay the
3967 * change in bandwidth until that time; so admission control is
3968 * not on the safe side. It does however guarantee tasks will never
3969 * consume more than promised.
3970 */
aab03e05
DF
3971}
3972
c13db6b1
SR
3973/*
3974 * sched_setparam() passes in -1 for its policy, to let the functions
3975 * it calls know not to change it.
3976 */
3977#define SETPARAM_POLICY -1
3978
c365c292
TG
3979static void __setscheduler_params(struct task_struct *p,
3980 const struct sched_attr *attr)
1da177e4 3981{
d50dde5a
DF
3982 int policy = attr->sched_policy;
3983
c13db6b1 3984 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3985 policy = p->policy;
3986
1da177e4 3987 p->policy = policy;
d50dde5a 3988
aab03e05
DF
3989 if (dl_policy(policy))
3990 __setparam_dl(p, attr);
39fd8fd2 3991 else if (fair_policy(policy))
d50dde5a
DF
3992 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3993
39fd8fd2
PZ
3994 /*
3995 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3996 * !rt_policy. Always setting this ensures that things like
3997 * getparam()/getattr() don't report silly values for !rt tasks.
3998 */
3999 p->rt_priority = attr->sched_priority;
383afd09 4000 p->normal_prio = normal_prio(p);
c365c292
TG
4001 set_load_weight(p);
4002}
39fd8fd2 4003
c365c292
TG
4004/* Actually do priority change: must hold pi & rq lock. */
4005static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4006 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4007{
4008 __setscheduler_params(p, attr);
d50dde5a 4009
383afd09 4010 /*
0782e63b
TG
4011 * Keep a potential priority boosting if called from
4012 * sched_setscheduler().
383afd09 4013 */
0782e63b
TG
4014 if (keep_boost)
4015 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4016 else
4017 p->prio = normal_prio(p);
383afd09 4018
aab03e05
DF
4019 if (dl_prio(p->prio))
4020 p->sched_class = &dl_sched_class;
4021 else if (rt_prio(p->prio))
ffd44db5
PZ
4022 p->sched_class = &rt_sched_class;
4023 else
4024 p->sched_class = &fair_sched_class;
1da177e4 4025}
aab03e05
DF
4026
4027static void
4028__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4029{
4030 struct sched_dl_entity *dl_se = &p->dl;
4031
4032 attr->sched_priority = p->rt_priority;
4033 attr->sched_runtime = dl_se->dl_runtime;
4034 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4035 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4036 attr->sched_flags = dl_se->flags;
4037}
4038
4039/*
4040 * This function validates the new parameters of a -deadline task.
4041 * We ask for the deadline not being zero, and greater or equal
755378a4 4042 * than the runtime, as well as the period of being zero or
332ac17e 4043 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4044 * user parameters are above the internal resolution of 1us (we
4045 * check sched_runtime only since it is always the smaller one) and
4046 * below 2^63 ns (we have to check both sched_deadline and
4047 * sched_period, as the latter can be zero).
aab03e05
DF
4048 */
4049static bool
4050__checkparam_dl(const struct sched_attr *attr)
4051{
b0827819
JL
4052 /* deadline != 0 */
4053 if (attr->sched_deadline == 0)
4054 return false;
4055
4056 /*
4057 * Since we truncate DL_SCALE bits, make sure we're at least
4058 * that big.
4059 */
4060 if (attr->sched_runtime < (1ULL << DL_SCALE))
4061 return false;
4062
4063 /*
4064 * Since we use the MSB for wrap-around and sign issues, make
4065 * sure it's not set (mind that period can be equal to zero).
4066 */
4067 if (attr->sched_deadline & (1ULL << 63) ||
4068 attr->sched_period & (1ULL << 63))
4069 return false;
4070
4071 /* runtime <= deadline <= period (if period != 0) */
4072 if ((attr->sched_period != 0 &&
4073 attr->sched_period < attr->sched_deadline) ||
4074 attr->sched_deadline < attr->sched_runtime)
4075 return false;
4076
4077 return true;
aab03e05
DF
4078}
4079
c69e8d9c 4080/*
d1ccc66d 4081 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4082 */
4083static bool check_same_owner(struct task_struct *p)
4084{
4085 const struct cred *cred = current_cred(), *pcred;
4086 bool match;
4087
4088 rcu_read_lock();
4089 pcred = __task_cred(p);
9c806aa0
EB
4090 match = (uid_eq(cred->euid, pcred->euid) ||
4091 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4092 rcu_read_unlock();
4093 return match;
4094}
4095
d1ccc66d 4096static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4097{
4098 struct sched_dl_entity *dl_se = &p->dl;
4099
4100 if (dl_se->dl_runtime != attr->sched_runtime ||
4101 dl_se->dl_deadline != attr->sched_deadline ||
4102 dl_se->dl_period != attr->sched_period ||
4103 dl_se->flags != attr->sched_flags)
4104 return true;
4105
4106 return false;
4107}
4108
d50dde5a
DF
4109static int __sched_setscheduler(struct task_struct *p,
4110 const struct sched_attr *attr,
dbc7f069 4111 bool user, bool pi)
1da177e4 4112{
383afd09
SR
4113 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4114 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4115 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4116 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4117 const struct sched_class *prev_class;
eb580751 4118 struct rq_flags rf;
ca94c442 4119 int reset_on_fork;
ff77e468 4120 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4121 struct rq *rq;
1da177e4 4122
d1ccc66d 4123 /* May grab non-irq protected spin_locks: */
66e5393a 4124 BUG_ON(in_interrupt());
1da177e4 4125recheck:
d1ccc66d 4126 /* Double check policy once rq lock held: */
ca94c442
LP
4127 if (policy < 0) {
4128 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4129 policy = oldpolicy = p->policy;
ca94c442 4130 } else {
7479f3c9 4131 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4132
20f9cd2a 4133 if (!valid_policy(policy))
ca94c442
LP
4134 return -EINVAL;
4135 }
4136
7479f3c9
PZ
4137 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4138 return -EINVAL;
4139
1da177e4
LT
4140 /*
4141 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4142 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4143 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4144 */
0bb040a4 4145 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4146 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4147 return -EINVAL;
aab03e05
DF
4148 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4149 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4150 return -EINVAL;
4151
37e4ab3f
OC
4152 /*
4153 * Allow unprivileged RT tasks to decrease priority:
4154 */
961ccddd 4155 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4156 if (fair_policy(policy)) {
d0ea0268 4157 if (attr->sched_nice < task_nice(p) &&
eaad4513 4158 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4159 return -EPERM;
4160 }
4161
e05606d3 4162 if (rt_policy(policy)) {
a44702e8
ON
4163 unsigned long rlim_rtprio =
4164 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4165
d1ccc66d 4166 /* Can't set/change the rt policy: */
8dc3e909
ON
4167 if (policy != p->policy && !rlim_rtprio)
4168 return -EPERM;
4169
d1ccc66d 4170 /* Can't increase priority: */
d50dde5a
DF
4171 if (attr->sched_priority > p->rt_priority &&
4172 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4173 return -EPERM;
4174 }
c02aa73b 4175
d44753b8
JL
4176 /*
4177 * Can't set/change SCHED_DEADLINE policy at all for now
4178 * (safest behavior); in the future we would like to allow
4179 * unprivileged DL tasks to increase their relative deadline
4180 * or reduce their runtime (both ways reducing utilization)
4181 */
4182 if (dl_policy(policy))
4183 return -EPERM;
4184
dd41f596 4185 /*
c02aa73b
DH
4186 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4187 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4188 */
20f9cd2a 4189 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4190 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4191 return -EPERM;
4192 }
5fe1d75f 4193
d1ccc66d 4194 /* Can't change other user's priorities: */
c69e8d9c 4195 if (!check_same_owner(p))
37e4ab3f 4196 return -EPERM;
ca94c442 4197
d1ccc66d 4198 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4199 if (p->sched_reset_on_fork && !reset_on_fork)
4200 return -EPERM;
37e4ab3f 4201 }
1da177e4 4202
725aad24 4203 if (user) {
b0ae1981 4204 retval = security_task_setscheduler(p);
725aad24
JF
4205 if (retval)
4206 return retval;
4207 }
4208
b29739f9 4209 /*
d1ccc66d 4210 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4211 * changing the priority of the task:
0122ec5b 4212 *
25985edc 4213 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4214 * runqueue lock must be held.
4215 */
eb580751 4216 rq = task_rq_lock(p, &rf);
80f5c1b8 4217 update_rq_clock(rq);
dc61b1d6 4218
34f971f6 4219 /*
d1ccc66d 4220 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4221 */
4222 if (p == rq->stop) {
eb580751 4223 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4224 return -EINVAL;
4225 }
4226
a51e9198 4227 /*
d6b1e911
TG
4228 * If not changing anything there's no need to proceed further,
4229 * but store a possible modification of reset_on_fork.
a51e9198 4230 */
d50dde5a 4231 if (unlikely(policy == p->policy)) {
d0ea0268 4232 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4233 goto change;
4234 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4235 goto change;
75381608 4236 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4237 goto change;
d50dde5a 4238
d6b1e911 4239 p->sched_reset_on_fork = reset_on_fork;
eb580751 4240 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4241 return 0;
4242 }
d50dde5a 4243change:
a51e9198 4244
dc61b1d6 4245 if (user) {
332ac17e 4246#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4247 /*
4248 * Do not allow realtime tasks into groups that have no runtime
4249 * assigned.
4250 */
4251 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4252 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4253 !task_group_is_autogroup(task_group(p))) {
eb580751 4254 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4255 return -EPERM;
4256 }
dc61b1d6 4257#endif
332ac17e
DF
4258#ifdef CONFIG_SMP
4259 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4260 cpumask_t *span = rq->rd->span;
332ac17e
DF
4261
4262 /*
4263 * Don't allow tasks with an affinity mask smaller than
4264 * the entire root_domain to become SCHED_DEADLINE. We
4265 * will also fail if there's no bandwidth available.
4266 */
e4099a5e
PZ
4267 if (!cpumask_subset(span, &p->cpus_allowed) ||
4268 rq->rd->dl_bw.bw == 0) {
eb580751 4269 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4270 return -EPERM;
4271 }
4272 }
4273#endif
4274 }
dc61b1d6 4275
d1ccc66d 4276 /* Re-check policy now with rq lock held: */
1da177e4
LT
4277 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4278 policy = oldpolicy = -1;
eb580751 4279 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4280 goto recheck;
4281 }
332ac17e
DF
4282
4283 /*
4284 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4285 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4286 * is available.
4287 */
e4099a5e 4288 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4289 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4290 return -EBUSY;
4291 }
4292
c365c292
TG
4293 p->sched_reset_on_fork = reset_on_fork;
4294 oldprio = p->prio;
4295
dbc7f069
PZ
4296 if (pi) {
4297 /*
4298 * Take priority boosted tasks into account. If the new
4299 * effective priority is unchanged, we just store the new
4300 * normal parameters and do not touch the scheduler class and
4301 * the runqueue. This will be done when the task deboost
4302 * itself.
4303 */
4304 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4305 if (new_effective_prio == oldprio)
4306 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4307 }
4308
da0c1e65 4309 queued = task_on_rq_queued(p);
051a1d1a 4310 running = task_current(rq, p);
da0c1e65 4311 if (queued)
ff77e468 4312 dequeue_task(rq, p, queue_flags);
0e1f3483 4313 if (running)
f3cd1c4e 4314 put_prev_task(rq, p);
f6b53205 4315
83ab0aa0 4316 prev_class = p->sched_class;
dbc7f069 4317 __setscheduler(rq, p, attr, pi);
f6b53205 4318
da0c1e65 4319 if (queued) {
81a44c54
TG
4320 /*
4321 * We enqueue to tail when the priority of a task is
4322 * increased (user space view).
4323 */
ff77e468
PZ
4324 if (oldprio < p->prio)
4325 queue_flags |= ENQUEUE_HEAD;
1de64443 4326
ff77e468 4327 enqueue_task(rq, p, queue_flags);
81a44c54 4328 }
a399d233 4329 if (running)
b2bf6c31 4330 set_curr_task(rq, p);
cb469845 4331
da7a735e 4332 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4333
4334 /* Avoid rq from going away on us: */
4335 preempt_disable();
eb580751 4336 task_rq_unlock(rq, p, &rf);
b29739f9 4337
dbc7f069
PZ
4338 if (pi)
4339 rt_mutex_adjust_pi(p);
95e02ca9 4340
d1ccc66d 4341 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4342 balance_callback(rq);
4343 preempt_enable();
95e02ca9 4344
1da177e4
LT
4345 return 0;
4346}
961ccddd 4347
7479f3c9
PZ
4348static int _sched_setscheduler(struct task_struct *p, int policy,
4349 const struct sched_param *param, bool check)
4350{
4351 struct sched_attr attr = {
4352 .sched_policy = policy,
4353 .sched_priority = param->sched_priority,
4354 .sched_nice = PRIO_TO_NICE(p->static_prio),
4355 };
4356
c13db6b1
SR
4357 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4358 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4359 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4360 policy &= ~SCHED_RESET_ON_FORK;
4361 attr.sched_policy = policy;
4362 }
4363
dbc7f069 4364 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4365}
961ccddd
RR
4366/**
4367 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4368 * @p: the task in question.
4369 * @policy: new policy.
4370 * @param: structure containing the new RT priority.
