Linux 5.17-rc4
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
6a5850d1 16#include <linux/blkdev.h>
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
691925f3
TG
77#ifdef CONFIG_PREEMPT_RT
78const_debug unsigned int sysctl_sched_nr_migrate = 8;
79#else
b82d9fdd 80const_debug unsigned int sysctl_sched_nr_migrate = 32;
691925f3 81#endif
b82d9fdd 82
fa85ae24 83/*
d1ccc66d 84 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
85 * default: 1s
86 */
9f0c1e56 87unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 88
029632fb 89__read_mostly int scheduler_running;
6892b75e 90
9edeaea1
PZ
91#ifdef CONFIG_SCHED_CORE
92
93DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
94
8a311c74
PZ
95/* kernel prio, less is more */
96static inline int __task_prio(struct task_struct *p)
97{
98 if (p->sched_class == &stop_sched_class) /* trumps deadline */
99 return -2;
100
101 if (rt_prio(p->prio)) /* includes deadline */
102 return p->prio; /* [-1, 99] */
103
104 if (p->sched_class == &idle_sched_class)
105 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
106
107 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
108}
109
110/*
111 * l(a,b)
112 * le(a,b) := !l(b,a)
113 * g(a,b) := l(b,a)
114 * ge(a,b) := !l(a,b)
115 */
116
117/* real prio, less is less */
c6047c2e 118static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
119{
120
121 int pa = __task_prio(a), pb = __task_prio(b);
122
123 if (-pa < -pb)
124 return true;
125
126 if (-pb < -pa)
127 return false;
128
129 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
130 return !dl_time_before(a->dl.deadline, b->dl.deadline);
131
c6047c2e
JFG
132 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
133 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
134
135 return false;
136}
137
138static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
139{
140 if (a->core_cookie < b->core_cookie)
141 return true;
142
143 if (a->core_cookie > b->core_cookie)
144 return false;
145
146 /* flip prio, so high prio is leftmost */
4feee7d1 147 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
8a311c74
PZ
148 return true;
149
150 return false;
151}
152
153#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
154
155static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
156{
157 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
158}
159
160static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
161{
162 const struct task_struct *p = __node_2_sc(node);
163 unsigned long cookie = (unsigned long)key;
164
165 if (cookie < p->core_cookie)
166 return -1;
167
168 if (cookie > p->core_cookie)
169 return 1;
170
171 return 0;
172}
173
6e33cad0 174void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
175{
176 rq->core->core_task_seq++;
177
178 if (!p->core_cookie)
179 return;
180
181 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
182}
183
4feee7d1 184void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
8a311c74
PZ
185{
186 rq->core->core_task_seq++;
187
4feee7d1
JD
188 if (sched_core_enqueued(p)) {
189 rb_erase(&p->core_node, &rq->core_tree);
190 RB_CLEAR_NODE(&p->core_node);
191 }
8a311c74 192
4feee7d1
JD
193 /*
194 * Migrating the last task off the cpu, with the cpu in forced idle
195 * state. Reschedule to create an accounting edge for forced idle,
196 * and re-examine whether the core is still in forced idle state.
197 */
198 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
199 rq->core->core_forceidle_count && rq->curr == rq->idle)
200 resched_curr(rq);
8a311c74
PZ
201}
202
203/*
204 * Find left-most (aka, highest priority) task matching @cookie.
205 */
206static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
207{
208 struct rb_node *node;
209
210 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
211 /*
212 * The idle task always matches any cookie!
213 */
214 if (!node)
215 return idle_sched_class.pick_task(rq);
216
217 return __node_2_sc(node);
218}
219
d2dfa17b
PZ
220static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
221{
222 struct rb_node *node = &p->core_node;
223
224 node = rb_next(node);
225 if (!node)
226 return NULL;
227
228 p = container_of(node, struct task_struct, core_node);
229 if (p->core_cookie != cookie)
230 return NULL;
231
232 return p;
233}
234
9edeaea1
PZ
235/*
236 * Magic required such that:
237 *
238 * raw_spin_rq_lock(rq);
239 * ...
240 * raw_spin_rq_unlock(rq);
241 *
242 * ends up locking and unlocking the _same_ lock, and all CPUs
243 * always agree on what rq has what lock.
244 *
245 * XXX entirely possible to selectively enable cores, don't bother for now.
246 */
247
248static DEFINE_MUTEX(sched_core_mutex);
875feb41 249static atomic_t sched_core_count;
9edeaea1
PZ
250static struct cpumask sched_core_mask;
251
3c474b32
PZ
252static void sched_core_lock(int cpu, unsigned long *flags)
253{
254 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
255 int t, i = 0;
256
257 local_irq_save(*flags);
258 for_each_cpu(t, smt_mask)
259 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
260}
261
262static void sched_core_unlock(int cpu, unsigned long *flags)
263{
264 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
265 int t;
266
267 for_each_cpu(t, smt_mask)
268 raw_spin_unlock(&cpu_rq(t)->__lock);
269 local_irq_restore(*flags);
270}
271
9edeaea1
PZ
272static void __sched_core_flip(bool enabled)
273{
3c474b32
PZ
274 unsigned long flags;
275 int cpu, t;
9edeaea1
PZ
276
277 cpus_read_lock();
278
279 /*
280 * Toggle the online cores, one by one.
281 */
282 cpumask_copy(&sched_core_mask, cpu_online_mask);
283 for_each_cpu(cpu, &sched_core_mask) {
284 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
285
3c474b32 286 sched_core_lock(cpu, &flags);
9edeaea1
PZ
287
288 for_each_cpu(t, smt_mask)
289 cpu_rq(t)->core_enabled = enabled;
290
4feee7d1
JD
291 cpu_rq(cpu)->core->core_forceidle_start = 0;
292
3c474b32 293 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
294
295 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
296 }
297
298 /*
299 * Toggle the offline CPUs.
300 */
301 cpumask_copy(&sched_core_mask, cpu_possible_mask);
302 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
303
304 for_each_cpu(cpu, &sched_core_mask)
305 cpu_rq(cpu)->core_enabled = enabled;
306
307 cpus_read_unlock();
308}
309
8a311c74 310static void sched_core_assert_empty(void)
9edeaea1 311{
8a311c74 312 int cpu;
9edeaea1 313
8a311c74
PZ
314 for_each_possible_cpu(cpu)
315 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
316}
317
318static void __sched_core_enable(void)
319{
9edeaea1
PZ
320 static_branch_enable(&__sched_core_enabled);
321 /*
322 * Ensure all previous instances of raw_spin_rq_*lock() have finished
323 * and future ones will observe !sched_core_disabled().
324 */
325 synchronize_rcu();
326 __sched_core_flip(true);
8a311c74 327 sched_core_assert_empty();
9edeaea1
PZ
328}
329
330static void __sched_core_disable(void)
331{
8a311c74 332 sched_core_assert_empty();
9edeaea1
PZ
333 __sched_core_flip(false);
334 static_branch_disable(&__sched_core_enabled);
335}
336
337void sched_core_get(void)
338{
875feb41
PZ
339 if (atomic_inc_not_zero(&sched_core_count))
340 return;
341
9edeaea1 342 mutex_lock(&sched_core_mutex);
875feb41 343 if (!atomic_read(&sched_core_count))
9edeaea1 344 __sched_core_enable();
875feb41
PZ
345
346 smp_mb__before_atomic();
347 atomic_inc(&sched_core_count);
9edeaea1
PZ
348 mutex_unlock(&sched_core_mutex);
349}
350
875feb41 351static void __sched_core_put(struct work_struct *work)
9edeaea1 352{
875feb41 353 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 354 __sched_core_disable();
875feb41
PZ
355 mutex_unlock(&sched_core_mutex);
356 }
357}
358
359void sched_core_put(void)
360{
361 static DECLARE_WORK(_work, __sched_core_put);
362
363 /*
364 * "There can be only one"
365 *
366 * Either this is the last one, or we don't actually need to do any
367 * 'work'. If it is the last *again*, we rely on
368 * WORK_STRUCT_PENDING_BIT.
369 */
370 if (!atomic_add_unless(&sched_core_count, -1, 1))
371 schedule_work(&_work);
9edeaea1
PZ
372}
373
8a311c74
PZ
374#else /* !CONFIG_SCHED_CORE */
375
376static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
4feee7d1
JD
377static inline void
378sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
8a311c74 379
9edeaea1
PZ
380#endif /* CONFIG_SCHED_CORE */
381
9f0c1e56
PZ
382/*
383 * part of the period that we allow rt tasks to run in us.
384 * default: 0.95s
385 */
386int sysctl_sched_rt_runtime = 950000;
fa85ae24 387
58877d34
PZ
388
389/*
390 * Serialization rules:
391 *
392 * Lock order:
393 *
394 * p->pi_lock
395 * rq->lock
396 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
397 *
398 * rq1->lock
399 * rq2->lock where: rq1 < rq2
400 *
401 * Regular state:
402 *
403 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
404 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 405 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
406 * to run next.
407 *
408 * Task enqueue is also under rq->lock, possibly taken from another CPU.
409 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
410 * the local CPU to avoid bouncing the runqueue state around [ see
411 * ttwu_queue_wakelist() ]
412 *
413 * Task wakeup, specifically wakeups that involve migration, are horribly
414 * complicated to avoid having to take two rq->locks.
415 *
416 * Special state:
417 *
418 * System-calls and anything external will use task_rq_lock() which acquires
419 * both p->pi_lock and rq->lock. As a consequence the state they change is
420 * stable while holding either lock:
421 *
422 * - sched_setaffinity()/
423 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
424 * - set_user_nice(): p->se.load, p->*prio
425 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
426 * p->se.load, p->rt_priority,
427 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
428 * - sched_setnuma(): p->numa_preferred_nid
429 * - sched_move_task()/
430 * cpu_cgroup_fork(): p->sched_task_group
431 * - uclamp_update_active() p->uclamp*
432 *
433 * p->state <- TASK_*:
434 *
435 * is changed locklessly using set_current_state(), __set_current_state() or
436 * set_special_state(), see their respective comments, or by
437 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
438 * concurrent self.
439 *
440 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
441 *
442 * is set by activate_task() and cleared by deactivate_task(), under
443 * rq->lock. Non-zero indicates the task is runnable, the special
444 * ON_RQ_MIGRATING state is used for migration without holding both
445 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
446 *
447 * p->on_cpu <- { 0, 1 }:
448 *
449 * is set by prepare_task() and cleared by finish_task() such that it will be
450 * set before p is scheduled-in and cleared after p is scheduled-out, both
451 * under rq->lock. Non-zero indicates the task is running on its CPU.
452 *
453 * [ The astute reader will observe that it is possible for two tasks on one
454 * CPU to have ->on_cpu = 1 at the same time. ]
455 *
456 * task_cpu(p): is changed by set_task_cpu(), the rules are:
457 *
458 * - Don't call set_task_cpu() on a blocked task:
459 *
460 * We don't care what CPU we're not running on, this simplifies hotplug,
461 * the CPU assignment of blocked tasks isn't required to be valid.
462 *
463 * - for try_to_wake_up(), called under p->pi_lock:
464 *
465 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
466 *
467 * - for migration called under rq->lock:
468 * [ see task_on_rq_migrating() in task_rq_lock() ]
469 *
470 * o move_queued_task()
471 * o detach_task()
472 *
473 * - for migration called under double_rq_lock():
474 *
475 * o __migrate_swap_task()
476 * o push_rt_task() / pull_rt_task()
477 * o push_dl_task() / pull_dl_task()
478 * o dl_task_offline_migration()
479 *
480 */
481
39d371b7
PZ
482void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
483{
d66f1b06
PZ
484 raw_spinlock_t *lock;
485
9edeaea1
PZ
486 /* Matches synchronize_rcu() in __sched_core_enable() */
487 preempt_disable();
d66f1b06
PZ
488 if (sched_core_disabled()) {
489 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
490 /* preempt_count *MUST* be > 1 */
491 preempt_enable_no_resched();
d66f1b06
PZ
492 return;
493 }
494
495 for (;;) {
9ef7e7e3 496 lock = __rq_lockp(rq);
d66f1b06 497 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 498 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
499 /* preempt_count *MUST* be > 1 */
500 preempt_enable_no_resched();
d66f1b06 501 return;
9edeaea1 502 }
d66f1b06
PZ
503 raw_spin_unlock(lock);
504 }
39d371b7
PZ
505}
506
507bool raw_spin_rq_trylock(struct rq *rq)
508{
d66f1b06
PZ
509 raw_spinlock_t *lock;
510 bool ret;
511
9edeaea1
PZ
512 /* Matches synchronize_rcu() in __sched_core_enable() */
513 preempt_disable();
514 if (sched_core_disabled()) {
515 ret = raw_spin_trylock(&rq->__lock);
516 preempt_enable();
517 return ret;
518 }
d66f1b06
PZ
519
520 for (;;) {
9ef7e7e3 521 lock = __rq_lockp(rq);
d66f1b06 522 ret = raw_spin_trylock(lock);
9ef7e7e3 523 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 524 preempt_enable();
d66f1b06 525 return ret;
9edeaea1 526 }
d66f1b06
PZ
527 raw_spin_unlock(lock);
528 }
39d371b7
PZ
529}
530
531void raw_spin_rq_unlock(struct rq *rq)
532{
533 raw_spin_unlock(rq_lockp(rq));
534}
535
d66f1b06
PZ
536#ifdef CONFIG_SMP
537/*
538 * double_rq_lock - safely lock two runqueues
539 */
540void double_rq_lock(struct rq *rq1, struct rq *rq2)
541{
542 lockdep_assert_irqs_disabled();
543
544 if (rq_order_less(rq2, rq1))
545 swap(rq1, rq2);
546
547 raw_spin_rq_lock(rq1);
9ef7e7e3 548 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
549 return;
550
551 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
552}
553#endif
554
3e71a462
PZ
555/*
556 * __task_rq_lock - lock the rq @p resides on.
557 */
eb580751 558struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
559 __acquires(rq->lock)
560{
561 struct rq *rq;
562
563 lockdep_assert_held(&p->pi_lock);
564
565 for (;;) {
566 rq = task_rq(p);
5cb9eaa3 567 raw_spin_rq_lock(rq);
3e71a462 568 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 569 rq_pin_lock(rq, rf);
3e71a462
PZ
570 return rq;
571 }
5cb9eaa3 572 raw_spin_rq_unlock(rq);
3e71a462
PZ
573
574 while (unlikely(task_on_rq_migrating(p)))
575 cpu_relax();
576 }
577}
578
579/*
580 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
581 */
eb580751 582struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
583 __acquires(p->pi_lock)
584 __acquires(rq->lock)
585{
586 struct rq *rq;
587
588 for (;;) {
eb580751 589 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 590 rq = task_rq(p);
5cb9eaa3 591 raw_spin_rq_lock(rq);
3e71a462
PZ
592 /*
593 * move_queued_task() task_rq_lock()
594 *
595 * ACQUIRE (rq->lock)
596 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
597 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
598 * [S] ->cpu = new_cpu [L] task_rq()
599 * [L] ->on_rq
600 * RELEASE (rq->lock)
601 *
c546951d 602 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
603 * the old rq->lock will fully serialize against the stores.
604 *
c546951d
AP
605 * If we observe the new CPU in task_rq_lock(), the address
606 * dependency headed by '[L] rq = task_rq()' and the acquire
607 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
608 */
609 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 610 rq_pin_lock(rq, rf);
3e71a462
PZ
611 return rq;
612 }
5cb9eaa3 613 raw_spin_rq_unlock(rq);
eb580751 614 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
615
616 while (unlikely(task_on_rq_migrating(p)))
617 cpu_relax();
618 }
619}
620
535b9552
IM
621/*
622 * RQ-clock updating methods:
623 */
624
625static void update_rq_clock_task(struct rq *rq, s64 delta)
626{
627/*
628 * In theory, the compile should just see 0 here, and optimize out the call
629 * to sched_rt_avg_update. But I don't trust it...
630 */
11d4afd4
VG
631 s64 __maybe_unused steal = 0, irq_delta = 0;
632
535b9552
IM
633#ifdef CONFIG_IRQ_TIME_ACCOUNTING
634 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
635
636 /*
637 * Since irq_time is only updated on {soft,}irq_exit, we might run into
638 * this case when a previous update_rq_clock() happened inside a
639 * {soft,}irq region.
640 *
641 * When this happens, we stop ->clock_task and only update the
642 * prev_irq_time stamp to account for the part that fit, so that a next
643 * update will consume the rest. This ensures ->clock_task is
644 * monotonic.
645 *
646 * It does however cause some slight miss-attribution of {soft,}irq
647 * time, a more accurate solution would be to update the irq_time using
648 * the current rq->clock timestamp, except that would require using
649 * atomic ops.
650 */
651 if (irq_delta > delta)
652 irq_delta = delta;
653
654 rq->prev_irq_time += irq_delta;
655 delta -= irq_delta;
656#endif
657#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
658 if (static_key_false((&paravirt_steal_rq_enabled))) {
659 steal = paravirt_steal_clock(cpu_of(rq));
660 steal -= rq->prev_steal_time_rq;
661
662 if (unlikely(steal > delta))
663 steal = delta;
664
665 rq->prev_steal_time_rq += steal;
666 delta -= steal;
667 }
668#endif
669
670 rq->clock_task += delta;
671
11d4afd4 672#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 673 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 674 update_irq_load_avg(rq, irq_delta + steal);
535b9552 675#endif
23127296 676 update_rq_clock_pelt(rq, delta);
535b9552
IM
677}
678
679void update_rq_clock(struct rq *rq)
680{
681 s64 delta;
682
5cb9eaa3 683 lockdep_assert_rq_held(rq);
535b9552
IM
684
685 if (rq->clock_update_flags & RQCF_ACT_SKIP)
686 return;
687
688#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
689 if (sched_feat(WARN_DOUBLE_CLOCK))
690 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
691 rq->clock_update_flags |= RQCF_UPDATED;
692#endif
26ae58d2 693
535b9552
IM
694 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
695 if (delta < 0)
696 return;
697 rq->clock += delta;
698 update_rq_clock_task(rq, delta);
699}
700
8f4d37ec
PZ
701#ifdef CONFIG_SCHED_HRTICK
702/*
703 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 704 */
8f4d37ec 705
8f4d37ec
PZ
706static void hrtick_clear(struct rq *rq)
707{
708 if (hrtimer_active(&rq->hrtick_timer))
709 hrtimer_cancel(&rq->hrtick_timer);
710}
711
8f4d37ec
PZ
712/*
713 * High-resolution timer tick.
714 * Runs from hardirq context with interrupts disabled.
715 */
716static enum hrtimer_restart hrtick(struct hrtimer *timer)
717{
718 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 719 struct rq_flags rf;
8f4d37ec
PZ
720
721 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
722
8a8c69c3 723 rq_lock(rq, &rf);
3e51f33f 724 update_rq_clock(rq);
8f4d37ec 725 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 726 rq_unlock(rq, &rf);
8f4d37ec
PZ
727
728 return HRTIMER_NORESTART;
729}
730
95e904c7 731#ifdef CONFIG_SMP
971ee28c 732
4961b6e1 733static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
734{
735 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 736 ktime_t time = rq->hrtick_time;
971ee28c 737
156ec6f4 738 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
739}
740
31656519
PZ
741/*
742 * called from hardirq (IPI) context
743 */
744static void __hrtick_start(void *arg)
b328ca18 745{
31656519 746 struct rq *rq = arg;
8a8c69c3 747 struct rq_flags rf;
b328ca18 748
8a8c69c3 749 rq_lock(rq, &rf);
971ee28c 750 __hrtick_restart(rq);
8a8c69c3 751 rq_unlock(rq, &rf);
b328ca18
PZ
752}
753
31656519
PZ
754/*
755 * Called to set the hrtick timer state.
756 *
757 * called with rq->lock held and irqs disabled
758 */
029632fb 759void hrtick_start(struct rq *rq, u64 delay)
b328ca18 760{
31656519 761 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 762 s64 delta;
763
764 /*
765 * Don't schedule slices shorter than 10000ns, that just
766 * doesn't make sense and can cause timer DoS.
767 */
768 delta = max_t(s64, delay, 10000LL);
156ec6f4 769 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 770
fd3eafda 771 if (rq == this_rq())
971ee28c 772 __hrtick_restart(rq);
fd3eafda 773 else
c46fff2a 774 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
775}
776
31656519
PZ
777#else
778/*
779 * Called to set the hrtick timer state.
780 *
781 * called with rq->lock held and irqs disabled
782 */
029632fb 783void hrtick_start(struct rq *rq, u64 delay)
31656519 784{
86893335
WL
785 /*
786 * Don't schedule slices shorter than 10000ns, that just
787 * doesn't make sense. Rely on vruntime for fairness.
788 */
789 delay = max_t(u64, delay, 10000LL);
4961b6e1 790 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 791 HRTIMER_MODE_REL_PINNED_HARD);
31656519 792}
90b5363a 793
31656519 794#endif /* CONFIG_SMP */
8f4d37ec 795
77a021be 796static void hrtick_rq_init(struct rq *rq)
8f4d37ec 797{
31656519 798#ifdef CONFIG_SMP
545b8c8d 799 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 800#endif
d5096aa6 801 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 802 rq->hrtick_timer.function = hrtick;
8f4d37ec 803}
006c75f1 804#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
805static inline void hrtick_clear(struct rq *rq)
806{
807}
808
77a021be 809static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
810{
811}
006c75f1 812#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 813
5529578a
FW
814/*
815 * cmpxchg based fetch_or, macro so it works for different integer types
816 */
817#define fetch_or(ptr, mask) \
818 ({ \
819 typeof(ptr) _ptr = (ptr); \
820 typeof(mask) _mask = (mask); \
821 typeof(*_ptr) _old, _val = *_ptr; \
822 \
823 for (;;) { \
824 _old = cmpxchg(_ptr, _val, _val | _mask); \
825 if (_old == _val) \
826 break; \
827 _val = _old; \
828 } \
829 _old; \
830})
831
e3baac47 832#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
833/*
834 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
835 * this avoids any races wrt polling state changes and thereby avoids
836 * spurious IPIs.
837 */
838static bool set_nr_and_not_polling(struct task_struct *p)
839{
840 struct thread_info *ti = task_thread_info(p);
841 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
842}
e3baac47
PZ
843
844/*
845 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
846 *
847 * If this returns true, then the idle task promises to call
848 * sched_ttwu_pending() and reschedule soon.
849 */
850static bool set_nr_if_polling(struct task_struct *p)
851{
852 struct thread_info *ti = task_thread_info(p);
316c1608 853 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
854
855 for (;;) {
856 if (!(val & _TIF_POLLING_NRFLAG))
857 return false;
858 if (val & _TIF_NEED_RESCHED)
859 return true;
860 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
861 if (old == val)
862 break;
863 val = old;
864 }
865 return true;
866}
867
fd99f91a
PZ
868#else
869static bool set_nr_and_not_polling(struct task_struct *p)
870{
871 set_tsk_need_resched(p);
872 return true;
873}
e3baac47
PZ
874
875#ifdef CONFIG_SMP
876static bool set_nr_if_polling(struct task_struct *p)
877{
878 return false;
879}
880#endif
fd99f91a
PZ
881#endif
882
07879c6a 883static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
884{
885 struct wake_q_node *node = &task->wake_q;
886
887 /*
888 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 889 * it's already queued (either by us or someone else) and will get the
76751049
PZ
890 * wakeup due to that.
891 *
4c4e3731
PZ
892 * In order to ensure that a pending wakeup will observe our pending
893 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 894 */
4c4e3731 895 smp_mb__before_atomic();
87ff19cb 896 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 897 return false;
76751049
PZ
898
899 /*
900 * The head is context local, there can be no concurrency.
901 */
902 *head->lastp = node;
903 head->lastp = &node->next;
07879c6a
DB
904 return true;
905}
906
907/**
908 * wake_q_add() - queue a wakeup for 'later' waking.
909 * @head: the wake_q_head to add @task to
910 * @task: the task to queue for 'later' wakeup
911 *
912 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
913 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
914 * instantly.
915 *
916 * This function must be used as-if it were wake_up_process(); IOW the task
917 * must be ready to be woken at this location.
918 */
919void wake_q_add(struct wake_q_head *head, struct task_struct *task)
920{
921 if (__wake_q_add(head, task))
922 get_task_struct(task);
923}
924
925/**
926 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
927 * @head: the wake_q_head to add @task to
928 * @task: the task to queue for 'later' wakeup
929 *
930 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
931 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
932 * instantly.
933 *
934 * This function must be used as-if it were wake_up_process(); IOW the task
935 * must be ready to be woken at this location.
936 *
937 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
938 * that already hold reference to @task can call the 'safe' version and trust
939 * wake_q to do the right thing depending whether or not the @task is already
940 * queued for wakeup.
941 */
942void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
943{
944 if (!__wake_q_add(head, task))
945 put_task_struct(task);
76751049
PZ
946}
947
948void wake_up_q(struct wake_q_head *head)
949{
950 struct wake_q_node *node = head->first;
951
952 while (node != WAKE_Q_TAIL) {
953 struct task_struct *task;
954
955 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 956 /* Task can safely be re-inserted now: */
76751049
PZ
957 node = node->next;
958 task->wake_q.next = NULL;
959
960 /*
7696f991
AP
961 * wake_up_process() executes a full barrier, which pairs with
962 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
963 */
964 wake_up_process(task);
965 put_task_struct(task);
966 }
967}
968
c24d20db 969/*
8875125e 970 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
971 *
972 * On UP this means the setting of the need_resched flag, on SMP it
973 * might also involve a cross-CPU call to trigger the scheduler on
974 * the target CPU.
975 */
8875125e 976void resched_curr(struct rq *rq)
c24d20db 977{
8875125e 978 struct task_struct *curr = rq->curr;
c24d20db
IM
979 int cpu;
980
5cb9eaa3 981 lockdep_assert_rq_held(rq);
c24d20db 982
8875125e 983 if (test_tsk_need_resched(curr))
c24d20db
IM
984 return;
985
8875125e 986 cpu = cpu_of(rq);
fd99f91a 987
f27dde8d 988 if (cpu == smp_processor_id()) {
8875125e 989 set_tsk_need_resched(curr);
f27dde8d 990 set_preempt_need_resched();
c24d20db 991 return;
f27dde8d 992 }
c24d20db 993
8875125e 994 if (set_nr_and_not_polling(curr))
c24d20db 995 smp_send_reschedule(cpu);
dfc68f29
AL
996 else
997 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
998}
999
029632fb 1000void resched_cpu(int cpu)
c24d20db
IM
1001{
1002 struct rq *rq = cpu_rq(cpu);
1003 unsigned long flags;
1004
5cb9eaa3 1005 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
1006 if (cpu_online(cpu) || cpu == smp_processor_id())
1007 resched_curr(rq);
5cb9eaa3 1008 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 1009}
06d8308c 1010
b021fe3e 1011#ifdef CONFIG_SMP
3451d024 1012#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 1013/*
d1ccc66d
IM
1014 * In the semi idle case, use the nearest busy CPU for migrating timers
1015 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1016 *
1017 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1018 * selecting an idle CPU will add more delays to the timers than intended
1019 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1020 */
bc7a34b8 1021int get_nohz_timer_target(void)
83cd4fe2 1022{
e938b9c9 1023 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1024 struct sched_domain *sd;
031e3bd8 1025 const struct cpumask *hk_mask;
83cd4fe2 1026
e938b9c9
WL
1027 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1028 if (!idle_cpu(cpu))
1029 return cpu;
1030 default_cpu = cpu;
1031 }
6201b4d6 1032
031e3bd8
YZ
1033 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1034
057f3fad 1035 rcu_read_lock();
83cd4fe2 1036 for_each_domain(cpu, sd) {
031e3bd8 1037 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1038 if (cpu == i)
1039 continue;
1040
e938b9c9 1041 if (!idle_cpu(i)) {
057f3fad
PZ
1042 cpu = i;
1043 goto unlock;
1044 }
1045 }
83cd4fe2 1046 }
9642d18e 1047
e938b9c9
WL
1048 if (default_cpu == -1)
1049 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1050 cpu = default_cpu;
057f3fad
PZ
1051unlock:
1052 rcu_read_unlock();
83cd4fe2
VP
1053 return cpu;
1054}
d1ccc66d 1055
06d8308c
TG
1056/*
1057 * When add_timer_on() enqueues a timer into the timer wheel of an
1058 * idle CPU then this timer might expire before the next timer event
1059 * which is scheduled to wake up that CPU. In case of a completely
1060 * idle system the next event might even be infinite time into the
1061 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1062 * leaves the inner idle loop so the newly added timer is taken into
1063 * account when the CPU goes back to idle and evaluates the timer
1064 * wheel for the next timer event.
1065 */
1c20091e 1066static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1067{
1068 struct rq *rq = cpu_rq(cpu);
1069
1070 if (cpu == smp_processor_id())
1071 return;
1072
67b9ca70 1073 if (set_nr_and_not_polling(rq->idle))
06d8308c 1074 smp_send_reschedule(cpu);
dfc68f29
AL
1075 else
1076 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1077}
1078
c5bfece2 1079static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1080{
53c5fa16
FW
1081 /*
1082 * We just need the target to call irq_exit() and re-evaluate
1083 * the next tick. The nohz full kick at least implies that.
1084 * If needed we can still optimize that later with an
1085 * empty IRQ.
1086 */
379d9ecb
PM
1087 if (cpu_is_offline(cpu))
1088 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1089 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1090 if (cpu != smp_processor_id() ||
1091 tick_nohz_tick_stopped())
53c5fa16 1092 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1093 return true;
1094 }
1095
1096 return false;
1097}
1098
379d9ecb
PM
1099/*
1100 * Wake up the specified CPU. If the CPU is going offline, it is the
1101 * caller's responsibility to deal with the lost wakeup, for example,
1102 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1103 */
1c20091e
FW
1104void wake_up_nohz_cpu(int cpu)
1105{
c5bfece2 1106 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1107 wake_up_idle_cpu(cpu);
1108}
1109
19a1f5ec 1110static void nohz_csd_func(void *info)
45bf76df 1111{
19a1f5ec
PZ
1112 struct rq *rq = info;
1113 int cpu = cpu_of(rq);
1114 unsigned int flags;
873b4c65
VG
1115
1116 /*
19a1f5ec 1117 * Release the rq::nohz_csd.
873b4c65 1118 */
c6f88654 1119 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1120 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1121
19a1f5ec
PZ
1122 rq->idle_balance = idle_cpu(cpu);
1123 if (rq->idle_balance && !need_resched()) {
1124 rq->nohz_idle_balance = flags;
90b5363a
PZI
1125 raise_softirq_irqoff(SCHED_SOFTIRQ);
1126 }
2069dd75
PZ
1127}
1128
3451d024 1129#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1130
ce831b38 1131#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1132bool sched_can_stop_tick(struct rq *rq)
ce831b38 1133{
76d92ac3
FW
1134 int fifo_nr_running;
1135
1136 /* Deadline tasks, even if single, need the tick */
1137 if (rq->dl.dl_nr_running)
1138 return false;
1139
1e78cdbd 1140 /*
b19a888c 1141 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1142 * actual RR behaviour.
1e78cdbd 1143 */
76d92ac3
FW
1144 if (rq->rt.rr_nr_running) {
1145 if (rq->rt.rr_nr_running == 1)
1146 return true;
1147 else
1148 return false;
1e78cdbd
RR
1149 }
1150
2548d546
PZ
1151 /*
1152 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1153 * forced preemption between FIFO tasks.
1154 */
1155 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1156 if (fifo_nr_running)
1157 return true;
1158
1159 /*
1160 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1161 * if there's more than one we need the tick for involuntary
1162 * preemption.
1163 */
1164 if (rq->nr_running > 1)
541b8264 1165 return false;
ce831b38 1166
541b8264 1167 return true;
ce831b38
FW
1168}
1169#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1170#endif /* CONFIG_SMP */
18d95a28 1171
a790de99
PT
1172#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1173 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1174/*
8277434e
PT
1175 * Iterate task_group tree rooted at *from, calling @down when first entering a
1176 * node and @up when leaving it for the final time.
1177 *
1178 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1179 */
029632fb 1180int walk_tg_tree_from(struct task_group *from,
8277434e 1181 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1182{
1183 struct task_group *parent, *child;
eb755805 1184 int ret;
c09595f6 1185
8277434e
PT
1186 parent = from;
1187
c09595f6 1188down:
eb755805
PZ
1189 ret = (*down)(parent, data);
1190 if (ret)
8277434e 1191 goto out;
c09595f6
PZ
1192 list_for_each_entry_rcu(child, &parent->children, siblings) {
1193 parent = child;
1194 goto down;
1195
1196up:
1197 continue;
1198 }
eb755805 1199 ret = (*up)(parent, data);
8277434e
PT
1200 if (ret || parent == from)
1201 goto out;
c09595f6
PZ
1202
1203 child = parent;
1204 parent = parent->parent;
1205 if (parent)
1206 goto up;
8277434e 1207out:
eb755805 1208 return ret;
c09595f6
PZ
1209}
1210
029632fb 1211int tg_nop(struct task_group *tg, void *data)
eb755805 1212{
e2b245f8 1213 return 0;
eb755805 1214}
18d95a28
PZ
1215#endif
1216
13765de8 1217static void set_load_weight(struct task_struct *p)
45bf76df 1218{
13765de8 1219 bool update_load = !(READ_ONCE(p->__state) & TASK_NEW);
f05998d4
NR
1220 int prio = p->static_prio - MAX_RT_PRIO;
1221 struct load_weight *load = &p->se.load;
1222
dd41f596
IM
1223 /*
1224 * SCHED_IDLE tasks get minimal weight:
1225 */
1da1843f 1226 if (task_has_idle_policy(p)) {
c8b28116 1227 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1228 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1229 return;
1230 }
71f8bd46 1231
9059393e
VG
1232 /*
1233 * SCHED_OTHER tasks have to update their load when changing their
1234 * weight
1235 */
1236 if (update_load && p->sched_class == &fair_sched_class) {
1237 reweight_task(p, prio);
1238 } else {
1239 load->weight = scale_load(sched_prio_to_weight[prio]);
1240 load->inv_weight = sched_prio_to_wmult[prio];
1241 }
71f8bd46
IM
1242}
1243
69842cba 1244#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1245/*
1246 * Serializes updates of utilization clamp values
1247 *
1248 * The (slow-path) user-space triggers utilization clamp value updates which
1249 * can require updates on (fast-path) scheduler's data structures used to
1250 * support enqueue/dequeue operations.
1251 * While the per-CPU rq lock protects fast-path update operations, user-space
1252 * requests are serialized using a mutex to reduce the risk of conflicting
1253 * updates or API abuses.
1254 */
1255static DEFINE_MUTEX(uclamp_mutex);
1256
e8f14172
PB
1257/* Max allowed minimum utilization */
1258unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1259
1260/* Max allowed maximum utilization */
1261unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1262
13685c4a
QY
1263/*
1264 * By default RT tasks run at the maximum performance point/capacity of the
1265 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1266 * SCHED_CAPACITY_SCALE.
1267 *
1268 * This knob allows admins to change the default behavior when uclamp is being
1269 * used. In battery powered devices, particularly, running at the maximum
1270 * capacity and frequency will increase energy consumption and shorten the
1271 * battery life.
1272 *
1273 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1274 *
1275 * This knob will not override the system default sched_util_clamp_min defined
1276 * above.
1277 */
1278unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1279
e8f14172
PB
1280/* All clamps are required to be less or equal than these values */
1281static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1282
46609ce2
QY
1283/*
1284 * This static key is used to reduce the uclamp overhead in the fast path. It
1285 * primarily disables the call to uclamp_rq_{inc, dec}() in
1286 * enqueue/dequeue_task().
1287 *
1288 * This allows users to continue to enable uclamp in their kernel config with
1289 * minimum uclamp overhead in the fast path.
1290 *
1291 * As soon as userspace modifies any of the uclamp knobs, the static key is
1292 * enabled, since we have an actual users that make use of uclamp
1293 * functionality.
1294 *
1295 * The knobs that would enable this static key are:
1296 *
1297 * * A task modifying its uclamp value with sched_setattr().
1298 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1299 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1300 */
1301DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1302
69842cba
PB
1303/* Integer rounded range for each bucket */
1304#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1305
1306#define for_each_clamp_id(clamp_id) \
1307 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1308
1309static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1310{
6d2f8909 1311 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1312}
1313
7763baac 1314static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1315{
1316 if (clamp_id == UCLAMP_MIN)
1317 return 0;
1318 return SCHED_CAPACITY_SCALE;
1319}
1320
a509a7cd
PB
1321static inline void uclamp_se_set(struct uclamp_se *uc_se,
1322 unsigned int value, bool user_defined)
69842cba
PB
1323{
1324 uc_se->value = value;
1325 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1326 uc_se->user_defined = user_defined;
69842cba
PB
1327}
1328
e496187d 1329static inline unsigned int
0413d7f3 1330uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1331 unsigned int clamp_value)
1332{
1333 /*
1334 * Avoid blocked utilization pushing up the frequency when we go
1335 * idle (which drops the max-clamp) by retaining the last known
1336 * max-clamp.
1337 */
1338 if (clamp_id == UCLAMP_MAX) {
1339 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1340 return clamp_value;
1341 }
1342
1343 return uclamp_none(UCLAMP_MIN);
1344}
1345
0413d7f3 1346static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1347 unsigned int clamp_value)
1348{
1349 /* Reset max-clamp retention only on idle exit */
1350 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1351 return;
1352
1353 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1354}
1355
69842cba 1356static inline
7763baac 1357unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1358 unsigned int clamp_value)
69842cba
PB
1359{
1360 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1361 int bucket_id = UCLAMP_BUCKETS - 1;
1362
1363 /*
1364 * Since both min and max clamps are max aggregated, find the
1365 * top most bucket with tasks in.
1366 */
1367 for ( ; bucket_id >= 0; bucket_id--) {
1368 if (!bucket[bucket_id].tasks)
1369 continue;
1370 return bucket[bucket_id].value;
1371 }
1372
1373 /* No tasks -- default clamp values */
e496187d 1374 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1375}
1376
13685c4a
QY
1377static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1378{
1379 unsigned int default_util_min;
1380 struct uclamp_se *uc_se;
1381
1382 lockdep_assert_held(&p->pi_lock);
1383
1384 uc_se = &p->uclamp_req[UCLAMP_MIN];
1385
1386 /* Only sync if user didn't override the default */
1387 if (uc_se->user_defined)
1388 return;
1389
1390 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1391 uclamp_se_set(uc_se, default_util_min, false);
1392}
1393
1394static void uclamp_update_util_min_rt_default(struct task_struct *p)
1395{
1396 struct rq_flags rf;
1397 struct rq *rq;
1398
1399 if (!rt_task(p))
1400 return;
1401
1402 /* Protect updates to p->uclamp_* */
1403 rq = task_rq_lock(p, &rf);
1404 __uclamp_update_util_min_rt_default(p);
1405 task_rq_unlock(rq, p, &rf);
1406}
1407
1408static void uclamp_sync_util_min_rt_default(void)
1409{
1410 struct task_struct *g, *p;
1411
1412 /*
1413 * copy_process() sysctl_uclamp
1414 * uclamp_min_rt = X;
1415 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1416 * // link thread smp_mb__after_spinlock()
1417 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1418 * sched_post_fork() for_each_process_thread()
1419 * __uclamp_sync_rt() __uclamp_sync_rt()
1420 *
1421 * Ensures that either sched_post_fork() will observe the new
1422 * uclamp_min_rt or for_each_process_thread() will observe the new
1423 * task.
1424 */
1425 read_lock(&tasklist_lock);
1426 smp_mb__after_spinlock();
1427 read_unlock(&tasklist_lock);
1428
1429 rcu_read_lock();
1430 for_each_process_thread(g, p)
1431 uclamp_update_util_min_rt_default(p);
1432 rcu_read_unlock();
1433}
1434
3eac870a 1435static inline struct uclamp_se
0413d7f3 1436uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1437{
0213b708 1438 /* Copy by value as we could modify it */
3eac870a
PB
1439 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1440#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1441 unsigned int tg_min, tg_max, value;
3eac870a
PB
1442
1443 /*
1444 * Tasks in autogroups or root task group will be
1445 * restricted by system defaults.
1446 */
1447 if (task_group_is_autogroup(task_group(p)))
1448 return uc_req;
1449 if (task_group(p) == &root_task_group)
1450 return uc_req;
1451
0213b708
QY
1452 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1453 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1454 value = uc_req.value;
1455 value = clamp(value, tg_min, tg_max);
1456 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1457#endif
1458
1459 return uc_req;
1460}
1461
e8f14172
PB
1462/*
1463 * The effective clamp bucket index of a task depends on, by increasing
1464 * priority:
1465 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1466 * - the task group effective clamp value, for tasks not either in the root
1467 * group or in an autogroup
e8f14172
PB
1468 * - the system default clamp value, defined by the sysadmin
1469 */
1470static inline struct uclamp_se
0413d7f3 1471uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1472{
3eac870a 1473 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1474 struct uclamp_se uc_max = uclamp_default[clamp_id];
1475
1476 /* System default restrictions always apply */
1477 if (unlikely(uc_req.value > uc_max.value))
1478 return uc_max;
1479
1480 return uc_req;
1481}
1482
686516b5 1483unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1484{
1485 struct uclamp_se uc_eff;
1486
1487 /* Task currently refcounted: use back-annotated (effective) value */
1488 if (p->uclamp[clamp_id].active)
686516b5 1489 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1490
1491 uc_eff = uclamp_eff_get(p, clamp_id);
1492
686516b5 1493 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1494}
1495
69842cba
PB
1496/*
1497 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1498 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1499 * updates the rq's clamp value if required.
60daf9c1
PB
1500 *
1501 * Tasks can have a task-specific value requested from user-space, track
1502 * within each bucket the maximum value for tasks refcounted in it.
1503 * This "local max aggregation" allows to track the exact "requested" value
1504 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1505 */
1506static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1507 enum uclamp_id clamp_id)
69842cba
PB
1508{
1509 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1510 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1511 struct uclamp_bucket *bucket;
1512
5cb9eaa3 1513 lockdep_assert_rq_held(rq);
69842cba 1514
e8f14172
PB
1515 /* Update task effective clamp */
1516 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1517
69842cba
PB
1518 bucket = &uc_rq->bucket[uc_se->bucket_id];
1519 bucket->tasks++;
e8f14172 1520 uc_se->active = true;
69842cba 1521
e496187d
PB
1522 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1523
60daf9c1
PB
1524 /*
1525 * Local max aggregation: rq buckets always track the max
1526 * "requested" clamp value of its RUNNABLE tasks.
1527 */
1528 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1529 bucket->value = uc_se->value;
1530
69842cba 1531 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1532 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1533}
1534
1535/*
1536 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1537 * is released. If this is the last task reference counting the rq's max
1538 * active clamp value, then the rq's clamp value is updated.
1539 *
1540 * Both refcounted tasks and rq's cached clamp values are expected to be
1541 * always valid. If it's detected they are not, as defensive programming,
1542 * enforce the expected state and warn.
