sched/idle: Clear polling before descheduling the idle thread
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621
PZ
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
3e51f33f
PZ
128}
129
bf5c91ba
IM
130/*
131 * Debugging: various feature bits
132 */
f00b45c1 133
f00b45c1
PZ
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
bf5c91ba 137const_debug unsigned int sysctl_sched_features =
391e43da 138#include "features.h"
f00b45c1
PZ
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
1292531f 147static const char * const sched_feat_names[] = {
391e43da 148#include "features.h"
f00b45c1
PZ
149};
150
151#undef SCHED_FEAT
152
34f3a814 153static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 154{
f00b45c1
PZ
155 int i;
156
f8b6d1cc 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 161 }
34f3a814 162 seq_puts(m, "\n");
f00b45c1 163
34f3a814 164 return 0;
f00b45c1
PZ
165}
166
f8b6d1cc
PZ
167#ifdef HAVE_JUMP_LABEL
168
c5905afb
IM
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
c5905afb 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
c5905afb
IM
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
185}
186
187static void sched_feat_enable(int i)
188{
c5905afb
IM
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
1a687c2e 197static int sched_feat_set(char *cmp)
f00b45c1 198{
f00b45c1 199 int i;
1a687c2e 200 int neg = 0;
f00b45c1 201
524429c3 202 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
203 neg = 1;
204 cmp += 3;
205 }
206
f8b6d1cc 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 209 if (neg) {
f00b45c1 210 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
211 sched_feat_disable(i);
212 } else {
f00b45c1 213 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
214 sched_feat_enable(i);
215 }
f00b45c1
PZ
216 break;
217 }
218 }
219
1a687c2e
MG
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
f8b6d1cc 241 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
242 return -EINVAL;
243
42994724 244 *ppos += cnt;
f00b45c1
PZ
245
246 return cnt;
247}
248
34f3a814
LZ
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
828c0950 254static const struct file_operations sched_feat_fops = {
34f3a814
LZ
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
f00b45c1
PZ
260};
261
262static __init int sched_init_debug(void)
263{
f00b45c1
PZ
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
f8b6d1cc 270#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 271
b82d9fdd
PZ
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
e9e9250b
PZ
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
fa85ae24 286/*
9f0c1e56 287 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
288 * default: 1s
289 */
9f0c1e56 290unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 291
029632fb 292__read_mostly int scheduler_running;
6892b75e 293
9f0c1e56
PZ
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
fa85ae24 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
971ee28c
PZ
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
31656519
PZ
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
b328ca18 412{
31656519 413 struct rq *rq = arg;
b328ca18 414
05fa785c 415 raw_spin_lock(&rq->lock);
971ee28c 416 __hrtick_restart(rq);
31656519 417 rq->hrtick_csd_pending = 0;
05fa785c 418 raw_spin_unlock(&rq->lock);
b328ca18
PZ
419}
420
31656519
PZ
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
029632fb 426void hrtick_start(struct rq *rq, u64 delay)
b328ca18 427{
31656519
PZ
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 430
cc584b21 431 hrtimer_set_expires(timer, time);
31656519
PZ
432
433 if (rq == this_rq()) {
971ee28c 434 __hrtick_restart(rq);
31656519 435 } else if (!rq->hrtick_csd_pending) {
c46fff2a 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
437 rq->hrtick_csd_pending = 1;
438 }
b328ca18
PZ
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
31656519 453 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
fa748203 460static __init void init_hrtick(void)
b328ca18
PZ
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
31656519
PZ
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
029632fb 470void hrtick_start(struct rq *rq, u64 delay)
31656519 471{
7f1e2ca9 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 473 HRTIMER_MODE_REL_PINNED, 0);
31656519 474}
b328ca18 475
006c75f1 476static inline void init_hrtick(void)
8f4d37ec 477{
8f4d37ec 478}
31656519 479#endif /* CONFIG_SMP */
8f4d37ec 480
31656519 481static void init_rq_hrtick(struct rq *rq)
8f4d37ec 482{
31656519
PZ
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
8f4d37ec 485
31656519
PZ
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
8f4d37ec 490
31656519
PZ
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
8f4d37ec 493}
006c75f1 494#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
8f4d37ec
PZ
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
b328ca18
PZ
503static inline void init_hrtick(void)
504{
505}
006c75f1 506#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 507
fd99f91a
PZ
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val) \
512({ typeof(*(ptr)) __old, __val = *(ptr); \
513 for (;;) { \
514 __old = cmpxchg((ptr), __val, __val | (val)); \
515 if (__old == __val) \
516 break; \
517 __val = __old; \
518 } \
519 __old; \
520})
521
522#ifdef TIF_POLLING_NRFLAG
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530 struct thread_info *ti = task_thread_info(p);
531 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533#else
534static bool set_nr_and_not_polling(struct task_struct *p)
535{
536 set_tsk_need_resched(p);
537 return true;
538}
539#endif
540
c24d20db
IM
541/*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
029632fb 548void resched_task(struct task_struct *p)
c24d20db
IM
549{
550 int cpu;
551
b021fe3e 552 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 553
5ed0cec0 554 if (test_tsk_need_resched(p))
c24d20db
IM
555 return;
556
c24d20db 557 cpu = task_cpu(p);
fd99f91a 558
f27dde8d 559 if (cpu == smp_processor_id()) {
fd99f91a 560 set_tsk_need_resched(p);
f27dde8d 561 set_preempt_need_resched();
c24d20db 562 return;
f27dde8d 563 }
c24d20db 564
fd99f91a 565 if (set_nr_and_not_polling(p))
c24d20db 566 smp_send_reschedule(cpu);
dfc68f29
AL
567 else
568 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
569}
570
029632fb 571void resched_cpu(int cpu)
c24d20db
IM
572{
573 struct rq *rq = cpu_rq(cpu);
574 unsigned long flags;
575
05fa785c 576 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
577 return;
578 resched_task(cpu_curr(cpu));
05fa785c 579 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 580}
06d8308c 581
b021fe3e 582#ifdef CONFIG_SMP
3451d024 583#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
584/*
585 * In the semi idle case, use the nearest busy cpu for migrating timers
586 * from an idle cpu. This is good for power-savings.
587 *
588 * We don't do similar optimization for completely idle system, as
589 * selecting an idle cpu will add more delays to the timers than intended
590 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
591 */
6201b4d6 592int get_nohz_timer_target(int pinned)
83cd4fe2
VP
593{
594 int cpu = smp_processor_id();
595 int i;
596 struct sched_domain *sd;
597
6201b4d6
VK
598 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
599 return cpu;
600
057f3fad 601 rcu_read_lock();
83cd4fe2 602 for_each_domain(cpu, sd) {
057f3fad
PZ
603 for_each_cpu(i, sched_domain_span(sd)) {
604 if (!idle_cpu(i)) {
605 cpu = i;
606 goto unlock;
607 }
608 }
83cd4fe2 609 }
057f3fad
PZ
610unlock:
611 rcu_read_unlock();
83cd4fe2
VP
612 return cpu;
613}
06d8308c
TG
614/*
615 * When add_timer_on() enqueues a timer into the timer wheel of an
616 * idle CPU then this timer might expire before the next timer event
617 * which is scheduled to wake up that CPU. In case of a completely
618 * idle system the next event might even be infinite time into the
619 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
620 * leaves the inner idle loop so the newly added timer is taken into
621 * account when the CPU goes back to idle and evaluates the timer
622 * wheel for the next timer event.
623 */
1c20091e 624static void wake_up_idle_cpu(int cpu)
06d8308c
TG
625{
626 struct rq *rq = cpu_rq(cpu);
627
628 if (cpu == smp_processor_id())
629 return;
630
631 /*
632 * This is safe, as this function is called with the timer
633 * wheel base lock of (cpu) held. When the CPU is on the way
634 * to idle and has not yet set rq->curr to idle then it will
635 * be serialized on the timer wheel base lock and take the new
636 * timer into account automatically.
637 */
638 if (rq->curr != rq->idle)
639 return;
45bf76df 640
45bf76df 641 /*
06d8308c
TG
642 * We can set TIF_RESCHED on the idle task of the other CPU
643 * lockless. The worst case is that the other CPU runs the
644 * idle task through an additional NOOP schedule()
45bf76df 645 */
5ed0cec0 646 set_tsk_need_resched(rq->idle);
45bf76df 647
06d8308c
TG
648 /* NEED_RESCHED must be visible before we test polling */
649 smp_mb();
650 if (!tsk_is_polling(rq->idle))
651 smp_send_reschedule(cpu);
dfc68f29
AL
652 else
653 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
654}
655
c5bfece2 656static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 657{
c5bfece2 658 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
659 if (cpu != smp_processor_id() ||
660 tick_nohz_tick_stopped())
661 smp_send_reschedule(cpu);
662 return true;
663 }
664
665 return false;
666}
667
668void wake_up_nohz_cpu(int cpu)
669{
c5bfece2 670 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
671 wake_up_idle_cpu(cpu);
672}
673
ca38062e 674static inline bool got_nohz_idle_kick(void)
45bf76df 675{
1c792db7 676 int cpu = smp_processor_id();
873b4c65
VG
677
678 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
679 return false;
680
681 if (idle_cpu(cpu) && !need_resched())
682 return true;
683
684 /*
685 * We can't run Idle Load Balance on this CPU for this time so we
686 * cancel it and clear NOHZ_BALANCE_KICK
687 */
688 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
689 return false;
45bf76df
IM
690}
691
3451d024 692#else /* CONFIG_NO_HZ_COMMON */
45bf76df 693
ca38062e 694static inline bool got_nohz_idle_kick(void)
2069dd75 695{
ca38062e 696 return false;
2069dd75
PZ
697}
698
3451d024 699#endif /* CONFIG_NO_HZ_COMMON */
d842de87 700
ce831b38
FW
701#ifdef CONFIG_NO_HZ_FULL
702bool sched_can_stop_tick(void)
703{
704 struct rq *rq;
705
706 rq = this_rq();
707
708 /* Make sure rq->nr_running update is visible after the IPI */
709 smp_rmb();
710
711 /* More than one running task need preemption */
712 if (rq->nr_running > 1)
713 return false;
714
715 return true;
716}
717#endif /* CONFIG_NO_HZ_FULL */
d842de87 718
029632fb 719void sched_avg_update(struct rq *rq)
18d95a28 720{
e9e9250b
PZ
721 s64 period = sched_avg_period();
722
78becc27 723 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
724 /*
725 * Inline assembly required to prevent the compiler
726 * optimising this loop into a divmod call.
727 * See __iter_div_u64_rem() for another example of this.
728 */
729 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
730 rq->age_stamp += period;
731 rq->rt_avg /= 2;
732 }
18d95a28
PZ
733}
734
6d6bc0ad 735#endif /* CONFIG_SMP */
18d95a28 736
a790de99
PT
737#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
738 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 739/*
8277434e
PT
740 * Iterate task_group tree rooted at *from, calling @down when first entering a
741 * node and @up when leaving it for the final time.
742 *
743 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 744 */
029632fb 745int walk_tg_tree_from(struct task_group *from,
8277434e 746 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
747{
748 struct task_group *parent, *child;
eb755805 749 int ret;
c09595f6 750
8277434e
PT
751 parent = from;
752
c09595f6 753down:
eb755805
PZ
754 ret = (*down)(parent, data);
755 if (ret)
8277434e 756 goto out;
c09595f6
PZ
757 list_for_each_entry_rcu(child, &parent->children, siblings) {
758 parent = child;
759 goto down;
760
761up:
762 continue;
763 }
eb755805 764 ret = (*up)(parent, data);
8277434e
PT
765 if (ret || parent == from)
766 goto out;
c09595f6
PZ
767
768 child = parent;
769 parent = parent->parent;
770 if (parent)
771 goto up;
8277434e 772out:
eb755805 773 return ret;
c09595f6
PZ
774}
775
029632fb 776int tg_nop(struct task_group *tg, void *data)
eb755805 777{
e2b245f8 778 return 0;
eb755805 779}
18d95a28
PZ
780#endif
781
45bf76df
IM
782static void set_load_weight(struct task_struct *p)
783{
f05998d4
NR
784 int prio = p->static_prio - MAX_RT_PRIO;
785 struct load_weight *load = &p->se.load;
786
dd41f596
IM
787 /*
788 * SCHED_IDLE tasks get minimal weight:
789 */
790 if (p->policy == SCHED_IDLE) {
c8b28116 791 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 792 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
793 return;
794 }
71f8bd46 795
c8b28116 796 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 797 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
798}
799
371fd7e7 800static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 801{
a64692a3 802 update_rq_clock(rq);
43148951 803 sched_info_queued(rq, p);
371fd7e7 804 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
805}
806
371fd7e7 807static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 808{
a64692a3 809 update_rq_clock(rq);
43148951 810 sched_info_dequeued(rq, p);
371fd7e7 811 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
812}
813
029632fb 814void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
815{
816 if (task_contributes_to_load(p))
817 rq->nr_uninterruptible--;
818
371fd7e7 819 enqueue_task(rq, p, flags);
1e3c88bd
PZ
820}
821
029632fb 822void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
823{
824 if (task_contributes_to_load(p))
825 rq->nr_uninterruptible++;
826
371fd7e7 827 dequeue_task(rq, p, flags);
1e3c88bd
PZ
828}
829
fe44d621 830static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 831{
095c0aa8
GC
832/*
833 * In theory, the compile should just see 0 here, and optimize out the call
834 * to sched_rt_avg_update. But I don't trust it...
835 */
836#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
837 s64 steal = 0, irq_delta = 0;
838#endif
839#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 840 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
841
842 /*
843 * Since irq_time is only updated on {soft,}irq_exit, we might run into
844 * this case when a previous update_rq_clock() happened inside a
845 * {soft,}irq region.
846 *
847 * When this happens, we stop ->clock_task and only update the
848 * prev_irq_time stamp to account for the part that fit, so that a next
849 * update will consume the rest. This ensures ->clock_task is
850 * monotonic.
851 *
852 * It does however cause some slight miss-attribution of {soft,}irq
853 * time, a more accurate solution would be to update the irq_time using
854 * the current rq->clock timestamp, except that would require using
855 * atomic ops.
856 */
857 if (irq_delta > delta)
858 irq_delta = delta;
859
860 rq->prev_irq_time += irq_delta;
861 delta -= irq_delta;
095c0aa8
GC
862#endif
863#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 864 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
865 steal = paravirt_steal_clock(cpu_of(rq));
866 steal -= rq->prev_steal_time_rq;
867
868 if (unlikely(steal > delta))
869 steal = delta;
870
095c0aa8 871 rq->prev_steal_time_rq += steal;
095c0aa8
GC
872 delta -= steal;
873 }
874#endif
875
fe44d621
PZ
876 rq->clock_task += delta;
877
095c0aa8 878#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 879 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
880 sched_rt_avg_update(rq, irq_delta + steal);
881#endif
aa483808
VP
882}
883
34f971f6
PZ
884void sched_set_stop_task(int cpu, struct task_struct *stop)
885{
886 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
887 struct task_struct *old_stop = cpu_rq(cpu)->stop;
888
889 if (stop) {
890 /*
891 * Make it appear like a SCHED_FIFO task, its something
892 * userspace knows about and won't get confused about.
893 *
894 * Also, it will make PI more or less work without too
895 * much confusion -- but then, stop work should not
896 * rely on PI working anyway.
897 */
898 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
899
900 stop->sched_class = &stop_sched_class;
901 }
902
903 cpu_rq(cpu)->stop = stop;
904
905 if (old_stop) {
906 /*
907 * Reset it back to a normal scheduling class so that
908 * it can die in pieces.
909 */
910 old_stop->sched_class = &rt_sched_class;
911 }
912}
913
14531189 914/*
dd41f596 915 * __normal_prio - return the priority that is based on the static prio
14531189 916 */
14531189
IM
917static inline int __normal_prio(struct task_struct *p)
918{
dd41f596 919 return p->static_prio;
14531189
IM
920}
921
b29739f9
IM
922/*
923 * Calculate the expected normal priority: i.e. priority
924 * without taking RT-inheritance into account. Might be
925 * boosted by interactivity modifiers. Changes upon fork,
926 * setprio syscalls, and whenever the interactivity
927 * estimator recalculates.
928 */
36c8b586 929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
930{
931 int prio;
932
aab03e05
DF
933 if (task_has_dl_policy(p))
934 prio = MAX_DL_PRIO-1;
935 else if (task_has_rt_policy(p))
b29739f9
IM
936 prio = MAX_RT_PRIO-1 - p->rt_priority;
937 else
938 prio = __normal_prio(p);
939 return prio;
940}
941
942/*
943 * Calculate the current priority, i.e. the priority
944 * taken into account by the scheduler. This value might
945 * be boosted by RT tasks, or might be boosted by
946 * interactivity modifiers. Will be RT if the task got
947 * RT-boosted. If not then it returns p->normal_prio.
948 */
36c8b586 949static int effective_prio(struct task_struct *p)
b29739f9
IM
950{
951 p->normal_prio = normal_prio(p);
952 /*
953 * If we are RT tasks or we were boosted to RT priority,
954 * keep the priority unchanged. Otherwise, update priority
955 * to the normal priority:
956 */
957 if (!rt_prio(p->prio))
958 return p->normal_prio;
959 return p->prio;
960}
961
1da177e4
LT
962/**
963 * task_curr - is this task currently executing on a CPU?
964 * @p: the task in question.
e69f6186
YB
965 *
966 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 967 */
36c8b586 968inline int task_curr(const struct task_struct *p)
1da177e4
LT
969{
970 return cpu_curr(task_cpu(p)) == p;
971}
972
cb469845
SR
973static inline void check_class_changed(struct rq *rq, struct task_struct *p,
974 const struct sched_class *prev_class,
da7a735e 975 int oldprio)
cb469845
SR
976{
977 if (prev_class != p->sched_class) {
978 if (prev_class->switched_from)
da7a735e
PZ
979 prev_class->switched_from(rq, p);
980 p->sched_class->switched_to(rq, p);
2d3d891d 981 } else if (oldprio != p->prio || dl_task(p))
da7a735e 982 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
983}
984
029632fb 985void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
986{
987 const struct sched_class *class;
988
989 if (p->sched_class == rq->curr->sched_class) {
990 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
991 } else {
992 for_each_class(class) {
993 if (class == rq->curr->sched_class)
994 break;
995 if (class == p->sched_class) {
996 resched_task(rq->curr);
997 break;
998 }
999 }
1000 }
1001
1002 /*
1003 * A queue event has occurred, and we're going to schedule. In
1004 * this case, we can save a useless back to back clock update.
1005 */
fd2f4419 1006 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1007 rq->skip_clock_update = 1;
1008}
1009
1da177e4 1010#ifdef CONFIG_SMP
dd41f596 1011void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1012{
e2912009
PZ
1013#ifdef CONFIG_SCHED_DEBUG
1014 /*
1015 * We should never call set_task_cpu() on a blocked task,
1016 * ttwu() will sort out the placement.
1017 */
077614ee 1018 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1019 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1020
1021#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1022 /*
1023 * The caller should hold either p->pi_lock or rq->lock, when changing
1024 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1025 *
1026 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1027 * see task_group().
6c6c54e1
PZ
1028 *
1029 * Furthermore, all task_rq users should acquire both locks, see
1030 * task_rq_lock().
1031 */
0122ec5b
PZ
1032 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1033 lockdep_is_held(&task_rq(p)->lock)));
1034#endif
e2912009
PZ
1035#endif
1036
de1d7286 1037 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1038
0c69774e 1039 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1040 if (p->sched_class->migrate_task_rq)
1041 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1042 p->se.nr_migrations++;
a8b0ca17 1043 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1044 }
dd41f596
IM
1045
1046 __set_task_cpu(p, new_cpu);
c65cc870
IM
1047}
1048
ac66f547
PZ
1049static void __migrate_swap_task(struct task_struct *p, int cpu)
1050{
1051 if (p->on_rq) {
1052 struct rq *src_rq, *dst_rq;
1053
1054 src_rq = task_rq(p);
1055 dst_rq = cpu_rq(cpu);
1056
1057 deactivate_task(src_rq, p, 0);
1058 set_task_cpu(p, cpu);
1059 activate_task(dst_rq, p, 0);
1060 check_preempt_curr(dst_rq, p, 0);
1061 } else {
1062 /*
1063 * Task isn't running anymore; make it appear like we migrated
1064 * it before it went to sleep. This means on wakeup we make the
1065 * previous cpu our targer instead of where it really is.
1066 */
1067 p->wake_cpu = cpu;
1068 }
1069}
1070
1071struct migration_swap_arg {
1072 struct task_struct *src_task, *dst_task;
1073 int src_cpu, dst_cpu;
1074};
1075
1076static int migrate_swap_stop(void *data)
1077{
1078 struct migration_swap_arg *arg = data;
1079 struct rq *src_rq, *dst_rq;
1080 int ret = -EAGAIN;
1081
1082 src_rq = cpu_rq(arg->src_cpu);
1083 dst_rq = cpu_rq(arg->dst_cpu);
1084
74602315
PZ
1085 double_raw_lock(&arg->src_task->pi_lock,
1086 &arg->dst_task->pi_lock);
ac66f547
PZ
1087 double_rq_lock(src_rq, dst_rq);
1088 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1089 goto unlock;
1090
1091 if (task_cpu(arg->src_task) != arg->src_cpu)
1092 goto unlock;
1093
1094 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1095 goto unlock;
1096
1097 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1098 goto unlock;
1099
1100 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1101 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1102
1103 ret = 0;
1104
1105unlock:
1106 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1107 raw_spin_unlock(&arg->dst_task->pi_lock);
1108 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1109
1110 return ret;
1111}
1112
1113/*
1114 * Cross migrate two tasks
1115 */
1116int migrate_swap(struct task_struct *cur, struct task_struct *p)
1117{
1118 struct migration_swap_arg arg;
1119 int ret = -EINVAL;
1120
ac66f547
PZ
1121 arg = (struct migration_swap_arg){
1122 .src_task = cur,
1123 .src_cpu = task_cpu(cur),
1124 .dst_task = p,
1125 .dst_cpu = task_cpu(p),
1126 };
1127
1128 if (arg.src_cpu == arg.dst_cpu)
1129 goto out;
1130
6acce3ef
PZ
1131 /*
1132 * These three tests are all lockless; this is OK since all of them
1133 * will be re-checked with proper locks held further down the line.
1134 */
ac66f547
PZ
1135 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1136 goto out;
1137
1138 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1139 goto out;
1140
1141 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1142 goto out;
1143
286549dc 1144 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1145 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1146
1147out:
ac66f547
PZ
1148 return ret;
1149}
1150
969c7921 1151struct migration_arg {
36c8b586 1152 struct task_struct *task;
1da177e4 1153 int dest_cpu;
70b97a7f 1154};
1da177e4 1155
969c7921
TH
1156static int migration_cpu_stop(void *data);
1157
1da177e4
LT
1158/*
1159 * wait_task_inactive - wait for a thread to unschedule.
1160 *
85ba2d86
RM
1161 * If @match_state is nonzero, it's the @p->state value just checked and
1162 * not expected to change. If it changes, i.e. @p might have woken up,
1163 * then return zero. When we succeed in waiting for @p to be off its CPU,
1164 * we return a positive number (its total switch count). If a second call
1165 * a short while later returns the same number, the caller can be sure that
1166 * @p has remained unscheduled the whole time.
1167 *
1da177e4
LT
1168 * The caller must ensure that the task *will* unschedule sometime soon,
1169 * else this function might spin for a *long* time. This function can't
1170 * be called with interrupts off, or it may introduce deadlock with
1171 * smp_call_function() if an IPI is sent by the same process we are
1172 * waiting to become inactive.
1173 */
85ba2d86 1174unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1175{
1176 unsigned long flags;
dd41f596 1177 int running, on_rq;
85ba2d86 1178 unsigned long ncsw;
70b97a7f 1179 struct rq *rq;
1da177e4 1180
3a5c359a
AK
1181 for (;;) {
1182 /*
1183 * We do the initial early heuristics without holding
1184 * any task-queue locks at all. We'll only try to get
1185 * the runqueue lock when things look like they will
1186 * work out!
1187 */
1188 rq = task_rq(p);
fa490cfd 1189
3a5c359a
AK
1190 /*
1191 * If the task is actively running on another CPU
1192 * still, just relax and busy-wait without holding
1193 * any locks.
1194 *
1195 * NOTE! Since we don't hold any locks, it's not
1196 * even sure that "rq" stays as the right runqueue!
1197 * But we don't care, since "task_running()" will
1198 * return false if the runqueue has changed and p
1199 * is actually now running somewhere else!
1200 */
85ba2d86
RM
1201 while (task_running(rq, p)) {
1202 if (match_state && unlikely(p->state != match_state))
1203 return 0;
3a5c359a 1204 cpu_relax();
85ba2d86 1205 }
fa490cfd 1206
3a5c359a
AK
1207 /*
1208 * Ok, time to look more closely! We need the rq
1209 * lock now, to be *sure*. If we're wrong, we'll
1210 * just go back and repeat.
1211 */
1212 rq = task_rq_lock(p, &flags);
27a9da65 1213 trace_sched_wait_task(p);
3a5c359a 1214 running = task_running(rq, p);
fd2f4419 1215 on_rq = p->on_rq;
85ba2d86 1216 ncsw = 0;
f31e11d8 1217 if (!match_state || p->state == match_state)
93dcf55f 1218 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1219 task_rq_unlock(rq, p, &flags);
fa490cfd 1220
85ba2d86
RM
1221 /*
1222 * If it changed from the expected state, bail out now.
1223 */
1224 if (unlikely(!ncsw))
1225 break;
1226
3a5c359a
AK
1227 /*
1228 * Was it really running after all now that we
1229 * checked with the proper locks actually held?
1230 *
1231 * Oops. Go back and try again..
1232 */
1233 if (unlikely(running)) {
1234 cpu_relax();
1235 continue;
1236 }
fa490cfd 1237
3a5c359a
AK
1238 /*
1239 * It's not enough that it's not actively running,
1240 * it must be off the runqueue _entirely_, and not
1241 * preempted!
1242 *
80dd99b3 1243 * So if it was still runnable (but just not actively
3a5c359a
AK
1244 * running right now), it's preempted, and we should
1245 * yield - it could be a while.
1246 */
1247 if (unlikely(on_rq)) {
8eb90c30
TG
1248 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1249
1250 set_current_state(TASK_UNINTERRUPTIBLE);
1251 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1252 continue;
1253 }
fa490cfd 1254
3a5c359a
AK
1255 /*
1256 * Ahh, all good. It wasn't running, and it wasn't
1257 * runnable, which means that it will never become
1258 * running in the future either. We're all done!
1259 */
1260 break;
1261 }
85ba2d86
RM
1262
1263 return ncsw;
1da177e4
LT
1264}
1265
1266/***
1267 * kick_process - kick a running thread to enter/exit the kernel
1268 * @p: the to-be-kicked thread
1269 *
1270 * Cause a process which is running on another CPU to enter
1271 * kernel-mode, without any delay. (to get signals handled.)
1272 *
25985edc 1273 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1274 * because all it wants to ensure is that the remote task enters
1275 * the kernel. If the IPI races and the task has been migrated
1276 * to another CPU then no harm is done and the purpose has been
1277 * achieved as well.
1278 */
36c8b586 1279void kick_process(struct task_struct *p)
1da177e4
LT
1280{
1281 int cpu;
1282
1283 preempt_disable();
1284 cpu = task_cpu(p);
1285 if ((cpu != smp_processor_id()) && task_curr(p))
1286 smp_send_reschedule(cpu);
1287 preempt_enable();
1288}
b43e3521 1289EXPORT_SYMBOL_GPL(kick_process);
476d139c 1290#endif /* CONFIG_SMP */
1da177e4 1291
970b13ba 1292#ifdef CONFIG_SMP
30da688e 1293/*
013fdb80 1294 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1295 */
5da9a0fb
PZ
1296static int select_fallback_rq(int cpu, struct task_struct *p)
1297{
aa00d89c
TC
1298 int nid = cpu_to_node(cpu);
1299 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1300 enum { cpuset, possible, fail } state = cpuset;
1301 int dest_cpu;
5da9a0fb 1302
aa00d89c
TC
1303 /*
1304 * If the node that the cpu is on has been offlined, cpu_to_node()
1305 * will return -1. There is no cpu on the node, and we should
1306 * select the cpu on the other node.
1307 */
1308 if (nid != -1) {
1309 nodemask = cpumask_of_node(nid);
1310
1311 /* Look for allowed, online CPU in same node. */
1312 for_each_cpu(dest_cpu, nodemask) {
1313 if (!cpu_online(dest_cpu))
1314 continue;
1315 if (!cpu_active(dest_cpu))
1316 continue;
1317 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1318 return dest_cpu;
1319 }
2baab4e9 1320 }
5da9a0fb 1321
2baab4e9
PZ
1322 for (;;) {
1323 /* Any allowed, online CPU? */
e3831edd 1324 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1325 if (!cpu_online(dest_cpu))
1326 continue;
1327 if (!cpu_active(dest_cpu))
1328 continue;
1329 goto out;
1330 }
5da9a0fb 1331
2baab4e9
PZ
1332 switch (state) {
1333 case cpuset:
1334 /* No more Mr. Nice Guy. */
1335 cpuset_cpus_allowed_fallback(p);
1336 state = possible;
1337 break;
1338
1339 case possible:
1340 do_set_cpus_allowed(p, cpu_possible_mask);
1341 state = fail;
1342 break;
1343
1344 case fail:
1345 BUG();
1346 break;
1347 }
1348 }
1349
1350out:
1351 if (state != cpuset) {
1352 /*
1353 * Don't tell them about moving exiting tasks or
1354 * kernel threads (both mm NULL), since they never
1355 * leave kernel.
1356 */
1357 if (p->mm && printk_ratelimit()) {
1358 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1359 task_pid_nr(p), p->comm, cpu);
1360 }
5da9a0fb
PZ
1361 }
1362
1363 return dest_cpu;
1364}
1365
e2912009 1366/*
013fdb80 1367 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1368 */
970b13ba 1369static inline
ac66f547 1370int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1371{
ac66f547 1372 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1373
1374 /*
1375 * In order not to call set_task_cpu() on a blocking task we need
1376 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1377 * cpu.