4371 *
e69f6186
YB
4372 * Return: 0 on success. An error code otherwise.
4373 *
961ccddd
RR
4374 * NOTE that the task may be already dead.
4375 */
4376int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4377 const struct sched_param *param)
961ccddd 4378{
7479f3c9 4379 return _sched_setscheduler(p, policy, param, true);
961ccddd 4380}
1da177e4
LT
4381EXPORT_SYMBOL_GPL(sched_setscheduler);
4382
d50dde5a
DF
4383int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4384{
dbc7f069 4385 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4386}
4387EXPORT_SYMBOL_GPL(sched_setattr);
4388
961ccddd
RR
4389/**
4390 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4391 * @p: the task in question.
4392 * @policy: new policy.
4393 * @param: structure containing the new RT priority.
4394 *
4395 * Just like sched_setscheduler, only don't bother checking if the
4396 * current context has permission. For example, this is needed in
4397 * stop_machine(): we create temporary high priority worker threads,
4398 * but our caller might not have that capability.
e69f6186
YB
4399 *
4400 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4401 */
4402int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4403 const struct sched_param *param)
961ccddd 4404{
7479f3c9 4405 return _sched_setscheduler(p, policy, param, false);
961ccddd 4406}
84778472 4407EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4408
95cdf3b7
IM
4409static int
4410do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4411{
1da177e4
LT
4412 struct sched_param lparam;
4413 struct task_struct *p;
36c8b586 4414 int retval;
1da177e4
LT
4415
4416 if (!param || pid < 0)
4417 return -EINVAL;
4418 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4419 return -EFAULT;
5fe1d75f
ON
4420
4421 rcu_read_lock();
4422 retval = -ESRCH;
1da177e4 4423 p = find_process_by_pid(pid);
5fe1d75f
ON
4424 if (p != NULL)
4425 retval = sched_setscheduler(p, policy, &lparam);
4426 rcu_read_unlock();
36c8b586 4427
1da177e4
LT
4428 return retval;
4429}
4430
d50dde5a
DF
4431/*
4432 * Mimics kernel/events/core.c perf_copy_attr().
4433 */
d1ccc66d 4434static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4435{
4436 u32 size;
4437 int ret;
4438
4439 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4440 return -EFAULT;
4441
d1ccc66d 4442 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4443 memset(attr, 0, sizeof(*attr));
4444
4445 ret = get_user(size, &uattr->size);
4446 if (ret)
4447 return ret;
4448
d1ccc66d
IM
4449 /* Bail out on silly large: */
4450 if (size > PAGE_SIZE)
d50dde5a
DF
4451 goto err_size;
4452
d1ccc66d
IM
4453 /* ABI compatibility quirk: */
4454 if (!size)
d50dde5a
DF
4455 size = SCHED_ATTR_SIZE_VER0;
4456
4457 if (size < SCHED_ATTR_SIZE_VER0)
4458 goto err_size;
4459
4460 /*
4461 * If we're handed a bigger struct than we know of,
4462 * ensure all the unknown bits are 0 - i.e. new
4463 * user-space does not rely on any kernel feature
4464 * extensions we dont know about yet.
4465 */
4466 if (size > sizeof(*attr)) {
4467 unsigned char __user *addr;
4468 unsigned char __user *end;
4469 unsigned char val;
4470
4471 addr = (void __user *)uattr + sizeof(*attr);
4472 end = (void __user *)uattr + size;
4473
4474 for (; addr < end; addr++) {
4475 ret = get_user(val, addr);
4476 if (ret)
4477 return ret;
4478 if (val)
4479 goto err_size;
4480 }
4481 size = sizeof(*attr);
4482 }
4483
4484 ret = copy_from_user(attr, uattr, size);
4485 if (ret)
4486 return -EFAULT;
4487
4488 /*
d1ccc66d 4489 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4490 * to be strict and return an error on out-of-bounds values?
4491 */
75e45d51 4492 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4493
e78c7bca 4494 return 0;
d50dde5a
DF
4495
4496err_size:
4497 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4498 return -E2BIG;
d50dde5a
DF
4499}
4500
1da177e4
LT
4501/**
4502 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4503 * @pid: the pid in question.
4504 * @policy: new policy.
4505 * @param: structure containing the new RT priority.
e69f6186
YB
4506 *
4507 * Return: 0 on success. An error code otherwise.
1da177e4 4508 */
d1ccc66d 4509SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4510{
c21761f1
JB
4511 if (policy < 0)
4512 return -EINVAL;
4513
1da177e4
LT
4514 return do_sched_setscheduler(pid, policy, param);
4515}
4516
4517/**
4518 * sys_sched_setparam - set/change the RT priority of a thread
4519 * @pid: the pid in question.
4520 * @param: structure containing the new RT priority.
e69f6186
YB
4521 *
4522 * Return: 0 on success. An error code otherwise.
1da177e4 4523 */
5add95d4 4524SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4525{
c13db6b1 4526 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4527}
4528
d50dde5a
DF
4529/**
4530 * sys_sched_setattr - same as above, but with extended sched_attr
4531 * @pid: the pid in question.
5778fccf 4532 * @uattr: structure containing the extended parameters.
db66d756 4533 * @flags: for future extension.
d50dde5a 4534 */
6d35ab48
PZ
4535SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4536 unsigned int, flags)
d50dde5a
DF
4537{
4538 struct sched_attr attr;
4539 struct task_struct *p;
4540 int retval;
4541
6d35ab48 4542 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4543 return -EINVAL;
4544
143cf23d
MK
4545 retval = sched_copy_attr(uattr, &attr);
4546 if (retval)
4547 return retval;
d50dde5a 4548
b14ed2c2 4549 if ((int)attr.sched_policy < 0)
dbdb2275 4550 return -EINVAL;
d50dde5a
DF
4551
4552 rcu_read_lock();
4553 retval = -ESRCH;
4554 p = find_process_by_pid(pid);
4555 if (p != NULL)
4556 retval = sched_setattr(p, &attr);
4557 rcu_read_unlock();
4558
4559 return retval;
4560}
4561
1da177e4
LT
4562/**
4563 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4564 * @pid: the pid in question.
e69f6186
YB
4565 *
4566 * Return: On success, the policy of the thread. Otherwise, a negative error
4567 * code.
1da177e4 4568 */
5add95d4 4569SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4570{
36c8b586 4571 struct task_struct *p;
3a5c359a 4572 int retval;
1da177e4
LT
4573
4574 if (pid < 0)
3a5c359a 4575 return -EINVAL;
1da177e4
LT
4576
4577 retval = -ESRCH;
5fe85be0 4578 rcu_read_lock();
1da177e4
LT
4579 p = find_process_by_pid(pid);
4580 if (p) {
4581 retval = security_task_getscheduler(p);
4582 if (!retval)
ca94c442
LP
4583 retval = p->policy
4584 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4585 }
5fe85be0 4586 rcu_read_unlock();
1da177e4
LT
4587 return retval;
4588}
4589
4590/**
ca94c442 4591 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4592 * @pid: the pid in question.
4593 * @param: structure containing the RT priority.
e69f6186
YB
4594 *
4595 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4596 * code.
1da177e4 4597 */
5add95d4 4598SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4599{
ce5f7f82 4600 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4601 struct task_struct *p;
3a5c359a 4602 int retval;
1da177e4
LT
4603
4604 if (!param || pid < 0)
3a5c359a 4605 return -EINVAL;
1da177e4 4606
5fe85be0 4607 rcu_read_lock();
1da177e4
LT
4608 p = find_process_by_pid(pid);
4609 retval = -ESRCH;
4610 if (!p)
4611 goto out_unlock;
4612
4613 retval = security_task_getscheduler(p);
4614 if (retval)
4615 goto out_unlock;
4616
ce5f7f82
PZ
4617 if (task_has_rt_policy(p))
4618 lp.sched_priority = p->rt_priority;
5fe85be0 4619 rcu_read_unlock();
1da177e4
LT
4620
4621 /*
4622 * This one might sleep, we cannot do it with a spinlock held ...
4623 */
4624 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4625
1da177e4
LT
4626 return retval;
4627
4628out_unlock:
5fe85be0 4629 rcu_read_unlock();
1da177e4
LT
4630 return retval;
4631}
4632
d50dde5a
DF
4633static int sched_read_attr(struct sched_attr __user *uattr,
4634 struct sched_attr *attr,
4635 unsigned int usize)
4636{
4637 int ret;
4638
4639 if (!access_ok(VERIFY_WRITE, uattr, usize))
4640 return -EFAULT;
4641
4642 /*
4643 * If we're handed a smaller struct than we know of,
4644 * ensure all the unknown bits are 0 - i.e. old
4645 * user-space does not get uncomplete information.
4646 */
4647 if (usize < sizeof(*attr)) {
4648 unsigned char *addr;
4649 unsigned char *end;
4650
4651 addr = (void *)attr + usize;
4652 end = (void *)attr + sizeof(*attr);
4653
4654 for (; addr < end; addr++) {
4655 if (*addr)
22400674 4656 return -EFBIG;
d50dde5a
DF
4657 }
4658
4659 attr->size = usize;
4660 }
4661
4efbc454 4662 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4663 if (ret)
4664 return -EFAULT;
4665
22400674 4666 return 0;
d50dde5a
DF
4667}
4668
4669/**
aab03e05 4670 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4671 * @pid: the pid in question.
5778fccf 4672 * @uattr: structure containing the extended parameters.
d50dde5a 4673 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4674 * @flags: for future extension.
d50dde5a 4675 */
6d35ab48
PZ
4676SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4677 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4678{
4679 struct sched_attr attr = {
4680 .size = sizeof(struct sched_attr),
4681 };
4682 struct task_struct *p;
4683 int retval;
4684
4685 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4686 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4687 return -EINVAL;
4688
4689 rcu_read_lock();
4690 p = find_process_by_pid(pid);
4691 retval = -ESRCH;
4692 if (!p)
4693 goto out_unlock;
4694
4695 retval = security_task_getscheduler(p);
4696 if (retval)
4697 goto out_unlock;
4698
4699 attr.sched_policy = p->policy;
7479f3c9
PZ
4700 if (p->sched_reset_on_fork)
4701 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4702 if (task_has_dl_policy(p))
4703 __getparam_dl(p, &attr);
4704 else if (task_has_rt_policy(p))
d50dde5a
DF
4705 attr.sched_priority = p->rt_priority;
4706 else
d0ea0268 4707 attr.sched_nice = task_nice(p);
d50dde5a
DF
4708
4709 rcu_read_unlock();
4710
4711 retval = sched_read_attr(uattr, &attr, size);
4712 return retval;
4713
4714out_unlock:
4715 rcu_read_unlock();
4716 return retval;
4717}
4718
96f874e2 4719long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4720{
5a16f3d3 4721 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4722 struct task_struct *p;
4723 int retval;
1da177e4 4724
23f5d142 4725 rcu_read_lock();
1da177e4
LT
4726
4727 p = find_process_by_pid(pid);
4728 if (!p) {
23f5d142 4729 rcu_read_unlock();
1da177e4
LT
4730 return -ESRCH;
4731 }
4732
23f5d142 4733 /* Prevent p going away */
1da177e4 4734 get_task_struct(p);
23f5d142 4735 rcu_read_unlock();
1da177e4 4736
14a40ffc
TH
4737 if (p->flags & PF_NO_SETAFFINITY) {
4738 retval = -EINVAL;
4739 goto out_put_task;
4740 }
5a16f3d3
RR
4741 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4742 retval = -ENOMEM;
4743 goto out_put_task;
4744 }
4745 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4746 retval = -ENOMEM;
4747 goto out_free_cpus_allowed;
4748 }
1da177e4 4749 retval = -EPERM;
4c44aaaf
EB
4750 if (!check_same_owner(p)) {
4751 rcu_read_lock();
4752 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4753 rcu_read_unlock();
16303ab2 4754 goto out_free_new_mask;
4c44aaaf
EB
4755 }
4756 rcu_read_unlock();
4757 }
1da177e4 4758
b0ae1981 4759 retval = security_task_setscheduler(p);
e7834f8f 4760 if (retval)
16303ab2 4761 goto out_free_new_mask;
e7834f8f 4762
e4099a5e
PZ
4763
4764 cpuset_cpus_allowed(p, cpus_allowed);
4765 cpumask_and(new_mask, in_mask, cpus_allowed);
4766
332ac17e
DF
4767 /*
4768 * Since bandwidth control happens on root_domain basis,
4769 * if admission test is enabled, we only admit -deadline
4770 * tasks allowed to run on all the CPUs in the task's
4771 * root_domain.
