static_call: Fix unused variable warn w/o MODULE
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 100 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
8f4d37ec
PZ
323#ifdef CONFIG_SCHED_HRTICK
324/*
325 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 326 */
8f4d37ec 327
8f4d37ec
PZ
328static void hrtick_clear(struct rq *rq)
329{
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
332}
333
8f4d37ec
PZ
334/*
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
337 */
338static enum hrtimer_restart hrtick(struct hrtimer *timer)
339{
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 341 struct rq_flags rf;
8f4d37ec
PZ
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
8a8c69c3 345 rq_lock(rq, &rf);
3e51f33f 346 update_rq_clock(rq);
8f4d37ec 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 348 rq_unlock(rq, &rf);
8f4d37ec
PZ
349
350 return HRTIMER_NORESTART;
351}
352
95e904c7 353#ifdef CONFIG_SMP
971ee28c 354
4961b6e1 355static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
356{
357 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 358 ktime_t time = rq->hrtick_time;
971ee28c 359
156ec6f4 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
361}
362
31656519
PZ
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
b328ca18 367{
31656519 368 struct rq *rq = arg;
8a8c69c3 369 struct rq_flags rf;
b328ca18 370
8a8c69c3 371 rq_lock(rq, &rf);
971ee28c 372 __hrtick_restart(rq);
8a8c69c3 373 rq_unlock(rq, &rf);
b328ca18
PZ
374}
375
31656519
PZ
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
029632fb 381void hrtick_start(struct rq *rq, u64 delay)
b328ca18 382{
31656519 383 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 384 s64 delta;
385
386 /*
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
389 */
390 delta = max_t(s64, delay, 10000LL);
156ec6f4 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 392
fd3eafda 393 if (rq == this_rq())
971ee28c 394 __hrtick_restart(rq);
fd3eafda 395 else
c46fff2a 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
397}
398
31656519
PZ
399#else
400/*
401 * Called to set the hrtick timer state.
402 *
403 * called with rq->lock held and irqs disabled
404 */
029632fb 405void hrtick_start(struct rq *rq, u64 delay)
31656519 406{
86893335
WL
407 /*
408 * Don't schedule slices shorter than 10000ns, that just
409 * doesn't make sense. Rely on vruntime for fairness.
410 */
411 delay = max_t(u64, delay, 10000LL);
4961b6e1 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 413 HRTIMER_MODE_REL_PINNED_HARD);
31656519 414}
90b5363a 415
31656519 416#endif /* CONFIG_SMP */
8f4d37ec 417
77a021be 418static void hrtick_rq_init(struct rq *rq)
8f4d37ec 419{
31656519 420#ifdef CONFIG_SMP
545b8c8d 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 422#endif
d5096aa6 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 424 rq->hrtick_timer.function = hrtick;
8f4d37ec 425}
006c75f1 426#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
427static inline void hrtick_clear(struct rq *rq)
428{
429}
430
77a021be 431static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
432{
433}
006c75f1 434#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 435
5529578a
FW
436/*
437 * cmpxchg based fetch_or, macro so it works for different integer types
438 */
439#define fetch_or(ptr, mask) \
440 ({ \
441 typeof(ptr) _ptr = (ptr); \
442 typeof(mask) _mask = (mask); \
443 typeof(*_ptr) _old, _val = *_ptr; \
444 \
445 for (;;) { \
446 _old = cmpxchg(_ptr, _val, _val | _mask); \
447 if (_old == _val) \
448 break; \
449 _val = _old; \
450 } \
451 _old; \
452})
453
e3baac47 454#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
455/*
456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457 * this avoids any races wrt polling state changes and thereby avoids
458 * spurious IPIs.
459 */
460static bool set_nr_and_not_polling(struct task_struct *p)
461{
462 struct thread_info *ti = task_thread_info(p);
463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464}
e3baac47
PZ
465
466/*
467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468 *
469 * If this returns true, then the idle task promises to call
470 * sched_ttwu_pending() and reschedule soon.
471 */
472static bool set_nr_if_polling(struct task_struct *p)
473{
474 struct thread_info *ti = task_thread_info(p);
316c1608 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
476
477 for (;;) {
478 if (!(val & _TIF_POLLING_NRFLAG))
479 return false;
480 if (val & _TIF_NEED_RESCHED)
481 return true;
482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 if (old == val)
484 break;
485 val = old;
486 }
487 return true;
488}
489
fd99f91a
PZ
490#else
491static bool set_nr_and_not_polling(struct task_struct *p)
492{
493 set_tsk_need_resched(p);
494 return true;
495}
e3baac47
PZ
496
497#ifdef CONFIG_SMP
498static bool set_nr_if_polling(struct task_struct *p)
499{
500 return false;
501}
502#endif
fd99f91a
PZ
503#endif
504
07879c6a 505static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
506{
507 struct wake_q_node *node = &task->wake_q;
508
509 /*
510 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 511 * it's already queued (either by us or someone else) and will get the
76751049
PZ
512 * wakeup due to that.
513 *
4c4e3731
PZ
514 * In order to ensure that a pending wakeup will observe our pending
515 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 516 */
4c4e3731 517 smp_mb__before_atomic();
87ff19cb 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 519 return false;
76751049
PZ
520
521 /*
522 * The head is context local, there can be no concurrency.
523 */
524 *head->lastp = node;
525 head->lastp = &node->next;
07879c6a
DB
526 return true;
527}
528
529/**
530 * wake_q_add() - queue a wakeup for 'later' waking.
531 * @head: the wake_q_head to add @task to
532 * @task: the task to queue for 'later' wakeup
533 *
534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536 * instantly.
537 *
538 * This function must be used as-if it were wake_up_process(); IOW the task
539 * must be ready to be woken at this location.
540 */
541void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542{
543 if (__wake_q_add(head, task))
544 get_task_struct(task);
545}
546
547/**
548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549 * @head: the wake_q_head to add @task to
550 * @task: the task to queue for 'later' wakeup
551 *
552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554 * instantly.
555 *
556 * This function must be used as-if it were wake_up_process(); IOW the task
557 * must be ready to be woken at this location.
558 *
559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560 * that already hold reference to @task can call the 'safe' version and trust
561 * wake_q to do the right thing depending whether or not the @task is already
562 * queued for wakeup.
563 */
564void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565{
566 if (!__wake_q_add(head, task))
567 put_task_struct(task);
76751049
PZ
568}
569
570void wake_up_q(struct wake_q_head *head)
571{
572 struct wake_q_node *node = head->first;
573
574 while (node != WAKE_Q_TAIL) {
575 struct task_struct *task;
576
577 task = container_of(node, struct task_struct, wake_q);
578 BUG_ON(!task);
d1ccc66d 579 /* Task can safely be re-inserted now: */
76751049
PZ
580 node = node->next;
581 task->wake_q.next = NULL;
582
583 /*
7696f991
AP
584 * wake_up_process() executes a full barrier, which pairs with
585 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
586 */
587 wake_up_process(task);
588 put_task_struct(task);
589 }
590}
591
c24d20db 592/*
8875125e 593 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
594 *
595 * On UP this means the setting of the need_resched flag, on SMP it
596 * might also involve a cross-CPU call to trigger the scheduler on
597 * the target CPU.
598 */
8875125e 599void resched_curr(struct rq *rq)
c24d20db 600{
8875125e 601 struct task_struct *curr = rq->curr;
c24d20db
IM
602 int cpu;
603
8875125e 604 lockdep_assert_held(&rq->lock);
c24d20db 605
8875125e 606 if (test_tsk_need_resched(curr))
c24d20db
IM
607 return;
608
8875125e 609 cpu = cpu_of(rq);
fd99f91a 610
f27dde8d 611 if (cpu == smp_processor_id()) {
8875125e 612 set_tsk_need_resched(curr);
f27dde8d 613 set_preempt_need_resched();
c24d20db 614 return;
f27dde8d 615 }
c24d20db 616
8875125e 617 if (set_nr_and_not_polling(curr))
c24d20db 618 smp_send_reschedule(cpu);
dfc68f29
AL
619 else
620 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
621}
622
029632fb 623void resched_cpu(int cpu)
c24d20db
IM
624{
625 struct rq *rq = cpu_rq(cpu);
626 unsigned long flags;
627
7c2102e5 628 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
629 if (cpu_online(cpu) || cpu == smp_processor_id())
630 resched_curr(rq);
05fa785c 631 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 632}
06d8308c 633
b021fe3e 634#ifdef CONFIG_SMP
3451d024 635#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 636/*
d1ccc66d
IM
637 * In the semi idle case, use the nearest busy CPU for migrating timers
638 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
639 *
640 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
641 * selecting an idle CPU will add more delays to the timers than intended
642 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 643 */
bc7a34b8 644int get_nohz_timer_target(void)
83cd4fe2 645{
e938b9c9 646 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
647 struct sched_domain *sd;
648
e938b9c9
WL
649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 if (!idle_cpu(cpu))
651 return cpu;
652 default_cpu = cpu;
653 }
6201b4d6 654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
e938b9c9
WL
657 for_each_cpu_and(i, sched_domain_span(sd),
658 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
659 if (cpu == i)
660 continue;
661
e938b9c9 662 if (!idle_cpu(i)) {
057f3fad
PZ
663 cpu = i;
664 goto unlock;
665 }
666 }
83cd4fe2 667 }
9642d18e 668
e938b9c9
WL
669 if (default_cpu == -1)
670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 cpu = default_cpu;
057f3fad
PZ
672unlock:
673 rcu_read_unlock();
83cd4fe2
VP
674 return cpu;
675}
d1ccc66d 676
06d8308c
TG
677/*
678 * When add_timer_on() enqueues a timer into the timer wheel of an
679 * idle CPU then this timer might expire before the next timer event
680 * which is scheduled to wake up that CPU. In case of a completely
681 * idle system the next event might even be infinite time into the
682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683 * leaves the inner idle loop so the newly added timer is taken into
684 * account when the CPU goes back to idle and evaluates the timer
685 * wheel for the next timer event.
686 */
1c20091e 687static void wake_up_idle_cpu(int cpu)
06d8308c
TG
688{
689 struct rq *rq = cpu_rq(cpu);
690
691 if (cpu == smp_processor_id())
692 return;
693
67b9ca70 694 if (set_nr_and_not_polling(rq->idle))
06d8308c 695 smp_send_reschedule(cpu);
dfc68f29
AL
696 else
697 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
698}
699
c5bfece2 700static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 701{
53c5fa16
FW
702 /*
703 * We just need the target to call irq_exit() and re-evaluate
704 * the next tick. The nohz full kick at least implies that.
705 * If needed we can still optimize that later with an
706 * empty IRQ.
707 */
379d9ecb
PM
708 if (cpu_is_offline(cpu))
709 return true; /* Don't try to wake offline CPUs. */
c5bfece2 710 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
711 if (cpu != smp_processor_id() ||
712 tick_nohz_tick_stopped())
53c5fa16 713 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
714 return true;
715 }
716
717 return false;
718}
719
379d9ecb
PM
720/*
721 * Wake up the specified CPU. If the CPU is going offline, it is the
722 * caller's responsibility to deal with the lost wakeup, for example,
723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724 */
1c20091e
FW
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
19a1f5ec 731static void nohz_csd_func(void *info)
45bf76df 732{
19a1f5ec
PZ
733 struct rq *rq = info;
734 int cpu = cpu_of(rq);
735 unsigned int flags;
873b4c65
VG
736
737 /*
19a1f5ec 738 * Release the rq::nohz_csd.
873b4c65 739 */
19a1f5ec
PZ
740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 742
19a1f5ec
PZ
743 rq->idle_balance = idle_cpu(cpu);
744 if (rq->idle_balance && !need_resched()) {
745 rq->nohz_idle_balance = flags;
90b5363a
PZI
746 raise_softirq_irqoff(SCHED_SOFTIRQ);
747 }
2069dd75
PZ
748}
749
3451d024 750#endif /* CONFIG_NO_HZ_COMMON */
d842de87 751
ce831b38 752#ifdef CONFIG_NO_HZ_FULL
76d92ac3 753bool sched_can_stop_tick(struct rq *rq)
ce831b38 754{
76d92ac3
FW
755 int fifo_nr_running;
756
757 /* Deadline tasks, even if single, need the tick */
758 if (rq->dl.dl_nr_running)
759 return false;
760
1e78cdbd 761 /*
b19a888c 762 * If there are more than one RR tasks, we need the tick to affect the
2548d546 763 * actual RR behaviour.
1e78cdbd 764 */
76d92ac3
FW
765 if (rq->rt.rr_nr_running) {
766 if (rq->rt.rr_nr_running == 1)
767 return true;
768 else
769 return false;
1e78cdbd
RR
770 }
771
2548d546
PZ
772 /*
773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 * forced preemption between FIFO tasks.
775 */
776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 if (fifo_nr_running)
778 return true;
779
780 /*
781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 * if there's more than one we need the tick for involuntary
783 * preemption.
784 */
785 if (rq->nr_running > 1)
541b8264 786 return false;
ce831b38 787
541b8264 788 return true;
ce831b38
FW
789}
790#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 791#endif /* CONFIG_SMP */
18d95a28 792
a790de99
PT
793#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 795/*
8277434e
PT
796 * Iterate task_group tree rooted at *from, calling @down when first entering a
797 * node and @up when leaving it for the final time.
798 *
799 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 800 */
029632fb 801int walk_tg_tree_from(struct task_group *from,
8277434e 802 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
803{
804 struct task_group *parent, *child;
eb755805 805 int ret;
c09595f6 806
8277434e
PT
807 parent = from;
808
c09595f6 809down:
eb755805
PZ
810 ret = (*down)(parent, data);
811 if (ret)
8277434e 812 goto out;
c09595f6
PZ
813 list_for_each_entry_rcu(child, &parent->children, siblings) {
814 parent = child;
815 goto down;
816
817up:
818 continue;
819 }
eb755805 820 ret = (*up)(parent, data);
8277434e
PT
821 if (ret || parent == from)
822 goto out;
c09595f6
PZ
823
824 child = parent;
825 parent = parent->parent;
826 if (parent)
827 goto up;
8277434e 828out:
eb755805 829 return ret;
c09595f6
PZ
830}
831
029632fb 832int tg_nop(struct task_group *tg, void *data)
eb755805 833{
e2b245f8 834 return 0;
eb755805 835}
18d95a28
PZ
836#endif
837
9059393e 838static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 839{
f05998d4
NR
840 int prio = p->static_prio - MAX_RT_PRIO;
841 struct load_weight *load = &p->se.load;
842
dd41f596
IM
843 /*
844 * SCHED_IDLE tasks get minimal weight:
845 */
1da1843f 846 if (task_has_idle_policy(p)) {
c8b28116 847 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 848 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
849 return;
850 }
71f8bd46 851
9059393e
VG
852 /*
853 * SCHED_OTHER tasks have to update their load when changing their
854 * weight
855 */
856 if (update_load && p->sched_class == &fair_sched_class) {
857 reweight_task(p, prio);
858 } else {
859 load->weight = scale_load(sched_prio_to_weight[prio]);
860 load->inv_weight = sched_prio_to_wmult[prio];
861 }
71f8bd46
IM
862}
863
69842cba 864#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
865/*
866 * Serializes updates of utilization clamp values
867 *
868 * The (slow-path) user-space triggers utilization clamp value updates which
869 * can require updates on (fast-path) scheduler's data structures used to
870 * support enqueue/dequeue operations.
871 * While the per-CPU rq lock protects fast-path update operations, user-space
872 * requests are serialized using a mutex to reduce the risk of conflicting
873 * updates or API abuses.
874 */
875static DEFINE_MUTEX(uclamp_mutex);
876
e8f14172
PB
877/* Max allowed minimum utilization */
878unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879
880/* Max allowed maximum utilization */
881unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882
13685c4a
QY
883/*
884 * By default RT tasks run at the maximum performance point/capacity of the
885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886 * SCHED_CAPACITY_SCALE.
887 *
888 * This knob allows admins to change the default behavior when uclamp is being
889 * used. In battery powered devices, particularly, running at the maximum
890 * capacity and frequency will increase energy consumption and shorten the
891 * battery life.
892 *
893 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894 *
895 * This knob will not override the system default sched_util_clamp_min defined
896 * above.
897 */
898unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899
e8f14172
PB
900/* All clamps are required to be less or equal than these values */
901static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 902
46609ce2
QY
903/*
904 * This static key is used to reduce the uclamp overhead in the fast path. It
905 * primarily disables the call to uclamp_rq_{inc, dec}() in
906 * enqueue/dequeue_task().
907 *
908 * This allows users to continue to enable uclamp in their kernel config with
909 * minimum uclamp overhead in the fast path.
910 *
911 * As soon as userspace modifies any of the uclamp knobs, the static key is
912 * enabled, since we have an actual users that make use of uclamp
913 * functionality.
914 *
915 * The knobs that would enable this static key are:
916 *
917 * * A task modifying its uclamp value with sched_setattr().
918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919 * * An admin modifying the cgroup cpu.uclamp.{min, max}
920 */
921DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922
69842cba
PB
923/* Integer rounded range for each bucket */
924#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925
926#define for_each_clamp_id(clamp_id) \
927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928
929static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930{
931 return clamp_value / UCLAMP_BUCKET_DELTA;
932}
933
7763baac 934static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
935{
936 if (clamp_id == UCLAMP_MIN)
937 return 0;
938 return SCHED_CAPACITY_SCALE;
939}
940
a509a7cd
PB
941static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 unsigned int value, bool user_defined)
69842cba
PB
943{
944 uc_se->value = value;
945 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 946 uc_se->user_defined = user_defined;
69842cba
PB
947}
948
e496187d 949static inline unsigned int
0413d7f3 950uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
951 unsigned int clamp_value)
952{
953 /*
954 * Avoid blocked utilization pushing up the frequency when we go
955 * idle (which drops the max-clamp) by retaining the last known
956 * max-clamp.
957 */
958 if (clamp_id == UCLAMP_MAX) {
959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 return clamp_value;
961 }
962
963 return uclamp_none(UCLAMP_MIN);
964}
965
0413d7f3 966static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
967 unsigned int clamp_value)
968{
969 /* Reset max-clamp retention only on idle exit */
970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 return;
972
973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974}
975
69842cba 976static inline
7763baac 977unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 978 unsigned int clamp_value)
69842cba
PB
979{
980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 int bucket_id = UCLAMP_BUCKETS - 1;
982
983 /*
984 * Since both min and max clamps are max aggregated, find the
985 * top most bucket with tasks in.
986 */
987 for ( ; bucket_id >= 0; bucket_id--) {
988 if (!bucket[bucket_id].tasks)
989 continue;
990 return bucket[bucket_id].value;
991 }
992
993 /* No tasks -- default clamp values */
e496187d 994 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
995}
996
13685c4a
QY
997static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998{
999 unsigned int default_util_min;
1000 struct uclamp_se *uc_se;
1001
1002 lockdep_assert_held(&p->pi_lock);
1003
1004 uc_se = &p->uclamp_req[UCLAMP_MIN];
1005
1006 /* Only sync if user didn't override the default */
1007 if (uc_se->user_defined)
1008 return;
1009
1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 uclamp_se_set(uc_se, default_util_min, false);
1012}
1013
1014static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015{
1016 struct rq_flags rf;
1017 struct rq *rq;
1018
1019 if (!rt_task(p))
1020 return;
1021
1022 /* Protect updates to p->uclamp_* */
1023 rq = task_rq_lock(p, &rf);
1024 __uclamp_update_util_min_rt_default(p);
1025 task_rq_unlock(rq, p, &rf);
1026}
1027
1028static void uclamp_sync_util_min_rt_default(void)
1029{
1030 struct task_struct *g, *p;
1031
1032 /*
1033 * copy_process() sysctl_uclamp
1034 * uclamp_min_rt = X;
1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1036 * // link thread smp_mb__after_spinlock()
1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1038 * sched_post_fork() for_each_process_thread()
1039 * __uclamp_sync_rt() __uclamp_sync_rt()
1040 *
1041 * Ensures that either sched_post_fork() will observe the new
1042 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 * task.
1044 */
1045 read_lock(&tasklist_lock);
1046 smp_mb__after_spinlock();
1047 read_unlock(&tasklist_lock);
1048
1049 rcu_read_lock();
1050 for_each_process_thread(g, p)
1051 uclamp_update_util_min_rt_default(p);
1052 rcu_read_unlock();
1053}
1054
3eac870a 1055static inline struct uclamp_se
0413d7f3 1056uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1057{
1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059#ifdef CONFIG_UCLAMP_TASK_GROUP
1060 struct uclamp_se uc_max;
1061
1062 /*
1063 * Tasks in autogroups or root task group will be
1064 * restricted by system defaults.
1065 */
1066 if (task_group_is_autogroup(task_group(p)))
1067 return uc_req;
1068 if (task_group(p) == &root_task_group)
1069 return uc_req;
1070
1071 uc_max = task_group(p)->uclamp[clamp_id];
1072 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 return uc_max;
1074#endif
1075
1076 return uc_req;
1077}
1078
e8f14172
PB
1079/*
1080 * The effective clamp bucket index of a task depends on, by increasing
1081 * priority:
1082 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1083 * - the task group effective clamp value, for tasks not either in the root
1084 * group or in an autogroup
e8f14172
PB
1085 * - the system default clamp value, defined by the sysadmin
1086 */
1087static inline struct uclamp_se
0413d7f3 1088uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1089{
3eac870a 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1091 struct uclamp_se uc_max = uclamp_default[clamp_id];
1092
1093 /* System default restrictions always apply */
1094 if (unlikely(uc_req.value > uc_max.value))
1095 return uc_max;
1096
1097 return uc_req;
1098}
1099
686516b5 1100unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1101{
1102 struct uclamp_se uc_eff;
1103
1104 /* Task currently refcounted: use back-annotated (effective) value */
1105 if (p->uclamp[clamp_id].active)
686516b5 1106 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1107
1108 uc_eff = uclamp_eff_get(p, clamp_id);
1109
686516b5 1110 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1111}
1112
69842cba
PB
1113/*
1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116 * updates the rq's clamp value if required.
60daf9c1
PB
1117 *
1118 * Tasks can have a task-specific value requested from user-space, track
1119 * within each bucket the maximum value for tasks refcounted in it.
1120 * This "local max aggregation" allows to track the exact "requested" value
1121 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1122 */
1123static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1124 enum uclamp_id clamp_id)
69842cba
PB
1125{
1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 struct uclamp_bucket *bucket;
1129
1130 lockdep_assert_held(&rq->lock);
1131
e8f14172
PB
1132 /* Update task effective clamp */
1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134
69842cba
PB
1135 bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 bucket->tasks++;
e8f14172 1137 uc_se->active = true;
69842cba 1138
e496187d
PB
1139 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140
60daf9c1
PB
1141 /*
1142 * Local max aggregation: rq buckets always track the max
1143 * "requested" clamp value of its RUNNABLE tasks.
1144 */
1145 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 bucket->value = uc_se->value;
1147
69842cba 1148 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1149 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1150}
1151
1152/*
1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154 * is released. If this is the last task reference counting the rq's max
1155 * active clamp value, then the rq's clamp value is updated.
1156 *
1157 * Both refcounted tasks and rq's cached clamp values are expected to be
1158 * always valid. If it's detected they are not, as defensive programming,
1159 * enforce the expected state and warn.
1160 */
1161static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1162 enum uclamp_id clamp_id)
69842cba
PB
1163{
1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 struct uclamp_bucket *bucket;
e496187d 1167 unsigned int bkt_clamp;
69842cba
PB
1168 unsigned int rq_clamp;
1169
1170 lockdep_assert_held(&rq->lock);
1171
46609ce2
QY
1172 /*
1173 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 *
1176 * In this case the uc_se->active flag should be false since no uclamp
1177 * accounting was performed at enqueue time and we can just return
1178 * here.
1179 *
b19a888c 1180 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1181 * problem too
1182 *
1183 * enqueue(taskA)
1184 * // sched_uclamp_used gets enabled
1185 * enqueue(taskB)
1186 * dequeue(taskA)
b19a888c 1187 * // Must not decrement bucket->tasks here
46609ce2
QY
1188 * dequeue(taskB)
1189 *
1190 * where we could end up with stale data in uc_se and
1191 * bucket[uc_se->bucket_id].
1192 *
1193 * The following check here eliminates the possibility of such race.
1194 */
1195 if (unlikely(!uc_se->active))
1196 return;
1197
69842cba 1198 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1199
69842cba
PB
1200 SCHED_WARN_ON(!bucket->tasks);
1201 if (likely(bucket->tasks))
1202 bucket->tasks--;
46609ce2 1203
e8f14172 1204 uc_se->active = false;
69842cba 1205
60daf9c1
PB
1206 /*
1207 * Keep "local max aggregation" simple and accept to (possibly)
1208 * overboost some RUNNABLE tasks in the same bucket.
1209 * The rq clamp bucket value is reset to its base value whenever
1210 * there are no more RUNNABLE tasks refcounting it.
1211 */
69842cba
PB
1212 if (likely(bucket->tasks))
1213 return;
1214
1215 rq_clamp = READ_ONCE(uc_rq->value);
1216 /*
1217 * Defensive programming: this should never happen. If it happens,
1218 * e.g. due to future modification, warn and fixup the expected value.
1219 */
1220 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1221 if (bucket->value >= rq_clamp) {
1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 }
69842cba
PB
1225}
1226
1227static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228{
0413d7f3 1229 enum uclamp_id clamp_id;
69842cba 1230
46609ce2
QY
1231 /*
1232 * Avoid any overhead until uclamp is actually used by the userspace.
1233 *
1234 * The condition is constructed such that a NOP is generated when
1235 * sched_uclamp_used is disabled.
1236 */
1237 if (!static_branch_unlikely(&sched_uclamp_used))
1238 return;
1239
69842cba
PB
1240 if (unlikely(!p->sched_class->uclamp_enabled))
1241 return;
1242
1243 for_each_clamp_id(clamp_id)
1244 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1245
1246 /* Reset clamp idle holding when there is one RUNNABLE task */
1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1249}
1250
1251static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252{
0413d7f3 1253 enum uclamp_id clamp_id;
69842cba 1254
46609ce2
QY
1255 /*
1256 * Avoid any overhead until uclamp is actually used by the userspace.
1257 *
1258 * The condition is constructed such that a NOP is generated when
1259 * sched_uclamp_used is disabled.
1260 */
1261 if (!static_branch_unlikely(&sched_uclamp_used))
1262 return;
1263
69842cba
PB
1264 if (unlikely(!p->sched_class->uclamp_enabled))
1265 return;
1266
1267 for_each_clamp_id(clamp_id)
1268 uclamp_rq_dec_id(rq, p, clamp_id);
1269}
1270
babbe170 1271static inline void
0413d7f3 1272uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1273{
1274 struct rq_flags rf;
1275 struct rq *rq;
1276
1277 /*
1278 * Lock the task and the rq where the task is (or was) queued.
1279 *
1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 * price to pay to safely serialize util_{min,max} updates with
1282 * enqueues, dequeues and migration operations.
1283 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 */
1285 rq = task_rq_lock(p, &rf);
1286
1287 /*
1288 * Setting the clamp bucket is serialized by task_rq_lock().
1289 * If the task is not yet RUNNABLE and its task_struct is not
1290 * affecting a valid clamp bucket, the next time it's enqueued,
1291 * it will already see the updated clamp bucket value.
1292 */
6e1ff077 1293 if (p->uclamp[clamp_id].active) {
babbe170
PB
1294 uclamp_rq_dec_id(rq, p, clamp_id);
1295 uclamp_rq_inc_id(rq, p, clamp_id);
1296 }
1297
1298 task_rq_unlock(rq, p, &rf);
1299}
1300
e3b8b6a0 1301#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1302static inline void
1303uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 unsigned int clamps)
1305{
0413d7f3 1306 enum uclamp_id clamp_id;
babbe170
PB
1307 struct css_task_iter it;
1308 struct task_struct *p;
babbe170
PB
1309
1310 css_task_iter_start(css, 0, &it);
1311 while ((p = css_task_iter_next(&it))) {
1312 for_each_clamp_id(clamp_id) {
1313 if ((0x1 << clamp_id) & clamps)
1314 uclamp_update_active(p, clamp_id);
1315 }
1316 }
1317 css_task_iter_end(&it);
1318}
1319
7274a5c1
PB
1320static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321static void uclamp_update_root_tg(void)
1322{
1323 struct task_group *tg = &root_task_group;
1324
1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 sysctl_sched_uclamp_util_min, false);
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 sysctl_sched_uclamp_util_max, false);
1329
1330 rcu_read_lock();
1331 cpu_util_update_eff(&root_task_group.css);
1332 rcu_read_unlock();
1333}
1334#else
1335static void uclamp_update_root_tg(void) { }
1336#endif
1337
e8f14172 1338int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1339 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1340{
7274a5c1 1341 bool update_root_tg = false;
13685c4a 1342 int old_min, old_max, old_min_rt;
e8f14172
PB
1343 int result;
1344
2480c093 1345 mutex_lock(&uclamp_mutex);
e8f14172
PB
1346 old_min = sysctl_sched_uclamp_util_min;
1347 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1349
1350 result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 if (result)
1352 goto undo;
1353 if (!write)
1354 goto done;
1355
1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359
e8f14172
PB
1360 result = -EINVAL;
1361 goto undo;
1362 }
1363
1364 if (old_min != sysctl_sched_uclamp_util_min) {
1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1366 sysctl_sched_uclamp_util_min, false);
7274a5c1 1367 update_root_tg = true;
e8f14172
PB
1368 }
1369 if (old_max != sysctl_sched_uclamp_util_max) {
1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1371 sysctl_sched_uclamp_util_max, false);
7274a5c1 1372 update_root_tg = true;
e8f14172
PB
1373 }
1374
46609ce2
QY
1375 if (update_root_tg) {
1376 static_branch_enable(&sched_uclamp_used);
7274a5c1 1377 uclamp_update_root_tg();
46609ce2 1378 }
7274a5c1 1379
13685c4a
QY
1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 static_branch_enable(&sched_uclamp_used);
1382 uclamp_sync_util_min_rt_default();
1383 }
7274a5c1 1384
e8f14172 1385 /*
7274a5c1
PB
1386 * We update all RUNNABLE tasks only when task groups are in use.
1387 * Otherwise, keep it simple and do just a lazy update at each next
1388 * task enqueue time.
e8f14172 1389 */
7274a5c1 1390
e8f14172
PB
1391 goto done;
1392
1393undo:
1394 sysctl_sched_uclamp_util_min = old_min;
1395 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1397done:
2480c093 1398 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1399
1400 return result;
1401}
1402
a509a7cd
PB
1403static int uclamp_validate(struct task_struct *p,
1404 const struct sched_attr *attr)
1405{
480a6ca2
DE
1406 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1408
480a6ca2
DE
1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 util_min = attr->sched_util_min;
a509a7cd 1411
480a6ca2
DE
1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 return -EINVAL;
1414 }
1415
1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 util_max = attr->sched_util_max;
1418
1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 return -EINVAL;
1421 }
1422
1423 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1424 return -EINVAL;
1425
e65855a5
QY
1426 /*
1427 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 *
1429 * We need to do that here, because enabling static branches is a
1430 * blocking operation which obviously cannot be done while holding
1431 * scheduler locks.
1432 */
1433 static_branch_enable(&sched_uclamp_used);
1434
a509a7cd
PB
1435 return 0;
1436}
1437
480a6ca2
DE
1438static bool uclamp_reset(const struct sched_attr *attr,
1439 enum uclamp_id clamp_id,
1440 struct uclamp_se *uc_se)
1441{
1442 /* Reset on sched class change for a non user-defined clamp value. */
1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 !uc_se->user_defined)
1445 return true;
1446
1447 /* Reset on sched_util_{min,max} == -1. */
1448 if (clamp_id == UCLAMP_MIN &&
1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 attr->sched_util_min == -1) {
1451 return true;
1452 }
1453
1454 if (clamp_id == UCLAMP_MAX &&
1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 attr->sched_util_max == -1) {
1457 return true;
1458 }
1459
1460 return false;
1461}
1462
a509a7cd
PB
1463static void __setscheduler_uclamp(struct task_struct *p,
1464 const struct sched_attr *attr)
1465{
0413d7f3 1466 enum uclamp_id clamp_id;
1a00d999 1467
1a00d999
PB
1468 for_each_clamp_id(clamp_id) {
1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1470 unsigned int value;
1a00d999 1471
480a6ca2 1472 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1473 continue;
1474
13685c4a
QY
1475 /*
1476 * RT by default have a 100% boost value that could be modified
1477 * at runtime.
1478 */
1a00d999 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1480 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1481 else
480a6ca2
DE
1482 value = uclamp_none(clamp_id);
1483
1484 uclamp_se_set(uc_se, value, false);
1a00d999 1485
1a00d999
PB
1486 }
1487
a509a7cd
PB
1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 return;
1490
480a6ca2
DE
1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 attr->sched_util_min != -1) {
a509a7cd
PB
1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 attr->sched_util_min, true);
1495 }
1496
480a6ca2
DE
1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 attr->sched_util_max != -1) {
a509a7cd
PB
1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 attr->sched_util_max, true);
1501 }
1502}
1503
e8f14172
PB
1504static void uclamp_fork(struct task_struct *p)
1505{
0413d7f3 1506 enum uclamp_id clamp_id;
e8f14172 1507
13685c4a
QY
1508 /*
1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 * as the task is still at its early fork stages.
1511 */
e8f14172
PB
1512 for_each_clamp_id(clamp_id)
1513 p->uclamp[clamp_id].active = false;
a87498ac
PB
1514
1515 if (likely(!p->sched_reset_on_fork))
1516 return;
1517
1518 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1519 uclamp_se_set(&p->uclamp_req[clamp_id],
1520 uclamp_none(clamp_id), false);
a87498ac 1521 }
e8f14172
PB
1522}
1523
13685c4a
QY
1524static void uclamp_post_fork(struct task_struct *p)
1525{
1526 uclamp_update_util_min_rt_default(p);
1527}
1528
d81ae8aa
QY
1529static void __init init_uclamp_rq(struct rq *rq)
1530{
1531 enum uclamp_id clamp_id;
1532 struct uclamp_rq *uc_rq = rq->uclamp;
1533
1534 for_each_clamp_id(clamp_id) {
1535 uc_rq[clamp_id] = (struct uclamp_rq) {
1536 .value = uclamp_none(clamp_id)
1537 };
1538 }
1539
1540 rq->uclamp_flags = 0;
1541}
1542
69842cba
PB
1543static void __init init_uclamp(void)
1544{
e8f14172 1545 struct uclamp_se uc_max = {};
0413d7f3 1546 enum uclamp_id clamp_id;
69842cba
PB
1547 int cpu;
1548
d81ae8aa
QY
1549 for_each_possible_cpu(cpu)
1550 init_uclamp_rq(cpu_rq(cpu));
69842cba 1551
69842cba 1552 for_each_clamp_id(clamp_id) {
e8f14172 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1554 uclamp_none(clamp_id), false);
69842cba 1555 }
e8f14172
PB
1556
1557 /* System defaults allow max clamp values for both indexes */
a509a7cd 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1559 for_each_clamp_id(clamp_id) {
e8f14172 1560 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1561#ifdef CONFIG_UCLAMP_TASK_GROUP
1562 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1563 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1564#endif
1565 }
69842cba
PB
1566}
1567
1568#else /* CONFIG_UCLAMP_TASK */
1569static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1571static inline int uclamp_validate(struct task_struct *p,
1572 const struct sched_attr *attr)
1573{
1574 return -EOPNOTSUPP;
1575}
1576static void __setscheduler_uclamp(struct task_struct *p,
1577 const struct sched_attr *attr) { }
e8f14172 1578static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1579static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1580static inline void init_uclamp(void) { }
1581#endif /* CONFIG_UCLAMP_TASK */
1582
1de64443 1583static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1584{
0a67d1ee
PZ
1585 if (!(flags & ENQUEUE_NOCLOCK))
1586 update_rq_clock(rq);
1587
eb414681 1588 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1589 sched_info_queued(rq, p);
eb414681
JW
1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 }
0a67d1ee 1592
69842cba 1593 uclamp_rq_inc(rq, p);
371fd7e7 1594 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1595}
1596
1de64443 1597static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1598{
0a67d1ee
PZ
1599 if (!(flags & DEQUEUE_NOCLOCK))
1600 update_rq_clock(rq);
1601
eb414681 1602 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1603 sched_info_dequeued(rq, p);
eb414681
JW
1604 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 }
0a67d1ee 1606
69842cba 1607 uclamp_rq_dec(rq, p);
371fd7e7 1608 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1609}
1610
029632fb 1611void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1612{
371fd7e7 1613 enqueue_task(rq, p, flags);
7dd77884
PZ
1614
1615 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1616}
1617
029632fb 1618void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1619{
7dd77884
PZ
1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621
371fd7e7 1622 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1623}
1624
14531189 1625/*
dd41f596 1626 * __normal_prio - return the priority that is based on the static prio
14531189 1627 */
14531189
IM
1628static inline int __normal_prio(struct task_struct *p)
1629{
dd41f596 1630 return p->static_prio;
14531189
IM
1631}
1632
b29739f9
IM
1633/*
1634 * Calculate the expected normal priority: i.e. priority
1635 * without taking RT-inheritance into account. Might be
1636 * boosted by interactivity modifiers. Changes upon fork,
1637 * setprio syscalls, and whenever the interactivity
1638 * estimator recalculates.
