rcu-tasks: Use context-switch hook for PREEMPT=y kernels
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
771b53d0 19#include "../../fs/io-wq.h"
29d5e047 20#include "../smpboot.h"
6e0534f2 21
91c27493
VG
22#include "pelt.h"
23
a8d154b0 24#define CREATE_TRACE_POINTS
ad8d75ff 25#include <trace/events/sched.h>
a8d154b0 26
a056a5be
QY
27/*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
029632fb 38DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 39
e9666d10 40#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
41/*
42 * Debugging: various feature bits
765cc3a4
PB
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
bf5c91ba 47 */
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 50const_debug unsigned int sysctl_sched_features =
391e43da 51#include "features.h"
f00b45c1 52 0;
f00b45c1 53#undef SCHED_FEAT
765cc3a4 54#endif
f00b45c1 55
b82d9fdd
PZ
56/*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
fa85ae24 62/*
d1ccc66d 63 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
64 * default: 1s
65 */
9f0c1e56 66unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 67
029632fb 68__read_mostly int scheduler_running;
6892b75e 69
9f0c1e56
PZ
70/*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74int sysctl_sched_rt_runtime = 950000;
fa85ae24 75
3e71a462
PZ
76/*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
eb580751 79struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
80 __acquires(rq->lock)
81{
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 90 rq_pin_lock(rq, rf);
3e71a462
PZ
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98}
99
100/*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
eb580751 103struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106{
107 struct rq *rq;
108
109 for (;;) {
eb580751 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
c546951d 123 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
124 * the old rq->lock will fully serialize against the stores.
125 *
c546951d
AP
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 131 rq_pin_lock(rq, rf);
3e71a462
PZ
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
eb580751 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140}
141
535b9552
IM
142/*
143 * RQ-clock updating methods:
144 */
145
146static void update_rq_clock_task(struct rq *rq, s64 delta)
147{
148/*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
11d4afd4
VG
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
535b9552
IM
154#ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177#endif
178#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189#endif
190
191 rq->clock_task += delta;
192
11d4afd4 193#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 195 update_irq_load_avg(rq, irq_delta + steal);
535b9552 196#endif
23127296 197 update_rq_clock_pelt(rq, delta);
535b9552
IM
198}
199
200void update_rq_clock(struct rq *rq)
201{
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
212 rq->clock_update_flags |= RQCF_UPDATED;
213#endif
26ae58d2 214
535b9552
IM
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220}
221
222
8f4d37ec
PZ
223#ifdef CONFIG_SCHED_HRTICK
224/*
225 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 226 */
8f4d37ec 227
8f4d37ec
PZ
228static void hrtick_clear(struct rq *rq)
229{
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232}
233
8f4d37ec
PZ
234/*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238static enum hrtimer_restart hrtick(struct hrtimer *timer)
239{
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 241 struct rq_flags rf;
8f4d37ec
PZ
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
8a8c69c3 245 rq_lock(rq, &rf);
3e51f33f 246 update_rq_clock(rq);
8f4d37ec 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 248 rq_unlock(rq, &rf);
8f4d37ec
PZ
249
250 return HRTIMER_NORESTART;
251}
252
95e904c7 253#ifdef CONFIG_SMP
971ee28c 254
4961b6e1 255static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
256{
257 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 258
d5096aa6 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
260}
261
31656519
PZ
262/*
263 * called from hardirq (IPI) context
264 */
265static void __hrtick_start(void *arg)
b328ca18 266{
31656519 267 struct rq *rq = arg;
8a8c69c3 268 struct rq_flags rf;
b328ca18 269
8a8c69c3 270 rq_lock(rq, &rf);
971ee28c 271 __hrtick_restart(rq);
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519 294
fd3eafda 295 if (rq == this_rq())
971ee28c 296 __hrtick_restart(rq);
fd3eafda 297 else
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
299}
300
31656519
PZ
301#else
302/*
303 * Called to set the hrtick timer state.
304 *
305 * called with rq->lock held and irqs disabled
306 */
029632fb 307void hrtick_start(struct rq *rq, u64 delay)
31656519 308{
86893335
WL
309 /*
310 * Don't schedule slices shorter than 10000ns, that just
311 * doesn't make sense. Rely on vruntime for fairness.
312 */
313 delay = max_t(u64, delay, 10000LL);
4961b6e1 314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 315 HRTIMER_MODE_REL_PINNED_HARD);
31656519 316}
31656519 317#endif /* CONFIG_SMP */
8f4d37ec 318
77a021be 319static void hrtick_rq_init(struct rq *rq)
8f4d37ec 320{
31656519 321#ifdef CONFIG_SMP
31656519
PZ
322 rq->hrtick_csd.flags = 0;
323 rq->hrtick_csd.func = __hrtick_start;
324 rq->hrtick_csd.info = rq;
325#endif
8f4d37ec 326
d5096aa6 327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 328 rq->hrtick_timer.function = hrtick;
8f4d37ec 329}
006c75f1 330#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
331static inline void hrtick_clear(struct rq *rq)
332{
333}
334
77a021be 335static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
336{
337}
006c75f1 338#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 339
5529578a
FW
340/*
341 * cmpxchg based fetch_or, macro so it works for different integer types
342 */
343#define fetch_or(ptr, mask) \
344 ({ \
345 typeof(ptr) _ptr = (ptr); \
346 typeof(mask) _mask = (mask); \
347 typeof(*_ptr) _old, _val = *_ptr; \
348 \
349 for (;;) { \
350 _old = cmpxchg(_ptr, _val, _val | _mask); \
351 if (_old == _val) \
352 break; \
353 _val = _old; \
354 } \
355 _old; \
356})
357
e3baac47 358#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
359/*
360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
361 * this avoids any races wrt polling state changes and thereby avoids
362 * spurious IPIs.
363 */
364static bool set_nr_and_not_polling(struct task_struct *p)
365{
366 struct thread_info *ti = task_thread_info(p);
367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
368}
e3baac47
PZ
369
370/*
371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
372 *
373 * If this returns true, then the idle task promises to call
374 * sched_ttwu_pending() and reschedule soon.
375 */
376static bool set_nr_if_polling(struct task_struct *p)
377{
378 struct thread_info *ti = task_thread_info(p);
316c1608 379 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
380
381 for (;;) {
382 if (!(val & _TIF_POLLING_NRFLAG))
383 return false;
384 if (val & _TIF_NEED_RESCHED)
385 return true;
386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 if (old == val)
388 break;
389 val = old;
390 }
391 return true;
392}
393
fd99f91a
PZ
394#else
395static bool set_nr_and_not_polling(struct task_struct *p)
396{
397 set_tsk_need_resched(p);
398 return true;
399}
e3baac47
PZ
400
401#ifdef CONFIG_SMP
402static bool set_nr_if_polling(struct task_struct *p)
403{
404 return false;
405}
406#endif
fd99f91a
PZ
407#endif
408
07879c6a 409static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
410{
411 struct wake_q_node *node = &task->wake_q;
412
413 /*
414 * Atomically grab the task, if ->wake_q is !nil already it means
415 * its already queued (either by us or someone else) and will get the
416 * wakeup due to that.
417 *
4c4e3731
PZ
418 * In order to ensure that a pending wakeup will observe our pending
419 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 420 */
4c4e3731 421 smp_mb__before_atomic();
87ff19cb 422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 423 return false;
76751049
PZ
424
425 /*
426 * The head is context local, there can be no concurrency.
427 */
428 *head->lastp = node;
429 head->lastp = &node->next;
07879c6a
DB
430 return true;
431}
432
433/**
434 * wake_q_add() - queue a wakeup for 'later' waking.
435 * @head: the wake_q_head to add @task to
436 * @task: the task to queue for 'later' wakeup
437 *
438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
440 * instantly.
441 *
442 * This function must be used as-if it were wake_up_process(); IOW the task
443 * must be ready to be woken at this location.
444 */
445void wake_q_add(struct wake_q_head *head, struct task_struct *task)
446{
447 if (__wake_q_add(head, task))
448 get_task_struct(task);
449}
450
451/**
452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
453 * @head: the wake_q_head to add @task to
454 * @task: the task to queue for 'later' wakeup
455 *
456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
458 * instantly.
459 *
460 * This function must be used as-if it were wake_up_process(); IOW the task
461 * must be ready to be woken at this location.
462 *
463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
464 * that already hold reference to @task can call the 'safe' version and trust
465 * wake_q to do the right thing depending whether or not the @task is already
466 * queued for wakeup.
467 */
468void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
469{
470 if (!__wake_q_add(head, task))
471 put_task_struct(task);
76751049
PZ
472}
473
474void wake_up_q(struct wake_q_head *head)
475{
476 struct wake_q_node *node = head->first;
477
478 while (node != WAKE_Q_TAIL) {
479 struct task_struct *task;
480
481 task = container_of(node, struct task_struct, wake_q);
482 BUG_ON(!task);
d1ccc66d 483 /* Task can safely be re-inserted now: */
76751049
PZ
484 node = node->next;
485 task->wake_q.next = NULL;
486
487 /*
7696f991
AP
488 * wake_up_process() executes a full barrier, which pairs with
489 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
490 */
491 wake_up_process(task);
492 put_task_struct(task);
493 }
494}
495
c24d20db 496/*
8875125e 497 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
8875125e 503void resched_curr(struct rq *rq)
c24d20db 504{
8875125e 505 struct task_struct *curr = rq->curr;
c24d20db
IM
506 int cpu;
507
8875125e 508 lockdep_assert_held(&rq->lock);
c24d20db 509
8875125e 510 if (test_tsk_need_resched(curr))
c24d20db
IM
511 return;
512
8875125e 513 cpu = cpu_of(rq);
fd99f91a 514
f27dde8d 515 if (cpu == smp_processor_id()) {
8875125e 516 set_tsk_need_resched(curr);
f27dde8d 517 set_preempt_need_resched();
c24d20db 518 return;
f27dde8d 519 }
c24d20db 520
8875125e 521 if (set_nr_and_not_polling(curr))
c24d20db 522 smp_send_reschedule(cpu);
dfc68f29
AL
523 else
524 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
525}
526
029632fb 527void resched_cpu(int cpu)
c24d20db
IM
528{
529 struct rq *rq = cpu_rq(cpu);
530 unsigned long flags;
531
7c2102e5 532 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
533 if (cpu_online(cpu) || cpu == smp_processor_id())
534 resched_curr(rq);
05fa785c 535 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 536}
06d8308c 537
b021fe3e 538#ifdef CONFIG_SMP
3451d024 539#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 540/*
d1ccc66d
IM
541 * In the semi idle case, use the nearest busy CPU for migrating timers
542 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
543 *
544 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
545 * selecting an idle CPU will add more delays to the timers than intended
546 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 547 */
bc7a34b8 548int get_nohz_timer_target(void)
83cd4fe2 549{
e938b9c9 550 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
551 struct sched_domain *sd;
552
e938b9c9
WL
553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
554 if (!idle_cpu(cpu))
555 return cpu;
556 default_cpu = cpu;
557 }
6201b4d6 558
057f3fad 559 rcu_read_lock();
83cd4fe2 560 for_each_domain(cpu, sd) {
e938b9c9
WL
561 for_each_cpu_and(i, sched_domain_span(sd),
562 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
e938b9c9 566 if (!idle_cpu(i)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
e938b9c9
WL
573 if (default_cpu == -1)
574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 cpu = default_cpu;
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
d1ccc66d 580
06d8308c
TG
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
1c20091e 591static void wake_up_idle_cpu(int cpu)
06d8308c
TG
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
67b9ca70 598 if (set_nr_and_not_polling(rq->idle))
06d8308c 599 smp_send_reschedule(cpu);
dfc68f29
AL
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
602}
603
c5bfece2 604static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 605{
53c5fa16
FW
606 /*
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
611 */
379d9ecb
PM
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
c5bfece2 614 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
53c5fa16 617 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
618 return true;
619 }
620
621 return false;
622}
623
379d9ecb
PM
624/*
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 */
1c20091e
FW
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65 638
b7031a02 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
b7031a02 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38 662#ifdef CONFIG_NO_HZ_FULL
76d92ac3 663bool sched_can_stop_tick(struct rq *rq)
ce831b38 664{
76d92ac3
FW
665 int fifo_nr_running;
666
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
670
1e78cdbd 671 /*
2548d546
PZ
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
1e78cdbd 674 */
76d92ac3
FW
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
1e78cdbd
RR
680 }
681
2548d546
PZ
682 /*
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
685 */
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
689
690 /*
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
694 */
695 if (rq->nr_running > 1)
541b8264 696 return false;
ce831b38 697
541b8264 698 return true;
ce831b38
FW
699}
700#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 701#endif /* CONFIG_SMP */
18d95a28 702
a790de99
PT
703#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 705/*
8277434e
PT
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
708 *
709 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 710 */
029632fb 711int walk_tg_tree_from(struct task_group *from,
8277434e 712 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
713{
714 struct task_group *parent, *child;
eb755805 715 int ret;
c09595f6 716
8277434e
PT
717 parent = from;
718
c09595f6 719down:
eb755805
PZ
720 ret = (*down)(parent, data);
721 if (ret)
8277434e 722 goto out;
c09595f6
PZ
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
726
727up:
728 continue;
729 }
eb755805 730 ret = (*up)(parent, data);
8277434e
PT
731 if (ret || parent == from)
732 goto out;
c09595f6
PZ
733
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
8277434e 738out:
eb755805 739 return ret;
c09595f6
PZ
740}
741
029632fb 742int tg_nop(struct task_group *tg, void *data)
eb755805 743{
e2b245f8 744 return 0;
eb755805 745}
18d95a28
PZ
746#endif
747
9059393e 748static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 749{
f05998d4
NR
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
752
dd41f596
IM
753 /*
754 * SCHED_IDLE tasks get minimal weight:
755 */
1da1843f 756 if (task_has_idle_policy(p)) {
c8b28116 757 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 758 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 }
71f8bd46
IM
772}
773
69842cba 774#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
775/*
776 * Serializes updates of utilization clamp values
777 *
778 * The (slow-path) user-space triggers utilization clamp value updates which
779 * can require updates on (fast-path) scheduler's data structures used to
780 * support enqueue/dequeue operations.
781 * While the per-CPU rq lock protects fast-path update operations, user-space
782 * requests are serialized using a mutex to reduce the risk of conflicting
783 * updates or API abuses.
784 */
785static DEFINE_MUTEX(uclamp_mutex);
786
e8f14172
PB
787/* Max allowed minimum utilization */
788unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
789
790/* Max allowed maximum utilization */
791unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
792
793/* All clamps are required to be less or equal than these values */
794static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
795
796/* Integer rounded range for each bucket */
797#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
798
799#define for_each_clamp_id(clamp_id) \
800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
801
802static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
803{
804 return clamp_value / UCLAMP_BUCKET_DELTA;
805}
806
60daf9c1
PB
807static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
808{
809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
810}
811
7763baac 812static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
813{
814 if (clamp_id == UCLAMP_MIN)
815 return 0;
816 return SCHED_CAPACITY_SCALE;
817}
818
a509a7cd
PB
819static inline void uclamp_se_set(struct uclamp_se *uc_se,
820 unsigned int value, bool user_defined)
69842cba
PB
821{
822 uc_se->value = value;
823 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 824 uc_se->user_defined = user_defined;
69842cba
PB
825}
826
e496187d 827static inline unsigned int
0413d7f3 828uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
829 unsigned int clamp_value)
830{
831 /*
832 * Avoid blocked utilization pushing up the frequency when we go
833 * idle (which drops the max-clamp) by retaining the last known
834 * max-clamp.
835 */
836 if (clamp_id == UCLAMP_MAX) {
837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
838 return clamp_value;
839 }
840
841 return uclamp_none(UCLAMP_MIN);
842}
843
0413d7f3 844static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
845 unsigned int clamp_value)
846{
847 /* Reset max-clamp retention only on idle exit */
848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
849 return;
850
851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
852}
853
69842cba 854static inline
7763baac 855unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 856 unsigned int clamp_value)
69842cba
PB
857{
858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
859 int bucket_id = UCLAMP_BUCKETS - 1;
860
861 /*
862 * Since both min and max clamps are max aggregated, find the
863 * top most bucket with tasks in.
864 */
865 for ( ; bucket_id >= 0; bucket_id--) {
866 if (!bucket[bucket_id].tasks)
867 continue;
868 return bucket[bucket_id].value;
869 }
870
871 /* No tasks -- default clamp values */
e496187d 872 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
873}
874
3eac870a 875static inline struct uclamp_se
0413d7f3 876uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
877{
878 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
879#ifdef CONFIG_UCLAMP_TASK_GROUP
880 struct uclamp_se uc_max;
881
882 /*
883 * Tasks in autogroups or root task group will be
884 * restricted by system defaults.
885 */
886 if (task_group_is_autogroup(task_group(p)))
887 return uc_req;
888 if (task_group(p) == &root_task_group)
889 return uc_req;
890
891 uc_max = task_group(p)->uclamp[clamp_id];
892 if (uc_req.value > uc_max.value || !uc_req.user_defined)
893 return uc_max;
894#endif
895
896 return uc_req;
897}
898
e8f14172
PB
899/*
900 * The effective clamp bucket index of a task depends on, by increasing
901 * priority:
902 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
903 * - the task group effective clamp value, for tasks not either in the root
904 * group or in an autogroup
e8f14172
PB
905 * - the system default clamp value, defined by the sysadmin
906 */
907static inline struct uclamp_se
0413d7f3 908uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 909{
3eac870a 910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
911 struct uclamp_se uc_max = uclamp_default[clamp_id];
912
913 /* System default restrictions always apply */
914 if (unlikely(uc_req.value > uc_max.value))
915 return uc_max;
916
917 return uc_req;
918}
919
686516b5 920unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
921{
922 struct uclamp_se uc_eff;
923
924 /* Task currently refcounted: use back-annotated (effective) value */
925 if (p->uclamp[clamp_id].active)
686516b5 926 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
927
928 uc_eff = uclamp_eff_get(p, clamp_id);
929
686516b5 930 return (unsigned long)uc_eff.value;
9d20ad7d
PB
931}
932
69842cba
PB
933/*
934 * When a task is enqueued on a rq, the clamp bucket currently defined by the
935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
936 * updates the rq's clamp value if required.
60daf9c1
PB
937 *
938 * Tasks can have a task-specific value requested from user-space, track
939 * within each bucket the maximum value for tasks refcounted in it.
940 * This "local max aggregation" allows to track the exact "requested" value
941 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
942 */
943static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 944 enum uclamp_id clamp_id)
69842cba
PB
945{
946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
947 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
948 struct uclamp_bucket *bucket;
949
950 lockdep_assert_held(&rq->lock);
951
e8f14172
PB
952 /* Update task effective clamp */
953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
954
69842cba
PB
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 bucket->tasks++;
e8f14172 957 uc_se->active = true;
69842cba 958
e496187d
PB
959 uclamp_idle_reset(rq, clamp_id, uc_se->value);
960
60daf9c1
PB
961 /*
962 * Local max aggregation: rq buckets always track the max
963 * "requested" clamp value of its RUNNABLE tasks.
964 */
965 if (bucket->tasks == 1 || uc_se->value > bucket->value)
966 bucket->value = uc_se->value;
967
69842cba 968 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 969 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
970}
971
972/*
973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
974 * is released. If this is the last task reference counting the rq's max
975 * active clamp value, then the rq's clamp value is updated.
976 *
977 * Both refcounted tasks and rq's cached clamp values are expected to be
978 * always valid. If it's detected they are not, as defensive programming,
979 * enforce the expected state and warn.
980 */
981static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 982 enum uclamp_id clamp_id)
69842cba
PB
983{
984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
985 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
986 struct uclamp_bucket *bucket;
e496187d 987 unsigned int bkt_clamp;
69842cba
PB
988 unsigned int rq_clamp;
989
990 lockdep_assert_held(&rq->lock);
991
992 bucket = &uc_rq->bucket[uc_se->bucket_id];
993 SCHED_WARN_ON(!bucket->tasks);
994 if (likely(bucket->tasks))
995 bucket->tasks--;
e8f14172 996 uc_se->active = false;
69842cba 997
60daf9c1
PB
998 /*
999 * Keep "local max aggregation" simple and accept to (possibly)
1000 * overboost some RUNNABLE tasks in the same bucket.
1001 * The rq clamp bucket value is reset to its base value whenever
1002 * there are no more RUNNABLE tasks refcounting it.
1003 */
69842cba
PB
1004 if (likely(bucket->tasks))
1005 return;
1006
1007 rq_clamp = READ_ONCE(uc_rq->value);
1008 /*
1009 * Defensive programming: this should never happen. If it happens,
1010 * e.g. due to future modification, warn and fixup the expected value.
1011 */
1012 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1013 if (bucket->value >= rq_clamp) {
1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1015 WRITE_ONCE(uc_rq->value, bkt_clamp);
1016 }
69842cba
PB
1017}
1018
1019static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1020{
0413d7f3 1021 enum uclamp_id clamp_id;
69842cba
PB
1022
1023 if (unlikely(!p->sched_class->uclamp_enabled))
1024 return;
1025
1026 for_each_clamp_id(clamp_id)
1027 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1028
1029 /* Reset clamp idle holding when there is one RUNNABLE task */
1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1032}
1033
1034static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1035{
0413d7f3 1036 enum uclamp_id clamp_id;
69842cba
PB
1037
1038 if (unlikely(!p->sched_class->uclamp_enabled))
1039 return;
1040
1041 for_each_clamp_id(clamp_id)
1042 uclamp_rq_dec_id(rq, p, clamp_id);
1043}
1044
babbe170 1045static inline void
0413d7f3 1046uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1047{
1048 struct rq_flags rf;
1049 struct rq *rq;
1050
1051 /*
1052 * Lock the task and the rq where the task is (or was) queued.
1053 *
1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1055 * price to pay to safely serialize util_{min,max} updates with
1056 * enqueues, dequeues and migration operations.
1057 * This is the same locking schema used by __set_cpus_allowed_ptr().
1058 */
1059 rq = task_rq_lock(p, &rf);
1060
1061 /*
1062 * Setting the clamp bucket is serialized by task_rq_lock().
1063 * If the task is not yet RUNNABLE and its task_struct is not
1064 * affecting a valid clamp bucket, the next time it's enqueued,
1065 * it will already see the updated clamp bucket value.
1066 */
6e1ff077 1067 if (p->uclamp[clamp_id].active) {
babbe170
PB
1068 uclamp_rq_dec_id(rq, p, clamp_id);
1069 uclamp_rq_inc_id(rq, p, clamp_id);
1070 }
1071
1072 task_rq_unlock(rq, p, &rf);
1073}
1074
e3b8b6a0 1075#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1076static inline void
1077uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 unsigned int clamps)
1079{
0413d7f3 1080 enum uclamp_id clamp_id;
babbe170
PB
1081 struct css_task_iter it;
1082 struct task_struct *p;
babbe170
PB
1083
1084 css_task_iter_start(css, 0, &it);
1085 while ((p = css_task_iter_next(&it))) {
1086 for_each_clamp_id(clamp_id) {
1087 if ((0x1 << clamp_id) & clamps)
1088 uclamp_update_active(p, clamp_id);
1089 }
1090 }
1091 css_task_iter_end(&it);
1092}
1093
7274a5c1
PB
1094static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1095static void uclamp_update_root_tg(void)
1096{
1097 struct task_group *tg = &root_task_group;
1098
1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1100 sysctl_sched_uclamp_util_min, false);
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1102 sysctl_sched_uclamp_util_max, false);
1103
1104 rcu_read_lock();
1105 cpu_util_update_eff(&root_task_group.css);
1106 rcu_read_unlock();
1107}
1108#else
1109static void uclamp_update_root_tg(void) { }
1110#endif
1111
e8f14172
PB
1112int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1113 void __user *buffer, size_t *lenp,
1114 loff_t *ppos)
1115{
7274a5c1 1116 bool update_root_tg = false;
e8f14172 1117 int old_min, old_max;
e8f14172
PB
1118 int result;
1119
2480c093 1120 mutex_lock(&uclamp_mutex);
e8f14172
PB
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1123
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1129
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1134 }
1135
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1138 sysctl_sched_uclamp_util_min, false);
7274a5c1 1139 update_root_tg = true;
e8f14172
PB
1140 }
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1143 sysctl_sched_uclamp_util_max, false);
7274a5c1 1144 update_root_tg = true;
e8f14172
PB
1145 }
1146
7274a5c1
PB
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1149
e8f14172 1150 /*
7274a5c1
PB
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
e8f14172 1154 */
7274a5c1 1155
e8f14172
PB
1156 goto done;
1157
1158undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161done:
2480c093 1162 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1163
1164 return result;
1165}
1166
a509a7cd
PB
1167static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1169{
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1177
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1182
1183 return 0;
1184}
1185
1186static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1188{
0413d7f3 1189 enum uclamp_id clamp_id;
1a00d999
PB
1190
1191 /*
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1194 */
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1198
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1202
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1206
1207 uclamp_se_set(uc_se, clamp_value, false);
1208 }
1209
a509a7cd
PB
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1212
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1216 }
1217
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1221 }
1222}
1223
e8f14172
PB
1224static void uclamp_fork(struct task_struct *p)
1225{
0413d7f3 1226 enum uclamp_id clamp_id;
e8f14172
PB
1227
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
a87498ac
PB
1230
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1233
1234 for_each_clamp_id(clamp_id) {
1a00d999
PB
1235 unsigned int clamp_value = uclamp_none(clamp_id);
1236
1237 /* By default, RT tasks always get 100% boost */
1238 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1239 clamp_value = uclamp_none(UCLAMP_MAX);
1240
1241 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
a87498ac 1242 }
e8f14172
PB
1243}
1244
69842cba
PB
1245static void __init init_uclamp(void)
1246{
e8f14172 1247 struct uclamp_se uc_max = {};
0413d7f3 1248 enum uclamp_id clamp_id;
69842cba
PB
1249 int cpu;
1250
2480c093
PB
1251 mutex_init(&uclamp_mutex);
1252
e496187d 1253 for_each_possible_cpu(cpu) {
dcd6dffb
LG
1254 memset(&cpu_rq(cpu)->uclamp, 0,
1255 sizeof(struct uclamp_rq)*UCLAMP_CNT);
e496187d
PB
1256 cpu_rq(cpu)->uclamp_flags = 0;
1257 }
69842cba 1258
69842cba 1259 for_each_clamp_id(clamp_id) {
e8f14172 1260 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1261 uclamp_none(clamp_id), false);
69842cba 1262 }
e8f14172
PB
1263
1264 /* System defaults allow max clamp values for both indexes */
a509a7cd 1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1266 for_each_clamp_id(clamp_id) {
e8f14172 1267 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1268#ifdef CONFIG_UCLAMP_TASK_GROUP
1269 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1270 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1271#endif
1272 }
69842cba
PB
1273}
1274
1275#else /* CONFIG_UCLAMP_TASK */
1276static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1278static inline int uclamp_validate(struct task_struct *p,
1279 const struct sched_attr *attr)
1280{
1281 return -EOPNOTSUPP;
1282}
1283static void __setscheduler_uclamp(struct task_struct *p,
1284 const struct sched_attr *attr) { }
e8f14172 1285static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1286static inline void init_uclamp(void) { }
1287#endif /* CONFIG_UCLAMP_TASK */
1288
1de64443 1289static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1290{
0a67d1ee
PZ
1291 if (!(flags & ENQUEUE_NOCLOCK))
1292 update_rq_clock(rq);
1293
eb414681 1294 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1295 sched_info_queued(rq, p);
eb414681
JW
1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 }
0a67d1ee 1298
69842cba 1299 uclamp_rq_inc(rq, p);
371fd7e7 1300 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1301}
1302
1de64443 1303static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1304{
0a67d1ee
PZ
1305 if (!(flags & DEQUEUE_NOCLOCK))
1306 update_rq_clock(rq);
1307
eb414681 1308 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1309 sched_info_dequeued(rq, p);
eb414681
JW
1310 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 }
0a67d1ee 1312
69842cba 1313 uclamp_rq_dec(rq, p);
371fd7e7 1314 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1315}
1316
029632fb 1317void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1318{
1319 if (task_contributes_to_load(p))
1320 rq->nr_uninterruptible--;
1321
371fd7e7 1322 enqueue_task(rq, p, flags);
7dd77884
PZ
1323
1324 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1325}
1326
029632fb 1327void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1328{
7dd77884
PZ
1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330
1e3c88bd
PZ
1331 if (task_contributes_to_load(p))
1332 rq->nr_uninterruptible++;
1333
371fd7e7 1334 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1335}
1336
14531189 1337/*
dd41f596 1338 * __normal_prio - return the priority that is based on the static prio
14531189 1339 */
14531189
IM
1340static inline int __normal_prio(struct task_struct *p)
1341{
dd41f596 1342 return p->static_prio;
14531189
IM
1343}
1344
b29739f9
IM
1345/*
1346 * Calculate the expected normal priority: i.e. priority
1347 * without taking RT-inheritance into account. Might be
1348 * boosted by interactivity modifiers. Changes upon fork,
1349 * setprio syscalls, and whenever the interactivity
1350 * estimator recalculates.
1351 */
36c8b586 1352static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1353{
1354 int prio;
1355
aab03e05
DF
1356 if (task_has_dl_policy(p))
1357 prio = MAX_DL_PRIO-1;
1358 else if (task_has_rt_policy(p))
b29739f9
IM
1359 prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 else
1361 prio = __normal_prio(p);
1362 return prio;
1363}
1364
1365/*
1366 * Calculate the current priority, i.e. the priority
1367 * taken into account by the scheduler. This value might
1368 * be boosted by RT tasks, or might be boosted by
1369 * interactivity modifiers. Will be RT if the task got
1370 * RT-boosted. If not then it returns p->normal_prio.
1371 */
36c8b586 1372static int effective_prio(struct task_struct *p)
b29739f9
IM
1373{
1374 p->normal_prio = normal_prio(p);
1375 /*
1376 * If we are RT tasks or we were boosted to RT priority,
1377 * keep the priority unchanged. Otherwise, update priority
1378 * to the normal priority:
1379 */
1380 if (!rt_prio(p->prio))
1381 return p->normal_prio;
1382 return p->prio;
1383}
1384
1da177e4
LT
1385/**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
e69f6186
YB
1388 *
1389 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1390 */
36c8b586 1391inline int task_curr(const struct task_struct *p)
1da177e4
LT
1392{
1393 return cpu_curr(task_cpu(p)) == p;
1394}
1395
67dfa1b7 1396/*
4c9a4bc8
PZ
1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398 * use the balance_callback list if you want balancing.