4772 */
4773#ifdef CONFIG_SMP
f1e3a093
KT
4774 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4775 rcu_read_lock();
4776 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4777 retval = -EBUSY;
f1e3a093 4778 rcu_read_unlock();
16303ab2 4779 goto out_free_new_mask;
332ac17e 4780 }
f1e3a093 4781 rcu_read_unlock();
332ac17e
DF
4782 }
4783#endif
49246274 4784again:
25834c73 4785 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4786
8707d8b8 4787 if (!retval) {
5a16f3d3
RR
4788 cpuset_cpus_allowed(p, cpus_allowed);
4789 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4790 /*
4791 * We must have raced with a concurrent cpuset
4792 * update. Just reset the cpus_allowed to the
4793 * cpuset's cpus_allowed
4794 */
5a16f3d3 4795 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4796 goto again;
4797 }
4798 }
16303ab2 4799out_free_new_mask:
5a16f3d3
RR
4800 free_cpumask_var(new_mask);
4801out_free_cpus_allowed:
4802 free_cpumask_var(cpus_allowed);
4803out_put_task:
1da177e4 4804 put_task_struct(p);
1da177e4
LT
4805 return retval;
4806}
4807
4808static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4809 struct cpumask *new_mask)
1da177e4 4810{
96f874e2
RR
4811 if (len < cpumask_size())
4812 cpumask_clear(new_mask);
4813 else if (len > cpumask_size())
4814 len = cpumask_size();
4815
1da177e4
LT
4816 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4817}
4818
4819/**
d1ccc66d 4820 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4821 * @pid: pid of the process
4822 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4823 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4824 *
4825 * Return: 0 on success. An error code otherwise.
1da177e4 4826 */
5add95d4
HC
4827SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4828 unsigned long __user *, user_mask_ptr)
1da177e4 4829{
5a16f3d3 4830 cpumask_var_t new_mask;
1da177e4
LT
4831 int retval;
4832
5a16f3d3
RR
4833 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4834 return -ENOMEM;
1da177e4 4835
5a16f3d3
RR
4836 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4837 if (retval == 0)
4838 retval = sched_setaffinity(pid, new_mask);
4839 free_cpumask_var(new_mask);
4840 return retval;
1da177e4
LT
4841}
4842
96f874e2 4843long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4844{
36c8b586 4845 struct task_struct *p;
31605683 4846 unsigned long flags;
1da177e4 4847 int retval;
1da177e4 4848
23f5d142 4849 rcu_read_lock();
1da177e4
LT
4850
4851 retval = -ESRCH;
4852 p = find_process_by_pid(pid);
4853 if (!p)
4854 goto out_unlock;
4855
e7834f8f
DQ
4856 retval = security_task_getscheduler(p);
4857 if (retval)
4858 goto out_unlock;
4859
013fdb80 4860 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4861 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4863
4864out_unlock:
23f5d142 4865 rcu_read_unlock();
1da177e4 4866
9531b62f 4867 return retval;
1da177e4
LT
4868}
4869
4870/**
d1ccc66d 4871 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4872 * @pid: pid of the process
4873 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4874 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4875 *
599b4840
ZW
4876 * Return: size of CPU mask copied to user_mask_ptr on success. An
4877 * error code otherwise.
1da177e4 4878 */
5add95d4
HC
4879SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4880 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4881{
4882 int ret;
f17c8607 4883 cpumask_var_t mask;
1da177e4 4884
84fba5ec 4885 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4886 return -EINVAL;
4887 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4888 return -EINVAL;
4889
f17c8607
RR
4890 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4891 return -ENOMEM;
1da177e4 4892
f17c8607
RR
4893 ret = sched_getaffinity(pid, mask);
4894 if (ret == 0) {
8bc037fb 4895 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4896
4897 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4898 ret = -EFAULT;
4899 else
cd3d8031 4900 ret = retlen;
f17c8607
RR
4901 }
4902 free_cpumask_var(mask);
1da177e4 4903
f17c8607 4904 return ret;
1da177e4
LT
4905}
4906
4907/**
4908 * sys_sched_yield - yield the current processor to other threads.
4909 *
dd41f596
IM
4910 * This function yields the current CPU to other tasks. If there are no
4911 * other threads running on this CPU then this function will return.
e69f6186
YB
4912 *
4913 * Return: 0.
1da177e4 4914 */
5add95d4 4915SYSCALL_DEFINE0(sched_yield)
1da177e4 4916{
70b97a7f 4917 struct rq *rq = this_rq_lock();
1da177e4 4918
ae92882e 4919 schedstat_inc(rq->yld_count);
4530d7ab 4920 current->sched_class->yield_task(rq);
1da177e4
LT
4921
4922 /*
4923 * Since we are going to call schedule() anyway, there's
4924 * no need to preempt or enable interrupts:
4925 */
4926 __release(rq->lock);
8a25d5de 4927 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4928 do_raw_spin_unlock(&rq->lock);
ba74c144 4929 sched_preempt_enable_no_resched();
1da177e4
LT
4930
4931 schedule();
4932
4933 return 0;
4934}
4935
35a773a0 4936#ifndef CONFIG_PREEMPT
02b67cc3 4937int __sched _cond_resched(void)
1da177e4 4938{
fe32d3cd 4939 if (should_resched(0)) {
a18b5d01 4940 preempt_schedule_common();
1da177e4
LT
4941 return 1;
4942 }
4943 return 0;
4944}
02b67cc3 4945EXPORT_SYMBOL(_cond_resched);
35a773a0 4946#endif
1da177e4
LT
4947
4948/*
613afbf8 4949 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4950 * call schedule, and on return reacquire the lock.
4951 *
41a2d6cf 4952 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4953 * operations here to prevent schedule() from being called twice (once via
4954 * spin_unlock(), once by hand).
4955 */
613afbf8 4956int __cond_resched_lock(spinlock_t *lock)
1da177e4 4957{
fe32d3cd 4958 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4959 int ret = 0;
4960
f607c668
PZ
4961 lockdep_assert_held(lock);
4962
4a81e832 4963 if (spin_needbreak(lock) || resched) {
1da177e4 4964 spin_unlock(lock);
d86ee480 4965 if (resched)
a18b5d01 4966 preempt_schedule_common();
95c354fe
NP
4967 else
4968 cpu_relax();
6df3cecb 4969 ret = 1;
1da177e4 4970 spin_lock(lock);
1da177e4 4971 }
6df3cecb 4972 return ret;
1da177e4 4973}
613afbf8 4974EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4975
613afbf8 4976int __sched __cond_resched_softirq(void)
1da177e4
LT
4977{
4978 BUG_ON(!in_softirq());
4979
fe32d3cd 4980 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4981 local_bh_enable();
a18b5d01 4982 preempt_schedule_common();
1da177e4
LT
4983 local_bh_disable();
4984 return 1;
4985 }
4986 return 0;
4987}
613afbf8 4988EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4989
1da177e4
LT
4990/**
4991 * yield - yield the current processor to other threads.
4992 *
8e3fabfd
PZ
4993 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4994 *
4995 * The scheduler is at all times free to pick the calling task as the most
4996 * eligible task to run, if removing the yield() call from your code breaks
4997 * it, its already broken.
4998 *
4999 * Typical broken usage is:
5000 *
5001 * while (!event)
d1ccc66d 5002 * yield();
8e3fabfd
PZ
5003 *
5004 * where one assumes that yield() will let 'the other' process run that will
5005 * make event true. If the current task is a SCHED_FIFO task that will never
5006 * happen. Never use yield() as a progress guarantee!!
5007 *
5008 * If you want to use yield() to wait for something, use wait_event().
5009 * If you want to use yield() to be 'nice' for others, use cond_resched().
5010 * If you still want to use yield(), do not!
1da177e4
LT
5011 */
5012void __sched yield(void)
5013{
5014 set_current_state(TASK_RUNNING);
5015 sys_sched_yield();
5016}
1da177e4
LT
5017EXPORT_SYMBOL(yield);
5018
d95f4122
MG
5019/**
5020 * yield_to - yield the current processor to another thread in
5021 * your thread group, or accelerate that thread toward the
5022 * processor it's on.
16addf95
RD
5023 * @p: target task
5024 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5025 *
5026 * It's the caller's job to ensure that the target task struct
5027 * can't go away on us before we can do any checks.
5028 *
e69f6186 5029 * Return:
7b270f60
PZ
5030 * true (>0) if we indeed boosted the target task.
5031 * false (0) if we failed to boost the target.
5032 * -ESRCH if there's no task to yield to.
d95f4122 5033 */
fa93384f 5034int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5035{
5036 struct task_struct *curr = current;
5037 struct rq *rq, *p_rq;
5038 unsigned long flags;
c3c18640 5039 int yielded = 0;
d95f4122
MG
5040
5041 local_irq_save(flags);
5042 rq = this_rq();
5043
5044again:
5045 p_rq = task_rq(p);
7b270f60
PZ
5046 /*
5047 * If we're the only runnable task on the rq and target rq also
5048 * has only one task, there's absolutely no point in yielding.
5049 */
5050 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5051 yielded = -ESRCH;
5052 goto out_irq;
5053 }
5054
d95f4122 5055 double_rq_lock(rq, p_rq);
39e24d8f 5056 if (task_rq(p) != p_rq) {
d95f4122
MG
5057 double_rq_unlock(rq, p_rq);
5058 goto again;
5059 }
5060
5061 if (!curr->sched_class->yield_to_task)
7b270f60 5062 goto out_unlock;
d95f4122
MG
5063
5064 if (curr->sched_class != p->sched_class)
7b270f60 5065 goto out_unlock;
d95f4122
MG
5066
5067 if (task_running(p_rq, p) || p->state)
7b270f60 5068 goto out_unlock;
d95f4122
MG
5069
5070 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5071 if (yielded) {
ae92882e 5072 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5073 /*
5074 * Make p's CPU reschedule; pick_next_entity takes care of
5075 * fairness.
5076 */
5077 if (preempt && rq != p_rq)
8875125e 5078 resched_curr(p_rq);
6d1cafd8 5079 }
d95f4122 5080
7b270f60 5081out_unlock:
d95f4122 5082 double_rq_unlock(rq, p_rq);
7b270f60 5083out_irq:
d95f4122
MG
5084 local_irq_restore(flags);
5085
7b270f60 5086 if (yielded > 0)
d95f4122
MG
5087 schedule();
5088
5089 return yielded;
5090}
5091EXPORT_SYMBOL_GPL(yield_to);
5092
10ab5643
TH
5093int io_schedule_prepare(void)
5094{
5095 int old_iowait = current->in_iowait;
5096
5097 current->in_iowait = 1;
5098 blk_schedule_flush_plug(current);
5099
5100 return old_iowait;
5101}
5102
5103void io_schedule_finish(int token)
5104{
5105 current->in_iowait = token;
5106}
5107
1da177e4 5108/*
41a2d6cf 5109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5110 * that process accounting knows that this is a task in IO wait state.
1da177e4 5111 */
1da177e4
LT
5112long __sched io_schedule_timeout(long timeout)
5113{
10ab5643 5114 int token;
1da177e4
LT
5115 long ret;
5116
10ab5643 5117 token = io_schedule_prepare();
1da177e4 5118 ret = schedule_timeout(timeout);
10ab5643 5119 io_schedule_finish(token);
9cff8ade 5120
1da177e4
LT
5121 return ret;
5122}
9cff8ade 5123EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5124
10ab5643
TH
5125void io_schedule(void)
5126{
5127 int token;
5128
5129 token = io_schedule_prepare();
5130 schedule();
5131 io_schedule_finish(token);
5132}
5133EXPORT_SYMBOL(io_schedule);
5134
1da177e4
LT
5135/**
5136 * sys_sched_get_priority_max - return maximum RT priority.
5137 * @policy: scheduling class.
5138 *
e69f6186
YB
5139 * Return: On success, this syscall returns the maximum
5140 * rt_priority that can be used by a given scheduling class.
5141 * On failure, a negative error code is returned.
1da177e4 5142 */
5add95d4 5143SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5144{
5145 int ret = -EINVAL;
5146
5147 switch (policy) {
5148 case SCHED_FIFO:
5149 case SCHED_RR:
5150 ret = MAX_USER_RT_PRIO-1;
5151 break;
aab03e05 5152 case SCHED_DEADLINE:
1da177e4 5153 case SCHED_NORMAL:
b0a9499c 5154 case SCHED_BATCH:
dd41f596 5155 case SCHED_IDLE:
1da177e4
LT
5156 ret = 0;
5157 break;
5158 }
5159 return ret;
5160}
5161
5162/**
5163 * sys_sched_get_priority_min - return minimum RT priority.
5164 * @policy: scheduling class.
5165 *
e69f6186
YB
5166 * Return: On success, this syscall returns the minimum
5167 * rt_priority that can be used by a given scheduling class.
5168 * On failure, a negative error code is returned.
1da177e4 5169 */
5add95d4 5170SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5171{
5172 int ret = -EINVAL;
5173
5174 switch (policy) {
5175 case SCHED_FIFO:
5176 case SCHED_RR:
5177 ret = 1;
5178 break;
aab03e05 5179 case SCHED_DEADLINE:
1da177e4 5180 case SCHED_NORMAL:
b0a9499c 5181 case SCHED_BATCH:
dd41f596 5182 case SCHED_IDLE:
1da177e4
LT
5183 ret = 0;
5184 }
5185 return ret;
5186}
5187
5188/**
5189 * sys_sched_rr_get_interval - return the default timeslice of a process.
5190 * @pid: pid of the process.
5191 * @interval: userspace pointer to the timeslice value.
5192 *
5193 * this syscall writes the default timeslice value of a given process
5194 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5195 *
5196 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5197 * an error code.