1639 */
36c8b586 1640static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1641{
1642 int prio;
1643
aab03e05
DF
1644 if (task_has_dl_policy(p))
1645 prio = MAX_DL_PRIO-1;
1646 else if (task_has_rt_policy(p))
b29739f9
IM
1647 prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 else
1649 prio = __normal_prio(p);
1650 return prio;
1651}
1652
1653/*
1654 * Calculate the current priority, i.e. the priority
1655 * taken into account by the scheduler. This value might
1656 * be boosted by RT tasks, or might be boosted by
1657 * interactivity modifiers. Will be RT if the task got
1658 * RT-boosted. If not then it returns p->normal_prio.
1659 */
36c8b586 1660static int effective_prio(struct task_struct *p)
b29739f9
IM
1661{
1662 p->normal_prio = normal_prio(p);
1663 /*
1664 * If we are RT tasks or we were boosted to RT priority,
1665 * keep the priority unchanged. Otherwise, update priority
1666 * to the normal priority:
1667 */
1668 if (!rt_prio(p->prio))
1669 return p->normal_prio;
1670 return p->prio;
1671}
1672
1da177e4
LT
1673/**
1674 * task_curr - is this task currently executing on a CPU?
1675 * @p: the task in question.
e69f6186
YB
1676 *
1677 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1678 */
36c8b586 1679inline int task_curr(const struct task_struct *p)
1da177e4
LT
1680{
1681 return cpu_curr(task_cpu(p)) == p;
1682}
1683
67dfa1b7 1684/*
4c9a4bc8
PZ
1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686 * use the balance_callback list if you want balancing.
1687 *
1688 * this means any call to check_class_changed() must be followed by a call to
1689 * balance_callback().
67dfa1b7 1690 */
cb469845
SR
1691static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 const struct sched_class *prev_class,
da7a735e 1693 int oldprio)
cb469845
SR
1694{
1695 if (prev_class != p->sched_class) {
1696 if (prev_class->switched_from)
da7a735e 1697 prev_class->switched_from(rq, p);
4c9a4bc8 1698
da7a735e 1699 p->sched_class->switched_to(rq, p);
2d3d891d 1700 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1701 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1702}
1703
029632fb 1704void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1705{
aa93cd53 1706 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1708 else if (p->sched_class > rq->curr->sched_class)
1709 resched_curr(rq);
1e5a7405
PZ
1710
1711 /*
1712 * A queue event has occurred, and we're going to schedule. In
1713 * this case, we can save a useless back to back clock update.
1714 */
da0c1e65 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1716 rq_clock_skip_update(rq);
1e5a7405
PZ
1717}
1718
1da177e4 1719#ifdef CONFIG_SMP
175f0e25 1720
af449901
PZ
1721static void
1722__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723
1724static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 const struct cpumask *new_mask,
1726 u32 flags);
1727
1728static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729{
1730 if (likely(!p->migration_disabled))
1731 return;
1732
1733 if (p->cpus_ptr != &p->cpus_mask)
1734 return;
1735
1736 /*
1737 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 */
1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740}
1741
1742void migrate_disable(void)
1743{
3015ef4b
TG
1744 struct task_struct *p = current;
1745
1746 if (p->migration_disabled) {
1747 p->migration_disabled++;
af449901 1748 return;
3015ef4b 1749 }
af449901 1750
3015ef4b
TG
1751 preempt_disable();
1752 this_rq()->nr_pinned++;
1753 p->migration_disabled = 1;
1754 preempt_enable();
af449901
PZ
1755}
1756EXPORT_SYMBOL_GPL(migrate_disable);
1757
1758void migrate_enable(void)
1759{
1760 struct task_struct *p = current;
1761
6d337eab
PZ
1762 if (p->migration_disabled > 1) {
1763 p->migration_disabled--;
af449901 1764 return;
6d337eab 1765 }
af449901 1766
6d337eab
PZ
1767 /*
1768 * Ensure stop_task runs either before or after this, and that
1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 */
1771 preempt_disable();
1772 if (p->cpus_ptr != &p->cpus_mask)
1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 /*
1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 * regular cpus_mask, otherwise things that race (eg.
1777 * select_fallback_rq) get confused.
1778 */
af449901 1779 barrier();
6d337eab 1780 p->migration_disabled = 0;
3015ef4b 1781 this_rq()->nr_pinned--;
6d337eab 1782 preempt_enable();
af449901
PZ
1783}
1784EXPORT_SYMBOL_GPL(migrate_enable);
1785
3015ef4b
TG
1786static inline bool rq_has_pinned_tasks(struct rq *rq)
1787{
1788 return rq->nr_pinned;
1789}
1790
175f0e25 1791/*
bee98539 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1793 * __set_cpus_allowed_ptr() and select_fallback_rq().
1794 */
1795static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796{
5ba2ffba 1797 /* When not in the task's cpumask, no point in looking further. */
3bd37062 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1799 return false;
1800
5ba2ffba
PZ
1801 /* migrate_disabled() must be allowed to finish. */
1802 if (is_migration_disabled(p))
175f0e25
PZ
1803 return cpu_online(cpu);
1804
5ba2ffba
PZ
1805 /* Non kernel threads are not allowed during either online or offline. */
1806 if (!(p->flags & PF_KTHREAD))
1807 return cpu_active(cpu);
1808
1809 /* KTHREAD_IS_PER_CPU is always allowed. */
1810 if (kthread_is_per_cpu(p))
1811 return cpu_online(cpu);
1812
1813 /* Regular kernel threads don't get to stay during offline. */
1814 if (cpu_rq(cpu)->balance_push)
1815 return false;
1816
1817 /* But are allowed during online. */
1818 return cpu_online(cpu);
175f0e25
PZ
1819}
1820
5cc389bc
PZ
1821/*
1822 * This is how migration works:
1823 *
1824 * 1) we invoke migration_cpu_stop() on the target CPU using
1825 * stop_one_cpu().
1826 * 2) stopper starts to run (implicitly forcing the migrated thread
1827 * off the CPU)
1828 * 3) it checks whether the migrated task is still in the wrong runqueue.
1829 * 4) if it's in the wrong runqueue then the migration thread removes
1830 * it and puts it into the right queue.
1831 * 5) stopper completes and stop_one_cpu() returns and the migration
1832 * is done.
1833 */
1834
1835/*
1836 * move_queued_task - move a queued task to new rq.
1837 *
1838 * Returns (locked) new rq. Old rq's lock is released.
1839 */
8a8c69c3
PZ
1840static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 struct task_struct *p, int new_cpu)
5cc389bc 1842{
5cc389bc
PZ
1843 lockdep_assert_held(&rq->lock);
1844
58877d34 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1846 set_task_cpu(p, new_cpu);
8a8c69c3 1847 rq_unlock(rq, rf);
5cc389bc
PZ
1848
1849 rq = cpu_rq(new_cpu);
1850
8a8c69c3 1851 rq_lock(rq, rf);
5cc389bc 1852 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1853 activate_task(rq, p, 0);
5cc389bc
PZ
1854 check_preempt_curr(rq, p, 0);
1855
1856 return rq;
1857}
1858
1859struct migration_arg {
6d337eab
PZ
1860 struct task_struct *task;
1861 int dest_cpu;
1862 struct set_affinity_pending *pending;
1863};
1864
50caf9c1
PZ
1865/*
1866 * @refs: number of wait_for_completion()
1867 * @stop_pending: is @stop_work in use
1868 */
6d337eab
PZ
1869struct set_affinity_pending {
1870 refcount_t refs;
9e81889c 1871 unsigned int stop_pending;
6d337eab
PZ
1872 struct completion done;
1873 struct cpu_stop_work stop_work;
1874 struct migration_arg arg;
5cc389bc
PZ
1875};
1876
1877/*
d1ccc66d 1878 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1879 * this because either it can't run here any more (set_cpus_allowed()
1880 * away from this CPU, or CPU going down), or because we're
1881 * attempting to rebalance this task on exec (sched_exec).
1882 *
1883 * So we race with normal scheduler movements, but that's OK, as long
1884 * as the task is no longer on this CPU.
5cc389bc 1885 */
8a8c69c3
PZ
1886static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1887 struct task_struct *p, int dest_cpu)
5cc389bc 1888{
5cc389bc 1889 /* Affinity changed (again). */
175f0e25 1890 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1891 return rq;
5cc389bc 1892
15ff991e 1893 update_rq_clock(rq);
8a8c69c3 1894 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1895
1896 return rq;
5cc389bc
PZ
1897}
1898
1899/*
1900 * migration_cpu_stop - this will be executed by a highprio stopper thread
1901 * and performs thread migration by bumping thread off CPU then
1902 * 'pushing' onto another runqueue.
1903 */
1904static int migration_cpu_stop(void *data)
1905{
1906 struct migration_arg *arg = data;
c20cf065 1907 struct set_affinity_pending *pending = arg->pending;
5e16bbc2 1908 struct task_struct *p = arg->task;
6d337eab 1909 int dest_cpu = arg->dest_cpu;
5e16bbc2 1910 struct rq *rq = this_rq();
6d337eab 1911 bool complete = false;
8a8c69c3 1912 struct rq_flags rf;
5cc389bc
PZ
1913
1914 /*
d1ccc66d
IM
1915 * The original target CPU might have gone down and we might
1916 * be on another CPU but it doesn't matter.
5cc389bc 1917 */
6d337eab 1918 local_irq_save(rf.flags);
5cc389bc
PZ
1919 /*
1920 * We need to explicitly wake pending tasks before running
3bd37062 1921 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1922 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1923 */
a1488664 1924 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1925
1926 raw_spin_lock(&p->pi_lock);
8a8c69c3 1927 rq_lock(rq, &rf);
6d337eab 1928
5e16bbc2
PZ
1929 /*
1930 * If task_rq(p) != rq, it cannot be migrated here, because we're
1931 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1932 * we're holding p->pi_lock.
1933 */
bf89a304 1934 if (task_rq(p) == rq) {
6d337eab
PZ
1935 if (is_migration_disabled(p))
1936 goto out;
1937
1938 if (pending) {
c20cf065
PZ
1939 if (p->migration_pending == pending)
1940 p->migration_pending = NULL;
6d337eab
PZ
1941 complete = true;
1942 }
1943
3f1bc119
PZ
1944 if (dest_cpu < 0) {
1945 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1946 goto out;
1947
6d337eab 1948 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
3f1bc119 1949 }
6d337eab 1950
bf89a304 1951 if (task_on_rq_queued(p))
6d337eab 1952 rq = __migrate_task(rq, &rf, p, dest_cpu);
bf89a304 1953 else
6d337eab
PZ
1954 p->wake_cpu = dest_cpu;
1955
3f1bc119
PZ
1956 /*
1957 * XXX __migrate_task() can fail, at which point we might end
1958 * up running on a dodgy CPU, AFAICT this can only happen
1959 * during CPU hotplug, at which point we'll get pushed out
1960 * anyway, so it's probably not a big deal.
1961 */
1962
c20cf065 1963 } else if (pending) {
6d337eab
PZ
1964 /*
1965 * This happens when we get migrated between migrate_enable()'s
1966 * preempt_enable() and scheduling the stopper task. At that
1967 * point we're a regular task again and not current anymore.
1968 *
1969 * A !PREEMPT kernel has a giant hole here, which makes it far
1970 * more likely.
1971 */
1972
d707faa6
VS
1973 /*
1974 * The task moved before the stopper got to run. We're holding
1975 * ->pi_lock, so the allowed mask is stable - if it got
1976 * somewhere allowed, we're done.
1977 */
c20cf065
PZ
1978 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1979 if (p->migration_pending == pending)
1980 p->migration_pending = NULL;
d707faa6
VS
1981 complete = true;
1982 goto out;
1983 }
1984
6d337eab
PZ
1985 /*
1986 * When migrate_enable() hits a rq mis-match we can't reliably
1987 * determine is_migration_disabled() and so have to chase after
1988 * it.
1989 */
9e81889c 1990 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
1991 task_rq_unlock(rq, p, &rf);
1992 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1993 &pending->arg, &pending->stop_work);
1994 return 0;
bf89a304 1995 }
6d337eab 1996out:
9e81889c
PZ
1997 if (pending)
1998 pending->stop_pending = false;
6d337eab
PZ
1999 task_rq_unlock(rq, p, &rf);
2000
2001 if (complete)
2002 complete_all(&pending->done);
2003
5cc389bc
PZ
2004 return 0;
2005}
2006
a7c81556
PZ
2007int push_cpu_stop(void *arg)
2008{
2009 struct rq *lowest_rq = NULL, *rq = this_rq();
2010 struct task_struct *p = arg;
2011
2012 raw_spin_lock_irq(&p->pi_lock);
2013 raw_spin_lock(&rq->lock);
2014
2015 if (task_rq(p) != rq)
2016 goto out_unlock;
2017
2018 if (is_migration_disabled(p)) {
2019 p->migration_flags |= MDF_PUSH;
2020 goto out_unlock;
2021 }
2022
2023 p->migration_flags &= ~MDF_PUSH;
2024
2025 if (p->sched_class->find_lock_rq)
2026 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2027
a7c81556
PZ
2028 if (!lowest_rq)
2029 goto out_unlock;
2030
2031 // XXX validate p is still the highest prio task
2032 if (task_rq(p) == rq) {
2033 deactivate_task(rq, p, 0);
2034 set_task_cpu(p, lowest_rq->cpu);
2035 activate_task(lowest_rq, p, 0);
2036 resched_curr(lowest_rq);
2037 }
2038
2039 double_unlock_balance(rq, lowest_rq);
2040
2041out_unlock:
2042 rq->push_busy = false;
2043 raw_spin_unlock(&rq->lock);
2044 raw_spin_unlock_irq(&p->pi_lock);
2045
2046 put_task_struct(p);
5cc389bc
PZ
2047 return 0;
2048}
2049
c5b28038
PZ
2050/*
2051 * sched_class::set_cpus_allowed must do the below, but is not required to
2052 * actually call this function.
2053 */
9cfc3e18 2054void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2055{
af449901
PZ
2056 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2057 p->cpus_ptr = new_mask;
2058 return;
2059 }
2060
3bd37062 2061 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2062 p->nr_cpus_allowed = cpumask_weight(new_mask);
2063}
2064
9cfc3e18
PZ
2065static void
2066__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2067{
6c37067e
PZ
2068 struct rq *rq = task_rq(p);
2069 bool queued, running;
2070
af449901
PZ
2071 /*
2072 * This here violates the locking rules for affinity, since we're only
2073 * supposed to change these variables while holding both rq->lock and
2074 * p->pi_lock.
2075 *
2076 * HOWEVER, it magically works, because ttwu() is the only code that
2077 * accesses these variables under p->pi_lock and only does so after
2078 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2079 * before finish_task().
2080 *
2081 * XXX do further audits, this smells like something putrid.
2082 */
2083 if (flags & SCA_MIGRATE_DISABLE)
2084 SCHED_WARN_ON(!p->on_cpu);
2085 else
2086 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2087
2088 queued = task_on_rq_queued(p);
2089 running = task_current(rq, p);
2090
2091 if (queued) {
2092 /*
2093 * Because __kthread_bind() calls this on blocked tasks without
2094 * holding rq->lock.
2095 */
2096 lockdep_assert_held(&rq->lock);
7a57f32a 2097 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2098 }
2099 if (running)
2100 put_prev_task(rq, p);
2101
9cfc3e18 2102 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2103
6c37067e 2104 if (queued)
7134b3e9 2105 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2106 if (running)
03b7fad1 2107 set_next_task(rq, p);
c5b28038
PZ
2108}
2109
9cfc3e18
PZ
2110void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2111{
2112 __do_set_cpus_allowed(p, new_mask, 0);
2113}
2114
6d337eab 2115/*
c777d847
VS
2116 * This function is wildly self concurrent; here be dragons.
2117 *
2118 *
2119 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2120 * designated task is enqueued on an allowed CPU. If that task is currently
2121 * running, we have to kick it out using the CPU stopper.
2122 *
2123 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2124 * Consider:
2125 *
2126 * Initial conditions: P0->cpus_mask = [0, 1]
2127 *
2128 * P0@CPU0 P1
2129 *
2130 * migrate_disable();
2131 * <preempted>
2132 * set_cpus_allowed_ptr(P0, [1]);
2133 *
2134 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2135 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2136 * This means we need the following scheme:
2137 *
2138 * P0@CPU0 P1
2139 *
2140 * migrate_disable();
2141 * <preempted>
2142 * set_cpus_allowed_ptr(P0, [1]);
2143 * <blocks>
2144 * <resumes>
2145 * migrate_enable();
2146 * __set_cpus_allowed_ptr();
2147 * <wakes local stopper>
2148 * `--> <woken on migration completion>
2149 *
2150 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2151 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2152 * task p are serialized by p->pi_lock, which we can leverage: the one that
2153 * should come into effect at the end of the Migrate-Disable region is the last
2154 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2155 * but we still need to properly signal those waiting tasks at the appropriate
2156 * moment.
2157 *
2158 * This is implemented using struct set_affinity_pending. The first
2159 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2160 * setup an instance of that struct and install it on the targeted task_struct.
2161 * Any and all further callers will reuse that instance. Those then wait for
2162 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2163 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2164 *
2165 *
2166 * (1) In the cases covered above. There is one more where the completion is
2167 * signaled within affine_move_task() itself: when a subsequent affinity request
2168 * cancels the need for an active migration. Consider:
2169 *
2170 * Initial conditions: P0->cpus_mask = [0, 1]
2171 *
2172 * P0@CPU0 P1 P2
2173 *
2174 * migrate_disable();
2175 * <preempted>
2176 * set_cpus_allowed_ptr(P0, [1]);
2177 * <blocks>
2178 * set_cpus_allowed_ptr(P0, [0, 1]);
2179 * <signal completion>
2180 * <awakes>
2181 *
2182 * Note that the above is safe vs a concurrent migrate_enable(), as any
2183 * pending affinity completion is preceded by an uninstallation of
2184 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2185 */
2186static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2187 int dest_cpu, unsigned int flags)
2188{
2189 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2190 bool stop_pending, complete = false;
6d337eab
PZ
2191
2192 /* Can the task run on the task's current CPU? If so, we're done */
2193 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2194 struct task_struct *push_task = NULL;
2195
2196 if ((flags & SCA_MIGRATE_ENABLE) &&
2197 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2198 rq->push_busy = true;
2199 push_task = get_task_struct(p);
2200 }
2201
50caf9c1
PZ
2202 /*
2203 * If there are pending waiters, but no pending stop_work,
2204 * then complete now.
2205 */
6d337eab 2206 pending = p->migration_pending;
50caf9c1 2207 if (pending && !pending->stop_pending) {
6d337eab
PZ
2208 p->migration_pending = NULL;
2209 complete = true;
2210 }
50caf9c1 2211
6d337eab
PZ
2212 task_rq_unlock(rq, p, rf);
2213
a7c81556
PZ
2214 if (push_task) {
2215 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2216 p, &rq->push_work);
2217 }
2218
6d337eab 2219 if (complete)
50caf9c1 2220 complete_all(&pending->done);
6d337eab
PZ
2221
2222 return 0;
2223 }
2224
2225 if (!(flags & SCA_MIGRATE_ENABLE)) {
2226 /* serialized by p->pi_lock */
2227 if (!p->migration_pending) {
c777d847 2228 /* Install the request */
6d337eab
PZ
2229 refcount_set(&my_pending.refs, 1);
2230 init_completion(&my_pending.done);
8a6edb52
PZ
2231 my_pending.arg = (struct migration_arg) {
2232 .task = p,
2233 .dest_cpu = -1, /* any */
2234 .pending = &my_pending,
2235 };
2236
6d337eab
PZ
2237 p->migration_pending = &my_pending;
2238 } else {
2239 pending = p->migration_pending;
2240 refcount_inc(&pending->refs);
2241 }
2242 }
2243 pending = p->migration_pending;
2244 /*
2245 * - !MIGRATE_ENABLE:
2246 * we'll have installed a pending if there wasn't one already.
2247 *
2248 * - MIGRATE_ENABLE:
2249 * we're here because the current CPU isn't matching anymore,
2250 * the only way that can happen is because of a concurrent
2251 * set_cpus_allowed_ptr() call, which should then still be
2252 * pending completion.
2253 *
2254 * Either way, we really should have a @pending here.
2255 */
2256 if (WARN_ON_ONCE(!pending)) {
2257 task_rq_unlock(rq, p, rf);
2258 return -EINVAL;
2259 }
2260
6d337eab 2261 if (task_running(rq, p) || p->state == TASK_WAKING) {
c777d847 2262 /*
58b1a450
PZ
2263 * MIGRATE_ENABLE gets here because 'p == current', but for
2264 * anything else we cannot do is_migration_disabled(), punt
2265 * and have the stopper function handle it all race-free.
c777d847 2266 */
9e81889c
PZ
2267 stop_pending = pending->stop_pending;
2268 if (!stop_pending)
2269 pending->stop_pending = true;
58b1a450 2270
58b1a450
PZ
2271 if (flags & SCA_MIGRATE_ENABLE)
2272 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2273
6d337eab 2274 task_rq_unlock(rq, p, rf);
8a6edb52 2275
9e81889c
PZ
2276 if (!stop_pending) {
2277 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2278 &pending->arg, &pending->stop_work);
2279 }
6d337eab 2280
58b1a450
PZ
2281 if (flags & SCA_MIGRATE_ENABLE)
2282 return 0;
6d337eab
PZ
2283 } else {
2284
2285 if (!is_migration_disabled(p)) {
2286 if (task_on_rq_queued(p))
2287 rq = move_queued_task(rq, rf, p, dest_cpu);
2288
50caf9c1
PZ
2289 if (!pending->stop_pending) {
2290 p->migration_pending = NULL;
2291 complete = true;
2292 }
6d337eab
PZ
2293 }
2294 task_rq_unlock(rq, p, rf);
2295
6d337eab
PZ
2296 if (complete)
2297 complete_all(&pending->done);
2298 }
2299
2300 wait_for_completion(&pending->done);
2301
2302 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2303 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2304
c777d847
VS
2305 /*
2306 * Block the original owner of &pending until all subsequent callers
2307 * have seen the completion and decremented the refcount
2308 */
6d337eab
PZ
2309 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2310
50caf9c1
PZ
2311 /* ARGH */
2312 WARN_ON_ONCE(my_pending.stop_pending);
2313
6d337eab
PZ
2314 return 0;
2315}
2316
5cc389bc
PZ
2317/*
2318 * Change a given task's CPU affinity. Migrate the thread to a
2319 * proper CPU and schedule it away if the CPU it's executing on
2320 * is removed from the allowed bitmask.
2321 *
2322 * NOTE: the caller must have a valid reference to the task, the
2323 * task must not exit() & deallocate itself prematurely. The
2324 * call is not atomic; no spinlocks may be held.
2325 */
25834c73 2326static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2327 const struct cpumask *new_mask,
2328 u32 flags)
5cc389bc 2329{
e9d867a6 2330 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2331 unsigned int dest_cpu;
eb580751
PZ
2332 struct rq_flags rf;
2333 struct rq *rq;
5cc389bc
PZ
2334 int ret = 0;
2335
eb580751 2336 rq = task_rq_lock(p, &rf);
a499c3ea 2337 update_rq_clock(rq);
5cc389bc 2338
af449901 2339 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2340 /*
741ba80f
PZ
2341 * Kernel threads are allowed on online && !active CPUs,
2342 * however, during cpu-hot-unplug, even these might get pushed
2343 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2344 *
2345 * Specifically, migration_disabled() tasks must not fail the
2346 * cpumask_any_and_distribute() pick below, esp. so on
2347 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2348 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2349 */
2350 cpu_valid_mask = cpu_online_mask;
2351 }
2352
25834c73
PZ
2353 /*
2354 * Must re-check here, to close a race against __kthread_bind(),
2355 * sched_setaffinity() is not guaranteed to observe the flag.
2356 */
9cfc3e18 2357 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2358 ret = -EINVAL;
2359 goto out;
2360 }
2361
885b3ba4
VS
2362 if (!(flags & SCA_MIGRATE_ENABLE)) {
2363 if (cpumask_equal(&p->cpus_mask, new_mask))
2364 goto out;
2365
2366 if (WARN_ON_ONCE(p == current &&
2367 is_migration_disabled(p) &&
2368 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2369 ret = -EBUSY;
2370 goto out;
2371 }
2372 }
5cc389bc 2373
46a87b38
PT
2374 /*
2375 * Picking a ~random cpu helps in cases where we are changing affinity
2376 * for groups of tasks (ie. cpuset), so that load balancing is not
2377 * immediately required to distribute the tasks within their new mask.
2378 */
2379 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2380 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2381 ret = -EINVAL;
2382 goto out;
2383 }
2384
9cfc3e18 2385 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2386
6d337eab 2387 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2388
5cc389bc 2389out:
eb580751 2390 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2391
2392 return ret;
2393}
25834c73
PZ
2394
2395int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2396{
9cfc3e18 2397 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2398}
5cc389bc
PZ
2399EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2400
dd41f596 2401void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2402{
e2912009
PZ
2403#ifdef CONFIG_SCHED_DEBUG
2404 /*
2405 * We should never call set_task_cpu() on a blocked task,
2406 * ttwu() will sort out the placement.
2407 */
077614ee 2408 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2409 !p->on_rq);
0122ec5b 2410
3ea94de1
JP
2411 /*
2412 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2413 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2414 * time relying on p->on_rq.
2415 */
2416 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2417 p->sched_class == &fair_sched_class &&
2418 (p->on_rq && !task_on_rq_migrating(p)));
2419
0122ec5b 2420#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2421 /*
2422 * The caller should hold either p->pi_lock or rq->lock, when changing
2423 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2424 *
2425 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2426 * see task_group().
6c6c54e1
PZ
2427 *
2428 * Furthermore, all task_rq users should acquire both locks, see
2429 * task_rq_lock().
2430 */
0122ec5b
PZ
2431 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2432 lockdep_is_held(&task_rq(p)->lock)));
2433#endif
4ff9083b
PZ
2434 /*
2435 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2436 */
2437 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2438
2439 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2440#endif
2441
de1d7286 2442 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2443
0c69774e 2444 if (task_cpu(p) != new_cpu) {
0a74bef8 2445 if (p->sched_class->migrate_task_rq)
1327237a 2446 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2447 p->se.nr_migrations++;
d7822b1e 2448 rseq_migrate(p);
ff303e66 2449 perf_event_task_migrate(p);
0c69774e 2450 }
dd41f596
IM
2451
2452 __set_task_cpu(p, new_cpu);
c65cc870
IM
2453}
2454
0ad4e3df 2455#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2456static void __migrate_swap_task(struct task_struct *p, int cpu)
2457{
da0c1e65 2458 if (task_on_rq_queued(p)) {
ac66f547 2459 struct rq *src_rq, *dst_rq;
8a8c69c3 2460 struct rq_flags srf, drf;
ac66f547
PZ
2461
2462 src_rq = task_rq(p);
2463 dst_rq = cpu_rq(cpu);
2464
8a8c69c3
PZ
2465 rq_pin_lock(src_rq, &srf);
2466 rq_pin_lock(dst_rq, &drf);
2467
ac66f547
PZ
2468 deactivate_task(src_rq, p, 0);
2469 set_task_cpu(p, cpu);
2470 activate_task(dst_rq, p, 0);
2471 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2472
2473 rq_unpin_lock(dst_rq, &drf);
2474 rq_unpin_lock(src_rq, &srf);
2475
ac66f547
PZ
2476 } else {
2477 /*
2478 * Task isn't running anymore; make it appear like we migrated
2479 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2480 * previous CPU our target instead of where it really is.
ac66f547
PZ
2481 */
2482 p->wake_cpu = cpu;
2483 }
2484}
2485
2486struct migration_swap_arg {
2487 struct task_struct *src_task, *dst_task;
2488 int src_cpu, dst_cpu;
2489};
2490
2491static int migrate_swap_stop(void *data)
2492{
2493 struct migration_swap_arg *arg = data;
2494 struct rq *src_rq, *dst_rq;
2495 int ret = -EAGAIN;
2496
62694cd5
PZ
2497 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2498 return -EAGAIN;
2499
ac66f547
PZ
2500 src_rq = cpu_rq(arg->src_cpu);
2501 dst_rq = cpu_rq(arg->dst_cpu);
2502
74602315
PZ
2503 double_raw_lock(&arg->src_task->pi_lock,
2504 &arg->dst_task->pi_lock);
ac66f547 2505 double_rq_lock(src_rq, dst_rq);
62694cd5 2506
ac66f547
PZ
2507 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2508 goto unlock;
2509
2510 if (task_cpu(arg->src_task) != arg->src_cpu)
2511 goto unlock;
2512
3bd37062 2513 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2514 goto unlock;
2515
3bd37062 2516 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2517 goto unlock;
2518
2519 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2520 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2521
2522 ret = 0;
2523
2524unlock:
2525 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2526 raw_spin_unlock(&arg->dst_task->pi_lock);
2527 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2528
2529 return ret;
2530}
2531
2532/*
2533 * Cross migrate two tasks
2534 */
0ad4e3df
SD
2535int migrate_swap(struct task_struct *cur, struct task_struct *p,
2536 int target_cpu, int curr_cpu)
ac66f547
PZ
2537{
2538 struct migration_swap_arg arg;
2539 int ret = -EINVAL;
2540
ac66f547
PZ
2541 arg = (struct migration_swap_arg){
2542 .src_task = cur,
0ad4e3df 2543 .src_cpu = curr_cpu,
ac66f547 2544 .dst_task = p,
0ad4e3df 2545 .dst_cpu = target_cpu,
ac66f547
PZ
2546 };
2547
2548 if (arg.src_cpu == arg.dst_cpu)
2549 goto out;
2550
6acce3ef
PZ
2551 /*
2552 * These three tests are all lockless; this is OK since all of them
2553 * will be re-checked with proper locks held further down the line.
2554 */
ac66f547
PZ
2555 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2556 goto out;
2557
3bd37062 2558 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2559 goto out;
2560
3bd37062 2561 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2562 goto out;
2563
286549dc 2564 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2565 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2566
2567out:
ac66f547
PZ
2568 return ret;
2569}
0ad4e3df 2570#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2571
1da177e4
LT
2572/*
2573 * wait_task_inactive - wait for a thread to unschedule.
2574 *
85ba2d86
RM
2575 * If @match_state is nonzero, it's the @p->state value just checked and
2576 * not expected to change. If it changes, i.e. @p might have woken up,
2577 * then return zero. When we succeed in waiting for @p to be off its CPU,
2578 * we return a positive number (its total switch count). If a second call
2579 * a short while later returns the same number, the caller can be sure that
2580 * @p has remained unscheduled the whole time.
2581 *
1da177e4
LT
2582 * The caller must ensure that the task *will* unschedule sometime soon,
2583 * else this function might spin for a *long* time. This function can't
2584 * be called with interrupts off, or it may introduce deadlock with
2585 * smp_call_function() if an IPI is sent by the same process we are
2586 * waiting to become inactive.
2587 */
85ba2d86 2588unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2589{
da0c1e65 2590 int running, queued;
eb580751 2591 struct rq_flags rf;
85ba2d86 2592 unsigned long ncsw;
70b97a7f 2593 struct rq *rq;
1da177e4 2594
3a5c359a
AK
2595 for (;;) {
2596 /*
2597 * We do the initial early heuristics without holding
2598 * any task-queue locks at all. We'll only try to get
2599 * the runqueue lock when things look like they will
2600 * work out!
2601 */
2602 rq = task_rq(p);
fa490cfd 2603
3a5c359a
AK
2604 /*
2605 * If the task is actively running on another CPU
2606 * still, just relax and busy-wait without holding
2607 * any locks.
2608 *
2609 * NOTE! Since we don't hold any locks, it's not
2610 * even sure that "rq" stays as the right runqueue!
2611 * But we don't care, since "task_running()" will
2612 * return false if the runqueue has changed and p
2613 * is actually now running somewhere else!
2614 */
85ba2d86
RM
2615 while (task_running(rq, p)) {
2616 if (match_state && unlikely(p->state != match_state))
2617 return 0;
3a5c359a 2618 cpu_relax();
85ba2d86 2619 }
fa490cfd 2620
3a5c359a
AK
2621 /*
2622 * Ok, time to look more closely! We need the rq
2623 * lock now, to be *sure*. If we're wrong, we'll
2624 * just go back and repeat.
2625 */
eb580751 2626 rq = task_rq_lock(p, &rf);
27a9da65 2627 trace_sched_wait_task(p);
3a5c359a 2628 running = task_running(rq, p);
da0c1e65 2629 queued = task_on_rq_queued(p);
85ba2d86 2630 ncsw = 0;
f31e11d8 2631 if (!match_state || p->state == match_state)
93dcf55f 2632 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2633 task_rq_unlock(rq, p, &rf);
fa490cfd 2634
85ba2d86
RM
2635 /*
2636 * If it changed from the expected state, bail out now.
2637 */
2638 if (unlikely(!ncsw))
2639 break;
2640
3a5c359a
AK
2641 /*
2642 * Was it really running after all now that we
2643 * checked with the proper locks actually held?
2644 *
2645 * Oops. Go back and try again..
2646 */
2647 if (unlikely(running)) {
2648 cpu_relax();
2649 continue;
2650 }
fa490cfd 2651
3a5c359a
AK
2652 /*
2653 * It's not enough that it's not actively running,
2654 * it must be off the runqueue _entirely_, and not
2655 * preempted!
2656 *
80dd99b3 2657 * So if it was still runnable (but just not actively
3a5c359a
AK
2658 * running right now), it's preempted, and we should
2659 * yield - it could be a while.
2660 */
da0c1e65 2661 if (unlikely(queued)) {
8b0e1953 2662 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2663
2664 set_current_state(TASK_UNINTERRUPTIBLE);
2665 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2666 continue;
2667 }
fa490cfd 2668
3a5c359a
AK
2669 /*
2670 * Ahh, all good. It wasn't running, and it wasn't
2671 * runnable, which means that it will never become
2672 * running in the future either. We're all done!
2673 */
2674 break;
2675 }
85ba2d86
RM
2676
2677 return ncsw;
1da177e4
LT
2678}
2679
2680/***
2681 * kick_process - kick a running thread to enter/exit the kernel
2682 * @p: the to-be-kicked thread
2683 *
2684 * Cause a process which is running on another CPU to enter
2685 * kernel-mode, without any delay. (to get signals handled.)
2686 *
25985edc 2687 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2688 * because all it wants to ensure is that the remote task enters
2689 * the kernel. If the IPI races and the task has been migrated
2690 * to another CPU then no harm is done and the purpose has been
2691 * achieved as well.
2692 */
36c8b586 2693void kick_process(struct task_struct *p)
1da177e4
LT
2694{
2695 int cpu;
2696
2697 preempt_disable();
2698 cpu = task_cpu(p);
2699 if ((cpu != smp_processor_id()) && task_curr(p))
2700 smp_send_reschedule(cpu);
2701 preempt_enable();
2702}
b43e3521 2703EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2704
30da688e 2705/*
3bd37062 2706 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2707 *
2708 * A few notes on cpu_active vs cpu_online:
2709 *
2710 * - cpu_active must be a subset of cpu_online
2711 *
97fb7a0a 2712 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2713 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2714 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2715 * see it.
2716 *
d1ccc66d 2717 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2718 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2719 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2720 * off.
2721 *
2722 * This means that fallback selection must not select !active CPUs.
2723 * And can assume that any active CPU must be online. Conversely
2724 * select_task_rq() below may allow selection of !active CPUs in order
2725 * to satisfy the above rules.
