Merge branch 'timers/core' into sched/hrtimers
[linux-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
6201b4d6 621int get_nohz_timer_target(int pinned)
83cd4fe2
VP
622{
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
6201b4d6
VK
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
057f3fad 630 rcu_read_lock();
83cd4fe2 631 for_each_domain(cpu, sd) {
057f3fad
PZ
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
83cd4fe2 638 }
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7
KT
1003/*
1004 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1005 */
cb469845
SR
1006static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1007 const struct sched_class *prev_class,
da7a735e 1008 int oldprio)
cb469845
SR
1009{
1010 if (prev_class != p->sched_class) {
1011 if (prev_class->switched_from)
da7a735e 1012 prev_class->switched_from(rq, p);
67dfa1b7 1013 /* Possble rq->lock 'hole'. */
da7a735e 1014 p->sched_class->switched_to(rq, p);
2d3d891d 1015 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1016 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1017}
1018
029632fb 1019void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1020{
1021 const struct sched_class *class;
1022
1023 if (p->sched_class == rq->curr->sched_class) {
1024 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1025 } else {
1026 for_each_class(class) {
1027 if (class == rq->curr->sched_class)
1028 break;
1029 if (class == p->sched_class) {
8875125e 1030 resched_curr(rq);
1e5a7405
PZ
1031 break;
1032 }
1033 }
1034 }
1035
1036 /*
1037 * A queue event has occurred, and we're going to schedule. In
1038 * this case, we can save a useless back to back clock update.
1039 */
da0c1e65 1040 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1041 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1042}
1043
1da177e4 1044#ifdef CONFIG_SMP
dd41f596 1045void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1046{
e2912009
PZ
1047#ifdef CONFIG_SCHED_DEBUG
1048 /*
1049 * We should never call set_task_cpu() on a blocked task,
1050 * ttwu() will sort out the placement.
1051 */
077614ee 1052 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1053 !p->on_rq);
0122ec5b
PZ
1054
1055#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1056 /*
1057 * The caller should hold either p->pi_lock or rq->lock, when changing
1058 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1059 *
1060 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1061 * see task_group().
6c6c54e1
PZ
1062 *
1063 * Furthermore, all task_rq users should acquire both locks, see
1064 * task_rq_lock().
1065 */
0122ec5b
PZ
1066 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1067 lockdep_is_held(&task_rq(p)->lock)));
1068#endif
e2912009
PZ
1069#endif
1070
de1d7286 1071 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1072
0c69774e 1073 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1074 if (p->sched_class->migrate_task_rq)
1075 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1076 p->se.nr_migrations++;
86038c5e 1077 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1078 }
dd41f596
IM
1079
1080 __set_task_cpu(p, new_cpu);
c65cc870
IM
1081}
1082
ac66f547
PZ
1083static void __migrate_swap_task(struct task_struct *p, int cpu)
1084{
da0c1e65 1085 if (task_on_rq_queued(p)) {
ac66f547
PZ
1086 struct rq *src_rq, *dst_rq;
1087
1088 src_rq = task_rq(p);
1089 dst_rq = cpu_rq(cpu);
1090
1091 deactivate_task(src_rq, p, 0);
1092 set_task_cpu(p, cpu);
1093 activate_task(dst_rq, p, 0);
1094 check_preempt_curr(dst_rq, p, 0);
1095 } else {
1096 /*
1097 * Task isn't running anymore; make it appear like we migrated
1098 * it before it went to sleep. This means on wakeup we make the
1099 * previous cpu our targer instead of where it really is.
1100 */
1101 p->wake_cpu = cpu;
1102 }
1103}
1104
1105struct migration_swap_arg {
1106 struct task_struct *src_task, *dst_task;
1107 int src_cpu, dst_cpu;
1108};
1109
1110static int migrate_swap_stop(void *data)
1111{
1112 struct migration_swap_arg *arg = data;
1113 struct rq *src_rq, *dst_rq;
1114 int ret = -EAGAIN;
1115
1116 src_rq = cpu_rq(arg->src_cpu);
1117 dst_rq = cpu_rq(arg->dst_cpu);
1118
74602315
PZ
1119 double_raw_lock(&arg->src_task->pi_lock,
1120 &arg->dst_task->pi_lock);
ac66f547
PZ
1121 double_rq_lock(src_rq, dst_rq);
1122 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1123 goto unlock;
1124
1125 if (task_cpu(arg->src_task) != arg->src_cpu)
1126 goto unlock;
1127
1128 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1129 goto unlock;
1130
1131 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1132 goto unlock;
1133
1134 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1135 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1136
1137 ret = 0;
1138
1139unlock:
1140 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1141 raw_spin_unlock(&arg->dst_task->pi_lock);
1142 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1143
1144 return ret;
1145}
1146
1147/*
1148 * Cross migrate two tasks
1149 */
1150int migrate_swap(struct task_struct *cur, struct task_struct *p)
1151{
1152 struct migration_swap_arg arg;
1153 int ret = -EINVAL;
1154
ac66f547
PZ
1155 arg = (struct migration_swap_arg){
1156 .src_task = cur,
1157 .src_cpu = task_cpu(cur),
1158 .dst_task = p,
1159 .dst_cpu = task_cpu(p),
1160 };
1161
1162 if (arg.src_cpu == arg.dst_cpu)
1163 goto out;
1164
6acce3ef
PZ
1165 /*
1166 * These three tests are all lockless; this is OK since all of them
1167 * will be re-checked with proper locks held further down the line.
1168 */
ac66f547
PZ
1169 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1170 goto out;
1171
1172 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1173 goto out;
1174
1175 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1176 goto out;
1177
286549dc 1178 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1179 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1180
1181out:
ac66f547
PZ
1182 return ret;
1183}
1184
969c7921 1185struct migration_arg {
36c8b586 1186 struct task_struct *task;
1da177e4 1187 int dest_cpu;
70b97a7f 1188};
1da177e4 1189
969c7921
TH
1190static int migration_cpu_stop(void *data);
1191
1da177e4
LT
1192/*
1193 * wait_task_inactive - wait for a thread to unschedule.
1194 *
85ba2d86
RM
1195 * If @match_state is nonzero, it's the @p->state value just checked and
1196 * not expected to change. If it changes, i.e. @p might have woken up,
1197 * then return zero. When we succeed in waiting for @p to be off its CPU,
1198 * we return a positive number (its total switch count). If a second call
1199 * a short while later returns the same number, the caller can be sure that
1200 * @p has remained unscheduled the whole time.
1201 *
1da177e4
LT
1202 * The caller must ensure that the task *will* unschedule sometime soon,
1203 * else this function might spin for a *long* time. This function can't
1204 * be called with interrupts off, or it may introduce deadlock with
1205 * smp_call_function() if an IPI is sent by the same process we are
1206 * waiting to become inactive.
1207 */
85ba2d86 1208unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1209{
1210 unsigned long flags;
da0c1e65 1211 int running, queued;
85ba2d86 1212 unsigned long ncsw;
70b97a7f 1213 struct rq *rq;
1da177e4 1214
3a5c359a
AK
1215 for (;;) {
1216 /*
1217 * We do the initial early heuristics without holding
1218 * any task-queue locks at all. We'll only try to get
1219 * the runqueue lock when things look like they will
1220 * work out!
1221 */
1222 rq = task_rq(p);
fa490cfd 1223
3a5c359a
AK
1224 /*
1225 * If the task is actively running on another CPU
1226 * still, just relax and busy-wait without holding
1227 * any locks.
1228 *
1229 * NOTE! Since we don't hold any locks, it's not
1230 * even sure that "rq" stays as the right runqueue!
1231 * But we don't care, since "task_running()" will
1232 * return false if the runqueue has changed and p
1233 * is actually now running somewhere else!
1234 */
85ba2d86
RM
1235 while (task_running(rq, p)) {
1236 if (match_state && unlikely(p->state != match_state))
1237 return 0;
3a5c359a 1238 cpu_relax();
85ba2d86 1239 }
fa490cfd 1240
3a5c359a
AK
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
27a9da65 1247 trace_sched_wait_task(p);
3a5c359a 1248 running = task_running(rq, p);
da0c1e65 1249 queued = task_on_rq_queued(p);
85ba2d86 1250 ncsw = 0;
f31e11d8 1251 if (!match_state || p->state == match_state)
93dcf55f 1252 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1253 task_rq_unlock(rq, p, &flags);
fa490cfd 1254
85ba2d86
RM
1255 /*
1256 * If it changed from the expected state, bail out now.
1257 */
1258 if (unlikely(!ncsw))
1259 break;
1260
3a5c359a
AK
1261 /*
1262 * Was it really running after all now that we
1263 * checked with the proper locks actually held?
1264 *
1265 * Oops. Go back and try again..
1266 */
1267 if (unlikely(running)) {
1268 cpu_relax();
1269 continue;
1270 }
fa490cfd 1271
3a5c359a
AK
1272 /*
1273 * It's not enough that it's not actively running,
1274 * it must be off the runqueue _entirely_, and not
1275 * preempted!
1276 *
80dd99b3 1277 * So if it was still runnable (but just not actively
3a5c359a
AK
1278 * running right now), it's preempted, and we should
1279 * yield - it could be a while.
1280 */
da0c1e65 1281 if (unlikely(queued)) {
8eb90c30
TG
1282 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1283
1284 set_current_state(TASK_UNINTERRUPTIBLE);
1285 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1286 continue;
1287 }
fa490cfd 1288
3a5c359a
AK
1289 /*
1290 * Ahh, all good. It wasn't running, and it wasn't
1291 * runnable, which means that it will never become
1292 * running in the future either. We're all done!
1293 */
1294 break;
1295 }
85ba2d86
RM
1296
1297 return ncsw;
1da177e4
LT
1298}
1299
1300/***
1301 * kick_process - kick a running thread to enter/exit the kernel
1302 * @p: the to-be-kicked thread
1303 *
1304 * Cause a process which is running on another CPU to enter
1305 * kernel-mode, without any delay. (to get signals handled.)
1306 *
25985edc 1307 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1308 * because all it wants to ensure is that the remote task enters
1309 * the kernel. If the IPI races and the task has been migrated
1310 * to another CPU then no harm is done and the purpose has been
1311 * achieved as well.
1312 */
36c8b586 1313void kick_process(struct task_struct *p)
1da177e4
LT
1314{
1315 int cpu;
1316
1317 preempt_disable();
1318 cpu = task_cpu(p);
1319 if ((cpu != smp_processor_id()) && task_curr(p))
1320 smp_send_reschedule(cpu);
1321 preempt_enable();
1322}
b43e3521 1323EXPORT_SYMBOL_GPL(kick_process);
476d139c 1324#endif /* CONFIG_SMP */
1da177e4 1325
970b13ba 1326#ifdef CONFIG_SMP
30da688e 1327/*
013fdb80 1328 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1329 */
5da9a0fb
PZ
1330static int select_fallback_rq(int cpu, struct task_struct *p)
1331{
aa00d89c
TC
1332 int nid = cpu_to_node(cpu);
1333 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1334 enum { cpuset, possible, fail } state = cpuset;
1335 int dest_cpu;
5da9a0fb 1336
aa00d89c
TC
1337 /*
1338 * If the node that the cpu is on has been offlined, cpu_to_node()
1339 * will return -1. There is no cpu on the node, and we should
1340 * select the cpu on the other node.
1341 */
1342 if (nid != -1) {
1343 nodemask = cpumask_of_node(nid);
1344
1345 /* Look for allowed, online CPU in same node. */
1346 for_each_cpu(dest_cpu, nodemask) {
1347 if (!cpu_online(dest_cpu))
1348 continue;
1349 if (!cpu_active(dest_cpu))
1350 continue;
1351 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1352 return dest_cpu;
1353 }
2baab4e9 1354 }
5da9a0fb 1355
2baab4e9
PZ
1356 for (;;) {
1357 /* Any allowed, online CPU? */
e3831edd 1358 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1359 if (!cpu_online(dest_cpu))
1360 continue;
1361 if (!cpu_active(dest_cpu))
1362 continue;
1363 goto out;
1364 }
5da9a0fb 1365
2baab4e9
PZ
1366 switch (state) {
1367 case cpuset:
1368 /* No more Mr. Nice Guy. */
1369 cpuset_cpus_allowed_fallback(p);
1370 state = possible;
1371 break;
1372
1373 case possible:
1374 do_set_cpus_allowed(p, cpu_possible_mask);
1375 state = fail;
1376 break;
1377
1378 case fail:
1379 BUG();
1380 break;
1381 }
1382 }
1383
1384out:
1385 if (state != cpuset) {
1386 /*
1387 * Don't tell them about moving exiting tasks or
1388 * kernel threads (both mm NULL), since they never
1389 * leave kernel.
1390 */
1391 if (p->mm && printk_ratelimit()) {
aac74dc4 1392 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1393 task_pid_nr(p), p->comm, cpu);
1394 }
5da9a0fb
PZ
1395 }
1396
1397 return dest_cpu;
1398}
1399
e2912009 1400/*
013fdb80 1401 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1402 */
970b13ba 1403static inline
ac66f547 1404int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1405{
6c1d9410
WL
1406 if (p->nr_cpus_allowed > 1)
1407 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1408
1409 /*
1410 * In order not to call set_task_cpu() on a blocking task we need
1411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412 * cpu.
1413 *
1414 * Since this is common to all placement strategies, this lives here.
1415 *
1416 * [ this allows ->select_task() to simply return task_cpu(p) and
1417 * not worry about this generic constraint ]
1418 */
fa17b507 1419 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1420 !cpu_online(cpu)))
5da9a0fb 1421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1422
1423 return cpu;
970b13ba 1424}
09a40af5
MG
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428 s64 diff = sample - *avg;
1429 *avg += diff >> 3;
1430}
970b13ba
PZ
1431#endif
1432
d7c01d27 1433static void
b84cb5df 1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1435{
d7c01d27 1436#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1437 struct rq *rq = this_rq();
1438
d7c01d27
PZ
1439#ifdef CONFIG_SMP
1440 int this_cpu = smp_processor_id();
1441
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 schedstat_inc(p, se.statistics.nr_wakeups_local);
1445 } else {
1446 struct sched_domain *sd;
1447
1448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1449 rcu_read_lock();
d7c01d27
PZ
1450 for_each_domain(this_cpu, sd) {
1451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452 schedstat_inc(sd, ttwu_wake_remote);
1453 break;
1454 }
1455 }
057f3fad 1456 rcu_read_unlock();
d7c01d27 1457 }
f339b9dc
PZ
1458
1459 if (wake_flags & WF_MIGRATED)
1460 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
d7c01d27
PZ
1462#endif /* CONFIG_SMP */
1463
1464 schedstat_inc(rq, ttwu_count);
9ed3811a 1465 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1466
1467 if (wake_flags & WF_SYNC)
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1469
d7c01d27
PZ
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
9ed3811a 1475 activate_task(rq, p, en_flags);
da0c1e65 1476 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1477
1478 /* if a worker is waking up, notify workqueue */
1479 if (p->flags & PF_WQ_WORKER)
1480 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1481}
1482
23f41eeb
PZ
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
89363381 1486static void
23f41eeb 1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1488{
9ed3811a 1489 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1490 trace_sched_wakeup(p, true);
9ed3811a
TH
1491
1492 p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494 if (p->sched_class->task_woken)
1495 p->sched_class->task_woken(rq, p);
1496
e69c6341 1497 if (rq->idle_stamp) {
78becc27 1498 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1499 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1500
abfafa54
JL
1501 update_avg(&rq->avg_idle, delta);
1502
1503 if (rq->avg_idle > max)
9ed3811a 1504 rq->avg_idle = max;
abfafa54 1505
9ed3811a
TH
1506 rq->idle_stamp = 0;
1507 }
1508#endif
1509}
1510
c05fbafb
PZ
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515 if (p->sched_contributes_to_load)
1516 rq->nr_uninterruptible--;
1517#endif
1518
1519 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520 ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531 struct rq *rq;
1532 int ret = 0;
1533
1534 rq = __task_rq_lock(p);
da0c1e65 1535 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1536 /* check_preempt_curr() may use rq clock */
1537 update_rq_clock(rq);
c05fbafb
PZ
1538 ttwu_do_wakeup(rq, p, wake_flags);
1539 ret = 1;
1540 }
1541 __task_rq_unlock(rq);
1542
1543 return ret;
1544}
1545
317f3941 1546#ifdef CONFIG_SMP
e3baac47 1547void sched_ttwu_pending(void)
317f3941
PZ
1548{
1549 struct rq *rq = this_rq();
fa14ff4a
PZ
1550 struct llist_node *llist = llist_del_all(&rq->wake_list);
1551 struct task_struct *p;
e3baac47 1552 unsigned long flags;
317f3941 1553
e3baac47
PZ
1554 if (!llist)
1555 return;
1556
1557 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1558
fa14ff4a
PZ
1559 while (llist) {
1560 p = llist_entry(llist, struct task_struct, wake_entry);
1561 llist = llist_next(llist);
317f3941
PZ
1562 ttwu_do_activate(rq, p, 0);
1563 }
1564
e3baac47 1565 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1566}
1567
1568void scheduler_ipi(void)
1569{
f27dde8d
PZ
1570 /*
1571 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573 * this IPI.
1574 */
8cb75e0c 1575 preempt_fold_need_resched();
f27dde8d 1576
fd2ac4f4 1577 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1578 return;
1579
1580 /*
1581 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582 * traditionally all their work was done from the interrupt return
1583 * path. Now that we actually do some work, we need to make sure
1584 * we do call them.
1585 *
1586 * Some archs already do call them, luckily irq_enter/exit nest
1587 * properly.
1588 *
1589 * Arguably we should visit all archs and update all handlers,
1590 * however a fair share of IPIs are still resched only so this would
1591 * somewhat pessimize the simple resched case.
1592 */
1593 irq_enter();
fa14ff4a 1594 sched_ttwu_pending();
ca38062e
SS
1595
1596 /*
1597 * Check if someone kicked us for doing the nohz idle load balance.
1598 */
873b4c65 1599 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1600 this_rq()->idle_balance = 1;
ca38062e 1601 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1602 }
c5d753a5 1603 irq_exit();
317f3941
PZ
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
e3baac47
PZ
1608 struct rq *rq = cpu_rq(cpu);
1609
1610 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611 if (!set_nr_if_polling(rq->idle))
1612 smp_send_reschedule(cpu);
1613 else
1614 trace_sched_wake_idle_without_ipi(cpu);
1615 }
317f3941 1616}
d6aa8f85 1617
f6be8af1
CL
1618void wake_up_if_idle(int cpu)
1619{
1620 struct rq *rq = cpu_rq(cpu);
1621 unsigned long flags;
1622
fd7de1e8
AL
1623 rcu_read_lock();
1624
1625 if (!is_idle_task(rcu_dereference(rq->curr)))
1626 goto out;
f6be8af1
CL
1627
1628 if (set_nr_if_polling(rq->idle)) {
1629 trace_sched_wake_idle_without_ipi(cpu);
1630 } else {
1631 raw_spin_lock_irqsave(&rq->lock, flags);
1632 if (is_idle_task(rq->curr))
1633 smp_send_reschedule(cpu);
1634 /* Else cpu is not in idle, do nothing here */
1635 raw_spin_unlock_irqrestore(&rq->lock, flags);
1636 }
fd7de1e8
AL
1637
1638out:
1639 rcu_read_unlock();
f6be8af1
CL
1640}
1641
39be3501 1642bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1643{
1644 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1645}
d6aa8f85 1646#endif /* CONFIG_SMP */
317f3941 1647
c05fbafb
PZ
1648static void ttwu_queue(struct task_struct *p, int cpu)
1649{
1650 struct rq *rq = cpu_rq(cpu);
1651
17d9f311 1652#if defined(CONFIG_SMP)
39be3501 1653 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1654 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1655 ttwu_queue_remote(p, cpu);
1656 return;
1657 }
1658#endif
1659
c05fbafb
PZ
1660 raw_spin_lock(&rq->lock);
1661 ttwu_do_activate(rq, p, 0);
1662 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1663}
1664
1665/**
1da177e4 1666 * try_to_wake_up - wake up a thread
9ed3811a 1667 * @p: the thread to be awakened
1da177e4 1668 * @state: the mask of task states that can be woken
9ed3811a 1669 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1670 *
1671 * Put it on the run-queue if it's not already there. The "current"
1672 * thread is always on the run-queue (except when the actual
1673 * re-schedule is in progress), and as such you're allowed to do
1674 * the simpler "current->state = TASK_RUNNING" to mark yourself
1675 * runnable without the overhead of this.
1676 *
e69f6186 1677 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1678 * or @state didn't match @p's state.
1da177e4 1679 */
e4a52bcb
PZ
1680static int
1681try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1682{
1da177e4 1683 unsigned long flags;
c05fbafb 1684 int cpu, success = 0;
2398f2c6 1685
e0acd0a6
ON
1686 /*
1687 * If we are going to wake up a thread waiting for CONDITION we
1688 * need to ensure that CONDITION=1 done by the caller can not be
1689 * reordered with p->state check below. This pairs with mb() in
1690 * set_current_state() the waiting thread does.
1691 */
1692 smp_mb__before_spinlock();
013fdb80 1693 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1694 if (!(p->state & state))
1da177e4
LT
1695 goto out;
1696
c05fbafb 1697 success = 1; /* we're going to change ->state */
1da177e4 1698 cpu = task_cpu(p);
1da177e4 1699
c05fbafb
PZ
1700 if (p->on_rq && ttwu_remote(p, wake_flags))
1701 goto stat;
1da177e4 1702
1da177e4 1703#ifdef CONFIG_SMP
e9c84311 1704 /*
c05fbafb
PZ
1705 * If the owning (remote) cpu is still in the middle of schedule() with
1706 * this task as prev, wait until its done referencing the task.
e9c84311 1707 */
f3e94786 1708 while (p->on_cpu)
e4a52bcb 1709 cpu_relax();
0970d299 1710 /*
e4a52bcb 1711 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1712 */
e4a52bcb 1713 smp_rmb();
1da177e4 1714
a8e4f2ea 1715 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1716 p->state = TASK_WAKING;
e7693a36 1717
e4a52bcb 1718 if (p->sched_class->task_waking)
74f8e4b2 1719 p->sched_class->task_waking(p);
efbbd05a 1720
ac66f547 1721 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1722 if (task_cpu(p) != cpu) {
1723 wake_flags |= WF_MIGRATED;
e4a52bcb 1724 set_task_cpu(p, cpu);
f339b9dc 1725 }
1da177e4 1726#endif /* CONFIG_SMP */
1da177e4 1727
c05fbafb
PZ
1728 ttwu_queue(p, cpu);
1729stat:
b84cb5df 1730 ttwu_stat(p, cpu, wake_flags);
1da177e4 1731out:
013fdb80 1732 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1733
1734 return success;
1735}
1736
21aa9af0
TH
1737/**
1738 * try_to_wake_up_local - try to wake up a local task with rq lock held
1739 * @p: the thread to be awakened
1740 *
2acca55e 1741 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1742 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1743 * the current task.
21aa9af0
TH
1744 */
1745static void try_to_wake_up_local(struct task_struct *p)
1746{
1747 struct rq *rq = task_rq(p);
21aa9af0 1748
383efcd0
TH
1749 if (WARN_ON_ONCE(rq != this_rq()) ||
1750 WARN_ON_ONCE(p == current))
1751 return;
1752
21aa9af0
TH
1753 lockdep_assert_held(&rq->lock);
1754
2acca55e
PZ
1755 if (!raw_spin_trylock(&p->pi_lock)) {
1756 raw_spin_unlock(&rq->lock);
1757 raw_spin_lock(&p->pi_lock);
1758 raw_spin_lock(&rq->lock);
1759 }
1760
21aa9af0 1761 if (!(p->state & TASK_NORMAL))
2acca55e 1762 goto out;
21aa9af0 1763
da0c1e65 1764 if (!task_on_rq_queued(p))
d7c01d27
PZ
1765 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1766
23f41eeb 1767 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1768 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1769out:
1770 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1771}
1772
50fa610a
DH
1773/**
1774 * wake_up_process - Wake up a specific process
1775 * @p: The process to be woken up.
1776 *
1777 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1778 * processes.
1779 *
1780 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1781 *
1782 * It may be assumed that this function implies a write memory barrier before
1783 * changing the task state if and only if any tasks are woken up.
1784 */
7ad5b3a5 1785int wake_up_process(struct task_struct *p)
1da177e4 1786{
9067ac85
ON
1787 WARN_ON(task_is_stopped_or_traced(p));
1788 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1789}
1da177e4
LT
1790EXPORT_SYMBOL(wake_up_process);
1791
7ad5b3a5 1792int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1793{
1794 return try_to_wake_up(p, state, 0);
1795}
1796
a5e7be3b
JL
1797/*
1798 * This function clears the sched_dl_entity static params.
1799 */
1800void __dl_clear_params(struct task_struct *p)
1801{
1802 struct sched_dl_entity *dl_se = &p->dl;
1803
1804 dl_se->dl_runtime = 0;
1805 dl_se->dl_deadline = 0;
1806 dl_se->dl_period = 0;
1807 dl_se->flags = 0;
1808 dl_se->dl_bw = 0;
40767b0d
PZ
1809
1810 dl_se->dl_throttled = 0;
1811 dl_se->dl_new = 1;
1812 dl_se->dl_yielded = 0;
a5e7be3b
JL
1813}
1814
1da177e4
LT
1815/*
1816 * Perform scheduler related setup for a newly forked process p.