1da177e4 5198 */
17da2bd9 5199SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5200 struct timespec __user *, interval)
1da177e4 5201{
36c8b586 5202 struct task_struct *p;
a4ec24b4 5203 unsigned int time_slice;
eb580751
PZ
5204 struct rq_flags rf;
5205 struct timespec t;
dba091b9 5206 struct rq *rq;
3a5c359a 5207 int retval;
1da177e4
LT
5208
5209 if (pid < 0)
3a5c359a 5210 return -EINVAL;
1da177e4
LT
5211
5212 retval = -ESRCH;
1a551ae7 5213 rcu_read_lock();
1da177e4
LT
5214 p = find_process_by_pid(pid);
5215 if (!p)
5216 goto out_unlock;
5217
5218 retval = security_task_getscheduler(p);
5219 if (retval)
5220 goto out_unlock;
5221
eb580751 5222 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5223 time_slice = 0;
5224 if (p->sched_class->get_rr_interval)
5225 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5226 task_rq_unlock(rq, p, &rf);
a4ec24b4 5227
1a551ae7 5228 rcu_read_unlock();
a4ec24b4 5229 jiffies_to_timespec(time_slice, &t);
1da177e4 5230 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5231 return retval;
3a5c359a 5232
1da177e4 5233out_unlock:
1a551ae7 5234 rcu_read_unlock();
1da177e4
LT
5235 return retval;
5236}
5237
7c731e0a 5238static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5239
82a1fcb9 5240void sched_show_task(struct task_struct *p)
1da177e4 5241{
1da177e4 5242 unsigned long free = 0;
4e79752c 5243 int ppid;
1f8a7633 5244 unsigned long state = p->state;
1da177e4 5245
c930b2c0
IM
5246 /* Make sure the string lines up properly with the number of task states: */
5247 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5248
38200502
TH
5249 if (!try_get_task_stack(p))
5250 return;
1f8a7633
TH
5251 if (state)
5252 state = __ffs(state) + 1;
28d0686c 5253 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5254 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5255 if (state == TASK_RUNNING)
3df0fc5b 5256 printk(KERN_CONT " running task ");
1da177e4 5257#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5258 free = stack_not_used(p);
1da177e4 5259#endif
a90e984c 5260 ppid = 0;
4e79752c 5261 rcu_read_lock();
a90e984c
ON
5262 if (pid_alive(p))
5263 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5264 rcu_read_unlock();
3df0fc5b 5265 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5266 task_pid_nr(p), ppid,
aa47b7e0 5267 (unsigned long)task_thread_info(p)->flags);
1da177e4 5268
3d1cb205 5269 print_worker_info(KERN_INFO, p);
5fb5e6de 5270 show_stack(p, NULL);
38200502 5271 put_task_stack(p);
1da177e4
LT
5272}
5273
e59e2ae2 5274void show_state_filter(unsigned long state_filter)
1da177e4 5275{
36c8b586 5276 struct task_struct *g, *p;
1da177e4 5277
4bd77321 5278#if BITS_PER_LONG == 32
3df0fc5b
PZ
5279 printk(KERN_INFO
5280 " task PC stack pid father\n");
1da177e4 5281#else
3df0fc5b
PZ
5282 printk(KERN_INFO
5283 " task PC stack pid father\n");
1da177e4 5284#endif
510f5acc 5285 rcu_read_lock();
5d07f420 5286 for_each_process_thread(g, p) {
1da177e4
LT
5287 /*
5288 * reset the NMI-timeout, listing all files on a slow
25985edc 5289 * console might take a lot of time:
57675cb9
AR
5290 * Also, reset softlockup watchdogs on all CPUs, because
5291 * another CPU might be blocked waiting for us to process
5292 * an IPI.
1da177e4
LT
5293 */
5294 touch_nmi_watchdog();
57675cb9 5295 touch_all_softlockup_watchdogs();
39bc89fd 5296 if (!state_filter || (p->state & state_filter))
82a1fcb9 5297 sched_show_task(p);
5d07f420 5298 }
1da177e4 5299
dd41f596 5300#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5301 if (!state_filter)
5302 sysrq_sched_debug_show();
dd41f596 5303#endif
510f5acc 5304 rcu_read_unlock();
e59e2ae2
IM
5305 /*
5306 * Only show locks if all tasks are dumped:
5307 */
93335a21 5308 if (!state_filter)
e59e2ae2 5309 debug_show_all_locks();
1da177e4
LT
5310}
5311
0db0628d 5312void init_idle_bootup_task(struct task_struct *idle)
1df21055 5313{
dd41f596 5314 idle->sched_class = &idle_sched_class;
1df21055
IM
5315}
5316
f340c0d1
IM
5317/**
5318 * init_idle - set up an idle thread for a given CPU
5319 * @idle: task in question
d1ccc66d 5320 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5321 *
5322 * NOTE: this function does not set the idle thread's NEED_RESCHED
5323 * flag, to make booting more robust.
5324 */
0db0628d 5325void init_idle(struct task_struct *idle, int cpu)
1da177e4 5326{
70b97a7f 5327 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5328 unsigned long flags;
5329
25834c73
PZ
5330 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5331 raw_spin_lock(&rq->lock);
5cbd54ef 5332
5e1576ed 5333 __sched_fork(0, idle);
06b83b5f 5334 idle->state = TASK_RUNNING;
dd41f596 5335 idle->se.exec_start = sched_clock();
c1de45ca 5336 idle->flags |= PF_IDLE;
dd41f596 5337
e1b77c92
MR
5338 kasan_unpoison_task_stack(idle);
5339
de9b8f5d
PZ
5340#ifdef CONFIG_SMP
5341 /*
5342 * Its possible that init_idle() gets called multiple times on a task,
5343 * in that case do_set_cpus_allowed() will not do the right thing.
5344 *
5345 * And since this is boot we can forgo the serialization.
5346 */
5347 set_cpus_allowed_common(idle, cpumask_of(cpu));
5348#endif
6506cf6c
PZ
5349 /*
5350 * We're having a chicken and egg problem, even though we are
d1ccc66d 5351 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5352 * lockdep check in task_group() will fail.
5353 *
5354 * Similar case to sched_fork(). / Alternatively we could
5355 * use task_rq_lock() here and obtain the other rq->lock.
5356 *
5357 * Silence PROVE_RCU
5358 */
5359 rcu_read_lock();
dd41f596 5360 __set_task_cpu(idle, cpu);
6506cf6c 5361 rcu_read_unlock();
1da177e4 5362
1da177e4 5363 rq->curr = rq->idle = idle;
da0c1e65 5364 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5365#ifdef CONFIG_SMP
3ca7a440 5366 idle->on_cpu = 1;
4866cde0 5367#endif
25834c73
PZ
5368 raw_spin_unlock(&rq->lock);
5369 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5370
5371 /* Set the preempt count _outside_ the spinlocks! */
01028747 5372 init_idle_preempt_count(idle, cpu);
55cd5340 5373
dd41f596
IM
5374 /*
5375 * The idle tasks have their own, simple scheduling class:
5376 */
5377 idle->sched_class = &idle_sched_class;
868baf07 5378 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5379 vtime_init_idle(idle, cpu);
de9b8f5d 5380#ifdef CONFIG_SMP
f1c6f1a7
CE
5381 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5382#endif
19978ca6
IM
5383}
5384
f82f8042
JL
5385int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5386 const struct cpumask *trial)
5387{
5388 int ret = 1, trial_cpus;
5389 struct dl_bw *cur_dl_b;
5390 unsigned long flags;
5391
bb2bc55a
MG
5392 if (!cpumask_weight(cur))
5393 return ret;
5394
75e23e49 5395 rcu_read_lock_sched();
f82f8042
JL
5396 cur_dl_b = dl_bw_of(cpumask_any(cur));
5397 trial_cpus = cpumask_weight(trial);
5398
5399 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5400 if (cur_dl_b->bw != -1 &&
5401 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5402 ret = 0;
5403 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5404 rcu_read_unlock_sched();
f82f8042
JL
5405
5406 return ret;
5407}
5408
7f51412a
JL
5409int task_can_attach(struct task_struct *p,
5410 const struct cpumask *cs_cpus_allowed)
5411{
5412 int ret = 0;
5413
5414 /*
5415 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5416 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5417 * affinity and isolating such threads by their set of
5418 * allowed nodes is unnecessary. Thus, cpusets are not
5419 * applicable for such threads. This prevents checking for
5420 * success of set_cpus_allowed_ptr() on all attached tasks
5421 * before cpus_allowed may be changed.
5422 */
5423 if (p->flags & PF_NO_SETAFFINITY) {
5424 ret = -EINVAL;
5425 goto out;
5426 }
5427
5428#ifdef CONFIG_SMP
5429 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5430 cs_cpus_allowed)) {
5431 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5432 cs_cpus_allowed);
75e23e49 5433 struct dl_bw *dl_b;
7f51412a
JL
5434 bool overflow;
5435 int cpus;
5436 unsigned long flags;
5437
75e23e49
JL
5438 rcu_read_lock_sched();
5439 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5440 raw_spin_lock_irqsave(&dl_b->lock, flags);
5441 cpus = dl_bw_cpus(dest_cpu);
5442 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5443 if (overflow)
5444 ret = -EBUSY;
5445 else {
5446 /*
5447 * We reserve space for this task in the destination
5448 * root_domain, as we can't fail after this point.
5449 * We will free resources in the source root_domain
5450 * later on (see set_cpus_allowed_dl()).
5451 */
5452 __dl_add(dl_b, p->dl.dl_bw);
5453 }
5454 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5455 rcu_read_unlock_sched();
7f51412a
JL
5456
5457 }
5458#endif
5459out:
5460 return ret;
5461}
5462
1da177e4 5463#ifdef CONFIG_SMP
1da177e4 5464
f2cb1360 5465bool sched_smp_initialized __read_mostly;
e26fbffd 5466
e6628d5b
MG
5467#ifdef CONFIG_NUMA_BALANCING
5468/* Migrate current task p to target_cpu */
5469int migrate_task_to(struct task_struct *p, int target_cpu)
5470{
5471 struct migration_arg arg = { p, target_cpu };
5472 int curr_cpu = task_cpu(p);
5473
5474 if (curr_cpu == target_cpu)
5475 return 0;
5476
0c98d344 5477 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5478 return -EINVAL;
5479
5480 /* TODO: This is not properly updating schedstats */
5481
286549dc 5482 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5483 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5484}
0ec8aa00
PZ
5485
5486/*
5487 * Requeue a task on a given node and accurately track the number of NUMA
5488 * tasks on the runqueues
5489 */
5490void sched_setnuma(struct task_struct *p, int nid)
5491{
da0c1e65 5492 bool queued, running;
eb580751
PZ
5493 struct rq_flags rf;
5494 struct rq *rq;
0ec8aa00 5495
eb580751 5496 rq = task_rq_lock(p, &rf);
da0c1e65 5497 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5498 running = task_current(rq, p);
5499
da0c1e65 5500 if (queued)
1de64443 5501 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5502 if (running)
f3cd1c4e 5503 put_prev_task(rq, p);
0ec8aa00
PZ
5504
5505 p->numa_preferred_nid = nid;
0ec8aa00 5506
da0c1e65 5507 if (queued)
1de64443 5508 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5509 if (running)
b2bf6c31 5510 set_curr_task(rq, p);
eb580751 5511 task_rq_unlock(rq, p, &rf);
0ec8aa00 5512}
5cc389bc 5513#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5514
1da177e4 5515#ifdef CONFIG_HOTPLUG_CPU
054b9108 5516/*
d1ccc66d 5517 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5518 * offline.
054b9108 5519 */
48c5ccae 5520void idle_task_exit(void)
1da177e4 5521{
48c5ccae 5522 struct mm_struct *mm = current->active_mm;
e76bd8d9 5523
48c5ccae 5524 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5525
a53efe5f 5526 if (mm != &init_mm) {
f98db601 5527 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5528 finish_arch_post_lock_switch();
5529 }
48c5ccae 5530 mmdrop(mm);
1da177e4
LT
5531}
5532
5533/*
5d180232
PZ
5534 * Since this CPU is going 'away' for a while, fold any nr_active delta
5535 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5536 * nr_active count is stable. We need to take the teardown thread which
5537 * is calling this into account, so we hand in adjust = 1 to the load
5538 * calculation.
5d180232
PZ
5539 *
5540 * Also see the comment "Global load-average calculations".
1da177e4 5541 */
5d180232 5542static void calc_load_migrate(struct rq *rq)
1da177e4 5543{
d60585c5 5544 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5545 if (delta)
5546 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5547}
5548
3f1d2a31
PZ
5549static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5550{
5551}
5552
5553static const struct sched_class fake_sched_class = {
5554 .put_prev_task = put_prev_task_fake,
5555};
5556
5557static struct task_struct fake_task = {
5558 /*
5559 * Avoid pull_{rt,dl}_task()
5560 */
5561 .prio = MAX_PRIO + 1,
5562 .sched_class = &fake_sched_class,
5563};
5564
48f24c4d 5565/*
48c5ccae
PZ
5566 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5567 * try_to_wake_up()->select_task_rq().
5568 *
5569 * Called with rq->lock held even though we'er in stop_machine() and
5570 * there's no concurrency possible, we hold the required locks anyway
5571 * because of lock validation efforts.
1da177e4 5572 */
5e16bbc2 5573static void migrate_tasks(struct rq *dead_rq)
1da177e4 5574{
5e16bbc2 5575 struct rq *rq = dead_rq;
48c5ccae 5576 struct task_struct *next, *stop = rq->stop;
8cb68b34 5577 struct rq_flags rf;
48c5ccae 5578 int dest_cpu;
1da177e4
LT
5579
5580 /*
48c5ccae
PZ
5581 * Fudge the rq selection such that the below task selection loop
5582 * doesn't get stuck on the currently eligible stop task.