1399 *
1400 * this means any call to check_class_changed() must be followed by a call to
1401 * balance_callback().
67dfa1b7 1402 */
cb469845
SR
1403static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 const struct sched_class *prev_class,
da7a735e 1405 int oldprio)
cb469845
SR
1406{
1407 if (prev_class != p->sched_class) {
1408 if (prev_class->switched_from)
da7a735e 1409 prev_class->switched_from(rq, p);
4c9a4bc8 1410
da7a735e 1411 p->sched_class->switched_to(rq, p);
2d3d891d 1412 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1413 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1414}
1415
029632fb 1416void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1417{
1418 const struct sched_class *class;
1419
1420 if (p->sched_class == rq->curr->sched_class) {
1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 } else {
1423 for_each_class(class) {
1424 if (class == rq->curr->sched_class)
1425 break;
1426 if (class == p->sched_class) {
8875125e 1427 resched_curr(rq);
1e5a7405
PZ
1428 break;
1429 }
1430 }
1431 }
1432
1433 /*
1434 * A queue event has occurred, and we're going to schedule. In
1435 * this case, we can save a useless back to back clock update.
1436 */
da0c1e65 1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1438 rq_clock_skip_update(rq);
1e5a7405
PZ
1439}
1440
1da177e4 1441#ifdef CONFIG_SMP
175f0e25 1442
175f0e25 1443/*
bee98539 1444 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1445 * __set_cpus_allowed_ptr() and select_fallback_rq().
1446 */
1447static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1448{
3bd37062 1449 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1450 return false;
1451
1452 if (is_per_cpu_kthread(p))
1453 return cpu_online(cpu);
1454
1455 return cpu_active(cpu);
1456}
1457
5cc389bc
PZ
1458/*
1459 * This is how migration works:
1460 *
1461 * 1) we invoke migration_cpu_stop() on the target CPU using
1462 * stop_one_cpu().
1463 * 2) stopper starts to run (implicitly forcing the migrated thread
1464 * off the CPU)
1465 * 3) it checks whether the migrated task is still in the wrong runqueue.
1466 * 4) if it's in the wrong runqueue then the migration thread removes
1467 * it and puts it into the right queue.
1468 * 5) stopper completes and stop_one_cpu() returns and the migration
1469 * is done.
1470 */
1471
1472/*
1473 * move_queued_task - move a queued task to new rq.
1474 *
1475 * Returns (locked) new rq. Old rq's lock is released.
1476 */
8a8c69c3
PZ
1477static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1478 struct task_struct *p, int new_cpu)
5cc389bc 1479{
5cc389bc
PZ
1480 lockdep_assert_held(&rq->lock);
1481
c546951d 1482 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1483 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1484 set_task_cpu(p, new_cpu);
8a8c69c3 1485 rq_unlock(rq, rf);
5cc389bc
PZ
1486
1487 rq = cpu_rq(new_cpu);
1488
8a8c69c3 1489 rq_lock(rq, rf);
5cc389bc 1490 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1491 enqueue_task(rq, p, 0);
3ea94de1 1492 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1493 check_preempt_curr(rq, p, 0);
1494
1495 return rq;
1496}
1497
1498struct migration_arg {
1499 struct task_struct *task;
1500 int dest_cpu;
1501};
1502
1503/*
d1ccc66d 1504 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1505 * this because either it can't run here any more (set_cpus_allowed()
1506 * away from this CPU, or CPU going down), or because we're
1507 * attempting to rebalance this task on exec (sched_exec).
1508 *
1509 * So we race with normal scheduler movements, but that's OK, as long
1510 * as the task is no longer on this CPU.
5cc389bc 1511 */
8a8c69c3
PZ
1512static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1513 struct task_struct *p, int dest_cpu)
5cc389bc 1514{
5cc389bc 1515 /* Affinity changed (again). */
175f0e25 1516 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1517 return rq;
5cc389bc 1518
15ff991e 1519 update_rq_clock(rq);
8a8c69c3 1520 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1521
1522 return rq;
5cc389bc
PZ
1523}
1524
1525/*
1526 * migration_cpu_stop - this will be executed by a highprio stopper thread
1527 * and performs thread migration by bumping thread off CPU then
1528 * 'pushing' onto another runqueue.
1529 */
1530static int migration_cpu_stop(void *data)
1531{
1532 struct migration_arg *arg = data;
5e16bbc2
PZ
1533 struct task_struct *p = arg->task;
1534 struct rq *rq = this_rq();
8a8c69c3 1535 struct rq_flags rf;
5cc389bc
PZ
1536
1537 /*
d1ccc66d
IM
1538 * The original target CPU might have gone down and we might
1539 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1540 */
1541 local_irq_disable();
1542 /*
1543 * We need to explicitly wake pending tasks before running
3bd37062 1544 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1545 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1546 */
1547 sched_ttwu_pending();
5e16bbc2
PZ
1548
1549 raw_spin_lock(&p->pi_lock);
8a8c69c3 1550 rq_lock(rq, &rf);
5e16bbc2
PZ
1551 /*
1552 * If task_rq(p) != rq, it cannot be migrated here, because we're
1553 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1554 * we're holding p->pi_lock.
1555 */
bf89a304
CC
1556 if (task_rq(p) == rq) {
1557 if (task_on_rq_queued(p))
8a8c69c3 1558 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1559 else
1560 p->wake_cpu = arg->dest_cpu;
1561 }
8a8c69c3 1562 rq_unlock(rq, &rf);
5e16bbc2
PZ
1563 raw_spin_unlock(&p->pi_lock);
1564
5cc389bc
PZ
1565 local_irq_enable();
1566 return 0;
1567}
1568
c5b28038
PZ
1569/*
1570 * sched_class::set_cpus_allowed must do the below, but is not required to
1571 * actually call this function.
1572 */
1573void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1574{
3bd37062 1575 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1576 p->nr_cpus_allowed = cpumask_weight(new_mask);
1577}
1578
c5b28038
PZ
1579void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1580{
6c37067e
PZ
1581 struct rq *rq = task_rq(p);
1582 bool queued, running;
1583
c5b28038 1584 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1585
1586 queued = task_on_rq_queued(p);
1587 running = task_current(rq, p);
1588
1589 if (queued) {
1590 /*
1591 * Because __kthread_bind() calls this on blocked tasks without
1592 * holding rq->lock.
1593 */
1594 lockdep_assert_held(&rq->lock);
7a57f32a 1595 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1596 }
1597 if (running)
1598 put_prev_task(rq, p);
1599
c5b28038 1600 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1601
6c37067e 1602 if (queued)
7134b3e9 1603 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1604 if (running)
03b7fad1 1605 set_next_task(rq, p);
c5b28038
PZ
1606}
1607
5cc389bc
PZ
1608/*
1609 * Change a given task's CPU affinity. Migrate the thread to a
1610 * proper CPU and schedule it away if the CPU it's executing on
1611 * is removed from the allowed bitmask.
1612 *
1613 * NOTE: the caller must have a valid reference to the task, the
1614 * task must not exit() & deallocate itself prematurely. The
1615 * call is not atomic; no spinlocks may be held.
1616 */
25834c73
PZ
1617static int __set_cpus_allowed_ptr(struct task_struct *p,
1618 const struct cpumask *new_mask, bool check)
5cc389bc 1619{
e9d867a6 1620 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1621 unsigned int dest_cpu;
eb580751
PZ
1622 struct rq_flags rf;
1623 struct rq *rq;
5cc389bc
PZ
1624 int ret = 0;
1625
eb580751 1626 rq = task_rq_lock(p, &rf);
a499c3ea 1627 update_rq_clock(rq);
5cc389bc 1628
e9d867a6
PZI
1629 if (p->flags & PF_KTHREAD) {
1630 /*
1631 * Kernel threads are allowed on online && !active CPUs
1632 */
1633 cpu_valid_mask = cpu_online_mask;
1634 }
1635
25834c73
PZ
1636 /*
1637 * Must re-check here, to close a race against __kthread_bind(),
1638 * sched_setaffinity() is not guaranteed to observe the flag.
1639 */
1640 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1641 ret = -EINVAL;
1642 goto out;
1643 }
1644
3bd37062 1645 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1646 goto out;
1647
46a87b38
PT
1648 /*
1649 * Picking a ~random cpu helps in cases where we are changing affinity
1650 * for groups of tasks (ie. cpuset), so that load balancing is not
1651 * immediately required to distribute the tasks within their new mask.
1652 */
1653 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1654 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1655 ret = -EINVAL;
1656 goto out;
1657 }
1658
1659 do_set_cpus_allowed(p, new_mask);
1660
e9d867a6
PZI
1661 if (p->flags & PF_KTHREAD) {
1662 /*
1663 * For kernel threads that do indeed end up on online &&
d1ccc66d 1664 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1665 */
1666 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1667 !cpumask_intersects(new_mask, cpu_active_mask) &&
1668 p->nr_cpus_allowed != 1);
1669 }
1670
5cc389bc
PZ
1671 /* Can the task run on the task's current CPU? If so, we're done */
1672 if (cpumask_test_cpu(task_cpu(p), new_mask))
1673 goto out;
1674
5cc389bc
PZ
1675 if (task_running(rq, p) || p->state == TASK_WAKING) {
1676 struct migration_arg arg = { p, dest_cpu };
1677 /* Need help from migration thread: drop lock and wait. */
eb580751 1678 task_rq_unlock(rq, p, &rf);
5cc389bc 1679 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1680 return 0;
cbce1a68
PZ
1681 } else if (task_on_rq_queued(p)) {
1682 /*
1683 * OK, since we're going to drop the lock immediately
1684 * afterwards anyway.
1685 */
8a8c69c3 1686 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1687 }
5cc389bc 1688out:
eb580751 1689 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1690
1691 return ret;
1692}
25834c73
PZ
1693
1694int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1695{
1696 return __set_cpus_allowed_ptr(p, new_mask, false);
1697}
5cc389bc
PZ
1698EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1699
dd41f596 1700void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1701{
e2912009
PZ
1702#ifdef CONFIG_SCHED_DEBUG
1703 /*
1704 * We should never call set_task_cpu() on a blocked task,
1705 * ttwu() will sort out the placement.
1706 */
077614ee 1707 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1708 !p->on_rq);
0122ec5b 1709
3ea94de1
JP
1710 /*
1711 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1712 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1713 * time relying on p->on_rq.
1714 */
1715 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1716 p->sched_class == &fair_sched_class &&
1717 (p->on_rq && !task_on_rq_migrating(p)));
1718
0122ec5b 1719#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1720 /*
1721 * The caller should hold either p->pi_lock or rq->lock, when changing
1722 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1723 *
1724 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1725 * see task_group().
6c6c54e1
PZ
1726 *
1727 * Furthermore, all task_rq users should acquire both locks, see
1728 * task_rq_lock().
1729 */
0122ec5b
PZ
1730 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1731 lockdep_is_held(&task_rq(p)->lock)));
1732#endif
4ff9083b
PZ
1733 /*
1734 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1735 */
1736 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1737#endif
1738
de1d7286 1739 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1740
0c69774e 1741 if (task_cpu(p) != new_cpu) {
0a74bef8 1742 if (p->sched_class->migrate_task_rq)
1327237a 1743 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1744 p->se.nr_migrations++;
d7822b1e 1745 rseq_migrate(p);
ff303e66 1746 perf_event_task_migrate(p);
0c69774e 1747 }
dd41f596
IM
1748
1749 __set_task_cpu(p, new_cpu);
c65cc870
IM
1750}
1751
0ad4e3df 1752#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1753static void __migrate_swap_task(struct task_struct *p, int cpu)
1754{
da0c1e65 1755 if (task_on_rq_queued(p)) {
ac66f547 1756 struct rq *src_rq, *dst_rq;
8a8c69c3 1757 struct rq_flags srf, drf;
ac66f547
PZ
1758
1759 src_rq = task_rq(p);
1760 dst_rq = cpu_rq(cpu);
1761
8a8c69c3
PZ
1762 rq_pin_lock(src_rq, &srf);
1763 rq_pin_lock(dst_rq, &drf);
1764
ac66f547
PZ
1765 deactivate_task(src_rq, p, 0);
1766 set_task_cpu(p, cpu);
1767 activate_task(dst_rq, p, 0);
1768 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1769
1770 rq_unpin_lock(dst_rq, &drf);
1771 rq_unpin_lock(src_rq, &srf);
1772
ac66f547
PZ
1773 } else {
1774 /*
1775 * Task isn't running anymore; make it appear like we migrated
1776 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1777 * previous CPU our target instead of where it really is.
ac66f547
PZ
1778 */
1779 p->wake_cpu = cpu;
1780 }
1781}
1782
1783struct migration_swap_arg {
1784 struct task_struct *src_task, *dst_task;
1785 int src_cpu, dst_cpu;
1786};
1787
1788static int migrate_swap_stop(void *data)
1789{
1790 struct migration_swap_arg *arg = data;
1791 struct rq *src_rq, *dst_rq;
1792 int ret = -EAGAIN;
1793
62694cd5
PZ
1794 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1795 return -EAGAIN;
1796
ac66f547
PZ
1797 src_rq = cpu_rq(arg->src_cpu);
1798 dst_rq = cpu_rq(arg->dst_cpu);
1799
74602315
PZ
1800 double_raw_lock(&arg->src_task->pi_lock,
1801 &arg->dst_task->pi_lock);
ac66f547 1802 double_rq_lock(src_rq, dst_rq);
62694cd5 1803
ac66f547
PZ
1804 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1805 goto unlock;
1806
1807 if (task_cpu(arg->src_task) != arg->src_cpu)
1808 goto unlock;
1809
3bd37062 1810 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1811 goto unlock;
1812
3bd37062 1813 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1814 goto unlock;
1815
1816 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1817 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1818
1819 ret = 0;
1820
1821unlock:
1822 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1823 raw_spin_unlock(&arg->dst_task->pi_lock);
1824 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1825
1826 return ret;
1827}
1828
1829/*
1830 * Cross migrate two tasks
1831 */
0ad4e3df
SD
1832int migrate_swap(struct task_struct *cur, struct task_struct *p,
1833 int target_cpu, int curr_cpu)
ac66f547
PZ
1834{
1835 struct migration_swap_arg arg;
1836 int ret = -EINVAL;
1837
ac66f547
PZ
1838 arg = (struct migration_swap_arg){
1839 .src_task = cur,
0ad4e3df 1840 .src_cpu = curr_cpu,
ac66f547 1841 .dst_task = p,
0ad4e3df 1842 .dst_cpu = target_cpu,
ac66f547
PZ
1843 };
1844
1845 if (arg.src_cpu == arg.dst_cpu)
1846 goto out;
1847
6acce3ef
PZ
1848 /*
1849 * These three tests are all lockless; this is OK since all of them
1850 * will be re-checked with proper locks held further down the line.
1851 */
ac66f547
PZ
1852 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1853 goto out;
1854
3bd37062 1855 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1856 goto out;
1857
3bd37062 1858 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1859 goto out;
1860
286549dc 1861 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1862 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1863
1864out:
ac66f547
PZ
1865 return ret;
1866}
0ad4e3df 1867#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1868
1da177e4
LT
1869/*
1870 * wait_task_inactive - wait for a thread to unschedule.
1871 *
85ba2d86
RM
1872 * If @match_state is nonzero, it's the @p->state value just checked and
1873 * not expected to change. If it changes, i.e. @p might have woken up,
1874 * then return zero. When we succeed in waiting for @p to be off its CPU,
1875 * we return a positive number (its total switch count). If a second call
1876 * a short while later returns the same number, the caller can be sure that
1877 * @p has remained unscheduled the whole time.
1878 *
1da177e4
LT
1879 * The caller must ensure that the task *will* unschedule sometime soon,
1880 * else this function might spin for a *long* time. This function can't
1881 * be called with interrupts off, or it may introduce deadlock with
1882 * smp_call_function() if an IPI is sent by the same process we are
1883 * waiting to become inactive.
1884 */
85ba2d86 1885unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1886{
da0c1e65 1887 int running, queued;
eb580751 1888 struct rq_flags rf;
85ba2d86 1889 unsigned long ncsw;
70b97a7f 1890 struct rq *rq;
1da177e4 1891
3a5c359a
AK
1892 for (;;) {
1893 /*
1894 * We do the initial early heuristics without holding
1895 * any task-queue locks at all. We'll only try to get
1896 * the runqueue lock when things look like they will
1897 * work out!
1898 */
1899 rq = task_rq(p);
fa490cfd 1900
3a5c359a
AK
1901 /*
1902 * If the task is actively running on another CPU
1903 * still, just relax and busy-wait without holding
1904 * any locks.
1905 *
1906 * NOTE! Since we don't hold any locks, it's not
1907 * even sure that "rq" stays as the right runqueue!
1908 * But we don't care, since "task_running()" will
1909 * return false if the runqueue has changed and p
1910 * is actually now running somewhere else!
1911 */
85ba2d86
RM
1912 while (task_running(rq, p)) {
1913 if (match_state && unlikely(p->state != match_state))
1914 return 0;
3a5c359a 1915 cpu_relax();
85ba2d86 1916 }
fa490cfd 1917
3a5c359a
AK
1918 /*
1919 * Ok, time to look more closely! We need the rq
1920 * lock now, to be *sure*. If we're wrong, we'll
1921 * just go back and repeat.
1922 */
eb580751 1923 rq = task_rq_lock(p, &rf);
27a9da65 1924 trace_sched_wait_task(p);
3a5c359a 1925 running = task_running(rq, p);
da0c1e65 1926 queued = task_on_rq_queued(p);
85ba2d86 1927 ncsw = 0;
f31e11d8 1928 if (!match_state || p->state == match_state)
93dcf55f 1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1930 task_rq_unlock(rq, p, &rf);
fa490cfd 1931
85ba2d86
RM
1932 /*
1933 * If it changed from the expected state, bail out now.
1934 */
1935 if (unlikely(!ncsw))
1936 break;
1937
3a5c359a
AK
1938 /*
1939 * Was it really running after all now that we
1940 * checked with the proper locks actually held?
1941 *
1942 * Oops. Go back and try again..
1943 */
1944 if (unlikely(running)) {
1945 cpu_relax();
1946 continue;
1947 }
fa490cfd 1948
3a5c359a
AK
1949 /*
1950 * It's not enough that it's not actively running,
1951 * it must be off the runqueue _entirely_, and not
1952 * preempted!
1953 *
80dd99b3 1954 * So if it was still runnable (but just not actively
3a5c359a
AK
1955 * running right now), it's preempted, and we should
1956 * yield - it could be a while.
1957 */
da0c1e65 1958 if (unlikely(queued)) {
8b0e1953 1959 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1960
1961 set_current_state(TASK_UNINTERRUPTIBLE);
1962 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1963 continue;
1964 }
fa490cfd 1965
3a5c359a
AK
1966 /*
1967 * Ahh, all good. It wasn't running, and it wasn't
1968 * runnable, which means that it will never become
1969 * running in the future either. We're all done!
1970 */
1971 break;
1972 }
85ba2d86
RM
1973
1974 return ncsw;
1da177e4
LT
1975}
1976
1977/***
1978 * kick_process - kick a running thread to enter/exit the kernel
1979 * @p: the to-be-kicked thread
1980 *
1981 * Cause a process which is running on another CPU to enter
1982 * kernel-mode, without any delay. (to get signals handled.)
1983 *
25985edc 1984 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1985 * because all it wants to ensure is that the remote task enters
1986 * the kernel. If the IPI races and the task has been migrated
1987 * to another CPU then no harm is done and the purpose has been
1988 * achieved as well.
1989 */
36c8b586 1990void kick_process(struct task_struct *p)
1da177e4
LT
1991{
1992 int cpu;
1993
1994 preempt_disable();
1995 cpu = task_cpu(p);
1996 if ((cpu != smp_processor_id()) && task_curr(p))
1997 smp_send_reschedule(cpu);
1998 preempt_enable();
1999}
b43e3521 2000EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2001
30da688e 2002/*
3bd37062 2003 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2004 *
2005 * A few notes on cpu_active vs cpu_online:
2006 *
2007 * - cpu_active must be a subset of cpu_online
2008 *
97fb7a0a 2009 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2010 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2011 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2012 * see it.
2013 *
d1ccc66d 2014 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2015 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2016 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2017 * off.
2018 *
2019 * This means that fallback selection must not select !active CPUs.
2020 * And can assume that any active CPU must be online. Conversely
2021 * select_task_rq() below may allow selection of !active CPUs in order
2022 * to satisfy the above rules.
30da688e 2023 */
5da9a0fb
PZ
2024static int select_fallback_rq(int cpu, struct task_struct *p)
2025{
aa00d89c
TC
2026 int nid = cpu_to_node(cpu);
2027 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2028 enum { cpuset, possible, fail } state = cpuset;
2029 int dest_cpu;
5da9a0fb 2030
aa00d89c 2031 /*
d1ccc66d
IM
2032 * If the node that the CPU is on has been offlined, cpu_to_node()
2033 * will return -1. There is no CPU on the node, and we should
2034 * select the CPU on the other node.
aa00d89c
TC
2035 */
2036 if (nid != -1) {
2037 nodemask = cpumask_of_node(nid);
2038
2039 /* Look for allowed, online CPU in same node. */
2040 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2041 if (!cpu_active(dest_cpu))
2042 continue;
3bd37062 2043 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2044 return dest_cpu;
2045 }
2baab4e9 2046 }
5da9a0fb 2047
2baab4e9
PZ
2048 for (;;) {
2049 /* Any allowed, online CPU? */
3bd37062 2050 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2051 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2052 continue;
175f0e25 2053
2baab4e9
PZ
2054 goto out;
2055 }
5da9a0fb 2056
e73e85f0 2057 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2058 switch (state) {
2059 case cpuset:
e73e85f0
ON
2060 if (IS_ENABLED(CONFIG_CPUSETS)) {
2061 cpuset_cpus_allowed_fallback(p);
2062 state = possible;
2063 break;
2064 }
d1ccc66d 2065 /* Fall-through */
2baab4e9
PZ
2066 case possible:
2067 do_set_cpus_allowed(p, cpu_possible_mask);
2068 state = fail;
2069 break;
2070
2071 case fail:
2072 BUG();
2073 break;
2074 }
2075 }
2076
2077out:
2078 if (state != cpuset) {
2079 /*
2080 * Don't tell them about moving exiting tasks or
2081 * kernel threads (both mm NULL), since they never
2082 * leave kernel.
2083 */
2084 if (p->mm && printk_ratelimit()) {
aac74dc4 2085 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2086 task_pid_nr(p), p->comm, cpu);
2087 }
5da9a0fb
PZ
2088 }
2089
2090 return dest_cpu;
2091}
2092
e2912009 2093/*
3bd37062 2094 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2095 */
970b13ba 2096static inline
ac66f547 2097int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2098{
cbce1a68
PZ
2099 lockdep_assert_held(&p->pi_lock);
2100
4b53a341 2101 if (p->nr_cpus_allowed > 1)
6c1d9410 2102 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2103 else
3bd37062 2104 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2105
2106 /*
2107 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2108 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2109 * CPU.
e2912009
PZ
2110 *
2111 * Since this is common to all placement strategies, this lives here.
2112 *
2113 * [ this allows ->select_task() to simply return task_cpu(p) and
2114 * not worry about this generic constraint ]
2115 */
7af443ee 2116 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2117 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2118
2119 return cpu;
970b13ba 2120}
09a40af5 2121
f5832c19
NP
2122void sched_set_stop_task(int cpu, struct task_struct *stop)
2123{
2124 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2125 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2126
2127 if (stop) {
2128 /*
2129 * Make it appear like a SCHED_FIFO task, its something
2130 * userspace knows about and won't get confused about.
2131 *
2132 * Also, it will make PI more or less work without too
2133 * much confusion -- but then, stop work should not
2134 * rely on PI working anyway.
2135 */
2136 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2137
2138 stop->sched_class = &stop_sched_class;
2139 }
2140
2141 cpu_rq(cpu)->stop = stop;
2142
2143 if (old_stop) {
2144 /*
2145 * Reset it back to a normal scheduling class so that
2146 * it can die in pieces.
2147 */
2148 old_stop->sched_class = &rt_sched_class;
2149 }
2150}
2151
25834c73
PZ
2152#else
2153
2154static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2155 const struct cpumask *new_mask, bool check)
2156{
2157 return set_cpus_allowed_ptr(p, new_mask);
2158}
2159
5cc389bc 2160#endif /* CONFIG_SMP */
970b13ba 2161
d7c01d27 2162static void
b84cb5df 2163ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2164{
4fa8d299 2165 struct rq *rq;
b84cb5df 2166
4fa8d299
JP
2167 if (!schedstat_enabled())
2168 return;
2169
2170 rq = this_rq();
d7c01d27 2171
4fa8d299
JP
2172#ifdef CONFIG_SMP
2173 if (cpu == rq->cpu) {
b85c8b71
PZ
2174 __schedstat_inc(rq->ttwu_local);
2175 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2176 } else {
2177 struct sched_domain *sd;
2178
b85c8b71 2179 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2180 rcu_read_lock();
4fa8d299 2181 for_each_domain(rq->cpu, sd) {
d7c01d27 2182 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2183 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2184 break;
2185 }
2186 }
057f3fad 2187 rcu_read_unlock();
d7c01d27 2188 }
f339b9dc
PZ
2189
2190 if (wake_flags & WF_MIGRATED)
b85c8b71 2191 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2192#endif /* CONFIG_SMP */
2193
b85c8b71
PZ
2194 __schedstat_inc(rq->ttwu_count);
2195 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2196
2197 if (wake_flags & WF_SYNC)
b85c8b71 2198 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2199}
2200
23f41eeb
PZ
2201/*
2202 * Mark the task runnable and perform wakeup-preemption.
2203 */
e7904a28 2204static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2205 struct rq_flags *rf)
9ed3811a 2206{
9ed3811a 2207 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2208 p->state = TASK_RUNNING;
fbd705a0
PZ
2209 trace_sched_wakeup(p);
2210
9ed3811a 2211#ifdef CONFIG_SMP
4c9a4bc8
PZ
2212 if (p->sched_class->task_woken) {
2213 /*
cbce1a68
PZ
2214 * Our task @p is fully woken up and running; so its safe to
2215 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2216 */
d8ac8971 2217 rq_unpin_lock(rq, rf);
9ed3811a 2218 p->sched_class->task_woken(rq, p);
d8ac8971 2219 rq_repin_lock(rq, rf);
4c9a4bc8 2220 }
9ed3811a 2221
e69c6341 2222 if (rq->idle_stamp) {
78becc27 2223 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2224 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2225
abfafa54
JL
2226 update_avg(&rq->avg_idle, delta);
2227
2228 if (rq->avg_idle > max)
9ed3811a 2229 rq->avg_idle = max;
abfafa54 2230
9ed3811a
TH
2231 rq->idle_stamp = 0;
2232 }
2233#endif
2234}
2235
c05fbafb 2236static void
e7904a28 2237ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2238 struct rq_flags *rf)
c05fbafb 2239{
77558e4d 2240 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2241
cbce1a68
PZ
2242 lockdep_assert_held(&rq->lock);
2243
c05fbafb
PZ
2244#ifdef CONFIG_SMP
2245 if (p->sched_contributes_to_load)
2246 rq->nr_uninterruptible--;
b5179ac7 2247
b5179ac7 2248 if (wake_flags & WF_MIGRATED)
59efa0ba 2249 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2250#endif
2251
1b174a2c 2252 activate_task(rq, p, en_flags);
d8ac8971 2253 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2254}
2255
2256/*
2257 * Called in case the task @p isn't fully descheduled from its runqueue,
2258 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2259 * since all we need to do is flip p->state to TASK_RUNNING, since
2260 * the task is still ->on_rq.
2261 */
2262static int ttwu_remote(struct task_struct *p, int wake_flags)
2263{
eb580751 2264 struct rq_flags rf;
c05fbafb
PZ
2265 struct rq *rq;
2266 int ret = 0;
2267
eb580751 2268 rq = __task_rq_lock(p, &rf);
da0c1e65 2269 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2270 /* check_preempt_curr() may use rq clock */
2271 update_rq_clock(rq);
d8ac8971 2272 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2273 ret = 1;
2274 }
eb580751 2275 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2276
2277 return ret;
2278}
2279
317f3941 2280#ifdef CONFIG_SMP
e3baac47 2281void sched_ttwu_pending(void)
317f3941
PZ
2282{
2283 struct rq *rq = this_rq();
fa14ff4a 2284 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2285 struct task_struct *p, *t;
d8ac8971 2286 struct rq_flags rf;
317f3941 2287
e3baac47
PZ
2288 if (!llist)
2289 return;
2290
8a8c69c3 2291 rq_lock_irqsave(rq, &rf);
77558e4d 2292 update_rq_clock(rq);
317f3941 2293
73215849
BP
2294 llist_for_each_entry_safe(p, t, llist, wake_entry)
2295 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2296
8a8c69c3 2297 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2298}
2299
2300void scheduler_ipi(void)
2301{
f27dde8d
PZ
2302 /*
2303 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2304 * TIF_NEED_RESCHED remotely (for the first time) will also send
2305 * this IPI.
2306 */
8cb75e0c 2307 preempt_fold_need_resched();
f27dde8d 2308
fd2ac4f4 2309 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2310 return;
2311
2312 /*
2313 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2314 * traditionally all their work was done from the interrupt return
2315 * path. Now that we actually do some work, we need to make sure
2316 * we do call them.
2317 *
2318 * Some archs already do call them, luckily irq_enter/exit nest
2319 * properly.
2320 *
2321 * Arguably we should visit all archs and update all handlers,
2322 * however a fair share of IPIs are still resched only so this would
2323 * somewhat pessimize the simple resched case.
2324 */
2325 irq_enter();
fa14ff4a 2326 sched_ttwu_pending();
ca38062e
SS
2327
2328 /*
2329 * Check if someone kicked us for doing the nohz idle load balance.