1543 */
1544static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1545 enum uclamp_id clamp_id)
69842cba
PB
1546{
1547 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1548 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1549 struct uclamp_bucket *bucket;
e496187d 1550 unsigned int bkt_clamp;
69842cba
PB
1551 unsigned int rq_clamp;
1552
5cb9eaa3 1553 lockdep_assert_rq_held(rq);
69842cba 1554
46609ce2
QY
1555 /*
1556 * If sched_uclamp_used was enabled after task @p was enqueued,
1557 * we could end up with unbalanced call to uclamp_rq_dec_id().
1558 *
1559 * In this case the uc_se->active flag should be false since no uclamp
1560 * accounting was performed at enqueue time and we can just return
1561 * here.
1562 *
b19a888c 1563 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1564 * problem too
1565 *
1566 * enqueue(taskA)
1567 * // sched_uclamp_used gets enabled
1568 * enqueue(taskB)
1569 * dequeue(taskA)
b19a888c 1570 * // Must not decrement bucket->tasks here
46609ce2
QY
1571 * dequeue(taskB)
1572 *
1573 * where we could end up with stale data in uc_se and
1574 * bucket[uc_se->bucket_id].
1575 *
1576 * The following check here eliminates the possibility of such race.
1577 */
1578 if (unlikely(!uc_se->active))
1579 return;
1580
69842cba 1581 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1582
69842cba
PB
1583 SCHED_WARN_ON(!bucket->tasks);
1584 if (likely(bucket->tasks))
1585 bucket->tasks--;
46609ce2 1586
e8f14172 1587 uc_se->active = false;
69842cba 1588
60daf9c1
PB
1589 /*
1590 * Keep "local max aggregation" simple and accept to (possibly)
1591 * overboost some RUNNABLE tasks in the same bucket.
1592 * The rq clamp bucket value is reset to its base value whenever
1593 * there are no more RUNNABLE tasks refcounting it.
1594 */
69842cba
PB
1595 if (likely(bucket->tasks))
1596 return;
1597
1598 rq_clamp = READ_ONCE(uc_rq->value);
1599 /*
1600 * Defensive programming: this should never happen. If it happens,
1601 * e.g. due to future modification, warn and fixup the expected value.
1602 */
1603 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1604 if (bucket->value >= rq_clamp) {
1605 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1606 WRITE_ONCE(uc_rq->value, bkt_clamp);
1607 }
69842cba
PB
1608}
1609
1610static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1611{
0413d7f3 1612 enum uclamp_id clamp_id;
69842cba 1613
46609ce2
QY
1614 /*
1615 * Avoid any overhead until uclamp is actually used by the userspace.
1616 *
1617 * The condition is constructed such that a NOP is generated when
1618 * sched_uclamp_used is disabled.
1619 */
1620 if (!static_branch_unlikely(&sched_uclamp_used))
1621 return;
1622
69842cba
PB
1623 if (unlikely(!p->sched_class->uclamp_enabled))
1624 return;
1625
1626 for_each_clamp_id(clamp_id)
1627 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1628
1629 /* Reset clamp idle holding when there is one RUNNABLE task */
1630 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1631 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1632}
1633
1634static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1635{
0413d7f3 1636 enum uclamp_id clamp_id;
69842cba 1637
46609ce2
QY
1638 /*
1639 * Avoid any overhead until uclamp is actually used by the userspace.
1640 *
1641 * The condition is constructed such that a NOP is generated when
1642 * sched_uclamp_used is disabled.
1643 */
1644 if (!static_branch_unlikely(&sched_uclamp_used))
1645 return;
1646
69842cba
PB
1647 if (unlikely(!p->sched_class->uclamp_enabled))
1648 return;
1649
1650 for_each_clamp_id(clamp_id)
1651 uclamp_rq_dec_id(rq, p, clamp_id);
1652}
1653
ca4984a7
QP
1654static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1655 enum uclamp_id clamp_id)
1656{
1657 if (!p->uclamp[clamp_id].active)
1658 return;
1659
1660 uclamp_rq_dec_id(rq, p, clamp_id);
1661 uclamp_rq_inc_id(rq, p, clamp_id);
1662
1663 /*
1664 * Make sure to clear the idle flag if we've transiently reached 0
1665 * active tasks on rq.
1666 */
1667 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1668 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1669}
1670
babbe170 1671static inline void
0213b708 1672uclamp_update_active(struct task_struct *p)
babbe170 1673{
0213b708 1674 enum uclamp_id clamp_id;
babbe170
PB
1675 struct rq_flags rf;
1676 struct rq *rq;
1677
1678 /*
1679 * Lock the task and the rq where the task is (or was) queued.
1680 *
1681 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1682 * price to pay to safely serialize util_{min,max} updates with
1683 * enqueues, dequeues and migration operations.
1684 * This is the same locking schema used by __set_cpus_allowed_ptr().
1685 */
1686 rq = task_rq_lock(p, &rf);
1687
1688 /*
1689 * Setting the clamp bucket is serialized by task_rq_lock().
1690 * If the task is not yet RUNNABLE and its task_struct is not
1691 * affecting a valid clamp bucket, the next time it's enqueued,
1692 * it will already see the updated clamp bucket value.
1693 */
ca4984a7
QP
1694 for_each_clamp_id(clamp_id)
1695 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1696
1697 task_rq_unlock(rq, p, &rf);
1698}
1699
e3b8b6a0 1700#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1701static inline void
0213b708 1702uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1703{
1704 struct css_task_iter it;
1705 struct task_struct *p;
babbe170
PB
1706
1707 css_task_iter_start(css, 0, &it);
0213b708
QY
1708 while ((p = css_task_iter_next(&it)))
1709 uclamp_update_active(p);
babbe170
PB
1710 css_task_iter_end(&it);
1711}
1712
7274a5c1
PB
1713static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1714static void uclamp_update_root_tg(void)
1715{
1716 struct task_group *tg = &root_task_group;
1717
1718 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1719 sysctl_sched_uclamp_util_min, false);
1720 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1721 sysctl_sched_uclamp_util_max, false);
1722
1723 rcu_read_lock();
1724 cpu_util_update_eff(&root_task_group.css);
1725 rcu_read_unlock();
1726}
1727#else
1728static void uclamp_update_root_tg(void) { }
1729#endif
1730
e8f14172 1731int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1732 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1733{
7274a5c1 1734 bool update_root_tg = false;
13685c4a 1735 int old_min, old_max, old_min_rt;
e8f14172
PB
1736 int result;
1737
2480c093 1738 mutex_lock(&uclamp_mutex);
e8f14172
PB
1739 old_min = sysctl_sched_uclamp_util_min;
1740 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1741 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1742
1743 result = proc_dointvec(table, write, buffer, lenp, ppos);
1744 if (result)
1745 goto undo;
1746 if (!write)
1747 goto done;
1748
1749 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1750 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1751 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1752
e8f14172
PB
1753 result = -EINVAL;
1754 goto undo;
1755 }
1756
1757 if (old_min != sysctl_sched_uclamp_util_min) {
1758 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1759 sysctl_sched_uclamp_util_min, false);
7274a5c1 1760 update_root_tg = true;
e8f14172
PB
1761 }
1762 if (old_max != sysctl_sched_uclamp_util_max) {
1763 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1764 sysctl_sched_uclamp_util_max, false);
7274a5c1 1765 update_root_tg = true;
e8f14172
PB
1766 }
1767
46609ce2
QY
1768 if (update_root_tg) {
1769 static_branch_enable(&sched_uclamp_used);
7274a5c1 1770 uclamp_update_root_tg();
46609ce2 1771 }
7274a5c1 1772
13685c4a
QY
1773 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1774 static_branch_enable(&sched_uclamp_used);
1775 uclamp_sync_util_min_rt_default();
1776 }
7274a5c1 1777
e8f14172 1778 /*
7274a5c1
PB
1779 * We update all RUNNABLE tasks only when task groups are in use.
1780 * Otherwise, keep it simple and do just a lazy update at each next
1781 * task enqueue time.
e8f14172 1782 */
7274a5c1 1783
e8f14172
PB
1784 goto done;
1785
1786undo:
1787 sysctl_sched_uclamp_util_min = old_min;
1788 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1789 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1790done:
2480c093 1791 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1792
1793 return result;
1794}
1795
a509a7cd
PB
1796static int uclamp_validate(struct task_struct *p,
1797 const struct sched_attr *attr)
1798{
480a6ca2
DE
1799 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1800 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1801
480a6ca2
DE
1802 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1803 util_min = attr->sched_util_min;
a509a7cd 1804
480a6ca2
DE
1805 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1806 return -EINVAL;
1807 }
1808
1809 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1810 util_max = attr->sched_util_max;
1811
1812 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1813 return -EINVAL;
1814 }
1815
1816 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1817 return -EINVAL;
1818
e65855a5
QY
1819 /*
1820 * We have valid uclamp attributes; make sure uclamp is enabled.
1821 *
1822 * We need to do that here, because enabling static branches is a
1823 * blocking operation which obviously cannot be done while holding
1824 * scheduler locks.
1825 */
1826 static_branch_enable(&sched_uclamp_used);
1827
a509a7cd
PB
1828 return 0;
1829}
1830
480a6ca2
DE
1831static bool uclamp_reset(const struct sched_attr *attr,
1832 enum uclamp_id clamp_id,
1833 struct uclamp_se *uc_se)
1834{
1835 /* Reset on sched class change for a non user-defined clamp value. */
1836 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1837 !uc_se->user_defined)
1838 return true;
1839
1840 /* Reset on sched_util_{min,max} == -1. */
1841 if (clamp_id == UCLAMP_MIN &&
1842 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1843 attr->sched_util_min == -1) {
1844 return true;
1845 }
1846
1847 if (clamp_id == UCLAMP_MAX &&
1848 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1849 attr->sched_util_max == -1) {
1850 return true;
1851 }
1852
1853 return false;
1854}
1855
a509a7cd
PB
1856static void __setscheduler_uclamp(struct task_struct *p,
1857 const struct sched_attr *attr)
1858{
0413d7f3 1859 enum uclamp_id clamp_id;
1a00d999 1860
1a00d999
PB
1861 for_each_clamp_id(clamp_id) {
1862 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1863 unsigned int value;
1a00d999 1864
480a6ca2 1865 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1866 continue;
1867
13685c4a
QY
1868 /*
1869 * RT by default have a 100% boost value that could be modified
1870 * at runtime.
1871 */
1a00d999 1872 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1873 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1874 else
480a6ca2
DE
1875 value = uclamp_none(clamp_id);
1876
1877 uclamp_se_set(uc_se, value, false);
1a00d999 1878
1a00d999
PB
1879 }
1880
a509a7cd
PB
1881 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1882 return;
1883
480a6ca2
DE
1884 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1885 attr->sched_util_min != -1) {
a509a7cd
PB
1886 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1887 attr->sched_util_min, true);
1888 }
1889
480a6ca2
DE
1890 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1891 attr->sched_util_max != -1) {
a509a7cd
PB
1892 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1893 attr->sched_util_max, true);
1894 }
1895}
1896
e8f14172
PB
1897static void uclamp_fork(struct task_struct *p)
1898{
0413d7f3 1899 enum uclamp_id clamp_id;
e8f14172 1900
13685c4a
QY
1901 /*
1902 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1903 * as the task is still at its early fork stages.
1904 */
e8f14172
PB
1905 for_each_clamp_id(clamp_id)
1906 p->uclamp[clamp_id].active = false;
a87498ac
PB
1907
1908 if (likely(!p->sched_reset_on_fork))
1909 return;
1910
1911 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1912 uclamp_se_set(&p->uclamp_req[clamp_id],
1913 uclamp_none(clamp_id), false);
a87498ac 1914 }
e8f14172
PB
1915}
1916
13685c4a
QY
1917static void uclamp_post_fork(struct task_struct *p)
1918{
1919 uclamp_update_util_min_rt_default(p);
1920}
1921
d81ae8aa
QY
1922static void __init init_uclamp_rq(struct rq *rq)
1923{
1924 enum uclamp_id clamp_id;
1925 struct uclamp_rq *uc_rq = rq->uclamp;
1926
1927 for_each_clamp_id(clamp_id) {
1928 uc_rq[clamp_id] = (struct uclamp_rq) {
1929 .value = uclamp_none(clamp_id)
1930 };
1931 }
1932
315c4f88 1933 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
d81ae8aa
QY
1934}
1935
69842cba
PB
1936static void __init init_uclamp(void)
1937{
e8f14172 1938 struct uclamp_se uc_max = {};
0413d7f3 1939 enum uclamp_id clamp_id;
69842cba
PB
1940 int cpu;
1941
d81ae8aa
QY
1942 for_each_possible_cpu(cpu)
1943 init_uclamp_rq(cpu_rq(cpu));
69842cba 1944
69842cba 1945 for_each_clamp_id(clamp_id) {
e8f14172 1946 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1947 uclamp_none(clamp_id), false);
69842cba 1948 }
e8f14172
PB
1949
1950 /* System defaults allow max clamp values for both indexes */
a509a7cd 1951 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1952 for_each_clamp_id(clamp_id) {
e8f14172 1953 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1954#ifdef CONFIG_UCLAMP_TASK_GROUP
1955 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1956 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1957#endif
1958 }
69842cba
PB
1959}
1960
1961#else /* CONFIG_UCLAMP_TASK */
1962static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1963static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1964static inline int uclamp_validate(struct task_struct *p,
1965 const struct sched_attr *attr)
1966{
1967 return -EOPNOTSUPP;
1968}
1969static void __setscheduler_uclamp(struct task_struct *p,
1970 const struct sched_attr *attr) { }
e8f14172 1971static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1972static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1973static inline void init_uclamp(void) { }
1974#endif /* CONFIG_UCLAMP_TASK */
1975
a1dfb631
MT
1976bool sched_task_on_rq(struct task_struct *p)
1977{
1978 return task_on_rq_queued(p);
1979}
1980
42a20f86
KC
1981unsigned long get_wchan(struct task_struct *p)
1982{
1983 unsigned long ip = 0;
1984 unsigned int state;
1985
1986 if (!p || p == current)
1987 return 0;
1988
1989 /* Only get wchan if task is blocked and we can keep it that way. */
1990 raw_spin_lock_irq(&p->pi_lock);
1991 state = READ_ONCE(p->__state);
1992 smp_rmb(); /* see try_to_wake_up() */
1993 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1994 ip = __get_wchan(p);
1995 raw_spin_unlock_irq(&p->pi_lock);
1996
1997 return ip;
1998}
1999
1de64443 2000static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 2001{
0a67d1ee
PZ
2002 if (!(flags & ENQUEUE_NOCLOCK))
2003 update_rq_clock(rq);
2004
eb414681 2005 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 2006 sched_info_enqueue(rq, p);
eb414681
JW
2007 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2008 }
0a67d1ee 2009
69842cba 2010 uclamp_rq_inc(rq, p);
371fd7e7 2011 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
2012
2013 if (sched_core_enabled(rq))
2014 sched_core_enqueue(rq, p);
71f8bd46
IM
2015}
2016
1de64443 2017static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 2018{
8a311c74 2019 if (sched_core_enabled(rq))
4feee7d1 2020 sched_core_dequeue(rq, p, flags);
8a311c74 2021
0a67d1ee
PZ
2022 if (!(flags & DEQUEUE_NOCLOCK))
2023 update_rq_clock(rq);
2024
eb414681 2025 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 2026 sched_info_dequeue(rq, p);
eb414681
JW
2027 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2028 }
0a67d1ee 2029
69842cba 2030 uclamp_rq_dec(rq, p);
371fd7e7 2031 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
2032}
2033
029632fb 2034void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2035{
371fd7e7 2036 enqueue_task(rq, p, flags);
7dd77884
PZ
2037
2038 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2039}
2040
029632fb 2041void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2042{
7dd77884
PZ
2043 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2044
371fd7e7 2045 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2046}
2047
f558c2b8 2048static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2049{
f558c2b8
PZ
2050 int prio;
2051
2052 if (dl_policy(policy))
2053 prio = MAX_DL_PRIO - 1;
2054 else if (rt_policy(policy))
2055 prio = MAX_RT_PRIO - 1 - rt_prio;
2056 else
2057 prio = NICE_TO_PRIO(nice);
2058
2059 return prio;
14531189
IM
2060}
2061
b29739f9
IM
2062/*
2063 * Calculate the expected normal priority: i.e. priority
2064 * without taking RT-inheritance into account. Might be
2065 * boosted by interactivity modifiers. Changes upon fork,
2066 * setprio syscalls, and whenever the interactivity
2067 * estimator recalculates.
2068 */
36c8b586 2069static inline int normal_prio(struct task_struct *p)
b29739f9 2070{
f558c2b8 2071 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2072}
2073
2074/*
2075 * Calculate the current priority, i.e. the priority
2076 * taken into account by the scheduler. This value might
2077 * be boosted by RT tasks, or might be boosted by
2078 * interactivity modifiers. Will be RT if the task got
2079 * RT-boosted. If not then it returns p->normal_prio.
2080 */
36c8b586 2081static int effective_prio(struct task_struct *p)
b29739f9
IM
2082{
2083 p->normal_prio = normal_prio(p);
2084 /*
2085 * If we are RT tasks or we were boosted to RT priority,
2086 * keep the priority unchanged. Otherwise, update priority
2087 * to the normal priority:
2088 */
2089 if (!rt_prio(p->prio))
2090 return p->normal_prio;
2091 return p->prio;
2092}
2093
1da177e4
LT
2094/**
2095 * task_curr - is this task currently executing on a CPU?
2096 * @p: the task in question.
e69f6186
YB
2097 *
2098 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2099 */
36c8b586 2100inline int task_curr(const struct task_struct *p)
1da177e4
LT
2101{
2102 return cpu_curr(task_cpu(p)) == p;
2103}
2104
67dfa1b7 2105/*
4c9a4bc8
PZ
2106 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2107 * use the balance_callback list if you want balancing.
2108 *
2109 * this means any call to check_class_changed() must be followed by a call to
2110 * balance_callback().
67dfa1b7 2111 */
cb469845
SR
2112static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2113 const struct sched_class *prev_class,
da7a735e 2114 int oldprio)
cb469845
SR
2115{
2116 if (prev_class != p->sched_class) {
2117 if (prev_class->switched_from)
da7a735e 2118 prev_class->switched_from(rq, p);
4c9a4bc8 2119
da7a735e 2120 p->sched_class->switched_to(rq, p);
2d3d891d 2121 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2122 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2123}
2124
029632fb 2125void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2126{
aa93cd53 2127 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2128 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2129 else if (p->sched_class > rq->curr->sched_class)
2130 resched_curr(rq);
1e5a7405
PZ
2131
2132 /*
2133 * A queue event has occurred, and we're going to schedule. In
2134 * this case, we can save a useless back to back clock update.
2135 */
da0c1e65 2136 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2137 rq_clock_skip_update(rq);
1e5a7405
PZ
2138}
2139
1da177e4 2140#ifdef CONFIG_SMP
175f0e25 2141
af449901
PZ
2142static void
2143__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2144
2145static int __set_cpus_allowed_ptr(struct task_struct *p,
2146 const struct cpumask *new_mask,
2147 u32 flags);
2148
2149static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2150{
2151 if (likely(!p->migration_disabled))
2152 return;
2153
2154 if (p->cpus_ptr != &p->cpus_mask)
2155 return;
2156
2157 /*
2158 * Violates locking rules! see comment in __do_set_cpus_allowed().
2159 */
2160 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2161}
2162
2163void migrate_disable(void)
2164{
3015ef4b
TG
2165 struct task_struct *p = current;
2166
2167 if (p->migration_disabled) {
2168 p->migration_disabled++;
af449901 2169 return;
3015ef4b 2170 }
af449901 2171
3015ef4b
TG
2172 preempt_disable();
2173 this_rq()->nr_pinned++;
2174 p->migration_disabled = 1;
2175 preempt_enable();
af449901
PZ
2176}
2177EXPORT_SYMBOL_GPL(migrate_disable);
2178
2179void migrate_enable(void)
2180{
2181 struct task_struct *p = current;
2182
6d337eab
PZ
2183 if (p->migration_disabled > 1) {
2184 p->migration_disabled--;
af449901 2185 return;
6d337eab 2186 }
af449901 2187
9d0df377
SAS
2188 if (WARN_ON_ONCE(!p->migration_disabled))
2189 return;
2190
6d337eab
PZ
2191 /*
2192 * Ensure stop_task runs either before or after this, and that
2193 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2194 */
2195 preempt_disable();
2196 if (p->cpus_ptr != &p->cpus_mask)
2197 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2198 /*
2199 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2200 * regular cpus_mask, otherwise things that race (eg.
2201 * select_fallback_rq) get confused.
2202 */
af449901 2203 barrier();
6d337eab 2204 p->migration_disabled = 0;
3015ef4b 2205 this_rq()->nr_pinned--;
6d337eab 2206 preempt_enable();
af449901
PZ
2207}
2208EXPORT_SYMBOL_GPL(migrate_enable);
2209
3015ef4b
TG
2210static inline bool rq_has_pinned_tasks(struct rq *rq)
2211{
2212 return rq->nr_pinned;
2213}
2214
175f0e25 2215/*
bee98539 2216 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2217 * __set_cpus_allowed_ptr() and select_fallback_rq().
2218 */
2219static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2220{
5ba2ffba 2221 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2222 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2223 return false;
2224
5ba2ffba
PZ
2225 /* migrate_disabled() must be allowed to finish. */
2226 if (is_migration_disabled(p))
175f0e25
PZ
2227 return cpu_online(cpu);
2228
5ba2ffba
PZ
2229 /* Non kernel threads are not allowed during either online or offline. */
2230 if (!(p->flags & PF_KTHREAD))
9ae606bc 2231 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2232
2233 /* KTHREAD_IS_PER_CPU is always allowed. */
2234 if (kthread_is_per_cpu(p))
2235 return cpu_online(cpu);
2236
2237 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2238 if (cpu_dying(cpu))
5ba2ffba
PZ
2239 return false;
2240
2241 /* But are allowed during online. */
2242 return cpu_online(cpu);
175f0e25
PZ
2243}
2244
5cc389bc
PZ
2245/*
2246 * This is how migration works:
2247 *
2248 * 1) we invoke migration_cpu_stop() on the target CPU using
2249 * stop_one_cpu().
2250 * 2) stopper starts to run (implicitly forcing the migrated thread
2251 * off the CPU)
2252 * 3) it checks whether the migrated task is still in the wrong runqueue.
2253 * 4) if it's in the wrong runqueue then the migration thread removes
2254 * it and puts it into the right queue.
2255 * 5) stopper completes and stop_one_cpu() returns and the migration
2256 * is done.
2257 */
2258
2259/*
2260 * move_queued_task - move a queued task to new rq.
2261 *
2262 * Returns (locked) new rq. Old rq's lock is released.
2263 */
8a8c69c3
PZ
2264static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2265 struct task_struct *p, int new_cpu)
5cc389bc 2266{
5cb9eaa3 2267 lockdep_assert_rq_held(rq);
5cc389bc 2268
58877d34 2269 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2270 set_task_cpu(p, new_cpu);
8a8c69c3 2271 rq_unlock(rq, rf);
5cc389bc
PZ
2272
2273 rq = cpu_rq(new_cpu);
2274
8a8c69c3 2275 rq_lock(rq, rf);
5cc389bc 2276 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2277 activate_task(rq, p, 0);
5cc389bc
PZ
2278 check_preempt_curr(rq, p, 0);
2279
2280 return rq;
2281}
2282
2283struct migration_arg {
6d337eab
PZ
2284 struct task_struct *task;
2285 int dest_cpu;
2286 struct set_affinity_pending *pending;
2287};
2288
50caf9c1
PZ
2289/*
2290 * @refs: number of wait_for_completion()
2291 * @stop_pending: is @stop_work in use
2292 */
6d337eab
PZ
2293struct set_affinity_pending {
2294 refcount_t refs;
9e81889c 2295 unsigned int stop_pending;
6d337eab
PZ
2296 struct completion done;
2297 struct cpu_stop_work stop_work;
2298 struct migration_arg arg;
5cc389bc
PZ
2299};
2300
2301/*
d1ccc66d 2302 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2303 * this because either it can't run here any more (set_cpus_allowed()
2304 * away from this CPU, or CPU going down), or because we're
2305 * attempting to rebalance this task on exec (sched_exec).
2306 *
2307 * So we race with normal scheduler movements, but that's OK, as long
2308 * as the task is no longer on this CPU.
5cc389bc 2309 */
8a8c69c3
PZ
2310static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2311 struct task_struct *p, int dest_cpu)
5cc389bc 2312{
5cc389bc 2313 /* Affinity changed (again). */
175f0e25 2314 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2315 return rq;
5cc389bc 2316
15ff991e 2317 update_rq_clock(rq);
8a8c69c3 2318 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2319
2320 return rq;
5cc389bc
PZ
2321}
2322
2323/*
2324 * migration_cpu_stop - this will be executed by a highprio stopper thread
2325 * and performs thread migration by bumping thread off CPU then
2326 * 'pushing' onto another runqueue.
2327 */
2328static int migration_cpu_stop(void *data)
2329{
2330 struct migration_arg *arg = data;
c20cf065 2331 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2332 struct task_struct *p = arg->task;
2333 struct rq *rq = this_rq();
6d337eab 2334 bool complete = false;
8a8c69c3 2335 struct rq_flags rf;
5cc389bc
PZ
2336
2337 /*
d1ccc66d
IM
2338 * The original target CPU might have gone down and we might
2339 * be on another CPU but it doesn't matter.
5cc389bc 2340 */
6d337eab 2341 local_irq_save(rf.flags);
5cc389bc
PZ
2342 /*
2343 * We need to explicitly wake pending tasks before running
3bd37062 2344 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2345 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2346 */
a1488664 2347 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2348
2349 raw_spin_lock(&p->pi_lock);
8a8c69c3 2350 rq_lock(rq, &rf);
6d337eab 2351
e140749c
VS
2352 /*
2353 * If we were passed a pending, then ->stop_pending was set, thus
2354 * p->migration_pending must have remained stable.
2355 */
2356 WARN_ON_ONCE(pending && pending != p->migration_pending);
2357
5e16bbc2
PZ
2358 /*
2359 * If task_rq(p) != rq, it cannot be migrated here, because we're
2360 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2361 * we're holding p->pi_lock.
2362 */
bf89a304 2363 if (task_rq(p) == rq) {
6d337eab
PZ
2364 if (is_migration_disabled(p))
2365 goto out;
2366
2367 if (pending) {
e140749c 2368 p->migration_pending = NULL;
6d337eab 2369 complete = true;
6d337eab 2370
3f1bc119
PZ
2371 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2372 goto out;
3f1bc119 2373 }
6d337eab 2374
bf89a304 2375 if (task_on_rq_queued(p))
475ea6c6 2376 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2377 else
475ea6c6 2378 p->wake_cpu = arg->dest_cpu;
6d337eab 2379
3f1bc119
PZ
2380 /*
2381 * XXX __migrate_task() can fail, at which point we might end
2382 * up running on a dodgy CPU, AFAICT this can only happen
2383 * during CPU hotplug, at which point we'll get pushed out
2384 * anyway, so it's probably not a big deal.
2385 */
2386
c20cf065 2387 } else if (pending) {
6d337eab
PZ
2388 /*
2389 * This happens when we get migrated between migrate_enable()'s
2390 * preempt_enable() and scheduling the stopper task. At that
2391 * point we're a regular task again and not current anymore.
2392 *
2393 * A !PREEMPT kernel has a giant hole here, which makes it far
2394 * more likely.
2395 */
2396
d707faa6
VS
2397 /*
2398 * The task moved before the stopper got to run. We're holding
2399 * ->pi_lock, so the allowed mask is stable - if it got
2400 * somewhere allowed, we're done.
2401 */
c20cf065 2402 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2403 p->migration_pending = NULL;
d707faa6
VS
2404 complete = true;
2405 goto out;
2406 }
2407
6d337eab
PZ
2408 /*
2409 * When migrate_enable() hits a rq mis-match we can't reliably
2410 * determine is_migration_disabled() and so have to chase after
2411 * it.
2412 */
9e81889c 2413 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2414 task_rq_unlock(rq, p, &rf);
2415 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2416 &pending->arg, &pending->stop_work);
2417 return 0;
bf89a304 2418 }
6d337eab 2419out:
9e81889c
PZ
2420 if (pending)
2421 pending->stop_pending = false;
6d337eab
PZ
2422 task_rq_unlock(rq, p, &rf);
2423
2424 if (complete)
2425 complete_all(&pending->done);
2426
5cc389bc
PZ
2427 return 0;
2428}
2429
a7c81556
PZ
2430int push_cpu_stop(void *arg)
2431{
2432 struct rq *lowest_rq = NULL, *rq = this_rq();
2433 struct task_struct *p = arg;
2434
2435 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2436 raw_spin_rq_lock(rq);
a7c81556
PZ
2437
2438 if (task_rq(p) != rq)
2439 goto out_unlock;
2440
2441 if (is_migration_disabled(p)) {
2442 p->migration_flags |= MDF_PUSH;
2443 goto out_unlock;
2444 }
2445
2446 p->migration_flags &= ~MDF_PUSH;
2447
2448 if (p->sched_class->find_lock_rq)
2449 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2450
a7c81556
PZ
2451 if (!lowest_rq)
2452 goto out_unlock;
2453
2454 // XXX validate p is still the highest prio task
2455 if (task_rq(p) == rq) {
2456 deactivate_task(rq, p, 0);
2457 set_task_cpu(p, lowest_rq->cpu);
2458 activate_task(lowest_rq, p, 0);
2459 resched_curr(lowest_rq);
2460 }
2461
2462 double_unlock_balance(rq, lowest_rq);
2463
2464out_unlock:
2465 rq->push_busy = false;
5cb9eaa3 2466 raw_spin_rq_unlock(rq);
a7c81556
PZ
2467 raw_spin_unlock_irq(&p->pi_lock);
2468
2469 put_task_struct(p);
5cc389bc
PZ
2470 return 0;
2471}
2472
c5b28038
PZ
2473/*
2474 * sched_class::set_cpus_allowed must do the below, but is not required to
2475 * actually call this function.
2476 */
9cfc3e18 2477void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2478{
af449901
PZ
2479 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2480 p->cpus_ptr = new_mask;
2481 return;
2482 }
2483
3bd37062 2484 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2485 p->nr_cpus_allowed = cpumask_weight(new_mask);
2486}
2487
9cfc3e18
PZ
2488static void
2489__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2490{
6c37067e
PZ
2491 struct rq *rq = task_rq(p);
2492 bool queued, running;
2493
af449901
PZ
2494 /*
2495 * This here violates the locking rules for affinity, since we're only
2496 * supposed to change these variables while holding both rq->lock and
2497 * p->pi_lock.
2498 *
2499 * HOWEVER, it magically works, because ttwu() is the only code that
2500 * accesses these variables under p->pi_lock and only does so after
2501 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2502 * before finish_task().
2503 *
2504 * XXX do further audits, this smells like something putrid.
2505 */
2506 if (flags & SCA_MIGRATE_DISABLE)
2507 SCHED_WARN_ON(!p->on_cpu);
2508 else
2509 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2510
2511 queued = task_on_rq_queued(p);
2512 running = task_current(rq, p);
2513
2514 if (queued) {
2515 /*
2516 * Because __kthread_bind() calls this on blocked tasks without
2517 * holding rq->lock.
2518 */
5cb9eaa3 2519 lockdep_assert_rq_held(rq);
7a57f32a 2520 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2521 }
2522 if (running)
2523 put_prev_task(rq, p);
2524
9cfc3e18 2525 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2526
6c37067e 2527 if (queued)
7134b3e9 2528 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2529 if (running)
03b7fad1 2530 set_next_task(rq, p);
c5b28038
PZ
2531}
2532
9cfc3e18
PZ
2533void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2534{
2535 __do_set_cpus_allowed(p, new_mask, 0);
2536}
2537
b90ca8ba
WD
2538int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2539 int node)
2540{
2541 if (!src->user_cpus_ptr)
2542 return 0;
2543
2544 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2545 if (!dst->user_cpus_ptr)
2546 return -ENOMEM;
2547
2548 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2549 return 0;
2550}
2551
07ec77a1
WD
2552static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2553{
2554 struct cpumask *user_mask = NULL;
2555
2556 swap(p->user_cpus_ptr, user_mask);
2557
2558 return user_mask;
2559}
2560
b90ca8ba
WD
2561void release_user_cpus_ptr(struct task_struct *p)
2562{
07ec77a1 2563 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2564}
2565
6d337eab 2566/*
c777d847
VS
2567 * This function is wildly self concurrent; here be dragons.
2568 *
2569 *
2570 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2571 * designated task is enqueued on an allowed CPU. If that task is currently
2572 * running, we have to kick it out using the CPU stopper.
2573 *
2574 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2575 * Consider:
2576 *
2577 * Initial conditions: P0->cpus_mask = [0, 1]
2578 *
2579 * P0@CPU0 P1
2580 *
2581 * migrate_disable();
2582 * <preempted>
2583 * set_cpus_allowed_ptr(P0, [1]);
2584 *
2585 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2586 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2587 * This means we need the following scheme:
2588 *
2589 * P0@CPU0 P1
2590 *
2591 * migrate_disable();
2592 * <preempted>
2593 * set_cpus_allowed_ptr(P0, [1]);
2594 * <blocks>
2595 * <resumes>
2596 * migrate_enable();
2597 * __set_cpus_allowed_ptr();
2598 * <wakes local stopper>
2599 * `--> <woken on migration completion>
2600 *
2601 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2602 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2603 * task p are serialized by p->pi_lock, which we can leverage: the one that
2604 * should come into effect at the end of the Migrate-Disable region is the last
2605 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2606 * but we still need to properly signal those waiting tasks at the appropriate
2607 * moment.
2608 *
2609 * This is implemented using struct set_affinity_pending. The first
2610 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2611 * setup an instance of that struct and install it on the targeted task_struct.
2612 * Any and all further callers will reuse that instance. Those then wait for
2613 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2614 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2615 *
2616 *
2617 * (1) In the cases covered above. There is one more where the completion is
2618 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2619 * occurs after the stopper bailed out due to the targeted task still being
2620 * Migrate-Disable. Consider:
c777d847
VS
2621 *
2622 * Initial conditions: P0->cpus_mask = [0, 1]
2623 *
e140749c
VS
2624 * CPU0 P1 P2
2625 * <P0>
2626 * migrate_disable();
2627 * <preempted>
c777d847
VS
2628 * set_cpus_allowed_ptr(P0, [1]);
2629 * <blocks>
e140749c
VS
2630 * <migration/0>
2631 * migration_cpu_stop()
2632 * is_migration_disabled()
2633 * <bails>
c777d847
VS
2634 * set_cpus_allowed_ptr(P0, [0, 1]);
2635 * <signal completion>
2636 * <awakes>
2637 *
2638 * Note that the above is safe vs a concurrent migrate_enable(), as any
2639 * pending affinity completion is preceded by an uninstallation of
2640 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2641 */
2642static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2643 int dest_cpu, unsigned int flags)
2644{
2645 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2646 bool stop_pending, complete = false;
6d337eab
PZ
2647
2648 /* Can the task run on the task's current CPU? If so, we're done */
2649 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2650 struct task_struct *push_task = NULL;
2651
2652 if ((flags & SCA_MIGRATE_ENABLE) &&
2653 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2654 rq->push_busy = true;
2655 push_task = get_task_struct(p);
2656 }
2657
50caf9c1
PZ
2658 /*
2659 * If there are pending waiters, but no pending stop_work,
2660 * then complete now.
2661 */
6d337eab 2662 pending = p->migration_pending;
50caf9c1 2663 if (pending && !pending->stop_pending) {
6d337eab
PZ
2664 p->migration_pending = NULL;
2665 complete = true;
2666 }
50caf9c1 2667
6d337eab
PZ
2668 task_rq_unlock(rq, p, rf);
2669
a7c81556
PZ
2670 if (push_task) {
2671 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2672 p, &rq->push_work);
2673 }
2674
6d337eab 2675 if (complete)
50caf9c1 2676 complete_all(&pending->done);
6d337eab
PZ
2677
2678 return 0;
2679 }
2680
2681 if (!(flags & SCA_MIGRATE_ENABLE)) {
2682 /* serialized by p->pi_lock */
2683 if (!p->migration_pending) {
c777d847 2684 /* Install the request */
6d337eab
PZ
2685 refcount_set(&my_pending.refs, 1);
2686 init_completion(&my_pending.done);
8a6edb52
PZ
2687 my_pending.arg = (struct migration_arg) {
2688 .task = p,
475ea6c6 2689 .dest_cpu = dest_cpu,
8a6edb52
PZ
2690 .pending = &my_pending,
2691 };
2692
6d337eab
PZ
2693 p->migration_pending = &my_pending;
2694 } else {
2695 pending = p->migration_pending;
2696 refcount_inc(&pending->refs);
475ea6c6
VS
2697 /*
2698 * Affinity has changed, but we've already installed a
2699 * pending. migration_cpu_stop() *must* see this, else
2700 * we risk a completion of the pending despite having a
2701 * task on a disallowed CPU.
2702 *
2703 * Serialized by p->pi_lock, so this is safe.
2704 */
2705 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2706 }
2707 }
2708 pending = p->migration_pending;
2709 /*
2710 * - !MIGRATE_ENABLE:
2711 * we'll have installed a pending if there wasn't one already.
2712 *
2713 * - MIGRATE_ENABLE:
2714 * we're here because the current CPU isn't matching anymore,
2715 * the only way that can happen is because of a concurrent
2716 * set_cpus_allowed_ptr() call, which should then still be
2717 * pending completion.
2718 *
2719 * Either way, we really should have a @pending here.
2720 */
2721 if (WARN_ON_ONCE(!pending)) {
2722 task_rq_unlock(rq, p, rf);
2723 return -EINVAL;
2724 }
2725
2f064a59 2726 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2727 /*
58b1a450
PZ
2728 * MIGRATE_ENABLE gets here because 'p == current', but for
2729 * anything else we cannot do is_migration_disabled(), punt
2730 * and have the stopper function handle it all race-free.
c777d847 2731 */
9e81889c
PZ
2732 stop_pending = pending->stop_pending;
2733 if (!stop_pending)
2734 pending->stop_pending = true;
58b1a450 2735
58b1a450
PZ
2736 if (flags & SCA_MIGRATE_ENABLE)
2737 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2738
6d337eab 2739 task_rq_unlock(rq, p, rf);
8a6edb52 2740
9e81889c
PZ
2741 if (!stop_pending) {
2742 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2743 &pending->arg, &pending->stop_work);
2744 }
6d337eab 2745
58b1a450
PZ
2746 if (flags & SCA_MIGRATE_ENABLE)
2747 return 0;
6d337eab
PZ
2748 } else {
2749
2750 if (!is_migration_disabled(p)) {
2751 if (task_on_rq_queued(p))
2752 rq = move_queued_task(rq, rf, p, dest_cpu);
2753
50caf9c1
PZ
2754 if (!pending->stop_pending) {
2755 p->migration_pending = NULL;
2756 complete = true;
2757 }
6d337eab
PZ
2758 }
2759 task_rq_unlock(rq, p, rf);
2760
6d337eab
PZ
2761 if (complete)
2762 complete_all(&pending->done);
2763 }
2764
2765 wait_for_completion(&pending->done);
2766
2767 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2768 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2769
c777d847
VS
2770 /*
2771 * Block the original owner of &pending until all subsequent callers
2772 * have seen the completion and decremented the refcount
2773 */
6d337eab
PZ
2774 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2775
50caf9c1
PZ
2776 /* ARGH */
2777 WARN_ON_ONCE(my_pending.stop_pending);
2778
6d337eab
PZ
2779 return 0;
2780}
2781
5cc389bc 2782/*
07ec77a1 2783 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2784 */
07ec77a1
WD
2785static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2786 const struct cpumask *new_mask,
2787 u32 flags,
2788 struct rq *rq,
2789 struct rq_flags *rf)
2790 __releases(rq->lock)
2791 __releases(p->pi_lock)
5cc389bc 2792{
234a503e 2793 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2794 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2795 bool kthread = p->flags & PF_KTHREAD;
07ec77a1 2796 struct cpumask *user_mask = NULL;
5cc389bc
PZ
2797 unsigned int dest_cpu;
2798 int ret = 0;
2799
a499c3ea 2800 update_rq_clock(rq);
5cc389bc 2801
234a503e 2802 if (kthread || is_migration_disabled(p)) {
e9d867a6 2803 /*
741ba80f
PZ
2804 * Kernel threads are allowed on online && !active CPUs,
2805 * however, during cpu-hot-unplug, even these might get pushed
2806 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2807 *
2808 * Specifically, migration_disabled() tasks must not fail the
2809 * cpumask_any_and_distribute() pick below, esp. so on
2810 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2811 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2812 */
2813 cpu_valid_mask = cpu_online_mask;
2814 }
2815
234a503e
WD
2816 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2817 ret = -EINVAL;
2818 goto out;
2819 }
2820
25834c73
PZ
2821 /*
2822 * Must re-check here, to close a race against __kthread_bind(),
2823 * sched_setaffinity() is not guaranteed to observe the flag.
2824 */
9cfc3e18 2825 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2826 ret = -EINVAL;
2827 goto out;
2828 }
2829
885b3ba4
VS
2830 if (!(flags & SCA_MIGRATE_ENABLE)) {
2831 if (cpumask_equal(&p->cpus_mask, new_mask))
2832 goto out;
2833
2834 if (WARN_ON_ONCE(p == current &&
2835 is_migration_disabled(p) &&
2836 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2837 ret = -EBUSY;
2838 goto out;
2839 }
2840 }
5cc389bc 2841
46a87b38
PT
2842 /*
2843 * Picking a ~random cpu helps in cases where we are changing affinity
2844 * for groups of tasks (ie. cpuset), so that load balancing is not
2845 * immediately required to distribute the tasks within their new mask.
2846 */
2847 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2848 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2849 ret = -EINVAL;
2850 goto out;
2851 }
2852
9cfc3e18 2853 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2854
07ec77a1
WD
2855 if (flags & SCA_USER)
2856 user_mask = clear_user_cpus_ptr(p);
2857
2858 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2859
2860 kfree(user_mask);
2861
2862 return ret;
5cc389bc 2863
5cc389bc 2864out:
07ec77a1 2865 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
2866
2867 return ret;
2868}
25834c73 2869
07ec77a1
WD
2870/*
2871 * Change a given task's CPU affinity. Migrate the thread to a
2872 * proper CPU and schedule it away if the CPU it's executing on
2873 * is removed from the allowed bitmask.
2874 *
2875 * NOTE: the caller must have a valid reference to the task, the
2876 * task must not exit() & deallocate itself prematurely. The
2877 * call is not atomic; no spinlocks may be held.