1817 * p is forked by current.
dd41f596
IM
1818 *
1819 * __sched_fork() is basic setup used by init_idle() too:
1820 */
5e1576ed 1821static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1822{
fd2f4419
PZ
1823 p->on_rq = 0;
1824
1825 p->se.on_rq = 0;
dd41f596
IM
1826 p->se.exec_start = 0;
1827 p->se.sum_exec_runtime = 0;
f6cf891c 1828 p->se.prev_sum_exec_runtime = 0;
6c594c21 1829 p->se.nr_migrations = 0;
da7a735e 1830 p->se.vruntime = 0;
bb04159d
KT
1831#ifdef CONFIG_SMP
1832 p->se.avg.decay_count = 0;
1833#endif
fd2f4419 1834 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1835
1836#ifdef CONFIG_SCHEDSTATS
41acab88 1837 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1838#endif
476d139c 1839
aab03e05 1840 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1841 init_dl_task_timer(&p->dl);
a5e7be3b 1842 __dl_clear_params(p);
aab03e05 1843
fa717060 1844 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1845
e107be36
AK
1846#ifdef CONFIG_PREEMPT_NOTIFIERS
1847 INIT_HLIST_HEAD(&p->preempt_notifiers);
1848#endif
cbee9f88
PZ
1849
1850#ifdef CONFIG_NUMA_BALANCING
1851 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1852 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1853 p->mm->numa_scan_seq = 0;
1854 }
1855
5e1576ed
RR
1856 if (clone_flags & CLONE_VM)
1857 p->numa_preferred_nid = current->numa_preferred_nid;
1858 else
1859 p->numa_preferred_nid = -1;
1860
cbee9f88
PZ
1861 p->node_stamp = 0ULL;
1862 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1863 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1864 p->numa_work.next = &p->numa_work;
44dba3d5 1865 p->numa_faults = NULL;
7e2703e6
RR
1866 p->last_task_numa_placement = 0;
1867 p->last_sum_exec_runtime = 0;
8c8a743c 1868
8c8a743c 1869 p->numa_group = NULL;
cbee9f88 1870#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1871}
1872
1a687c2e 1873#ifdef CONFIG_NUMA_BALANCING
3105b86a 1874#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1875void set_numabalancing_state(bool enabled)
1876{
1877 if (enabled)
1878 sched_feat_set("NUMA");
1879 else
1880 sched_feat_set("NO_NUMA");
1881}
3105b86a
MG
1882#else
1883__read_mostly bool numabalancing_enabled;
1884
1885void set_numabalancing_state(bool enabled)
1886{
1887 numabalancing_enabled = enabled;
dd41f596 1888}
3105b86a 1889#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1890
1891#ifdef CONFIG_PROC_SYSCTL
1892int sysctl_numa_balancing(struct ctl_table *table, int write,
1893 void __user *buffer, size_t *lenp, loff_t *ppos)
1894{
1895 struct ctl_table t;
1896 int err;
1897 int state = numabalancing_enabled;
1898
1899 if (write && !capable(CAP_SYS_ADMIN))
1900 return -EPERM;
1901
1902 t = *table;
1903 t.data = &state;
1904 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1905 if (err < 0)
1906 return err;
1907 if (write)
1908 set_numabalancing_state(state);
1909 return err;
1910}
1911#endif
1912#endif
dd41f596
IM
1913
1914/*
1915 * fork()/clone()-time setup:
1916 */
aab03e05 1917int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1918{
0122ec5b 1919 unsigned long flags;
dd41f596
IM
1920 int cpu = get_cpu();
1921
5e1576ed 1922 __sched_fork(clone_flags, p);
06b83b5f 1923 /*
0017d735 1924 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1925 * nobody will actually run it, and a signal or other external
1926 * event cannot wake it up and insert it on the runqueue either.
1927 */
0017d735 1928 p->state = TASK_RUNNING;
dd41f596 1929
c350a04e
MG
1930 /*
1931 * Make sure we do not leak PI boosting priority to the child.
1932 */
1933 p->prio = current->normal_prio;
1934
b9dc29e7
MG
1935 /*
1936 * Revert to default priority/policy on fork if requested.
1937 */
1938 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1939 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1940 p->policy = SCHED_NORMAL;
6c697bdf 1941 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1942 p->rt_priority = 0;
1943 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1944 p->static_prio = NICE_TO_PRIO(0);
1945
1946 p->prio = p->normal_prio = __normal_prio(p);
1947 set_load_weight(p);
6c697bdf 1948
b9dc29e7
MG
1949 /*
1950 * We don't need the reset flag anymore after the fork. It has
1951 * fulfilled its duty:
1952 */
1953 p->sched_reset_on_fork = 0;
1954 }
ca94c442 1955
aab03e05
DF
1956 if (dl_prio(p->prio)) {
1957 put_cpu();
1958 return -EAGAIN;
1959 } else if (rt_prio(p->prio)) {
1960 p->sched_class = &rt_sched_class;
1961 } else {
2ddbf952 1962 p->sched_class = &fair_sched_class;
aab03e05 1963 }
b29739f9 1964
cd29fe6f
PZ
1965 if (p->sched_class->task_fork)
1966 p->sched_class->task_fork(p);
1967
86951599
PZ
1968 /*
1969 * The child is not yet in the pid-hash so no cgroup attach races,
1970 * and the cgroup is pinned to this child due to cgroup_fork()
1971 * is ran before sched_fork().
1972 *
1973 * Silence PROVE_RCU.
1974 */
0122ec5b 1975 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1976 set_task_cpu(p, cpu);
0122ec5b 1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1978
52f17b6c 1979#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1980 if (likely(sched_info_on()))
52f17b6c 1981 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1982#endif
3ca7a440
PZ
1983#if defined(CONFIG_SMP)
1984 p->on_cpu = 0;
4866cde0 1985#endif
01028747 1986 init_task_preempt_count(p);
806c09a7 1987#ifdef CONFIG_SMP
917b627d 1988 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1989 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1990#endif
917b627d 1991
476d139c 1992 put_cpu();
aab03e05 1993 return 0;
1da177e4
LT
1994}
1995
332ac17e
DF
1996unsigned long to_ratio(u64 period, u64 runtime)
1997{
1998 if (runtime == RUNTIME_INF)
1999 return 1ULL << 20;
2000
2001 /*
2002 * Doing this here saves a lot of checks in all
2003 * the calling paths, and returning zero seems
2004 * safe for them anyway.
2005 */
2006 if (period == 0)
2007 return 0;
2008
2009 return div64_u64(runtime << 20, period);
2010}
2011
2012#ifdef CONFIG_SMP
2013inline struct dl_bw *dl_bw_of(int i)
2014{
66339c31
KT
2015 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2016 "sched RCU must be held");
332ac17e
DF
2017 return &cpu_rq(i)->rd->dl_bw;
2018}
2019
de212f18 2020static inline int dl_bw_cpus(int i)
332ac17e 2021{
de212f18
PZ
2022 struct root_domain *rd = cpu_rq(i)->rd;
2023 int cpus = 0;
2024
66339c31
KT
2025 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2026 "sched RCU must be held");
de212f18
PZ
2027 for_each_cpu_and(i, rd->span, cpu_active_mask)
2028 cpus++;
2029
2030 return cpus;
332ac17e
DF
2031}
2032#else
2033inline struct dl_bw *dl_bw_of(int i)
2034{
2035 return &cpu_rq(i)->dl.dl_bw;
2036}
2037
de212f18 2038static inline int dl_bw_cpus(int i)
332ac17e
DF
2039{
2040 return 1;
2041}
2042#endif
2043
332ac17e
DF
2044/*
2045 * We must be sure that accepting a new task (or allowing changing the
2046 * parameters of an existing one) is consistent with the bandwidth
2047 * constraints. If yes, this function also accordingly updates the currently
2048 * allocated bandwidth to reflect the new situation.
2049 *
2050 * This function is called while holding p's rq->lock.
40767b0d
PZ
2051 *
2052 * XXX we should delay bw change until the task's 0-lag point, see
2053 * __setparam_dl().
332ac17e
DF
2054 */
2055static int dl_overflow(struct task_struct *p, int policy,
2056 const struct sched_attr *attr)
2057{
2058
2059 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2060 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2061 u64 runtime = attr->sched_runtime;
2062 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2063 int cpus, err = -1;
332ac17e
DF
2064
2065 if (new_bw == p->dl.dl_bw)
2066 return 0;
2067
2068 /*
2069 * Either if a task, enters, leave, or stays -deadline but changes
2070 * its parameters, we may need to update accordingly the total
2071 * allocated bandwidth of the container.
2072 */
2073 raw_spin_lock(&dl_b->lock);
de212f18 2074 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2075 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2076 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2077 __dl_add(dl_b, new_bw);
2078 err = 0;
2079 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2080 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2081 __dl_clear(dl_b, p->dl.dl_bw);
2082 __dl_add(dl_b, new_bw);
2083 err = 0;
2084 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2085 __dl_clear(dl_b, p->dl.dl_bw);
2086 err = 0;
2087 }
2088 raw_spin_unlock(&dl_b->lock);
2089
2090 return err;
2091}
2092
2093extern void init_dl_bw(struct dl_bw *dl_b);
2094
1da177e4
LT
2095/*
2096 * wake_up_new_task - wake up a newly created task for the first time.
2097 *
2098 * This function will do some initial scheduler statistics housekeeping
2099 * that must be done for every newly created context, then puts the task
2100 * on the runqueue and wakes it.
2101 */
3e51e3ed 2102void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2103{
2104 unsigned long flags;
dd41f596 2105 struct rq *rq;
fabf318e 2106
ab2515c4 2107 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2108#ifdef CONFIG_SMP
2109 /*
2110 * Fork balancing, do it here and not earlier because:
2111 * - cpus_allowed can change in the fork path
2112 * - any previously selected cpu might disappear through hotplug
fabf318e 2113 */
ac66f547 2114 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2115#endif
2116
a75cdaa9
AS
2117 /* Initialize new task's runnable average */
2118 init_task_runnable_average(p);
ab2515c4 2119 rq = __task_rq_lock(p);
cd29fe6f 2120 activate_task(rq, p, 0);
da0c1e65 2121 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2122 trace_sched_wakeup_new(p, true);
a7558e01 2123 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2124#ifdef CONFIG_SMP
efbbd05a
PZ
2125 if (p->sched_class->task_woken)
2126 p->sched_class->task_woken(rq, p);
9a897c5a 2127#endif
0122ec5b 2128 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2129}
2130
e107be36
AK
2131#ifdef CONFIG_PREEMPT_NOTIFIERS
2132
2133/**
80dd99b3 2134 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2135 * @notifier: notifier struct to register
e107be36
AK
2136 */
2137void preempt_notifier_register(struct preempt_notifier *notifier)
2138{
2139 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2140}
2141EXPORT_SYMBOL_GPL(preempt_notifier_register);
2142
2143/**
2144 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2145 * @notifier: notifier struct to unregister
e107be36
AK
2146 *
2147 * This is safe to call from within a preemption notifier.
2148 */
2149void preempt_notifier_unregister(struct preempt_notifier *notifier)
2150{
2151 hlist_del(&notifier->link);
2152}
2153EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2154
2155static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2156{
2157 struct preempt_notifier *notifier;
e107be36 2158
b67bfe0d 2159 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2160 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2161}
2162
2163static void
2164fire_sched_out_preempt_notifiers(struct task_struct *curr,
2165 struct task_struct *next)
2166{
2167 struct preempt_notifier *notifier;
e107be36 2168
b67bfe0d 2169 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2170 notifier->ops->sched_out(notifier, next);
2171}
2172
6d6bc0ad 2173#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2174
2175static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2176{
2177}
2178
2179static void
2180fire_sched_out_preempt_notifiers(struct task_struct *curr,
2181 struct task_struct *next)
2182{
2183}
2184
6d6bc0ad 2185#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2186
4866cde0
NP
2187/**
2188 * prepare_task_switch - prepare to switch tasks
2189 * @rq: the runqueue preparing to switch
421cee29 2190 * @prev: the current task that is being switched out
4866cde0
NP
2191 * @next: the task we are going to switch to.
2192 *
2193 * This is called with the rq lock held and interrupts off. It must
2194 * be paired with a subsequent finish_task_switch after the context
2195 * switch.
2196 *
2197 * prepare_task_switch sets up locking and calls architecture specific
2198 * hooks.
2199 */
e107be36
AK
2200static inline void
2201prepare_task_switch(struct rq *rq, struct task_struct *prev,
2202 struct task_struct *next)
4866cde0 2203{
895dd92c 2204 trace_sched_switch(prev, next);
43148951 2205 sched_info_switch(rq, prev, next);
fe4b04fa 2206 perf_event_task_sched_out(prev, next);
e107be36 2207 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2208 prepare_lock_switch(rq, next);
2209 prepare_arch_switch(next);
2210}
2211
1da177e4
LT
2212/**
2213 * finish_task_switch - clean up after a task-switch
2214 * @prev: the thread we just switched away from.
2215 *
4866cde0
NP
2216 * finish_task_switch must be called after the context switch, paired
2217 * with a prepare_task_switch call before the context switch.
2218 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2219 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2220 *
2221 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2222 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2223 * with the lock held can cause deadlocks; see schedule() for
2224 * details.)
dfa50b60
ON
2225 *
2226 * The context switch have flipped the stack from under us and restored the
2227 * local variables which were saved when this task called schedule() in the
2228 * past. prev == current is still correct but we need to recalculate this_rq
2229 * because prev may have moved to another CPU.
1da177e4 2230 */
dfa50b60 2231static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2232 __releases(rq->lock)
2233{
dfa50b60 2234 struct rq *rq = this_rq();
1da177e4 2235 struct mm_struct *mm = rq->prev_mm;
55a101f8 2236 long prev_state;
1da177e4
LT
2237
2238 rq->prev_mm = NULL;
2239
2240 /*
2241 * A task struct has one reference for the use as "current".
c394cc9f 2242 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2243 * schedule one last time. The schedule call will never return, and
2244 * the scheduled task must drop that reference.
c394cc9f 2245 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2246 * still held, otherwise prev could be scheduled on another cpu, die
2247 * there before we look at prev->state, and then the reference would
2248 * be dropped twice.
2249 * Manfred Spraul <manfred@colorfullife.com>
2250 */
55a101f8 2251 prev_state = prev->state;
bf9fae9f 2252 vtime_task_switch(prev);
4866cde0 2253 finish_arch_switch(prev);
a8d757ef 2254 perf_event_task_sched_in(prev, current);
4866cde0 2255 finish_lock_switch(rq, prev);
01f23e16 2256 finish_arch_post_lock_switch();
e8fa1362 2257
e107be36 2258 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2259 if (mm)
2260 mmdrop(mm);
c394cc9f 2261 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2262 if (prev->sched_class->task_dead)
2263 prev->sched_class->task_dead(prev);
2264
c6fd91f0 2265 /*
2266 * Remove function-return probe instances associated with this
2267 * task and put them back on the free list.
9761eea8 2268 */
c6fd91f0 2269 kprobe_flush_task(prev);
1da177e4 2270 put_task_struct(prev);
c6fd91f0 2271 }
99e5ada9
FW
2272
2273 tick_nohz_task_switch(current);
dfa50b60 2274 return rq;
1da177e4
LT
2275}
2276
3f029d3c
GH
2277#ifdef CONFIG_SMP
2278
3f029d3c
GH
2279/* rq->lock is NOT held, but preemption is disabled */
2280static inline void post_schedule(struct rq *rq)
2281{
2282 if (rq->post_schedule) {
2283 unsigned long flags;
2284
05fa785c 2285 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2286 if (rq->curr->sched_class->post_schedule)
2287 rq->curr->sched_class->post_schedule(rq);
05fa785c 2288 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2289
2290 rq->post_schedule = 0;
2291 }
2292}
2293
2294#else
da19ab51 2295
3f029d3c
GH
2296static inline void post_schedule(struct rq *rq)
2297{
1da177e4
LT
2298}
2299
3f029d3c
GH
2300#endif
2301
1da177e4
LT
2302/**
2303 * schedule_tail - first thing a freshly forked thread must call.
2304 * @prev: the thread we just switched away from.
2305 */
722a9f92 2306asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2307 __releases(rq->lock)
2308{
1a43a14a 2309 struct rq *rq;
da19ab51 2310
1a43a14a
ON
2311 /* finish_task_switch() drops rq->lock and enables preemtion */
2312 preempt_disable();
dfa50b60 2313 rq = finish_task_switch(prev);
3f029d3c 2314 post_schedule(rq);
1a43a14a 2315 preempt_enable();
70b97a7f 2316
1da177e4 2317 if (current->set_child_tid)
b488893a 2318 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2319}
2320
2321/*
dfa50b60 2322 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2323 */
dfa50b60 2324static inline struct rq *
70b97a7f 2325context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2326 struct task_struct *next)
1da177e4 2327{
dd41f596 2328 struct mm_struct *mm, *oldmm;
1da177e4 2329
e107be36 2330 prepare_task_switch(rq, prev, next);
fe4b04fa 2331
dd41f596
IM
2332 mm = next->mm;
2333 oldmm = prev->active_mm;
9226d125
ZA
2334 /*
2335 * For paravirt, this is coupled with an exit in switch_to to
2336 * combine the page table reload and the switch backend into
2337 * one hypercall.
2338 */
224101ed 2339 arch_start_context_switch(prev);
9226d125 2340
31915ab4 2341 if (!mm) {
1da177e4
LT
2342 next->active_mm = oldmm;
2343 atomic_inc(&oldmm->mm_count);
2344 enter_lazy_tlb(oldmm, next);
2345 } else
2346 switch_mm(oldmm, mm, next);
2347
31915ab4 2348 if (!prev->mm) {
1da177e4 2349 prev->active_mm = NULL;
1da177e4
LT
2350 rq->prev_mm = oldmm;
2351 }
3a5f5e48
IM
2352 /*
2353 * Since the runqueue lock will be released by the next
2354 * task (which is an invalid locking op but in the case
2355 * of the scheduler it's an obvious special-case), so we
2356 * do an early lockdep release here:
2357 */
8a25d5de 2358 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2359
91d1aa43 2360 context_tracking_task_switch(prev, next);
1da177e4
LT
2361 /* Here we just switch the register state and the stack. */
2362 switch_to(prev, next, prev);
dd41f596 2363 barrier();
dfa50b60
ON
2364
2365 return finish_task_switch(prev);
1da177e4
LT
2366}
2367
2368/*
1c3e8264 2369 * nr_running and nr_context_switches:
1da177e4
LT
2370 *
2371 * externally visible scheduler statistics: current number of runnable
1c3e8264 2372 * threads, total number of context switches performed since bootup.
1da177e4
LT
2373 */
2374unsigned long nr_running(void)
2375{
2376 unsigned long i, sum = 0;
2377
2378 for_each_online_cpu(i)
2379 sum += cpu_rq(i)->nr_running;
2380
2381 return sum;
f711f609 2382}
1da177e4 2383
2ee507c4
TC
2384/*
2385 * Check if only the current task is running on the cpu.
2386 */
2387bool single_task_running(void)
2388{
2389 if (cpu_rq(smp_processor_id())->nr_running == 1)
2390 return true;
2391 else
2392 return false;
2393}
2394EXPORT_SYMBOL(single_task_running);
2395
1da177e4 2396unsigned long long nr_context_switches(void)
46cb4b7c 2397{
cc94abfc
SR
2398 int i;
2399 unsigned long long sum = 0;
46cb4b7c 2400
0a945022 2401 for_each_possible_cpu(i)
1da177e4 2402 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2403
1da177e4
LT
2404 return sum;
2405}
483b4ee6 2406
1da177e4
LT
2407unsigned long nr_iowait(void)
2408{
2409 unsigned long i, sum = 0;
483b4ee6 2410
0a945022 2411 for_each_possible_cpu(i)
1da177e4 2412 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2413
1da177e4
LT
2414 return sum;
2415}
483b4ee6 2416
8c215bd3 2417unsigned long nr_iowait_cpu(int cpu)
69d25870 2418{
8c215bd3 2419 struct rq *this = cpu_rq(cpu);
69d25870
AV
2420 return atomic_read(&this->nr_iowait);
2421}
46cb4b7c 2422
372ba8cb
MG
2423void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2424{
3289bdb4
PZ
2425 struct rq *rq = this_rq();
2426 *nr_waiters = atomic_read(&rq->nr_iowait);
2427 *load = rq->load.weight;
372ba8cb
MG
2428}
2429
dd41f596 2430#ifdef CONFIG_SMP
8a0be9ef 2431
46cb4b7c 2432/*
38022906
PZ
2433 * sched_exec - execve() is a valuable balancing opportunity, because at
2434 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2435 */
38022906 2436void sched_exec(void)
46cb4b7c 2437{
38022906 2438 struct task_struct *p = current;
1da177e4 2439 unsigned long flags;
0017d735 2440 int dest_cpu;
46cb4b7c 2441
8f42ced9 2442 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2443 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2444 if (dest_cpu == smp_processor_id())
2445 goto unlock;
38022906 2446
8f42ced9 2447 if (likely(cpu_active(dest_cpu))) {
969c7921 2448 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2449
8f42ced9
PZ
2450 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2451 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2452 return;
2453 }
0017d735 2454unlock:
8f42ced9 2455 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2456}
dd41f596 2457
1da177e4
LT
2458#endif
2459
1da177e4 2460DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2461DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2462
2463EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2464EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2465
c5f8d995
HS
2466/*
2467 * Return accounted runtime for the task.
2468 * In case the task is currently running, return the runtime plus current's
2469 * pending runtime that have not been accounted yet.
2470 */
2471unsigned long long task_sched_runtime(struct task_struct *p)
2472{
2473 unsigned long flags;
2474 struct rq *rq;
6e998916 2475 u64 ns;
c5f8d995 2476
911b2898
PZ
2477#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2478 /*
2479 * 64-bit doesn't need locks to atomically read a 64bit value.
2480 * So we have a optimization chance when the task's delta_exec is 0.
2481 * Reading ->on_cpu is racy, but this is ok.
2482 *
2483 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2484 * If we race with it entering cpu, unaccounted time is 0. This is
2485 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2486 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2487 * been accounted, so we're correct here as well.
911b2898 2488 */
da0c1e65 2489 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2490 return p->se.sum_exec_runtime;
2491#endif
2492
c5f8d995 2493 rq = task_rq_lock(p, &flags);
6e998916
SG
2494 /*
2495 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2496 * project cycles that may never be accounted to this
2497 * thread, breaking clock_gettime().
2498 */
2499 if (task_current(rq, p) && task_on_rq_queued(p)) {
2500 update_rq_clock(rq);
2501 p->sched_class->update_curr(rq);
2502 }
2503 ns = p->se.sum_exec_runtime;
0122ec5b 2504 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2505
2506 return ns;
2507}
48f24c4d 2508
7835b98b
CL
2509/*
2510 * This function gets called by the timer code, with HZ frequency.
2511 * We call it with interrupts disabled.
7835b98b
CL
2512 */
2513void scheduler_tick(void)
2514{
7835b98b
CL
2515 int cpu = smp_processor_id();
2516 struct rq *rq = cpu_rq(cpu);
dd41f596 2517 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2518
2519 sched_clock_tick();
dd41f596 2520
05fa785c 2521 raw_spin_lock(&rq->lock);
3e51f33f 2522 update_rq_clock(rq);
fa85ae24 2523 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2524 update_cpu_load_active(rq);
3289bdb4 2525 calc_global_load_tick(rq);
05fa785c 2526 raw_spin_unlock(&rq->lock);
7835b98b 2527
e9d2b064 2528 perf_event_task_tick();
e220d2dc 2529
e418e1c2 2530#ifdef CONFIG_SMP
6eb57e0d 2531 rq->idle_balance = idle_cpu(cpu);
7caff66f 2532 trigger_load_balance(rq);
e418e1c2 2533#endif
265f22a9 2534 rq_last_tick_reset(rq);
1da177e4
LT
2535}
2536
265f22a9
FW
2537#ifdef CONFIG_NO_HZ_FULL
2538/**
2539 * scheduler_tick_max_deferment
2540 *
2541 * Keep at least one tick per second when a single
2542 * active task is running because the scheduler doesn't
2543 * yet completely support full dynticks environment.
2544 *
2545 * This makes sure that uptime, CFS vruntime, load
2546 * balancing, etc... continue to move forward, even
2547 * with a very low granularity.
e69f6186
YB
2548 *
2549 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2550 */
2551u64 scheduler_tick_max_deferment(void)
2552{
2553 struct rq *rq = this_rq();
316c1608 2554 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2555
2556 next = rq->last_sched_tick + HZ;
2557
2558 if (time_before_eq(next, now))
2559 return 0;
2560
8fe8ff09 2561 return jiffies_to_nsecs(next - now);
1da177e4 2562}
265f22a9 2563#endif
1da177e4 2564
132380a0 2565notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2566{
2567 if (in_lock_functions(addr)) {
2568 addr = CALLER_ADDR2;
2569 if (in_lock_functions(addr))
2570 addr = CALLER_ADDR3;
2571 }
2572 return addr;
2573}
1da177e4 2574
7e49fcce
SR
2575#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2576 defined(CONFIG_PREEMPT_TRACER))
2577
edafe3a5 2578void preempt_count_add(int val)
1da177e4 2579{
6cd8a4bb 2580#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2581 /*
2582 * Underflow?
2583 */
9a11b49a
IM
2584 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2585 return;
6cd8a4bb 2586#endif
bdb43806 2587 __preempt_count_add(val);
6cd8a4bb 2588#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2589 /*
2590 * Spinlock count overflowing soon?
2591 */
33859f7f
MOS
2592 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2593 PREEMPT_MASK - 10);
6cd8a4bb 2594#endif
8f47b187
TG
2595 if (preempt_count() == val) {
2596 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2597#ifdef CONFIG_DEBUG_PREEMPT
2598 current->preempt_disable_ip = ip;
2599#endif
2600 trace_preempt_off(CALLER_ADDR0, ip);
2601 }
1da177e4 2602}
bdb43806 2603EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2604NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2605
edafe3a5 2606void preempt_count_sub(int val)
1da177e4 2607{
6cd8a4bb 2608#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2609 /*
2610 * Underflow?
2611 */
01e3eb82 2612 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2613 return;
1da177e4
LT
2614 /*
2615 * Is the spinlock portion underflowing?