2330 */
873b4c65 2331 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2332 this_rq()->idle_balance = 1;
ca38062e 2333 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2334 }
c5d753a5 2335 irq_exit();
317f3941
PZ
2336}
2337
b7e7ade3 2338static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2339{
e3baac47
PZ
2340 struct rq *rq = cpu_rq(cpu);
2341
b7e7ade3
PZ
2342 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2343
e3baac47
PZ
2344 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2345 if (!set_nr_if_polling(rq->idle))
2346 smp_send_reschedule(cpu);
2347 else
2348 trace_sched_wake_idle_without_ipi(cpu);
2349 }
317f3941 2350}
d6aa8f85 2351
f6be8af1
CL
2352void wake_up_if_idle(int cpu)
2353{
2354 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2355 struct rq_flags rf;
f6be8af1 2356
fd7de1e8
AL
2357 rcu_read_lock();
2358
2359 if (!is_idle_task(rcu_dereference(rq->curr)))
2360 goto out;
f6be8af1
CL
2361
2362 if (set_nr_if_polling(rq->idle)) {
2363 trace_sched_wake_idle_without_ipi(cpu);
2364 } else {
8a8c69c3 2365 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2366 if (is_idle_task(rq->curr))
2367 smp_send_reschedule(cpu);
d1ccc66d 2368 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2369 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2370 }
fd7de1e8
AL
2371
2372out:
2373 rcu_read_unlock();
f6be8af1
CL
2374}
2375
39be3501 2376bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2377{
2378 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2379}
d6aa8f85 2380#endif /* CONFIG_SMP */
317f3941 2381
b5179ac7 2382static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2383{
2384 struct rq *rq = cpu_rq(cpu);
d8ac8971 2385 struct rq_flags rf;
c05fbafb 2386
17d9f311 2387#if defined(CONFIG_SMP)
39be3501 2388 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2389 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2390 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2391 return;
2392 }
2393#endif
2394
8a8c69c3 2395 rq_lock(rq, &rf);
77558e4d 2396 update_rq_clock(rq);
d8ac8971 2397 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2398 rq_unlock(rq, &rf);
9ed3811a
TH
2399}
2400
8643cda5
PZ
2401/*
2402 * Notes on Program-Order guarantees on SMP systems.
2403 *
2404 * MIGRATION
2405 *
2406 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2407 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2408 * execution on its new CPU [c1].
8643cda5
PZ
2409 *
2410 * For migration (of runnable tasks) this is provided by the following means:
2411 *
2412 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2413 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2414 * rq(c1)->lock (if not at the same time, then in that order).
2415 * C) LOCK of the rq(c1)->lock scheduling in task
2416 *
7696f991 2417 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2418 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2419 *
2420 * Example:
2421 *
2422 * CPU0 CPU1 CPU2
2423 *
2424 * LOCK rq(0)->lock
2425 * sched-out X
2426 * sched-in Y
2427 * UNLOCK rq(0)->lock
2428 *
2429 * LOCK rq(0)->lock // orders against CPU0
2430 * dequeue X
2431 * UNLOCK rq(0)->lock
2432 *
2433 * LOCK rq(1)->lock
2434 * enqueue X
2435 * UNLOCK rq(1)->lock
2436 *
2437 * LOCK rq(1)->lock // orders against CPU2
2438 * sched-out Z
2439 * sched-in X
2440 * UNLOCK rq(1)->lock
2441 *
2442 *
2443 * BLOCKING -- aka. SLEEP + WAKEUP
2444 *
2445 * For blocking we (obviously) need to provide the same guarantee as for
2446 * migration. However the means are completely different as there is no lock
2447 * chain to provide order. Instead we do:
2448 *
2449 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2450 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2451 *
2452 * Example:
2453 *
2454 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2455 *
2456 * LOCK rq(0)->lock LOCK X->pi_lock
2457 * dequeue X
2458 * sched-out X
2459 * smp_store_release(X->on_cpu, 0);
2460 *
1f03e8d2 2461 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2462 * X->state = WAKING
2463 * set_task_cpu(X,2)
2464 *
2465 * LOCK rq(2)->lock
2466 * enqueue X
2467 * X->state = RUNNING
2468 * UNLOCK rq(2)->lock
2469 *
2470 * LOCK rq(2)->lock // orders against CPU1
2471 * sched-out Z
2472 * sched-in X
2473 * UNLOCK rq(2)->lock
2474 *
2475 * UNLOCK X->pi_lock
2476 * UNLOCK rq(0)->lock
2477 *
2478 *
7696f991
AP
2479 * However, for wakeups there is a second guarantee we must provide, namely we
2480 * must ensure that CONDITION=1 done by the caller can not be reordered with
2481 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2482 */
2483
9ed3811a 2484/**
1da177e4 2485 * try_to_wake_up - wake up a thread
9ed3811a 2486 * @p: the thread to be awakened
1da177e4 2487 * @state: the mask of task states that can be woken
9ed3811a 2488 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2489 *
a2250238 2490 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2491 *
a2250238
PZ
2492 * If the task was not queued/runnable, also place it back on a runqueue.
2493 *
2494 * Atomic against schedule() which would dequeue a task, also see
2495 * set_current_state().
2496 *
7696f991
AP
2497 * This function executes a full memory barrier before accessing the task
2498 * state; see set_current_state().
2499 *
a2250238
PZ
2500 * Return: %true if @p->state changes (an actual wakeup was done),
2501 * %false otherwise.
1da177e4 2502 */
e4a52bcb
PZ
2503static int
2504try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2505{
1da177e4 2506 unsigned long flags;
c05fbafb 2507 int cpu, success = 0;
2398f2c6 2508
e3d85487 2509 preempt_disable();
aacedf26
PZ
2510 if (p == current) {
2511 /*
2512 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2513 * == smp_processor_id()'. Together this means we can special
2514 * case the whole 'p->on_rq && ttwu_remote()' case below
2515 * without taking any locks.
2516 *
2517 * In particular:
2518 * - we rely on Program-Order guarantees for all the ordering,
2519 * - we're serialized against set_special_state() by virtue of
2520 * it disabling IRQs (this allows not taking ->pi_lock).
2521 */
2522 if (!(p->state & state))
e3d85487 2523 goto out;
aacedf26
PZ
2524
2525 success = 1;
2526 cpu = task_cpu(p);
2527 trace_sched_waking(p);
2528 p->state = TASK_RUNNING;
2529 trace_sched_wakeup(p);
2530 goto out;
2531 }
2532
e0acd0a6
ON
2533 /*
2534 * If we are going to wake up a thread waiting for CONDITION we
2535 * need to ensure that CONDITION=1 done by the caller can not be
2536 * reordered with p->state check below. This pairs with mb() in
2537 * set_current_state() the waiting thread does.
2538 */
013fdb80 2539 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2540 smp_mb__after_spinlock();
e9c84311 2541 if (!(p->state & state))
aacedf26 2542 goto unlock;
1da177e4 2543
fbd705a0
PZ
2544 trace_sched_waking(p);
2545
d1ccc66d
IM
2546 /* We're going to change ->state: */
2547 success = 1;
1da177e4 2548 cpu = task_cpu(p);
1da177e4 2549
135e8c92
BS
2550 /*
2551 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2552 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2553 * in smp_cond_load_acquire() below.
2554 *
3d85b270
AP
2555 * sched_ttwu_pending() try_to_wake_up()
2556 * STORE p->on_rq = 1 LOAD p->state
2557 * UNLOCK rq->lock
2558 *
2559 * __schedule() (switch to task 'p')
2560 * LOCK rq->lock smp_rmb();
2561 * smp_mb__after_spinlock();
2562 * UNLOCK rq->lock
135e8c92
BS
2563 *
2564 * [task p]
3d85b270 2565 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2566 *
3d85b270
AP
2567 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2568 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2569 */
2570 smp_rmb();
c05fbafb 2571 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2572 goto unlock;
1da177e4 2573
1da177e4 2574#ifdef CONFIG_SMP
ecf7d01c
PZ
2575 /*
2576 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2577 * possible to, falsely, observe p->on_cpu == 0.
2578 *
2579 * One must be running (->on_cpu == 1) in order to remove oneself
2580 * from the runqueue.
2581 *
3d85b270
AP
2582 * __schedule() (switch to task 'p') try_to_wake_up()
2583 * STORE p->on_cpu = 1 LOAD p->on_rq
2584 * UNLOCK rq->lock
2585 *
2586 * __schedule() (put 'p' to sleep)
2587 * LOCK rq->lock smp_rmb();
2588 * smp_mb__after_spinlock();
2589 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2590 *
3d85b270
AP
2591 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2592 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2593 */
2594 smp_rmb();
2595
e9c84311 2596 /*
d1ccc66d 2597 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2598 * this task as prev, wait until its done referencing the task.
b75a2253 2599 *
31cb1bc0 2600 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2601 *
2602 * This ensures that tasks getting woken will be fully ordered against
2603 * their previous state and preserve Program Order.
0970d299 2604 */
1f03e8d2 2605 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2606
a8e4f2ea 2607 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2608 p->state = TASK_WAKING;
e7693a36 2609
e33a9bba 2610 if (p->in_iowait) {
c96f5471 2611 delayacct_blkio_end(p);
e33a9bba
TH
2612 atomic_dec(&task_rq(p)->nr_iowait);
2613 }
2614
ac66f547 2615 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2616 if (task_cpu(p) != cpu) {
2617 wake_flags |= WF_MIGRATED;
eb414681 2618 psi_ttwu_dequeue(p);
e4a52bcb 2619 set_task_cpu(p, cpu);
f339b9dc 2620 }
e33a9bba
TH
2621
2622#else /* CONFIG_SMP */
2623
2624 if (p->in_iowait) {
c96f5471 2625 delayacct_blkio_end(p);
e33a9bba
TH
2626 atomic_dec(&task_rq(p)->nr_iowait);
2627 }
2628
1da177e4 2629#endif /* CONFIG_SMP */
1da177e4 2630
b5179ac7 2631 ttwu_queue(p, cpu, wake_flags);
aacedf26 2632unlock:
013fdb80 2633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2634out:
2635 if (success)
2636 ttwu_stat(p, cpu, wake_flags);
e3d85487 2637 preempt_enable();
1da177e4
LT
2638
2639 return success;
2640}
2641
50fa610a
DH
2642/**
2643 * wake_up_process - Wake up a specific process
2644 * @p: The process to be woken up.
2645 *
2646 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2647 * processes.
2648 *
2649 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2650 *
7696f991 2651 * This function executes a full memory barrier before accessing the task state.
50fa610a 2652 */
7ad5b3a5 2653int wake_up_process(struct task_struct *p)
1da177e4 2654{
9067ac85 2655 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2656}
1da177e4
LT
2657EXPORT_SYMBOL(wake_up_process);
2658
7ad5b3a5 2659int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2660{
2661 return try_to_wake_up(p, state, 0);
2662}
2663
1da177e4
LT
2664/*
2665 * Perform scheduler related setup for a newly forked process p.
2666 * p is forked by current.
dd41f596
IM
2667 *
2668 * __sched_fork() is basic setup used by init_idle() too:
2669 */
5e1576ed 2670static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2671{
fd2f4419
PZ
2672 p->on_rq = 0;
2673
2674 p->se.on_rq = 0;
dd41f596
IM
2675 p->se.exec_start = 0;
2676 p->se.sum_exec_runtime = 0;
f6cf891c 2677 p->se.prev_sum_exec_runtime = 0;
6c594c21 2678 p->se.nr_migrations = 0;
da7a735e 2679 p->se.vruntime = 0;
fd2f4419 2680 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2681
ad936d86
BP
2682#ifdef CONFIG_FAIR_GROUP_SCHED
2683 p->se.cfs_rq = NULL;
2684#endif
2685
6cfb0d5d 2686#ifdef CONFIG_SCHEDSTATS
cb251765 2687 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2688 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2689#endif
476d139c 2690
aab03e05 2691 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2692 init_dl_task_timer(&p->dl);
209a0cbd 2693 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2694 __dl_clear_params(p);
aab03e05 2695
fa717060 2696 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2697 p->rt.timeout = 0;
2698 p->rt.time_slice = sched_rr_timeslice;
2699 p->rt.on_rq = 0;
2700 p->rt.on_list = 0;
476d139c 2701
e107be36
AK
2702#ifdef CONFIG_PREEMPT_NOTIFIERS
2703 INIT_HLIST_HEAD(&p->preempt_notifiers);
2704#endif
cbee9f88 2705
5e1f0f09
MG
2706#ifdef CONFIG_COMPACTION
2707 p->capture_control = NULL;
2708#endif
13784475 2709 init_numa_balancing(clone_flags, p);
dd41f596
IM
2710}
2711
2a595721
SD
2712DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2713
1a687c2e 2714#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2715
1a687c2e
MG
2716void set_numabalancing_state(bool enabled)
2717{
2718 if (enabled)
2a595721 2719 static_branch_enable(&sched_numa_balancing);
1a687c2e 2720 else
2a595721 2721 static_branch_disable(&sched_numa_balancing);
1a687c2e 2722}
54a43d54
AK
2723
2724#ifdef CONFIG_PROC_SYSCTL
2725int sysctl_numa_balancing(struct ctl_table *table, int write,
2726 void __user *buffer, size_t *lenp, loff_t *ppos)
2727{
2728 struct ctl_table t;
2729 int err;
2a595721 2730 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2731
2732 if (write && !capable(CAP_SYS_ADMIN))
2733 return -EPERM;
2734
2735 t = *table;
2736 t.data = &state;
2737 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2738 if (err < 0)
2739 return err;
2740 if (write)
2741 set_numabalancing_state(state);
2742 return err;
2743}
2744#endif
2745#endif
dd41f596 2746
4698f88c
JP
2747#ifdef CONFIG_SCHEDSTATS
2748
cb251765 2749DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2750static bool __initdata __sched_schedstats = false;
cb251765 2751
cb251765
MG
2752static void set_schedstats(bool enabled)
2753{
2754 if (enabled)
2755 static_branch_enable(&sched_schedstats);
2756 else
2757 static_branch_disable(&sched_schedstats);
2758}
2759
2760void force_schedstat_enabled(void)
2761{
2762 if (!schedstat_enabled()) {
2763 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2764 static_branch_enable(&sched_schedstats);
2765 }
2766}
2767
2768static int __init setup_schedstats(char *str)
2769{
2770 int ret = 0;
2771 if (!str)
2772 goto out;
2773
4698f88c
JP
2774 /*
2775 * This code is called before jump labels have been set up, so we can't
2776 * change the static branch directly just yet. Instead set a temporary
2777 * variable so init_schedstats() can do it later.
2778 */
cb251765 2779 if (!strcmp(str, "enable")) {
4698f88c 2780 __sched_schedstats = true;
cb251765
MG
2781 ret = 1;
2782 } else if (!strcmp(str, "disable")) {
4698f88c 2783 __sched_schedstats = false;
cb251765
MG
2784 ret = 1;
2785 }
2786out:
2787 if (!ret)
2788 pr_warn("Unable to parse schedstats=\n");
2789
2790 return ret;
2791}
2792__setup("schedstats=", setup_schedstats);
2793
4698f88c
JP
2794static void __init init_schedstats(void)
2795{
2796 set_schedstats(__sched_schedstats);
2797}
2798
cb251765
MG
2799#ifdef CONFIG_PROC_SYSCTL
2800int sysctl_schedstats(struct ctl_table *table, int write,
2801 void __user *buffer, size_t *lenp, loff_t *ppos)
2802{
2803 struct ctl_table t;
2804 int err;
2805 int state = static_branch_likely(&sched_schedstats);
2806
2807 if (write && !capable(CAP_SYS_ADMIN))
2808 return -EPERM;
2809
2810 t = *table;
2811 t.data = &state;
2812 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2813 if (err < 0)
2814 return err;
2815 if (write)
2816 set_schedstats(state);
2817 return err;
2818}
4698f88c
JP
2819#endif /* CONFIG_PROC_SYSCTL */
2820#else /* !CONFIG_SCHEDSTATS */
2821static inline void init_schedstats(void) {}
2822#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2823
2824/*
2825 * fork()/clone()-time setup:
2826 */
aab03e05 2827int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2828{
0122ec5b 2829 unsigned long flags;
dd41f596 2830
5e1576ed 2831 __sched_fork(clone_flags, p);
06b83b5f 2832 /*
7dc603c9 2833 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2834 * nobody will actually run it, and a signal or other external
2835 * event cannot wake it up and insert it on the runqueue either.
2836 */
7dc603c9 2837 p->state = TASK_NEW;
dd41f596 2838
c350a04e
MG
2839 /*
2840 * Make sure we do not leak PI boosting priority to the child.
2841 */
2842 p->prio = current->normal_prio;
2843
e8f14172
PB
2844 uclamp_fork(p);
2845
b9dc29e7
MG
2846 /*
2847 * Revert to default priority/policy on fork if requested.
2848 */
2849 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2850 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2851 p->policy = SCHED_NORMAL;
6c697bdf 2852 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2853 p->rt_priority = 0;
2854 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2855 p->static_prio = NICE_TO_PRIO(0);
2856
2857 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2858 set_load_weight(p, false);
6c697bdf 2859
b9dc29e7
MG
2860 /*
2861 * We don't need the reset flag anymore after the fork. It has
2862 * fulfilled its duty:
2863 */
2864 p->sched_reset_on_fork = 0;
2865 }
ca94c442 2866
af0fffd9 2867 if (dl_prio(p->prio))
aab03e05 2868 return -EAGAIN;
af0fffd9 2869 else if (rt_prio(p->prio))
aab03e05 2870 p->sched_class = &rt_sched_class;
af0fffd9 2871 else
2ddbf952 2872 p->sched_class = &fair_sched_class;
b29739f9 2873
7dc603c9 2874 init_entity_runnable_average(&p->se);
cd29fe6f 2875
86951599
PZ
2876 /*
2877 * The child is not yet in the pid-hash so no cgroup attach races,
2878 * and the cgroup is pinned to this child due to cgroup_fork()
2879 * is ran before sched_fork().
2880 *
2881 * Silence PROVE_RCU.
2882 */
0122ec5b 2883 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2884 /*
d1ccc66d 2885 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2886 * so use __set_task_cpu().
2887 */
af0fffd9 2888 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2889 if (p->sched_class->task_fork)
2890 p->sched_class->task_fork(p);
0122ec5b 2891 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2892
f6db8347 2893#ifdef CONFIG_SCHED_INFO
dd41f596 2894 if (likely(sched_info_on()))
52f17b6c 2895 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2896#endif
3ca7a440
PZ
2897#if defined(CONFIG_SMP)
2898 p->on_cpu = 0;
4866cde0 2899#endif
01028747 2900 init_task_preempt_count(p);
806c09a7 2901#ifdef CONFIG_SMP
917b627d 2902 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2903 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2904#endif
aab03e05 2905 return 0;
1da177e4
LT
2906}
2907
332ac17e
DF
2908unsigned long to_ratio(u64 period, u64 runtime)
2909{
2910 if (runtime == RUNTIME_INF)
c52f14d3 2911 return BW_UNIT;
332ac17e
DF
2912
2913 /*
2914 * Doing this here saves a lot of checks in all
2915 * the calling paths, and returning zero seems
2916 * safe for them anyway.
2917 */
2918 if (period == 0)
2919 return 0;
2920
c52f14d3 2921 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2922}
2923
1da177e4
LT
2924/*
2925 * wake_up_new_task - wake up a newly created task for the first time.
2926 *
2927 * This function will do some initial scheduler statistics housekeeping
2928 * that must be done for every newly created context, then puts the task
2929 * on the runqueue and wakes it.
2930 */
3e51e3ed 2931void wake_up_new_task(struct task_struct *p)
1da177e4 2932{
eb580751 2933 struct rq_flags rf;
dd41f596 2934 struct rq *rq;
fabf318e 2935
eb580751 2936 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2937 p->state = TASK_RUNNING;
fabf318e
PZ
2938#ifdef CONFIG_SMP
2939 /*
2940 * Fork balancing, do it here and not earlier because:
3bd37062 2941 * - cpus_ptr can change in the fork path
d1ccc66d 2942 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2943 *
2944 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2945 * as we're not fully set-up yet.
fabf318e 2946 */
32e839dd 2947 p->recent_used_cpu = task_cpu(p);
e210bffd 2948 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2949#endif
b7fa30c9 2950 rq = __task_rq_lock(p, &rf);
4126bad6 2951 update_rq_clock(rq);
d0fe0b9c 2952 post_init_entity_util_avg(p);
0017d735 2953
7a57f32a 2954 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2955 trace_sched_wakeup_new(p);
a7558e01 2956 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2957#ifdef CONFIG_SMP
0aaafaab
PZ
2958 if (p->sched_class->task_woken) {
2959 /*
2960 * Nothing relies on rq->lock after this, so its fine to
2961 * drop it.
2962 */
d8ac8971 2963 rq_unpin_lock(rq, &rf);
efbbd05a 2964 p->sched_class->task_woken(rq, p);
d8ac8971 2965 rq_repin_lock(rq, &rf);
0aaafaab 2966 }
9a897c5a 2967#endif
eb580751 2968 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2969}
2970
e107be36
AK
2971#ifdef CONFIG_PREEMPT_NOTIFIERS
2972
b7203428 2973static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2974
2ecd9d29
PZ
2975void preempt_notifier_inc(void)
2976{
b7203428 2977 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2978}
2979EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2980
2981void preempt_notifier_dec(void)
2982{
b7203428 2983 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2984}
2985EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2986
e107be36 2987/**
80dd99b3 2988 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2989 * @notifier: notifier struct to register
e107be36
AK
2990 */
2991void preempt_notifier_register(struct preempt_notifier *notifier)
2992{
b7203428 2993 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2994 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2995
e107be36
AK
2996 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2997}
2998EXPORT_SYMBOL_GPL(preempt_notifier_register);
2999
3000/**
3001 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3002 * @notifier: notifier struct to unregister
e107be36 3003 *
d84525a8 3004 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3005 */
3006void preempt_notifier_unregister(struct preempt_notifier *notifier)
3007{
3008 hlist_del(&notifier->link);
3009}
3010EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3011
1cde2930 3012static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3013{
3014 struct preempt_notifier *notifier;
e107be36 3015
b67bfe0d 3016 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3017 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3018}
3019
1cde2930
PZ
3020static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3021{
b7203428 3022 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3023 __fire_sched_in_preempt_notifiers(curr);
3024}
3025
e107be36 3026static void
1cde2930
PZ
3027__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3028 struct task_struct *next)
e107be36
AK
3029{
3030 struct preempt_notifier *notifier;
e107be36 3031
b67bfe0d 3032 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3033 notifier->ops->sched_out(notifier, next);
3034}
3035
1cde2930
PZ
3036static __always_inline void
3037fire_sched_out_preempt_notifiers(struct task_struct *curr,
3038 struct task_struct *next)
3039{
b7203428 3040 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3041 __fire_sched_out_preempt_notifiers(curr, next);
3042}
3043
6d6bc0ad 3044#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3045
1cde2930 3046static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3047{
3048}
3049
1cde2930 3050static inline void
e107be36
AK
3051fire_sched_out_preempt_notifiers(struct task_struct *curr,
3052 struct task_struct *next)
3053{
3054}
3055
6d6bc0ad 3056#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3057
31cb1bc0 3058static inline void prepare_task(struct task_struct *next)
3059{
3060#ifdef CONFIG_SMP
3061 /*
3062 * Claim the task as running, we do this before switching to it
3063 * such that any running task will have this set.
3064 */
3065 next->on_cpu = 1;
3066#endif
3067}
3068
3069static inline void finish_task(struct task_struct *prev)
3070{
3071#ifdef CONFIG_SMP
3072 /*
3073 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3074 * We must ensure this doesn't happen until the switch is completely
3075 * finished.
3076 *
3077 * In particular, the load of prev->state in finish_task_switch() must
3078 * happen before this.
3079 *
3080 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3081 */
3082 smp_store_release(&prev->on_cpu, 0);
3083#endif
3084}
3085
269d5992
PZ
3086static inline void
3087prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3088{
269d5992
PZ
3089 /*
3090 * Since the runqueue lock will be released by the next
3091 * task (which is an invalid locking op but in the case
3092 * of the scheduler it's an obvious special-case), so we
3093 * do an early lockdep release here:
3094 */
3095 rq_unpin_lock(rq, rf);
5facae4f 3096 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3097#ifdef CONFIG_DEBUG_SPINLOCK
3098 /* this is a valid case when another task releases the spinlock */
269d5992 3099 rq->lock.owner = next;
31cb1bc0 3100#endif
269d5992
PZ
3101}
3102
3103static inline void finish_lock_switch(struct rq *rq)
3104{
31cb1bc0 3105 /*
3106 * If we are tracking spinlock dependencies then we have to
3107 * fix up the runqueue lock - which gets 'carried over' from
3108 * prev into current:
3109 */
3110 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3111 raw_spin_unlock_irq(&rq->lock);
3112}
3113
325ea10c
IM
3114/*
3115 * NOP if the arch has not defined these:
3116 */
3117
3118#ifndef prepare_arch_switch
3119# define prepare_arch_switch(next) do { } while (0)
3120#endif
3121
3122#ifndef finish_arch_post_lock_switch
3123# define finish_arch_post_lock_switch() do { } while (0)
3124#endif
3125
4866cde0
NP
3126/**
3127 * prepare_task_switch - prepare to switch tasks
3128 * @rq: the runqueue preparing to switch
421cee29 3129 * @prev: the current task that is being switched out
4866cde0
NP
3130 * @next: the task we are going to switch to.
3131 *
3132 * This is called with the rq lock held and interrupts off. It must
3133 * be paired with a subsequent finish_task_switch after the context
3134 * switch.
3135 *
3136 * prepare_task_switch sets up locking and calls architecture specific
3137 * hooks.
3138 */
e107be36
AK
3139static inline void
3140prepare_task_switch(struct rq *rq, struct task_struct *prev,
3141 struct task_struct *next)
4866cde0 3142{
0ed557aa 3143 kcov_prepare_switch(prev);
43148951 3144 sched_info_switch(rq, prev, next);
fe4b04fa 3145 perf_event_task_sched_out(prev, next);
d7822b1e 3146 rseq_preempt(prev);
e107be36 3147 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3148 prepare_task(next);
4866cde0
NP
3149 prepare_arch_switch(next);
3150}
3151
1da177e4
LT
3152/**
3153 * finish_task_switch - clean up after a task-switch
3154 * @prev: the thread we just switched away from.
3155 *
4866cde0
NP
3156 * finish_task_switch must be called after the context switch, paired
3157 * with a prepare_task_switch call before the context switch.
3158 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3159 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3160 *
3161 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3162 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3163 * with the lock held can cause deadlocks; see schedule() for
3164 * details.)
dfa50b60
ON
3165 *
3166 * The context switch have flipped the stack from under us and restored the
3167 * local variables which were saved when this task called schedule() in the
3168 * past. prev == current is still correct but we need to recalculate this_rq
3169 * because prev may have moved to another CPU.
1da177e4 3170 */
dfa50b60 3171static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3172 __releases(rq->lock)
3173{
dfa50b60 3174 struct rq *rq = this_rq();
1da177e4 3175 struct mm_struct *mm = rq->prev_mm;
55a101f8 3176 long prev_state;
1da177e4 3177
609ca066
PZ
3178 /*
3179 * The previous task will have left us with a preempt_count of 2
3180 * because it left us after:
3181 *
3182 * schedule()
3183 * preempt_disable(); // 1
3184 * __schedule()
3185 * raw_spin_lock_irq(&rq->lock) // 2
3186 *
3187 * Also, see FORK_PREEMPT_COUNT.
3188 */
e2bf1c4b
PZ
3189 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3190 "corrupted preempt_count: %s/%d/0x%x\n",
3191 current->comm, current->pid, preempt_count()))
3192 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3193
1da177e4
LT
3194 rq->prev_mm = NULL;
3195
3196 /*
3197 * A task struct has one reference for the use as "current".
c394cc9f 3198 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3199 * schedule one last time. The schedule call will never return, and
3200 * the scheduled task must drop that reference.
95913d97
PZ
3201 *
3202 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3203 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3204 * running on another CPU and we could rave with its RUNNING -> DEAD
3205 * transition, resulting in a double drop.
1da177e4 3206 */
55a101f8 3207 prev_state = prev->state;
bf9fae9f 3208 vtime_task_switch(prev);
a8d757ef 3209 perf_event_task_sched_in(prev, current);
31cb1bc0 3210 finish_task(prev);
3211 finish_lock_switch(rq);
01f23e16 3212 finish_arch_post_lock_switch();
0ed557aa 3213 kcov_finish_switch(current);
e8fa1362 3214
e107be36 3215 fire_sched_in_preempt_notifiers(current);
306e0604 3216 /*
70216e18
MD
3217 * When switching through a kernel thread, the loop in
3218 * membarrier_{private,global}_expedited() may have observed that
3219 * kernel thread and not issued an IPI. It is therefore possible to
3220 * schedule between user->kernel->user threads without passing though
3221 * switch_mm(). Membarrier requires a barrier after storing to
3222 * rq->curr, before returning to userspace, so provide them here:
3223 *
3224 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3225 * provided by mmdrop(),
3226 * - a sync_core for SYNC_CORE.
306e0604 3227 */
70216e18
MD
3228 if (mm) {
3229 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3230 mmdrop(mm);
70216e18 3231 }
1cef1150
PZ
3232 if (unlikely(prev_state == TASK_DEAD)) {
3233 if (prev->sched_class->task_dead)
3234 prev->sched_class->task_dead(prev);
68f24b08 3235
1cef1150
PZ
3236 /*
3237 * Remove function-return probe instances associated with this
3238 * task and put them back on the free list.
3239 */
3240 kprobe_flush_task(prev);
3241
3242 /* Task is done with its stack. */
3243 put_task_stack(prev);
3244
0ff7b2cf 3245 put_task_struct_rcu_user(prev);
c6fd91f0 3246 }
99e5ada9 3247
de734f89 3248 tick_nohz_task_switch();
dfa50b60 3249 return rq;
1da177e4
LT
3250}
3251
3f029d3c
GH
3252#ifdef CONFIG_SMP
3253
3f029d3c 3254/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3255static void __balance_callback(struct rq *rq)
3f029d3c 3256{
e3fca9e7
PZ
3257 struct callback_head *head, *next;
3258 void (*func)(struct rq *rq);
3259 unsigned long flags;
3f029d3c 3260
e3fca9e7
PZ
3261 raw_spin_lock_irqsave(&rq->lock, flags);
3262 head = rq->balance_callback;
3263 rq->balance_callback = NULL;
3264 while (head) {
3265 func = (void (*)(struct rq *))head->func;
3266 next = head->next;
3267 head->next = NULL;
3268 head = next;
3f029d3c 3269
e3fca9e7 3270 func(rq);
3f029d3c 3271 }
e3fca9e7
PZ
3272 raw_spin_unlock_irqrestore(&rq->lock, flags);
3273}
3274
3275static inline void balance_callback(struct rq *rq)
3276{
3277 if (unlikely(rq->balance_callback))
3278 __balance_callback(rq);
3f029d3c
GH
3279}
3280
3281#else
da19ab51 3282
e3fca9e7 3283static inline void balance_callback(struct rq *rq)
3f029d3c 3284{
1da177e4
LT
3285}
3286
3f029d3c
GH
3287#endif
3288
1da177e4
LT
3289/**
3290 * schedule_tail - first thing a freshly forked thread must call.