2878 */
2879static int __set_cpus_allowed_ptr(struct task_struct *p,
2880 const struct cpumask *new_mask, u32 flags)
2881{
2882 struct rq_flags rf;
2883 struct rq *rq;
2884
2885 rq = task_rq_lock(p, &rf);
2886 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2887}
2888
25834c73
PZ
2889int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2890{
9cfc3e18 2891 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2892}
5cc389bc
PZ
2893EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2894
07ec77a1
WD
2895/*
2896 * Change a given task's CPU affinity to the intersection of its current
2897 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2898 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2899 * If the resulting mask is empty, leave the affinity unchanged and return
2900 * -EINVAL.
2901 */
2902static int restrict_cpus_allowed_ptr(struct task_struct *p,
2903 struct cpumask *new_mask,
2904 const struct cpumask *subset_mask)
2905{
2906 struct cpumask *user_mask = NULL;
2907 struct rq_flags rf;
2908 struct rq *rq;
2909 int err;
2910
2911 if (!p->user_cpus_ptr) {
2912 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2913 if (!user_mask)
2914 return -ENOMEM;
2915 }
2916
2917 rq = task_rq_lock(p, &rf);
2918
2919 /*
2920 * Forcefully restricting the affinity of a deadline task is
2921 * likely to cause problems, so fail and noisily override the
2922 * mask entirely.
2923 */
2924 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2925 err = -EPERM;
2926 goto err_unlock;
2927 }
2928
2929 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2930 err = -EINVAL;
2931 goto err_unlock;
2932 }
2933
2934 /*
2935 * We're about to butcher the task affinity, so keep track of what
2936 * the user asked for in case we're able to restore it later on.
2937 */
2938 if (user_mask) {
2939 cpumask_copy(user_mask, p->cpus_ptr);
2940 p->user_cpus_ptr = user_mask;
2941 }
2942
2943 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2944
2945err_unlock:
2946 task_rq_unlock(rq, p, &rf);
2947 kfree(user_mask);
2948 return err;
2949}
2950
2951/*
2952 * Restrict the CPU affinity of task @p so that it is a subset of
2953 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2954 * old affinity mask. If the resulting mask is empty, we warn and walk
2955 * up the cpuset hierarchy until we find a suitable mask.
2956 */
2957void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2958{
2959 cpumask_var_t new_mask;
2960 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2961
2962 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2963
2964 /*
2965 * __migrate_task() can fail silently in the face of concurrent
2966 * offlining of the chosen destination CPU, so take the hotplug
2967 * lock to ensure that the migration succeeds.
2968 */
2969 cpus_read_lock();
2970 if (!cpumask_available(new_mask))
2971 goto out_set_mask;
2972
2973 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2974 goto out_free_mask;
2975
2976 /*
2977 * We failed to find a valid subset of the affinity mask for the
2978 * task, so override it based on its cpuset hierarchy.
2979 */
2980 cpuset_cpus_allowed(p, new_mask);
2981 override_mask = new_mask;
2982
2983out_set_mask:
2984 if (printk_ratelimit()) {
2985 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2986 task_pid_nr(p), p->comm,
2987 cpumask_pr_args(override_mask));
2988 }
2989
2990 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2991out_free_mask:
2992 cpus_read_unlock();
2993 free_cpumask_var(new_mask);
2994}
2995
2996static int
2997__sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2998
2999/*
3000 * Restore the affinity of a task @p which was previously restricted by a
3001 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3002 * @p->user_cpus_ptr.
3003 *
3004 * It is the caller's responsibility to serialise this with any calls to
3005 * force_compatible_cpus_allowed_ptr(@p).
3006 */
3007void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3008{
3009 struct cpumask *user_mask = p->user_cpus_ptr;
3010 unsigned long flags;
3011
3012 /*
3013 * Try to restore the old affinity mask. If this fails, then
3014 * we free the mask explicitly to avoid it being inherited across
3015 * a subsequent fork().
3016 */
3017 if (!user_mask || !__sched_setaffinity(p, user_mask))
3018 return;
3019
3020 raw_spin_lock_irqsave(&p->pi_lock, flags);
3021 user_mask = clear_user_cpus_ptr(p);
3022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3023
3024 kfree(user_mask);
3025}
3026
dd41f596 3027void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 3028{
e2912009 3029#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
3030 unsigned int state = READ_ONCE(p->__state);
3031
e2912009
PZ
3032 /*
3033 * We should never call set_task_cpu() on a blocked task,
3034 * ttwu() will sort out the placement.
3035 */
2f064a59 3036 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 3037
3ea94de1
JP
3038 /*
3039 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3040 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3041 * time relying on p->on_rq.
3042 */
2f064a59 3043 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3044 p->sched_class == &fair_sched_class &&
3045 (p->on_rq && !task_on_rq_migrating(p)));
3046
0122ec5b 3047#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3048 /*
3049 * The caller should hold either p->pi_lock or rq->lock, when changing
3050 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3051 *
3052 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3053 * see task_group().
6c6c54e1
PZ
3054 *
3055 * Furthermore, all task_rq users should acquire both locks, see
3056 * task_rq_lock().
3057 */
0122ec5b 3058 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3059 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3060#endif
4ff9083b
PZ
3061 /*
3062 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3063 */
3064 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3065
3066 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3067#endif
3068
de1d7286 3069 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3070
0c69774e 3071 if (task_cpu(p) != new_cpu) {
0a74bef8 3072 if (p->sched_class->migrate_task_rq)
1327237a 3073 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3074 p->se.nr_migrations++;
d7822b1e 3075 rseq_migrate(p);
ff303e66 3076 perf_event_task_migrate(p);
0c69774e 3077 }
dd41f596
IM
3078
3079 __set_task_cpu(p, new_cpu);
c65cc870
IM
3080}
3081
0ad4e3df 3082#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3083static void __migrate_swap_task(struct task_struct *p, int cpu)
3084{
da0c1e65 3085 if (task_on_rq_queued(p)) {
ac66f547 3086 struct rq *src_rq, *dst_rq;
8a8c69c3 3087 struct rq_flags srf, drf;
ac66f547
PZ
3088
3089 src_rq = task_rq(p);
3090 dst_rq = cpu_rq(cpu);
3091
8a8c69c3
PZ
3092 rq_pin_lock(src_rq, &srf);
3093 rq_pin_lock(dst_rq, &drf);
3094
ac66f547
PZ
3095 deactivate_task(src_rq, p, 0);
3096 set_task_cpu(p, cpu);
3097 activate_task(dst_rq, p, 0);
3098 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3099
3100 rq_unpin_lock(dst_rq, &drf);
3101 rq_unpin_lock(src_rq, &srf);
3102
ac66f547
PZ
3103 } else {
3104 /*
3105 * Task isn't running anymore; make it appear like we migrated
3106 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3107 * previous CPU our target instead of where it really is.
ac66f547
PZ
3108 */
3109 p->wake_cpu = cpu;
3110 }
3111}
3112
3113struct migration_swap_arg {
3114 struct task_struct *src_task, *dst_task;
3115 int src_cpu, dst_cpu;
3116};
3117
3118static int migrate_swap_stop(void *data)
3119{
3120 struct migration_swap_arg *arg = data;
3121 struct rq *src_rq, *dst_rq;
3122 int ret = -EAGAIN;
3123
62694cd5
PZ
3124 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3125 return -EAGAIN;
3126
ac66f547
PZ
3127 src_rq = cpu_rq(arg->src_cpu);
3128 dst_rq = cpu_rq(arg->dst_cpu);
3129
74602315
PZ
3130 double_raw_lock(&arg->src_task->pi_lock,
3131 &arg->dst_task->pi_lock);
ac66f547 3132 double_rq_lock(src_rq, dst_rq);
62694cd5 3133
ac66f547
PZ
3134 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3135 goto unlock;
3136
3137 if (task_cpu(arg->src_task) != arg->src_cpu)
3138 goto unlock;
3139
3bd37062 3140 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3141 goto unlock;
3142
3bd37062 3143 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3144 goto unlock;
3145
3146 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3147 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3148
3149 ret = 0;
3150
3151unlock:
3152 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3153 raw_spin_unlock(&arg->dst_task->pi_lock);
3154 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3155
3156 return ret;
3157}
3158
3159/*
3160 * Cross migrate two tasks
3161 */
0ad4e3df
SD
3162int migrate_swap(struct task_struct *cur, struct task_struct *p,
3163 int target_cpu, int curr_cpu)
ac66f547
PZ
3164{
3165 struct migration_swap_arg arg;
3166 int ret = -EINVAL;
3167
ac66f547
PZ
3168 arg = (struct migration_swap_arg){
3169 .src_task = cur,
0ad4e3df 3170 .src_cpu = curr_cpu,
ac66f547 3171 .dst_task = p,
0ad4e3df 3172 .dst_cpu = target_cpu,
ac66f547
PZ
3173 };
3174
3175 if (arg.src_cpu == arg.dst_cpu)
3176 goto out;
3177
6acce3ef
PZ
3178 /*
3179 * These three tests are all lockless; this is OK since all of them
3180 * will be re-checked with proper locks held further down the line.
3181 */
ac66f547
PZ
3182 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3183 goto out;
3184
3bd37062 3185 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3186 goto out;
3187
3bd37062 3188 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3189 goto out;
3190
286549dc 3191 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3192 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3193
3194out:
ac66f547
PZ
3195 return ret;
3196}
0ad4e3df 3197#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3198
1da177e4
LT
3199/*
3200 * wait_task_inactive - wait for a thread to unschedule.
3201 *
85ba2d86
RM
3202 * If @match_state is nonzero, it's the @p->state value just checked and
3203 * not expected to change. If it changes, i.e. @p might have woken up,
3204 * then return zero. When we succeed in waiting for @p to be off its CPU,
3205 * we return a positive number (its total switch count). If a second call
3206 * a short while later returns the same number, the caller can be sure that
3207 * @p has remained unscheduled the whole time.
3208 *
1da177e4
LT
3209 * The caller must ensure that the task *will* unschedule sometime soon,
3210 * else this function might spin for a *long* time. This function can't
3211 * be called with interrupts off, or it may introduce deadlock with
3212 * smp_call_function() if an IPI is sent by the same process we are
3213 * waiting to become inactive.
3214 */
2f064a59 3215unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3216{
da0c1e65 3217 int running, queued;
eb580751 3218 struct rq_flags rf;
85ba2d86 3219 unsigned long ncsw;
70b97a7f 3220 struct rq *rq;
1da177e4 3221
3a5c359a
AK
3222 for (;;) {
3223 /*
3224 * We do the initial early heuristics without holding
3225 * any task-queue locks at all. We'll only try to get
3226 * the runqueue lock when things look like they will
3227 * work out!
3228 */
3229 rq = task_rq(p);
fa490cfd 3230
3a5c359a
AK
3231 /*
3232 * If the task is actively running on another CPU
3233 * still, just relax and busy-wait without holding
3234 * any locks.
3235 *
3236 * NOTE! Since we don't hold any locks, it's not
3237 * even sure that "rq" stays as the right runqueue!
3238 * But we don't care, since "task_running()" will
3239 * return false if the runqueue has changed and p
3240 * is actually now running somewhere else!
3241 */
85ba2d86 3242 while (task_running(rq, p)) {
2f064a59 3243 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
85ba2d86 3244 return 0;
3a5c359a 3245 cpu_relax();
85ba2d86 3246 }
fa490cfd 3247
3a5c359a
AK
3248 /*
3249 * Ok, time to look more closely! We need the rq
3250 * lock now, to be *sure*. If we're wrong, we'll
3251 * just go back and repeat.
3252 */
eb580751 3253 rq = task_rq_lock(p, &rf);
27a9da65 3254 trace_sched_wait_task(p);
3a5c359a 3255 running = task_running(rq, p);
da0c1e65 3256 queued = task_on_rq_queued(p);
85ba2d86 3257 ncsw = 0;
2f064a59 3258 if (!match_state || READ_ONCE(p->__state) == match_state)
93dcf55f 3259 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3260 task_rq_unlock(rq, p, &rf);
fa490cfd 3261
85ba2d86
RM
3262 /*
3263 * If it changed from the expected state, bail out now.
3264 */
3265 if (unlikely(!ncsw))
3266 break;
3267
3a5c359a
AK
3268 /*
3269 * Was it really running after all now that we
3270 * checked with the proper locks actually held?
3271 *
3272 * Oops. Go back and try again..
3273 */
3274 if (unlikely(running)) {
3275 cpu_relax();
3276 continue;
3277 }
fa490cfd 3278
3a5c359a
AK
3279 /*
3280 * It's not enough that it's not actively running,
3281 * it must be off the runqueue _entirely_, and not
3282 * preempted!
3283 *
80dd99b3 3284 * So if it was still runnable (but just not actively
3a5c359a
AK
3285 * running right now), it's preempted, and we should
3286 * yield - it could be a while.
3287 */
da0c1e65 3288 if (unlikely(queued)) {
8b0e1953 3289 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3290
3291 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3292 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3293 continue;
3294 }
fa490cfd 3295
3a5c359a
AK
3296 /*
3297 * Ahh, all good. It wasn't running, and it wasn't
3298 * runnable, which means that it will never become
3299 * running in the future either. We're all done!
3300 */
3301 break;
3302 }
85ba2d86
RM
3303
3304 return ncsw;
1da177e4
LT
3305}
3306
3307/***
3308 * kick_process - kick a running thread to enter/exit the kernel
3309 * @p: the to-be-kicked thread
3310 *
3311 * Cause a process which is running on another CPU to enter
3312 * kernel-mode, without any delay. (to get signals handled.)
3313 *
25985edc 3314 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3315 * because all it wants to ensure is that the remote task enters
3316 * the kernel. If the IPI races and the task has been migrated
3317 * to another CPU then no harm is done and the purpose has been
3318 * achieved as well.
3319 */
36c8b586 3320void kick_process(struct task_struct *p)
1da177e4
LT
3321{
3322 int cpu;
3323
3324 preempt_disable();
3325 cpu = task_cpu(p);
3326 if ((cpu != smp_processor_id()) && task_curr(p))
3327 smp_send_reschedule(cpu);
3328 preempt_enable();
3329}
b43e3521 3330EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3331
30da688e 3332/*
3bd37062 3333 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3334 *
3335 * A few notes on cpu_active vs cpu_online:
3336 *
3337 * - cpu_active must be a subset of cpu_online
3338 *
97fb7a0a 3339 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3340 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3341 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3342 * see it.
3343 *
d1ccc66d 3344 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3345 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3346 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3347 * off.
3348 *
3349 * This means that fallback selection must not select !active CPUs.
3350 * And can assume that any active CPU must be online. Conversely
3351 * select_task_rq() below may allow selection of !active CPUs in order
3352 * to satisfy the above rules.
30da688e 3353 */
5da9a0fb
PZ
3354static int select_fallback_rq(int cpu, struct task_struct *p)
3355{
aa00d89c
TC
3356 int nid = cpu_to_node(cpu);
3357 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3358 enum { cpuset, possible, fail } state = cpuset;
3359 int dest_cpu;
5da9a0fb 3360
aa00d89c 3361 /*
d1ccc66d
IM
3362 * If the node that the CPU is on has been offlined, cpu_to_node()
3363 * will return -1. There is no CPU on the node, and we should
3364 * select the CPU on the other node.
aa00d89c
TC
3365 */
3366 if (nid != -1) {
3367 nodemask = cpumask_of_node(nid);
3368
3369 /* Look for allowed, online CPU in same node. */
3370 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3371 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3372 return dest_cpu;
3373 }
2baab4e9 3374 }
5da9a0fb 3375
2baab4e9
PZ
3376 for (;;) {
3377 /* Any allowed, online CPU? */
3bd37062 3378 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3379 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3380 continue;
175f0e25 3381
2baab4e9
PZ
3382 goto out;
3383 }
5da9a0fb 3384
e73e85f0 3385 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3386 switch (state) {
3387 case cpuset:
97c0054d 3388 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3389 state = possible;
3390 break;
3391 }
df561f66 3392 fallthrough;
2baab4e9 3393 case possible:
af449901
PZ
3394 /*
3395 * XXX When called from select_task_rq() we only
3396 * hold p->pi_lock and again violate locking order.
3397 *
3398 * More yuck to audit.
3399 */
9ae606bc 3400 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3401 state = fail;
3402 break;
2baab4e9
PZ
3403 case fail:
3404 BUG();
3405 break;
3406 }
3407 }
3408
3409out:
3410 if (state != cpuset) {
3411 /*
3412 * Don't tell them about moving exiting tasks or
3413 * kernel threads (both mm NULL), since they never
3414 * leave kernel.
3415 */
3416 if (p->mm && printk_ratelimit()) {
aac74dc4 3417 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3418 task_pid_nr(p), p->comm, cpu);
3419 }
5da9a0fb
PZ
3420 }
3421
3422 return dest_cpu;
3423}
3424
e2912009 3425/*
3bd37062 3426 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3427 */
970b13ba 3428static inline
3aef1551 3429int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3430{
cbce1a68
PZ
3431 lockdep_assert_held(&p->pi_lock);
3432
af449901 3433 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3434 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3435 else
3bd37062 3436 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3437
3438 /*
3439 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3440 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3441 * CPU.
e2912009
PZ
3442 *
3443 * Since this is common to all placement strategies, this lives here.
3444 *
3445 * [ this allows ->select_task() to simply return task_cpu(p) and
3446 * not worry about this generic constraint ]
3447 */
7af443ee 3448 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3449 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3450
3451 return cpu;
970b13ba 3452}
09a40af5 3453
f5832c19
NP
3454void sched_set_stop_task(int cpu, struct task_struct *stop)
3455{
ded467dc 3456 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3457 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3458 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3459
3460 if (stop) {
3461 /*
3462 * Make it appear like a SCHED_FIFO task, its something
3463 * userspace knows about and won't get confused about.
3464 *
3465 * Also, it will make PI more or less work without too
3466 * much confusion -- but then, stop work should not
3467 * rely on PI working anyway.
3468 */
3469 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3470
3471 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3472
3473 /*
3474 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3475 * adjust the effective priority of a task. As a result,
3476 * rt_mutex_setprio() can trigger (RT) balancing operations,
3477 * which can then trigger wakeups of the stop thread to push
3478 * around the current task.
3479 *
3480 * The stop task itself will never be part of the PI-chain, it
3481 * never blocks, therefore that ->pi_lock recursion is safe.
3482 * Tell lockdep about this by placing the stop->pi_lock in its
3483 * own class.
3484 */
3485 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3486 }
3487
3488 cpu_rq(cpu)->stop = stop;
3489
3490 if (old_stop) {
3491 /*
3492 * Reset it back to a normal scheduling class so that
3493 * it can die in pieces.
3494 */
3495 old_stop->sched_class = &rt_sched_class;
3496 }
3497}
3498
74d862b6 3499#else /* CONFIG_SMP */
25834c73
PZ
3500
3501static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3502 const struct cpumask *new_mask,
3503 u32 flags)
25834c73
PZ
3504{
3505 return set_cpus_allowed_ptr(p, new_mask);
3506}
3507
af449901
PZ
3508static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3509
3015ef4b
TG
3510static inline bool rq_has_pinned_tasks(struct rq *rq)
3511{
3512 return false;
3513}
3514
74d862b6 3515#endif /* !CONFIG_SMP */
970b13ba 3516
d7c01d27 3517static void
b84cb5df 3518ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3519{
4fa8d299 3520 struct rq *rq;
b84cb5df 3521
4fa8d299
JP
3522 if (!schedstat_enabled())
3523 return;
3524
3525 rq = this_rq();
d7c01d27 3526
4fa8d299
JP
3527#ifdef CONFIG_SMP
3528 if (cpu == rq->cpu) {
b85c8b71 3529 __schedstat_inc(rq->ttwu_local);
ceeadb83 3530 __schedstat_inc(p->stats.nr_wakeups_local);
d7c01d27
PZ
3531 } else {
3532 struct sched_domain *sd;
3533
ceeadb83 3534 __schedstat_inc(p->stats.nr_wakeups_remote);
057f3fad 3535 rcu_read_lock();
4fa8d299 3536 for_each_domain(rq->cpu, sd) {
d7c01d27 3537 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3538 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3539 break;
3540 }
3541 }
057f3fad 3542 rcu_read_unlock();
d7c01d27 3543 }
f339b9dc
PZ
3544
3545 if (wake_flags & WF_MIGRATED)
ceeadb83 3546 __schedstat_inc(p->stats.nr_wakeups_migrate);
d7c01d27
PZ
3547#endif /* CONFIG_SMP */
3548
b85c8b71 3549 __schedstat_inc(rq->ttwu_count);
ceeadb83 3550 __schedstat_inc(p->stats.nr_wakeups);
d7c01d27
PZ
3551
3552 if (wake_flags & WF_SYNC)
ceeadb83 3553 __schedstat_inc(p->stats.nr_wakeups_sync);
d7c01d27
PZ
3554}
3555
23f41eeb
PZ
3556/*
3557 * Mark the task runnable and perform wakeup-preemption.
3558 */
e7904a28 3559static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3560 struct rq_flags *rf)
9ed3811a 3561{
9ed3811a 3562 check_preempt_curr(rq, p, wake_flags);
2f064a59 3563 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3564 trace_sched_wakeup(p);
3565
9ed3811a 3566#ifdef CONFIG_SMP
4c9a4bc8
PZ
3567 if (p->sched_class->task_woken) {
3568 /*
b19a888c 3569 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3570 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3571 */
d8ac8971 3572 rq_unpin_lock(rq, rf);
9ed3811a 3573 p->sched_class->task_woken(rq, p);
d8ac8971 3574 rq_repin_lock(rq, rf);
4c9a4bc8 3575 }
9ed3811a 3576
e69c6341 3577 if (rq->idle_stamp) {
78becc27 3578 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3579 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3580
abfafa54
JL
3581 update_avg(&rq->avg_idle, delta);
3582
3583 if (rq->avg_idle > max)
9ed3811a 3584 rq->avg_idle = max;
abfafa54 3585
94aafc3e
PZ
3586 rq->wake_stamp = jiffies;
3587 rq->wake_avg_idle = rq->avg_idle / 2;
3588
9ed3811a
TH
3589 rq->idle_stamp = 0;
3590 }
3591#endif
3592}
3593
c05fbafb 3594static void
e7904a28 3595ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3596 struct rq_flags *rf)
c05fbafb 3597{
77558e4d 3598 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3599
5cb9eaa3 3600 lockdep_assert_rq_held(rq);
cbce1a68 3601
c05fbafb
PZ
3602 if (p->sched_contributes_to_load)
3603 rq->nr_uninterruptible--;
b5179ac7 3604
dbfb089d 3605#ifdef CONFIG_SMP
b5179ac7 3606 if (wake_flags & WF_MIGRATED)
59efa0ba 3607 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3608 else
c05fbafb 3609#endif
ec618b84
PZ
3610 if (p->in_iowait) {
3611 delayacct_blkio_end(p);
3612 atomic_dec(&task_rq(p)->nr_iowait);
3613 }
c05fbafb 3614
1b174a2c 3615 activate_task(rq, p, en_flags);
d8ac8971 3616 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3617}
3618
3619/*
58877d34
PZ
3620 * Consider @p being inside a wait loop:
3621 *
3622 * for (;;) {
3623 * set_current_state(TASK_UNINTERRUPTIBLE);
3624 *
3625 * if (CONDITION)
3626 * break;
3627 *
3628 * schedule();
3629 * }
3630 * __set_current_state(TASK_RUNNING);
3631 *
3632 * between set_current_state() and schedule(). In this case @p is still
3633 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3634 * an atomic manner.
3635 *
3636 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3637 * then schedule() must still happen and p->state can be changed to
3638 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3639 * need to do a full wakeup with enqueue.
3640 *
3641 * Returns: %true when the wakeup is done,
3642 * %false otherwise.
c05fbafb 3643 */
58877d34 3644static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3645{
eb580751 3646 struct rq_flags rf;
c05fbafb
PZ
3647 struct rq *rq;
3648 int ret = 0;
3649
eb580751 3650 rq = __task_rq_lock(p, &rf);
da0c1e65 3651 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3652 /* check_preempt_curr() may use rq clock */
3653 update_rq_clock(rq);
d8ac8971 3654 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3655 ret = 1;
3656 }
eb580751 3657 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3658
3659 return ret;
3660}
3661
317f3941 3662#ifdef CONFIG_SMP
a1488664 3663void sched_ttwu_pending(void *arg)
317f3941 3664{
a1488664 3665 struct llist_node *llist = arg;
317f3941 3666 struct rq *rq = this_rq();
73215849 3667 struct task_struct *p, *t;
d8ac8971 3668 struct rq_flags rf;
317f3941 3669
e3baac47
PZ
3670 if (!llist)
3671 return;
3672
126c2092
PZ
3673 /*
3674 * rq::ttwu_pending racy indication of out-standing wakeups.
3675 * Races such that false-negatives are possible, since they
3676 * are shorter lived that false-positives would be.
3677 */
3678 WRITE_ONCE(rq->ttwu_pending, 0);
3679
8a8c69c3 3680 rq_lock_irqsave(rq, &rf);
77558e4d 3681 update_rq_clock(rq);
317f3941 3682
8c4890d1 3683 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3684 if (WARN_ON_ONCE(p->on_cpu))
3685 smp_cond_load_acquire(&p->on_cpu, !VAL);
3686
3687 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3688 set_task_cpu(p, cpu_of(rq));
3689
73215849 3690 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3691 }
317f3941 3692
8a8c69c3 3693 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3694}
3695
b2a02fc4 3696void send_call_function_single_ipi(int cpu)
317f3941 3697{
b2a02fc4 3698 struct rq *rq = cpu_rq(cpu);
ca38062e 3699
b2a02fc4
PZ
3700 if (!set_nr_if_polling(rq->idle))
3701 arch_send_call_function_single_ipi(cpu);
3702 else
3703 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3704}
3705
2ebb1771
MG
3706/*
3707 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3708 * necessary. The wakee CPU on receipt of the IPI will queue the task
3709 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3710 * of the wakeup instead of the waker.
3711 */
3712static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3713{
e3baac47
PZ
3714 struct rq *rq = cpu_rq(cpu);
3715
b7e7ade3
PZ
3716 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3717
126c2092 3718 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3719 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3720}
d6aa8f85 3721
f6be8af1
CL
3722void wake_up_if_idle(int cpu)
3723{
3724 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3725 struct rq_flags rf;
f6be8af1 3726
fd7de1e8
AL
3727 rcu_read_lock();
3728
3729 if (!is_idle_task(rcu_dereference(rq->curr)))
3730 goto out;
f6be8af1 3731
8850cb66
PZ
3732 rq_lock_irqsave(rq, &rf);
3733 if (is_idle_task(rq->curr))
3734 resched_curr(rq);
3735 /* Else CPU is not idle, do nothing here: */
3736 rq_unlock_irqrestore(rq, &rf);
fd7de1e8
AL
3737
3738out:
3739 rcu_read_unlock();
f6be8af1
CL
3740}
3741
39be3501 3742bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623 3743{
42dc938a
VD
3744 if (this_cpu == that_cpu)
3745 return true;
3746
518cd623
PZ
3747 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3748}
c6e7bd7a 3749
2ebb1771
MG
3750static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3751{
5ba2ffba
PZ
3752 /*
3753 * Do not complicate things with the async wake_list while the CPU is
3754 * in hotplug state.
3755 */
3756 if (!cpu_active(cpu))
3757 return false;
3758
2ebb1771
MG
3759 /*
3760 * If the CPU does not share cache, then queue the task on the
3761 * remote rqs wakelist to avoid accessing remote data.
3762 */
3763 if (!cpus_share_cache(smp_processor_id(), cpu))
3764 return true;
3765
3766 /*
3767 * If the task is descheduling and the only running task on the
3768 * CPU then use the wakelist to offload the task activation to
3769 * the soon-to-be-idle CPU as the current CPU is likely busy.
3770 * nr_running is checked to avoid unnecessary task stacking.
3771 */
739f70b4 3772 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3773 return true;
3774
3775 return false;
3776}
3777
3778static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3779{
2ebb1771 3780 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3781 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3782 return false;
3783
c6e7bd7a 3784 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3785 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3786 return true;
3787 }
3788
3789 return false;
3790}
58877d34
PZ
3791
3792#else /* !CONFIG_SMP */
3793
3794static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3795{
3796 return false;
3797}
3798
d6aa8f85 3799#endif /* CONFIG_SMP */
317f3941 3800
b5179ac7 3801static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3802{
3803 struct rq *rq = cpu_rq(cpu);
d8ac8971 3804 struct rq_flags rf;
c05fbafb 3805
2ebb1771 3806 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3807 return;
317f3941 3808
8a8c69c3 3809 rq_lock(rq, &rf);
77558e4d 3810 update_rq_clock(rq);
d8ac8971 3811 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3812 rq_unlock(rq, &rf);
9ed3811a
TH
3813}
3814
43295d73
TG
3815/*
3816 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3817 *
3818 * The caller holds p::pi_lock if p != current or has preemption
3819 * disabled when p == current.
5f220be2
TG
3820 *
3821 * The rules of PREEMPT_RT saved_state:
3822 *
3823 * The related locking code always holds p::pi_lock when updating
3824 * p::saved_state, which means the code is fully serialized in both cases.
3825 *
3826 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3827 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
3828 */
3829static __always_inline
3830bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3831{
5f220be2
TG
3832 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3833 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3834 state != TASK_RTLOCK_WAIT);
3835 }
3836
43295d73
TG
3837 if (READ_ONCE(p->__state) & state) {
3838 *success = 1;
3839 return true;
3840 }
5f220be2
TG
3841
3842#ifdef CONFIG_PREEMPT_RT
3843 /*
3844 * Saved state preserves the task state across blocking on
3845 * an RT lock. If the state matches, set p::saved_state to
3846 * TASK_RUNNING, but do not wake the task because it waits
3847 * for a lock wakeup. Also indicate success because from
3848 * the regular waker's point of view this has succeeded.
3849 *
3850 * After acquiring the lock the task will restore p::__state
3851 * from p::saved_state which ensures that the regular
3852 * wakeup is not lost. The restore will also set
3853 * p::saved_state to TASK_RUNNING so any further tests will
3854 * not result in false positives vs. @success
3855 */
3856 if (p->saved_state & state) {
3857 p->saved_state = TASK_RUNNING;
3858 *success = 1;
3859 }
3860#endif
43295d73
TG
3861 return false;
3862}
3863
8643cda5
PZ
3864/*
3865 * Notes on Program-Order guarantees on SMP systems.
3866 *
3867 * MIGRATION
3868 *
3869 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3871 * execution on its new CPU [c1].
8643cda5
PZ
3872 *
3873 * For migration (of runnable tasks) this is provided by the following means:
3874 *
3875 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3876 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3877 * rq(c1)->lock (if not at the same time, then in that order).
3878 * C) LOCK of the rq(c1)->lock scheduling in task
3879 *
7696f991 3880 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3881 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3882 *
3883 * Example:
3884 *
3885 * CPU0 CPU1 CPU2
3886 *
3887 * LOCK rq(0)->lock
3888 * sched-out X
3889 * sched-in Y
3890 * UNLOCK rq(0)->lock
3891 *
3892 * LOCK rq(0)->lock // orders against CPU0
3893 * dequeue X
3894 * UNLOCK rq(0)->lock
3895 *
3896 * LOCK rq(1)->lock
3897 * enqueue X
3898 * UNLOCK rq(1)->lock
3899 *
3900 * LOCK rq(1)->lock // orders against CPU2
3901 * sched-out Z
3902 * sched-in X
3903 * UNLOCK rq(1)->lock
3904 *
3905 *
3906 * BLOCKING -- aka. SLEEP + WAKEUP
3907 *
3908 * For blocking we (obviously) need to provide the same guarantee as for
3909 * migration. However the means are completely different as there is no lock
3910 * chain to provide order. Instead we do:
3911 *
58877d34
PZ
3912 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3913 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3914 *
3915 * Example:
3916 *
3917 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3918 *
3919 * LOCK rq(0)->lock LOCK X->pi_lock
3920 * dequeue X
3921 * sched-out X
3922 * smp_store_release(X->on_cpu, 0);
3923 *
1f03e8d2 3924 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3925 * X->state = WAKING
3926 * set_task_cpu(X,2)
3927 *
3928 * LOCK rq(2)->lock
3929 * enqueue X
3930 * X->state = RUNNING
3931 * UNLOCK rq(2)->lock
3932 *
3933 * LOCK rq(2)->lock // orders against CPU1
3934 * sched-out Z
3935 * sched-in X
3936 * UNLOCK rq(2)->lock
3937 *
3938 * UNLOCK X->pi_lock
3939 * UNLOCK rq(0)->lock
3940 *
3941 *
7696f991
AP
3942 * However, for wakeups there is a second guarantee we must provide, namely we
3943 * must ensure that CONDITION=1 done by the caller can not be reordered with
3944 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3945 */
3946
9ed3811a 3947/**
1da177e4 3948 * try_to_wake_up - wake up a thread
9ed3811a 3949 * @p: the thread to be awakened
1da177e4 3950 * @state: the mask of task states that can be woken
9ed3811a 3951 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3952 *
58877d34
PZ
3953 * Conceptually does:
3954 *
3955 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3956 *
a2250238
PZ
3957 * If the task was not queued/runnable, also place it back on a runqueue.
3958 *
58877d34
PZ
3959 * This function is atomic against schedule() which would dequeue the task.
3960 *
3961 * It issues a full memory barrier before accessing @p->state, see the comment
3962 * with set_current_state().
a2250238 3963 *
58877d34 3964 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3965 *
58877d34
PZ
3966 * Relies on p->pi_lock stabilizing:
3967 * - p->sched_class
3968 * - p->cpus_ptr
3969 * - p->sched_task_group
3970 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3971 *
3972 * Tries really hard to only take one task_rq(p)->lock for performance.
3973 * Takes rq->lock in:
3974 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3975 * - ttwu_queue() -- new rq, for enqueue of the task;
3976 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3977 *
3978 * As a consequence we race really badly with just about everything. See the
3979 * many memory barriers and their comments for details.
7696f991 3980 *
a2250238
PZ
3981 * Return: %true if @p->state changes (an actual wakeup was done),
3982 * %false otherwise.
1da177e4 3983 */
e4a52bcb
PZ
3984static int
3985try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3986{
1da177e4 3987 unsigned long flags;
c05fbafb 3988 int cpu, success = 0;
2398f2c6 3989
e3d85487 3990 preempt_disable();
aacedf26
PZ
3991 if (p == current) {
3992 /*
3993 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3994 * == smp_processor_id()'. Together this means we can special
58877d34 3995 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3996 * without taking any locks.
3997 *
3998 * In particular:
3999 * - we rely on Program-Order guarantees for all the ordering,
4000 * - we're serialized against set_special_state() by virtue of
4001 * it disabling IRQs (this allows not taking ->pi_lock).
4002 */
43295d73 4003 if (!ttwu_state_match(p, state, &success))
e3d85487 4004 goto out;
aacedf26 4005
aacedf26 4006 trace_sched_waking(p);
2f064a59 4007 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
4008 trace_sched_wakeup(p);
4009 goto out;
4010 }
4011
e0acd0a6
ON
4012 /*
4013 * If we are going to wake up a thread waiting for CONDITION we
4014 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
4015 * reordered with p->state check below. This pairs with smp_store_mb()
4016 * in set_current_state() that the waiting thread does.
e0acd0a6 4017 */
013fdb80 4018 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 4019 smp_mb__after_spinlock();
43295d73 4020 if (!ttwu_state_match(p, state, &success))
aacedf26 4021 goto unlock;
1da177e4 4022
fbd705a0
PZ
4023 trace_sched_waking(p);
4024
135e8c92
BS
4025 /*
4026 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4027 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4028 * in smp_cond_load_acquire() below.
4029 *
3d85b270
AP
4030 * sched_ttwu_pending() try_to_wake_up()
4031 * STORE p->on_rq = 1 LOAD p->state
4032 * UNLOCK rq->lock
4033 *
4034 * __schedule() (switch to task 'p')
4035 * LOCK rq->lock smp_rmb();
4036 * smp_mb__after_spinlock();
4037 * UNLOCK rq->lock
135e8c92
BS
4038 *
4039 * [task p]
3d85b270 4040 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4041 *
3d85b270
AP
4042 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4043 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4044 *
4045 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4046 */
4047 smp_rmb();
58877d34 4048 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4049 goto unlock;
1da177e4 4050
1da177e4 4051#ifdef CONFIG_SMP
ecf7d01c
PZ
4052 /*
4053 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4054 * possible to, falsely, observe p->on_cpu == 0.
4055 *
4056 * One must be running (->on_cpu == 1) in order to remove oneself
4057 * from the runqueue.
4058 *
3d85b270
AP
4059 * __schedule() (switch to task 'p') try_to_wake_up()
4060 * STORE p->on_cpu = 1 LOAD p->on_rq
4061 * UNLOCK rq->lock
4062 *
4063 * __schedule() (put 'p' to sleep)
4064 * LOCK rq->lock smp_rmb();
4065 * smp_mb__after_spinlock();
4066 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4067 *
3d85b270
AP
4068 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4069 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4070 *
4071 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4072 * schedule()'s deactivate_task() has 'happened' and p will no longer
4073 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4074 */
dbfb089d
PZ
4075 smp_acquire__after_ctrl_dep();
4076
4077 /*
4078 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4079 * == 0), which means we need to do an enqueue, change p->state to
4080 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4081 * enqueue, such as ttwu_queue_wakelist().
4082 */
2f064a59 4083 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4084
c6e7bd7a
PZ
4085 /*
4086 * If the owning (remote) CPU is still in the middle of schedule() with
4087 * this task as prev, considering queueing p on the remote CPUs wake_list
4088 * which potentially sends an IPI instead of spinning on p->on_cpu to
4089 * let the waker make forward progress. This is safe because IRQs are
4090 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4091 *
4092 * Ensure we load task_cpu(p) after p->on_cpu:
4093 *
4094 * set_task_cpu(p, cpu);
4095 * STORE p->cpu = @cpu
4096 * __schedule() (switch to task 'p')
4097 * LOCK rq->lock
4098 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4099 * STORE p->on_cpu = 1 LOAD p->cpu
4100 *
4101 * to ensure we observe the correct CPU on which the task is currently
4102 * scheduling.
c6e7bd7a 4103 */
b6e13e85 4104 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 4105 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
4106 goto unlock;
4107
e9c84311 4108 /*
d1ccc66d 4109 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4110 * this task as prev, wait until it's done referencing the task.
b75a2253 4111 *
31cb1bc0 4112 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4113 *
4114 * This ensures that tasks getting woken will be fully ordered against
4115 * their previous state and preserve Program Order.
0970d299 4116 */
1f03e8d2 4117 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4118
3aef1551 4119 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4120 if (task_cpu(p) != cpu) {
ec618b84
PZ
4121 if (p->in_iowait) {
4122 delayacct_blkio_end(p);
4123 atomic_dec(&task_rq(p)->nr_iowait);
4124 }
4125
f339b9dc 4126 wake_flags |= WF_MIGRATED;
eb414681 4127 psi_ttwu_dequeue(p);
e4a52bcb 4128 set_task_cpu(p, cpu);
f339b9dc 4129 }
b6e13e85
PZ
4130#else
4131 cpu = task_cpu(p);
1da177e4 4132#endif /* CONFIG_SMP */
1da177e4 4133
b5179ac7 4134 ttwu_queue(p, cpu, wake_flags);
aacedf26 4135unlock:
013fdb80 4136 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4137out:
4138 if (success)
b6e13e85 4139 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4140 preempt_enable();
1da177e4
LT
4141
4142 return success;
4143}
4144
2beaf328 4145/**
9b3c4ab3 4146 * task_call_func - Invoke a function on task in fixed state
1b7af295 4147 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4148 * @func: Function to invoke.
4149 * @arg: Argument to function.
4150 *
f6ac18fa
PZ
4151 * Fix the task in it's current state by avoiding wakeups and or rq operations
4152 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4153 * to work out what the state is, if required. Given that @func can be invoked
4154 * with a runqueue lock held, it had better be quite lightweight.
2beaf328
PM
4155 *
4156 * Returns:
f6ac18fa 4157 * Whatever @func returns
2beaf328 4158 */
9b3c4ab3 4159int task_call_func(struct task_struct *p, task_call_f func, void *arg)
2beaf328 4160{
f6ac18fa
PZ
4161 struct rq *rq = NULL;
4162 unsigned int state;
2beaf328 4163 struct rq_flags rf;
9b3c4ab3 4164 int ret;
2beaf328 4165
1b7af295 4166 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
f6ac18fa
PZ
4167
4168 state = READ_ONCE(p->__state);
4169
4170 /*
4171 * Ensure we load p->on_rq after p->__state, otherwise it would be
4172 * possible to, falsely, observe p->on_rq == 0.
4173 *
4174 * See try_to_wake_up() for a longer comment.
4175 */
4176 smp_rmb();
4177
4178 /*
4179 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4180 * the task is blocked. Make sure to check @state since ttwu() can drop
4181 * locks at the end, see ttwu_queue_wakelist().
4182 */
4183 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
2beaf328 4184 rq = __task_rq_lock(p, &rf);
f6ac18fa
PZ
4185
4186 /*
4187 * At this point the task is pinned; either:
4188 * - blocked and we're holding off wakeups (pi->lock)
4189 * - woken, and we're holding off enqueue (rq->lock)
4190 * - queued, and we're holding off schedule (rq->lock)
4191 * - running, and we're holding off de-schedule (rq->lock)
4192 *
4193 * The called function (@func) can use: task_curr(), p->on_rq and
4194 * p->__state to differentiate between these states.
4195 */
4196 ret = func(p, arg);
4197
4198 if (rq)
2beaf328 4199 rq_unlock(rq, &rf);
f6ac18fa 4200
1b7af295 4201 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4202 return ret;
4203}
4204
50fa610a
DH
4205/**
4206 * wake_up_process - Wake up a specific process
4207 * @p: The process to be woken up.
4208 *
4209 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4210 * processes.
4211 *
4212 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4213 *
7696f991 4214 * This function executes a full memory barrier before accessing the task state.
50fa610a 4215 */
7ad5b3a5 4216int wake_up_process(struct task_struct *p)
1da177e4 4217{
9067ac85 4218 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4219}
1da177e4
LT
4220EXPORT_SYMBOL(wake_up_process);
4221
7ad5b3a5 4222int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4223{
4224 return try_to_wake_up(p, state, 0);
4225}
4226
1da177e4
LT
4227/*
4228 * Perform scheduler related setup for a newly forked process p.