1378 *
1379 * Since this is common to all placement strategies, this lives here.
1380 *
1381 * [ this allows ->select_task() to simply return task_cpu(p) and
1382 * not worry about this generic constraint ]
1383 */
fa17b507 1384 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1385 !cpu_online(cpu)))
5da9a0fb 1386 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1387
1388 return cpu;
970b13ba 1389}
09a40af5
MG
1390
1391static void update_avg(u64 *avg, u64 sample)
1392{
1393 s64 diff = sample - *avg;
1394 *avg += diff >> 3;
1395}
970b13ba
PZ
1396#endif
1397
d7c01d27 1398static void
b84cb5df 1399ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1400{
d7c01d27 1401#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1402 struct rq *rq = this_rq();
1403
d7c01d27
PZ
1404#ifdef CONFIG_SMP
1405 int this_cpu = smp_processor_id();
1406
1407 if (cpu == this_cpu) {
1408 schedstat_inc(rq, ttwu_local);
1409 schedstat_inc(p, se.statistics.nr_wakeups_local);
1410 } else {
1411 struct sched_domain *sd;
1412
1413 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1414 rcu_read_lock();
d7c01d27
PZ
1415 for_each_domain(this_cpu, sd) {
1416 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1417 schedstat_inc(sd, ttwu_wake_remote);
1418 break;
1419 }
1420 }
057f3fad 1421 rcu_read_unlock();
d7c01d27 1422 }
f339b9dc
PZ
1423
1424 if (wake_flags & WF_MIGRATED)
1425 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1426
d7c01d27
PZ
1427#endif /* CONFIG_SMP */
1428
1429 schedstat_inc(rq, ttwu_count);
9ed3811a 1430 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1431
1432 if (wake_flags & WF_SYNC)
9ed3811a 1433 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1434
d7c01d27
PZ
1435#endif /* CONFIG_SCHEDSTATS */
1436}
1437
1438static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1439{
9ed3811a 1440 activate_task(rq, p, en_flags);
fd2f4419 1441 p->on_rq = 1;
c2f7115e
PZ
1442
1443 /* if a worker is waking up, notify workqueue */
1444 if (p->flags & PF_WQ_WORKER)
1445 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1446}
1447
23f41eeb
PZ
1448/*
1449 * Mark the task runnable and perform wakeup-preemption.
1450 */
89363381 1451static void
23f41eeb 1452ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1453{
9ed3811a 1454 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1455 trace_sched_wakeup(p, true);
9ed3811a
TH
1456
1457 p->state = TASK_RUNNING;
1458#ifdef CONFIG_SMP
1459 if (p->sched_class->task_woken)
1460 p->sched_class->task_woken(rq, p);
1461
e69c6341 1462 if (rq->idle_stamp) {
78becc27 1463 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1464 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1465
abfafa54
JL
1466 update_avg(&rq->avg_idle, delta);
1467
1468 if (rq->avg_idle > max)
9ed3811a 1469 rq->avg_idle = max;
abfafa54 1470
9ed3811a
TH
1471 rq->idle_stamp = 0;
1472 }
1473#endif
1474}
1475
c05fbafb
PZ
1476static void
1477ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1478{
1479#ifdef CONFIG_SMP
1480 if (p->sched_contributes_to_load)
1481 rq->nr_uninterruptible--;
1482#endif
1483
1484 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1485 ttwu_do_wakeup(rq, p, wake_flags);
1486}
1487
1488/*
1489 * Called in case the task @p isn't fully descheduled from its runqueue,
1490 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1491 * since all we need to do is flip p->state to TASK_RUNNING, since
1492 * the task is still ->on_rq.
1493 */
1494static int ttwu_remote(struct task_struct *p, int wake_flags)
1495{
1496 struct rq *rq;
1497 int ret = 0;
1498
1499 rq = __task_rq_lock(p);
1500 if (p->on_rq) {
1ad4ec0d
FW
1501 /* check_preempt_curr() may use rq clock */
1502 update_rq_clock(rq);
c05fbafb
PZ
1503 ttwu_do_wakeup(rq, p, wake_flags);
1504 ret = 1;
1505 }
1506 __task_rq_unlock(rq);
1507
1508 return ret;
1509}
1510
317f3941 1511#ifdef CONFIG_SMP
fa14ff4a 1512static void sched_ttwu_pending(void)
317f3941
PZ
1513{
1514 struct rq *rq = this_rq();
fa14ff4a
PZ
1515 struct llist_node *llist = llist_del_all(&rq->wake_list);
1516 struct task_struct *p;
317f3941
PZ
1517
1518 raw_spin_lock(&rq->lock);
1519
fa14ff4a
PZ
1520 while (llist) {
1521 p = llist_entry(llist, struct task_struct, wake_entry);
1522 llist = llist_next(llist);
317f3941
PZ
1523 ttwu_do_activate(rq, p, 0);
1524 }
1525
1526 raw_spin_unlock(&rq->lock);
1527}
1528
1529void scheduler_ipi(void)
1530{
f27dde8d
PZ
1531 /*
1532 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1533 * TIF_NEED_RESCHED remotely (for the first time) will also send
1534 * this IPI.
1535 */
8cb75e0c 1536 preempt_fold_need_resched();
f27dde8d 1537
873b4c65
VG
1538 if (llist_empty(&this_rq()->wake_list)
1539 && !tick_nohz_full_cpu(smp_processor_id())
1540 && !got_nohz_idle_kick())
c5d753a5
PZ
1541 return;
1542
1543 /*
1544 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1545 * traditionally all their work was done from the interrupt return
1546 * path. Now that we actually do some work, we need to make sure
1547 * we do call them.
1548 *
1549 * Some archs already do call them, luckily irq_enter/exit nest
1550 * properly.
1551 *
1552 * Arguably we should visit all archs and update all handlers,
1553 * however a fair share of IPIs are still resched only so this would
1554 * somewhat pessimize the simple resched case.
1555 */
1556 irq_enter();
ff442c51 1557 tick_nohz_full_check();
fa14ff4a 1558 sched_ttwu_pending();
ca38062e
SS
1559
1560 /*
1561 * Check if someone kicked us for doing the nohz idle load balance.
1562 */
873b4c65 1563 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1564 this_rq()->idle_balance = 1;
ca38062e 1565 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1566 }
c5d753a5 1567 irq_exit();
317f3941
PZ
1568}
1569
1570static void ttwu_queue_remote(struct task_struct *p, int cpu)
1571{
fa14ff4a 1572 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1573 smp_send_reschedule(cpu);
1574}
d6aa8f85 1575
39be3501 1576bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1577{
1578 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1579}
d6aa8f85 1580#endif /* CONFIG_SMP */
317f3941 1581
c05fbafb
PZ
1582static void ttwu_queue(struct task_struct *p, int cpu)
1583{
1584 struct rq *rq = cpu_rq(cpu);
1585
17d9f311 1586#if defined(CONFIG_SMP)
39be3501 1587 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1588 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1589 ttwu_queue_remote(p, cpu);
1590 return;
1591 }
1592#endif
1593
c05fbafb
PZ
1594 raw_spin_lock(&rq->lock);
1595 ttwu_do_activate(rq, p, 0);
1596 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1597}
1598
1599/**
1da177e4 1600 * try_to_wake_up - wake up a thread
9ed3811a 1601 * @p: the thread to be awakened
1da177e4 1602 * @state: the mask of task states that can be woken
9ed3811a 1603 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1604 *
1605 * Put it on the run-queue if it's not already there. The "current"
1606 * thread is always on the run-queue (except when the actual
1607 * re-schedule is in progress), and as such you're allowed to do
1608 * the simpler "current->state = TASK_RUNNING" to mark yourself
1609 * runnable without the overhead of this.
1610 *
e69f6186 1611 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1612 * or @state didn't match @p's state.
1da177e4 1613 */
e4a52bcb
PZ
1614static int
1615try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1616{
1da177e4 1617 unsigned long flags;
c05fbafb 1618 int cpu, success = 0;
2398f2c6 1619
e0acd0a6
ON
1620 /*
1621 * If we are going to wake up a thread waiting for CONDITION we
1622 * need to ensure that CONDITION=1 done by the caller can not be
1623 * reordered with p->state check below. This pairs with mb() in
1624 * set_current_state() the waiting thread does.
1625 */
1626 smp_mb__before_spinlock();
013fdb80 1627 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1628 if (!(p->state & state))
1da177e4
LT
1629 goto out;
1630
c05fbafb 1631 success = 1; /* we're going to change ->state */
1da177e4 1632 cpu = task_cpu(p);
1da177e4 1633
c05fbafb
PZ
1634 if (p->on_rq && ttwu_remote(p, wake_flags))
1635 goto stat;
1da177e4 1636
1da177e4 1637#ifdef CONFIG_SMP
e9c84311 1638 /*
c05fbafb
PZ
1639 * If the owning (remote) cpu is still in the middle of schedule() with
1640 * this task as prev, wait until its done referencing the task.
e9c84311 1641 */
f3e94786 1642 while (p->on_cpu)
e4a52bcb 1643 cpu_relax();
0970d299 1644 /*
e4a52bcb 1645 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1646 */
e4a52bcb 1647 smp_rmb();
1da177e4 1648
a8e4f2ea 1649 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1650 p->state = TASK_WAKING;
e7693a36 1651
e4a52bcb 1652 if (p->sched_class->task_waking)
74f8e4b2 1653 p->sched_class->task_waking(p);
efbbd05a 1654
ac66f547 1655 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1656 if (task_cpu(p) != cpu) {
1657 wake_flags |= WF_MIGRATED;
e4a52bcb 1658 set_task_cpu(p, cpu);
f339b9dc 1659 }
1da177e4 1660#endif /* CONFIG_SMP */
1da177e4 1661
c05fbafb
PZ
1662 ttwu_queue(p, cpu);
1663stat:
b84cb5df 1664 ttwu_stat(p, cpu, wake_flags);
1da177e4 1665out:
013fdb80 1666 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1667
1668 return success;
1669}
1670
21aa9af0
TH
1671/**
1672 * try_to_wake_up_local - try to wake up a local task with rq lock held
1673 * @p: the thread to be awakened
1674 *
2acca55e 1675 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1676 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1677 * the current task.
21aa9af0
TH
1678 */
1679static void try_to_wake_up_local(struct task_struct *p)
1680{
1681 struct rq *rq = task_rq(p);
21aa9af0 1682
383efcd0
TH
1683 if (WARN_ON_ONCE(rq != this_rq()) ||
1684 WARN_ON_ONCE(p == current))
1685 return;
1686
21aa9af0
TH
1687 lockdep_assert_held(&rq->lock);
1688
2acca55e
PZ
1689 if (!raw_spin_trylock(&p->pi_lock)) {
1690 raw_spin_unlock(&rq->lock);
1691 raw_spin_lock(&p->pi_lock);
1692 raw_spin_lock(&rq->lock);
1693 }
1694
21aa9af0 1695 if (!(p->state & TASK_NORMAL))
2acca55e 1696 goto out;
21aa9af0 1697
fd2f4419 1698 if (!p->on_rq)
d7c01d27
PZ
1699 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1700
23f41eeb 1701 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1702 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1703out:
1704 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1705}
1706
50fa610a
DH
1707/**
1708 * wake_up_process - Wake up a specific process
1709 * @p: The process to be woken up.
1710 *
1711 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1712 * processes.
1713 *
1714 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1715 *
1716 * It may be assumed that this function implies a write memory barrier before
1717 * changing the task state if and only if any tasks are woken up.
1718 */
7ad5b3a5 1719int wake_up_process(struct task_struct *p)
1da177e4 1720{
9067ac85
ON
1721 WARN_ON(task_is_stopped_or_traced(p));
1722 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1723}
1da177e4
LT
1724EXPORT_SYMBOL(wake_up_process);
1725
7ad5b3a5 1726int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1727{
1728 return try_to_wake_up(p, state, 0);
1729}
1730
1da177e4
LT
1731/*
1732 * Perform scheduler related setup for a newly forked process p.
1733 * p is forked by current.
dd41f596
IM
1734 *
1735 * __sched_fork() is basic setup used by init_idle() too:
1736 */
5e1576ed 1737static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1738{
fd2f4419
PZ
1739 p->on_rq = 0;
1740
1741 p->se.on_rq = 0;
dd41f596
IM
1742 p->se.exec_start = 0;
1743 p->se.sum_exec_runtime = 0;
f6cf891c 1744 p->se.prev_sum_exec_runtime = 0;
6c594c21 1745 p->se.nr_migrations = 0;
da7a735e 1746 p->se.vruntime = 0;
fd2f4419 1747 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1748
1749#ifdef CONFIG_SCHEDSTATS
41acab88 1750 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1751#endif
476d139c 1752
aab03e05
DF
1753 RB_CLEAR_NODE(&p->dl.rb_node);
1754 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1755 p->dl.dl_runtime = p->dl.runtime = 0;
1756 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1757 p->dl.dl_period = 0;
aab03e05
DF
1758 p->dl.flags = 0;
1759
fa717060 1760 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1761
e107be36
AK
1762#ifdef CONFIG_PREEMPT_NOTIFIERS
1763 INIT_HLIST_HEAD(&p->preempt_notifiers);
1764#endif
cbee9f88
PZ
1765
1766#ifdef CONFIG_NUMA_BALANCING
1767 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1768 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1769 p->mm->numa_scan_seq = 0;
1770 }
1771
5e1576ed
RR
1772 if (clone_flags & CLONE_VM)
1773 p->numa_preferred_nid = current->numa_preferred_nid;
1774 else
1775 p->numa_preferred_nid = -1;
1776
cbee9f88
PZ
1777 p->node_stamp = 0ULL;
1778 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1779 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1780 p->numa_work.next = &p->numa_work;
ff1df896
RR
1781 p->numa_faults_memory = NULL;
1782 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1783 p->last_task_numa_placement = 0;
1784 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1785
1786 INIT_LIST_HEAD(&p->numa_entry);
1787 p->numa_group = NULL;
cbee9f88 1788#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1789}
1790
1a687c2e 1791#ifdef CONFIG_NUMA_BALANCING
3105b86a 1792#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1793void set_numabalancing_state(bool enabled)
1794{
1795 if (enabled)
1796 sched_feat_set("NUMA");
1797 else
1798 sched_feat_set("NO_NUMA");
1799}
3105b86a
MG
1800#else
1801__read_mostly bool numabalancing_enabled;
1802
1803void set_numabalancing_state(bool enabled)
1804{
1805 numabalancing_enabled = enabled;
dd41f596 1806}
3105b86a 1807#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1808
1809#ifdef CONFIG_PROC_SYSCTL
1810int sysctl_numa_balancing(struct ctl_table *table, int write,
1811 void __user *buffer, size_t *lenp, loff_t *ppos)
1812{
1813 struct ctl_table t;
1814 int err;
1815 int state = numabalancing_enabled;
1816
1817 if (write && !capable(CAP_SYS_ADMIN))
1818 return -EPERM;
1819
1820 t = *table;
1821 t.data = &state;
1822 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1823 if (err < 0)
1824 return err;
1825 if (write)
1826 set_numabalancing_state(state);
1827 return err;
1828}
1829#endif
1830#endif
dd41f596
IM
1831
1832/*
1833 * fork()/clone()-time setup:
1834 */
aab03e05 1835int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1836{
0122ec5b 1837 unsigned long flags;
dd41f596
IM
1838 int cpu = get_cpu();
1839
5e1576ed 1840 __sched_fork(clone_flags, p);
06b83b5f 1841 /*
0017d735 1842 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1843 * nobody will actually run it, and a signal or other external
1844 * event cannot wake it up and insert it on the runqueue either.
1845 */
0017d735 1846 p->state = TASK_RUNNING;
dd41f596 1847
c350a04e
MG
1848 /*
1849 * Make sure we do not leak PI boosting priority to the child.
1850 */
1851 p->prio = current->normal_prio;
1852
b9dc29e7
MG
1853 /*
1854 * Revert to default priority/policy on fork if requested.
1855 */
1856 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1857 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1858 p->policy = SCHED_NORMAL;
6c697bdf 1859 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1860 p->rt_priority = 0;
1861 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1862 p->static_prio = NICE_TO_PRIO(0);
1863
1864 p->prio = p->normal_prio = __normal_prio(p);
1865 set_load_weight(p);
6c697bdf 1866
b9dc29e7
MG
1867 /*
1868 * We don't need the reset flag anymore after the fork. It has
1869 * fulfilled its duty:
1870 */
1871 p->sched_reset_on_fork = 0;
1872 }
ca94c442 1873
aab03e05
DF
1874 if (dl_prio(p->prio)) {
1875 put_cpu();
1876 return -EAGAIN;
1877 } else if (rt_prio(p->prio)) {
1878 p->sched_class = &rt_sched_class;
1879 } else {
2ddbf952 1880 p->sched_class = &fair_sched_class;
aab03e05 1881 }
b29739f9 1882
cd29fe6f
PZ
1883 if (p->sched_class->task_fork)
1884 p->sched_class->task_fork(p);
1885
86951599
PZ
1886 /*
1887 * The child is not yet in the pid-hash so no cgroup attach races,
1888 * and the cgroup is pinned to this child due to cgroup_fork()
1889 * is ran before sched_fork().
1890 *
1891 * Silence PROVE_RCU.
1892 */
0122ec5b 1893 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1894 set_task_cpu(p, cpu);
0122ec5b 1895 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1896
52f17b6c 1897#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1898 if (likely(sched_info_on()))
52f17b6c 1899 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1900#endif
3ca7a440
PZ
1901#if defined(CONFIG_SMP)
1902 p->on_cpu = 0;
4866cde0 1903#endif
01028747 1904 init_task_preempt_count(p);
806c09a7 1905#ifdef CONFIG_SMP
917b627d 1906 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1907 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1908#endif
917b627d 1909
476d139c 1910 put_cpu();
aab03e05 1911 return 0;
1da177e4
LT
1912}
1913
332ac17e
DF
1914unsigned long to_ratio(u64 period, u64 runtime)
1915{
1916 if (runtime == RUNTIME_INF)
1917 return 1ULL << 20;
1918
1919 /*
1920 * Doing this here saves a lot of checks in all
1921 * the calling paths, and returning zero seems
1922 * safe for them anyway.
1923 */
1924 if (period == 0)
1925 return 0;
1926
1927 return div64_u64(runtime << 20, period);
1928}
1929
1930#ifdef CONFIG_SMP
1931inline struct dl_bw *dl_bw_of(int i)
1932{
1933 return &cpu_rq(i)->rd->dl_bw;
1934}
1935
de212f18 1936static inline int dl_bw_cpus(int i)
332ac17e 1937{
de212f18
PZ
1938 struct root_domain *rd = cpu_rq(i)->rd;
1939 int cpus = 0;
1940
1941 for_each_cpu_and(i, rd->span, cpu_active_mask)
1942 cpus++;
1943
1944 return cpus;
332ac17e
DF
1945}
1946#else
1947inline struct dl_bw *dl_bw_of(int i)
1948{
1949 return &cpu_rq(i)->dl.dl_bw;
1950}
1951
de212f18 1952static inline int dl_bw_cpus(int i)
332ac17e
DF
1953{
1954 return 1;
1955}
1956#endif
1957
1958static inline
1959void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1960{
1961 dl_b->total_bw -= tsk_bw;
1962}
1963
1964static inline
1965void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1966{
1967 dl_b->total_bw += tsk_bw;
1968}
1969
1970static inline
1971bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1972{
1973 return dl_b->bw != -1 &&
1974 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1975}
1976
1977/*
1978 * We must be sure that accepting a new task (or allowing changing the
1979 * parameters of an existing one) is consistent with the bandwidth
1980 * constraints. If yes, this function also accordingly updates the currently
1981 * allocated bandwidth to reflect the new situation.
1982 *
1983 * This function is called while holding p's rq->lock.
1984 */
1985static int dl_overflow(struct task_struct *p, int policy,
1986 const struct sched_attr *attr)
1987{
1988
1989 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1990 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1991 u64 runtime = attr->sched_runtime;
1992 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1993 int cpus, err = -1;
332ac17e
DF
1994
1995 if (new_bw == p->dl.dl_bw)
1996 return 0;
1997
1998 /*
1999 * Either if a task, enters, leave, or stays -deadline but changes
2000 * its parameters, we may need to update accordingly the total
2001 * allocated bandwidth of the container.
2002 */
2003 raw_spin_lock(&dl_b->lock);
de212f18 2004 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2005 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2006 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2007 __dl_add(dl_b, new_bw);
2008 err = 0;
2009 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2010 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2011 __dl_clear(dl_b, p->dl.dl_bw);
2012 __dl_add(dl_b, new_bw);
2013 err = 0;
2014 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2015 __dl_clear(dl_b, p->dl.dl_bw);
2016 err = 0;
2017 }
2018 raw_spin_unlock(&dl_b->lock);
2019
2020 return err;
2021}
2022
2023extern void init_dl_bw(struct dl_bw *dl_b);
2024
1da177e4
LT
2025/*
2026 * wake_up_new_task - wake up a newly created task for the first time.
2027 *
2028 * This function will do some initial scheduler statistics housekeeping
2029 * that must be done for every newly created context, then puts the task
2030 * on the runqueue and wakes it.
2031 */
3e51e3ed 2032void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2033{
2034 unsigned long flags;
dd41f596 2035 struct rq *rq;
fabf318e 2036
ab2515c4 2037 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2038#ifdef CONFIG_SMP
2039 /*
2040 * Fork balancing, do it here and not earlier because:
2041 * - cpus_allowed can change in the fork path
2042 * - any previously selected cpu might disappear through hotplug
fabf318e 2043 */
ac66f547 2044 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2045#endif
2046
a75cdaa9
AS
2047 /* Initialize new task's runnable average */
2048 init_task_runnable_average(p);
ab2515c4 2049 rq = __task_rq_lock(p);
cd29fe6f 2050 activate_task(rq, p, 0);
fd2f4419 2051 p->on_rq = 1;
89363381 2052 trace_sched_wakeup_new(p, true);
a7558e01 2053 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2054#ifdef CONFIG_SMP
efbbd05a
PZ
2055 if (p->sched_class->task_woken)
2056 p->sched_class->task_woken(rq, p);
9a897c5a 2057#endif
0122ec5b 2058 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2059}
2060
e107be36
AK
2061#ifdef CONFIG_PREEMPT_NOTIFIERS
2062
2063/**
80dd99b3 2064 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2065 * @notifier: notifier struct to register
e107be36
AK
2066 */
2067void preempt_notifier_register(struct preempt_notifier *notifier)
2068{
2069 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2070}
2071EXPORT_SYMBOL_GPL(preempt_notifier_register);
2072
2073/**
2074 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2075 * @notifier: notifier struct to unregister
e107be36
AK
2076 *
2077 * This is safe to call from within a preemption notifier.
2078 */
2079void preempt_notifier_unregister(struct preempt_notifier *notifier)
2080{
2081 hlist_del(&notifier->link);
2082}
2083EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2084
2085static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2086{
2087 struct preempt_notifier *notifier;
e107be36 2088
b67bfe0d 2089 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2090 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2091}
2092
2093static void
2094fire_sched_out_preempt_notifiers(struct task_struct *curr,
2095 struct task_struct *next)
2096{
2097 struct preempt_notifier *notifier;
e107be36 2098
b67bfe0d 2099 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2100 notifier->ops->sched_out(notifier, next);
2101}
2102
6d6bc0ad 2103#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2104
2105static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2106{
2107}
2108
2109static void
2110fire_sched_out_preempt_notifiers(struct task_struct *curr,
2111 struct task_struct *next)
2112{
2113}
2114
6d6bc0ad 2115#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2116
4866cde0
NP
2117/**
2118 * prepare_task_switch - prepare to switch tasks
2119 * @rq: the runqueue preparing to switch
421cee29 2120 * @prev: the current task that is being switched out
4866cde0
NP
2121 * @next: the task we are going to switch to.
2122 *
2123 * This is called with the rq lock held and interrupts off. It must
2124 * be paired with a subsequent finish_task_switch after the context
2125 * switch.
2126 *
2127 * prepare_task_switch sets up locking and calls architecture specific
2128 * hooks.
2129 */
e107be36
AK
2130static inline void
2131prepare_task_switch(struct rq *rq, struct task_struct *prev,
2132 struct task_struct *next)
4866cde0 2133{
895dd92c 2134 trace_sched_switch(prev, next);
43148951 2135 sched_info_switch(rq, prev, next);
fe4b04fa 2136 perf_event_task_sched_out(prev, next);
e107be36 2137 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2138 prepare_lock_switch(rq, next);
2139 prepare_arch_switch(next);
2140}
2141
1da177e4
LT
2142/**
2143 * finish_task_switch - clean up after a task-switch
344babaa 2144 * @rq: runqueue associated with task-switch
1da177e4
LT
2145 * @prev: the thread we just switched away from.
2146 *
4866cde0
NP
2147 * finish_task_switch must be called after the context switch, paired
2148 * with a prepare_task_switch call before the context switch.
2149 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2150 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2151 *
2152 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2153 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2154 * with the lock held can cause deadlocks; see schedule() for
2155 * details.)
2156 */
a9957449 2157static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2158 __releases(rq->lock)
2159{
1da177e4 2160 struct mm_struct *mm = rq->prev_mm;
55a101f8 2161 long prev_state;
1da177e4
LT
2162
2163 rq->prev_mm = NULL;
2164
2165 /*
2166 * A task struct has one reference for the use as "current".
c394cc9f 2167 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2168 * schedule one last time. The schedule call will never return, and
2169 * the scheduled task must drop that reference.
c394cc9f 2170 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2171 * still held, otherwise prev could be scheduled on another cpu, die
2172 * there before we look at prev->state, and then the reference would
2173 * be dropped twice.
2174 * Manfred Spraul <manfred@colorfullife.com>
2175 */
55a101f8 2176 prev_state = prev->state;
bf9fae9f 2177 vtime_task_switch(prev);
4866cde0 2178 finish_arch_switch(prev);
a8d757ef 2179 perf_event_task_sched_in(prev, current);
4866cde0 2180 finish_lock_switch(rq, prev);
01f23e16 2181 finish_arch_post_lock_switch();
e8fa1362 2182
e107be36 2183 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2184 if (mm)
2185 mmdrop(mm);
c394cc9f 2186 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2187 if (prev->sched_class->task_dead)
2188 prev->sched_class->task_dead(prev);
2189
c6fd91f0 2190 /*
2191 * Remove function-return probe instances associated with this
2192 * task and put them back on the free list.
9761eea8 2193 */
c6fd91f0 2194 kprobe_flush_task(prev);
1da177e4 2195 put_task_struct(prev);
c6fd91f0 2196 }
99e5ada9
FW
2197
2198 tick_nohz_task_switch(current);
1da177e4
LT
2199}
2200
3f029d3c
GH
2201#ifdef CONFIG_SMP
2202
3f029d3c
GH
2203/* rq->lock is NOT held, but preemption is disabled */
2204static inline void post_schedule(struct rq *rq)
2205{
2206 if (rq->post_schedule) {
2207 unsigned long flags;
2208
05fa785c 2209 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2210 if (rq->curr->sched_class->post_schedule)
2211 rq->curr->sched_class->post_schedule(rq);
05fa785c 2212 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2213
2214 rq->post_schedule = 0;
2215 }
2216}
2217
2218#else
da19ab51 2219
3f029d3c
GH
2220static inline void post_schedule(struct rq *rq)
2221{
1da177e4
LT
2222}
2223
3f029d3c
GH
2224#endif
2225
1da177e4
LT
2226/**
2227 * schedule_tail - first thing a freshly forked thread must call.
2228 * @prev: the thread we just switched away from.
2229 */
722a9f92 2230asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2231 __releases(rq->lock)
2232{
70b97a7f
IM
2233 struct rq *rq = this_rq();
2234
4866cde0 2235 finish_task_switch(rq, prev);
da19ab51 2236
3f029d3c
GH
2237 /*
2238 * FIXME: do we need to worry about rq being invalidated by the
2239 * task_switch?
2240 */
2241 post_schedule(rq);
70b97a7f 2242
4866cde0
NP
2243#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2244 /* In this case, finish_task_switch does not reenable preemption */
2245 preempt_enable();
2246#endif
1da177e4 2247 if (current->set_child_tid)
b488893a 2248 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2249}
2250
2251/*
2252 * context_switch - switch to the new MM and the new
2253 * thread's register state.
2254 */
dd41f596 2255static inline void
70b97a7f 2256context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2257 struct task_struct *next)
1da177e4 2258{
dd41f596 2259 struct mm_struct *mm, *oldmm;
1da177e4 2260
e107be36 2261 prepare_task_switch(rq, prev, next);
fe4b04fa 2262
dd41f596
IM
2263 mm = next->mm;
2264 oldmm = prev->active_mm;
9226d125
ZA
2265 /*
2266 * For paravirt, this is coupled with an exit in switch_to to
2267 * combine the page table reload and the switch backend into
2268 * one hypercall.
2269 */
224101ed 2270 arch_start_context_switch(prev);
9226d125 2271
31915ab4 2272 if (!mm) {
1da177e4
LT
2273 next->active_mm = oldmm;
2274 atomic_inc(&oldmm->mm_count);
2275 enter_lazy_tlb(oldmm, next);
2276 } else
2277 switch_mm(oldmm, mm, next);
2278
31915ab4 2279 if (!prev->mm) {
1da177e4 2280 prev->active_mm = NULL;
1da177e4
LT
2281 rq->prev_mm = oldmm;
2282 }
3a5f5e48
IM
2283 /*
2284 * Since the runqueue lock will be released by the next
2285 * task (which is an invalid locking op but in the case
2286 * of the scheduler it's an obvious special-case), so we
2287 * do an early lockdep release here:
2288 */
2289#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2290 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2291#endif
1da177e4 2292
91d1aa43 2293 context_tracking_task_switch(prev, next);
1da177e4
LT
2294 /* Here we just switch the register state and the stack. */
2295 switch_to(prev, next, prev);
2296
dd41f596
IM
2297 barrier();
2298 /*
2299 * this_rq must be evaluated again because prev may have moved
2300 * CPUs since it called schedule(), thus the 'rq' on its stack
2301 * frame will be invalid.