3291 * @prev: the thread we just switched away from.
3292 */
722a9f92 3293asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3294 __releases(rq->lock)
3295{
1a43a14a 3296 struct rq *rq;
da19ab51 3297
609ca066
PZ
3298 /*
3299 * New tasks start with FORK_PREEMPT_COUNT, see there and
3300 * finish_task_switch() for details.
3301 *
3302 * finish_task_switch() will drop rq->lock() and lower preempt_count
3303 * and the preempt_enable() will end up enabling preemption (on
3304 * PREEMPT_COUNT kernels).
3305 */
3306
dfa50b60 3307 rq = finish_task_switch(prev);
e3fca9e7 3308 balance_callback(rq);
1a43a14a 3309 preempt_enable();
70b97a7f 3310
1da177e4 3311 if (current->set_child_tid)
b488893a 3312 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3313
3314 calculate_sigpending();
1da177e4
LT
3315}
3316
3317/*
dfa50b60 3318 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3319 */
04936948 3320static __always_inline struct rq *
70b97a7f 3321context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3322 struct task_struct *next, struct rq_flags *rf)
1da177e4 3323{
e107be36 3324 prepare_task_switch(rq, prev, next);
fe4b04fa 3325
9226d125
ZA
3326 /*
3327 * For paravirt, this is coupled with an exit in switch_to to
3328 * combine the page table reload and the switch backend into
3329 * one hypercall.
3330 */
224101ed 3331 arch_start_context_switch(prev);
9226d125 3332
306e0604 3333 /*
139d025c
PZ
3334 * kernel -> kernel lazy + transfer active
3335 * user -> kernel lazy + mmgrab() active
3336 *
3337 * kernel -> user switch + mmdrop() active
3338 * user -> user switch
306e0604 3339 */
139d025c
PZ
3340 if (!next->mm) { // to kernel
3341 enter_lazy_tlb(prev->active_mm, next);
3342
3343 next->active_mm = prev->active_mm;
3344 if (prev->mm) // from user
3345 mmgrab(prev->active_mm);
3346 else
3347 prev->active_mm = NULL;
3348 } else { // to user
227a4aad 3349 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3350 /*
3351 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3352 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3353 *
3354 * The below provides this either through switch_mm(), or in
3355 * case 'prev->active_mm == next->mm' through
3356 * finish_task_switch()'s mmdrop().
3357 */
139d025c 3358 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3359
139d025c
PZ
3360 if (!prev->mm) { // from kernel
3361 /* will mmdrop() in finish_task_switch(). */
3362 rq->prev_mm = prev->active_mm;
3363 prev->active_mm = NULL;
3364 }
1da177e4 3365 }
92509b73 3366
cb42c9a3 3367 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3368
269d5992 3369 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3370
3371 /* Here we just switch the register state and the stack. */
3372 switch_to(prev, next, prev);
dd41f596 3373 barrier();
dfa50b60
ON
3374
3375 return finish_task_switch(prev);
1da177e4
LT
3376}
3377
3378/*
1c3e8264 3379 * nr_running and nr_context_switches:
1da177e4
LT
3380 *
3381 * externally visible scheduler statistics: current number of runnable
1c3e8264 3382 * threads, total number of context switches performed since bootup.
1da177e4
LT
3383 */
3384unsigned long nr_running(void)
3385{
3386 unsigned long i, sum = 0;
3387
3388 for_each_online_cpu(i)
3389 sum += cpu_rq(i)->nr_running;
3390
3391 return sum;
f711f609 3392}
1da177e4 3393
2ee507c4 3394/*
d1ccc66d 3395 * Check if only the current task is running on the CPU.
00cc1633
DD
3396 *
3397 * Caution: this function does not check that the caller has disabled
3398 * preemption, thus the result might have a time-of-check-to-time-of-use
3399 * race. The caller is responsible to use it correctly, for example:
3400 *
dfcb245e 3401 * - from a non-preemptible section (of course)
00cc1633
DD
3402 *
3403 * - from a thread that is bound to a single CPU
3404 *
3405 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3406 */
3407bool single_task_running(void)
3408{
00cc1633 3409 return raw_rq()->nr_running == 1;
2ee507c4
TC
3410}
3411EXPORT_SYMBOL(single_task_running);
3412
1da177e4 3413unsigned long long nr_context_switches(void)
46cb4b7c 3414{
cc94abfc
SR
3415 int i;
3416 unsigned long long sum = 0;
46cb4b7c 3417
0a945022 3418 for_each_possible_cpu(i)
1da177e4 3419 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3420
1da177e4
LT
3421 return sum;
3422}
483b4ee6 3423
145d952a
DL
3424/*
3425 * Consumers of these two interfaces, like for example the cpuidle menu
3426 * governor, are using nonsensical data. Preferring shallow idle state selection
3427 * for a CPU that has IO-wait which might not even end up running the task when
3428 * it does become runnable.
3429 */
3430
3431unsigned long nr_iowait_cpu(int cpu)
3432{
3433 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3434}
3435
e33a9bba
TH
3436/*
3437 * IO-wait accounting, and how its mostly bollocks (on SMP).
3438 *
3439 * The idea behind IO-wait account is to account the idle time that we could
3440 * have spend running if it were not for IO. That is, if we were to improve the
3441 * storage performance, we'd have a proportional reduction in IO-wait time.
3442 *
3443 * This all works nicely on UP, where, when a task blocks on IO, we account
3444 * idle time as IO-wait, because if the storage were faster, it could've been
3445 * running and we'd not be idle.
3446 *
3447 * This has been extended to SMP, by doing the same for each CPU. This however
3448 * is broken.
3449 *
3450 * Imagine for instance the case where two tasks block on one CPU, only the one
3451 * CPU will have IO-wait accounted, while the other has regular idle. Even
3452 * though, if the storage were faster, both could've ran at the same time,
3453 * utilising both CPUs.
3454 *
3455 * This means, that when looking globally, the current IO-wait accounting on
3456 * SMP is a lower bound, by reason of under accounting.
3457 *
3458 * Worse, since the numbers are provided per CPU, they are sometimes
3459 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3460 * associated with any one particular CPU, it can wake to another CPU than it
3461 * blocked on. This means the per CPU IO-wait number is meaningless.
3462 *
3463 * Task CPU affinities can make all that even more 'interesting'.
3464 */
3465
1da177e4
LT
3466unsigned long nr_iowait(void)
3467{
3468 unsigned long i, sum = 0;
483b4ee6 3469
0a945022 3470 for_each_possible_cpu(i)
145d952a 3471 sum += nr_iowait_cpu(i);
46cb4b7c 3472
1da177e4
LT
3473 return sum;
3474}
483b4ee6 3475
dd41f596 3476#ifdef CONFIG_SMP
8a0be9ef 3477
46cb4b7c 3478/*
38022906
PZ
3479 * sched_exec - execve() is a valuable balancing opportunity, because at
3480 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3481 */
38022906 3482void sched_exec(void)
46cb4b7c 3483{
38022906 3484 struct task_struct *p = current;
1da177e4 3485 unsigned long flags;
0017d735 3486 int dest_cpu;
46cb4b7c 3487
8f42ced9 3488 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3489 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3490 if (dest_cpu == smp_processor_id())
3491 goto unlock;
38022906 3492
8f42ced9 3493 if (likely(cpu_active(dest_cpu))) {
969c7921 3494 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3495
8f42ced9
PZ
3496 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3497 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3498 return;
3499 }
0017d735 3500unlock:
8f42ced9 3501 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3502}
dd41f596 3503
1da177e4
LT
3504#endif
3505
1da177e4 3506DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3507DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3508
3509EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3510EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3511
6075620b
GG
3512/*
3513 * The function fair_sched_class.update_curr accesses the struct curr
3514 * and its field curr->exec_start; when called from task_sched_runtime(),
3515 * we observe a high rate of cache misses in practice.
3516 * Prefetching this data results in improved performance.
3517 */
3518static inline void prefetch_curr_exec_start(struct task_struct *p)
3519{
3520#ifdef CONFIG_FAIR_GROUP_SCHED
3521 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3522#else
3523 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3524#endif
3525 prefetch(curr);
3526 prefetch(&curr->exec_start);
3527}
3528
c5f8d995
HS
3529/*
3530 * Return accounted runtime for the task.
3531 * In case the task is currently running, return the runtime plus current's
3532 * pending runtime that have not been accounted yet.
3533 */
3534unsigned long long task_sched_runtime(struct task_struct *p)
3535{
eb580751 3536 struct rq_flags rf;
c5f8d995 3537 struct rq *rq;
6e998916 3538 u64 ns;
c5f8d995 3539
911b2898
PZ
3540#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3541 /*
97fb7a0a 3542 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3543 * So we have a optimization chance when the task's delta_exec is 0.
3544 * Reading ->on_cpu is racy, but this is ok.
3545 *
d1ccc66d
IM
3546 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3547 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3548 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3549 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3550 * been accounted, so we're correct here as well.
911b2898 3551 */
da0c1e65 3552 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3553 return p->se.sum_exec_runtime;
3554#endif
3555
eb580751 3556 rq = task_rq_lock(p, &rf);
6e998916
SG
3557 /*
3558 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3559 * project cycles that may never be accounted to this
3560 * thread, breaking clock_gettime().
3561 */
3562 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3563 prefetch_curr_exec_start(p);
6e998916
SG
3564 update_rq_clock(rq);
3565 p->sched_class->update_curr(rq);
3566 }
3567 ns = p->se.sum_exec_runtime;
eb580751 3568 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3569
3570 return ns;
3571}
48f24c4d 3572
14533a16
IM
3573DEFINE_PER_CPU(unsigned long, thermal_pressure);
3574
3575void arch_set_thermal_pressure(struct cpumask *cpus,
3576 unsigned long th_pressure)
3577{
3578 int cpu;
3579
3580 for_each_cpu(cpu, cpus)
3581 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3582}
3583
7835b98b
CL
3584/*
3585 * This function gets called by the timer code, with HZ frequency.
3586 * We call it with interrupts disabled.
7835b98b
CL
3587 */
3588void scheduler_tick(void)
3589{
7835b98b
CL
3590 int cpu = smp_processor_id();
3591 struct rq *rq = cpu_rq(cpu);
dd41f596 3592 struct task_struct *curr = rq->curr;
8a8c69c3 3593 struct rq_flags rf;
b4eccf5f 3594 unsigned long thermal_pressure;
3e51f33f 3595
1567c3e3 3596 arch_scale_freq_tick();
3e51f33f 3597 sched_clock_tick();
dd41f596 3598
8a8c69c3
PZ
3599 rq_lock(rq, &rf);
3600
3e51f33f 3601 update_rq_clock(rq);
b4eccf5f 3602 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3603 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3604 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3605 calc_global_load_tick(rq);
eb414681 3606 psi_task_tick(rq);
8a8c69c3
PZ
3607
3608 rq_unlock(rq, &rf);
7835b98b 3609
e9d2b064 3610 perf_event_task_tick();
e220d2dc 3611
e418e1c2 3612#ifdef CONFIG_SMP
6eb57e0d 3613 rq->idle_balance = idle_cpu(cpu);
7caff66f 3614 trigger_load_balance(rq);
e418e1c2 3615#endif
1da177e4
LT
3616}
3617
265f22a9 3618#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3619
3620struct tick_work {
3621 int cpu;
b55bd585 3622 atomic_t state;
d84b3131
FW
3623 struct delayed_work work;
3624};
b55bd585
PM
3625/* Values for ->state, see diagram below. */
3626#define TICK_SCHED_REMOTE_OFFLINE 0
3627#define TICK_SCHED_REMOTE_OFFLINING 1
3628#define TICK_SCHED_REMOTE_RUNNING 2
3629
3630/*
3631 * State diagram for ->state:
3632 *
3633 *
3634 * TICK_SCHED_REMOTE_OFFLINE
3635 * | ^
3636 * | |
3637 * | | sched_tick_remote()
3638 * | |
3639 * | |
3640 * +--TICK_SCHED_REMOTE_OFFLINING
3641 * | ^
3642 * | |
3643 * sched_tick_start() | | sched_tick_stop()
3644 * | |
3645 * V |
3646 * TICK_SCHED_REMOTE_RUNNING
3647 *
3648 *
3649 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3650 * and sched_tick_start() are happy to leave the state in RUNNING.
3651 */
d84b3131
FW
3652
3653static struct tick_work __percpu *tick_work_cpu;
3654
3655static void sched_tick_remote(struct work_struct *work)
3656{
3657 struct delayed_work *dwork = to_delayed_work(work);
3658 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3659 int cpu = twork->cpu;
3660 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3661 struct task_struct *curr;
d84b3131 3662 struct rq_flags rf;
d9c0ffca 3663 u64 delta;
b55bd585 3664 int os;
d84b3131
FW
3665
3666 /*
3667 * Handle the tick only if it appears the remote CPU is running in full
3668 * dynticks mode. The check is racy by nature, but missing a tick or
3669 * having one too much is no big deal because the scheduler tick updates
3670 * statistics and checks timeslices in a time-independent way, regardless
3671 * of when exactly it is running.
3672 */
488603b8 3673 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 3674 goto out_requeue;
d84b3131 3675
d9c0ffca
FW
3676 rq_lock_irq(rq, &rf);
3677 curr = rq->curr;
488603b8 3678 if (cpu_is_offline(cpu))
d9c0ffca 3679 goto out_unlock;
d84b3131 3680
d9c0ffca 3681 update_rq_clock(rq);
d9c0ffca 3682
488603b8
SW
3683 if (!is_idle_task(curr)) {
3684 /*
3685 * Make sure the next tick runs within a reasonable
3686 * amount of time.
3687 */
3688 delta = rq_clock_task(rq) - curr->se.exec_start;
3689 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3690 }
d9c0ffca
FW
3691 curr->sched_class->task_tick(rq, curr, 0);
3692
ebc0f83c 3693 calc_load_nohz_remote(rq);
d9c0ffca
FW
3694out_unlock:
3695 rq_unlock_irq(rq, &rf);
d9c0ffca 3696out_requeue:
ebc0f83c 3697
d84b3131
FW
3698 /*
3699 * Run the remote tick once per second (1Hz). This arbitrary
3700 * frequency is large enough to avoid overload but short enough
b55bd585
PM
3701 * to keep scheduler internal stats reasonably up to date. But
3702 * first update state to reflect hotplug activity if required.
d84b3131 3703 */
b55bd585
PM
3704 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3705 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3706 if (os == TICK_SCHED_REMOTE_RUNNING)
3707 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3708}
3709
3710static void sched_tick_start(int cpu)
3711{
b55bd585 3712 int os;
d84b3131
FW
3713 struct tick_work *twork;
3714
3715 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3716 return;
3717
3718 WARN_ON_ONCE(!tick_work_cpu);
3719
3720 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3721 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3722 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3723 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3724 twork->cpu = cpu;
3725 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3726 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3727 }
d84b3131
FW
3728}
3729
3730#ifdef CONFIG_HOTPLUG_CPU
3731static void sched_tick_stop(int cpu)
3732{
3733 struct tick_work *twork;
b55bd585 3734 int os;
d84b3131
FW
3735
3736 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3737 return;
3738
3739 WARN_ON_ONCE(!tick_work_cpu);
3740
3741 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3742 /* There cannot be competing actions, but don't rely on stop-machine. */
3743 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3744 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3745 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3746}
3747#endif /* CONFIG_HOTPLUG_CPU */
3748
3749int __init sched_tick_offload_init(void)
3750{
3751 tick_work_cpu = alloc_percpu(struct tick_work);
3752 BUG_ON(!tick_work_cpu);
d84b3131
FW
3753 return 0;
3754}
3755
3756#else /* !CONFIG_NO_HZ_FULL */
3757static inline void sched_tick_start(int cpu) { }
3758static inline void sched_tick_stop(int cpu) { }
265f22a9 3759#endif
1da177e4 3760
c1a280b6 3761#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3762 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3763/*
3764 * If the value passed in is equal to the current preempt count
3765 * then we just disabled preemption. Start timing the latency.
3766 */
3767static inline void preempt_latency_start(int val)
3768{
3769 if (preempt_count() == val) {
3770 unsigned long ip = get_lock_parent_ip();
3771#ifdef CONFIG_DEBUG_PREEMPT
3772 current->preempt_disable_ip = ip;
3773#endif
3774 trace_preempt_off(CALLER_ADDR0, ip);
3775 }
3776}
7e49fcce 3777
edafe3a5 3778void preempt_count_add(int val)
1da177e4 3779{
6cd8a4bb 3780#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3781 /*
3782 * Underflow?
3783 */
9a11b49a
IM
3784 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3785 return;
6cd8a4bb 3786#endif
bdb43806 3787 __preempt_count_add(val);
6cd8a4bb 3788#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3789 /*
3790 * Spinlock count overflowing soon?
3791 */
33859f7f
MOS
3792 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3793 PREEMPT_MASK - 10);
6cd8a4bb 3794#endif
47252cfb 3795 preempt_latency_start(val);
1da177e4 3796}
bdb43806 3797EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3798NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3799
47252cfb
SR
3800/*
3801 * If the value passed in equals to the current preempt count
3802 * then we just enabled preemption. Stop timing the latency.
3803 */
3804static inline void preempt_latency_stop(int val)
3805{
3806 if (preempt_count() == val)
3807 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3808}
3809
edafe3a5 3810void preempt_count_sub(int val)
1da177e4 3811{
6cd8a4bb 3812#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3813 /*
3814 * Underflow?
3815 */
01e3eb82 3816 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3817 return;
1da177e4
LT
3818 /*
3819 * Is the spinlock portion underflowing?
3820 */
9a11b49a
IM
3821 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3822 !(preempt_count() & PREEMPT_MASK)))
3823 return;
6cd8a4bb 3824#endif
9a11b49a 3825
47252cfb 3826 preempt_latency_stop(val);
bdb43806 3827 __preempt_count_sub(val);
1da177e4 3828}
bdb43806 3829EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3830NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3831
47252cfb
SR
3832#else
3833static inline void preempt_latency_start(int val) { }
3834static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3835#endif
3836
59ddbcb2
IM
3837static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3838{
3839#ifdef CONFIG_DEBUG_PREEMPT
3840 return p->preempt_disable_ip;
3841#else
3842 return 0;
3843#endif
3844}
3845
1da177e4 3846/*
dd41f596 3847 * Print scheduling while atomic bug:
1da177e4 3848 */
dd41f596 3849static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3850{
d1c6d149
VN
3851 /* Save this before calling printk(), since that will clobber it */
3852 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3853
664dfa65
DJ
3854 if (oops_in_progress)
3855 return;
3856
3df0fc5b
PZ
3857 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3858 prev->comm, prev->pid, preempt_count());
838225b4 3859
dd41f596 3860 debug_show_held_locks(prev);
e21f5b15 3861 print_modules();
dd41f596
IM
3862 if (irqs_disabled())
3863 print_irqtrace_events(prev);
d1c6d149
VN
3864 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3865 && in_atomic_preempt_off()) {
8f47b187 3866 pr_err("Preemption disabled at:");
d1c6d149 3867 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3868 pr_cont("\n");
3869 }
748c7201
DBO
3870 if (panic_on_warn)
3871 panic("scheduling while atomic\n");
3872
6135fc1e 3873 dump_stack();
373d4d09 3874 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3875}
1da177e4 3876
dd41f596
IM
3877/*
3878 * Various schedule()-time debugging checks and statistics:
3879 */
312364f3 3880static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 3881{
0d9e2632 3882#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3883 if (task_stack_end_corrupted(prev))
3884 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3885#endif
b99def8b 3886
312364f3
DV
3887#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3888 if (!preempt && prev->state && prev->non_block_count) {
3889 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3890 prev->comm, prev->pid, prev->non_block_count);
3891 dump_stack();
3892 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3893 }
3894#endif
3895
1dc0fffc 3896 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3897 __schedule_bug(prev);
1dc0fffc
PZ
3898 preempt_count_set(PREEMPT_DISABLED);
3899 }
b3fbab05 3900 rcu_sleep_check();
dd41f596 3901
1da177e4
LT
3902 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3903
ae92882e 3904 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3905}
3906
3907/*
3908 * Pick up the highest-prio task:
3909 */
3910static inline struct task_struct *
d8ac8971 3911pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3912{
49ee5768 3913 const struct sched_class *class;
dd41f596 3914 struct task_struct *p;
1da177e4
LT
3915
3916 /*
0ba87bb2
PZ
3917 * Optimization: we know that if all tasks are in the fair class we can
3918 * call that function directly, but only if the @prev task wasn't of a
3919 * higher scheduling class, because otherwise those loose the
3920 * opportunity to pull in more work from other CPUs.
1da177e4 3921 */
0ba87bb2
PZ
3922 if (likely((prev->sched_class == &idle_sched_class ||
3923 prev->sched_class == &fair_sched_class) &&
3924 rq->nr_running == rq->cfs.h_nr_running)) {
3925
5d7d6056 3926 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 3927 if (unlikely(p == RETRY_TASK))
67692435 3928 goto restart;
6ccdc84b 3929
d1ccc66d 3930 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 3931 if (!p) {
f488e105 3932 put_prev_task(rq, prev);
98c2f700 3933 p = pick_next_task_idle(rq);
f488e105 3934 }
6ccdc84b
PZ
3935
3936 return p;
1da177e4
LT
3937 }
3938
67692435 3939restart:
6e2df058 3940#ifdef CONFIG_SMP
67692435 3941 /*
6e2df058
PZ
3942 * We must do the balancing pass before put_next_task(), such
3943 * that when we release the rq->lock the task is in the same
3944 * state as before we took rq->lock.
3945 *
3946 * We can terminate the balance pass as soon as we know there is
3947 * a runnable task of @class priority or higher.
67692435 3948 */
6e2df058
PZ
3949 for_class_range(class, prev->sched_class, &idle_sched_class) {
3950 if (class->balance(rq, prev, rf))
3951 break;
3952 }
3953#endif
3954
3955 put_prev_task(rq, prev);
67692435 3956
34f971f6 3957 for_each_class(class) {
98c2f700 3958 p = class->pick_next_task(rq);
67692435 3959 if (p)
dd41f596 3960 return p;
dd41f596 3961 }
34f971f6 3962
d1ccc66d
IM
3963 /* The idle class should always have a runnable task: */
3964 BUG();
dd41f596 3965}
1da177e4 3966
dd41f596 3967/*
c259e01a 3968 * __schedule() is the main scheduler function.
edde96ea
PE
3969 *
3970 * The main means of driving the scheduler and thus entering this function are:
3971 *
3972 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3973 *
3974 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3975 * paths. For example, see arch/x86/entry_64.S.
3976 *
3977 * To drive preemption between tasks, the scheduler sets the flag in timer
3978 * interrupt handler scheduler_tick().
3979 *
3980 * 3. Wakeups don't really cause entry into schedule(). They add a
3981 * task to the run-queue and that's it.
3982 *
3983 * Now, if the new task added to the run-queue preempts the current
3984 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3985 * called on the nearest possible occasion:
3986 *
c1a280b6 3987 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
3988 *
3989 * - in syscall or exception context, at the next outmost
3990 * preempt_enable(). (this might be as soon as the wake_up()'s
3991 * spin_unlock()!)
3992 *
3993 * - in IRQ context, return from interrupt-handler to
3994 * preemptible context
3995 *
c1a280b6 3996 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
3997 * then at the next:
3998 *
3999 * - cond_resched() call
4000 * - explicit schedule() call
4001 * - return from syscall or exception to user-space
4002 * - return from interrupt-handler to user-space
bfd9b2b5 4003 *
b30f0e3f 4004 * WARNING: must be called with preemption disabled!
dd41f596 4005 */
499d7955 4006static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4007{
4008 struct task_struct *prev, *next;
67ca7bde 4009 unsigned long *switch_count;
d8ac8971 4010 struct rq_flags rf;
dd41f596 4011 struct rq *rq;
31656519 4012 int cpu;
dd41f596 4013
dd41f596
IM
4014 cpu = smp_processor_id();
4015 rq = cpu_rq(cpu);
dd41f596 4016 prev = rq->curr;
dd41f596 4017
312364f3 4018 schedule_debug(prev, preempt);
1da177e4 4019
31656519 4020 if (sched_feat(HRTICK))
f333fdc9 4021 hrtick_clear(rq);
8f4d37ec 4022
46a5d164 4023 local_irq_disable();
bcbfdd01 4024 rcu_note_context_switch(preempt);
46a5d164 4025
e0acd0a6
ON
4026 /*
4027 * Make sure that signal_pending_state()->signal_pending() below
4028 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4029 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
4030 *
4031 * The membarrier system call requires a full memory barrier
4032 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4033 */
8a8c69c3 4034 rq_lock(rq, &rf);
d89e588c 4035 smp_mb__after_spinlock();
1da177e4 4036
d1ccc66d
IM
4037 /* Promote REQ to ACT */
4038 rq->clock_update_flags <<= 1;
bce4dc80 4039 update_rq_clock(rq);
9edfbfed 4040
246d86b5 4041 switch_count = &prev->nivcsw;
fc13aeba 4042 if (!preempt && prev->state) {
34ec35ad 4043 if (signal_pending_state(prev->state, prev)) {
1da177e4 4044 prev->state = TASK_RUNNING;
21aa9af0 4045 } else {
bce4dc80 4046 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4047
e33a9bba
TH
4048 if (prev->in_iowait) {
4049 atomic_inc(&rq->nr_iowait);
4050 delayacct_blkio_start();
4051 }
21aa9af0 4052 }
dd41f596 4053 switch_count = &prev->nvcsw;
1da177e4
LT
4054 }
4055
d8ac8971 4056 next = pick_next_task(rq, prev, &rf);
f26f9aff 4057 clear_tsk_need_resched(prev);
f27dde8d 4058 clear_preempt_need_resched();
1da177e4 4059
1da177e4 4060 if (likely(prev != next)) {
1da177e4 4061 rq->nr_switches++;
5311a98f
EB
4062 /*
4063 * RCU users of rcu_dereference(rq->curr) may not see
4064 * changes to task_struct made by pick_next_task().
4065 */
4066 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4067 /*
4068 * The membarrier system call requires each architecture
4069 * to have a full memory barrier after updating
306e0604
MD
4070 * rq->curr, before returning to user-space.
4071 *
4072 * Here are the schemes providing that barrier on the
4073 * various architectures:
4074 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4075 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4076 * - finish_lock_switch() for weakly-ordered
4077 * architectures where spin_unlock is a full barrier,
4078 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4079 * is a RELEASE barrier),
22e4ebb9 4080 */
1da177e4
LT
4081 ++*switch_count;
4082
b05e75d6
JW
4083 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4084
c73464b1 4085 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4086
4087 /* Also unlocks the rq: */
4088 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4089 } else {
cb42c9a3 4090 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4091 rq_unlock_irq(rq, &rf);
cbce1a68 4092 }
1da177e4 4093
e3fca9e7 4094 balance_callback(rq);
1da177e4 4095}
c259e01a 4096
9af6528e
PZ
4097void __noreturn do_task_dead(void)
4098{
d1ccc66d 4099 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4100 set_special_state(TASK_DEAD);
d1ccc66d
IM
4101
4102 /* Tell freezer to ignore us: */
4103 current->flags |= PF_NOFREEZE;
4104
9af6528e
PZ
4105 __schedule(false);
4106 BUG();
d1ccc66d
IM
4107
4108 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4109 for (;;)
d1ccc66d 4110 cpu_relax();
9af6528e
PZ
4111}
4112
9c40cef2
TG
4113static inline void sched_submit_work(struct task_struct *tsk)
4114{
b0fdc013 4115 if (!tsk->state)
9c40cef2 4116 return;
6d25be57
TG
4117
4118 /*
4119 * If a worker went to sleep, notify and ask workqueue whether
4120 * it wants to wake up a task to maintain concurrency.
4121 * As this function is called inside the schedule() context,
4122 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4123 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4124 * requires it.
6d25be57 4125 */
771b53d0 4126 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4127 preempt_disable();
771b53d0
JA
4128 if (tsk->flags & PF_WQ_WORKER)
4129 wq_worker_sleeping(tsk);
4130 else
4131 io_wq_worker_sleeping(tsk);
6d25be57
TG
4132 preempt_enable_no_resched();
4133 }
4134
b0fdc013
SAS
4135 if (tsk_is_pi_blocked(tsk))
4136 return;
4137
9c40cef2
TG
4138 /*
4139 * If we are going to sleep and we have plugged IO queued,
4140 * make sure to submit it to avoid deadlocks.
4141 */
4142 if (blk_needs_flush_plug(tsk))
4143 blk_schedule_flush_plug(tsk);
4144}
4145
6d25be57
TG
4146static void sched_update_worker(struct task_struct *tsk)
4147{
771b53d0
JA
4148 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4149 if (tsk->flags & PF_WQ_WORKER)
4150 wq_worker_running(tsk);
4151 else
4152 io_wq_worker_running(tsk);
4153 }
6d25be57
TG
4154}
4155
722a9f92 4156asmlinkage __visible void __sched schedule(void)
c259e01a 4157{
9c40cef2
TG
4158 struct task_struct *tsk = current;
4159
4160 sched_submit_work(tsk);
bfd9b2b5 4161 do {
b30f0e3f 4162 preempt_disable();
fc13aeba 4163 __schedule(false);
b30f0e3f 4164 sched_preempt_enable_no_resched();
bfd9b2b5 4165 } while (need_resched());
6d25be57 4166 sched_update_worker(tsk);
c259e01a 4167}
1da177e4
LT
4168EXPORT_SYMBOL(schedule);
4169
8663effb
SRV
4170/*
4171 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4172 * state (have scheduled out non-voluntarily) by making sure that all
4173 * tasks have either left the run queue or have gone into user space.
4174 * As idle tasks do not do either, they must not ever be preempted
4175 * (schedule out non-voluntarily).
4176 *
4177 * schedule_idle() is similar to schedule_preempt_disable() except that it
4178 * never enables preemption because it does not call sched_submit_work().