4229 * p is forked by current.
dd41f596
IM
4230 *
4231 * __sched_fork() is basic setup used by init_idle() too:
4232 */
5e1576ed 4233static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4234{
fd2f4419
PZ
4235 p->on_rq = 0;
4236
4237 p->se.on_rq = 0;
dd41f596
IM
4238 p->se.exec_start = 0;
4239 p->se.sum_exec_runtime = 0;
f6cf891c 4240 p->se.prev_sum_exec_runtime = 0;
6c594c21 4241 p->se.nr_migrations = 0;
da7a735e 4242 p->se.vruntime = 0;
fd2f4419 4243 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4244
ad936d86
BP
4245#ifdef CONFIG_FAIR_GROUP_SCHED
4246 p->se.cfs_rq = NULL;
4247#endif
4248
6cfb0d5d 4249#ifdef CONFIG_SCHEDSTATS
cb251765 4250 /* Even if schedstat is disabled, there should not be garbage */
ceeadb83 4251 memset(&p->stats, 0, sizeof(p->stats));
6cfb0d5d 4252#endif
476d139c 4253
aab03e05 4254 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4255 init_dl_task_timer(&p->dl);
209a0cbd 4256 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4257 __dl_clear_params(p);
aab03e05 4258
fa717060 4259 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4260 p->rt.timeout = 0;
4261 p->rt.time_slice = sched_rr_timeslice;
4262 p->rt.on_rq = 0;
4263 p->rt.on_list = 0;
476d139c 4264
e107be36
AK
4265#ifdef CONFIG_PREEMPT_NOTIFIERS
4266 INIT_HLIST_HEAD(&p->preempt_notifiers);
4267#endif
cbee9f88 4268
5e1f0f09
MG
4269#ifdef CONFIG_COMPACTION
4270 p->capture_control = NULL;
4271#endif
13784475 4272 init_numa_balancing(clone_flags, p);
a1488664 4273#ifdef CONFIG_SMP
8c4890d1 4274 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4275 p->migration_pending = NULL;
a1488664 4276#endif
dd41f596
IM
4277}
4278
2a595721
SD
4279DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4280
1a687c2e 4281#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4282
1a687c2e
MG
4283void set_numabalancing_state(bool enabled)
4284{
4285 if (enabled)
2a595721 4286 static_branch_enable(&sched_numa_balancing);
1a687c2e 4287 else
2a595721 4288 static_branch_disable(&sched_numa_balancing);
1a687c2e 4289}
54a43d54
AK
4290
4291#ifdef CONFIG_PROC_SYSCTL
4292int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4293 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4294{
4295 struct ctl_table t;
4296 int err;
2a595721 4297 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
4298
4299 if (write && !capable(CAP_SYS_ADMIN))
4300 return -EPERM;
4301
4302 t = *table;
4303 t.data = &state;
4304 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4305 if (err < 0)
4306 return err;
4307 if (write)
4308 set_numabalancing_state(state);
4309 return err;
4310}
4311#endif
4312#endif
dd41f596 4313
4698f88c
JP
4314#ifdef CONFIG_SCHEDSTATS
4315
cb251765
MG
4316DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4317
cb251765
MG
4318static void set_schedstats(bool enabled)
4319{
4320 if (enabled)
4321 static_branch_enable(&sched_schedstats);
4322 else
4323 static_branch_disable(&sched_schedstats);
4324}
4325
4326void force_schedstat_enabled(void)
4327{
4328 if (!schedstat_enabled()) {
4329 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4330 static_branch_enable(&sched_schedstats);
4331 }
4332}
4333
4334static int __init setup_schedstats(char *str)
4335{
4336 int ret = 0;
4337 if (!str)
4338 goto out;
4339
4340 if (!strcmp(str, "enable")) {
1faa491a 4341 set_schedstats(true);
cb251765
MG
4342 ret = 1;
4343 } else if (!strcmp(str, "disable")) {
1faa491a 4344 set_schedstats(false);
cb251765
MG
4345 ret = 1;
4346 }
4347out:
4348 if (!ret)
4349 pr_warn("Unable to parse schedstats=\n");
4350
4351 return ret;
4352}
4353__setup("schedstats=", setup_schedstats);
4354
4355#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4356int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4357 size_t *lenp, loff_t *ppos)
cb251765
MG
4358{
4359 struct ctl_table t;
4360 int err;
4361 int state = static_branch_likely(&sched_schedstats);
4362
4363 if (write && !capable(CAP_SYS_ADMIN))
4364 return -EPERM;
4365
4366 t = *table;
4367 t.data = &state;
4368 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4369 if (err < 0)
4370 return err;
4371 if (write)
4372 set_schedstats(state);
4373 return err;
4374}
4698f88c 4375#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4376#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4377
4378/*
4379 * fork()/clone()-time setup:
4380 */
aab03e05 4381int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4382{
5e1576ed 4383 __sched_fork(clone_flags, p);
06b83b5f 4384 /*
7dc603c9 4385 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4386 * nobody will actually run it, and a signal or other external
4387 * event cannot wake it up and insert it on the runqueue either.
4388 */
2f064a59 4389 p->__state = TASK_NEW;
dd41f596 4390
c350a04e
MG
4391 /*
4392 * Make sure we do not leak PI boosting priority to the child.
4393 */
4394 p->prio = current->normal_prio;
4395
e8f14172
PB
4396 uclamp_fork(p);
4397
b9dc29e7
MG
4398 /*
4399 * Revert to default priority/policy on fork if requested.
4400 */
4401 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4402 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4403 p->policy = SCHED_NORMAL;
6c697bdf 4404 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4405 p->rt_priority = 0;
4406 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4407 p->static_prio = NICE_TO_PRIO(0);
4408
f558c2b8 4409 p->prio = p->normal_prio = p->static_prio;
13765de8 4410 set_load_weight(p);
6c697bdf 4411
b9dc29e7
MG
4412 /*
4413 * We don't need the reset flag anymore after the fork. It has
4414 * fulfilled its duty:
4415 */
4416 p->sched_reset_on_fork = 0;
4417 }
ca94c442 4418
af0fffd9 4419 if (dl_prio(p->prio))
aab03e05 4420 return -EAGAIN;
af0fffd9 4421 else if (rt_prio(p->prio))
aab03e05 4422 p->sched_class = &rt_sched_class;
af0fffd9 4423 else
2ddbf952 4424 p->sched_class = &fair_sched_class;
b29739f9 4425
7dc603c9 4426 init_entity_runnable_average(&p->se);
cd29fe6f 4427
f6db8347 4428#ifdef CONFIG_SCHED_INFO
dd41f596 4429 if (likely(sched_info_on()))
52f17b6c 4430 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4431#endif
3ca7a440
PZ
4432#if defined(CONFIG_SMP)
4433 p->on_cpu = 0;
4866cde0 4434#endif
01028747 4435 init_task_preempt_count(p);
806c09a7 4436#ifdef CONFIG_SMP
917b627d 4437 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4438 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4439#endif
aab03e05 4440 return 0;
1da177e4
LT
4441}
4442
4ef0c5c6 4443void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
13685c4a 4444{
4ef0c5c6
ZQ
4445 unsigned long flags;
4446#ifdef CONFIG_CGROUP_SCHED
4447 struct task_group *tg;
4448#endif
4449
4450 raw_spin_lock_irqsave(&p->pi_lock, flags);
4451#ifdef CONFIG_CGROUP_SCHED
4452 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4453 struct task_group, css);
4454 p->sched_task_group = autogroup_task_group(p, tg);
4455#endif
4456 rseq_migrate(p);
4457 /*
4458 * We're setting the CPU for the first time, we don't migrate,
4459 * so use __set_task_cpu().
4460 */
4461 __set_task_cpu(p, smp_processor_id());
4462 if (p->sched_class->task_fork)
4463 p->sched_class->task_fork(p);
4464 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4465
13685c4a
QY
4466 uclamp_post_fork(p);
4467}
4468
332ac17e
DF
4469unsigned long to_ratio(u64 period, u64 runtime)
4470{
4471 if (runtime == RUNTIME_INF)
c52f14d3 4472 return BW_UNIT;
332ac17e
DF
4473
4474 /*
4475 * Doing this here saves a lot of checks in all
4476 * the calling paths, and returning zero seems
4477 * safe for them anyway.
4478 */
4479 if (period == 0)
4480 return 0;
4481
c52f14d3 4482 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4483}
4484
1da177e4
LT
4485/*
4486 * wake_up_new_task - wake up a newly created task for the first time.
4487 *
4488 * This function will do some initial scheduler statistics housekeeping
4489 * that must be done for every newly created context, then puts the task
4490 * on the runqueue and wakes it.
4491 */
3e51e3ed 4492void wake_up_new_task(struct task_struct *p)
1da177e4 4493{
eb580751 4494 struct rq_flags rf;
dd41f596 4495 struct rq *rq;
fabf318e 4496
eb580751 4497 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4498 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4499#ifdef CONFIG_SMP
4500 /*
4501 * Fork balancing, do it here and not earlier because:
3bd37062 4502 * - cpus_ptr can change in the fork path
d1ccc66d 4503 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4504 *
4505 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4506 * as we're not fully set-up yet.
fabf318e 4507 */
32e839dd 4508 p->recent_used_cpu = task_cpu(p);
ce3614da 4509 rseq_migrate(p);
3aef1551 4510 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4511#endif
b7fa30c9 4512 rq = __task_rq_lock(p, &rf);
4126bad6 4513 update_rq_clock(rq);
d0fe0b9c 4514 post_init_entity_util_avg(p);
0017d735 4515
7a57f32a 4516 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4517 trace_sched_wakeup_new(p);
a7558e01 4518 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4519#ifdef CONFIG_SMP
0aaafaab
PZ
4520 if (p->sched_class->task_woken) {
4521 /*
b19a888c 4522 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4523 * drop it.
4524 */
d8ac8971 4525 rq_unpin_lock(rq, &rf);
efbbd05a 4526 p->sched_class->task_woken(rq, p);
d8ac8971 4527 rq_repin_lock(rq, &rf);
0aaafaab 4528 }
9a897c5a 4529#endif
eb580751 4530 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4531}
4532
e107be36
AK
4533#ifdef CONFIG_PREEMPT_NOTIFIERS
4534
b7203428 4535static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4536
2ecd9d29
PZ
4537void preempt_notifier_inc(void)
4538{
b7203428 4539 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4540}
4541EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4542
4543void preempt_notifier_dec(void)
4544{
b7203428 4545 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4546}
4547EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4548
e107be36 4549/**
80dd99b3 4550 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4551 * @notifier: notifier struct to register
e107be36
AK
4552 */
4553void preempt_notifier_register(struct preempt_notifier *notifier)
4554{
b7203428 4555 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4556 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4557
e107be36
AK
4558 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4559}
4560EXPORT_SYMBOL_GPL(preempt_notifier_register);
4561
4562/**
4563 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4564 * @notifier: notifier struct to unregister
e107be36 4565 *
d84525a8 4566 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4567 */
4568void preempt_notifier_unregister(struct preempt_notifier *notifier)
4569{
4570 hlist_del(&notifier->link);
4571}
4572EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4573
1cde2930 4574static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4575{
4576 struct preempt_notifier *notifier;
e107be36 4577
b67bfe0d 4578 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4579 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4580}
4581
1cde2930
PZ
4582static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4583{
b7203428 4584 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4585 __fire_sched_in_preempt_notifiers(curr);
4586}
4587
e107be36 4588static void
1cde2930
PZ
4589__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4590 struct task_struct *next)
e107be36
AK
4591{
4592 struct preempt_notifier *notifier;
e107be36 4593
b67bfe0d 4594 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4595 notifier->ops->sched_out(notifier, next);
4596}
4597
1cde2930
PZ
4598static __always_inline void
4599fire_sched_out_preempt_notifiers(struct task_struct *curr,
4600 struct task_struct *next)
4601{
b7203428 4602 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4603 __fire_sched_out_preempt_notifiers(curr, next);
4604}
4605
6d6bc0ad 4606#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4607
1cde2930 4608static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4609{
4610}
4611
1cde2930 4612static inline void
e107be36
AK
4613fire_sched_out_preempt_notifiers(struct task_struct *curr,
4614 struct task_struct *next)
4615{
4616}
4617
6d6bc0ad 4618#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4619
31cb1bc0 4620static inline void prepare_task(struct task_struct *next)
4621{
4622#ifdef CONFIG_SMP
4623 /*
4624 * Claim the task as running, we do this before switching to it
4625 * such that any running task will have this set.
58877d34
PZ
4626 *
4627 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4628 */
58877d34 4629 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4630#endif
4631}
4632
4633static inline void finish_task(struct task_struct *prev)
4634{
4635#ifdef CONFIG_SMP
4636 /*
58877d34
PZ
4637 * This must be the very last reference to @prev from this CPU. After
4638 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4639 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4640 * finished.
4641 *
4642 * In particular, the load of prev->state in finish_task_switch() must
4643 * happen before this.
4644 *
4645 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4646 */
4647 smp_store_release(&prev->on_cpu, 0);
4648#endif
4649}
4650
565790d2
PZ
4651#ifdef CONFIG_SMP
4652
4653static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4654{
4655 void (*func)(struct rq *rq);
4656 struct callback_head *next;
4657
5cb9eaa3 4658 lockdep_assert_rq_held(rq);
565790d2
PZ
4659
4660 while (head) {
4661 func = (void (*)(struct rq *))head->func;
4662 next = head->next;
4663 head->next = NULL;
4664 head = next;
4665
4666 func(rq);
4667 }
4668}
4669
ae792702
PZ
4670static void balance_push(struct rq *rq);
4671
4672struct callback_head balance_push_callback = {
4673 .next = NULL,
4674 .func = (void (*)(struct callback_head *))balance_push,
4675};
4676
565790d2
PZ
4677static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4678{
4679 struct callback_head *head = rq->balance_callback;
4680
5cb9eaa3 4681 lockdep_assert_rq_held(rq);
ae792702 4682 if (head)
565790d2
PZ
4683 rq->balance_callback = NULL;
4684
4685 return head;
4686}
4687
4688static void __balance_callbacks(struct rq *rq)
4689{
4690 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4691}
4692
4693static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4694{
4695 unsigned long flags;
4696
4697 if (unlikely(head)) {
5cb9eaa3 4698 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4699 do_balance_callbacks(rq, head);
5cb9eaa3 4700 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4701 }
4702}
4703
4704#else
4705
4706static inline void __balance_callbacks(struct rq *rq)
4707{
4708}
4709
4710static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4711{
4712 return NULL;
4713}
4714
4715static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4716{
4717}
4718
4719#endif
4720
269d5992
PZ
4721static inline void
4722prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4723{
269d5992
PZ
4724 /*
4725 * Since the runqueue lock will be released by the next
4726 * task (which is an invalid locking op but in the case
4727 * of the scheduler it's an obvious special-case), so we
4728 * do an early lockdep release here:
4729 */
4730 rq_unpin_lock(rq, rf);
9ef7e7e3 4731 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4732#ifdef CONFIG_DEBUG_SPINLOCK
4733 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4734 rq_lockp(rq)->owner = next;
31cb1bc0 4735#endif
269d5992
PZ
4736}
4737
4738static inline void finish_lock_switch(struct rq *rq)
4739{
31cb1bc0 4740 /*
4741 * If we are tracking spinlock dependencies then we have to
4742 * fix up the runqueue lock - which gets 'carried over' from
4743 * prev into current:
4744 */
9ef7e7e3 4745 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4746 __balance_callbacks(rq);
5cb9eaa3 4747 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4748}
4749
325ea10c
IM
4750/*
4751 * NOP if the arch has not defined these:
4752 */
4753
4754#ifndef prepare_arch_switch
4755# define prepare_arch_switch(next) do { } while (0)
4756#endif
4757
4758#ifndef finish_arch_post_lock_switch
4759# define finish_arch_post_lock_switch() do { } while (0)
4760#endif
4761
5fbda3ec
TG
4762static inline void kmap_local_sched_out(void)
4763{
4764#ifdef CONFIG_KMAP_LOCAL
4765 if (unlikely(current->kmap_ctrl.idx))
4766 __kmap_local_sched_out();
4767#endif
4768}
4769
4770static inline void kmap_local_sched_in(void)
4771{
4772#ifdef CONFIG_KMAP_LOCAL
4773 if (unlikely(current->kmap_ctrl.idx))
4774 __kmap_local_sched_in();
4775#endif
4776}
4777
4866cde0
NP
4778/**
4779 * prepare_task_switch - prepare to switch tasks
4780 * @rq: the runqueue preparing to switch
421cee29 4781 * @prev: the current task that is being switched out
4866cde0
NP
4782 * @next: the task we are going to switch to.
4783 *
4784 * This is called with the rq lock held and interrupts off. It must
4785 * be paired with a subsequent finish_task_switch after the context
4786 * switch.
4787 *
4788 * prepare_task_switch sets up locking and calls architecture specific
4789 * hooks.
4790 */
e107be36
AK
4791static inline void
4792prepare_task_switch(struct rq *rq, struct task_struct *prev,
4793 struct task_struct *next)
4866cde0 4794{
0ed557aa 4795 kcov_prepare_switch(prev);
43148951 4796 sched_info_switch(rq, prev, next);
fe4b04fa 4797 perf_event_task_sched_out(prev, next);
d7822b1e 4798 rseq_preempt(prev);
e107be36 4799 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4800 kmap_local_sched_out();
31cb1bc0 4801 prepare_task(next);
4866cde0
NP
4802 prepare_arch_switch(next);
4803}
4804
1da177e4
LT
4805/**
4806 * finish_task_switch - clean up after a task-switch
4807 * @prev: the thread we just switched away from.
4808 *
4866cde0
NP
4809 * finish_task_switch must be called after the context switch, paired
4810 * with a prepare_task_switch call before the context switch.
4811 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4812 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4813 *
4814 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4815 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4816 * with the lock held can cause deadlocks; see schedule() for
4817 * details.)
dfa50b60
ON
4818 *
4819 * The context switch have flipped the stack from under us and restored the
4820 * local variables which were saved when this task called schedule() in the
4821 * past. prev == current is still correct but we need to recalculate this_rq
4822 * because prev may have moved to another CPU.
1da177e4 4823 */
dfa50b60 4824static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4825 __releases(rq->lock)
4826{
dfa50b60 4827 struct rq *rq = this_rq();
1da177e4 4828 struct mm_struct *mm = rq->prev_mm;
55a101f8 4829 long prev_state;
1da177e4 4830
609ca066
PZ
4831 /*
4832 * The previous task will have left us with a preempt_count of 2
4833 * because it left us after:
4834 *
4835 * schedule()
4836 * preempt_disable(); // 1
4837 * __schedule()
4838 * raw_spin_lock_irq(&rq->lock) // 2
4839 *
4840 * Also, see FORK_PREEMPT_COUNT.
4841 */
e2bf1c4b
PZ
4842 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4843 "corrupted preempt_count: %s/%d/0x%x\n",
4844 current->comm, current->pid, preempt_count()))
4845 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4846
1da177e4
LT
4847 rq->prev_mm = NULL;
4848
4849 /*
4850 * A task struct has one reference for the use as "current".
c394cc9f 4851 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4852 * schedule one last time. The schedule call will never return, and
4853 * the scheduled task must drop that reference.
95913d97
PZ
4854 *
4855 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4856 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4857 * running on another CPU and we could rave with its RUNNING -> DEAD
4858 * transition, resulting in a double drop.
1da177e4 4859 */
2f064a59 4860 prev_state = READ_ONCE(prev->__state);
bf9fae9f 4861 vtime_task_switch(prev);
a8d757ef 4862 perf_event_task_sched_in(prev, current);
31cb1bc0 4863 finish_task(prev);
0fdcccfa 4864 tick_nohz_task_switch();
31cb1bc0 4865 finish_lock_switch(rq);
01f23e16 4866 finish_arch_post_lock_switch();
0ed557aa 4867 kcov_finish_switch(current);
5fbda3ec
TG
4868 /*
4869 * kmap_local_sched_out() is invoked with rq::lock held and
4870 * interrupts disabled. There is no requirement for that, but the
4871 * sched out code does not have an interrupt enabled section.
4872 * Restoring the maps on sched in does not require interrupts being
4873 * disabled either.
4874 */
4875 kmap_local_sched_in();
e8fa1362 4876
e107be36 4877 fire_sched_in_preempt_notifiers(current);
306e0604 4878 /*
70216e18
MD
4879 * When switching through a kernel thread, the loop in
4880 * membarrier_{private,global}_expedited() may have observed that
4881 * kernel thread and not issued an IPI. It is therefore possible to
4882 * schedule between user->kernel->user threads without passing though
4883 * switch_mm(). Membarrier requires a barrier after storing to
4884 * rq->curr, before returning to userspace, so provide them here:
4885 *
4886 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4887 * provided by mmdrop(),
4888 * - a sync_core for SYNC_CORE.
306e0604 4889 */
70216e18
MD
4890 if (mm) {
4891 membarrier_mm_sync_core_before_usermode(mm);
8d491de6 4892 mmdrop_sched(mm);
70216e18 4893 }
1cef1150
PZ
4894 if (unlikely(prev_state == TASK_DEAD)) {
4895 if (prev->sched_class->task_dead)
4896 prev->sched_class->task_dead(prev);
68f24b08 4897
1cef1150
PZ
4898 /* Task is done with its stack. */
4899 put_task_stack(prev);
4900
0ff7b2cf 4901 put_task_struct_rcu_user(prev);
c6fd91f0 4902 }
99e5ada9 4903
dfa50b60 4904 return rq;
1da177e4
LT
4905}
4906
4907/**
4908 * schedule_tail - first thing a freshly forked thread must call.
4909 * @prev: the thread we just switched away from.
4910 */
722a9f92 4911asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4912 __releases(rq->lock)
4913{
609ca066
PZ
4914 /*
4915 * New tasks start with FORK_PREEMPT_COUNT, see there and
4916 * finish_task_switch() for details.
4917 *
4918 * finish_task_switch() will drop rq->lock() and lower preempt_count
4919 * and the preempt_enable() will end up enabling preemption (on
4920 * PREEMPT_COUNT kernels).
4921 */
4922
13c2235b 4923 finish_task_switch(prev);
1a43a14a 4924 preempt_enable();
70b97a7f 4925
1da177e4 4926 if (current->set_child_tid)
b488893a 4927 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4928
4929 calculate_sigpending();
1da177e4
LT
4930}
4931
4932/*
dfa50b60 4933 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4934 */
04936948 4935static __always_inline struct rq *
70b97a7f 4936context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4937 struct task_struct *next, struct rq_flags *rf)
1da177e4 4938{
e107be36 4939 prepare_task_switch(rq, prev, next);
fe4b04fa 4940
9226d125
ZA
4941 /*
4942 * For paravirt, this is coupled with an exit in switch_to to
4943 * combine the page table reload and the switch backend into
4944 * one hypercall.
4945 */
224101ed 4946 arch_start_context_switch(prev);
9226d125 4947
306e0604 4948 /*
139d025c
PZ
4949 * kernel -> kernel lazy + transfer active
4950 * user -> kernel lazy + mmgrab() active
4951 *
4952 * kernel -> user switch + mmdrop() active
4953 * user -> user switch
306e0604 4954 */
139d025c
PZ
4955 if (!next->mm) { // to kernel
4956 enter_lazy_tlb(prev->active_mm, next);
4957
4958 next->active_mm = prev->active_mm;
4959 if (prev->mm) // from user
4960 mmgrab(prev->active_mm);
4961 else
4962 prev->active_mm = NULL;
4963 } else { // to user
227a4aad 4964 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4965 /*
4966 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4967 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4968 *
4969 * The below provides this either through switch_mm(), or in
4970 * case 'prev->active_mm == next->mm' through
4971 * finish_task_switch()'s mmdrop().
4972 */
139d025c 4973 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4974
139d025c
PZ
4975 if (!prev->mm) { // from kernel
4976 /* will mmdrop() in finish_task_switch(). */
4977 rq->prev_mm = prev->active_mm;
4978 prev->active_mm = NULL;
4979 }
1da177e4 4980 }
92509b73 4981
cb42c9a3 4982 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4983
269d5992 4984 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4985
4986 /* Here we just switch the register state and the stack. */
4987 switch_to(prev, next, prev);
dd41f596 4988 barrier();
dfa50b60
ON
4989
4990 return finish_task_switch(prev);
1da177e4
LT
4991}
4992
4993/*
1c3e8264 4994 * nr_running and nr_context_switches:
1da177e4
LT
4995 *
4996 * externally visible scheduler statistics: current number of runnable
1c3e8264 4997 * threads, total number of context switches performed since bootup.
1da177e4 4998 */
01aee8fd 4999unsigned int nr_running(void)
1da177e4 5000{
01aee8fd 5001 unsigned int i, sum = 0;
1da177e4
LT
5002
5003 for_each_online_cpu(i)
5004 sum += cpu_rq(i)->nr_running;
5005
5006 return sum;
f711f609 5007}
1da177e4 5008
2ee507c4 5009/*
d1ccc66d 5010 * Check if only the current task is running on the CPU.
00cc1633
DD
5011 *
5012 * Caution: this function does not check that the caller has disabled
5013 * preemption, thus the result might have a time-of-check-to-time-of-use
5014 * race. The caller is responsible to use it correctly, for example:
5015 *
dfcb245e 5016 * - from a non-preemptible section (of course)
00cc1633
DD
5017 *
5018 * - from a thread that is bound to a single CPU
5019 *
5020 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
5021 */
5022bool single_task_running(void)
5023{
00cc1633 5024 return raw_rq()->nr_running == 1;
2ee507c4
TC
5025}
5026EXPORT_SYMBOL(single_task_running);
5027
1da177e4 5028unsigned long long nr_context_switches(void)
46cb4b7c 5029{
cc94abfc
SR
5030 int i;
5031 unsigned long long sum = 0;
46cb4b7c 5032
0a945022 5033 for_each_possible_cpu(i)
1da177e4 5034 sum += cpu_rq(i)->nr_switches;
46cb4b7c 5035
1da177e4
LT
5036 return sum;
5037}
483b4ee6 5038
145d952a
DL
5039/*
5040 * Consumers of these two interfaces, like for example the cpuidle menu
5041 * governor, are using nonsensical data. Preferring shallow idle state selection
5042 * for a CPU that has IO-wait which might not even end up running the task when
5043 * it does become runnable.
5044 */
5045
8fc2858e 5046unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5047{
5048 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5049}
5050
e33a9bba 5051/*
b19a888c 5052 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5053 *
5054 * The idea behind IO-wait account is to account the idle time that we could
5055 * have spend running if it were not for IO. That is, if we were to improve the
5056 * storage performance, we'd have a proportional reduction in IO-wait time.
5057 *
5058 * This all works nicely on UP, where, when a task blocks on IO, we account
5059 * idle time as IO-wait, because if the storage were faster, it could've been
5060 * running and we'd not be idle.
5061 *
5062 * This has been extended to SMP, by doing the same for each CPU. This however
5063 * is broken.
5064 *
5065 * Imagine for instance the case where two tasks block on one CPU, only the one
5066 * CPU will have IO-wait accounted, while the other has regular idle. Even
5067 * though, if the storage were faster, both could've ran at the same time,
5068 * utilising both CPUs.
5069 *
5070 * This means, that when looking globally, the current IO-wait accounting on
5071 * SMP is a lower bound, by reason of under accounting.
5072 *
5073 * Worse, since the numbers are provided per CPU, they are sometimes
5074 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5075 * associated with any one particular CPU, it can wake to another CPU than it
5076 * blocked on. This means the per CPU IO-wait number is meaningless.
5077 *
5078 * Task CPU affinities can make all that even more 'interesting'.
5079 */
5080
97455168 5081unsigned int nr_iowait(void)
1da177e4 5082{
97455168 5083 unsigned int i, sum = 0;
483b4ee6 5084
0a945022 5085 for_each_possible_cpu(i)
145d952a 5086 sum += nr_iowait_cpu(i);
46cb4b7c 5087
1da177e4
LT
5088 return sum;
5089}
483b4ee6 5090
dd41f596 5091#ifdef CONFIG_SMP
8a0be9ef 5092
46cb4b7c 5093/*
38022906
PZ
5094 * sched_exec - execve() is a valuable balancing opportunity, because at
5095 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5096 */
38022906 5097void sched_exec(void)
46cb4b7c 5098{
38022906 5099 struct task_struct *p = current;
1da177e4 5100 unsigned long flags;
0017d735 5101 int dest_cpu;
46cb4b7c 5102
8f42ced9 5103 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5104 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5105 if (dest_cpu == smp_processor_id())
5106 goto unlock;
38022906 5107
8f42ced9 5108 if (likely(cpu_active(dest_cpu))) {
969c7921 5109 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5110
8f42ced9
PZ
5111 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5112 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5113 return;
5114 }
0017d735 5115unlock:
8f42ced9 5116 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5117}
dd41f596 5118
1da177e4
LT
5119#endif
5120
1da177e4 5121DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5122DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5123
5124EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5125EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5126
6075620b
GG
5127/*
5128 * The function fair_sched_class.update_curr accesses the struct curr
5129 * and its field curr->exec_start; when called from task_sched_runtime(),
5130 * we observe a high rate of cache misses in practice.
5131 * Prefetching this data results in improved performance.
5132 */
5133static inline void prefetch_curr_exec_start(struct task_struct *p)
5134{
5135#ifdef CONFIG_FAIR_GROUP_SCHED
5136 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5137#else
5138 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5139#endif
5140 prefetch(curr);
5141 prefetch(&curr->exec_start);
5142}
5143
c5f8d995
HS
5144/*
5145 * Return accounted runtime for the task.
5146 * In case the task is currently running, return the runtime plus current's
5147 * pending runtime that have not been accounted yet.
5148 */
5149unsigned long long task_sched_runtime(struct task_struct *p)
5150{
eb580751 5151 struct rq_flags rf;
c5f8d995 5152 struct rq *rq;
6e998916 5153 u64 ns;
c5f8d995 5154
911b2898
PZ
5155#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5156 /*
97fb7a0a 5157 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5158 * So we have a optimization chance when the task's delta_exec is 0.
5159 * Reading ->on_cpu is racy, but this is ok.
5160 *
d1ccc66d
IM
5161 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5162 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5163 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5164 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5165 * been accounted, so we're correct here as well.
911b2898 5166 */
da0c1e65 5167 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5168 return p->se.sum_exec_runtime;
5169#endif
5170
eb580751 5171 rq = task_rq_lock(p, &rf);
6e998916
SG
5172 /*
5173 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5174 * project cycles that may never be accounted to this
5175 * thread, breaking clock_gettime().
5176 */
5177 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5178 prefetch_curr_exec_start(p);
6e998916
SG
5179 update_rq_clock(rq);
5180 p->sched_class->update_curr(rq);
5181 }
5182 ns = p->se.sum_exec_runtime;
eb580751 5183 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5184
5185 return ns;
5186}
48f24c4d 5187
c006fac5
PT
5188#ifdef CONFIG_SCHED_DEBUG
5189static u64 cpu_resched_latency(struct rq *rq)
5190{
5191 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5192 u64 resched_latency, now = rq_clock(rq);
5193 static bool warned_once;
5194
5195 if (sysctl_resched_latency_warn_once && warned_once)
5196 return 0;
5197
5198 if (!need_resched() || !latency_warn_ms)
5199 return 0;
5200
5201 if (system_state == SYSTEM_BOOTING)
5202 return 0;
5203
5204 if (!rq->last_seen_need_resched_ns) {
5205 rq->last_seen_need_resched_ns = now;
5206 rq->ticks_without_resched = 0;
5207 return 0;
5208 }
5209
5210 rq->ticks_without_resched++;
5211 resched_latency = now - rq->last_seen_need_resched_ns;
5212 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5213 return 0;
5214
5215 warned_once = true;
5216
5217 return resched_latency;
5218}
5219
5220static int __init setup_resched_latency_warn_ms(char *str)
5221{
5222 long val;
5223
5224 if ((kstrtol(str, 0, &val))) {
5225 pr_warn("Unable to set resched_latency_warn_ms\n");
5226 return 1;
5227 }
5228
5229 sysctl_resched_latency_warn_ms = val;
5230 return 1;
5231}
5232__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5233#else
5234static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5235#endif /* CONFIG_SCHED_DEBUG */
5236
7835b98b
CL
5237/*
5238 * This function gets called by the timer code, with HZ frequency.
5239 * We call it with interrupts disabled.
7835b98b
CL
5240 */
5241void scheduler_tick(void)
5242{
7835b98b
CL
5243 int cpu = smp_processor_id();
5244 struct rq *rq = cpu_rq(cpu);
dd41f596 5245 struct task_struct *curr = rq->curr;
8a8c69c3 5246 struct rq_flags rf;
b4eccf5f 5247 unsigned long thermal_pressure;
c006fac5 5248 u64 resched_latency;
3e51f33f 5249
1567c3e3 5250 arch_scale_freq_tick();
3e51f33f 5251 sched_clock_tick();
dd41f596 5252
8a8c69c3
PZ
5253 rq_lock(rq, &rf);
5254
3e51f33f 5255 update_rq_clock(rq);
b4eccf5f 5256 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5257 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5258 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5259 if (sched_feat(LATENCY_WARN))
5260 resched_latency = cpu_resched_latency(rq);
3289bdb4 5261 calc_global_load_tick(rq);
4feee7d1 5262 sched_core_tick(rq);
8a8c69c3
PZ
5263
5264 rq_unlock(rq, &rf);
7835b98b 5265
c006fac5
PT
5266 if (sched_feat(LATENCY_WARN) && resched_latency)
5267 resched_latency_warn(cpu, resched_latency);
5268
e9d2b064 5269 perf_event_task_tick();
e220d2dc 5270
e418e1c2 5271#ifdef CONFIG_SMP
6eb57e0d 5272 rq->idle_balance = idle_cpu(cpu);
7caff66f 5273 trigger_load_balance(rq);
e418e1c2 5274#endif
1da177e4
LT
5275}
5276
265f22a9 5277#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5278
5279struct tick_work {
5280 int cpu;
b55bd585 5281 atomic_t state;
d84b3131
FW
5282 struct delayed_work work;
5283};
b55bd585
PM
5284/* Values for ->state, see diagram below. */
5285#define TICK_SCHED_REMOTE_OFFLINE 0
5286#define TICK_SCHED_REMOTE_OFFLINING 1
5287#define TICK_SCHED_REMOTE_RUNNING 2
5288
5289/*
5290 * State diagram for ->state:
5291 *
5292 *
5293 * TICK_SCHED_REMOTE_OFFLINE
5294 * | ^
5295 * | |
5296 * | | sched_tick_remote()
5297 * | |
5298 * | |
5299 * +--TICK_SCHED_REMOTE_OFFLINING
5300 * | ^
5301 * | |
5302 * sched_tick_start() | | sched_tick_stop()
5303 * | |
5304 * V |
5305 * TICK_SCHED_REMOTE_RUNNING
5306 *
5307 *
5308 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5309 * and sched_tick_start() are happy to leave the state in RUNNING.
5310 */
d84b3131
FW
5311
5312static struct tick_work __percpu *tick_work_cpu;
5313
5314static void sched_tick_remote(struct work_struct *work)
5315{
5316 struct delayed_work *dwork = to_delayed_work(work);
5317 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5318 int cpu = twork->cpu;
5319 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5320 struct task_struct *curr;
d84b3131 5321 struct rq_flags rf;
d9c0ffca 5322 u64 delta;
b55bd585 5323 int os;
d84b3131
FW
5324
5325 /*
5326 * Handle the tick only if it appears the remote CPU is running in full
5327 * dynticks mode. The check is racy by nature, but missing a tick or
5328 * having one too much is no big deal because the scheduler tick updates
5329 * statistics and checks timeslices in a time-independent way, regardless
5330 * of when exactly it is running.
5331 */
488603b8 5332 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5333 goto out_requeue;
d84b3131 5334
d9c0ffca
FW
5335 rq_lock_irq(rq, &rf);
5336 curr = rq->curr;
488603b8 5337 if (cpu_is_offline(cpu))
d9c0ffca 5338 goto out_unlock;
d84b3131 5339
d9c0ffca 5340 update_rq_clock(rq);
d9c0ffca 5341
488603b8
SW
5342 if (!is_idle_task(curr)) {
5343 /*
5344 * Make sure the next tick runs within a reasonable
5345 * amount of time.
5346 */
5347 delta = rq_clock_task(rq) - curr->se.exec_start;
5348 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5349 }
d9c0ffca
FW
5350 curr->sched_class->task_tick(rq, curr, 0);
5351
ebc0f83c 5352 calc_load_nohz_remote(rq);
d9c0ffca
FW
5353out_unlock:
5354 rq_unlock_irq(rq, &rf);
d9c0ffca 5355out_requeue:
ebc0f83c 5356
d84b3131
FW
5357 /*
5358 * Run the remote tick once per second (1Hz). This arbitrary
5359 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5360 * to keep scheduler internal stats reasonably up to date. But
5361 * first update state to reflect hotplug activity if required.
d84b3131 5362 */
b55bd585
PM
5363 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5364 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5365 if (os == TICK_SCHED_REMOTE_RUNNING)
5366 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5367}
5368
5369static void sched_tick_start(int cpu)
5370{
b55bd585 5371 int os;
d84b3131
FW
5372 struct tick_work *twork;
5373
5374 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5375 return;
5376
5377 WARN_ON_ONCE(!tick_work_cpu);
5378
5379 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5380 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5381 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5382 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5383 twork->cpu = cpu;
5384 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5385 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5386 }
d84b3131
FW
5387}
5388
5389#ifdef CONFIG_HOTPLUG_CPU
5390static void sched_tick_stop(int cpu)
5391{
5392 struct tick_work *twork;
b55bd585 5393 int os;
d84b3131
FW
5394
5395 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5396 return;
5397
5398 WARN_ON_ONCE(!tick_work_cpu);
5399
5400 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5401 /* There cannot be competing actions, but don't rely on stop-machine. */
5402 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5403 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5404 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5405}
5406#endif /* CONFIG_HOTPLUG_CPU */
5407
5408int __init sched_tick_offload_init(void)
5409{
5410 tick_work_cpu = alloc_percpu(struct tick_work);
5411 BUG_ON(!tick_work_cpu);
d84b3131
FW
5412 return 0;
5413}
5414
5415#else /* !CONFIG_NO_HZ_FULL */
5416static inline void sched_tick_start(int cpu) { }
5417static inline void sched_tick_stop(int cpu) { }
265f22a9 5418#endif
1da177e4 5419
c1a280b6 5420#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5421 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5422/*
5423 * If the value passed in is equal to the current preempt count
5424 * then we just disabled preemption. Start timing the latency.
5425 */
5426static inline void preempt_latency_start(int val)
5427{
5428 if (preempt_count() == val) {
5429 unsigned long ip = get_lock_parent_ip();
5430#ifdef CONFIG_DEBUG_PREEMPT
5431 current->preempt_disable_ip = ip;
5432#endif
5433 trace_preempt_off(CALLER_ADDR0, ip);
5434 }
5435}
7e49fcce 5436
edafe3a5 5437void preempt_count_add(int val)
1da177e4 5438{
6cd8a4bb 5439#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5440 /*
5441 * Underflow?
5442 */
9a11b49a
IM
5443 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5444 return;
6cd8a4bb 5445#endif
bdb43806 5446 __preempt_count_add(val);
6cd8a4bb 5447#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5448 /*
5449 * Spinlock count overflowing soon?
5450 */
33859f7f
MOS
5451 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5452 PREEMPT_MASK - 10);
6cd8a4bb 5453#endif
47252cfb 5454 preempt_latency_start(val);
1da177e4 5455}
bdb43806 5456EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5457NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5458
47252cfb
SR
5459/*
5460 * If the value passed in equals to the current preempt count
5461 * then we just enabled preemption. Stop timing the latency.
5462 */
5463static inline void preempt_latency_stop(int val)
5464{
5465 if (preempt_count() == val)
5466 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5467}
5468
edafe3a5 5469void preempt_count_sub(int val)
1da177e4 5470{
6cd8a4bb 5471#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5472 /*
5473 * Underflow?
5474 */
01e3eb82 5475 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5476 return;
1da177e4
LT
5477 /*
5478 * Is the spinlock portion underflowing?
5479 */
9a11b49a
IM
5480 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5481 !(preempt_count() & PREEMPT_MASK)))
5482 return;
6cd8a4bb 5483#endif
9a11b49a 5484
47252cfb 5485 preempt_latency_stop(val);
bdb43806 5486 __preempt_count_sub(val);
1da177e4 5487}
bdb43806 5488EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5489NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5490
47252cfb
SR
5491#else
5492static inline void preempt_latency_start(int val) { }
5493static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5494#endif
5495
59ddbcb2
IM
5496static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5497{
5498#ifdef CONFIG_DEBUG_PREEMPT
5499 return p->preempt_disable_ip;
5500#else
5501 return 0;
5502#endif
5503}
5504
1da177e4 5505/*
dd41f596 5506 * Print scheduling while atomic bug:
1da177e4 5507 */
dd41f596 5508static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5509{
d1c6d149
VN
5510 /* Save this before calling printk(), since that will clobber it */
5511 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5512
664dfa65
DJ
5513 if (oops_in_progress)
5514 return;
5515
3df0fc5b
PZ
5516 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5517 prev->comm, prev->pid, preempt_count());
838225b4 5518
dd41f596 5519 debug_show_held_locks(prev);
e21f5b15 5520 print_modules();
dd41f596
IM
5521 if (irqs_disabled())
5522 print_irqtrace_events(prev);
d1c6d149
VN
5523 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5524 && in_atomic_preempt_off()) {
8f47b187 5525 pr_err("Preemption disabled at:");
2062a4e8 5526 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5527 }
748c7201
DBO
5528 if (panic_on_warn)
5529 panic("scheduling while atomic\n");
5530
6135fc1e 5531 dump_stack();
373d4d09 5532 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5533}
1da177e4 5534
dd41f596
IM
5535/*
5536 * Various schedule()-time debugging checks and statistics:
5537 */
312364f3 5538static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5539{
0d9e2632 5540#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5541 if (task_stack_end_corrupted(prev))
5542 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5543
5544 if (task_scs_end_corrupted(prev))
5545 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5546#endif
b99def8b 5547
312364f3 5548#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5549 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5550 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5551 prev->comm, prev->pid, prev->non_block_count);
5552 dump_stack();
5553 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5554 }
5555#endif
5556
1dc0fffc 5557 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5558 __schedule_bug(prev);
1dc0fffc
PZ
5559 preempt_count_set(PREEMPT_DISABLED);
5560 }
b3fbab05 5561 rcu_sleep_check();
9f68b5b7 5562 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5563
1da177e4
LT
5564 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5565
ae92882e 5566 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5567}
5568
457d1f46
CY
5569static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5570 struct rq_flags *rf)
5571{
5572#ifdef CONFIG_SMP
5573 const struct sched_class *class;
5574 /*
5575 * We must do the balancing pass before put_prev_task(), such
5576 * that when we release the rq->lock the task is in the same
5577 * state as before we took rq->lock.
5578 *
5579 * We can terminate the balance pass as soon as we know there is
5580 * a runnable task of @class priority or higher.
5581 */
5582 for_class_range(class, prev->sched_class, &idle_sched_class) {
5583 if (class->balance(rq, prev, rf))
5584 break;
5585 }
5586#endif
5587
5588 put_prev_task(rq, prev);
5589}
5590
dd41f596
IM
5591/*
5592 * Pick up the highest-prio task:
5593 */
5594static inline struct task_struct *
539f6512 5595__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5596{
49ee5768 5597 const struct sched_class *class;
dd41f596 5598 struct task_struct *p;
1da177e4
LT
5599
5600 /*
0ba87bb2
PZ
5601 * Optimization: we know that if all tasks are in the fair class we can
5602 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5603 * higher scheduling class, because otherwise those lose the
0ba87bb2 5604 * opportunity to pull in more work from other CPUs.