5583 *
5584 * We're currently inside stop_machine() and the rq is either stuck
5585 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5586 * either way we should never end up calling schedule() until we're
5587 * done here.
1da177e4 5588 */
48c5ccae 5589 rq->stop = NULL;
48f24c4d 5590
77bd3970
FW
5591 /*
5592 * put_prev_task() and pick_next_task() sched
5593 * class method both need to have an up-to-date
5594 * value of rq->clock[_task]
5595 */
8cb68b34 5596 rq_pin_lock(rq, &rf);
77bd3970 5597 update_rq_clock(rq);
8cb68b34 5598 rq_unpin_lock(rq, &rf);
77bd3970 5599
5e16bbc2 5600 for (;;) {
48c5ccae
PZ
5601 /*
5602 * There's this thread running, bail when that's the only
d1ccc66d 5603 * remaining thread:
48c5ccae
PZ
5604 */
5605 if (rq->nr_running == 1)
dd41f596 5606 break;
48c5ccae 5607
cbce1a68 5608 /*
d1ccc66d 5609 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5610 */
8cb68b34 5611 rq_repin_lock(rq, &rf);
d8ac8971 5612 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5613 BUG_ON(!next);
79c53799 5614 next->sched_class->put_prev_task(rq, next);
e692ab53 5615
5473e0cc
WL
5616 /*
5617 * Rules for changing task_struct::cpus_allowed are holding
5618 * both pi_lock and rq->lock, such that holding either
5619 * stabilizes the mask.
5620 *
5621 * Drop rq->lock is not quite as disastrous as it usually is
5622 * because !cpu_active at this point, which means load-balance
5623 * will not interfere. Also, stop-machine.
5624 */
d8ac8971 5625 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5626 raw_spin_unlock(&rq->lock);
5627 raw_spin_lock(&next->pi_lock);
5628 raw_spin_lock(&rq->lock);
5629
5630 /*
5631 * Since we're inside stop-machine, _nothing_ should have
5632 * changed the task, WARN if weird stuff happened, because in
5633 * that case the above rq->lock drop is a fail too.
5634 */
5635 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5636 raw_spin_unlock(&next->pi_lock);
5637 continue;
5638 }
5639
48c5ccae 5640 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5641 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5642
5e16bbc2
PZ
5643 rq = __migrate_task(rq, next, dest_cpu);
5644 if (rq != dead_rq) {
5645 raw_spin_unlock(&rq->lock);
5646 rq = dead_rq;
5647 raw_spin_lock(&rq->lock);
5648 }
5473e0cc 5649 raw_spin_unlock(&next->pi_lock);
1da177e4 5650 }
dce48a84 5651
48c5ccae 5652 rq->stop = stop;
dce48a84 5653}
1da177e4
LT
5654#endif /* CONFIG_HOTPLUG_CPU */
5655
f2cb1360 5656void set_rq_online(struct rq *rq)
1f11eb6a
GH
5657{
5658 if (!rq->online) {
5659 const struct sched_class *class;
5660
c6c4927b 5661 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5662 rq->online = 1;
5663
5664 for_each_class(class) {
5665 if (class->rq_online)
5666 class->rq_online(rq);
5667 }
5668 }
5669}
5670
f2cb1360 5671void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5672{
5673 if (rq->online) {
5674 const struct sched_class *class;
5675
5676 for_each_class(class) {
5677 if (class->rq_offline)
5678 class->rq_offline(rq);
5679 }
5680
c6c4927b 5681 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5682 rq->online = 0;
5683 }
5684}
5685
9cf7243d 5686static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5687{
969c7921 5688 struct rq *rq = cpu_rq(cpu);
1da177e4 5689
a803f026
CM
5690 rq->age_stamp = sched_clock_cpu(cpu);
5691}
5692
d1ccc66d
IM
5693/*
5694 * used to mark begin/end of suspend/resume:
5695 */
5696static int num_cpus_frozen;
d35be8ba 5697
1da177e4 5698/*
3a101d05
TH
5699 * Update cpusets according to cpu_active mask. If cpusets are
5700 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5701 * around partition_sched_domains().
d35be8ba
SB
5702 *
5703 * If we come here as part of a suspend/resume, don't touch cpusets because we
5704 * want to restore it back to its original state upon resume anyway.
1da177e4 5705 */
40190a78 5706static void cpuset_cpu_active(void)
e761b772 5707{
40190a78 5708 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5709 /*
5710 * num_cpus_frozen tracks how many CPUs are involved in suspend
5711 * resume sequence. As long as this is not the last online
5712 * operation in the resume sequence, just build a single sched
5713 * domain, ignoring cpusets.
5714 */
5715 num_cpus_frozen--;
5716 if (likely(num_cpus_frozen)) {
5717 partition_sched_domains(1, NULL, NULL);
135fb3e1 5718 return;
d35be8ba 5719 }
d35be8ba
SB
5720 /*
5721 * This is the last CPU online operation. So fall through and
5722 * restore the original sched domains by considering the
5723 * cpuset configurations.
5724 */
3a101d05 5725 }
135fb3e1 5726 cpuset_update_active_cpus(true);
3a101d05 5727}
e761b772 5728
40190a78 5729static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5730{
3c18d447 5731 unsigned long flags;
3c18d447 5732 struct dl_bw *dl_b;
533445c6
OS
5733 bool overflow;
5734 int cpus;
3c18d447 5735
40190a78 5736 if (!cpuhp_tasks_frozen) {
533445c6
OS
5737 rcu_read_lock_sched();
5738 dl_b = dl_bw_of(cpu);
3c18d447 5739
533445c6
OS
5740 raw_spin_lock_irqsave(&dl_b->lock, flags);
5741 cpus = dl_bw_cpus(cpu);
5742 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5743 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5744
533445c6 5745 rcu_read_unlock_sched();
3c18d447 5746
533445c6 5747 if (overflow)
135fb3e1 5748 return -EBUSY;
7ddf96b0 5749 cpuset_update_active_cpus(false);
135fb3e1 5750 } else {
d35be8ba
SB
5751 num_cpus_frozen++;
5752 partition_sched_domains(1, NULL, NULL);
e761b772 5753 }
135fb3e1 5754 return 0;
e761b772 5755}
e761b772 5756
40190a78 5757int sched_cpu_activate(unsigned int cpu)
135fb3e1 5758{
7d976699
TG
5759 struct rq *rq = cpu_rq(cpu);
5760 unsigned long flags;
5761
40190a78 5762 set_cpu_active(cpu, true);
135fb3e1 5763
40190a78 5764 if (sched_smp_initialized) {
135fb3e1 5765 sched_domains_numa_masks_set(cpu);
40190a78 5766 cpuset_cpu_active();
e761b772 5767 }
7d976699
TG
5768
5769 /*
5770 * Put the rq online, if not already. This happens:
5771 *
5772 * 1) In the early boot process, because we build the real domains
d1ccc66d 5773 * after all CPUs have been brought up.
7d976699
TG
5774 *
5775 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5776 * domains.
5777 */
5778 raw_spin_lock_irqsave(&rq->lock, flags);
5779 if (rq->rd) {
5780 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5781 set_rq_online(rq);
5782 }
5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
5784
5785 update_max_interval();
5786
40190a78 5787 return 0;
135fb3e1
TG
5788}
5789
40190a78 5790int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5791{
135fb3e1
TG
5792 int ret;
5793
40190a78 5794 set_cpu_active(cpu, false);
b2454caa
PZ
5795 /*
5796 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5797 * users of this state to go away such that all new such users will
5798 * observe it.
5799 *
5800 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5801 * not imply sync_sched(), so wait for both.
5802 *
5803 * Do sync before park smpboot threads to take care the rcu boost case.
5804 */
5805 if (IS_ENABLED(CONFIG_PREEMPT))
5806 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5807 else
5808 synchronize_rcu();
40190a78
TG
5809
5810 if (!sched_smp_initialized)
5811 return 0;
5812
5813 ret = cpuset_cpu_inactive(cpu);
5814 if (ret) {
5815 set_cpu_active(cpu, true);
5816 return ret;
135fb3e1 5817 }
40190a78
TG
5818 sched_domains_numa_masks_clear(cpu);
5819 return 0;
135fb3e1
TG
5820}
5821
94baf7a5
TG
5822static void sched_rq_cpu_starting(unsigned int cpu)
5823{
5824 struct rq *rq = cpu_rq(cpu);
5825
5826 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5827 update_max_interval();
5828}
5829
135fb3e1
TG
5830int sched_cpu_starting(unsigned int cpu)
5831{
5832 set_cpu_rq_start_time(cpu);
94baf7a5 5833 sched_rq_cpu_starting(cpu);
135fb3e1 5834 return 0;
e761b772 5835}
e761b772 5836
f2785ddb
TG
5837#ifdef CONFIG_HOTPLUG_CPU
5838int sched_cpu_dying(unsigned int cpu)
5839{
5840 struct rq *rq = cpu_rq(cpu);
5841 unsigned long flags;
5842
5843 /* Handle pending wakeups and then migrate everything off */
5844 sched_ttwu_pending();
5845 raw_spin_lock_irqsave(&rq->lock, flags);
5846 if (rq->rd) {
5847 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5848 set_rq_offline(rq);
5849 }
5850 migrate_tasks(rq);
5851 BUG_ON(rq->nr_running != 1);
5852 raw_spin_unlock_irqrestore(&rq->lock, flags);
5853 calc_load_migrate(rq);
5854 update_max_interval();
20a5c8cc 5855 nohz_balance_exit_idle(cpu);
e5ef27d0 5856 hrtick_clear(rq);
f2785ddb
TG
5857 return 0;
5858}
5859#endif
5860
1b568f0a
PZ
5861#ifdef CONFIG_SCHED_SMT
5862DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5863
5864static void sched_init_smt(void)
5865{
5866 /*
5867 * We've enumerated all CPUs and will assume that if any CPU
5868 * has SMT siblings, CPU0 will too.
5869 */
5870 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5871 static_branch_enable(&sched_smt_present);
5872}
5873#else
5874static inline void sched_init_smt(void) { }
5875#endif
5876
1da177e4
LT
5877void __init sched_init_smp(void)
5878{
dcc30a35
RR
5879 cpumask_var_t non_isolated_cpus;
5880
5881 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 5882 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 5883
cb83b629
PZ
5884 sched_init_numa();
5885
6acce3ef
PZ
5886 /*
5887 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5888 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5889 * happen.
5890 */
712555ee 5891 mutex_lock(&sched_domains_mutex);
c4a8849a 5892 init_sched_domains(cpu_active_mask);
dcc30a35
RR
5893 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5894 if (cpumask_empty(non_isolated_cpus))
5895 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5896 mutex_unlock(&sched_domains_mutex);
e761b772 5897
5c1e1767 5898 /* Move init over to a non-isolated CPU */
dcc30a35 5899 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5900 BUG();
19978ca6 5901 sched_init_granularity();
dcc30a35 5902 free_cpumask_var(non_isolated_cpus);
4212823f 5903
0e3900e6 5904 init_sched_rt_class();
1baca4ce 5905 init_sched_dl_class();
1b568f0a
PZ
5906
5907 sched_init_smt();
9881b024 5908 sched_clock_init_late();
1b568f0a 5909
e26fbffd 5910 sched_smp_initialized = true;
1da177e4 5911}
e26fbffd
TG
5912
5913static int __init migration_init(void)
5914{
94baf7a5 5915 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5916 return 0;
1da177e4 5917}
e26fbffd
TG
5918early_initcall(migration_init);
5919
1da177e4
LT
5920#else
5921void __init sched_init_smp(void)
5922{
19978ca6 5923 sched_init_granularity();
9881b024 5924 sched_clock_init_late();
1da177e4
LT
5925}
5926#endif /* CONFIG_SMP */
5927
5928int in_sched_functions(unsigned long addr)
5929{
1da177e4
LT
5930 return in_lock_functions(addr) ||
5931 (addr >= (unsigned long)__sched_text_start
5932 && addr < (unsigned long)__sched_text_end);
5933}
5934
029632fb 5935#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5936/*
5937 * Default task group.
5938 * Every task in system belongs to this group at bootup.