30da688e 2726 */
5da9a0fb
PZ
2727static int select_fallback_rq(int cpu, struct task_struct *p)
2728{
aa00d89c
TC
2729 int nid = cpu_to_node(cpu);
2730 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2731 enum { cpuset, possible, fail } state = cpuset;
2732 int dest_cpu;
5da9a0fb 2733
aa00d89c 2734 /*
d1ccc66d
IM
2735 * If the node that the CPU is on has been offlined, cpu_to_node()
2736 * will return -1. There is no CPU on the node, and we should
2737 * select the CPU on the other node.
aa00d89c
TC
2738 */
2739 if (nid != -1) {
2740 nodemask = cpumask_of_node(nid);
2741
2742 /* Look for allowed, online CPU in same node. */
2743 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2744 if (!cpu_active(dest_cpu))
2745 continue;
3bd37062 2746 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2747 return dest_cpu;
2748 }
2baab4e9 2749 }
5da9a0fb 2750
2baab4e9
PZ
2751 for (;;) {
2752 /* Any allowed, online CPU? */
3bd37062 2753 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2754 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2755 continue;
175f0e25 2756
2baab4e9
PZ
2757 goto out;
2758 }
5da9a0fb 2759
e73e85f0 2760 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2761 switch (state) {
2762 case cpuset:
e73e85f0
ON
2763 if (IS_ENABLED(CONFIG_CPUSETS)) {
2764 cpuset_cpus_allowed_fallback(p);
2765 state = possible;
2766 break;
2767 }
df561f66 2768 fallthrough;
2baab4e9 2769 case possible:
af449901
PZ
2770 /*
2771 * XXX When called from select_task_rq() we only
2772 * hold p->pi_lock and again violate locking order.
2773 *
2774 * More yuck to audit.
2775 */
2baab4e9
PZ
2776 do_set_cpus_allowed(p, cpu_possible_mask);
2777 state = fail;
2778 break;
2779
2780 case fail:
2781 BUG();
2782 break;
2783 }
2784 }
2785
2786out:
2787 if (state != cpuset) {
2788 /*
2789 * Don't tell them about moving exiting tasks or
2790 * kernel threads (both mm NULL), since they never
2791 * leave kernel.
2792 */
2793 if (p->mm && printk_ratelimit()) {
aac74dc4 2794 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2795 task_pid_nr(p), p->comm, cpu);
2796 }
5da9a0fb
PZ
2797 }
2798
2799 return dest_cpu;
2800}
2801
e2912009 2802/*
3bd37062 2803 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2804 */
970b13ba 2805static inline
3aef1551 2806int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 2807{
cbce1a68
PZ
2808 lockdep_assert_held(&p->pi_lock);
2809
af449901 2810 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 2811 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 2812 else
3bd37062 2813 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2814
2815 /*
2816 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2817 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2818 * CPU.
e2912009
PZ
2819 *
2820 * Since this is common to all placement strategies, this lives here.
2821 *
2822 * [ this allows ->select_task() to simply return task_cpu(p) and
2823 * not worry about this generic constraint ]
2824 */
7af443ee 2825 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2826 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2827
2828 return cpu;
970b13ba 2829}
09a40af5 2830
f5832c19
NP
2831void sched_set_stop_task(int cpu, struct task_struct *stop)
2832{
ded467dc 2833 static struct lock_class_key stop_pi_lock;
f5832c19
NP
2834 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2835 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2836
2837 if (stop) {
2838 /*
2839 * Make it appear like a SCHED_FIFO task, its something
2840 * userspace knows about and won't get confused about.
2841 *
2842 * Also, it will make PI more or less work without too
2843 * much confusion -- but then, stop work should not
2844 * rely on PI working anyway.
2845 */
2846 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2847
2848 stop->sched_class = &stop_sched_class;
ded467dc
PZ
2849
2850 /*
2851 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2852 * adjust the effective priority of a task. As a result,
2853 * rt_mutex_setprio() can trigger (RT) balancing operations,
2854 * which can then trigger wakeups of the stop thread to push
2855 * around the current task.
2856 *
2857 * The stop task itself will never be part of the PI-chain, it
2858 * never blocks, therefore that ->pi_lock recursion is safe.
2859 * Tell lockdep about this by placing the stop->pi_lock in its
2860 * own class.
2861 */
2862 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
2863 }
2864
2865 cpu_rq(cpu)->stop = stop;
2866
2867 if (old_stop) {
2868 /*
2869 * Reset it back to a normal scheduling class so that
2870 * it can die in pieces.
2871 */
2872 old_stop->sched_class = &rt_sched_class;
2873 }
2874}
2875
74d862b6 2876#else /* CONFIG_SMP */
25834c73
PZ
2877
2878static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2879 const struct cpumask *new_mask,
2880 u32 flags)
25834c73
PZ
2881{
2882 return set_cpus_allowed_ptr(p, new_mask);
2883}
2884
af449901
PZ
2885static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2886
3015ef4b
TG
2887static inline bool rq_has_pinned_tasks(struct rq *rq)
2888{
2889 return false;
2890}
2891
74d862b6 2892#endif /* !CONFIG_SMP */
970b13ba 2893
d7c01d27 2894static void
b84cb5df 2895ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2896{
4fa8d299 2897 struct rq *rq;
b84cb5df 2898
4fa8d299
JP
2899 if (!schedstat_enabled())
2900 return;
2901
2902 rq = this_rq();
d7c01d27 2903
4fa8d299
JP
2904#ifdef CONFIG_SMP
2905 if (cpu == rq->cpu) {
b85c8b71
PZ
2906 __schedstat_inc(rq->ttwu_local);
2907 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2908 } else {
2909 struct sched_domain *sd;
2910
b85c8b71 2911 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2912 rcu_read_lock();
4fa8d299 2913 for_each_domain(rq->cpu, sd) {
d7c01d27 2914 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2915 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2916 break;
2917 }
2918 }
057f3fad 2919 rcu_read_unlock();
d7c01d27 2920 }
f339b9dc
PZ
2921
2922 if (wake_flags & WF_MIGRATED)
b85c8b71 2923 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2924#endif /* CONFIG_SMP */
2925
b85c8b71
PZ
2926 __schedstat_inc(rq->ttwu_count);
2927 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2928
2929 if (wake_flags & WF_SYNC)
b85c8b71 2930 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2931}
2932
23f41eeb
PZ
2933/*
2934 * Mark the task runnable and perform wakeup-preemption.
2935 */
e7904a28 2936static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2937 struct rq_flags *rf)
9ed3811a 2938{
9ed3811a 2939 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2940 p->state = TASK_RUNNING;
fbd705a0
PZ
2941 trace_sched_wakeup(p);
2942
9ed3811a 2943#ifdef CONFIG_SMP
4c9a4bc8
PZ
2944 if (p->sched_class->task_woken) {
2945 /*
b19a888c 2946 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 2947 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2948 */
d8ac8971 2949 rq_unpin_lock(rq, rf);
9ed3811a 2950 p->sched_class->task_woken(rq, p);
d8ac8971 2951 rq_repin_lock(rq, rf);
4c9a4bc8 2952 }
9ed3811a 2953
e69c6341 2954 if (rq->idle_stamp) {
78becc27 2955 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2956 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2957
abfafa54
JL
2958 update_avg(&rq->avg_idle, delta);
2959
2960 if (rq->avg_idle > max)
9ed3811a 2961 rq->avg_idle = max;
abfafa54 2962
9ed3811a
TH
2963 rq->idle_stamp = 0;
2964 }
2965#endif
2966}
2967
c05fbafb 2968static void
e7904a28 2969ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2970 struct rq_flags *rf)
c05fbafb 2971{
77558e4d 2972 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2973
cbce1a68
PZ
2974 lockdep_assert_held(&rq->lock);
2975
c05fbafb
PZ
2976 if (p->sched_contributes_to_load)
2977 rq->nr_uninterruptible--;
b5179ac7 2978
dbfb089d 2979#ifdef CONFIG_SMP
b5179ac7 2980 if (wake_flags & WF_MIGRATED)
59efa0ba 2981 en_flags |= ENQUEUE_MIGRATED;
ec618b84 2982 else
c05fbafb 2983#endif
ec618b84
PZ
2984 if (p->in_iowait) {
2985 delayacct_blkio_end(p);
2986 atomic_dec(&task_rq(p)->nr_iowait);
2987 }
c05fbafb 2988
1b174a2c 2989 activate_task(rq, p, en_flags);
d8ac8971 2990 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2991}
2992
2993/*
58877d34
PZ
2994 * Consider @p being inside a wait loop:
2995 *
2996 * for (;;) {
2997 * set_current_state(TASK_UNINTERRUPTIBLE);
2998 *
2999 * if (CONDITION)
3000 * break;
3001 *
3002 * schedule();
3003 * }
3004 * __set_current_state(TASK_RUNNING);
3005 *
3006 * between set_current_state() and schedule(). In this case @p is still
3007 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3008 * an atomic manner.
3009 *
3010 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3011 * then schedule() must still happen and p->state can be changed to
3012 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3013 * need to do a full wakeup with enqueue.
3014 *
3015 * Returns: %true when the wakeup is done,
3016 * %false otherwise.
c05fbafb 3017 */
58877d34 3018static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3019{
eb580751 3020 struct rq_flags rf;
c05fbafb
PZ
3021 struct rq *rq;
3022 int ret = 0;
3023
eb580751 3024 rq = __task_rq_lock(p, &rf);
da0c1e65 3025 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3026 /* check_preempt_curr() may use rq clock */
3027 update_rq_clock(rq);
d8ac8971 3028 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3029 ret = 1;
3030 }
eb580751 3031 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3032
3033 return ret;
3034}
3035
317f3941 3036#ifdef CONFIG_SMP
a1488664 3037void sched_ttwu_pending(void *arg)
317f3941 3038{
a1488664 3039 struct llist_node *llist = arg;
317f3941 3040 struct rq *rq = this_rq();
73215849 3041 struct task_struct *p, *t;
d8ac8971 3042 struct rq_flags rf;
317f3941 3043
e3baac47
PZ
3044 if (!llist)
3045 return;
3046
126c2092
PZ
3047 /*
3048 * rq::ttwu_pending racy indication of out-standing wakeups.
3049 * Races such that false-negatives are possible, since they
3050 * are shorter lived that false-positives would be.
3051 */
3052 WRITE_ONCE(rq->ttwu_pending, 0);
3053
8a8c69c3 3054 rq_lock_irqsave(rq, &rf);
77558e4d 3055 update_rq_clock(rq);
317f3941 3056
8c4890d1 3057 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3058 if (WARN_ON_ONCE(p->on_cpu))
3059 smp_cond_load_acquire(&p->on_cpu, !VAL);
3060
3061 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3062 set_task_cpu(p, cpu_of(rq));
3063
73215849 3064 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3065 }
317f3941 3066
8a8c69c3 3067 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3068}
3069
b2a02fc4 3070void send_call_function_single_ipi(int cpu)
317f3941 3071{
b2a02fc4 3072 struct rq *rq = cpu_rq(cpu);
ca38062e 3073
b2a02fc4
PZ
3074 if (!set_nr_if_polling(rq->idle))
3075 arch_send_call_function_single_ipi(cpu);
3076 else
3077 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3078}
3079
2ebb1771
MG
3080/*
3081 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3082 * necessary. The wakee CPU on receipt of the IPI will queue the task
3083 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3084 * of the wakeup instead of the waker.
3085 */
3086static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3087{
e3baac47
PZ
3088 struct rq *rq = cpu_rq(cpu);
3089
b7e7ade3
PZ
3090 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3091
126c2092 3092 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3093 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3094}
d6aa8f85 3095
f6be8af1
CL
3096void wake_up_if_idle(int cpu)
3097{
3098 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3099 struct rq_flags rf;
f6be8af1 3100
fd7de1e8
AL
3101 rcu_read_lock();
3102
3103 if (!is_idle_task(rcu_dereference(rq->curr)))
3104 goto out;
f6be8af1
CL
3105
3106 if (set_nr_if_polling(rq->idle)) {
3107 trace_sched_wake_idle_without_ipi(cpu);
3108 } else {
8a8c69c3 3109 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3110 if (is_idle_task(rq->curr))
3111 smp_send_reschedule(cpu);
d1ccc66d 3112 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3113 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3114 }
fd7de1e8
AL
3115
3116out:
3117 rcu_read_unlock();
f6be8af1
CL
3118}
3119
39be3501 3120bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3121{
3122 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3123}
c6e7bd7a 3124
2ebb1771
MG
3125static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3126{
5ba2ffba
PZ
3127 /*
3128 * Do not complicate things with the async wake_list while the CPU is
3129 * in hotplug state.
3130 */
3131 if (!cpu_active(cpu))
3132 return false;
3133
2ebb1771
MG
3134 /*
3135 * If the CPU does not share cache, then queue the task on the
3136 * remote rqs wakelist to avoid accessing remote data.
3137 */
3138 if (!cpus_share_cache(smp_processor_id(), cpu))
3139 return true;
3140
3141 /*
3142 * If the task is descheduling and the only running task on the
3143 * CPU then use the wakelist to offload the task activation to
3144 * the soon-to-be-idle CPU as the current CPU is likely busy.
3145 * nr_running is checked to avoid unnecessary task stacking.
3146 */
739f70b4 3147 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3148 return true;
3149
3150 return false;
3151}
3152
3153static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3154{
2ebb1771 3155 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3156 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3157 return false;
3158
c6e7bd7a 3159 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3160 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3161 return true;
3162 }
3163
3164 return false;
3165}
58877d34
PZ
3166
3167#else /* !CONFIG_SMP */
3168
3169static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3170{
3171 return false;
3172}
3173
d6aa8f85 3174#endif /* CONFIG_SMP */
317f3941 3175
b5179ac7 3176static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3177{
3178 struct rq *rq = cpu_rq(cpu);
d8ac8971 3179 struct rq_flags rf;
c05fbafb 3180
2ebb1771 3181 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3182 return;
317f3941 3183
8a8c69c3 3184 rq_lock(rq, &rf);
77558e4d 3185 update_rq_clock(rq);
d8ac8971 3186 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3187 rq_unlock(rq, &rf);
9ed3811a
TH
3188}
3189
8643cda5
PZ
3190/*
3191 * Notes on Program-Order guarantees on SMP systems.
3192 *
3193 * MIGRATION
3194 *
3195 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3196 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3197 * execution on its new CPU [c1].
8643cda5
PZ
3198 *
3199 * For migration (of runnable tasks) this is provided by the following means:
3200 *
3201 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3202 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3203 * rq(c1)->lock (if not at the same time, then in that order).
3204 * C) LOCK of the rq(c1)->lock scheduling in task
3205 *
7696f991 3206 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3207 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3208 *
3209 * Example:
3210 *
3211 * CPU0 CPU1 CPU2
3212 *
3213 * LOCK rq(0)->lock
3214 * sched-out X
3215 * sched-in Y
3216 * UNLOCK rq(0)->lock
3217 *
3218 * LOCK rq(0)->lock // orders against CPU0
3219 * dequeue X
3220 * UNLOCK rq(0)->lock
3221 *
3222 * LOCK rq(1)->lock
3223 * enqueue X
3224 * UNLOCK rq(1)->lock
3225 *
3226 * LOCK rq(1)->lock // orders against CPU2
3227 * sched-out Z
3228 * sched-in X
3229 * UNLOCK rq(1)->lock
3230 *
3231 *
3232 * BLOCKING -- aka. SLEEP + WAKEUP
3233 *
3234 * For blocking we (obviously) need to provide the same guarantee as for
3235 * migration. However the means are completely different as there is no lock
3236 * chain to provide order. Instead we do:
3237 *
58877d34
PZ
3238 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3239 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3240 *
3241 * Example:
3242 *
3243 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3244 *
3245 * LOCK rq(0)->lock LOCK X->pi_lock
3246 * dequeue X
3247 * sched-out X
3248 * smp_store_release(X->on_cpu, 0);
3249 *
1f03e8d2 3250 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3251 * X->state = WAKING
3252 * set_task_cpu(X,2)
3253 *
3254 * LOCK rq(2)->lock
3255 * enqueue X
3256 * X->state = RUNNING
3257 * UNLOCK rq(2)->lock
3258 *
3259 * LOCK rq(2)->lock // orders against CPU1
3260 * sched-out Z
3261 * sched-in X
3262 * UNLOCK rq(2)->lock
3263 *
3264 * UNLOCK X->pi_lock
3265 * UNLOCK rq(0)->lock
3266 *
3267 *
7696f991
AP
3268 * However, for wakeups there is a second guarantee we must provide, namely we
3269 * must ensure that CONDITION=1 done by the caller can not be reordered with
3270 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3271 */
3272
9ed3811a 3273/**
1da177e4 3274 * try_to_wake_up - wake up a thread
9ed3811a 3275 * @p: the thread to be awakened
1da177e4 3276 * @state: the mask of task states that can be woken
9ed3811a 3277 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3278 *
58877d34
PZ
3279 * Conceptually does:
3280 *
3281 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3282 *
a2250238
PZ
3283 * If the task was not queued/runnable, also place it back on a runqueue.
3284 *
58877d34
PZ
3285 * This function is atomic against schedule() which would dequeue the task.
3286 *
3287 * It issues a full memory barrier before accessing @p->state, see the comment
3288 * with set_current_state().
a2250238 3289 *
58877d34 3290 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3291 *
58877d34
PZ
3292 * Relies on p->pi_lock stabilizing:
3293 * - p->sched_class
3294 * - p->cpus_ptr
3295 * - p->sched_task_group
3296 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3297 *
3298 * Tries really hard to only take one task_rq(p)->lock for performance.
3299 * Takes rq->lock in:
3300 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3301 * - ttwu_queue() -- new rq, for enqueue of the task;
3302 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3303 *
3304 * As a consequence we race really badly with just about everything. See the
3305 * many memory barriers and their comments for details.
7696f991 3306 *
a2250238
PZ
3307 * Return: %true if @p->state changes (an actual wakeup was done),
3308 * %false otherwise.
1da177e4 3309 */
e4a52bcb
PZ
3310static int
3311try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3312{
1da177e4 3313 unsigned long flags;
c05fbafb 3314 int cpu, success = 0;
2398f2c6 3315
e3d85487 3316 preempt_disable();
aacedf26
PZ
3317 if (p == current) {
3318 /*
3319 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3320 * == smp_processor_id()'. Together this means we can special
58877d34 3321 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3322 * without taking any locks.
3323 *
3324 * In particular:
3325 * - we rely on Program-Order guarantees for all the ordering,
3326 * - we're serialized against set_special_state() by virtue of
3327 * it disabling IRQs (this allows not taking ->pi_lock).
3328 */
3329 if (!(p->state & state))
e3d85487 3330 goto out;
aacedf26
PZ
3331
3332 success = 1;
aacedf26
PZ
3333 trace_sched_waking(p);
3334 p->state = TASK_RUNNING;
3335 trace_sched_wakeup(p);
3336 goto out;
3337 }
3338
e0acd0a6
ON
3339 /*
3340 * If we are going to wake up a thread waiting for CONDITION we
3341 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3342 * reordered with p->state check below. This pairs with smp_store_mb()
3343 * in set_current_state() that the waiting thread does.
e0acd0a6 3344 */
013fdb80 3345 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3346 smp_mb__after_spinlock();
e9c84311 3347 if (!(p->state & state))
aacedf26 3348 goto unlock;
1da177e4 3349
fbd705a0
PZ
3350 trace_sched_waking(p);
3351
d1ccc66d
IM
3352 /* We're going to change ->state: */
3353 success = 1;
1da177e4 3354
135e8c92
BS
3355 /*
3356 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3357 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3358 * in smp_cond_load_acquire() below.
3359 *
3d85b270
AP
3360 * sched_ttwu_pending() try_to_wake_up()
3361 * STORE p->on_rq = 1 LOAD p->state
3362 * UNLOCK rq->lock
3363 *
3364 * __schedule() (switch to task 'p')
3365 * LOCK rq->lock smp_rmb();
3366 * smp_mb__after_spinlock();
3367 * UNLOCK rq->lock
135e8c92
BS
3368 *
3369 * [task p]
3d85b270 3370 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3371 *
3d85b270
AP
3372 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3373 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3374 *
3375 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3376 */
3377 smp_rmb();
58877d34 3378 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3379 goto unlock;
1da177e4 3380
1da177e4 3381#ifdef CONFIG_SMP
ecf7d01c
PZ
3382 /*
3383 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3384 * possible to, falsely, observe p->on_cpu == 0.
3385 *
3386 * One must be running (->on_cpu == 1) in order to remove oneself
3387 * from the runqueue.
3388 *
3d85b270
AP
3389 * __schedule() (switch to task 'p') try_to_wake_up()
3390 * STORE p->on_cpu = 1 LOAD p->on_rq
3391 * UNLOCK rq->lock
3392 *
3393 * __schedule() (put 'p' to sleep)
3394 * LOCK rq->lock smp_rmb();
3395 * smp_mb__after_spinlock();
3396 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3397 *
3d85b270
AP
3398 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3399 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3400 *
3401 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3402 * schedule()'s deactivate_task() has 'happened' and p will no longer
3403 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3404 */
dbfb089d
PZ
3405 smp_acquire__after_ctrl_dep();
3406
3407 /*
3408 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3409 * == 0), which means we need to do an enqueue, change p->state to
3410 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3411 * enqueue, such as ttwu_queue_wakelist().
3412 */
3413 p->state = TASK_WAKING;
ecf7d01c 3414
c6e7bd7a
PZ
3415 /*
3416 * If the owning (remote) CPU is still in the middle of schedule() with
3417 * this task as prev, considering queueing p on the remote CPUs wake_list
3418 * which potentially sends an IPI instead of spinning on p->on_cpu to
3419 * let the waker make forward progress. This is safe because IRQs are
3420 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3421 *
3422 * Ensure we load task_cpu(p) after p->on_cpu:
3423 *
3424 * set_task_cpu(p, cpu);
3425 * STORE p->cpu = @cpu
3426 * __schedule() (switch to task 'p')
3427 * LOCK rq->lock
3428 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3429 * STORE p->on_cpu = 1 LOAD p->cpu
3430 *
3431 * to ensure we observe the correct CPU on which the task is currently
3432 * scheduling.
c6e7bd7a 3433 */
b6e13e85 3434 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3435 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3436 goto unlock;
3437
e9c84311 3438 /*
d1ccc66d 3439 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3440 * this task as prev, wait until it's done referencing the task.
b75a2253 3441 *
31cb1bc0 3442 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3443 *
3444 * This ensures that tasks getting woken will be fully ordered against
3445 * their previous state and preserve Program Order.
0970d299 3446 */
1f03e8d2 3447 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3448
3aef1551 3449 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3450 if (task_cpu(p) != cpu) {
ec618b84
PZ
3451 if (p->in_iowait) {
3452 delayacct_blkio_end(p);
3453 atomic_dec(&task_rq(p)->nr_iowait);
3454 }
3455
f339b9dc 3456 wake_flags |= WF_MIGRATED;
eb414681 3457 psi_ttwu_dequeue(p);
e4a52bcb 3458 set_task_cpu(p, cpu);
f339b9dc 3459 }
b6e13e85
PZ
3460#else
3461 cpu = task_cpu(p);
1da177e4 3462#endif /* CONFIG_SMP */
1da177e4 3463
b5179ac7 3464 ttwu_queue(p, cpu, wake_flags);
aacedf26 3465unlock:
013fdb80 3466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3467out:
3468 if (success)
b6e13e85 3469 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3470 preempt_enable();
1da177e4
LT
3471
3472 return success;
3473}
3474
2beaf328
PM
3475/**
3476 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3477 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3478 * @func: Function to invoke.
3479 * @arg: Argument to function.
3480 *
3481 * If the specified task can be quickly locked into a definite state
3482 * (either sleeping or on a given runqueue), arrange to keep it in that
3483 * state while invoking @func(@arg). This function can use ->on_rq and
3484 * task_curr() to work out what the state is, if required. Given that
3485 * @func can be invoked with a runqueue lock held, it had better be quite
3486 * lightweight.
3487 *
3488 * Returns:
3489 * @false if the task slipped out from under the locks.
3490 * @true if the task was locked onto a runqueue or is sleeping.
3491 * However, @func can override this by returning @false.
3492 */
3493bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3494{
2beaf328 3495 struct rq_flags rf;
1b7af295 3496 bool ret = false;
2beaf328
PM
3497 struct rq *rq;
3498
1b7af295 3499 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3500 if (p->on_rq) {
3501 rq = __task_rq_lock(p, &rf);
3502 if (task_rq(p) == rq)
3503 ret = func(p, arg);
3504 rq_unlock(rq, &rf);
3505 } else {
3506 switch (p->state) {
3507 case TASK_RUNNING:
3508 case TASK_WAKING:
3509 break;
3510 default:
3511 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3512 if (!p->on_rq)
3513 ret = func(p, arg);
3514 }
3515 }
1b7af295 3516 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3517 return ret;
3518}
3519
50fa610a
DH
3520/**
3521 * wake_up_process - Wake up a specific process
3522 * @p: The process to be woken up.
3523 *
3524 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3525 * processes.
3526 *
3527 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3528 *
7696f991 3529 * This function executes a full memory barrier before accessing the task state.
50fa610a 3530 */
7ad5b3a5 3531int wake_up_process(struct task_struct *p)
1da177e4 3532{
9067ac85 3533 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3534}
1da177e4
LT
3535EXPORT_SYMBOL(wake_up_process);
3536
7ad5b3a5 3537int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3538{
3539 return try_to_wake_up(p, state, 0);
3540}
3541
1da177e4
LT
3542/*
3543 * Perform scheduler related setup for a newly forked process p.
3544 * p is forked by current.
dd41f596
IM
3545 *
3546 * __sched_fork() is basic setup used by init_idle() too:
3547 */
5e1576ed 3548static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3549{
fd2f4419
PZ
3550 p->on_rq = 0;
3551
3552 p->se.on_rq = 0;
dd41f596
IM
3553 p->se.exec_start = 0;
3554 p->se.sum_exec_runtime = 0;
f6cf891c 3555 p->se.prev_sum_exec_runtime = 0;
6c594c21 3556 p->se.nr_migrations = 0;
da7a735e 3557 p->se.vruntime = 0;
fd2f4419 3558 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3559
ad936d86
BP
3560#ifdef CONFIG_FAIR_GROUP_SCHED
3561 p->se.cfs_rq = NULL;
3562#endif
3563
6cfb0d5d 3564#ifdef CONFIG_SCHEDSTATS
cb251765 3565 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3566 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3567#endif
476d139c 3568
aab03e05 3569 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3570 init_dl_task_timer(&p->dl);
209a0cbd 3571 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3572 __dl_clear_params(p);
aab03e05 3573
fa717060 3574 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3575 p->rt.timeout = 0;
3576 p->rt.time_slice = sched_rr_timeslice;
3577 p->rt.on_rq = 0;
3578 p->rt.on_list = 0;
476d139c 3579
e107be36
AK
3580#ifdef CONFIG_PREEMPT_NOTIFIERS
3581 INIT_HLIST_HEAD(&p->preempt_notifiers);
3582#endif
cbee9f88 3583
5e1f0f09
MG
3584#ifdef CONFIG_COMPACTION
3585 p->capture_control = NULL;
3586#endif
13784475 3587 init_numa_balancing(clone_flags, p);
a1488664 3588#ifdef CONFIG_SMP
8c4890d1 3589 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3590 p->migration_pending = NULL;
a1488664 3591#endif
dd41f596
IM
3592}
3593
2a595721
SD
3594DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3595
1a687c2e 3596#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3597
1a687c2e
MG
3598void set_numabalancing_state(bool enabled)
3599{
3600 if (enabled)
2a595721 3601 static_branch_enable(&sched_numa_balancing);
1a687c2e 3602 else
2a595721 3603 static_branch_disable(&sched_numa_balancing);
1a687c2e 3604}
54a43d54
AK
3605
3606#ifdef CONFIG_PROC_SYSCTL
3607int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3608 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3609{
3610 struct ctl_table t;
3611 int err;
2a595721 3612 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3613
3614 if (write && !capable(CAP_SYS_ADMIN))
3615 return -EPERM;
3616
3617 t = *table;
3618 t.data = &state;
3619 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3620 if (err < 0)
3621 return err;
3622 if (write)
3623 set_numabalancing_state(state);
3624 return err;
3625}
3626#endif
3627#endif
dd41f596 3628
4698f88c
JP
3629#ifdef CONFIG_SCHEDSTATS
3630
cb251765 3631DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3632static bool __initdata __sched_schedstats = false;
cb251765 3633
cb251765
MG
3634static void set_schedstats(bool enabled)
3635{
3636 if (enabled)
3637 static_branch_enable(&sched_schedstats);
3638 else
3639 static_branch_disable(&sched_schedstats);
3640}
3641
3642void force_schedstat_enabled(void)
3643{
3644 if (!schedstat_enabled()) {
3645 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3646 static_branch_enable(&sched_schedstats);
3647 }
3648}
3649
3650static int __init setup_schedstats(char *str)
3651{
3652 int ret = 0;
3653 if (!str)
3654 goto out;
3655
4698f88c
JP
3656 /*
3657 * This code is called before jump labels have been set up, so we can't
3658 * change the static branch directly just yet. Instead set a temporary
3659 * variable so init_schedstats() can do it later.
3660 */
cb251765 3661 if (!strcmp(str, "enable")) {
4698f88c 3662 __sched_schedstats = true;
cb251765
MG
3663 ret = 1;
3664 } else if (!strcmp(str, "disable")) {
4698f88c 3665 __sched_schedstats = false;
cb251765
MG
3666 ret = 1;
3667 }
3668out:
3669 if (!ret)
3670 pr_warn("Unable to parse schedstats=\n");
3671
3672 return ret;
3673}
3674__setup("schedstats=", setup_schedstats);
3675
4698f88c
JP
3676static void __init init_schedstats(void)
3677{
3678 set_schedstats(__sched_schedstats);
3679}
3680
cb251765 3681#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3682int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3683 size_t *lenp, loff_t *ppos)
cb251765
MG
3684{
3685 struct ctl_table t;
3686 int err;
3687 int state = static_branch_likely(&sched_schedstats);
3688
3689 if (write && !capable(CAP_SYS_ADMIN))
3690 return -EPERM;
3691
3692 t = *table;
3693 t.data = &state;
3694 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3695 if (err < 0)
3696 return err;
3697 if (write)
3698 set_schedstats(state);
3699 return err;
3700}
4698f88c
JP
3701#endif /* CONFIG_PROC_SYSCTL */
3702#else /* !CONFIG_SCHEDSTATS */
3703static inline void init_schedstats(void) {}
3704#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3705
3706/*
3707 * fork()/clone()-time setup:
3708 */
aab03e05 3709int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3710{
0122ec5b 3711 unsigned long flags;
dd41f596 3712
5e1576ed 3713 __sched_fork(clone_flags, p);
06b83b5f 3714 /*
7dc603c9 3715 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3716 * nobody will actually run it, and a signal or other external
3717 * event cannot wake it up and insert it on the runqueue either.
3718 */
7dc603c9 3719 p->state = TASK_NEW;
dd41f596 3720
c350a04e
MG
3721 /*
3722 * Make sure we do not leak PI boosting priority to the child.
3723 */
3724 p->prio = current->normal_prio;
3725
e8f14172
PB
3726 uclamp_fork(p);
3727
b9dc29e7
MG
3728 /*
3729 * Revert to default priority/policy on fork if requested.
3730 */
3731 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3732 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3733 p->policy = SCHED_NORMAL;
6c697bdf 3734 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3735 p->rt_priority = 0;
3736 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3737 p->static_prio = NICE_TO_PRIO(0);
3738
3739 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3740 set_load_weight(p, false);
6c697bdf 3741
b9dc29e7
MG
3742 /*
3743 * We don't need the reset flag anymore after the fork. It has
3744 * fulfilled its duty:
3745 */
3746 p->sched_reset_on_fork = 0;
3747 }
ca94c442 3748
af0fffd9 3749 if (dl_prio(p->prio))
aab03e05 3750 return -EAGAIN;
af0fffd9 3751 else if (rt_prio(p->prio))
aab03e05 3752 p->sched_class = &rt_sched_class;
af0fffd9 3753 else
2ddbf952 3754 p->sched_class = &fair_sched_class;
b29739f9 3755
7dc603c9 3756 init_entity_runnable_average(&p->se);
cd29fe6f 3757
86951599
PZ
3758 /*
3759 * The child is not yet in the pid-hash so no cgroup attach races,
3760 * and the cgroup is pinned to this child due to cgroup_fork()
3761 * is ran before sched_fork().
3762 *
3763 * Silence PROVE_RCU.
3764 */
0122ec5b 3765 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3766 rseq_migrate(p);
e210bffd 3767 /*
d1ccc66d 3768 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3769 * so use __set_task_cpu().
3770 */
af0fffd9 3771 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3772 if (p->sched_class->task_fork)
3773 p->sched_class->task_fork(p);
0122ec5b 3774 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3775
f6db8347 3776#ifdef CONFIG_SCHED_INFO
dd41f596 3777 if (likely(sched_info_on()))
52f17b6c 3778 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3779#endif
3ca7a440
PZ
3780#if defined(CONFIG_SMP)
3781 p->on_cpu = 0;
4866cde0 3782#endif
01028747 3783 init_task_preempt_count(p);
806c09a7 3784#ifdef CONFIG_SMP
917b627d 3785 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3786 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3787#endif
aab03e05 3788 return 0;
1da177e4
LT
3789}
3790
13685c4a
QY
3791void sched_post_fork(struct task_struct *p)
3792{
3793 uclamp_post_fork(p);
3794}
3795
332ac17e
DF
3796unsigned long to_ratio(u64 period, u64 runtime)
3797{
3798 if (runtime == RUNTIME_INF)
c52f14d3 3799 return BW_UNIT;
332ac17e
DF
3800
3801 /*
3802 * Doing this here saves a lot of checks in all
3803 * the calling paths, and returning zero seems
3804 * safe for them anyway.
3805 */
3806 if (period == 0)
3807 return 0;
3808
c52f14d3 3809 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3810}
3811
1da177e4
LT
3812/*
3813 * wake_up_new_task - wake up a newly created task for the first time.
3814 *
3815 * This function will do some initial scheduler statistics housekeeping
3816 * that must be done for every newly created context, then puts the task
3817 * on the runqueue and wakes it.
3818 */
3e51e3ed 3819void wake_up_new_task(struct task_struct *p)
1da177e4 3820{
eb580751 3821 struct rq_flags rf;
dd41f596 3822 struct rq *rq;
fabf318e 3823
eb580751 3824 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3825 p->state = TASK_RUNNING;
fabf318e
PZ
3826#ifdef CONFIG_SMP
3827 /*
3828 * Fork balancing, do it here and not earlier because:
3bd37062 3829 * - cpus_ptr can change in the fork path
d1ccc66d 3830 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3831 *
3832 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3833 * as we're not fully set-up yet.
fabf318e 3834 */
32e839dd 3835 p->recent_used_cpu = task_cpu(p);
ce3614da 3836 rseq_migrate(p);
3aef1551 3837 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 3838#endif
b7fa30c9 3839 rq = __task_rq_lock(p, &rf);
4126bad6 3840 update_rq_clock(rq);
d0fe0b9c 3841 post_init_entity_util_avg(p);
0017d735 3842
7a57f32a 3843 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3844 trace_sched_wakeup_new(p);
a7558e01 3845 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3846#ifdef CONFIG_SMP
0aaafaab
PZ
3847 if (p->sched_class->task_woken) {
3848 /*
b19a888c 3849 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
3850 * drop it.