2302 */
2303 finish_task_switch(this_rq(), prev);
1da177e4
LT
2304}
2305
2306/*
1c3e8264 2307 * nr_running and nr_context_switches:
1da177e4
LT
2308 *
2309 * externally visible scheduler statistics: current number of runnable
1c3e8264 2310 * threads, total number of context switches performed since bootup.
1da177e4
LT
2311 */
2312unsigned long nr_running(void)
2313{
2314 unsigned long i, sum = 0;
2315
2316 for_each_online_cpu(i)
2317 sum += cpu_rq(i)->nr_running;
2318
2319 return sum;
f711f609 2320}
1da177e4 2321
1da177e4 2322unsigned long long nr_context_switches(void)
46cb4b7c 2323{
cc94abfc
SR
2324 int i;
2325 unsigned long long sum = 0;
46cb4b7c 2326
0a945022 2327 for_each_possible_cpu(i)
1da177e4 2328 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2329
1da177e4
LT
2330 return sum;
2331}
483b4ee6 2332
1da177e4
LT
2333unsigned long nr_iowait(void)
2334{
2335 unsigned long i, sum = 0;
483b4ee6 2336
0a945022 2337 for_each_possible_cpu(i)
1da177e4 2338 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2339
1da177e4
LT
2340 return sum;
2341}
483b4ee6 2342
8c215bd3 2343unsigned long nr_iowait_cpu(int cpu)
69d25870 2344{
8c215bd3 2345 struct rq *this = cpu_rq(cpu);
69d25870
AV
2346 return atomic_read(&this->nr_iowait);
2347}
46cb4b7c 2348
dd41f596 2349#ifdef CONFIG_SMP
8a0be9ef 2350
46cb4b7c 2351/*
38022906
PZ
2352 * sched_exec - execve() is a valuable balancing opportunity, because at
2353 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2354 */
38022906 2355void sched_exec(void)
46cb4b7c 2356{
38022906 2357 struct task_struct *p = current;
1da177e4 2358 unsigned long flags;
0017d735 2359 int dest_cpu;
46cb4b7c 2360
8f42ced9 2361 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2362 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2363 if (dest_cpu == smp_processor_id())
2364 goto unlock;
38022906 2365
8f42ced9 2366 if (likely(cpu_active(dest_cpu))) {
969c7921 2367 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2368
8f42ced9
PZ
2369 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2370 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2371 return;
2372 }
0017d735 2373unlock:
8f42ced9 2374 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2375}
dd41f596 2376
1da177e4
LT
2377#endif
2378
1da177e4 2379DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2380DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2381
2382EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2383EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2384
2385/*
c5f8d995 2386 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2387 * @p in case that task is currently running.
c5f8d995
HS
2388 *
2389 * Called with task_rq_lock() held on @rq.
1da177e4 2390 */
c5f8d995
HS
2391static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2392{
2393 u64 ns = 0;
2394
2395 if (task_current(rq, p)) {
2396 update_rq_clock(rq);
78becc27 2397 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2398 if ((s64)ns < 0)
2399 ns = 0;
2400 }
2401
2402 return ns;
2403}
2404
bb34d92f 2405unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2406{
1da177e4 2407 unsigned long flags;
41b86e9c 2408 struct rq *rq;
bb34d92f 2409 u64 ns = 0;
48f24c4d 2410
41b86e9c 2411 rq = task_rq_lock(p, &flags);
c5f8d995 2412 ns = do_task_delta_exec(p, rq);
0122ec5b 2413 task_rq_unlock(rq, p, &flags);
1508487e 2414
c5f8d995
HS
2415 return ns;
2416}
f06febc9 2417
c5f8d995
HS
2418/*
2419 * Return accounted runtime for the task.
2420 * In case the task is currently running, return the runtime plus current's
2421 * pending runtime that have not been accounted yet.
2422 */
2423unsigned long long task_sched_runtime(struct task_struct *p)
2424{
2425 unsigned long flags;
2426 struct rq *rq;
2427 u64 ns = 0;
2428
911b2898
PZ
2429#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2430 /*
2431 * 64-bit doesn't need locks to atomically read a 64bit value.
2432 * So we have a optimization chance when the task's delta_exec is 0.
2433 * Reading ->on_cpu is racy, but this is ok.
2434 *
2435 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2436 * If we race with it entering cpu, unaccounted time is 0. This is
2437 * indistinguishable from the read occurring a few cycles earlier.
2438 */
2439 if (!p->on_cpu)
2440 return p->se.sum_exec_runtime;
2441#endif
2442
c5f8d995
HS
2443 rq = task_rq_lock(p, &flags);
2444 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2445 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2446
2447 return ns;
2448}
48f24c4d 2449
7835b98b
CL
2450/*
2451 * This function gets called by the timer code, with HZ frequency.
2452 * We call it with interrupts disabled.
7835b98b
CL
2453 */
2454void scheduler_tick(void)
2455{
7835b98b
CL
2456 int cpu = smp_processor_id();
2457 struct rq *rq = cpu_rq(cpu);
dd41f596 2458 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2459
2460 sched_clock_tick();
dd41f596 2461
05fa785c 2462 raw_spin_lock(&rq->lock);
3e51f33f 2463 update_rq_clock(rq);
fa85ae24 2464 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2465 update_cpu_load_active(rq);
05fa785c 2466 raw_spin_unlock(&rq->lock);
7835b98b 2467
e9d2b064 2468 perf_event_task_tick();
e220d2dc 2469
e418e1c2 2470#ifdef CONFIG_SMP
6eb57e0d 2471 rq->idle_balance = idle_cpu(cpu);
7caff66f 2472 trigger_load_balance(rq);
e418e1c2 2473#endif
265f22a9 2474 rq_last_tick_reset(rq);
1da177e4
LT
2475}
2476
265f22a9
FW
2477#ifdef CONFIG_NO_HZ_FULL
2478/**
2479 * scheduler_tick_max_deferment
2480 *
2481 * Keep at least one tick per second when a single
2482 * active task is running because the scheduler doesn't
2483 * yet completely support full dynticks environment.
2484 *
2485 * This makes sure that uptime, CFS vruntime, load
2486 * balancing, etc... continue to move forward, even
2487 * with a very low granularity.
e69f6186
YB
2488 *
2489 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2490 */
2491u64 scheduler_tick_max_deferment(void)
2492{
2493 struct rq *rq = this_rq();
2494 unsigned long next, now = ACCESS_ONCE(jiffies);
2495
2496 next = rq->last_sched_tick + HZ;
2497
2498 if (time_before_eq(next, now))
2499 return 0;
2500
8fe8ff09 2501 return jiffies_to_nsecs(next - now);
1da177e4 2502}
265f22a9 2503#endif
1da177e4 2504
132380a0 2505notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2506{
2507 if (in_lock_functions(addr)) {
2508 addr = CALLER_ADDR2;
2509 if (in_lock_functions(addr))
2510 addr = CALLER_ADDR3;
2511 }
2512 return addr;
2513}
1da177e4 2514
7e49fcce
SR
2515#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2516 defined(CONFIG_PREEMPT_TRACER))
2517
bdb43806 2518void __kprobes preempt_count_add(int val)
1da177e4 2519{
6cd8a4bb 2520#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2521 /*
2522 * Underflow?
2523 */
9a11b49a
IM
2524 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2525 return;
6cd8a4bb 2526#endif
bdb43806 2527 __preempt_count_add(val);
6cd8a4bb 2528#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2529 /*
2530 * Spinlock count overflowing soon?
2531 */
33859f7f
MOS
2532 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2533 PREEMPT_MASK - 10);
6cd8a4bb 2534#endif
8f47b187
TG
2535 if (preempt_count() == val) {
2536 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2537#ifdef CONFIG_DEBUG_PREEMPT
2538 current->preempt_disable_ip = ip;
2539#endif
2540 trace_preempt_off(CALLER_ADDR0, ip);
2541 }
1da177e4 2542}
bdb43806 2543EXPORT_SYMBOL(preempt_count_add);
1da177e4 2544
bdb43806 2545void __kprobes preempt_count_sub(int val)
1da177e4 2546{
6cd8a4bb 2547#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2548 /*
2549 * Underflow?
2550 */
01e3eb82 2551 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2552 return;
1da177e4
LT
2553 /*
2554 * Is the spinlock portion underflowing?
2555 */
9a11b49a
IM
2556 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2557 !(preempt_count() & PREEMPT_MASK)))
2558 return;
6cd8a4bb 2559#endif
9a11b49a 2560
6cd8a4bb
SR
2561 if (preempt_count() == val)
2562 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2563 __preempt_count_sub(val);
1da177e4 2564}
bdb43806 2565EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2566
2567#endif
2568
2569/*
dd41f596 2570 * Print scheduling while atomic bug:
1da177e4 2571 */
dd41f596 2572static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2573{
664dfa65
DJ
2574 if (oops_in_progress)
2575 return;
2576
3df0fc5b
PZ
2577 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2578 prev->comm, prev->pid, preempt_count());
838225b4 2579
dd41f596 2580 debug_show_held_locks(prev);
e21f5b15 2581 print_modules();
dd41f596
IM
2582 if (irqs_disabled())
2583 print_irqtrace_events(prev);
8f47b187
TG
2584#ifdef CONFIG_DEBUG_PREEMPT
2585 if (in_atomic_preempt_off()) {
2586 pr_err("Preemption disabled at:");
2587 print_ip_sym(current->preempt_disable_ip);
2588 pr_cont("\n");
2589 }
2590#endif
6135fc1e 2591 dump_stack();
373d4d09 2592 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2593}
1da177e4 2594
dd41f596
IM
2595/*
2596 * Various schedule()-time debugging checks and statistics:
2597 */
2598static inline void schedule_debug(struct task_struct *prev)
2599{
1da177e4 2600 /*
41a2d6cf 2601 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2602 * schedule() atomically, we ignore that path. Otherwise whine
2603 * if we are scheduling when we should not.
1da177e4 2604 */
192301e7 2605 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2606 __schedule_bug(prev);
b3fbab05 2607 rcu_sleep_check();
dd41f596 2608
1da177e4
LT
2609 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2610
2d72376b 2611 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2612}
2613
2614/*
2615 * Pick up the highest-prio task:
2616 */
2617static inline struct task_struct *
606dba2e 2618pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2619{
37e117c0 2620 const struct sched_class *class = &fair_sched_class;
dd41f596 2621 struct task_struct *p;
1da177e4
LT
2622
2623 /*
dd41f596
IM
2624 * Optimization: we know that if all tasks are in
2625 * the fair class we can call that function directly:
1da177e4 2626 */
37e117c0 2627 if (likely(prev->sched_class == class &&
38033c37 2628 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2629 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2630 if (unlikely(p == RETRY_TASK))
2631 goto again;
2632
2633 /* assumes fair_sched_class->next == idle_sched_class */
2634 if (unlikely(!p))
2635 p = idle_sched_class.pick_next_task(rq, prev);
2636
2637 return p;
1da177e4
LT
2638 }
2639
37e117c0 2640again:
34f971f6 2641 for_each_class(class) {
606dba2e 2642 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2643 if (p) {
2644 if (unlikely(p == RETRY_TASK))
2645 goto again;
dd41f596 2646 return p;
37e117c0 2647 }
dd41f596 2648 }
34f971f6
PZ
2649
2650 BUG(); /* the idle class will always have a runnable task */
dd41f596 2651}
1da177e4 2652
dd41f596 2653/*
c259e01a 2654 * __schedule() is the main scheduler function.
edde96ea
PE
2655 *
2656 * The main means of driving the scheduler and thus entering this function are:
2657 *
2658 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2659 *
2660 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2661 * paths. For example, see arch/x86/entry_64.S.
2662 *
2663 * To drive preemption between tasks, the scheduler sets the flag in timer
2664 * interrupt handler scheduler_tick().
2665 *
2666 * 3. Wakeups don't really cause entry into schedule(). They add a
2667 * task to the run-queue and that's it.
2668 *
2669 * Now, if the new task added to the run-queue preempts the current
2670 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2671 * called on the nearest possible occasion:
2672 *
2673 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2674 *
2675 * - in syscall or exception context, at the next outmost
2676 * preempt_enable(). (this might be as soon as the wake_up()'s
2677 * spin_unlock()!)
2678 *
2679 * - in IRQ context, return from interrupt-handler to
2680 * preemptible context
2681 *
2682 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2683 * then at the next:
2684 *
2685 * - cond_resched() call
2686 * - explicit schedule() call
2687 * - return from syscall or exception to user-space
2688 * - return from interrupt-handler to user-space
dd41f596 2689 */
c259e01a 2690static void __sched __schedule(void)
dd41f596
IM
2691{
2692 struct task_struct *prev, *next;
67ca7bde 2693 unsigned long *switch_count;
dd41f596 2694 struct rq *rq;
31656519 2695 int cpu;
dd41f596 2696
ff743345
PZ
2697need_resched:
2698 preempt_disable();
dd41f596
IM
2699 cpu = smp_processor_id();
2700 rq = cpu_rq(cpu);
25502a6c 2701 rcu_note_context_switch(cpu);
dd41f596 2702 prev = rq->curr;
dd41f596 2703
dd41f596 2704 schedule_debug(prev);
1da177e4 2705
31656519 2706 if (sched_feat(HRTICK))
f333fdc9 2707 hrtick_clear(rq);
8f4d37ec 2708
e0acd0a6
ON
2709 /*
2710 * Make sure that signal_pending_state()->signal_pending() below
2711 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2712 * done by the caller to avoid the race with signal_wake_up().
2713 */
2714 smp_mb__before_spinlock();
05fa785c 2715 raw_spin_lock_irq(&rq->lock);
1da177e4 2716
246d86b5 2717 switch_count = &prev->nivcsw;
1da177e4 2718 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2719 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2720 prev->state = TASK_RUNNING;
21aa9af0 2721 } else {
2acca55e
PZ
2722 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2723 prev->on_rq = 0;
2724
21aa9af0 2725 /*
2acca55e
PZ
2726 * If a worker went to sleep, notify and ask workqueue
2727 * whether it wants to wake up a task to maintain
2728 * concurrency.
21aa9af0
TH
2729 */
2730 if (prev->flags & PF_WQ_WORKER) {
2731 struct task_struct *to_wakeup;
2732
2733 to_wakeup = wq_worker_sleeping(prev, cpu);
2734 if (to_wakeup)
2735 try_to_wake_up_local(to_wakeup);
2736 }
21aa9af0 2737 }
dd41f596 2738 switch_count = &prev->nvcsw;
1da177e4
LT
2739 }
2740
606dba2e
PZ
2741 if (prev->on_rq || rq->skip_clock_update < 0)
2742 update_rq_clock(rq);
2743
2744 next = pick_next_task(rq, prev);
f26f9aff 2745 clear_tsk_need_resched(prev);
f27dde8d 2746 clear_preempt_need_resched();
f26f9aff 2747 rq->skip_clock_update = 0;
1da177e4 2748
1da177e4 2749 if (likely(prev != next)) {
1da177e4
LT
2750 rq->nr_switches++;
2751 rq->curr = next;
2752 ++*switch_count;
2753
dd41f596 2754 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2755 /*
246d86b5
ON
2756 * The context switch have flipped the stack from under us
2757 * and restored the local variables which were saved when
2758 * this task called schedule() in the past. prev == current
2759 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2760 */
2761 cpu = smp_processor_id();
2762 rq = cpu_rq(cpu);
1da177e4 2763 } else
05fa785c 2764 raw_spin_unlock_irq(&rq->lock);
1da177e4 2765
3f029d3c 2766 post_schedule(rq);
1da177e4 2767
ba74c144 2768 sched_preempt_enable_no_resched();
ff743345 2769 if (need_resched())
1da177e4
LT
2770 goto need_resched;
2771}
c259e01a 2772
9c40cef2
TG
2773static inline void sched_submit_work(struct task_struct *tsk)
2774{
3c7d5184 2775 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2776 return;
2777 /*
2778 * If we are going to sleep and we have plugged IO queued,
2779 * make sure to submit it to avoid deadlocks.
2780 */
2781 if (blk_needs_flush_plug(tsk))
2782 blk_schedule_flush_plug(tsk);
2783}
2784
722a9f92 2785asmlinkage __visible void __sched schedule(void)
c259e01a 2786{
9c40cef2
TG
2787 struct task_struct *tsk = current;
2788
2789 sched_submit_work(tsk);
c259e01a
TG
2790 __schedule();
2791}
1da177e4
LT
2792EXPORT_SYMBOL(schedule);
2793
91d1aa43 2794#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2795asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2796{
2797 /*
2798 * If we come here after a random call to set_need_resched(),
2799 * or we have been woken up remotely but the IPI has not yet arrived,
2800 * we haven't yet exited the RCU idle mode. Do it here manually until
2801 * we find a better solution.
2802 */
91d1aa43 2803 user_exit();
20ab65e3 2804 schedule();
91d1aa43 2805 user_enter();
20ab65e3
FW
2806}
2807#endif
2808
c5491ea7
TG
2809/**
2810 * schedule_preempt_disabled - called with preemption disabled
2811 *
2812 * Returns with preemption disabled. Note: preempt_count must be 1
2813 */
2814void __sched schedule_preempt_disabled(void)
2815{
ba74c144 2816 sched_preempt_enable_no_resched();
c5491ea7
TG
2817 schedule();
2818 preempt_disable();
2819}
2820
1da177e4
LT
2821#ifdef CONFIG_PREEMPT
2822/*
2ed6e34f 2823 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2824 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2825 * occur there and call schedule directly.
2826 */
722a9f92 2827asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2828{
1da177e4
LT
2829 /*
2830 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2831 * we do not want to preempt the current task. Just return..
1da177e4 2832 */
fbb00b56 2833 if (likely(!preemptible()))
1da177e4
LT
2834 return;
2835
3a5c359a 2836 do {
bdb43806 2837 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2838 __schedule();
bdb43806 2839 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2840
3a5c359a
AK
2841 /*
2842 * Check again in case we missed a preemption opportunity
2843 * between schedule and now.
2844 */
2845 barrier();
5ed0cec0 2846 } while (need_resched());
1da177e4 2847}
1da177e4 2848EXPORT_SYMBOL(preempt_schedule);
32e475d7 2849#endif /* CONFIG_PREEMPT */
1da177e4
LT
2850
2851/*
2ed6e34f 2852 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2853 * off of irq context.
2854 * Note, that this is called and return with irqs disabled. This will
2855 * protect us against recursive calling from irq.
2856 */
722a9f92 2857asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2858{
b22366cd 2859 enum ctx_state prev_state;
6478d880 2860
2ed6e34f 2861 /* Catch callers which need to be fixed */
f27dde8d 2862 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2863
b22366cd
FW
2864 prev_state = exception_enter();
2865
3a5c359a 2866 do {
bdb43806 2867 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2868 local_irq_enable();
c259e01a 2869 __schedule();
3a5c359a 2870 local_irq_disable();
bdb43806 2871 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2872
3a5c359a
AK
2873 /*
2874 * Check again in case we missed a preemption opportunity
2875 * between schedule and now.
2876 */
2877 barrier();
5ed0cec0 2878 } while (need_resched());
b22366cd
FW
2879
2880 exception_exit(prev_state);
1da177e4
LT
2881}
2882
63859d4f 2883int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2884 void *key)
1da177e4 2885{
63859d4f 2886 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2887}
1da177e4
LT
2888EXPORT_SYMBOL(default_wake_function);
2889
b29739f9
IM
2890#ifdef CONFIG_RT_MUTEXES
2891
2892/*
2893 * rt_mutex_setprio - set the current priority of a task
2894 * @p: task
2895 * @prio: prio value (kernel-internal form)
2896 *
2897 * This function changes the 'effective' priority of a task. It does
2898 * not touch ->normal_prio like __setscheduler().
2899 *
c365c292
TG
2900 * Used by the rt_mutex code to implement priority inheritance
2901 * logic. Call site only calls if the priority of the task changed.
b29739f9 2902 */
36c8b586 2903void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2904{
2d3d891d 2905 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2906 struct rq *rq;
83ab0aa0 2907 const struct sched_class *prev_class;
b29739f9 2908
aab03e05 2909 BUG_ON(prio > MAX_PRIO);
b29739f9 2910
0122ec5b 2911 rq = __task_rq_lock(p);
b29739f9 2912
1c4dd99b
TG
2913 /*
2914 * Idle task boosting is a nono in general. There is one
2915 * exception, when PREEMPT_RT and NOHZ is active:
2916 *
2917 * The idle task calls get_next_timer_interrupt() and holds
2918 * the timer wheel base->lock on the CPU and another CPU wants
2919 * to access the timer (probably to cancel it). We can safely
2920 * ignore the boosting request, as the idle CPU runs this code
2921 * with interrupts disabled and will complete the lock
2922 * protected section without being interrupted. So there is no
2923 * real need to boost.
2924 */
2925 if (unlikely(p == rq->idle)) {
2926 WARN_ON(p != rq->curr);
2927 WARN_ON(p->pi_blocked_on);
2928 goto out_unlock;
2929 }
2930
a8027073 2931 trace_sched_pi_setprio(p, prio);
2d3d891d 2932 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2933 oldprio = p->prio;
83ab0aa0 2934 prev_class = p->sched_class;
fd2f4419 2935 on_rq = p->on_rq;
051a1d1a 2936 running = task_current(rq, p);
0e1f3483 2937 if (on_rq)
69be72c1 2938 dequeue_task(rq, p, 0);
0e1f3483
HS
2939 if (running)
2940 p->sched_class->put_prev_task(rq, p);
dd41f596 2941
2d3d891d
DF
2942 /*
2943 * Boosting condition are:
2944 * 1. -rt task is running and holds mutex A
2945 * --> -dl task blocks on mutex A
2946 *
2947 * 2. -dl task is running and holds mutex A
2948 * --> -dl task blocks on mutex A and could preempt the
2949 * running task
2950 */
2951 if (dl_prio(prio)) {
2952 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2953 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2954 p->dl.dl_boosted = 1;
2955 p->dl.dl_throttled = 0;
2956 enqueue_flag = ENQUEUE_REPLENISH;
2957 } else
2958 p->dl.dl_boosted = 0;
aab03e05 2959 p->sched_class = &dl_sched_class;
2d3d891d
DF
2960 } else if (rt_prio(prio)) {
2961 if (dl_prio(oldprio))
2962 p->dl.dl_boosted = 0;
2963 if (oldprio < prio)
2964 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2965 p->sched_class = &rt_sched_class;
2d3d891d
DF
2966 } else {
2967 if (dl_prio(oldprio))
2968 p->dl.dl_boosted = 0;
dd41f596 2969 p->sched_class = &fair_sched_class;
2d3d891d 2970 }
dd41f596 2971
b29739f9
IM
2972 p->prio = prio;
2973
0e1f3483
HS
2974 if (running)
2975 p->sched_class->set_curr_task(rq);
da7a735e 2976 if (on_rq)
2d3d891d 2977 enqueue_task(rq, p, enqueue_flag);
cb469845 2978
da7a735e 2979 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2980out_unlock:
0122ec5b 2981 __task_rq_unlock(rq);
b29739f9 2982}
b29739f9 2983#endif
d50dde5a 2984
36c8b586 2985void set_user_nice(struct task_struct *p, long nice)
1da177e4 2986{
dd41f596 2987 int old_prio, delta, on_rq;
1da177e4 2988 unsigned long flags;
70b97a7f 2989 struct rq *rq;
1da177e4 2990
75e45d51 2991 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2992 return;
2993 /*
2994 * We have to be careful, if called from sys_setpriority(),
2995 * the task might be in the middle of scheduling on another CPU.
2996 */
2997 rq = task_rq_lock(p, &flags);
2998 /*
2999 * The RT priorities are set via sched_setscheduler(), but we still
3000 * allow the 'normal' nice value to be set - but as expected
3001 * it wont have any effect on scheduling until the task is
aab03e05 3002 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3003 */
aab03e05 3004 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3005 p->static_prio = NICE_TO_PRIO(nice);
3006 goto out_unlock;
3007 }
fd2f4419 3008 on_rq = p->on_rq;
c09595f6 3009 if (on_rq)
69be72c1 3010 dequeue_task(rq, p, 0);
1da177e4 3011
1da177e4 3012 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3013 set_load_weight(p);
b29739f9
IM
3014 old_prio = p->prio;
3015 p->prio = effective_prio(p);
3016 delta = p->prio - old_prio;
1da177e4 3017
dd41f596 3018 if (on_rq) {
371fd7e7 3019 enqueue_task(rq, p, 0);
1da177e4 3020 /*
d5f9f942
AM
3021 * If the task increased its priority or is running and
3022 * lowered its priority, then reschedule its CPU:
1da177e4 3023 */
d5f9f942 3024 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3025 resched_task(rq->curr);
3026 }
3027out_unlock:
0122ec5b 3028 task_rq_unlock(rq, p, &flags);
1da177e4 3029}
1da177e4
LT
3030EXPORT_SYMBOL(set_user_nice);
3031
e43379f1
MM
3032/*
3033 * can_nice - check if a task can reduce its nice value
3034 * @p: task
3035 * @nice: nice value
3036 */
36c8b586 3037int can_nice(const struct task_struct *p, const int nice)
e43379f1 3038{
024f4747 3039 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3040 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3041
78d7d407 3042 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3043 capable(CAP_SYS_NICE));
3044}
3045
1da177e4
LT
3046#ifdef __ARCH_WANT_SYS_NICE
3047
3048/*
3049 * sys_nice - change the priority of the current process.
3050 * @increment: priority increment
3051 *
3052 * sys_setpriority is a more generic, but much slower function that
3053 * does similar things.
3054 */
5add95d4 3055SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3056{
48f24c4d 3057 long nice, retval;
1da177e4
LT
3058
3059 /*
3060 * Setpriority might change our priority at the same moment.
3061 * We don't have to worry. Conceptually one call occurs first
3062 * and we have a single winner.
3063 */
a9467fa3 3064 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3065 nice = task_nice(current) + increment;
1da177e4 3066
a9467fa3 3067 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3068 if (increment < 0 && !can_nice(current, nice))
3069 return -EPERM;
3070
1da177e4
LT
3071 retval = security_task_setnice(current, nice);
3072 if (retval)
3073 return retval;
3074
3075 set_user_nice(current, nice);
3076 return 0;
3077}
3078
3079#endif
3080
3081/**
3082 * task_prio - return the priority value of a given task.
3083 * @p: the task in question.
3084 *
e69f6186 3085 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3086 * RT tasks are offset by -200. Normal tasks are centered
3087 * around 0, value goes from -16 to +15.
3088 */
36c8b586 3089int task_prio(const struct task_struct *p)
1da177e4
LT
3090{
3091 return p->prio - MAX_RT_PRIO;
3092}
3093
1da177e4
LT
3094/**
3095 * idle_cpu - is a given cpu idle currently?
3096 * @cpu: the processor in question.
e69f6186
YB
3097 *
3098 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3099 */
3100int idle_cpu(int cpu)
3101{
908a3283
TG
3102 struct rq *rq = cpu_rq(cpu);
3103
3104 if (rq->curr != rq->idle)
3105 return 0;
3106
3107 if (rq->nr_running)
3108 return 0;
3109
3110#ifdef CONFIG_SMP
3111 if (!llist_empty(&rq->wake_list))
3112 return 0;
3113#endif
3114
3115 return 1;
1da177e4
LT
3116}
3117
1da177e4
LT
3118/**
3119 * idle_task - return the idle task for a given cpu.
3120 * @cpu: the processor in question.
e69f6186
YB
3121 *
3122 * Return: The idle task for the cpu @cpu.
1da177e4 3123 */
36c8b586 3124struct task_struct *idle_task(int cpu)
1da177e4
LT
3125{
3126 return cpu_rq(cpu)->idle;
3127}
3128
3129/**
3130 * find_process_by_pid - find a process with a matching PID value.
3131 * @pid: the pid in question.
e69f6186
YB
3132 *
3133 * The task of @pid, if found. %NULL otherwise.
1da177e4 3134 */
a9957449 3135static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3136{
228ebcbe 3137 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3138}
3139
aab03e05
DF
3140/*
3141 * This function initializes the sched_dl_entity of a newly becoming
3142 * SCHED_DEADLINE task.
3143 *
3144 * Only the static values are considered here, the actual runtime and the
3145 * absolute deadline will be properly calculated when the task is enqueued
3146 * for the first time with its new policy.
3147 */
3148static void
3149__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3150{
3151 struct sched_dl_entity *dl_se = &p->dl;
3152
3153 init_dl_task_timer(dl_se);
3154 dl_se->dl_runtime = attr->sched_runtime;
3155 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3156 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3157 dl_se->flags = attr->sched_flags;
332ac17e 3158 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3159 dl_se->dl_throttled = 0;
3160 dl_se->dl_new = 1;
5bfd126e 3161 dl_se->dl_yielded = 0;
aab03e05
DF
3162}
3163
c365c292
TG
3164static void __setscheduler_params(struct task_struct *p,
3165 const struct sched_attr *attr)
1da177e4 3166{
d50dde5a
DF
3167 int policy = attr->sched_policy;
3168
39fd8fd2
PZ
3169 if (policy == -1) /* setparam */
3170 policy = p->policy;
3171
1da177e4 3172 p->policy = policy;
d50dde5a 3173
aab03e05
DF
3174 if (dl_policy(policy))
3175 __setparam_dl(p, attr);
39fd8fd2 3176 else if (fair_policy(policy))
d50dde5a
DF
3177 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3178
39fd8fd2
PZ
3179 /*
3180 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3181 * !rt_policy. Always setting this ensures that things like
3182 * getparam()/getattr() don't report silly values for !rt tasks.
3183 */
3184 p->rt_priority = attr->sched_priority;
383afd09 3185 p->normal_prio = normal_prio(p);
c365c292
TG
3186 set_load_weight(p);
3187}
39fd8fd2 3188
c365c292
TG
3189/* Actually do priority change: must hold pi & rq lock. */
3190static void __setscheduler(struct rq *rq, struct task_struct *p,
3191 const struct sched_attr *attr)
3192{
3193 __setscheduler_params(p, attr);
d50dde5a 3194
383afd09
SR
3195 /*
3196 * If we get here, there was no pi waiters boosting the
3197 * task. It is safe to use the normal prio.