5939 */
029632fb 5940struct task_group root_task_group;
35cf4e50 5941LIST_HEAD(task_groups);
b0367629
WL
5942
5943/* Cacheline aligned slab cache for task_group */
5944static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5945#endif
6f505b16 5946
e6252c3e 5947DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5948DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5949
9dcb8b68
LT
5950#define WAIT_TABLE_BITS 8
5951#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5952static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5953
5954wait_queue_head_t *bit_waitqueue(void *word, int bit)
5955{
5956 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5957 unsigned long val = (unsigned long)word << shift | bit;
5958
5959 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5960}
5961EXPORT_SYMBOL(bit_waitqueue);
5962
1da177e4
LT
5963void __init sched_init(void)
5964{
dd41f596 5965 int i, j;
434d53b0
MT
5966 unsigned long alloc_size = 0, ptr;
5967
9881b024
PZ
5968 sched_clock_init();
5969
9dcb8b68
LT
5970 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5971 init_waitqueue_head(bit_wait_table + i);
5972
434d53b0
MT
5973#ifdef CONFIG_FAIR_GROUP_SCHED
5974 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5975#endif
5976#ifdef CONFIG_RT_GROUP_SCHED
5977 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5978#endif
434d53b0 5979 if (alloc_size) {
36b7b6d4 5980 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5981
5982#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5983 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5984 ptr += nr_cpu_ids * sizeof(void **);
5985
07e06b01 5986 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5987 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5988
6d6bc0ad 5989#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5990#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5991 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5992 ptr += nr_cpu_ids * sizeof(void **);
5993
07e06b01 5994 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5995 ptr += nr_cpu_ids * sizeof(void **);
5996
6d6bc0ad 5997#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5998 }
df7c8e84 5999#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6000 for_each_possible_cpu(i) {
6001 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6002 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6003 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6004 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6005 }
b74e6278 6006#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6007
d1ccc66d
IM
6008 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6009 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6010
57d885fe
GH
6011#ifdef CONFIG_SMP
6012 init_defrootdomain();
6013#endif
6014
d0b27fa7 6015#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6016 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6017 global_rt_period(), global_rt_runtime());
6d6bc0ad 6018#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6019
7c941438 6020#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6021 task_group_cache = KMEM_CACHE(task_group, 0);
6022
07e06b01
YZ
6023 list_add(&root_task_group.list, &task_groups);
6024 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6025 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6026 autogroup_init(&init_task);
7c941438 6027#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6028
0a945022 6029 for_each_possible_cpu(i) {
70b97a7f 6030 struct rq *rq;
1da177e4
LT
6031
6032 rq = cpu_rq(i);
05fa785c 6033 raw_spin_lock_init(&rq->lock);
7897986b 6034 rq->nr_running = 0;
dce48a84
TG
6035 rq->calc_load_active = 0;
6036 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6037 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6038 init_rt_rq(&rq->rt);
6039 init_dl_rq(&rq->dl);
dd41f596 6040#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6041 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6042 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6043 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6044 /*
d1ccc66d 6045 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6046 *
6047 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6048 * gets 100% of the CPU resources in the system. This overall
6049 * system CPU resource is divided among the tasks of
07e06b01 6050 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6051 * based on each entity's (task or task-group's) weight
6052 * (se->load.weight).
6053 *
07e06b01 6054 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6055 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6056 * then A0's share of the CPU resource is:
354d60c2 6057 *
0d905bca 6058 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6059 *
07e06b01
YZ
6060 * We achieve this by letting root_task_group's tasks sit
6061 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6062 */
ab84d31e 6063 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6064 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6065#endif /* CONFIG_FAIR_GROUP_SCHED */
6066
6067 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6068#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6069 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6070#endif
1da177e4 6071
dd41f596
IM
6072 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6073 rq->cpu_load[j] = 0;
fdf3e95d 6074
1da177e4 6075#ifdef CONFIG_SMP
41c7ce9a 6076 rq->sd = NULL;
57d885fe 6077 rq->rd = NULL;
ca6d75e6 6078 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6079 rq->balance_callback = NULL;
1da177e4 6080 rq->active_balance = 0;
dd41f596 6081 rq->next_balance = jiffies;
1da177e4 6082 rq->push_cpu = 0;
0a2966b4 6083 rq->cpu = i;
1f11eb6a 6084 rq->online = 0;
eae0c9df
MG
6085 rq->idle_stamp = 0;
6086 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6087 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6088
6089 INIT_LIST_HEAD(&rq->cfs_tasks);
6090
dc938520 6091 rq_attach_root(rq, &def_root_domain);
3451d024 6092#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6093 rq->last_load_update_tick = jiffies;
1c792db7 6094 rq->nohz_flags = 0;
83cd4fe2 6095#endif
265f22a9
FW
6096#ifdef CONFIG_NO_HZ_FULL
6097 rq->last_sched_tick = 0;
6098#endif
9fd81dd5 6099#endif /* CONFIG_SMP */
8f4d37ec 6100 init_rq_hrtick(rq);
1da177e4 6101 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6102 }
6103
2dd73a4f 6104 set_load_weight(&init_task);
b50f60ce 6105
1da177e4
LT
6106 /*
6107 * The boot idle thread does lazy MMU switching as well:
6108 */
f1f10076 6109 mmgrab(&init_mm);
1da177e4
LT
6110 enter_lazy_tlb(&init_mm, current);
6111
6112 /*
6113 * Make us the idle thread. Technically, schedule() should not be
6114 * called from this thread, however somewhere below it might be,
6115 * but because we are the idle thread, we just pick up running again
6116 * when this runqueue becomes "idle".
6117 */
6118 init_idle(current, smp_processor_id());
dce48a84
TG
6119
6120 calc_load_update = jiffies + LOAD_FREQ;
6121
bf4d83f6 6122#ifdef CONFIG_SMP
4cb98839 6123 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6124 /* May be allocated at isolcpus cmdline parse time */
6125 if (cpu_isolated_map == NULL)
6126 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6127 idle_thread_set_boot_cpu();
9cf7243d 6128 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6129#endif
6130 init_sched_fair_class();
6a7b3dc3 6131
4698f88c
JP
6132 init_schedstats();
6133
6892b75e 6134 scheduler_running = 1;
1da177e4
LT
6135}
6136
d902db1e 6137#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6138static inline int preempt_count_equals(int preempt_offset)
6139{
da7142e2 6140 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6141
4ba8216c 6142 return (nested == preempt_offset);
e4aafea2
FW
6143}
6144
d894837f 6145void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6146{
8eb23b9f
PZ
6147 /*
6148 * Blocking primitives will set (and therefore destroy) current->state,
6149 * since we will exit with TASK_RUNNING make sure we enter with it,
6150 * otherwise we will destroy state.
6151 */
00845eb9 6152 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6153 "do not call blocking ops when !TASK_RUNNING; "
6154 "state=%lx set at [<%p>] %pS\n",
6155 current->state,
6156 (void *)current->task_state_change,
00845eb9 6157 (void *)current->task_state_change);
8eb23b9f 6158
3427445a
PZ
6159 ___might_sleep(file, line, preempt_offset);
6160}
6161EXPORT_SYMBOL(__might_sleep);
6162
6163void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6164{
d1ccc66d
IM
6165 /* Ratelimiting timestamp: */
6166 static unsigned long prev_jiffy;
6167
d1c6d149 6168 unsigned long preempt_disable_ip;
1da177e4 6169
d1ccc66d
IM
6170 /* WARN_ON_ONCE() by default, no rate limit required: */
6171 rcu_sleep_check();
6172
db273be2
TG
6173 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6174 !is_idle_task(current)) ||
e4aafea2 6175 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6176 return;
6177 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6178 return;
6179 prev_jiffy = jiffies;
6180
d1ccc66d 6181 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6182 preempt_disable_ip = get_preempt_disable_ip(current);
6183
3df0fc5b
PZ
6184 printk(KERN_ERR
6185 "BUG: sleeping function called from invalid context at %s:%d\n",
6186 file, line);
6187 printk(KERN_ERR
6188 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6189 in_atomic(), irqs_disabled(),
6190 current->pid, current->comm);
aef745fc 6191
a8b686b3
ES
6192 if (task_stack_end_corrupted(current))
6193 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6194
aef745fc
IM
6195 debug_show_held_locks(current);
6196 if (irqs_disabled())
6197 print_irqtrace_events(current);
d1c6d149
VN
6198 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6199 && !preempt_count_equals(preempt_offset)) {
8f47b187 6200 pr_err("Preemption disabled at:");
d1c6d149 6201 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6202 pr_cont("\n");
6203 }
aef745fc 6204 dump_stack();
f0b22e39 6205 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6206}
3427445a 6207EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6208#endif
6209
6210#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6211void normalize_rt_tasks(void)
3a5e4dc1 6212{
dbc7f069 6213 struct task_struct *g, *p;
d50dde5a
DF
6214 struct sched_attr attr = {
6215 .sched_policy = SCHED_NORMAL,
6216 };
1da177e4 6217
3472eaa1 6218 read_lock(&tasklist_lock);
5d07f420 6219 for_each_process_thread(g, p) {
178be793
IM
6220 /*
6221 * Only normalize user tasks:
6222 */
3472eaa1 6223 if (p->flags & PF_KTHREAD)
178be793
IM
6224 continue;
6225
4fa8d299
JP
6226 p->se.exec_start = 0;
6227 schedstat_set(p->se.statistics.wait_start, 0);
6228 schedstat_set(p->se.statistics.sleep_start, 0);
6229 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6230
aab03e05 6231 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6232 /*
6233 * Renice negative nice level userspace
6234 * tasks back to 0:
6235 */
3472eaa1 6236 if (task_nice(p) < 0)
dd41f596 6237 set_user_nice(p, 0);
1da177e4 6238 continue;
dd41f596 6239 }
1da177e4 6240
dbc7f069 6241 __sched_setscheduler(p, &attr, false, false);
5d07f420 6242 }
3472eaa1 6243 read_unlock(&tasklist_lock);
1da177e4
LT
6244}
6245
6246#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6247
67fc4e0c 6248#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6249/*
67fc4e0c 6250 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6251 *
6252 * They can only be called when the whole system has been
6253 * stopped - every CPU needs to be quiescent, and no scheduling
6254 * activity can take place. Using them for anything else would
6255 * be a serious bug, and as a result, they aren't even visible
6256 * under any other configuration.
6257 */
6258
6259/**
d1ccc66d 6260 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6261 * @cpu: the processor in question.
6262 *
6263 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6264 *
6265 * Return: The current task for @cpu.
1df5c10a 6266 */
36c8b586 6267struct task_struct *curr_task(int cpu)
1df5c10a
LT
6268{
6269 return cpu_curr(cpu);
6270}
6271
67fc4e0c
JW
6272#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6273
6274#ifdef CONFIG_IA64
1df5c10a 6275/**
d1ccc66d 6276 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6277 * @cpu: the processor in question.
6278 * @p: the task pointer to set.
6279 *
6280 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6281 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6282 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6283 * must be called with all CPU's synchronized, and interrupts disabled, the
6284 * and caller must save the original value of the current task (see
6285 * curr_task() above) and restore that value before reenabling interrupts and
6286 * re-starting the system.
6287 *
6288 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6289 */
a458ae2e 6290void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6291{
6292 cpu_curr(cpu) = p;
6293}
6294
6295#endif
29f59db3 6296
7c941438 6297#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6298/* task_group_lock serializes the addition/removal of task groups */
6299static DEFINE_SPINLOCK(task_group_lock);
6300
2f5177f0 6301static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6302{
6303 free_fair_sched_group(tg);
6304 free_rt_sched_group(tg);
e9aa1dd1 6305 autogroup_free(tg);
b0367629 6306 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6307}
6308
6309/* allocate runqueue etc for a new task group */
ec7dc8ac 6310struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6311{
6312 struct task_group *tg;
bccbe08a 6313
b0367629 6314 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6315 if (!tg)
6316 return ERR_PTR(-ENOMEM);
6317
ec7dc8ac 6318 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6319 goto err;
6320
ec7dc8ac 6321 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6322 goto err;
6323
ace783b9
LZ
6324 return tg;
6325
6326err:
2f5177f0 6327 sched_free_group(tg);
ace783b9
LZ
6328 return ERR_PTR(-ENOMEM);
6329}
6330
6331void sched_online_group(struct task_group *tg, struct task_group *parent)
6332{
6333 unsigned long flags;
6334
8ed36996 6335 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6336 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6337
d1ccc66d
IM
6338 /* Root should already exist: */
6339 WARN_ON(!parent);
f473aa5e
PZ
6340
6341 tg->parent = parent;
f473aa5e 6342 INIT_LIST_HEAD(&tg->children);
09f2724a 6343 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6344 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6345
6346 online_fair_sched_group(tg);
29f59db3
SV
6347}
6348
9b5b7751 6349/* rcu callback to free various structures associated with a task group */
2f5177f0 6350static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6351{
d1ccc66d 6352 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6353 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6354}
6355
4cf86d77 6356void sched_destroy_group(struct task_group *tg)
ace783b9 6357{
d1ccc66d 6358 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6359 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6360}
6361
6362void sched_offline_group(struct task_group *tg)
29f59db3 6363{
8ed36996 6364 unsigned long flags;
29f59db3 6365
d1ccc66d 6366 /* End participation in shares distribution: */
6fe1f348 6367 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6368
6369 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6370 list_del_rcu(&tg->list);
f473aa5e 6371 list_del_rcu(&tg->siblings);
8ed36996 6372 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6373}
6374
ea86cb4b 6375static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6376{
8323f26c 6377 struct task_group *tg;
29f59db3 6378
f7b8a47d
KT
6379 /*
6380 * All callers are synchronized by task_rq_lock(); we do not use RCU
6381 * which is pointless here. Thus, we pass "true" to task_css_check()
6382 * to prevent lockdep warnings.
6383 */
6384 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6385 struct task_group, css);
6386 tg = autogroup_task_group(tsk, tg);
6387 tsk->sched_task_group = tg;
6388
810b3817 6389#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6390 if (tsk->sched_class->task_change_group)
6391 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6392 else
810b3817 6393#endif
b2b5ce02 6394 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6395}
6396
6397/*
6398 * Change task's runqueue when it moves between groups.
6399 *
6400 * The caller of this function should have put the task in its new group by
6401 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6402 * its new group.