3851 */
d8ac8971 3852 rq_unpin_lock(rq, &rf);
efbbd05a 3853 p->sched_class->task_woken(rq, p);
d8ac8971 3854 rq_repin_lock(rq, &rf);
0aaafaab 3855 }
9a897c5a 3856#endif
eb580751 3857 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3858}
3859
e107be36
AK
3860#ifdef CONFIG_PREEMPT_NOTIFIERS
3861
b7203428 3862static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3863
2ecd9d29
PZ
3864void preempt_notifier_inc(void)
3865{
b7203428 3866 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3867}
3868EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3869
3870void preempt_notifier_dec(void)
3871{
b7203428 3872 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3873}
3874EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3875
e107be36 3876/**
80dd99b3 3877 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3878 * @notifier: notifier struct to register
e107be36
AK
3879 */
3880void preempt_notifier_register(struct preempt_notifier *notifier)
3881{
b7203428 3882 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3883 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3884
e107be36
AK
3885 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3886}
3887EXPORT_SYMBOL_GPL(preempt_notifier_register);
3888
3889/**
3890 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3891 * @notifier: notifier struct to unregister
e107be36 3892 *
d84525a8 3893 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3894 */
3895void preempt_notifier_unregister(struct preempt_notifier *notifier)
3896{
3897 hlist_del(&notifier->link);
3898}
3899EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3900
1cde2930 3901static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3902{
3903 struct preempt_notifier *notifier;
e107be36 3904
b67bfe0d 3905 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3906 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3907}
3908
1cde2930
PZ
3909static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3910{
b7203428 3911 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3912 __fire_sched_in_preempt_notifiers(curr);
3913}
3914
e107be36 3915static void
1cde2930
PZ
3916__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3917 struct task_struct *next)
e107be36
AK
3918{
3919 struct preempt_notifier *notifier;
e107be36 3920
b67bfe0d 3921 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3922 notifier->ops->sched_out(notifier, next);
3923}
3924
1cde2930
PZ
3925static __always_inline void
3926fire_sched_out_preempt_notifiers(struct task_struct *curr,
3927 struct task_struct *next)
3928{
b7203428 3929 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3930 __fire_sched_out_preempt_notifiers(curr, next);
3931}
3932
6d6bc0ad 3933#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3934
1cde2930 3935static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3936{
3937}
3938
1cde2930 3939static inline void
e107be36
AK
3940fire_sched_out_preempt_notifiers(struct task_struct *curr,
3941 struct task_struct *next)
3942{
3943}
3944
6d6bc0ad 3945#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3946
31cb1bc0 3947static inline void prepare_task(struct task_struct *next)
3948{
3949#ifdef CONFIG_SMP
3950 /*
3951 * Claim the task as running, we do this before switching to it
3952 * such that any running task will have this set.
58877d34
PZ
3953 *
3954 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3955 */
58877d34 3956 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3957#endif
3958}
3959
3960static inline void finish_task(struct task_struct *prev)
3961{
3962#ifdef CONFIG_SMP
3963 /*
58877d34
PZ
3964 * This must be the very last reference to @prev from this CPU. After
3965 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3966 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3967 * finished.
3968 *
3969 * In particular, the load of prev->state in finish_task_switch() must
3970 * happen before this.
3971 *
3972 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3973 */
3974 smp_store_release(&prev->on_cpu, 0);
3975#endif
3976}
3977
565790d2
PZ
3978#ifdef CONFIG_SMP
3979
3980static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3981{
3982 void (*func)(struct rq *rq);
3983 struct callback_head *next;
3984
3985 lockdep_assert_held(&rq->lock);
3986
3987 while (head) {
3988 func = (void (*)(struct rq *))head->func;
3989 next = head->next;
3990 head->next = NULL;
3991 head = next;
3992
3993 func(rq);
3994 }
3995}
3996
ae792702
PZ
3997static void balance_push(struct rq *rq);
3998
3999struct callback_head balance_push_callback = {
4000 .next = NULL,
4001 .func = (void (*)(struct callback_head *))balance_push,
4002};
4003
565790d2
PZ
4004static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4005{
4006 struct callback_head *head = rq->balance_callback;
4007
4008 lockdep_assert_held(&rq->lock);
ae792702 4009 if (head)
565790d2
PZ
4010 rq->balance_callback = NULL;
4011
4012 return head;
4013}
4014
4015static void __balance_callbacks(struct rq *rq)
4016{
4017 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4018}
4019
4020static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4021{
4022 unsigned long flags;
4023
4024 if (unlikely(head)) {
4025 raw_spin_lock_irqsave(&rq->lock, flags);
4026 do_balance_callbacks(rq, head);
4027 raw_spin_unlock_irqrestore(&rq->lock, flags);
4028 }
4029}
4030
4031#else
4032
4033static inline void __balance_callbacks(struct rq *rq)
4034{
4035}
4036
4037static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4038{
4039 return NULL;
4040}
4041
4042static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4043{
4044}
4045
4046#endif
4047
269d5992
PZ
4048static inline void
4049prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4050{
269d5992
PZ
4051 /*
4052 * Since the runqueue lock will be released by the next
4053 * task (which is an invalid locking op but in the case
4054 * of the scheduler it's an obvious special-case), so we
4055 * do an early lockdep release here:
4056 */
4057 rq_unpin_lock(rq, rf);
5facae4f 4058 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 4059#ifdef CONFIG_DEBUG_SPINLOCK
4060 /* this is a valid case when another task releases the spinlock */
269d5992 4061 rq->lock.owner = next;
31cb1bc0 4062#endif
269d5992
PZ
4063}
4064
4065static inline void finish_lock_switch(struct rq *rq)
4066{
31cb1bc0 4067 /*
4068 * If we are tracking spinlock dependencies then we have to
4069 * fix up the runqueue lock - which gets 'carried over' from
4070 * prev into current:
4071 */
4072 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
ae792702 4073 __balance_callbacks(rq);
31cb1bc0 4074 raw_spin_unlock_irq(&rq->lock);
4075}
4076
325ea10c
IM
4077/*
4078 * NOP if the arch has not defined these:
4079 */
4080
4081#ifndef prepare_arch_switch
4082# define prepare_arch_switch(next) do { } while (0)
4083#endif
4084
4085#ifndef finish_arch_post_lock_switch
4086# define finish_arch_post_lock_switch() do { } while (0)
4087#endif
4088
5fbda3ec
TG
4089static inline void kmap_local_sched_out(void)
4090{
4091#ifdef CONFIG_KMAP_LOCAL
4092 if (unlikely(current->kmap_ctrl.idx))
4093 __kmap_local_sched_out();
4094#endif
4095}
4096
4097static inline void kmap_local_sched_in(void)
4098{
4099#ifdef CONFIG_KMAP_LOCAL
4100 if (unlikely(current->kmap_ctrl.idx))
4101 __kmap_local_sched_in();
4102#endif
4103}
4104
4866cde0
NP
4105/**
4106 * prepare_task_switch - prepare to switch tasks
4107 * @rq: the runqueue preparing to switch
421cee29 4108 * @prev: the current task that is being switched out
4866cde0
NP
4109 * @next: the task we are going to switch to.
4110 *
4111 * This is called with the rq lock held and interrupts off. It must
4112 * be paired with a subsequent finish_task_switch after the context
4113 * switch.
4114 *
4115 * prepare_task_switch sets up locking and calls architecture specific
4116 * hooks.
4117 */
e107be36
AK
4118static inline void
4119prepare_task_switch(struct rq *rq, struct task_struct *prev,
4120 struct task_struct *next)
4866cde0 4121{
0ed557aa 4122 kcov_prepare_switch(prev);
43148951 4123 sched_info_switch(rq, prev, next);
fe4b04fa 4124 perf_event_task_sched_out(prev, next);
d7822b1e 4125 rseq_preempt(prev);
e107be36 4126 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4127 kmap_local_sched_out();
31cb1bc0 4128 prepare_task(next);
4866cde0
NP
4129 prepare_arch_switch(next);
4130}
4131
1da177e4
LT
4132/**
4133 * finish_task_switch - clean up after a task-switch
4134 * @prev: the thread we just switched away from.
4135 *
4866cde0
NP
4136 * finish_task_switch must be called after the context switch, paired
4137 * with a prepare_task_switch call before the context switch.
4138 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4139 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4140 *
4141 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4142 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4143 * with the lock held can cause deadlocks; see schedule() for
4144 * details.)
dfa50b60
ON
4145 *
4146 * The context switch have flipped the stack from under us and restored the
4147 * local variables which were saved when this task called schedule() in the
4148 * past. prev == current is still correct but we need to recalculate this_rq
4149 * because prev may have moved to another CPU.
1da177e4 4150 */
dfa50b60 4151static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4152 __releases(rq->lock)
4153{
dfa50b60 4154 struct rq *rq = this_rq();
1da177e4 4155 struct mm_struct *mm = rq->prev_mm;
55a101f8 4156 long prev_state;
1da177e4 4157
609ca066
PZ
4158 /*
4159 * The previous task will have left us with a preempt_count of 2
4160 * because it left us after:
4161 *
4162 * schedule()
4163 * preempt_disable(); // 1
4164 * __schedule()
4165 * raw_spin_lock_irq(&rq->lock) // 2
4166 *
4167 * Also, see FORK_PREEMPT_COUNT.
4168 */
e2bf1c4b
PZ
4169 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4170 "corrupted preempt_count: %s/%d/0x%x\n",
4171 current->comm, current->pid, preempt_count()))
4172 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4173
1da177e4
LT
4174 rq->prev_mm = NULL;
4175
4176 /*
4177 * A task struct has one reference for the use as "current".
c394cc9f 4178 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4179 * schedule one last time. The schedule call will never return, and
4180 * the scheduled task must drop that reference.
95913d97
PZ
4181 *
4182 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4183 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4184 * running on another CPU and we could rave with its RUNNING -> DEAD
4185 * transition, resulting in a double drop.
1da177e4 4186 */
55a101f8 4187 prev_state = prev->state;
bf9fae9f 4188 vtime_task_switch(prev);
a8d757ef 4189 perf_event_task_sched_in(prev, current);
31cb1bc0 4190 finish_task(prev);
4191 finish_lock_switch(rq);
01f23e16 4192 finish_arch_post_lock_switch();
0ed557aa 4193 kcov_finish_switch(current);
5fbda3ec
TG
4194 /*
4195 * kmap_local_sched_out() is invoked with rq::lock held and
4196 * interrupts disabled. There is no requirement for that, but the
4197 * sched out code does not have an interrupt enabled section.
4198 * Restoring the maps on sched in does not require interrupts being
4199 * disabled either.
4200 */
4201 kmap_local_sched_in();
e8fa1362 4202
e107be36 4203 fire_sched_in_preempt_notifiers(current);
306e0604 4204 /*
70216e18
MD
4205 * When switching through a kernel thread, the loop in
4206 * membarrier_{private,global}_expedited() may have observed that
4207 * kernel thread and not issued an IPI. It is therefore possible to
4208 * schedule between user->kernel->user threads without passing though
4209 * switch_mm(). Membarrier requires a barrier after storing to
4210 * rq->curr, before returning to userspace, so provide them here:
4211 *
4212 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4213 * provided by mmdrop(),
4214 * - a sync_core for SYNC_CORE.
306e0604 4215 */
70216e18
MD
4216 if (mm) {
4217 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4218 mmdrop(mm);
70216e18 4219 }
1cef1150
PZ
4220 if (unlikely(prev_state == TASK_DEAD)) {
4221 if (prev->sched_class->task_dead)
4222 prev->sched_class->task_dead(prev);
68f24b08 4223
1cef1150
PZ
4224 /*
4225 * Remove function-return probe instances associated with this
4226 * task and put them back on the free list.
4227 */
4228 kprobe_flush_task(prev);
4229
4230 /* Task is done with its stack. */
4231 put_task_stack(prev);
4232
0ff7b2cf 4233 put_task_struct_rcu_user(prev);
c6fd91f0 4234 }
99e5ada9 4235
de734f89 4236 tick_nohz_task_switch();
dfa50b60 4237 return rq;
1da177e4
LT
4238}
4239
4240/**
4241 * schedule_tail - first thing a freshly forked thread must call.
4242 * @prev: the thread we just switched away from.
4243 */
722a9f92 4244asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4245 __releases(rq->lock)
4246{
1a43a14a 4247 struct rq *rq;
da19ab51 4248
609ca066
PZ
4249 /*
4250 * New tasks start with FORK_PREEMPT_COUNT, see there and
4251 * finish_task_switch() for details.
4252 *
4253 * finish_task_switch() will drop rq->lock() and lower preempt_count
4254 * and the preempt_enable() will end up enabling preemption (on
4255 * PREEMPT_COUNT kernels).
4256 */
4257
dfa50b60 4258 rq = finish_task_switch(prev);
1a43a14a 4259 preempt_enable();
70b97a7f 4260
1da177e4 4261 if (current->set_child_tid)
b488893a 4262 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4263
4264 calculate_sigpending();
1da177e4
LT
4265}
4266
4267/*
dfa50b60 4268 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4269 */
04936948 4270static __always_inline struct rq *
70b97a7f 4271context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4272 struct task_struct *next, struct rq_flags *rf)
1da177e4 4273{
e107be36 4274 prepare_task_switch(rq, prev, next);
fe4b04fa 4275
9226d125
ZA
4276 /*
4277 * For paravirt, this is coupled with an exit in switch_to to
4278 * combine the page table reload and the switch backend into
4279 * one hypercall.
4280 */
224101ed 4281 arch_start_context_switch(prev);
9226d125 4282
306e0604 4283 /*
139d025c
PZ
4284 * kernel -> kernel lazy + transfer active
4285 * user -> kernel lazy + mmgrab() active
4286 *
4287 * kernel -> user switch + mmdrop() active
4288 * user -> user switch
306e0604 4289 */
139d025c
PZ
4290 if (!next->mm) { // to kernel
4291 enter_lazy_tlb(prev->active_mm, next);
4292
4293 next->active_mm = prev->active_mm;
4294 if (prev->mm) // from user
4295 mmgrab(prev->active_mm);
4296 else
4297 prev->active_mm = NULL;
4298 } else { // to user
227a4aad 4299 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4300 /*
4301 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4302 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4303 *
4304 * The below provides this either through switch_mm(), or in
4305 * case 'prev->active_mm == next->mm' through
4306 * finish_task_switch()'s mmdrop().
4307 */
139d025c 4308 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4309
139d025c
PZ
4310 if (!prev->mm) { // from kernel
4311 /* will mmdrop() in finish_task_switch(). */
4312 rq->prev_mm = prev->active_mm;
4313 prev->active_mm = NULL;
4314 }
1da177e4 4315 }
92509b73 4316
cb42c9a3 4317 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4318
269d5992 4319 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4320
4321 /* Here we just switch the register state and the stack. */
4322 switch_to(prev, next, prev);
dd41f596 4323 barrier();
dfa50b60
ON
4324
4325 return finish_task_switch(prev);
1da177e4
LT
4326}
4327
4328/*
1c3e8264 4329 * nr_running and nr_context_switches:
1da177e4
LT
4330 *
4331 * externally visible scheduler statistics: current number of runnable
1c3e8264 4332 * threads, total number of context switches performed since bootup.
1da177e4
LT
4333 */
4334unsigned long nr_running(void)
4335{
4336 unsigned long i, sum = 0;
4337
4338 for_each_online_cpu(i)
4339 sum += cpu_rq(i)->nr_running;
4340
4341 return sum;
f711f609 4342}
1da177e4 4343
2ee507c4 4344/*
d1ccc66d 4345 * Check if only the current task is running on the CPU.
00cc1633
DD
4346 *
4347 * Caution: this function does not check that the caller has disabled
4348 * preemption, thus the result might have a time-of-check-to-time-of-use
4349 * race. The caller is responsible to use it correctly, for example:
4350 *
dfcb245e 4351 * - from a non-preemptible section (of course)
00cc1633
DD
4352 *
4353 * - from a thread that is bound to a single CPU
4354 *
4355 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4356 */
4357bool single_task_running(void)
4358{
00cc1633 4359 return raw_rq()->nr_running == 1;
2ee507c4
TC
4360}
4361EXPORT_SYMBOL(single_task_running);
4362
1da177e4 4363unsigned long long nr_context_switches(void)
46cb4b7c 4364{
cc94abfc
SR
4365 int i;
4366 unsigned long long sum = 0;
46cb4b7c 4367
0a945022 4368 for_each_possible_cpu(i)
1da177e4 4369 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4370
1da177e4
LT
4371 return sum;
4372}
483b4ee6 4373
145d952a
DL
4374/*
4375 * Consumers of these two interfaces, like for example the cpuidle menu
4376 * governor, are using nonsensical data. Preferring shallow idle state selection
4377 * for a CPU that has IO-wait which might not even end up running the task when
4378 * it does become runnable.
4379 */
4380
4381unsigned long nr_iowait_cpu(int cpu)
4382{
4383 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4384}
4385
e33a9bba 4386/*
b19a888c 4387 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4388 *
4389 * The idea behind IO-wait account is to account the idle time that we could
4390 * have spend running if it were not for IO. That is, if we were to improve the
4391 * storage performance, we'd have a proportional reduction in IO-wait time.
4392 *
4393 * This all works nicely on UP, where, when a task blocks on IO, we account
4394 * idle time as IO-wait, because if the storage were faster, it could've been
4395 * running and we'd not be idle.
4396 *
4397 * This has been extended to SMP, by doing the same for each CPU. This however
4398 * is broken.
4399 *
4400 * Imagine for instance the case where two tasks block on one CPU, only the one
4401 * CPU will have IO-wait accounted, while the other has regular idle. Even
4402 * though, if the storage were faster, both could've ran at the same time,
4403 * utilising both CPUs.
4404 *
4405 * This means, that when looking globally, the current IO-wait accounting on
4406 * SMP is a lower bound, by reason of under accounting.
4407 *
4408 * Worse, since the numbers are provided per CPU, they are sometimes
4409 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4410 * associated with any one particular CPU, it can wake to another CPU than it
4411 * blocked on. This means the per CPU IO-wait number is meaningless.
4412 *
4413 * Task CPU affinities can make all that even more 'interesting'.
4414 */
4415
1da177e4
LT
4416unsigned long nr_iowait(void)
4417{
4418 unsigned long i, sum = 0;
483b4ee6 4419
0a945022 4420 for_each_possible_cpu(i)
145d952a 4421 sum += nr_iowait_cpu(i);
46cb4b7c 4422
1da177e4
LT
4423 return sum;
4424}
483b4ee6 4425
dd41f596 4426#ifdef CONFIG_SMP
8a0be9ef 4427
46cb4b7c 4428/*
38022906
PZ
4429 * sched_exec - execve() is a valuable balancing opportunity, because at
4430 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4431 */
38022906 4432void sched_exec(void)
46cb4b7c 4433{
38022906 4434 struct task_struct *p = current;
1da177e4 4435 unsigned long flags;
0017d735 4436 int dest_cpu;
46cb4b7c 4437
8f42ced9 4438 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4439 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4440 if (dest_cpu == smp_processor_id())
4441 goto unlock;
38022906 4442
8f42ced9 4443 if (likely(cpu_active(dest_cpu))) {
969c7921 4444 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4445
8f42ced9
PZ
4446 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4447 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4448 return;
4449 }
0017d735 4450unlock:
8f42ced9 4451 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4452}
dd41f596 4453
1da177e4
LT
4454#endif
4455
1da177e4 4456DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4457DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4458
4459EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4460EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4461
6075620b
GG
4462/*
4463 * The function fair_sched_class.update_curr accesses the struct curr
4464 * and its field curr->exec_start; when called from task_sched_runtime(),
4465 * we observe a high rate of cache misses in practice.
4466 * Prefetching this data results in improved performance.
4467 */
4468static inline void prefetch_curr_exec_start(struct task_struct *p)
4469{
4470#ifdef CONFIG_FAIR_GROUP_SCHED
4471 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4472#else
4473 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4474#endif
4475 prefetch(curr);
4476 prefetch(&curr->exec_start);
4477}
4478
c5f8d995
HS
4479/*
4480 * Return accounted runtime for the task.
4481 * In case the task is currently running, return the runtime plus current's
4482 * pending runtime that have not been accounted yet.
4483 */
4484unsigned long long task_sched_runtime(struct task_struct *p)
4485{
eb580751 4486 struct rq_flags rf;
c5f8d995 4487 struct rq *rq;
6e998916 4488 u64 ns;
c5f8d995 4489
911b2898
PZ
4490#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4491 /*
97fb7a0a 4492 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4493 * So we have a optimization chance when the task's delta_exec is 0.
4494 * Reading ->on_cpu is racy, but this is ok.
4495 *
d1ccc66d
IM
4496 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4497 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4498 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4499 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4500 * been accounted, so we're correct here as well.
911b2898 4501 */
da0c1e65 4502 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4503 return p->se.sum_exec_runtime;
4504#endif
4505
eb580751 4506 rq = task_rq_lock(p, &rf);
6e998916
SG
4507 /*
4508 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4509 * project cycles that may never be accounted to this
4510 * thread, breaking clock_gettime().
4511 */
4512 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4513 prefetch_curr_exec_start(p);
6e998916
SG
4514 update_rq_clock(rq);
4515 p->sched_class->update_curr(rq);
4516 }
4517 ns = p->se.sum_exec_runtime;
eb580751 4518 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4519
4520 return ns;
4521}
48f24c4d 4522
7835b98b
CL
4523/*
4524 * This function gets called by the timer code, with HZ frequency.
4525 * We call it with interrupts disabled.
7835b98b
CL
4526 */
4527void scheduler_tick(void)
4528{
7835b98b
CL
4529 int cpu = smp_processor_id();
4530 struct rq *rq = cpu_rq(cpu);
dd41f596 4531 struct task_struct *curr = rq->curr;
8a8c69c3 4532 struct rq_flags rf;
b4eccf5f 4533 unsigned long thermal_pressure;
3e51f33f 4534
1567c3e3 4535 arch_scale_freq_tick();
3e51f33f 4536 sched_clock_tick();
dd41f596 4537
8a8c69c3
PZ
4538 rq_lock(rq, &rf);
4539
3e51f33f 4540 update_rq_clock(rq);
b4eccf5f 4541 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4542 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4543 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4544 calc_global_load_tick(rq);
eb414681 4545 psi_task_tick(rq);
8a8c69c3
PZ
4546
4547 rq_unlock(rq, &rf);
7835b98b 4548
e9d2b064 4549 perf_event_task_tick();
e220d2dc 4550
e418e1c2 4551#ifdef CONFIG_SMP
6eb57e0d 4552 rq->idle_balance = idle_cpu(cpu);
7caff66f 4553 trigger_load_balance(rq);
e418e1c2 4554#endif
1da177e4
LT
4555}
4556
265f22a9 4557#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4558
4559struct tick_work {
4560 int cpu;
b55bd585 4561 atomic_t state;
d84b3131
FW
4562 struct delayed_work work;
4563};
b55bd585
PM
4564/* Values for ->state, see diagram below. */
4565#define TICK_SCHED_REMOTE_OFFLINE 0
4566#define TICK_SCHED_REMOTE_OFFLINING 1
4567#define TICK_SCHED_REMOTE_RUNNING 2
4568
4569/*
4570 * State diagram for ->state:
4571 *
4572 *
4573 * TICK_SCHED_REMOTE_OFFLINE
4574 * | ^
4575 * | |
4576 * | | sched_tick_remote()
4577 * | |
4578 * | |
4579 * +--TICK_SCHED_REMOTE_OFFLINING
4580 * | ^
4581 * | |
4582 * sched_tick_start() | | sched_tick_stop()
4583 * | |
4584 * V |
4585 * TICK_SCHED_REMOTE_RUNNING
4586 *
4587 *
4588 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4589 * and sched_tick_start() are happy to leave the state in RUNNING.
4590 */
d84b3131
FW
4591
4592static struct tick_work __percpu *tick_work_cpu;
4593
4594static void sched_tick_remote(struct work_struct *work)
4595{
4596 struct delayed_work *dwork = to_delayed_work(work);
4597 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4598 int cpu = twork->cpu;
4599 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4600 struct task_struct *curr;
d84b3131 4601 struct rq_flags rf;
d9c0ffca 4602 u64 delta;
b55bd585 4603 int os;
d84b3131
FW
4604
4605 /*
4606 * Handle the tick only if it appears the remote CPU is running in full
4607 * dynticks mode. The check is racy by nature, but missing a tick or
4608 * having one too much is no big deal because the scheduler tick updates
4609 * statistics and checks timeslices in a time-independent way, regardless
4610 * of when exactly it is running.
4611 */
488603b8 4612 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4613 goto out_requeue;
d84b3131 4614
d9c0ffca
FW
4615 rq_lock_irq(rq, &rf);
4616 curr = rq->curr;
488603b8 4617 if (cpu_is_offline(cpu))
d9c0ffca 4618 goto out_unlock;
d84b3131 4619
d9c0ffca 4620 update_rq_clock(rq);
d9c0ffca 4621
488603b8
SW
4622 if (!is_idle_task(curr)) {
4623 /*
4624 * Make sure the next tick runs within a reasonable
4625 * amount of time.
4626 */
4627 delta = rq_clock_task(rq) - curr->se.exec_start;
4628 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4629 }
d9c0ffca
FW
4630 curr->sched_class->task_tick(rq, curr, 0);
4631
ebc0f83c 4632 calc_load_nohz_remote(rq);
d9c0ffca
FW
4633out_unlock:
4634 rq_unlock_irq(rq, &rf);
d9c0ffca 4635out_requeue:
ebc0f83c 4636
d84b3131
FW
4637 /*
4638 * Run the remote tick once per second (1Hz). This arbitrary
4639 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4640 * to keep scheduler internal stats reasonably up to date. But
4641 * first update state to reflect hotplug activity if required.
d84b3131 4642 */
b55bd585
PM
4643 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4644 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4645 if (os == TICK_SCHED_REMOTE_RUNNING)
4646 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4647}
4648
4649static void sched_tick_start(int cpu)
4650{
b55bd585 4651 int os;
d84b3131
FW
4652 struct tick_work *twork;
4653
4654 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4655 return;
4656
4657 WARN_ON_ONCE(!tick_work_cpu);
4658
4659 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4660 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4661 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4662 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4663 twork->cpu = cpu;
4664 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4665 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4666 }
d84b3131
FW
4667}
4668
4669#ifdef CONFIG_HOTPLUG_CPU
4670static void sched_tick_stop(int cpu)
4671{
4672 struct tick_work *twork;
b55bd585 4673 int os;
d84b3131
FW
4674
4675 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4676 return;
4677
4678 WARN_ON_ONCE(!tick_work_cpu);
4679
4680 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4681 /* There cannot be competing actions, but don't rely on stop-machine. */
4682 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4683 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4684 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4685}
4686#endif /* CONFIG_HOTPLUG_CPU */
4687
4688int __init sched_tick_offload_init(void)
4689{
4690 tick_work_cpu = alloc_percpu(struct tick_work);
4691 BUG_ON(!tick_work_cpu);
d84b3131
FW
4692 return 0;
4693}
4694
4695#else /* !CONFIG_NO_HZ_FULL */
4696static inline void sched_tick_start(int cpu) { }
4697static inline void sched_tick_stop(int cpu) { }
265f22a9 4698#endif
1da177e4 4699
c1a280b6 4700#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4701 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4702/*
4703 * If the value passed in is equal to the current preempt count
4704 * then we just disabled preemption. Start timing the latency.
4705 */
4706static inline void preempt_latency_start(int val)
4707{
4708 if (preempt_count() == val) {
4709 unsigned long ip = get_lock_parent_ip();
4710#ifdef CONFIG_DEBUG_PREEMPT
4711 current->preempt_disable_ip = ip;
4712#endif
4713 trace_preempt_off(CALLER_ADDR0, ip);
4714 }
4715}
7e49fcce 4716
edafe3a5 4717void preempt_count_add(int val)
1da177e4 4718{
6cd8a4bb 4719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4720 /*
4721 * Underflow?
4722 */
9a11b49a
IM
4723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4724 return;
6cd8a4bb 4725#endif
bdb43806 4726 __preempt_count_add(val);
6cd8a4bb 4727#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4728 /*
4729 * Spinlock count overflowing soon?
4730 */
33859f7f
MOS
4731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4732 PREEMPT_MASK - 10);
6cd8a4bb 4733#endif
47252cfb 4734 preempt_latency_start(val);
1da177e4 4735}
bdb43806 4736EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4737NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4738
47252cfb
SR
4739/*
4740 * If the value passed in equals to the current preempt count
4741 * then we just enabled preemption. Stop timing the latency.
4742 */
4743static inline void preempt_latency_stop(int val)
4744{
4745 if (preempt_count() == val)
4746 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4747}
4748
edafe3a5 4749void preempt_count_sub(int val)
1da177e4 4750{
6cd8a4bb 4751#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4752 /*
4753 * Underflow?
4754 */
01e3eb82 4755 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4756 return;
1da177e4
LT
4757 /*
4758 * Is the spinlock portion underflowing?
4759 */
9a11b49a
IM
4760 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4761 !(preempt_count() & PREEMPT_MASK)))
4762 return;
6cd8a4bb 4763#endif
9a11b49a 4764
47252cfb 4765 preempt_latency_stop(val);
bdb43806 4766 __preempt_count_sub(val);
1da177e4 4767}
bdb43806 4768EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4769NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4770
47252cfb
SR
4771#else
4772static inline void preempt_latency_start(int val) { }
4773static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4774#endif
4775
59ddbcb2
IM
4776static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4777{
4778#ifdef CONFIG_DEBUG_PREEMPT
4779 return p->preempt_disable_ip;
4780#else
4781 return 0;
4782#endif
4783}
4784
1da177e4 4785/*
dd41f596 4786 * Print scheduling while atomic bug:
1da177e4 4787 */
dd41f596 4788static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4789{
d1c6d149
VN
4790 /* Save this before calling printk(), since that will clobber it */
4791 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4792
664dfa65
DJ
4793 if (oops_in_progress)
4794 return;
4795
3df0fc5b
PZ
4796 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4797 prev->comm, prev->pid, preempt_count());
838225b4 4798
dd41f596 4799 debug_show_held_locks(prev);
e21f5b15 4800 print_modules();
dd41f596
IM
4801 if (irqs_disabled())
4802 print_irqtrace_events(prev);
d1c6d149
VN
4803 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4804 && in_atomic_preempt_off()) {
8f47b187 4805 pr_err("Preemption disabled at:");
2062a4e8 4806 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4807 }
748c7201
DBO
4808 if (panic_on_warn)
4809 panic("scheduling while atomic\n");
4810
6135fc1e 4811 dump_stack();
373d4d09 4812 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4813}
1da177e4 4814
dd41f596
IM
4815/*
4816 * Various schedule()-time debugging checks and statistics:
4817 */
312364f3 4818static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4819{
0d9e2632 4820#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4821 if (task_stack_end_corrupted(prev))
4822 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4823
4824 if (task_scs_end_corrupted(prev))
4825 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4826#endif
b99def8b 4827
312364f3
DV
4828#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4829 if (!preempt && prev->state && prev->non_block_count) {
4830 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4831 prev->comm, prev->pid, prev->non_block_count);
4832 dump_stack();
4833 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4834 }
4835#endif
4836
1dc0fffc 4837 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4838 __schedule_bug(prev);
1dc0fffc
PZ
4839 preempt_count_set(PREEMPT_DISABLED);
4840 }
b3fbab05 4841 rcu_sleep_check();
9f68b5b7 4842 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 4843
1da177e4
LT
4844 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4845
ae92882e 4846 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4847}
4848
457d1f46
CY
4849static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4850 struct rq_flags *rf)
4851{
4852#ifdef CONFIG_SMP
4853 const struct sched_class *class;
4854 /*
4855 * We must do the balancing pass before put_prev_task(), such
4856 * that when we release the rq->lock the task is in the same
4857 * state as before we took rq->lock.
4858 *
4859 * We can terminate the balance pass as soon as we know there is
4860 * a runnable task of @class priority or higher.
4861 */
4862 for_class_range(class, prev->sched_class, &idle_sched_class) {
4863 if (class->balance(rq, prev, rf))
4864 break;
4865 }
4866#endif
4867
4868 put_prev_task(rq, prev);
4869}
4870
dd41f596
IM
4871/*
4872 * Pick up the highest-prio task:
4873 */
4874static inline struct task_struct *
d8ac8971 4875pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4876{
49ee5768 4877 const struct sched_class *class;
dd41f596 4878 struct task_struct *p;
1da177e4
LT
4879
4880 /*
0ba87bb2
PZ
4881 * Optimization: we know that if all tasks are in the fair class we can
4882 * call that function directly, but only if the @prev task wasn't of a
b19a888c 4883 * higher scheduling class, because otherwise those lose the
0ba87bb2 4884 * opportunity to pull in more work from other CPUs.
1da177e4 4885 */
aa93cd53 4886 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4887 rq->nr_running == rq->cfs.h_nr_running)) {
4888
5d7d6056 4889 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4890 if (unlikely(p == RETRY_TASK))
67692435 4891 goto restart;
6ccdc84b 4892
d1ccc66d 4893 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4894 if (!p) {
f488e105 4895 put_prev_task(rq, prev);
98c2f700 4896 p = pick_next_task_idle(rq);
f488e105 4897 }
6ccdc84b
PZ
4898
4899 return p;
1da177e4
LT
4900 }
4901
67692435 4902restart:
457d1f46 4903 put_prev_task_balance(rq, prev, rf);
67692435 4904
34f971f6 4905 for_each_class(class) {
98c2f700 4906 p = class->pick_next_task(rq);
67692435 4907 if (p)
dd41f596 4908 return p;
dd41f596 4909 }
34f971f6 4910
d1ccc66d
IM
4911 /* The idle class should always have a runnable task: */
4912 BUG();
dd41f596 4913}
1da177e4 4914
dd41f596 4915/*
c259e01a 4916 * __schedule() is the main scheduler function.
edde96ea
PE
4917 *
4918 * The main means of driving the scheduler and thus entering this function are:
4919 *
4920 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4921 *
4922 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4923 * paths. For example, see arch/x86/entry_64.S.
4924 *
4925 * To drive preemption between tasks, the scheduler sets the flag in timer
4926 * interrupt handler scheduler_tick().
4927 *
4928 * 3. Wakeups don't really cause entry into schedule(). They add a
4929 * task to the run-queue and that's it.
4930 *
4931 * Now, if the new task added to the run-queue preempts the current
4932 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4933 * called on the nearest possible occasion:
4934 *
c1a280b6 4935 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4936 *
4937 * - in syscall or exception context, at the next outmost
4938 * preempt_enable(). (this might be as soon as the wake_up()'s
4939 * spin_unlock()!)
4940 *
4941 * - in IRQ context, return from interrupt-handler to
4942 * preemptible context
4943 *
c1a280b6 4944 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4945 * then at the next:
4946 *
4947 * - cond_resched() call
4948 * - explicit schedule() call
4949 * - return from syscall or exception to user-space
4950 * - return from interrupt-handler to user-space
bfd9b2b5 4951 *
b30f0e3f 4952 * WARNING: must be called with preemption disabled!
dd41f596 4953 */
499d7955 4954static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4955{
4956 struct task_struct *prev, *next;
67ca7bde 4957 unsigned long *switch_count;
dbfb089d 4958 unsigned long prev_state;
d8ac8971 4959 struct rq_flags rf;
dd41f596 4960 struct rq *rq;
31656519 4961 int cpu;
dd41f596 4962
dd41f596
IM
4963 cpu = smp_processor_id();
4964 rq = cpu_rq(cpu);
dd41f596 4965 prev = rq->curr;
dd41f596 4966
312364f3 4967 schedule_debug(prev, preempt);
1da177e4 4968
e0ee463c 4969 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 4970 hrtick_clear(rq);
8f4d37ec 4971
46a5d164 4972 local_irq_disable();
bcbfdd01 4973 rcu_note_context_switch(preempt);
46a5d164 4974
e0acd0a6
ON
4975 /*
4976 * Make sure that signal_pending_state()->signal_pending() below
4977 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4978 * done by the caller to avoid the race with signal_wake_up():
4979 *
4980 * __set_current_state(@state) signal_wake_up()
4981 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4982 * wake_up_state(p, state)
4983 * LOCK rq->lock LOCK p->pi_state
4984 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4985 * if (signal_pending_state()) if (p->state & @state)
306e0604 4986 *
dbfb089d 4987 * Also, the membarrier system call requires a full memory barrier
306e0604 4988 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4989 */
8a8c69c3 4990 rq_lock(rq, &rf);
d89e588c 4991 smp_mb__after_spinlock();
1da177e4 4992
d1ccc66d
IM
4993 /* Promote REQ to ACT */
4994 rq->clock_update_flags <<= 1;
bce4dc80 4995 update_rq_clock(rq);
9edfbfed 4996
246d86b5 4997 switch_count = &prev->nivcsw;
d136122f 4998
dbfb089d 4999 /*
d136122f
PZ
5000 * We must load prev->state once (task_struct::state is volatile), such
5001 * that:
5002 *
5003 * - we form a control dependency vs deactivate_task() below.
5004 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5005 */
d136122f
PZ
5006 prev_state = prev->state;
5007 if (!preempt && prev_state) {
dbfb089d 5008 if (signal_pending_state(prev_state, prev)) {
1da177e4 5009 prev->state = TASK_RUNNING;
21aa9af0 5010 } else {
dbfb089d
PZ
5011 prev->sched_contributes_to_load =
5012 (prev_state & TASK_UNINTERRUPTIBLE) &&
5013 !(prev_state & TASK_NOLOAD) &&
5014 !(prev->flags & PF_FROZEN);
5015
5016 if (prev->sched_contributes_to_load)
5017 rq->nr_uninterruptible++;
5018
5019 /*
5020 * __schedule() ttwu()
d136122f
PZ
5021 * prev_state = prev->state; if (p->on_rq && ...)