1da177e4 5605 */
aa93cd53 5606 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5607 rq->nr_running == rq->cfs.h_nr_running)) {
5608
5d7d6056 5609 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5610 if (unlikely(p == RETRY_TASK))
67692435 5611 goto restart;
6ccdc84b 5612
1699949d 5613 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5614 if (!p) {
f488e105 5615 put_prev_task(rq, prev);
98c2f700 5616 p = pick_next_task_idle(rq);
f488e105 5617 }
6ccdc84b
PZ
5618
5619 return p;
1da177e4
LT
5620 }
5621
67692435 5622restart:
457d1f46 5623 put_prev_task_balance(rq, prev, rf);
67692435 5624
34f971f6 5625 for_each_class(class) {
98c2f700 5626 p = class->pick_next_task(rq);
67692435 5627 if (p)
dd41f596 5628 return p;
dd41f596 5629 }
34f971f6 5630
bc9ffef3 5631 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5632}
1da177e4 5633
9edeaea1 5634#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5635static inline bool is_task_rq_idle(struct task_struct *t)
5636{
5637 return (task_rq(t)->idle == t);
5638}
5639
5640static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5641{
5642 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5643}
5644
5645static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5646{
5647 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5648 return true;
5649
5650 return a->core_cookie == b->core_cookie;
5651}
5652
bc9ffef3 5653static inline struct task_struct *pick_task(struct rq *rq)
539f6512 5654{
bc9ffef3
PZ
5655 const struct sched_class *class;
5656 struct task_struct *p;
539f6512 5657
bc9ffef3
PZ
5658 for_each_class(class) {
5659 p = class->pick_task(rq);
5660 if (p)
5661 return p;
539f6512
PZ
5662 }
5663
bc9ffef3 5664 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
5665}
5666
c6047c2e
JFG
5667extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5668
539f6512
PZ
5669static struct task_struct *
5670pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5671{
bc9ffef3 5672 struct task_struct *next, *p, *max = NULL;
539f6512 5673 const struct cpumask *smt_mask;
c6047c2e 5674 bool fi_before = false;
4feee7d1 5675 bool core_clock_updated = (rq == rq->core);
bc9ffef3
PZ
5676 unsigned long cookie;
5677 int i, cpu, occ = 0;
5678 struct rq *rq_i;
539f6512 5679 bool need_sync;
539f6512
PZ
5680
5681 if (!sched_core_enabled(rq))
5682 return __pick_next_task(rq, prev, rf);
5683
5684 cpu = cpu_of(rq);
5685
5686 /* Stopper task is switching into idle, no need core-wide selection. */
5687 if (cpu_is_offline(cpu)) {
5688 /*
5689 * Reset core_pick so that we don't enter the fastpath when
5690 * coming online. core_pick would already be migrated to
5691 * another cpu during offline.
5692 */
5693 rq->core_pick = NULL;
5694 return __pick_next_task(rq, prev, rf);
5695 }
5696
5697 /*
5698 * If there were no {en,de}queues since we picked (IOW, the task
5699 * pointers are all still valid), and we haven't scheduled the last
5700 * pick yet, do so now.
5701 *
5702 * rq->core_pick can be NULL if no selection was made for a CPU because
5703 * it was either offline or went offline during a sibling's core-wide
5704 * selection. In this case, do a core-wide selection.
5705 */
5706 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5707 rq->core->core_pick_seq != rq->core_sched_seq &&
5708 rq->core_pick) {
5709 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5710
5711 next = rq->core_pick;
5712 if (next != prev) {
5713 put_prev_task(rq, prev);
5714 set_next_task(rq, next);
5715 }
5716
5717 rq->core_pick = NULL;
5718 return next;
5719 }
5720
5721 put_prev_task_balance(rq, prev, rf);
5722
5723 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5724 need_sync = !!rq->core->core_cookie;
5725
5726 /* reset state */
5727 rq->core->core_cookie = 0UL;
4feee7d1
JD
5728 if (rq->core->core_forceidle_count) {
5729 if (!core_clock_updated) {
5730 update_rq_clock(rq->core);
5731 core_clock_updated = true;
5732 }
5733 sched_core_account_forceidle(rq);
5734 /* reset after accounting force idle */
5735 rq->core->core_forceidle_start = 0;
5736 rq->core->core_forceidle_count = 0;
5737 rq->core->core_forceidle_occupation = 0;
7afbba11
JFG
5738 need_sync = true;
5739 fi_before = true;
7afbba11 5740 }
539f6512
PZ
5741
5742 /*
5743 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5744 *
5745 * @task_seq guards the task state ({en,de}queues)
5746 * @pick_seq is the @task_seq we did a selection on
5747 * @sched_seq is the @pick_seq we scheduled
5748 *
5749 * However, preemptions can cause multiple picks on the same task set.
5750 * 'Fix' this by also increasing @task_seq for every pick.
5751 */
5752 rq->core->core_task_seq++;
539f6512 5753
7afbba11
JFG
5754 /*
5755 * Optimize for common case where this CPU has no cookies
5756 * and there are no cookied tasks running on siblings.
5757 */
5758 if (!need_sync) {
bc9ffef3 5759 next = pick_task(rq);
7afbba11
JFG
5760 if (!next->core_cookie) {
5761 rq->core_pick = NULL;
c6047c2e
JFG
5762 /*
5763 * For robustness, update the min_vruntime_fi for
5764 * unconstrained picks as well.
5765 */
5766 WARN_ON_ONCE(fi_before);
5767 task_vruntime_update(rq, next, false);
7afbba11
JFG
5768 goto done;
5769 }
8039e96f 5770 }
7afbba11 5771
bc9ffef3
PZ
5772 /*
5773 * For each thread: do the regular task pick and find the max prio task
5774 * amongst them.
5775 *
5776 * Tie-break prio towards the current CPU
5777 */
5778 for_each_cpu_wrap(i, smt_mask, cpu) {
5779 rq_i = cpu_rq(i);
539f6512 5780
4feee7d1
JD
5781 /*
5782 * Current cpu always has its clock updated on entrance to
5783 * pick_next_task(). If the current cpu is not the core,
5784 * the core may also have been updated above.
5785 */
5786 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
539f6512 5787 update_rq_clock(rq_i);
bc9ffef3
PZ
5788
5789 p = rq_i->core_pick = pick_task(rq_i);
5790 if (!max || prio_less(max, p, fi_before))
5791 max = p;
539f6512
PZ
5792 }
5793
bc9ffef3
PZ
5794 cookie = rq->core->core_cookie = max->core_cookie;
5795
539f6512 5796 /*
bc9ffef3
PZ
5797 * For each thread: try and find a runnable task that matches @max or
5798 * force idle.
539f6512 5799 */
bc9ffef3
PZ
5800 for_each_cpu(i, smt_mask) {
5801 rq_i = cpu_rq(i);
5802 p = rq_i->core_pick;
539f6512 5803
bc9ffef3
PZ
5804 if (!cookie_equals(p, cookie)) {
5805 p = NULL;
5806 if (cookie)
5807 p = sched_core_find(rq_i, cookie);
7afbba11 5808 if (!p)
bc9ffef3
PZ
5809 p = idle_sched_class.pick_task(rq_i);
5810 }
539f6512 5811
bc9ffef3 5812 rq_i->core_pick = p;
d2dfa17b 5813
bc9ffef3
PZ
5814 if (p == rq_i->idle) {
5815 if (rq_i->nr_running) {
4feee7d1 5816 rq->core->core_forceidle_count++;
c6047c2e
JFG
5817 if (!fi_before)
5818 rq->core->core_forceidle_seq++;
5819 }
bc9ffef3
PZ
5820 } else {
5821 occ++;
539f6512 5822 }
539f6512
PZ
5823 }
5824
4feee7d1 5825 if (schedstat_enabled() && rq->core->core_forceidle_count) {
b171501f 5826 rq->core->core_forceidle_start = rq_clock(rq->core);
4feee7d1
JD
5827 rq->core->core_forceidle_occupation = occ;
5828 }
5829
539f6512
PZ
5830 rq->core->core_pick_seq = rq->core->core_task_seq;
5831 next = rq->core_pick;
5832 rq->core_sched_seq = rq->core->core_pick_seq;
5833
5834 /* Something should have been selected for current CPU */
5835 WARN_ON_ONCE(!next);
5836
5837 /*
5838 * Reschedule siblings
5839 *
5840 * NOTE: L1TF -- at this point we're no longer running the old task and
5841 * sending an IPI (below) ensures the sibling will no longer be running
5842 * their task. This ensures there is no inter-sibling overlap between
5843 * non-matching user state.
5844 */
5845 for_each_cpu(i, smt_mask) {
bc9ffef3 5846 rq_i = cpu_rq(i);
539f6512
PZ
5847
5848 /*
5849 * An online sibling might have gone offline before a task
5850 * could be picked for it, or it might be offline but later
5851 * happen to come online, but its too late and nothing was
5852 * picked for it. That's Ok - it will pick tasks for itself,
5853 * so ignore it.
5854 */
5855 if (!rq_i->core_pick)
5856 continue;
5857
c6047c2e
JFG
5858 /*
5859 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5860 * fi_before fi update?
5861 * 0 0 1
5862 * 0 1 1
5863 * 1 0 1
5864 * 1 1 0
5865 */
4feee7d1
JD
5866 if (!(fi_before && rq->core->core_forceidle_count))
5867 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
539f6512 5868
d2dfa17b
PZ
5869 rq_i->core_pick->core_occupation = occ;
5870
539f6512
PZ
5871 if (i == cpu) {
5872 rq_i->core_pick = NULL;
5873 continue;
5874 }
5875
5876 /* Did we break L1TF mitigation requirements? */
5877 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5878
5879 if (rq_i->curr == rq_i->core_pick) {
5880 rq_i->core_pick = NULL;
5881 continue;
5882 }
5883
5884 resched_curr(rq_i);
5885 }
5886
5887done:
5888 set_next_task(rq, next);
5889 return next;
5890}
9edeaea1 5891
d2dfa17b
PZ
5892static bool try_steal_cookie(int this, int that)
5893{
5894 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5895 struct task_struct *p;
5896 unsigned long cookie;
5897 bool success = false;
5898
5899 local_irq_disable();
5900 double_rq_lock(dst, src);
5901
5902 cookie = dst->core->core_cookie;
5903 if (!cookie)
5904 goto unlock;
5905
5906 if (dst->curr != dst->idle)
5907 goto unlock;
5908
5909 p = sched_core_find(src, cookie);
5910 if (p == src->idle)
5911 goto unlock;
5912
5913 do {
5914 if (p == src->core_pick || p == src->curr)
5915 goto next;
5916
5917 if (!cpumask_test_cpu(this, &p->cpus_mask))
5918 goto next;
5919
5920 if (p->core_occupation > dst->idle->core_occupation)
5921 goto next;
5922
d2dfa17b
PZ
5923 deactivate_task(src, p, 0);
5924 set_task_cpu(p, this);
5925 activate_task(dst, p, 0);
d2dfa17b
PZ
5926
5927 resched_curr(dst);
5928
5929 success = true;
5930 break;
5931
5932next:
5933 p = sched_core_next(p, cookie);
5934 } while (p);
5935
5936unlock:
5937 double_rq_unlock(dst, src);
5938 local_irq_enable();
5939
5940 return success;
5941}
5942
5943static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5944{
5945 int i;
5946
5947 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5948 if (i == cpu)
5949 continue;
5950
5951 if (need_resched())
5952 break;
5953
5954 if (try_steal_cookie(cpu, i))
5955 return true;
5956 }
5957
5958 return false;
5959}
5960
5961static void sched_core_balance(struct rq *rq)
5962{
5963 struct sched_domain *sd;
5964 int cpu = cpu_of(rq);
5965
5966 preempt_disable();
5967 rcu_read_lock();
5968 raw_spin_rq_unlock_irq(rq);
5969 for_each_domain(cpu, sd) {
5970 if (need_resched())
5971 break;
5972
5973 if (steal_cookie_task(cpu, sd))
5974 break;
5975 }
5976 raw_spin_rq_lock_irq(rq);
5977 rcu_read_unlock();
5978 preempt_enable();
5979}
5980
5981static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5982
5983void queue_core_balance(struct rq *rq)
5984{
5985 if (!sched_core_enabled(rq))
5986 return;
5987
5988 if (!rq->core->core_cookie)
5989 return;
5990
5991 if (!rq->nr_running) /* not forced idle */
5992 return;
5993
5994 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5995}
5996
3c474b32 5997static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
5998{
5999 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
6000 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6001 unsigned long flags;
6002 int t;
9edeaea1 6003
3c474b32 6004 sched_core_lock(cpu, &flags);
9edeaea1 6005
3c474b32
PZ
6006 WARN_ON_ONCE(rq->core != rq);
6007
6008 /* if we're the first, we'll be our own leader */
6009 if (cpumask_weight(smt_mask) == 1)
6010 goto unlock;
6011
6012 /* find the leader */
6013 for_each_cpu(t, smt_mask) {
6014 if (t == cpu)
6015 continue;
6016 rq = cpu_rq(t);
6017 if (rq->core == rq) {
6018 core_rq = rq;
6019 break;
9edeaea1 6020 }
3c474b32 6021 }
9edeaea1 6022
3c474b32
PZ
6023 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6024 goto unlock;
9edeaea1 6025
3c474b32
PZ
6026 /* install and validate core_rq */
6027 for_each_cpu(t, smt_mask) {
6028 rq = cpu_rq(t);
9edeaea1 6029
3c474b32 6030 if (t == cpu)
9edeaea1 6031 rq->core = core_rq;
3c474b32
PZ
6032
6033 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 6034 }
3c474b32
PZ
6035
6036unlock:
6037 sched_core_unlock(cpu, &flags);
9edeaea1 6038}
3c474b32
PZ
6039
6040static void sched_core_cpu_deactivate(unsigned int cpu)
6041{
6042 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6043 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6044 unsigned long flags;
6045 int t;
6046
6047 sched_core_lock(cpu, &flags);
6048
6049 /* if we're the last man standing, nothing to do */
6050 if (cpumask_weight(smt_mask) == 1) {
6051 WARN_ON_ONCE(rq->core != rq);
6052 goto unlock;
6053 }
6054
6055 /* if we're not the leader, nothing to do */
6056 if (rq->core != rq)
6057 goto unlock;
6058
6059 /* find a new leader */
6060 for_each_cpu(t, smt_mask) {
6061 if (t == cpu)
6062 continue;
6063 core_rq = cpu_rq(t);
6064 break;
6065 }
6066
6067 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6068 goto unlock;
6069
6070 /* copy the shared state to the new leader */
4feee7d1
JD
6071 core_rq->core_task_seq = rq->core_task_seq;
6072 core_rq->core_pick_seq = rq->core_pick_seq;
6073 core_rq->core_cookie = rq->core_cookie;
6074 core_rq->core_forceidle_count = rq->core_forceidle_count;
6075 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6076 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6077
6078 /*
6079 * Accounting edge for forced idle is handled in pick_next_task().
6080 * Don't need another one here, since the hotplug thread shouldn't
6081 * have a cookie.
6082 */
6083 core_rq->core_forceidle_start = 0;
3c474b32
PZ
6084
6085 /* install new leader */
6086 for_each_cpu(t, smt_mask) {
6087 rq = cpu_rq(t);
6088 rq->core = core_rq;
6089 }
6090
6091unlock:
6092 sched_core_unlock(cpu, &flags);
6093}
6094
6095static inline void sched_core_cpu_dying(unsigned int cpu)
6096{
6097 struct rq *rq = cpu_rq(cpu);
6098
6099 if (rq->core != rq)
6100 rq->core = rq;
6101}
6102
9edeaea1
PZ
6103#else /* !CONFIG_SCHED_CORE */
6104
6105static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6106static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6107static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6108
539f6512
PZ
6109static struct task_struct *
6110pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6111{
6112 return __pick_next_task(rq, prev, rf);
6113}
6114
9edeaea1
PZ
6115#endif /* CONFIG_SCHED_CORE */
6116
b4bfa3fc
TG
6117/*
6118 * Constants for the sched_mode argument of __schedule().
6119 *
6120 * The mode argument allows RT enabled kernels to differentiate a
6121 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6122 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6123 * optimize the AND operation out and just check for zero.
6124 */
6125#define SM_NONE 0x0
6126#define SM_PREEMPT 0x1
6991436c
TG
6127#define SM_RTLOCK_WAIT 0x2
6128
6129#ifndef CONFIG_PREEMPT_RT
6130# define SM_MASK_PREEMPT (~0U)
6131#else
6132# define SM_MASK_PREEMPT SM_PREEMPT
6133#endif
b4bfa3fc 6134
dd41f596 6135/*
c259e01a 6136 * __schedule() is the main scheduler function.
edde96ea
PE
6137 *
6138 * The main means of driving the scheduler and thus entering this function are:
6139 *
6140 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6141 *
6142 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6143 * paths. For example, see arch/x86/entry_64.S.
6144 *
6145 * To drive preemption between tasks, the scheduler sets the flag in timer
6146 * interrupt handler scheduler_tick().
6147 *
6148 * 3. Wakeups don't really cause entry into schedule(). They add a
6149 * task to the run-queue and that's it.
6150 *
6151 * Now, if the new task added to the run-queue preempts the current
6152 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6153 * called on the nearest possible occasion:
6154 *
c1a280b6 6155 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6156 *
6157 * - in syscall or exception context, at the next outmost
6158 * preempt_enable(). (this might be as soon as the wake_up()'s
6159 * spin_unlock()!)
6160 *
6161 * - in IRQ context, return from interrupt-handler to
6162 * preemptible context
6163 *
c1a280b6 6164 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6165 * then at the next:
6166 *
6167 * - cond_resched() call
6168 * - explicit schedule() call
6169 * - return from syscall or exception to user-space
6170 * - return from interrupt-handler to user-space
bfd9b2b5 6171 *
b30f0e3f 6172 * WARNING: must be called with preemption disabled!
dd41f596 6173 */
b4bfa3fc 6174static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6175{
6176 struct task_struct *prev, *next;
67ca7bde 6177 unsigned long *switch_count;
dbfb089d 6178 unsigned long prev_state;
d8ac8971 6179 struct rq_flags rf;
dd41f596 6180 struct rq *rq;
31656519 6181 int cpu;
dd41f596 6182
dd41f596
IM
6183 cpu = smp_processor_id();
6184 rq = cpu_rq(cpu);
dd41f596 6185 prev = rq->curr;
dd41f596 6186
b4bfa3fc 6187 schedule_debug(prev, !!sched_mode);
1da177e4 6188
e0ee463c 6189 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6190 hrtick_clear(rq);
8f4d37ec 6191
46a5d164 6192 local_irq_disable();
b4bfa3fc 6193 rcu_note_context_switch(!!sched_mode);
46a5d164 6194
e0acd0a6
ON
6195 /*
6196 * Make sure that signal_pending_state()->signal_pending() below
6197 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6198 * done by the caller to avoid the race with signal_wake_up():
6199 *
6200 * __set_current_state(@state) signal_wake_up()
6201 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6202 * wake_up_state(p, state)
6203 * LOCK rq->lock LOCK p->pi_state
6204 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6205 * if (signal_pending_state()) if (p->state & @state)
306e0604 6206 *
dbfb089d 6207 * Also, the membarrier system call requires a full memory barrier
306e0604 6208 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6209 */
8a8c69c3 6210 rq_lock(rq, &rf);
d89e588c 6211 smp_mb__after_spinlock();
1da177e4 6212
d1ccc66d
IM
6213 /* Promote REQ to ACT */
6214 rq->clock_update_flags <<= 1;
bce4dc80 6215 update_rq_clock(rq);
9edfbfed 6216
246d86b5 6217 switch_count = &prev->nivcsw;
d136122f 6218
dbfb089d 6219 /*
d136122f
PZ
6220 * We must load prev->state once (task_struct::state is volatile), such
6221 * that:
6222 *
6223 * - we form a control dependency vs deactivate_task() below.
6224 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 6225 */
2f064a59 6226 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6227 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6228 if (signal_pending_state(prev_state, prev)) {
2f064a59 6229 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6230 } else {
dbfb089d
PZ
6231 prev->sched_contributes_to_load =
6232 (prev_state & TASK_UNINTERRUPTIBLE) &&
6233 !(prev_state & TASK_NOLOAD) &&
6234 !(prev->flags & PF_FROZEN);
6235
6236 if (prev->sched_contributes_to_load)
6237 rq->nr_uninterruptible++;
6238
6239 /*
6240 * __schedule() ttwu()
d136122f
PZ
6241 * prev_state = prev->state; if (p->on_rq && ...)
6242 * if (prev_state) goto out;
6243 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6244 * p->state = TASK_WAKING
6245 *
6246 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6247 *
6248 * After this, schedule() must not care about p->state any more.
6249 */
bce4dc80 6250 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6251
e33a9bba
TH
6252 if (prev->in_iowait) {
6253 atomic_inc(&rq->nr_iowait);
6254 delayacct_blkio_start();
6255 }
21aa9af0 6256 }
dd41f596 6257 switch_count = &prev->nvcsw;
1da177e4
LT
6258 }
6259
d8ac8971 6260 next = pick_next_task(rq, prev, &rf);
f26f9aff 6261 clear_tsk_need_resched(prev);
f27dde8d 6262 clear_preempt_need_resched();
c006fac5
PT
6263#ifdef CONFIG_SCHED_DEBUG
6264 rq->last_seen_need_resched_ns = 0;
6265#endif
1da177e4 6266
1da177e4 6267 if (likely(prev != next)) {
1da177e4 6268 rq->nr_switches++;
5311a98f
EB
6269 /*
6270 * RCU users of rcu_dereference(rq->curr) may not see
6271 * changes to task_struct made by pick_next_task().
6272 */
6273 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6274 /*
6275 * The membarrier system call requires each architecture
6276 * to have a full memory barrier after updating
306e0604
MD
6277 * rq->curr, before returning to user-space.
6278 *
6279 * Here are the schemes providing that barrier on the
6280 * various architectures:
6281 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6282 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6283 * - finish_lock_switch() for weakly-ordered
6284 * architectures where spin_unlock is a full barrier,
6285 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6286 * is a RELEASE barrier),
22e4ebb9 6287 */
1da177e4
LT
6288 ++*switch_count;
6289
af449901 6290 migrate_disable_switch(rq, prev);
b05e75d6
JW
6291 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6292
b4bfa3fc 6293 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
d1ccc66d
IM
6294
6295 /* Also unlocks the rq: */
6296 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6297 } else {
cb42c9a3 6298 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6299
565790d2
PZ
6300 rq_unpin_lock(rq, &rf);
6301 __balance_callbacks(rq);
5cb9eaa3 6302 raw_spin_rq_unlock_irq(rq);
565790d2 6303 }
1da177e4 6304}
c259e01a 6305
9af6528e
PZ
6306void __noreturn do_task_dead(void)
6307{
d1ccc66d 6308 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6309 set_special_state(TASK_DEAD);
d1ccc66d
IM
6310
6311 /* Tell freezer to ignore us: */
6312 current->flags |= PF_NOFREEZE;
6313
b4bfa3fc 6314 __schedule(SM_NONE);
9af6528e 6315 BUG();
d1ccc66d
IM
6316
6317 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6318 for (;;)
d1ccc66d 6319 cpu_relax();
9af6528e
PZ
6320}
6321
9c40cef2
TG
6322static inline void sched_submit_work(struct task_struct *tsk)
6323{
c1cecf88
SAS
6324 unsigned int task_flags;
6325
b03fbd4f 6326 if (task_is_running(tsk))
9c40cef2 6327 return;
6d25be57 6328
c1cecf88 6329 task_flags = tsk->flags;
6d25be57 6330 /*
b945efcd
TG
6331 * If a worker goes to sleep, notify and ask workqueue whether it
6332 * wants to wake up a task to maintain concurrency.
6d25be57 6333 */
c1cecf88 6334 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
c1cecf88 6335 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6336 wq_worker_sleeping(tsk);
6337 else
6338 io_wq_worker_sleeping(tsk);
6d25be57
TG
6339 }
6340
b0fdc013
SAS
6341 if (tsk_is_pi_blocked(tsk))
6342 return;
6343
9c40cef2
TG
6344 /*
6345 * If we are going to sleep and we have plugged IO queued,
6346 * make sure to submit it to avoid deadlocks.
6347 */
6348 if (blk_needs_flush_plug(tsk))
008f75a2 6349 blk_flush_plug(tsk->plug, true);
9c40cef2
TG
6350}
6351
6d25be57
TG
6352static void sched_update_worker(struct task_struct *tsk)
6353{
771b53d0
JA
6354 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6355 if (tsk->flags & PF_WQ_WORKER)
6356 wq_worker_running(tsk);
6357 else
6358 io_wq_worker_running(tsk);
6359 }
6d25be57
TG
6360}
6361
722a9f92 6362asmlinkage __visible void __sched schedule(void)
c259e01a 6363{
9c40cef2
TG
6364 struct task_struct *tsk = current;
6365
6366 sched_submit_work(tsk);
bfd9b2b5 6367 do {
b30f0e3f 6368 preempt_disable();
b4bfa3fc 6369 __schedule(SM_NONE);
b30f0e3f 6370 sched_preempt_enable_no_resched();
bfd9b2b5 6371 } while (need_resched());
6d25be57 6372 sched_update_worker(tsk);
c259e01a 6373}
1da177e4
LT
6374EXPORT_SYMBOL(schedule);
6375
8663effb
SRV
6376/*
6377 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6378 * state (have scheduled out non-voluntarily) by making sure that all
6379 * tasks have either left the run queue or have gone into user space.
6380 * As idle tasks do not do either, they must not ever be preempted
6381 * (schedule out non-voluntarily).
6382 *
6383 * schedule_idle() is similar to schedule_preempt_disable() except that it
6384 * never enables preemption because it does not call sched_submit_work().
6385 */
6386void __sched schedule_idle(void)
6387{
6388 /*
6389 * As this skips calling sched_submit_work(), which the idle task does
6390 * regardless because that function is a nop when the task is in a
6391 * TASK_RUNNING state, make sure this isn't used someplace that the
6392 * current task can be in any other state. Note, idle is always in the
6393 * TASK_RUNNING state.
6394 */
2f064a59 6395 WARN_ON_ONCE(current->__state);
8663effb 6396 do {
b4bfa3fc 6397 __schedule(SM_NONE);
8663effb
SRV
6398 } while (need_resched());
6399}
6400
6775de49 6401#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6402asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6403{
6404 /*
6405 * If we come here after a random call to set_need_resched(),
6406 * or we have been woken up remotely but the IPI has not yet arrived,
6407 * we haven't yet exited the RCU idle mode. Do it here manually until
6408 * we find a better solution.
7cc78f8f
AL
6409 *
6410 * NB: There are buggy callers of this function. Ideally we
c467ea76 6411 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6412 * too frequently to make sense yet.
20ab65e3 6413 */
7cc78f8f 6414 enum ctx_state prev_state = exception_enter();
20ab65e3 6415 schedule();
7cc78f8f 6416 exception_exit(prev_state);
20ab65e3
FW
6417}
6418#endif
6419
c5491ea7
TG
6420/**
6421 * schedule_preempt_disabled - called with preemption disabled
6422 *
6423 * Returns with preemption disabled. Note: preempt_count must be 1
6424 */
6425void __sched schedule_preempt_disabled(void)
6426{
ba74c144 6427 sched_preempt_enable_no_resched();
c5491ea7
TG
6428 schedule();
6429 preempt_disable();
6430}
6431
6991436c
TG
6432#ifdef CONFIG_PREEMPT_RT
6433void __sched notrace schedule_rtlock(void)
6434{
6435 do {
6436 preempt_disable();
6437 __schedule(SM_RTLOCK_WAIT);
6438 sched_preempt_enable_no_resched();
6439 } while (need_resched());
6440}
6441NOKPROBE_SYMBOL(schedule_rtlock);
6442#endif
6443
06b1f808 6444static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6445{
6446 do {
47252cfb
SR
6447 /*
6448 * Because the function tracer can trace preempt_count_sub()
6449 * and it also uses preempt_enable/disable_notrace(), if
6450 * NEED_RESCHED is set, the preempt_enable_notrace() called
6451 * by the function tracer will call this function again and
6452 * cause infinite recursion.
6453 *
6454 * Preemption must be disabled here before the function
6455 * tracer can trace. Break up preempt_disable() into two
6456 * calls. One to disable preemption without fear of being
6457 * traced. The other to still record the preemption latency,
6458 * which can also be traced by the function tracer.
6459 */
499d7955 6460 preempt_disable_notrace();
47252cfb 6461 preempt_latency_start(1);
b4bfa3fc 6462 __schedule(SM_PREEMPT);
47252cfb 6463 preempt_latency_stop(1);
499d7955 6464 preempt_enable_no_resched_notrace();
a18b5d01
FW
6465
6466 /*
6467 * Check again in case we missed a preemption opportunity
6468 * between schedule and now.
6469 */
a18b5d01
FW
6470 } while (need_resched());
6471}
6472
c1a280b6 6473#ifdef CONFIG_PREEMPTION
1da177e4 6474/*
a49b4f40
VS
6475 * This is the entry point to schedule() from in-kernel preemption
6476 * off of preempt_enable.
1da177e4 6477 */
722a9f92 6478asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6479{
1da177e4
LT
6480 /*
6481 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6482 * we do not want to preempt the current task. Just return..
1da177e4 6483 */
fbb00b56 6484 if (likely(!preemptible()))
1da177e4
LT
6485 return;
6486
a18b5d01 6487 preempt_schedule_common();
1da177e4 6488}
376e2424 6489NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6490EXPORT_SYMBOL(preempt_schedule);
009f60e2 6491
2c9a98d3
PZI
6492#ifdef CONFIG_PREEMPT_DYNAMIC
6493DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6494EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6495#endif
6496
6497
009f60e2 6498/**
4eaca0a8 6499 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6500 *
6501 * The tracing infrastructure uses preempt_enable_notrace to prevent
6502 * recursion and tracing preempt enabling caused by the tracing
6503 * infrastructure itself. But as tracing can happen in areas coming
6504 * from userspace or just about to enter userspace, a preempt enable
6505 * can occur before user_exit() is called. This will cause the scheduler
6506 * to be called when the system is still in usermode.
6507 *
6508 * To prevent this, the preempt_enable_notrace will use this function
6509 * instead of preempt_schedule() to exit user context if needed before
6510 * calling the scheduler.
6511 */
4eaca0a8 6512asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6513{
6514 enum ctx_state prev_ctx;
6515
6516 if (likely(!preemptible()))
6517 return;
6518
6519 do {
47252cfb
SR
6520 /*
6521 * Because the function tracer can trace preempt_count_sub()
6522 * and it also uses preempt_enable/disable_notrace(), if
6523 * NEED_RESCHED is set, the preempt_enable_notrace() called
6524 * by the function tracer will call this function again and
6525 * cause infinite recursion.
6526 *
6527 * Preemption must be disabled here before the function
6528 * tracer can trace. Break up preempt_disable() into two
6529 * calls. One to disable preemption without fear of being
6530 * traced. The other to still record the preemption latency,
6531 * which can also be traced by the function tracer.
6532 */
3d8f74dd 6533 preempt_disable_notrace();
47252cfb 6534 preempt_latency_start(1);
009f60e2
ON
6535 /*
6536 * Needs preempt disabled in case user_exit() is traced
6537 * and the tracer calls preempt_enable_notrace() causing
6538 * an infinite recursion.
6539 */
6540 prev_ctx = exception_enter();
b4bfa3fc 6541 __schedule(SM_PREEMPT);
009f60e2
ON
6542 exception_exit(prev_ctx);
6543
47252cfb 6544 preempt_latency_stop(1);
3d8f74dd 6545 preempt_enable_no_resched_notrace();
009f60e2
ON
6546 } while (need_resched());
6547}
4eaca0a8 6548EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6549
2c9a98d3
PZI
6550#ifdef CONFIG_PREEMPT_DYNAMIC
6551DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6552EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6553#endif
6554
c1a280b6 6555#endif /* CONFIG_PREEMPTION */
1da177e4 6556
826bfeb3
PZI
6557#ifdef CONFIG_PREEMPT_DYNAMIC
6558
6559#include <linux/entry-common.h>
6560
6561/*
6562 * SC:cond_resched
6563 * SC:might_resched
6564 * SC:preempt_schedule
6565 * SC:preempt_schedule_notrace
6566 * SC:irqentry_exit_cond_resched
6567 *
6568 *
6569 * NONE:
6570 * cond_resched <- __cond_resched
6571 * might_resched <- RET0
6572 * preempt_schedule <- NOP
6573 * preempt_schedule_notrace <- NOP
6574 * irqentry_exit_cond_resched <- NOP
6575 *
6576 * VOLUNTARY:
6577 * cond_resched <- __cond_resched
6578 * might_resched <- __cond_resched
6579 * preempt_schedule <- NOP
6580 * preempt_schedule_notrace <- NOP
6581 * irqentry_exit_cond_resched <- NOP
6582 *
6583 * FULL:
6584 * cond_resched <- RET0
6585 * might_resched <- RET0
6586 * preempt_schedule <- preempt_schedule
6587 * preempt_schedule_notrace <- preempt_schedule_notrace
6588 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6589 */
e59e10f8
PZ
6590
6591enum {
c597bfdd
FW
6592 preempt_dynamic_undefined = -1,
6593 preempt_dynamic_none,
e59e10f8
PZ
6594 preempt_dynamic_voluntary,
6595 preempt_dynamic_full,
6596};
6597
c597bfdd 6598int preempt_dynamic_mode = preempt_dynamic_undefined;
e59e10f8 6599
1011dcce 6600int sched_dynamic_mode(const char *str)
826bfeb3 6601{
e59e10f8 6602 if (!strcmp(str, "none"))
7e1b2eb7 6603 return preempt_dynamic_none;
e59e10f8
PZ
6604
6605 if (!strcmp(str, "voluntary"))
7e1b2eb7 6606 return preempt_dynamic_voluntary;
e59e10f8
PZ
6607
6608 if (!strcmp(str, "full"))
7e1b2eb7 6609 return preempt_dynamic_full;
e59e10f8 6610
c4681f3f 6611 return -EINVAL;
e59e10f8
PZ
6612}
6613
1011dcce 6614void sched_dynamic_update(int mode)
e59e10f8
PZ
6615{
6616 /*
6617 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6618 * the ZERO state, which is invalid.
6619 */
6620 static_call_update(cond_resched, __cond_resched);
6621 static_call_update(might_resched, __cond_resched);
6622 static_call_update(preempt_schedule, __preempt_schedule_func);
6623 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6624 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6625
6626 switch (mode) {
6627 case preempt_dynamic_none:
826bfeb3 6628 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6629 static_call_update(might_resched, (void *)&__static_call_return0);
6630 static_call_update(preempt_schedule, NULL);
6631 static_call_update(preempt_schedule_notrace, NULL);
6632 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6633 pr_info("Dynamic Preempt: none\n");
6634 break;
6635
6636 case preempt_dynamic_voluntary:
826bfeb3
PZI
6637 static_call_update(cond_resched, __cond_resched);
6638 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6639 static_call_update(preempt_schedule, NULL);
6640 static_call_update(preempt_schedule_notrace, NULL);
6641 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6642 pr_info("Dynamic Preempt: voluntary\n");
6643 break;
6644
6645 case preempt_dynamic_full:
9432bbd9
PZ
6646 static_call_update(cond_resched, (void *)&__static_call_return0);
6647 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6648 static_call_update(preempt_schedule, __preempt_schedule_func);
6649 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6650 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6651 pr_info("Dynamic Preempt: full\n");
6652 break;
6653 }
6654
6655 preempt_dynamic_mode = mode;
6656}
6657
6658static int __init setup_preempt_mode(char *str)
6659{
6660 int mode = sched_dynamic_mode(str);
6661 if (mode < 0) {
6662 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
9ed20baf 6663 return 0;
826bfeb3 6664 }
e59e10f8
PZ
6665
6666 sched_dynamic_update(mode);
9ed20baf 6667 return 1;
826bfeb3
PZI
6668}
6669__setup("preempt=", setup_preempt_mode);
6670
c597bfdd
FW
6671static void __init preempt_dynamic_init(void)
6672{
6673 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
a8b76910 6674 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
c597bfdd 6675 sched_dynamic_update(preempt_dynamic_none);
a8b76910 6676 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
c597bfdd
FW
6677 sched_dynamic_update(preempt_dynamic_voluntary);
6678 } else {
6679 /* Default static call setting, nothing to do */
a8b76910 6680 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
c597bfdd
FW
6681 preempt_dynamic_mode = preempt_dynamic_full;
6682 pr_info("Dynamic Preempt: full\n");
6683 }
6684 }
6685}
6686
6687#else /* !CONFIG_PREEMPT_DYNAMIC */
6688
6689static inline void preempt_dynamic_init(void) { }
6690
6691#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
826bfeb3 6692
1da177e4 6693/*
a49b4f40 6694 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6695 * off of irq context.
6696 * Note, that this is called and return with irqs disabled. This will
6697 * protect us against recursive calling from irq.
6698 */
722a9f92 6699asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6700{
b22366cd 6701 enum ctx_state prev_state;
6478d880 6702
2ed6e34f 6703 /* Catch callers which need to be fixed */
f27dde8d 6704 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6705
b22366cd
FW
6706 prev_state = exception_enter();
6707
3a5c359a 6708 do {
3d8f74dd 6709 preempt_disable();
3a5c359a 6710 local_irq_enable();
b4bfa3fc 6711 __schedule(SM_PREEMPT);
3a5c359a 6712 local_irq_disable();
3d8f74dd 6713 sched_preempt_enable_no_resched();
5ed0cec0 6714 } while (need_resched());
b22366cd
FW
6715
6716 exception_exit(prev_state);
1da177e4
LT
6717}
6718
ac6424b9 6719int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6720 void *key)
1da177e4 6721{
062d3f95 6722 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6723 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6724}
1da177e4
LT
6725EXPORT_SYMBOL(default_wake_function);
6726
f558c2b8
PZ
6727static void __setscheduler_prio(struct task_struct *p, int prio)
6728{
6729 if (dl_prio(prio))
6730 p->sched_class = &dl_sched_class;
6731 else if (rt_prio(prio))
6732 p->sched_class = &rt_sched_class;
6733 else
6734 p->sched_class = &fair_sched_class;
6735
6736 p->prio = prio;
6737}
6738
b29739f9
IM
6739#ifdef CONFIG_RT_MUTEXES
6740
acd58620
PZ
6741static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6742{
6743 if (pi_task)
6744 prio = min(prio, pi_task->prio);
6745
6746 return prio;
6747}
6748
6749static inline int rt_effective_prio(struct task_struct *p, int prio)
6750{
6751 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6752
6753 return __rt_effective_prio(pi_task, prio);
6754}
6755
b29739f9
IM
6756/*
6757 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6758 * @p: task to boost
6759 * @pi_task: donor task
b29739f9
IM
6760 *
6761 * This function changes the 'effective' priority of a task. It does
6762 * not touch ->normal_prio like __setscheduler().
6763 *
c365c292
TG
6764 * Used by the rt_mutex code to implement priority inheritance
6765 * logic. Call site only calls if the priority of the task changed.
b29739f9 6766 */
acd58620 6767void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6768{
acd58620 6769 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6770 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6771 const struct sched_class *prev_class;
eb580751
PZ
6772 struct rq_flags rf;
6773 struct rq *rq;
b29739f9 6774
acd58620
PZ
6775 /* XXX used to be waiter->prio, not waiter->task->prio */
6776 prio = __rt_effective_prio(pi_task, p->normal_prio);
6777
6778 /*
6779 * If nothing changed; bail early.
6780 */
6781 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6782 return;
b29739f9 6783
eb580751 6784 rq = __task_rq_lock(p, &rf);
80f5c1b8 6785 update_rq_clock(rq);
acd58620
PZ
6786 /*
6787 * Set under pi_lock && rq->lock, such that the value can be used under
6788 * either lock.
6789 *
6790 * Note that there is loads of tricky to make this pointer cache work
6791 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6792 * ensure a task is de-boosted (pi_task is set to NULL) before the
6793 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6794 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6795 */
6796 p->pi_top_task = pi_task;
6797
6798 /*
6799 * For FIFO/RR we only need to set prio, if that matches we're done.
6800 */
6801 if (prio == p->prio && !dl_prio(prio))
6802 goto out_unlock;
b29739f9 6803
1c4dd99b
TG
6804 /*
6805 * Idle task boosting is a nono in general. There is one
6806 * exception, when PREEMPT_RT and NOHZ is active:
6807 *
6808 * The idle task calls get_next_timer_interrupt() and holds
6809 * the timer wheel base->lock on the CPU and another CPU wants
6810 * to access the timer (probably to cancel it). We can safely
6811 * ignore the boosting request, as the idle CPU runs this code
6812 * with interrupts disabled and will complete the lock
6813 * protected section without being interrupted. So there is no
6814 * real need to boost.
6815 */
6816 if (unlikely(p == rq->idle)) {
6817 WARN_ON(p != rq->curr);
6818 WARN_ON(p->pi_blocked_on);
6819 goto out_unlock;
6820 }
6821
b91473ff 6822 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6823 oldprio = p->prio;
ff77e468
PZ
6824
6825 if (oldprio == prio)
6826 queue_flag &= ~DEQUEUE_MOVE;
6827
83ab0aa0 6828 prev_class = p->sched_class;
da0c1e65 6829 queued = task_on_rq_queued(p);
051a1d1a 6830 running = task_current(rq, p);
da0c1e65 6831 if (queued)
ff77e468 6832 dequeue_task(rq, p, queue_flag);
0e1f3483 6833 if (running)
f3cd1c4e 6834 put_prev_task(rq, p);
dd41f596 6835
2d3d891d
DF
6836 /*
6837 * Boosting condition are:
6838 * 1. -rt task is running and holds mutex A
6839 * --> -dl task blocks on mutex A
6840 *
6841 * 2. -dl task is running and holds mutex A
6842 * --> -dl task blocks on mutex A and could preempt the
6843 * running task
6844 */
6845 if (dl_prio(prio)) {
466af29b 6846 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6847 (pi_task && dl_prio(pi_task->prio) &&
6848 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6849 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6850 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6851 } else {
6852 p->dl.pi_se = &p->dl;
6853 }
2d3d891d
DF
6854 } else if (rt_prio(prio)) {
6855 if (dl_prio(oldprio))
2279f540 6856 p->dl.pi_se = &p->dl;
2d3d891d 6857 if (oldprio < prio)
ff77e468 6858 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
6859 } else {
6860 if (dl_prio(oldprio))
2279f540 6861 p->dl.pi_se = &p->dl;
746db944
BS
6862 if (rt_prio(oldprio))
6863 p->rt.timeout = 0;
2d3d891d 6864 }
dd41f596 6865
f558c2b8 6866 __setscheduler_prio(p, prio);
b29739f9 6867
da0c1e65 6868 if (queued)
ff77e468 6869 enqueue_task(rq, p, queue_flag);
a399d233 6870 if (running)
03b7fad1 6871 set_next_task(rq, p);
cb469845 6872
da7a735e 6873 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6874out_unlock:
d1ccc66d
IM
6875 /* Avoid rq from going away on us: */
6876 preempt_disable();
4c9a4bc8 6877
565790d2
PZ
6878 rq_unpin_lock(rq, &rf);
6879 __balance_callbacks(rq);
5cb9eaa3 6880 raw_spin_rq_unlock(rq);
565790d2 6881
4c9a4bc8 6882 preempt_enable();
b29739f9 6883}
acd58620
PZ
6884#else
6885static inline int rt_effective_prio(struct task_struct *p, int prio)
6886{
6887 return prio;
6888}
b29739f9 6889#endif
d50dde5a 6890
36c8b586 6891void set_user_nice(struct task_struct *p, long nice)
1da177e4 6892{
49bd21ef 6893 bool queued, running;
53a23364 6894 int old_prio;
eb580751 6895 struct rq_flags rf;
70b97a7f 6896 struct rq *rq;
1da177e4 6897
75e45d51 6898 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6899 return;
6900 /*
6901 * We have to be careful, if called from sys_setpriority(),
6902 * the task might be in the middle of scheduling on another CPU.