4179 */
4180void __sched schedule_idle(void)
4181{
4182 /*
4183 * As this skips calling sched_submit_work(), which the idle task does
4184 * regardless because that function is a nop when the task is in a
4185 * TASK_RUNNING state, make sure this isn't used someplace that the
4186 * current task can be in any other state. Note, idle is always in the
4187 * TASK_RUNNING state.
4188 */
4189 WARN_ON_ONCE(current->state);
4190 do {
4191 __schedule(false);
4192 } while (need_resched());
4193}
4194
91d1aa43 4195#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4196asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4197{
4198 /*
4199 * If we come here after a random call to set_need_resched(),
4200 * or we have been woken up remotely but the IPI has not yet arrived,
4201 * we haven't yet exited the RCU idle mode. Do it here manually until
4202 * we find a better solution.
7cc78f8f
AL
4203 *
4204 * NB: There are buggy callers of this function. Ideally we
c467ea76 4205 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4206 * too frequently to make sense yet.
20ab65e3 4207 */
7cc78f8f 4208 enum ctx_state prev_state = exception_enter();
20ab65e3 4209 schedule();
7cc78f8f 4210 exception_exit(prev_state);
20ab65e3
FW
4211}
4212#endif
4213
c5491ea7
TG
4214/**
4215 * schedule_preempt_disabled - called with preemption disabled
4216 *
4217 * Returns with preemption disabled. Note: preempt_count must be 1
4218 */
4219void __sched schedule_preempt_disabled(void)
4220{
ba74c144 4221 sched_preempt_enable_no_resched();
c5491ea7
TG
4222 schedule();
4223 preempt_disable();
4224}
4225
06b1f808 4226static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4227{
4228 do {
47252cfb
SR
4229 /*
4230 * Because the function tracer can trace preempt_count_sub()
4231 * and it also uses preempt_enable/disable_notrace(), if
4232 * NEED_RESCHED is set, the preempt_enable_notrace() called
4233 * by the function tracer will call this function again and
4234 * cause infinite recursion.
4235 *
4236 * Preemption must be disabled here before the function
4237 * tracer can trace. Break up preempt_disable() into two
4238 * calls. One to disable preemption without fear of being
4239 * traced. The other to still record the preemption latency,
4240 * which can also be traced by the function tracer.
4241 */
499d7955 4242 preempt_disable_notrace();
47252cfb 4243 preempt_latency_start(1);
fc13aeba 4244 __schedule(true);
47252cfb 4245 preempt_latency_stop(1);
499d7955 4246 preempt_enable_no_resched_notrace();
a18b5d01
FW
4247
4248 /*
4249 * Check again in case we missed a preemption opportunity
4250 * between schedule and now.
4251 */
a18b5d01
FW
4252 } while (need_resched());
4253}
4254
c1a280b6 4255#ifdef CONFIG_PREEMPTION
1da177e4 4256/*
a49b4f40
VS
4257 * This is the entry point to schedule() from in-kernel preemption
4258 * off of preempt_enable.
1da177e4 4259 */
722a9f92 4260asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4261{
1da177e4
LT
4262 /*
4263 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4264 * we do not want to preempt the current task. Just return..
1da177e4 4265 */
fbb00b56 4266 if (likely(!preemptible()))
1da177e4
LT
4267 return;
4268
a18b5d01 4269 preempt_schedule_common();
1da177e4 4270}
376e2424 4271NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4272EXPORT_SYMBOL(preempt_schedule);
009f60e2 4273
009f60e2 4274/**
4eaca0a8 4275 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4276 *
4277 * The tracing infrastructure uses preempt_enable_notrace to prevent
4278 * recursion and tracing preempt enabling caused by the tracing
4279 * infrastructure itself. But as tracing can happen in areas coming
4280 * from userspace or just about to enter userspace, a preempt enable
4281 * can occur before user_exit() is called. This will cause the scheduler
4282 * to be called when the system is still in usermode.
4283 *
4284 * To prevent this, the preempt_enable_notrace will use this function
4285 * instead of preempt_schedule() to exit user context if needed before
4286 * calling the scheduler.
4287 */
4eaca0a8 4288asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4289{
4290 enum ctx_state prev_ctx;
4291
4292 if (likely(!preemptible()))
4293 return;
4294
4295 do {
47252cfb
SR
4296 /*
4297 * Because the function tracer can trace preempt_count_sub()
4298 * and it also uses preempt_enable/disable_notrace(), if
4299 * NEED_RESCHED is set, the preempt_enable_notrace() called
4300 * by the function tracer will call this function again and
4301 * cause infinite recursion.
4302 *
4303 * Preemption must be disabled here before the function
4304 * tracer can trace. Break up preempt_disable() into two
4305 * calls. One to disable preemption without fear of being
4306 * traced. The other to still record the preemption latency,
4307 * which can also be traced by the function tracer.
4308 */
3d8f74dd 4309 preempt_disable_notrace();
47252cfb 4310 preempt_latency_start(1);
009f60e2
ON
4311 /*
4312 * Needs preempt disabled in case user_exit() is traced
4313 * and the tracer calls preempt_enable_notrace() causing
4314 * an infinite recursion.
4315 */
4316 prev_ctx = exception_enter();
fc13aeba 4317 __schedule(true);
009f60e2
ON
4318 exception_exit(prev_ctx);
4319
47252cfb 4320 preempt_latency_stop(1);
3d8f74dd 4321 preempt_enable_no_resched_notrace();
009f60e2
ON
4322 } while (need_resched());
4323}
4eaca0a8 4324EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4325
c1a280b6 4326#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4327
4328/*
a49b4f40 4329 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4330 * off of irq context.
4331 * Note, that this is called and return with irqs disabled. This will
4332 * protect us against recursive calling from irq.
4333 */
722a9f92 4334asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4335{
b22366cd 4336 enum ctx_state prev_state;
6478d880 4337
2ed6e34f 4338 /* Catch callers which need to be fixed */
f27dde8d 4339 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4340
b22366cd
FW
4341 prev_state = exception_enter();
4342
3a5c359a 4343 do {
3d8f74dd 4344 preempt_disable();
3a5c359a 4345 local_irq_enable();
fc13aeba 4346 __schedule(true);
3a5c359a 4347 local_irq_disable();
3d8f74dd 4348 sched_preempt_enable_no_resched();
5ed0cec0 4349 } while (need_resched());
b22366cd
FW
4350
4351 exception_exit(prev_state);
1da177e4
LT
4352}
4353
ac6424b9 4354int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4355 void *key)
1da177e4 4356{
63859d4f 4357 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4358}
1da177e4
LT
4359EXPORT_SYMBOL(default_wake_function);
4360
b29739f9
IM
4361#ifdef CONFIG_RT_MUTEXES
4362
acd58620
PZ
4363static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4364{
4365 if (pi_task)
4366 prio = min(prio, pi_task->prio);
4367
4368 return prio;
4369}
4370
4371static inline int rt_effective_prio(struct task_struct *p, int prio)
4372{
4373 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4374
4375 return __rt_effective_prio(pi_task, prio);
4376}
4377
b29739f9
IM
4378/*
4379 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4380 * @p: task to boost
4381 * @pi_task: donor task
b29739f9
IM
4382 *
4383 * This function changes the 'effective' priority of a task. It does
4384 * not touch ->normal_prio like __setscheduler().
4385 *
c365c292
TG
4386 * Used by the rt_mutex code to implement priority inheritance
4387 * logic. Call site only calls if the priority of the task changed.
b29739f9 4388 */
acd58620 4389void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4390{
acd58620 4391 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4392 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4393 const struct sched_class *prev_class;
eb580751
PZ
4394 struct rq_flags rf;
4395 struct rq *rq;
b29739f9 4396
acd58620
PZ
4397 /* XXX used to be waiter->prio, not waiter->task->prio */
4398 prio = __rt_effective_prio(pi_task, p->normal_prio);
4399
4400 /*
4401 * If nothing changed; bail early.
4402 */
4403 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4404 return;
b29739f9 4405
eb580751 4406 rq = __task_rq_lock(p, &rf);
80f5c1b8 4407 update_rq_clock(rq);
acd58620
PZ
4408 /*
4409 * Set under pi_lock && rq->lock, such that the value can be used under
4410 * either lock.
4411 *
4412 * Note that there is loads of tricky to make this pointer cache work
4413 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4414 * ensure a task is de-boosted (pi_task is set to NULL) before the
4415 * task is allowed to run again (and can exit). This ensures the pointer
4416 * points to a blocked task -- which guaratees the task is present.
4417 */
4418 p->pi_top_task = pi_task;
4419
4420 /*
4421 * For FIFO/RR we only need to set prio, if that matches we're done.
4422 */
4423 if (prio == p->prio && !dl_prio(prio))
4424 goto out_unlock;
b29739f9 4425
1c4dd99b
TG
4426 /*
4427 * Idle task boosting is a nono in general. There is one
4428 * exception, when PREEMPT_RT and NOHZ is active:
4429 *
4430 * The idle task calls get_next_timer_interrupt() and holds
4431 * the timer wheel base->lock on the CPU and another CPU wants
4432 * to access the timer (probably to cancel it). We can safely
4433 * ignore the boosting request, as the idle CPU runs this code
4434 * with interrupts disabled and will complete the lock
4435 * protected section without being interrupted. So there is no
4436 * real need to boost.
4437 */
4438 if (unlikely(p == rq->idle)) {
4439 WARN_ON(p != rq->curr);
4440 WARN_ON(p->pi_blocked_on);
4441 goto out_unlock;
4442 }
4443
b91473ff 4444 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4445 oldprio = p->prio;
ff77e468
PZ
4446
4447 if (oldprio == prio)
4448 queue_flag &= ~DEQUEUE_MOVE;
4449
83ab0aa0 4450 prev_class = p->sched_class;
da0c1e65 4451 queued = task_on_rq_queued(p);
051a1d1a 4452 running = task_current(rq, p);
da0c1e65 4453 if (queued)
ff77e468 4454 dequeue_task(rq, p, queue_flag);
0e1f3483 4455 if (running)
f3cd1c4e 4456 put_prev_task(rq, p);
dd41f596 4457
2d3d891d
DF
4458 /*
4459 * Boosting condition are:
4460 * 1. -rt task is running and holds mutex A
4461 * --> -dl task blocks on mutex A
4462 *
4463 * 2. -dl task is running and holds mutex A
4464 * --> -dl task blocks on mutex A and could preempt the
4465 * running task
4466 */
4467 if (dl_prio(prio)) {
466af29b
ON
4468 if (!dl_prio(p->normal_prio) ||
4469 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4470 p->dl.dl_boosted = 1;
ff77e468 4471 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4472 } else
4473 p->dl.dl_boosted = 0;
aab03e05 4474 p->sched_class = &dl_sched_class;
2d3d891d
DF
4475 } else if (rt_prio(prio)) {
4476 if (dl_prio(oldprio))
4477 p->dl.dl_boosted = 0;
4478 if (oldprio < prio)
ff77e468 4479 queue_flag |= ENQUEUE_HEAD;
dd41f596 4480 p->sched_class = &rt_sched_class;
2d3d891d
DF
4481 } else {
4482 if (dl_prio(oldprio))
4483 p->dl.dl_boosted = 0;
746db944
BS
4484 if (rt_prio(oldprio))
4485 p->rt.timeout = 0;
dd41f596 4486 p->sched_class = &fair_sched_class;
2d3d891d 4487 }
dd41f596 4488
b29739f9
IM
4489 p->prio = prio;
4490
da0c1e65 4491 if (queued)
ff77e468 4492 enqueue_task(rq, p, queue_flag);
a399d233 4493 if (running)
03b7fad1 4494 set_next_task(rq, p);
cb469845 4495
da7a735e 4496 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4497out_unlock:
d1ccc66d
IM
4498 /* Avoid rq from going away on us: */
4499 preempt_disable();
eb580751 4500 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4501
4502 balance_callback(rq);
4503 preempt_enable();
b29739f9 4504}
acd58620
PZ
4505#else
4506static inline int rt_effective_prio(struct task_struct *p, int prio)
4507{
4508 return prio;
4509}
b29739f9 4510#endif
d50dde5a 4511
36c8b586 4512void set_user_nice(struct task_struct *p, long nice)
1da177e4 4513{
49bd21ef 4514 bool queued, running;
53a23364 4515 int old_prio;
eb580751 4516 struct rq_flags rf;
70b97a7f 4517 struct rq *rq;
1da177e4 4518
75e45d51 4519 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4520 return;
4521 /*
4522 * We have to be careful, if called from sys_setpriority(),
4523 * the task might be in the middle of scheduling on another CPU.
4524 */
eb580751 4525 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4526 update_rq_clock(rq);
4527
1da177e4
LT
4528 /*
4529 * The RT priorities are set via sched_setscheduler(), but we still
4530 * allow the 'normal' nice value to be set - but as expected
4531 * it wont have any effect on scheduling until the task is
aab03e05 4532 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4533 */
aab03e05 4534 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4535 p->static_prio = NICE_TO_PRIO(nice);
4536 goto out_unlock;
4537 }
da0c1e65 4538 queued = task_on_rq_queued(p);
49bd21ef 4539 running = task_current(rq, p);
da0c1e65 4540 if (queued)
7a57f32a 4541 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4542 if (running)
4543 put_prev_task(rq, p);
1da177e4 4544
1da177e4 4545 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4546 set_load_weight(p, true);
b29739f9
IM
4547 old_prio = p->prio;
4548 p->prio = effective_prio(p);
1da177e4 4549
5443a0be 4550 if (queued)
7134b3e9 4551 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4552 if (running)
03b7fad1 4553 set_next_task(rq, p);
5443a0be
FW
4554
4555 /*
4556 * If the task increased its priority or is running and
4557 * lowered its priority, then reschedule its CPU:
4558 */
4559 p->sched_class->prio_changed(rq, p, old_prio);
4560
1da177e4 4561out_unlock:
eb580751 4562 task_rq_unlock(rq, p, &rf);
1da177e4 4563}
1da177e4
LT
4564EXPORT_SYMBOL(set_user_nice);
4565
e43379f1
MM
4566/*
4567 * can_nice - check if a task can reduce its nice value
4568 * @p: task
4569 * @nice: nice value
4570 */
36c8b586 4571int can_nice(const struct task_struct *p, const int nice)
e43379f1 4572{
d1ccc66d 4573 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4574 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4575
78d7d407 4576 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4577 capable(CAP_SYS_NICE));
4578}
4579
1da177e4
LT
4580#ifdef __ARCH_WANT_SYS_NICE
4581
4582/*
4583 * sys_nice - change the priority of the current process.
4584 * @increment: priority increment
4585 *
4586 * sys_setpriority is a more generic, but much slower function that
4587 * does similar things.
4588 */
5add95d4 4589SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4590{
48f24c4d 4591 long nice, retval;
1da177e4
LT
4592
4593 /*
4594 * Setpriority might change our priority at the same moment.
4595 * We don't have to worry. Conceptually one call occurs first
4596 * and we have a single winner.
4597 */
a9467fa3 4598 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4599 nice = task_nice(current) + increment;
1da177e4 4600
a9467fa3 4601 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4602 if (increment < 0 && !can_nice(current, nice))
4603 return -EPERM;
4604
1da177e4
LT
4605 retval = security_task_setnice(current, nice);
4606 if (retval)
4607 return retval;
4608
4609 set_user_nice(current, nice);
4610 return 0;
4611}
4612
4613#endif
4614
4615/**
4616 * task_prio - return the priority value of a given task.
4617 * @p: the task in question.
4618 *
e69f6186 4619 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4620 * RT tasks are offset by -200. Normal tasks are centered
4621 * around 0, value goes from -16 to +15.
4622 */
36c8b586 4623int task_prio(const struct task_struct *p)
1da177e4
LT
4624{
4625 return p->prio - MAX_RT_PRIO;
4626}
4627
1da177e4 4628/**
d1ccc66d 4629 * idle_cpu - is a given CPU idle currently?
1da177e4 4630 * @cpu: the processor in question.
e69f6186
YB
4631 *
4632 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4633 */
4634int idle_cpu(int cpu)
4635{
908a3283
TG
4636 struct rq *rq = cpu_rq(cpu);
4637
4638 if (rq->curr != rq->idle)
4639 return 0;
4640
4641 if (rq->nr_running)
4642 return 0;
4643
4644#ifdef CONFIG_SMP
4645 if (!llist_empty(&rq->wake_list))
4646 return 0;
4647#endif
4648
4649 return 1;
1da177e4
LT
4650}
4651
943d355d
RJ
4652/**
4653 * available_idle_cpu - is a given CPU idle for enqueuing work.
4654 * @cpu: the CPU in question.
4655 *
4656 * Return: 1 if the CPU is currently idle. 0 otherwise.
4657 */
4658int available_idle_cpu(int cpu)
4659{
4660 if (!idle_cpu(cpu))
4661 return 0;
4662
247f2f6f
RJ
4663 if (vcpu_is_preempted(cpu))
4664 return 0;
4665
908a3283 4666 return 1;
1da177e4
LT
4667}
4668
1da177e4 4669/**
d1ccc66d 4670 * idle_task - return the idle task for a given CPU.
1da177e4 4671 * @cpu: the processor in question.
e69f6186 4672 *
d1ccc66d 4673 * Return: The idle task for the CPU @cpu.
1da177e4 4674 */
36c8b586 4675struct task_struct *idle_task(int cpu)
1da177e4
LT
4676{
4677 return cpu_rq(cpu)->idle;
4678}
4679
4680/**
4681 * find_process_by_pid - find a process with a matching PID value.
4682 * @pid: the pid in question.
e69f6186
YB
4683 *
4684 * The task of @pid, if found. %NULL otherwise.
1da177e4 4685 */
a9957449 4686static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4687{
228ebcbe 4688 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4689}
4690
c13db6b1
SR
4691/*
4692 * sched_setparam() passes in -1 for its policy, to let the functions
4693 * it calls know not to change it.
4694 */
4695#define SETPARAM_POLICY -1
4696
c365c292
TG
4697static void __setscheduler_params(struct task_struct *p,
4698 const struct sched_attr *attr)
1da177e4 4699{
d50dde5a
DF
4700 int policy = attr->sched_policy;
4701
c13db6b1 4702 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4703 policy = p->policy;
4704
1da177e4 4705 p->policy = policy;
d50dde5a 4706
aab03e05
DF
4707 if (dl_policy(policy))
4708 __setparam_dl(p, attr);
39fd8fd2 4709 else if (fair_policy(policy))
d50dde5a
DF
4710 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4711
39fd8fd2
PZ
4712 /*
4713 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4714 * !rt_policy. Always setting this ensures that things like
4715 * getparam()/getattr() don't report silly values for !rt tasks.
4716 */
4717 p->rt_priority = attr->sched_priority;
383afd09 4718 p->normal_prio = normal_prio(p);
9059393e 4719 set_load_weight(p, true);
c365c292 4720}
39fd8fd2 4721
c365c292
TG
4722/* Actually do priority change: must hold pi & rq lock. */
4723static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4724 const struct sched_attr *attr, bool keep_boost)
c365c292 4725{
a509a7cd
PB
4726 /*
4727 * If params can't change scheduling class changes aren't allowed
4728 * either.
4729 */
4730 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4731 return;
4732
c365c292 4733 __setscheduler_params(p, attr);
d50dde5a 4734
383afd09 4735 /*
0782e63b
TG
4736 * Keep a potential priority boosting if called from
4737 * sched_setscheduler().
383afd09 4738 */
acd58620 4739 p->prio = normal_prio(p);
0782e63b 4740 if (keep_boost)
acd58620 4741 p->prio = rt_effective_prio(p, p->prio);
383afd09 4742
aab03e05
DF
4743 if (dl_prio(p->prio))
4744 p->sched_class = &dl_sched_class;
4745 else if (rt_prio(p->prio))
ffd44db5
PZ
4746 p->sched_class = &rt_sched_class;
4747 else
4748 p->sched_class = &fair_sched_class;
1da177e4 4749}
aab03e05 4750
c69e8d9c 4751/*
d1ccc66d 4752 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4753 */
4754static bool check_same_owner(struct task_struct *p)
4755{
4756 const struct cred *cred = current_cred(), *pcred;
4757 bool match;
4758
4759 rcu_read_lock();
4760 pcred = __task_cred(p);
9c806aa0
EB
4761 match = (uid_eq(cred->euid, pcred->euid) ||
4762 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4763 rcu_read_unlock();
4764 return match;
4765}
4766
d50dde5a
DF
4767static int __sched_setscheduler(struct task_struct *p,
4768 const struct sched_attr *attr,
dbc7f069 4769 bool user, bool pi)
1da177e4 4770{
383afd09
SR
4771 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4772 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4773 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4774 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4775 const struct sched_class *prev_class;
eb580751 4776 struct rq_flags rf;
ca94c442 4777 int reset_on_fork;
7a57f32a 4778 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4779 struct rq *rq;
1da177e4 4780
896bbb25
SRV
4781 /* The pi code expects interrupts enabled */
4782 BUG_ON(pi && in_interrupt());
1da177e4 4783recheck:
d1ccc66d 4784 /* Double check policy once rq lock held: */
ca94c442
LP
4785 if (policy < 0) {
4786 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4787 policy = oldpolicy = p->policy;
ca94c442 4788 } else {
7479f3c9 4789 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4790
20f9cd2a 4791 if (!valid_policy(policy))
ca94c442
LP
4792 return -EINVAL;
4793 }
4794
794a56eb 4795 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4796 return -EINVAL;
4797
1da177e4
LT
4798 /*
4799 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4800 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4801 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4802 */
0bb040a4 4803 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4804 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4805 return -EINVAL;
aab03e05
DF
4806 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4807 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4808 return -EINVAL;
4809
37e4ab3f
OC
4810 /*
4811 * Allow unprivileged RT tasks to decrease priority:
4812 */
961ccddd 4813 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4814 if (fair_policy(policy)) {
d0ea0268 4815 if (attr->sched_nice < task_nice(p) &&
eaad4513 4816 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4817 return -EPERM;
4818 }
4819
e05606d3 4820 if (rt_policy(policy)) {
a44702e8
ON
4821 unsigned long rlim_rtprio =
4822 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4823
d1ccc66d 4824 /* Can't set/change the rt policy: */
8dc3e909
ON
4825 if (policy != p->policy && !rlim_rtprio)
4826 return -EPERM;
4827
d1ccc66d 4828 /* Can't increase priority: */
d50dde5a
DF
4829 if (attr->sched_priority > p->rt_priority &&
4830 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4831 return -EPERM;
4832 }
c02aa73b 4833
d44753b8
JL
4834 /*
4835 * Can't set/change SCHED_DEADLINE policy at all for now
4836 * (safest behavior); in the future we would like to allow
4837 * unprivileged DL tasks to increase their relative deadline
4838 * or reduce their runtime (both ways reducing utilization)
4839 */
4840 if (dl_policy(policy))
4841 return -EPERM;
4842
dd41f596 4843 /*
c02aa73b
DH
4844 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4845 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4846 */
1da1843f 4847 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4848 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4849 return -EPERM;
4850 }
5fe1d75f 4851
d1ccc66d 4852 /* Can't change other user's priorities: */
c69e8d9c 4853 if (!check_same_owner(p))
37e4ab3f 4854 return -EPERM;
ca94c442 4855
d1ccc66d 4856 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4857 if (p->sched_reset_on_fork && !reset_on_fork)
4858 return -EPERM;
37e4ab3f 4859 }
1da177e4 4860
725aad24 4861 if (user) {
794a56eb
JL
4862 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4863 return -EINVAL;
4864
b0ae1981 4865 retval = security_task_setscheduler(p);
725aad24
JF
4866 if (retval)
4867 return retval;
4868 }
4869
a509a7cd
PB
4870 /* Update task specific "requested" clamps */
4871 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4872 retval = uclamp_validate(p, attr);
4873 if (retval)
4874 return retval;
4875 }
4876
710da3c8
JL
4877 if (pi)
4878 cpuset_read_lock();
4879
b29739f9 4880 /*
d1ccc66d 4881 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4882 * changing the priority of the task:
0122ec5b 4883 *
25985edc 4884 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4885 * runqueue lock must be held.
4886 */
eb580751 4887 rq = task_rq_lock(p, &rf);
80f5c1b8 4888 update_rq_clock(rq);
dc61b1d6 4889
34f971f6 4890 /*
d1ccc66d 4891 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4892 */
4893 if (p == rq->stop) {
4b211f2b
MP
4894 retval = -EINVAL;
4895 goto unlock;
34f971f6
PZ
4896 }
4897
a51e9198 4898 /*
d6b1e911
TG
4899 * If not changing anything there's no need to proceed further,
4900 * but store a possible modification of reset_on_fork.
a51e9198 4901 */
d50dde5a 4902 if (unlikely(policy == p->policy)) {
d0ea0268 4903 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4904 goto change;
4905 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4906 goto change;
75381608 4907 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4908 goto change;
a509a7cd
PB
4909 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4910 goto change;
d50dde5a 4911
d6b1e911 4912 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4913 retval = 0;
4914 goto unlock;
a51e9198 4915 }
d50dde5a 4916change:
a51e9198 4917
dc61b1d6 4918 if (user) {
332ac17e 4919#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4920 /*
4921 * Do not allow realtime tasks into groups that have no runtime
4922 * assigned.
4923 */
4924 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4925 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4926 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4927 retval = -EPERM;
4928 goto unlock;
dc61b1d6 4929 }
dc61b1d6 4930#endif
332ac17e 4931#ifdef CONFIG_SMP
794a56eb
JL
4932 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4933 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4934 cpumask_t *span = rq->rd->span;
332ac17e
DF
4935
4936 /*
4937 * Don't allow tasks with an affinity mask smaller than
4938 * the entire root_domain to become SCHED_DEADLINE. We
4939 * will also fail if there's no bandwidth available.
4940 */
3bd37062 4941 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4942 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4943 retval = -EPERM;
4944 goto unlock;
332ac17e
DF
4945 }
4946 }
4947#endif
4948 }
dc61b1d6 4949
d1ccc66d 4950 /* Re-check policy now with rq lock held: */
1da177e4
LT
4951 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4952 policy = oldpolicy = -1;
eb580751 4953 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4954 if (pi)
4955 cpuset_read_unlock();
1da177e4
LT
4956 goto recheck;
4957 }
332ac17e
DF
4958
4959 /*
4960 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4961 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4962 * is available.
4963 */
06a76fe0 4964 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4965 retval = -EBUSY;
4966 goto unlock;
332ac17e
DF
4967 }
4968
c365c292
TG
4969 p->sched_reset_on_fork = reset_on_fork;
4970 oldprio = p->prio;
4971
dbc7f069
PZ
4972 if (pi) {
4973 /*
4974 * Take priority boosted tasks into account. If the new
4975 * effective priority is unchanged, we just store the new
4976 * normal parameters and do not touch the scheduler class and
4977 * the runqueue. This will be done when the task deboost
4978 * itself.
4979 */
acd58620 4980 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4981 if (new_effective_prio == oldprio)
4982 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4983 }
4984
da0c1e65 4985 queued = task_on_rq_queued(p);
051a1d1a 4986 running = task_current(rq, p);
da0c1e65 4987 if (queued)
ff77e468 4988 dequeue_task(rq, p, queue_flags);
0e1f3483 4989 if (running)
f3cd1c4e 4990 put_prev_task(rq, p);
f6b53205 4991
83ab0aa0 4992 prev_class = p->sched_class;
a509a7cd 4993
dbc7f069 4994 __setscheduler(rq, p, attr, pi);
a509a7cd 4995 __setscheduler_uclamp(p, attr);
f6b53205 4996
da0c1e65 4997 if (queued) {
81a44c54
TG
4998 /*
4999 * We enqueue to tail when the priority of a task is
5000 * increased (user space view).
5001 */
ff77e468
PZ
5002 if (oldprio < p->prio)
5003 queue_flags |= ENQUEUE_HEAD;
1de64443 5004
ff77e468 5005 enqueue_task(rq, p, queue_flags);
81a44c54 5006 }
a399d233 5007 if (running)
03b7fad1 5008 set_next_task(rq, p);
cb469845 5009
da7a735e 5010 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5011
5012 /* Avoid rq from going away on us: */
5013 preempt_disable();
eb580751 5014 task_rq_unlock(rq, p, &rf);
b29739f9 5015
710da3c8
JL
5016 if (pi) {
5017 cpuset_read_unlock();
dbc7f069 5018 rt_mutex_adjust_pi(p);
710da3c8 5019 }
95e02ca9 5020
d1ccc66d 5021 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5022 balance_callback(rq);
5023 preempt_enable();
95e02ca9 5024
1da177e4 5025 return 0;
4b211f2b
MP
5026
5027unlock:
5028 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5029 if (pi)
5030 cpuset_read_unlock();
4b211f2b 5031 return retval;
1da177e4 5032}
961ccddd 5033
7479f3c9
PZ
5034static int _sched_setscheduler(struct task_struct *p, int policy,
5035 const struct sched_param *param, bool check)
5036{
5037 struct sched_attr attr = {
5038 .sched_policy = policy,
5039 .sched_priority = param->sched_priority,
5040 .sched_nice = PRIO_TO_NICE(p->static_prio),
5041 };
5042
c13db6b1
SR
5043 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5044 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5045 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5046 policy &= ~SCHED_RESET_ON_FORK;
5047 attr.sched_policy = policy;
5048 }
5049
dbc7f069 5050 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5051}
961ccddd
RR
5052/**
5053 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5054 * @p: the task in question.
5055 * @policy: new policy.
5056 * @param: structure containing the new RT priority.
5057 *
e69f6186
YB
5058 * Return: 0 on success. An error code otherwise.
5059 *
961ccddd
RR
5060 * NOTE that the task may be already dead.
5061 */
5062int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5063 const struct sched_param *param)
961ccddd 5064{
7479f3c9 5065 return _sched_setscheduler(p, policy, param, true);
961ccddd 5066}
1da177e4
LT
5067EXPORT_SYMBOL_GPL(sched_setscheduler);
5068
d50dde5a
DF
5069int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5070{
dbc7f069 5071 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
5072}
5073EXPORT_SYMBOL_GPL(sched_setattr);
5074
794a56eb
JL
5075int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5076{
5077 return __sched_setscheduler(p, attr, false, true);
5078}
5079
961ccddd
RR
5080/**
5081 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5082 * @p: the task in question.
5083 * @policy: new policy.
5084 * @param: structure containing the new RT priority.