5022 * if (prev_state) goto out;
5023 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5024 * p->state = TASK_WAKING
5025 *
5026 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5027 *
5028 * After this, schedule() must not care about p->state any more.
5029 */
bce4dc80 5030 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5031
e33a9bba
TH
5032 if (prev->in_iowait) {
5033 atomic_inc(&rq->nr_iowait);
5034 delayacct_blkio_start();
5035 }
21aa9af0 5036 }
dd41f596 5037 switch_count = &prev->nvcsw;
1da177e4
LT
5038 }
5039
d8ac8971 5040 next = pick_next_task(rq, prev, &rf);
f26f9aff 5041 clear_tsk_need_resched(prev);
f27dde8d 5042 clear_preempt_need_resched();
1da177e4 5043
1da177e4 5044 if (likely(prev != next)) {
1da177e4 5045 rq->nr_switches++;
5311a98f
EB
5046 /*
5047 * RCU users of rcu_dereference(rq->curr) may not see
5048 * changes to task_struct made by pick_next_task().
5049 */
5050 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5051 /*
5052 * The membarrier system call requires each architecture
5053 * to have a full memory barrier after updating
306e0604
MD
5054 * rq->curr, before returning to user-space.
5055 *
5056 * Here are the schemes providing that barrier on the
5057 * various architectures:
5058 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5059 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5060 * - finish_lock_switch() for weakly-ordered
5061 * architectures where spin_unlock is a full barrier,
5062 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5063 * is a RELEASE barrier),
22e4ebb9 5064 */
1da177e4
LT
5065 ++*switch_count;
5066
af449901 5067 migrate_disable_switch(rq, prev);
b05e75d6
JW
5068 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5069
c73464b1 5070 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5071
5072 /* Also unlocks the rq: */
5073 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5074 } else {
cb42c9a3 5075 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5076
565790d2
PZ
5077 rq_unpin_lock(rq, &rf);
5078 __balance_callbacks(rq);
5079 raw_spin_unlock_irq(&rq->lock);
5080 }
1da177e4 5081}
c259e01a 5082
9af6528e
PZ
5083void __noreturn do_task_dead(void)
5084{
d1ccc66d 5085 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5086 set_special_state(TASK_DEAD);
d1ccc66d
IM
5087
5088 /* Tell freezer to ignore us: */
5089 current->flags |= PF_NOFREEZE;
5090
9af6528e
PZ
5091 __schedule(false);
5092 BUG();
d1ccc66d
IM
5093
5094 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5095 for (;;)
d1ccc66d 5096 cpu_relax();
9af6528e
PZ
5097}
5098
9c40cef2
TG
5099static inline void sched_submit_work(struct task_struct *tsk)
5100{
c1cecf88
SAS
5101 unsigned int task_flags;
5102
b0fdc013 5103 if (!tsk->state)
9c40cef2 5104 return;
6d25be57 5105
c1cecf88 5106 task_flags = tsk->flags;
6d25be57
TG
5107 /*
5108 * If a worker went to sleep, notify and ask workqueue whether
5109 * it wants to wake up a task to maintain concurrency.
5110 * As this function is called inside the schedule() context,
5111 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5112 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5113 * requires it.
6d25be57 5114 */
c1cecf88 5115 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5116 preempt_disable();
c1cecf88 5117 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5118 wq_worker_sleeping(tsk);
5119 else
5120 io_wq_worker_sleeping(tsk);
6d25be57
TG
5121 preempt_enable_no_resched();
5122 }
5123
b0fdc013
SAS
5124 if (tsk_is_pi_blocked(tsk))
5125 return;
5126
9c40cef2
TG
5127 /*
5128 * If we are going to sleep and we have plugged IO queued,
5129 * make sure to submit it to avoid deadlocks.
5130 */
5131 if (blk_needs_flush_plug(tsk))
5132 blk_schedule_flush_plug(tsk);
5133}
5134
6d25be57
TG
5135static void sched_update_worker(struct task_struct *tsk)
5136{
771b53d0
JA
5137 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5138 if (tsk->flags & PF_WQ_WORKER)
5139 wq_worker_running(tsk);
5140 else
5141 io_wq_worker_running(tsk);
5142 }
6d25be57
TG
5143}
5144
722a9f92 5145asmlinkage __visible void __sched schedule(void)
c259e01a 5146{
9c40cef2
TG
5147 struct task_struct *tsk = current;
5148
5149 sched_submit_work(tsk);
bfd9b2b5 5150 do {
b30f0e3f 5151 preempt_disable();
fc13aeba 5152 __schedule(false);
b30f0e3f 5153 sched_preempt_enable_no_resched();
bfd9b2b5 5154 } while (need_resched());
6d25be57 5155 sched_update_worker(tsk);
c259e01a 5156}
1da177e4
LT
5157EXPORT_SYMBOL(schedule);
5158
8663effb
SRV
5159/*
5160 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5161 * state (have scheduled out non-voluntarily) by making sure that all
5162 * tasks have either left the run queue or have gone into user space.
5163 * As idle tasks do not do either, they must not ever be preempted
5164 * (schedule out non-voluntarily).
5165 *
5166 * schedule_idle() is similar to schedule_preempt_disable() except that it
5167 * never enables preemption because it does not call sched_submit_work().
5168 */
5169void __sched schedule_idle(void)
5170{
5171 /*
5172 * As this skips calling sched_submit_work(), which the idle task does
5173 * regardless because that function is a nop when the task is in a
5174 * TASK_RUNNING state, make sure this isn't used someplace that the
5175 * current task can be in any other state. Note, idle is always in the
5176 * TASK_RUNNING state.
5177 */
5178 WARN_ON_ONCE(current->state);
5179 do {
5180 __schedule(false);
5181 } while (need_resched());
5182}
5183
6775de49 5184#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 5185asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
5186{
5187 /*
5188 * If we come here after a random call to set_need_resched(),
5189 * or we have been woken up remotely but the IPI has not yet arrived,
5190 * we haven't yet exited the RCU idle mode. Do it here manually until
5191 * we find a better solution.
7cc78f8f
AL
5192 *
5193 * NB: There are buggy callers of this function. Ideally we
c467ea76 5194 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 5195 * too frequently to make sense yet.
20ab65e3 5196 */
7cc78f8f 5197 enum ctx_state prev_state = exception_enter();
20ab65e3 5198 schedule();
7cc78f8f 5199 exception_exit(prev_state);
20ab65e3
FW
5200}
5201#endif
5202
c5491ea7
TG
5203/**
5204 * schedule_preempt_disabled - called with preemption disabled
5205 *
5206 * Returns with preemption disabled. Note: preempt_count must be 1
5207 */
5208void __sched schedule_preempt_disabled(void)
5209{
ba74c144 5210 sched_preempt_enable_no_resched();
c5491ea7
TG
5211 schedule();
5212 preempt_disable();
5213}
5214
06b1f808 5215static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
5216{
5217 do {
47252cfb
SR
5218 /*
5219 * Because the function tracer can trace preempt_count_sub()
5220 * and it also uses preempt_enable/disable_notrace(), if
5221 * NEED_RESCHED is set, the preempt_enable_notrace() called
5222 * by the function tracer will call this function again and
5223 * cause infinite recursion.
5224 *
5225 * Preemption must be disabled here before the function
5226 * tracer can trace. Break up preempt_disable() into two
5227 * calls. One to disable preemption without fear of being
5228 * traced. The other to still record the preemption latency,
5229 * which can also be traced by the function tracer.
5230 */
499d7955 5231 preempt_disable_notrace();
47252cfb 5232 preempt_latency_start(1);
fc13aeba 5233 __schedule(true);
47252cfb 5234 preempt_latency_stop(1);
499d7955 5235 preempt_enable_no_resched_notrace();
a18b5d01
FW
5236
5237 /*
5238 * Check again in case we missed a preemption opportunity
5239 * between schedule and now.
5240 */
a18b5d01
FW
5241 } while (need_resched());
5242}
5243
c1a280b6 5244#ifdef CONFIG_PREEMPTION
1da177e4 5245/*
a49b4f40
VS
5246 * This is the entry point to schedule() from in-kernel preemption
5247 * off of preempt_enable.
1da177e4 5248 */
722a9f92 5249asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 5250{
1da177e4
LT
5251 /*
5252 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5253 * we do not want to preempt the current task. Just return..
1da177e4 5254 */
fbb00b56 5255 if (likely(!preemptible()))
1da177e4
LT
5256 return;
5257
a18b5d01 5258 preempt_schedule_common();
1da177e4 5259}
376e2424 5260NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 5261EXPORT_SYMBOL(preempt_schedule);
009f60e2 5262
2c9a98d3
PZI
5263#ifdef CONFIG_PREEMPT_DYNAMIC
5264DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 5265EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
5266#endif
5267
5268
009f60e2 5269/**
4eaca0a8 5270 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
5271 *
5272 * The tracing infrastructure uses preempt_enable_notrace to prevent
5273 * recursion and tracing preempt enabling caused by the tracing
5274 * infrastructure itself. But as tracing can happen in areas coming
5275 * from userspace or just about to enter userspace, a preempt enable
5276 * can occur before user_exit() is called. This will cause the scheduler
5277 * to be called when the system is still in usermode.
5278 *
5279 * To prevent this, the preempt_enable_notrace will use this function
5280 * instead of preempt_schedule() to exit user context if needed before
5281 * calling the scheduler.
5282 */
4eaca0a8 5283asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
5284{
5285 enum ctx_state prev_ctx;
5286
5287 if (likely(!preemptible()))
5288 return;
5289
5290 do {
47252cfb
SR
5291 /*
5292 * Because the function tracer can trace preempt_count_sub()
5293 * and it also uses preempt_enable/disable_notrace(), if
5294 * NEED_RESCHED is set, the preempt_enable_notrace() called
5295 * by the function tracer will call this function again and
5296 * cause infinite recursion.
5297 *
5298 * Preemption must be disabled here before the function
5299 * tracer can trace. Break up preempt_disable() into two
5300 * calls. One to disable preemption without fear of being
5301 * traced. The other to still record the preemption latency,
5302 * which can also be traced by the function tracer.
5303 */
3d8f74dd 5304 preempt_disable_notrace();
47252cfb 5305 preempt_latency_start(1);
009f60e2
ON
5306 /*
5307 * Needs preempt disabled in case user_exit() is traced
5308 * and the tracer calls preempt_enable_notrace() causing
5309 * an infinite recursion.
5310 */
5311 prev_ctx = exception_enter();
fc13aeba 5312 __schedule(true);
009f60e2
ON
5313 exception_exit(prev_ctx);
5314
47252cfb 5315 preempt_latency_stop(1);
3d8f74dd 5316 preempt_enable_no_resched_notrace();
009f60e2
ON
5317 } while (need_resched());
5318}
4eaca0a8 5319EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 5320
2c9a98d3
PZI
5321#ifdef CONFIG_PREEMPT_DYNAMIC
5322DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 5323EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
5324#endif
5325
c1a280b6 5326#endif /* CONFIG_PREEMPTION */
1da177e4 5327
826bfeb3
PZI
5328#ifdef CONFIG_PREEMPT_DYNAMIC
5329
5330#include <linux/entry-common.h>
5331
5332/*
5333 * SC:cond_resched
5334 * SC:might_resched
5335 * SC:preempt_schedule
5336 * SC:preempt_schedule_notrace
5337 * SC:irqentry_exit_cond_resched
5338 *
5339 *
5340 * NONE:
5341 * cond_resched <- __cond_resched
5342 * might_resched <- RET0
5343 * preempt_schedule <- NOP
5344 * preempt_schedule_notrace <- NOP
5345 * irqentry_exit_cond_resched <- NOP
5346 *
5347 * VOLUNTARY:
5348 * cond_resched <- __cond_resched
5349 * might_resched <- __cond_resched
5350 * preempt_schedule <- NOP
5351 * preempt_schedule_notrace <- NOP
5352 * irqentry_exit_cond_resched <- NOP
5353 *
5354 * FULL:
5355 * cond_resched <- RET0
5356 * might_resched <- RET0
5357 * preempt_schedule <- preempt_schedule
5358 * preempt_schedule_notrace <- preempt_schedule_notrace
5359 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5360 */
e59e10f8
PZ
5361
5362enum {
5363 preempt_dynamic_none = 0,
5364 preempt_dynamic_voluntary,
5365 preempt_dynamic_full,
5366};
5367
5368static int preempt_dynamic_mode = preempt_dynamic_full;
5369
5370static int sched_dynamic_mode(const char *str)
826bfeb3 5371{
e59e10f8
PZ
5372 if (!strcmp(str, "none"))
5373 return 0;
5374
5375 if (!strcmp(str, "voluntary"))
5376 return 1;
5377
5378 if (!strcmp(str, "full"))
5379 return 2;
5380
5381 return -1;
5382}
5383
5384static void sched_dynamic_update(int mode)
5385{
5386 /*
5387 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5388 * the ZERO state, which is invalid.
5389 */
5390 static_call_update(cond_resched, __cond_resched);
5391 static_call_update(might_resched, __cond_resched);
5392 static_call_update(preempt_schedule, __preempt_schedule_func);
5393 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5394 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5395
5396 switch (mode) {
5397 case preempt_dynamic_none:
826bfeb3
PZI
5398 static_call_update(cond_resched, __cond_resched);
5399 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5400 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5401 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5402 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5403 pr_info("Dynamic Preempt: none\n");
5404 break;
5405
5406 case preempt_dynamic_voluntary:
826bfeb3
PZI
5407 static_call_update(cond_resched, __cond_resched);
5408 static_call_update(might_resched, __cond_resched);
5409 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5410 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5411 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5412 pr_info("Dynamic Preempt: voluntary\n");
5413 break;
5414
5415 case preempt_dynamic_full:
826bfeb3
PZI
5416 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5417 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5418 static_call_update(preempt_schedule, __preempt_schedule_func);
5419 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5420 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
5421 pr_info("Dynamic Preempt: full\n");
5422 break;
5423 }
5424
5425 preempt_dynamic_mode = mode;
5426}
5427
5428static int __init setup_preempt_mode(char *str)
5429{
5430 int mode = sched_dynamic_mode(str);
5431 if (mode < 0) {
5432 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
5433 return 1;
5434 }
e59e10f8
PZ
5435
5436 sched_dynamic_update(mode);
826bfeb3
PZI
5437 return 0;
5438}
5439__setup("preempt=", setup_preempt_mode);
5440
e59e10f8
PZ
5441#ifdef CONFIG_SCHED_DEBUG
5442
5443static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5444 size_t cnt, loff_t *ppos)
5445{
5446 char buf[16];
5447 int mode;
5448
5449 if (cnt > 15)
5450 cnt = 15;
5451
5452 if (copy_from_user(&buf, ubuf, cnt))
5453 return -EFAULT;
5454
5455 buf[cnt] = 0;
5456 mode = sched_dynamic_mode(strstrip(buf));
5457 if (mode < 0)
5458 return mode;
5459
5460 sched_dynamic_update(mode);
5461
5462 *ppos += cnt;
5463
5464 return cnt;
5465}
5466
5467static int sched_dynamic_show(struct seq_file *m, void *v)
5468{
5469 static const char * preempt_modes[] = {
5470 "none", "voluntary", "full"
5471 };
5472 int i;
5473
5474 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5475 if (preempt_dynamic_mode == i)
5476 seq_puts(m, "(");
5477 seq_puts(m, preempt_modes[i]);
5478 if (preempt_dynamic_mode == i)
5479 seq_puts(m, ")");
5480
5481 seq_puts(m, " ");
5482 }
5483
5484 seq_puts(m, "\n");
5485 return 0;
5486}
5487
5488static int sched_dynamic_open(struct inode *inode, struct file *filp)
5489{
5490 return single_open(filp, sched_dynamic_show, NULL);
5491}
5492
5493static const struct file_operations sched_dynamic_fops = {
5494 .open = sched_dynamic_open,
5495 .write = sched_dynamic_write,
5496 .read = seq_read,
5497 .llseek = seq_lseek,
5498 .release = single_release,
5499};
5500
5501static __init int sched_init_debug_dynamic(void)
5502{
5503 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5504 return 0;
5505}
5506late_initcall(sched_init_debug_dynamic);
5507
5508#endif /* CONFIG_SCHED_DEBUG */
826bfeb3
PZI
5509#endif /* CONFIG_PREEMPT_DYNAMIC */
5510
5511
1da177e4 5512/*
a49b4f40 5513 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
5514 * off of irq context.
5515 * Note, that this is called and return with irqs disabled. This will
5516 * protect us against recursive calling from irq.
5517 */
722a9f92 5518asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 5519{
b22366cd 5520 enum ctx_state prev_state;
6478d880 5521
2ed6e34f 5522 /* Catch callers which need to be fixed */
f27dde8d 5523 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 5524
b22366cd
FW
5525 prev_state = exception_enter();
5526
3a5c359a 5527 do {
3d8f74dd 5528 preempt_disable();
3a5c359a 5529 local_irq_enable();
fc13aeba 5530 __schedule(true);
3a5c359a 5531 local_irq_disable();
3d8f74dd 5532 sched_preempt_enable_no_resched();
5ed0cec0 5533 } while (need_resched());
b22366cd
FW
5534
5535 exception_exit(prev_state);
1da177e4
LT
5536}
5537
ac6424b9 5538int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5539 void *key)
1da177e4 5540{
062d3f95 5541 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 5542 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5543}
1da177e4
LT
5544EXPORT_SYMBOL(default_wake_function);
5545
b29739f9
IM
5546#ifdef CONFIG_RT_MUTEXES
5547
acd58620
PZ
5548static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5549{
5550 if (pi_task)
5551 prio = min(prio, pi_task->prio);
5552
5553 return prio;
5554}
5555
5556static inline int rt_effective_prio(struct task_struct *p, int prio)
5557{
5558 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5559
5560 return __rt_effective_prio(pi_task, prio);
5561}
5562
b29739f9
IM
5563/*
5564 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
5565 * @p: task to boost
5566 * @pi_task: donor task
b29739f9
IM
5567 *
5568 * This function changes the 'effective' priority of a task. It does
5569 * not touch ->normal_prio like __setscheduler().
5570 *
c365c292
TG
5571 * Used by the rt_mutex code to implement priority inheritance
5572 * logic. Call site only calls if the priority of the task changed.
b29739f9 5573 */
acd58620 5574void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 5575{
acd58620 5576 int prio, oldprio, queued, running, queue_flag =
7a57f32a 5577 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 5578 const struct sched_class *prev_class;
eb580751
PZ
5579 struct rq_flags rf;
5580 struct rq *rq;
b29739f9 5581
acd58620
PZ
5582 /* XXX used to be waiter->prio, not waiter->task->prio */
5583 prio = __rt_effective_prio(pi_task, p->normal_prio);
5584
5585 /*
5586 * If nothing changed; bail early.
5587 */
5588 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5589 return;
b29739f9 5590
eb580751 5591 rq = __task_rq_lock(p, &rf);
80f5c1b8 5592 update_rq_clock(rq);
acd58620
PZ
5593 /*
5594 * Set under pi_lock && rq->lock, such that the value can be used under
5595 * either lock.
5596 *
5597 * Note that there is loads of tricky to make this pointer cache work
5598 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5599 * ensure a task is de-boosted (pi_task is set to NULL) before the
5600 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 5601 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
5602 */
5603 p->pi_top_task = pi_task;
5604
5605 /*
5606 * For FIFO/RR we only need to set prio, if that matches we're done.
5607 */
5608 if (prio == p->prio && !dl_prio(prio))
5609 goto out_unlock;
b29739f9 5610
1c4dd99b
TG
5611 /*
5612 * Idle task boosting is a nono in general. There is one
5613 * exception, when PREEMPT_RT and NOHZ is active:
5614 *
5615 * The idle task calls get_next_timer_interrupt() and holds
5616 * the timer wheel base->lock on the CPU and another CPU wants
5617 * to access the timer (probably to cancel it). We can safely
5618 * ignore the boosting request, as the idle CPU runs this code
5619 * with interrupts disabled and will complete the lock
5620 * protected section without being interrupted. So there is no
5621 * real need to boost.
5622 */
5623 if (unlikely(p == rq->idle)) {
5624 WARN_ON(p != rq->curr);
5625 WARN_ON(p->pi_blocked_on);
5626 goto out_unlock;
5627 }
5628
b91473ff 5629 trace_sched_pi_setprio(p, pi_task);
d5f9f942 5630 oldprio = p->prio;
ff77e468
PZ
5631
5632 if (oldprio == prio)
5633 queue_flag &= ~DEQUEUE_MOVE;
5634
83ab0aa0 5635 prev_class = p->sched_class;
da0c1e65 5636 queued = task_on_rq_queued(p);
051a1d1a 5637 running = task_current(rq, p);
da0c1e65 5638 if (queued)
ff77e468 5639 dequeue_task(rq, p, queue_flag);
0e1f3483 5640 if (running)
f3cd1c4e 5641 put_prev_task(rq, p);
dd41f596 5642
2d3d891d
DF
5643 /*
5644 * Boosting condition are:
5645 * 1. -rt task is running and holds mutex A
5646 * --> -dl task blocks on mutex A
5647 *
5648 * 2. -dl task is running and holds mutex A
5649 * --> -dl task blocks on mutex A and could preempt the
5650 * running task
5651 */
5652 if (dl_prio(prio)) {
466af29b 5653 if (!dl_prio(p->normal_prio) ||
740797ce
JL
5654 (pi_task && dl_prio(pi_task->prio) &&
5655 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 5656 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 5657 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
5658 } else {
5659 p->dl.pi_se = &p->dl;
5660 }
aab03e05 5661 p->sched_class = &dl_sched_class;
2d3d891d
DF
5662 } else if (rt_prio(prio)) {
5663 if (dl_prio(oldprio))
2279f540 5664 p->dl.pi_se = &p->dl;
2d3d891d 5665 if (oldprio < prio)
ff77e468 5666 queue_flag |= ENQUEUE_HEAD;
dd41f596 5667 p->sched_class = &rt_sched_class;
2d3d891d
DF
5668 } else {
5669 if (dl_prio(oldprio))
2279f540 5670 p->dl.pi_se = &p->dl;
746db944
BS
5671 if (rt_prio(oldprio))
5672 p->rt.timeout = 0;
dd41f596 5673 p->sched_class = &fair_sched_class;
2d3d891d 5674 }
dd41f596 5675
b29739f9
IM
5676 p->prio = prio;
5677
da0c1e65 5678 if (queued)
ff77e468 5679 enqueue_task(rq, p, queue_flag);
a399d233 5680 if (running)
03b7fad1 5681 set_next_task(rq, p);
cb469845 5682
da7a735e 5683 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 5684out_unlock:
d1ccc66d
IM
5685 /* Avoid rq from going away on us: */
5686 preempt_disable();
4c9a4bc8 5687
565790d2
PZ
5688 rq_unpin_lock(rq, &rf);
5689 __balance_callbacks(rq);
5690 raw_spin_unlock(&rq->lock);
5691
4c9a4bc8 5692 preempt_enable();
b29739f9 5693}
acd58620
PZ
5694#else
5695static inline int rt_effective_prio(struct task_struct *p, int prio)
5696{
5697 return prio;
5698}
b29739f9 5699#endif
d50dde5a 5700
36c8b586 5701void set_user_nice(struct task_struct *p, long nice)
1da177e4 5702{
49bd21ef 5703 bool queued, running;
53a23364 5704 int old_prio;
eb580751 5705 struct rq_flags rf;
70b97a7f 5706 struct rq *rq;
1da177e4 5707
75e45d51 5708 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5709 return;
5710 /*
5711 * We have to be careful, if called from sys_setpriority(),
5712 * the task might be in the middle of scheduling on another CPU.
5713 */
eb580751 5714 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5715 update_rq_clock(rq);
5716
1da177e4
LT
5717 /*
5718 * The RT priorities are set via sched_setscheduler(), but we still
5719 * allow the 'normal' nice value to be set - but as expected
b19a888c 5720 * it won't have any effect on scheduling until the task is
aab03e05 5721 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5722 */
aab03e05 5723 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5724 p->static_prio = NICE_TO_PRIO(nice);
5725 goto out_unlock;
5726 }
da0c1e65 5727 queued = task_on_rq_queued(p);
49bd21ef 5728 running = task_current(rq, p);
da0c1e65 5729 if (queued)
7a57f32a 5730 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5731 if (running)
5732 put_prev_task(rq, p);
1da177e4 5733
1da177e4 5734 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5735 set_load_weight(p, true);
b29739f9
IM
5736 old_prio = p->prio;
5737 p->prio = effective_prio(p);
1da177e4 5738
5443a0be 5739 if (queued)
7134b3e9 5740 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5741 if (running)
03b7fad1 5742 set_next_task(rq, p);
5443a0be
FW
5743
5744 /*
5745 * If the task increased its priority or is running and
5746 * lowered its priority, then reschedule its CPU:
5747 */
5748 p->sched_class->prio_changed(rq, p, old_prio);
5749
1da177e4 5750out_unlock:
eb580751 5751 task_rq_unlock(rq, p, &rf);
1da177e4 5752}
1da177e4
LT
5753EXPORT_SYMBOL(set_user_nice);
5754
e43379f1
MM
5755/*
5756 * can_nice - check if a task can reduce its nice value
5757 * @p: task
5758 * @nice: nice value
5759 */
36c8b586 5760int can_nice(const struct task_struct *p, const int nice)
e43379f1 5761{
d1ccc66d 5762 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5763 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5764
78d7d407 5765 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5766 capable(CAP_SYS_NICE));
5767}
5768
1da177e4
LT
5769#ifdef __ARCH_WANT_SYS_NICE
5770
5771/*
5772 * sys_nice - change the priority of the current process.
5773 * @increment: priority increment
5774 *
5775 * sys_setpriority is a more generic, but much slower function that
5776 * does similar things.
5777 */
5add95d4 5778SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5779{
48f24c4d 5780 long nice, retval;
1da177e4
LT
5781
5782 /*
5783 * Setpriority might change our priority at the same moment.
5784 * We don't have to worry. Conceptually one call occurs first
5785 * and we have a single winner.
5786 */
a9467fa3 5787 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5788 nice = task_nice(current) + increment;
1da177e4 5789
a9467fa3 5790 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5791 if (increment < 0 && !can_nice(current, nice))
5792 return -EPERM;
5793
1da177e4
LT
5794 retval = security_task_setnice(current, nice);
5795 if (retval)
5796 return retval;
5797
5798 set_user_nice(current, nice);
5799 return 0;
5800}
5801
5802#endif
5803
5804/**
5805 * task_prio - return the priority value of a given task.
5806 * @p: the task in question.
5807 *
e69f6186 5808 * Return: The priority value as seen by users in /proc.
c541bb78
DE
5809 *
5810 * sched policy return value kernel prio user prio/nice
5811 *
5812 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
5813 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
5814 * deadline -101 -1 0
1da177e4 5815 */
36c8b586 5816int task_prio(const struct task_struct *p)
1da177e4
LT
5817{
5818 return p->prio - MAX_RT_PRIO;
5819}
5820
1da177e4 5821/**
d1ccc66d 5822 * idle_cpu - is a given CPU idle currently?
1da177e4 5823 * @cpu: the processor in question.
e69f6186
YB
5824 *
5825 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5826 */
5827int idle_cpu(int cpu)
5828{
908a3283
TG
5829 struct rq *rq = cpu_rq(cpu);
5830
5831 if (rq->curr != rq->idle)
5832 return 0;
5833
5834 if (rq->nr_running)
5835 return 0;
5836
5837#ifdef CONFIG_SMP
126c2092 5838 if (rq->ttwu_pending)
908a3283
TG
5839 return 0;
5840#endif
5841
5842 return 1;
1da177e4
LT
5843}
5844
943d355d
RJ
5845/**
5846 * available_idle_cpu - is a given CPU idle for enqueuing work.
5847 * @cpu: the CPU in question.
5848 *
5849 * Return: 1 if the CPU is currently idle. 0 otherwise.
5850 */
5851int available_idle_cpu(int cpu)
5852{
5853 if (!idle_cpu(cpu))
5854 return 0;
5855
247f2f6f
RJ
5856 if (vcpu_is_preempted(cpu))
5857 return 0;
5858
908a3283 5859 return 1;
1da177e4
LT
5860}
5861
1da177e4 5862/**
d1ccc66d 5863 * idle_task - return the idle task for a given CPU.
1da177e4 5864 * @cpu: the processor in question.
e69f6186 5865 *
d1ccc66d 5866 * Return: The idle task for the CPU @cpu.
1da177e4 5867 */
36c8b586 5868struct task_struct *idle_task(int cpu)
1da177e4
LT
5869{
5870 return cpu_rq(cpu)->idle;
5871}
5872
7d6a905f
VK
5873#ifdef CONFIG_SMP
5874/*
5875 * This function computes an effective utilization for the given CPU, to be
5876 * used for frequency selection given the linear relation: f = u * f_max.
5877 *
5878 * The scheduler tracks the following metrics:
5879 *
5880 * cpu_util_{cfs,rt,dl,irq}()
5881 * cpu_bw_dl()
5882 *
5883 * Where the cfs,rt and dl util numbers are tracked with the same metric and
5884 * synchronized windows and are thus directly comparable.
5885 *
5886 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5887 * which excludes things like IRQ and steal-time. These latter are then accrued
5888 * in the irq utilization.
5889 *
5890 * The DL bandwidth number otoh is not a measured metric but a value computed
5891 * based on the task model parameters and gives the minimal utilization
5892 * required to meet deadlines.
5893 */
a5418be9
VK
5894unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5895 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
5896 struct task_struct *p)
5897{
5898 unsigned long dl_util, util, irq;
5899 struct rq *rq = cpu_rq(cpu);
5900
5901 if (!uclamp_is_used() &&
5902 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5903 return max;
5904 }
5905
5906 /*
5907 * Early check to see if IRQ/steal time saturates the CPU, can be
5908 * because of inaccuracies in how we track these -- see
5909 * update_irq_load_avg().
5910 */
5911 irq = cpu_util_irq(rq);
5912 if (unlikely(irq >= max))
5913 return max;
5914
5915 /*
5916 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5917 * CFS tasks and we use the same metric to track the effective
5918 * utilization (PELT windows are synchronized) we can directly add them
5919 * to obtain the CPU's actual utilization.
5920 *
5921 * CFS and RT utilization can be boosted or capped, depending on
5922 * utilization clamp constraints requested by currently RUNNABLE
5923 * tasks.
5924 * When there are no CFS RUNNABLE tasks, clamps are released and
5925 * frequency will be gracefully reduced with the utilization decay.
5926 */
5927 util = util_cfs + cpu_util_rt(rq);
5928 if (type == FREQUENCY_UTIL)
5929 util = uclamp_rq_util_with(rq, util, p);
5930
5931 dl_util = cpu_util_dl(rq);
5932
5933 /*
5934 * For frequency selection we do not make cpu_util_dl() a permanent part
5935 * of this sum because we want to use cpu_bw_dl() later on, but we need
5936 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5937 * that we select f_max when there is no idle time.
5938 *
5939 * NOTE: numerical errors or stop class might cause us to not quite hit
5940 * saturation when we should -- something for later.
5941 */
5942 if (util + dl_util >= max)
5943 return max;
5944
5945 /*
5946 * OTOH, for energy computation we need the estimated running time, so
5947 * include util_dl and ignore dl_bw.
5948 */
5949 if (type == ENERGY_UTIL)
5950 util += dl_util;
5951
5952 /*
5953 * There is still idle time; further improve the number by using the
5954 * irq metric. Because IRQ/steal time is hidden from the task clock we
5955 * need to scale the task numbers:
5956 *
5957 * max - irq
5958 * U' = irq + --------- * U
5959 * max
5960 */
5961 util = scale_irq_capacity(util, irq, max);
5962 util += irq;
5963
5964 /*
5965 * Bandwidth required by DEADLINE must always be granted while, for
5966 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5967 * to gracefully reduce the frequency when no tasks show up for longer
5968 * periods of time.
5969 *
5970 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5971 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5972 * an interface. So, we only do the latter for now.
5973 */
5974 if (type == FREQUENCY_UTIL)
5975 util += cpu_bw_dl(rq);
5976
5977 return min(max, util);
5978}
a5418be9
VK
5979
5980unsigned long sched_cpu_util(int cpu, unsigned long max)
5981{
5982 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5983 ENERGY_UTIL, NULL);
5984}
7d6a905f
VK
5985#endif /* CONFIG_SMP */
5986
1da177e4
LT
5987/**
5988 * find_process_by_pid - find a process with a matching PID value.
5989 * @pid: the pid in question.
e69f6186
YB
5990 *
5991 * The task of @pid, if found. %NULL otherwise.
1da177e4 5992 */
a9957449 5993static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5994{
228ebcbe 5995 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5996}
5997
c13db6b1
SR
5998/*
5999 * sched_setparam() passes in -1 for its policy, to let the functions
6000 * it calls know not to change it.
6001 */
6002#define SETPARAM_POLICY -1
6003
c365c292
TG
6004static void __setscheduler_params(struct task_struct *p,
6005 const struct sched_attr *attr)
1da177e4 6006{
d50dde5a
DF
6007 int policy = attr->sched_policy;
6008
c13db6b1 6009 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6010 policy = p->policy;
6011
1da177e4 6012 p->policy = policy;
d50dde5a 6013
aab03e05
DF
6014 if (dl_policy(policy))
6015 __setparam_dl(p, attr);
39fd8fd2 6016 else if (fair_policy(policy))
d50dde5a
DF
6017 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6018
39fd8fd2
PZ
6019 /*
6020 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6021 * !rt_policy. Always setting this ensures that things like
6022 * getparam()/getattr() don't report silly values for !rt tasks.
6023 */
6024 p->rt_priority = attr->sched_priority;
383afd09 6025 p->normal_prio = normal_prio(p);
9059393e 6026 set_load_weight(p, true);
c365c292 6027}
39fd8fd2 6028
c365c292
TG
6029/* Actually do priority change: must hold pi & rq lock. */
6030static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6031 const struct sched_attr *attr, bool keep_boost)
c365c292 6032{
a509a7cd
PB
6033 /*
6034 * If params can't change scheduling class changes aren't allowed
6035 * either.
6036 */
6037 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6038 return;
6039
c365c292 6040 __setscheduler_params(p, attr);
d50dde5a 6041
383afd09 6042 /*
0782e63b
TG
6043 * Keep a potential priority boosting if called from
6044 * sched_setscheduler().