6903 */
eb580751 6904 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6905 update_rq_clock(rq);
6906
1da177e4
LT
6907 /*
6908 * The RT priorities are set via sched_setscheduler(), but we still
6909 * allow the 'normal' nice value to be set - but as expected
b19a888c 6910 * it won't have any effect on scheduling until the task is
aab03e05 6911 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6912 */
aab03e05 6913 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6914 p->static_prio = NICE_TO_PRIO(nice);
6915 goto out_unlock;
6916 }
da0c1e65 6917 queued = task_on_rq_queued(p);
49bd21ef 6918 running = task_current(rq, p);
da0c1e65 6919 if (queued)
7a57f32a 6920 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6921 if (running)
6922 put_prev_task(rq, p);
1da177e4 6923
1da177e4 6924 p->static_prio = NICE_TO_PRIO(nice);
13765de8 6925 set_load_weight(p);
b29739f9
IM
6926 old_prio = p->prio;
6927 p->prio = effective_prio(p);
1da177e4 6928
5443a0be 6929 if (queued)
7134b3e9 6930 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6931 if (running)
03b7fad1 6932 set_next_task(rq, p);
5443a0be
FW
6933
6934 /*
6935 * If the task increased its priority or is running and
6936 * lowered its priority, then reschedule its CPU:
6937 */
6938 p->sched_class->prio_changed(rq, p, old_prio);
6939
1da177e4 6940out_unlock:
eb580751 6941 task_rq_unlock(rq, p, &rf);
1da177e4 6942}
1da177e4
LT
6943EXPORT_SYMBOL(set_user_nice);
6944
e43379f1
MM
6945/*
6946 * can_nice - check if a task can reduce its nice value
6947 * @p: task
6948 * @nice: nice value
6949 */
36c8b586 6950int can_nice(const struct task_struct *p, const int nice)
e43379f1 6951{
d1ccc66d 6952 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6953 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6954
78d7d407 6955 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6956 capable(CAP_SYS_NICE));
6957}
6958
1da177e4
LT
6959#ifdef __ARCH_WANT_SYS_NICE
6960
6961/*
6962 * sys_nice - change the priority of the current process.
6963 * @increment: priority increment
6964 *
6965 * sys_setpriority is a more generic, but much slower function that
6966 * does similar things.
6967 */
5add95d4 6968SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6969{
48f24c4d 6970 long nice, retval;
1da177e4
LT
6971
6972 /*
6973 * Setpriority might change our priority at the same moment.
6974 * We don't have to worry. Conceptually one call occurs first
6975 * and we have a single winner.
6976 */
a9467fa3 6977 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6978 nice = task_nice(current) + increment;
1da177e4 6979
a9467fa3 6980 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6981 if (increment < 0 && !can_nice(current, nice))
6982 return -EPERM;
6983
1da177e4
LT
6984 retval = security_task_setnice(current, nice);
6985 if (retval)
6986 return retval;
6987
6988 set_user_nice(current, nice);
6989 return 0;
6990}
6991
6992#endif
6993
6994/**
6995 * task_prio - return the priority value of a given task.
6996 * @p: the task in question.
6997 *
e69f6186 6998 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6999 *
7000 * sched policy return value kernel prio user prio/nice
7001 *
7002 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7003 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7004 * deadline -101 -1 0
1da177e4 7005 */
36c8b586 7006int task_prio(const struct task_struct *p)
1da177e4
LT
7007{
7008 return p->prio - MAX_RT_PRIO;
7009}
7010
1da177e4 7011/**
d1ccc66d 7012 * idle_cpu - is a given CPU idle currently?
1da177e4 7013 * @cpu: the processor in question.
e69f6186
YB
7014 *
7015 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
7016 */
7017int idle_cpu(int cpu)
7018{
908a3283
TG
7019 struct rq *rq = cpu_rq(cpu);
7020
7021 if (rq->curr != rq->idle)
7022 return 0;
7023
7024 if (rq->nr_running)
7025 return 0;
7026
7027#ifdef CONFIG_SMP
126c2092 7028 if (rq->ttwu_pending)
908a3283
TG
7029 return 0;
7030#endif
7031
7032 return 1;
1da177e4
LT
7033}
7034
943d355d
RJ
7035/**
7036 * available_idle_cpu - is a given CPU idle for enqueuing work.
7037 * @cpu: the CPU in question.
7038 *
7039 * Return: 1 if the CPU is currently idle. 0 otherwise.
7040 */
7041int available_idle_cpu(int cpu)
7042{
7043 if (!idle_cpu(cpu))
7044 return 0;
7045
247f2f6f
RJ
7046 if (vcpu_is_preempted(cpu))
7047 return 0;
7048
908a3283 7049 return 1;
1da177e4
LT
7050}
7051
1da177e4 7052/**
d1ccc66d 7053 * idle_task - return the idle task for a given CPU.
1da177e4 7054 * @cpu: the processor in question.
e69f6186 7055 *
d1ccc66d 7056 * Return: The idle task for the CPU @cpu.
1da177e4 7057 */
36c8b586 7058struct task_struct *idle_task(int cpu)
1da177e4
LT
7059{
7060 return cpu_rq(cpu)->idle;
7061}
7062
7d6a905f
VK
7063#ifdef CONFIG_SMP
7064/*
7065 * This function computes an effective utilization for the given CPU, to be
7066 * used for frequency selection given the linear relation: f = u * f_max.
7067 *
7068 * The scheduler tracks the following metrics:
7069 *
7070 * cpu_util_{cfs,rt,dl,irq}()
7071 * cpu_bw_dl()
7072 *
7073 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7074 * synchronized windows and are thus directly comparable.
7075 *
7076 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7077 * which excludes things like IRQ and steal-time. These latter are then accrued
7078 * in the irq utilization.
7079 *
7080 * The DL bandwidth number otoh is not a measured metric but a value computed
7081 * based on the task model parameters and gives the minimal utilization
7082 * required to meet deadlines.
7083 */
a5418be9
VK
7084unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7085 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
7086 struct task_struct *p)
7087{
7088 unsigned long dl_util, util, irq;
7089 struct rq *rq = cpu_rq(cpu);
7090
7091 if (!uclamp_is_used() &&
7092 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7093 return max;
7094 }
7095
7096 /*
7097 * Early check to see if IRQ/steal time saturates the CPU, can be
7098 * because of inaccuracies in how we track these -- see
7099 * update_irq_load_avg().
7100 */
7101 irq = cpu_util_irq(rq);
7102 if (unlikely(irq >= max))
7103 return max;
7104
7105 /*
7106 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7107 * CFS tasks and we use the same metric to track the effective
7108 * utilization (PELT windows are synchronized) we can directly add them
7109 * to obtain the CPU's actual utilization.
7110 *
7111 * CFS and RT utilization can be boosted or capped, depending on
7112 * utilization clamp constraints requested by currently RUNNABLE
7113 * tasks.
7114 * When there are no CFS RUNNABLE tasks, clamps are released and
7115 * frequency will be gracefully reduced with the utilization decay.
7116 */
7117 util = util_cfs + cpu_util_rt(rq);
7118 if (type == FREQUENCY_UTIL)
7119 util = uclamp_rq_util_with(rq, util, p);
7120
7121 dl_util = cpu_util_dl(rq);
7122
7123 /*
7124 * For frequency selection we do not make cpu_util_dl() a permanent part
7125 * of this sum because we want to use cpu_bw_dl() later on, but we need
7126 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7127 * that we select f_max when there is no idle time.
7128 *
7129 * NOTE: numerical errors or stop class might cause us to not quite hit
7130 * saturation when we should -- something for later.
7131 */
7132 if (util + dl_util >= max)
7133 return max;
7134
7135 /*
7136 * OTOH, for energy computation we need the estimated running time, so
7137 * include util_dl and ignore dl_bw.
7138 */
7139 if (type == ENERGY_UTIL)
7140 util += dl_util;
7141
7142 /*
7143 * There is still idle time; further improve the number by using the
7144 * irq metric. Because IRQ/steal time is hidden from the task clock we
7145 * need to scale the task numbers:
7146 *
7147 * max - irq
7148 * U' = irq + --------- * U
7149 * max
7150 */
7151 util = scale_irq_capacity(util, irq, max);
7152 util += irq;
7153
7154 /*
7155 * Bandwidth required by DEADLINE must always be granted while, for
7156 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7157 * to gracefully reduce the frequency when no tasks show up for longer
7158 * periods of time.
7159 *
7160 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7161 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7162 * an interface. So, we only do the latter for now.
7163 */
7164 if (type == FREQUENCY_UTIL)
7165 util += cpu_bw_dl(rq);
7166
7167 return min(max, util);
7168}
a5418be9
VK
7169
7170unsigned long sched_cpu_util(int cpu, unsigned long max)
7171{
82762d2a 7172 return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
a5418be9
VK
7173 ENERGY_UTIL, NULL);
7174}
7d6a905f
VK
7175#endif /* CONFIG_SMP */
7176
1da177e4
LT
7177/**
7178 * find_process_by_pid - find a process with a matching PID value.
7179 * @pid: the pid in question.
e69f6186
YB
7180 *
7181 * The task of @pid, if found. %NULL otherwise.
1da177e4 7182 */
a9957449 7183static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7184{
228ebcbe 7185 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7186}
7187
c13db6b1
SR
7188/*
7189 * sched_setparam() passes in -1 for its policy, to let the functions
7190 * it calls know not to change it.
7191 */
7192#define SETPARAM_POLICY -1
7193
c365c292
TG
7194static void __setscheduler_params(struct task_struct *p,
7195 const struct sched_attr *attr)
1da177e4 7196{
d50dde5a
DF
7197 int policy = attr->sched_policy;
7198
c13db6b1 7199 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7200 policy = p->policy;
7201
1da177e4 7202 p->policy = policy;
d50dde5a 7203
aab03e05
DF
7204 if (dl_policy(policy))
7205 __setparam_dl(p, attr);
39fd8fd2 7206 else if (fair_policy(policy))
d50dde5a
DF
7207 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7208
39fd8fd2
PZ
7209 /*
7210 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7211 * !rt_policy. Always setting this ensures that things like
7212 * getparam()/getattr() don't report silly values for !rt tasks.
7213 */
7214 p->rt_priority = attr->sched_priority;
383afd09 7215 p->normal_prio = normal_prio(p);
13765de8 7216 set_load_weight(p);
c365c292 7217}
39fd8fd2 7218
c69e8d9c 7219/*
d1ccc66d 7220 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7221 */
7222static bool check_same_owner(struct task_struct *p)
7223{
7224 const struct cred *cred = current_cred(), *pcred;
7225 bool match;
7226
7227 rcu_read_lock();
7228 pcred = __task_cred(p);
9c806aa0
EB
7229 match = (uid_eq(cred->euid, pcred->euid) ||
7230 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7231 rcu_read_unlock();
7232 return match;
7233}
7234
d50dde5a
DF
7235static int __sched_setscheduler(struct task_struct *p,
7236 const struct sched_attr *attr,
dbc7f069 7237 bool user, bool pi)
1da177e4 7238{
f558c2b8
PZ
7239 int oldpolicy = -1, policy = attr->sched_policy;
7240 int retval, oldprio, newprio, queued, running;
83ab0aa0 7241 const struct sched_class *prev_class;
565790d2 7242 struct callback_head *head;
eb580751 7243 struct rq_flags rf;
ca94c442 7244 int reset_on_fork;
7a57f32a 7245 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7246 struct rq *rq;
1da177e4 7247
896bbb25
SRV
7248 /* The pi code expects interrupts enabled */
7249 BUG_ON(pi && in_interrupt());
1da177e4 7250recheck:
d1ccc66d 7251 /* Double check policy once rq lock held: */
ca94c442
LP
7252 if (policy < 0) {
7253 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7254 policy = oldpolicy = p->policy;
ca94c442 7255 } else {
7479f3c9 7256 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7257
20f9cd2a 7258 if (!valid_policy(policy))
ca94c442
LP
7259 return -EINVAL;
7260 }
7261
794a56eb 7262 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7263 return -EINVAL;
7264
1da177e4
LT
7265 /*
7266 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7267 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7268 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7269 */
ae18ad28 7270 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7271 return -EINVAL;
aab03e05
DF
7272 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7273 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7274 return -EINVAL;
7275
37e4ab3f
OC
7276 /*
7277 * Allow unprivileged RT tasks to decrease priority:
7278 */
961ccddd 7279 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 7280 if (fair_policy(policy)) {
d0ea0268 7281 if (attr->sched_nice < task_nice(p) &&
eaad4513 7282 !can_nice(p, attr->sched_nice))
d50dde5a
DF
7283 return -EPERM;
7284 }
7285
e05606d3 7286 if (rt_policy(policy)) {
a44702e8
ON
7287 unsigned long rlim_rtprio =
7288 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 7289
d1ccc66d 7290 /* Can't set/change the rt policy: */
8dc3e909
ON
7291 if (policy != p->policy && !rlim_rtprio)
7292 return -EPERM;
7293
d1ccc66d 7294 /* Can't increase priority: */
d50dde5a
DF
7295 if (attr->sched_priority > p->rt_priority &&
7296 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
7297 return -EPERM;
7298 }
c02aa73b 7299
d44753b8
JL
7300 /*
7301 * Can't set/change SCHED_DEADLINE policy at all for now
7302 * (safest behavior); in the future we would like to allow
7303 * unprivileged DL tasks to increase their relative deadline
7304 * or reduce their runtime (both ways reducing utilization)
7305 */
7306 if (dl_policy(policy))
7307 return -EPERM;
7308
dd41f596 7309 /*
c02aa73b
DH
7310 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7311 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 7312 */
1da1843f 7313 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 7314 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
7315 return -EPERM;
7316 }
5fe1d75f 7317
d1ccc66d 7318 /* Can't change other user's priorities: */
c69e8d9c 7319 if (!check_same_owner(p))
37e4ab3f 7320 return -EPERM;
ca94c442 7321
d1ccc66d 7322 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
7323 if (p->sched_reset_on_fork && !reset_on_fork)
7324 return -EPERM;
37e4ab3f 7325 }
1da177e4 7326
725aad24 7327 if (user) {
794a56eb
JL
7328 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7329 return -EINVAL;
7330
b0ae1981 7331 retval = security_task_setscheduler(p);
725aad24
JF
7332 if (retval)
7333 return retval;
7334 }
7335
a509a7cd
PB
7336 /* Update task specific "requested" clamps */
7337 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7338 retval = uclamp_validate(p, attr);
7339 if (retval)
7340 return retval;
7341 }
7342
710da3c8
JL
7343 if (pi)
7344 cpuset_read_lock();
7345
b29739f9 7346 /*
d1ccc66d 7347 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7348 * changing the priority of the task:
0122ec5b 7349 *
25985edc 7350 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7351 * runqueue lock must be held.
7352 */
eb580751 7353 rq = task_rq_lock(p, &rf);
80f5c1b8 7354 update_rq_clock(rq);
dc61b1d6 7355
34f971f6 7356 /*
d1ccc66d 7357 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7358 */
7359 if (p == rq->stop) {
4b211f2b
MP
7360 retval = -EINVAL;
7361 goto unlock;
34f971f6
PZ
7362 }
7363
a51e9198 7364 /*
d6b1e911
TG
7365 * If not changing anything there's no need to proceed further,
7366 * but store a possible modification of reset_on_fork.
a51e9198 7367 */
d50dde5a 7368 if (unlikely(policy == p->policy)) {
d0ea0268 7369 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7370 goto change;
7371 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7372 goto change;
75381608 7373 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7374 goto change;
a509a7cd
PB
7375 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7376 goto change;
d50dde5a 7377
d6b1e911 7378 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7379 retval = 0;
7380 goto unlock;
a51e9198 7381 }
d50dde5a 7382change:
a51e9198 7383
dc61b1d6 7384 if (user) {
332ac17e 7385#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7386 /*
7387 * Do not allow realtime tasks into groups that have no runtime
7388 * assigned.
7389 */
7390 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7391 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7392 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7393 retval = -EPERM;
7394 goto unlock;
dc61b1d6 7395 }
dc61b1d6 7396#endif
332ac17e 7397#ifdef CONFIG_SMP
794a56eb
JL
7398 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7399 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7400 cpumask_t *span = rq->rd->span;
332ac17e
DF
7401
7402 /*
7403 * Don't allow tasks with an affinity mask smaller than
7404 * the entire root_domain to become SCHED_DEADLINE. We
7405 * will also fail if there's no bandwidth available.
7406 */
3bd37062 7407 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7408 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7409 retval = -EPERM;
7410 goto unlock;
332ac17e
DF
7411 }
7412 }
7413#endif
7414 }
dc61b1d6 7415
d1ccc66d 7416 /* Re-check policy now with rq lock held: */
1da177e4
LT
7417 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7418 policy = oldpolicy = -1;
eb580751 7419 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7420 if (pi)
7421 cpuset_read_unlock();
1da177e4
LT
7422 goto recheck;
7423 }
332ac17e
DF
7424
7425 /*
7426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7428 * is available.
7429 */
06a76fe0 7430 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7431 retval = -EBUSY;
7432 goto unlock;
332ac17e
DF
7433 }
7434
c365c292
TG
7435 p->sched_reset_on_fork = reset_on_fork;
7436 oldprio = p->prio;
7437
f558c2b8 7438 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7439 if (pi) {
7440 /*
7441 * Take priority boosted tasks into account. If the new
7442 * effective priority is unchanged, we just store the new
7443 * normal parameters and do not touch the scheduler class and
7444 * the runqueue. This will be done when the task deboost
7445 * itself.
7446 */
f558c2b8
PZ
7447 newprio = rt_effective_prio(p, newprio);
7448 if (newprio == oldprio)
ff77e468 7449 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7450 }
7451
da0c1e65 7452 queued = task_on_rq_queued(p);
051a1d1a 7453 running = task_current(rq, p);
da0c1e65 7454 if (queued)
ff77e468 7455 dequeue_task(rq, p, queue_flags);
0e1f3483 7456 if (running)
f3cd1c4e 7457 put_prev_task(rq, p);
f6b53205 7458
83ab0aa0 7459 prev_class = p->sched_class;
a509a7cd 7460
f558c2b8
PZ
7461 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7462 __setscheduler_params(p, attr);
7463 __setscheduler_prio(p, newprio);
7464 }
a509a7cd 7465 __setscheduler_uclamp(p, attr);
f6b53205 7466
da0c1e65 7467 if (queued) {
81a44c54
TG
7468 /*
7469 * We enqueue to tail when the priority of a task is
7470 * increased (user space view).
7471 */
ff77e468
PZ
7472 if (oldprio < p->prio)
7473 queue_flags |= ENQUEUE_HEAD;
1de64443 7474
ff77e468 7475 enqueue_task(rq, p, queue_flags);
81a44c54 7476 }
a399d233 7477 if (running)
03b7fad1 7478 set_next_task(rq, p);
cb469845 7479
da7a735e 7480 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7481
7482 /* Avoid rq from going away on us: */
7483 preempt_disable();
565790d2 7484 head = splice_balance_callbacks(rq);
eb580751 7485 task_rq_unlock(rq, p, &rf);
b29739f9 7486
710da3c8
JL
7487 if (pi) {
7488 cpuset_read_unlock();
dbc7f069 7489 rt_mutex_adjust_pi(p);
710da3c8 7490 }
95e02ca9 7491
d1ccc66d 7492 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7493 balance_callbacks(rq, head);
4c9a4bc8 7494 preempt_enable();
95e02ca9 7495
1da177e4 7496 return 0;
4b211f2b
MP
7497
7498unlock:
7499 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7500 if (pi)
7501 cpuset_read_unlock();
4b211f2b 7502 return retval;
1da177e4 7503}
961ccddd 7504
7479f3c9
PZ
7505static int _sched_setscheduler(struct task_struct *p, int policy,
7506 const struct sched_param *param, bool check)
7507{
7508 struct sched_attr attr = {
7509 .sched_policy = policy,
7510 .sched_priority = param->sched_priority,
7511 .sched_nice = PRIO_TO_NICE(p->static_prio),
7512 };
7513
c13db6b1
SR
7514 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7515 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7516 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7517 policy &= ~SCHED_RESET_ON_FORK;
7518 attr.sched_policy = policy;
7519 }
7520
dbc7f069 7521 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7522}
961ccddd
RR
7523/**
7524 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7525 * @p: the task in question.
7526 * @policy: new policy.
7527 * @param: structure containing the new RT priority.
7528 *
7318d4cc
PZ
7529 * Use sched_set_fifo(), read its comment.
7530 *
e69f6186
YB
7531 * Return: 0 on success. An error code otherwise.
7532 *
961ccddd
RR
7533 * NOTE that the task may be already dead.
7534 */
7535int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7536 const struct sched_param *param)
961ccddd 7537{
7479f3c9 7538 return _sched_setscheduler(p, policy, param, true);
961ccddd 7539}
1da177e4 7540
d50dde5a
DF
7541int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7542{
dbc7f069 7543 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7544}
d50dde5a 7545
794a56eb
JL
7546int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7547{
7548 return __sched_setscheduler(p, attr, false, true);
7549}
1eb5dde6 7550EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7551
961ccddd
RR
7552/**
7553 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7554 * @p: the task in question.
7555 * @policy: new policy.
7556 * @param: structure containing the new RT priority.
7557 *
7558 * Just like sched_setscheduler, only don't bother checking if the
7559 * current context has permission. For example, this is needed in
7560 * stop_machine(): we create temporary high priority worker threads,
7561 * but our caller might not have that capability.
e69f6186
YB
7562 *
7563 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7564 */
7565int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7566 const struct sched_param *param)
961ccddd 7567{
7479f3c9 7568 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7569}
7570
7318d4cc
PZ
7571/*
7572 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7573 * incapable of resource management, which is the one thing an OS really should
7574 * be doing.
7575 *
7576 * This is of course the reason it is limited to privileged users only.
7577 *
7578 * Worse still; it is fundamentally impossible to compose static priority
7579 * workloads. You cannot take two correctly working static prio workloads
7580 * and smash them together and still expect them to work.
7581 *
7582 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7583 *
7584 * MAX_RT_PRIO / 2
7585 *
7586 * The administrator _MUST_ configure the system, the kernel simply doesn't
7587 * know enough information to make a sensible choice.
7588 */
8b700983 7589void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7590{
7591 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7592 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7593}
7594EXPORT_SYMBOL_GPL(sched_set_fifo);
7595
7596/*
7597 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7598 */
8b700983 7599void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7600{
7601 struct sched_param sp = { .sched_priority = 1 };
8b700983 7602 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7603}
7604EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7605
8b700983 7606void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7607{
7608 struct sched_attr attr = {
7609 .sched_policy = SCHED_NORMAL,
7610 .sched_nice = nice,
7611 };
8b700983 7612 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7613}
7614EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7615
95cdf3b7
IM
7616static int
7617do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7618{
1da177e4
LT
7619 struct sched_param lparam;
7620 struct task_struct *p;
36c8b586 7621 int retval;
1da177e4
LT
7622
7623 if (!param || pid < 0)
7624 return -EINVAL;
7625 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7626 return -EFAULT;
5fe1d75f
ON
7627
7628 rcu_read_lock();
7629 retval = -ESRCH;
1da177e4 7630 p = find_process_by_pid(pid);
710da3c8
JL
7631 if (likely(p))
7632 get_task_struct(p);
5fe1d75f 7633 rcu_read_unlock();
36c8b586 7634
710da3c8
JL
7635 if (likely(p)) {
7636 retval = sched_setscheduler(p, policy, &lparam);
7637 put_task_struct(p);
7638 }
7639
1da177e4
LT
7640 return retval;
7641}
7642
d50dde5a
DF
7643/*
7644 * Mimics kernel/events/core.c perf_copy_attr().
7645 */
d1ccc66d 7646static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7647{
7648 u32 size;
7649 int ret;
7650
d1ccc66d 7651 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7652 memset(attr, 0, sizeof(*attr));
7653
7654 ret = get_user(size, &uattr->size);
7655 if (ret)
7656 return ret;
7657
d1ccc66d
IM
7658 /* ABI compatibility quirk: */
7659 if (!size)
d50dde5a 7660 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7661 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7662 goto err_size;
7663
dff3a85f
AS
7664 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7665 if (ret) {
7666 if (ret == -E2BIG)
7667 goto err_size;
7668 return ret;
d50dde5a
DF
7669 }
7670
a509a7cd
PB
7671 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7672 size < SCHED_ATTR_SIZE_VER1)
7673 return -EINVAL;
7674
d50dde5a 7675 /*
d1ccc66d 7676 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7677 * to be strict and return an error on out-of-bounds values?
7678 */
75e45d51 7679 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7680
e78c7bca 7681 return 0;
d50dde5a
DF
7682
7683err_size:
7684 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7685 return -E2BIG;
d50dde5a
DF
7686}
7687
f4dddf90
QP
7688static void get_params(struct task_struct *p, struct sched_attr *attr)
7689{
7690 if (task_has_dl_policy(p))
7691 __getparam_dl(p, attr);
7692 else if (task_has_rt_policy(p))
7693 attr->sched_priority = p->rt_priority;
7694 else
7695 attr->sched_nice = task_nice(p);
7696}
7697
1da177e4
LT
7698/**
7699 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7700 * @pid: the pid in question.
7701 * @policy: new policy.
7702 * @param: structure containing the new RT priority.
e69f6186
YB
7703 *
7704 * Return: 0 on success. An error code otherwise.
1da177e4 7705 */
d1ccc66d 7706SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7707{
c21761f1
JB
7708 if (policy < 0)
7709 return -EINVAL;
7710
1da177e4
LT
7711 return do_sched_setscheduler(pid, policy, param);
7712}
7713
7714/**
7715 * sys_sched_setparam - set/change the RT priority of a thread
7716 * @pid: the pid in question.
7717 * @param: structure containing the new RT priority.
e69f6186
YB
7718 *
7719 * Return: 0 on success. An error code otherwise.
1da177e4 7720 */
5add95d4 7721SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7722{
c13db6b1 7723 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7724}
7725
d50dde5a
DF
7726/**
7727 * sys_sched_setattr - same as above, but with extended sched_attr
7728 * @pid: the pid in question.
5778fccf 7729 * @uattr: structure containing the extended parameters.
db66d756 7730 * @flags: for future extension.
d50dde5a 7731 */
6d35ab48
PZ
7732SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7733 unsigned int, flags)
d50dde5a
DF
7734{
7735 struct sched_attr attr;
7736 struct task_struct *p;
7737 int retval;
7738
6d35ab48 7739 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7740 return -EINVAL;
7741
143cf23d
MK
7742 retval = sched_copy_attr(uattr, &attr);
7743 if (retval)
7744 return retval;
d50dde5a 7745
b14ed2c2 7746 if ((int)attr.sched_policy < 0)
dbdb2275 7747 return -EINVAL;
1d6362fa
PB
7748 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7749 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7750
7751 rcu_read_lock();
7752 retval = -ESRCH;
7753 p = find_process_by_pid(pid);
a509a7cd
PB
7754 if (likely(p))
7755 get_task_struct(p);
d50dde5a
DF
7756 rcu_read_unlock();
7757
a509a7cd 7758 if (likely(p)) {
f4dddf90
QP
7759 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7760 get_params(p, &attr);
a509a7cd
PB
7761 retval = sched_setattr(p, &attr);
7762 put_task_struct(p);
7763 }
7764
d50dde5a
DF
7765 return retval;
7766}
7767
1da177e4
LT
7768/**
7769 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7770 * @pid: the pid in question.
e69f6186
YB
7771 *
7772 * Return: On success, the policy of the thread. Otherwise, a negative error
7773 * code.
1da177e4 7774 */
5add95d4 7775SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7776{
36c8b586 7777 struct task_struct *p;
3a5c359a 7778 int retval;
1da177e4
LT
7779
7780 if (pid < 0)
3a5c359a 7781 return -EINVAL;
1da177e4
LT
7782
7783 retval = -ESRCH;
5fe85be0 7784 rcu_read_lock();
1da177e4
LT
7785 p = find_process_by_pid(pid);
7786 if (p) {
7787 retval = security_task_getscheduler(p);
7788 if (!retval)
ca94c442
LP
7789 retval = p->policy
7790 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7791 }
5fe85be0 7792 rcu_read_unlock();
1da177e4
LT
7793 return retval;
7794}
7795
7796/**
ca94c442 7797 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7798 * @pid: the pid in question.
7799 * @param: structure containing the RT priority.
e69f6186
YB
7800 *
7801 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7802 * code.
1da177e4 7803 */
5add95d4 7804SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7805{
ce5f7f82 7806 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7807 struct task_struct *p;
3a5c359a 7808 int retval;
1da177e4
LT
7809
7810 if (!param || pid < 0)
3a5c359a 7811 return -EINVAL;
1da177e4 7812
5fe85be0 7813 rcu_read_lock();
1da177e4
LT
7814 p = find_process_by_pid(pid);
7815 retval = -ESRCH;
7816 if (!p)
7817 goto out_unlock;
7818
7819 retval = security_task_getscheduler(p);
7820 if (retval)
7821 goto out_unlock;
7822
ce5f7f82
PZ
7823 if (task_has_rt_policy(p))
7824 lp.sched_priority = p->rt_priority;
5fe85be0 7825 rcu_read_unlock();
1da177e4
LT
7826
7827 /*
7828 * This one might sleep, we cannot do it with a spinlock held ...
7829 */
7830 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7831
1da177e4
LT
7832 return retval;
7833
7834out_unlock:
5fe85be0 7835 rcu_read_unlock();
1da177e4
LT
7836 return retval;
7837}
7838
1251201c
IM
7839/*
7840 * Copy the kernel size attribute structure (which might be larger
7841 * than what user-space knows about) to user-space.
7842 *
7843 * Note that all cases are valid: user-space buffer can be larger or
7844 * smaller than the kernel-space buffer. The usual case is that both
7845 * have the same size.
7846 */
7847static int
7848sched_attr_copy_to_user(struct sched_attr __user *uattr,
7849 struct sched_attr *kattr,
7850 unsigned int usize)
d50dde5a 7851{
1251201c 7852 unsigned int ksize = sizeof(*kattr);
d50dde5a 7853
96d4f267 7854 if (!access_ok(uattr, usize))
d50dde5a
DF
7855 return -EFAULT;
7856
7857 /*
1251201c
IM
7858 * sched_getattr() ABI forwards and backwards compatibility:
7859 *
7860 * If usize == ksize then we just copy everything to user-space and all is good.
7861 *
7862 * If usize < ksize then we only copy as much as user-space has space for,
7863 * this keeps ABI compatibility as well. We skip the rest.
7864 *
7865 * If usize > ksize then user-space is using a newer version of the ABI,
7866 * which part the kernel doesn't know about. Just ignore it - tooling can
7867 * detect the kernel's knowledge of attributes from the attr->size value
7868 * which is set to ksize in this case.
d50dde5a 7869 */
1251201c 7870 kattr->size = min(usize, ksize);
d50dde5a 7871
1251201c 7872 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7873 return -EFAULT;
7874
22400674 7875 return 0;
d50dde5a
DF
7876}
7877
7878/**
aab03e05 7879 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7880 * @pid: the pid in question.
5778fccf 7881 * @uattr: structure containing the extended parameters.
dff3a85f 7882 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7883 * @flags: for future extension.
d50dde5a 7884 */
6d35ab48 7885SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7886 unsigned int, usize, unsigned int, flags)
d50dde5a 7887{
1251201c 7888 struct sched_attr kattr = { };
d50dde5a
DF
7889 struct task_struct *p;
7890 int retval;
7891
1251201c
IM
7892 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7893 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7894 return -EINVAL;
7895
7896 rcu_read_lock();
7897 p = find_process_by_pid(pid);
7898 retval = -ESRCH;
7899 if (!p)
7900 goto out_unlock;
7901
7902 retval = security_task_getscheduler(p);
7903 if (retval)
7904 goto out_unlock;
7905
1251201c 7906 kattr.sched_policy = p->policy;
7479f3c9 7907 if (p->sched_reset_on_fork)
1251201c 7908 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 7909 get_params(p, &kattr);
7ad721bf 7910 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 7911
a509a7cd 7912#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7913 /*
7914 * This could race with another potential updater, but this is fine
7915 * because it'll correctly read the old or the new value. We don't need
7916 * to guarantee who wins the race as long as it doesn't return garbage.
7917 */
1251201c
IM
7918 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7919 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7920#endif
7921
d50dde5a
DF
7922 rcu_read_unlock();
7923
1251201c 7924 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7925
7926out_unlock:
7927 rcu_read_unlock();
7928 return retval;
7929}
7930
234b8ab6
WD
7931#ifdef CONFIG_SMP
7932int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 7933{
234b8ab6
WD
7934 int ret = 0;
7935
7936 /*
7937 * If the task isn't a deadline task or admission control is
7938 * disabled then we don't care about affinity changes.
7939 */
7940 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7941 return 0;
7942
7943 /*
7944 * Since bandwidth control happens on root_domain basis,
7945 * if admission test is enabled, we only admit -deadline
7946 * tasks allowed to run on all the CPUs in the task's
7947 * root_domain.
7948 */
7949 rcu_read_lock();
7950 if (!cpumask_subset(task_rq(p)->rd->span, mask))
7951 ret = -EBUSY;
7952 rcu_read_unlock();
7953 return ret;
7954}
7955#endif
7956
db3b02ae
WD
7957static int
7958__sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 7959{
36c8b586 7960 int retval;
5a16f3d3 7961 cpumask_var_t cpus_allowed, new_mask;
1da177e4 7962
db3b02ae
WD
7963 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7964 return -ENOMEM;
1da177e4 7965
5a16f3d3
RR
7966 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7967 retval = -ENOMEM;
7968 goto out_free_cpus_allowed;
7969 }
e4099a5e
PZ
7970
7971 cpuset_cpus_allowed(p, cpus_allowed);
db3b02ae 7972 cpumask_and(new_mask, mask, cpus_allowed);
e4099a5e 7973
234b8ab6
WD
7974 retval = dl_task_check_affinity(p, new_mask);
7975 if (retval)
7976 goto out_free_new_mask;
49246274 7977again:
07ec77a1 7978 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
db3b02ae
WD
7979 if (retval)
7980 goto out_free_new_mask;
1da177e4 7981
db3b02ae
WD
7982 cpuset_cpus_allowed(p, cpus_allowed);
7983 if (!cpumask_subset(new_mask, cpus_allowed)) {
7984 /*
7985 * We must have raced with a concurrent cpuset update.
7986 * Just reset the cpumask to the cpuset's cpus_allowed.
7987 */
7988 cpumask_copy(new_mask, cpus_allowed);
7989 goto again;
8707d8b8 7990 }
db3b02ae 7991
16303ab2 7992out_free_new_mask:
5a16f3d3
RR
7993 free_cpumask_var(new_mask);
7994out_free_cpus_allowed:
7995 free_cpumask_var(cpus_allowed);
db3b02ae
WD
7996 return retval;
7997}
7998
7999long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8000{
36c8b586
IM
8001 struct task_struct *p;
8002 int retval;
1da177e4 8003
23f5d142 8004 rcu_read_lock();
1da177e4
LT
8005
8006 p = find_process_by_pid(pid);
8007 if (!p) {
23f5d142 8008 rcu_read_unlock();
1da177e4
LT
8009 return -ESRCH;
8010 }
8011
23f5d142 8012 /* Prevent p going away */
1da177e4 8013 get_task_struct(p);
23f5d142 8014 rcu_read_unlock();
1da177e4 8015
14a40ffc
TH
8016 if (p->flags & PF_NO_SETAFFINITY) {
8017 retval = -EINVAL;
8018 goto out_put_task;
8019 }
db3b02ae 8020
4c44aaaf
EB
8021 if (!check_same_owner(p)) {
8022 rcu_read_lock();
8023 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8024 rcu_read_unlock();
db3b02ae
WD
8025 retval = -EPERM;
8026 goto out_put_task;
4c44aaaf
EB
8027 }
8028 rcu_read_unlock();
8029 }
1da177e4 8030
b0ae1981 8031 retval = security_task_setscheduler(p);
e7834f8f 8032 if (retval)
db3b02ae 8033 goto out_put_task;
1da177e4 8034
db3b02ae 8035 retval = __sched_setaffinity(p, in_mask);
5a16f3d3 8036out_put_task:
1da177e4 8037 put_task_struct(p);
1da177e4
LT
8038 return retval;
8039}
8040
8041static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 8042 struct cpumask *new_mask)
1da177e4 8043{
96f874e2
RR
8044 if (len < cpumask_size())
8045 cpumask_clear(new_mask);
8046 else if (len > cpumask_size())
8047 len = cpumask_size();
8048
1da177e4
LT
8049 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8050}
8051
8052/**
d1ccc66d 8053 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
8054 * @pid: pid of the process
8055 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8056 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
8057 *
8058 * Return: 0 on success. An error code otherwise.
1da177e4 8059 */
5add95d4
HC
8060SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8061 unsigned long __user *, user_mask_ptr)
1da177e4 8062{
5a16f3d3 8063 cpumask_var_t new_mask;
1da177e4
LT
8064 int retval;
8065
5a16f3d3
RR
8066 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8067 return -ENOMEM;
1da177e4 8068
5a16f3d3
RR
8069 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8070 if (retval == 0)
8071 retval = sched_setaffinity(pid, new_mask);
8072 free_cpumask_var(new_mask);
8073 return retval;
1da177e4
LT
8074}
8075
96f874e2 8076long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 8077{
36c8b586 8078 struct task_struct *p;
31605683 8079 unsigned long flags;
1da177e4 8080 int retval;
1da177e4 8081
23f5d142 8082 rcu_read_lock();
1da177e4
LT
8083
8084 retval = -ESRCH;
8085 p = find_process_by_pid(pid);
8086 if (!p)
8087 goto out_unlock;
8088
e7834f8f
DQ
8089 retval = security_task_getscheduler(p);
8090 if (retval)
8091 goto out_unlock;
8092
013fdb80 8093 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8094 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8096
8097out_unlock:
23f5d142 8098 rcu_read_unlock();
1da177e4 8099
9531b62f 8100 return retval;
1da177e4
LT
8101}
8102
8103/**
d1ccc66d 8104 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8105 * @pid: pid of the process
8106 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8107 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8108 *
599b4840
ZW
8109 * Return: size of CPU mask copied to user_mask_ptr on success. An
8110 * error code otherwise.
1da177e4 8111 */
5add95d4
HC
8112SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8113 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8114{
8115 int ret;
f17c8607 8116 cpumask_var_t mask;
1da177e4 8117
84fba5ec 8118 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8119 return -EINVAL;
8120 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8121 return -EINVAL;
8122
f17c8607
RR
8123 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8124 return -ENOMEM;
1da177e4 8125
f17c8607
RR
8126 ret = sched_getaffinity(pid, mask);
8127 if (ret == 0) {
4de373a1 8128 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
8129
8130 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
8131 ret = -EFAULT;
8132 else
cd3d8031 8133 ret = retlen;
f17c8607
RR
8134 }
8135 free_cpumask_var(mask);
1da177e4 8136
f17c8607 8137 return ret;
1da177e4
LT
8138}
8139
7d4dd4f1 8140static void do_sched_yield(void)
1da177e4 8141{
8a8c69c3
PZ
8142 struct rq_flags rf;
8143 struct rq *rq;
8144
246b3b33 8145 rq = this_rq_lock_irq(&rf);
1da177e4 8146
ae92882e 8147 schedstat_inc(rq->yld_count);
4530d7ab 8148 current->sched_class->yield_task(rq);
1da177e4 8149
8a8c69c3 8150 preempt_disable();
345a957f 8151 rq_unlock_irq(rq, &rf);
ba74c144 8152 sched_preempt_enable_no_resched();
1da177e4
LT
8153
8154 schedule();
7d4dd4f1 8155}
1da177e4 8156
59a74b15
MCC
8157/**
8158 * sys_sched_yield - yield the current processor to other threads.
8159 *
8160 * This function yields the current CPU to other tasks. If there are no
8161 * other threads running on this CPU then this function will return.
8162 *
8163 * Return: 0.
8164 */
7d4dd4f1
DB
8165SYSCALL_DEFINE0(sched_yield)
8166{
8167 do_sched_yield();
1da177e4
LT
8168 return 0;
8169}
8170
b965f1dd
PZI
8171#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8172int __sched __cond_resched(void)
1da177e4 8173{
fe32d3cd 8174 if (should_resched(0)) {
a18b5d01 8175 preempt_schedule_common();
1da177e4
LT
8176 return 1;
8177 }
50895825
FW
8178 /*
8179 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8180 * whether the current CPU is in an RCU read-side critical section,
8181 * so the tick can report quiescent states even for CPUs looping
8182 * in kernel context. In contrast, in non-preemptible kernels,
8183 * RCU readers leave no in-memory hints, which means that CPU-bound
8184 * processes executing in kernel context might never report an
8185 * RCU quiescent state. Therefore, the following code causes
8186 * cond_resched() to report a quiescent state, but only when RCU
8187 * is in urgent need of one.
8188 */
b965f1dd 8189#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8190 rcu_all_qs();
b965f1dd 8191#endif
1da177e4
LT
8192 return 0;
8193}
b965f1dd
PZI
8194EXPORT_SYMBOL(__cond_resched);
8195#endif
8196
8197#ifdef CONFIG_PREEMPT_DYNAMIC
8198DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8199EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
8200
8201DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8202EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 8203#endif
1da177e4
LT
8204
8205/*
613afbf8 8206 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8207 * call schedule, and on return reacquire the lock.
8208 *
c1a280b6 8209 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8210 * operations here to prevent schedule() from being called twice (once via
8211 * spin_unlock(), once by hand).