3198 */
3199 p->prio = normal_prio(p);
3200
aab03e05
DF
3201 if (dl_prio(p->prio))
3202 p->sched_class = &dl_sched_class;
3203 else if (rt_prio(p->prio))
ffd44db5
PZ
3204 p->sched_class = &rt_sched_class;
3205 else
3206 p->sched_class = &fair_sched_class;
1da177e4 3207}
aab03e05
DF
3208
3209static void
3210__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3211{
3212 struct sched_dl_entity *dl_se = &p->dl;
3213
3214 attr->sched_priority = p->rt_priority;
3215 attr->sched_runtime = dl_se->dl_runtime;
3216 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3217 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3218 attr->sched_flags = dl_se->flags;
3219}
3220
3221/*
3222 * This function validates the new parameters of a -deadline task.
3223 * We ask for the deadline not being zero, and greater or equal
755378a4 3224 * than the runtime, as well as the period of being zero or
332ac17e 3225 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3226 * user parameters are above the internal resolution of 1us (we
3227 * check sched_runtime only since it is always the smaller one) and
3228 * below 2^63 ns (we have to check both sched_deadline and
3229 * sched_period, as the latter can be zero).
aab03e05
DF
3230 */
3231static bool
3232__checkparam_dl(const struct sched_attr *attr)
3233{
b0827819
JL
3234 /* deadline != 0 */
3235 if (attr->sched_deadline == 0)
3236 return false;
3237
3238 /*
3239 * Since we truncate DL_SCALE bits, make sure we're at least
3240 * that big.
3241 */
3242 if (attr->sched_runtime < (1ULL << DL_SCALE))
3243 return false;
3244
3245 /*
3246 * Since we use the MSB for wrap-around and sign issues, make
3247 * sure it's not set (mind that period can be equal to zero).
3248 */
3249 if (attr->sched_deadline & (1ULL << 63) ||
3250 attr->sched_period & (1ULL << 63))
3251 return false;
3252
3253 /* runtime <= deadline <= period (if period != 0) */
3254 if ((attr->sched_period != 0 &&
3255 attr->sched_period < attr->sched_deadline) ||
3256 attr->sched_deadline < attr->sched_runtime)
3257 return false;
3258
3259 return true;
aab03e05
DF
3260}
3261
c69e8d9c
DH
3262/*
3263 * check the target process has a UID that matches the current process's
3264 */
3265static bool check_same_owner(struct task_struct *p)
3266{
3267 const struct cred *cred = current_cred(), *pcred;
3268 bool match;
3269
3270 rcu_read_lock();
3271 pcred = __task_cred(p);
9c806aa0
EB
3272 match = (uid_eq(cred->euid, pcred->euid) ||
3273 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3274 rcu_read_unlock();
3275 return match;
3276}
3277
d50dde5a
DF
3278static int __sched_setscheduler(struct task_struct *p,
3279 const struct sched_attr *attr,
3280 bool user)
1da177e4 3281{
383afd09
SR
3282 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3283 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3284 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3285 int policy = attr->sched_policy;
1da177e4 3286 unsigned long flags;
83ab0aa0 3287 const struct sched_class *prev_class;
70b97a7f 3288 struct rq *rq;
ca94c442 3289 int reset_on_fork;
1da177e4 3290
66e5393a
SR
3291 /* may grab non-irq protected spin_locks */
3292 BUG_ON(in_interrupt());
1da177e4
LT
3293recheck:
3294 /* double check policy once rq lock held */
ca94c442
LP
3295 if (policy < 0) {
3296 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3297 policy = oldpolicy = p->policy;
ca94c442 3298 } else {
7479f3c9 3299 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3300
aab03e05
DF
3301 if (policy != SCHED_DEADLINE &&
3302 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3303 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3304 policy != SCHED_IDLE)
3305 return -EINVAL;
3306 }
3307
7479f3c9
PZ
3308 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3309 return -EINVAL;
3310
1da177e4
LT
3311 /*
3312 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3313 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3314 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3315 */
0bb040a4 3316 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3317 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3318 return -EINVAL;
aab03e05
DF
3319 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3320 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3321 return -EINVAL;
3322
37e4ab3f
OC
3323 /*
3324 * Allow unprivileged RT tasks to decrease priority:
3325 */
961ccddd 3326 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3327 if (fair_policy(policy)) {
d0ea0268 3328 if (attr->sched_nice < task_nice(p) &&
eaad4513 3329 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3330 return -EPERM;
3331 }
3332
e05606d3 3333 if (rt_policy(policy)) {
a44702e8
ON
3334 unsigned long rlim_rtprio =
3335 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3336
3337 /* can't set/change the rt policy */
3338 if (policy != p->policy && !rlim_rtprio)
3339 return -EPERM;
3340
3341 /* can't increase priority */
d50dde5a
DF
3342 if (attr->sched_priority > p->rt_priority &&
3343 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3344 return -EPERM;
3345 }
c02aa73b 3346
d44753b8
JL
3347 /*
3348 * Can't set/change SCHED_DEADLINE policy at all for now
3349 * (safest behavior); in the future we would like to allow
3350 * unprivileged DL tasks to increase their relative deadline
3351 * or reduce their runtime (both ways reducing utilization)
3352 */
3353 if (dl_policy(policy))
3354 return -EPERM;
3355
dd41f596 3356 /*
c02aa73b
DH
3357 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3358 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3359 */
c02aa73b 3360 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3361 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3362 return -EPERM;
3363 }
5fe1d75f 3364
37e4ab3f 3365 /* can't change other user's priorities */
c69e8d9c 3366 if (!check_same_owner(p))
37e4ab3f 3367 return -EPERM;
ca94c442
LP
3368
3369 /* Normal users shall not reset the sched_reset_on_fork flag */
3370 if (p->sched_reset_on_fork && !reset_on_fork)
3371 return -EPERM;
37e4ab3f 3372 }
1da177e4 3373
725aad24 3374 if (user) {
b0ae1981 3375 retval = security_task_setscheduler(p);
725aad24
JF
3376 if (retval)
3377 return retval;
3378 }
3379
b29739f9
IM
3380 /*
3381 * make sure no PI-waiters arrive (or leave) while we are
3382 * changing the priority of the task:
0122ec5b 3383 *
25985edc 3384 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3385 * runqueue lock must be held.
3386 */
0122ec5b 3387 rq = task_rq_lock(p, &flags);
dc61b1d6 3388
34f971f6
PZ
3389 /*
3390 * Changing the policy of the stop threads its a very bad idea
3391 */
3392 if (p == rq->stop) {
0122ec5b 3393 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3394 return -EINVAL;
3395 }
3396
a51e9198 3397 /*
d6b1e911
TG
3398 * If not changing anything there's no need to proceed further,
3399 * but store a possible modification of reset_on_fork.
a51e9198 3400 */
d50dde5a 3401 if (unlikely(policy == p->policy)) {
d0ea0268 3402 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3403 goto change;
3404 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3405 goto change;
aab03e05
DF
3406 if (dl_policy(policy))
3407 goto change;
d50dde5a 3408
d6b1e911 3409 p->sched_reset_on_fork = reset_on_fork;
45afb173 3410 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3411 return 0;
3412 }
d50dde5a 3413change:
a51e9198 3414
dc61b1d6 3415 if (user) {
332ac17e 3416#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3417 /*
3418 * Do not allow realtime tasks into groups that have no runtime
3419 * assigned.
3420 */
3421 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3422 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3423 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3424 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3425 return -EPERM;
3426 }
dc61b1d6 3427#endif
332ac17e
DF
3428#ifdef CONFIG_SMP
3429 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3430 cpumask_t *span = rq->rd->span;
332ac17e
DF
3431
3432 /*
3433 * Don't allow tasks with an affinity mask smaller than
3434 * the entire root_domain to become SCHED_DEADLINE. We
3435 * will also fail if there's no bandwidth available.
3436 */
e4099a5e
PZ
3437 if (!cpumask_subset(span, &p->cpus_allowed) ||
3438 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3439 task_rq_unlock(rq, p, &flags);
3440 return -EPERM;
3441 }
3442 }
3443#endif
3444 }
dc61b1d6 3445
1da177e4
LT
3446 /* recheck policy now with rq lock held */
3447 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3448 policy = oldpolicy = -1;
0122ec5b 3449 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3450 goto recheck;
3451 }
332ac17e
DF
3452
3453 /*
3454 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3455 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3456 * is available.
3457 */
e4099a5e 3458 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3459 task_rq_unlock(rq, p, &flags);
3460 return -EBUSY;
3461 }
3462
c365c292
TG
3463 p->sched_reset_on_fork = reset_on_fork;
3464 oldprio = p->prio;
3465
3466 /*
3467 * Special case for priority boosted tasks.
3468 *
3469 * If the new priority is lower or equal (user space view)
3470 * than the current (boosted) priority, we just store the new
3471 * normal parameters and do not touch the scheduler class and
3472 * the runqueue. This will be done when the task deboost
3473 * itself.
3474 */
3475 if (rt_mutex_check_prio(p, newprio)) {
3476 __setscheduler_params(p, attr);
3477 task_rq_unlock(rq, p, &flags);
3478 return 0;
3479 }
3480
fd2f4419 3481 on_rq = p->on_rq;
051a1d1a 3482 running = task_current(rq, p);
0e1f3483 3483 if (on_rq)
4ca9b72b 3484 dequeue_task(rq, p, 0);
0e1f3483
HS
3485 if (running)
3486 p->sched_class->put_prev_task(rq, p);
f6b53205 3487
83ab0aa0 3488 prev_class = p->sched_class;
d50dde5a 3489 __setscheduler(rq, p, attr);
f6b53205 3490
0e1f3483
HS
3491 if (running)
3492 p->sched_class->set_curr_task(rq);
81a44c54
TG
3493 if (on_rq) {
3494 /*
3495 * We enqueue to tail when the priority of a task is
3496 * increased (user space view).
3497 */
3498 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3499 }
cb469845 3500
da7a735e 3501 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3502 task_rq_unlock(rq, p, &flags);
b29739f9 3503
95e02ca9
TG
3504 rt_mutex_adjust_pi(p);
3505
1da177e4
LT
3506 return 0;
3507}
961ccddd 3508
7479f3c9
PZ
3509static int _sched_setscheduler(struct task_struct *p, int policy,
3510 const struct sched_param *param, bool check)
3511{
3512 struct sched_attr attr = {
3513 .sched_policy = policy,
3514 .sched_priority = param->sched_priority,
3515 .sched_nice = PRIO_TO_NICE(p->static_prio),
3516 };
3517
3518 /*
3519 * Fixup the legacy SCHED_RESET_ON_FORK hack
3520 */
3521 if (policy & SCHED_RESET_ON_FORK) {
3522 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3523 policy &= ~SCHED_RESET_ON_FORK;
3524 attr.sched_policy = policy;
3525 }
3526
3527 return __sched_setscheduler(p, &attr, check);
3528}
961ccddd
RR
3529/**
3530 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3531 * @p: the task in question.
3532 * @policy: new policy.
3533 * @param: structure containing the new RT priority.
3534 *
e69f6186
YB
3535 * Return: 0 on success. An error code otherwise.
3536 *
961ccddd
RR
3537 * NOTE that the task may be already dead.
3538 */
3539int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3540 const struct sched_param *param)
961ccddd 3541{
7479f3c9 3542 return _sched_setscheduler(p, policy, param, true);
961ccddd 3543}
1da177e4
LT
3544EXPORT_SYMBOL_GPL(sched_setscheduler);
3545
d50dde5a
DF
3546int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3547{
3548 return __sched_setscheduler(p, attr, true);
3549}
3550EXPORT_SYMBOL_GPL(sched_setattr);
3551
961ccddd
RR
3552/**
3553 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3554 * @p: the task in question.
3555 * @policy: new policy.
3556 * @param: structure containing the new RT priority.
3557 *
3558 * Just like sched_setscheduler, only don't bother checking if the
3559 * current context has permission. For example, this is needed in
3560 * stop_machine(): we create temporary high priority worker threads,
3561 * but our caller might not have that capability.
e69f6186
YB
3562 *
3563 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3564 */
3565int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3566 const struct sched_param *param)
961ccddd 3567{
7479f3c9 3568 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3569}
3570
95cdf3b7
IM
3571static int
3572do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3573{
1da177e4
LT
3574 struct sched_param lparam;
3575 struct task_struct *p;
36c8b586 3576 int retval;
1da177e4
LT
3577
3578 if (!param || pid < 0)
3579 return -EINVAL;
3580 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3581 return -EFAULT;
5fe1d75f
ON
3582
3583 rcu_read_lock();
3584 retval = -ESRCH;
1da177e4 3585 p = find_process_by_pid(pid);
5fe1d75f
ON
3586 if (p != NULL)
3587 retval = sched_setscheduler(p, policy, &lparam);
3588 rcu_read_unlock();
36c8b586 3589
1da177e4
LT
3590 return retval;
3591}
3592
d50dde5a
DF
3593/*
3594 * Mimics kernel/events/core.c perf_copy_attr().
3595 */
3596static int sched_copy_attr(struct sched_attr __user *uattr,
3597 struct sched_attr *attr)
3598{
3599 u32 size;
3600 int ret;
3601
3602 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3603 return -EFAULT;
3604
3605 /*
3606 * zero the full structure, so that a short copy will be nice.
3607 */
3608 memset(attr, 0, sizeof(*attr));
3609
3610 ret = get_user(size, &uattr->size);
3611 if (ret)
3612 return ret;
3613
3614 if (size > PAGE_SIZE) /* silly large */
3615 goto err_size;
3616
3617 if (!size) /* abi compat */
3618 size = SCHED_ATTR_SIZE_VER0;
3619
3620 if (size < SCHED_ATTR_SIZE_VER0)
3621 goto err_size;
3622
3623 /*
3624 * If we're handed a bigger struct than we know of,
3625 * ensure all the unknown bits are 0 - i.e. new
3626 * user-space does not rely on any kernel feature
3627 * extensions we dont know about yet.
3628 */
3629 if (size > sizeof(*attr)) {
3630 unsigned char __user *addr;
3631 unsigned char __user *end;
3632 unsigned char val;
3633
3634 addr = (void __user *)uattr + sizeof(*attr);
3635 end = (void __user *)uattr + size;
3636
3637 for (; addr < end; addr++) {
3638 ret = get_user(val, addr);
3639 if (ret)
3640 return ret;
3641 if (val)
3642 goto err_size;
3643 }
3644 size = sizeof(*attr);
3645 }
3646
3647 ret = copy_from_user(attr, uattr, size);
3648 if (ret)
3649 return -EFAULT;
3650
3651 /*
3652 * XXX: do we want to be lenient like existing syscalls; or do we want
3653 * to be strict and return an error on out-of-bounds values?
3654 */
75e45d51 3655 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3656
e78c7bca 3657 return 0;
d50dde5a
DF
3658
3659err_size:
3660 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3661 return -E2BIG;
d50dde5a
DF
3662}
3663
1da177e4
LT
3664/**
3665 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3666 * @pid: the pid in question.
3667 * @policy: new policy.
3668 * @param: structure containing the new RT priority.
e69f6186
YB
3669 *
3670 * Return: 0 on success. An error code otherwise.
1da177e4 3671 */
5add95d4
HC
3672SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3673 struct sched_param __user *, param)
1da177e4 3674{
c21761f1
JB
3675 /* negative values for policy are not valid */
3676 if (policy < 0)
3677 return -EINVAL;
3678
1da177e4
LT
3679 return do_sched_setscheduler(pid, policy, param);
3680}
3681
3682/**
3683 * sys_sched_setparam - set/change the RT priority of a thread
3684 * @pid: the pid in question.
3685 * @param: structure containing the new RT priority.
e69f6186
YB
3686 *
3687 * Return: 0 on success. An error code otherwise.
1da177e4 3688 */
5add95d4 3689SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3690{
3691 return do_sched_setscheduler(pid, -1, param);
3692}
3693
d50dde5a
DF
3694/**
3695 * sys_sched_setattr - same as above, but with extended sched_attr
3696 * @pid: the pid in question.
5778fccf 3697 * @uattr: structure containing the extended parameters.
db66d756 3698 * @flags: for future extension.
d50dde5a 3699 */
6d35ab48
PZ
3700SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3701 unsigned int, flags)
d50dde5a
DF
3702{
3703 struct sched_attr attr;
3704 struct task_struct *p;
3705 int retval;
3706
6d35ab48 3707 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3708 return -EINVAL;
3709
143cf23d
MK
3710 retval = sched_copy_attr(uattr, &attr);
3711 if (retval)
3712 return retval;
d50dde5a 3713
dbdb2275
PZ
3714 if (attr.sched_policy < 0)
3715 return -EINVAL;
d50dde5a
DF
3716
3717 rcu_read_lock();
3718 retval = -ESRCH;
3719 p = find_process_by_pid(pid);
3720 if (p != NULL)
3721 retval = sched_setattr(p, &attr);
3722 rcu_read_unlock();
3723
3724 return retval;
3725}
3726
1da177e4
LT
3727/**
3728 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3729 * @pid: the pid in question.
e69f6186
YB
3730 *
3731 * Return: On success, the policy of the thread. Otherwise, a negative error
3732 * code.
1da177e4 3733 */
5add95d4 3734SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3735{
36c8b586 3736 struct task_struct *p;
3a5c359a 3737 int retval;
1da177e4
LT
3738
3739 if (pid < 0)
3a5c359a 3740 return -EINVAL;
1da177e4
LT
3741
3742 retval = -ESRCH;
5fe85be0 3743 rcu_read_lock();
1da177e4
LT
3744 p = find_process_by_pid(pid);
3745 if (p) {
3746 retval = security_task_getscheduler(p);
3747 if (!retval)
ca94c442
LP
3748 retval = p->policy
3749 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3750 }
5fe85be0 3751 rcu_read_unlock();
1da177e4
LT
3752 return retval;
3753}
3754
3755/**
ca94c442 3756 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3757 * @pid: the pid in question.
3758 * @param: structure containing the RT priority.
e69f6186
YB
3759 *
3760 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3761 * code.
1da177e4 3762 */
5add95d4 3763SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3764{
ce5f7f82 3765 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3766 struct task_struct *p;
3a5c359a 3767 int retval;
1da177e4
LT
3768
3769 if (!param || pid < 0)
3a5c359a 3770 return -EINVAL;
1da177e4 3771
5fe85be0 3772 rcu_read_lock();
1da177e4
LT
3773 p = find_process_by_pid(pid);
3774 retval = -ESRCH;
3775 if (!p)
3776 goto out_unlock;
3777
3778 retval = security_task_getscheduler(p);
3779 if (retval)
3780 goto out_unlock;
3781
ce5f7f82
PZ
3782 if (task_has_rt_policy(p))
3783 lp.sched_priority = p->rt_priority;
5fe85be0 3784 rcu_read_unlock();
1da177e4
LT
3785
3786 /*
3787 * This one might sleep, we cannot do it with a spinlock held ...
3788 */
3789 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3790
1da177e4
LT
3791 return retval;
3792
3793out_unlock:
5fe85be0 3794 rcu_read_unlock();
1da177e4
LT
3795 return retval;
3796}
3797
d50dde5a
DF
3798static int sched_read_attr(struct sched_attr __user *uattr,
3799 struct sched_attr *attr,
3800 unsigned int usize)
3801{
3802 int ret;
3803
3804 if (!access_ok(VERIFY_WRITE, uattr, usize))
3805 return -EFAULT;
3806
3807 /*
3808 * If we're handed a smaller struct than we know of,
3809 * ensure all the unknown bits are 0 - i.e. old
3810 * user-space does not get uncomplete information.
3811 */
3812 if (usize < sizeof(*attr)) {
3813 unsigned char *addr;
3814 unsigned char *end;
3815
3816 addr = (void *)attr + usize;
3817 end = (void *)attr + sizeof(*attr);
3818
3819 for (; addr < end; addr++) {
3820 if (*addr)
22400674 3821 return -EFBIG;
d50dde5a
DF
3822 }
3823
3824 attr->size = usize;
3825 }
3826
4efbc454 3827 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3828 if (ret)
3829 return -EFAULT;
3830
22400674 3831 return 0;
d50dde5a
DF
3832}
3833
3834/**
aab03e05 3835 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3836 * @pid: the pid in question.
5778fccf 3837 * @uattr: structure containing the extended parameters.
d50dde5a 3838 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3839 * @flags: for future extension.
d50dde5a 3840 */
6d35ab48
PZ
3841SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3842 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3843{
3844 struct sched_attr attr = {
3845 .size = sizeof(struct sched_attr),
3846 };
3847 struct task_struct *p;
3848 int retval;
3849
3850 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3851 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3852 return -EINVAL;
3853
3854 rcu_read_lock();
3855 p = find_process_by_pid(pid);
3856 retval = -ESRCH;
3857 if (!p)
3858 goto out_unlock;
3859
3860 retval = security_task_getscheduler(p);
3861 if (retval)
3862 goto out_unlock;
3863
3864 attr.sched_policy = p->policy;
7479f3c9
PZ
3865 if (p->sched_reset_on_fork)
3866 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3867 if (task_has_dl_policy(p))
3868 __getparam_dl(p, &attr);
3869 else if (task_has_rt_policy(p))
d50dde5a
DF
3870 attr.sched_priority = p->rt_priority;
3871 else
d0ea0268 3872 attr.sched_nice = task_nice(p);
d50dde5a
DF
3873
3874 rcu_read_unlock();
3875
3876 retval = sched_read_attr(uattr, &attr, size);
3877 return retval;
3878
3879out_unlock:
3880 rcu_read_unlock();
3881 return retval;
3882}
3883
96f874e2 3884long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3885{
5a16f3d3 3886 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3887 struct task_struct *p;
3888 int retval;
1da177e4 3889
23f5d142 3890 rcu_read_lock();
1da177e4
LT
3891
3892 p = find_process_by_pid(pid);
3893 if (!p) {
23f5d142 3894 rcu_read_unlock();
1da177e4
LT
3895 return -ESRCH;
3896 }
3897
23f5d142 3898 /* Prevent p going away */
1da177e4 3899 get_task_struct(p);
23f5d142 3900 rcu_read_unlock();
1da177e4 3901
14a40ffc
TH
3902 if (p->flags & PF_NO_SETAFFINITY) {
3903 retval = -EINVAL;
3904 goto out_put_task;
3905 }
5a16f3d3
RR
3906 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3907 retval = -ENOMEM;
3908 goto out_put_task;
3909 }
3910 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3911 retval = -ENOMEM;
3912 goto out_free_cpus_allowed;
3913 }
1da177e4 3914 retval = -EPERM;
4c44aaaf
EB
3915 if (!check_same_owner(p)) {
3916 rcu_read_lock();
3917 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3918 rcu_read_unlock();
3919 goto out_unlock;
3920 }
3921 rcu_read_unlock();
3922 }
1da177e4 3923
b0ae1981 3924 retval = security_task_setscheduler(p);
e7834f8f
DQ
3925 if (retval)
3926 goto out_unlock;
3927
e4099a5e
PZ
3928
3929 cpuset_cpus_allowed(p, cpus_allowed);
3930 cpumask_and(new_mask, in_mask, cpus_allowed);
3931
332ac17e
DF
3932 /*
3933 * Since bandwidth control happens on root_domain basis,
3934 * if admission test is enabled, we only admit -deadline
3935 * tasks allowed to run on all the CPUs in the task's
3936 * root_domain.
3937 */
3938#ifdef CONFIG_SMP
3939 if (task_has_dl_policy(p)) {
3940 const struct cpumask *span = task_rq(p)->rd->span;
3941
e4099a5e 3942 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3943 retval = -EBUSY;
3944 goto out_unlock;
3945 }
3946 }
3947#endif
49246274 3948again:
5a16f3d3 3949 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3950
8707d8b8 3951 if (!retval) {
5a16f3d3
RR
3952 cpuset_cpus_allowed(p, cpus_allowed);
3953 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3954 /*
3955 * We must have raced with a concurrent cpuset
3956 * update. Just reset the cpus_allowed to the
3957 * cpuset's cpus_allowed
3958 */
5a16f3d3 3959 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3960 goto again;
3961 }
3962 }
1da177e4 3963out_unlock:
5a16f3d3
RR
3964 free_cpumask_var(new_mask);
3965out_free_cpus_allowed:
3966 free_cpumask_var(cpus_allowed);
3967out_put_task:
1da177e4 3968 put_task_struct(p);
1da177e4
LT
3969 return retval;
3970}
3971
3972static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3973 struct cpumask *new_mask)
1da177e4 3974{
96f874e2
RR
3975 if (len < cpumask_size())
3976 cpumask_clear(new_mask);
3977 else if (len > cpumask_size())
3978 len = cpumask_size();
3979
1da177e4
LT
3980 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3981}
3982
3983/**
3984 * sys_sched_setaffinity - set the cpu affinity of a process
3985 * @pid: pid of the process
3986 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3987 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3988 *
3989 * Return: 0 on success. An error code otherwise.
1da177e4 3990 */
5add95d4
HC
3991SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3992 unsigned long __user *, user_mask_ptr)
1da177e4 3993{
5a16f3d3 3994 cpumask_var_t new_mask;
1da177e4
LT
3995 int retval;
3996
5a16f3d3
RR
3997 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3998 return -ENOMEM;
1da177e4 3999
5a16f3d3
RR
4000 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4001 if (retval == 0)
4002 retval = sched_setaffinity(pid, new_mask);
4003 free_cpumask_var(new_mask);
4004 return retval;
1da177e4
LT
4005}
4006
96f874e2 4007long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4008{
36c8b586 4009 struct task_struct *p;
31605683 4010 unsigned long flags;
1da177e4 4011 int retval;
1da177e4 4012
23f5d142 4013 rcu_read_lock();
1da177e4
LT
4014
4015 retval = -ESRCH;
4016 p = find_process_by_pid(pid);
4017 if (!p)
4018 goto out_unlock;
4019
e7834f8f
DQ
4020 retval = security_task_getscheduler(p);
4021 if (retval)
4022 goto out_unlock;
4023
013fdb80 4024 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4025 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4026 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4027
4028out_unlock:
23f5d142 4029 rcu_read_unlock();
1da177e4 4030
9531b62f 4031 return retval;
1da177e4
LT
4032}
4033
4034/**
4035 * sys_sched_getaffinity - get the cpu affinity of a process
4036 * @pid: pid of the process
4037 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4038 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4039 *
4040 * Return: 0 on success. An error code otherwise.
1da177e4 4041 */
5add95d4
HC
4042SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4043 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4044{
4045 int ret;
f17c8607 4046 cpumask_var_t mask;
1da177e4 4047
84fba5ec 4048 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4049 return -EINVAL;
4050 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4051 return -EINVAL;
4052
f17c8607
RR
4053 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4054 return -ENOMEM;
1da177e4 4055
f17c8607
RR
4056 ret = sched_getaffinity(pid, mask);
4057 if (ret == 0) {
8bc037fb 4058 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4059
4060 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4061 ret = -EFAULT;
4062 else
cd3d8031 4063 ret = retlen;
f17c8607
RR
4064 }
4065 free_cpumask_var(mask);
1da177e4 4066
f17c8607 4067 return ret;
1da177e4
LT
4068}
4069
4070/**
4071 * sys_sched_yield - yield the current processor to other threads.
4072 *
dd41f596
IM
4073 * This function yields the current CPU to other tasks. If there are no
4074 * other threads running on this CPU then this function will return.
e69f6186
YB
4075 *
4076 * Return: 0.
1da177e4 4077 */
5add95d4 4078SYSCALL_DEFINE0(sched_yield)
1da177e4 4079{
70b97a7f 4080 struct rq *rq = this_rq_lock();
1da177e4 4081
2d72376b 4082 schedstat_inc(rq, yld_count);
4530d7ab 4083 current->sched_class->yield_task(rq);
1da177e4
LT
4084
4085 /*
4086 * Since we are going to call schedule() anyway, there's
4087 * no need to preempt or enable interrupts:
4088 */
4089 __release(rq->lock);
8a25d5de 4090 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4091 do_raw_spin_unlock(&rq->lock);
ba74c144 4092 sched_preempt_enable_no_resched();
1da177e4
LT
4093
4094 schedule();
4095
4096 return 0;
4097}
4098
e7b38404 4099static void __cond_resched(void)
1da177e4 4100{
bdb43806 4101 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4102 __schedule();
bdb43806 4103 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4104}
4105
02b67cc3 4106int __sched _cond_resched(void)
1da177e4 4107{
d86ee480 4108 if (should_resched()) {
1da177e4
LT
4109 __cond_resched();
4110 return 1;
4111 }
4112 return 0;
4113}
02b67cc3 4114EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4115
4116/*
613afbf8 4117 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4118 * call schedule, and on return reacquire the lock.
4119 *
41a2d6cf 4120 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4121 * operations here to prevent schedule() from being called twice (once via
4122 * spin_unlock(), once by hand).
4123 */
613afbf8 4124int __cond_resched_lock(spinlock_t *lock)
1da177e4 4125{
d86ee480 4126 int resched = should_resched();
6df3cecb
JK
4127 int ret = 0;
4128
f607c668
PZ
4129 lockdep_assert_held(lock);
4130
95c354fe 4131 if (spin_needbreak(lock) || resched) {
1da177e4 4132 spin_unlock(lock);
d86ee480 4133 if (resched)
95c354fe
NP
4134 __cond_resched();
4135 else
4136 cpu_relax();
6df3cecb 4137 ret = 1;
1da177e4 4138 spin_lock(lock);
1da177e4 4139 }
6df3cecb 4140 return ret;
1da177e4 4141}
613afbf8 4142EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4143
613afbf8 4144int __sched __cond_resched_softirq(void)
1da177e4
LT
4145{
4146 BUG_ON(!in_softirq());
4147
d86ee480 4148 if (should_resched()) {
98d82567 4149 local_bh_enable();
1da177e4
LT
4150 __cond_resched();
4151 local_bh_disable();
4152 return 1;
4153 }
4154 return 0;
4155}
613afbf8 4156EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4157
1da177e4
LT
4158/**
4159 * yield - yield the current processor to other threads.