383afd09 6045 */
acd58620 6046 p->prio = normal_prio(p);
0782e63b 6047 if (keep_boost)
acd58620 6048 p->prio = rt_effective_prio(p, p->prio);
383afd09 6049
aab03e05
DF
6050 if (dl_prio(p->prio))
6051 p->sched_class = &dl_sched_class;
6052 else if (rt_prio(p->prio))
ffd44db5
PZ
6053 p->sched_class = &rt_sched_class;
6054 else
6055 p->sched_class = &fair_sched_class;
1da177e4 6056}
aab03e05 6057
c69e8d9c 6058/*
d1ccc66d 6059 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6060 */
6061static bool check_same_owner(struct task_struct *p)
6062{
6063 const struct cred *cred = current_cred(), *pcred;
6064 bool match;
6065
6066 rcu_read_lock();
6067 pcred = __task_cred(p);
9c806aa0
EB
6068 match = (uid_eq(cred->euid, pcred->euid) ||
6069 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6070 rcu_read_unlock();
6071 return match;
6072}
6073
d50dde5a
DF
6074static int __sched_setscheduler(struct task_struct *p,
6075 const struct sched_attr *attr,
dbc7f069 6076 bool user, bool pi)
1da177e4 6077{
383afd09
SR
6078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6079 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6080 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6081 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6082 const struct sched_class *prev_class;
565790d2 6083 struct callback_head *head;
eb580751 6084 struct rq_flags rf;
ca94c442 6085 int reset_on_fork;
7a57f32a 6086 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6087 struct rq *rq;
1da177e4 6088
896bbb25
SRV
6089 /* The pi code expects interrupts enabled */
6090 BUG_ON(pi && in_interrupt());
1da177e4 6091recheck:
d1ccc66d 6092 /* Double check policy once rq lock held: */
ca94c442
LP
6093 if (policy < 0) {
6094 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6095 policy = oldpolicy = p->policy;
ca94c442 6096 } else {
7479f3c9 6097 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6098
20f9cd2a 6099 if (!valid_policy(policy))
ca94c442
LP
6100 return -EINVAL;
6101 }
6102
794a56eb 6103 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6104 return -EINVAL;
6105
1da177e4
LT
6106 /*
6107 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6108 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6109 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6110 */
ae18ad28 6111 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6112 return -EINVAL;
aab03e05
DF
6113 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6114 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6115 return -EINVAL;
6116
37e4ab3f
OC
6117 /*
6118 * Allow unprivileged RT tasks to decrease priority:
6119 */
961ccddd 6120 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6121 if (fair_policy(policy)) {
d0ea0268 6122 if (attr->sched_nice < task_nice(p) &&
eaad4513 6123 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6124 return -EPERM;
6125 }
6126
e05606d3 6127 if (rt_policy(policy)) {
a44702e8
ON
6128 unsigned long rlim_rtprio =
6129 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6130
d1ccc66d 6131 /* Can't set/change the rt policy: */
8dc3e909
ON
6132 if (policy != p->policy && !rlim_rtprio)
6133 return -EPERM;
6134
d1ccc66d 6135 /* Can't increase priority: */
d50dde5a
DF
6136 if (attr->sched_priority > p->rt_priority &&
6137 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6138 return -EPERM;
6139 }
c02aa73b 6140
d44753b8
JL
6141 /*
6142 * Can't set/change SCHED_DEADLINE policy at all for now
6143 * (safest behavior); in the future we would like to allow
6144 * unprivileged DL tasks to increase their relative deadline
6145 * or reduce their runtime (both ways reducing utilization)
6146 */
6147 if (dl_policy(policy))
6148 return -EPERM;
6149
dd41f596 6150 /*
c02aa73b
DH
6151 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6153 */
1da1843f 6154 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6155 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6156 return -EPERM;
6157 }
5fe1d75f 6158
d1ccc66d 6159 /* Can't change other user's priorities: */
c69e8d9c 6160 if (!check_same_owner(p))
37e4ab3f 6161 return -EPERM;
ca94c442 6162
d1ccc66d 6163 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6164 if (p->sched_reset_on_fork && !reset_on_fork)
6165 return -EPERM;
37e4ab3f 6166 }
1da177e4 6167
725aad24 6168 if (user) {
794a56eb
JL
6169 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6170 return -EINVAL;
6171
b0ae1981 6172 retval = security_task_setscheduler(p);
725aad24
JF
6173 if (retval)
6174 return retval;
6175 }
6176
a509a7cd
PB
6177 /* Update task specific "requested" clamps */
6178 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6179 retval = uclamp_validate(p, attr);
6180 if (retval)
6181 return retval;
6182 }
6183
710da3c8
JL
6184 if (pi)
6185 cpuset_read_lock();
6186
b29739f9 6187 /*
d1ccc66d 6188 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6189 * changing the priority of the task:
0122ec5b 6190 *
25985edc 6191 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6192 * runqueue lock must be held.
6193 */
eb580751 6194 rq = task_rq_lock(p, &rf);
80f5c1b8 6195 update_rq_clock(rq);
dc61b1d6 6196
34f971f6 6197 /*
d1ccc66d 6198 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
6199 */
6200 if (p == rq->stop) {
4b211f2b
MP
6201 retval = -EINVAL;
6202 goto unlock;
34f971f6
PZ
6203 }
6204
a51e9198 6205 /*
d6b1e911
TG
6206 * If not changing anything there's no need to proceed further,
6207 * but store a possible modification of reset_on_fork.
a51e9198 6208 */
d50dde5a 6209 if (unlikely(policy == p->policy)) {
d0ea0268 6210 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
6211 goto change;
6212 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6213 goto change;
75381608 6214 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 6215 goto change;
a509a7cd
PB
6216 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6217 goto change;
d50dde5a 6218
d6b1e911 6219 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
6220 retval = 0;
6221 goto unlock;
a51e9198 6222 }
d50dde5a 6223change:
a51e9198 6224
dc61b1d6 6225 if (user) {
332ac17e 6226#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
6227 /*
6228 * Do not allow realtime tasks into groups that have no runtime
6229 * assigned.
6230 */
6231 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
6232 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6233 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
6234 retval = -EPERM;
6235 goto unlock;
dc61b1d6 6236 }
dc61b1d6 6237#endif
332ac17e 6238#ifdef CONFIG_SMP
794a56eb
JL
6239 if (dl_bandwidth_enabled() && dl_policy(policy) &&
6240 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 6241 cpumask_t *span = rq->rd->span;
332ac17e
DF
6242
6243 /*
6244 * Don't allow tasks with an affinity mask smaller than
6245 * the entire root_domain to become SCHED_DEADLINE. We
6246 * will also fail if there's no bandwidth available.
6247 */
3bd37062 6248 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 6249 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
6250 retval = -EPERM;
6251 goto unlock;
332ac17e
DF
6252 }
6253 }
6254#endif
6255 }
dc61b1d6 6256
d1ccc66d 6257 /* Re-check policy now with rq lock held: */
1da177e4
LT
6258 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6259 policy = oldpolicy = -1;
eb580751 6260 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6261 if (pi)
6262 cpuset_read_unlock();
1da177e4
LT
6263 goto recheck;
6264 }
332ac17e
DF
6265
6266 /*
6267 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6268 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6269 * is available.
6270 */
06a76fe0 6271 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
6272 retval = -EBUSY;
6273 goto unlock;
332ac17e
DF
6274 }
6275
c365c292
TG
6276 p->sched_reset_on_fork = reset_on_fork;
6277 oldprio = p->prio;
6278
dbc7f069
PZ
6279 if (pi) {
6280 /*
6281 * Take priority boosted tasks into account. If the new
6282 * effective priority is unchanged, we just store the new
6283 * normal parameters and do not touch the scheduler class and
6284 * the runqueue. This will be done when the task deboost
6285 * itself.
6286 */
acd58620 6287 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
6288 if (new_effective_prio == oldprio)
6289 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
6290 }
6291
da0c1e65 6292 queued = task_on_rq_queued(p);
051a1d1a 6293 running = task_current(rq, p);
da0c1e65 6294 if (queued)
ff77e468 6295 dequeue_task(rq, p, queue_flags);
0e1f3483 6296 if (running)
f3cd1c4e 6297 put_prev_task(rq, p);
f6b53205 6298
83ab0aa0 6299 prev_class = p->sched_class;
a509a7cd 6300
dbc7f069 6301 __setscheduler(rq, p, attr, pi);
a509a7cd 6302 __setscheduler_uclamp(p, attr);
f6b53205 6303
da0c1e65 6304 if (queued) {
81a44c54
TG
6305 /*
6306 * We enqueue to tail when the priority of a task is
6307 * increased (user space view).
6308 */
ff77e468
PZ
6309 if (oldprio < p->prio)
6310 queue_flags |= ENQUEUE_HEAD;
1de64443 6311
ff77e468 6312 enqueue_task(rq, p, queue_flags);
81a44c54 6313 }
a399d233 6314 if (running)
03b7fad1 6315 set_next_task(rq, p);
cb469845 6316
da7a735e 6317 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
6318
6319 /* Avoid rq from going away on us: */
6320 preempt_disable();
565790d2 6321 head = splice_balance_callbacks(rq);
eb580751 6322 task_rq_unlock(rq, p, &rf);
b29739f9 6323
710da3c8
JL
6324 if (pi) {
6325 cpuset_read_unlock();
dbc7f069 6326 rt_mutex_adjust_pi(p);
710da3c8 6327 }
95e02ca9 6328
d1ccc66d 6329 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 6330 balance_callbacks(rq, head);
4c9a4bc8 6331 preempt_enable();
95e02ca9 6332
1da177e4 6333 return 0;
4b211f2b
MP
6334
6335unlock:
6336 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6337 if (pi)
6338 cpuset_read_unlock();
4b211f2b 6339 return retval;
1da177e4 6340}
961ccddd 6341
7479f3c9
PZ
6342static int _sched_setscheduler(struct task_struct *p, int policy,
6343 const struct sched_param *param, bool check)
6344{
6345 struct sched_attr attr = {
6346 .sched_policy = policy,
6347 .sched_priority = param->sched_priority,
6348 .sched_nice = PRIO_TO_NICE(p->static_prio),
6349 };
6350
c13db6b1
SR
6351 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6352 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
6353 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6354 policy &= ~SCHED_RESET_ON_FORK;
6355 attr.sched_policy = policy;
6356 }
6357
dbc7f069 6358 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 6359}
961ccddd
RR
6360/**
6361 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6362 * @p: the task in question.
6363 * @policy: new policy.
6364 * @param: structure containing the new RT priority.
6365 *
7318d4cc
PZ
6366 * Use sched_set_fifo(), read its comment.
6367 *
e69f6186
YB
6368 * Return: 0 on success. An error code otherwise.
6369 *
961ccddd
RR
6370 * NOTE that the task may be already dead.
6371 */
6372int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 6373 const struct sched_param *param)
961ccddd 6374{
7479f3c9 6375 return _sched_setscheduler(p, policy, param, true);
961ccddd 6376}
1da177e4 6377
d50dde5a
DF
6378int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6379{
dbc7f069 6380 return __sched_setscheduler(p, attr, true, true);
d50dde5a 6381}
d50dde5a 6382
794a56eb
JL
6383int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6384{
6385 return __sched_setscheduler(p, attr, false, true);
6386}
6387
961ccddd
RR
6388/**
6389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6390 * @p: the task in question.
6391 * @policy: new policy.
6392 * @param: structure containing the new RT priority.
6393 *
6394 * Just like sched_setscheduler, only don't bother checking if the
6395 * current context has permission. For example, this is needed in
6396 * stop_machine(): we create temporary high priority worker threads,
6397 * but our caller might not have that capability.
e69f6186
YB
6398 *
6399 * Return: 0 on success. An error code otherwise.
961ccddd
RR
6400 */
6401int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 6402 const struct sched_param *param)
961ccddd 6403{
7479f3c9 6404 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
6405}
6406
7318d4cc
PZ
6407/*
6408 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6409 * incapable of resource management, which is the one thing an OS really should
6410 * be doing.
6411 *
6412 * This is of course the reason it is limited to privileged users only.
6413 *
6414 * Worse still; it is fundamentally impossible to compose static priority
6415 * workloads. You cannot take two correctly working static prio workloads
6416 * and smash them together and still expect them to work.
6417 *
6418 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6419 *
6420 * MAX_RT_PRIO / 2
6421 *
6422 * The administrator _MUST_ configure the system, the kernel simply doesn't
6423 * know enough information to make a sensible choice.
6424 */
8b700983 6425void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
6426{
6427 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 6428 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6429}
6430EXPORT_SYMBOL_GPL(sched_set_fifo);
6431
6432/*
6433 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6434 */
8b700983 6435void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
6436{
6437 struct sched_param sp = { .sched_priority = 1 };
8b700983 6438 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6439}
6440EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6441
8b700983 6442void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
6443{
6444 struct sched_attr attr = {
6445 .sched_policy = SCHED_NORMAL,
6446 .sched_nice = nice,
6447 };
8b700983 6448 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
6449}
6450EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 6451
95cdf3b7
IM
6452static int
6453do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6454{
1da177e4
LT
6455 struct sched_param lparam;
6456 struct task_struct *p;
36c8b586 6457 int retval;
1da177e4
LT
6458
6459 if (!param || pid < 0)
6460 return -EINVAL;
6461 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6462 return -EFAULT;
5fe1d75f
ON
6463
6464 rcu_read_lock();
6465 retval = -ESRCH;
1da177e4 6466 p = find_process_by_pid(pid);
710da3c8
JL
6467 if (likely(p))
6468 get_task_struct(p);
5fe1d75f 6469 rcu_read_unlock();
36c8b586 6470
710da3c8
JL
6471 if (likely(p)) {
6472 retval = sched_setscheduler(p, policy, &lparam);
6473 put_task_struct(p);
6474 }
6475
1da177e4
LT
6476 return retval;
6477}
6478
d50dde5a
DF
6479/*
6480 * Mimics kernel/events/core.c perf_copy_attr().
6481 */
d1ccc66d 6482static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
6483{
6484 u32 size;
6485 int ret;
6486
d1ccc66d 6487 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
6488 memset(attr, 0, sizeof(*attr));
6489
6490 ret = get_user(size, &uattr->size);
6491 if (ret)
6492 return ret;
6493
d1ccc66d
IM
6494 /* ABI compatibility quirk: */
6495 if (!size)
d50dde5a 6496 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 6497 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
6498 goto err_size;
6499
dff3a85f
AS
6500 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6501 if (ret) {
6502 if (ret == -E2BIG)
6503 goto err_size;
6504 return ret;
d50dde5a
DF
6505 }
6506
a509a7cd
PB
6507 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6508 size < SCHED_ATTR_SIZE_VER1)
6509 return -EINVAL;
6510
d50dde5a 6511 /*
d1ccc66d 6512 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
6513 * to be strict and return an error on out-of-bounds values?
6514 */
75e45d51 6515 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 6516
e78c7bca 6517 return 0;
d50dde5a
DF
6518
6519err_size:
6520 put_user(sizeof(*attr), &uattr->size);
e78c7bca 6521 return -E2BIG;
d50dde5a
DF
6522}
6523
1da177e4
LT
6524/**
6525 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6526 * @pid: the pid in question.
6527 * @policy: new policy.
6528 * @param: structure containing the new RT priority.
e69f6186
YB
6529 *
6530 * Return: 0 on success. An error code otherwise.
1da177e4 6531 */
d1ccc66d 6532SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 6533{
c21761f1
JB
6534 if (policy < 0)
6535 return -EINVAL;
6536
1da177e4
LT
6537 return do_sched_setscheduler(pid, policy, param);
6538}
6539
6540/**
6541 * sys_sched_setparam - set/change the RT priority of a thread
6542 * @pid: the pid in question.
6543 * @param: structure containing the new RT priority.
e69f6186
YB
6544 *
6545 * Return: 0 on success. An error code otherwise.
1da177e4 6546 */
5add95d4 6547SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6548{
c13db6b1 6549 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
6550}
6551
d50dde5a
DF
6552/**
6553 * sys_sched_setattr - same as above, but with extended sched_attr
6554 * @pid: the pid in question.
5778fccf 6555 * @uattr: structure containing the extended parameters.
db66d756 6556 * @flags: for future extension.
d50dde5a 6557 */
6d35ab48
PZ
6558SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6559 unsigned int, flags)
d50dde5a
DF
6560{
6561 struct sched_attr attr;
6562 struct task_struct *p;
6563 int retval;
6564
6d35ab48 6565 if (!uattr || pid < 0 || flags)
d50dde5a
DF
6566 return -EINVAL;
6567
143cf23d
MK
6568 retval = sched_copy_attr(uattr, &attr);
6569 if (retval)
6570 return retval;
d50dde5a 6571
b14ed2c2 6572 if ((int)attr.sched_policy < 0)
dbdb2275 6573 return -EINVAL;
1d6362fa
PB
6574 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6575 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
6576
6577 rcu_read_lock();
6578 retval = -ESRCH;
6579 p = find_process_by_pid(pid);
a509a7cd
PB
6580 if (likely(p))
6581 get_task_struct(p);
d50dde5a
DF
6582 rcu_read_unlock();
6583
a509a7cd
PB
6584 if (likely(p)) {
6585 retval = sched_setattr(p, &attr);
6586 put_task_struct(p);
6587 }
6588
d50dde5a
DF
6589 return retval;
6590}
6591
1da177e4
LT
6592/**
6593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6594 * @pid: the pid in question.
e69f6186
YB
6595 *
6596 * Return: On success, the policy of the thread. Otherwise, a negative error
6597 * code.
1da177e4 6598 */
5add95d4 6599SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6600{
36c8b586 6601 struct task_struct *p;
3a5c359a 6602 int retval;
1da177e4
LT
6603
6604 if (pid < 0)
3a5c359a 6605 return -EINVAL;
1da177e4
LT
6606
6607 retval = -ESRCH;
5fe85be0 6608 rcu_read_lock();
1da177e4
LT
6609 p = find_process_by_pid(pid);
6610 if (p) {
6611 retval = security_task_getscheduler(p);
6612 if (!retval)
ca94c442
LP
6613 retval = p->policy
6614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6615 }
5fe85be0 6616 rcu_read_unlock();
1da177e4
LT
6617 return retval;
6618}
6619
6620/**
ca94c442 6621 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6622 * @pid: the pid in question.
6623 * @param: structure containing the RT priority.
e69f6186
YB
6624 *
6625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6626 * code.
1da177e4 6627 */
5add95d4 6628SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6629{
ce5f7f82 6630 struct sched_param lp = { .sched_priority = 0 };
36c8b586 6631 struct task_struct *p;
3a5c359a 6632 int retval;
1da177e4
LT
6633
6634 if (!param || pid < 0)
3a5c359a 6635 return -EINVAL;
1da177e4 6636
5fe85be0 6637 rcu_read_lock();
1da177e4
LT
6638 p = find_process_by_pid(pid);
6639 retval = -ESRCH;
6640 if (!p)
6641 goto out_unlock;
6642
6643 retval = security_task_getscheduler(p);
6644 if (retval)
6645 goto out_unlock;
6646
ce5f7f82
PZ
6647 if (task_has_rt_policy(p))
6648 lp.sched_priority = p->rt_priority;
5fe85be0 6649 rcu_read_unlock();
1da177e4
LT
6650
6651 /*
6652 * This one might sleep, we cannot do it with a spinlock held ...
6653 */
6654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6655
1da177e4
LT
6656 return retval;
6657
6658out_unlock:
5fe85be0 6659 rcu_read_unlock();
1da177e4
LT
6660 return retval;
6661}
6662
1251201c
IM
6663/*
6664 * Copy the kernel size attribute structure (which might be larger
6665 * than what user-space knows about) to user-space.
6666 *
6667 * Note that all cases are valid: user-space buffer can be larger or
6668 * smaller than the kernel-space buffer. The usual case is that both
6669 * have the same size.
6670 */
6671static int
6672sched_attr_copy_to_user(struct sched_attr __user *uattr,
6673 struct sched_attr *kattr,
6674 unsigned int usize)
d50dde5a 6675{
1251201c 6676 unsigned int ksize = sizeof(*kattr);
d50dde5a 6677
96d4f267 6678 if (!access_ok(uattr, usize))
d50dde5a
DF
6679 return -EFAULT;
6680
6681 /*
1251201c
IM
6682 * sched_getattr() ABI forwards and backwards compatibility:
6683 *
6684 * If usize == ksize then we just copy everything to user-space and all is good.
6685 *
6686 * If usize < ksize then we only copy as much as user-space has space for,
6687 * this keeps ABI compatibility as well. We skip the rest.
6688 *
6689 * If usize > ksize then user-space is using a newer version of the ABI,
6690 * which part the kernel doesn't know about. Just ignore it - tooling can
6691 * detect the kernel's knowledge of attributes from the attr->size value
6692 * which is set to ksize in this case.
d50dde5a 6693 */
1251201c 6694 kattr->size = min(usize, ksize);
d50dde5a 6695
1251201c 6696 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
6697 return -EFAULT;
6698
22400674 6699 return 0;
d50dde5a
DF
6700}
6701
6702/**
aab03e05 6703 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 6704 * @pid: the pid in question.
5778fccf 6705 * @uattr: structure containing the extended parameters.
dff3a85f 6706 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 6707 * @flags: for future extension.
d50dde5a 6708 */
6d35ab48 6709SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 6710 unsigned int, usize, unsigned int, flags)
d50dde5a 6711{
1251201c 6712 struct sched_attr kattr = { };
d50dde5a
DF
6713 struct task_struct *p;
6714 int retval;
6715
1251201c
IM
6716 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6717 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
6718 return -EINVAL;
6719
6720 rcu_read_lock();
6721 p = find_process_by_pid(pid);
6722 retval = -ESRCH;
6723 if (!p)
6724 goto out_unlock;
6725
6726 retval = security_task_getscheduler(p);
6727 if (retval)
6728 goto out_unlock;
6729
1251201c 6730 kattr.sched_policy = p->policy;
7479f3c9 6731 if (p->sched_reset_on_fork)
1251201c 6732 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 6733 if (task_has_dl_policy(p))
1251201c 6734 __getparam_dl(p, &kattr);
aab03e05 6735 else if (task_has_rt_policy(p))
1251201c 6736 kattr.sched_priority = p->rt_priority;
d50dde5a 6737 else
1251201c 6738 kattr.sched_nice = task_nice(p);
d50dde5a 6739
a509a7cd 6740#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
6741 /*
6742 * This could race with another potential updater, but this is fine
6743 * because it'll correctly read the old or the new value. We don't need
6744 * to guarantee who wins the race as long as it doesn't return garbage.
6745 */
1251201c
IM
6746 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6747 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
6748#endif
6749
d50dde5a
DF
6750 rcu_read_unlock();
6751
1251201c 6752 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
6753
6754out_unlock:
6755 rcu_read_unlock();
6756 return retval;
6757}
6758
96f874e2 6759long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6760{
5a16f3d3 6761 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6762 struct task_struct *p;
6763 int retval;
1da177e4 6764
23f5d142 6765 rcu_read_lock();
1da177e4
LT
6766
6767 p = find_process_by_pid(pid);
6768 if (!p) {
23f5d142 6769 rcu_read_unlock();
1da177e4
LT
6770 return -ESRCH;
6771 }
6772
23f5d142 6773 /* Prevent p going away */
1da177e4 6774 get_task_struct(p);
23f5d142 6775 rcu_read_unlock();
1da177e4 6776
14a40ffc
TH
6777 if (p->flags & PF_NO_SETAFFINITY) {
6778 retval = -EINVAL;
6779 goto out_put_task;
6780 }
5a16f3d3
RR
6781 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6782 retval = -ENOMEM;
6783 goto out_put_task;
6784 }
6785 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6786 retval = -ENOMEM;
6787 goto out_free_cpus_allowed;
6788 }
1da177e4 6789 retval = -EPERM;
4c44aaaf
EB
6790 if (!check_same_owner(p)) {
6791 rcu_read_lock();
6792 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6793 rcu_read_unlock();
16303ab2 6794 goto out_free_new_mask;
4c44aaaf
EB
6795 }
6796 rcu_read_unlock();
6797 }
1da177e4 6798
b0ae1981 6799 retval = security_task_setscheduler(p);
e7834f8f 6800 if (retval)
16303ab2 6801 goto out_free_new_mask;
e7834f8f 6802
e4099a5e
PZ
6803
6804 cpuset_cpus_allowed(p, cpus_allowed);
6805 cpumask_and(new_mask, in_mask, cpus_allowed);
6806
332ac17e
DF
6807 /*
6808 * Since bandwidth control happens on root_domain basis,
6809 * if admission test is enabled, we only admit -deadline
6810 * tasks allowed to run on all the CPUs in the task's
6811 * root_domain.
6812 */
6813#ifdef CONFIG_SMP
f1e3a093
KT
6814 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6815 rcu_read_lock();
6816 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6817 retval = -EBUSY;
f1e3a093 6818 rcu_read_unlock();
16303ab2 6819 goto out_free_new_mask;
332ac17e 6820 }
f1e3a093 6821 rcu_read_unlock();
332ac17e
DF
6822 }
6823#endif
49246274 6824again:
9cfc3e18 6825 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6826
8707d8b8 6827 if (!retval) {
5a16f3d3
RR
6828 cpuset_cpus_allowed(p, cpus_allowed);
6829 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6830 /*
6831 * We must have raced with a concurrent cpuset
6832 * update. Just reset the cpus_allowed to the
6833 * cpuset's cpus_allowed
6834 */
5a16f3d3 6835 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6836 goto again;
6837 }
6838 }
16303ab2 6839out_free_new_mask:
5a16f3d3
RR
6840 free_cpumask_var(new_mask);
6841out_free_cpus_allowed:
6842 free_cpumask_var(cpus_allowed);
6843out_put_task:
1da177e4 6844 put_task_struct(p);
1da177e4
LT
6845 return retval;
6846}
6847
6848static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6849 struct cpumask *new_mask)
1da177e4 6850{
96f874e2
RR
6851 if (len < cpumask_size())
6852 cpumask_clear(new_mask);
6853 else if (len > cpumask_size())
6854 len = cpumask_size();
6855
1da177e4
LT
6856 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6857}
6858
6859/**
d1ccc66d 6860 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6861 * @pid: pid of the process
6862 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6863 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6864 *
6865 * Return: 0 on success. An error code otherwise.
1da177e4 6866 */
5add95d4
HC
6867SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6868 unsigned long __user *, user_mask_ptr)
1da177e4 6869{
5a16f3d3 6870 cpumask_var_t new_mask;
1da177e4
LT
6871 int retval;
6872
5a16f3d3
RR
6873 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6874 return -ENOMEM;
1da177e4 6875
5a16f3d3
RR
6876 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6877 if (retval == 0)
6878 retval = sched_setaffinity(pid, new_mask);
6879 free_cpumask_var(new_mask);
6880 return retval;
1da177e4
LT
6881}
6882
96f874e2 6883long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6884{
36c8b586 6885 struct task_struct *p;
31605683 6886 unsigned long flags;
1da177e4 6887 int retval;
1da177e4 6888
23f5d142 6889 rcu_read_lock();
1da177e4
LT
6890
6891 retval = -ESRCH;
6892 p = find_process_by_pid(pid);
6893 if (!p)
6894 goto out_unlock;
6895
e7834f8f
DQ
6896 retval = security_task_getscheduler(p);
6897 if (retval)
6898 goto out_unlock;
6899
013fdb80 6900 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6901 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6902 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6903
6904out_unlock:
23f5d142 6905 rcu_read_unlock();
1da177e4 6906
9531b62f 6907 return retval;
1da177e4
LT
6908}
6909
6910/**
d1ccc66d 6911 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6912 * @pid: pid of the process
6913 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6914 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6915 *
599b4840
ZW
6916 * Return: size of CPU mask copied to user_mask_ptr on success. An
6917 * error code otherwise.
1da177e4 6918 */
5add95d4
HC
6919SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6920 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6921{
6922 int ret;
f17c8607 6923 cpumask_var_t mask;
1da177e4 6924
84fba5ec 6925 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6926 return -EINVAL;
6927 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6928 return -EINVAL;
6929
f17c8607
RR
6930 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6931 return -ENOMEM;
1da177e4 6932
f17c8607
RR
6933 ret = sched_getaffinity(pid, mask);
6934 if (ret == 0) {
4de373a1 6935 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6936
6937 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6938 ret = -EFAULT;
6939 else
cd3d8031 6940 ret = retlen;
f17c8607
RR
6941 }
6942 free_cpumask_var(mask);
1da177e4 6943
f17c8607 6944 return ret;
1da177e4
LT
6945}
6946
7d4dd4f1 6947static void do_sched_yield(void)
1da177e4 6948{
8a8c69c3
PZ
6949 struct rq_flags rf;
6950 struct rq *rq;
6951
246b3b33 6952 rq = this_rq_lock_irq(&rf);
1da177e4 6953
ae92882e 6954 schedstat_inc(rq->yld_count);
4530d7ab 6955 current->sched_class->yield_task(rq);
1da177e4 6956
8a8c69c3 6957 preempt_disable();
345a957f 6958 rq_unlock_irq(rq, &rf);
ba74c144 6959 sched_preempt_enable_no_resched();
1da177e4
LT
6960
6961 schedule();
7d4dd4f1 6962}
1da177e4 6963
59a74b15
MCC
6964/**
6965 * sys_sched_yield - yield the current processor to other threads.
6966 *
6967 * This function yields the current CPU to other tasks. If there are no
6968 * other threads running on this CPU then this function will return.
6969 *
6970 * Return: 0.
6971 */
7d4dd4f1
DB
6972SYSCALL_DEFINE0(sched_yield)
6973{
6974 do_sched_yield();
1da177e4
LT
6975 return 0;
6976}
6977
b965f1dd
PZI
6978#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6979int __sched __cond_resched(void)
1da177e4 6980{
fe32d3cd 6981 if (should_resched(0)) {
a18b5d01 6982 preempt_schedule_common();
1da177e4
LT
6983 return 1;
6984 }
b965f1dd 6985#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 6986 rcu_all_qs();
b965f1dd 6987#endif
1da177e4
LT
6988 return 0;
6989}
b965f1dd
PZI
6990EXPORT_SYMBOL(__cond_resched);
6991#endif
6992
6993#ifdef CONFIG_PREEMPT_DYNAMIC
6994DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 6995EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
6996
6997DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 6998EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 6999#endif
1da177e4
LT
7000
7001/*
613afbf8 7002 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7003 * call schedule, and on return reacquire the lock.
7004 *
c1a280b6 7005 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7006 * operations here to prevent schedule() from being called twice (once via
7007 * spin_unlock(), once by hand).
7008 */
613afbf8 7009int __cond_resched_lock(spinlock_t *lock)
1da177e4 7010{
fe32d3cd 7011 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7012 int ret = 0;
7013
f607c668
PZ
7014 lockdep_assert_held(lock);
7015
4a81e832 7016 if (spin_needbreak(lock) || resched) {
1da177e4 7017 spin_unlock(lock);
d86ee480 7018 if (resched)
a18b5d01 7019 preempt_schedule_common();
95c354fe
NP
7020 else
7021 cpu_relax();
6df3cecb 7022 ret = 1;
1da177e4 7023 spin_lock(lock);
1da177e4 7024 }
6df3cecb 7025 return ret;
1da177e4 7026}
613afbf8 7027EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7028
f3d4b4b1
BG
7029int __cond_resched_rwlock_read(rwlock_t *lock)
7030{
7031 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7032 int ret = 0;
7033
7034 lockdep_assert_held_read(lock);
7035
7036 if (rwlock_needbreak(lock) || resched) {
7037 read_unlock(lock);
7038 if (resched)
7039 preempt_schedule_common();
7040 else
7041 cpu_relax();
7042 ret = 1;
7043 read_lock(lock);
7044 }
7045 return ret;
7046}
7047EXPORT_SYMBOL(__cond_resched_rwlock_read);
7048
7049int __cond_resched_rwlock_write(rwlock_t *lock)
7050{
7051 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7052 int ret = 0;
7053
7054 lockdep_assert_held_write(lock);
7055
7056 if (rwlock_needbreak(lock) || resched) {
7057 write_unlock(lock);
7058 if (resched)
7059 preempt_schedule_common();
7060 else
7061 cpu_relax();
7062 ret = 1;
7063 write_lock(lock);
7064 }
7065 return ret;
7066}
7067EXPORT_SYMBOL(__cond_resched_rwlock_write);
7068
1da177e4
LT
7069/**
7070 * yield - yield the current processor to other threads.
7071 *
8e3fabfd
PZ
7072 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7073 *
7074 * The scheduler is at all times free to pick the calling task as the most
7075 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7076 * it, it's already broken.
8e3fabfd
PZ
7077 *
7078 * Typical broken usage is:
7079 *
7080 * while (!event)
d1ccc66d 7081 * yield();
8e3fabfd
PZ
7082 *
7083 * where one assumes that yield() will let 'the other' process run that will
7084 * make event true. If the current task is a SCHED_FIFO task that will never
7085 * happen. Never use yield() as a progress guarantee!!
7086 *
7087 * If you want to use yield() to wait for something, use wait_event().
7088 * If you want to use yield() to be 'nice' for others, use cond_resched().
7089 * If you still want to use yield(), do not!
1da177e4
LT
7090 */
7091void __sched yield(void)
7092{
7093 set_current_state(TASK_RUNNING);
7d4dd4f1 7094 do_sched_yield();
1da177e4 7095}
1da177e4
LT
7096EXPORT_SYMBOL(yield);
7097
d95f4122
MG
7098/**
7099 * yield_to - yield the current processor to another thread in
7100 * your thread group, or accelerate that thread toward the
7101 * processor it's on.
16addf95
RD
7102 * @p: target task
7103 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7104 *
7105 * It's the caller's job to ensure that the target task struct
7106 * can't go away on us before we can do any checks.
7107 *
e69f6186 7108 * Return:
7b270f60
PZ
7109 * true (>0) if we indeed boosted the target task.
7110 * false (0) if we failed to boost the target.
7111 * -ESRCH if there's no task to yield to.
d95f4122 7112 */
fa93384f 7113int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7114{
7115 struct task_struct *curr = current;
7116 struct rq *rq, *p_rq;
7117 unsigned long flags;
c3c18640 7118 int yielded = 0;
d95f4122
MG
7119
7120 local_irq_save(flags);
7121 rq = this_rq();
7122
7123again:
7124 p_rq = task_rq(p);
7b270f60
PZ
7125 /*
7126 * If we're the only runnable task on the rq and target rq also
7127 * has only one task, there's absolutely no point in yielding.
7128 */
7129 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7130 yielded = -ESRCH;
7131 goto out_irq;
7132 }
7133
d95f4122 7134 double_rq_lock(rq, p_rq);
39e24d8f 7135 if (task_rq(p) != p_rq) {
d95f4122
MG
7136 double_rq_unlock(rq, p_rq);
7137 goto again;
7138 }
7139
7140 if (!curr->sched_class->yield_to_task)
7b270f60 7141 goto out_unlock;
d95f4122
MG
7142
7143 if (curr->sched_class != p->sched_class)
7b270f60 7144 goto out_unlock;
d95f4122
MG
7145
7146 if (task_running(p_rq, p) || p->state)
7b270f60 7147 goto out_unlock;
d95f4122 7148
0900acf2 7149 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7150 if (yielded) {
ae92882e 7151 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7152 /*
7153 * Make p's CPU reschedule; pick_next_entity takes care of
7154 * fairness.
7155 */
7156 if (preempt && rq != p_rq)
8875125e 7157 resched_curr(p_rq);
6d1cafd8 7158 }
d95f4122 7159
7b270f60 7160out_unlock:
d95f4122 7161 double_rq_unlock(rq, p_rq);
7b270f60 7162out_irq:
d95f4122
MG
7163 local_irq_restore(flags);
7164
7b270f60 7165 if (yielded > 0)
d95f4122
MG
7166 schedule();
7167
7168 return yielded;
7169}
7170EXPORT_SYMBOL_GPL(yield_to);
7171
10ab5643
TH
7172int io_schedule_prepare(void)
7173{
7174 int old_iowait = current->in_iowait;
7175
7176 current->in_iowait = 1;
7177 blk_schedule_flush_plug(current);
7178
7179 return old_iowait;
7180}
7181
7182void io_schedule_finish(int token)
7183{
7184 current->in_iowait = token;
7185}
7186
1da177e4 7187/*
41a2d6cf 7188 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 7189 * that process accounting knows that this is a task in IO wait state.
1da177e4 7190 */
1da177e4
LT
7191long __sched io_schedule_timeout(long timeout)
7192{
10ab5643 7193 int token;
1da177e4
LT
7194 long ret;
7195
10ab5643 7196 token = io_schedule_prepare();
1da177e4 7197 ret = schedule_timeout(timeout);
10ab5643 7198 io_schedule_finish(token);
9cff8ade 7199
1da177e4
LT
7200 return ret;
7201}
9cff8ade 7202EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 7203
e3b929b0 7204void __sched io_schedule(void)
10ab5643
TH
7205{
7206 int token;
7207
7208 token = io_schedule_prepare();
7209 schedule();
7210 io_schedule_finish(token);
7211}
7212EXPORT_SYMBOL(io_schedule);
7213
1da177e4
LT
7214/**
7215 * sys_sched_get_priority_max - return maximum RT priority.
7216 * @policy: scheduling class.
7217 *
e69f6186
YB
7218 * Return: On success, this syscall returns the maximum
7219 * rt_priority that can be used by a given scheduling class.
7220 * On failure, a negative error code is returned.
1da177e4 7221 */
5add95d4 7222SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
7223{
7224 int ret = -EINVAL;
7225
7226 switch (policy) {
7227 case SCHED_FIFO:
7228 case SCHED_RR:
ae18ad28 7229 ret = MAX_RT_PRIO-1;
1da177e4 7230 break;
aab03e05 7231 case SCHED_DEADLINE:
1da177e4 7232 case SCHED_NORMAL:
b0a9499c 7233 case SCHED_BATCH:
dd41f596 7234 case SCHED_IDLE:
1da177e4
LT
7235 ret = 0;
7236 break;
7237 }
7238 return ret;
7239}
7240
7241/**
7242 * sys_sched_get_priority_min - return minimum RT priority.
7243 * @policy: scheduling class.
7244 *
e69f6186
YB
7245 * Return: On success, this syscall returns the minimum
7246 * rt_priority that can be used by a given scheduling class.
7247 * On failure, a negative error code is returned.