6403 */
6404void sched_move_task(struct task_struct *tsk)
6405{
6406 int queued, running;
6407 struct rq_flags rf;
6408 struct rq *rq;
6409
6410 rq = task_rq_lock(tsk, &rf);
1b1d6225 6411 update_rq_clock(rq);
ea86cb4b
VG
6412
6413 running = task_current(rq, tsk);
6414 queued = task_on_rq_queued(tsk);
6415
6416 if (queued)
6417 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
bb3bac2c 6418 if (running)
ea86cb4b
VG
6419 put_prev_task(rq, tsk);
6420
6421 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6422
da0c1e65 6423 if (queued)
ff77e468 6424 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
bb3bac2c 6425 if (running)
b2bf6c31 6426 set_curr_task(rq, tsk);
29f59db3 6427
eb580751 6428 task_rq_unlock(rq, tsk, &rf);
29f59db3 6429}
7c941438 6430#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6431
a790de99
PT
6432#ifdef CONFIG_RT_GROUP_SCHED
6433/*
6434 * Ensure that the real time constraints are schedulable.
6435 */
6436static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6437
9a7e0b18
PZ
6438/* Must be called with tasklist_lock held */
6439static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6440{
9a7e0b18 6441 struct task_struct *g, *p;
b40b2e8e 6442
1fe89e1b
PZ
6443 /*
6444 * Autogroups do not have RT tasks; see autogroup_create().
6445 */
6446 if (task_group_is_autogroup(tg))
6447 return 0;
6448
5d07f420 6449 for_each_process_thread(g, p) {
8651c658 6450 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6451 return 1;
5d07f420 6452 }
b40b2e8e 6453
9a7e0b18
PZ
6454 return 0;
6455}
b40b2e8e 6456
9a7e0b18
PZ
6457struct rt_schedulable_data {
6458 struct task_group *tg;
6459 u64 rt_period;
6460 u64 rt_runtime;
6461};
b40b2e8e 6462
a790de99 6463static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6464{
6465 struct rt_schedulable_data *d = data;
6466 struct task_group *child;
6467 unsigned long total, sum = 0;
6468 u64 period, runtime;
b40b2e8e 6469
9a7e0b18
PZ
6470 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6471 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6472
9a7e0b18
PZ
6473 if (tg == d->tg) {
6474 period = d->rt_period;
6475 runtime = d->rt_runtime;
b40b2e8e 6476 }
b40b2e8e 6477
4653f803
PZ
6478 /*
6479 * Cannot have more runtime than the period.
6480 */
6481 if (runtime > period && runtime != RUNTIME_INF)
6482 return -EINVAL;
6f505b16 6483
4653f803
PZ
6484 /*
6485 * Ensure we don't starve existing RT tasks.
6486 */
9a7e0b18
PZ
6487 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6488 return -EBUSY;
6f505b16 6489
9a7e0b18 6490 total = to_ratio(period, runtime);
6f505b16 6491
4653f803
PZ
6492 /*
6493 * Nobody can have more than the global setting allows.
6494 */
6495 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6496 return -EINVAL;
6f505b16 6497
4653f803
PZ
6498 /*
6499 * The sum of our children's runtime should not exceed our own.
6500 */
9a7e0b18
PZ
6501 list_for_each_entry_rcu(child, &tg->children, siblings) {
6502 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6503 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6504
9a7e0b18
PZ
6505 if (child == d->tg) {
6506 period = d->rt_period;
6507 runtime = d->rt_runtime;
6508 }
6f505b16 6509
9a7e0b18 6510 sum += to_ratio(period, runtime);
9f0c1e56 6511 }
6f505b16 6512
9a7e0b18
PZ
6513 if (sum > total)
6514 return -EINVAL;
6515
6516 return 0;
6f505b16
PZ
6517}
6518
9a7e0b18 6519static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6520{
8277434e
PT
6521 int ret;
6522
9a7e0b18
PZ
6523 struct rt_schedulable_data data = {
6524 .tg = tg,
6525 .rt_period = period,
6526 .rt_runtime = runtime,
6527 };
6528
8277434e
PT
6529 rcu_read_lock();
6530 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6531 rcu_read_unlock();
6532
6533 return ret;
521f1a24
DG
6534}
6535
ab84d31e 6536static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6537 u64 rt_period, u64 rt_runtime)
6f505b16 6538{
ac086bc2 6539 int i, err = 0;
9f0c1e56 6540
2636ed5f
PZ
6541 /*
6542 * Disallowing the root group RT runtime is BAD, it would disallow the
6543 * kernel creating (and or operating) RT threads.
6544 */
6545 if (tg == &root_task_group && rt_runtime == 0)
6546 return -EINVAL;
6547
6548 /* No period doesn't make any sense. */
6549 if (rt_period == 0)
6550 return -EINVAL;
6551
9f0c1e56 6552 mutex_lock(&rt_constraints_mutex);
521f1a24 6553 read_lock(&tasklist_lock);
9a7e0b18
PZ
6554 err = __rt_schedulable(tg, rt_period, rt_runtime);
6555 if (err)
9f0c1e56 6556 goto unlock;
ac086bc2 6557
0986b11b 6558 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6559 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6560 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6561
6562 for_each_possible_cpu(i) {
6563 struct rt_rq *rt_rq = tg->rt_rq[i];
6564
0986b11b 6565 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6566 rt_rq->rt_runtime = rt_runtime;
0986b11b 6567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6568 }
0986b11b 6569 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6570unlock:
521f1a24 6571 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6572 mutex_unlock(&rt_constraints_mutex);
6573
6574 return err;
6f505b16
PZ
6575}
6576
25cc7da7 6577static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6578{
6579 u64 rt_runtime, rt_period;
6580
6581 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6582 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6583 if (rt_runtime_us < 0)
6584 rt_runtime = RUNTIME_INF;
6585
ab84d31e 6586 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6587}
6588
25cc7da7 6589static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6590{
6591 u64 rt_runtime_us;
6592
d0b27fa7 6593 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6594 return -1;
6595
d0b27fa7 6596 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6597 do_div(rt_runtime_us, NSEC_PER_USEC);
6598 return rt_runtime_us;
6599}
d0b27fa7 6600
ce2f5fe4 6601static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6602{
6603 u64 rt_runtime, rt_period;
6604
ce2f5fe4 6605 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6606 rt_runtime = tg->rt_bandwidth.rt_runtime;
6607
ab84d31e 6608 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6609}
6610
25cc7da7 6611static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6612{
6613 u64 rt_period_us;
6614
6615 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6616 do_div(rt_period_us, NSEC_PER_USEC);
6617 return rt_period_us;
6618}
332ac17e 6619#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6620
332ac17e 6621#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6622static int sched_rt_global_constraints(void)
6623{
6624 int ret = 0;
6625
6626 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6627 read_lock(&tasklist_lock);
4653f803 6628 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6629 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6630 mutex_unlock(&rt_constraints_mutex);
6631
6632 return ret;
6633}
54e99124 6634
25cc7da7 6635static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6636{
6637 /* Don't accept realtime tasks when there is no way for them to run */
6638 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6639 return 0;
6640
6641 return 1;
6642}
6643
6d6bc0ad 6644#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6645static int sched_rt_global_constraints(void)
6646{
ac086bc2 6647 unsigned long flags;
8c5e9554 6648 int i;
ec5d4989 6649
0986b11b 6650 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6651 for_each_possible_cpu(i) {
6652 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6653
0986b11b 6654 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6655 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6656 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6657 }
0986b11b 6658 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6659
8c5e9554 6660 return 0;
d0b27fa7 6661}
6d6bc0ad 6662#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6663
a1963b81 6664static int sched_dl_global_validate(void)
332ac17e 6665{
1724813d
PZ
6666 u64 runtime = global_rt_runtime();
6667 u64 period = global_rt_period();
332ac17e 6668 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6669 struct dl_bw *dl_b;
1724813d 6670 int cpu, ret = 0;
49516342 6671 unsigned long flags;
332ac17e
DF
6672
6673 /*
6674 * Here we want to check the bandwidth not being set to some
6675 * value smaller than the currently allocated bandwidth in
6676 * any of the root_domains.
6677 *
6678 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6679 * cycling on root_domains... Discussion on different/better
6680 * solutions is welcome!
6681 */
1724813d 6682 for_each_possible_cpu(cpu) {
f10e00f4
KT
6683 rcu_read_lock_sched();
6684 dl_b = dl_bw_of(cpu);
332ac17e 6685
49516342 6686 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6687 if (new_bw < dl_b->total_bw)
6688 ret = -EBUSY;
49516342 6689 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6690
f10e00f4
KT
6691 rcu_read_unlock_sched();
6692
1724813d
PZ
6693 if (ret)
6694 break;
332ac17e
DF
6695 }
6696
1724813d 6697 return ret;
332ac17e
DF
6698}
6699
1724813d 6700static void sched_dl_do_global(void)
ce0dbbbb 6701{
1724813d 6702 u64 new_bw = -1;
f10e00f4 6703 struct dl_bw *dl_b;
1724813d 6704 int cpu;
49516342 6705 unsigned long flags;
ce0dbbbb 6706
1724813d
PZ
6707 def_dl_bandwidth.dl_period = global_rt_period();
6708 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6709
6710 if (global_rt_runtime() != RUNTIME_INF)
6711 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6712
6713 /*
6714 * FIXME: As above...
6715 */
6716 for_each_possible_cpu(cpu) {
f10e00f4
KT
6717 rcu_read_lock_sched();
6718 dl_b = dl_bw_of(cpu);
1724813d 6719
49516342 6720 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6721 dl_b->bw = new_bw;
49516342 6722 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6723
6724 rcu_read_unlock_sched();
ce0dbbbb 6725 }
1724813d
PZ
6726}
6727
6728static int sched_rt_global_validate(void)
6729{
6730 if (sysctl_sched_rt_period <= 0)
6731 return -EINVAL;
6732
e9e7cb38
JL
6733 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6734 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6735 return -EINVAL;
6736
6737 return 0;
6738}
6739
6740static void sched_rt_do_global(void)
6741{
6742 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6743 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6744}
6745
d0b27fa7 6746int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6747 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6748 loff_t *ppos)
6749{
d0b27fa7
PZ
6750 int old_period, old_runtime;
6751 static DEFINE_MUTEX(mutex);
1724813d 6752 int ret;
d0b27fa7
PZ
6753
6754 mutex_lock(&mutex);
6755 old_period = sysctl_sched_rt_period;
6756 old_runtime = sysctl_sched_rt_runtime;
6757
8d65af78 6758 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6759
6760 if (!ret && write) {
1724813d
PZ
6761 ret = sched_rt_global_validate();
6762 if (ret)
6763 goto undo;
6764
a1963b81 6765 ret = sched_dl_global_validate();
1724813d
PZ
6766 if (ret)
6767 goto undo;
6768
a1963b81 6769 ret = sched_rt_global_constraints();
1724813d
PZ
6770 if (ret)
6771 goto undo;
6772
6773 sched_rt_do_global();
6774 sched_dl_do_global();
6775 }
6776 if (0) {
6777undo:
6778 sysctl_sched_rt_period = old_period;
6779 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6780 }
6781 mutex_unlock(&mutex);
6782
6783 return ret;
6784}
68318b8e 6785
1724813d 6786int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6787 void __user *buffer, size_t *lenp,
6788 loff_t *ppos)
6789{
6790 int ret;
332ac17e 6791 static DEFINE_MUTEX(mutex);
332ac17e
DF
6792
6793 mutex_lock(&mutex);
332ac17e 6794 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6795 /*
6796 * Make sure that internally we keep jiffies.
6797 * Also, writing zero resets the timeslice to default:
6798 */
332ac17e 6799 if (!ret && write) {
975e155e
SZ
6800 sched_rr_timeslice =
6801 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6802 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6803 }
6804 mutex_unlock(&mutex);
332ac17e
DF
6805 return ret;
6806}
6807
052f1dc7 6808#ifdef CONFIG_CGROUP_SCHED
68318b8e 6809
a7c6d554 6810static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6811{
a7c6d554 6812 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6813}
6814
eb95419b
TH
6815static struct cgroup_subsys_state *
6816cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6817{
eb95419b
TH
6818 struct task_group *parent = css_tg(parent_css);
6819 struct task_group *tg;
68318b8e 6820
eb95419b 6821 if (!parent) {
68318b8e 6822 /* This is early initialization for the top cgroup */
07e06b01 6823 return &root_task_group.css;
68318b8e
SV
6824 }
6825
ec7dc8ac 6826 tg = sched_create_group(parent);
68318b8e
SV
6827 if (IS_ERR(tg))
6828 return ERR_PTR(-ENOMEM);
6829
68318b8e
SV
6830 return &tg->css;
6831}
6832
96b77745
KK
6833/* Expose task group only after completing cgroup initialization */
6834static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6835{
6836 struct task_group *tg = css_tg(css);
6837 struct task_group *parent = css_tg(css->parent);
6838
6839 if (parent)
6840 sched_online_group(tg, parent);
6841 return 0;
6842}
6843
2f5177f0 6844static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6845{
eb95419b 6846 struct task_group *tg = css_tg(css);
ace783b9 6847
2f5177f0 6848 sched_offline_group(tg);
ace783b9
LZ
6849}
6850
eb95419b 6851static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6852{
eb95419b 6853 struct task_group *tg = css_tg(css);
68318b8e 6854
2f5177f0
PZ
6855 /*
6856 * Relies on the RCU grace period between css_released() and this.