4160 *
8e3fabfd
PZ
4161 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4162 *
4163 * The scheduler is at all times free to pick the calling task as the most
4164 * eligible task to run, if removing the yield() call from your code breaks
4165 * it, its already broken.
4166 *
4167 * Typical broken usage is:
4168 *
4169 * while (!event)
4170 * yield();
4171 *
4172 * where one assumes that yield() will let 'the other' process run that will
4173 * make event true. If the current task is a SCHED_FIFO task that will never
4174 * happen. Never use yield() as a progress guarantee!!
4175 *
4176 * If you want to use yield() to wait for something, use wait_event().
4177 * If you want to use yield() to be 'nice' for others, use cond_resched().
4178 * If you still want to use yield(), do not!
1da177e4
LT
4179 */
4180void __sched yield(void)
4181{
4182 set_current_state(TASK_RUNNING);
4183 sys_sched_yield();
4184}
1da177e4
LT
4185EXPORT_SYMBOL(yield);
4186
d95f4122
MG
4187/**
4188 * yield_to - yield the current processor to another thread in
4189 * your thread group, or accelerate that thread toward the
4190 * processor it's on.
16addf95
RD
4191 * @p: target task
4192 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4193 *
4194 * It's the caller's job to ensure that the target task struct
4195 * can't go away on us before we can do any checks.
4196 *
e69f6186 4197 * Return:
7b270f60
PZ
4198 * true (>0) if we indeed boosted the target task.
4199 * false (0) if we failed to boost the target.
4200 * -ESRCH if there's no task to yield to.
d95f4122 4201 */
fa93384f 4202int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4203{
4204 struct task_struct *curr = current;
4205 struct rq *rq, *p_rq;
4206 unsigned long flags;
c3c18640 4207 int yielded = 0;
d95f4122
MG
4208
4209 local_irq_save(flags);
4210 rq = this_rq();
4211
4212again:
4213 p_rq = task_rq(p);
7b270f60
PZ
4214 /*
4215 * If we're the only runnable task on the rq and target rq also
4216 * has only one task, there's absolutely no point in yielding.
4217 */
4218 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4219 yielded = -ESRCH;
4220 goto out_irq;
4221 }
4222
d95f4122 4223 double_rq_lock(rq, p_rq);
39e24d8f 4224 if (task_rq(p) != p_rq) {
d95f4122
MG
4225 double_rq_unlock(rq, p_rq);
4226 goto again;
4227 }
4228
4229 if (!curr->sched_class->yield_to_task)
7b270f60 4230 goto out_unlock;
d95f4122
MG
4231
4232 if (curr->sched_class != p->sched_class)
7b270f60 4233 goto out_unlock;
d95f4122
MG
4234
4235 if (task_running(p_rq, p) || p->state)
7b270f60 4236 goto out_unlock;
d95f4122
MG
4237
4238 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4239 if (yielded) {
d95f4122 4240 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4241 /*
4242 * Make p's CPU reschedule; pick_next_entity takes care of
4243 * fairness.
4244 */
4245 if (preempt && rq != p_rq)
4246 resched_task(p_rq->curr);
4247 }
d95f4122 4248
7b270f60 4249out_unlock:
d95f4122 4250 double_rq_unlock(rq, p_rq);
7b270f60 4251out_irq:
d95f4122
MG
4252 local_irq_restore(flags);
4253
7b270f60 4254 if (yielded > 0)
d95f4122
MG
4255 schedule();
4256
4257 return yielded;
4258}
4259EXPORT_SYMBOL_GPL(yield_to);
4260
1da177e4 4261/*
41a2d6cf 4262 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4263 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4264 */
4265void __sched io_schedule(void)
4266{
54d35f29 4267 struct rq *rq = raw_rq();
1da177e4 4268
0ff92245 4269 delayacct_blkio_start();
1da177e4 4270 atomic_inc(&rq->nr_iowait);
73c10101 4271 blk_flush_plug(current);
8f0dfc34 4272 current->in_iowait = 1;
1da177e4 4273 schedule();
8f0dfc34 4274 current->in_iowait = 0;
1da177e4 4275 atomic_dec(&rq->nr_iowait);
0ff92245 4276 delayacct_blkio_end();
1da177e4 4277}
1da177e4
LT
4278EXPORT_SYMBOL(io_schedule);
4279
4280long __sched io_schedule_timeout(long timeout)
4281{
54d35f29 4282 struct rq *rq = raw_rq();
1da177e4
LT
4283 long ret;
4284
0ff92245 4285 delayacct_blkio_start();
1da177e4 4286 atomic_inc(&rq->nr_iowait);
73c10101 4287 blk_flush_plug(current);
8f0dfc34 4288 current->in_iowait = 1;
1da177e4 4289 ret = schedule_timeout(timeout);
8f0dfc34 4290 current->in_iowait = 0;
1da177e4 4291 atomic_dec(&rq->nr_iowait);
0ff92245 4292 delayacct_blkio_end();
1da177e4
LT
4293 return ret;
4294}
4295
4296/**
4297 * sys_sched_get_priority_max - return maximum RT priority.
4298 * @policy: scheduling class.
4299 *
e69f6186
YB
4300 * Return: On success, this syscall returns the maximum
4301 * rt_priority that can be used by a given scheduling class.
4302 * On failure, a negative error code is returned.
1da177e4 4303 */
5add95d4 4304SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4305{
4306 int ret = -EINVAL;
4307
4308 switch (policy) {
4309 case SCHED_FIFO:
4310 case SCHED_RR:
4311 ret = MAX_USER_RT_PRIO-1;
4312 break;
aab03e05 4313 case SCHED_DEADLINE:
1da177e4 4314 case SCHED_NORMAL:
b0a9499c 4315 case SCHED_BATCH:
dd41f596 4316 case SCHED_IDLE:
1da177e4
LT
4317 ret = 0;
4318 break;
4319 }
4320 return ret;
4321}
4322
4323/**
4324 * sys_sched_get_priority_min - return minimum RT priority.
4325 * @policy: scheduling class.
4326 *
e69f6186
YB
4327 * Return: On success, this syscall returns the minimum
4328 * rt_priority that can be used by a given scheduling class.
4329 * On failure, a negative error code is returned.
1da177e4 4330 */
5add95d4 4331SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4332{
4333 int ret = -EINVAL;
4334
4335 switch (policy) {
4336 case SCHED_FIFO:
4337 case SCHED_RR:
4338 ret = 1;
4339 break;
aab03e05 4340 case SCHED_DEADLINE:
1da177e4 4341 case SCHED_NORMAL:
b0a9499c 4342 case SCHED_BATCH:
dd41f596 4343 case SCHED_IDLE:
1da177e4
LT
4344 ret = 0;
4345 }
4346 return ret;
4347}
4348
4349/**
4350 * sys_sched_rr_get_interval - return the default timeslice of a process.
4351 * @pid: pid of the process.
4352 * @interval: userspace pointer to the timeslice value.
4353 *
4354 * this syscall writes the default timeslice value of a given process
4355 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4356 *
4357 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4358 * an error code.
1da177e4 4359 */
17da2bd9 4360SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4361 struct timespec __user *, interval)
1da177e4 4362{
36c8b586 4363 struct task_struct *p;
a4ec24b4 4364 unsigned int time_slice;
dba091b9
TG
4365 unsigned long flags;
4366 struct rq *rq;
3a5c359a 4367 int retval;
1da177e4 4368 struct timespec t;
1da177e4
LT
4369
4370 if (pid < 0)
3a5c359a 4371 return -EINVAL;
1da177e4
LT
4372
4373 retval = -ESRCH;
1a551ae7 4374 rcu_read_lock();
1da177e4
LT
4375 p = find_process_by_pid(pid);
4376 if (!p)
4377 goto out_unlock;
4378
4379 retval = security_task_getscheduler(p);
4380 if (retval)
4381 goto out_unlock;
4382
dba091b9 4383 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4384 time_slice = 0;
4385 if (p->sched_class->get_rr_interval)
4386 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4387 task_rq_unlock(rq, p, &flags);
a4ec24b4 4388
1a551ae7 4389 rcu_read_unlock();
a4ec24b4 4390 jiffies_to_timespec(time_slice, &t);
1da177e4 4391 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4392 return retval;
3a5c359a 4393
1da177e4 4394out_unlock:
1a551ae7 4395 rcu_read_unlock();
1da177e4
LT
4396 return retval;
4397}
4398
7c731e0a 4399static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4400
82a1fcb9 4401void sched_show_task(struct task_struct *p)
1da177e4 4402{
1da177e4 4403 unsigned long free = 0;
4e79752c 4404 int ppid;
36c8b586 4405 unsigned state;
1da177e4 4406
1da177e4 4407 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4408 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4409 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4410#if BITS_PER_LONG == 32
1da177e4 4411 if (state == TASK_RUNNING)
3df0fc5b 4412 printk(KERN_CONT " running ");
1da177e4 4413 else
3df0fc5b 4414 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4415#else
4416 if (state == TASK_RUNNING)
3df0fc5b 4417 printk(KERN_CONT " running task ");
1da177e4 4418 else
3df0fc5b 4419 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4420#endif
4421#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4422 free = stack_not_used(p);
1da177e4 4423#endif
4e79752c
PM
4424 rcu_read_lock();
4425 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4426 rcu_read_unlock();
3df0fc5b 4427 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4428 task_pid_nr(p), ppid,
aa47b7e0 4429 (unsigned long)task_thread_info(p)->flags);
1da177e4 4430
3d1cb205 4431 print_worker_info(KERN_INFO, p);
5fb5e6de 4432 show_stack(p, NULL);
1da177e4
LT
4433}
4434
e59e2ae2 4435void show_state_filter(unsigned long state_filter)
1da177e4 4436{
36c8b586 4437 struct task_struct *g, *p;
1da177e4 4438
4bd77321 4439#if BITS_PER_LONG == 32
3df0fc5b
PZ
4440 printk(KERN_INFO
4441 " task PC stack pid father\n");
1da177e4 4442#else
3df0fc5b
PZ
4443 printk(KERN_INFO
4444 " task PC stack pid father\n");
1da177e4 4445#endif
510f5acc 4446 rcu_read_lock();
1da177e4
LT
4447 do_each_thread(g, p) {
4448 /*
4449 * reset the NMI-timeout, listing all files on a slow
25985edc 4450 * console might take a lot of time:
1da177e4
LT
4451 */
4452 touch_nmi_watchdog();
39bc89fd 4453 if (!state_filter || (p->state & state_filter))
82a1fcb9 4454 sched_show_task(p);
1da177e4
LT
4455 } while_each_thread(g, p);
4456
04c9167f
JF
4457 touch_all_softlockup_watchdogs();
4458
dd41f596
IM
4459#ifdef CONFIG_SCHED_DEBUG
4460 sysrq_sched_debug_show();
4461#endif
510f5acc 4462 rcu_read_unlock();
e59e2ae2
IM
4463 /*
4464 * Only show locks if all tasks are dumped:
4465 */
93335a21 4466 if (!state_filter)
e59e2ae2 4467 debug_show_all_locks();
1da177e4
LT
4468}
4469
0db0628d 4470void init_idle_bootup_task(struct task_struct *idle)
1df21055 4471{
dd41f596 4472 idle->sched_class = &idle_sched_class;
1df21055
IM
4473}
4474
f340c0d1
IM
4475/**
4476 * init_idle - set up an idle thread for a given CPU
4477 * @idle: task in question
4478 * @cpu: cpu the idle task belongs to
4479 *
4480 * NOTE: this function does not set the idle thread's NEED_RESCHED
4481 * flag, to make booting more robust.
4482 */
0db0628d 4483void init_idle(struct task_struct *idle, int cpu)
1da177e4 4484{
70b97a7f 4485 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4486 unsigned long flags;
4487
05fa785c 4488 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4489
5e1576ed 4490 __sched_fork(0, idle);
06b83b5f 4491 idle->state = TASK_RUNNING;
dd41f596
IM
4492 idle->se.exec_start = sched_clock();
4493
1e1b6c51 4494 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4495 /*
4496 * We're having a chicken and egg problem, even though we are
4497 * holding rq->lock, the cpu isn't yet set to this cpu so the
4498 * lockdep check in task_group() will fail.
4499 *
4500 * Similar case to sched_fork(). / Alternatively we could
4501 * use task_rq_lock() here and obtain the other rq->lock.
4502 *
4503 * Silence PROVE_RCU
4504 */
4505 rcu_read_lock();
dd41f596 4506 __set_task_cpu(idle, cpu);
6506cf6c 4507 rcu_read_unlock();
1da177e4 4508
1da177e4 4509 rq->curr = rq->idle = idle;
77177856 4510 idle->on_rq = 1;
3ca7a440
PZ
4511#if defined(CONFIG_SMP)
4512 idle->on_cpu = 1;
4866cde0 4513#endif
05fa785c 4514 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4515
4516 /* Set the preempt count _outside_ the spinlocks! */
01028747 4517 init_idle_preempt_count(idle, cpu);
55cd5340 4518
dd41f596
IM
4519 /*
4520 * The idle tasks have their own, simple scheduling class:
4521 */
4522 idle->sched_class = &idle_sched_class;
868baf07 4523 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4524 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4525#if defined(CONFIG_SMP)
4526 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4527#endif
19978ca6
IM
4528}
4529
1da177e4 4530#ifdef CONFIG_SMP
1e1b6c51
KM
4531void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4532{
4533 if (p->sched_class && p->sched_class->set_cpus_allowed)
4534 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4535
4536 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4537 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4538}
4539
1da177e4
LT
4540/*
4541 * This is how migration works:
4542 *
969c7921
TH
4543 * 1) we invoke migration_cpu_stop() on the target CPU using
4544 * stop_one_cpu().
4545 * 2) stopper starts to run (implicitly forcing the migrated thread
4546 * off the CPU)
4547 * 3) it checks whether the migrated task is still in the wrong runqueue.
4548 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4549 * it and puts it into the right queue.
969c7921
TH
4550 * 5) stopper completes and stop_one_cpu() returns and the migration
4551 * is done.
1da177e4
LT
4552 */
4553
4554/*
4555 * Change a given task's CPU affinity. Migrate the thread to a
4556 * proper CPU and schedule it away if the CPU it's executing on
4557 * is removed from the allowed bitmask.
4558 *
4559 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4560 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4561 * call is not atomic; no spinlocks may be held.
4562 */
96f874e2 4563int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4564{
4565 unsigned long flags;
70b97a7f 4566 struct rq *rq;
969c7921 4567 unsigned int dest_cpu;
48f24c4d 4568 int ret = 0;
1da177e4
LT
4569
4570 rq = task_rq_lock(p, &flags);
e2912009 4571
db44fc01
YZ
4572 if (cpumask_equal(&p->cpus_allowed, new_mask))
4573 goto out;
4574
6ad4c188 4575 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4576 ret = -EINVAL;
4577 goto out;
4578 }
4579
1e1b6c51 4580 do_set_cpus_allowed(p, new_mask);
73fe6aae 4581
1da177e4 4582 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4583 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4584 goto out;
4585
969c7921 4586 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4587 if (p->on_rq) {
969c7921 4588 struct migration_arg arg = { p, dest_cpu };
1da177e4 4589 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4590 task_rq_unlock(rq, p, &flags);
969c7921 4591 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4592 tlb_migrate_finish(p->mm);
4593 return 0;
4594 }
4595out:
0122ec5b 4596 task_rq_unlock(rq, p, &flags);
48f24c4d 4597
1da177e4
LT
4598 return ret;
4599}
cd8ba7cd 4600EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4601
4602/*
41a2d6cf 4603 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4604 * this because either it can't run here any more (set_cpus_allowed()
4605 * away from this CPU, or CPU going down), or because we're
4606 * attempting to rebalance this task on exec (sched_exec).
4607 *
4608 * So we race with normal scheduler movements, but that's OK, as long
4609 * as the task is no longer on this CPU.
efc30814
KK
4610 *
4611 * Returns non-zero if task was successfully migrated.
1da177e4 4612 */
efc30814 4613static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4614{
70b97a7f 4615 struct rq *rq_dest, *rq_src;
e2912009 4616 int ret = 0;
1da177e4 4617
e761b772 4618 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4619 return ret;
1da177e4
LT
4620
4621 rq_src = cpu_rq(src_cpu);
4622 rq_dest = cpu_rq(dest_cpu);
4623
0122ec5b 4624 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4625 double_rq_lock(rq_src, rq_dest);
4626 /* Already moved. */
4627 if (task_cpu(p) != src_cpu)
b1e38734 4628 goto done;
1da177e4 4629 /* Affinity changed (again). */
fa17b507 4630 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4631 goto fail;
1da177e4 4632
e2912009
PZ
4633 /*
4634 * If we're not on a rq, the next wake-up will ensure we're
4635 * placed properly.
4636 */
fd2f4419 4637 if (p->on_rq) {
4ca9b72b 4638 dequeue_task(rq_src, p, 0);
e2912009 4639 set_task_cpu(p, dest_cpu);
4ca9b72b 4640 enqueue_task(rq_dest, p, 0);
15afe09b 4641 check_preempt_curr(rq_dest, p, 0);
1da177e4 4642 }
b1e38734 4643done:
efc30814 4644 ret = 1;
b1e38734 4645fail:
1da177e4 4646 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4647 raw_spin_unlock(&p->pi_lock);
efc30814 4648 return ret;
1da177e4
LT
4649}
4650
e6628d5b
MG
4651#ifdef CONFIG_NUMA_BALANCING
4652/* Migrate current task p to target_cpu */
4653int migrate_task_to(struct task_struct *p, int target_cpu)
4654{
4655 struct migration_arg arg = { p, target_cpu };
4656 int curr_cpu = task_cpu(p);
4657
4658 if (curr_cpu == target_cpu)
4659 return 0;
4660
4661 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4662 return -EINVAL;
4663
4664 /* TODO: This is not properly updating schedstats */
4665
286549dc 4666 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4667 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4668}
0ec8aa00
PZ
4669
4670/*
4671 * Requeue a task on a given node and accurately track the number of NUMA
4672 * tasks on the runqueues
4673 */
4674void sched_setnuma(struct task_struct *p, int nid)
4675{
4676 struct rq *rq;
4677 unsigned long flags;
4678 bool on_rq, running;
4679
4680 rq = task_rq_lock(p, &flags);
4681 on_rq = p->on_rq;
4682 running = task_current(rq, p);
4683
4684 if (on_rq)
4685 dequeue_task(rq, p, 0);
4686 if (running)
4687 p->sched_class->put_prev_task(rq, p);
4688
4689 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4690
4691 if (running)
4692 p->sched_class->set_curr_task(rq);
4693 if (on_rq)
4694 enqueue_task(rq, p, 0);
4695 task_rq_unlock(rq, p, &flags);
4696}
e6628d5b
MG
4697#endif
4698
1da177e4 4699/*
969c7921
TH
4700 * migration_cpu_stop - this will be executed by a highprio stopper thread
4701 * and performs thread migration by bumping thread off CPU then
4702 * 'pushing' onto another runqueue.
1da177e4 4703 */
969c7921 4704static int migration_cpu_stop(void *data)
1da177e4 4705{
969c7921 4706 struct migration_arg *arg = data;
f7b4cddc 4707
969c7921
TH
4708 /*
4709 * The original target cpu might have gone down and we might
4710 * be on another cpu but it doesn't matter.
4711 */
f7b4cddc 4712 local_irq_disable();
969c7921 4713 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4714 local_irq_enable();
1da177e4 4715 return 0;
f7b4cddc
ON
4716}
4717
1da177e4 4718#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4719
054b9108 4720/*
48c5ccae
PZ
4721 * Ensures that the idle task is using init_mm right before its cpu goes
4722 * offline.
054b9108 4723 */
48c5ccae 4724void idle_task_exit(void)
1da177e4 4725{
48c5ccae 4726 struct mm_struct *mm = current->active_mm;
e76bd8d9 4727
48c5ccae 4728 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4729
a53efe5f 4730 if (mm != &init_mm) {
48c5ccae 4731 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4732 finish_arch_post_lock_switch();
4733 }
48c5ccae 4734 mmdrop(mm);
1da177e4
LT
4735}
4736
4737/*
5d180232
PZ
4738 * Since this CPU is going 'away' for a while, fold any nr_active delta
4739 * we might have. Assumes we're called after migrate_tasks() so that the
4740 * nr_active count is stable.
4741 *
4742 * Also see the comment "Global load-average calculations".
1da177e4 4743 */
5d180232 4744static void calc_load_migrate(struct rq *rq)
1da177e4 4745{
5d180232
PZ
4746 long delta = calc_load_fold_active(rq);
4747 if (delta)
4748 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4749}
4750
3f1d2a31
PZ
4751static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4752{
4753}
4754
4755static const struct sched_class fake_sched_class = {
4756 .put_prev_task = put_prev_task_fake,
4757};
4758
4759static struct task_struct fake_task = {
4760 /*
4761 * Avoid pull_{rt,dl}_task()
4762 */
4763 .prio = MAX_PRIO + 1,
4764 .sched_class = &fake_sched_class,
4765};
4766
48f24c4d 4767/*
48c5ccae
PZ
4768 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4769 * try_to_wake_up()->select_task_rq().
4770 *
4771 * Called with rq->lock held even though we'er in stop_machine() and
4772 * there's no concurrency possible, we hold the required locks anyway
4773 * because of lock validation efforts.
1da177e4 4774 */
48c5ccae 4775static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4776{
70b97a7f 4777 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4778 struct task_struct *next, *stop = rq->stop;
4779 int dest_cpu;
1da177e4
LT
4780
4781 /*
48c5ccae
PZ
4782 * Fudge the rq selection such that the below task selection loop
4783 * doesn't get stuck on the currently eligible stop task.
4784 *
4785 * We're currently inside stop_machine() and the rq is either stuck
4786 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4787 * either way we should never end up calling schedule() until we're
4788 * done here.
1da177e4 4789 */
48c5ccae 4790 rq->stop = NULL;
48f24c4d 4791
77bd3970
FW
4792 /*
4793 * put_prev_task() and pick_next_task() sched
4794 * class method both need to have an up-to-date
4795 * value of rq->clock[_task]
4796 */
4797 update_rq_clock(rq);
4798
dd41f596 4799 for ( ; ; ) {
48c5ccae
PZ
4800 /*
4801 * There's this thread running, bail when that's the only
4802 * remaining thread.
4803 */
4804 if (rq->nr_running == 1)
dd41f596 4805 break;
48c5ccae 4806
3f1d2a31 4807 next = pick_next_task(rq, &fake_task);
48c5ccae 4808 BUG_ON(!next);
79c53799 4809 next->sched_class->put_prev_task(rq, next);
e692ab53 4810
48c5ccae
PZ
4811 /* Find suitable destination for @next, with force if needed. */
4812 dest_cpu = select_fallback_rq(dead_cpu, next);
4813 raw_spin_unlock(&rq->lock);
4814
4815 __migrate_task(next, dead_cpu, dest_cpu);
4816
4817 raw_spin_lock(&rq->lock);
1da177e4 4818 }
dce48a84 4819
48c5ccae 4820 rq->stop = stop;
dce48a84 4821}
48c5ccae 4822
1da177e4
LT
4823#endif /* CONFIG_HOTPLUG_CPU */
4824
e692ab53
NP
4825#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4826
4827static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4828 {
4829 .procname = "sched_domain",
c57baf1e 4830 .mode = 0555,
e0361851 4831 },
56992309 4832 {}
e692ab53
NP
4833};
4834
4835static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4836 {
4837 .procname = "kernel",
c57baf1e 4838 .mode = 0555,
e0361851
AD
4839 .child = sd_ctl_dir,
4840 },
56992309 4841 {}
e692ab53
NP
4842};
4843
4844static struct ctl_table *sd_alloc_ctl_entry(int n)
4845{
4846 struct ctl_table *entry =
5cf9f062 4847 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4848
e692ab53
NP
4849 return entry;
4850}
4851
6382bc90
MM
4852static void sd_free_ctl_entry(struct ctl_table **tablep)
4853{
cd790076 4854 struct ctl_table *entry;
6382bc90 4855
cd790076
MM
4856 /*
4857 * In the intermediate directories, both the child directory and
4858 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4859 * will always be set. In the lowest directory the names are
cd790076
MM
4860 * static strings and all have proc handlers.
4861 */
4862 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4863 if (entry->child)
4864 sd_free_ctl_entry(&entry->child);
cd790076
MM
4865 if (entry->proc_handler == NULL)
4866 kfree(entry->procname);
4867 }
6382bc90
MM
4868
4869 kfree(*tablep);
4870 *tablep = NULL;
4871}
4872
201c373e 4873static int min_load_idx = 0;
fd9b86d3 4874static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4875
e692ab53 4876static void
e0361851 4877set_table_entry(struct ctl_table *entry,
e692ab53 4878 const char *procname, void *data, int maxlen,
201c373e
NK
4879 umode_t mode, proc_handler *proc_handler,
4880 bool load_idx)
e692ab53 4881{
e692ab53
NP
4882 entry->procname = procname;
4883 entry->data = data;
4884 entry->maxlen = maxlen;
4885 entry->mode = mode;
4886 entry->proc_handler = proc_handler;
201c373e
NK
4887
4888 if (load_idx) {
4889 entry->extra1 = &min_load_idx;
4890 entry->extra2 = &max_load_idx;
4891 }
e692ab53
NP
4892}
4893
4894static struct ctl_table *
4895sd_alloc_ctl_domain_table(struct sched_domain *sd)
4896{
37e6bae8 4897 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4898
ad1cdc1d
MM
4899 if (table == NULL)
4900 return NULL;
4901
e0361851 4902 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4903 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4904 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4905 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4906 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4907 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4908 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4909 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4910 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4911 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4912 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4913 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4914 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4915 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4916 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4917 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4918 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4919 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4920 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4921 &sd->cache_nice_tries,
201c373e 4922 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4923 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4924 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4925 set_table_entry(&table[11], "max_newidle_lb_cost",
4926 &sd->max_newidle_lb_cost,
4927 sizeof(long), 0644, proc_doulongvec_minmax, false);
4928 set_table_entry(&table[12], "name", sd->name,
201c373e 4929 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4930 /* &table[13] is terminator */
e692ab53
NP
4931
4932 return table;
4933}
4934
be7002e6 4935static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4936{
4937 struct ctl_table *entry, *table;
4938 struct sched_domain *sd;
4939 int domain_num = 0, i;
4940 char buf[32];
4941
4942 for_each_domain(cpu, sd)
4943 domain_num++;
4944 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4945 if (table == NULL)
4946 return NULL;
e692ab53
NP
4947
4948 i = 0;
4949 for_each_domain(cpu, sd) {
4950 snprintf(buf, 32, "domain%d", i);
e692ab53 4951 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4952 entry->mode = 0555;
e692ab53
NP
4953 entry->child = sd_alloc_ctl_domain_table(sd);
4954 entry++;
4955 i++;
4956 }
4957 return table;
4958}
4959
4960static struct ctl_table_header *sd_sysctl_header;
6382bc90 4961static void register_sched_domain_sysctl(void)
e692ab53 4962{
6ad4c188 4963 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4964 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4965 char buf[32];
4966
7378547f
MM
4967 WARN_ON(sd_ctl_dir[0].child);
4968 sd_ctl_dir[0].child = entry;
4969
ad1cdc1d
MM
4970 if (entry == NULL)
4971 return;
4972
6ad4c188 4973 for_each_possible_cpu(i) {
e692ab53 4974 snprintf(buf, 32, "cpu%d", i);
e692ab53 4975 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4976 entry->mode = 0555;
e692ab53 4977 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4978 entry++;
e692ab53 4979 }
7378547f
MM
4980
4981 WARN_ON(sd_sysctl_header);
e692ab53
NP
4982 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4983}
6382bc90 4984
7378547f 4985/* may be called multiple times per register */
6382bc90
MM
4986static void unregister_sched_domain_sysctl(void)
4987{
7378547f
MM
4988 if (sd_sysctl_header)
4989 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4990 sd_sysctl_header = NULL;
7378547f
MM
4991 if (sd_ctl_dir[0].child)
4992 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4993}
e692ab53 4994#else
6382bc90
MM
4995static void register_sched_domain_sysctl(void)
4996{
4997}
4998static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4999{
5000}
5001#endif
5002
1f11eb6a
GH
5003static void set_rq_online(struct rq *rq)
5004{
5005 if (!rq->online) {
5006 const struct sched_class *class;
5007
c6c4927b 5008 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5009 rq->online = 1;
5010
5011 for_each_class(class) {
5012 if (class->rq_online)
5013 class->rq_online(rq);
5014 }
5015 }
5016}
5017
5018static void set_rq_offline(struct rq *rq)
5019{
5020 if (rq->online) {
5021 const struct sched_class *class;
5022
5023 for_each_class(class) {
5024 if (class->rq_offline)
5025 class->rq_offline(rq);
5026 }
5027
c6c4927b 5028 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5029 rq->online = 0;
5030 }
5031}
5032
1da177e4
LT
5033/*
5034 * migration_call - callback that gets triggered when a CPU is added.
5035 * Here we can start up the necessary migration thread for the new CPU.
5036 */
0db0628d 5037static int
48f24c4d 5038migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5039{
48f24c4d 5040 int cpu = (long)hcpu;
1da177e4 5041 unsigned long flags;
969c7921 5042 struct rq *rq = cpu_rq(cpu);
1da177e4 5043
48c5ccae 5044 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5045
1da177e4 5046 case CPU_UP_PREPARE:
a468d389 5047 rq->calc_load_update = calc_load_update;
1da177e4 5048 break;
48f24c4d 5049
1da177e4 5050 case CPU_ONLINE:
1f94ef59 5051 /* Update our root-domain */
05fa785c 5052 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5053 if (rq->rd) {
c6c4927b 5054 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5055
5056 set_rq_online(rq);
1f94ef59 5057 }
05fa785c 5058 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5059 break;
48f24c4d 5060
1da177e4 5061#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5062 case CPU_DYING:
317f3941 5063 sched_ttwu_pending();
57d885fe 5064 /* Update our root-domain */
05fa785c 5065 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5066 if (rq->rd) {
c6c4927b 5067 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5068 set_rq_offline(rq);
57d885fe 5069 }
48c5ccae
PZ
5070 migrate_tasks(cpu);
5071 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5072 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5073 break;
48c5ccae 5074
5d180232 5075 case CPU_DEAD:
f319da0c 5076 calc_load_migrate(rq);
57d885fe 5077 break;
1da177e4
LT
5078#endif
5079 }
49c022e6
PZ
5080
5081 update_max_interval();
5082
1da177e4
LT
5083 return NOTIFY_OK;
5084}
5085
f38b0820
PM
5086/*
5087 * Register at high priority so that task migration (migrate_all_tasks)
5088 * happens before everything else. This has to be lower priority than
cdd6c482 5089 * the notifier in the perf_event subsystem, though.