1da177e4 7248 */
5add95d4 7249SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
7250{
7251 int ret = -EINVAL;
7252
7253 switch (policy) {
7254 case SCHED_FIFO:
7255 case SCHED_RR:
7256 ret = 1;
7257 break;
aab03e05 7258 case SCHED_DEADLINE:
1da177e4 7259 case SCHED_NORMAL:
b0a9499c 7260 case SCHED_BATCH:
dd41f596 7261 case SCHED_IDLE:
1da177e4
LT
7262 ret = 0;
7263 }
7264 return ret;
7265}
7266
abca5fc5 7267static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 7268{
36c8b586 7269 struct task_struct *p;
a4ec24b4 7270 unsigned int time_slice;
eb580751 7271 struct rq_flags rf;
dba091b9 7272 struct rq *rq;
3a5c359a 7273 int retval;
1da177e4
LT
7274
7275 if (pid < 0)
3a5c359a 7276 return -EINVAL;
1da177e4
LT
7277
7278 retval = -ESRCH;
1a551ae7 7279 rcu_read_lock();
1da177e4
LT
7280 p = find_process_by_pid(pid);
7281 if (!p)
7282 goto out_unlock;
7283
7284 retval = security_task_getscheduler(p);
7285 if (retval)
7286 goto out_unlock;
7287
eb580751 7288 rq = task_rq_lock(p, &rf);
a57beec5
PZ
7289 time_slice = 0;
7290 if (p->sched_class->get_rr_interval)
7291 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 7292 task_rq_unlock(rq, p, &rf);
a4ec24b4 7293
1a551ae7 7294 rcu_read_unlock();
abca5fc5
AV
7295 jiffies_to_timespec64(time_slice, t);
7296 return 0;
3a5c359a 7297
1da177e4 7298out_unlock:
1a551ae7 7299 rcu_read_unlock();
1da177e4
LT
7300 return retval;
7301}
7302
2064a5ab
RD
7303/**
7304 * sys_sched_rr_get_interval - return the default timeslice of a process.
7305 * @pid: pid of the process.
7306 * @interval: userspace pointer to the timeslice value.
7307 *
7308 * this syscall writes the default timeslice value of a given process
7309 * into the user-space timespec buffer. A value of '0' means infinity.
7310 *
7311 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7312 * an error code.
7313 */
abca5fc5 7314SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 7315 struct __kernel_timespec __user *, interval)
abca5fc5
AV
7316{
7317 struct timespec64 t;
7318 int retval = sched_rr_get_interval(pid, &t);
7319
7320 if (retval == 0)
7321 retval = put_timespec64(&t, interval);
7322
7323 return retval;
7324}
7325
474b9c77 7326#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
7327SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7328 struct old_timespec32 __user *, interval)
abca5fc5
AV
7329{
7330 struct timespec64 t;
7331 int retval = sched_rr_get_interval(pid, &t);
7332
7333 if (retval == 0)
9afc5eee 7334 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
7335 return retval;
7336}
7337#endif
7338
82a1fcb9 7339void sched_show_task(struct task_struct *p)
1da177e4 7340{
1da177e4 7341 unsigned long free = 0;
4e79752c 7342 int ppid;
c930b2c0 7343
38200502
TH
7344 if (!try_get_task_stack(p))
7345 return;
20435d84 7346
cc172ff3 7347 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
7348
7349 if (p->state == TASK_RUNNING)
cc172ff3 7350 pr_cont(" running task ");
1da177e4 7351#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 7352 free = stack_not_used(p);
1da177e4 7353#endif
a90e984c 7354 ppid = 0;
4e79752c 7355 rcu_read_lock();
a90e984c
ON
7356 if (pid_alive(p))
7357 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 7358 rcu_read_unlock();
cc172ff3
LZ
7359 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7360 free, task_pid_nr(p), ppid,
aa47b7e0 7361 (unsigned long)task_thread_info(p)->flags);
1da177e4 7362
3d1cb205 7363 print_worker_info(KERN_INFO, p);
a8b62fd0 7364 print_stop_info(KERN_INFO, p);
9cb8f069 7365 show_stack(p, NULL, KERN_INFO);
38200502 7366 put_task_stack(p);
1da177e4 7367}
0032f4e8 7368EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 7369
5d68cc95
PZ
7370static inline bool
7371state_filter_match(unsigned long state_filter, struct task_struct *p)
7372{
7373 /* no filter, everything matches */
7374 if (!state_filter)
7375 return true;
7376
7377 /* filter, but doesn't match */
7378 if (!(p->state & state_filter))
7379 return false;
7380
7381 /*
7382 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7383 * TASK_KILLABLE).
7384 */
7385 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7386 return false;
7387
7388 return true;
7389}
7390
7391
e59e2ae2 7392void show_state_filter(unsigned long state_filter)
1da177e4 7393{
36c8b586 7394 struct task_struct *g, *p;
1da177e4 7395
510f5acc 7396 rcu_read_lock();
5d07f420 7397 for_each_process_thread(g, p) {
1da177e4
LT
7398 /*
7399 * reset the NMI-timeout, listing all files on a slow
25985edc 7400 * console might take a lot of time:
57675cb9
AR
7401 * Also, reset softlockup watchdogs on all CPUs, because
7402 * another CPU might be blocked waiting for us to process
7403 * an IPI.
1da177e4
LT
7404 */
7405 touch_nmi_watchdog();
57675cb9 7406 touch_all_softlockup_watchdogs();
5d68cc95 7407 if (state_filter_match(state_filter, p))
82a1fcb9 7408 sched_show_task(p);
5d07f420 7409 }
1da177e4 7410
dd41f596 7411#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
7412 if (!state_filter)
7413 sysrq_sched_debug_show();
dd41f596 7414#endif
510f5acc 7415 rcu_read_unlock();
e59e2ae2
IM
7416 /*
7417 * Only show locks if all tasks are dumped:
7418 */
93335a21 7419 if (!state_filter)
e59e2ae2 7420 debug_show_all_locks();
1da177e4
LT
7421}
7422
f340c0d1
IM
7423/**
7424 * init_idle - set up an idle thread for a given CPU
7425 * @idle: task in question
d1ccc66d 7426 * @cpu: CPU the idle task belongs to
f340c0d1
IM
7427 *
7428 * NOTE: this function does not set the idle thread's NEED_RESCHED
7429 * flag, to make booting more robust.
7430 */
0db0628d 7431void init_idle(struct task_struct *idle, int cpu)
1da177e4 7432{
70b97a7f 7433 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7434 unsigned long flags;
7435
ff51ff84
PZ
7436 __sched_fork(0, idle);
7437
25834c73
PZ
7438 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7439 raw_spin_lock(&rq->lock);
5cbd54ef 7440
06b83b5f 7441 idle->state = TASK_RUNNING;
dd41f596 7442 idle->se.exec_start = sched_clock();
c1de45ca 7443 idle->flags |= PF_IDLE;
dd41f596 7444
d08b9f0c 7445 scs_task_reset(idle);
e1b77c92
MR
7446 kasan_unpoison_task_stack(idle);
7447
de9b8f5d
PZ
7448#ifdef CONFIG_SMP
7449 /*
b19a888c 7450 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
7451 * in that case do_set_cpus_allowed() will not do the right thing.
7452 *
7453 * And since this is boot we can forgo the serialization.
7454 */
9cfc3e18 7455 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 7456#endif
6506cf6c
PZ
7457 /*
7458 * We're having a chicken and egg problem, even though we are
d1ccc66d 7459 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
7460 * lockdep check in task_group() will fail.
7461 *
7462 * Similar case to sched_fork(). / Alternatively we could
7463 * use task_rq_lock() here and obtain the other rq->lock.
7464 *
7465 * Silence PROVE_RCU
7466 */
7467 rcu_read_lock();
dd41f596 7468 __set_task_cpu(idle, cpu);
6506cf6c 7469 rcu_read_unlock();
1da177e4 7470
5311a98f
EB
7471 rq->idle = idle;
7472 rcu_assign_pointer(rq->curr, idle);
da0c1e65 7473 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 7474#ifdef CONFIG_SMP
3ca7a440 7475 idle->on_cpu = 1;
4866cde0 7476#endif
25834c73
PZ
7477 raw_spin_unlock(&rq->lock);
7478 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
7479
7480 /* Set the preempt count _outside_ the spinlocks! */
01028747 7481 init_idle_preempt_count(idle, cpu);
55cd5340 7482
dd41f596
IM
7483 /*
7484 * The idle tasks have their own, simple scheduling class:
7485 */
7486 idle->sched_class = &idle_sched_class;
868baf07 7487 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 7488 vtime_init_idle(idle, cpu);
de9b8f5d 7489#ifdef CONFIG_SMP
f1c6f1a7
CE
7490 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7491#endif
19978ca6
IM
7492}
7493
e1d4eeec
NP
7494#ifdef CONFIG_SMP
7495
f82f8042
JL
7496int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7497 const struct cpumask *trial)
7498{
06a76fe0 7499 int ret = 1;
f82f8042 7500
bb2bc55a
MG
7501 if (!cpumask_weight(cur))
7502 return ret;
7503
06a76fe0 7504 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
7505
7506 return ret;
7507}
7508
7f51412a
JL
7509int task_can_attach(struct task_struct *p,
7510 const struct cpumask *cs_cpus_allowed)
7511{
7512 int ret = 0;
7513
7514 /*
7515 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 7516 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
7517 * affinity and isolating such threads by their set of
7518 * allowed nodes is unnecessary. Thus, cpusets are not
7519 * applicable for such threads. This prevents checking for
7520 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 7521 * before cpus_mask may be changed.
7f51412a
JL
7522 */
7523 if (p->flags & PF_NO_SETAFFINITY) {
7524 ret = -EINVAL;
7525 goto out;
7526 }
7527
7f51412a 7528 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
7529 cs_cpus_allowed))
7530 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 7531
7f51412a
JL
7532out:
7533 return ret;
7534}
7535
f2cb1360 7536bool sched_smp_initialized __read_mostly;
e26fbffd 7537
e6628d5b
MG
7538#ifdef CONFIG_NUMA_BALANCING
7539/* Migrate current task p to target_cpu */
7540int migrate_task_to(struct task_struct *p, int target_cpu)
7541{
7542 struct migration_arg arg = { p, target_cpu };
7543 int curr_cpu = task_cpu(p);
7544
7545 if (curr_cpu == target_cpu)
7546 return 0;
7547
3bd37062 7548 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
7549 return -EINVAL;
7550
7551 /* TODO: This is not properly updating schedstats */
7552
286549dc 7553 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
7554 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7555}
0ec8aa00
PZ
7556
7557/*
7558 * Requeue a task on a given node and accurately track the number of NUMA
7559 * tasks on the runqueues
7560 */
7561void sched_setnuma(struct task_struct *p, int nid)
7562{
da0c1e65 7563 bool queued, running;
eb580751
PZ
7564 struct rq_flags rf;
7565 struct rq *rq;
0ec8aa00 7566
eb580751 7567 rq = task_rq_lock(p, &rf);
da0c1e65 7568 queued = task_on_rq_queued(p);
0ec8aa00
PZ
7569 running = task_current(rq, p);
7570
da0c1e65 7571 if (queued)
1de64443 7572 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 7573 if (running)
f3cd1c4e 7574 put_prev_task(rq, p);
0ec8aa00
PZ
7575
7576 p->numa_preferred_nid = nid;
0ec8aa00 7577
da0c1e65 7578 if (queued)
7134b3e9 7579 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 7580 if (running)
03b7fad1 7581 set_next_task(rq, p);
eb580751 7582 task_rq_unlock(rq, p, &rf);
0ec8aa00 7583}
5cc389bc 7584#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 7585
1da177e4 7586#ifdef CONFIG_HOTPLUG_CPU
054b9108 7587/*
d1ccc66d 7588 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 7589 * offline.
054b9108 7590 */
48c5ccae 7591void idle_task_exit(void)
1da177e4 7592{
48c5ccae 7593 struct mm_struct *mm = current->active_mm;
e76bd8d9 7594
48c5ccae 7595 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 7596 BUG_ON(current != this_rq()->idle);
e76bd8d9 7597
a53efe5f 7598 if (mm != &init_mm) {
252d2a41 7599 switch_mm(mm, &init_mm, current);
a53efe5f
MS
7600 finish_arch_post_lock_switch();
7601 }
bf2c59fc
PZ
7602
7603 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
7604}
7605
2558aacf 7606static int __balance_push_cpu_stop(void *arg)
1da177e4 7607{
2558aacf
PZ
7608 struct task_struct *p = arg;
7609 struct rq *rq = this_rq();
7610 struct rq_flags rf;
7611 int cpu;
1da177e4 7612
2558aacf
PZ
7613 raw_spin_lock_irq(&p->pi_lock);
7614 rq_lock(rq, &rf);
3f1d2a31 7615
2558aacf
PZ
7616 update_rq_clock(rq);
7617
7618 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7619 cpu = select_fallback_rq(rq->cpu, p);
7620 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 7621 }
3f1d2a31 7622
2558aacf
PZ
7623 rq_unlock(rq, &rf);
7624 raw_spin_unlock_irq(&p->pi_lock);
7625
7626 put_task_struct(p);
7627
7628 return 0;
10e7071b 7629}
3f1d2a31 7630
2558aacf
PZ
7631static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7632
48f24c4d 7633/*
2558aacf 7634 * Ensure we only run per-cpu kthreads once the CPU goes !active.
1da177e4 7635 */
2558aacf 7636static void balance_push(struct rq *rq)
1da177e4 7637{
2558aacf
PZ
7638 struct task_struct *push_task = rq->curr;
7639
7640 lockdep_assert_held(&rq->lock);
7641 SCHED_WARN_ON(rq->cpu != smp_processor_id());
ae792702
PZ
7642 /*
7643 * Ensure the thing is persistent until balance_push_set(.on = false);
7644 */
7645 rq->balance_callback = &balance_push_callback;
1da177e4
LT
7646
7647 /*
2558aacf
PZ
7648 * Both the cpu-hotplug and stop task are in this case and are
7649 * required to complete the hotplug process.
5ba2ffba
PZ
7650 *
7651 * XXX: the idle task does not match kthread_is_per_cpu() due to
7652 * histerical raisins.
1da177e4 7653 */
5ba2ffba
PZ
7654 if (rq->idle == push_task ||
7655 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7656 is_migration_disabled(push_task)) {
7657
f2469a1f
TG
7658 /*
7659 * If this is the idle task on the outgoing CPU try to wake
7660 * up the hotplug control thread which might wait for the
7661 * last task to vanish. The rcuwait_active() check is
7662 * accurate here because the waiter is pinned on this CPU
7663 * and can't obviously be running in parallel.
3015ef4b
TG
7664 *
7665 * On RT kernels this also has to check whether there are
7666 * pinned and scheduled out tasks on the runqueue. They
7667 * need to leave the migrate disabled section first.
f2469a1f 7668 */
3015ef4b
TG
7669 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7670 rcuwait_active(&rq->hotplug_wait)) {
f2469a1f
TG
7671 raw_spin_unlock(&rq->lock);
7672 rcuwait_wake_up(&rq->hotplug_wait);
7673 raw_spin_lock(&rq->lock);
7674 }
2558aacf 7675 return;
f2469a1f 7676 }
48f24c4d 7677
2558aacf 7678 get_task_struct(push_task);
77bd3970 7679 /*
2558aacf
PZ
7680 * Temporarily drop rq->lock such that we can wake-up the stop task.
7681 * Both preemption and IRQs are still disabled.
77bd3970 7682 */
2558aacf
PZ
7683 raw_spin_unlock(&rq->lock);
7684 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7685 this_cpu_ptr(&push_work));
7686 /*
7687 * At this point need_resched() is true and we'll take the loop in
7688 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 7689 * which kthread_is_per_cpu() and will push this task away.
2558aacf
PZ
7690 */
7691 raw_spin_lock(&rq->lock);
7692}
77bd3970 7693
2558aacf
PZ
7694static void balance_push_set(int cpu, bool on)
7695{
7696 struct rq *rq = cpu_rq(cpu);
7697 struct rq_flags rf;
48c5ccae 7698
2558aacf 7699 rq_lock_irqsave(rq, &rf);
975707f2 7700 rq->balance_push = on;
22f667c9
PZ
7701 if (on) {
7702 WARN_ON_ONCE(rq->balance_callback);
ae792702 7703 rq->balance_callback = &balance_push_callback;
22f667c9 7704 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 7705 rq->balance_callback = NULL;
22f667c9 7706 }
2558aacf
PZ
7707 rq_unlock_irqrestore(rq, &rf);
7708}
e692ab53 7709
f2469a1f
TG
7710/*
7711 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7712 * inactive. All tasks which are not per CPU kernel threads are either
7713 * pushed off this CPU now via balance_push() or placed on a different CPU
7714 * during wakeup. Wait until the CPU is quiescent.
7715 */
7716static void balance_hotplug_wait(void)
7717{
7718 struct rq *rq = this_rq();
5473e0cc 7719
3015ef4b
TG
7720 rcuwait_wait_event(&rq->hotplug_wait,
7721 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
7722 TASK_UNINTERRUPTIBLE);
7723}
5473e0cc 7724
2558aacf 7725#else
dce48a84 7726
2558aacf
PZ
7727static inline void balance_push(struct rq *rq)
7728{
dce48a84 7729}
dce48a84 7730
2558aacf
PZ
7731static inline void balance_push_set(int cpu, bool on)
7732{
7733}
7734
f2469a1f
TG
7735static inline void balance_hotplug_wait(void)
7736{
dce48a84 7737}
f2469a1f 7738
1da177e4
LT
7739#endif /* CONFIG_HOTPLUG_CPU */
7740
f2cb1360 7741void set_rq_online(struct rq *rq)
1f11eb6a
GH
7742{
7743 if (!rq->online) {
7744 const struct sched_class *class;
7745
c6c4927b 7746 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7747 rq->online = 1;
7748
7749 for_each_class(class) {
7750 if (class->rq_online)
7751 class->rq_online(rq);
7752 }
7753 }
7754}
7755
f2cb1360 7756void set_rq_offline(struct rq *rq)
1f11eb6a
GH
7757{
7758 if (rq->online) {
7759 const struct sched_class *class;
7760
7761 for_each_class(class) {
7762 if (class->rq_offline)
7763 class->rq_offline(rq);
7764 }
7765
c6c4927b 7766 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7767 rq->online = 0;
7768 }
7769}
7770
d1ccc66d
IM
7771/*
7772 * used to mark begin/end of suspend/resume:
7773 */
7774static int num_cpus_frozen;
d35be8ba 7775
1da177e4 7776/*
3a101d05
TH
7777 * Update cpusets according to cpu_active mask. If cpusets are
7778 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7779 * around partition_sched_domains().
d35be8ba
SB
7780 *
7781 * If we come here as part of a suspend/resume, don't touch cpusets because we
7782 * want to restore it back to its original state upon resume anyway.
1da177e4 7783 */
40190a78 7784static void cpuset_cpu_active(void)
e761b772 7785{
40190a78 7786 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7787 /*
7788 * num_cpus_frozen tracks how many CPUs are involved in suspend
7789 * resume sequence. As long as this is not the last online
7790 * operation in the resume sequence, just build a single sched
7791 * domain, ignoring cpusets.
7792 */
50e76632
PZ
7793 partition_sched_domains(1, NULL, NULL);
7794 if (--num_cpus_frozen)
135fb3e1 7795 return;
d35be8ba
SB
7796 /*
7797 * This is the last CPU online operation. So fall through and
7798 * restore the original sched domains by considering the
7799 * cpuset configurations.
7800 */
50e76632 7801 cpuset_force_rebuild();
3a101d05 7802 }
30e03acd 7803 cpuset_update_active_cpus();
3a101d05 7804}
e761b772 7805
40190a78 7806static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7807{
40190a78 7808 if (!cpuhp_tasks_frozen) {
06a76fe0 7809 if (dl_cpu_busy(cpu))
135fb3e1 7810 return -EBUSY;
30e03acd 7811 cpuset_update_active_cpus();
135fb3e1 7812 } else {
d35be8ba
SB
7813 num_cpus_frozen++;
7814 partition_sched_domains(1, NULL, NULL);
e761b772 7815 }
135fb3e1 7816 return 0;
e761b772 7817}
e761b772 7818
40190a78 7819int sched_cpu_activate(unsigned int cpu)
135fb3e1 7820{
7d976699 7821 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7822 struct rq_flags rf;
7d976699 7823
22f667c9
PZ
7824 /*
7825 * Make sure that when the hotplug state machine does a roll-back
7826 * we clear balance_push. Ideally that would happen earlier...
7827 */
2558aacf
PZ
7828 balance_push_set(cpu, false);
7829
ba2591a5
PZ
7830#ifdef CONFIG_SCHED_SMT
7831 /*
c5511d03 7832 * When going up, increment the number of cores with SMT present.
ba2591a5 7833 */
c5511d03
PZI
7834 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7835 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 7836#endif
40190a78 7837 set_cpu_active(cpu, true);
135fb3e1 7838
40190a78 7839 if (sched_smp_initialized) {
135fb3e1 7840 sched_domains_numa_masks_set(cpu);
40190a78 7841 cpuset_cpu_active();
e761b772 7842 }
7d976699
TG
7843
7844 /*
7845 * Put the rq online, if not already. This happens:
7846 *
7847 * 1) In the early boot process, because we build the real domains
d1ccc66d 7848 * after all CPUs have been brought up.
7d976699
TG
7849 *
7850 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7851 * domains.
7852 */
8a8c69c3 7853 rq_lock_irqsave(rq, &rf);
7d976699
TG
7854 if (rq->rd) {
7855 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7856 set_rq_online(rq);
7857 }
8a8c69c3 7858 rq_unlock_irqrestore(rq, &rf);
7d976699 7859
40190a78 7860 return 0;
135fb3e1
TG
7861}
7862
40190a78 7863int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7864{
120455c5
PZ
7865 struct rq *rq = cpu_rq(cpu);
7866 struct rq_flags rf;
135fb3e1
TG
7867 int ret;
7868
e0b257c3
AMB
7869 /*
7870 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7871 * load balancing when not active
7872 */
7873 nohz_balance_exit_idle(rq);
7874
40190a78 7875 set_cpu_active(cpu, false);
741ba80f
PZ
7876
7877 /*
7878 * From this point forward, this CPU will refuse to run any task that
7879 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7880 * push those tasks away until this gets cleared, see
7881 * sched_cpu_dying().
7882 */
975707f2
PZ
7883 balance_push_set(cpu, true);
7884
b2454caa 7885 /*
975707f2
PZ
7886 * We've cleared cpu_active_mask / set balance_push, wait for all
7887 * preempt-disabled and RCU users of this state to go away such that
7888 * all new such users will observe it.
b2454caa 7889 *
5ba2ffba
PZ
7890 * Specifically, we rely on ttwu to no longer target this CPU, see
7891 * ttwu_queue_cond() and is_cpu_allowed().
7892 *
b2454caa
PZ
7893 * Do sync before park smpboot threads to take care the rcu boost case.
7894 */
309ba859 7895 synchronize_rcu();
40190a78 7896
120455c5
PZ
7897 rq_lock_irqsave(rq, &rf);
7898 if (rq->rd) {
7899 update_rq_clock(rq);
7900 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7901 set_rq_offline(rq);
7902 }
7903 rq_unlock_irqrestore(rq, &rf);
7904
c5511d03
PZI
7905#ifdef CONFIG_SCHED_SMT
7906 /*
7907 * When going down, decrement the number of cores with SMT present.
7908 */
7909 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7910 static_branch_dec_cpuslocked(&sched_smt_present);
7911#endif
7912
40190a78
TG
7913 if (!sched_smp_initialized)
7914 return 0;
7915
7916 ret = cpuset_cpu_inactive(cpu);
7917 if (ret) {
2558aacf 7918 balance_push_set(cpu, false);
40190a78
TG
7919 set_cpu_active(cpu, true);
7920 return ret;
135fb3e1 7921 }
40190a78
TG
7922 sched_domains_numa_masks_clear(cpu);
7923 return 0;
135fb3e1
TG
7924}
7925
94baf7a5
TG
7926static void sched_rq_cpu_starting(unsigned int cpu)
7927{
7928 struct rq *rq = cpu_rq(cpu);
7929
7930 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7931 update_max_interval();
7932}
7933
135fb3e1
TG
7934int sched_cpu_starting(unsigned int cpu)
7935{
94baf7a5 7936 sched_rq_cpu_starting(cpu);
d84b3131 7937 sched_tick_start(cpu);
135fb3e1 7938 return 0;
e761b772 7939}
e761b772 7940
f2785ddb 7941#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7942
7943/*
7944 * Invoked immediately before the stopper thread is invoked to bring the
7945 * CPU down completely. At this point all per CPU kthreads except the
7946 * hotplug thread (current) and the stopper thread (inactive) have been
7947 * either parked or have been unbound from the outgoing CPU. Ensure that
7948 * any of those which might be on the way out are gone.
7949 *
7950 * If after this point a bound task is being woken on this CPU then the
7951 * responsible hotplug callback has failed to do it's job.
7952 * sched_cpu_dying() will catch it with the appropriate fireworks.
7953 */
7954int sched_cpu_wait_empty(unsigned int cpu)
7955{
7956 balance_hotplug_wait();
7957 return 0;
7958}
7959
7960/*
7961 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7962 * might have. Called from the CPU stopper task after ensuring that the
7963 * stopper is the last running task on the CPU, so nr_active count is
7964 * stable. We need to take the teardown thread which is calling this into
7965 * account, so we hand in adjust = 1 to the load calculation.
7966 *
7967 * Also see the comment "Global load-average calculations".
7968 */
7969static void calc_load_migrate(struct rq *rq)
7970{
7971 long delta = calc_load_fold_active(rq, 1);
7972
7973 if (delta)
7974 atomic_long_add(delta, &calc_load_tasks);
7975}
7976
36c6e17b
VS
7977static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7978{
7979 struct task_struct *g, *p;
7980 int cpu = cpu_of(rq);
7981
7982 lockdep_assert_held(&rq->lock);
7983
7984 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7985 for_each_process_thread(g, p) {
7986 if (task_cpu(p) != cpu)
7987 continue;
7988
7989 if (!task_on_rq_queued(p))
7990 continue;
7991
7992 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7993 }
7994}
7995
f2785ddb
TG
7996int sched_cpu_dying(unsigned int cpu)
7997{
7998 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7999 struct rq_flags rf;
f2785ddb
TG
8000
8001 /* Handle pending wakeups and then migrate everything off */
d84b3131 8002 sched_tick_stop(cpu);
8a8c69c3
PZ
8003
8004 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8005 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8006 WARN(true, "Dying CPU not properly vacated!");
8007 dump_rq_tasks(rq, KERN_WARNING);
8008 }
8a8c69c3
PZ
8009 rq_unlock_irqrestore(rq, &rf);
8010
22f667c9
PZ
8011 /*
8012 * Now that the CPU is offline, make sure we're welcome
8013 * to new tasks once we come back up.
8014 */
8015 balance_push_set(cpu, false);
8016
f2785ddb
TG
8017 calc_load_migrate(rq);
8018 update_max_interval();
e5ef27d0 8019 hrtick_clear(rq);
f2785ddb
TG
8020 return 0;
8021}
8022#endif
8023
1da177e4
LT
8024void __init sched_init_smp(void)
8025{
cb83b629
PZ
8026 sched_init_numa();
8027
6acce3ef
PZ
8028 /*
8029 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8030 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8031 * happen.
6acce3ef 8032 */
712555ee 8033 mutex_lock(&sched_domains_mutex);
8d5dc512 8034 sched_init_domains(cpu_active_mask);
712555ee 8035 mutex_unlock(&sched_domains_mutex);
e761b772 8036
5c1e1767 8037 /* Move init over to a non-isolated CPU */
edb93821 8038 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8039 BUG();
19978ca6 8040 sched_init_granularity();
4212823f 8041
0e3900e6 8042 init_sched_rt_class();
1baca4ce 8043 init_sched_dl_class();
1b568f0a 8044
e26fbffd 8045 sched_smp_initialized = true;
1da177e4 8046}
e26fbffd
TG
8047
8048static int __init migration_init(void)
8049{
77a5352b 8050 sched_cpu_starting(smp_processor_id());
e26fbffd 8051 return 0;
1da177e4 8052}
e26fbffd
TG
8053early_initcall(migration_init);
8054
1da177e4
LT
8055#else
8056void __init sched_init_smp(void)
8057{
19978ca6 8058 sched_init_granularity();
1da177e4
LT
8059}
8060#endif /* CONFIG_SMP */
8061
8062int in_sched_functions(unsigned long addr)
8063{
1da177e4
LT
8064 return in_lock_functions(addr) ||
8065 (addr >= (unsigned long)__sched_text_start
8066 && addr < (unsigned long)__sched_text_end);
8067}
8068
029632fb 8069#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8070/*
8071 * Default task group.
8072 * Every task in system belongs to this group at bootup.
8073 */
029632fb 8074struct task_group root_task_group;
35cf4e50 8075LIST_HEAD(task_groups);
b0367629
WL
8076
8077/* Cacheline aligned slab cache for task_group */
8078static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8079#endif
6f505b16 8080
e6252c3e 8081DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8082DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8083
1da177e4
LT
8084void __init sched_init(void)
8085{
a1dc0446 8086 unsigned long ptr = 0;
55627e3c 8087 int i;
434d53b0 8088
c3a340f7
SRV
8089 /* Make sure the linker didn't screw up */
8090 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8091 &fair_sched_class + 1 != &rt_sched_class ||
8092 &rt_sched_class + 1 != &dl_sched_class);
8093#ifdef CONFIG_SMP
8094 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8095#endif
8096
5822a454 8097 wait_bit_init();
9dcb8b68 8098
434d53b0 8099#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8100 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8101#endif
8102#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8103 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8104#endif
a1dc0446
QC
8105 if (ptr) {
8106 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8107
8108#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8109 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8110 ptr += nr_cpu_ids * sizeof(void **);
8111
07e06b01 8112 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8113 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8114
b1d1779e
WY
8115 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8116 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8117#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8118#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8119 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8120 ptr += nr_cpu_ids * sizeof(void **);
8121
07e06b01 8122 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8123 ptr += nr_cpu_ids * sizeof(void **);
8124
6d6bc0ad 8125#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8126 }
df7c8e84 8127#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8128 for_each_possible_cpu(i) {
8129 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8130 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8131 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8132 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8133 }
b74e6278 8134#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8135
d1ccc66d
IM
8136 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8137 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8138
57d885fe
GH
8139#ifdef CONFIG_SMP
8140 init_defrootdomain();
8141#endif
8142
d0b27fa7 8143#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8144 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8145 global_rt_period(), global_rt_runtime());
6d6bc0ad 8146#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8147
7c941438 8148#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8149 task_group_cache = KMEM_CACHE(task_group, 0);
8150
07e06b01
YZ
8151 list_add(&root_task_group.list, &task_groups);
8152 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8153 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8154 autogroup_init(&init_task);
7c941438 8155#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8156
0a945022 8157 for_each_possible_cpu(i) {
70b97a7f 8158 struct rq *rq;
1da177e4
LT
8159
8160 rq = cpu_rq(i);
05fa785c 8161 raw_spin_lock_init(&rq->lock);
7897986b 8162 rq->nr_running = 0;
dce48a84
TG
8163 rq->calc_load_active = 0;
8164 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8165 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8166 init_rt_rq(&rq->rt);
8167 init_dl_rq(&rq->dl);
dd41f596 8168#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 8169 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 8170 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 8171 /*
d1ccc66d 8172 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
8173 *
8174 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
8175 * gets 100% of the CPU resources in the system. This overall
8176 * system CPU resource is divided among the tasks of
07e06b01 8177 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8178 * based on each entity's (task or task-group's) weight
8179 * (se->load.weight).
8180 *
07e06b01 8181 * In other words, if root_task_group has 10 tasks of weight
354d60c2 8182 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 8183 * then A0's share of the CPU resource is:
354d60c2 8184 *
0d905bca 8185 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8186 *
07e06b01
YZ
8187 * We achieve this by letting root_task_group's tasks sit
8188 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8189 */
07e06b01 8190 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8191#endif /* CONFIG_FAIR_GROUP_SCHED */
8192
8193 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8194#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8195 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8196#endif
1da177e4 8197#ifdef CONFIG_SMP
41c7ce9a 8198 rq->sd = NULL;
57d885fe 8199 rq->rd = NULL;
ca6d75e6 8200 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 8201 rq->balance_callback = NULL;
1da177e4 8202 rq->active_balance = 0;
dd41f596 8203 rq->next_balance = jiffies;
1da177e4 8204 rq->push_cpu = 0;
0a2966b4 8205 rq->cpu = i;
1f11eb6a 8206 rq->online = 0;
eae0c9df
MG
8207 rq->idle_stamp = 0;
8208 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 8209 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
8210
8211 INIT_LIST_HEAD(&rq->cfs_tasks);
8212
dc938520 8213 rq_attach_root(rq, &def_root_domain);
3451d024 8214#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 8215 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 8216 atomic_set(&rq->nohz_flags, 0);
90b5363a 8217
545b8c8d 8218 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 8219#endif
f2469a1f
TG
8220#ifdef CONFIG_HOTPLUG_CPU
8221 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 8222#endif
9fd81dd5 8223#endif /* CONFIG_SMP */
77a021be 8224 hrtick_rq_init(rq);
1da177e4 8225 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8226 }
8227
9059393e 8228 set_load_weight(&init_task, false);
b50f60ce 8229
1da177e4
LT
8230 /*
8231 * The boot idle thread does lazy MMU switching as well:
8232 */
f1f10076 8233 mmgrab(&init_mm);
1da177e4
LT
8234 enter_lazy_tlb(&init_mm, current);
8235
8236 /*
8237 * Make us the idle thread. Technically, schedule() should not be
8238 * called from this thread, however somewhere below it might be,
8239 * but because we are the idle thread, we just pick up running again
8240 * when this runqueue becomes "idle".
8241 */
8242 init_idle(current, smp_processor_id());
dce48a84
TG
8243
8244 calc_load_update = jiffies + LOAD_FREQ;
8245
bf4d83f6 8246#ifdef CONFIG_SMP
29d5e047 8247 idle_thread_set_boot_cpu();
029632fb
PZ
8248#endif
8249 init_sched_fair_class();
6a7b3dc3 8250
4698f88c
JP
8251 init_schedstats();
8252
eb414681
JW
8253 psi_init();
8254
69842cba
PB
8255 init_uclamp();
8256
6892b75e 8257 scheduler_running = 1;
1da177e4
LT
8258}
8259
d902db1e 8260#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8261static inline int preempt_count_equals(int preempt_offset)
8262{
da7142e2 8263 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 8264
4ba8216c 8265 return (nested == preempt_offset);
e4aafea2
FW
8266}
8267
d894837f 8268void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8269{
8eb23b9f
PZ
8270 /*
8271 * Blocking primitives will set (and therefore destroy) current->state,
8272 * since we will exit with TASK_RUNNING make sure we enter with it,
8273 * otherwise we will destroy state.