2616 */
9a11b49a
IM
2617 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2618 !(preempt_count() & PREEMPT_MASK)))
2619 return;
6cd8a4bb 2620#endif
9a11b49a 2621
6cd8a4bb
SR
2622 if (preempt_count() == val)
2623 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2624 __preempt_count_sub(val);
1da177e4 2625}
bdb43806 2626EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2627NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2628
2629#endif
2630
2631/*
dd41f596 2632 * Print scheduling while atomic bug:
1da177e4 2633 */
dd41f596 2634static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2635{
664dfa65
DJ
2636 if (oops_in_progress)
2637 return;
2638
3df0fc5b
PZ
2639 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2640 prev->comm, prev->pid, preempt_count());
838225b4 2641
dd41f596 2642 debug_show_held_locks(prev);
e21f5b15 2643 print_modules();
dd41f596
IM
2644 if (irqs_disabled())
2645 print_irqtrace_events(prev);
8f47b187
TG
2646#ifdef CONFIG_DEBUG_PREEMPT
2647 if (in_atomic_preempt_off()) {
2648 pr_err("Preemption disabled at:");
2649 print_ip_sym(current->preempt_disable_ip);
2650 pr_cont("\n");
2651 }
2652#endif
6135fc1e 2653 dump_stack();
373d4d09 2654 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2655}
1da177e4 2656
dd41f596
IM
2657/*
2658 * Various schedule()-time debugging checks and statistics:
2659 */
2660static inline void schedule_debug(struct task_struct *prev)
2661{
0d9e2632
AT
2662#ifdef CONFIG_SCHED_STACK_END_CHECK
2663 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2664#endif
1da177e4 2665 /*
41a2d6cf 2666 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2667 * schedule() atomically, we ignore that path. Otherwise whine
2668 * if we are scheduling when we should not.
1da177e4 2669 */
192301e7 2670 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2671 __schedule_bug(prev);
b3fbab05 2672 rcu_sleep_check();
dd41f596 2673
1da177e4
LT
2674 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2675
2d72376b 2676 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2677}
2678
2679/*
2680 * Pick up the highest-prio task:
2681 */
2682static inline struct task_struct *
606dba2e 2683pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2684{
37e117c0 2685 const struct sched_class *class = &fair_sched_class;
dd41f596 2686 struct task_struct *p;
1da177e4
LT
2687
2688 /*
dd41f596
IM
2689 * Optimization: we know that if all tasks are in
2690 * the fair class we can call that function directly:
1da177e4 2691 */
37e117c0 2692 if (likely(prev->sched_class == class &&
38033c37 2693 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2694 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2695 if (unlikely(p == RETRY_TASK))
2696 goto again;
2697
2698 /* assumes fair_sched_class->next == idle_sched_class */
2699 if (unlikely(!p))
2700 p = idle_sched_class.pick_next_task(rq, prev);
2701
2702 return p;
1da177e4
LT
2703 }
2704
37e117c0 2705again:
34f971f6 2706 for_each_class(class) {
606dba2e 2707 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2708 if (p) {
2709 if (unlikely(p == RETRY_TASK))
2710 goto again;
dd41f596 2711 return p;
37e117c0 2712 }
dd41f596 2713 }
34f971f6
PZ
2714
2715 BUG(); /* the idle class will always have a runnable task */
dd41f596 2716}
1da177e4 2717
dd41f596 2718/*
c259e01a 2719 * __schedule() is the main scheduler function.
edde96ea
PE
2720 *
2721 * The main means of driving the scheduler and thus entering this function are:
2722 *
2723 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2724 *
2725 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2726 * paths. For example, see arch/x86/entry_64.S.
2727 *
2728 * To drive preemption between tasks, the scheduler sets the flag in timer
2729 * interrupt handler scheduler_tick().
2730 *
2731 * 3. Wakeups don't really cause entry into schedule(). They add a
2732 * task to the run-queue and that's it.
2733 *
2734 * Now, if the new task added to the run-queue preempts the current
2735 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2736 * called on the nearest possible occasion:
2737 *
2738 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2739 *
2740 * - in syscall or exception context, at the next outmost
2741 * preempt_enable(). (this might be as soon as the wake_up()'s
2742 * spin_unlock()!)
2743 *
2744 * - in IRQ context, return from interrupt-handler to
2745 * preemptible context
2746 *
2747 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2748 * then at the next:
2749 *
2750 * - cond_resched() call
2751 * - explicit schedule() call
2752 * - return from syscall or exception to user-space
2753 * - return from interrupt-handler to user-space
bfd9b2b5 2754 *
b30f0e3f 2755 * WARNING: must be called with preemption disabled!
dd41f596 2756 */
c259e01a 2757static void __sched __schedule(void)
dd41f596
IM
2758{
2759 struct task_struct *prev, *next;
67ca7bde 2760 unsigned long *switch_count;
dd41f596 2761 struct rq *rq;
31656519 2762 int cpu;
dd41f596 2763
dd41f596
IM
2764 cpu = smp_processor_id();
2765 rq = cpu_rq(cpu);
38200cf2 2766 rcu_note_context_switch();
dd41f596 2767 prev = rq->curr;
dd41f596 2768
dd41f596 2769 schedule_debug(prev);
1da177e4 2770
31656519 2771 if (sched_feat(HRTICK))
f333fdc9 2772 hrtick_clear(rq);
8f4d37ec 2773
e0acd0a6
ON
2774 /*
2775 * Make sure that signal_pending_state()->signal_pending() below
2776 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2777 * done by the caller to avoid the race with signal_wake_up().
2778 */
2779 smp_mb__before_spinlock();
05fa785c 2780 raw_spin_lock_irq(&rq->lock);
1da177e4 2781
9edfbfed
PZ
2782 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2783
246d86b5 2784 switch_count = &prev->nivcsw;
1da177e4 2785 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2786 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2787 prev->state = TASK_RUNNING;
21aa9af0 2788 } else {
2acca55e
PZ
2789 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2790 prev->on_rq = 0;
2791
21aa9af0 2792 /*
2acca55e
PZ
2793 * If a worker went to sleep, notify and ask workqueue
2794 * whether it wants to wake up a task to maintain
2795 * concurrency.
21aa9af0
TH
2796 */
2797 if (prev->flags & PF_WQ_WORKER) {
2798 struct task_struct *to_wakeup;
2799
2800 to_wakeup = wq_worker_sleeping(prev, cpu);
2801 if (to_wakeup)
2802 try_to_wake_up_local(to_wakeup);
2803 }
21aa9af0 2804 }
dd41f596 2805 switch_count = &prev->nvcsw;
1da177e4
LT
2806 }
2807
9edfbfed 2808 if (task_on_rq_queued(prev))
606dba2e
PZ
2809 update_rq_clock(rq);
2810
2811 next = pick_next_task(rq, prev);
f26f9aff 2812 clear_tsk_need_resched(prev);
f27dde8d 2813 clear_preempt_need_resched();
9edfbfed 2814 rq->clock_skip_update = 0;
1da177e4 2815
1da177e4 2816 if (likely(prev != next)) {
1da177e4
LT
2817 rq->nr_switches++;
2818 rq->curr = next;
2819 ++*switch_count;
2820
dfa50b60
ON
2821 rq = context_switch(rq, prev, next); /* unlocks the rq */
2822 cpu = cpu_of(rq);
1da177e4 2823 } else
05fa785c 2824 raw_spin_unlock_irq(&rq->lock);
1da177e4 2825
3f029d3c 2826 post_schedule(rq);
1da177e4 2827}
c259e01a 2828
9c40cef2
TG
2829static inline void sched_submit_work(struct task_struct *tsk)
2830{
3c7d5184 2831 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2832 return;
2833 /*
2834 * If we are going to sleep and we have plugged IO queued,
2835 * make sure to submit it to avoid deadlocks.
2836 */
2837 if (blk_needs_flush_plug(tsk))
2838 blk_schedule_flush_plug(tsk);
2839}
2840
722a9f92 2841asmlinkage __visible void __sched schedule(void)
c259e01a 2842{
9c40cef2
TG
2843 struct task_struct *tsk = current;
2844
2845 sched_submit_work(tsk);
bfd9b2b5 2846 do {
b30f0e3f 2847 preempt_disable();
bfd9b2b5 2848 __schedule();
b30f0e3f 2849 sched_preempt_enable_no_resched();
bfd9b2b5 2850 } while (need_resched());
c259e01a 2851}
1da177e4
LT
2852EXPORT_SYMBOL(schedule);
2853
91d1aa43 2854#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2855asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2856{
2857 /*
2858 * If we come here after a random call to set_need_resched(),
2859 * or we have been woken up remotely but the IPI has not yet arrived,
2860 * we haven't yet exited the RCU idle mode. Do it here manually until
2861 * we find a better solution.
7cc78f8f
AL
2862 *
2863 * NB: There are buggy callers of this function. Ideally we
c467ea76 2864 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2865 * too frequently to make sense yet.
20ab65e3 2866 */
7cc78f8f 2867 enum ctx_state prev_state = exception_enter();
20ab65e3 2868 schedule();
7cc78f8f 2869 exception_exit(prev_state);
20ab65e3
FW
2870}
2871#endif
2872
c5491ea7
TG
2873/**
2874 * schedule_preempt_disabled - called with preemption disabled
2875 *
2876 * Returns with preemption disabled. Note: preempt_count must be 1
2877 */
2878void __sched schedule_preempt_disabled(void)
2879{
ba74c144 2880 sched_preempt_enable_no_resched();
c5491ea7
TG
2881 schedule();
2882 preempt_disable();
2883}
2884
06b1f808 2885static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2886{
2887 do {
b30f0e3f 2888 preempt_active_enter();
a18b5d01 2889 __schedule();
b30f0e3f 2890 preempt_active_exit();
a18b5d01
FW
2891
2892 /*
2893 * Check again in case we missed a preemption opportunity
2894 * between schedule and now.
2895 */
a18b5d01
FW
2896 } while (need_resched());
2897}
2898
1da177e4
LT
2899#ifdef CONFIG_PREEMPT
2900/*
2ed6e34f 2901 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2902 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2903 * occur there and call schedule directly.
2904 */
722a9f92 2905asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2906{
1da177e4
LT
2907 /*
2908 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2909 * we do not want to preempt the current task. Just return..
1da177e4 2910 */
fbb00b56 2911 if (likely(!preemptible()))
1da177e4
LT
2912 return;
2913
a18b5d01 2914 preempt_schedule_common();
1da177e4 2915}
376e2424 2916NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2917EXPORT_SYMBOL(preempt_schedule);
009f60e2 2918
009f60e2 2919/**
4eaca0a8 2920 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
2921 *
2922 * The tracing infrastructure uses preempt_enable_notrace to prevent
2923 * recursion and tracing preempt enabling caused by the tracing
2924 * infrastructure itself. But as tracing can happen in areas coming
2925 * from userspace or just about to enter userspace, a preempt enable
2926 * can occur before user_exit() is called. This will cause the scheduler
2927 * to be called when the system is still in usermode.
2928 *
2929 * To prevent this, the preempt_enable_notrace will use this function
2930 * instead of preempt_schedule() to exit user context if needed before
2931 * calling the scheduler.
2932 */
4eaca0a8 2933asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
2934{
2935 enum ctx_state prev_ctx;
2936
2937 if (likely(!preemptible()))
2938 return;
2939
2940 do {
be690035
FW
2941 /*
2942 * Use raw __prempt_count() ops that don't call function.
2943 * We can't call functions before disabling preemption which
2944 * disarm preemption tracing recursions.
2945 */
2946 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2947 barrier();
009f60e2
ON
2948 /*
2949 * Needs preempt disabled in case user_exit() is traced
2950 * and the tracer calls preempt_enable_notrace() causing
2951 * an infinite recursion.
2952 */
2953 prev_ctx = exception_enter();
2954 __schedule();
2955 exception_exit(prev_ctx);
2956
be690035
FW
2957 barrier();
2958 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
2959 } while (need_resched());
2960}
4eaca0a8 2961EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 2962
32e475d7 2963#endif /* CONFIG_PREEMPT */
1da177e4
LT
2964
2965/*
2ed6e34f 2966 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2967 * off of irq context.
2968 * Note, that this is called and return with irqs disabled. This will
2969 * protect us against recursive calling from irq.
2970 */
722a9f92 2971asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2972{
b22366cd 2973 enum ctx_state prev_state;
6478d880 2974
2ed6e34f 2975 /* Catch callers which need to be fixed */
f27dde8d 2976 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2977
b22366cd
FW
2978 prev_state = exception_enter();
2979
3a5c359a 2980 do {
b30f0e3f 2981 preempt_active_enter();
3a5c359a 2982 local_irq_enable();
c259e01a 2983 __schedule();
3a5c359a 2984 local_irq_disable();
b30f0e3f 2985 preempt_active_exit();
5ed0cec0 2986 } while (need_resched());
b22366cd
FW
2987
2988 exception_exit(prev_state);
1da177e4
LT
2989}
2990
63859d4f 2991int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2992 void *key)
1da177e4 2993{
63859d4f 2994 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2995}
1da177e4
LT
2996EXPORT_SYMBOL(default_wake_function);
2997
b29739f9
IM
2998#ifdef CONFIG_RT_MUTEXES
2999
3000/*
3001 * rt_mutex_setprio - set the current priority of a task
3002 * @p: task
3003 * @prio: prio value (kernel-internal form)
3004 *
3005 * This function changes the 'effective' priority of a task. It does
3006 * not touch ->normal_prio like __setscheduler().
3007 *
c365c292
TG
3008 * Used by the rt_mutex code to implement priority inheritance
3009 * logic. Call site only calls if the priority of the task changed.
b29739f9 3010 */
36c8b586 3011void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3012{
da0c1e65 3013 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3014 struct rq *rq;
83ab0aa0 3015 const struct sched_class *prev_class;
b29739f9 3016
aab03e05 3017 BUG_ON(prio > MAX_PRIO);
b29739f9 3018
0122ec5b 3019 rq = __task_rq_lock(p);
b29739f9 3020
1c4dd99b
TG
3021 /*
3022 * Idle task boosting is a nono in general. There is one
3023 * exception, when PREEMPT_RT and NOHZ is active:
3024 *
3025 * The idle task calls get_next_timer_interrupt() and holds
3026 * the timer wheel base->lock on the CPU and another CPU wants
3027 * to access the timer (probably to cancel it). We can safely
3028 * ignore the boosting request, as the idle CPU runs this code
3029 * with interrupts disabled and will complete the lock
3030 * protected section without being interrupted. So there is no
3031 * real need to boost.
3032 */
3033 if (unlikely(p == rq->idle)) {
3034 WARN_ON(p != rq->curr);
3035 WARN_ON(p->pi_blocked_on);
3036 goto out_unlock;
3037 }
3038
a8027073 3039 trace_sched_pi_setprio(p, prio);
d5f9f942 3040 oldprio = p->prio;
83ab0aa0 3041 prev_class = p->sched_class;
da0c1e65 3042 queued = task_on_rq_queued(p);
051a1d1a 3043 running = task_current(rq, p);
da0c1e65 3044 if (queued)
69be72c1 3045 dequeue_task(rq, p, 0);
0e1f3483 3046 if (running)
f3cd1c4e 3047 put_prev_task(rq, p);
dd41f596 3048
2d3d891d
DF
3049 /*
3050 * Boosting condition are:
3051 * 1. -rt task is running and holds mutex A
3052 * --> -dl task blocks on mutex A
3053 *
3054 * 2. -dl task is running and holds mutex A
3055 * --> -dl task blocks on mutex A and could preempt the
3056 * running task
3057 */
3058 if (dl_prio(prio)) {
466af29b
ON
3059 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3060 if (!dl_prio(p->normal_prio) ||
3061 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3062 p->dl.dl_boosted = 1;
3063 p->dl.dl_throttled = 0;
3064 enqueue_flag = ENQUEUE_REPLENISH;
3065 } else
3066 p->dl.dl_boosted = 0;
aab03e05 3067 p->sched_class = &dl_sched_class;
2d3d891d
DF
3068 } else if (rt_prio(prio)) {
3069 if (dl_prio(oldprio))
3070 p->dl.dl_boosted = 0;
3071 if (oldprio < prio)
3072 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3073 p->sched_class = &rt_sched_class;
2d3d891d
DF
3074 } else {
3075 if (dl_prio(oldprio))
3076 p->dl.dl_boosted = 0;
746db944
BS
3077 if (rt_prio(oldprio))
3078 p->rt.timeout = 0;
dd41f596 3079 p->sched_class = &fair_sched_class;
2d3d891d 3080 }
dd41f596 3081
b29739f9
IM
3082 p->prio = prio;
3083
0e1f3483
HS
3084 if (running)
3085 p->sched_class->set_curr_task(rq);
da0c1e65 3086 if (queued)
2d3d891d 3087 enqueue_task(rq, p, enqueue_flag);
cb469845 3088
da7a735e 3089 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3090out_unlock:
0122ec5b 3091 __task_rq_unlock(rq);
b29739f9 3092}
b29739f9 3093#endif
d50dde5a 3094
36c8b586 3095void set_user_nice(struct task_struct *p, long nice)
1da177e4 3096{
da0c1e65 3097 int old_prio, delta, queued;
1da177e4 3098 unsigned long flags;
70b97a7f 3099 struct rq *rq;
1da177e4 3100
75e45d51 3101 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3102 return;
3103 /*
3104 * We have to be careful, if called from sys_setpriority(),
3105 * the task might be in the middle of scheduling on another CPU.
3106 */
3107 rq = task_rq_lock(p, &flags);
3108 /*
3109 * The RT priorities are set via sched_setscheduler(), but we still
3110 * allow the 'normal' nice value to be set - but as expected
3111 * it wont have any effect on scheduling until the task is
aab03e05 3112 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3113 */
aab03e05 3114 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3115 p->static_prio = NICE_TO_PRIO(nice);
3116 goto out_unlock;
3117 }
da0c1e65
KT
3118 queued = task_on_rq_queued(p);
3119 if (queued)
69be72c1 3120 dequeue_task(rq, p, 0);
1da177e4 3121
1da177e4 3122 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3123 set_load_weight(p);
b29739f9
IM
3124 old_prio = p->prio;
3125 p->prio = effective_prio(p);
3126 delta = p->prio - old_prio;
1da177e4 3127
da0c1e65 3128 if (queued) {
371fd7e7 3129 enqueue_task(rq, p, 0);
1da177e4 3130 /*
d5f9f942
AM
3131 * If the task increased its priority or is running and
3132 * lowered its priority, then reschedule its CPU:
1da177e4 3133 */
d5f9f942 3134 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3135 resched_curr(rq);
1da177e4
LT
3136 }
3137out_unlock:
0122ec5b 3138 task_rq_unlock(rq, p, &flags);
1da177e4 3139}
1da177e4
LT
3140EXPORT_SYMBOL(set_user_nice);
3141
e43379f1
MM
3142/*
3143 * can_nice - check if a task can reduce its nice value
3144 * @p: task
3145 * @nice: nice value
3146 */
36c8b586 3147int can_nice(const struct task_struct *p, const int nice)
e43379f1 3148{
024f4747 3149 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3150 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3151
78d7d407 3152 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3153 capable(CAP_SYS_NICE));
3154}
3155
1da177e4
LT
3156#ifdef __ARCH_WANT_SYS_NICE
3157
3158/*
3159 * sys_nice - change the priority of the current process.
3160 * @increment: priority increment
3161 *
3162 * sys_setpriority is a more generic, but much slower function that
3163 * does similar things.
3164 */
5add95d4 3165SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3166{
48f24c4d 3167 long nice, retval;
1da177e4
LT
3168
3169 /*
3170 * Setpriority might change our priority at the same moment.
3171 * We don't have to worry. Conceptually one call occurs first
3172 * and we have a single winner.
3173 */
a9467fa3 3174 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3175 nice = task_nice(current) + increment;
1da177e4 3176
a9467fa3 3177 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3178 if (increment < 0 && !can_nice(current, nice))
3179 return -EPERM;
3180
1da177e4
LT
3181 retval = security_task_setnice(current, nice);
3182 if (retval)
3183 return retval;
3184
3185 set_user_nice(current, nice);
3186 return 0;
3187}
3188
3189#endif
3190
3191/**
3192 * task_prio - return the priority value of a given task.
3193 * @p: the task in question.
3194 *
e69f6186 3195 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3196 * RT tasks are offset by -200. Normal tasks are centered
3197 * around 0, value goes from -16 to +15.
3198 */
36c8b586 3199int task_prio(const struct task_struct *p)
1da177e4
LT
3200{
3201 return p->prio - MAX_RT_PRIO;
3202}
3203
1da177e4
LT
3204/**
3205 * idle_cpu - is a given cpu idle currently?
3206 * @cpu: the processor in question.
e69f6186
YB
3207 *
3208 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3209 */
3210int idle_cpu(int cpu)
3211{
908a3283
TG
3212 struct rq *rq = cpu_rq(cpu);
3213
3214 if (rq->curr != rq->idle)
3215 return 0;
3216
3217 if (rq->nr_running)
3218 return 0;
3219
3220#ifdef CONFIG_SMP
3221 if (!llist_empty(&rq->wake_list))
3222 return 0;
3223#endif
3224
3225 return 1;
1da177e4
LT
3226}
3227
1da177e4
LT
3228/**
3229 * idle_task - return the idle task for a given cpu.
3230 * @cpu: the processor in question.
e69f6186
YB
3231 *
3232 * Return: The idle task for the cpu @cpu.
1da177e4 3233 */
36c8b586 3234struct task_struct *idle_task(int cpu)
1da177e4
LT
3235{
3236 return cpu_rq(cpu)->idle;
3237}
3238
3239/**
3240 * find_process_by_pid - find a process with a matching PID value.
3241 * @pid: the pid in question.
e69f6186
YB
3242 *
3243 * The task of @pid, if found. %NULL otherwise.
1da177e4 3244 */
a9957449 3245static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3246{
228ebcbe 3247 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3248}
3249
aab03e05
DF
3250/*
3251 * This function initializes the sched_dl_entity of a newly becoming
3252 * SCHED_DEADLINE task.
3253 *
3254 * Only the static values are considered here, the actual runtime and the
3255 * absolute deadline will be properly calculated when the task is enqueued
3256 * for the first time with its new policy.
3257 */
3258static void
3259__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3260{
3261 struct sched_dl_entity *dl_se = &p->dl;
3262
aab03e05
DF
3263 dl_se->dl_runtime = attr->sched_runtime;
3264 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3265 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3266 dl_se->flags = attr->sched_flags;
332ac17e 3267 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3268
3269 /*
3270 * Changing the parameters of a task is 'tricky' and we're not doing
3271 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3272 *
3273 * What we SHOULD do is delay the bandwidth release until the 0-lag
3274 * point. This would include retaining the task_struct until that time
3275 * and change dl_overflow() to not immediately decrement the current
3276 * amount.
3277 *
3278 * Instead we retain the current runtime/deadline and let the new
3279 * parameters take effect after the current reservation period lapses.
3280 * This is safe (albeit pessimistic) because the 0-lag point is always
3281 * before the current scheduling deadline.
3282 *
3283 * We can still have temporary overloads because we do not delay the
3284 * change in bandwidth until that time; so admission control is
3285 * not on the safe side. It does however guarantee tasks will never
3286 * consume more than promised.
3287 */
aab03e05
DF
3288}
3289
c13db6b1
SR
3290/*
3291 * sched_setparam() passes in -1 for its policy, to let the functions
3292 * it calls know not to change it.
3293 */
3294#define SETPARAM_POLICY -1
3295
c365c292
TG
3296static void __setscheduler_params(struct task_struct *p,
3297 const struct sched_attr *attr)
1da177e4 3298{
d50dde5a
DF
3299 int policy = attr->sched_policy;
3300
c13db6b1 3301 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3302 policy = p->policy;
3303
1da177e4 3304 p->policy = policy;
d50dde5a 3305
aab03e05
DF
3306 if (dl_policy(policy))
3307 __setparam_dl(p, attr);
39fd8fd2 3308 else if (fair_policy(policy))
d50dde5a
DF
3309 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3310
39fd8fd2
PZ
3311 /*
3312 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3313 * !rt_policy. Always setting this ensures that things like
3314 * getparam()/getattr() don't report silly values for !rt tasks.
3315 */
3316 p->rt_priority = attr->sched_priority;
383afd09 3317 p->normal_prio = normal_prio(p);
c365c292
TG
3318 set_load_weight(p);
3319}
39fd8fd2 3320
c365c292
TG
3321/* Actually do priority change: must hold pi & rq lock. */
3322static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3323 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3324{
3325 __setscheduler_params(p, attr);
d50dde5a 3326
383afd09 3327 /*
0782e63b
TG
3328 * Keep a potential priority boosting if called from
3329 * sched_setscheduler().
383afd09 3330 */
0782e63b
TG
3331 if (keep_boost)
3332 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3333 else
3334 p->prio = normal_prio(p);
383afd09 3335
aab03e05
DF
3336 if (dl_prio(p->prio))
3337 p->sched_class = &dl_sched_class;
3338 else if (rt_prio(p->prio))
ffd44db5
PZ
3339 p->sched_class = &rt_sched_class;
3340 else
3341 p->sched_class = &fair_sched_class;
1da177e4 3342}
aab03e05
DF
3343
3344static void
3345__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3346{
3347 struct sched_dl_entity *dl_se = &p->dl;
3348
3349 attr->sched_priority = p->rt_priority;
3350 attr->sched_runtime = dl_se->dl_runtime;
3351 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3352 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3353 attr->sched_flags = dl_se->flags;
3354}
3355
3356/*
3357 * This function validates the new parameters of a -deadline task.
3358 * We ask for the deadline not being zero, and greater or equal
755378a4 3359 * than the runtime, as well as the period of being zero or
332ac17e 3360 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3361 * user parameters are above the internal resolution of 1us (we
3362 * check sched_runtime only since it is always the smaller one) and
3363 * below 2^63 ns (we have to check both sched_deadline and
3364 * sched_period, as the latter can be zero).
aab03e05
DF
3365 */
3366static bool
3367__checkparam_dl(const struct sched_attr *attr)
3368{
b0827819
JL
3369 /* deadline != 0 */
3370 if (attr->sched_deadline == 0)
3371 return false;
3372
3373 /*
3374 * Since we truncate DL_SCALE bits, make sure we're at least
3375 * that big.
3376 */
3377 if (attr->sched_runtime < (1ULL << DL_SCALE))
3378 return false;
3379
3380 /*
3381 * Since we use the MSB for wrap-around and sign issues, make
3382 * sure it's not set (mind that period can be equal to zero).