8212 */
613afbf8 8213int __cond_resched_lock(spinlock_t *lock)
1da177e4 8214{
fe32d3cd 8215 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8216 int ret = 0;
8217
f607c668
PZ
8218 lockdep_assert_held(lock);
8219
4a81e832 8220 if (spin_needbreak(lock) || resched) {
1da177e4 8221 spin_unlock(lock);
7e406d1f 8222 if (!_cond_resched())
95c354fe 8223 cpu_relax();
6df3cecb 8224 ret = 1;
1da177e4 8225 spin_lock(lock);
1da177e4 8226 }
6df3cecb 8227 return ret;
1da177e4 8228}
613afbf8 8229EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8230
f3d4b4b1
BG
8231int __cond_resched_rwlock_read(rwlock_t *lock)
8232{
8233 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8234 int ret = 0;
8235
8236 lockdep_assert_held_read(lock);
8237
8238 if (rwlock_needbreak(lock) || resched) {
8239 read_unlock(lock);
7e406d1f 8240 if (!_cond_resched())
f3d4b4b1
BG
8241 cpu_relax();
8242 ret = 1;
8243 read_lock(lock);
8244 }
8245 return ret;
8246}
8247EXPORT_SYMBOL(__cond_resched_rwlock_read);
8248
8249int __cond_resched_rwlock_write(rwlock_t *lock)
8250{
8251 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8252 int ret = 0;
8253
8254 lockdep_assert_held_write(lock);
8255
8256 if (rwlock_needbreak(lock) || resched) {
8257 write_unlock(lock);
7e406d1f 8258 if (!_cond_resched())
f3d4b4b1
BG
8259 cpu_relax();
8260 ret = 1;
8261 write_lock(lock);
8262 }
8263 return ret;
8264}
8265EXPORT_SYMBOL(__cond_resched_rwlock_write);
8266
1da177e4
LT
8267/**
8268 * yield - yield the current processor to other threads.
8269 *
8e3fabfd
PZ
8270 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8271 *
8272 * The scheduler is at all times free to pick the calling task as the most
8273 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8274 * it, it's already broken.
8e3fabfd
PZ
8275 *
8276 * Typical broken usage is:
8277 *
8278 * while (!event)
d1ccc66d 8279 * yield();
8e3fabfd
PZ
8280 *
8281 * where one assumes that yield() will let 'the other' process run that will
8282 * make event true. If the current task is a SCHED_FIFO task that will never
8283 * happen. Never use yield() as a progress guarantee!!
8284 *
8285 * If you want to use yield() to wait for something, use wait_event().
8286 * If you want to use yield() to be 'nice' for others, use cond_resched().
8287 * If you still want to use yield(), do not!
1da177e4
LT
8288 */
8289void __sched yield(void)
8290{
8291 set_current_state(TASK_RUNNING);
7d4dd4f1 8292 do_sched_yield();
1da177e4 8293}
1da177e4
LT
8294EXPORT_SYMBOL(yield);
8295
d95f4122
MG
8296/**
8297 * yield_to - yield the current processor to another thread in
8298 * your thread group, or accelerate that thread toward the
8299 * processor it's on.
16addf95
RD
8300 * @p: target task
8301 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8302 *
8303 * It's the caller's job to ensure that the target task struct
8304 * can't go away on us before we can do any checks.
8305 *
e69f6186 8306 * Return:
7b270f60
PZ
8307 * true (>0) if we indeed boosted the target task.
8308 * false (0) if we failed to boost the target.
8309 * -ESRCH if there's no task to yield to.
d95f4122 8310 */
fa93384f 8311int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8312{
8313 struct task_struct *curr = current;
8314 struct rq *rq, *p_rq;
8315 unsigned long flags;
c3c18640 8316 int yielded = 0;
d95f4122
MG
8317
8318 local_irq_save(flags);
8319 rq = this_rq();
8320
8321again:
8322 p_rq = task_rq(p);
7b270f60
PZ
8323 /*
8324 * If we're the only runnable task on the rq and target rq also
8325 * has only one task, there's absolutely no point in yielding.
8326 */
8327 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8328 yielded = -ESRCH;
8329 goto out_irq;
8330 }
8331
d95f4122 8332 double_rq_lock(rq, p_rq);
39e24d8f 8333 if (task_rq(p) != p_rq) {
d95f4122
MG
8334 double_rq_unlock(rq, p_rq);
8335 goto again;
8336 }
8337
8338 if (!curr->sched_class->yield_to_task)
7b270f60 8339 goto out_unlock;
d95f4122
MG
8340
8341 if (curr->sched_class != p->sched_class)
7b270f60 8342 goto out_unlock;
d95f4122 8343
b03fbd4f 8344 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 8345 goto out_unlock;
d95f4122 8346
0900acf2 8347 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8348 if (yielded) {
ae92882e 8349 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8350 /*
8351 * Make p's CPU reschedule; pick_next_entity takes care of
8352 * fairness.
8353 */
8354 if (preempt && rq != p_rq)
8875125e 8355 resched_curr(p_rq);
6d1cafd8 8356 }
d95f4122 8357
7b270f60 8358out_unlock:
d95f4122 8359 double_rq_unlock(rq, p_rq);
7b270f60 8360out_irq:
d95f4122
MG
8361 local_irq_restore(flags);
8362
7b270f60 8363 if (yielded > 0)
d95f4122
MG
8364 schedule();
8365
8366 return yielded;
8367}
8368EXPORT_SYMBOL_GPL(yield_to);
8369
10ab5643
TH
8370int io_schedule_prepare(void)
8371{
8372 int old_iowait = current->in_iowait;
8373
8374 current->in_iowait = 1;
008f75a2
CH
8375 if (current->plug)
8376 blk_flush_plug(current->plug, true);
10ab5643
TH
8377
8378 return old_iowait;
8379}
8380
8381void io_schedule_finish(int token)
8382{
8383 current->in_iowait = token;
8384}
8385
1da177e4 8386/*
41a2d6cf 8387 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8388 * that process accounting knows that this is a task in IO wait state.
1da177e4 8389 */
1da177e4
LT
8390long __sched io_schedule_timeout(long timeout)
8391{
10ab5643 8392 int token;
1da177e4
LT
8393 long ret;
8394
10ab5643 8395 token = io_schedule_prepare();
1da177e4 8396 ret = schedule_timeout(timeout);
10ab5643 8397 io_schedule_finish(token);
9cff8ade 8398
1da177e4
LT
8399 return ret;
8400}
9cff8ade 8401EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8402
e3b929b0 8403void __sched io_schedule(void)
10ab5643
TH
8404{
8405 int token;
8406
8407 token = io_schedule_prepare();
8408 schedule();
8409 io_schedule_finish(token);
8410}
8411EXPORT_SYMBOL(io_schedule);
8412
1da177e4
LT
8413/**
8414 * sys_sched_get_priority_max - return maximum RT priority.
8415 * @policy: scheduling class.
8416 *
e69f6186
YB
8417 * Return: On success, this syscall returns the maximum
8418 * rt_priority that can be used by a given scheduling class.
8419 * On failure, a negative error code is returned.
1da177e4 8420 */
5add95d4 8421SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8422{
8423 int ret = -EINVAL;
8424
8425 switch (policy) {
8426 case SCHED_FIFO:
8427 case SCHED_RR:
ae18ad28 8428 ret = MAX_RT_PRIO-1;
1da177e4 8429 break;
aab03e05 8430 case SCHED_DEADLINE:
1da177e4 8431 case SCHED_NORMAL:
b0a9499c 8432 case SCHED_BATCH:
dd41f596 8433 case SCHED_IDLE:
1da177e4
LT
8434 ret = 0;
8435 break;
8436 }
8437 return ret;
8438}
8439
8440/**
8441 * sys_sched_get_priority_min - return minimum RT priority.
8442 * @policy: scheduling class.
8443 *
e69f6186
YB
8444 * Return: On success, this syscall returns the minimum
8445 * rt_priority that can be used by a given scheduling class.
8446 * On failure, a negative error code is returned.
1da177e4 8447 */
5add95d4 8448SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8449{
8450 int ret = -EINVAL;
8451
8452 switch (policy) {
8453 case SCHED_FIFO:
8454 case SCHED_RR:
8455 ret = 1;
8456 break;
aab03e05 8457 case SCHED_DEADLINE:
1da177e4 8458 case SCHED_NORMAL:
b0a9499c 8459 case SCHED_BATCH:
dd41f596 8460 case SCHED_IDLE:
1da177e4
LT
8461 ret = 0;
8462 }
8463 return ret;
8464}
8465
abca5fc5 8466static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8467{
36c8b586 8468 struct task_struct *p;
a4ec24b4 8469 unsigned int time_slice;
eb580751 8470 struct rq_flags rf;
dba091b9 8471 struct rq *rq;
3a5c359a 8472 int retval;
1da177e4
LT
8473
8474 if (pid < 0)
3a5c359a 8475 return -EINVAL;
1da177e4
LT
8476
8477 retval = -ESRCH;
1a551ae7 8478 rcu_read_lock();
1da177e4
LT
8479 p = find_process_by_pid(pid);
8480 if (!p)
8481 goto out_unlock;
8482
8483 retval = security_task_getscheduler(p);
8484 if (retval)
8485 goto out_unlock;
8486
eb580751 8487 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8488 time_slice = 0;
8489 if (p->sched_class->get_rr_interval)
8490 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8491 task_rq_unlock(rq, p, &rf);
a4ec24b4 8492
1a551ae7 8493 rcu_read_unlock();
abca5fc5
AV
8494 jiffies_to_timespec64(time_slice, t);
8495 return 0;
3a5c359a 8496
1da177e4 8497out_unlock:
1a551ae7 8498 rcu_read_unlock();
1da177e4
LT
8499 return retval;
8500}
8501
2064a5ab
RD
8502/**
8503 * sys_sched_rr_get_interval - return the default timeslice of a process.
8504 * @pid: pid of the process.
8505 * @interval: userspace pointer to the timeslice value.
8506 *
8507 * this syscall writes the default timeslice value of a given process
8508 * into the user-space timespec buffer. A value of '0' means infinity.
8509 *
8510 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8511 * an error code.
8512 */
abca5fc5 8513SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8514 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8515{
8516 struct timespec64 t;
8517 int retval = sched_rr_get_interval(pid, &t);
8518
8519 if (retval == 0)
8520 retval = put_timespec64(&t, interval);
8521
8522 return retval;
8523}
8524
474b9c77 8525#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8526SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8527 struct old_timespec32 __user *, interval)
abca5fc5
AV
8528{
8529 struct timespec64 t;
8530 int retval = sched_rr_get_interval(pid, &t);
8531
8532 if (retval == 0)
9afc5eee 8533 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8534 return retval;
8535}
8536#endif
8537
82a1fcb9 8538void sched_show_task(struct task_struct *p)
1da177e4 8539{
1da177e4 8540 unsigned long free = 0;
4e79752c 8541 int ppid;
c930b2c0 8542
38200502
TH
8543 if (!try_get_task_stack(p))
8544 return;
20435d84 8545
cc172ff3 8546 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8547
b03fbd4f 8548 if (task_is_running(p))
cc172ff3 8549 pr_cont(" running task ");
1da177e4 8550#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8551 free = stack_not_used(p);
1da177e4 8552#endif
a90e984c 8553 ppid = 0;
4e79752c 8554 rcu_read_lock();
a90e984c
ON
8555 if (pid_alive(p))
8556 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8557 rcu_read_unlock();
cc172ff3
LZ
8558 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8559 free, task_pid_nr(p), ppid,
0569b245 8560 read_task_thread_flags(p));
1da177e4 8561
3d1cb205 8562 print_worker_info(KERN_INFO, p);
a8b62fd0 8563 print_stop_info(KERN_INFO, p);
9cb8f069 8564 show_stack(p, NULL, KERN_INFO);
38200502 8565 put_task_stack(p);
1da177e4 8566}
0032f4e8 8567EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8568
5d68cc95
PZ
8569static inline bool
8570state_filter_match(unsigned long state_filter, struct task_struct *p)
8571{
2f064a59
PZ
8572 unsigned int state = READ_ONCE(p->__state);
8573
5d68cc95
PZ
8574 /* no filter, everything matches */
8575 if (!state_filter)
8576 return true;
8577
8578 /* filter, but doesn't match */
2f064a59 8579 if (!(state & state_filter))
5d68cc95
PZ
8580 return false;
8581
8582 /*
8583 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8584 * TASK_KILLABLE).
8585 */
2f064a59 8586 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
5d68cc95
PZ
8587 return false;
8588
8589 return true;
8590}
8591
8592
2f064a59 8593void show_state_filter(unsigned int state_filter)
1da177e4 8594{
36c8b586 8595 struct task_struct *g, *p;
1da177e4 8596
510f5acc 8597 rcu_read_lock();
5d07f420 8598 for_each_process_thread(g, p) {
1da177e4
LT
8599 /*
8600 * reset the NMI-timeout, listing all files on a slow
25985edc 8601 * console might take a lot of time:
57675cb9
AR
8602 * Also, reset softlockup watchdogs on all CPUs, because
8603 * another CPU might be blocked waiting for us to process
8604 * an IPI.
1da177e4
LT
8605 */
8606 touch_nmi_watchdog();
57675cb9 8607 touch_all_softlockup_watchdogs();
5d68cc95 8608 if (state_filter_match(state_filter, p))
82a1fcb9 8609 sched_show_task(p);
5d07f420 8610 }
1da177e4 8611
dd41f596 8612#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8613 if (!state_filter)
8614 sysrq_sched_debug_show();
dd41f596 8615#endif
510f5acc 8616 rcu_read_unlock();
e59e2ae2
IM
8617 /*
8618 * Only show locks if all tasks are dumped:
8619 */
93335a21 8620 if (!state_filter)
e59e2ae2 8621 debug_show_all_locks();
1da177e4
LT
8622}
8623
f340c0d1
IM
8624/**
8625 * init_idle - set up an idle thread for a given CPU
8626 * @idle: task in question
d1ccc66d 8627 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8628 *
8629 * NOTE: this function does not set the idle thread's NEED_RESCHED
8630 * flag, to make booting more robust.
8631 */
f1a0a376 8632void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8633{
70b97a7f 8634 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8635 unsigned long flags;
8636
ff51ff84
PZ
8637 __sched_fork(0, idle);
8638
25834c73 8639 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8640 raw_spin_rq_lock(rq);
5cbd54ef 8641
2f064a59 8642 idle->__state = TASK_RUNNING;
dd41f596 8643 idle->se.exec_start = sched_clock();
00b89fe0
VS
8644 /*
8645 * PF_KTHREAD should already be set at this point; regardless, make it
8646 * look like a proper per-CPU kthread.
8647 */
8648 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8649 kthread_set_per_cpu(idle, cpu);
dd41f596 8650
de9b8f5d
PZ
8651#ifdef CONFIG_SMP
8652 /*
b19a888c 8653 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8654 * in that case do_set_cpus_allowed() will not do the right thing.
8655 *
8656 * And since this is boot we can forgo the serialization.
8657 */
9cfc3e18 8658 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8659#endif
6506cf6c
PZ
8660 /*
8661 * We're having a chicken and egg problem, even though we are
d1ccc66d 8662 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8663 * lockdep check in task_group() will fail.
8664 *
8665 * Similar case to sched_fork(). / Alternatively we could
8666 * use task_rq_lock() here and obtain the other rq->lock.
8667 *
8668 * Silence PROVE_RCU
8669 */
8670 rcu_read_lock();
dd41f596 8671 __set_task_cpu(idle, cpu);
6506cf6c 8672 rcu_read_unlock();
1da177e4 8673
5311a98f
EB
8674 rq->idle = idle;
8675 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8676 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8677#ifdef CONFIG_SMP
3ca7a440 8678 idle->on_cpu = 1;
4866cde0 8679#endif
5cb9eaa3 8680 raw_spin_rq_unlock(rq);
25834c73 8681 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8682
8683 /* Set the preempt count _outside_ the spinlocks! */
01028747 8684 init_idle_preempt_count(idle, cpu);
55cd5340 8685
dd41f596
IM
8686 /*
8687 * The idle tasks have their own, simple scheduling class:
8688 */
8689 idle->sched_class = &idle_sched_class;
868baf07 8690 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8691 vtime_init_idle(idle, cpu);
de9b8f5d 8692#ifdef CONFIG_SMP
f1c6f1a7
CE
8693 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8694#endif
19978ca6
IM
8695}
8696
e1d4eeec
NP
8697#ifdef CONFIG_SMP
8698
f82f8042
JL
8699int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8700 const struct cpumask *trial)
8701{
06a76fe0 8702 int ret = 1;
f82f8042 8703
bb2bc55a
MG
8704 if (!cpumask_weight(cur))
8705 return ret;
8706
06a76fe0 8707 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8708
8709 return ret;
8710}
8711
7f51412a
JL
8712int task_can_attach(struct task_struct *p,
8713 const struct cpumask *cs_cpus_allowed)
8714{
8715 int ret = 0;
8716
8717 /*
8718 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8719 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8720 * affinity and isolating such threads by their set of
8721 * allowed nodes is unnecessary. Thus, cpusets are not
8722 * applicable for such threads. This prevents checking for
8723 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8724 * before cpus_mask may be changed.
7f51412a
JL
8725 */
8726 if (p->flags & PF_NO_SETAFFINITY) {
8727 ret = -EINVAL;
8728 goto out;
8729 }
8730
7f51412a 8731 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8732 cs_cpus_allowed))
8733 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8734
7f51412a
JL
8735out:
8736 return ret;
8737}
8738
f2cb1360 8739bool sched_smp_initialized __read_mostly;
e26fbffd 8740
e6628d5b
MG
8741#ifdef CONFIG_NUMA_BALANCING
8742/* Migrate current task p to target_cpu */
8743int migrate_task_to(struct task_struct *p, int target_cpu)
8744{
8745 struct migration_arg arg = { p, target_cpu };
8746 int curr_cpu = task_cpu(p);
8747
8748 if (curr_cpu == target_cpu)
8749 return 0;
8750
3bd37062 8751 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8752 return -EINVAL;
8753
8754 /* TODO: This is not properly updating schedstats */
8755
286549dc 8756 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8757 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8758}
0ec8aa00
PZ
8759
8760/*
8761 * Requeue a task on a given node and accurately track the number of NUMA
8762 * tasks on the runqueues
8763 */
8764void sched_setnuma(struct task_struct *p, int nid)
8765{
da0c1e65 8766 bool queued, running;
eb580751
PZ
8767 struct rq_flags rf;
8768 struct rq *rq;
0ec8aa00 8769
eb580751 8770 rq = task_rq_lock(p, &rf);
da0c1e65 8771 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8772 running = task_current(rq, p);
8773
da0c1e65 8774 if (queued)
1de64443 8775 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8776 if (running)
f3cd1c4e 8777 put_prev_task(rq, p);
0ec8aa00
PZ
8778
8779 p->numa_preferred_nid = nid;
0ec8aa00 8780
da0c1e65 8781 if (queued)
7134b3e9 8782 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8783 if (running)
03b7fad1 8784 set_next_task(rq, p);
eb580751 8785 task_rq_unlock(rq, p, &rf);
0ec8aa00 8786}
5cc389bc 8787#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8788
1da177e4 8789#ifdef CONFIG_HOTPLUG_CPU
054b9108 8790/*
d1ccc66d 8791 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8792 * offline.
054b9108 8793 */
48c5ccae 8794void idle_task_exit(void)
1da177e4 8795{
48c5ccae 8796 struct mm_struct *mm = current->active_mm;
e76bd8d9 8797
48c5ccae 8798 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8799 BUG_ON(current != this_rq()->idle);
e76bd8d9 8800
a53efe5f 8801 if (mm != &init_mm) {
252d2a41 8802 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8803 finish_arch_post_lock_switch();
8804 }
bf2c59fc
PZ
8805
8806 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8807}
8808
2558aacf 8809static int __balance_push_cpu_stop(void *arg)
1da177e4 8810{
2558aacf
PZ
8811 struct task_struct *p = arg;
8812 struct rq *rq = this_rq();
8813 struct rq_flags rf;
8814 int cpu;
1da177e4 8815
2558aacf
PZ
8816 raw_spin_lock_irq(&p->pi_lock);
8817 rq_lock(rq, &rf);
3f1d2a31 8818
2558aacf
PZ
8819 update_rq_clock(rq);
8820
8821 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8822 cpu = select_fallback_rq(rq->cpu, p);
8823 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8824 }
3f1d2a31 8825
2558aacf
PZ
8826 rq_unlock(rq, &rf);
8827 raw_spin_unlock_irq(&p->pi_lock);
8828
8829 put_task_struct(p);
8830
8831 return 0;
10e7071b 8832}
3f1d2a31 8833
2558aacf
PZ
8834static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8835
48f24c4d 8836/*
2558aacf 8837 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8838 *
8839 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8840 * effective when the hotplug motion is down.
1da177e4 8841 */
2558aacf 8842static void balance_push(struct rq *rq)
1da177e4 8843{
2558aacf
PZ
8844 struct task_struct *push_task = rq->curr;
8845
5cb9eaa3 8846 lockdep_assert_rq_held(rq);
b5c44773 8847
ae792702
PZ
8848 /*
8849 * Ensure the thing is persistent until balance_push_set(.on = false);
8850 */
8851 rq->balance_callback = &balance_push_callback;
1da177e4 8852
b5c44773 8853 /*
868ad33b
TG
8854 * Only active while going offline and when invoked on the outgoing
8855 * CPU.
b5c44773 8856 */
868ad33b 8857 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
8858 return;
8859
1da177e4 8860 /*
2558aacf
PZ
8861 * Both the cpu-hotplug and stop task are in this case and are
8862 * required to complete the hotplug process.
1da177e4 8863 */
00b89fe0 8864 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8865 is_migration_disabled(push_task)) {
8866
f2469a1f
TG
8867 /*
8868 * If this is the idle task on the outgoing CPU try to wake
8869 * up the hotplug control thread which might wait for the
8870 * last task to vanish. The rcuwait_active() check is
8871 * accurate here because the waiter is pinned on this CPU
8872 * and can't obviously be running in parallel.
3015ef4b
TG
8873 *
8874 * On RT kernels this also has to check whether there are
8875 * pinned and scheduled out tasks on the runqueue. They
8876 * need to leave the migrate disabled section first.
f2469a1f 8877 */
3015ef4b
TG
8878 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8879 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8880 raw_spin_rq_unlock(rq);
f2469a1f 8881 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8882 raw_spin_rq_lock(rq);
f2469a1f 8883 }
2558aacf 8884 return;
f2469a1f 8885 }
48f24c4d 8886
2558aacf 8887 get_task_struct(push_task);
77bd3970 8888 /*
2558aacf
PZ
8889 * Temporarily drop rq->lock such that we can wake-up the stop task.
8890 * Both preemption and IRQs are still disabled.
77bd3970 8891 */
5cb9eaa3 8892 raw_spin_rq_unlock(rq);
2558aacf
PZ
8893 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8894 this_cpu_ptr(&push_work));
8895 /*
8896 * At this point need_resched() is true and we'll take the loop in
8897 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8898 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8899 */
5cb9eaa3 8900 raw_spin_rq_lock(rq);
2558aacf 8901}
77bd3970 8902
2558aacf
PZ
8903static void balance_push_set(int cpu, bool on)
8904{
8905 struct rq *rq = cpu_rq(cpu);
8906 struct rq_flags rf;
48c5ccae 8907
2558aacf 8908 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8909 if (on) {
8910 WARN_ON_ONCE(rq->balance_callback);
ae792702 8911 rq->balance_callback = &balance_push_callback;
22f667c9 8912 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8913 rq->balance_callback = NULL;
22f667c9 8914 }
2558aacf
PZ
8915 rq_unlock_irqrestore(rq, &rf);
8916}
e692ab53 8917
f2469a1f
TG
8918/*
8919 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8920 * inactive. All tasks which are not per CPU kernel threads are either
8921 * pushed off this CPU now via balance_push() or placed on a different CPU
8922 * during wakeup. Wait until the CPU is quiescent.
8923 */
8924static void balance_hotplug_wait(void)
8925{
8926 struct rq *rq = this_rq();
5473e0cc 8927
3015ef4b
TG
8928 rcuwait_wait_event(&rq->hotplug_wait,
8929 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8930 TASK_UNINTERRUPTIBLE);
8931}
5473e0cc 8932
2558aacf 8933#else
dce48a84 8934
2558aacf
PZ
8935static inline void balance_push(struct rq *rq)
8936{
dce48a84 8937}
dce48a84 8938
2558aacf
PZ
8939static inline void balance_push_set(int cpu, bool on)
8940{
8941}
8942
f2469a1f
TG
8943static inline void balance_hotplug_wait(void)
8944{
dce48a84 8945}
f2469a1f 8946
1da177e4
LT
8947#endif /* CONFIG_HOTPLUG_CPU */
8948
f2cb1360 8949void set_rq_online(struct rq *rq)
1f11eb6a
GH
8950{
8951 if (!rq->online) {
8952 const struct sched_class *class;
8953
c6c4927b 8954 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8955 rq->online = 1;
8956
8957 for_each_class(class) {
8958 if (class->rq_online)
8959 class->rq_online(rq);
8960 }
8961 }
8962}
8963
f2cb1360 8964void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8965{
8966 if (rq->online) {
8967 const struct sched_class *class;
8968
8969 for_each_class(class) {
8970 if (class->rq_offline)
8971 class->rq_offline(rq);
8972 }
8973
c6c4927b 8974 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8975 rq->online = 0;
8976 }
8977}
8978
d1ccc66d
IM
8979/*
8980 * used to mark begin/end of suspend/resume:
8981 */
8982static int num_cpus_frozen;
d35be8ba 8983
1da177e4 8984/*
3a101d05
TH
8985 * Update cpusets according to cpu_active mask. If cpusets are
8986 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8987 * around partition_sched_domains().
d35be8ba
SB
8988 *
8989 * If we come here as part of a suspend/resume, don't touch cpusets because we
8990 * want to restore it back to its original state upon resume anyway.
1da177e4 8991 */
40190a78 8992static void cpuset_cpu_active(void)
e761b772 8993{
40190a78 8994 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8995 /*
8996 * num_cpus_frozen tracks how many CPUs are involved in suspend
8997 * resume sequence. As long as this is not the last online
8998 * operation in the resume sequence, just build a single sched
8999 * domain, ignoring cpusets.
9000 */
50e76632
PZ
9001 partition_sched_domains(1, NULL, NULL);
9002 if (--num_cpus_frozen)
135fb3e1 9003 return;
d35be8ba
SB
9004 /*
9005 * This is the last CPU online operation. So fall through and
9006 * restore the original sched domains by considering the
9007 * cpuset configurations.
9008 */
50e76632 9009 cpuset_force_rebuild();
3a101d05 9010 }
30e03acd 9011 cpuset_update_active_cpus();
3a101d05 9012}
e761b772 9013
40190a78 9014static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 9015{
40190a78 9016 if (!cpuhp_tasks_frozen) {
06a76fe0 9017 if (dl_cpu_busy(cpu))
135fb3e1 9018 return -EBUSY;
30e03acd 9019 cpuset_update_active_cpus();
135fb3e1 9020 } else {
d35be8ba
SB
9021 num_cpus_frozen++;
9022 partition_sched_domains(1, NULL, NULL);
e761b772 9023 }
135fb3e1 9024 return 0;
e761b772 9025}
e761b772 9026
40190a78 9027int sched_cpu_activate(unsigned int cpu)
135fb3e1 9028{
7d976699 9029 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9030 struct rq_flags rf;
7d976699 9031
22f667c9 9032 /*
b5c44773
PZ
9033 * Clear the balance_push callback and prepare to schedule
9034 * regular tasks.
22f667c9 9035 */
2558aacf
PZ
9036 balance_push_set(cpu, false);
9037
ba2591a5
PZ
9038#ifdef CONFIG_SCHED_SMT
9039 /*
c5511d03 9040 * When going up, increment the number of cores with SMT present.
ba2591a5 9041 */
c5511d03
PZI
9042 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9043 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 9044#endif
40190a78 9045 set_cpu_active(cpu, true);
135fb3e1 9046
40190a78 9047 if (sched_smp_initialized) {
135fb3e1 9048 sched_domains_numa_masks_set(cpu);
40190a78 9049 cpuset_cpu_active();
e761b772 9050 }
7d976699
TG
9051
9052 /*
9053 * Put the rq online, if not already. This happens:
9054 *
9055 * 1) In the early boot process, because we build the real domains
d1ccc66d 9056 * after all CPUs have been brought up.
7d976699
TG
9057 *
9058 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9059 * domains.
9060 */
8a8c69c3 9061 rq_lock_irqsave(rq, &rf);
7d976699
TG
9062 if (rq->rd) {
9063 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9064 set_rq_online(rq);
9065 }
8a8c69c3 9066 rq_unlock_irqrestore(rq, &rf);
7d976699 9067
40190a78 9068 return 0;
135fb3e1
TG
9069}
9070
40190a78 9071int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 9072{
120455c5
PZ
9073 struct rq *rq = cpu_rq(cpu);
9074 struct rq_flags rf;
135fb3e1
TG
9075 int ret;
9076
e0b257c3
AMB
9077 /*
9078 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9079 * load balancing when not active
9080 */
9081 nohz_balance_exit_idle(rq);
9082
40190a78 9083 set_cpu_active(cpu, false);
741ba80f
PZ
9084
9085 /*
9086 * From this point forward, this CPU will refuse to run any task that
9087 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9088 * push those tasks away until this gets cleared, see
9089 * sched_cpu_dying().
9090 */
975707f2
PZ
9091 balance_push_set(cpu, true);
9092
b2454caa 9093 /*
975707f2
PZ
9094 * We've cleared cpu_active_mask / set balance_push, wait for all
9095 * preempt-disabled and RCU users of this state to go away such that
9096 * all new such users will observe it.
b2454caa 9097 *
5ba2ffba
PZ
9098 * Specifically, we rely on ttwu to no longer target this CPU, see
9099 * ttwu_queue_cond() and is_cpu_allowed().
9100 *
b2454caa
PZ
9101 * Do sync before park smpboot threads to take care the rcu boost case.
9102 */
309ba859 9103 synchronize_rcu();
40190a78 9104
120455c5
PZ
9105 rq_lock_irqsave(rq, &rf);
9106 if (rq->rd) {
9107 update_rq_clock(rq);
9108 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9109 set_rq_offline(rq);
9110 }
9111 rq_unlock_irqrestore(rq, &rf);
9112
c5511d03
PZI
9113#ifdef CONFIG_SCHED_SMT
9114 /*
9115 * When going down, decrement the number of cores with SMT present.
9116 */
9117 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9118 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9119
9120 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9121#endif
9122
40190a78
TG
9123 if (!sched_smp_initialized)
9124 return 0;
9125
9126 ret = cpuset_cpu_inactive(cpu);
9127 if (ret) {
2558aacf 9128 balance_push_set(cpu, false);
40190a78
TG
9129 set_cpu_active(cpu, true);
9130 return ret;
135fb3e1 9131 }
40190a78
TG
9132 sched_domains_numa_masks_clear(cpu);
9133 return 0;
135fb3e1
TG
9134}
9135
94baf7a5
TG
9136static void sched_rq_cpu_starting(unsigned int cpu)
9137{
9138 struct rq *rq = cpu_rq(cpu);
9139
9140 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9141 update_max_interval();
9142}
9143
135fb3e1
TG
9144int sched_cpu_starting(unsigned int cpu)
9145{
9edeaea1 9146 sched_core_cpu_starting(cpu);
94baf7a5 9147 sched_rq_cpu_starting(cpu);
d84b3131 9148 sched_tick_start(cpu);
135fb3e1 9149 return 0;
e761b772 9150}
e761b772 9151
f2785ddb 9152#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9153
9154/*
9155 * Invoked immediately before the stopper thread is invoked to bring the
9156 * CPU down completely. At this point all per CPU kthreads except the
9157 * hotplug thread (current) and the stopper thread (inactive) have been
9158 * either parked or have been unbound from the outgoing CPU. Ensure that
9159 * any of those which might be on the way out are gone.
9160 *
9161 * If after this point a bound task is being woken on this CPU then the
9162 * responsible hotplug callback has failed to do it's job.
9163 * sched_cpu_dying() will catch it with the appropriate fireworks.
9164 */
9165int sched_cpu_wait_empty(unsigned int cpu)
9166{
9167 balance_hotplug_wait();
9168 return 0;
9169}
9170
9171/*
9172 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9173 * might have. Called from the CPU stopper task after ensuring that the
9174 * stopper is the last running task on the CPU, so nr_active count is
9175 * stable. We need to take the teardown thread which is calling this into
9176 * account, so we hand in adjust = 1 to the load calculation.
9177 *
9178 * Also see the comment "Global load-average calculations".
9179 */
9180static void calc_load_migrate(struct rq *rq)
9181{
9182 long delta = calc_load_fold_active(rq, 1);
9183
9184 if (delta)
9185 atomic_long_add(delta, &calc_load_tasks);
9186}
9187
36c6e17b
VS
9188static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9189{
9190 struct task_struct *g, *p;
9191 int cpu = cpu_of(rq);
9192
5cb9eaa3 9193 lockdep_assert_rq_held(rq);
36c6e17b
VS
9194
9195 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9196 for_each_process_thread(g, p) {
9197 if (task_cpu(p) != cpu)
9198 continue;
9199
9200 if (!task_on_rq_queued(p))
9201 continue;
9202
9203 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9204 }
9205}
9206
f2785ddb
TG
9207int sched_cpu_dying(unsigned int cpu)
9208{
9209 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9210 struct rq_flags rf;
f2785ddb
TG
9211
9212 /* Handle pending wakeups and then migrate everything off */
d84b3131 9213 sched_tick_stop(cpu);
8a8c69c3
PZ
9214
9215 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9216 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9217 WARN(true, "Dying CPU not properly vacated!");
9218 dump_rq_tasks(rq, KERN_WARNING);
9219 }
8a8c69c3
PZ
9220 rq_unlock_irqrestore(rq, &rf);
9221
f2785ddb
TG
9222 calc_load_migrate(rq);
9223 update_max_interval();
e5ef27d0 9224 hrtick_clear(rq);
3c474b32 9225 sched_core_cpu_dying(cpu);
f2785ddb
TG
9226 return 0;
9227}
9228#endif
9229
1da177e4
LT
9230void __init sched_init_smp(void)
9231{
cb83b629
PZ
9232 sched_init_numa();
9233
6acce3ef
PZ
9234 /*
9235 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9236 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9237 * happen.
6acce3ef 9238 */
712555ee 9239 mutex_lock(&sched_domains_mutex);
8d5dc512 9240 sched_init_domains(cpu_active_mask);
712555ee 9241 mutex_unlock(&sched_domains_mutex);
e761b772 9242
5c1e1767 9243 /* Move init over to a non-isolated CPU */
edb93821 9244 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 9245 BUG();
15faafc6 9246 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9247 sched_init_granularity();
4212823f 9248
0e3900e6 9249 init_sched_rt_class();
1baca4ce 9250 init_sched_dl_class();
1b568f0a 9251
e26fbffd 9252 sched_smp_initialized = true;
1da177e4 9253}
e26fbffd
TG
9254
9255static int __init migration_init(void)
9256{
77a5352b 9257 sched_cpu_starting(smp_processor_id());
e26fbffd 9258 return 0;
1da177e4 9259}
e26fbffd
TG
9260early_initcall(migration_init);
9261
1da177e4
LT
9262#else
9263void __init sched_init_smp(void)
9264{
19978ca6 9265 sched_init_granularity();
1da177e4
LT
9266}
9267#endif /* CONFIG_SMP */
9268
9269int in_sched_functions(unsigned long addr)
9270{
1da177e4
LT
9271 return in_lock_functions(addr) ||
9272 (addr >= (unsigned long)__sched_text_start
9273 && addr < (unsigned long)__sched_text_end);
9274}
9275
029632fb 9276#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9277/*
9278 * Default task group.
9279 * Every task in system belongs to this group at bootup.
9280 */
029632fb 9281struct task_group root_task_group;
35cf4e50 9282LIST_HEAD(task_groups);
b0367629
WL
9283
9284/* Cacheline aligned slab cache for task_group */
9285static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9286#endif
6f505b16 9287
e6252c3e 9288DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 9289DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 9290
1da177e4
LT
9291void __init sched_init(void)
9292{
a1dc0446 9293 unsigned long ptr = 0;
55627e3c 9294 int i;
434d53b0 9295
c3a340f7
SRV
9296 /* Make sure the linker didn't screw up */
9297 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9298 &fair_sched_class + 1 != &rt_sched_class ||
9299 &rt_sched_class + 1 != &dl_sched_class);
9300#ifdef CONFIG_SMP
9301 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9302#endif
9303
5822a454 9304 wait_bit_init();
9dcb8b68 9305
434d53b0 9306#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9307 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9308#endif
9309#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9310 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9311#endif
a1dc0446
QC
9312 if (ptr) {
9313 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9314
9315#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9316 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9317 ptr += nr_cpu_ids * sizeof(void **);
9318
07e06b01 9319 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9320 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9321
b1d1779e
WY
9322 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9323 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9324#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9325#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9326 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9327 ptr += nr_cpu_ids * sizeof(void **);
9328
07e06b01 9329 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9330 ptr += nr_cpu_ids * sizeof(void **);
9331
6d6bc0ad 9332#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9333 }
df7c8e84 9334#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
9335 for_each_possible_cpu(i) {
9336 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9337 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
9338 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9339 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 9340 }
b74e6278 9341#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 9342
d1ccc66d
IM
9343 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9344 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9345
57d885fe
GH
9346#ifdef CONFIG_SMP
9347 init_defrootdomain();
9348#endif
9349
d0b27fa7 9350#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9351 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9352 global_rt_period(), global_rt_runtime());
6d6bc0ad 9353#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9354
7c941438 9355#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9356 task_group_cache = KMEM_CACHE(task_group, 0);
9357
07e06b01
YZ
9358 list_add(&root_task_group.list, &task_groups);
9359 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9360 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9361 autogroup_init(&init_task);
7c941438 9362#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9363
0a945022 9364 for_each_possible_cpu(i) {
70b97a7f 9365 struct rq *rq;
1da177e4
LT
9366
9367 rq = cpu_rq(i);
5cb9eaa3 9368 raw_spin_lock_init(&rq->__lock);
7897986b 9369 rq->nr_running = 0;
dce48a84
TG
9370 rq->calc_load_active = 0;
9371 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9372 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9373 init_rt_rq(&rq->rt);
9374 init_dl_rq(&rq->dl);
dd41f596 9375#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9376 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9377 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9378 /*
d1ccc66d 9379 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9380 *
9381 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9382 * gets 100% of the CPU resources in the system. This overall
9383 * system CPU resource is divided among the tasks of
07e06b01 9384 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9385 * based on each entity's (task or task-group's) weight
9386 * (se->load.weight).
9387 *
07e06b01 9388 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9389 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9390 * then A0's share of the CPU resource is:
354d60c2 9391 *
0d905bca 9392 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9393 *
07e06b01
YZ
9394 * We achieve this by letting root_task_group's tasks sit
9395 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9396 */
07e06b01 9397 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9398#endif /* CONFIG_FAIR_GROUP_SCHED */
9399
9400 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9401#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9402 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9403#endif
1da177e4 9404#ifdef CONFIG_SMP
41c7ce9a 9405 rq->sd = NULL;
57d885fe 9406 rq->rd = NULL;
ca6d75e6 9407 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9408 rq->balance_callback = &balance_push_callback;
1da177e4 9409 rq->active_balance = 0;
dd41f596 9410 rq->next_balance = jiffies;
1da177e4 9411 rq->push_cpu = 0;
0a2966b4 9412 rq->cpu = i;
1f11eb6a 9413 rq->online = 0;
eae0c9df
MG
9414 rq->idle_stamp = 0;
9415 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9416 rq->wake_stamp = jiffies;
9417 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9418 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9419
9420 INIT_LIST_HEAD(&rq->cfs_tasks);
9421
dc938520 9422 rq_attach_root(rq, &def_root_domain);
3451d024 9423#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9424 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9425 atomic_set(&rq->nohz_flags, 0);
90b5363a 9426
545b8c8d 9427 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9428#endif
f2469a1f
TG
9429#ifdef CONFIG_HOTPLUG_CPU
9430 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9431#endif
9fd81dd5 9432#endif /* CONFIG_SMP */
77a021be 9433 hrtick_rq_init(rq);
1da177e4 9434 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9435
9436#ifdef CONFIG_SCHED_CORE
3c474b32 9437 rq->core = rq;
539f6512 9438 rq->core_pick = NULL;
9edeaea1 9439 rq->core_enabled = 0;
539f6512 9440 rq->core_tree = RB_ROOT;
4feee7d1
JD
9441 rq->core_forceidle_count = 0;
9442 rq->core_forceidle_occupation = 0;
9443 rq->core_forceidle_start = 0;
539f6512
PZ
9444
9445 rq->core_cookie = 0UL;
9edeaea1 9446#endif
1da177e4
LT
9447 }
9448
13765de8 9449 set_load_weight(&init_task);
b50f60ce 9450
1da177e4
LT
9451 /*
9452 * The boot idle thread does lazy MMU switching as well:
9453 */
f1f10076 9454 mmgrab(&init_mm);
1da177e4
LT
9455 enter_lazy_tlb(&init_mm, current);
9456
40966e31
EB
9457 /*
9458 * The idle task doesn't need the kthread struct to function, but it
9459 * is dressed up as a per-CPU kthread and thus needs to play the part
9460 * if we want to avoid special-casing it in code that deals with per-CPU
9461 * kthreads.
9462 */
dd621ee0 9463 WARN_ON(!set_kthread_struct(current));
40966e31 9464
1da177e4
LT
9465 /*
9466 * Make us the idle thread. Technically, schedule() should not be
9467 * called from this thread, however somewhere below it might be,
9468 * but because we are the idle thread, we just pick up running again
9469 * when this runqueue becomes "idle".
9470 */
9471 init_idle(current, smp_processor_id());
dce48a84
TG
9472
9473 calc_load_update = jiffies + LOAD_FREQ;
9474
bf4d83f6 9475#ifdef CONFIG_SMP
29d5e047 9476 idle_thread_set_boot_cpu();
b5c44773 9477 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9478#endif
9479 init_sched_fair_class();
6a7b3dc3 9480
eb414681
JW
9481 psi_init();
9482
69842cba
PB
9483 init_uclamp();
9484
c597bfdd
FW
9485 preempt_dynamic_init();
9486
6892b75e 9487 scheduler_running = 1;
1da177e4
LT
9488}
9489
d902db1e 9490#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2 9491
42a38756 9492void __might_sleep(const char *file, int line)
1da177e4 9493{
d6c23bb3 9494 unsigned int state = get_current_state();
8eb23b9f
PZ
9495 /*
9496 * Blocking primitives will set (and therefore destroy) current->state,
9497 * since we will exit with TASK_RUNNING make sure we enter with it,
9498 * otherwise we will destroy state.