6857 */
6858 sched_free_group(tg);
ace783b9
LZ
6859}
6860
ea86cb4b
VG
6861/*
6862 * This is called before wake_up_new_task(), therefore we really only
6863 * have to set its group bits, all the other stuff does not apply.
6864 */
b53202e6 6865static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6866{
ea86cb4b
VG
6867 struct rq_flags rf;
6868 struct rq *rq;
6869
6870 rq = task_rq_lock(task, &rf);
6871
80f5c1b8 6872 update_rq_clock(rq);
ea86cb4b
VG
6873 sched_change_group(task, TASK_SET_GROUP);
6874
6875 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6876}
6877
1f7dd3e5 6878static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6879{
bb9d97b6 6880 struct task_struct *task;
1f7dd3e5 6881 struct cgroup_subsys_state *css;
7dc603c9 6882 int ret = 0;
bb9d97b6 6883
1f7dd3e5 6884 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6885#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6886 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6887 return -EINVAL;
b68aa230 6888#else
bb9d97b6
TH
6889 /* We don't support RT-tasks being in separate groups */
6890 if (task->sched_class != &fair_sched_class)
6891 return -EINVAL;
b68aa230 6892#endif
7dc603c9
PZ
6893 /*
6894 * Serialize against wake_up_new_task() such that if its
6895 * running, we're sure to observe its full state.
6896 */
6897 raw_spin_lock_irq(&task->pi_lock);
6898 /*
6899 * Avoid calling sched_move_task() before wake_up_new_task()
6900 * has happened. This would lead to problems with PELT, due to
6901 * move wanting to detach+attach while we're not attached yet.
6902 */
6903 if (task->state == TASK_NEW)
6904 ret = -EINVAL;
6905 raw_spin_unlock_irq(&task->pi_lock);
6906
6907 if (ret)
6908 break;
bb9d97b6 6909 }
7dc603c9 6910 return ret;
be367d09 6911}
68318b8e 6912
1f7dd3e5 6913static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6914{
bb9d97b6 6915 struct task_struct *task;
1f7dd3e5 6916 struct cgroup_subsys_state *css;
bb9d97b6 6917
1f7dd3e5 6918 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6919 sched_move_task(task);
68318b8e
SV
6920}
6921
052f1dc7 6922#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6923static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6924 struct cftype *cftype, u64 shareval)
68318b8e 6925{
182446d0 6926 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6927}
6928
182446d0
TH
6929static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6930 struct cftype *cft)
68318b8e 6931{
182446d0 6932 struct task_group *tg = css_tg(css);
68318b8e 6933
c8b28116 6934 return (u64) scale_load_down(tg->shares);
68318b8e 6935}
ab84d31e
PT
6936
6937#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6938static DEFINE_MUTEX(cfs_constraints_mutex);
6939
ab84d31e
PT
6940const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6941const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6942
a790de99
PT
6943static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6944
ab84d31e
PT
6945static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6946{
56f570e5 6947 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6949
6950 if (tg == &root_task_group)
6951 return -EINVAL;
6952
6953 /*
6954 * Ensure we have at some amount of bandwidth every period. This is
6955 * to prevent reaching a state of large arrears when throttled via
6956 * entity_tick() resulting in prolonged exit starvation.
6957 */
6958 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6959 return -EINVAL;
6960
6961 /*
6962 * Likewise, bound things on the otherside by preventing insane quota
6963 * periods. This also allows us to normalize in computing quota
6964 * feasibility.
6965 */
6966 if (period > max_cfs_quota_period)
6967 return -EINVAL;
6968
0e59bdae
KT
6969 /*
6970 * Prevent race between setting of cfs_rq->runtime_enabled and
6971 * unthrottle_offline_cfs_rqs().
6972 */
6973 get_online_cpus();
a790de99
PT
6974 mutex_lock(&cfs_constraints_mutex);
6975 ret = __cfs_schedulable(tg, period, quota);
6976 if (ret)
6977 goto out_unlock;
6978
58088ad0 6979 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6980 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6981 /*
6982 * If we need to toggle cfs_bandwidth_used, off->on must occur
6983 * before making related changes, and on->off must occur afterwards
6984 */
6985 if (runtime_enabled && !runtime_was_enabled)
6986 cfs_bandwidth_usage_inc();
ab84d31e
PT
6987 raw_spin_lock_irq(&cfs_b->lock);
6988 cfs_b->period = ns_to_ktime(period);
6989 cfs_b->quota = quota;
58088ad0 6990
a9cf55b2 6991 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6992
6993 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6994 if (runtime_enabled)
6995 start_cfs_bandwidth(cfs_b);
d1ccc66d 6996
ab84d31e
PT
6997 raw_spin_unlock_irq(&cfs_b->lock);
6998
0e59bdae 6999 for_each_online_cpu(i) {
ab84d31e 7000 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7001 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7002
7003 raw_spin_lock_irq(&rq->lock);
58088ad0 7004 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7005 cfs_rq->runtime_remaining = 0;
671fd9da 7006
029632fb 7007 if (cfs_rq->throttled)
671fd9da 7008 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7009 raw_spin_unlock_irq(&rq->lock);
7010 }
1ee14e6c
BS
7011 if (runtime_was_enabled && !runtime_enabled)
7012 cfs_bandwidth_usage_dec();
a790de99
PT
7013out_unlock:
7014 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7015 put_online_cpus();
ab84d31e 7016
a790de99 7017 return ret;
ab84d31e
PT
7018}
7019
7020int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7021{
7022 u64 quota, period;
7023
029632fb 7024 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7025 if (cfs_quota_us < 0)
7026 quota = RUNTIME_INF;
7027 else
7028 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7029
7030 return tg_set_cfs_bandwidth(tg, period, quota);
7031}
7032
7033long tg_get_cfs_quota(struct task_group *tg)
7034{
7035 u64 quota_us;
7036
029632fb 7037 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7038 return -1;
7039
029632fb 7040 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7041 do_div(quota_us, NSEC_PER_USEC);
7042
7043 return quota_us;
7044}
7045
7046int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7047{
7048 u64 quota, period;
7049
7050 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7051 quota = tg->cfs_bandwidth.quota;
ab84d31e 7052
ab84d31e
PT
7053 return tg_set_cfs_bandwidth(tg, period, quota);
7054}
7055
7056long tg_get_cfs_period(struct task_group *tg)
7057{
7058 u64 cfs_period_us;
7059
029632fb 7060 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7061 do_div(cfs_period_us, NSEC_PER_USEC);
7062
7063 return cfs_period_us;
7064}
7065
182446d0
TH
7066static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7067 struct cftype *cft)
ab84d31e 7068{
182446d0 7069 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7070}
7071
182446d0
TH
7072static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7073 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7074{
182446d0 7075 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7076}
7077
182446d0
TH
7078static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7079 struct cftype *cft)
ab84d31e 7080{
182446d0 7081 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7082}
7083
182446d0
TH
7084static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7085 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7086{
182446d0 7087 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7088}
7089
a790de99
PT
7090struct cfs_schedulable_data {
7091 struct task_group *tg;
7092 u64 period, quota;
7093};
7094
7095/*
7096 * normalize group quota/period to be quota/max_period
7097 * note: units are usecs
7098 */
7099static u64 normalize_cfs_quota(struct task_group *tg,
7100 struct cfs_schedulable_data *d)
7101{
7102 u64 quota, period;
7103
7104 if (tg == d->tg) {
7105 period = d->period;
7106 quota = d->quota;
7107 } else {
7108 period = tg_get_cfs_period(tg);
7109 quota = tg_get_cfs_quota(tg);
7110 }
7111
7112 /* note: these should typically be equivalent */
7113 if (quota == RUNTIME_INF || quota == -1)
7114 return RUNTIME_INF;
7115
7116 return to_ratio(period, quota);
7117}
7118
7119static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7120{
7121 struct cfs_schedulable_data *d = data;
029632fb 7122 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7123 s64 quota = 0, parent_quota = -1;
7124
7125 if (!tg->parent) {
7126 quota = RUNTIME_INF;
7127 } else {
029632fb 7128 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7129
7130 quota = normalize_cfs_quota(tg, d);
9c58c79a 7131 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7132
7133 /*
d1ccc66d
IM
7134 * Ensure max(child_quota) <= parent_quota, inherit when no
7135 * limit is set:
a790de99
PT
7136 */
7137 if (quota == RUNTIME_INF)
7138 quota = parent_quota;
7139 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7140 return -EINVAL;
7141 }
9c58c79a 7142 cfs_b->hierarchical_quota = quota;
a790de99
PT
7143
7144 return 0;
7145}
7146
7147static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7148{
8277434e 7149 int ret;
a790de99
PT
7150 struct cfs_schedulable_data data = {
7151 .tg = tg,
7152 .period = period,
7153 .quota = quota,
7154 };
7155
7156 if (quota != RUNTIME_INF) {
7157 do_div(data.period, NSEC_PER_USEC);
7158 do_div(data.quota, NSEC_PER_USEC);
7159 }
7160
8277434e
PT
7161 rcu_read_lock();
7162 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7163 rcu_read_unlock();
7164
7165 return ret;
a790de99 7166}
e8da1b18 7167
2da8ca82 7168static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7169{
2da8ca82 7170 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7171 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7172
44ffc75b
TH
7173 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7174 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7175 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7176
7177 return 0;
7178}
ab84d31e 7179#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7180#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7181
052f1dc7 7182#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7183static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7184 struct cftype *cft, s64 val)
6f505b16 7185{
182446d0 7186 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7187}
7188
182446d0
TH
7189static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7190 struct cftype *cft)
6f505b16 7191{
182446d0 7192 return sched_group_rt_runtime(css_tg(css));
6f505b16 7193}
d0b27fa7 7194
182446d0
TH
7195static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7196 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7197{
182446d0 7198 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7199}
7200
182446d0
TH
7201static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7202 struct cftype *cft)
d0b27fa7 7203{
182446d0 7204 return sched_group_rt_period(css_tg(css));
d0b27fa7 7205}
6d6bc0ad 7206#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7207
fe5c7cc2 7208static struct cftype cpu_files[] = {
052f1dc7 7209#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7210 {
7211 .name = "shares",
f4c753b7
PM
7212 .read_u64 = cpu_shares_read_u64,
7213 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7214 },
052f1dc7 7215#endif
ab84d31e
PT
7216#ifdef CONFIG_CFS_BANDWIDTH
7217 {
7218 .name = "cfs_quota_us",
7219 .read_s64 = cpu_cfs_quota_read_s64,
7220 .write_s64 = cpu_cfs_quota_write_s64,
7221 },
7222 {
7223 .name = "cfs_period_us",
7224 .read_u64 = cpu_cfs_period_read_u64,
7225 .write_u64 = cpu_cfs_period_write_u64,
7226 },
e8da1b18
NR
7227 {
7228 .name = "stat",
2da8ca82 7229 .seq_show = cpu_stats_show,
e8da1b18 7230 },
ab84d31e 7231#endif
052f1dc7 7232#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7233 {
9f0c1e56 7234 .name = "rt_runtime_us",
06ecb27c
PM
7235 .read_s64 = cpu_rt_runtime_read,
7236 .write_s64 = cpu_rt_runtime_write,
6f505b16 7237 },
d0b27fa7
PZ
7238 {
7239 .name = "rt_period_us",
f4c753b7
PM
7240 .read_u64 = cpu_rt_period_read_uint,
7241 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7242 },
052f1dc7 7243#endif
d1ccc66d 7244 { } /* Terminate */
68318b8e
SV
7245};
7246
073219e9 7247struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7248 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7249 .css_online = cpu_cgroup_css_online,
2f5177f0 7250 .css_released = cpu_cgroup_css_released,
92fb9748 7251 .css_free = cpu_cgroup_css_free,
eeb61e53 7252 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7253 .can_attach = cpu_cgroup_can_attach,
7254 .attach = cpu_cgroup_attach,
5577964e 7255 .legacy_cftypes = cpu_files,
b38e42e9 7256 .early_init = true,
68318b8e
SV
7257};
7258
052f1dc7 7259#endif /* CONFIG_CGROUP_SCHED */
d842de87 7260
b637a328
PM
7261void dump_cpu_task(int cpu)
7262{
7263 pr_info("Task dump for CPU %d:\n", cpu);
7264 sched_show_task(cpu_curr(cpu));
7265}
ed82b8a1
AK
7266
7267/*
7268 * Nice levels are multiplicative, with a gentle 10% change for every
7269 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7270 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7271 * that remained on nice 0.
7272 *
7273 * The "10% effect" is relative and cumulative: from _any_ nice level,
7274 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7275 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7276 * If a task goes up by ~10% and another task goes down by ~10% then
7277 * the relative distance between them is ~25%.)
7278 */
7279const int sched_prio_to_weight[40] = {
7280 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7281 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7282 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7283 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7284 /* 0 */ 1024, 820, 655, 526, 423,
7285 /* 5 */ 335, 272, 215, 172, 137,
7286 /* 10 */ 110, 87, 70, 56, 45,
7287 /* 15 */ 36, 29, 23, 18, 15,
7288};
7289
7290/*
7291 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7292 *
7293 * In cases where the weight does not change often, we can use the
7294 * precalculated inverse to speed up arithmetics by turning divisions
7295 * into multiplications:
7296 */
7297const u32 sched_prio_to_wmult[40] = {
7298 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7299 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7300 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7301 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7302 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7303 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7304 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7305 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7306};