3383 */
3384 if (attr->sched_deadline & (1ULL << 63) ||
3385 attr->sched_period & (1ULL << 63))
3386 return false;
3387
3388 /* runtime <= deadline <= period (if period != 0) */
3389 if ((attr->sched_period != 0 &&
3390 attr->sched_period < attr->sched_deadline) ||
3391 attr->sched_deadline < attr->sched_runtime)
3392 return false;
3393
3394 return true;
aab03e05
DF
3395}
3396
c69e8d9c
DH
3397/*
3398 * check the target process has a UID that matches the current process's
3399 */
3400static bool check_same_owner(struct task_struct *p)
3401{
3402 const struct cred *cred = current_cred(), *pcred;
3403 bool match;
3404
3405 rcu_read_lock();
3406 pcred = __task_cred(p);
9c806aa0
EB
3407 match = (uid_eq(cred->euid, pcred->euid) ||
3408 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3409 rcu_read_unlock();
3410 return match;
3411}
3412
75381608
WL
3413static bool dl_param_changed(struct task_struct *p,
3414 const struct sched_attr *attr)
3415{
3416 struct sched_dl_entity *dl_se = &p->dl;
3417
3418 if (dl_se->dl_runtime != attr->sched_runtime ||
3419 dl_se->dl_deadline != attr->sched_deadline ||
3420 dl_se->dl_period != attr->sched_period ||
3421 dl_se->flags != attr->sched_flags)
3422 return true;
3423
3424 return false;
3425}
3426
d50dde5a
DF
3427static int __sched_setscheduler(struct task_struct *p,
3428 const struct sched_attr *attr,
3429 bool user)
1da177e4 3430{
383afd09
SR
3431 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3432 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3433 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3434 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3435 unsigned long flags;
83ab0aa0 3436 const struct sched_class *prev_class;
70b97a7f 3437 struct rq *rq;
ca94c442 3438 int reset_on_fork;
1da177e4 3439
66e5393a
SR
3440 /* may grab non-irq protected spin_locks */
3441 BUG_ON(in_interrupt());
1da177e4
LT
3442recheck:
3443 /* double check policy once rq lock held */
ca94c442
LP
3444 if (policy < 0) {
3445 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3446 policy = oldpolicy = p->policy;
ca94c442 3447 } else {
7479f3c9 3448 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3449
aab03e05
DF
3450 if (policy != SCHED_DEADLINE &&
3451 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3452 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3453 policy != SCHED_IDLE)
3454 return -EINVAL;
3455 }
3456
7479f3c9
PZ
3457 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3458 return -EINVAL;
3459
1da177e4
LT
3460 /*
3461 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3462 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3463 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3464 */
0bb040a4 3465 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3466 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3467 return -EINVAL;
aab03e05
DF
3468 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3469 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3470 return -EINVAL;
3471
37e4ab3f
OC
3472 /*
3473 * Allow unprivileged RT tasks to decrease priority:
3474 */
961ccddd 3475 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3476 if (fair_policy(policy)) {
d0ea0268 3477 if (attr->sched_nice < task_nice(p) &&
eaad4513 3478 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3479 return -EPERM;
3480 }
3481
e05606d3 3482 if (rt_policy(policy)) {
a44702e8
ON
3483 unsigned long rlim_rtprio =
3484 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3485
3486 /* can't set/change the rt policy */
3487 if (policy != p->policy && !rlim_rtprio)
3488 return -EPERM;
3489
3490 /* can't increase priority */
d50dde5a
DF
3491 if (attr->sched_priority > p->rt_priority &&
3492 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3493 return -EPERM;
3494 }
c02aa73b 3495
d44753b8
JL
3496 /*
3497 * Can't set/change SCHED_DEADLINE policy at all for now
3498 * (safest behavior); in the future we would like to allow
3499 * unprivileged DL tasks to increase their relative deadline
3500 * or reduce their runtime (both ways reducing utilization)
3501 */
3502 if (dl_policy(policy))
3503 return -EPERM;
3504
dd41f596 3505 /*
c02aa73b
DH
3506 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3507 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3508 */
c02aa73b 3509 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3510 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3511 return -EPERM;
3512 }
5fe1d75f 3513
37e4ab3f 3514 /* can't change other user's priorities */
c69e8d9c 3515 if (!check_same_owner(p))
37e4ab3f 3516 return -EPERM;
ca94c442
LP
3517
3518 /* Normal users shall not reset the sched_reset_on_fork flag */
3519 if (p->sched_reset_on_fork && !reset_on_fork)
3520 return -EPERM;
37e4ab3f 3521 }
1da177e4 3522
725aad24 3523 if (user) {
b0ae1981 3524 retval = security_task_setscheduler(p);
725aad24
JF
3525 if (retval)
3526 return retval;
3527 }
3528
b29739f9
IM
3529 /*
3530 * make sure no PI-waiters arrive (or leave) while we are
3531 * changing the priority of the task:
0122ec5b 3532 *
25985edc 3533 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3534 * runqueue lock must be held.
3535 */
0122ec5b 3536 rq = task_rq_lock(p, &flags);
dc61b1d6 3537
34f971f6
PZ
3538 /*
3539 * Changing the policy of the stop threads its a very bad idea
3540 */
3541 if (p == rq->stop) {
0122ec5b 3542 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3543 return -EINVAL;
3544 }
3545
a51e9198 3546 /*
d6b1e911
TG
3547 * If not changing anything there's no need to proceed further,
3548 * but store a possible modification of reset_on_fork.
a51e9198 3549 */
d50dde5a 3550 if (unlikely(policy == p->policy)) {
d0ea0268 3551 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3552 goto change;
3553 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3554 goto change;
75381608 3555 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3556 goto change;
d50dde5a 3557
d6b1e911 3558 p->sched_reset_on_fork = reset_on_fork;
45afb173 3559 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3560 return 0;
3561 }
d50dde5a 3562change:
a51e9198 3563
dc61b1d6 3564 if (user) {
332ac17e 3565#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3566 /*
3567 * Do not allow realtime tasks into groups that have no runtime
3568 * assigned.
3569 */
3570 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3571 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3572 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3573 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3574 return -EPERM;
3575 }
dc61b1d6 3576#endif
332ac17e
DF
3577#ifdef CONFIG_SMP
3578 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3579 cpumask_t *span = rq->rd->span;
332ac17e
DF
3580
3581 /*
3582 * Don't allow tasks with an affinity mask smaller than
3583 * the entire root_domain to become SCHED_DEADLINE. We
3584 * will also fail if there's no bandwidth available.
3585 */
e4099a5e
PZ
3586 if (!cpumask_subset(span, &p->cpus_allowed) ||
3587 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3588 task_rq_unlock(rq, p, &flags);
3589 return -EPERM;
3590 }
3591 }
3592#endif
3593 }
dc61b1d6 3594
1da177e4
LT
3595 /* recheck policy now with rq lock held */
3596 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3597 policy = oldpolicy = -1;
0122ec5b 3598 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3599 goto recheck;
3600 }
332ac17e
DF
3601
3602 /*
3603 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3604 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3605 * is available.
3606 */
e4099a5e 3607 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3608 task_rq_unlock(rq, p, &flags);
3609 return -EBUSY;
3610 }
3611
c365c292
TG
3612 p->sched_reset_on_fork = reset_on_fork;
3613 oldprio = p->prio;
3614
3615 /*
0782e63b
TG
3616 * Take priority boosted tasks into account. If the new
3617 * effective priority is unchanged, we just store the new
c365c292
TG
3618 * normal parameters and do not touch the scheduler class and
3619 * the runqueue. This will be done when the task deboost
3620 * itself.
3621 */
0782e63b
TG
3622 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3623 if (new_effective_prio == oldprio) {
c365c292
TG
3624 __setscheduler_params(p, attr);
3625 task_rq_unlock(rq, p, &flags);
3626 return 0;
3627 }
3628
da0c1e65 3629 queued = task_on_rq_queued(p);
051a1d1a 3630 running = task_current(rq, p);
da0c1e65 3631 if (queued)
4ca9b72b 3632 dequeue_task(rq, p, 0);
0e1f3483 3633 if (running)
f3cd1c4e 3634 put_prev_task(rq, p);
f6b53205 3635
83ab0aa0 3636 prev_class = p->sched_class;
0782e63b 3637 __setscheduler(rq, p, attr, true);
f6b53205 3638
0e1f3483
HS
3639 if (running)
3640 p->sched_class->set_curr_task(rq);
da0c1e65 3641 if (queued) {
81a44c54
TG
3642 /*
3643 * We enqueue to tail when the priority of a task is
3644 * increased (user space view).
3645 */
3646 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3647 }
cb469845 3648
da7a735e 3649 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3650 task_rq_unlock(rq, p, &flags);
b29739f9 3651
95e02ca9
TG
3652 rt_mutex_adjust_pi(p);
3653
1da177e4
LT
3654 return 0;
3655}
961ccddd 3656
7479f3c9
PZ
3657static int _sched_setscheduler(struct task_struct *p, int policy,
3658 const struct sched_param *param, bool check)
3659{
3660 struct sched_attr attr = {
3661 .sched_policy = policy,
3662 .sched_priority = param->sched_priority,
3663 .sched_nice = PRIO_TO_NICE(p->static_prio),
3664 };
3665
c13db6b1
SR
3666 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3667 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3668 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3669 policy &= ~SCHED_RESET_ON_FORK;
3670 attr.sched_policy = policy;
3671 }
3672
3673 return __sched_setscheduler(p, &attr, check);
3674}
961ccddd
RR
3675/**
3676 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3677 * @p: the task in question.
3678 * @policy: new policy.
3679 * @param: structure containing the new RT priority.
3680 *
e69f6186
YB
3681 * Return: 0 on success. An error code otherwise.
3682 *
961ccddd
RR
3683 * NOTE that the task may be already dead.
3684 */
3685int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3686 const struct sched_param *param)
961ccddd 3687{
7479f3c9 3688 return _sched_setscheduler(p, policy, param, true);
961ccddd 3689}
1da177e4
LT
3690EXPORT_SYMBOL_GPL(sched_setscheduler);
3691
d50dde5a
DF
3692int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3693{
3694 return __sched_setscheduler(p, attr, true);
3695}
3696EXPORT_SYMBOL_GPL(sched_setattr);
3697
961ccddd
RR
3698/**
3699 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3700 * @p: the task in question.
3701 * @policy: new policy.
3702 * @param: structure containing the new RT priority.
3703 *
3704 * Just like sched_setscheduler, only don't bother checking if the
3705 * current context has permission. For example, this is needed in
3706 * stop_machine(): we create temporary high priority worker threads,
3707 * but our caller might not have that capability.
e69f6186
YB
3708 *
3709 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3710 */
3711int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3712 const struct sched_param *param)
961ccddd 3713{
7479f3c9 3714 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3715}
3716
95cdf3b7
IM
3717static int
3718do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3719{
1da177e4
LT
3720 struct sched_param lparam;
3721 struct task_struct *p;
36c8b586 3722 int retval;
1da177e4
LT
3723
3724 if (!param || pid < 0)
3725 return -EINVAL;
3726 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3727 return -EFAULT;
5fe1d75f
ON
3728
3729 rcu_read_lock();
3730 retval = -ESRCH;
1da177e4 3731 p = find_process_by_pid(pid);
5fe1d75f
ON
3732 if (p != NULL)
3733 retval = sched_setscheduler(p, policy, &lparam);
3734 rcu_read_unlock();
36c8b586 3735
1da177e4
LT
3736 return retval;
3737}
3738
d50dde5a
DF
3739/*
3740 * Mimics kernel/events/core.c perf_copy_attr().
3741 */
3742static int sched_copy_attr(struct sched_attr __user *uattr,
3743 struct sched_attr *attr)
3744{
3745 u32 size;
3746 int ret;
3747
3748 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3749 return -EFAULT;
3750
3751 /*
3752 * zero the full structure, so that a short copy will be nice.
3753 */
3754 memset(attr, 0, sizeof(*attr));
3755
3756 ret = get_user(size, &uattr->size);
3757 if (ret)
3758 return ret;
3759
3760 if (size > PAGE_SIZE) /* silly large */
3761 goto err_size;
3762
3763 if (!size) /* abi compat */
3764 size = SCHED_ATTR_SIZE_VER0;
3765
3766 if (size < SCHED_ATTR_SIZE_VER0)
3767 goto err_size;
3768
3769 /*
3770 * If we're handed a bigger struct than we know of,
3771 * ensure all the unknown bits are 0 - i.e. new
3772 * user-space does not rely on any kernel feature
3773 * extensions we dont know about yet.
3774 */
3775 if (size > sizeof(*attr)) {
3776 unsigned char __user *addr;
3777 unsigned char __user *end;
3778 unsigned char val;
3779
3780 addr = (void __user *)uattr + sizeof(*attr);
3781 end = (void __user *)uattr + size;
3782
3783 for (; addr < end; addr++) {
3784 ret = get_user(val, addr);
3785 if (ret)
3786 return ret;
3787 if (val)
3788 goto err_size;
3789 }
3790 size = sizeof(*attr);
3791 }
3792
3793 ret = copy_from_user(attr, uattr, size);
3794 if (ret)
3795 return -EFAULT;
3796
3797 /*
3798 * XXX: do we want to be lenient like existing syscalls; or do we want
3799 * to be strict and return an error on out-of-bounds values?
3800 */
75e45d51 3801 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3802
e78c7bca 3803 return 0;
d50dde5a
DF
3804
3805err_size:
3806 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3807 return -E2BIG;
d50dde5a
DF
3808}
3809
1da177e4
LT
3810/**
3811 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3812 * @pid: the pid in question.
3813 * @policy: new policy.
3814 * @param: structure containing the new RT priority.
e69f6186
YB
3815 *
3816 * Return: 0 on success. An error code otherwise.
1da177e4 3817 */
5add95d4
HC
3818SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3819 struct sched_param __user *, param)
1da177e4 3820{
c21761f1
JB
3821 /* negative values for policy are not valid */
3822 if (policy < 0)
3823 return -EINVAL;
3824
1da177e4
LT
3825 return do_sched_setscheduler(pid, policy, param);
3826}
3827
3828/**
3829 * sys_sched_setparam - set/change the RT priority of a thread
3830 * @pid: the pid in question.
3831 * @param: structure containing the new RT priority.
e69f6186
YB
3832 *
3833 * Return: 0 on success. An error code otherwise.
1da177e4 3834 */
5add95d4 3835SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3836{
c13db6b1 3837 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3838}
3839
d50dde5a
DF
3840/**
3841 * sys_sched_setattr - same as above, but with extended sched_attr
3842 * @pid: the pid in question.
5778fccf 3843 * @uattr: structure containing the extended parameters.
db66d756 3844 * @flags: for future extension.
d50dde5a 3845 */
6d35ab48
PZ
3846SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3847 unsigned int, flags)
d50dde5a
DF
3848{
3849 struct sched_attr attr;
3850 struct task_struct *p;
3851 int retval;
3852
6d35ab48 3853 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3854 return -EINVAL;
3855
143cf23d
MK
3856 retval = sched_copy_attr(uattr, &attr);
3857 if (retval)
3858 return retval;
d50dde5a 3859
b14ed2c2 3860 if ((int)attr.sched_policy < 0)
dbdb2275 3861 return -EINVAL;
d50dde5a
DF
3862
3863 rcu_read_lock();
3864 retval = -ESRCH;
3865 p = find_process_by_pid(pid);
3866 if (p != NULL)
3867 retval = sched_setattr(p, &attr);
3868 rcu_read_unlock();
3869
3870 return retval;
3871}
3872
1da177e4
LT
3873/**
3874 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3875 * @pid: the pid in question.
e69f6186
YB
3876 *
3877 * Return: On success, the policy of the thread. Otherwise, a negative error
3878 * code.
1da177e4 3879 */
5add95d4 3880SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3881{
36c8b586 3882 struct task_struct *p;
3a5c359a 3883 int retval;
1da177e4
LT
3884
3885 if (pid < 0)
3a5c359a 3886 return -EINVAL;
1da177e4
LT
3887
3888 retval = -ESRCH;
5fe85be0 3889 rcu_read_lock();
1da177e4
LT
3890 p = find_process_by_pid(pid);
3891 if (p) {
3892 retval = security_task_getscheduler(p);
3893 if (!retval)
ca94c442
LP
3894 retval = p->policy
3895 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3896 }
5fe85be0 3897 rcu_read_unlock();
1da177e4
LT
3898 return retval;
3899}
3900
3901/**
ca94c442 3902 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3903 * @pid: the pid in question.
3904 * @param: structure containing the RT priority.
e69f6186
YB
3905 *
3906 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3907 * code.
1da177e4 3908 */
5add95d4 3909SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3910{
ce5f7f82 3911 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3912 struct task_struct *p;
3a5c359a 3913 int retval;
1da177e4
LT
3914
3915 if (!param || pid < 0)
3a5c359a 3916 return -EINVAL;
1da177e4 3917
5fe85be0 3918 rcu_read_lock();
1da177e4
LT
3919 p = find_process_by_pid(pid);
3920 retval = -ESRCH;
3921 if (!p)
3922 goto out_unlock;
3923
3924 retval = security_task_getscheduler(p);
3925 if (retval)
3926 goto out_unlock;
3927
ce5f7f82
PZ
3928 if (task_has_rt_policy(p))
3929 lp.sched_priority = p->rt_priority;
5fe85be0 3930 rcu_read_unlock();
1da177e4
LT
3931
3932 /*
3933 * This one might sleep, we cannot do it with a spinlock held ...
3934 */
3935 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3936
1da177e4
LT
3937 return retval;
3938
3939out_unlock:
5fe85be0 3940 rcu_read_unlock();
1da177e4
LT
3941 return retval;
3942}
3943
d50dde5a
DF
3944static int sched_read_attr(struct sched_attr __user *uattr,
3945 struct sched_attr *attr,
3946 unsigned int usize)
3947{
3948 int ret;
3949
3950 if (!access_ok(VERIFY_WRITE, uattr, usize))
3951 return -EFAULT;
3952
3953 /*
3954 * If we're handed a smaller struct than we know of,
3955 * ensure all the unknown bits are 0 - i.e. old
3956 * user-space does not get uncomplete information.
3957 */
3958 if (usize < sizeof(*attr)) {
3959 unsigned char *addr;
3960 unsigned char *end;
3961
3962 addr = (void *)attr + usize;
3963 end = (void *)attr + sizeof(*attr);
3964
3965 for (; addr < end; addr++) {
3966 if (*addr)
22400674 3967 return -EFBIG;
d50dde5a
DF
3968 }
3969
3970 attr->size = usize;
3971 }
3972
4efbc454 3973 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3974 if (ret)
3975 return -EFAULT;
3976
22400674 3977 return 0;
d50dde5a
DF
3978}
3979
3980/**
aab03e05 3981 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3982 * @pid: the pid in question.
5778fccf 3983 * @uattr: structure containing the extended parameters.
d50dde5a 3984 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3985 * @flags: for future extension.
d50dde5a 3986 */
6d35ab48
PZ
3987SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3988 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3989{
3990 struct sched_attr attr = {
3991 .size = sizeof(struct sched_attr),
3992 };
3993 struct task_struct *p;
3994 int retval;
3995
3996 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3997 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3998 return -EINVAL;
3999
4000 rcu_read_lock();
4001 p = find_process_by_pid(pid);
4002 retval = -ESRCH;
4003 if (!p)
4004 goto out_unlock;
4005
4006 retval = security_task_getscheduler(p);
4007 if (retval)
4008 goto out_unlock;
4009
4010 attr.sched_policy = p->policy;
7479f3c9
PZ
4011 if (p->sched_reset_on_fork)
4012 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4013 if (task_has_dl_policy(p))
4014 __getparam_dl(p, &attr);
4015 else if (task_has_rt_policy(p))
d50dde5a
DF
4016 attr.sched_priority = p->rt_priority;
4017 else
d0ea0268 4018 attr.sched_nice = task_nice(p);
d50dde5a
DF
4019
4020 rcu_read_unlock();
4021
4022 retval = sched_read_attr(uattr, &attr, size);
4023 return retval;
4024
4025out_unlock:
4026 rcu_read_unlock();
4027 return retval;
4028}
4029
96f874e2 4030long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4031{
5a16f3d3 4032 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4033 struct task_struct *p;
4034 int retval;
1da177e4 4035
23f5d142 4036 rcu_read_lock();
1da177e4
LT
4037
4038 p = find_process_by_pid(pid);
4039 if (!p) {
23f5d142 4040 rcu_read_unlock();
1da177e4
LT
4041 return -ESRCH;
4042 }
4043
23f5d142 4044 /* Prevent p going away */
1da177e4 4045 get_task_struct(p);
23f5d142 4046 rcu_read_unlock();
1da177e4 4047
14a40ffc
TH
4048 if (p->flags & PF_NO_SETAFFINITY) {
4049 retval = -EINVAL;
4050 goto out_put_task;
4051 }
5a16f3d3
RR
4052 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4053 retval = -ENOMEM;
4054 goto out_put_task;
4055 }
4056 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4057 retval = -ENOMEM;
4058 goto out_free_cpus_allowed;
4059 }
1da177e4 4060 retval = -EPERM;
4c44aaaf
EB
4061 if (!check_same_owner(p)) {
4062 rcu_read_lock();
4063 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4064 rcu_read_unlock();
16303ab2 4065 goto out_free_new_mask;
4c44aaaf
EB
4066 }
4067 rcu_read_unlock();
4068 }
1da177e4 4069
b0ae1981 4070 retval = security_task_setscheduler(p);
e7834f8f 4071 if (retval)
16303ab2 4072 goto out_free_new_mask;
e7834f8f 4073
e4099a5e
PZ
4074
4075 cpuset_cpus_allowed(p, cpus_allowed);
4076 cpumask_and(new_mask, in_mask, cpus_allowed);
4077
332ac17e
DF
4078 /*
4079 * Since bandwidth control happens on root_domain basis,
4080 * if admission test is enabled, we only admit -deadline
4081 * tasks allowed to run on all the CPUs in the task's
4082 * root_domain.
4083 */
4084#ifdef CONFIG_SMP
f1e3a093
KT
4085 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4086 rcu_read_lock();
4087 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4088 retval = -EBUSY;
f1e3a093 4089 rcu_read_unlock();
16303ab2 4090 goto out_free_new_mask;
332ac17e 4091 }
f1e3a093 4092 rcu_read_unlock();
332ac17e
DF
4093 }
4094#endif
49246274 4095again:
5a16f3d3 4096 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4097
8707d8b8 4098 if (!retval) {
5a16f3d3
RR
4099 cpuset_cpus_allowed(p, cpus_allowed);
4100 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4101 /*
4102 * We must have raced with a concurrent cpuset
4103 * update. Just reset the cpus_allowed to the
4104 * cpuset's cpus_allowed
4105 */
5a16f3d3 4106 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4107 goto again;
4108 }
4109 }
16303ab2 4110out_free_new_mask:
5a16f3d3
RR
4111 free_cpumask_var(new_mask);
4112out_free_cpus_allowed:
4113 free_cpumask_var(cpus_allowed);
4114out_put_task:
1da177e4 4115 put_task_struct(p);
1da177e4
LT
4116 return retval;
4117}
4118
4119static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4120 struct cpumask *new_mask)
1da177e4 4121{
96f874e2
RR
4122 if (len < cpumask_size())
4123 cpumask_clear(new_mask);
4124 else if (len > cpumask_size())
4125 len = cpumask_size();
4126
1da177e4
LT
4127 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4128}
4129
4130/**
4131 * sys_sched_setaffinity - set the cpu affinity of a process
4132 * @pid: pid of the process
4133 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4134 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4135 *
4136 * Return: 0 on success. An error code otherwise.
1da177e4 4137 */
5add95d4
HC
4138SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4139 unsigned long __user *, user_mask_ptr)
1da177e4 4140{
5a16f3d3 4141 cpumask_var_t new_mask;
1da177e4
LT
4142 int retval;
4143
5a16f3d3
RR
4144 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4145 return -ENOMEM;
1da177e4 4146
5a16f3d3
RR
4147 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4148 if (retval == 0)
4149 retval = sched_setaffinity(pid, new_mask);
4150 free_cpumask_var(new_mask);
4151 return retval;
1da177e4
LT
4152}
4153
96f874e2 4154long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4155{
36c8b586 4156 struct task_struct *p;
31605683 4157 unsigned long flags;
1da177e4 4158 int retval;
1da177e4 4159
23f5d142 4160 rcu_read_lock();
1da177e4
LT
4161
4162 retval = -ESRCH;
4163 p = find_process_by_pid(pid);
4164 if (!p)
4165 goto out_unlock;
4166
e7834f8f
DQ
4167 retval = security_task_getscheduler(p);
4168 if (retval)
4169 goto out_unlock;
4170
013fdb80 4171 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4172 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4173 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4174
4175out_unlock:
23f5d142 4176 rcu_read_unlock();
1da177e4 4177
9531b62f 4178 return retval;
1da177e4
LT
4179}
4180
4181/**
4182 * sys_sched_getaffinity - get the cpu affinity of a process
4183 * @pid: pid of the process
4184 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4185 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4186 *
4187 * Return: 0 on success. An error code otherwise.
1da177e4 4188 */
5add95d4
HC
4189SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4190 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4191{
4192 int ret;
f17c8607 4193 cpumask_var_t mask;
1da177e4 4194
84fba5ec 4195 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4196 return -EINVAL;
4197 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4198 return -EINVAL;
4199
f17c8607
RR
4200 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4201 return -ENOMEM;
1da177e4 4202
f17c8607
RR
4203 ret = sched_getaffinity(pid, mask);
4204 if (ret == 0) {
8bc037fb 4205 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4206
4207 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4208 ret = -EFAULT;
4209 else
cd3d8031 4210 ret = retlen;
f17c8607
RR
4211 }
4212 free_cpumask_var(mask);
1da177e4 4213
f17c8607 4214 return ret;
1da177e4
LT
4215}
4216
4217/**
4218 * sys_sched_yield - yield the current processor to other threads.