9499 */
d6c23bb3 9500 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9501 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9502 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9503 (void *)current->task_state_change,
00845eb9 9504 (void *)current->task_state_change);
8eb23b9f 9505
42a38756 9506 __might_resched(file, line, 0);
3427445a
PZ
9507}
9508EXPORT_SYMBOL(__might_sleep);
9509
8d713b69
TG
9510static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9511{
9512 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9513 return;
9514
9515 if (preempt_count() == preempt_offset)
9516 return;
9517
9518 pr_err("Preemption disabled at:");
9519 print_ip_sym(KERN_ERR, ip);
9520}
9521
50e081b9
TG
9522static inline bool resched_offsets_ok(unsigned int offsets)
9523{
9524 unsigned int nested = preempt_count();
9525
9526 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9527
9528 return nested == offsets;
9529}
9530
9531void __might_resched(const char *file, int line, unsigned int offsets)
1da177e4 9532{
d1ccc66d
IM
9533 /* Ratelimiting timestamp: */
9534 static unsigned long prev_jiffy;
9535
d1c6d149 9536 unsigned long preempt_disable_ip;
1da177e4 9537
d1ccc66d
IM
9538 /* WARN_ON_ONCE() by default, no rate limit required: */
9539 rcu_sleep_check();
9540
50e081b9 9541 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
312364f3 9542 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9543 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9544 oops_in_progress)
aef745fc 9545 return;
1c3c5eab 9546
aef745fc
IM
9547 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9548 return;
9549 prev_jiffy = jiffies;
9550
d1ccc66d 9551 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9552 preempt_disable_ip = get_preempt_disable_ip(current);
9553
a45ed302
TG
9554 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9555 file, line);
9556 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9557 in_atomic(), irqs_disabled(), current->non_block_count,
9558 current->pid, current->comm);
8d713b69 9559 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
50e081b9 9560 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8d713b69
TG
9561
9562 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
50e081b9
TG
9563 pr_err("RCU nest depth: %d, expected: %u\n",
9564 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8d713b69 9565 }
aef745fc 9566
a8b686b3 9567 if (task_stack_end_corrupted(current))
a45ed302 9568 pr_emerg("Thread overran stack, or stack corrupted\n");
a8b686b3 9569
aef745fc
IM
9570 debug_show_held_locks(current);
9571 if (irqs_disabled())
9572 print_irqtrace_events(current);
8d713b69 9573
50e081b9
TG
9574 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9575 preempt_disable_ip);
8d713b69 9576
aef745fc 9577 dump_stack();
f0b22e39 9578 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9579}
874f670e 9580EXPORT_SYMBOL(__might_resched);
568f1967
PZ
9581
9582void __cant_sleep(const char *file, int line, int preempt_offset)
9583{
9584 static unsigned long prev_jiffy;
9585
9586 if (irqs_disabled())
9587 return;
9588
9589 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9590 return;
9591
9592 if (preempt_count() > preempt_offset)
9593 return;
9594
9595 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9596 return;
9597 prev_jiffy = jiffies;
9598
9599 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9600 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9601 in_atomic(), irqs_disabled(),
9602 current->pid, current->comm);
9603
9604 debug_show_held_locks(current);
9605 dump_stack();
9606 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9607}
9608EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9609
9610#ifdef CONFIG_SMP
9611void __cant_migrate(const char *file, int line)
9612{
9613 static unsigned long prev_jiffy;
9614
9615 if (irqs_disabled())
9616 return;
9617
9618 if (is_migration_disabled(current))
9619 return;
9620
9621 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9622 return;
9623
9624 if (preempt_count() > 0)
9625 return;
9626
9627 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9628 return;
9629 prev_jiffy = jiffies;
9630
9631 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9632 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9633 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9634 current->pid, current->comm);
9635
9636 debug_show_held_locks(current);
9637 dump_stack();
9638 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9639}
9640EXPORT_SYMBOL_GPL(__cant_migrate);
9641#endif
1da177e4
LT
9642#endif
9643
9644#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9645void normalize_rt_tasks(void)
3a5e4dc1 9646{
dbc7f069 9647 struct task_struct *g, *p;
d50dde5a
DF
9648 struct sched_attr attr = {
9649 .sched_policy = SCHED_NORMAL,
9650 };
1da177e4 9651
3472eaa1 9652 read_lock(&tasklist_lock);
5d07f420 9653 for_each_process_thread(g, p) {
178be793
IM
9654 /*
9655 * Only normalize user tasks:
9656 */
3472eaa1 9657 if (p->flags & PF_KTHREAD)
178be793
IM
9658 continue;
9659
4fa8d299 9660 p->se.exec_start = 0;
ceeadb83
YS
9661 schedstat_set(p->stats.wait_start, 0);
9662 schedstat_set(p->stats.sleep_start, 0);
9663 schedstat_set(p->stats.block_start, 0);
dd41f596 9664
aab03e05 9665 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9666 /*
9667 * Renice negative nice level userspace
9668 * tasks back to 0:
9669 */
3472eaa1 9670 if (task_nice(p) < 0)
dd41f596 9671 set_user_nice(p, 0);
1da177e4 9672 continue;
dd41f596 9673 }
1da177e4 9674
dbc7f069 9675 __sched_setscheduler(p, &attr, false, false);
5d07f420 9676 }
3472eaa1 9677 read_unlock(&tasklist_lock);
1da177e4
LT
9678}
9679
9680#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9681
67fc4e0c 9682#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9683/*
67fc4e0c 9684 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9685 *
9686 * They can only be called when the whole system has been
9687 * stopped - every CPU needs to be quiescent, and no scheduling
9688 * activity can take place. Using them for anything else would
9689 * be a serious bug, and as a result, they aren't even visible
9690 * under any other configuration.
9691 */
9692
9693/**
d1ccc66d 9694 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9695 * @cpu: the processor in question.
9696 *
9697 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9698 *
9699 * Return: The current task for @cpu.
1df5c10a 9700 */
36c8b586 9701struct task_struct *curr_task(int cpu)
1df5c10a
LT
9702{
9703 return cpu_curr(cpu);
9704}
9705
67fc4e0c
JW
9706#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9707
9708#ifdef CONFIG_IA64
1df5c10a 9709/**
5feeb783 9710 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9711 * @cpu: the processor in question.
9712 * @p: the task pointer to set.
9713 *
9714 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9715 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9716 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9717 * must be called with all CPU's synchronized, and interrupts disabled, the
9718 * and caller must save the original value of the current task (see
9719 * curr_task() above) and restore that value before reenabling interrupts and
9720 * re-starting the system.
9721 *
9722 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9723 */
a458ae2e 9724void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9725{
9726 cpu_curr(cpu) = p;
9727}
9728
9729#endif
29f59db3 9730
7c941438 9731#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9732/* task_group_lock serializes the addition/removal of task groups */
9733static DEFINE_SPINLOCK(task_group_lock);
9734
2480c093
PB
9735static inline void alloc_uclamp_sched_group(struct task_group *tg,
9736 struct task_group *parent)
9737{
9738#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9739 enum uclamp_id clamp_id;
2480c093
PB
9740
9741 for_each_clamp_id(clamp_id) {
9742 uclamp_se_set(&tg->uclamp_req[clamp_id],
9743 uclamp_none(clamp_id), false);
0b60ba2d 9744 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9745 }
9746#endif
9747}
9748
2f5177f0 9749static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9750{
9751 free_fair_sched_group(tg);
9752 free_rt_sched_group(tg);
e9aa1dd1 9753 autogroup_free(tg);
b0367629 9754 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9755}
9756
b027789e
MK
9757static void sched_free_group_rcu(struct rcu_head *rcu)
9758{
9759 sched_free_group(container_of(rcu, struct task_group, rcu));
9760}
9761
9762static void sched_unregister_group(struct task_group *tg)
9763{
9764 unregister_fair_sched_group(tg);
9765 unregister_rt_sched_group(tg);
9766 /*
9767 * We have to wait for yet another RCU grace period to expire, as
9768 * print_cfs_stats() might run concurrently.
9769 */
9770 call_rcu(&tg->rcu, sched_free_group_rcu);
9771}
9772
bccbe08a 9773/* allocate runqueue etc for a new task group */
ec7dc8ac 9774struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9775{
9776 struct task_group *tg;
bccbe08a 9777
b0367629 9778 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9779 if (!tg)
9780 return ERR_PTR(-ENOMEM);
9781
ec7dc8ac 9782 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9783 goto err;
9784
ec7dc8ac 9785 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9786 goto err;
9787
2480c093
PB
9788 alloc_uclamp_sched_group(tg, parent);
9789
ace783b9
LZ
9790 return tg;
9791
9792err:
2f5177f0 9793 sched_free_group(tg);
ace783b9
LZ
9794 return ERR_PTR(-ENOMEM);
9795}
9796
9797void sched_online_group(struct task_group *tg, struct task_group *parent)
9798{
9799 unsigned long flags;
9800
8ed36996 9801 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9802 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9803
d1ccc66d
IM
9804 /* Root should already exist: */
9805 WARN_ON(!parent);
f473aa5e
PZ
9806
9807 tg->parent = parent;
f473aa5e 9808 INIT_LIST_HEAD(&tg->children);
09f2724a 9809 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9810 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9811
9812 online_fair_sched_group(tg);
29f59db3
SV
9813}
9814
9b5b7751 9815/* rcu callback to free various structures associated with a task group */
b027789e 9816static void sched_unregister_group_rcu(struct rcu_head *rhp)
29f59db3 9817{
d1ccc66d 9818 /* Now it should be safe to free those cfs_rqs: */
b027789e 9819 sched_unregister_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9820}
9821
4cf86d77 9822void sched_destroy_group(struct task_group *tg)
ace783b9 9823{
d1ccc66d 9824 /* Wait for possible concurrent references to cfs_rqs complete: */
b027789e 9825 call_rcu(&tg->rcu, sched_unregister_group_rcu);
ace783b9
LZ
9826}
9827
b027789e 9828void sched_release_group(struct task_group *tg)
29f59db3 9829{
8ed36996 9830 unsigned long flags;
29f59db3 9831
b027789e
MK
9832 /*
9833 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9834 * sched_cfs_period_timer()).
9835 *
9836 * For this to be effective, we have to wait for all pending users of
9837 * this task group to leave their RCU critical section to ensure no new
9838 * user will see our dying task group any more. Specifically ensure
9839 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9840 *
9841 * We therefore defer calling unregister_fair_sched_group() to
9842 * sched_unregister_group() which is guarantied to get called only after the
9843 * current RCU grace period has expired.
9844 */
3d4b47b4 9845 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9846 list_del_rcu(&tg->list);
f473aa5e 9847 list_del_rcu(&tg->siblings);
8ed36996 9848 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9849}
9850
ea86cb4b 9851static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9852{
8323f26c 9853 struct task_group *tg;
29f59db3 9854
f7b8a47d
KT
9855 /*
9856 * All callers are synchronized by task_rq_lock(); we do not use RCU
9857 * which is pointless here. Thus, we pass "true" to task_css_check()
9858 * to prevent lockdep warnings.
9859 */
9860 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9861 struct task_group, css);
9862 tg = autogroup_task_group(tsk, tg);
9863 tsk->sched_task_group = tg;
9864
810b3817 9865#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9866 if (tsk->sched_class->task_change_group)
9867 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9868 else
810b3817 9869#endif
b2b5ce02 9870 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9871}
9872
9873/*
9874 * Change task's runqueue when it moves between groups.
9875 *
9876 * The caller of this function should have put the task in its new group by
9877 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9878 * its new group.
9879 */
9880void sched_move_task(struct task_struct *tsk)
9881{
7a57f32a
PZ
9882 int queued, running, queue_flags =
9883 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9884 struct rq_flags rf;
9885 struct rq *rq;
9886
9887 rq = task_rq_lock(tsk, &rf);
1b1d6225 9888 update_rq_clock(rq);
ea86cb4b
VG
9889
9890 running = task_current(rq, tsk);
9891 queued = task_on_rq_queued(tsk);
9892
9893 if (queued)
7a57f32a 9894 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9895 if (running)
ea86cb4b
VG
9896 put_prev_task(rq, tsk);
9897
9898 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9899
da0c1e65 9900 if (queued)
7a57f32a 9901 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9902 if (running) {
03b7fad1 9903 set_next_task(rq, tsk);
2a4b03ff
VG
9904 /*
9905 * After changing group, the running task may have joined a
9906 * throttled one but it's still the running task. Trigger a
9907 * resched to make sure that task can still run.
9908 */
9909 resched_curr(rq);
9910 }
29f59db3 9911
eb580751 9912 task_rq_unlock(rq, tsk, &rf);
29f59db3 9913}
68318b8e 9914
a7c6d554 9915static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9916{
a7c6d554 9917 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9918}
9919
eb95419b
TH
9920static struct cgroup_subsys_state *
9921cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9922{
eb95419b
TH
9923 struct task_group *parent = css_tg(parent_css);
9924 struct task_group *tg;
68318b8e 9925
eb95419b 9926 if (!parent) {
68318b8e 9927 /* This is early initialization for the top cgroup */
07e06b01 9928 return &root_task_group.css;
68318b8e
SV
9929 }
9930
ec7dc8ac 9931 tg = sched_create_group(parent);
68318b8e
SV
9932 if (IS_ERR(tg))
9933 return ERR_PTR(-ENOMEM);
9934
68318b8e
SV
9935 return &tg->css;
9936}
9937
96b77745
KK
9938/* Expose task group only after completing cgroup initialization */
9939static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9940{
9941 struct task_group *tg = css_tg(css);
9942 struct task_group *parent = css_tg(css->parent);
9943
9944 if (parent)
9945 sched_online_group(tg, parent);
7226017a
QY
9946
9947#ifdef CONFIG_UCLAMP_TASK_GROUP
9948 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9949 mutex_lock(&uclamp_mutex);
9950 rcu_read_lock();
7226017a 9951 cpu_util_update_eff(css);
93b73858
QY
9952 rcu_read_unlock();
9953 mutex_unlock(&uclamp_mutex);
7226017a
QY
9954#endif
9955
96b77745
KK
9956 return 0;
9957}
9958
2f5177f0 9959static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9960{
eb95419b 9961 struct task_group *tg = css_tg(css);
ace783b9 9962
b027789e 9963 sched_release_group(tg);
ace783b9
LZ
9964}
9965
eb95419b 9966static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9967{
eb95419b 9968 struct task_group *tg = css_tg(css);
68318b8e 9969
2f5177f0
PZ
9970 /*
9971 * Relies on the RCU grace period between css_released() and this.
9972 */
b027789e 9973 sched_unregister_group(tg);
ace783b9
LZ
9974}
9975
ea86cb4b
VG
9976/*
9977 * This is called before wake_up_new_task(), therefore we really only
9978 * have to set its group bits, all the other stuff does not apply.
9979 */
b53202e6 9980static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9981{
ea86cb4b
VG
9982 struct rq_flags rf;
9983 struct rq *rq;
9984
9985 rq = task_rq_lock(task, &rf);
9986
80f5c1b8 9987 update_rq_clock(rq);
ea86cb4b
VG
9988 sched_change_group(task, TASK_SET_GROUP);
9989
9990 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9991}
9992
1f7dd3e5 9993static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9994{
bb9d97b6 9995 struct task_struct *task;
1f7dd3e5 9996 struct cgroup_subsys_state *css;
7dc603c9 9997 int ret = 0;
bb9d97b6 9998
1f7dd3e5 9999 cgroup_taskset_for_each(task, css, tset) {
b68aa230 10000#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 10001 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 10002 return -EINVAL;
b68aa230 10003#endif
7dc603c9 10004 /*
b19a888c 10005 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
10006 * running, we're sure to observe its full state.
10007 */
10008 raw_spin_lock_irq(&task->pi_lock);
10009 /*
10010 * Avoid calling sched_move_task() before wake_up_new_task()
10011 * has happened. This would lead to problems with PELT, due to
10012 * move wanting to detach+attach while we're not attached yet.
10013 */
2f064a59 10014 if (READ_ONCE(task->__state) == TASK_NEW)
7dc603c9
PZ
10015 ret = -EINVAL;
10016 raw_spin_unlock_irq(&task->pi_lock);
10017
10018 if (ret)
10019 break;
bb9d97b6 10020 }
7dc603c9 10021 return ret;
be367d09 10022}
68318b8e 10023
1f7dd3e5 10024static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 10025{
bb9d97b6 10026 struct task_struct *task;
1f7dd3e5 10027 struct cgroup_subsys_state *css;
bb9d97b6 10028
1f7dd3e5 10029 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10030 sched_move_task(task);
68318b8e
SV
10031}
10032
2480c093 10033#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
10034static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10035{
10036 struct cgroup_subsys_state *top_css = css;
10037 struct uclamp_se *uc_parent = NULL;
10038 struct uclamp_se *uc_se = NULL;
10039 unsigned int eff[UCLAMP_CNT];
0413d7f3 10040 enum uclamp_id clamp_id;
0b60ba2d
PB
10041 unsigned int clamps;
10042
93b73858
QY
10043 lockdep_assert_held(&uclamp_mutex);
10044 SCHED_WARN_ON(!rcu_read_lock_held());
10045
0b60ba2d
PB
10046 css_for_each_descendant_pre(css, top_css) {
10047 uc_parent = css_tg(css)->parent
10048 ? css_tg(css)->parent->uclamp : NULL;
10049
10050 for_each_clamp_id(clamp_id) {
10051 /* Assume effective clamps matches requested clamps */
10052 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10053 /* Cap effective clamps with parent's effective clamps */
10054 if (uc_parent &&
10055 eff[clamp_id] > uc_parent[clamp_id].value) {
10056 eff[clamp_id] = uc_parent[clamp_id].value;
10057 }
10058 }
10059 /* Ensure protection is always capped by limit */
10060 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10061
10062 /* Propagate most restrictive effective clamps */
10063 clamps = 0x0;
10064 uc_se = css_tg(css)->uclamp;
10065 for_each_clamp_id(clamp_id) {
10066 if (eff[clamp_id] == uc_se[clamp_id].value)
10067 continue;
10068 uc_se[clamp_id].value = eff[clamp_id];
10069 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10070 clamps |= (0x1 << clamp_id);
10071 }
babbe170 10072 if (!clamps) {
0b60ba2d 10073 css = css_rightmost_descendant(css);
babbe170
PB
10074 continue;
10075 }
10076
10077 /* Immediately update descendants RUNNABLE tasks */
0213b708 10078 uclamp_update_active_tasks(css);
0b60ba2d
PB
10079 }
10080}
2480c093
PB
10081
10082/*
10083 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10084 * C expression. Since there is no way to convert a macro argument (N) into a
10085 * character constant, use two levels of macros.
10086 */
10087#define _POW10(exp) ((unsigned int)1e##exp)
10088#define POW10(exp) _POW10(exp)
10089
10090struct uclamp_request {
10091#define UCLAMP_PERCENT_SHIFT 2
10092#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10093 s64 percent;
10094 u64 util;
10095 int ret;
10096};
10097
10098static inline struct uclamp_request
10099capacity_from_percent(char *buf)
10100{
10101 struct uclamp_request req = {
10102 .percent = UCLAMP_PERCENT_SCALE,
10103 .util = SCHED_CAPACITY_SCALE,
10104 .ret = 0,
10105 };
10106
10107 buf = strim(buf);
10108 if (strcmp(buf, "max")) {
10109 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10110 &req.percent);
10111 if (req.ret)
10112 return req;
b562d140 10113 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
10114 req.ret = -ERANGE;
10115 return req;
10116 }
10117
10118 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10119 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10120 }
10121
10122 return req;
10123}
10124
10125static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10126 size_t nbytes, loff_t off,
10127 enum uclamp_id clamp_id)
10128{
10129 struct uclamp_request req;
10130 struct task_group *tg;
10131
10132 req = capacity_from_percent(buf);
10133 if (req.ret)
10134 return req.ret;
10135
46609ce2
QY
10136 static_branch_enable(&sched_uclamp_used);
10137
2480c093
PB
10138 mutex_lock(&uclamp_mutex);
10139 rcu_read_lock();
10140
10141 tg = css_tg(of_css(of));
10142 if (tg->uclamp_req[clamp_id].value != req.util)
10143 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10144
10145 /*
10146 * Because of not recoverable conversion rounding we keep track of the
10147 * exact requested value
10148 */
10149 tg->uclamp_pct[clamp_id] = req.percent;
10150
0b60ba2d
PB
10151 /* Update effective clamps to track the most restrictive value */
10152 cpu_util_update_eff(of_css(of));
10153
2480c093
PB
10154 rcu_read_unlock();
10155 mutex_unlock(&uclamp_mutex);
10156
10157 return nbytes;
10158}
10159
10160static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10161 char *buf, size_t nbytes,
10162 loff_t off)
10163{
10164 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10165}
10166
10167static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10168 char *buf, size_t nbytes,
10169 loff_t off)
10170{
10171 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10172}
10173
10174static inline void cpu_uclamp_print(struct seq_file *sf,
10175 enum uclamp_id clamp_id)
10176{
10177 struct task_group *tg;
10178 u64 util_clamp;
10179 u64 percent;
10180 u32 rem;
10181
10182 rcu_read_lock();
10183 tg = css_tg(seq_css(sf));
10184 util_clamp = tg->uclamp_req[clamp_id].value;
10185 rcu_read_unlock();
10186
10187 if (util_clamp == SCHED_CAPACITY_SCALE) {
10188 seq_puts(sf, "max\n");
10189 return;
10190 }
10191
10192 percent = tg->uclamp_pct[clamp_id];
10193 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10194 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10195}
10196
10197static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10198{
10199 cpu_uclamp_print(sf, UCLAMP_MIN);
10200 return 0;
10201}
10202
10203static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10204{
10205 cpu_uclamp_print(sf, UCLAMP_MAX);
10206 return 0;
10207}
10208#endif /* CONFIG_UCLAMP_TASK_GROUP */
10209
052f1dc7 10210#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10211static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10212 struct cftype *cftype, u64 shareval)
68318b8e 10213{
5b61d50a
KK
10214 if (shareval > scale_load_down(ULONG_MAX))
10215 shareval = MAX_SHARES;
182446d0 10216 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10217}
10218
182446d0
TH
10219static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10220 struct cftype *cft)
68318b8e 10221{
182446d0 10222 struct task_group *tg = css_tg(css);
68318b8e 10223
c8b28116 10224 return (u64) scale_load_down(tg->shares);
68318b8e 10225}
ab84d31e
PT
10226
10227#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10228static DEFINE_MUTEX(cfs_constraints_mutex);
10229
ab84d31e 10230const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10231static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10232/* More than 203 days if BW_SHIFT equals 20. */
10233static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10234
a790de99
PT
10235static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10236
f4183717
HC
10237static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10238 u64 burst)
ab84d31e 10239{
56f570e5 10240 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10241 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10242
10243 if (tg == &root_task_group)
10244 return -EINVAL;
10245
10246 /*
10247 * Ensure we have at some amount of bandwidth every period. This is
10248 * to prevent reaching a state of large arrears when throttled via
10249 * entity_tick() resulting in prolonged exit starvation.
10250 */
10251 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10252 return -EINVAL;
10253
10254 /*
3b03706f 10255 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10256 * periods. This also allows us to normalize in computing quota
10257 * feasibility.
10258 */
10259 if (period > max_cfs_quota_period)
10260 return -EINVAL;
10261
d505b8af
HC
10262 /*
10263 * Bound quota to defend quota against overflow during bandwidth shift.
10264 */
10265 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10266 return -EINVAL;
10267
f4183717
HC
10268 if (quota != RUNTIME_INF && (burst > quota ||
10269 burst + quota > max_cfs_runtime))
10270 return -EINVAL;
10271
0e59bdae
KT
10272 /*
10273 * Prevent race between setting of cfs_rq->runtime_enabled and
10274 * unthrottle_offline_cfs_rqs().
10275 */
746f5ea9 10276 cpus_read_lock();
a790de99
PT
10277 mutex_lock(&cfs_constraints_mutex);
10278 ret = __cfs_schedulable(tg, period, quota);
10279 if (ret)
10280 goto out_unlock;
10281
58088ad0 10282 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10283 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10284 /*
10285 * If we need to toggle cfs_bandwidth_used, off->on must occur
10286 * before making related changes, and on->off must occur afterwards
10287 */
10288 if (runtime_enabled && !runtime_was_enabled)
10289 cfs_bandwidth_usage_inc();
ab84d31e
PT
10290 raw_spin_lock_irq(&cfs_b->lock);
10291 cfs_b->period = ns_to_ktime(period);
10292 cfs_b->quota = quota;
f4183717 10293 cfs_b->burst = burst;
58088ad0 10294
a9cf55b2 10295 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10296
10297 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10298 if (runtime_enabled)
10299 start_cfs_bandwidth(cfs_b);
d1ccc66d 10300
ab84d31e
PT
10301 raw_spin_unlock_irq(&cfs_b->lock);
10302
0e59bdae 10303 for_each_online_cpu(i) {
ab84d31e 10304 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10305 struct rq *rq = cfs_rq->rq;
8a8c69c3 10306 struct rq_flags rf;
ab84d31e 10307
8a8c69c3 10308 rq_lock_irq(rq, &rf);
58088ad0 10309 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10310 cfs_rq->runtime_remaining = 0;
671fd9da 10311
029632fb 10312 if (cfs_rq->throttled)
671fd9da 10313 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10314 rq_unlock_irq(rq, &rf);
ab84d31e 10315 }
1ee14e6c
BS
10316 if (runtime_was_enabled && !runtime_enabled)
10317 cfs_bandwidth_usage_dec();
a790de99
PT
10318out_unlock:
10319 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10320 cpus_read_unlock();
ab84d31e 10321
a790de99 10322 return ret;
ab84d31e
PT
10323}
10324
b1546edc 10325static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10326{
f4183717 10327 u64 quota, period, burst;
ab84d31e 10328
029632fb 10329 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10330 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10331 if (cfs_quota_us < 0)
10332 quota = RUNTIME_INF;
1a8b4540 10333 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10334 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10335 else
10336 return -EINVAL;
ab84d31e 10337
f4183717 10338 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10339}
10340
b1546edc 10341static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10342{
10343 u64 quota_us;
10344
029632fb 10345 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10346 return -1;
10347
029632fb 10348 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10349 do_div(quota_us, NSEC_PER_USEC);
10350
10351 return quota_us;
10352}
10353
b1546edc 10354static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10355{
f4183717 10356 u64 quota, period, burst;
ab84d31e 10357
1a8b4540
KK
10358 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10359 return -EINVAL;
10360
ab84d31e 10361 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10362 quota = tg->cfs_bandwidth.quota;
f4183717 10363 burst = tg->cfs_bandwidth.burst;
ab84d31e 10364
f4183717 10365 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10366}
10367
b1546edc 10368static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10369{
10370 u64 cfs_period_us;
10371
029632fb 10372 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10373 do_div(cfs_period_us, NSEC_PER_USEC);
10374
10375 return cfs_period_us;
10376}
10377
f4183717
HC
10378static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10379{
10380 u64 quota, period, burst;
10381
10382 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10383 return -EINVAL;
10384
10385 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10386 period = ktime_to_ns(tg->cfs_bandwidth.period);
10387 quota = tg->cfs_bandwidth.quota;
10388
10389 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10390}
10391
10392static long tg_get_cfs_burst(struct task_group *tg)
10393{
10394 u64 burst_us;
10395
10396 burst_us = tg->cfs_bandwidth.burst;
10397 do_div(burst_us, NSEC_PER_USEC);
10398
10399 return burst_us;
10400}
10401
182446d0
TH
10402static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10403 struct cftype *cft)
ab84d31e 10404{
182446d0 10405 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10406}
10407
182446d0
TH
10408static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10409 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10410{
182446d0 10411 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10412}
10413
182446d0
TH
10414static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10415 struct cftype *cft)
ab84d31e 10416{
182446d0 10417 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10418}
10419
182446d0
TH
10420static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10421 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10422{
182446d0 10423 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10424}
10425
f4183717
HC
10426static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10427 struct cftype *cft)
10428{
10429 return tg_get_cfs_burst(css_tg(css));
10430}
10431
10432static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10433 struct cftype *cftype, u64 cfs_burst_us)
10434{
10435 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10436}
10437
a790de99
PT
10438struct cfs_schedulable_data {
10439 struct task_group *tg;
10440 u64 period, quota;
10441};
10442
10443/*
10444 * normalize group quota/period to be quota/max_period
10445 * note: units are usecs
10446 */
10447static u64 normalize_cfs_quota(struct task_group *tg,
10448 struct cfs_schedulable_data *d)
10449{
10450 u64 quota, period;
10451
10452 if (tg == d->tg) {
10453 period = d->period;
10454 quota = d->quota;
10455 } else {
10456 period = tg_get_cfs_period(tg);
10457 quota = tg_get_cfs_quota(tg);
10458 }
10459
10460 /* note: these should typically be equivalent */
10461 if (quota == RUNTIME_INF || quota == -1)
10462 return RUNTIME_INF;
10463
10464 return to_ratio(period, quota);
10465}
10466
10467static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10468{
10469 struct cfs_schedulable_data *d = data;
029632fb 10470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10471 s64 quota = 0, parent_quota = -1;
10472
10473 if (!tg->parent) {
10474 quota = RUNTIME_INF;
10475 } else {
029632fb 10476 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10477
10478 quota = normalize_cfs_quota(tg, d);
9c58c79a 10479 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10480
10481 /*
c53593e5
TH
10482 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10483 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10484 * limit is set:
a790de99 10485 */
c53593e5
TH
10486 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10487 quota = min(quota, parent_quota);
10488 } else {
10489 if (quota == RUNTIME_INF)
10490 quota = parent_quota;
10491 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10492 return -EINVAL;
10493 }
a790de99 10494 }
9c58c79a 10495 cfs_b->hierarchical_quota = quota;
a790de99
PT
10496
10497 return 0;
10498}
10499
10500static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10501{
8277434e 10502 int ret;
a790de99
PT
10503 struct cfs_schedulable_data data = {
10504 .tg = tg,
10505 .period = period,
10506 .quota = quota,
10507 };
10508
10509 if (quota != RUNTIME_INF) {
10510 do_div(data.period, NSEC_PER_USEC);
10511 do_div(data.quota, NSEC_PER_USEC);
10512 }
10513
8277434e
PT
10514 rcu_read_lock();
10515 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10516 rcu_read_unlock();
10517
10518 return ret;
a790de99 10519}
e8da1b18 10520
a1f7164c 10521static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10522{
2da8ca82 10523 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10524 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10525
44ffc75b
TH
10526 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10527 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10528 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10529
3d6c50c2 10530 if (schedstat_enabled() && tg != &root_task_group) {
ceeadb83 10531 struct sched_statistics *stats;
3d6c50c2
YW
10532 u64 ws = 0;
10533 int i;
10534
ceeadb83
YS
10535 for_each_possible_cpu(i) {
10536 stats = __schedstats_from_se(tg->se[i]);
10537 ws += schedstat_val(stats->wait_sum);
10538 }
3d6c50c2
YW
10539
10540 seq_printf(sf, "wait_sum %llu\n", ws);
10541 }
10542
bcb1704a
HC
10543 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10544 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10545
e8da1b18
NR
10546 return 0;
10547}
ab84d31e 10548#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10549#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10550
052f1dc7 10551#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10552static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10553 struct cftype *cft, s64 val)
6f505b16 10554{
182446d0 10555 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10556}
10557
182446d0
TH
10558static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10559 struct cftype *cft)
6f505b16 10560{
182446d0 10561 return sched_group_rt_runtime(css_tg(css));
6f505b16 10562}
d0b27fa7 10563
182446d0
TH
10564static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10565 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10566{
182446d0 10567 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10568}
10569
182446d0
TH
10570static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10571 struct cftype *cft)
d0b27fa7 10572{
182446d0 10573 return sched_group_rt_period(css_tg(css));
d0b27fa7 10574}
6d6bc0ad 10575#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10576
30400039
JD
10577#ifdef CONFIG_FAIR_GROUP_SCHED
10578static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10579 struct cftype *cft)
10580{
10581 return css_tg(css)->idle;
10582}
10583
10584static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10585 struct cftype *cft, s64 idle)
10586{
10587 return sched_group_set_idle(css_tg(css), idle);
10588}
10589#endif
10590
a1f7164c 10591static struct cftype cpu_legacy_files[] = {
052f1dc7 10592#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10593 {
10594 .name = "shares",
f4c753b7
PM
10595 .read_u64 = cpu_shares_read_u64,
10596 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10597 },
30400039
JD
10598 {
10599 .name = "idle",
10600 .read_s64 = cpu_idle_read_s64,
10601 .write_s64 = cpu_idle_write_s64,
10602 },
052f1dc7 10603#endif
ab84d31e
PT
10604#ifdef CONFIG_CFS_BANDWIDTH
10605 {
10606 .name = "cfs_quota_us",
10607 .read_s64 = cpu_cfs_quota_read_s64,
10608 .write_s64 = cpu_cfs_quota_write_s64,
10609 },
10610 {
10611 .name = "cfs_period_us",
10612 .read_u64 = cpu_cfs_period_read_u64,
10613 .write_u64 = cpu_cfs_period_write_u64,
10614 },
f4183717
HC
10615 {
10616 .name = "cfs_burst_us",
10617 .read_u64 = cpu_cfs_burst_read_u64,
10618 .write_u64 = cpu_cfs_burst_write_u64,
10619 },
e8da1b18
NR
10620 {
10621 .name = "stat",
a1f7164c 10622 .seq_show = cpu_cfs_stat_show,
e8da1b18 10623 },
ab84d31e 10624#endif
052f1dc7 10625#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10626 {
9f0c1e56 10627 .name = "rt_runtime_us",
06ecb27c
PM
10628 .read_s64 = cpu_rt_runtime_read,
10629 .write_s64 = cpu_rt_runtime_write,
6f505b16 10630 },
d0b27fa7
PZ
10631 {
10632 .name = "rt_period_us",
f4c753b7
PM
10633 .read_u64 = cpu_rt_period_read_uint,
10634 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10635 },
2480c093
PB
10636#endif
10637#ifdef CONFIG_UCLAMP_TASK_GROUP
10638 {
10639 .name = "uclamp.min",
10640 .flags = CFTYPE_NOT_ON_ROOT,
10641 .seq_show = cpu_uclamp_min_show,
10642 .write = cpu_uclamp_min_write,
10643 },
10644 {
10645 .name = "uclamp.max",
10646 .flags = CFTYPE_NOT_ON_ROOT,
10647 .seq_show = cpu_uclamp_max_show,
10648 .write = cpu_uclamp_max_write,
10649 },
052f1dc7 10650#endif
d1ccc66d 10651 { } /* Terminate */
68318b8e
SV
10652};
10653
d41bf8c9
TH
10654static int cpu_extra_stat_show(struct seq_file *sf,
10655 struct cgroup_subsys_state *css)
0d593634 10656{
0d593634
TH
10657#ifdef CONFIG_CFS_BANDWIDTH
10658 {
d41bf8c9 10659 struct task_group *tg = css_tg(css);
0d593634 10660 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 10661 u64 throttled_usec, burst_usec;
0d593634
TH
10662
10663 throttled_usec = cfs_b->throttled_time;
10664 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
10665 burst_usec = cfs_b->burst_time;
10666 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
10667
10668 seq_printf(sf, "nr_periods %d\n"
10669 "nr_throttled %d\n"
bcb1704a
HC
10670 "throttled_usec %llu\n"
10671 "nr_bursts %d\n"
10672 "burst_usec %llu\n",
0d593634 10673 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 10674 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
10675 }
10676#endif
10677 return 0;
10678}
10679
10680#ifdef CONFIG_FAIR_GROUP_SCHED
10681static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10682 struct cftype *cft)
10683{
10684 struct task_group *tg = css_tg(css);
10685 u64 weight = scale_load_down(tg->shares);
10686
10687 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10688}
10689
10690static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10691 struct cftype *cft, u64 weight)
10692{
10693 /*
10694 * cgroup weight knobs should use the common MIN, DFL and MAX
10695 * values which are 1, 100 and 10000 respectively. While it loses
10696 * a bit of range on both ends, it maps pretty well onto the shares
10697 * value used by scheduler and the round-trip conversions preserve
10698 * the original value over the entire range.
10699 */
10700 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10701 return -ERANGE;
10702
10703 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10704
10705 return sched_group_set_shares(css_tg(css), scale_load(weight));
10706}
10707
10708static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10709 struct cftype *cft)
10710{
10711 unsigned long weight = scale_load_down(css_tg(css)->shares);
10712 int last_delta = INT_MAX;
10713 int prio, delta;
10714
10715 /* find the closest nice value to the current weight */
10716 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10717 delta = abs(sched_prio_to_weight[prio] - weight);
10718 if (delta >= last_delta)
10719 break;
10720 last_delta = delta;
10721 }
10722
10723 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10724}
10725
10726static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10727 struct cftype *cft, s64 nice)
10728{
10729 unsigned long weight;
7281c8de 10730 int idx;
0d593634
TH
10731
10732 if (nice < MIN_NICE || nice > MAX_NICE)
10733 return -ERANGE;
10734
7281c8de
PZ
10735 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10736 idx = array_index_nospec(idx, 40);
10737 weight = sched_prio_to_weight[idx];
10738
0d593634
TH
10739 return sched_group_set_shares(css_tg(css), scale_load(weight));
10740}
10741#endif
10742
10743static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10744 long period, long quota)
10745{
10746 if (quota < 0)
10747 seq_puts(sf, "max");
10748 else
10749 seq_printf(sf, "%ld", quota);
10750
10751 seq_printf(sf, " %ld\n", period);
10752}
10753
10754/* caller should put the current value in *@periodp before calling */
10755static int __maybe_unused cpu_period_quota_parse(char *buf,
10756 u64 *periodp, u64 *quotap)
10757{
10758 char tok[21]; /* U64_MAX */
10759
4c47acd8 10760 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10761 return -EINVAL;
10762
10763 *periodp *= NSEC_PER_USEC;
10764
10765 if (sscanf(tok, "%llu", quotap))
10766 *quotap *= NSEC_PER_USEC;
10767 else if (!strcmp(tok, "max"))
10768 *quotap = RUNTIME_INF;
10769 else
10770 return -EINVAL;
10771
10772 return 0;
10773}
10774
10775#ifdef CONFIG_CFS_BANDWIDTH
10776static int cpu_max_show(struct seq_file *sf, void *v)
10777{
10778 struct task_group *tg = css_tg(seq_css(sf));
10779
10780 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10781 return 0;
10782}
10783
10784static ssize_t cpu_max_write(struct kernfs_open_file *of,
10785 char *buf, size_t nbytes, loff_t off)
10786{
10787 struct task_group *tg = css_tg(of_css(of));
10788 u64 period = tg_get_cfs_period(tg);
f4183717 10789 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
10790 u64 quota;
10791 int ret;
10792
10793 ret = cpu_period_quota_parse(buf, &period, &quota);
10794 if (!ret)
f4183717 10795 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
10796 return ret ?: nbytes;
10797}
10798#endif
10799
10800static struct cftype cpu_files[] = {
0d593634
TH
10801#ifdef CONFIG_FAIR_GROUP_SCHED
10802 {
10803 .name = "weight",
10804 .flags = CFTYPE_NOT_ON_ROOT,
10805 .read_u64 = cpu_weight_read_u64,
10806 .write_u64 = cpu_weight_write_u64,
10807 },
10808 {
10809 .name = "weight.nice",
10810 .flags = CFTYPE_NOT_ON_ROOT,
10811 .read_s64 = cpu_weight_nice_read_s64,
10812 .write_s64 = cpu_weight_nice_write_s64,
10813 },
30400039
JD
10814 {
10815 .name = "idle",
10816 .flags = CFTYPE_NOT_ON_ROOT,
10817 .read_s64 = cpu_idle_read_s64,
10818 .write_s64 = cpu_idle_write_s64,
10819 },
0d593634
TH
10820#endif
10821#ifdef CONFIG_CFS_BANDWIDTH
10822 {
10823 .name = "max",
10824 .flags = CFTYPE_NOT_ON_ROOT,
10825 .seq_show = cpu_max_show,
10826 .write = cpu_max_write,
10827 },
f4183717
HC
10828 {
10829 .name = "max.burst",
10830 .flags = CFTYPE_NOT_ON_ROOT,
10831 .read_u64 = cpu_cfs_burst_read_u64,
10832 .write_u64 = cpu_cfs_burst_write_u64,
10833 },
2480c093
PB
10834#endif
10835#ifdef CONFIG_UCLAMP_TASK_GROUP
10836 {
10837 .name = "uclamp.min",
10838 .flags = CFTYPE_NOT_ON_ROOT,
10839 .seq_show = cpu_uclamp_min_show,
10840 .write = cpu_uclamp_min_write,
10841 },
10842 {
10843 .name = "uclamp.max",
10844 .flags = CFTYPE_NOT_ON_ROOT,
10845 .seq_show = cpu_uclamp_max_show,
10846 .write = cpu_uclamp_max_write,
10847 },
0d593634
TH
10848#endif
10849 { } /* terminate */
10850};
10851
073219e9 10852struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10853 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10854 .css_online = cpu_cgroup_css_online,
2f5177f0 10855 .css_released = cpu_cgroup_css_released,
92fb9748 10856 .css_free = cpu_cgroup_css_free,
d41bf8c9 10857 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10858 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10859 .can_attach = cpu_cgroup_can_attach,
10860 .attach = cpu_cgroup_attach,
a1f7164c 10861 .legacy_cftypes = cpu_legacy_files,
0d593634 10862 .dfl_cftypes = cpu_files,
b38e42e9 10863 .early_init = true,
0d593634 10864 .threaded = true,
68318b8e
SV
10865};
10866
052f1dc7 10867#endif /* CONFIG_CGROUP_SCHED */
d842de87 10868
b637a328
PM
10869void dump_cpu_task(int cpu)
10870{
10871 pr_info("Task dump for CPU %d:\n", cpu);
10872 sched_show_task(cpu_curr(cpu));
10873}
ed82b8a1
AK
10874
10875/*
10876 * Nice levels are multiplicative, with a gentle 10% change for every
10877 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10878 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10879 * that remained on nice 0.
10880 *
10881 * The "10% effect" is relative and cumulative: from _any_ nice level,
10882 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10883 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10884 * If a task goes up by ~10% and another task goes down by ~10% then
10885 * the relative distance between them is ~25%.)
10886 */
10887const int sched_prio_to_weight[40] = {
10888 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10889 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10890 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10891 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10892 /* 0 */ 1024, 820, 655, 526, 423,
10893 /* 5 */ 335, 272, 215, 172, 137,
10894 /* 10 */ 110, 87, 70, 56, 45,
10895 /* 15 */ 36, 29, 23, 18, 15,
10896};
10897
10898/*
10899 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10900 *
10901 * In cases where the weight does not change often, we can use the
10902 * precalculated inverse to speed up arithmetics by turning divisions
10903 * into multiplications:
10904 */
10905const u32 sched_prio_to_wmult[40] = {
10906 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10907 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10908 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10909 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10910 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10911 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10912 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10913 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10914};
14a7405b 10915
9d246053
PA
10916void call_trace_sched_update_nr_running(struct rq *rq, int count)
10917{
10918 trace_sched_update_nr_running_tp(rq, count);
10919}