1da177e4 5090 */
0db0628d 5091static struct notifier_block migration_notifier = {
1da177e4 5092 .notifier_call = migration_call,
50a323b7 5093 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5094};
5095
a803f026
CM
5096static void __cpuinit set_cpu_rq_start_time(void)
5097{
5098 int cpu = smp_processor_id();
5099 struct rq *rq = cpu_rq(cpu);
5100 rq->age_stamp = sched_clock_cpu(cpu);
5101}
5102
0db0628d 5103static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5104 unsigned long action, void *hcpu)
5105{
5106 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5107 case CPU_STARTING:
5108 set_cpu_rq_start_time();
5109 return NOTIFY_OK;
3a101d05
TH
5110 case CPU_DOWN_FAILED:
5111 set_cpu_active((long)hcpu, true);
5112 return NOTIFY_OK;
5113 default:
5114 return NOTIFY_DONE;
5115 }
5116}
5117
0db0628d 5118static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5119 unsigned long action, void *hcpu)
5120{
de212f18
PZ
5121 unsigned long flags;
5122 long cpu = (long)hcpu;
5123
3a101d05
TH
5124 switch (action & ~CPU_TASKS_FROZEN) {
5125 case CPU_DOWN_PREPARE:
de212f18
PZ
5126 set_cpu_active(cpu, false);
5127
5128 /* explicitly allow suspend */
5129 if (!(action & CPU_TASKS_FROZEN)) {
5130 struct dl_bw *dl_b = dl_bw_of(cpu);
5131 bool overflow;
5132 int cpus;
5133
5134 raw_spin_lock_irqsave(&dl_b->lock, flags);
5135 cpus = dl_bw_cpus(cpu);
5136 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5137 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5138
5139 if (overflow)
5140 return notifier_from_errno(-EBUSY);
5141 }
3a101d05 5142 return NOTIFY_OK;
3a101d05 5143 }
de212f18
PZ
5144
5145 return NOTIFY_DONE;
3a101d05
TH
5146}
5147
7babe8db 5148static int __init migration_init(void)
1da177e4
LT
5149{
5150 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5151 int err;
48f24c4d 5152
3a101d05 5153 /* Initialize migration for the boot CPU */
07dccf33
AM
5154 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5155 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5156 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5157 register_cpu_notifier(&migration_notifier);
7babe8db 5158
3a101d05
TH
5159 /* Register cpu active notifiers */
5160 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5161 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5162
a004cd42 5163 return 0;
1da177e4 5164}
7babe8db 5165early_initcall(migration_init);
1da177e4
LT
5166#endif
5167
5168#ifdef CONFIG_SMP
476f3534 5169
4cb98839
PZ
5170static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5171
3e9830dc 5172#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5173
d039ac60 5174static __read_mostly int sched_debug_enabled;
f6630114 5175
d039ac60 5176static int __init sched_debug_setup(char *str)
f6630114 5177{
d039ac60 5178 sched_debug_enabled = 1;
f6630114
MT
5179
5180 return 0;
5181}
d039ac60
PZ
5182early_param("sched_debug", sched_debug_setup);
5183
5184static inline bool sched_debug(void)
5185{
5186 return sched_debug_enabled;
5187}
f6630114 5188
7c16ec58 5189static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5190 struct cpumask *groupmask)
1da177e4 5191{
4dcf6aff 5192 struct sched_group *group = sd->groups;
434d53b0 5193 char str[256];
1da177e4 5194
968ea6d8 5195 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5196 cpumask_clear(groupmask);
4dcf6aff
IM
5197
5198 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5199
5200 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5201 printk("does not load-balance\n");
4dcf6aff 5202 if (sd->parent)
3df0fc5b
PZ
5203 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5204 " has parent");
4dcf6aff 5205 return -1;
41c7ce9a
NP
5206 }
5207
3df0fc5b 5208 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5209
758b2cdc 5210 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5211 printk(KERN_ERR "ERROR: domain->span does not contain "
5212 "CPU%d\n", cpu);
4dcf6aff 5213 }
758b2cdc 5214 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5215 printk(KERN_ERR "ERROR: domain->groups does not contain"
5216 " CPU%d\n", cpu);
4dcf6aff 5217 }
1da177e4 5218
4dcf6aff 5219 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5220 do {
4dcf6aff 5221 if (!group) {
3df0fc5b
PZ
5222 printk("\n");
5223 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5224 break;
5225 }
5226
c3decf0d 5227 /*
63b2ca30
NP
5228 * Even though we initialize ->capacity to something semi-sane,
5229 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5230 * domain iteration is still funny without causing /0 traps.
5231 */
63b2ca30 5232 if (!group->sgc->capacity_orig) {
3df0fc5b 5233 printk(KERN_CONT "\n");
63b2ca30 5234 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5235 break;
5236 }
1da177e4 5237
758b2cdc 5238 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5239 printk(KERN_CONT "\n");
5240 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5241 break;
5242 }
1da177e4 5243
cb83b629
PZ
5244 if (!(sd->flags & SD_OVERLAP) &&
5245 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5246 printk(KERN_CONT "\n");
5247 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5248 break;
5249 }
1da177e4 5250
758b2cdc 5251 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5252
968ea6d8 5253 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5254
3df0fc5b 5255 printk(KERN_CONT " %s", str);
ca8ce3d0 5256 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5257 printk(KERN_CONT " (cpu_capacity = %d)",
5258 group->sgc->capacity);
381512cf 5259 }
1da177e4 5260
4dcf6aff
IM
5261 group = group->next;
5262 } while (group != sd->groups);
3df0fc5b 5263 printk(KERN_CONT "\n");
1da177e4 5264
758b2cdc 5265 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5266 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5267
758b2cdc
RR
5268 if (sd->parent &&
5269 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5270 printk(KERN_ERR "ERROR: parent span is not a superset "
5271 "of domain->span\n");
4dcf6aff
IM
5272 return 0;
5273}
1da177e4 5274
4dcf6aff
IM
5275static void sched_domain_debug(struct sched_domain *sd, int cpu)
5276{
5277 int level = 0;
1da177e4 5278
d039ac60 5279 if (!sched_debug_enabled)
f6630114
MT
5280 return;
5281
4dcf6aff
IM
5282 if (!sd) {
5283 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5284 return;
5285 }
1da177e4 5286
4dcf6aff
IM
5287 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5288
5289 for (;;) {
4cb98839 5290 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5291 break;
1da177e4
LT
5292 level++;
5293 sd = sd->parent;
33859f7f 5294 if (!sd)
4dcf6aff
IM
5295 break;
5296 }
1da177e4 5297}
6d6bc0ad 5298#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5299# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5300static inline bool sched_debug(void)
5301{
5302 return false;
5303}
6d6bc0ad 5304#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5305
1a20ff27 5306static int sd_degenerate(struct sched_domain *sd)
245af2c7 5307{
758b2cdc 5308 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5309 return 1;
5310
5311 /* Following flags need at least 2 groups */
5312 if (sd->flags & (SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK |
89c4710e 5315 SD_BALANCE_EXEC |
5d4dfddd 5316 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5317 SD_SHARE_PKG_RESOURCES |
5318 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5319 if (sd->groups != sd->groups->next)
5320 return 0;
5321 }
5322
5323 /* Following flags don't use groups */
c88d5910 5324 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5325 return 0;
5326
5327 return 1;
5328}
5329
48f24c4d
IM
5330static int
5331sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5332{
5333 unsigned long cflags = sd->flags, pflags = parent->flags;
5334
5335 if (sd_degenerate(parent))
5336 return 1;
5337
758b2cdc 5338 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5339 return 0;
5340
245af2c7
SS
5341 /* Flags needing groups don't count if only 1 group in parent */
5342 if (parent->groups == parent->groups->next) {
5343 pflags &= ~(SD_LOAD_BALANCE |
5344 SD_BALANCE_NEWIDLE |
5345 SD_BALANCE_FORK |
89c4710e 5346 SD_BALANCE_EXEC |
5d4dfddd 5347 SD_SHARE_CPUCAPACITY |
10866e62 5348 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5349 SD_PREFER_SIBLING |
5350 SD_SHARE_POWERDOMAIN);
5436499e
KC
5351 if (nr_node_ids == 1)
5352 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5353 }
5354 if (~cflags & pflags)
5355 return 0;
5356
5357 return 1;
5358}
5359
dce840a0 5360static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5361{
dce840a0 5362 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5363
68e74568 5364 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5365 cpudl_cleanup(&rd->cpudl);
1baca4ce 5366 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5367 free_cpumask_var(rd->rto_mask);
5368 free_cpumask_var(rd->online);
5369 free_cpumask_var(rd->span);
5370 kfree(rd);
5371}
5372
57d885fe
GH
5373static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5374{
a0490fa3 5375 struct root_domain *old_rd = NULL;
57d885fe 5376 unsigned long flags;
57d885fe 5377
05fa785c 5378 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5379
5380 if (rq->rd) {
a0490fa3 5381 old_rd = rq->rd;
57d885fe 5382
c6c4927b 5383 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5384 set_rq_offline(rq);
57d885fe 5385
c6c4927b 5386 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5387
a0490fa3 5388 /*
0515973f 5389 * If we dont want to free the old_rd yet then
a0490fa3
IM
5390 * set old_rd to NULL to skip the freeing later
5391 * in this function:
5392 */
5393 if (!atomic_dec_and_test(&old_rd->refcount))
5394 old_rd = NULL;
57d885fe
GH
5395 }
5396
5397 atomic_inc(&rd->refcount);
5398 rq->rd = rd;
5399
c6c4927b 5400 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5401 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5402 set_rq_online(rq);
57d885fe 5403
05fa785c 5404 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5405
5406 if (old_rd)
dce840a0 5407 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5408}
5409
68c38fc3 5410static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5411{
5412 memset(rd, 0, sizeof(*rd));
5413
68c38fc3 5414 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5415 goto out;
68c38fc3 5416 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5417 goto free_span;
1baca4ce 5418 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5419 goto free_online;
1baca4ce
JL
5420 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5421 goto free_dlo_mask;
6e0534f2 5422
332ac17e 5423 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5424 if (cpudl_init(&rd->cpudl) != 0)
5425 goto free_dlo_mask;
332ac17e 5426
68c38fc3 5427 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5428 goto free_rto_mask;
c6c4927b 5429 return 0;
6e0534f2 5430
68e74568
RR
5431free_rto_mask:
5432 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5433free_dlo_mask:
5434 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5435free_online:
5436 free_cpumask_var(rd->online);
5437free_span:
5438 free_cpumask_var(rd->span);
0c910d28 5439out:
c6c4927b 5440 return -ENOMEM;
57d885fe
GH
5441}
5442
029632fb
PZ
5443/*
5444 * By default the system creates a single root-domain with all cpus as
5445 * members (mimicking the global state we have today).
5446 */
5447struct root_domain def_root_domain;
5448
57d885fe
GH
5449static void init_defrootdomain(void)
5450{
68c38fc3 5451 init_rootdomain(&def_root_domain);
c6c4927b 5452
57d885fe
GH
5453 atomic_set(&def_root_domain.refcount, 1);
5454}
5455
dc938520 5456static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5457{
5458 struct root_domain *rd;
5459
5460 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5461 if (!rd)
5462 return NULL;
5463
68c38fc3 5464 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5465 kfree(rd);
5466 return NULL;
5467 }
57d885fe
GH
5468
5469 return rd;
5470}
5471
63b2ca30 5472static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5473{
5474 struct sched_group *tmp, *first;
5475
5476 if (!sg)
5477 return;
5478
5479 first = sg;
5480 do {
5481 tmp = sg->next;
5482
63b2ca30
NP
5483 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5484 kfree(sg->sgc);
e3589f6c
PZ
5485
5486 kfree(sg);
5487 sg = tmp;
5488 } while (sg != first);
5489}
5490
dce840a0
PZ
5491static void free_sched_domain(struct rcu_head *rcu)
5492{
5493 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5494
5495 /*
5496 * If its an overlapping domain it has private groups, iterate and
5497 * nuke them all.
5498 */
5499 if (sd->flags & SD_OVERLAP) {
5500 free_sched_groups(sd->groups, 1);
5501 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5502 kfree(sd->groups->sgc);
dce840a0 5503 kfree(sd->groups);
9c3f75cb 5504 }
dce840a0
PZ
5505 kfree(sd);
5506}
5507
5508static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5509{
5510 call_rcu(&sd->rcu, free_sched_domain);
5511}
5512
5513static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5514{
5515 for (; sd; sd = sd->parent)
5516 destroy_sched_domain(sd, cpu);
5517}
5518
518cd623
PZ
5519/*
5520 * Keep a special pointer to the highest sched_domain that has
5521 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5522 * allows us to avoid some pointer chasing select_idle_sibling().
5523 *
5524 * Also keep a unique ID per domain (we use the first cpu number in
5525 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5526 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5527 */
5528DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5529DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5530DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5531DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5532DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5533DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5534
5535static void update_top_cache_domain(int cpu)
5536{
5537 struct sched_domain *sd;
5d4cf996 5538 struct sched_domain *busy_sd = NULL;
518cd623 5539 int id = cpu;
7d9ffa89 5540 int size = 1;
518cd623
PZ
5541
5542 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5543 if (sd) {
518cd623 5544 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5545 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5546 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5547 }
5d4cf996 5548 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5549
5550 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5551 per_cpu(sd_llc_size, cpu) = size;
518cd623 5552 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5553
5554 sd = lowest_flag_domain(cpu, SD_NUMA);
5555 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5556
5557 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5558 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5559}
5560
1da177e4 5561/*
0eab9146 5562 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5563 * hold the hotplug lock.
5564 */
0eab9146
IM
5565static void
5566cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5567{
70b97a7f 5568 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5569 struct sched_domain *tmp;
5570
5571 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5572 for (tmp = sd; tmp; ) {
245af2c7
SS
5573 struct sched_domain *parent = tmp->parent;
5574 if (!parent)
5575 break;
f29c9b1c 5576
1a848870 5577 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5578 tmp->parent = parent->parent;
1a848870
SS
5579 if (parent->parent)
5580 parent->parent->child = tmp;
10866e62
PZ
5581 /*
5582 * Transfer SD_PREFER_SIBLING down in case of a
5583 * degenerate parent; the spans match for this
5584 * so the property transfers.
5585 */
5586 if (parent->flags & SD_PREFER_SIBLING)
5587 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5588 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5589 } else
5590 tmp = tmp->parent;
245af2c7
SS
5591 }
5592
1a848870 5593 if (sd && sd_degenerate(sd)) {
dce840a0 5594 tmp = sd;
245af2c7 5595 sd = sd->parent;
dce840a0 5596 destroy_sched_domain(tmp, cpu);
1a848870
SS
5597 if (sd)
5598 sd->child = NULL;
5599 }
1da177e4 5600
4cb98839 5601 sched_domain_debug(sd, cpu);
1da177e4 5602
57d885fe 5603 rq_attach_root(rq, rd);
dce840a0 5604 tmp = rq->sd;
674311d5 5605 rcu_assign_pointer(rq->sd, sd);
dce840a0 5606 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5607
5608 update_top_cache_domain(cpu);
1da177e4
LT
5609}
5610
5611/* cpus with isolated domains */
dcc30a35 5612static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5613
5614/* Setup the mask of cpus configured for isolated domains */
5615static int __init isolated_cpu_setup(char *str)
5616{
bdddd296 5617 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5618 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5619 return 1;
5620}
5621
8927f494 5622__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5623
49a02c51 5624struct s_data {
21d42ccf 5625 struct sched_domain ** __percpu sd;
49a02c51
AH
5626 struct root_domain *rd;
5627};
5628
2109b99e 5629enum s_alloc {
2109b99e 5630 sa_rootdomain,
21d42ccf 5631 sa_sd,
dce840a0 5632 sa_sd_storage,
2109b99e
AH
5633 sa_none,
5634};
5635
c1174876
PZ
5636/*
5637 * Build an iteration mask that can exclude certain CPUs from the upwards
5638 * domain traversal.
5639 *
5640 * Asymmetric node setups can result in situations where the domain tree is of
5641 * unequal depth, make sure to skip domains that already cover the entire
5642 * range.
5643 *
5644 * In that case build_sched_domains() will have terminated the iteration early
5645 * and our sibling sd spans will be empty. Domains should always include the
5646 * cpu they're built on, so check that.
5647 *
5648 */
5649static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5650{
5651 const struct cpumask *span = sched_domain_span(sd);
5652 struct sd_data *sdd = sd->private;
5653 struct sched_domain *sibling;
5654 int i;
5655
5656 for_each_cpu(i, span) {
5657 sibling = *per_cpu_ptr(sdd->sd, i);
5658 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5659 continue;
5660
5661 cpumask_set_cpu(i, sched_group_mask(sg));
5662 }
5663}
5664
5665/*
5666 * Return the canonical balance cpu for this group, this is the first cpu
5667 * of this group that's also in the iteration mask.
5668 */
5669int group_balance_cpu(struct sched_group *sg)
5670{
5671 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5672}
5673
e3589f6c
PZ
5674static int
5675build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5676{
5677 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5678 const struct cpumask *span = sched_domain_span(sd);
5679 struct cpumask *covered = sched_domains_tmpmask;
5680 struct sd_data *sdd = sd->private;
5681 struct sched_domain *child;
5682 int i;
5683
5684 cpumask_clear(covered);
5685
5686 for_each_cpu(i, span) {
5687 struct cpumask *sg_span;
5688
5689 if (cpumask_test_cpu(i, covered))
5690 continue;
5691
c1174876
PZ
5692 child = *per_cpu_ptr(sdd->sd, i);
5693
5694 /* See the comment near build_group_mask(). */
5695 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5696 continue;
5697
e3589f6c 5698 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5699 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5700
5701 if (!sg)
5702 goto fail;
5703
5704 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5705 if (child->child) {
5706 child = child->child;
5707 cpumask_copy(sg_span, sched_domain_span(child));
5708 } else
5709 cpumask_set_cpu(i, sg_span);
5710
5711 cpumask_or(covered, covered, sg_span);
5712
63b2ca30
NP
5713 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5714 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5715 build_group_mask(sd, sg);
5716
c3decf0d 5717 /*
63b2ca30 5718 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5719 * domains and no possible iteration will get us here, we won't
5720 * die on a /0 trap.
5721 */
ca8ce3d0 5722 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5723 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5724
c1174876
PZ
5725 /*
5726 * Make sure the first group of this domain contains the
5727 * canonical balance cpu. Otherwise the sched_domain iteration
5728 * breaks. See update_sg_lb_stats().
5729 */
74a5ce20 5730 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5731 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5732 groups = sg;
5733
5734 if (!first)
5735 first = sg;
5736 if (last)
5737 last->next = sg;
5738 last = sg;
5739 last->next = first;
5740 }
5741 sd->groups = groups;
5742
5743 return 0;
5744
5745fail:
5746 free_sched_groups(first, 0);
5747
5748 return -ENOMEM;
5749}
5750
dce840a0 5751static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5752{
dce840a0
PZ
5753 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5754 struct sched_domain *child = sd->child;
1da177e4 5755
dce840a0
PZ
5756 if (child)
5757 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5758
9c3f75cb 5759 if (sg) {
dce840a0 5760 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5761 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5762 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5763 }
dce840a0
PZ
5764
5765 return cpu;
1e9f28fa 5766}
1e9f28fa 5767
01a08546 5768/*
dce840a0
PZ
5769 * build_sched_groups will build a circular linked list of the groups
5770 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5771 * and ->cpu_capacity to 0.
e3589f6c
PZ
5772 *
5773 * Assumes the sched_domain tree is fully constructed
01a08546 5774 */
e3589f6c
PZ
5775static int
5776build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5777{
dce840a0
PZ
5778 struct sched_group *first = NULL, *last = NULL;
5779 struct sd_data *sdd = sd->private;
5780 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5781 struct cpumask *covered;
dce840a0 5782 int i;
9c1cfda2 5783
e3589f6c
PZ
5784 get_group(cpu, sdd, &sd->groups);
5785 atomic_inc(&sd->groups->ref);
5786
0936629f 5787 if (cpu != cpumask_first(span))
e3589f6c
PZ
5788 return 0;
5789
f96225fd
PZ
5790 lockdep_assert_held(&sched_domains_mutex);
5791 covered = sched_domains_tmpmask;
5792
dce840a0 5793 cpumask_clear(covered);
6711cab4 5794
dce840a0
PZ
5795 for_each_cpu(i, span) {
5796 struct sched_group *sg;
cd08e923 5797 int group, j;
6711cab4 5798
dce840a0
PZ
5799 if (cpumask_test_cpu(i, covered))
5800 continue;
6711cab4 5801
cd08e923 5802 group = get_group(i, sdd, &sg);
c1174876 5803 cpumask_setall(sched_group_mask(sg));
0601a88d 5804
dce840a0
PZ
5805 for_each_cpu(j, span) {
5806 if (get_group(j, sdd, NULL) != group)
5807 continue;
0601a88d 5808
dce840a0
PZ
5809 cpumask_set_cpu(j, covered);
5810 cpumask_set_cpu(j, sched_group_cpus(sg));
5811 }
0601a88d 5812
dce840a0
PZ
5813 if (!first)
5814 first = sg;
5815 if (last)
5816 last->next = sg;
5817 last = sg;
5818 }
5819 last->next = first;
e3589f6c
PZ
5820
5821 return 0;
0601a88d 5822}
51888ca2 5823
89c4710e 5824/*
63b2ca30 5825 * Initialize sched groups cpu_capacity.
89c4710e 5826 *
63b2ca30 5827 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5828 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5829 * Typically cpu_capacity for all the groups in a sched domain will be same
5830 * unless there are asymmetries in the topology. If there are asymmetries,
5831 * group having more cpu_capacity will pickup more load compared to the
5832 * group having less cpu_capacity.
89c4710e 5833 */
63b2ca30 5834static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5835{
e3589f6c 5836 struct sched_group *sg = sd->groups;
89c4710e 5837
94c95ba6 5838 WARN_ON(!sg);
e3589f6c
PZ
5839
5840 do {
5841 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5842 sg = sg->next;
5843 } while (sg != sd->groups);
89c4710e 5844
c1174876 5845 if (cpu != group_balance_cpu(sg))
e3589f6c 5846 return;
aae6d3dd 5847
63b2ca30
NP
5848 update_group_capacity(sd, cpu);
5849 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5850}
5851
7c16ec58
MT
5852/*
5853 * Initializers for schedule domains
5854 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5855 */
5856
1d3504fc 5857static int default_relax_domain_level = -1;
60495e77 5858int sched_domain_level_max;
1d3504fc
HS
5859
5860static int __init setup_relax_domain_level(char *str)
5861{
a841f8ce
DS
5862 if (kstrtoint(str, 0, &default_relax_domain_level))
5863 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5864
1d3504fc
HS
5865 return 1;
5866}
5867__setup("relax_domain_level=", setup_relax_domain_level);
5868
5869static void set_domain_attribute(struct sched_domain *sd,
5870 struct sched_domain_attr *attr)
5871{
5872 int request;
5873
5874 if (!attr || attr->relax_domain_level < 0) {
5875 if (default_relax_domain_level < 0)
5876 return;
5877 else
5878 request = default_relax_domain_level;
5879 } else
5880 request = attr->relax_domain_level;
5881 if (request < sd->level) {
5882 /* turn off idle balance on this domain */
c88d5910 5883 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5884 } else {
5885 /* turn on idle balance on this domain */
c88d5910 5886 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5887 }
5888}
5889
54ab4ff4
PZ
5890static void __sdt_free(const struct cpumask *cpu_map);
5891static int __sdt_alloc(const struct cpumask *cpu_map);
5892
2109b99e
AH
5893static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5894 const struct cpumask *cpu_map)
5895{
5896 switch (what) {
2109b99e 5897 case sa_rootdomain:
822ff793
PZ
5898 if (!atomic_read(&d->rd->refcount))
5899 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5900 case sa_sd:
5901 free_percpu(d->sd); /* fall through */
dce840a0 5902 case sa_sd_storage:
54ab4ff4 5903 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5904 case sa_none:
5905 break;
5906 }
5907}
3404c8d9 5908
2109b99e
AH
5909static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5910 const struct cpumask *cpu_map)
5911{
dce840a0
PZ
5912 memset(d, 0, sizeof(*d));
5913
54ab4ff4
PZ
5914 if (__sdt_alloc(cpu_map))
5915 return sa_sd_storage;
dce840a0
PZ
5916 d->sd = alloc_percpu(struct sched_domain *);
5917 if (!d->sd)
5918 return sa_sd_storage;
2109b99e 5919 d->rd = alloc_rootdomain();
dce840a0 5920 if (!d->rd)
21d42ccf 5921 return sa_sd;
2109b99e
AH
5922 return sa_rootdomain;
5923}
57d885fe 5924
dce840a0
PZ
5925/*
5926 * NULL the sd_data elements we've used to build the sched_domain and
5927 * sched_group structure so that the subsequent __free_domain_allocs()
5928 * will not free the data we're using.
5929 */
5930static void claim_allocations(int cpu, struct sched_domain *sd)
5931{
5932 struct sd_data *sdd = sd->private;
dce840a0
PZ
5933
5934 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5935 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5936
e3589f6c 5937 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5938 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5939
63b2ca30
NP
5940 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5941 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
5942}
5943
cb83b629 5944#ifdef CONFIG_NUMA
cb83b629 5945static int sched_domains_numa_levels;
cb83b629
PZ
5946static int *sched_domains_numa_distance;
5947static struct cpumask ***sched_domains_numa_masks;
5948static int sched_domains_curr_level;
143e1e28 5949#endif
cb83b629 5950
143e1e28
VG
5951/*
5952 * SD_flags allowed in topology descriptions.
5953 *
5d4dfddd 5954 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
5955 * SD_SHARE_PKG_RESOURCES - describes shared caches
5956 * SD_NUMA - describes NUMA topologies
d77b3ed5 5957 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
5958 *
5959 * Odd one out:
5960 * SD_ASYM_PACKING - describes SMT quirks
5961 */
5962#define TOPOLOGY_SD_FLAGS \
5d4dfddd 5963 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
5964 SD_SHARE_PKG_RESOURCES | \
5965 SD_NUMA | \
d77b3ed5
VG
5966 SD_ASYM_PACKING | \
5967 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
5968
5969static struct sched_domain *
143e1e28 5970sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
5971{
5972 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
5973 int sd_weight, sd_flags = 0;
5974
5975#ifdef CONFIG_NUMA
5976 /*
5977 * Ugly hack to pass state to sd_numa_mask()...
5978 */
5979 sched_domains_curr_level = tl->numa_level;
5980#endif
5981
5982 sd_weight = cpumask_weight(tl->mask(cpu));
5983
5984 if (tl->sd_flags)
5985 sd_flags = (*tl->sd_flags)();
5986 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5987 "wrong sd_flags in topology description\n"))
5988 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
5989
5990 *sd = (struct sched_domain){
5991 .min_interval = sd_weight,
5992 .max_interval = 2*sd_weight,
5993 .busy_factor = 32,
870a0bb5 5994 .imbalance_pct = 125,
143e1e28
VG
5995
5996 .cache_nice_tries = 0,
5997 .busy_idx = 0,
5998 .idle_idx = 0,
cb83b629
PZ
5999 .newidle_idx = 0,
6000 .wake_idx = 0,
6001 .forkexec_idx = 0,
6002
6003 .flags = 1*SD_LOAD_BALANCE
6004 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6005 | 1*SD_BALANCE_EXEC
6006 | 1*SD_BALANCE_FORK
cb83b629 6007 | 0*SD_BALANCE_WAKE
143e1e28 6008 | 1*SD_WAKE_AFFINE
5d4dfddd 6009 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6010 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6011 | 0*SD_SERIALIZE
cb83b629 6012 | 0*SD_PREFER_SIBLING
143e1e28
VG
6013 | 0*SD_NUMA
6014 | sd_flags
cb83b629 6015 ,
143e1e28 6016
cb83b629
PZ
6017 .last_balance = jiffies,
6018 .balance_interval = sd_weight,
143e1e28 6019 .smt_gain = 0,
2b4cfe64
JL
6020 .max_newidle_lb_cost = 0,
6021 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6022#ifdef CONFIG_SCHED_DEBUG
6023 .name = tl->name,
6024#endif
cb83b629 6025 };
cb83b629
PZ
6026
6027 /*
143e1e28 6028 * Convert topological properties into behaviour.
cb83b629 6029 */
143e1e28 6030
5d4dfddd 6031 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6032 sd->imbalance_pct = 110;
6033 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6034
6035 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6036 sd->imbalance_pct = 117;
6037 sd->cache_nice_tries = 1;
6038 sd->busy_idx = 2;
6039
6040#ifdef CONFIG_NUMA
6041 } else if (sd->flags & SD_NUMA) {
6042 sd->cache_nice_tries = 2;
6043 sd->busy_idx = 3;
6044 sd->idle_idx = 2;
6045
6046 sd->flags |= SD_SERIALIZE;
6047 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6048 sd->flags &= ~(SD_BALANCE_EXEC |
6049 SD_BALANCE_FORK |
6050 SD_WAKE_AFFINE);
6051 }
6052
6053#endif
6054 } else {
6055 sd->flags |= SD_PREFER_SIBLING;
6056 sd->cache_nice_tries = 1;
6057 sd->busy_idx = 2;
6058 sd->idle_idx = 1;
6059 }
6060
6061 sd->private = &tl->data;
cb83b629
PZ
6062
6063 return sd;
6064}
6065
143e1e28
VG
6066/*
6067 * Topology list, bottom-up.