4219 *
dd41f596
IM
4220 * This function yields the current CPU to other tasks. If there are no
4221 * other threads running on this CPU then this function will return.
e69f6186
YB
4222 *
4223 * Return: 0.
1da177e4 4224 */
5add95d4 4225SYSCALL_DEFINE0(sched_yield)
1da177e4 4226{
70b97a7f 4227 struct rq *rq = this_rq_lock();
1da177e4 4228
2d72376b 4229 schedstat_inc(rq, yld_count);
4530d7ab 4230 current->sched_class->yield_task(rq);
1da177e4
LT
4231
4232 /*
4233 * Since we are going to call schedule() anyway, there's
4234 * no need to preempt or enable interrupts:
4235 */
4236 __release(rq->lock);
8a25d5de 4237 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4238 do_raw_spin_unlock(&rq->lock);
ba74c144 4239 sched_preempt_enable_no_resched();
1da177e4
LT
4240
4241 schedule();
4242
4243 return 0;
4244}
4245
02b67cc3 4246int __sched _cond_resched(void)
1da177e4 4247{
d86ee480 4248 if (should_resched()) {
a18b5d01 4249 preempt_schedule_common();
1da177e4
LT
4250 return 1;
4251 }
4252 return 0;
4253}
02b67cc3 4254EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4255
4256/*
613afbf8 4257 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4258 * call schedule, and on return reacquire the lock.
4259 *
41a2d6cf 4260 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4261 * operations here to prevent schedule() from being called twice (once via
4262 * spin_unlock(), once by hand).
4263 */
613afbf8 4264int __cond_resched_lock(spinlock_t *lock)
1da177e4 4265{
d86ee480 4266 int resched = should_resched();
6df3cecb
JK
4267 int ret = 0;
4268
f607c668
PZ
4269 lockdep_assert_held(lock);
4270
4a81e832 4271 if (spin_needbreak(lock) || resched) {
1da177e4 4272 spin_unlock(lock);
d86ee480 4273 if (resched)
a18b5d01 4274 preempt_schedule_common();
95c354fe
NP
4275 else
4276 cpu_relax();
6df3cecb 4277 ret = 1;
1da177e4 4278 spin_lock(lock);
1da177e4 4279 }
6df3cecb 4280 return ret;
1da177e4 4281}
613afbf8 4282EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4283
613afbf8 4284int __sched __cond_resched_softirq(void)
1da177e4
LT
4285{
4286 BUG_ON(!in_softirq());
4287
d86ee480 4288 if (should_resched()) {
98d82567 4289 local_bh_enable();
a18b5d01 4290 preempt_schedule_common();
1da177e4
LT
4291 local_bh_disable();
4292 return 1;
4293 }
4294 return 0;
4295}
613afbf8 4296EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4297
1da177e4
LT
4298/**
4299 * yield - yield the current processor to other threads.
4300 *
8e3fabfd
PZ
4301 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4302 *
4303 * The scheduler is at all times free to pick the calling task as the most
4304 * eligible task to run, if removing the yield() call from your code breaks
4305 * it, its already broken.
4306 *
4307 * Typical broken usage is:
4308 *
4309 * while (!event)
4310 * yield();
4311 *
4312 * where one assumes that yield() will let 'the other' process run that will
4313 * make event true. If the current task is a SCHED_FIFO task that will never
4314 * happen. Never use yield() as a progress guarantee!!
4315 *
4316 * If you want to use yield() to wait for something, use wait_event().
4317 * If you want to use yield() to be 'nice' for others, use cond_resched().
4318 * If you still want to use yield(), do not!
1da177e4
LT
4319 */
4320void __sched yield(void)
4321{
4322 set_current_state(TASK_RUNNING);
4323 sys_sched_yield();
4324}
1da177e4
LT
4325EXPORT_SYMBOL(yield);
4326
d95f4122
MG
4327/**
4328 * yield_to - yield the current processor to another thread in
4329 * your thread group, or accelerate that thread toward the
4330 * processor it's on.
16addf95
RD
4331 * @p: target task
4332 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4333 *
4334 * It's the caller's job to ensure that the target task struct
4335 * can't go away on us before we can do any checks.
4336 *
e69f6186 4337 * Return:
7b270f60
PZ
4338 * true (>0) if we indeed boosted the target task.
4339 * false (0) if we failed to boost the target.
4340 * -ESRCH if there's no task to yield to.
d95f4122 4341 */
fa93384f 4342int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4343{
4344 struct task_struct *curr = current;
4345 struct rq *rq, *p_rq;
4346 unsigned long flags;
c3c18640 4347 int yielded = 0;
d95f4122
MG
4348
4349 local_irq_save(flags);
4350 rq = this_rq();
4351
4352again:
4353 p_rq = task_rq(p);
7b270f60
PZ
4354 /*
4355 * If we're the only runnable task on the rq and target rq also
4356 * has only one task, there's absolutely no point in yielding.
4357 */
4358 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4359 yielded = -ESRCH;
4360 goto out_irq;
4361 }
4362
d95f4122 4363 double_rq_lock(rq, p_rq);
39e24d8f 4364 if (task_rq(p) != p_rq) {
d95f4122
MG
4365 double_rq_unlock(rq, p_rq);
4366 goto again;
4367 }
4368
4369 if (!curr->sched_class->yield_to_task)
7b270f60 4370 goto out_unlock;
d95f4122
MG
4371
4372 if (curr->sched_class != p->sched_class)
7b270f60 4373 goto out_unlock;
d95f4122
MG
4374
4375 if (task_running(p_rq, p) || p->state)
7b270f60 4376 goto out_unlock;
d95f4122
MG
4377
4378 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4379 if (yielded) {
d95f4122 4380 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4381 /*
4382 * Make p's CPU reschedule; pick_next_entity takes care of
4383 * fairness.
4384 */
4385 if (preempt && rq != p_rq)
8875125e 4386 resched_curr(p_rq);
6d1cafd8 4387 }
d95f4122 4388
7b270f60 4389out_unlock:
d95f4122 4390 double_rq_unlock(rq, p_rq);
7b270f60 4391out_irq:
d95f4122
MG
4392 local_irq_restore(flags);
4393
7b270f60 4394 if (yielded > 0)
d95f4122
MG
4395 schedule();
4396
4397 return yielded;
4398}
4399EXPORT_SYMBOL_GPL(yield_to);
4400
1da177e4 4401/*
41a2d6cf 4402 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4403 * that process accounting knows that this is a task in IO wait state.
1da177e4 4404 */
1da177e4
LT
4405long __sched io_schedule_timeout(long timeout)
4406{
9cff8ade
N
4407 int old_iowait = current->in_iowait;
4408 struct rq *rq;
1da177e4
LT
4409 long ret;
4410
9cff8ade 4411 current->in_iowait = 1;
10d784ea 4412 blk_schedule_flush_plug(current);
9cff8ade 4413
0ff92245 4414 delayacct_blkio_start();
9cff8ade 4415 rq = raw_rq();
1da177e4
LT
4416 atomic_inc(&rq->nr_iowait);
4417 ret = schedule_timeout(timeout);
9cff8ade 4418 current->in_iowait = old_iowait;
1da177e4 4419 atomic_dec(&rq->nr_iowait);
0ff92245 4420 delayacct_blkio_end();
9cff8ade 4421
1da177e4
LT
4422 return ret;
4423}
9cff8ade 4424EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4425
4426/**
4427 * sys_sched_get_priority_max - return maximum RT priority.
4428 * @policy: scheduling class.
4429 *
e69f6186
YB
4430 * Return: On success, this syscall returns the maximum
4431 * rt_priority that can be used by a given scheduling class.
4432 * On failure, a negative error code is returned.
1da177e4 4433 */
5add95d4 4434SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4435{
4436 int ret = -EINVAL;
4437
4438 switch (policy) {
4439 case SCHED_FIFO:
4440 case SCHED_RR:
4441 ret = MAX_USER_RT_PRIO-1;
4442 break;
aab03e05 4443 case SCHED_DEADLINE:
1da177e4 4444 case SCHED_NORMAL:
b0a9499c 4445 case SCHED_BATCH:
dd41f596 4446 case SCHED_IDLE:
1da177e4
LT
4447 ret = 0;
4448 break;
4449 }
4450 return ret;
4451}
4452
4453/**
4454 * sys_sched_get_priority_min - return minimum RT priority.
4455 * @policy: scheduling class.
4456 *
e69f6186
YB
4457 * Return: On success, this syscall returns the minimum
4458 * rt_priority that can be used by a given scheduling class.
4459 * On failure, a negative error code is returned.
1da177e4 4460 */
5add95d4 4461SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4462{
4463 int ret = -EINVAL;
4464
4465 switch (policy) {
4466 case SCHED_FIFO:
4467 case SCHED_RR:
4468 ret = 1;
4469 break;
aab03e05 4470 case SCHED_DEADLINE:
1da177e4 4471 case SCHED_NORMAL:
b0a9499c 4472 case SCHED_BATCH:
dd41f596 4473 case SCHED_IDLE:
1da177e4
LT
4474 ret = 0;
4475 }
4476 return ret;
4477}
4478
4479/**
4480 * sys_sched_rr_get_interval - return the default timeslice of a process.
4481 * @pid: pid of the process.
4482 * @interval: userspace pointer to the timeslice value.
4483 *
4484 * this syscall writes the default timeslice value of a given process
4485 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4486 *
4487 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4488 * an error code.
1da177e4 4489 */
17da2bd9 4490SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4491 struct timespec __user *, interval)
1da177e4 4492{
36c8b586 4493 struct task_struct *p;
a4ec24b4 4494 unsigned int time_slice;
dba091b9
TG
4495 unsigned long flags;
4496 struct rq *rq;
3a5c359a 4497 int retval;
1da177e4 4498 struct timespec t;
1da177e4
LT
4499
4500 if (pid < 0)
3a5c359a 4501 return -EINVAL;
1da177e4
LT
4502
4503 retval = -ESRCH;
1a551ae7 4504 rcu_read_lock();
1da177e4
LT
4505 p = find_process_by_pid(pid);
4506 if (!p)
4507 goto out_unlock;
4508
4509 retval = security_task_getscheduler(p);
4510 if (retval)
4511 goto out_unlock;
4512
dba091b9 4513 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4514 time_slice = 0;
4515 if (p->sched_class->get_rr_interval)
4516 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4517 task_rq_unlock(rq, p, &flags);
a4ec24b4 4518
1a551ae7 4519 rcu_read_unlock();
a4ec24b4 4520 jiffies_to_timespec(time_slice, &t);
1da177e4 4521 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4522 return retval;
3a5c359a 4523
1da177e4 4524out_unlock:
1a551ae7 4525 rcu_read_unlock();
1da177e4
LT
4526 return retval;
4527}
4528
7c731e0a 4529static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4530
82a1fcb9 4531void sched_show_task(struct task_struct *p)
1da177e4 4532{
1da177e4 4533 unsigned long free = 0;
4e79752c 4534 int ppid;
1f8a7633 4535 unsigned long state = p->state;
1da177e4 4536
1f8a7633
TH
4537 if (state)
4538 state = __ffs(state) + 1;
28d0686c 4539 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4540 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4541#if BITS_PER_LONG == 32
1da177e4 4542 if (state == TASK_RUNNING)
3df0fc5b 4543 printk(KERN_CONT " running ");
1da177e4 4544 else
3df0fc5b 4545 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4546#else
4547 if (state == TASK_RUNNING)
3df0fc5b 4548 printk(KERN_CONT " running task ");
1da177e4 4549 else
3df0fc5b 4550 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4551#endif
4552#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4553 free = stack_not_used(p);
1da177e4 4554#endif
a90e984c 4555 ppid = 0;
4e79752c 4556 rcu_read_lock();
a90e984c
ON
4557 if (pid_alive(p))
4558 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4559 rcu_read_unlock();
3df0fc5b 4560 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4561 task_pid_nr(p), ppid,
aa47b7e0 4562 (unsigned long)task_thread_info(p)->flags);
1da177e4 4563
3d1cb205 4564 print_worker_info(KERN_INFO, p);
5fb5e6de 4565 show_stack(p, NULL);
1da177e4
LT
4566}
4567
e59e2ae2 4568void show_state_filter(unsigned long state_filter)
1da177e4 4569{
36c8b586 4570 struct task_struct *g, *p;
1da177e4 4571
4bd77321 4572#if BITS_PER_LONG == 32
3df0fc5b
PZ
4573 printk(KERN_INFO
4574 " task PC stack pid father\n");
1da177e4 4575#else
3df0fc5b
PZ
4576 printk(KERN_INFO
4577 " task PC stack pid father\n");
1da177e4 4578#endif
510f5acc 4579 rcu_read_lock();
5d07f420 4580 for_each_process_thread(g, p) {
1da177e4
LT
4581 /*
4582 * reset the NMI-timeout, listing all files on a slow
25985edc 4583 * console might take a lot of time:
1da177e4
LT
4584 */
4585 touch_nmi_watchdog();
39bc89fd 4586 if (!state_filter || (p->state & state_filter))
82a1fcb9 4587 sched_show_task(p);
5d07f420 4588 }
1da177e4 4589
04c9167f
JF
4590 touch_all_softlockup_watchdogs();
4591
dd41f596
IM
4592#ifdef CONFIG_SCHED_DEBUG
4593 sysrq_sched_debug_show();
4594#endif
510f5acc 4595 rcu_read_unlock();
e59e2ae2
IM
4596 /*
4597 * Only show locks if all tasks are dumped:
4598 */
93335a21 4599 if (!state_filter)
e59e2ae2 4600 debug_show_all_locks();
1da177e4
LT
4601}
4602
0db0628d 4603void init_idle_bootup_task(struct task_struct *idle)
1df21055 4604{
dd41f596 4605 idle->sched_class = &idle_sched_class;
1df21055
IM
4606}
4607
f340c0d1
IM
4608/**
4609 * init_idle - set up an idle thread for a given CPU
4610 * @idle: task in question
4611 * @cpu: cpu the idle task belongs to
4612 *
4613 * NOTE: this function does not set the idle thread's NEED_RESCHED
4614 * flag, to make booting more robust.
4615 */
0db0628d 4616void init_idle(struct task_struct *idle, int cpu)
1da177e4 4617{
70b97a7f 4618 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4619 unsigned long flags;
4620
05fa785c 4621 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4622
5e1576ed 4623 __sched_fork(0, idle);
06b83b5f 4624 idle->state = TASK_RUNNING;
dd41f596
IM
4625 idle->se.exec_start = sched_clock();
4626
1e1b6c51 4627 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4628 /*
4629 * We're having a chicken and egg problem, even though we are
4630 * holding rq->lock, the cpu isn't yet set to this cpu so the
4631 * lockdep check in task_group() will fail.
4632 *
4633 * Similar case to sched_fork(). / Alternatively we could
4634 * use task_rq_lock() here and obtain the other rq->lock.
4635 *
4636 * Silence PROVE_RCU
4637 */
4638 rcu_read_lock();
dd41f596 4639 __set_task_cpu(idle, cpu);
6506cf6c 4640 rcu_read_unlock();
1da177e4 4641
1da177e4 4642 rq->curr = rq->idle = idle;
da0c1e65 4643 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4644#if defined(CONFIG_SMP)
4645 idle->on_cpu = 1;
4866cde0 4646#endif
05fa785c 4647 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4648
4649 /* Set the preempt count _outside_ the spinlocks! */
01028747 4650 init_idle_preempt_count(idle, cpu);
55cd5340 4651
dd41f596
IM
4652 /*
4653 * The idle tasks have their own, simple scheduling class:
4654 */
4655 idle->sched_class = &idle_sched_class;
868baf07 4656 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4657 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4658#if defined(CONFIG_SMP)
4659 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4660#endif
19978ca6
IM
4661}
4662
f82f8042
JL
4663int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4664 const struct cpumask *trial)
4665{
4666 int ret = 1, trial_cpus;
4667 struct dl_bw *cur_dl_b;
4668 unsigned long flags;
4669
bb2bc55a
MG
4670 if (!cpumask_weight(cur))
4671 return ret;
4672
75e23e49 4673 rcu_read_lock_sched();
f82f8042
JL
4674 cur_dl_b = dl_bw_of(cpumask_any(cur));
4675 trial_cpus = cpumask_weight(trial);
4676
4677 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4678 if (cur_dl_b->bw != -1 &&
4679 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4680 ret = 0;
4681 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4682 rcu_read_unlock_sched();
f82f8042
JL
4683
4684 return ret;
4685}
4686
7f51412a
JL
4687int task_can_attach(struct task_struct *p,
4688 const struct cpumask *cs_cpus_allowed)
4689{
4690 int ret = 0;
4691
4692 /*
4693 * Kthreads which disallow setaffinity shouldn't be moved
4694 * to a new cpuset; we don't want to change their cpu
4695 * affinity and isolating such threads by their set of
4696 * allowed nodes is unnecessary. Thus, cpusets are not
4697 * applicable for such threads. This prevents checking for
4698 * success of set_cpus_allowed_ptr() on all attached tasks
4699 * before cpus_allowed may be changed.
4700 */
4701 if (p->flags & PF_NO_SETAFFINITY) {
4702 ret = -EINVAL;
4703 goto out;
4704 }
4705
4706#ifdef CONFIG_SMP
4707 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4708 cs_cpus_allowed)) {
4709 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4710 cs_cpus_allowed);
75e23e49 4711 struct dl_bw *dl_b;
7f51412a
JL
4712 bool overflow;
4713 int cpus;
4714 unsigned long flags;
4715
75e23e49
JL
4716 rcu_read_lock_sched();
4717 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4718 raw_spin_lock_irqsave(&dl_b->lock, flags);
4719 cpus = dl_bw_cpus(dest_cpu);
4720 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4721 if (overflow)
4722 ret = -EBUSY;
4723 else {
4724 /*
4725 * We reserve space for this task in the destination
4726 * root_domain, as we can't fail after this point.
4727 * We will free resources in the source root_domain
4728 * later on (see set_cpus_allowed_dl()).
4729 */
4730 __dl_add(dl_b, p->dl.dl_bw);
4731 }
4732 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4733 rcu_read_unlock_sched();
7f51412a
JL
4734
4735 }
4736#endif
4737out:
4738 return ret;
4739}
4740
1da177e4 4741#ifdef CONFIG_SMP
a15b12ac
KT
4742/*
4743 * move_queued_task - move a queued task to new rq.
4744 *
4745 * Returns (locked) new rq. Old rq's lock is released.
4746 */
4747static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4748{
4749 struct rq *rq = task_rq(p);
4750
4751 lockdep_assert_held(&rq->lock);
4752
4753 dequeue_task(rq, p, 0);
4754 p->on_rq = TASK_ON_RQ_MIGRATING;
4755 set_task_cpu(p, new_cpu);
4756 raw_spin_unlock(&rq->lock);
4757
4758 rq = cpu_rq(new_cpu);
4759
4760 raw_spin_lock(&rq->lock);
4761 BUG_ON(task_cpu(p) != new_cpu);
4762 p->on_rq = TASK_ON_RQ_QUEUED;
4763 enqueue_task(rq, p, 0);
4764 check_preempt_curr(rq, p, 0);
4765
4766 return rq;
4767}
4768
1e1b6c51
KM
4769void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4770{
1b537c7d 4771 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4772 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4773
4774 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4775 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4776}
4777
1da177e4
LT
4778/*
4779 * This is how migration works:
4780 *
969c7921
TH
4781 * 1) we invoke migration_cpu_stop() on the target CPU using
4782 * stop_one_cpu().
4783 * 2) stopper starts to run (implicitly forcing the migrated thread
4784 * off the CPU)
4785 * 3) it checks whether the migrated task is still in the wrong runqueue.
4786 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4787 * it and puts it into the right queue.
969c7921
TH
4788 * 5) stopper completes and stop_one_cpu() returns and the migration
4789 * is done.
1da177e4
LT
4790 */
4791
4792/*
4793 * Change a given task's CPU affinity. Migrate the thread to a
4794 * proper CPU and schedule it away if the CPU it's executing on
4795 * is removed from the allowed bitmask.
4796 *
4797 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4798 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4799 * call is not atomic; no spinlocks may be held.
4800 */
96f874e2 4801int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4802{
4803 unsigned long flags;
70b97a7f 4804 struct rq *rq;
969c7921 4805 unsigned int dest_cpu;
48f24c4d 4806 int ret = 0;
1da177e4
LT
4807
4808 rq = task_rq_lock(p, &flags);
e2912009 4809
db44fc01
YZ
4810 if (cpumask_equal(&p->cpus_allowed, new_mask))
4811 goto out;
4812
6ad4c188 4813 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4814 ret = -EINVAL;
4815 goto out;
4816 }
4817
1e1b6c51 4818 do_set_cpus_allowed(p, new_mask);
73fe6aae 4819
1da177e4 4820 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4821 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4822 goto out;
4823
969c7921 4824 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4825 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4826 struct migration_arg arg = { p, dest_cpu };
1da177e4 4827 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4828 task_rq_unlock(rq, p, &flags);
969c7921 4829 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4830 tlb_migrate_finish(p->mm);
4831 return 0;
a15b12ac
KT
4832 } else if (task_on_rq_queued(p))
4833 rq = move_queued_task(p, dest_cpu);
1da177e4 4834out:
0122ec5b 4835 task_rq_unlock(rq, p, &flags);
48f24c4d 4836
1da177e4
LT
4837 return ret;
4838}
cd8ba7cd 4839EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4840
4841/*
41a2d6cf 4842 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4843 * this because either it can't run here any more (set_cpus_allowed()
4844 * away from this CPU, or CPU going down), or because we're
4845 * attempting to rebalance this task on exec (sched_exec).
4846 *
4847 * So we race with normal scheduler movements, but that's OK, as long
4848 * as the task is no longer on this CPU.
efc30814
KK
4849 *
4850 * Returns non-zero if task was successfully migrated.
1da177e4 4851 */
efc30814 4852static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4853{
a1e01829 4854 struct rq *rq;
e2912009 4855 int ret = 0;
1da177e4 4856
e761b772 4857 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4858 return ret;
1da177e4 4859
a1e01829 4860 rq = cpu_rq(src_cpu);
1da177e4 4861
0122ec5b 4862 raw_spin_lock(&p->pi_lock);
a1e01829 4863 raw_spin_lock(&rq->lock);
1da177e4
LT
4864 /* Already moved. */
4865 if (task_cpu(p) != src_cpu)
b1e38734 4866 goto done;
a1e01829 4867
1da177e4 4868 /* Affinity changed (again). */
fa17b507 4869 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4870 goto fail;
1da177e4 4871
e2912009
PZ
4872 /*
4873 * If we're not on a rq, the next wake-up will ensure we're
4874 * placed properly.
4875 */
a15b12ac
KT
4876 if (task_on_rq_queued(p))
4877 rq = move_queued_task(p, dest_cpu);
b1e38734 4878done:
efc30814 4879 ret = 1;
b1e38734 4880fail:
a1e01829 4881 raw_spin_unlock(&rq->lock);
0122ec5b 4882 raw_spin_unlock(&p->pi_lock);
efc30814 4883 return ret;
1da177e4
LT
4884}
4885
e6628d5b
MG
4886#ifdef CONFIG_NUMA_BALANCING
4887/* Migrate current task p to target_cpu */
4888int migrate_task_to(struct task_struct *p, int target_cpu)
4889{
4890 struct migration_arg arg = { p, target_cpu };
4891 int curr_cpu = task_cpu(p);
4892
4893 if (curr_cpu == target_cpu)
4894 return 0;
4895
4896 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4897 return -EINVAL;
4898
4899 /* TODO: This is not properly updating schedstats */
4900
286549dc 4901 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4902 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4903}
0ec8aa00
PZ
4904
4905/*
4906 * Requeue a task on a given node and accurately track the number of NUMA
4907 * tasks on the runqueues
4908 */
4909void sched_setnuma(struct task_struct *p, int nid)
4910{
4911 struct rq *rq;
4912 unsigned long flags;
da0c1e65 4913 bool queued, running;
0ec8aa00
PZ
4914
4915 rq = task_rq_lock(p, &flags);
da0c1e65 4916 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4917 running = task_current(rq, p);
4918
da0c1e65 4919 if (queued)
0ec8aa00
PZ
4920 dequeue_task(rq, p, 0);
4921 if (running)
f3cd1c4e 4922 put_prev_task(rq, p);
0ec8aa00
PZ
4923
4924 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4925
4926 if (running)
4927 p->sched_class->set_curr_task(rq);
da0c1e65 4928 if (queued)
0ec8aa00
PZ
4929 enqueue_task(rq, p, 0);
4930 task_rq_unlock(rq, p, &flags);
4931}
e6628d5b
MG
4932#endif
4933
1da177e4 4934/*
969c7921
TH
4935 * migration_cpu_stop - this will be executed by a highprio stopper thread
4936 * and performs thread migration by bumping thread off CPU then
4937 * 'pushing' onto another runqueue.
1da177e4 4938 */
969c7921 4939static int migration_cpu_stop(void *data)
1da177e4 4940{
969c7921 4941 struct migration_arg *arg = data;
f7b4cddc 4942
969c7921
TH
4943 /*
4944 * The original target cpu might have gone down and we might
4945 * be on another cpu but it doesn't matter.
4946 */
f7b4cddc 4947 local_irq_disable();
5cd038f5
LJ
4948 /*
4949 * We need to explicitly wake pending tasks before running
4950 * __migrate_task() such that we will not miss enforcing cpus_allowed
4951 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4952 */
4953 sched_ttwu_pending();
969c7921 4954 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4955 local_irq_enable();
1da177e4 4956 return 0;
f7b4cddc
ON
4957}
4958
1da177e4 4959#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4960
054b9108 4961/*
48c5ccae
PZ
4962 * Ensures that the idle task is using init_mm right before its cpu goes
4963 * offline.
054b9108 4964 */
48c5ccae 4965void idle_task_exit(void)
1da177e4 4966{
48c5ccae 4967 struct mm_struct *mm = current->active_mm;
e76bd8d9 4968
48c5ccae 4969 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4970
a53efe5f 4971 if (mm != &init_mm) {
48c5ccae 4972 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4973 finish_arch_post_lock_switch();
4974 }
48c5ccae 4975 mmdrop(mm);
1da177e4
LT
4976}
4977
4978/*
5d180232
PZ
4979 * Since this CPU is going 'away' for a while, fold any nr_active delta
4980 * we might have. Assumes we're called after migrate_tasks() so that the
4981 * nr_active count is stable.