5085 *
5086 * Just like sched_setscheduler, only don't bother checking if the
5087 * current context has permission. For example, this is needed in
5088 * stop_machine(): we create temporary high priority worker threads,
5089 * but our caller might not have that capability.
e69f6186
YB
5090 *
5091 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5092 */
5093int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5094 const struct sched_param *param)
961ccddd 5095{
7479f3c9 5096 return _sched_setscheduler(p, policy, param, false);
961ccddd 5097}
84778472 5098EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 5099
95cdf3b7
IM
5100static int
5101do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5102{
1da177e4
LT
5103 struct sched_param lparam;
5104 struct task_struct *p;
36c8b586 5105 int retval;
1da177e4
LT
5106
5107 if (!param || pid < 0)
5108 return -EINVAL;
5109 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5110 return -EFAULT;
5fe1d75f
ON
5111
5112 rcu_read_lock();
5113 retval = -ESRCH;
1da177e4 5114 p = find_process_by_pid(pid);
710da3c8
JL
5115 if (likely(p))
5116 get_task_struct(p);
5fe1d75f 5117 rcu_read_unlock();
36c8b586 5118
710da3c8
JL
5119 if (likely(p)) {
5120 retval = sched_setscheduler(p, policy, &lparam);
5121 put_task_struct(p);
5122 }
5123
1da177e4
LT
5124 return retval;
5125}
5126
d50dde5a
DF
5127/*
5128 * Mimics kernel/events/core.c perf_copy_attr().
5129 */
d1ccc66d 5130static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5131{
5132 u32 size;
5133 int ret;
5134
d1ccc66d 5135 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5136 memset(attr, 0, sizeof(*attr));
5137
5138 ret = get_user(size, &uattr->size);
5139 if (ret)
5140 return ret;
5141
d1ccc66d
IM
5142 /* ABI compatibility quirk: */
5143 if (!size)
d50dde5a 5144 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5145 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5146 goto err_size;
5147
dff3a85f
AS
5148 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5149 if (ret) {
5150 if (ret == -E2BIG)
5151 goto err_size;
5152 return ret;
d50dde5a
DF
5153 }
5154
a509a7cd
PB
5155 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5156 size < SCHED_ATTR_SIZE_VER1)
5157 return -EINVAL;
5158
d50dde5a 5159 /*
d1ccc66d 5160 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5161 * to be strict and return an error on out-of-bounds values?
5162 */
75e45d51 5163 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5164
e78c7bca 5165 return 0;
d50dde5a
DF
5166
5167err_size:
5168 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5169 return -E2BIG;
d50dde5a
DF
5170}
5171
1da177e4
LT
5172/**
5173 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5174 * @pid: the pid in question.
5175 * @policy: new policy.
5176 * @param: structure containing the new RT priority.
e69f6186
YB
5177 *
5178 * Return: 0 on success. An error code otherwise.
1da177e4 5179 */
d1ccc66d 5180SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5181{
c21761f1
JB
5182 if (policy < 0)
5183 return -EINVAL;
5184
1da177e4
LT
5185 return do_sched_setscheduler(pid, policy, param);
5186}
5187
5188/**
5189 * sys_sched_setparam - set/change the RT priority of a thread
5190 * @pid: the pid in question.
5191 * @param: structure containing the new RT priority.
e69f6186
YB
5192 *
5193 * Return: 0 on success. An error code otherwise.
1da177e4 5194 */
5add95d4 5195SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5196{
c13db6b1 5197 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5198}
5199
d50dde5a
DF
5200/**
5201 * sys_sched_setattr - same as above, but with extended sched_attr
5202 * @pid: the pid in question.
5778fccf 5203 * @uattr: structure containing the extended parameters.
db66d756 5204 * @flags: for future extension.
d50dde5a 5205 */
6d35ab48
PZ
5206SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5207 unsigned int, flags)
d50dde5a
DF
5208{
5209 struct sched_attr attr;
5210 struct task_struct *p;
5211 int retval;
5212
6d35ab48 5213 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5214 return -EINVAL;
5215
143cf23d
MK
5216 retval = sched_copy_attr(uattr, &attr);
5217 if (retval)
5218 return retval;
d50dde5a 5219
b14ed2c2 5220 if ((int)attr.sched_policy < 0)
dbdb2275 5221 return -EINVAL;
1d6362fa
PB
5222 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5223 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5224
5225 rcu_read_lock();
5226 retval = -ESRCH;
5227 p = find_process_by_pid(pid);
a509a7cd
PB
5228 if (likely(p))
5229 get_task_struct(p);
d50dde5a
DF
5230 rcu_read_unlock();
5231
a509a7cd
PB
5232 if (likely(p)) {
5233 retval = sched_setattr(p, &attr);
5234 put_task_struct(p);
5235 }
5236
d50dde5a
DF
5237 return retval;
5238}
5239
1da177e4
LT
5240/**
5241 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5242 * @pid: the pid in question.
e69f6186
YB
5243 *
5244 * Return: On success, the policy of the thread. Otherwise, a negative error
5245 * code.
1da177e4 5246 */
5add95d4 5247SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5248{
36c8b586 5249 struct task_struct *p;
3a5c359a 5250 int retval;
1da177e4
LT
5251
5252 if (pid < 0)
3a5c359a 5253 return -EINVAL;
1da177e4
LT
5254
5255 retval = -ESRCH;
5fe85be0 5256 rcu_read_lock();
1da177e4
LT
5257 p = find_process_by_pid(pid);
5258 if (p) {
5259 retval = security_task_getscheduler(p);
5260 if (!retval)
ca94c442
LP
5261 retval = p->policy
5262 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5263 }
5fe85be0 5264 rcu_read_unlock();
1da177e4
LT
5265 return retval;
5266}
5267
5268/**
ca94c442 5269 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5270 * @pid: the pid in question.
5271 * @param: structure containing the RT priority.
e69f6186
YB
5272 *
5273 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5274 * code.
1da177e4 5275 */
5add95d4 5276SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5277{
ce5f7f82 5278 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5279 struct task_struct *p;
3a5c359a 5280 int retval;
1da177e4
LT
5281
5282 if (!param || pid < 0)
3a5c359a 5283 return -EINVAL;
1da177e4 5284
5fe85be0 5285 rcu_read_lock();
1da177e4
LT
5286 p = find_process_by_pid(pid);
5287 retval = -ESRCH;
5288 if (!p)
5289 goto out_unlock;
5290
5291 retval = security_task_getscheduler(p);
5292 if (retval)
5293 goto out_unlock;
5294
ce5f7f82
PZ
5295 if (task_has_rt_policy(p))
5296 lp.sched_priority = p->rt_priority;
5fe85be0 5297 rcu_read_unlock();
1da177e4
LT
5298
5299 /*
5300 * This one might sleep, we cannot do it with a spinlock held ...
5301 */
5302 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5303
1da177e4
LT
5304 return retval;
5305
5306out_unlock:
5fe85be0 5307 rcu_read_unlock();
1da177e4
LT
5308 return retval;
5309}
5310
1251201c
IM
5311/*
5312 * Copy the kernel size attribute structure (which might be larger
5313 * than what user-space knows about) to user-space.
5314 *
5315 * Note that all cases are valid: user-space buffer can be larger or
5316 * smaller than the kernel-space buffer. The usual case is that both
5317 * have the same size.
5318 */
5319static int
5320sched_attr_copy_to_user(struct sched_attr __user *uattr,
5321 struct sched_attr *kattr,
5322 unsigned int usize)
d50dde5a 5323{
1251201c 5324 unsigned int ksize = sizeof(*kattr);
d50dde5a 5325
96d4f267 5326 if (!access_ok(uattr, usize))
d50dde5a
DF
5327 return -EFAULT;
5328
5329 /*
1251201c
IM
5330 * sched_getattr() ABI forwards and backwards compatibility:
5331 *
5332 * If usize == ksize then we just copy everything to user-space and all is good.
5333 *
5334 * If usize < ksize then we only copy as much as user-space has space for,
5335 * this keeps ABI compatibility as well. We skip the rest.
5336 *
5337 * If usize > ksize then user-space is using a newer version of the ABI,
5338 * which part the kernel doesn't know about. Just ignore it - tooling can
5339 * detect the kernel's knowledge of attributes from the attr->size value
5340 * which is set to ksize in this case.
d50dde5a 5341 */
1251201c 5342 kattr->size = min(usize, ksize);
d50dde5a 5343
1251201c 5344 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5345 return -EFAULT;
5346
22400674 5347 return 0;
d50dde5a
DF
5348}
5349
5350/**
aab03e05 5351 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5352 * @pid: the pid in question.
5778fccf 5353 * @uattr: structure containing the extended parameters.
dff3a85f 5354 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5355 * @flags: for future extension.
d50dde5a 5356 */
6d35ab48 5357SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5358 unsigned int, usize, unsigned int, flags)
d50dde5a 5359{
1251201c 5360 struct sched_attr kattr = { };
d50dde5a
DF
5361 struct task_struct *p;
5362 int retval;
5363
1251201c
IM
5364 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5365 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5366 return -EINVAL;
5367
5368 rcu_read_lock();
5369 p = find_process_by_pid(pid);
5370 retval = -ESRCH;
5371 if (!p)
5372 goto out_unlock;
5373
5374 retval = security_task_getscheduler(p);
5375 if (retval)
5376 goto out_unlock;
5377
1251201c 5378 kattr.sched_policy = p->policy;
7479f3c9 5379 if (p->sched_reset_on_fork)
1251201c 5380 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5381 if (task_has_dl_policy(p))
1251201c 5382 __getparam_dl(p, &kattr);
aab03e05 5383 else if (task_has_rt_policy(p))
1251201c 5384 kattr.sched_priority = p->rt_priority;
d50dde5a 5385 else
1251201c 5386 kattr.sched_nice = task_nice(p);
d50dde5a 5387
a509a7cd 5388#ifdef CONFIG_UCLAMP_TASK
1251201c
IM
5389 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5390 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5391#endif
5392
d50dde5a
DF
5393 rcu_read_unlock();
5394
1251201c 5395 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5396
5397out_unlock:
5398 rcu_read_unlock();
5399 return retval;
5400}
5401
96f874e2 5402long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5403{
5a16f3d3 5404 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5405 struct task_struct *p;
5406 int retval;
1da177e4 5407
23f5d142 5408 rcu_read_lock();
1da177e4
LT
5409
5410 p = find_process_by_pid(pid);
5411 if (!p) {
23f5d142 5412 rcu_read_unlock();
1da177e4
LT
5413 return -ESRCH;
5414 }
5415
23f5d142 5416 /* Prevent p going away */
1da177e4 5417 get_task_struct(p);
23f5d142 5418 rcu_read_unlock();
1da177e4 5419
14a40ffc
TH
5420 if (p->flags & PF_NO_SETAFFINITY) {
5421 retval = -EINVAL;
5422 goto out_put_task;
5423 }
5a16f3d3
RR
5424 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5425 retval = -ENOMEM;
5426 goto out_put_task;
5427 }
5428 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5429 retval = -ENOMEM;
5430 goto out_free_cpus_allowed;
5431 }
1da177e4 5432 retval = -EPERM;
4c44aaaf
EB
5433 if (!check_same_owner(p)) {
5434 rcu_read_lock();
5435 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5436 rcu_read_unlock();
16303ab2 5437 goto out_free_new_mask;
4c44aaaf
EB
5438 }
5439 rcu_read_unlock();
5440 }
1da177e4 5441
b0ae1981 5442 retval = security_task_setscheduler(p);
e7834f8f 5443 if (retval)
16303ab2 5444 goto out_free_new_mask;
e7834f8f 5445
e4099a5e
PZ
5446
5447 cpuset_cpus_allowed(p, cpus_allowed);
5448 cpumask_and(new_mask, in_mask, cpus_allowed);
5449
332ac17e
DF
5450 /*
5451 * Since bandwidth control happens on root_domain basis,
5452 * if admission test is enabled, we only admit -deadline
5453 * tasks allowed to run on all the CPUs in the task's
5454 * root_domain.
5455 */
5456#ifdef CONFIG_SMP
f1e3a093
KT
5457 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5458 rcu_read_lock();
5459 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5460 retval = -EBUSY;
f1e3a093 5461 rcu_read_unlock();
16303ab2 5462 goto out_free_new_mask;
332ac17e 5463 }
f1e3a093 5464 rcu_read_unlock();
332ac17e
DF
5465 }
5466#endif
49246274 5467again:
25834c73 5468 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5469
8707d8b8 5470 if (!retval) {
5a16f3d3
RR
5471 cpuset_cpus_allowed(p, cpus_allowed);
5472 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5473 /*
5474 * We must have raced with a concurrent cpuset
5475 * update. Just reset the cpus_allowed to the
5476 * cpuset's cpus_allowed
5477 */
5a16f3d3 5478 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5479 goto again;
5480 }
5481 }
16303ab2 5482out_free_new_mask:
5a16f3d3
RR
5483 free_cpumask_var(new_mask);
5484out_free_cpus_allowed:
5485 free_cpumask_var(cpus_allowed);
5486out_put_task:
1da177e4 5487 put_task_struct(p);
1da177e4
LT
5488 return retval;
5489}
5490
5491static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5492 struct cpumask *new_mask)
1da177e4 5493{
96f874e2
RR
5494 if (len < cpumask_size())
5495 cpumask_clear(new_mask);
5496 else if (len > cpumask_size())
5497 len = cpumask_size();
5498
1da177e4
LT
5499 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5500}
5501
5502/**
d1ccc66d 5503 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5504 * @pid: pid of the process
5505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5506 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5507 *
5508 * Return: 0 on success. An error code otherwise.
1da177e4 5509 */
5add95d4
HC
5510SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5511 unsigned long __user *, user_mask_ptr)
1da177e4 5512{
5a16f3d3 5513 cpumask_var_t new_mask;
1da177e4
LT
5514 int retval;
5515
5a16f3d3
RR
5516 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5517 return -ENOMEM;
1da177e4 5518
5a16f3d3
RR
5519 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5520 if (retval == 0)
5521 retval = sched_setaffinity(pid, new_mask);
5522 free_cpumask_var(new_mask);
5523 return retval;
1da177e4
LT
5524}
5525
96f874e2 5526long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5527{
36c8b586 5528 struct task_struct *p;
31605683 5529 unsigned long flags;
1da177e4 5530 int retval;
1da177e4 5531
23f5d142 5532 rcu_read_lock();
1da177e4
LT
5533
5534 retval = -ESRCH;
5535 p = find_process_by_pid(pid);
5536 if (!p)
5537 goto out_unlock;
5538
e7834f8f
DQ
5539 retval = security_task_getscheduler(p);
5540 if (retval)
5541 goto out_unlock;
5542
013fdb80 5543 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5544 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5545 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5546
5547out_unlock:
23f5d142 5548 rcu_read_unlock();
1da177e4 5549
9531b62f 5550 return retval;
1da177e4
LT
5551}
5552
5553/**
d1ccc66d 5554 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5555 * @pid: pid of the process
5556 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5557 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5558 *
599b4840
ZW
5559 * Return: size of CPU mask copied to user_mask_ptr on success. An
5560 * error code otherwise.
1da177e4 5561 */
5add95d4
HC
5562SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5563 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5564{
5565 int ret;
f17c8607 5566 cpumask_var_t mask;
1da177e4 5567
84fba5ec 5568 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5569 return -EINVAL;
5570 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5571 return -EINVAL;
5572
f17c8607
RR
5573 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5574 return -ENOMEM;
1da177e4 5575
f17c8607
RR
5576 ret = sched_getaffinity(pid, mask);
5577 if (ret == 0) {
4de373a1 5578 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5579
5580 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5581 ret = -EFAULT;
5582 else
cd3d8031 5583 ret = retlen;
f17c8607
RR
5584 }
5585 free_cpumask_var(mask);
1da177e4 5586
f17c8607 5587 return ret;
1da177e4
LT
5588}
5589
5590/**
5591 * sys_sched_yield - yield the current processor to other threads.
5592 *
dd41f596
IM
5593 * This function yields the current CPU to other tasks. If there are no
5594 * other threads running on this CPU then this function will return.
e69f6186
YB
5595 *
5596 * Return: 0.
1da177e4 5597 */
7d4dd4f1 5598static void do_sched_yield(void)
1da177e4 5599{
8a8c69c3
PZ
5600 struct rq_flags rf;
5601 struct rq *rq;
5602
246b3b33 5603 rq = this_rq_lock_irq(&rf);
1da177e4 5604
ae92882e 5605 schedstat_inc(rq->yld_count);
4530d7ab 5606 current->sched_class->yield_task(rq);
1da177e4
LT
5607
5608 /*
5609 * Since we are going to call schedule() anyway, there's
5610 * no need to preempt or enable interrupts:
5611 */
8a8c69c3
PZ
5612 preempt_disable();
5613 rq_unlock(rq, &rf);
ba74c144 5614 sched_preempt_enable_no_resched();
1da177e4
LT
5615
5616 schedule();
7d4dd4f1 5617}
1da177e4 5618
7d4dd4f1
DB
5619SYSCALL_DEFINE0(sched_yield)
5620{
5621 do_sched_yield();
1da177e4
LT
5622 return 0;
5623}
5624
c1a280b6 5625#ifndef CONFIG_PREEMPTION
02b67cc3 5626int __sched _cond_resched(void)
1da177e4 5627{
fe32d3cd 5628 if (should_resched(0)) {
a18b5d01 5629 preempt_schedule_common();
1da177e4
LT
5630 return 1;
5631 }
f79c3ad6 5632 rcu_all_qs();
1da177e4
LT
5633 return 0;
5634}
02b67cc3 5635EXPORT_SYMBOL(_cond_resched);
35a773a0 5636#endif
1da177e4
LT
5637
5638/*
613afbf8 5639 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5640 * call schedule, and on return reacquire the lock.
5641 *
c1a280b6 5642 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
5643 * operations here to prevent schedule() from being called twice (once via
5644 * spin_unlock(), once by hand).
5645 */
613afbf8 5646int __cond_resched_lock(spinlock_t *lock)
1da177e4 5647{
fe32d3cd 5648 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5649 int ret = 0;
5650
f607c668
PZ
5651 lockdep_assert_held(lock);
5652
4a81e832 5653 if (spin_needbreak(lock) || resched) {
1da177e4 5654 spin_unlock(lock);
d86ee480 5655 if (resched)
a18b5d01 5656 preempt_schedule_common();
95c354fe
NP
5657 else
5658 cpu_relax();
6df3cecb 5659 ret = 1;
1da177e4 5660 spin_lock(lock);
1da177e4 5661 }
6df3cecb 5662 return ret;
1da177e4 5663}
613afbf8 5664EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5665
1da177e4
LT
5666/**
5667 * yield - yield the current processor to other threads.
5668 *
8e3fabfd
PZ
5669 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5670 *
5671 * The scheduler is at all times free to pick the calling task as the most
5672 * eligible task to run, if removing the yield() call from your code breaks
5673 * it, its already broken.
5674 *
5675 * Typical broken usage is:
5676 *
5677 * while (!event)
d1ccc66d 5678 * yield();
8e3fabfd
PZ
5679 *
5680 * where one assumes that yield() will let 'the other' process run that will
5681 * make event true. If the current task is a SCHED_FIFO task that will never
5682 * happen. Never use yield() as a progress guarantee!!
5683 *
5684 * If you want to use yield() to wait for something, use wait_event().
5685 * If you want to use yield() to be 'nice' for others, use cond_resched().
5686 * If you still want to use yield(), do not!
1da177e4
LT
5687 */
5688void __sched yield(void)
5689{
5690 set_current_state(TASK_RUNNING);
7d4dd4f1 5691 do_sched_yield();
1da177e4 5692}
1da177e4
LT
5693EXPORT_SYMBOL(yield);
5694
d95f4122
MG
5695/**
5696 * yield_to - yield the current processor to another thread in
5697 * your thread group, or accelerate that thread toward the
5698 * processor it's on.
16addf95
RD
5699 * @p: target task
5700 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5701 *
5702 * It's the caller's job to ensure that the target task struct
5703 * can't go away on us before we can do any checks.
5704 *
e69f6186 5705 * Return:
7b270f60
PZ
5706 * true (>0) if we indeed boosted the target task.
5707 * false (0) if we failed to boost the target.
5708 * -ESRCH if there's no task to yield to.
d95f4122 5709 */
fa93384f 5710int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5711{
5712 struct task_struct *curr = current;
5713 struct rq *rq, *p_rq;
5714 unsigned long flags;
c3c18640 5715 int yielded = 0;
d95f4122
MG
5716
5717 local_irq_save(flags);
5718 rq = this_rq();
5719
5720again:
5721 p_rq = task_rq(p);
7b270f60
PZ
5722 /*
5723 * If we're the only runnable task on the rq and target rq also
5724 * has only one task, there's absolutely no point in yielding.
5725 */
5726 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5727 yielded = -ESRCH;
5728 goto out_irq;
5729 }
5730
d95f4122 5731 double_rq_lock(rq, p_rq);
39e24d8f 5732 if (task_rq(p) != p_rq) {
d95f4122
MG
5733 double_rq_unlock(rq, p_rq);
5734 goto again;
5735 }
5736
5737 if (!curr->sched_class->yield_to_task)
7b270f60 5738 goto out_unlock;
d95f4122
MG
5739
5740 if (curr->sched_class != p->sched_class)
7b270f60 5741 goto out_unlock;
d95f4122
MG
5742
5743 if (task_running(p_rq, p) || p->state)
7b270f60 5744 goto out_unlock;
d95f4122
MG
5745
5746 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5747 if (yielded) {
ae92882e 5748 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5749 /*
5750 * Make p's CPU reschedule; pick_next_entity takes care of
5751 * fairness.
5752 */
5753 if (preempt && rq != p_rq)
8875125e 5754 resched_curr(p_rq);
6d1cafd8 5755 }
d95f4122 5756
7b270f60 5757out_unlock:
d95f4122 5758 double_rq_unlock(rq, p_rq);
7b270f60 5759out_irq:
d95f4122
MG
5760 local_irq_restore(flags);
5761
7b270f60 5762 if (yielded > 0)
d95f4122
MG
5763 schedule();
5764
5765 return yielded;
5766}
5767EXPORT_SYMBOL_GPL(yield_to);
5768
10ab5643
TH
5769int io_schedule_prepare(void)
5770{
5771 int old_iowait = current->in_iowait;
5772
5773 current->in_iowait = 1;
5774 blk_schedule_flush_plug(current);
5775
5776 return old_iowait;
5777}
5778
5779void io_schedule_finish(int token)
5780{
5781 current->in_iowait = token;
5782}
5783
1da177e4 5784/*
41a2d6cf 5785 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5786 * that process accounting knows that this is a task in IO wait state.
1da177e4 5787 */
1da177e4
LT
5788long __sched io_schedule_timeout(long timeout)
5789{
10ab5643 5790 int token;
1da177e4
LT
5791 long ret;
5792
10ab5643 5793 token = io_schedule_prepare();
1da177e4 5794 ret = schedule_timeout(timeout);
10ab5643 5795 io_schedule_finish(token);
9cff8ade 5796
1da177e4
LT
5797 return ret;
5798}
9cff8ade 5799EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5800
e3b929b0 5801void __sched io_schedule(void)
10ab5643
TH
5802{
5803 int token;
5804
5805 token = io_schedule_prepare();
5806 schedule();
5807 io_schedule_finish(token);
5808}
5809EXPORT_SYMBOL(io_schedule);
5810
1da177e4
LT
5811/**
5812 * sys_sched_get_priority_max - return maximum RT priority.
5813 * @policy: scheduling class.
5814 *
e69f6186
YB
5815 * Return: On success, this syscall returns the maximum
5816 * rt_priority that can be used by a given scheduling class.
5817 * On failure, a negative error code is returned.
1da177e4 5818 */
5add95d4 5819SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5820{
5821 int ret = -EINVAL;
5822
5823 switch (policy) {
5824 case SCHED_FIFO:
5825 case SCHED_RR:
5826 ret = MAX_USER_RT_PRIO-1;
5827 break;
aab03e05 5828 case SCHED_DEADLINE:
1da177e4 5829 case SCHED_NORMAL:
b0a9499c 5830 case SCHED_BATCH:
dd41f596 5831 case SCHED_IDLE:
1da177e4
LT
5832 ret = 0;
5833 break;
5834 }
5835 return ret;
5836}
5837
5838/**
5839 * sys_sched_get_priority_min - return minimum RT priority.
5840 * @policy: scheduling class.
5841 *
e69f6186
YB
5842 * Return: On success, this syscall returns the minimum
5843 * rt_priority that can be used by a given scheduling class.
5844 * On failure, a negative error code is returned.
1da177e4 5845 */
5add95d4 5846SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5847{
5848 int ret = -EINVAL;
5849
5850 switch (policy) {
5851 case SCHED_FIFO:
5852 case SCHED_RR:
5853 ret = 1;
5854 break;
aab03e05 5855 case SCHED_DEADLINE:
1da177e4 5856 case SCHED_NORMAL:
b0a9499c 5857 case SCHED_BATCH:
dd41f596 5858 case SCHED_IDLE:
1da177e4
LT
5859 ret = 0;
5860 }
5861 return ret;
5862}
5863
abca5fc5 5864static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5865{
36c8b586 5866 struct task_struct *p;
a4ec24b4 5867 unsigned int time_slice;
eb580751 5868 struct rq_flags rf;
dba091b9 5869 struct rq *rq;
3a5c359a 5870 int retval;
1da177e4
LT
5871
5872 if (pid < 0)
3a5c359a 5873 return -EINVAL;
1da177e4
LT
5874
5875 retval = -ESRCH;
1a551ae7 5876 rcu_read_lock();
1da177e4
LT
5877 p = find_process_by_pid(pid);
5878 if (!p)
5879 goto out_unlock;
5880
5881 retval = security_task_getscheduler(p);
5882 if (retval)
5883 goto out_unlock;
5884
eb580751 5885 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5886 time_slice = 0;
5887 if (p->sched_class->get_rr_interval)
5888 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5889 task_rq_unlock(rq, p, &rf);
a4ec24b4 5890
1a551ae7 5891 rcu_read_unlock();
abca5fc5
AV
5892 jiffies_to_timespec64(time_slice, t);
5893 return 0;
3a5c359a 5894
1da177e4 5895out_unlock:
1a551ae7 5896 rcu_read_unlock();
1da177e4
LT
5897 return retval;
5898}
5899
2064a5ab
RD
5900/**
5901 * sys_sched_rr_get_interval - return the default timeslice of a process.
5902 * @pid: pid of the process.
5903 * @interval: userspace pointer to the timeslice value.
5904 *
5905 * this syscall writes the default timeslice value of a given process
5906 * into the user-space timespec buffer. A value of '0' means infinity.
5907 *
5908 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5909 * an error code.
5910 */
abca5fc5 5911SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5912 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5913{
5914 struct timespec64 t;
5915 int retval = sched_rr_get_interval(pid, &t);
5916
5917 if (retval == 0)
5918 retval = put_timespec64(&t, interval);
5919
5920 return retval;
5921}
5922
474b9c77 5923#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5924SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5925 struct old_timespec32 __user *, interval)
abca5fc5
AV
5926{
5927 struct timespec64 t;
5928 int retval = sched_rr_get_interval(pid, &t);
5929
5930 if (retval == 0)
9afc5eee 5931 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5932 return retval;
5933}
5934#endif
5935
82a1fcb9 5936void sched_show_task(struct task_struct *p)
1da177e4 5937{
1da177e4 5938 unsigned long free = 0;
4e79752c 5939 int ppid;
c930b2c0 5940
38200502
TH
5941 if (!try_get_task_stack(p))
5942 return;
20435d84
XX
5943
5944 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5945
5946 if (p->state == TASK_RUNNING)
3df0fc5b 5947 printk(KERN_CONT " running task ");
1da177e4 5948#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5949 free = stack_not_used(p);
1da177e4 5950#endif
a90e984c 5951 ppid = 0;
4e79752c 5952 rcu_read_lock();
a90e984c
ON
5953 if (pid_alive(p))
5954 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5955 rcu_read_unlock();
3df0fc5b 5956 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5957 task_pid_nr(p), ppid,
aa47b7e0 5958 (unsigned long)task_thread_info(p)->flags);
1da177e4 5959
3d1cb205 5960 print_worker_info(KERN_INFO, p);
5fb5e6de 5961 show_stack(p, NULL);
38200502 5962 put_task_stack(p);
1da177e4 5963}
0032f4e8 5964EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5965
5d68cc95
PZ
5966static inline bool
5967state_filter_match(unsigned long state_filter, struct task_struct *p)
5968{
5969 /* no filter, everything matches */
5970 if (!state_filter)
5971 return true;
5972
5973 /* filter, but doesn't match */
5974 if (!(p->state & state_filter))
5975 return false;
5976
5977 /*
5978 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5979 * TASK_KILLABLE).
5980 */
5981 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5982 return false;
5983
5984 return true;
5985}
5986
5987
e59e2ae2 5988void show_state_filter(unsigned long state_filter)
1da177e4 5989{
36c8b586 5990 struct task_struct *g, *p;
1da177e4 5991
4bd77321 5992#if BITS_PER_LONG == 32
3df0fc5b
PZ
5993 printk(KERN_INFO
5994 " task PC stack pid father\n");
1da177e4 5995#else
3df0fc5b
PZ
5996 printk(KERN_INFO
5997 " task PC stack pid father\n");
1da177e4 5998#endif
510f5acc 5999 rcu_read_lock();
5d07f420 6000 for_each_process_thread(g, p) {
1da177e4
LT
6001 /*
6002 * reset the NMI-timeout, listing all files on a slow
25985edc 6003 * console might take a lot of time:
57675cb9
AR
6004 * Also, reset softlockup watchdogs on all CPUs, because
6005 * another CPU might be blocked waiting for us to process
6006 * an IPI.
1da177e4
LT
6007 */
6008 touch_nmi_watchdog();
57675cb9 6009 touch_all_softlockup_watchdogs();
5d68cc95 6010 if (state_filter_match(state_filter, p))
82a1fcb9 6011 sched_show_task(p);
5d07f420 6012 }
1da177e4 6013
dd41f596 6014#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6015 if (!state_filter)
6016 sysrq_sched_debug_show();
dd41f596 6017#endif
510f5acc 6018 rcu_read_unlock();
e59e2ae2
IM
6019 /*
6020 * Only show locks if all tasks are dumped:
6021 */
93335a21 6022 if (!state_filter)
e59e2ae2 6023 debug_show_all_locks();
1da177e4
LT
6024}
6025
f340c0d1
IM
6026/**
6027 * init_idle - set up an idle thread for a given CPU
6028 * @idle: task in question
d1ccc66d 6029 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6030 *
6031 * NOTE: this function does not set the idle thread's NEED_RESCHED
6032 * flag, to make booting more robust.