8274 */
00845eb9 8275 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
8276 "do not call blocking ops when !TASK_RUNNING; "
8277 "state=%lx set at [<%p>] %pS\n",
8278 current->state,
8279 (void *)current->task_state_change,
00845eb9 8280 (void *)current->task_state_change);
8eb23b9f 8281
3427445a
PZ
8282 ___might_sleep(file, line, preempt_offset);
8283}
8284EXPORT_SYMBOL(__might_sleep);
8285
8286void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8287{
d1ccc66d
IM
8288 /* Ratelimiting timestamp: */
8289 static unsigned long prev_jiffy;
8290
d1c6d149 8291 unsigned long preempt_disable_ip;
1da177e4 8292
d1ccc66d
IM
8293 /* WARN_ON_ONCE() by default, no rate limit required: */
8294 rcu_sleep_check();
8295
db273be2 8296 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 8297 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
8298 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8299 oops_in_progress)
aef745fc 8300 return;
1c3c5eab 8301
aef745fc
IM
8302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8303 return;
8304 prev_jiffy = jiffies;
8305
d1ccc66d 8306 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
8307 preempt_disable_ip = get_preempt_disable_ip(current);
8308
3df0fc5b
PZ
8309 printk(KERN_ERR
8310 "BUG: sleeping function called from invalid context at %s:%d\n",
8311 file, line);
8312 printk(KERN_ERR
312364f3
DV
8313 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8314 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 8315 current->pid, current->comm);
aef745fc 8316
a8b686b3
ES
8317 if (task_stack_end_corrupted(current))
8318 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8319
aef745fc
IM
8320 debug_show_held_locks(current);
8321 if (irqs_disabled())
8322 print_irqtrace_events(current);
d1c6d149
VN
8323 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8324 && !preempt_count_equals(preempt_offset)) {
8f47b187 8325 pr_err("Preemption disabled at:");
2062a4e8 8326 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 8327 }
aef745fc 8328 dump_stack();
f0b22e39 8329 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 8330}
3427445a 8331EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
8332
8333void __cant_sleep(const char *file, int line, int preempt_offset)
8334{
8335 static unsigned long prev_jiffy;
8336
8337 if (irqs_disabled())
8338 return;
8339
8340 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8341 return;
8342
8343 if (preempt_count() > preempt_offset)
8344 return;
8345
8346 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8347 return;
8348 prev_jiffy = jiffies;
8349
8350 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8351 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8352 in_atomic(), irqs_disabled(),
8353 current->pid, current->comm);
8354
8355 debug_show_held_locks(current);
8356 dump_stack();
8357 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8358}
8359EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
8360
8361#ifdef CONFIG_SMP
8362void __cant_migrate(const char *file, int line)
8363{
8364 static unsigned long prev_jiffy;
8365
8366 if (irqs_disabled())
8367 return;
8368
8369 if (is_migration_disabled(current))
8370 return;
8371
8372 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8373 return;
8374
8375 if (preempt_count() > 0)
8376 return;
8377
8378 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8379 return;
8380 prev_jiffy = jiffies;
8381
8382 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8383 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8384 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8385 current->pid, current->comm);
8386
8387 debug_show_held_locks(current);
8388 dump_stack();
8389 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8390}
8391EXPORT_SYMBOL_GPL(__cant_migrate);
8392#endif
1da177e4
LT
8393#endif
8394
8395#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 8396void normalize_rt_tasks(void)
3a5e4dc1 8397{
dbc7f069 8398 struct task_struct *g, *p;
d50dde5a
DF
8399 struct sched_attr attr = {
8400 .sched_policy = SCHED_NORMAL,
8401 };
1da177e4 8402
3472eaa1 8403 read_lock(&tasklist_lock);
5d07f420 8404 for_each_process_thread(g, p) {
178be793
IM
8405 /*
8406 * Only normalize user tasks:
8407 */
3472eaa1 8408 if (p->flags & PF_KTHREAD)
178be793
IM
8409 continue;
8410
4fa8d299
JP
8411 p->se.exec_start = 0;
8412 schedstat_set(p->se.statistics.wait_start, 0);
8413 schedstat_set(p->se.statistics.sleep_start, 0);
8414 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 8415
aab03e05 8416 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
8417 /*
8418 * Renice negative nice level userspace
8419 * tasks back to 0:
8420 */
3472eaa1 8421 if (task_nice(p) < 0)
dd41f596 8422 set_user_nice(p, 0);
1da177e4 8423 continue;
dd41f596 8424 }
1da177e4 8425
dbc7f069 8426 __sched_setscheduler(p, &attr, false, false);
5d07f420 8427 }
3472eaa1 8428 read_unlock(&tasklist_lock);
1da177e4
LT
8429}
8430
8431#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8432
67fc4e0c 8433#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8434/*
67fc4e0c 8435 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8436 *
8437 * They can only be called when the whole system has been
8438 * stopped - every CPU needs to be quiescent, and no scheduling
8439 * activity can take place. Using them for anything else would
8440 * be a serious bug, and as a result, they aren't even visible
8441 * under any other configuration.
8442 */
8443
8444/**
d1ccc66d 8445 * curr_task - return the current task for a given CPU.
1df5c10a
LT
8446 * @cpu: the processor in question.
8447 *
8448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
8449 *
8450 * Return: The current task for @cpu.
1df5c10a 8451 */
36c8b586 8452struct task_struct *curr_task(int cpu)
1df5c10a
LT
8453{
8454 return cpu_curr(cpu);
8455}
8456
67fc4e0c
JW
8457#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8458
8459#ifdef CONFIG_IA64
1df5c10a 8460/**
5feeb783 8461 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
8462 * @cpu: the processor in question.
8463 * @p: the task pointer to set.
8464 *
8465 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 8466 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 8467 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
8468 * must be called with all CPU's synchronized, and interrupts disabled, the
8469 * and caller must save the original value of the current task (see
8470 * curr_task() above) and restore that value before reenabling interrupts and
8471 * re-starting the system.
8472 *
8473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8474 */
a458ae2e 8475void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8476{
8477 cpu_curr(cpu) = p;
8478}
8479
8480#endif
29f59db3 8481
7c941438 8482#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
8483/* task_group_lock serializes the addition/removal of task groups */
8484static DEFINE_SPINLOCK(task_group_lock);
8485
2480c093
PB
8486static inline void alloc_uclamp_sched_group(struct task_group *tg,
8487 struct task_group *parent)
8488{
8489#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 8490 enum uclamp_id clamp_id;
2480c093
PB
8491
8492 for_each_clamp_id(clamp_id) {
8493 uclamp_se_set(&tg->uclamp_req[clamp_id],
8494 uclamp_none(clamp_id), false);
0b60ba2d 8495 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
8496 }
8497#endif
8498}
8499
2f5177f0 8500static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
8501{
8502 free_fair_sched_group(tg);
8503 free_rt_sched_group(tg);
e9aa1dd1 8504 autogroup_free(tg);
b0367629 8505 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
8506}
8507
8508/* allocate runqueue etc for a new task group */
ec7dc8ac 8509struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8510{
8511 struct task_group *tg;
bccbe08a 8512
b0367629 8513 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
8514 if (!tg)
8515 return ERR_PTR(-ENOMEM);
8516
ec7dc8ac 8517 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8518 goto err;
8519
ec7dc8ac 8520 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8521 goto err;
8522
2480c093
PB
8523 alloc_uclamp_sched_group(tg, parent);
8524
ace783b9
LZ
8525 return tg;
8526
8527err:
2f5177f0 8528 sched_free_group(tg);
ace783b9
LZ
8529 return ERR_PTR(-ENOMEM);
8530}
8531
8532void sched_online_group(struct task_group *tg, struct task_group *parent)
8533{
8534 unsigned long flags;
8535
8ed36996 8536 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8537 list_add_rcu(&tg->list, &task_groups);
f473aa5e 8538
d1ccc66d
IM
8539 /* Root should already exist: */
8540 WARN_ON(!parent);
f473aa5e
PZ
8541
8542 tg->parent = parent;
f473aa5e 8543 INIT_LIST_HEAD(&tg->children);
09f2724a 8544 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8545 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
8546
8547 online_fair_sched_group(tg);
29f59db3
SV
8548}
8549
9b5b7751 8550/* rcu callback to free various structures associated with a task group */
2f5177f0 8551static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 8552{
d1ccc66d 8553 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 8554 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8555}
8556
4cf86d77 8557void sched_destroy_group(struct task_group *tg)
ace783b9 8558{
d1ccc66d 8559 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 8560 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
8561}
8562
8563void sched_offline_group(struct task_group *tg)
29f59db3 8564{
8ed36996 8565 unsigned long flags;
29f59db3 8566
d1ccc66d 8567 /* End participation in shares distribution: */
6fe1f348 8568 unregister_fair_sched_group(tg);
3d4b47b4
PZ
8569
8570 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8571 list_del_rcu(&tg->list);
f473aa5e 8572 list_del_rcu(&tg->siblings);
8ed36996 8573 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
8574}
8575
ea86cb4b 8576static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 8577{
8323f26c 8578 struct task_group *tg;
29f59db3 8579
f7b8a47d
KT
8580 /*
8581 * All callers are synchronized by task_rq_lock(); we do not use RCU
8582 * which is pointless here. Thus, we pass "true" to task_css_check()
8583 * to prevent lockdep warnings.
8584 */
8585 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
8586 struct task_group, css);
8587 tg = autogroup_task_group(tsk, tg);
8588 tsk->sched_task_group = tg;
8589
810b3817 8590#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8591 if (tsk->sched_class->task_change_group)
8592 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 8593 else
810b3817 8594#endif
b2b5ce02 8595 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
8596}
8597
8598/*
8599 * Change task's runqueue when it moves between groups.
8600 *
8601 * The caller of this function should have put the task in its new group by
8602 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8603 * its new group.
8604 */
8605void sched_move_task(struct task_struct *tsk)
8606{
7a57f32a
PZ
8607 int queued, running, queue_flags =
8608 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
8609 struct rq_flags rf;
8610 struct rq *rq;
8611
8612 rq = task_rq_lock(tsk, &rf);
1b1d6225 8613 update_rq_clock(rq);
ea86cb4b
VG
8614
8615 running = task_current(rq, tsk);
8616 queued = task_on_rq_queued(tsk);
8617
8618 if (queued)
7a57f32a 8619 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 8620 if (running)
ea86cb4b
VG
8621 put_prev_task(rq, tsk);
8622
8623 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8624
da0c1e65 8625 if (queued)
7a57f32a 8626 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 8627 if (running) {
03b7fad1 8628 set_next_task(rq, tsk);
2a4b03ff
VG
8629 /*
8630 * After changing group, the running task may have joined a
8631 * throttled one but it's still the running task. Trigger a
8632 * resched to make sure that task can still run.
8633 */
8634 resched_curr(rq);
8635 }
29f59db3 8636
eb580751 8637 task_rq_unlock(rq, tsk, &rf);
29f59db3 8638}
68318b8e 8639
a7c6d554 8640static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8641{
a7c6d554 8642 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8643}
8644
eb95419b
TH
8645static struct cgroup_subsys_state *
8646cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8647{
eb95419b
TH
8648 struct task_group *parent = css_tg(parent_css);
8649 struct task_group *tg;
68318b8e 8650
eb95419b 8651 if (!parent) {
68318b8e 8652 /* This is early initialization for the top cgroup */
07e06b01 8653 return &root_task_group.css;
68318b8e
SV
8654 }
8655
ec7dc8ac 8656 tg = sched_create_group(parent);
68318b8e
SV
8657 if (IS_ERR(tg))
8658 return ERR_PTR(-ENOMEM);
8659
68318b8e
SV
8660 return &tg->css;
8661}
8662
96b77745
KK
8663/* Expose task group only after completing cgroup initialization */
8664static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8665{
8666 struct task_group *tg = css_tg(css);
8667 struct task_group *parent = css_tg(css->parent);
8668
8669 if (parent)
8670 sched_online_group(tg, parent);
7226017a
QY
8671
8672#ifdef CONFIG_UCLAMP_TASK_GROUP
8673 /* Propagate the effective uclamp value for the new group */
8674 cpu_util_update_eff(css);
8675#endif
8676
96b77745
KK
8677 return 0;
8678}
8679
2f5177f0 8680static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8681{
eb95419b 8682 struct task_group *tg = css_tg(css);
ace783b9 8683
2f5177f0 8684 sched_offline_group(tg);
ace783b9
LZ
8685}
8686
eb95419b 8687static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8688{
eb95419b 8689 struct task_group *tg = css_tg(css);
68318b8e 8690
2f5177f0
PZ
8691 /*
8692 * Relies on the RCU grace period between css_released() and this.
8693 */
8694 sched_free_group(tg);
ace783b9
LZ
8695}
8696
ea86cb4b
VG
8697/*
8698 * This is called before wake_up_new_task(), therefore we really only
8699 * have to set its group bits, all the other stuff does not apply.
8700 */
b53202e6 8701static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8702{
ea86cb4b
VG
8703 struct rq_flags rf;
8704 struct rq *rq;
8705
8706 rq = task_rq_lock(task, &rf);
8707
80f5c1b8 8708 update_rq_clock(rq);
ea86cb4b
VG
8709 sched_change_group(task, TASK_SET_GROUP);
8710
8711 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8712}
8713
1f7dd3e5 8714static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8715{
bb9d97b6 8716 struct task_struct *task;
1f7dd3e5 8717 struct cgroup_subsys_state *css;
7dc603c9 8718 int ret = 0;
bb9d97b6 8719
1f7dd3e5 8720 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8721#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8722 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8723 return -EINVAL;
b68aa230 8724#endif
7dc603c9 8725 /*
b19a888c 8726 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
8727 * running, we're sure to observe its full state.
8728 */
8729 raw_spin_lock_irq(&task->pi_lock);
8730 /*
8731 * Avoid calling sched_move_task() before wake_up_new_task()
8732 * has happened. This would lead to problems with PELT, due to
8733 * move wanting to detach+attach while we're not attached yet.
8734 */
8735 if (task->state == TASK_NEW)
8736 ret = -EINVAL;
8737 raw_spin_unlock_irq(&task->pi_lock);
8738
8739 if (ret)
8740 break;
bb9d97b6 8741 }
7dc603c9 8742 return ret;
be367d09 8743}
68318b8e 8744
1f7dd3e5 8745static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8746{
bb9d97b6 8747 struct task_struct *task;
1f7dd3e5 8748 struct cgroup_subsys_state *css;
bb9d97b6 8749
1f7dd3e5 8750 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8751 sched_move_task(task);
68318b8e
SV
8752}
8753
2480c093 8754#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
8755static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8756{
8757 struct cgroup_subsys_state *top_css = css;
8758 struct uclamp_se *uc_parent = NULL;
8759 struct uclamp_se *uc_se = NULL;
8760 unsigned int eff[UCLAMP_CNT];
0413d7f3 8761 enum uclamp_id clamp_id;
0b60ba2d
PB
8762 unsigned int clamps;
8763
8764 css_for_each_descendant_pre(css, top_css) {
8765 uc_parent = css_tg(css)->parent
8766 ? css_tg(css)->parent->uclamp : NULL;
8767
8768 for_each_clamp_id(clamp_id) {
8769 /* Assume effective clamps matches requested clamps */
8770 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8771 /* Cap effective clamps with parent's effective clamps */
8772 if (uc_parent &&
8773 eff[clamp_id] > uc_parent[clamp_id].value) {
8774 eff[clamp_id] = uc_parent[clamp_id].value;
8775 }
8776 }
8777 /* Ensure protection is always capped by limit */
8778 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8779
8780 /* Propagate most restrictive effective clamps */
8781 clamps = 0x0;
8782 uc_se = css_tg(css)->uclamp;
8783 for_each_clamp_id(clamp_id) {
8784 if (eff[clamp_id] == uc_se[clamp_id].value)
8785 continue;
8786 uc_se[clamp_id].value = eff[clamp_id];
8787 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8788 clamps |= (0x1 << clamp_id);
8789 }
babbe170 8790 if (!clamps) {
0b60ba2d 8791 css = css_rightmost_descendant(css);
babbe170
PB
8792 continue;
8793 }
8794
8795 /* Immediately update descendants RUNNABLE tasks */
8796 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
8797 }
8798}
2480c093
PB
8799
8800/*
8801 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8802 * C expression. Since there is no way to convert a macro argument (N) into a
8803 * character constant, use two levels of macros.
8804 */
8805#define _POW10(exp) ((unsigned int)1e##exp)
8806#define POW10(exp) _POW10(exp)
8807
8808struct uclamp_request {
8809#define UCLAMP_PERCENT_SHIFT 2
8810#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8811 s64 percent;
8812 u64 util;
8813 int ret;
8814};
8815
8816static inline struct uclamp_request
8817capacity_from_percent(char *buf)
8818{
8819 struct uclamp_request req = {
8820 .percent = UCLAMP_PERCENT_SCALE,
8821 .util = SCHED_CAPACITY_SCALE,
8822 .ret = 0,
8823 };
8824
8825 buf = strim(buf);
8826 if (strcmp(buf, "max")) {
8827 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8828 &req.percent);
8829 if (req.ret)
8830 return req;
b562d140 8831 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
8832 req.ret = -ERANGE;
8833 return req;
8834 }
8835
8836 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8837 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8838 }
8839
8840 return req;
8841}
8842
8843static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8844 size_t nbytes, loff_t off,
8845 enum uclamp_id clamp_id)
8846{
8847 struct uclamp_request req;
8848 struct task_group *tg;
8849
8850 req = capacity_from_percent(buf);
8851 if (req.ret)
8852 return req.ret;
8853
46609ce2
QY
8854 static_branch_enable(&sched_uclamp_used);
8855
2480c093
PB
8856 mutex_lock(&uclamp_mutex);
8857 rcu_read_lock();
8858
8859 tg = css_tg(of_css(of));
8860 if (tg->uclamp_req[clamp_id].value != req.util)
8861 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8862
8863 /*
8864 * Because of not recoverable conversion rounding we keep track of the
8865 * exact requested value
8866 */
8867 tg->uclamp_pct[clamp_id] = req.percent;
8868
0b60ba2d
PB
8869 /* Update effective clamps to track the most restrictive value */
8870 cpu_util_update_eff(of_css(of));
8871
2480c093
PB
8872 rcu_read_unlock();
8873 mutex_unlock(&uclamp_mutex);
8874
8875 return nbytes;
8876}
8877
8878static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8879 char *buf, size_t nbytes,
8880 loff_t off)
8881{
8882 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8883}
8884
8885static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8886 char *buf, size_t nbytes,
8887 loff_t off)
8888{
8889 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8890}
8891
8892static inline void cpu_uclamp_print(struct seq_file *sf,
8893 enum uclamp_id clamp_id)
8894{
8895 struct task_group *tg;
8896 u64 util_clamp;
8897 u64 percent;
8898 u32 rem;
8899
8900 rcu_read_lock();
8901 tg = css_tg(seq_css(sf));
8902 util_clamp = tg->uclamp_req[clamp_id].value;
8903 rcu_read_unlock();
8904
8905 if (util_clamp == SCHED_CAPACITY_SCALE) {
8906 seq_puts(sf, "max\n");
8907 return;
8908 }
8909
8910 percent = tg->uclamp_pct[clamp_id];
8911 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8912 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8913}
8914
8915static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8916{
8917 cpu_uclamp_print(sf, UCLAMP_MIN);
8918 return 0;
8919}
8920
8921static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8922{
8923 cpu_uclamp_print(sf, UCLAMP_MAX);
8924 return 0;
8925}
8926#endif /* CONFIG_UCLAMP_TASK_GROUP */
8927
052f1dc7 8928#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8929static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8930 struct cftype *cftype, u64 shareval)
68318b8e 8931{
5b61d50a
KK
8932 if (shareval > scale_load_down(ULONG_MAX))
8933 shareval = MAX_SHARES;
182446d0 8934 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8935}
8936
182446d0
TH
8937static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8938 struct cftype *cft)
68318b8e 8939{
182446d0 8940 struct task_group *tg = css_tg(css);
68318b8e 8941
c8b28116 8942 return (u64) scale_load_down(tg->shares);
68318b8e 8943}
ab84d31e
PT
8944
8945#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8946static DEFINE_MUTEX(cfs_constraints_mutex);
8947
ab84d31e 8948const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 8949static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
8950/* More than 203 days if BW_SHIFT equals 20. */
8951static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 8952
a790de99
PT
8953static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8954
ab84d31e
PT
8955static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8956{
56f570e5 8957 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8959
8960 if (tg == &root_task_group)
8961 return -EINVAL;
8962
8963 /*
8964 * Ensure we have at some amount of bandwidth every period. This is
8965 * to prevent reaching a state of large arrears when throttled via
8966 * entity_tick() resulting in prolonged exit starvation.
8967 */
8968 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8969 return -EINVAL;
8970
8971 /*
8972 * Likewise, bound things on the otherside by preventing insane quota
8973 * periods. This also allows us to normalize in computing quota
8974 * feasibility.
8975 */
8976 if (period > max_cfs_quota_period)
8977 return -EINVAL;
8978
d505b8af
HC
8979 /*
8980 * Bound quota to defend quota against overflow during bandwidth shift.
8981 */
8982 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8983 return -EINVAL;
8984
0e59bdae
KT
8985 /*
8986 * Prevent race between setting of cfs_rq->runtime_enabled and
8987 * unthrottle_offline_cfs_rqs().
8988 */
8989 get_online_cpus();
a790de99
PT
8990 mutex_lock(&cfs_constraints_mutex);
8991 ret = __cfs_schedulable(tg, period, quota);
8992 if (ret)
8993 goto out_unlock;
8994
58088ad0 8995 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8996 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8997 /*
8998 * If we need to toggle cfs_bandwidth_used, off->on must occur
8999 * before making related changes, and on->off must occur afterwards
9000 */
9001 if (runtime_enabled && !runtime_was_enabled)
9002 cfs_bandwidth_usage_inc();
ab84d31e
PT
9003 raw_spin_lock_irq(&cfs_b->lock);
9004 cfs_b->period = ns_to_ktime(period);
9005 cfs_b->quota = quota;
58088ad0 9006
a9cf55b2 9007 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9008
9009 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9010 if (runtime_enabled)
9011 start_cfs_bandwidth(cfs_b);
d1ccc66d 9012
ab84d31e
PT
9013 raw_spin_unlock_irq(&cfs_b->lock);
9014
0e59bdae 9015 for_each_online_cpu(i) {
ab84d31e 9016 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9017 struct rq *rq = cfs_rq->rq;
8a8c69c3 9018 struct rq_flags rf;
ab84d31e 9019
8a8c69c3 9020 rq_lock_irq(rq, &rf);
58088ad0 9021 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9022 cfs_rq->runtime_remaining = 0;
671fd9da 9023
029632fb 9024 if (cfs_rq->throttled)
671fd9da 9025 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9026 rq_unlock_irq(rq, &rf);
ab84d31e 9027 }
1ee14e6c
BS
9028 if (runtime_was_enabled && !runtime_enabled)
9029 cfs_bandwidth_usage_dec();
a790de99
PT
9030out_unlock:
9031 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 9032 put_online_cpus();
ab84d31e 9033
a790de99 9034 return ret;
ab84d31e
PT
9035}
9036
b1546edc 9037static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
9038{
9039 u64 quota, period;
9040
029632fb 9041 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9042 if (cfs_quota_us < 0)
9043 quota = RUNTIME_INF;
1a8b4540 9044 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9045 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9046 else
9047 return -EINVAL;
ab84d31e
PT
9048
9049 return tg_set_cfs_bandwidth(tg, period, quota);
9050}
9051
b1546edc 9052static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9053{
9054 u64 quota_us;
9055
029632fb 9056 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9057 return -1;
9058
029632fb 9059 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9060 do_div(quota_us, NSEC_PER_USEC);
9061
9062 return quota_us;
9063}
9064
b1546edc 9065static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
9066{
9067 u64 quota, period;
9068
1a8b4540
KK
9069 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9070 return -EINVAL;
9071
ab84d31e 9072 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9073 quota = tg->cfs_bandwidth.quota;
ab84d31e 9074
ab84d31e
PT
9075 return tg_set_cfs_bandwidth(tg, period, quota);
9076}
9077
b1546edc 9078static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9079{
9080 u64 cfs_period_us;
9081
029632fb 9082 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9083 do_div(cfs_period_us, NSEC_PER_USEC);
9084
9085 return cfs_period_us;
9086}
9087
182446d0
TH
9088static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9089 struct cftype *cft)
ab84d31e 9090{
182446d0 9091 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9092}
9093
182446d0
TH
9094static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9095 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9096{
182446d0 9097 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9098}
9099
182446d0
TH
9100static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9101 struct cftype *cft)
ab84d31e 9102{
182446d0 9103 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9104}
9105
182446d0
TH
9106static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9107 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9108{
182446d0 9109 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9110}
9111
a790de99
PT
9112struct cfs_schedulable_data {
9113 struct task_group *tg;
9114 u64 period, quota;
9115};
9116
9117/*
9118 * normalize group quota/period to be quota/max_period
9119 * note: units are usecs
9120 */
9121static u64 normalize_cfs_quota(struct task_group *tg,
9122 struct cfs_schedulable_data *d)
9123{
9124 u64 quota, period;
9125
9126 if (tg == d->tg) {
9127 period = d->period;
9128 quota = d->quota;
9129 } else {
9130 period = tg_get_cfs_period(tg);
9131 quota = tg_get_cfs_quota(tg);
9132 }
9133
9134 /* note: these should typically be equivalent */
9135 if (quota == RUNTIME_INF || quota == -1)
9136 return RUNTIME_INF;
9137
9138 return to_ratio(period, quota);
9139}
9140
9141static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9142{
9143 struct cfs_schedulable_data *d = data;
029632fb 9144 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
9145 s64 quota = 0, parent_quota = -1;
9146
9147 if (!tg->parent) {
9148 quota = RUNTIME_INF;
9149 } else {
029632fb 9150 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
9151
9152 quota = normalize_cfs_quota(tg, d);
9c58c79a 9153 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
9154
9155 /*
c53593e5
TH
9156 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9157 * always take the min. On cgroup1, only inherit when no
d1ccc66d 9158 * limit is set:
a790de99 9159 */
c53593e5
TH
9160 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9161 quota = min(quota, parent_quota);
9162 } else {
9163 if (quota == RUNTIME_INF)
9164 quota = parent_quota;
9165 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9166 return -EINVAL;
9167 }
a790de99 9168 }
9c58c79a 9169 cfs_b->hierarchical_quota = quota;
a790de99
PT
9170
9171 return 0;
9172}
9173
9174static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9175{
8277434e 9176 int ret;
a790de99
PT
9177 struct cfs_schedulable_data data = {
9178 .tg = tg,
9179 .period = period,
9180 .quota = quota,
9181 };
9182
9183 if (quota != RUNTIME_INF) {
9184 do_div(data.period, NSEC_PER_USEC);
9185 do_div(data.quota, NSEC_PER_USEC);
9186 }
9187
8277434e
PT
9188 rcu_read_lock();
9189 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9190 rcu_read_unlock();
9191
9192 return ret;
a790de99 9193}
e8da1b18 9194
a1f7164c 9195static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 9196{
2da8ca82 9197 struct task_group *tg = css_tg(seq_css(sf));
029632fb 9198 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 9199
44ffc75b
TH
9200 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9201 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9202 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 9203
3d6c50c2
YW
9204 if (schedstat_enabled() && tg != &root_task_group) {
9205 u64 ws = 0;
9206 int i;
9207
9208 for_each_possible_cpu(i)
9209 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9210
9211 seq_printf(sf, "wait_sum %llu\n", ws);
9212 }
9213
e8da1b18
NR
9214 return 0;
9215}
ab84d31e 9216#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9217#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9218
052f1dc7 9219#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
9220static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9221 struct cftype *cft, s64 val)
6f505b16 9222{
182446d0 9223 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
9224}
9225
182446d0
TH
9226static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9227 struct cftype *cft)
6f505b16 9228{
182446d0 9229 return sched_group_rt_runtime(css_tg(css));
6f505b16 9230}
d0b27fa7 9231
182446d0
TH
9232static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9233 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 9234{
182446d0 9235 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
9236}
9237
182446d0
TH
9238static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9239 struct cftype *cft)
d0b27fa7 9240{
182446d0 9241 return sched_group_rt_period(css_tg(css));
d0b27fa7 9242}
6d6bc0ad 9243#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9244
a1f7164c 9245static struct cftype cpu_legacy_files[] = {
052f1dc7 9246#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9247 {
9248 .name = "shares",
f4c753b7
PM
9249 .read_u64 = cpu_shares_read_u64,
9250 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9251 },
052f1dc7 9252#endif
ab84d31e
PT
9253#ifdef CONFIG_CFS_BANDWIDTH
9254 {
9255 .name = "cfs_quota_us",
9256 .read_s64 = cpu_cfs_quota_read_s64,
9257 .write_s64 = cpu_cfs_quota_write_s64,
9258 },
9259 {
9260 .name = "cfs_period_us",
9261 .read_u64 = cpu_cfs_period_read_u64,
9262 .write_u64 = cpu_cfs_period_write_u64,
9263 },
e8da1b18
NR
9264 {
9265 .name = "stat",
a1f7164c 9266 .seq_show = cpu_cfs_stat_show,
e8da1b18 9267 },
ab84d31e 9268#endif
052f1dc7 9269#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9270 {
9f0c1e56 9271 .name = "rt_runtime_us",
06ecb27c
PM
9272 .read_s64 = cpu_rt_runtime_read,
9273 .write_s64 = cpu_rt_runtime_write,
6f505b16 9274 },
d0b27fa7
PZ
9275 {
9276 .name = "rt_period_us",
f4c753b7
PM
9277 .read_u64 = cpu_rt_period_read_uint,
9278 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9279 },
2480c093
PB
9280#endif
9281#ifdef CONFIG_UCLAMP_TASK_GROUP
9282 {
9283 .name = "uclamp.min",
9284 .flags = CFTYPE_NOT_ON_ROOT,
9285 .seq_show = cpu_uclamp_min_show,
9286 .write = cpu_uclamp_min_write,
9287 },
9288 {
9289 .name = "uclamp.max",
9290 .flags = CFTYPE_NOT_ON_ROOT,
9291 .seq_show = cpu_uclamp_max_show,
9292 .write = cpu_uclamp_max_write,
9293 },
052f1dc7 9294#endif
d1ccc66d 9295 { } /* Terminate */
68318b8e
SV
9296};
9297
d41bf8c9
TH
9298static int cpu_extra_stat_show(struct seq_file *sf,
9299 struct cgroup_subsys_state *css)
0d593634 9300{
0d593634
TH
9301#ifdef CONFIG_CFS_BANDWIDTH
9302 {
d41bf8c9 9303 struct task_group *tg = css_tg(css);
0d593634
TH
9304 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9305 u64 throttled_usec;
9306
9307 throttled_usec = cfs_b->throttled_time;
9308 do_div(throttled_usec, NSEC_PER_USEC);
9309
9310 seq_printf(sf, "nr_periods %d\n"
9311 "nr_throttled %d\n"
9312 "throttled_usec %llu\n",
9313 cfs_b->nr_periods, cfs_b->nr_throttled,
9314 throttled_usec);
9315 }
9316#endif
9317 return 0;
9318}
9319
9320#ifdef CONFIG_FAIR_GROUP_SCHED
9321static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9322 struct cftype *cft)
9323{
9324 struct task_group *tg = css_tg(css);
9325 u64 weight = scale_load_down(tg->shares);
9326
9327 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9328}
9329
9330static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9331 struct cftype *cft, u64 weight)
9332{
9333 /*
9334 * cgroup weight knobs should use the common MIN, DFL and MAX
9335 * values which are 1, 100 and 10000 respectively. While it loses
9336 * a bit of range on both ends, it maps pretty well onto the shares
9337 * value used by scheduler and the round-trip conversions preserve
9338 * the original value over the entire range.
9339 */
9340 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9341 return -ERANGE;
9342
9343 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9344
9345 return sched_group_set_shares(css_tg(css), scale_load(weight));
9346}
9347
9348static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9349 struct cftype *cft)
9350{
9351 unsigned long weight = scale_load_down(css_tg(css)->shares);
9352 int last_delta = INT_MAX;
9353 int prio, delta;
9354
9355 /* find the closest nice value to the current weight */
9356 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9357 delta = abs(sched_prio_to_weight[prio] - weight);
9358 if (delta >= last_delta)
9359 break;
9360 last_delta = delta;
9361 }
9362
9363 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9364}
9365
9366static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9367 struct cftype *cft, s64 nice)
9368{
9369 unsigned long weight;
7281c8de 9370 int idx;
0d593634
TH
9371
9372 if (nice < MIN_NICE || nice > MAX_NICE)
9373 return -ERANGE;
9374
7281c8de
PZ
9375 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9376 idx = array_index_nospec(idx, 40);
9377 weight = sched_prio_to_weight[idx];
9378
0d593634
TH
9379 return sched_group_set_shares(css_tg(css), scale_load(weight));
9380}
9381#endif
9382
9383static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9384 long period, long quota)
9385{
9386 if (quota < 0)
9387 seq_puts(sf, "max");
9388 else
9389 seq_printf(sf, "%ld", quota);
9390
9391 seq_printf(sf, " %ld\n", period);
9392}
9393
9394/* caller should put the current value in *@periodp before calling */
9395static int __maybe_unused cpu_period_quota_parse(char *buf,
9396 u64 *periodp, u64 *quotap)
9397{
9398 char tok[21]; /* U64_MAX */
9399
4c47acd8 9400 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
9401 return -EINVAL;
9402
9403 *periodp *= NSEC_PER_USEC;
9404
9405 if (sscanf(tok, "%llu", quotap))
9406 *quotap *= NSEC_PER_USEC;
9407 else if (!strcmp(tok, "max"))
9408 *quotap = RUNTIME_INF;
9409 else
9410 return -EINVAL;
9411
9412 return 0;
9413}
9414
9415#ifdef CONFIG_CFS_BANDWIDTH
9416static int cpu_max_show(struct seq_file *sf, void *v)
9417{
9418 struct task_group *tg = css_tg(seq_css(sf));
9419
9420 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9421 return 0;
9422}
9423
9424static ssize_t cpu_max_write(struct kernfs_open_file *of,
9425 char *buf, size_t nbytes, loff_t off)
9426{
9427 struct task_group *tg = css_tg(of_css(of));
9428 u64 period = tg_get_cfs_period(tg);
9429 u64 quota;
9430 int ret;
9431
9432 ret = cpu_period_quota_parse(buf, &period, &quota);
9433 if (!ret)
9434 ret = tg_set_cfs_bandwidth(tg, period, quota);
9435 return ret ?: nbytes;
9436}
9437#endif
9438
9439static struct cftype cpu_files[] = {
0d593634
TH
9440#ifdef CONFIG_FAIR_GROUP_SCHED
9441 {
9442 .name = "weight",
9443 .flags = CFTYPE_NOT_ON_ROOT,
9444 .read_u64 = cpu_weight_read_u64,
9445 .write_u64 = cpu_weight_write_u64,
9446 },
9447 {
9448 .name = "weight.nice",
9449 .flags = CFTYPE_NOT_ON_ROOT,
9450 .read_s64 = cpu_weight_nice_read_s64,
9451 .write_s64 = cpu_weight_nice_write_s64,
9452 },
9453#endif
9454#ifdef CONFIG_CFS_BANDWIDTH
9455 {
9456 .name = "max",
9457 .flags = CFTYPE_NOT_ON_ROOT,
9458 .seq_show = cpu_max_show,
9459 .write = cpu_max_write,
9460 },
2480c093
PB
9461#endif
9462#ifdef CONFIG_UCLAMP_TASK_GROUP
9463 {
9464 .name = "uclamp.min",
9465 .flags = CFTYPE_NOT_ON_ROOT,
9466 .seq_show = cpu_uclamp_min_show,
9467 .write = cpu_uclamp_min_write,
9468 },
9469 {
9470 .name = "uclamp.max",
9471 .flags = CFTYPE_NOT_ON_ROOT,
9472 .seq_show = cpu_uclamp_max_show,
9473 .write = cpu_uclamp_max_write,
9474 },
0d593634
TH
9475#endif
9476 { } /* terminate */
9477};
9478
073219e9 9479struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 9480 .css_alloc = cpu_cgroup_css_alloc,
96b77745 9481 .css_online = cpu_cgroup_css_online,
2f5177f0 9482 .css_released = cpu_cgroup_css_released,
92fb9748 9483 .css_free = cpu_cgroup_css_free,
d41bf8c9 9484 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 9485 .fork = cpu_cgroup_fork,
bb9d97b6
TH
9486 .can_attach = cpu_cgroup_can_attach,
9487 .attach = cpu_cgroup_attach,
a1f7164c 9488 .legacy_cftypes = cpu_legacy_files,
0d593634 9489 .dfl_cftypes = cpu_files,
b38e42e9 9490 .early_init = true,
0d593634 9491 .threaded = true,
68318b8e
SV
9492};
9493
052f1dc7 9494#endif /* CONFIG_CGROUP_SCHED */
d842de87 9495
b637a328
PM
9496void dump_cpu_task(int cpu)
9497{
9498 pr_info("Task dump for CPU %d:\n", cpu);
9499 sched_show_task(cpu_curr(cpu));
9500}
ed82b8a1
AK
9501
9502/*
9503 * Nice levels are multiplicative, with a gentle 10% change for every
9504 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9505 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9506 * that remained on nice 0.
9507 *
9508 * The "10% effect" is relative and cumulative: from _any_ nice level,
9509 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9510 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9511 * If a task goes up by ~10% and another task goes down by ~10% then
9512 * the relative distance between them is ~25%.)
9513 */
9514const int sched_prio_to_weight[40] = {
9515 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9516 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9517 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9518 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9519 /* 0 */ 1024, 820, 655, 526, 423,
9520 /* 5 */ 335, 272, 215, 172, 137,
9521 /* 10 */ 110, 87, 70, 56, 45,
9522 /* 15 */ 36, 29, 23, 18, 15,
9523};
9524
9525/*
9526 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9527 *
9528 * In cases where the weight does not change often, we can use the
9529 * precalculated inverse to speed up arithmetics by turning divisions
9530 * into multiplications:
9531 */
9532const u32 sched_prio_to_wmult[40] = {
9533 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9534 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9535 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9536 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9537 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9538 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9539 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9540 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9541};
14a7405b 9542
9d246053
PA
9543void call_trace_sched_update_nr_running(struct rq *rq, int count)
9544{
9545 trace_sched_update_nr_running_tp(rq, count);
9546}