4982 *
4983 * Also see the comment "Global load-average calculations".
1da177e4 4984 */
5d180232 4985static void calc_load_migrate(struct rq *rq)
1da177e4 4986{
5d180232
PZ
4987 long delta = calc_load_fold_active(rq);
4988 if (delta)
4989 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4990}
4991
3f1d2a31
PZ
4992static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4993{
4994}
4995
4996static const struct sched_class fake_sched_class = {
4997 .put_prev_task = put_prev_task_fake,
4998};
4999
5000static struct task_struct fake_task = {
5001 /*
5002 * Avoid pull_{rt,dl}_task()
5003 */
5004 .prio = MAX_PRIO + 1,
5005 .sched_class = &fake_sched_class,
5006};
5007
48f24c4d 5008/*
48c5ccae
PZ
5009 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5010 * try_to_wake_up()->select_task_rq().
5011 *
5012 * Called with rq->lock held even though we'er in stop_machine() and
5013 * there's no concurrency possible, we hold the required locks anyway
5014 * because of lock validation efforts.
1da177e4 5015 */
48c5ccae 5016static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5017{
70b97a7f 5018 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5019 struct task_struct *next, *stop = rq->stop;
5020 int dest_cpu;
1da177e4
LT
5021
5022 /*
48c5ccae
PZ
5023 * Fudge the rq selection such that the below task selection loop
5024 * doesn't get stuck on the currently eligible stop task.
5025 *
5026 * We're currently inside stop_machine() and the rq is either stuck
5027 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5028 * either way we should never end up calling schedule() until we're
5029 * done here.
1da177e4 5030 */
48c5ccae 5031 rq->stop = NULL;
48f24c4d 5032
77bd3970
FW
5033 /*
5034 * put_prev_task() and pick_next_task() sched
5035 * class method both need to have an up-to-date
5036 * value of rq->clock[_task]
5037 */
5038 update_rq_clock(rq);
5039
dd41f596 5040 for ( ; ; ) {
48c5ccae
PZ
5041 /*
5042 * There's this thread running, bail when that's the only
5043 * remaining thread.
5044 */
5045 if (rq->nr_running == 1)
dd41f596 5046 break;
48c5ccae 5047
3f1d2a31 5048 next = pick_next_task(rq, &fake_task);
48c5ccae 5049 BUG_ON(!next);
79c53799 5050 next->sched_class->put_prev_task(rq, next);
e692ab53 5051
48c5ccae
PZ
5052 /* Find suitable destination for @next, with force if needed. */
5053 dest_cpu = select_fallback_rq(dead_cpu, next);
5054 raw_spin_unlock(&rq->lock);
5055
5056 __migrate_task(next, dead_cpu, dest_cpu);
5057
5058 raw_spin_lock(&rq->lock);
1da177e4 5059 }
dce48a84 5060
48c5ccae 5061 rq->stop = stop;
dce48a84 5062}
48c5ccae 5063
1da177e4
LT
5064#endif /* CONFIG_HOTPLUG_CPU */
5065
e692ab53
NP
5066#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5067
5068static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5069 {
5070 .procname = "sched_domain",
c57baf1e 5071 .mode = 0555,
e0361851 5072 },
56992309 5073 {}
e692ab53
NP
5074};
5075
5076static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5077 {
5078 .procname = "kernel",
c57baf1e 5079 .mode = 0555,
e0361851
AD
5080 .child = sd_ctl_dir,
5081 },
56992309 5082 {}
e692ab53
NP
5083};
5084
5085static struct ctl_table *sd_alloc_ctl_entry(int n)
5086{
5087 struct ctl_table *entry =
5cf9f062 5088 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5089
e692ab53
NP
5090 return entry;
5091}
5092
6382bc90
MM
5093static void sd_free_ctl_entry(struct ctl_table **tablep)
5094{
cd790076 5095 struct ctl_table *entry;
6382bc90 5096
cd790076
MM
5097 /*
5098 * In the intermediate directories, both the child directory and
5099 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5100 * will always be set. In the lowest directory the names are
cd790076
MM
5101 * static strings and all have proc handlers.
5102 */
5103 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5104 if (entry->child)
5105 sd_free_ctl_entry(&entry->child);
cd790076
MM
5106 if (entry->proc_handler == NULL)
5107 kfree(entry->procname);
5108 }
6382bc90
MM
5109
5110 kfree(*tablep);
5111 *tablep = NULL;
5112}
5113
201c373e 5114static int min_load_idx = 0;
fd9b86d3 5115static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5116
e692ab53 5117static void
e0361851 5118set_table_entry(struct ctl_table *entry,
e692ab53 5119 const char *procname, void *data, int maxlen,
201c373e
NK
5120 umode_t mode, proc_handler *proc_handler,
5121 bool load_idx)
e692ab53 5122{
e692ab53
NP
5123 entry->procname = procname;
5124 entry->data = data;
5125 entry->maxlen = maxlen;
5126 entry->mode = mode;
5127 entry->proc_handler = proc_handler;
201c373e
NK
5128
5129 if (load_idx) {
5130 entry->extra1 = &min_load_idx;
5131 entry->extra2 = &max_load_idx;
5132 }
e692ab53
NP
5133}
5134
5135static struct ctl_table *
5136sd_alloc_ctl_domain_table(struct sched_domain *sd)
5137{
37e6bae8 5138 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5139
ad1cdc1d
MM
5140 if (table == NULL)
5141 return NULL;
5142
e0361851 5143 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5144 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5145 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5146 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5147 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5148 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5149 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5150 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5151 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5152 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5153 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5154 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5155 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5156 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5157 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5158 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5159 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5160 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5161 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5162 &sd->cache_nice_tries,
201c373e 5163 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5164 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5165 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5166 set_table_entry(&table[11], "max_newidle_lb_cost",
5167 &sd->max_newidle_lb_cost,
5168 sizeof(long), 0644, proc_doulongvec_minmax, false);
5169 set_table_entry(&table[12], "name", sd->name,
201c373e 5170 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5171 /* &table[13] is terminator */
e692ab53
NP
5172
5173 return table;
5174}
5175
be7002e6 5176static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5177{
5178 struct ctl_table *entry, *table;
5179 struct sched_domain *sd;
5180 int domain_num = 0, i;
5181 char buf[32];
5182
5183 for_each_domain(cpu, sd)
5184 domain_num++;
5185 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5186 if (table == NULL)
5187 return NULL;
e692ab53
NP
5188
5189 i = 0;
5190 for_each_domain(cpu, sd) {
5191 snprintf(buf, 32, "domain%d", i);
e692ab53 5192 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5193 entry->mode = 0555;
e692ab53
NP
5194 entry->child = sd_alloc_ctl_domain_table(sd);
5195 entry++;
5196 i++;
5197 }
5198 return table;
5199}
5200
5201static struct ctl_table_header *sd_sysctl_header;
6382bc90 5202static void register_sched_domain_sysctl(void)
e692ab53 5203{
6ad4c188 5204 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5205 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5206 char buf[32];
5207
7378547f
MM
5208 WARN_ON(sd_ctl_dir[0].child);
5209 sd_ctl_dir[0].child = entry;
5210
ad1cdc1d
MM
5211 if (entry == NULL)
5212 return;
5213
6ad4c188 5214 for_each_possible_cpu(i) {
e692ab53 5215 snprintf(buf, 32, "cpu%d", i);
e692ab53 5216 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5217 entry->mode = 0555;
e692ab53 5218 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5219 entry++;
e692ab53 5220 }
7378547f
MM
5221
5222 WARN_ON(sd_sysctl_header);
e692ab53
NP
5223 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5224}
6382bc90 5225
7378547f 5226/* may be called multiple times per register */
6382bc90
MM
5227static void unregister_sched_domain_sysctl(void)
5228{
7378547f
MM
5229 if (sd_sysctl_header)
5230 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5231 sd_sysctl_header = NULL;
7378547f
MM
5232 if (sd_ctl_dir[0].child)
5233 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5234}
e692ab53 5235#else
6382bc90
MM
5236static void register_sched_domain_sysctl(void)
5237{
5238}
5239static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5240{
5241}
5242#endif
5243
1f11eb6a
GH
5244static void set_rq_online(struct rq *rq)
5245{
5246 if (!rq->online) {
5247 const struct sched_class *class;
5248
c6c4927b 5249 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5250 rq->online = 1;
5251
5252 for_each_class(class) {
5253 if (class->rq_online)
5254 class->rq_online(rq);
5255 }
5256 }
5257}
5258
5259static void set_rq_offline(struct rq *rq)
5260{
5261 if (rq->online) {
5262 const struct sched_class *class;
5263
5264 for_each_class(class) {
5265 if (class->rq_offline)
5266 class->rq_offline(rq);
5267 }
5268
c6c4927b 5269 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5270 rq->online = 0;
5271 }
5272}
5273
1da177e4
LT
5274/*
5275 * migration_call - callback that gets triggered when a CPU is added.
5276 * Here we can start up the necessary migration thread for the new CPU.
5277 */
0db0628d 5278static int
48f24c4d 5279migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5280{
48f24c4d 5281 int cpu = (long)hcpu;
1da177e4 5282 unsigned long flags;
969c7921 5283 struct rq *rq = cpu_rq(cpu);
1da177e4 5284
48c5ccae 5285 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5286
1da177e4 5287 case CPU_UP_PREPARE:
a468d389 5288 rq->calc_load_update = calc_load_update;
1da177e4 5289 break;
48f24c4d 5290
1da177e4 5291 case CPU_ONLINE:
1f94ef59 5292 /* Update our root-domain */
05fa785c 5293 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5294 if (rq->rd) {
c6c4927b 5295 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5296
5297 set_rq_online(rq);
1f94ef59 5298 }
05fa785c 5299 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5300 break;
48f24c4d 5301
1da177e4 5302#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5303 case CPU_DYING:
317f3941 5304 sched_ttwu_pending();
57d885fe 5305 /* Update our root-domain */
05fa785c 5306 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5307 if (rq->rd) {
c6c4927b 5308 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5309 set_rq_offline(rq);
57d885fe 5310 }
48c5ccae
PZ
5311 migrate_tasks(cpu);
5312 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5313 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5314 break;
48c5ccae 5315
5d180232 5316 case CPU_DEAD:
f319da0c 5317 calc_load_migrate(rq);
57d885fe 5318 break;
1da177e4
LT
5319#endif
5320 }
49c022e6
PZ
5321
5322 update_max_interval();
5323
1da177e4
LT
5324 return NOTIFY_OK;
5325}
5326
f38b0820
PM
5327/*
5328 * Register at high priority so that task migration (migrate_all_tasks)
5329 * happens before everything else. This has to be lower priority than
cdd6c482 5330 * the notifier in the perf_event subsystem, though.
1da177e4 5331 */
0db0628d 5332static struct notifier_block migration_notifier = {
1da177e4 5333 .notifier_call = migration_call,
50a323b7 5334 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5335};
5336
6a82b60d 5337static void set_cpu_rq_start_time(void)
a803f026
CM
5338{
5339 int cpu = smp_processor_id();
5340 struct rq *rq = cpu_rq(cpu);
5341 rq->age_stamp = sched_clock_cpu(cpu);
5342}
5343
0db0628d 5344static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5345 unsigned long action, void *hcpu)
5346{
5347 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5348 case CPU_STARTING:
5349 set_cpu_rq_start_time();
5350 return NOTIFY_OK;
3a101d05
TH
5351 case CPU_DOWN_FAILED:
5352 set_cpu_active((long)hcpu, true);
5353 return NOTIFY_OK;
5354 default:
5355 return NOTIFY_DONE;
5356 }
5357}
5358
0db0628d 5359static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5360 unsigned long action, void *hcpu)
5361{
5362 switch (action & ~CPU_TASKS_FROZEN) {
5363 case CPU_DOWN_PREPARE:
3c18d447 5364 set_cpu_active((long)hcpu, false);
3a101d05 5365 return NOTIFY_OK;
3c18d447
JL
5366 default:
5367 return NOTIFY_DONE;
3a101d05
TH
5368 }
5369}
5370
7babe8db 5371static int __init migration_init(void)
1da177e4
LT
5372{
5373 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5374 int err;
48f24c4d 5375
3a101d05 5376 /* Initialize migration for the boot CPU */
07dccf33
AM
5377 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5378 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5379 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5380 register_cpu_notifier(&migration_notifier);
7babe8db 5381
3a101d05
TH
5382 /* Register cpu active notifiers */
5383 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5384 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5385
a004cd42 5386 return 0;
1da177e4 5387}
7babe8db 5388early_initcall(migration_init);
1da177e4
LT
5389#endif
5390
5391#ifdef CONFIG_SMP
476f3534 5392
4cb98839
PZ
5393static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5394
3e9830dc 5395#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5396
d039ac60 5397static __read_mostly int sched_debug_enabled;
f6630114 5398
d039ac60 5399static int __init sched_debug_setup(char *str)
f6630114 5400{
d039ac60 5401 sched_debug_enabled = 1;
f6630114
MT
5402
5403 return 0;
5404}
d039ac60
PZ
5405early_param("sched_debug", sched_debug_setup);
5406
5407static inline bool sched_debug(void)
5408{
5409 return sched_debug_enabled;
5410}
f6630114 5411
7c16ec58 5412static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5413 struct cpumask *groupmask)
1da177e4 5414{
4dcf6aff 5415 struct sched_group *group = sd->groups;
1da177e4 5416
96f874e2 5417 cpumask_clear(groupmask);
4dcf6aff
IM
5418
5419 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5420
5421 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5422 printk("does not load-balance\n");
4dcf6aff 5423 if (sd->parent)
3df0fc5b
PZ
5424 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5425 " has parent");
4dcf6aff 5426 return -1;
41c7ce9a
NP
5427 }
5428
333470ee
TH
5429 printk(KERN_CONT "span %*pbl level %s\n",
5430 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5431
758b2cdc 5432 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5433 printk(KERN_ERR "ERROR: domain->span does not contain "
5434 "CPU%d\n", cpu);
4dcf6aff 5435 }
758b2cdc 5436 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5437 printk(KERN_ERR "ERROR: domain->groups does not contain"
5438 " CPU%d\n", cpu);
4dcf6aff 5439 }
1da177e4 5440
4dcf6aff 5441 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5442 do {
4dcf6aff 5443 if (!group) {
3df0fc5b
PZ
5444 printk("\n");
5445 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5446 break;
5447 }
5448
758b2cdc 5449 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5450 printk(KERN_CONT "\n");
5451 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5452 break;
5453 }
1da177e4 5454
cb83b629
PZ
5455 if (!(sd->flags & SD_OVERLAP) &&
5456 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5457 printk(KERN_CONT "\n");
5458 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5459 break;
5460 }
1da177e4 5461
758b2cdc 5462 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5463
333470ee
TH
5464 printk(KERN_CONT " %*pbl",
5465 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5466 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5467 printk(KERN_CONT " (cpu_capacity = %d)",
5468 group->sgc->capacity);
381512cf 5469 }
1da177e4 5470
4dcf6aff
IM
5471 group = group->next;
5472 } while (group != sd->groups);
3df0fc5b 5473 printk(KERN_CONT "\n");
1da177e4 5474
758b2cdc 5475 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5476 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5477
758b2cdc
RR
5478 if (sd->parent &&
5479 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5480 printk(KERN_ERR "ERROR: parent span is not a superset "
5481 "of domain->span\n");
4dcf6aff
IM
5482 return 0;
5483}
1da177e4 5484
4dcf6aff
IM
5485static void sched_domain_debug(struct sched_domain *sd, int cpu)
5486{
5487 int level = 0;
1da177e4 5488
d039ac60 5489 if (!sched_debug_enabled)
f6630114
MT
5490 return;
5491
4dcf6aff
IM
5492 if (!sd) {
5493 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5494 return;
5495 }
1da177e4 5496
4dcf6aff
IM
5497 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5498
5499 for (;;) {
4cb98839 5500 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5501 break;
1da177e4
LT
5502 level++;
5503 sd = sd->parent;
33859f7f 5504 if (!sd)
4dcf6aff
IM
5505 break;
5506 }
1da177e4 5507}
6d6bc0ad 5508#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5509# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5510static inline bool sched_debug(void)
5511{
5512 return false;
5513}
6d6bc0ad 5514#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5515
1a20ff27 5516static int sd_degenerate(struct sched_domain *sd)
245af2c7 5517{
758b2cdc 5518 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5519 return 1;
5520
5521 /* Following flags need at least 2 groups */
5522 if (sd->flags & (SD_LOAD_BALANCE |
5523 SD_BALANCE_NEWIDLE |
5524 SD_BALANCE_FORK |
89c4710e 5525 SD_BALANCE_EXEC |
5d4dfddd 5526 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5527 SD_SHARE_PKG_RESOURCES |
5528 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5529 if (sd->groups != sd->groups->next)
5530 return 0;
5531 }
5532
5533 /* Following flags don't use groups */
c88d5910 5534 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5535 return 0;
5536
5537 return 1;
5538}
5539
48f24c4d
IM
5540static int
5541sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5542{
5543 unsigned long cflags = sd->flags, pflags = parent->flags;
5544
5545 if (sd_degenerate(parent))
5546 return 1;
5547
758b2cdc 5548 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5549 return 0;
5550
245af2c7
SS
5551 /* Flags needing groups don't count if only 1 group in parent */
5552 if (parent->groups == parent->groups->next) {
5553 pflags &= ~(SD_LOAD_BALANCE |
5554 SD_BALANCE_NEWIDLE |
5555 SD_BALANCE_FORK |
89c4710e 5556 SD_BALANCE_EXEC |
5d4dfddd 5557 SD_SHARE_CPUCAPACITY |
10866e62 5558 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5559 SD_PREFER_SIBLING |
5560 SD_SHARE_POWERDOMAIN);
5436499e
KC
5561 if (nr_node_ids == 1)
5562 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5563 }
5564 if (~cflags & pflags)
5565 return 0;
5566
5567 return 1;
5568}
5569
dce840a0 5570static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5571{
dce840a0 5572 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5573
68e74568 5574 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5575 cpudl_cleanup(&rd->cpudl);
1baca4ce 5576 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5577 free_cpumask_var(rd->rto_mask);
5578 free_cpumask_var(rd->online);
5579 free_cpumask_var(rd->span);
5580 kfree(rd);
5581}
5582
57d885fe
GH
5583static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5584{
a0490fa3 5585 struct root_domain *old_rd = NULL;
57d885fe 5586 unsigned long flags;
57d885fe 5587
05fa785c 5588 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5589
5590 if (rq->rd) {
a0490fa3 5591 old_rd = rq->rd;
57d885fe 5592
c6c4927b 5593 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5594 set_rq_offline(rq);
57d885fe 5595
c6c4927b 5596 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5597
a0490fa3 5598 /*
0515973f 5599 * If we dont want to free the old_rd yet then
a0490fa3
IM
5600 * set old_rd to NULL to skip the freeing later
5601 * in this function:
5602 */
5603 if (!atomic_dec_and_test(&old_rd->refcount))
5604 old_rd = NULL;
57d885fe
GH
5605 }
5606
5607 atomic_inc(&rd->refcount);
5608 rq->rd = rd;
5609
c6c4927b 5610 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5611 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5612 set_rq_online(rq);
57d885fe 5613
05fa785c 5614 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5615
5616 if (old_rd)
dce840a0 5617 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5618}
5619
68c38fc3 5620static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5621{
5622 memset(rd, 0, sizeof(*rd));
5623
68c38fc3 5624 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5625 goto out;
68c38fc3 5626 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5627 goto free_span;
1baca4ce 5628 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5629 goto free_online;
1baca4ce
JL
5630 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5631 goto free_dlo_mask;
6e0534f2 5632
332ac17e 5633 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5634 if (cpudl_init(&rd->cpudl) != 0)
5635 goto free_dlo_mask;
332ac17e 5636
68c38fc3 5637 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5638 goto free_rto_mask;
c6c4927b 5639 return 0;
6e0534f2 5640
68e74568
RR
5641free_rto_mask:
5642 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5643free_dlo_mask:
5644 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5645free_online:
5646 free_cpumask_var(rd->online);
5647free_span:
5648 free_cpumask_var(rd->span);
0c910d28 5649out:
c6c4927b 5650 return -ENOMEM;
57d885fe
GH
5651}
5652
029632fb
PZ
5653/*
5654 * By default the system creates a single root-domain with all cpus as
5655 * members (mimicking the global state we have today).
5656 */
5657struct root_domain def_root_domain;
5658
57d885fe
GH
5659static void init_defrootdomain(void)
5660{
68c38fc3 5661 init_rootdomain(&def_root_domain);
c6c4927b 5662
57d885fe
GH
5663 atomic_set(&def_root_domain.refcount, 1);
5664}
5665
dc938520 5666static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5667{
5668 struct root_domain *rd;
5669
5670 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5671 if (!rd)
5672 return NULL;
5673
68c38fc3 5674 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5675 kfree(rd);
5676 return NULL;
5677 }
57d885fe
GH
5678
5679 return rd;
5680}
5681
63b2ca30 5682static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5683{
5684 struct sched_group *tmp, *first;
5685
5686 if (!sg)
5687 return;
5688
5689 first = sg;
5690 do {
5691 tmp = sg->next;
5692
63b2ca30
NP
5693 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5694 kfree(sg->sgc);
e3589f6c
PZ
5695
5696 kfree(sg);
5697 sg = tmp;
5698 } while (sg != first);
5699}
5700
dce840a0
PZ
5701static void free_sched_domain(struct rcu_head *rcu)
5702{
5703 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5704
5705 /*
5706 * If its an overlapping domain it has private groups, iterate and
5707 * nuke them all.
5708 */
5709 if (sd->flags & SD_OVERLAP) {
5710 free_sched_groups(sd->groups, 1);
5711 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5712 kfree(sd->groups->sgc);
dce840a0 5713 kfree(sd->groups);
9c3f75cb 5714 }
dce840a0
PZ
5715 kfree(sd);
5716}
5717
5718static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5719{
5720 call_rcu(&sd->rcu, free_sched_domain);
5721}
5722
5723static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5724{
5725 for (; sd; sd = sd->parent)
5726 destroy_sched_domain(sd, cpu);
5727}
5728
518cd623
PZ
5729/*
5730 * Keep a special pointer to the highest sched_domain that has
5731 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5732 * allows us to avoid some pointer chasing select_idle_sibling().
5733 *
5734 * Also keep a unique ID per domain (we use the first cpu number in
5735 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5736 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5737 */
5738DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5739DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5740DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5741DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5742DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5743DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5744
5745static void update_top_cache_domain(int cpu)
5746{
5747 struct sched_domain *sd;
5d4cf996 5748 struct sched_domain *busy_sd = NULL;
518cd623 5749 int id = cpu;
7d9ffa89 5750 int size = 1;
518cd623
PZ
5751
5752 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5753 if (sd) {
518cd623 5754 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5755 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5756 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5757 }
5d4cf996 5758 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5759
5760 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5761 per_cpu(sd_llc_size, cpu) = size;
518cd623 5762 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5763
5764 sd = lowest_flag_domain(cpu, SD_NUMA);
5765 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5766
5767 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5768 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5769}
5770
1da177e4 5771/*
0eab9146 5772 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5773 * hold the hotplug lock.
5774 */
0eab9146
IM
5775static void
5776cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5777{
70b97a7f 5778 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5779 struct sched_domain *tmp;
5780
5781 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5782 for (tmp = sd; tmp; ) {
245af2c7
SS
5783 struct sched_domain *parent = tmp->parent;
5784 if (!parent)
5785 break;
f29c9b1c 5786
1a848870 5787 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5788 tmp->parent = parent->parent;
1a848870
SS
5789 if (parent->parent)
5790 parent->parent->child = tmp;
10866e62
PZ
5791 /*
5792 * Transfer SD_PREFER_SIBLING down in case of a
5793 * degenerate parent; the spans match for this
5794 * so the property transfers.
5795 */
5796 if (parent->flags & SD_PREFER_SIBLING)
5797 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5798 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5799 } else
5800 tmp = tmp->parent;
245af2c7
SS
5801 }
5802
1a848870 5803 if (sd && sd_degenerate(sd)) {
dce840a0 5804 tmp = sd;
245af2c7 5805 sd = sd->parent;
dce840a0 5806 destroy_sched_domain(tmp, cpu);
1a848870
SS
5807 if (sd)
5808 sd->child = NULL;
5809 }
1da177e4 5810
4cb98839 5811 sched_domain_debug(sd, cpu);
1da177e4 5812
57d885fe 5813 rq_attach_root(rq, rd);
dce840a0 5814 tmp = rq->sd;
674311d5 5815 rcu_assign_pointer(rq->sd, sd);
dce840a0 5816 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5817
5818 update_top_cache_domain(cpu);
1da177e4
LT
5819}
5820
1da177e4
LT
5821/* Setup the mask of cpus configured for isolated domains */
5822static int __init isolated_cpu_setup(char *str)
5823{
bdddd296 5824 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5825 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5826 return 1;
5827}
5828
8927f494 5829__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5830
49a02c51 5831struct s_data {
21d42ccf 5832 struct sched_domain ** __percpu sd;
49a02c51
AH
5833 struct root_domain *rd;
5834};
5835
2109b99e 5836enum s_alloc {
2109b99e 5837 sa_rootdomain,
21d42ccf 5838 sa_sd,
dce840a0 5839 sa_sd_storage,
2109b99e
AH
5840 sa_none,
5841};
5842
c1174876
PZ
5843/*
5844 * Build an iteration mask that can exclude certain CPUs from the upwards
5845 * domain traversal.
5846 *
5847 * Asymmetric node setups can result in situations where the domain tree is of
5848 * unequal depth, make sure to skip domains that already cover the entire
5849 * range.
5850 *
5851 * In that case build_sched_domains() will have terminated the iteration early
5852 * and our sibling sd spans will be empty. Domains should always include the
5853 * cpu they're built on, so check that.