6033 */
0db0628d 6034void init_idle(struct task_struct *idle, int cpu)
1da177e4 6035{
70b97a7f 6036 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6037 unsigned long flags;
6038
ff51ff84
PZ
6039 __sched_fork(0, idle);
6040
25834c73
PZ
6041 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6042 raw_spin_lock(&rq->lock);
5cbd54ef 6043
06b83b5f 6044 idle->state = TASK_RUNNING;
dd41f596 6045 idle->se.exec_start = sched_clock();
c1de45ca 6046 idle->flags |= PF_IDLE;
dd41f596 6047
e1b77c92
MR
6048 kasan_unpoison_task_stack(idle);
6049
de9b8f5d
PZ
6050#ifdef CONFIG_SMP
6051 /*
6052 * Its possible that init_idle() gets called multiple times on a task,
6053 * in that case do_set_cpus_allowed() will not do the right thing.
6054 *
6055 * And since this is boot we can forgo the serialization.
6056 */
6057 set_cpus_allowed_common(idle, cpumask_of(cpu));
6058#endif
6506cf6c
PZ
6059 /*
6060 * We're having a chicken and egg problem, even though we are
d1ccc66d 6061 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6062 * lockdep check in task_group() will fail.
6063 *
6064 * Similar case to sched_fork(). / Alternatively we could
6065 * use task_rq_lock() here and obtain the other rq->lock.
6066 *
6067 * Silence PROVE_RCU
6068 */
6069 rcu_read_lock();
dd41f596 6070 __set_task_cpu(idle, cpu);
6506cf6c 6071 rcu_read_unlock();
1da177e4 6072
5311a98f
EB
6073 rq->idle = idle;
6074 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6075 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6076#ifdef CONFIG_SMP
3ca7a440 6077 idle->on_cpu = 1;
4866cde0 6078#endif
25834c73
PZ
6079 raw_spin_unlock(&rq->lock);
6080 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6081
6082 /* Set the preempt count _outside_ the spinlocks! */
01028747 6083 init_idle_preempt_count(idle, cpu);
55cd5340 6084
dd41f596
IM
6085 /*
6086 * The idle tasks have their own, simple scheduling class:
6087 */
6088 idle->sched_class = &idle_sched_class;
868baf07 6089 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6090 vtime_init_idle(idle, cpu);
de9b8f5d 6091#ifdef CONFIG_SMP
f1c6f1a7
CE
6092 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6093#endif
19978ca6
IM
6094}
6095
e1d4eeec
NP
6096#ifdef CONFIG_SMP
6097
f82f8042
JL
6098int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6099 const struct cpumask *trial)
6100{
06a76fe0 6101 int ret = 1;
f82f8042 6102
bb2bc55a
MG
6103 if (!cpumask_weight(cur))
6104 return ret;
6105
06a76fe0 6106 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6107
6108 return ret;
6109}
6110
7f51412a
JL
6111int task_can_attach(struct task_struct *p,
6112 const struct cpumask *cs_cpus_allowed)
6113{
6114 int ret = 0;
6115
6116 /*
6117 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6118 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6119 * affinity and isolating such threads by their set of
6120 * allowed nodes is unnecessary. Thus, cpusets are not
6121 * applicable for such threads. This prevents checking for
6122 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6123 * before cpus_mask may be changed.
7f51412a
JL
6124 */
6125 if (p->flags & PF_NO_SETAFFINITY) {
6126 ret = -EINVAL;
6127 goto out;
6128 }
6129
7f51412a 6130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6131 cs_cpus_allowed))
6132 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6133
7f51412a
JL
6134out:
6135 return ret;
6136}
6137
f2cb1360 6138bool sched_smp_initialized __read_mostly;
e26fbffd 6139
e6628d5b
MG
6140#ifdef CONFIG_NUMA_BALANCING
6141/* Migrate current task p to target_cpu */
6142int migrate_task_to(struct task_struct *p, int target_cpu)
6143{
6144 struct migration_arg arg = { p, target_cpu };
6145 int curr_cpu = task_cpu(p);
6146
6147 if (curr_cpu == target_cpu)
6148 return 0;
6149
3bd37062 6150 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6151 return -EINVAL;
6152
6153 /* TODO: This is not properly updating schedstats */
6154
286549dc 6155 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6156 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6157}
0ec8aa00
PZ
6158
6159/*
6160 * Requeue a task on a given node and accurately track the number of NUMA
6161 * tasks on the runqueues
6162 */
6163void sched_setnuma(struct task_struct *p, int nid)
6164{
da0c1e65 6165 bool queued, running;
eb580751
PZ
6166 struct rq_flags rf;
6167 struct rq *rq;
0ec8aa00 6168
eb580751 6169 rq = task_rq_lock(p, &rf);
da0c1e65 6170 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6171 running = task_current(rq, p);
6172
da0c1e65 6173 if (queued)
1de64443 6174 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6175 if (running)
f3cd1c4e 6176 put_prev_task(rq, p);
0ec8aa00
PZ
6177
6178 p->numa_preferred_nid = nid;
0ec8aa00 6179
da0c1e65 6180 if (queued)
7134b3e9 6181 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6182 if (running)
03b7fad1 6183 set_next_task(rq, p);
eb580751 6184 task_rq_unlock(rq, p, &rf);
0ec8aa00 6185}
5cc389bc 6186#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6187
1da177e4 6188#ifdef CONFIG_HOTPLUG_CPU
054b9108 6189/*
d1ccc66d 6190 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6191 * offline.
054b9108 6192 */
48c5ccae 6193void idle_task_exit(void)
1da177e4 6194{
48c5ccae 6195 struct mm_struct *mm = current->active_mm;
e76bd8d9 6196
48c5ccae 6197 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6198
a53efe5f 6199 if (mm != &init_mm) {
252d2a41 6200 switch_mm(mm, &init_mm, current);
3eda69c9 6201 current->active_mm = &init_mm;
a53efe5f
MS
6202 finish_arch_post_lock_switch();
6203 }
48c5ccae 6204 mmdrop(mm);
1da177e4
LT
6205}
6206
6207/*
5d180232
PZ
6208 * Since this CPU is going 'away' for a while, fold any nr_active delta
6209 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6210 * nr_active count is stable. We need to take the teardown thread which
6211 * is calling this into account, so we hand in adjust = 1 to the load
6212 * calculation.
5d180232
PZ
6213 *
6214 * Also see the comment "Global load-average calculations".
1da177e4 6215 */
5d180232 6216static void calc_load_migrate(struct rq *rq)
1da177e4 6217{
d60585c5 6218 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6219 if (delta)
6220 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6221}
6222
10e7071b 6223static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6224{
10e7071b
PZ
6225 const struct sched_class *class;
6226 struct task_struct *next;
3f1d2a31 6227
10e7071b 6228 for_each_class(class) {
98c2f700 6229 next = class->pick_next_task(rq);
10e7071b 6230 if (next) {
6e2df058 6231 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6232 return next;
6233 }
6234 }
3f1d2a31 6235
10e7071b
PZ
6236 /* The idle class should always have a runnable task */
6237 BUG();
6238}
3f1d2a31 6239
48f24c4d 6240/*
48c5ccae
PZ
6241 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6242 * try_to_wake_up()->select_task_rq().
6243 *
6244 * Called with rq->lock held even though we'er in stop_machine() and
6245 * there's no concurrency possible, we hold the required locks anyway
6246 * because of lock validation efforts.
1da177e4 6247 */
8a8c69c3 6248static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6249{
5e16bbc2 6250 struct rq *rq = dead_rq;
48c5ccae 6251 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6252 struct rq_flags orf = *rf;
48c5ccae 6253 int dest_cpu;
1da177e4
LT
6254
6255 /*
48c5ccae
PZ
6256 * Fudge the rq selection such that the below task selection loop
6257 * doesn't get stuck on the currently eligible stop task.
6258 *
6259 * We're currently inside stop_machine() and the rq is either stuck
6260 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6261 * either way we should never end up calling schedule() until we're
6262 * done here.
1da177e4 6263 */
48c5ccae 6264 rq->stop = NULL;
48f24c4d 6265
77bd3970
FW
6266 /*
6267 * put_prev_task() and pick_next_task() sched
6268 * class method both need to have an up-to-date
6269 * value of rq->clock[_task]
6270 */
6271 update_rq_clock(rq);
6272
5e16bbc2 6273 for (;;) {
48c5ccae
PZ
6274 /*
6275 * There's this thread running, bail when that's the only
d1ccc66d 6276 * remaining thread:
48c5ccae
PZ
6277 */
6278 if (rq->nr_running == 1)
dd41f596 6279 break;
48c5ccae 6280
10e7071b 6281 next = __pick_migrate_task(rq);
e692ab53 6282
5473e0cc 6283 /*
3bd37062 6284 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6285 * both pi_lock and rq->lock, such that holding either
6286 * stabilizes the mask.
6287 *
6288 * Drop rq->lock is not quite as disastrous as it usually is
6289 * because !cpu_active at this point, which means load-balance
6290 * will not interfere. Also, stop-machine.
6291 */
8a8c69c3 6292 rq_unlock(rq, rf);
5473e0cc 6293 raw_spin_lock(&next->pi_lock);
8a8c69c3 6294 rq_relock(rq, rf);
5473e0cc
WL
6295
6296 /*
6297 * Since we're inside stop-machine, _nothing_ should have
6298 * changed the task, WARN if weird stuff happened, because in
6299 * that case the above rq->lock drop is a fail too.
6300 */
6301 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6302 raw_spin_unlock(&next->pi_lock);
6303 continue;
6304 }
6305
48c5ccae 6306 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6307 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6308 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6309 if (rq != dead_rq) {
8a8c69c3 6310 rq_unlock(rq, rf);
5e16bbc2 6311 rq = dead_rq;
8a8c69c3
PZ
6312 *rf = orf;
6313 rq_relock(rq, rf);
5e16bbc2 6314 }
5473e0cc 6315 raw_spin_unlock(&next->pi_lock);
1da177e4 6316 }
dce48a84 6317
48c5ccae 6318 rq->stop = stop;
dce48a84 6319}
1da177e4
LT
6320#endif /* CONFIG_HOTPLUG_CPU */
6321
f2cb1360 6322void set_rq_online(struct rq *rq)
1f11eb6a
GH
6323{
6324 if (!rq->online) {
6325 const struct sched_class *class;
6326
c6c4927b 6327 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6328 rq->online = 1;
6329
6330 for_each_class(class) {
6331 if (class->rq_online)
6332 class->rq_online(rq);
6333 }
6334 }
6335}
6336
f2cb1360 6337void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6338{
6339 if (rq->online) {
6340 const struct sched_class *class;
6341
6342 for_each_class(class) {
6343 if (class->rq_offline)
6344 class->rq_offline(rq);
6345 }
6346
c6c4927b 6347 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6348 rq->online = 0;
6349 }
6350}
6351
d1ccc66d
IM
6352/*
6353 * used to mark begin/end of suspend/resume:
6354 */
6355static int num_cpus_frozen;
d35be8ba 6356
1da177e4 6357/*
3a101d05
TH
6358 * Update cpusets according to cpu_active mask. If cpusets are
6359 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6360 * around partition_sched_domains().
d35be8ba
SB
6361 *
6362 * If we come here as part of a suspend/resume, don't touch cpusets because we
6363 * want to restore it back to its original state upon resume anyway.
1da177e4 6364 */
40190a78 6365static void cpuset_cpu_active(void)
e761b772 6366{
40190a78 6367 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6368 /*
6369 * num_cpus_frozen tracks how many CPUs are involved in suspend
6370 * resume sequence. As long as this is not the last online
6371 * operation in the resume sequence, just build a single sched
6372 * domain, ignoring cpusets.
6373 */
50e76632
PZ
6374 partition_sched_domains(1, NULL, NULL);
6375 if (--num_cpus_frozen)
135fb3e1 6376 return;
d35be8ba
SB
6377 /*
6378 * This is the last CPU online operation. So fall through and
6379 * restore the original sched domains by considering the
6380 * cpuset configurations.
6381 */
50e76632 6382 cpuset_force_rebuild();
3a101d05 6383 }
30e03acd 6384 cpuset_update_active_cpus();
3a101d05 6385}
e761b772 6386
40190a78 6387static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6388{
40190a78 6389 if (!cpuhp_tasks_frozen) {
06a76fe0 6390 if (dl_cpu_busy(cpu))
135fb3e1 6391 return -EBUSY;
30e03acd 6392 cpuset_update_active_cpus();
135fb3e1 6393 } else {
d35be8ba
SB
6394 num_cpus_frozen++;
6395 partition_sched_domains(1, NULL, NULL);
e761b772 6396 }
135fb3e1 6397 return 0;
e761b772 6398}
e761b772 6399
40190a78 6400int sched_cpu_activate(unsigned int cpu)
135fb3e1 6401{
7d976699 6402 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6403 struct rq_flags rf;
7d976699 6404
ba2591a5
PZ
6405#ifdef CONFIG_SCHED_SMT
6406 /*
c5511d03 6407 * When going up, increment the number of cores with SMT present.
ba2591a5 6408 */
c5511d03
PZI
6409 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6410 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6411#endif
40190a78 6412 set_cpu_active(cpu, true);
135fb3e1 6413
40190a78 6414 if (sched_smp_initialized) {
135fb3e1 6415 sched_domains_numa_masks_set(cpu);
40190a78 6416 cpuset_cpu_active();
e761b772 6417 }
7d976699
TG
6418
6419 /*
6420 * Put the rq online, if not already. This happens:
6421 *
6422 * 1) In the early boot process, because we build the real domains
d1ccc66d 6423 * after all CPUs have been brought up.
7d976699
TG
6424 *
6425 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6426 * domains.
6427 */
8a8c69c3 6428 rq_lock_irqsave(rq, &rf);
7d976699
TG
6429 if (rq->rd) {
6430 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6431 set_rq_online(rq);
6432 }
8a8c69c3 6433 rq_unlock_irqrestore(rq, &rf);
7d976699 6434
40190a78 6435 return 0;
135fb3e1
TG
6436}
6437
40190a78 6438int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6439{
135fb3e1
TG
6440 int ret;
6441
40190a78 6442 set_cpu_active(cpu, false);
b2454caa
PZ
6443 /*
6444 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6445 * users of this state to go away such that all new such users will
6446 * observe it.
6447 *
b2454caa
PZ
6448 * Do sync before park smpboot threads to take care the rcu boost case.
6449 */
309ba859 6450 synchronize_rcu();
40190a78 6451
c5511d03
PZI
6452#ifdef CONFIG_SCHED_SMT
6453 /*
6454 * When going down, decrement the number of cores with SMT present.
6455 */
6456 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6457 static_branch_dec_cpuslocked(&sched_smt_present);
6458#endif
6459
40190a78
TG
6460 if (!sched_smp_initialized)
6461 return 0;
6462
6463 ret = cpuset_cpu_inactive(cpu);
6464 if (ret) {
6465 set_cpu_active(cpu, true);
6466 return ret;
135fb3e1 6467 }
40190a78
TG
6468 sched_domains_numa_masks_clear(cpu);
6469 return 0;
135fb3e1
TG
6470}
6471
94baf7a5
TG
6472static void sched_rq_cpu_starting(unsigned int cpu)
6473{
6474 struct rq *rq = cpu_rq(cpu);
6475
6476 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6477 update_max_interval();
6478}
6479
135fb3e1
TG
6480int sched_cpu_starting(unsigned int cpu)
6481{
94baf7a5 6482 sched_rq_cpu_starting(cpu);
d84b3131 6483 sched_tick_start(cpu);
135fb3e1 6484 return 0;
e761b772 6485}
e761b772 6486
f2785ddb
TG
6487#ifdef CONFIG_HOTPLUG_CPU
6488int sched_cpu_dying(unsigned int cpu)
6489{
6490 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6491 struct rq_flags rf;
f2785ddb
TG
6492
6493 /* Handle pending wakeups and then migrate everything off */
6494 sched_ttwu_pending();
d84b3131 6495 sched_tick_stop(cpu);
8a8c69c3
PZ
6496
6497 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6498 if (rq->rd) {
6499 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6500 set_rq_offline(rq);
6501 }
8a8c69c3 6502 migrate_tasks(rq, &rf);
f2785ddb 6503 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6504 rq_unlock_irqrestore(rq, &rf);
6505
f2785ddb
TG
6506 calc_load_migrate(rq);
6507 update_max_interval();
00357f5e 6508 nohz_balance_exit_idle(rq);
e5ef27d0 6509 hrtick_clear(rq);
f2785ddb
TG
6510 return 0;
6511}
6512#endif
6513
1da177e4
LT
6514void __init sched_init_smp(void)
6515{
cb83b629
PZ
6516 sched_init_numa();
6517
6acce3ef
PZ
6518 /*
6519 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6520 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6521 * happen.
6acce3ef 6522 */
712555ee 6523 mutex_lock(&sched_domains_mutex);
8d5dc512 6524 sched_init_domains(cpu_active_mask);
712555ee 6525 mutex_unlock(&sched_domains_mutex);
e761b772 6526
5c1e1767 6527 /* Move init over to a non-isolated CPU */
edb93821 6528 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6529 BUG();
19978ca6 6530 sched_init_granularity();
4212823f 6531
0e3900e6 6532 init_sched_rt_class();
1baca4ce 6533 init_sched_dl_class();
1b568f0a 6534
e26fbffd 6535 sched_smp_initialized = true;
1da177e4 6536}
e26fbffd
TG
6537
6538static int __init migration_init(void)
6539{
77a5352b 6540 sched_cpu_starting(smp_processor_id());
e26fbffd 6541 return 0;
1da177e4 6542}
e26fbffd
TG
6543early_initcall(migration_init);
6544
1da177e4
LT
6545#else
6546void __init sched_init_smp(void)
6547{
19978ca6 6548 sched_init_granularity();
1da177e4
LT
6549}
6550#endif /* CONFIG_SMP */
6551
6552int in_sched_functions(unsigned long addr)
6553{
1da177e4
LT
6554 return in_lock_functions(addr) ||
6555 (addr >= (unsigned long)__sched_text_start
6556 && addr < (unsigned long)__sched_text_end);
6557}
6558
029632fb 6559#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6560/*
6561 * Default task group.
6562 * Every task in system belongs to this group at bootup.
6563 */
029632fb 6564struct task_group root_task_group;
35cf4e50 6565LIST_HEAD(task_groups);
b0367629
WL
6566
6567/* Cacheline aligned slab cache for task_group */
6568static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6569#endif
6f505b16 6570
e6252c3e 6571DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6572DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6573
1da177e4
LT
6574void __init sched_init(void)
6575{
a1dc0446 6576 unsigned long ptr = 0;
55627e3c 6577 int i;
434d53b0 6578
5822a454 6579 wait_bit_init();
9dcb8b68 6580
434d53b0 6581#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6582 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6583#endif
6584#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6585 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6586#endif
a1dc0446
QC
6587 if (ptr) {
6588 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6589
6590#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6591 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6592 ptr += nr_cpu_ids * sizeof(void **);
6593
07e06b01 6594 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6595 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6596
6d6bc0ad 6597#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6598#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6599 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6600 ptr += nr_cpu_ids * sizeof(void **);
6601
07e06b01 6602 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6603 ptr += nr_cpu_ids * sizeof(void **);
6604
6d6bc0ad 6605#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6606 }
df7c8e84 6607#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6608 for_each_possible_cpu(i) {
6609 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6610 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6611 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6612 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6613 }
b74e6278 6614#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6615
d1ccc66d
IM
6616 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6617 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6618
57d885fe
GH
6619#ifdef CONFIG_SMP
6620 init_defrootdomain();
6621#endif
6622
d0b27fa7 6623#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6624 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6625 global_rt_period(), global_rt_runtime());
6d6bc0ad 6626#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6627
7c941438 6628#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6629 task_group_cache = KMEM_CACHE(task_group, 0);
6630
07e06b01
YZ
6631 list_add(&root_task_group.list, &task_groups);
6632 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6633 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6634 autogroup_init(&init_task);
7c941438 6635#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6636
0a945022 6637 for_each_possible_cpu(i) {
70b97a7f 6638 struct rq *rq;
1da177e4
LT
6639
6640 rq = cpu_rq(i);
05fa785c 6641 raw_spin_lock_init(&rq->lock);
7897986b 6642 rq->nr_running = 0;
dce48a84
TG
6643 rq->calc_load_active = 0;
6644 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6645 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6646 init_rt_rq(&rq->rt);
6647 init_dl_rq(&rq->dl);
dd41f596 6648#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6649 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6650 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6651 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6652 /*
d1ccc66d 6653 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6654 *
6655 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6656 * gets 100% of the CPU resources in the system. This overall
6657 * system CPU resource is divided among the tasks of
07e06b01 6658 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6659 * based on each entity's (task or task-group's) weight
6660 * (se->load.weight).
6661 *
07e06b01 6662 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6663 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6664 * then A0's share of the CPU resource is:
354d60c2 6665 *
0d905bca 6666 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6667 *
07e06b01
YZ
6668 * We achieve this by letting root_task_group's tasks sit
6669 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6670 */
ab84d31e 6671 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6672 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6673#endif /* CONFIG_FAIR_GROUP_SCHED */
6674
6675 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6676#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6677 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6678#endif
1da177e4 6679#ifdef CONFIG_SMP
41c7ce9a 6680 rq->sd = NULL;
57d885fe 6681 rq->rd = NULL;
ca6d75e6 6682 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6683 rq->balance_callback = NULL;
1da177e4 6684 rq->active_balance = 0;
dd41f596 6685 rq->next_balance = jiffies;
1da177e4 6686 rq->push_cpu = 0;
0a2966b4 6687 rq->cpu = i;
1f11eb6a 6688 rq->online = 0;
eae0c9df
MG
6689 rq->idle_stamp = 0;
6690 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6691 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6692
6693 INIT_LIST_HEAD(&rq->cfs_tasks);
6694
dc938520 6695 rq_attach_root(rq, &def_root_domain);
3451d024 6696#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 6697 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6698 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6699#endif
9fd81dd5 6700#endif /* CONFIG_SMP */
77a021be 6701 hrtick_rq_init(rq);
1da177e4 6702 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6703 }
6704
9059393e 6705 set_load_weight(&init_task, false);
b50f60ce 6706
1da177e4
LT
6707 /*
6708 * The boot idle thread does lazy MMU switching as well:
6709 */
f1f10076 6710 mmgrab(&init_mm);
1da177e4
LT
6711 enter_lazy_tlb(&init_mm, current);
6712
6713 /*
6714 * Make us the idle thread. Technically, schedule() should not be
6715 * called from this thread, however somewhere below it might be,
6716 * but because we are the idle thread, we just pick up running again
6717 * when this runqueue becomes "idle".
6718 */
6719 init_idle(current, smp_processor_id());
dce48a84
TG
6720
6721 calc_load_update = jiffies + LOAD_FREQ;
6722
bf4d83f6 6723#ifdef CONFIG_SMP
29d5e047 6724 idle_thread_set_boot_cpu();
029632fb
PZ
6725#endif
6726 init_sched_fair_class();
6a7b3dc3 6727
4698f88c
JP
6728 init_schedstats();
6729
eb414681
JW
6730 psi_init();
6731
69842cba
PB
6732 init_uclamp();
6733
6892b75e 6734 scheduler_running = 1;
1da177e4
LT
6735}
6736
d902db1e 6737#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6738static inline int preempt_count_equals(int preempt_offset)
6739{
da7142e2 6740 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6741
4ba8216c 6742 return (nested == preempt_offset);
e4aafea2
FW
6743}
6744
d894837f 6745void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6746{
8eb23b9f
PZ
6747 /*
6748 * Blocking primitives will set (and therefore destroy) current->state,
6749 * since we will exit with TASK_RUNNING make sure we enter with it,
6750 * otherwise we will destroy state.
6751 */
00845eb9 6752 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6753 "do not call blocking ops when !TASK_RUNNING; "
6754 "state=%lx set at [<%p>] %pS\n",
6755 current->state,
6756 (void *)current->task_state_change,
00845eb9 6757 (void *)current->task_state_change);
8eb23b9f 6758
3427445a
PZ
6759 ___might_sleep(file, line, preempt_offset);
6760}
6761EXPORT_SYMBOL(__might_sleep);
6762
6763void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6764{
d1ccc66d
IM
6765 /* Ratelimiting timestamp: */
6766 static unsigned long prev_jiffy;
6767
d1c6d149 6768 unsigned long preempt_disable_ip;
1da177e4 6769
d1ccc66d
IM
6770 /* WARN_ON_ONCE() by default, no rate limit required: */
6771 rcu_sleep_check();
6772
db273be2 6773 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 6774 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
6775 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6776 oops_in_progress)
aef745fc 6777 return;
1c3c5eab 6778
aef745fc
IM
6779 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6780 return;
6781 prev_jiffy = jiffies;
6782
d1ccc66d 6783 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6784 preempt_disable_ip = get_preempt_disable_ip(current);
6785
3df0fc5b
PZ
6786 printk(KERN_ERR
6787 "BUG: sleeping function called from invalid context at %s:%d\n",
6788 file, line);
6789 printk(KERN_ERR
312364f3
DV
6790 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6791 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 6792 current->pid, current->comm);
aef745fc 6793
a8b686b3
ES
6794 if (task_stack_end_corrupted(current))
6795 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6796
aef745fc
IM
6797 debug_show_held_locks(current);
6798 if (irqs_disabled())
6799 print_irqtrace_events(current);
d1c6d149
VN
6800 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6801 && !preempt_count_equals(preempt_offset)) {
8f47b187 6802 pr_err("Preemption disabled at:");
d1c6d149 6803 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6804 pr_cont("\n");
6805 }
aef745fc 6806 dump_stack();
f0b22e39 6807 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6808}
3427445a 6809EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6810
6811void __cant_sleep(const char *file, int line, int preempt_offset)
6812{
6813 static unsigned long prev_jiffy;
6814
6815 if (irqs_disabled())
6816 return;
6817
6818 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6819 return;
6820
6821 if (preempt_count() > preempt_offset)
6822 return;
6823
6824 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6825 return;
6826 prev_jiffy = jiffies;
6827
6828 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6829 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6830 in_atomic(), irqs_disabled(),
6831 current->pid, current->comm);
6832
6833 debug_show_held_locks(current);
6834 dump_stack();
6835 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6836}
6837EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6838#endif
6839
6840#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6841void normalize_rt_tasks(void)
3a5e4dc1 6842{
dbc7f069 6843 struct task_struct *g, *p;
d50dde5a
DF
6844 struct sched_attr attr = {
6845 .sched_policy = SCHED_NORMAL,
6846 };
1da177e4 6847
3472eaa1 6848 read_lock(&tasklist_lock);
5d07f420 6849 for_each_process_thread(g, p) {
178be793
IM
6850 /*
6851 * Only normalize user tasks:
6852 */
3472eaa1 6853 if (p->flags & PF_KTHREAD)
178be793
IM
6854 continue;
6855
4fa8d299
JP
6856 p->se.exec_start = 0;
6857 schedstat_set(p->se.statistics.wait_start, 0);
6858 schedstat_set(p->se.statistics.sleep_start, 0);
6859 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6860
aab03e05 6861 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6862 /*
6863 * Renice negative nice level userspace
6864 * tasks back to 0:
6865 */
3472eaa1 6866 if (task_nice(p) < 0)
dd41f596 6867 set_user_nice(p, 0);
1da177e4 6868 continue;
dd41f596 6869 }
1da177e4 6870
dbc7f069 6871 __sched_setscheduler(p, &attr, false, false);
5d07f420 6872 }
3472eaa1 6873 read_unlock(&tasklist_lock);
1da177e4
LT
6874}
6875
6876#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6877
67fc4e0c 6878#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6879/*
67fc4e0c 6880 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6881 *
6882 * They can only be called when the whole system has been
6883 * stopped - every CPU needs to be quiescent, and no scheduling
6884 * activity can take place. Using them for anything else would
6885 * be a serious bug, and as a result, they aren't even visible
6886 * under any other configuration.
6887 */
6888
6889/**
d1ccc66d 6890 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6891 * @cpu: the processor in question.
6892 *
6893 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6894 *
6895 * Return: The current task for @cpu.
1df5c10a 6896 */
36c8b586 6897struct task_struct *curr_task(int cpu)
1df5c10a
LT
6898{
6899 return cpu_curr(cpu);
6900}
6901
67fc4e0c
JW
6902#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6903
6904#ifdef CONFIG_IA64
1df5c10a 6905/**
5feeb783 6906 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6907 * @cpu: the processor in question.
6908 * @p: the task pointer to set.
6909 *
6910 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6911 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6912 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6913 * must be called with all CPU's synchronized, and interrupts disabled, the
6914 * and caller must save the original value of the current task (see
6915 * curr_task() above) and restore that value before reenabling interrupts and
6916 * re-starting the system.