6068 */
6069static struct sched_domain_topology_level default_topology[] = {
6070#ifdef CONFIG_SCHED_SMT
6071 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6072#endif
6073#ifdef CONFIG_SCHED_MC
6074 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6075#endif
6076 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6077 { NULL, },
6078};
6079
6080struct sched_domain_topology_level *sched_domain_topology = default_topology;
6081
6082#define for_each_sd_topology(tl) \
6083 for (tl = sched_domain_topology; tl->mask; tl++)
6084
6085void set_sched_topology(struct sched_domain_topology_level *tl)
6086{
6087 sched_domain_topology = tl;
6088}
6089
6090#ifdef CONFIG_NUMA
6091
cb83b629
PZ
6092static const struct cpumask *sd_numa_mask(int cpu)
6093{
6094 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6095}
6096
d039ac60
PZ
6097static void sched_numa_warn(const char *str)
6098{
6099 static int done = false;
6100 int i,j;
6101
6102 if (done)
6103 return;
6104
6105 done = true;
6106
6107 printk(KERN_WARNING "ERROR: %s\n\n", str);
6108
6109 for (i = 0; i < nr_node_ids; i++) {
6110 printk(KERN_WARNING " ");
6111 for (j = 0; j < nr_node_ids; j++)
6112 printk(KERN_CONT "%02d ", node_distance(i,j));
6113 printk(KERN_CONT "\n");
6114 }
6115 printk(KERN_WARNING "\n");
6116}
6117
6118static bool find_numa_distance(int distance)
6119{
6120 int i;
6121
6122 if (distance == node_distance(0, 0))
6123 return true;
6124
6125 for (i = 0; i < sched_domains_numa_levels; i++) {
6126 if (sched_domains_numa_distance[i] == distance)
6127 return true;
6128 }
6129
6130 return false;
6131}
6132
cb83b629
PZ
6133static void sched_init_numa(void)
6134{
6135 int next_distance, curr_distance = node_distance(0, 0);
6136 struct sched_domain_topology_level *tl;
6137 int level = 0;
6138 int i, j, k;
6139
cb83b629
PZ
6140 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6141 if (!sched_domains_numa_distance)
6142 return;
6143
6144 /*
6145 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6146 * unique distances in the node_distance() table.
6147 *
6148 * Assumes node_distance(0,j) includes all distances in
6149 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6150 */
6151 next_distance = curr_distance;
6152 for (i = 0; i < nr_node_ids; i++) {
6153 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6154 for (k = 0; k < nr_node_ids; k++) {
6155 int distance = node_distance(i, k);
6156
6157 if (distance > curr_distance &&
6158 (distance < next_distance ||
6159 next_distance == curr_distance))
6160 next_distance = distance;
6161
6162 /*
6163 * While not a strong assumption it would be nice to know
6164 * about cases where if node A is connected to B, B is not
6165 * equally connected to A.
6166 */
6167 if (sched_debug() && node_distance(k, i) != distance)
6168 sched_numa_warn("Node-distance not symmetric");
6169
6170 if (sched_debug() && i && !find_numa_distance(distance))
6171 sched_numa_warn("Node-0 not representative");
6172 }
6173 if (next_distance != curr_distance) {
6174 sched_domains_numa_distance[level++] = next_distance;
6175 sched_domains_numa_levels = level;
6176 curr_distance = next_distance;
6177 } else break;
cb83b629 6178 }
d039ac60
PZ
6179
6180 /*
6181 * In case of sched_debug() we verify the above assumption.
6182 */
6183 if (!sched_debug())
6184 break;
cb83b629
PZ
6185 }
6186 /*
6187 * 'level' contains the number of unique distances, excluding the
6188 * identity distance node_distance(i,i).
6189 *
28b4a521 6190 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6191 * numbers.
6192 */
6193
5f7865f3
TC
6194 /*
6195 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6196 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6197 * the array will contain less then 'level' members. This could be
6198 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6199 * in other functions.
6200 *
6201 * We reset it to 'level' at the end of this function.
6202 */
6203 sched_domains_numa_levels = 0;
6204
cb83b629
PZ
6205 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6206 if (!sched_domains_numa_masks)
6207 return;
6208
6209 /*
6210 * Now for each level, construct a mask per node which contains all
6211 * cpus of nodes that are that many hops away from us.
6212 */
6213 for (i = 0; i < level; i++) {
6214 sched_domains_numa_masks[i] =
6215 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6216 if (!sched_domains_numa_masks[i])
6217 return;
6218
6219 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6220 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6221 if (!mask)
6222 return;
6223
6224 sched_domains_numa_masks[i][j] = mask;
6225
6226 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6227 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6228 continue;
6229
6230 cpumask_or(mask, mask, cpumask_of_node(k));
6231 }
6232 }
6233 }
6234
143e1e28
VG
6235 /* Compute default topology size */
6236 for (i = 0; sched_domain_topology[i].mask; i++);
6237
c515db8c 6238 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6239 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6240 if (!tl)
6241 return;
6242
6243 /*
6244 * Copy the default topology bits..
6245 */
143e1e28
VG
6246 for (i = 0; sched_domain_topology[i].mask; i++)
6247 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6248
6249 /*
6250 * .. and append 'j' levels of NUMA goodness.
6251 */
6252 for (j = 0; j < level; i++, j++) {
6253 tl[i] = (struct sched_domain_topology_level){
cb83b629 6254 .mask = sd_numa_mask,
143e1e28 6255 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6256 .flags = SDTL_OVERLAP,
6257 .numa_level = j,
143e1e28 6258 SD_INIT_NAME(NUMA)
cb83b629
PZ
6259 };
6260 }
6261
6262 sched_domain_topology = tl;
5f7865f3
TC
6263
6264 sched_domains_numa_levels = level;
cb83b629 6265}
301a5cba
TC
6266
6267static void sched_domains_numa_masks_set(int cpu)
6268{
6269 int i, j;
6270 int node = cpu_to_node(cpu);
6271
6272 for (i = 0; i < sched_domains_numa_levels; i++) {
6273 for (j = 0; j < nr_node_ids; j++) {
6274 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6275 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6276 }
6277 }
6278}
6279
6280static void sched_domains_numa_masks_clear(int cpu)
6281{
6282 int i, j;
6283 for (i = 0; i < sched_domains_numa_levels; i++) {
6284 for (j = 0; j < nr_node_ids; j++)
6285 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6286 }
6287}
6288
6289/*
6290 * Update sched_domains_numa_masks[level][node] array when new cpus
6291 * are onlined.
6292 */
6293static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6294 unsigned long action,
6295 void *hcpu)
6296{
6297 int cpu = (long)hcpu;
6298
6299 switch (action & ~CPU_TASKS_FROZEN) {
6300 case CPU_ONLINE:
6301 sched_domains_numa_masks_set(cpu);
6302 break;
6303
6304 case CPU_DEAD:
6305 sched_domains_numa_masks_clear(cpu);
6306 break;
6307
6308 default:
6309 return NOTIFY_DONE;
6310 }
6311
6312 return NOTIFY_OK;
cb83b629
PZ
6313}
6314#else
6315static inline void sched_init_numa(void)
6316{
6317}
301a5cba
TC
6318
6319static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6320 unsigned long action,
6321 void *hcpu)
6322{
6323 return 0;
6324}
cb83b629
PZ
6325#endif /* CONFIG_NUMA */
6326
54ab4ff4
PZ
6327static int __sdt_alloc(const struct cpumask *cpu_map)
6328{
6329 struct sched_domain_topology_level *tl;
6330 int j;
6331
27723a68 6332 for_each_sd_topology(tl) {
54ab4ff4
PZ
6333 struct sd_data *sdd = &tl->data;
6334
6335 sdd->sd = alloc_percpu(struct sched_domain *);
6336 if (!sdd->sd)
6337 return -ENOMEM;
6338
6339 sdd->sg = alloc_percpu(struct sched_group *);
6340 if (!sdd->sg)
6341 return -ENOMEM;
6342
63b2ca30
NP
6343 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6344 if (!sdd->sgc)
9c3f75cb
PZ
6345 return -ENOMEM;
6346
54ab4ff4
PZ
6347 for_each_cpu(j, cpu_map) {
6348 struct sched_domain *sd;
6349 struct sched_group *sg;
63b2ca30 6350 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6351
6352 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6353 GFP_KERNEL, cpu_to_node(j));
6354 if (!sd)
6355 return -ENOMEM;
6356
6357 *per_cpu_ptr(sdd->sd, j) = sd;
6358
6359 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6360 GFP_KERNEL, cpu_to_node(j));
6361 if (!sg)
6362 return -ENOMEM;
6363
30b4e9eb
IM
6364 sg->next = sg;
6365
54ab4ff4 6366 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6367
63b2ca30 6368 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6369 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6370 if (!sgc)
9c3f75cb
PZ
6371 return -ENOMEM;
6372
63b2ca30 6373 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6374 }
6375 }
6376
6377 return 0;
6378}
6379
6380static void __sdt_free(const struct cpumask *cpu_map)
6381{
6382 struct sched_domain_topology_level *tl;
6383 int j;
6384
27723a68 6385 for_each_sd_topology(tl) {
54ab4ff4
PZ
6386 struct sd_data *sdd = &tl->data;
6387
6388 for_each_cpu(j, cpu_map) {
fb2cf2c6 6389 struct sched_domain *sd;
6390
6391 if (sdd->sd) {
6392 sd = *per_cpu_ptr(sdd->sd, j);
6393 if (sd && (sd->flags & SD_OVERLAP))
6394 free_sched_groups(sd->groups, 0);
6395 kfree(*per_cpu_ptr(sdd->sd, j));
6396 }
6397
6398 if (sdd->sg)
6399 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6400 if (sdd->sgc)
6401 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6402 }
6403 free_percpu(sdd->sd);
fb2cf2c6 6404 sdd->sd = NULL;
54ab4ff4 6405 free_percpu(sdd->sg);
fb2cf2c6 6406 sdd->sg = NULL;
63b2ca30
NP
6407 free_percpu(sdd->sgc);
6408 sdd->sgc = NULL;
54ab4ff4
PZ
6409 }
6410}
6411
2c402dc3 6412struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6413 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6414 struct sched_domain *child, int cpu)
2c402dc3 6415{
143e1e28 6416 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6417 if (!sd)
d069b916 6418 return child;
2c402dc3 6419
2c402dc3 6420 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6421 if (child) {
6422 sd->level = child->level + 1;
6423 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6424 child->parent = sd;
c75e0128 6425 sd->child = child;
60495e77 6426 }
a841f8ce 6427 set_domain_attribute(sd, attr);
2c402dc3
PZ
6428
6429 return sd;
6430}
6431
2109b99e
AH
6432/*
6433 * Build sched domains for a given set of cpus and attach the sched domains
6434 * to the individual cpus
6435 */
dce840a0
PZ
6436static int build_sched_domains(const struct cpumask *cpu_map,
6437 struct sched_domain_attr *attr)
2109b99e 6438{
1c632169 6439 enum s_alloc alloc_state;
dce840a0 6440 struct sched_domain *sd;
2109b99e 6441 struct s_data d;
822ff793 6442 int i, ret = -ENOMEM;
9c1cfda2 6443
2109b99e
AH
6444 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6445 if (alloc_state != sa_rootdomain)
6446 goto error;
9c1cfda2 6447
dce840a0 6448 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6449 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6450 struct sched_domain_topology_level *tl;
6451
3bd65a80 6452 sd = NULL;
27723a68 6453 for_each_sd_topology(tl) {
4a850cbe 6454 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6455 if (tl == sched_domain_topology)
6456 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6457 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6458 sd->flags |= SD_OVERLAP;
d110235d
PZ
6459 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6460 break;
e3589f6c 6461 }
dce840a0
PZ
6462 }
6463
6464 /* Build the groups for the domains */
6465 for_each_cpu(i, cpu_map) {
6466 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6467 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6468 if (sd->flags & SD_OVERLAP) {
6469 if (build_overlap_sched_groups(sd, i))
6470 goto error;
6471 } else {
6472 if (build_sched_groups(sd, i))
6473 goto error;
6474 }
1cf51902 6475 }
a06dadbe 6476 }
9c1cfda2 6477
ced549fa 6478 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6479 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6480 if (!cpumask_test_cpu(i, cpu_map))
6481 continue;
9c1cfda2 6482
dce840a0
PZ
6483 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6484 claim_allocations(i, sd);
63b2ca30 6485 init_sched_groups_capacity(i, sd);
dce840a0 6486 }
f712c0c7 6487 }
9c1cfda2 6488
1da177e4 6489 /* Attach the domains */
dce840a0 6490 rcu_read_lock();
abcd083a 6491 for_each_cpu(i, cpu_map) {
21d42ccf 6492 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6493 cpu_attach_domain(sd, d.rd, i);
1da177e4 6494 }
dce840a0 6495 rcu_read_unlock();
51888ca2 6496
822ff793 6497 ret = 0;
51888ca2 6498error:
2109b99e 6499 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6500 return ret;
1da177e4 6501}
029190c5 6502
acc3f5d7 6503static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6504static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6505static struct sched_domain_attr *dattr_cur;
6506 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6507
6508/*
6509 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6510 * cpumask) fails, then fallback to a single sched domain,
6511 * as determined by the single cpumask fallback_doms.
029190c5 6512 */
4212823f 6513static cpumask_var_t fallback_doms;
029190c5 6514
ee79d1bd
HC
6515/*
6516 * arch_update_cpu_topology lets virtualized architectures update the
6517 * cpu core maps. It is supposed to return 1 if the topology changed
6518 * or 0 if it stayed the same.
6519 */
52f5684c 6520int __weak arch_update_cpu_topology(void)
22e52b07 6521{
ee79d1bd 6522 return 0;
22e52b07
HC
6523}
6524
acc3f5d7
RR
6525cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6526{
6527 int i;
6528 cpumask_var_t *doms;
6529
6530 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6531 if (!doms)
6532 return NULL;
6533 for (i = 0; i < ndoms; i++) {
6534 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6535 free_sched_domains(doms, i);
6536 return NULL;
6537 }
6538 }
6539 return doms;
6540}
6541
6542void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6543{
6544 unsigned int i;
6545 for (i = 0; i < ndoms; i++)
6546 free_cpumask_var(doms[i]);
6547 kfree(doms);
6548}
6549
1a20ff27 6550/*
41a2d6cf 6551 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6552 * For now this just excludes isolated cpus, but could be used to
6553 * exclude other special cases in the future.
1a20ff27 6554 */
c4a8849a 6555static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6556{
7378547f
MM
6557 int err;
6558
22e52b07 6559 arch_update_cpu_topology();
029190c5 6560 ndoms_cur = 1;
acc3f5d7 6561 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6562 if (!doms_cur)
acc3f5d7
RR
6563 doms_cur = &fallback_doms;
6564 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6565 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6566 register_sched_domain_sysctl();
7378547f
MM
6567
6568 return err;
1a20ff27
DG
6569}
6570
1a20ff27
DG
6571/*
6572 * Detach sched domains from a group of cpus specified in cpu_map
6573 * These cpus will now be attached to the NULL domain
6574 */
96f874e2 6575static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6576{
6577 int i;
6578
dce840a0 6579 rcu_read_lock();
abcd083a 6580 for_each_cpu(i, cpu_map)
57d885fe 6581 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6582 rcu_read_unlock();
1a20ff27
DG
6583}
6584
1d3504fc
HS
6585/* handle null as "default" */
6586static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6587 struct sched_domain_attr *new, int idx_new)
6588{
6589 struct sched_domain_attr tmp;
6590
6591 /* fast path */
6592 if (!new && !cur)
6593 return 1;
6594
6595 tmp = SD_ATTR_INIT;
6596 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6597 new ? (new + idx_new) : &tmp,
6598 sizeof(struct sched_domain_attr));
6599}
6600
029190c5
PJ
6601/*
6602 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6603 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6604 * doms_new[] to the current sched domain partitioning, doms_cur[].
6605 * It destroys each deleted domain and builds each new domain.
6606 *
acc3f5d7 6607 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6608 * The masks don't intersect (don't overlap.) We should setup one
6609 * sched domain for each mask. CPUs not in any of the cpumasks will
6610 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6611 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6612 * it as it is.
6613 *
acc3f5d7
RR
6614 * The passed in 'doms_new' should be allocated using
6615 * alloc_sched_domains. This routine takes ownership of it and will
6616 * free_sched_domains it when done with it. If the caller failed the
6617 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6618 * and partition_sched_domains() will fallback to the single partition
6619 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6620 *
96f874e2 6621 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6622 * ndoms_new == 0 is a special case for destroying existing domains,
6623 * and it will not create the default domain.
dfb512ec 6624 *
029190c5
PJ
6625 * Call with hotplug lock held
6626 */
acc3f5d7 6627void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6628 struct sched_domain_attr *dattr_new)
029190c5 6629{
dfb512ec 6630 int i, j, n;
d65bd5ec 6631 int new_topology;
029190c5 6632
712555ee 6633 mutex_lock(&sched_domains_mutex);
a1835615 6634
7378547f
MM
6635 /* always unregister in case we don't destroy any domains */
6636 unregister_sched_domain_sysctl();
6637
d65bd5ec
HC
6638 /* Let architecture update cpu core mappings. */
6639 new_topology = arch_update_cpu_topology();
6640
dfb512ec 6641 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6642
6643 /* Destroy deleted domains */
6644 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6645 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6646 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6647 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6648 goto match1;
6649 }
6650 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6651 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6652match1:
6653 ;
6654 }
6655
c8d2d47a 6656 n = ndoms_cur;
e761b772 6657 if (doms_new == NULL) {
c8d2d47a 6658 n = 0;
acc3f5d7 6659 doms_new = &fallback_doms;
6ad4c188 6660 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6661 WARN_ON_ONCE(dattr_new);
e761b772
MK
6662 }
6663
029190c5
PJ
6664 /* Build new domains */
6665 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6666 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6667 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6668 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6669 goto match2;
6670 }
6671 /* no match - add a new doms_new */
dce840a0 6672 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6673match2:
6674 ;
6675 }
6676
6677 /* Remember the new sched domains */
acc3f5d7
RR
6678 if (doms_cur != &fallback_doms)
6679 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6680 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6681 doms_cur = doms_new;
1d3504fc 6682 dattr_cur = dattr_new;
029190c5 6683 ndoms_cur = ndoms_new;
7378547f
MM
6684
6685 register_sched_domain_sysctl();
a1835615 6686
712555ee 6687 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6688}
6689
d35be8ba
SB
6690static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6691
1da177e4 6692/*
3a101d05
TH
6693 * Update cpusets according to cpu_active mask. If cpusets are
6694 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6695 * around partition_sched_domains().
d35be8ba
SB
6696 *
6697 * If we come here as part of a suspend/resume, don't touch cpusets because we
6698 * want to restore it back to its original state upon resume anyway.
1da177e4 6699 */
0b2e918a
TH
6700static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6701 void *hcpu)
e761b772 6702{
d35be8ba
SB
6703 switch (action) {
6704 case CPU_ONLINE_FROZEN:
6705 case CPU_DOWN_FAILED_FROZEN:
6706
6707 /*
6708 * num_cpus_frozen tracks how many CPUs are involved in suspend
6709 * resume sequence. As long as this is not the last online
6710 * operation in the resume sequence, just build a single sched
6711 * domain, ignoring cpusets.
6712 */
6713 num_cpus_frozen--;
6714 if (likely(num_cpus_frozen)) {
6715 partition_sched_domains(1, NULL, NULL);
6716 break;
6717 }
6718
6719 /*
6720 * This is the last CPU online operation. So fall through and
6721 * restore the original sched domains by considering the
6722 * cpuset configurations.
6723 */
6724
e761b772 6725 case CPU_ONLINE:
6ad4c188 6726 case CPU_DOWN_FAILED:
7ddf96b0 6727 cpuset_update_active_cpus(true);
d35be8ba 6728 break;
3a101d05
TH
6729 default:
6730 return NOTIFY_DONE;
6731 }
d35be8ba 6732 return NOTIFY_OK;
3a101d05 6733}
e761b772 6734
0b2e918a
TH
6735static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6736 void *hcpu)
3a101d05 6737{
d35be8ba 6738 switch (action) {
3a101d05 6739 case CPU_DOWN_PREPARE:
7ddf96b0 6740 cpuset_update_active_cpus(false);
d35be8ba
SB
6741 break;
6742 case CPU_DOWN_PREPARE_FROZEN:
6743 num_cpus_frozen++;
6744 partition_sched_domains(1, NULL, NULL);
6745 break;
e761b772
MK
6746 default:
6747 return NOTIFY_DONE;
6748 }
d35be8ba 6749 return NOTIFY_OK;
e761b772 6750}
e761b772 6751
1da177e4
LT
6752void __init sched_init_smp(void)
6753{
dcc30a35
RR
6754 cpumask_var_t non_isolated_cpus;
6755
6756 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6757 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6758
cb83b629
PZ
6759 sched_init_numa();
6760
6acce3ef
PZ
6761 /*
6762 * There's no userspace yet to cause hotplug operations; hence all the
6763 * cpu masks are stable and all blatant races in the below code cannot
6764 * happen.
6765 */
712555ee 6766 mutex_lock(&sched_domains_mutex);
c4a8849a 6767 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6768 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6769 if (cpumask_empty(non_isolated_cpus))
6770 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6771 mutex_unlock(&sched_domains_mutex);
e761b772 6772
301a5cba 6773 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6774 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6775 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6776
b328ca18 6777 init_hrtick();
5c1e1767
NP
6778
6779 /* Move init over to a non-isolated CPU */
dcc30a35 6780 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6781 BUG();
19978ca6 6782 sched_init_granularity();
dcc30a35 6783 free_cpumask_var(non_isolated_cpus);
4212823f 6784
0e3900e6 6785 init_sched_rt_class();
1baca4ce 6786 init_sched_dl_class();
1da177e4
LT
6787}
6788#else
6789void __init sched_init_smp(void)
6790{
19978ca6 6791 sched_init_granularity();
1da177e4
LT
6792}
6793#endif /* CONFIG_SMP */
6794
cd1bb94b
AB
6795const_debug unsigned int sysctl_timer_migration = 1;
6796
1da177e4
LT
6797int in_sched_functions(unsigned long addr)
6798{
1da177e4
LT
6799 return in_lock_functions(addr) ||
6800 (addr >= (unsigned long)__sched_text_start
6801 && addr < (unsigned long)__sched_text_end);
6802}
6803
029632fb 6804#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6805/*
6806 * Default task group.
6807 * Every task in system belongs to this group at bootup.
6808 */
029632fb 6809struct task_group root_task_group;
35cf4e50 6810LIST_HEAD(task_groups);
052f1dc7 6811#endif
6f505b16 6812
e6252c3e 6813DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6814
1da177e4
LT
6815void __init sched_init(void)
6816{
dd41f596 6817 int i, j;
434d53b0
MT
6818 unsigned long alloc_size = 0, ptr;
6819
6820#ifdef CONFIG_FAIR_GROUP_SCHED
6821 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6822#endif
6823#ifdef CONFIG_RT_GROUP_SCHED
6824 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6825#endif
df7c8e84 6826#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6827 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6828#endif
434d53b0 6829 if (alloc_size) {
36b7b6d4 6830 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6831
6832#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6833 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6834 ptr += nr_cpu_ids * sizeof(void **);
6835
07e06b01 6836 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6837 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6838
6d6bc0ad 6839#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6840#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6841 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6842 ptr += nr_cpu_ids * sizeof(void **);
6843
07e06b01 6844 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6845 ptr += nr_cpu_ids * sizeof(void **);
6846
6d6bc0ad 6847#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6848#ifdef CONFIG_CPUMASK_OFFSTACK
6849 for_each_possible_cpu(i) {
e6252c3e 6850 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6851 ptr += cpumask_size();
6852 }
6853#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6854 }
dd41f596 6855
332ac17e
DF
6856 init_rt_bandwidth(&def_rt_bandwidth,
6857 global_rt_period(), global_rt_runtime());
6858 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6859 global_rt_period(), global_rt_runtime());
332ac17e 6860
57d885fe
GH
6861#ifdef CONFIG_SMP
6862 init_defrootdomain();
6863#endif
6864
d0b27fa7 6865#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6866 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6867 global_rt_period(), global_rt_runtime());
6d6bc0ad 6868#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6869
7c941438 6870#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6871 list_add(&root_task_group.list, &task_groups);
6872 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6873 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6874 autogroup_init(&init_task);
54c707e9 6875
7c941438 6876#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6877
0a945022 6878 for_each_possible_cpu(i) {
70b97a7f 6879 struct rq *rq;
1da177e4
LT
6880
6881 rq = cpu_rq(i);
05fa785c 6882 raw_spin_lock_init(&rq->lock);
7897986b 6883 rq->nr_running = 0;
dce48a84
TG
6884 rq->calc_load_active = 0;
6885 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6886 init_cfs_rq(&rq->cfs);
6f505b16 6887 init_rt_rq(&rq->rt, rq);
aab03e05 6888 init_dl_rq(&rq->dl, rq);
dd41f596 6889#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6890 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6891 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6892 /*
07e06b01 6893 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6894 *
6895 * In case of task-groups formed thr' the cgroup filesystem, it
6896 * gets 100% of the cpu resources in the system. This overall
6897 * system cpu resource is divided among the tasks of
07e06b01 6898 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6899 * based on each entity's (task or task-group's) weight
6900 * (se->load.weight).
6901 *
07e06b01 6902 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6903 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6904 * then A0's share of the cpu resource is:
6905 *
0d905bca 6906 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6907 *
07e06b01
YZ
6908 * We achieve this by letting root_task_group's tasks sit
6909 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6910 */
ab84d31e 6911 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6912 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6913#endif /* CONFIG_FAIR_GROUP_SCHED */
6914
6915 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6916#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6917 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6918#endif
1da177e4 6919
dd41f596
IM
6920 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6921 rq->cpu_load[j] = 0;
fdf3e95d
VP
6922
6923 rq->last_load_update_tick = jiffies;
6924
1da177e4 6925#ifdef CONFIG_SMP
41c7ce9a 6926 rq->sd = NULL;
57d885fe 6927 rq->rd = NULL;
ca8ce3d0 6928 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 6929 rq->post_schedule = 0;
1da177e4 6930 rq->active_balance = 0;
dd41f596 6931 rq->next_balance = jiffies;
1da177e4 6932 rq->push_cpu = 0;
0a2966b4 6933 rq->cpu = i;
1f11eb6a 6934 rq->online = 0;
eae0c9df
MG
6935 rq->idle_stamp = 0;
6936 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6937 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6938
6939 INIT_LIST_HEAD(&rq->cfs_tasks);
6940
dc938520 6941 rq_attach_root(rq, &def_root_domain);
3451d024 6942#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6943 rq->nohz_flags = 0;
83cd4fe2 6944#endif
265f22a9
FW
6945#ifdef CONFIG_NO_HZ_FULL
6946 rq->last_sched_tick = 0;
6947#endif
1da177e4 6948#endif
8f4d37ec 6949 init_rq_hrtick(rq);
1da177e4 6950 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6951 }
6952
2dd73a4f 6953 set_load_weight(&init_task);
b50f60ce 6954
e107be36
AK
6955#ifdef CONFIG_PREEMPT_NOTIFIERS
6956 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6957#endif
6958
1da177e4
LT
6959 /*
6960 * The boot idle thread does lazy MMU switching as well:
6961 */
6962 atomic_inc(&init_mm.mm_count);
6963 enter_lazy_tlb(&init_mm, current);
6964
6965 /*
6966 * Make us the idle thread. Technically, schedule() should not be
6967 * called from this thread, however somewhere below it might be,
6968 * but because we are the idle thread, we just pick up running again
6969 * when this runqueue becomes "idle".