5854 *
5855 */
5856static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5857{
5858 const struct cpumask *span = sched_domain_span(sd);
5859 struct sd_data *sdd = sd->private;
5860 struct sched_domain *sibling;
5861 int i;
5862
5863 for_each_cpu(i, span) {
5864 sibling = *per_cpu_ptr(sdd->sd, i);
5865 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5866 continue;
5867
5868 cpumask_set_cpu(i, sched_group_mask(sg));
5869 }
5870}
5871
5872/*
5873 * Return the canonical balance cpu for this group, this is the first cpu
5874 * of this group that's also in the iteration mask.
5875 */
5876int group_balance_cpu(struct sched_group *sg)
5877{
5878 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5879}
5880
e3589f6c
PZ
5881static int
5882build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5883{
5884 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5885 const struct cpumask *span = sched_domain_span(sd);
5886 struct cpumask *covered = sched_domains_tmpmask;
5887 struct sd_data *sdd = sd->private;
aaecac4a 5888 struct sched_domain *sibling;
e3589f6c
PZ
5889 int i;
5890
5891 cpumask_clear(covered);
5892
5893 for_each_cpu(i, span) {
5894 struct cpumask *sg_span;
5895
5896 if (cpumask_test_cpu(i, covered))
5897 continue;
5898
aaecac4a 5899 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5900
5901 /* See the comment near build_group_mask(). */
aaecac4a 5902 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5903 continue;
5904
e3589f6c 5905 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5906 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5907
5908 if (!sg)
5909 goto fail;
5910
5911 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5912 if (sibling->child)
5913 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5914 else
e3589f6c
PZ
5915 cpumask_set_cpu(i, sg_span);
5916
5917 cpumask_or(covered, covered, sg_span);
5918
63b2ca30
NP
5919 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5920 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5921 build_group_mask(sd, sg);
5922
c3decf0d 5923 /*
63b2ca30 5924 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5925 * domains and no possible iteration will get us here, we won't
5926 * die on a /0 trap.
5927 */
ca8ce3d0 5928 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5929
c1174876
PZ
5930 /*
5931 * Make sure the first group of this domain contains the
5932 * canonical balance cpu. Otherwise the sched_domain iteration
5933 * breaks. See update_sg_lb_stats().
5934 */
74a5ce20 5935 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5936 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5937 groups = sg;
5938
5939 if (!first)
5940 first = sg;
5941 if (last)
5942 last->next = sg;
5943 last = sg;
5944 last->next = first;
5945 }
5946 sd->groups = groups;
5947
5948 return 0;
5949
5950fail:
5951 free_sched_groups(first, 0);
5952
5953 return -ENOMEM;
5954}
5955
dce840a0 5956static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5957{
dce840a0
PZ
5958 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5959 struct sched_domain *child = sd->child;
1da177e4 5960
dce840a0
PZ
5961 if (child)
5962 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5963
9c3f75cb 5964 if (sg) {
dce840a0 5965 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5966 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5967 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5968 }
dce840a0
PZ
5969
5970 return cpu;
1e9f28fa 5971}
1e9f28fa 5972
01a08546 5973/*
dce840a0
PZ
5974 * build_sched_groups will build a circular linked list of the groups
5975 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5976 * and ->cpu_capacity to 0.
e3589f6c
PZ
5977 *
5978 * Assumes the sched_domain tree is fully constructed
01a08546 5979 */
e3589f6c
PZ
5980static int
5981build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5982{
dce840a0
PZ
5983 struct sched_group *first = NULL, *last = NULL;
5984 struct sd_data *sdd = sd->private;
5985 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5986 struct cpumask *covered;
dce840a0 5987 int i;
9c1cfda2 5988
e3589f6c
PZ
5989 get_group(cpu, sdd, &sd->groups);
5990 atomic_inc(&sd->groups->ref);
5991
0936629f 5992 if (cpu != cpumask_first(span))
e3589f6c
PZ
5993 return 0;
5994
f96225fd
PZ
5995 lockdep_assert_held(&sched_domains_mutex);
5996 covered = sched_domains_tmpmask;
5997
dce840a0 5998 cpumask_clear(covered);
6711cab4 5999
dce840a0
PZ
6000 for_each_cpu(i, span) {
6001 struct sched_group *sg;
cd08e923 6002 int group, j;
6711cab4 6003
dce840a0
PZ
6004 if (cpumask_test_cpu(i, covered))
6005 continue;
6711cab4 6006
cd08e923 6007 group = get_group(i, sdd, &sg);
c1174876 6008 cpumask_setall(sched_group_mask(sg));
0601a88d 6009
dce840a0
PZ
6010 for_each_cpu(j, span) {
6011 if (get_group(j, sdd, NULL) != group)
6012 continue;
0601a88d 6013
dce840a0
PZ
6014 cpumask_set_cpu(j, covered);
6015 cpumask_set_cpu(j, sched_group_cpus(sg));
6016 }
0601a88d 6017
dce840a0
PZ
6018 if (!first)
6019 first = sg;
6020 if (last)
6021 last->next = sg;
6022 last = sg;
6023 }
6024 last->next = first;
e3589f6c
PZ
6025
6026 return 0;
0601a88d 6027}
51888ca2 6028
89c4710e 6029/*
63b2ca30 6030 * Initialize sched groups cpu_capacity.
89c4710e 6031 *
63b2ca30 6032 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6033 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6034 * Typically cpu_capacity for all the groups in a sched domain will be same
6035 * unless there are asymmetries in the topology. If there are asymmetries,
6036 * group having more cpu_capacity will pickup more load compared to the
6037 * group having less cpu_capacity.
89c4710e 6038 */
63b2ca30 6039static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6040{
e3589f6c 6041 struct sched_group *sg = sd->groups;
89c4710e 6042
94c95ba6 6043 WARN_ON(!sg);
e3589f6c
PZ
6044
6045 do {
6046 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6047 sg = sg->next;
6048 } while (sg != sd->groups);
89c4710e 6049
c1174876 6050 if (cpu != group_balance_cpu(sg))
e3589f6c 6051 return;
aae6d3dd 6052
63b2ca30
NP
6053 update_group_capacity(sd, cpu);
6054 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6055}
6056
7c16ec58
MT
6057/*
6058 * Initializers for schedule domains
6059 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6060 */
6061
1d3504fc 6062static int default_relax_domain_level = -1;
60495e77 6063int sched_domain_level_max;
1d3504fc
HS
6064
6065static int __init setup_relax_domain_level(char *str)
6066{
a841f8ce
DS
6067 if (kstrtoint(str, 0, &default_relax_domain_level))
6068 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6069
1d3504fc
HS
6070 return 1;
6071}
6072__setup("relax_domain_level=", setup_relax_domain_level);
6073
6074static void set_domain_attribute(struct sched_domain *sd,
6075 struct sched_domain_attr *attr)
6076{
6077 int request;
6078
6079 if (!attr || attr->relax_domain_level < 0) {
6080 if (default_relax_domain_level < 0)
6081 return;
6082 else
6083 request = default_relax_domain_level;
6084 } else
6085 request = attr->relax_domain_level;
6086 if (request < sd->level) {
6087 /* turn off idle balance on this domain */
c88d5910 6088 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6089 } else {
6090 /* turn on idle balance on this domain */
c88d5910 6091 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6092 }
6093}
6094
54ab4ff4
PZ
6095static void __sdt_free(const struct cpumask *cpu_map);
6096static int __sdt_alloc(const struct cpumask *cpu_map);
6097
2109b99e
AH
6098static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6099 const struct cpumask *cpu_map)
6100{
6101 switch (what) {
2109b99e 6102 case sa_rootdomain:
822ff793
PZ
6103 if (!atomic_read(&d->rd->refcount))
6104 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6105 case sa_sd:
6106 free_percpu(d->sd); /* fall through */
dce840a0 6107 case sa_sd_storage:
54ab4ff4 6108 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6109 case sa_none:
6110 break;
6111 }
6112}
3404c8d9 6113
2109b99e
AH
6114static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6115 const struct cpumask *cpu_map)
6116{
dce840a0
PZ
6117 memset(d, 0, sizeof(*d));
6118
54ab4ff4
PZ
6119 if (__sdt_alloc(cpu_map))
6120 return sa_sd_storage;
dce840a0
PZ
6121 d->sd = alloc_percpu(struct sched_domain *);
6122 if (!d->sd)
6123 return sa_sd_storage;
2109b99e 6124 d->rd = alloc_rootdomain();
dce840a0 6125 if (!d->rd)
21d42ccf 6126 return sa_sd;
2109b99e
AH
6127 return sa_rootdomain;
6128}
57d885fe 6129
dce840a0
PZ
6130/*
6131 * NULL the sd_data elements we've used to build the sched_domain and
6132 * sched_group structure so that the subsequent __free_domain_allocs()
6133 * will not free the data we're using.
6134 */
6135static void claim_allocations(int cpu, struct sched_domain *sd)
6136{
6137 struct sd_data *sdd = sd->private;
dce840a0
PZ
6138
6139 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6140 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6141
e3589f6c 6142 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6143 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6144
63b2ca30
NP
6145 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6146 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6147}
6148
cb83b629 6149#ifdef CONFIG_NUMA
cb83b629 6150static int sched_domains_numa_levels;
e3fe70b1 6151enum numa_topology_type sched_numa_topology_type;
cb83b629 6152static int *sched_domains_numa_distance;
9942f79b 6153int sched_max_numa_distance;
cb83b629
PZ
6154static struct cpumask ***sched_domains_numa_masks;
6155static int sched_domains_curr_level;
143e1e28 6156#endif
cb83b629 6157
143e1e28
VG
6158/*
6159 * SD_flags allowed in topology descriptions.
6160 *
5d4dfddd 6161 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6162 * SD_SHARE_PKG_RESOURCES - describes shared caches
6163 * SD_NUMA - describes NUMA topologies
d77b3ed5 6164 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6165 *
6166 * Odd one out:
6167 * SD_ASYM_PACKING - describes SMT quirks
6168 */
6169#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6170 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6171 SD_SHARE_PKG_RESOURCES | \
6172 SD_NUMA | \
d77b3ed5
VG
6173 SD_ASYM_PACKING | \
6174 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6175
6176static struct sched_domain *
143e1e28 6177sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6178{
6179 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6180 int sd_weight, sd_flags = 0;
6181
6182#ifdef CONFIG_NUMA
6183 /*
6184 * Ugly hack to pass state to sd_numa_mask()...
6185 */
6186 sched_domains_curr_level = tl->numa_level;
6187#endif
6188
6189 sd_weight = cpumask_weight(tl->mask(cpu));
6190
6191 if (tl->sd_flags)
6192 sd_flags = (*tl->sd_flags)();
6193 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6194 "wrong sd_flags in topology description\n"))
6195 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6196
6197 *sd = (struct sched_domain){
6198 .min_interval = sd_weight,
6199 .max_interval = 2*sd_weight,
6200 .busy_factor = 32,
870a0bb5 6201 .imbalance_pct = 125,
143e1e28
VG
6202
6203 .cache_nice_tries = 0,
6204 .busy_idx = 0,
6205 .idle_idx = 0,
cb83b629
PZ
6206 .newidle_idx = 0,
6207 .wake_idx = 0,
6208 .forkexec_idx = 0,
6209
6210 .flags = 1*SD_LOAD_BALANCE
6211 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6212 | 1*SD_BALANCE_EXEC
6213 | 1*SD_BALANCE_FORK
cb83b629 6214 | 0*SD_BALANCE_WAKE
143e1e28 6215 | 1*SD_WAKE_AFFINE
5d4dfddd 6216 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6217 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6218 | 0*SD_SERIALIZE
cb83b629 6219 | 0*SD_PREFER_SIBLING
143e1e28
VG
6220 | 0*SD_NUMA
6221 | sd_flags
cb83b629 6222 ,
143e1e28 6223
cb83b629
PZ
6224 .last_balance = jiffies,
6225 .balance_interval = sd_weight,
143e1e28 6226 .smt_gain = 0,
2b4cfe64
JL
6227 .max_newidle_lb_cost = 0,
6228 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6229#ifdef CONFIG_SCHED_DEBUG
6230 .name = tl->name,
6231#endif
cb83b629 6232 };
cb83b629
PZ
6233
6234 /*
143e1e28 6235 * Convert topological properties into behaviour.
cb83b629 6236 */
143e1e28 6237
5d4dfddd 6238 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6239 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6240 sd->imbalance_pct = 110;
6241 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6242
6243 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6244 sd->imbalance_pct = 117;
6245 sd->cache_nice_tries = 1;
6246 sd->busy_idx = 2;
6247
6248#ifdef CONFIG_NUMA
6249 } else if (sd->flags & SD_NUMA) {
6250 sd->cache_nice_tries = 2;
6251 sd->busy_idx = 3;
6252 sd->idle_idx = 2;
6253
6254 sd->flags |= SD_SERIALIZE;
6255 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6256 sd->flags &= ~(SD_BALANCE_EXEC |
6257 SD_BALANCE_FORK |
6258 SD_WAKE_AFFINE);
6259 }
6260
6261#endif
6262 } else {
6263 sd->flags |= SD_PREFER_SIBLING;
6264 sd->cache_nice_tries = 1;
6265 sd->busy_idx = 2;
6266 sd->idle_idx = 1;
6267 }
6268
6269 sd->private = &tl->data;
cb83b629
PZ
6270
6271 return sd;
6272}
6273
143e1e28
VG
6274/*
6275 * Topology list, bottom-up.
6276 */
6277static struct sched_domain_topology_level default_topology[] = {
6278#ifdef CONFIG_SCHED_SMT
6279 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6280#endif
6281#ifdef CONFIG_SCHED_MC
6282 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6283#endif
6284 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6285 { NULL, },
6286};
6287
6288struct sched_domain_topology_level *sched_domain_topology = default_topology;
6289
6290#define for_each_sd_topology(tl) \
6291 for (tl = sched_domain_topology; tl->mask; tl++)
6292
6293void set_sched_topology(struct sched_domain_topology_level *tl)
6294{
6295 sched_domain_topology = tl;
6296}
6297
6298#ifdef CONFIG_NUMA
6299
cb83b629
PZ
6300static const struct cpumask *sd_numa_mask(int cpu)
6301{
6302 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6303}
6304
d039ac60
PZ
6305static void sched_numa_warn(const char *str)
6306{
6307 static int done = false;
6308 int i,j;
6309
6310 if (done)
6311 return;
6312
6313 done = true;
6314
6315 printk(KERN_WARNING "ERROR: %s\n\n", str);
6316
6317 for (i = 0; i < nr_node_ids; i++) {
6318 printk(KERN_WARNING " ");
6319 for (j = 0; j < nr_node_ids; j++)
6320 printk(KERN_CONT "%02d ", node_distance(i,j));
6321 printk(KERN_CONT "\n");
6322 }
6323 printk(KERN_WARNING "\n");
6324}
6325
9942f79b 6326bool find_numa_distance(int distance)
d039ac60
PZ
6327{
6328 int i;
6329
6330 if (distance == node_distance(0, 0))
6331 return true;
6332
6333 for (i = 0; i < sched_domains_numa_levels; i++) {
6334 if (sched_domains_numa_distance[i] == distance)
6335 return true;
6336 }
6337
6338 return false;
6339}
6340
e3fe70b1
RR
6341/*
6342 * A system can have three types of NUMA topology:
6343 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6344 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6345 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6346 *
6347 * The difference between a glueless mesh topology and a backplane
6348 * topology lies in whether communication between not directly
6349 * connected nodes goes through intermediary nodes (where programs
6350 * could run), or through backplane controllers. This affects
6351 * placement of programs.
6352 *
6353 * The type of topology can be discerned with the following tests:
6354 * - If the maximum distance between any nodes is 1 hop, the system
6355 * is directly connected.
6356 * - If for two nodes A and B, located N > 1 hops away from each other,
6357 * there is an intermediary node C, which is < N hops away from both
6358 * nodes A and B, the system is a glueless mesh.
6359 */
6360static void init_numa_topology_type(void)
6361{
6362 int a, b, c, n;
6363
6364 n = sched_max_numa_distance;
6365
6366 if (n <= 1)
6367 sched_numa_topology_type = NUMA_DIRECT;
6368
6369 for_each_online_node(a) {
6370 for_each_online_node(b) {
6371 /* Find two nodes furthest removed from each other. */
6372 if (node_distance(a, b) < n)
6373 continue;
6374
6375 /* Is there an intermediary node between a and b? */
6376 for_each_online_node(c) {
6377 if (node_distance(a, c) < n &&
6378 node_distance(b, c) < n) {
6379 sched_numa_topology_type =
6380 NUMA_GLUELESS_MESH;
6381 return;
6382 }
6383 }
6384
6385 sched_numa_topology_type = NUMA_BACKPLANE;
6386 return;
6387 }
6388 }
6389}
6390
cb83b629
PZ
6391static void sched_init_numa(void)
6392{
6393 int next_distance, curr_distance = node_distance(0, 0);
6394 struct sched_domain_topology_level *tl;
6395 int level = 0;
6396 int i, j, k;
6397
cb83b629
PZ
6398 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6399 if (!sched_domains_numa_distance)
6400 return;
6401
6402 /*
6403 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6404 * unique distances in the node_distance() table.
6405 *
6406 * Assumes node_distance(0,j) includes all distances in
6407 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6408 */
6409 next_distance = curr_distance;
6410 for (i = 0; i < nr_node_ids; i++) {
6411 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6412 for (k = 0; k < nr_node_ids; k++) {
6413 int distance = node_distance(i, k);
6414
6415 if (distance > curr_distance &&
6416 (distance < next_distance ||
6417 next_distance == curr_distance))
6418 next_distance = distance;
6419
6420 /*
6421 * While not a strong assumption it would be nice to know
6422 * about cases where if node A is connected to B, B is not
6423 * equally connected to A.
6424 */
6425 if (sched_debug() && node_distance(k, i) != distance)
6426 sched_numa_warn("Node-distance not symmetric");
6427
6428 if (sched_debug() && i && !find_numa_distance(distance))
6429 sched_numa_warn("Node-0 not representative");
6430 }
6431 if (next_distance != curr_distance) {
6432 sched_domains_numa_distance[level++] = next_distance;
6433 sched_domains_numa_levels = level;
6434 curr_distance = next_distance;
6435 } else break;
cb83b629 6436 }
d039ac60
PZ
6437
6438 /*
6439 * In case of sched_debug() we verify the above assumption.
6440 */
6441 if (!sched_debug())
6442 break;
cb83b629 6443 }
c123588b
AR
6444
6445 if (!level)
6446 return;
6447
cb83b629
PZ
6448 /*
6449 * 'level' contains the number of unique distances, excluding the
6450 * identity distance node_distance(i,i).
6451 *
28b4a521 6452 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6453 * numbers.
6454 */
6455
5f7865f3
TC
6456 /*
6457 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6458 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6459 * the array will contain less then 'level' members. This could be
6460 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6461 * in other functions.
6462 *
6463 * We reset it to 'level' at the end of this function.
6464 */
6465 sched_domains_numa_levels = 0;
6466
cb83b629
PZ
6467 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6468 if (!sched_domains_numa_masks)
6469 return;
6470
6471 /*
6472 * Now for each level, construct a mask per node which contains all
6473 * cpus of nodes that are that many hops away from us.
6474 */
6475 for (i = 0; i < level; i++) {
6476 sched_domains_numa_masks[i] =
6477 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6478 if (!sched_domains_numa_masks[i])
6479 return;
6480
6481 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6482 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6483 if (!mask)
6484 return;
6485
6486 sched_domains_numa_masks[i][j] = mask;
6487
6488 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6489 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6490 continue;
6491
6492 cpumask_or(mask, mask, cpumask_of_node(k));
6493 }
6494 }
6495 }
6496
143e1e28
VG
6497 /* Compute default topology size */
6498 for (i = 0; sched_domain_topology[i].mask; i++);
6499
c515db8c 6500 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6501 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6502 if (!tl)
6503 return;
6504
6505 /*
6506 * Copy the default topology bits..
6507 */
143e1e28
VG
6508 for (i = 0; sched_domain_topology[i].mask; i++)
6509 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6510
6511 /*
6512 * .. and append 'j' levels of NUMA goodness.
6513 */
6514 for (j = 0; j < level; i++, j++) {
6515 tl[i] = (struct sched_domain_topology_level){
cb83b629 6516 .mask = sd_numa_mask,
143e1e28 6517 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6518 .flags = SDTL_OVERLAP,
6519 .numa_level = j,
143e1e28 6520 SD_INIT_NAME(NUMA)
cb83b629
PZ
6521 };
6522 }
6523
6524 sched_domain_topology = tl;
5f7865f3
TC
6525
6526 sched_domains_numa_levels = level;
9942f79b 6527 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6528
6529 init_numa_topology_type();
cb83b629 6530}
301a5cba
TC
6531
6532static void sched_domains_numa_masks_set(int cpu)
6533{
6534 int i, j;
6535 int node = cpu_to_node(cpu);
6536
6537 for (i = 0; i < sched_domains_numa_levels; i++) {
6538 for (j = 0; j < nr_node_ids; j++) {
6539 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6540 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6541 }
6542 }
6543}
6544
6545static void sched_domains_numa_masks_clear(int cpu)
6546{
6547 int i, j;
6548 for (i = 0; i < sched_domains_numa_levels; i++) {
6549 for (j = 0; j < nr_node_ids; j++)
6550 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6551 }
6552}
6553
6554/*
6555 * Update sched_domains_numa_masks[level][node] array when new cpus
6556 * are onlined.
6557 */
6558static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6559 unsigned long action,
6560 void *hcpu)
6561{
6562 int cpu = (long)hcpu;
6563
6564 switch (action & ~CPU_TASKS_FROZEN) {
6565 case CPU_ONLINE:
6566 sched_domains_numa_masks_set(cpu);
6567 break;
6568
6569 case CPU_DEAD:
6570 sched_domains_numa_masks_clear(cpu);
6571 break;
6572
6573 default:
6574 return NOTIFY_DONE;
6575 }
6576
6577 return NOTIFY_OK;
cb83b629
PZ
6578}
6579#else
6580static inline void sched_init_numa(void)
6581{
6582}
301a5cba
TC
6583
6584static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6585 unsigned long action,
6586 void *hcpu)
6587{
6588 return 0;
6589}
cb83b629
PZ
6590#endif /* CONFIG_NUMA */
6591
54ab4ff4
PZ
6592static int __sdt_alloc(const struct cpumask *cpu_map)
6593{
6594 struct sched_domain_topology_level *tl;
6595 int j;
6596
27723a68 6597 for_each_sd_topology(tl) {
54ab4ff4
PZ
6598 struct sd_data *sdd = &tl->data;
6599
6600 sdd->sd = alloc_percpu(struct sched_domain *);
6601 if (!sdd->sd)
6602 return -ENOMEM;
6603
6604 sdd->sg = alloc_percpu(struct sched_group *);
6605 if (!sdd->sg)
6606 return -ENOMEM;
6607
63b2ca30
NP
6608 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6609 if (!sdd->sgc)
9c3f75cb
PZ
6610 return -ENOMEM;
6611
54ab4ff4
PZ
6612 for_each_cpu(j, cpu_map) {
6613 struct sched_domain *sd;
6614 struct sched_group *sg;
63b2ca30 6615 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6616
6617 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6618 GFP_KERNEL, cpu_to_node(j));
6619 if (!sd)
6620 return -ENOMEM;
6621
6622 *per_cpu_ptr(sdd->sd, j) = sd;
6623
6624 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6625 GFP_KERNEL, cpu_to_node(j));
6626 if (!sg)
6627 return -ENOMEM;
6628
30b4e9eb
IM
6629 sg->next = sg;
6630
54ab4ff4 6631 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6632
63b2ca30 6633 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6634 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6635 if (!sgc)
9c3f75cb
PZ
6636 return -ENOMEM;
6637
63b2ca30 6638 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6639 }
6640 }
6641
6642 return 0;
6643}
6644
6645static void __sdt_free(const struct cpumask *cpu_map)
6646{
6647 struct sched_domain_topology_level *tl;
6648 int j;
6649
27723a68 6650 for_each_sd_topology(tl) {
54ab4ff4
PZ
6651 struct sd_data *sdd = &tl->data;
6652
6653 for_each_cpu(j, cpu_map) {
fb2cf2c6 6654 struct sched_domain *sd;
6655
6656 if (sdd->sd) {
6657 sd = *per_cpu_ptr(sdd->sd, j);
6658 if (sd && (sd->flags & SD_OVERLAP))
6659 free_sched_groups(sd->groups, 0);
6660 kfree(*per_cpu_ptr(sdd->sd, j));
6661 }
6662
6663 if (sdd->sg)
6664 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6665 if (sdd->sgc)
6666 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6667 }
6668 free_percpu(sdd->sd);
fb2cf2c6 6669 sdd->sd = NULL;
54ab4ff4 6670 free_percpu(sdd->sg);
fb2cf2c6 6671 sdd->sg = NULL;
63b2ca30
NP
6672 free_percpu(sdd->sgc);
6673 sdd->sgc = NULL;
54ab4ff4
PZ
6674 }
6675}
6676
2c402dc3 6677struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6678 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6679 struct sched_domain *child, int cpu)
2c402dc3 6680{
143e1e28 6681 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6682 if (!sd)
d069b916 6683 return child;
2c402dc3 6684
2c402dc3 6685 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6686 if (child) {
6687 sd->level = child->level + 1;
6688 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6689 child->parent = sd;
c75e0128 6690 sd->child = child;
6ae72dff
PZ
6691
6692 if (!cpumask_subset(sched_domain_span(child),
6693 sched_domain_span(sd))) {
6694 pr_err("BUG: arch topology borken\n");
6695#ifdef CONFIG_SCHED_DEBUG
6696 pr_err(" the %s domain not a subset of the %s domain\n",
6697 child->name, sd->name);
6698#endif
6699 /* Fixup, ensure @sd has at least @child cpus. */
6700 cpumask_or(sched_domain_span(sd),
6701 sched_domain_span(sd),
6702 sched_domain_span(child));
6703 }
6704
60495e77 6705 }
a841f8ce 6706 set_domain_attribute(sd, attr);
2c402dc3
PZ
6707
6708 return sd;
6709}
6710
2109b99e
AH
6711/*
6712 * Build sched domains for a given set of cpus and attach the sched domains
6713 * to the individual cpus
6714 */
dce840a0
PZ
6715static int build_sched_domains(const struct cpumask *cpu_map,
6716 struct sched_domain_attr *attr)
2109b99e 6717{
1c632169 6718 enum s_alloc alloc_state;
dce840a0 6719 struct sched_domain *sd;
2109b99e 6720 struct s_data d;
822ff793 6721 int i, ret = -ENOMEM;
9c1cfda2 6722
2109b99e
AH
6723 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6724 if (alloc_state != sa_rootdomain)
6725 goto error;
9c1cfda2 6726
dce840a0 6727 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6728 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6729 struct sched_domain_topology_level *tl;
6730
3bd65a80 6731 sd = NULL;
27723a68 6732 for_each_sd_topology(tl) {
4a850cbe 6733 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6734 if (tl == sched_domain_topology)
6735 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6736 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6737 sd->flags |= SD_OVERLAP;
d110235d
PZ
6738 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6739 break;
e3589f6c 6740 }
dce840a0
PZ
6741 }
6742
6743 /* Build the groups for the domains */
6744 for_each_cpu(i, cpu_map) {
6745 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6746 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6747 if (sd->flags & SD_OVERLAP) {
6748 if (build_overlap_sched_groups(sd, i))
6749 goto error;
6750 } else {
6751 if (build_sched_groups(sd, i))
6752 goto error;
6753 }
1cf51902 6754 }
a06dadbe 6755 }
9c1cfda2 6756
ced549fa 6757 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6758 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6759 if (!cpumask_test_cpu(i, cpu_map))
6760 continue;
9c1cfda2 6761
dce840a0
PZ
6762 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6763 claim_allocations(i, sd);
63b2ca30 6764 init_sched_groups_capacity(i, sd);
dce840a0 6765 }
f712c0c7 6766 }
9c1cfda2 6767
1da177e4 6768 /* Attach the domains */
dce840a0 6769 rcu_read_lock();
abcd083a 6770 for_each_cpu(i, cpu_map) {
21d42ccf 6771 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6772 cpu_attach_domain(sd, d.rd, i);
1da177e4 6773 }
dce840a0 6774 rcu_read_unlock();
51888ca2 6775
822ff793 6776 ret = 0;
51888ca2 6777error:
2109b99e 6778 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6779 return ret;
1da177e4 6780}
029190c5 6781
acc3f5d7 6782static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6783static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6784static struct sched_domain_attr *dattr_cur;
6785 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6786
6787/*
6788 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6789 * cpumask) fails, then fallback to a single sched domain,
6790 * as determined by the single cpumask fallback_doms.