6917 *
6918 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6919 */
a458ae2e 6920void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6921{
6922 cpu_curr(cpu) = p;
6923}
6924
6925#endif
29f59db3 6926
7c941438 6927#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6928/* task_group_lock serializes the addition/removal of task groups */
6929static DEFINE_SPINLOCK(task_group_lock);
6930
2480c093
PB
6931static inline void alloc_uclamp_sched_group(struct task_group *tg,
6932 struct task_group *parent)
6933{
6934#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 6935 enum uclamp_id clamp_id;
2480c093
PB
6936
6937 for_each_clamp_id(clamp_id) {
6938 uclamp_se_set(&tg->uclamp_req[clamp_id],
6939 uclamp_none(clamp_id), false);
0b60ba2d 6940 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
6941 }
6942#endif
6943}
6944
2f5177f0 6945static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6946{
6947 free_fair_sched_group(tg);
6948 free_rt_sched_group(tg);
e9aa1dd1 6949 autogroup_free(tg);
b0367629 6950 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6951}
6952
6953/* allocate runqueue etc for a new task group */
ec7dc8ac 6954struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6955{
6956 struct task_group *tg;
bccbe08a 6957
b0367629 6958 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6959 if (!tg)
6960 return ERR_PTR(-ENOMEM);
6961
ec7dc8ac 6962 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6963 goto err;
6964
ec7dc8ac 6965 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6966 goto err;
6967
2480c093
PB
6968 alloc_uclamp_sched_group(tg, parent);
6969
ace783b9
LZ
6970 return tg;
6971
6972err:
2f5177f0 6973 sched_free_group(tg);
ace783b9
LZ
6974 return ERR_PTR(-ENOMEM);
6975}
6976
6977void sched_online_group(struct task_group *tg, struct task_group *parent)
6978{
6979 unsigned long flags;
6980
8ed36996 6981 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6982 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6983
d1ccc66d
IM
6984 /* Root should already exist: */
6985 WARN_ON(!parent);
f473aa5e
PZ
6986
6987 tg->parent = parent;
f473aa5e 6988 INIT_LIST_HEAD(&tg->children);
09f2724a 6989 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6990 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6991
6992 online_fair_sched_group(tg);
29f59db3
SV
6993}
6994
9b5b7751 6995/* rcu callback to free various structures associated with a task group */
2f5177f0 6996static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6997{
d1ccc66d 6998 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6999 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7000}
7001
4cf86d77 7002void sched_destroy_group(struct task_group *tg)
ace783b9 7003{
d1ccc66d 7004 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7005 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7006}
7007
7008void sched_offline_group(struct task_group *tg)
29f59db3 7009{
8ed36996 7010 unsigned long flags;
29f59db3 7011
d1ccc66d 7012 /* End participation in shares distribution: */
6fe1f348 7013 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7014
7015 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7016 list_del_rcu(&tg->list);
f473aa5e 7017 list_del_rcu(&tg->siblings);
8ed36996 7018 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7019}
7020
ea86cb4b 7021static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7022{
8323f26c 7023 struct task_group *tg;
29f59db3 7024
f7b8a47d
KT
7025 /*
7026 * All callers are synchronized by task_rq_lock(); we do not use RCU
7027 * which is pointless here. Thus, we pass "true" to task_css_check()
7028 * to prevent lockdep warnings.
7029 */
7030 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7031 struct task_group, css);
7032 tg = autogroup_task_group(tsk, tg);
7033 tsk->sched_task_group = tg;
7034
810b3817 7035#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7036 if (tsk->sched_class->task_change_group)
7037 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7038 else
810b3817 7039#endif
b2b5ce02 7040 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7041}
7042
7043/*
7044 * Change task's runqueue when it moves between groups.
7045 *
7046 * The caller of this function should have put the task in its new group by
7047 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7048 * its new group.
7049 */
7050void sched_move_task(struct task_struct *tsk)
7051{
7a57f32a
PZ
7052 int queued, running, queue_flags =
7053 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7054 struct rq_flags rf;
7055 struct rq *rq;
7056
7057 rq = task_rq_lock(tsk, &rf);
1b1d6225 7058 update_rq_clock(rq);
ea86cb4b
VG
7059
7060 running = task_current(rq, tsk);
7061 queued = task_on_rq_queued(tsk);
7062
7063 if (queued)
7a57f32a 7064 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7065 if (running)
ea86cb4b
VG
7066 put_prev_task(rq, tsk);
7067
7068 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7069
da0c1e65 7070 if (queued)
7a57f32a 7071 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7072 if (running) {
03b7fad1 7073 set_next_task(rq, tsk);
2a4b03ff
VG
7074 /*
7075 * After changing group, the running task may have joined a
7076 * throttled one but it's still the running task. Trigger a
7077 * resched to make sure that task can still run.
7078 */
7079 resched_curr(rq);
7080 }
29f59db3 7081
eb580751 7082 task_rq_unlock(rq, tsk, &rf);
29f59db3 7083}
68318b8e 7084
a7c6d554 7085static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7086{
a7c6d554 7087 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7088}
7089
eb95419b
TH
7090static struct cgroup_subsys_state *
7091cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7092{
eb95419b
TH
7093 struct task_group *parent = css_tg(parent_css);
7094 struct task_group *tg;
68318b8e 7095
eb95419b 7096 if (!parent) {
68318b8e 7097 /* This is early initialization for the top cgroup */
07e06b01 7098 return &root_task_group.css;
68318b8e
SV
7099 }
7100
ec7dc8ac 7101 tg = sched_create_group(parent);
68318b8e
SV
7102 if (IS_ERR(tg))
7103 return ERR_PTR(-ENOMEM);
7104
68318b8e
SV
7105 return &tg->css;
7106}
7107
96b77745
KK
7108/* Expose task group only after completing cgroup initialization */
7109static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7110{
7111 struct task_group *tg = css_tg(css);
7112 struct task_group *parent = css_tg(css->parent);
7113
7114 if (parent)
7115 sched_online_group(tg, parent);
7226017a
QY
7116
7117#ifdef CONFIG_UCLAMP_TASK_GROUP
7118 /* Propagate the effective uclamp value for the new group */
7119 cpu_util_update_eff(css);
7120#endif
7121
96b77745
KK
7122 return 0;
7123}
7124
2f5177f0 7125static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7126{
eb95419b 7127 struct task_group *tg = css_tg(css);
ace783b9 7128
2f5177f0 7129 sched_offline_group(tg);
ace783b9
LZ
7130}
7131
eb95419b 7132static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7133{
eb95419b 7134 struct task_group *tg = css_tg(css);
68318b8e 7135
2f5177f0
PZ
7136 /*
7137 * Relies on the RCU grace period between css_released() and this.
7138 */
7139 sched_free_group(tg);
ace783b9
LZ
7140}
7141
ea86cb4b
VG
7142/*
7143 * This is called before wake_up_new_task(), therefore we really only
7144 * have to set its group bits, all the other stuff does not apply.
7145 */
b53202e6 7146static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7147{
ea86cb4b
VG
7148 struct rq_flags rf;
7149 struct rq *rq;
7150
7151 rq = task_rq_lock(task, &rf);
7152
80f5c1b8 7153 update_rq_clock(rq);
ea86cb4b
VG
7154 sched_change_group(task, TASK_SET_GROUP);
7155
7156 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7157}
7158
1f7dd3e5 7159static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7160{
bb9d97b6 7161 struct task_struct *task;
1f7dd3e5 7162 struct cgroup_subsys_state *css;
7dc603c9 7163 int ret = 0;
bb9d97b6 7164
1f7dd3e5 7165 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7166#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7167 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7168 return -EINVAL;
b68aa230 7169#endif
7dc603c9
PZ
7170 /*
7171 * Serialize against wake_up_new_task() such that if its
7172 * running, we're sure to observe its full state.
7173 */
7174 raw_spin_lock_irq(&task->pi_lock);
7175 /*
7176 * Avoid calling sched_move_task() before wake_up_new_task()
7177 * has happened. This would lead to problems with PELT, due to
7178 * move wanting to detach+attach while we're not attached yet.
7179 */
7180 if (task->state == TASK_NEW)
7181 ret = -EINVAL;
7182 raw_spin_unlock_irq(&task->pi_lock);
7183
7184 if (ret)
7185 break;
bb9d97b6 7186 }
7dc603c9 7187 return ret;
be367d09 7188}
68318b8e 7189
1f7dd3e5 7190static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7191{
bb9d97b6 7192 struct task_struct *task;
1f7dd3e5 7193 struct cgroup_subsys_state *css;
bb9d97b6 7194
1f7dd3e5 7195 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7196 sched_move_task(task);
68318b8e
SV
7197}
7198
2480c093 7199#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7200static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7201{
7202 struct cgroup_subsys_state *top_css = css;
7203 struct uclamp_se *uc_parent = NULL;
7204 struct uclamp_se *uc_se = NULL;
7205 unsigned int eff[UCLAMP_CNT];
0413d7f3 7206 enum uclamp_id clamp_id;
0b60ba2d
PB
7207 unsigned int clamps;
7208
7209 css_for_each_descendant_pre(css, top_css) {
7210 uc_parent = css_tg(css)->parent
7211 ? css_tg(css)->parent->uclamp : NULL;
7212
7213 for_each_clamp_id(clamp_id) {
7214 /* Assume effective clamps matches requested clamps */
7215 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7216 /* Cap effective clamps with parent's effective clamps */
7217 if (uc_parent &&
7218 eff[clamp_id] > uc_parent[clamp_id].value) {
7219 eff[clamp_id] = uc_parent[clamp_id].value;
7220 }
7221 }
7222 /* Ensure protection is always capped by limit */
7223 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7224
7225 /* Propagate most restrictive effective clamps */
7226 clamps = 0x0;
7227 uc_se = css_tg(css)->uclamp;
7228 for_each_clamp_id(clamp_id) {
7229 if (eff[clamp_id] == uc_se[clamp_id].value)
7230 continue;
7231 uc_se[clamp_id].value = eff[clamp_id];
7232 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7233 clamps |= (0x1 << clamp_id);
7234 }
babbe170 7235 if (!clamps) {
0b60ba2d 7236 css = css_rightmost_descendant(css);
babbe170
PB
7237 continue;
7238 }
7239
7240 /* Immediately update descendants RUNNABLE tasks */
7241 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7242 }
7243}
2480c093
PB
7244
7245/*
7246 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7247 * C expression. Since there is no way to convert a macro argument (N) into a
7248 * character constant, use two levels of macros.
7249 */
7250#define _POW10(exp) ((unsigned int)1e##exp)
7251#define POW10(exp) _POW10(exp)
7252
7253struct uclamp_request {
7254#define UCLAMP_PERCENT_SHIFT 2
7255#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7256 s64 percent;
7257 u64 util;
7258 int ret;
7259};
7260
7261static inline struct uclamp_request
7262capacity_from_percent(char *buf)
7263{
7264 struct uclamp_request req = {
7265 .percent = UCLAMP_PERCENT_SCALE,
7266 .util = SCHED_CAPACITY_SCALE,
7267 .ret = 0,
7268 };
7269
7270 buf = strim(buf);
7271 if (strcmp(buf, "max")) {
7272 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7273 &req.percent);
7274 if (req.ret)
7275 return req;
b562d140 7276 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7277 req.ret = -ERANGE;
7278 return req;
7279 }
7280
7281 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7282 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7283 }
7284
7285 return req;
7286}
7287
7288static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7289 size_t nbytes, loff_t off,
7290 enum uclamp_id clamp_id)
7291{
7292 struct uclamp_request req;
7293 struct task_group *tg;
7294
7295 req = capacity_from_percent(buf);
7296 if (req.ret)
7297 return req.ret;
7298
7299 mutex_lock(&uclamp_mutex);
7300 rcu_read_lock();
7301
7302 tg = css_tg(of_css(of));
7303 if (tg->uclamp_req[clamp_id].value != req.util)
7304 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7305
7306 /*
7307 * Because of not recoverable conversion rounding we keep track of the
7308 * exact requested value
7309 */
7310 tg->uclamp_pct[clamp_id] = req.percent;
7311
0b60ba2d
PB
7312 /* Update effective clamps to track the most restrictive value */
7313 cpu_util_update_eff(of_css(of));
7314
2480c093
PB
7315 rcu_read_unlock();
7316 mutex_unlock(&uclamp_mutex);
7317
7318 return nbytes;
7319}
7320
7321static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7322 char *buf, size_t nbytes,
7323 loff_t off)
7324{
7325 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7326}
7327
7328static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7329 char *buf, size_t nbytes,
7330 loff_t off)
7331{
7332 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7333}
7334
7335static inline void cpu_uclamp_print(struct seq_file *sf,
7336 enum uclamp_id clamp_id)
7337{
7338 struct task_group *tg;
7339 u64 util_clamp;
7340 u64 percent;
7341 u32 rem;
7342
7343 rcu_read_lock();
7344 tg = css_tg(seq_css(sf));
7345 util_clamp = tg->uclamp_req[clamp_id].value;
7346 rcu_read_unlock();
7347
7348 if (util_clamp == SCHED_CAPACITY_SCALE) {
7349 seq_puts(sf, "max\n");
7350 return;
7351 }
7352
7353 percent = tg->uclamp_pct[clamp_id];
7354 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7355 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7356}
7357
7358static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7359{
7360 cpu_uclamp_print(sf, UCLAMP_MIN);
7361 return 0;
7362}
7363
7364static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7365{
7366 cpu_uclamp_print(sf, UCLAMP_MAX);
7367 return 0;
7368}
7369#endif /* CONFIG_UCLAMP_TASK_GROUP */
7370
052f1dc7 7371#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7372static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7373 struct cftype *cftype, u64 shareval)
68318b8e 7374{
5b61d50a
KK
7375 if (shareval > scale_load_down(ULONG_MAX))
7376 shareval = MAX_SHARES;
182446d0 7377 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7378}
7379
182446d0
TH
7380static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7381 struct cftype *cft)
68318b8e 7382{
182446d0 7383 struct task_group *tg = css_tg(css);
68318b8e 7384
c8b28116 7385 return (u64) scale_load_down(tg->shares);
68318b8e 7386}
ab84d31e
PT
7387
7388#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7389static DEFINE_MUTEX(cfs_constraints_mutex);
7390
ab84d31e 7391const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7392static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7393
a790de99
PT
7394static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7395
ab84d31e
PT
7396static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7397{
56f570e5 7398 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7399 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7400
7401 if (tg == &root_task_group)
7402 return -EINVAL;
7403
7404 /*
7405 * Ensure we have at some amount of bandwidth every period. This is
7406 * to prevent reaching a state of large arrears when throttled via
7407 * entity_tick() resulting in prolonged exit starvation.
7408 */
7409 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7410 return -EINVAL;
7411
7412 /*
7413 * Likewise, bound things on the otherside by preventing insane quota
7414 * periods. This also allows us to normalize in computing quota
7415 * feasibility.
7416 */
7417 if (period > max_cfs_quota_period)
7418 return -EINVAL;
7419
0e59bdae
KT
7420 /*
7421 * Prevent race between setting of cfs_rq->runtime_enabled and
7422 * unthrottle_offline_cfs_rqs().
7423 */
7424 get_online_cpus();
a790de99
PT
7425 mutex_lock(&cfs_constraints_mutex);
7426 ret = __cfs_schedulable(tg, period, quota);
7427 if (ret)
7428 goto out_unlock;
7429
58088ad0 7430 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7431 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7432 /*
7433 * If we need to toggle cfs_bandwidth_used, off->on must occur
7434 * before making related changes, and on->off must occur afterwards
7435 */
7436 if (runtime_enabled && !runtime_was_enabled)
7437 cfs_bandwidth_usage_inc();
ab84d31e
PT
7438 raw_spin_lock_irq(&cfs_b->lock);
7439 cfs_b->period = ns_to_ktime(period);
7440 cfs_b->quota = quota;
58088ad0 7441
a9cf55b2 7442 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7443
7444 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7445 if (runtime_enabled)
7446 start_cfs_bandwidth(cfs_b);
d1ccc66d 7447
ab84d31e
PT
7448 raw_spin_unlock_irq(&cfs_b->lock);
7449
0e59bdae 7450 for_each_online_cpu(i) {
ab84d31e 7451 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7452 struct rq *rq = cfs_rq->rq;
8a8c69c3 7453 struct rq_flags rf;
ab84d31e 7454
8a8c69c3 7455 rq_lock_irq(rq, &rf);
58088ad0 7456 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7457 cfs_rq->runtime_remaining = 0;
671fd9da 7458
029632fb 7459 if (cfs_rq->throttled)
671fd9da 7460 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7461 rq_unlock_irq(rq, &rf);
ab84d31e 7462 }
1ee14e6c
BS
7463 if (runtime_was_enabled && !runtime_enabled)
7464 cfs_bandwidth_usage_dec();
a790de99
PT
7465out_unlock:
7466 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7467 put_online_cpus();
ab84d31e 7468
a790de99 7469 return ret;
ab84d31e
PT
7470}
7471
b1546edc 7472static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7473{
7474 u64 quota, period;
7475
029632fb 7476 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7477 if (cfs_quota_us < 0)
7478 quota = RUNTIME_INF;
1a8b4540 7479 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7480 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7481 else
7482 return -EINVAL;
ab84d31e
PT
7483
7484 return tg_set_cfs_bandwidth(tg, period, quota);
7485}
7486
b1546edc 7487static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7488{
7489 u64 quota_us;
7490
029632fb 7491 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7492 return -1;
7493
029632fb 7494 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7495 do_div(quota_us, NSEC_PER_USEC);
7496
7497 return quota_us;
7498}
7499
b1546edc 7500static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7501{
7502 u64 quota, period;
7503
1a8b4540
KK
7504 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7505 return -EINVAL;
7506
ab84d31e 7507 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7508 quota = tg->cfs_bandwidth.quota;
ab84d31e 7509
ab84d31e
PT
7510 return tg_set_cfs_bandwidth(tg, period, quota);
7511}
7512
b1546edc 7513static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7514{
7515 u64 cfs_period_us;
7516
029632fb 7517 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7518 do_div(cfs_period_us, NSEC_PER_USEC);
7519
7520 return cfs_period_us;
7521}
7522
182446d0
TH
7523static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7524 struct cftype *cft)
ab84d31e 7525{
182446d0 7526 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7527}
7528
182446d0
TH
7529static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7530 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7531{
182446d0 7532 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7533}
7534
182446d0
TH
7535static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7536 struct cftype *cft)
ab84d31e 7537{
182446d0 7538 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7539}
7540
182446d0
TH
7541static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7542 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7543{
182446d0 7544 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7545}
7546
a790de99
PT
7547struct cfs_schedulable_data {
7548 struct task_group *tg;
7549 u64 period, quota;
7550};
7551
7552/*
7553 * normalize group quota/period to be quota/max_period
7554 * note: units are usecs
7555 */
7556static u64 normalize_cfs_quota(struct task_group *tg,
7557 struct cfs_schedulable_data *d)
7558{
7559 u64 quota, period;
7560
7561 if (tg == d->tg) {
7562 period = d->period;
7563 quota = d->quota;
7564 } else {
7565 period = tg_get_cfs_period(tg);
7566 quota = tg_get_cfs_quota(tg);
7567 }
7568
7569 /* note: these should typically be equivalent */
7570 if (quota == RUNTIME_INF || quota == -1)
7571 return RUNTIME_INF;
7572
7573 return to_ratio(period, quota);
7574}
7575
7576static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7577{
7578 struct cfs_schedulable_data *d = data;
029632fb 7579 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7580 s64 quota = 0, parent_quota = -1;
7581
7582 if (!tg->parent) {
7583 quota = RUNTIME_INF;
7584 } else {
029632fb 7585 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7586
7587 quota = normalize_cfs_quota(tg, d);
9c58c79a 7588 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7589
7590 /*
c53593e5
TH
7591 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7592 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7593 * limit is set:
a790de99 7594 */
c53593e5
TH
7595 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7596 quota = min(quota, parent_quota);
7597 } else {
7598 if (quota == RUNTIME_INF)
7599 quota = parent_quota;
7600 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7601 return -EINVAL;
7602 }
a790de99 7603 }
9c58c79a 7604 cfs_b->hierarchical_quota = quota;
a790de99
PT
7605
7606 return 0;
7607}
7608
7609static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7610{
8277434e 7611 int ret;
a790de99
PT
7612 struct cfs_schedulable_data data = {
7613 .tg = tg,
7614 .period = period,
7615 .quota = quota,
7616 };
7617
7618 if (quota != RUNTIME_INF) {
7619 do_div(data.period, NSEC_PER_USEC);
7620 do_div(data.quota, NSEC_PER_USEC);
7621 }
7622
8277434e
PT
7623 rcu_read_lock();
7624 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7625 rcu_read_unlock();
7626
7627 return ret;
a790de99 7628}
e8da1b18 7629
a1f7164c 7630static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7631{
2da8ca82 7632 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7633 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7634
44ffc75b
TH
7635 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7636 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7637 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7638
3d6c50c2
YW
7639 if (schedstat_enabled() && tg != &root_task_group) {
7640 u64 ws = 0;
7641 int i;
7642
7643 for_each_possible_cpu(i)
7644 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7645
7646 seq_printf(sf, "wait_sum %llu\n", ws);
7647 }
7648
e8da1b18
NR
7649 return 0;
7650}
ab84d31e 7651#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7652#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7653
052f1dc7 7654#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7655static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7656 struct cftype *cft, s64 val)
6f505b16 7657{
182446d0 7658 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7659}
7660
182446d0
TH
7661static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7662 struct cftype *cft)
6f505b16 7663{
182446d0 7664 return sched_group_rt_runtime(css_tg(css));
6f505b16 7665}
d0b27fa7 7666
182446d0
TH
7667static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7668 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7669{
182446d0 7670 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7671}
7672
182446d0
TH
7673static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7674 struct cftype *cft)
d0b27fa7 7675{
182446d0 7676 return sched_group_rt_period(css_tg(css));
d0b27fa7 7677}
6d6bc0ad 7678#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7679
a1f7164c 7680static struct cftype cpu_legacy_files[] = {
052f1dc7 7681#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7682 {
7683 .name = "shares",
f4c753b7
PM
7684 .read_u64 = cpu_shares_read_u64,
7685 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7686 },
052f1dc7 7687#endif
ab84d31e
PT
7688#ifdef CONFIG_CFS_BANDWIDTH
7689 {
7690 .name = "cfs_quota_us",
7691 .read_s64 = cpu_cfs_quota_read_s64,
7692 .write_s64 = cpu_cfs_quota_write_s64,
7693 },
7694 {
7695 .name = "cfs_period_us",
7696 .read_u64 = cpu_cfs_period_read_u64,
7697 .write_u64 = cpu_cfs_period_write_u64,
7698 },
e8da1b18
NR
7699 {
7700 .name = "stat",
a1f7164c 7701 .seq_show = cpu_cfs_stat_show,
e8da1b18 7702 },
ab84d31e 7703#endif
052f1dc7 7704#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7705 {
9f0c1e56 7706 .name = "rt_runtime_us",
06ecb27c
PM
7707 .read_s64 = cpu_rt_runtime_read,
7708 .write_s64 = cpu_rt_runtime_write,
6f505b16 7709 },
d0b27fa7
PZ
7710 {
7711 .name = "rt_period_us",
f4c753b7
PM
7712 .read_u64 = cpu_rt_period_read_uint,
7713 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7714 },
2480c093
PB
7715#endif
7716#ifdef CONFIG_UCLAMP_TASK_GROUP
7717 {
7718 .name = "uclamp.min",
7719 .flags = CFTYPE_NOT_ON_ROOT,
7720 .seq_show = cpu_uclamp_min_show,
7721 .write = cpu_uclamp_min_write,
7722 },
7723 {
7724 .name = "uclamp.max",
7725 .flags = CFTYPE_NOT_ON_ROOT,
7726 .seq_show = cpu_uclamp_max_show,
7727 .write = cpu_uclamp_max_write,
7728 },
052f1dc7 7729#endif
d1ccc66d 7730 { } /* Terminate */
68318b8e
SV
7731};
7732
d41bf8c9
TH
7733static int cpu_extra_stat_show(struct seq_file *sf,
7734 struct cgroup_subsys_state *css)
0d593634 7735{
0d593634
TH
7736#ifdef CONFIG_CFS_BANDWIDTH
7737 {
d41bf8c9 7738 struct task_group *tg = css_tg(css);
0d593634
TH
7739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740 u64 throttled_usec;
7741
7742 throttled_usec = cfs_b->throttled_time;
7743 do_div(throttled_usec, NSEC_PER_USEC);
7744
7745 seq_printf(sf, "nr_periods %d\n"
7746 "nr_throttled %d\n"
7747 "throttled_usec %llu\n",
7748 cfs_b->nr_periods, cfs_b->nr_throttled,
7749 throttled_usec);
7750 }
7751#endif
7752 return 0;
7753}
7754
7755#ifdef CONFIG_FAIR_GROUP_SCHED
7756static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7757 struct cftype *cft)
7758{
7759 struct task_group *tg = css_tg(css);
7760 u64 weight = scale_load_down(tg->shares);
7761
7762 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7763}
7764
7765static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7766 struct cftype *cft, u64 weight)
7767{
7768 /*
7769 * cgroup weight knobs should use the common MIN, DFL and MAX
7770 * values which are 1, 100 and 10000 respectively. While it loses
7771 * a bit of range on both ends, it maps pretty well onto the shares
7772 * value used by scheduler and the round-trip conversions preserve
7773 * the original value over the entire range.
7774 */
7775 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7776 return -ERANGE;
7777
7778 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7779
7780 return sched_group_set_shares(css_tg(css), scale_load(weight));
7781}
7782
7783static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7784 struct cftype *cft)
7785{
7786 unsigned long weight = scale_load_down(css_tg(css)->shares);
7787 int last_delta = INT_MAX;
7788 int prio, delta;
7789
7790 /* find the closest nice value to the current weight */
7791 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7792 delta = abs(sched_prio_to_weight[prio] - weight);
7793 if (delta >= last_delta)
7794 break;
7795 last_delta = delta;
7796 }
7797
7798 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7799}
7800
7801static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7802 struct cftype *cft, s64 nice)
7803{
7804 unsigned long weight;
7281c8de 7805 int idx;
0d593634
TH
7806
7807 if (nice < MIN_NICE || nice > MAX_NICE)
7808 return -ERANGE;
7809
7281c8de
PZ
7810 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7811 idx = array_index_nospec(idx, 40);
7812 weight = sched_prio_to_weight[idx];
7813
0d593634
TH
7814 return sched_group_set_shares(css_tg(css), scale_load(weight));
7815}
7816#endif
7817
7818static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7819 long period, long quota)
7820{
7821 if (quota < 0)
7822 seq_puts(sf, "max");
7823 else
7824 seq_printf(sf, "%ld", quota);
7825
7826 seq_printf(sf, " %ld\n", period);
7827}
7828
7829/* caller should put the current value in *@periodp before calling */
7830static int __maybe_unused cpu_period_quota_parse(char *buf,
7831 u64 *periodp, u64 *quotap)
7832{
7833 char tok[21]; /* U64_MAX */
7834
4c47acd8 7835 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7836 return -EINVAL;
7837
7838 *periodp *= NSEC_PER_USEC;
7839
7840 if (sscanf(tok, "%llu", quotap))
7841 *quotap *= NSEC_PER_USEC;
7842 else if (!strcmp(tok, "max"))
7843 *quotap = RUNTIME_INF;
7844 else
7845 return -EINVAL;
7846
7847 return 0;
7848}
7849
7850#ifdef CONFIG_CFS_BANDWIDTH
7851static int cpu_max_show(struct seq_file *sf, void *v)
7852{
7853 struct task_group *tg = css_tg(seq_css(sf));
7854
7855 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7856 return 0;
7857}
7858
7859static ssize_t cpu_max_write(struct kernfs_open_file *of,
7860 char *buf, size_t nbytes, loff_t off)
7861{
7862 struct task_group *tg = css_tg(of_css(of));
7863 u64 period = tg_get_cfs_period(tg);
7864 u64 quota;
7865 int ret;
7866
7867 ret = cpu_period_quota_parse(buf, &period, &quota);
7868 if (!ret)
7869 ret = tg_set_cfs_bandwidth(tg, period, quota);
7870 return ret ?: nbytes;
7871}
7872#endif
7873
7874static struct cftype cpu_files[] = {
0d593634
TH
7875#ifdef CONFIG_FAIR_GROUP_SCHED
7876 {
7877 .name = "weight",
7878 .flags = CFTYPE_NOT_ON_ROOT,
7879 .read_u64 = cpu_weight_read_u64,
7880 .write_u64 = cpu_weight_write_u64,
7881 },
7882 {
7883 .name = "weight.nice",
7884 .flags = CFTYPE_NOT_ON_ROOT,
7885 .read_s64 = cpu_weight_nice_read_s64,
7886 .write_s64 = cpu_weight_nice_write_s64,
7887 },
7888#endif
7889#ifdef CONFIG_CFS_BANDWIDTH
7890 {
7891 .name = "max",
7892 .flags = CFTYPE_NOT_ON_ROOT,
7893 .seq_show = cpu_max_show,
7894 .write = cpu_max_write,
7895 },
2480c093
PB
7896#endif
7897#ifdef CONFIG_UCLAMP_TASK_GROUP
7898 {
7899 .name = "uclamp.min",
7900 .flags = CFTYPE_NOT_ON_ROOT,
7901 .seq_show = cpu_uclamp_min_show,
7902 .write = cpu_uclamp_min_write,
7903 },
7904 {
7905 .name = "uclamp.max",
7906 .flags = CFTYPE_NOT_ON_ROOT,
7907 .seq_show = cpu_uclamp_max_show,
7908 .write = cpu_uclamp_max_write,
7909 },
0d593634
TH
7910#endif
7911 { } /* terminate */
7912};
7913
073219e9 7914struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7915 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7916 .css_online = cpu_cgroup_css_online,
2f5177f0 7917 .css_released = cpu_cgroup_css_released,
92fb9748 7918 .css_free = cpu_cgroup_css_free,
d41bf8c9 7919 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7920 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7921 .can_attach = cpu_cgroup_can_attach,
7922 .attach = cpu_cgroup_attach,
a1f7164c 7923 .legacy_cftypes = cpu_legacy_files,
0d593634 7924 .dfl_cftypes = cpu_files,
b38e42e9 7925 .early_init = true,
0d593634 7926 .threaded = true,
68318b8e
SV
7927};
7928
052f1dc7 7929#endif /* CONFIG_CGROUP_SCHED */
d842de87 7930
b637a328
PM
7931void dump_cpu_task(int cpu)
7932{
7933 pr_info("Task dump for CPU %d:\n", cpu);
7934 sched_show_task(cpu_curr(cpu));
7935}
ed82b8a1
AK
7936
7937/*
7938 * Nice levels are multiplicative, with a gentle 10% change for every
7939 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7940 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7941 * that remained on nice 0.
7942 *
7943 * The "10% effect" is relative and cumulative: from _any_ nice level,
7944 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7945 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7946 * If a task goes up by ~10% and another task goes down by ~10% then
7947 * the relative distance between them is ~25%.)
7948 */
7949const int sched_prio_to_weight[40] = {
7950 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7951 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7952 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7953 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7954 /* 0 */ 1024, 820, 655, 526, 423,
7955 /* 5 */ 335, 272, 215, 172, 137,
7956 /* 10 */ 110, 87, 70, 56, 45,
7957 /* 15 */ 36, 29, 23, 18, 15,
7958};
7959
7960/*
7961 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7962 *
7963 * In cases where the weight does not change often, we can use the
7964 * precalculated inverse to speed up arithmetics by turning divisions
7965 * into multiplications:
7966 */
7967const u32 sched_prio_to_wmult[40] = {
7968 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7969 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7970 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7971 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7972 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7973 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7974 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7975 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7976};
14a7405b
IM
7977
7978#undef CREATE_TRACE_POINTS