6970 */
6971 init_idle(current, smp_processor_id());
dce48a84
TG
6972
6973 calc_load_update = jiffies + LOAD_FREQ;
6974
dd41f596
IM
6975 /*
6976 * During early bootup we pretend to be a normal task:
6977 */
6978 current->sched_class = &fair_sched_class;
6892b75e 6979
bf4d83f6 6980#ifdef CONFIG_SMP
4cb98839 6981 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6982 /* May be allocated at isolcpus cmdline parse time */
6983 if (cpu_isolated_map == NULL)
6984 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6985 idle_thread_set_boot_cpu();
a803f026 6986 set_cpu_rq_start_time();
029632fb
PZ
6987#endif
6988 init_sched_fair_class();
6a7b3dc3 6989
6892b75e 6990 scheduler_running = 1;
1da177e4
LT
6991}
6992
d902db1e 6993#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6994static inline int preempt_count_equals(int preempt_offset)
6995{
234da7bc 6996 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6997
4ba8216c 6998 return (nested == preempt_offset);
e4aafea2
FW
6999}
7000
d894837f 7001void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7002{
1da177e4
LT
7003 static unsigned long prev_jiffy; /* ratelimiting */
7004
b3fbab05 7005 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7006 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7007 !is_idle_task(current)) ||
e4aafea2 7008 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7009 return;
7010 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7011 return;
7012 prev_jiffy = jiffies;
7013
3df0fc5b
PZ
7014 printk(KERN_ERR
7015 "BUG: sleeping function called from invalid context at %s:%d\n",
7016 file, line);
7017 printk(KERN_ERR
7018 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7019 in_atomic(), irqs_disabled(),
7020 current->pid, current->comm);
aef745fc
IM
7021
7022 debug_show_held_locks(current);
7023 if (irqs_disabled())
7024 print_irqtrace_events(current);
8f47b187
TG
7025#ifdef CONFIG_DEBUG_PREEMPT
7026 if (!preempt_count_equals(preempt_offset)) {
7027 pr_err("Preemption disabled at:");
7028 print_ip_sym(current->preempt_disable_ip);
7029 pr_cont("\n");
7030 }
7031#endif
aef745fc 7032 dump_stack();
1da177e4
LT
7033}
7034EXPORT_SYMBOL(__might_sleep);
7035#endif
7036
7037#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7038static void normalize_task(struct rq *rq, struct task_struct *p)
7039{
da7a735e 7040 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7041 struct sched_attr attr = {
7042 .sched_policy = SCHED_NORMAL,
7043 };
da7a735e 7044 int old_prio = p->prio;
3a5e4dc1 7045 int on_rq;
3e51f33f 7046
fd2f4419 7047 on_rq = p->on_rq;
3a5e4dc1 7048 if (on_rq)
4ca9b72b 7049 dequeue_task(rq, p, 0);
d50dde5a 7050 __setscheduler(rq, p, &attr);
3a5e4dc1 7051 if (on_rq) {
4ca9b72b 7052 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7053 resched_task(rq->curr);
7054 }
da7a735e
PZ
7055
7056 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7057}
7058
1da177e4
LT
7059void normalize_rt_tasks(void)
7060{
a0f98a1c 7061 struct task_struct *g, *p;
1da177e4 7062 unsigned long flags;
70b97a7f 7063 struct rq *rq;
1da177e4 7064
4cf5d77a 7065 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7066 do_each_thread(g, p) {
178be793
IM
7067 /*
7068 * Only normalize user tasks:
7069 */
7070 if (!p->mm)
7071 continue;
7072
6cfb0d5d 7073 p->se.exec_start = 0;
6cfb0d5d 7074#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7075 p->se.statistics.wait_start = 0;
7076 p->se.statistics.sleep_start = 0;
7077 p->se.statistics.block_start = 0;
6cfb0d5d 7078#endif
dd41f596 7079
aab03e05 7080 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7081 /*
7082 * Renice negative nice level userspace
7083 * tasks back to 0:
7084 */
d0ea0268 7085 if (task_nice(p) < 0 && p->mm)
dd41f596 7086 set_user_nice(p, 0);
1da177e4 7087 continue;
dd41f596 7088 }
1da177e4 7089
1d615482 7090 raw_spin_lock(&p->pi_lock);
b29739f9 7091 rq = __task_rq_lock(p);
1da177e4 7092
178be793 7093 normalize_task(rq, p);
3a5e4dc1 7094
b29739f9 7095 __task_rq_unlock(rq);
1d615482 7096 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7097 } while_each_thread(g, p);
7098
4cf5d77a 7099 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7100}
7101
7102#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7103
67fc4e0c 7104#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7105/*
67fc4e0c 7106 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7107 *
7108 * They can only be called when the whole system has been
7109 * stopped - every CPU needs to be quiescent, and no scheduling
7110 * activity can take place. Using them for anything else would
7111 * be a serious bug, and as a result, they aren't even visible
7112 * under any other configuration.
7113 */
7114
7115/**
7116 * curr_task - return the current task for a given cpu.
7117 * @cpu: the processor in question.
7118 *
7119 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7120 *
7121 * Return: The current task for @cpu.
1df5c10a 7122 */
36c8b586 7123struct task_struct *curr_task(int cpu)
1df5c10a
LT
7124{
7125 return cpu_curr(cpu);
7126}
7127
67fc4e0c
JW
7128#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7129
7130#ifdef CONFIG_IA64
1df5c10a
LT
7131/**
7132 * set_curr_task - set the current task for a given cpu.
7133 * @cpu: the processor in question.
7134 * @p: the task pointer to set.
7135 *
7136 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7137 * are serviced on a separate stack. It allows the architecture to switch the
7138 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7139 * must be called with all CPU's synchronized, and interrupts disabled, the
7140 * and caller must save the original value of the current task (see
7141 * curr_task() above) and restore that value before reenabling interrupts and
7142 * re-starting the system.
7143 *
7144 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7145 */
36c8b586 7146void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7147{
7148 cpu_curr(cpu) = p;
7149}
7150
7151#endif
29f59db3 7152
7c941438 7153#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7154/* task_group_lock serializes the addition/removal of task groups */
7155static DEFINE_SPINLOCK(task_group_lock);
7156
bccbe08a
PZ
7157static void free_sched_group(struct task_group *tg)
7158{
7159 free_fair_sched_group(tg);
7160 free_rt_sched_group(tg);
e9aa1dd1 7161 autogroup_free(tg);
bccbe08a
PZ
7162 kfree(tg);
7163}
7164
7165/* allocate runqueue etc for a new task group */
ec7dc8ac 7166struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7167{
7168 struct task_group *tg;
bccbe08a
PZ
7169
7170 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7171 if (!tg)
7172 return ERR_PTR(-ENOMEM);
7173
ec7dc8ac 7174 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7175 goto err;
7176
ec7dc8ac 7177 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7178 goto err;
7179
ace783b9
LZ
7180 return tg;
7181
7182err:
7183 free_sched_group(tg);
7184 return ERR_PTR(-ENOMEM);
7185}
7186
7187void sched_online_group(struct task_group *tg, struct task_group *parent)
7188{
7189 unsigned long flags;
7190
8ed36996 7191 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7192 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7193
7194 WARN_ON(!parent); /* root should already exist */
7195
7196 tg->parent = parent;
f473aa5e 7197 INIT_LIST_HEAD(&tg->children);
09f2724a 7198 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7199 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7200}
7201
9b5b7751 7202/* rcu callback to free various structures associated with a task group */
6f505b16 7203static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7204{
29f59db3 7205 /* now it should be safe to free those cfs_rqs */
6f505b16 7206 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7207}
7208
9b5b7751 7209/* Destroy runqueue etc associated with a task group */
4cf86d77 7210void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7211{
7212 /* wait for possible concurrent references to cfs_rqs complete */
7213 call_rcu(&tg->rcu, free_sched_group_rcu);
7214}
7215
7216void sched_offline_group(struct task_group *tg)
29f59db3 7217{
8ed36996 7218 unsigned long flags;
9b5b7751 7219 int i;
29f59db3 7220
3d4b47b4
PZ
7221 /* end participation in shares distribution */
7222 for_each_possible_cpu(i)
bccbe08a 7223 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7224
7225 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7226 list_del_rcu(&tg->list);
f473aa5e 7227 list_del_rcu(&tg->siblings);
8ed36996 7228 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7229}
7230
9b5b7751 7231/* change task's runqueue when it moves between groups.
3a252015
IM
7232 * The caller of this function should have put the task in its new group
7233 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7234 * reflect its new group.
9b5b7751
SV
7235 */
7236void sched_move_task(struct task_struct *tsk)
29f59db3 7237{
8323f26c 7238 struct task_group *tg;
29f59db3
SV
7239 int on_rq, running;
7240 unsigned long flags;
7241 struct rq *rq;
7242
7243 rq = task_rq_lock(tsk, &flags);
7244
051a1d1a 7245 running = task_current(rq, tsk);
fd2f4419 7246 on_rq = tsk->on_rq;
29f59db3 7247
0e1f3483 7248 if (on_rq)
29f59db3 7249 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7250 if (unlikely(running))
7251 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7252
073219e9 7253 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7254 lockdep_is_held(&tsk->sighand->siglock)),
7255 struct task_group, css);
7256 tg = autogroup_task_group(tsk, tg);
7257 tsk->sched_task_group = tg;
7258
810b3817 7259#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7260 if (tsk->sched_class->task_move_group)
7261 tsk->sched_class->task_move_group(tsk, on_rq);
7262 else
810b3817 7263#endif
b2b5ce02 7264 set_task_rq(tsk, task_cpu(tsk));
810b3817 7265
0e1f3483
HS
7266 if (unlikely(running))
7267 tsk->sched_class->set_curr_task(rq);
7268 if (on_rq)
371fd7e7 7269 enqueue_task(rq, tsk, 0);
29f59db3 7270
0122ec5b 7271 task_rq_unlock(rq, tsk, &flags);
29f59db3 7272}
7c941438 7273#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7274
a790de99
PT
7275#ifdef CONFIG_RT_GROUP_SCHED
7276/*
7277 * Ensure that the real time constraints are schedulable.
7278 */
7279static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7280
9a7e0b18
PZ
7281/* Must be called with tasklist_lock held */
7282static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7283{
9a7e0b18 7284 struct task_struct *g, *p;
b40b2e8e 7285
9a7e0b18 7286 do_each_thread(g, p) {
029632fb 7287 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7288 return 1;
7289 } while_each_thread(g, p);
b40b2e8e 7290
9a7e0b18
PZ
7291 return 0;
7292}
b40b2e8e 7293
9a7e0b18
PZ
7294struct rt_schedulable_data {
7295 struct task_group *tg;
7296 u64 rt_period;
7297 u64 rt_runtime;
7298};
b40b2e8e 7299
a790de99 7300static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7301{
7302 struct rt_schedulable_data *d = data;
7303 struct task_group *child;
7304 unsigned long total, sum = 0;
7305 u64 period, runtime;
b40b2e8e 7306
9a7e0b18
PZ
7307 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7308 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7309
9a7e0b18
PZ
7310 if (tg == d->tg) {
7311 period = d->rt_period;
7312 runtime = d->rt_runtime;
b40b2e8e 7313 }
b40b2e8e 7314
4653f803
PZ
7315 /*
7316 * Cannot have more runtime than the period.
7317 */
7318 if (runtime > period && runtime != RUNTIME_INF)
7319 return -EINVAL;
6f505b16 7320
4653f803
PZ
7321 /*
7322 * Ensure we don't starve existing RT tasks.
7323 */
9a7e0b18
PZ
7324 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7325 return -EBUSY;
6f505b16 7326
9a7e0b18 7327 total = to_ratio(period, runtime);
6f505b16 7328
4653f803
PZ
7329 /*
7330 * Nobody can have more than the global setting allows.
7331 */
7332 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7333 return -EINVAL;
6f505b16 7334
4653f803
PZ
7335 /*
7336 * The sum of our children's runtime should not exceed our own.
7337 */
9a7e0b18
PZ
7338 list_for_each_entry_rcu(child, &tg->children, siblings) {
7339 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7340 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7341
9a7e0b18
PZ
7342 if (child == d->tg) {
7343 period = d->rt_period;
7344 runtime = d->rt_runtime;
7345 }
6f505b16 7346
9a7e0b18 7347 sum += to_ratio(period, runtime);
9f0c1e56 7348 }
6f505b16 7349
9a7e0b18
PZ
7350 if (sum > total)
7351 return -EINVAL;
7352
7353 return 0;
6f505b16
PZ
7354}
7355
9a7e0b18 7356static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7357{
8277434e
PT
7358 int ret;
7359
9a7e0b18
PZ
7360 struct rt_schedulable_data data = {
7361 .tg = tg,
7362 .rt_period = period,
7363 .rt_runtime = runtime,
7364 };
7365
8277434e
PT
7366 rcu_read_lock();
7367 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7368 rcu_read_unlock();
7369
7370 return ret;
521f1a24
DG
7371}
7372
ab84d31e 7373static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7374 u64 rt_period, u64 rt_runtime)
6f505b16 7375{
ac086bc2 7376 int i, err = 0;
9f0c1e56 7377
9f0c1e56 7378 mutex_lock(&rt_constraints_mutex);
521f1a24 7379 read_lock(&tasklist_lock);
9a7e0b18
PZ
7380 err = __rt_schedulable(tg, rt_period, rt_runtime);
7381 if (err)
9f0c1e56 7382 goto unlock;
ac086bc2 7383
0986b11b 7384 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7385 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7386 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7387
7388 for_each_possible_cpu(i) {
7389 struct rt_rq *rt_rq = tg->rt_rq[i];
7390
0986b11b 7391 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7392 rt_rq->rt_runtime = rt_runtime;
0986b11b 7393 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7394 }
0986b11b 7395 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7396unlock:
521f1a24 7397 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7398 mutex_unlock(&rt_constraints_mutex);
7399
7400 return err;
6f505b16
PZ
7401}
7402
25cc7da7 7403static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7404{
7405 u64 rt_runtime, rt_period;
7406
7407 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7408 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7409 if (rt_runtime_us < 0)
7410 rt_runtime = RUNTIME_INF;
7411
ab84d31e 7412 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7413}
7414
25cc7da7 7415static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7416{
7417 u64 rt_runtime_us;
7418
d0b27fa7 7419 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7420 return -1;
7421
d0b27fa7 7422 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7423 do_div(rt_runtime_us, NSEC_PER_USEC);
7424 return rt_runtime_us;
7425}
d0b27fa7 7426
25cc7da7 7427static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7428{
7429 u64 rt_runtime, rt_period;
7430
7431 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7432 rt_runtime = tg->rt_bandwidth.rt_runtime;
7433
619b0488
R
7434 if (rt_period == 0)
7435 return -EINVAL;
7436
ab84d31e 7437 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7438}
7439
25cc7da7 7440static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7441{
7442 u64 rt_period_us;
7443
7444 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7445 do_div(rt_period_us, NSEC_PER_USEC);
7446 return rt_period_us;
7447}
332ac17e 7448#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7449
332ac17e 7450#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7451static int sched_rt_global_constraints(void)
7452{
7453 int ret = 0;
7454
7455 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7456 read_lock(&tasklist_lock);
4653f803 7457 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7458 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7459 mutex_unlock(&rt_constraints_mutex);
7460
7461 return ret;
7462}
54e99124 7463
25cc7da7 7464static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7465{
7466 /* Don't accept realtime tasks when there is no way for them to run */
7467 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7468 return 0;
7469
7470 return 1;
7471}
7472
6d6bc0ad 7473#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7474static int sched_rt_global_constraints(void)
7475{
ac086bc2 7476 unsigned long flags;
332ac17e 7477 int i, ret = 0;
ec5d4989 7478
0986b11b 7479 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7480 for_each_possible_cpu(i) {
7481 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7482
0986b11b 7483 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7484 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7485 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7486 }
0986b11b 7487 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7488
332ac17e 7489 return ret;
d0b27fa7 7490}
6d6bc0ad 7491#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7492
332ac17e
DF
7493static int sched_dl_global_constraints(void)
7494{
1724813d
PZ
7495 u64 runtime = global_rt_runtime();
7496 u64 period = global_rt_period();
332ac17e 7497 u64 new_bw = to_ratio(period, runtime);
1724813d 7498 int cpu, ret = 0;
49516342 7499 unsigned long flags;
332ac17e
DF
7500
7501 /*
7502 * Here we want to check the bandwidth not being set to some
7503 * value smaller than the currently allocated bandwidth in
7504 * any of the root_domains.
7505 *
7506 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7507 * cycling on root_domains... Discussion on different/better
7508 * solutions is welcome!
7509 */
1724813d
PZ
7510 for_each_possible_cpu(cpu) {
7511 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7512
49516342 7513 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7514 if (new_bw < dl_b->total_bw)
7515 ret = -EBUSY;
49516342 7516 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7517
7518 if (ret)
7519 break;
332ac17e
DF
7520 }
7521
1724813d 7522 return ret;
332ac17e
DF
7523}
7524
1724813d 7525static void sched_dl_do_global(void)
ce0dbbbb 7526{
1724813d
PZ
7527 u64 new_bw = -1;
7528 int cpu;
49516342 7529 unsigned long flags;
ce0dbbbb 7530
1724813d
PZ
7531 def_dl_bandwidth.dl_period = global_rt_period();
7532 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7533
7534 if (global_rt_runtime() != RUNTIME_INF)
7535 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7536
7537 /*
7538 * FIXME: As above...
7539 */
7540 for_each_possible_cpu(cpu) {
7541 struct dl_bw *dl_b = dl_bw_of(cpu);
7542
49516342 7543 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7544 dl_b->bw = new_bw;
49516342 7545 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7546 }
1724813d
PZ
7547}
7548
7549static int sched_rt_global_validate(void)
7550{
7551 if (sysctl_sched_rt_period <= 0)
7552 return -EINVAL;
7553
e9e7cb38
JL
7554 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7555 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7556 return -EINVAL;
7557
7558 return 0;
7559}
7560
7561static void sched_rt_do_global(void)
7562{
7563 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7564 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7565}
7566
d0b27fa7 7567int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7568 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7569 loff_t *ppos)
7570{
d0b27fa7
PZ
7571 int old_period, old_runtime;
7572 static DEFINE_MUTEX(mutex);
1724813d 7573 int ret;
d0b27fa7
PZ
7574
7575 mutex_lock(&mutex);
7576 old_period = sysctl_sched_rt_period;
7577 old_runtime = sysctl_sched_rt_runtime;
7578
8d65af78 7579 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7580
7581 if (!ret && write) {
1724813d
PZ
7582 ret = sched_rt_global_validate();
7583 if (ret)
7584 goto undo;
7585
d0b27fa7 7586 ret = sched_rt_global_constraints();
1724813d
PZ
7587 if (ret)
7588 goto undo;
7589
7590 ret = sched_dl_global_constraints();
7591 if (ret)
7592 goto undo;
7593
7594 sched_rt_do_global();
7595 sched_dl_do_global();
7596 }
7597 if (0) {
7598undo:
7599 sysctl_sched_rt_period = old_period;
7600 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7601 }
7602 mutex_unlock(&mutex);
7603
7604 return ret;
7605}
68318b8e 7606
1724813d 7607int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7608 void __user *buffer, size_t *lenp,
7609 loff_t *ppos)
7610{
7611 int ret;
332ac17e 7612 static DEFINE_MUTEX(mutex);
332ac17e
DF
7613
7614 mutex_lock(&mutex);
332ac17e 7615 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7616 /* make sure that internally we keep jiffies */
7617 /* also, writing zero resets timeslice to default */
332ac17e 7618 if (!ret && write) {
1724813d
PZ
7619 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7620 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7621 }
7622 mutex_unlock(&mutex);
332ac17e
DF
7623 return ret;
7624}
7625
052f1dc7 7626#ifdef CONFIG_CGROUP_SCHED
68318b8e 7627
a7c6d554 7628static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7629{
a7c6d554 7630 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7631}
7632
eb95419b
TH
7633static struct cgroup_subsys_state *
7634cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7635{
eb95419b
TH
7636 struct task_group *parent = css_tg(parent_css);
7637 struct task_group *tg;
68318b8e 7638
eb95419b 7639 if (!parent) {
68318b8e 7640 /* This is early initialization for the top cgroup */
07e06b01 7641 return &root_task_group.css;
68318b8e
SV
7642 }
7643
ec7dc8ac 7644 tg = sched_create_group(parent);
68318b8e
SV
7645 if (IS_ERR(tg))
7646 return ERR_PTR(-ENOMEM);
7647
68318b8e
SV
7648 return &tg->css;
7649}
7650
eb95419b 7651static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7652{
eb95419b
TH
7653 struct task_group *tg = css_tg(css);
7654 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7655
63876986
TH
7656 if (parent)
7657 sched_online_group(tg, parent);
ace783b9
LZ
7658 return 0;
7659}
7660
eb95419b 7661static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7662{
eb95419b 7663 struct task_group *tg = css_tg(css);
68318b8e
SV
7664
7665 sched_destroy_group(tg);
7666}
7667
eb95419b 7668static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7669{
eb95419b 7670 struct task_group *tg = css_tg(css);
ace783b9
LZ
7671
7672 sched_offline_group(tg);
7673}
7674
eb95419b 7675static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7676 struct cgroup_taskset *tset)
68318b8e 7677{
bb9d97b6
TH
7678 struct task_struct *task;
7679
924f0d9a 7680 cgroup_taskset_for_each(task, tset) {
b68aa230 7681#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7682 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7683 return -EINVAL;
b68aa230 7684#else
bb9d97b6
TH
7685 /* We don't support RT-tasks being in separate groups */
7686 if (task->sched_class != &fair_sched_class)
7687 return -EINVAL;
b68aa230 7688#endif
bb9d97b6 7689 }
be367d09
BB
7690 return 0;
7691}
68318b8e 7692
eb95419b 7693static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7694 struct cgroup_taskset *tset)
68318b8e 7695{
bb9d97b6
TH
7696 struct task_struct *task;
7697
924f0d9a 7698 cgroup_taskset_for_each(task, tset)
bb9d97b6 7699 sched_move_task(task);
68318b8e
SV
7700}
7701
eb95419b
TH
7702static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7703 struct cgroup_subsys_state *old_css,
7704 struct task_struct *task)
068c5cc5
PZ
7705{
7706 /*
7707 * cgroup_exit() is called in the copy_process() failure path.
7708 * Ignore this case since the task hasn't ran yet, this avoids
7709 * trying to poke a half freed task state from generic code.
7710 */
7711 if (!(task->flags & PF_EXITING))
7712 return;
7713
7714 sched_move_task(task);
7715}
7716
052f1dc7 7717#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7718static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7719 struct cftype *cftype, u64 shareval)
68318b8e 7720{
182446d0 7721 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7722}
7723
182446d0
TH
7724static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7725 struct cftype *cft)
68318b8e 7726{
182446d0 7727 struct task_group *tg = css_tg(css);
68318b8e 7728
c8b28116 7729 return (u64) scale_load_down(tg->shares);
68318b8e 7730}
ab84d31e
PT
7731
7732#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7733static DEFINE_MUTEX(cfs_constraints_mutex);
7734
ab84d31e
PT
7735const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7736const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7737
a790de99
PT
7738static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7739
ab84d31e
PT
7740static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7741{
56f570e5 7742 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7743 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7744
7745 if (tg == &root_task_group)
7746 return -EINVAL;
7747
7748 /*
7749 * Ensure we have at some amount of bandwidth every period. This is
7750 * to prevent reaching a state of large arrears when throttled via
7751 * entity_tick() resulting in prolonged exit starvation.
7752 */
7753 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7754 return -EINVAL;
7755
7756 /*
7757 * Likewise, bound things on the otherside by preventing insane quota
7758 * periods. This also allows us to normalize in computing quota
7759 * feasibility.
7760 */
7761 if (period > max_cfs_quota_period)
7762 return -EINVAL;
7763
a790de99
PT
7764 mutex_lock(&cfs_constraints_mutex);
7765 ret = __cfs_schedulable(tg, period, quota);
7766 if (ret)
7767 goto out_unlock;
7768
58088ad0 7769 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7770 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7771 /*
7772 * If we need to toggle cfs_bandwidth_used, off->on must occur
7773 * before making related changes, and on->off must occur afterwards
7774 */
7775 if (runtime_enabled && !runtime_was_enabled)
7776 cfs_bandwidth_usage_inc();
ab84d31e
PT
7777 raw_spin_lock_irq(&cfs_b->lock);
7778 cfs_b->period = ns_to_ktime(period);
7779 cfs_b->quota = quota;
58088ad0 7780
a9cf55b2 7781 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7782 /* restart the period timer (if active) to handle new period expiry */
7783 if (runtime_enabled && cfs_b->timer_active) {
7784 /* force a reprogram */
7785 cfs_b->timer_active = 0;
7786 __start_cfs_bandwidth(cfs_b);
7787 }
ab84d31e
PT
7788 raw_spin_unlock_irq(&cfs_b->lock);
7789
7790 for_each_possible_cpu(i) {
7791 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7792 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7793
7794 raw_spin_lock_irq(&rq->lock);
58088ad0 7795 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7796 cfs_rq->runtime_remaining = 0;
671fd9da 7797
029632fb 7798 if (cfs_rq->throttled)
671fd9da 7799 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7800 raw_spin_unlock_irq(&rq->lock);
7801 }
1ee14e6c
BS
7802 if (runtime_was_enabled && !runtime_enabled)
7803 cfs_bandwidth_usage_dec();
a790de99
PT
7804out_unlock:
7805 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7806
a790de99 7807 return ret;
ab84d31e
PT
7808}
7809
7810int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7811{
7812 u64 quota, period;
7813
029632fb 7814 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7815 if (cfs_quota_us < 0)
7816 quota = RUNTIME_INF;
7817 else
7818 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7819
7820 return tg_set_cfs_bandwidth(tg, period, quota);
7821}
7822
7823long tg_get_cfs_quota(struct task_group *tg)
7824{
7825 u64 quota_us;
7826
029632fb 7827 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7828 return -1;
7829
029632fb 7830 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7831 do_div(quota_us, NSEC_PER_USEC);
7832
7833 return quota_us;
7834}
7835
7836int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7837{
7838 u64 quota, period;
7839
7840 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7841 quota = tg->cfs_bandwidth.quota;
ab84d31e 7842
ab84d31e
PT
7843 return tg_set_cfs_bandwidth(tg, period, quota);
7844}
7845
7846long tg_get_cfs_period(struct task_group *tg)
7847{
7848 u64 cfs_period_us;
7849
029632fb 7850 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7851 do_div(cfs_period_us, NSEC_PER_USEC);
7852
7853 return cfs_period_us;
7854}
7855
182446d0
TH
7856static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7857 struct cftype *cft)
ab84d31e 7858{
182446d0 7859 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7860}
7861
182446d0
TH
7862static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7863 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7864{
182446d0 7865 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7866}
7867
182446d0
TH
7868static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7869 struct cftype *cft)
ab84d31e 7870{
182446d0 7871 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7872}
7873
182446d0
TH
7874static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7875 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7876{
182446d0 7877 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7878}
7879
a790de99
PT
7880struct cfs_schedulable_data {
7881 struct task_group *tg;
7882 u64 period, quota;
7883};
7884
7885/*
7886 * normalize group quota/period to be quota/max_period
7887 * note: units are usecs
7888 */
7889static u64 normalize_cfs_quota(struct task_group *tg,
7890 struct cfs_schedulable_data *d)
7891{
7892 u64 quota, period;
7893
7894 if (tg == d->tg) {
7895 period = d->period;
7896 quota = d->quota;
7897 } else {
7898 period = tg_get_cfs_period(tg);
7899 quota = tg_get_cfs_quota(tg);
7900 }
7901
7902 /* note: these should typically be equivalent */
7903 if (quota == RUNTIME_INF || quota == -1)
7904 return RUNTIME_INF;
7905
7906 return to_ratio(period, quota);
7907}
7908
7909static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7910{
7911 struct cfs_schedulable_data *d = data;
029632fb 7912 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7913 s64 quota = 0, parent_quota = -1;
7914
7915 if (!tg->parent) {
7916 quota = RUNTIME_INF;
7917 } else {
029632fb 7918 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7919
7920 quota = normalize_cfs_quota(tg, d);
7921 parent_quota = parent_b->hierarchal_quota;
7922
7923 /*
7924 * ensure max(child_quota) <= parent_quota, inherit when no
7925 * limit is set
7926 */
7927 if (quota == RUNTIME_INF)
7928 quota = parent_quota;
7929 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7930 return -EINVAL;
7931 }
7932 cfs_b->hierarchal_quota = quota;
7933
7934 return 0;
7935}
7936
7937static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7938{
8277434e 7939 int ret;
a790de99
PT
7940 struct cfs_schedulable_data data = {
7941 .tg = tg,
7942 .period = period,
7943 .quota = quota,
7944 };
7945
7946 if (quota != RUNTIME_INF) {
7947 do_div(data.period, NSEC_PER_USEC);
7948 do_div(data.quota, NSEC_PER_USEC);
7949 }
7950
8277434e
PT
7951 rcu_read_lock();
7952 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7953 rcu_read_unlock();
7954
7955 return ret;
a790de99 7956}
e8da1b18 7957
2da8ca82 7958static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7959{
2da8ca82 7960 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7961 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7962
44ffc75b
TH
7963 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7964 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7965 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7966
7967 return 0;
7968}
ab84d31e 7969#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7970#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7971
052f1dc7 7972#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7973static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7974 struct cftype *cft, s64 val)
6f505b16 7975{
182446d0 7976 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7977}
7978
182446d0
TH
7979static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7980 struct cftype *cft)
6f505b16 7981{
182446d0 7982 return sched_group_rt_runtime(css_tg(css));
6f505b16 7983}
d0b27fa7 7984
182446d0
TH
7985static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7986 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7987{
182446d0 7988 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7989}
7990
182446d0
TH
7991static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7992 struct cftype *cft)
d0b27fa7 7993{
182446d0 7994 return sched_group_rt_period(css_tg(css));
d0b27fa7 7995}
6d6bc0ad 7996#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7997
fe5c7cc2 7998static struct cftype cpu_files[] = {
052f1dc7 7999#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8000 {
8001 .name = "shares",
f4c753b7
PM
8002 .read_u64 = cpu_shares_read_u64,
8003 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8004 },
052f1dc7 8005#endif
ab84d31e
PT
8006#ifdef CONFIG_CFS_BANDWIDTH
8007 {
8008 .name = "cfs_quota_us",
8009 .read_s64 = cpu_cfs_quota_read_s64,
8010 .write_s64 = cpu_cfs_quota_write_s64,
8011 },
8012 {
8013 .name = "cfs_period_us",
8014 .read_u64 = cpu_cfs_period_read_u64,
8015 .write_u64 = cpu_cfs_period_write_u64,
8016 },
e8da1b18
NR
8017 {
8018 .name = "stat",
2da8ca82 8019 .seq_show = cpu_stats_show,
e8da1b18 8020 },
ab84d31e 8021#endif
052f1dc7 8022#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8023 {
9f0c1e56 8024 .name = "rt_runtime_us",
06ecb27c
PM
8025 .read_s64 = cpu_rt_runtime_read,
8026 .write_s64 = cpu_rt_runtime_write,
6f505b16 8027 },
d0b27fa7
PZ
8028 {
8029 .name = "rt_period_us",
f4c753b7
PM
8030 .read_u64 = cpu_rt_period_read_uint,
8031 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8032 },
052f1dc7 8033#endif
4baf6e33 8034 { } /* terminate */
68318b8e
SV
8035};
8036
073219e9 8037struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8038 .css_alloc = cpu_cgroup_css_alloc,
8039 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8040 .css_online = cpu_cgroup_css_online,
8041 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8042 .can_attach = cpu_cgroup_can_attach,
8043 .attach = cpu_cgroup_attach,
068c5cc5 8044 .exit = cpu_cgroup_exit,
4baf6e33 8045 .base_cftypes = cpu_files,
68318b8e
SV
8046 .early_init = 1,
8047};
8048
052f1dc7 8049#endif /* CONFIG_CGROUP_SCHED */
d842de87 8050
b637a328
PM
8051void dump_cpu_task(int cpu)
8052{
8053 pr_info("Task dump for CPU %d:\n", cpu);
8054 sched_show_task(cpu_curr(cpu));
8055}