029190c5 6791 */
4212823f 6792static cpumask_var_t fallback_doms;
029190c5 6793
ee79d1bd
HC
6794/*
6795 * arch_update_cpu_topology lets virtualized architectures update the
6796 * cpu core maps. It is supposed to return 1 if the topology changed
6797 * or 0 if it stayed the same.
6798 */
52f5684c 6799int __weak arch_update_cpu_topology(void)
22e52b07 6800{
ee79d1bd 6801 return 0;
22e52b07
HC
6802}
6803
acc3f5d7
RR
6804cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6805{
6806 int i;
6807 cpumask_var_t *doms;
6808
6809 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6810 if (!doms)
6811 return NULL;
6812 for (i = 0; i < ndoms; i++) {
6813 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6814 free_sched_domains(doms, i);
6815 return NULL;
6816 }
6817 }
6818 return doms;
6819}
6820
6821void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6822{
6823 unsigned int i;
6824 for (i = 0; i < ndoms; i++)
6825 free_cpumask_var(doms[i]);
6826 kfree(doms);
6827}
6828
1a20ff27 6829/*
41a2d6cf 6830 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6831 * For now this just excludes isolated cpus, but could be used to
6832 * exclude other special cases in the future.
1a20ff27 6833 */
c4a8849a 6834static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6835{
7378547f
MM
6836 int err;
6837
22e52b07 6838 arch_update_cpu_topology();
029190c5 6839 ndoms_cur = 1;
acc3f5d7 6840 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6841 if (!doms_cur)
acc3f5d7
RR
6842 doms_cur = &fallback_doms;
6843 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6844 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6845 register_sched_domain_sysctl();
7378547f
MM
6846
6847 return err;
1a20ff27
DG
6848}
6849
1a20ff27
DG
6850/*
6851 * Detach sched domains from a group of cpus specified in cpu_map
6852 * These cpus will now be attached to the NULL domain
6853 */
96f874e2 6854static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6855{
6856 int i;
6857
dce840a0 6858 rcu_read_lock();
abcd083a 6859 for_each_cpu(i, cpu_map)
57d885fe 6860 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6861 rcu_read_unlock();
1a20ff27
DG
6862}
6863
1d3504fc
HS
6864/* handle null as "default" */
6865static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6866 struct sched_domain_attr *new, int idx_new)
6867{
6868 struct sched_domain_attr tmp;
6869
6870 /* fast path */
6871 if (!new && !cur)
6872 return 1;
6873
6874 tmp = SD_ATTR_INIT;
6875 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6876 new ? (new + idx_new) : &tmp,
6877 sizeof(struct sched_domain_attr));
6878}
6879
029190c5
PJ
6880/*
6881 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6882 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6883 * doms_new[] to the current sched domain partitioning, doms_cur[].
6884 * It destroys each deleted domain and builds each new domain.
6885 *
acc3f5d7 6886 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6887 * The masks don't intersect (don't overlap.) We should setup one
6888 * sched domain for each mask. CPUs not in any of the cpumasks will
6889 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6890 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6891 * it as it is.
6892 *
acc3f5d7
RR
6893 * The passed in 'doms_new' should be allocated using
6894 * alloc_sched_domains. This routine takes ownership of it and will
6895 * free_sched_domains it when done with it. If the caller failed the
6896 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6897 * and partition_sched_domains() will fallback to the single partition
6898 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6899 *
96f874e2 6900 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6901 * ndoms_new == 0 is a special case for destroying existing domains,
6902 * and it will not create the default domain.
dfb512ec 6903 *
029190c5
PJ
6904 * Call with hotplug lock held
6905 */
acc3f5d7 6906void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6907 struct sched_domain_attr *dattr_new)
029190c5 6908{
dfb512ec 6909 int i, j, n;
d65bd5ec 6910 int new_topology;
029190c5 6911
712555ee 6912 mutex_lock(&sched_domains_mutex);
a1835615 6913
7378547f
MM
6914 /* always unregister in case we don't destroy any domains */
6915 unregister_sched_domain_sysctl();
6916
d65bd5ec
HC
6917 /* Let architecture update cpu core mappings. */
6918 new_topology = arch_update_cpu_topology();
6919
dfb512ec 6920 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6921
6922 /* Destroy deleted domains */
6923 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6924 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6925 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6926 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6927 goto match1;
6928 }
6929 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6930 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6931match1:
6932 ;
6933 }
6934
c8d2d47a 6935 n = ndoms_cur;
e761b772 6936 if (doms_new == NULL) {
c8d2d47a 6937 n = 0;
acc3f5d7 6938 doms_new = &fallback_doms;
6ad4c188 6939 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6940 WARN_ON_ONCE(dattr_new);
e761b772
MK
6941 }
6942
029190c5
PJ
6943 /* Build new domains */
6944 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6945 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6946 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6947 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6948 goto match2;
6949 }
6950 /* no match - add a new doms_new */
dce840a0 6951 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6952match2:
6953 ;
6954 }
6955
6956 /* Remember the new sched domains */
acc3f5d7
RR
6957 if (doms_cur != &fallback_doms)
6958 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6959 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6960 doms_cur = doms_new;
1d3504fc 6961 dattr_cur = dattr_new;
029190c5 6962 ndoms_cur = ndoms_new;
7378547f
MM
6963
6964 register_sched_domain_sysctl();
a1835615 6965
712555ee 6966 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6967}
6968
d35be8ba
SB
6969static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6970
1da177e4 6971/*
3a101d05
TH
6972 * Update cpusets according to cpu_active mask. If cpusets are
6973 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6974 * around partition_sched_domains().
d35be8ba
SB
6975 *
6976 * If we come here as part of a suspend/resume, don't touch cpusets because we
6977 * want to restore it back to its original state upon resume anyway.
1da177e4 6978 */
0b2e918a
TH
6979static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6980 void *hcpu)
e761b772 6981{
d35be8ba
SB
6982 switch (action) {
6983 case CPU_ONLINE_FROZEN:
6984 case CPU_DOWN_FAILED_FROZEN:
6985
6986 /*
6987 * num_cpus_frozen tracks how many CPUs are involved in suspend
6988 * resume sequence. As long as this is not the last online
6989 * operation in the resume sequence, just build a single sched
6990 * domain, ignoring cpusets.
6991 */
6992 num_cpus_frozen--;
6993 if (likely(num_cpus_frozen)) {
6994 partition_sched_domains(1, NULL, NULL);
6995 break;
6996 }
6997
6998 /*
6999 * This is the last CPU online operation. So fall through and
7000 * restore the original sched domains by considering the
7001 * cpuset configurations.
7002 */
7003
e761b772 7004 case CPU_ONLINE:
7ddf96b0 7005 cpuset_update_active_cpus(true);
d35be8ba 7006 break;
3a101d05
TH
7007 default:
7008 return NOTIFY_DONE;
7009 }
d35be8ba 7010 return NOTIFY_OK;
3a101d05 7011}
e761b772 7012
0b2e918a
TH
7013static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7014 void *hcpu)
3a101d05 7015{
3c18d447
JL
7016 unsigned long flags;
7017 long cpu = (long)hcpu;
7018 struct dl_bw *dl_b;
533445c6
OS
7019 bool overflow;
7020 int cpus;
3c18d447 7021
533445c6 7022 switch (action) {
3a101d05 7023 case CPU_DOWN_PREPARE:
533445c6
OS
7024 rcu_read_lock_sched();
7025 dl_b = dl_bw_of(cpu);
3c18d447 7026
533445c6
OS
7027 raw_spin_lock_irqsave(&dl_b->lock, flags);
7028 cpus = dl_bw_cpus(cpu);
7029 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7030 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7031
533445c6 7032 rcu_read_unlock_sched();
3c18d447 7033
533445c6
OS
7034 if (overflow)
7035 return notifier_from_errno(-EBUSY);
7ddf96b0 7036 cpuset_update_active_cpus(false);
d35be8ba
SB
7037 break;
7038 case CPU_DOWN_PREPARE_FROZEN:
7039 num_cpus_frozen++;
7040 partition_sched_domains(1, NULL, NULL);
7041 break;
e761b772
MK
7042 default:
7043 return NOTIFY_DONE;
7044 }
d35be8ba 7045 return NOTIFY_OK;
e761b772 7046}
e761b772 7047
1da177e4
LT
7048void __init sched_init_smp(void)
7049{
dcc30a35
RR
7050 cpumask_var_t non_isolated_cpus;
7051
7052 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7053 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7054
cb83b629
PZ
7055 sched_init_numa();
7056
6acce3ef
PZ
7057 /*
7058 * There's no userspace yet to cause hotplug operations; hence all the
7059 * cpu masks are stable and all blatant races in the below code cannot
7060 * happen.
7061 */
712555ee 7062 mutex_lock(&sched_domains_mutex);
c4a8849a 7063 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7064 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7065 if (cpumask_empty(non_isolated_cpus))
7066 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7067 mutex_unlock(&sched_domains_mutex);
e761b772 7068
301a5cba 7069 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7070 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7071 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7072
b328ca18 7073 init_hrtick();
5c1e1767
NP
7074
7075 /* Move init over to a non-isolated CPU */
dcc30a35 7076 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7077 BUG();
19978ca6 7078 sched_init_granularity();
dcc30a35 7079 free_cpumask_var(non_isolated_cpus);
4212823f 7080
0e3900e6 7081 init_sched_rt_class();
1baca4ce 7082 init_sched_dl_class();
1da177e4
LT
7083}
7084#else
7085void __init sched_init_smp(void)
7086{
19978ca6 7087 sched_init_granularity();
1da177e4
LT
7088}
7089#endif /* CONFIG_SMP */
7090
cd1bb94b
AB
7091const_debug unsigned int sysctl_timer_migration = 1;
7092
1da177e4
LT
7093int in_sched_functions(unsigned long addr)
7094{
1da177e4
LT
7095 return in_lock_functions(addr) ||
7096 (addr >= (unsigned long)__sched_text_start
7097 && addr < (unsigned long)__sched_text_end);
7098}
7099
029632fb 7100#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7101/*
7102 * Default task group.
7103 * Every task in system belongs to this group at bootup.
7104 */
029632fb 7105struct task_group root_task_group;
35cf4e50 7106LIST_HEAD(task_groups);
052f1dc7 7107#endif
6f505b16 7108
e6252c3e 7109DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7110
1da177e4
LT
7111void __init sched_init(void)
7112{
dd41f596 7113 int i, j;
434d53b0
MT
7114 unsigned long alloc_size = 0, ptr;
7115
7116#ifdef CONFIG_FAIR_GROUP_SCHED
7117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7118#endif
7119#ifdef CONFIG_RT_GROUP_SCHED
7120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7121#endif
434d53b0 7122 if (alloc_size) {
36b7b6d4 7123 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7124
7125#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7126 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7127 ptr += nr_cpu_ids * sizeof(void **);
7128
07e06b01 7129 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7130 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7131
6d6bc0ad 7132#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7133#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7134 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7135 ptr += nr_cpu_ids * sizeof(void **);
7136
07e06b01 7137 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7138 ptr += nr_cpu_ids * sizeof(void **);
7139
6d6bc0ad 7140#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7141 }
df7c8e84 7142#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7143 for_each_possible_cpu(i) {
7144 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7145 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7146 }
b74e6278 7147#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7148
332ac17e
DF
7149 init_rt_bandwidth(&def_rt_bandwidth,
7150 global_rt_period(), global_rt_runtime());
7151 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7152 global_rt_period(), global_rt_runtime());
332ac17e 7153
57d885fe
GH
7154#ifdef CONFIG_SMP
7155 init_defrootdomain();
7156#endif
7157
d0b27fa7 7158#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7159 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7160 global_rt_period(), global_rt_runtime());
6d6bc0ad 7161#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7162
7c941438 7163#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7164 list_add(&root_task_group.list, &task_groups);
7165 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7166 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7167 autogroup_init(&init_task);
54c707e9 7168
7c941438 7169#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7170
0a945022 7171 for_each_possible_cpu(i) {
70b97a7f 7172 struct rq *rq;
1da177e4
LT
7173
7174 rq = cpu_rq(i);
05fa785c 7175 raw_spin_lock_init(&rq->lock);
7897986b 7176 rq->nr_running = 0;
dce48a84
TG
7177 rq->calc_load_active = 0;
7178 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7179 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7180 init_rt_rq(&rq->rt);
7181 init_dl_rq(&rq->dl);
dd41f596 7182#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7183 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7184 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7185 /*
07e06b01 7186 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7187 *
7188 * In case of task-groups formed thr' the cgroup filesystem, it
7189 * gets 100% of the cpu resources in the system. This overall
7190 * system cpu resource is divided among the tasks of
07e06b01 7191 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7192 * based on each entity's (task or task-group's) weight
7193 * (se->load.weight).
7194 *
07e06b01 7195 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7196 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7197 * then A0's share of the cpu resource is:
7198 *
0d905bca 7199 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7200 *
07e06b01
YZ
7201 * We achieve this by letting root_task_group's tasks sit
7202 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7203 */
ab84d31e 7204 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7205 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7206#endif /* CONFIG_FAIR_GROUP_SCHED */
7207
7208 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7209#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7210 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7211#endif
1da177e4 7212
dd41f596
IM
7213 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7214 rq->cpu_load[j] = 0;
fdf3e95d
VP
7215
7216 rq->last_load_update_tick = jiffies;
7217
1da177e4 7218#ifdef CONFIG_SMP
41c7ce9a 7219 rq->sd = NULL;
57d885fe 7220 rq->rd = NULL;
ca6d75e6 7221 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7222 rq->post_schedule = 0;
1da177e4 7223 rq->active_balance = 0;
dd41f596 7224 rq->next_balance = jiffies;
1da177e4 7225 rq->push_cpu = 0;
0a2966b4 7226 rq->cpu = i;
1f11eb6a 7227 rq->online = 0;
eae0c9df
MG
7228 rq->idle_stamp = 0;
7229 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7230 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7231
7232 INIT_LIST_HEAD(&rq->cfs_tasks);
7233
dc938520 7234 rq_attach_root(rq, &def_root_domain);
3451d024 7235#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7236 rq->nohz_flags = 0;
83cd4fe2 7237#endif
265f22a9
FW
7238#ifdef CONFIG_NO_HZ_FULL
7239 rq->last_sched_tick = 0;
7240#endif
1da177e4 7241#endif
8f4d37ec 7242 init_rq_hrtick(rq);
1da177e4 7243 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7244 }
7245
2dd73a4f 7246 set_load_weight(&init_task);
b50f60ce 7247
e107be36
AK
7248#ifdef CONFIG_PREEMPT_NOTIFIERS
7249 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7250#endif
7251
1da177e4
LT
7252 /*
7253 * The boot idle thread does lazy MMU switching as well:
7254 */
7255 atomic_inc(&init_mm.mm_count);
7256 enter_lazy_tlb(&init_mm, current);
7257
1b537c7d
YD
7258 /*
7259 * During early bootup we pretend to be a normal task:
7260 */
7261 current->sched_class = &fair_sched_class;
7262
1da177e4
LT
7263 /*
7264 * Make us the idle thread. Technically, schedule() should not be
7265 * called from this thread, however somewhere below it might be,
7266 * but because we are the idle thread, we just pick up running again
7267 * when this runqueue becomes "idle".
7268 */
7269 init_idle(current, smp_processor_id());
dce48a84
TG
7270
7271 calc_load_update = jiffies + LOAD_FREQ;
7272
bf4d83f6 7273#ifdef CONFIG_SMP
4cb98839 7274 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7275 /* May be allocated at isolcpus cmdline parse time */
7276 if (cpu_isolated_map == NULL)
7277 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7278 idle_thread_set_boot_cpu();
a803f026 7279 set_cpu_rq_start_time();
029632fb
PZ
7280#endif
7281 init_sched_fair_class();
6a7b3dc3 7282
6892b75e 7283 scheduler_running = 1;
1da177e4
LT
7284}
7285
d902db1e 7286#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7287static inline int preempt_count_equals(int preempt_offset)
7288{
234da7bc 7289 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7290
4ba8216c 7291 return (nested == preempt_offset);
e4aafea2
FW
7292}
7293
d894837f 7294void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7295{
8eb23b9f
PZ
7296 /*
7297 * Blocking primitives will set (and therefore destroy) current->state,
7298 * since we will exit with TASK_RUNNING make sure we enter with it,
7299 * otherwise we will destroy state.
7300 */
00845eb9 7301 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7302 "do not call blocking ops when !TASK_RUNNING; "
7303 "state=%lx set at [<%p>] %pS\n",
7304 current->state,
7305 (void *)current->task_state_change,
00845eb9 7306 (void *)current->task_state_change);
8eb23b9f 7307
3427445a
PZ
7308 ___might_sleep(file, line, preempt_offset);
7309}
7310EXPORT_SYMBOL(__might_sleep);
7311
7312void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7313{
1da177e4
LT
7314 static unsigned long prev_jiffy; /* ratelimiting */
7315
b3fbab05 7316 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7317 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7318 !is_idle_task(current)) ||
e4aafea2 7319 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7320 return;
7321 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7322 return;
7323 prev_jiffy = jiffies;
7324
3df0fc5b
PZ
7325 printk(KERN_ERR
7326 "BUG: sleeping function called from invalid context at %s:%d\n",
7327 file, line);
7328 printk(KERN_ERR
7329 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7330 in_atomic(), irqs_disabled(),
7331 current->pid, current->comm);
aef745fc 7332
a8b686b3
ES
7333 if (task_stack_end_corrupted(current))
7334 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7335
aef745fc
IM
7336 debug_show_held_locks(current);
7337 if (irqs_disabled())
7338 print_irqtrace_events(current);
8f47b187
TG
7339#ifdef CONFIG_DEBUG_PREEMPT
7340 if (!preempt_count_equals(preempt_offset)) {
7341 pr_err("Preemption disabled at:");
7342 print_ip_sym(current->preempt_disable_ip);
7343 pr_cont("\n");
7344 }
7345#endif
aef745fc 7346 dump_stack();
1da177e4 7347}
3427445a 7348EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7349#endif
7350
7351#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7352static void normalize_task(struct rq *rq, struct task_struct *p)
7353{
da7a735e 7354 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7355 struct sched_attr attr = {
7356 .sched_policy = SCHED_NORMAL,
7357 };
da7a735e 7358 int old_prio = p->prio;
da0c1e65 7359 int queued;
3e51f33f 7360
da0c1e65
KT
7361 queued = task_on_rq_queued(p);
7362 if (queued)
4ca9b72b 7363 dequeue_task(rq, p, 0);
0782e63b 7364 __setscheduler(rq, p, &attr, false);
da0c1e65 7365 if (queued) {
4ca9b72b 7366 enqueue_task(rq, p, 0);
8875125e 7367 resched_curr(rq);
3a5e4dc1 7368 }
da7a735e
PZ
7369
7370 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7371}
7372
1da177e4
LT
7373void normalize_rt_tasks(void)
7374{
a0f98a1c 7375 struct task_struct *g, *p;
1da177e4 7376 unsigned long flags;
70b97a7f 7377 struct rq *rq;
1da177e4 7378
3472eaa1 7379 read_lock(&tasklist_lock);
5d07f420 7380 for_each_process_thread(g, p) {
178be793
IM
7381 /*
7382 * Only normalize user tasks:
7383 */
3472eaa1 7384 if (p->flags & PF_KTHREAD)
178be793
IM
7385 continue;
7386
6cfb0d5d 7387 p->se.exec_start = 0;
6cfb0d5d 7388#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7389 p->se.statistics.wait_start = 0;
7390 p->se.statistics.sleep_start = 0;
7391 p->se.statistics.block_start = 0;
6cfb0d5d 7392#endif
dd41f596 7393
aab03e05 7394 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7395 /*
7396 * Renice negative nice level userspace
7397 * tasks back to 0:
7398 */
3472eaa1 7399 if (task_nice(p) < 0)
dd41f596 7400 set_user_nice(p, 0);
1da177e4 7401 continue;
dd41f596 7402 }
1da177e4 7403
3472eaa1 7404 rq = task_rq_lock(p, &flags);
178be793 7405 normalize_task(rq, p);
3472eaa1 7406 task_rq_unlock(rq, p, &flags);
5d07f420 7407 }
3472eaa1 7408 read_unlock(&tasklist_lock);
1da177e4
LT
7409}
7410
7411#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7412
67fc4e0c 7413#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7414/*
67fc4e0c 7415 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7416 *
7417 * They can only be called when the whole system has been
7418 * stopped - every CPU needs to be quiescent, and no scheduling
7419 * activity can take place. Using them for anything else would
7420 * be a serious bug, and as a result, they aren't even visible
7421 * under any other configuration.
7422 */
7423
7424/**
7425 * curr_task - return the current task for a given cpu.
7426 * @cpu: the processor in question.
7427 *
7428 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7429 *
7430 * Return: The current task for @cpu.
1df5c10a 7431 */
36c8b586 7432struct task_struct *curr_task(int cpu)
1df5c10a
LT
7433{
7434 return cpu_curr(cpu);
7435}
7436
67fc4e0c
JW
7437#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7438
7439#ifdef CONFIG_IA64
1df5c10a
LT
7440/**
7441 * set_curr_task - set the current task for a given cpu.
7442 * @cpu: the processor in question.
7443 * @p: the task pointer to set.
7444 *
7445 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7446 * are serviced on a separate stack. It allows the architecture to switch the
7447 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7448 * must be called with all CPU's synchronized, and interrupts disabled, the
7449 * and caller must save the original value of the current task (see
7450 * curr_task() above) and restore that value before reenabling interrupts and
7451 * re-starting the system.
7452 *
7453 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7454 */
36c8b586 7455void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7456{
7457 cpu_curr(cpu) = p;
7458}
7459
7460#endif
29f59db3 7461
7c941438 7462#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7463/* task_group_lock serializes the addition/removal of task groups */
7464static DEFINE_SPINLOCK(task_group_lock);
7465
bccbe08a
PZ
7466static void free_sched_group(struct task_group *tg)
7467{
7468 free_fair_sched_group(tg);
7469 free_rt_sched_group(tg);
e9aa1dd1 7470 autogroup_free(tg);
bccbe08a
PZ
7471 kfree(tg);
7472}
7473
7474/* allocate runqueue etc for a new task group */
ec7dc8ac 7475struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7476{
7477 struct task_group *tg;
bccbe08a
PZ
7478
7479 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7480 if (!tg)
7481 return ERR_PTR(-ENOMEM);
7482
ec7dc8ac 7483 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7484 goto err;
7485
ec7dc8ac 7486 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7487 goto err;
7488
ace783b9
LZ
7489 return tg;
7490
7491err:
7492 free_sched_group(tg);
7493 return ERR_PTR(-ENOMEM);
7494}
7495
7496void sched_online_group(struct task_group *tg, struct task_group *parent)
7497{
7498 unsigned long flags;
7499
8ed36996 7500 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7501 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7502
7503 WARN_ON(!parent); /* root should already exist */
7504
7505 tg->parent = parent;
f473aa5e 7506 INIT_LIST_HEAD(&tg->children);
09f2724a 7507 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7508 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7509}
7510
9b5b7751 7511/* rcu callback to free various structures associated with a task group */
6f505b16 7512static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7513{
29f59db3 7514 /* now it should be safe to free those cfs_rqs */
6f505b16 7515 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7516}
7517
9b5b7751 7518/* Destroy runqueue etc associated with a task group */
4cf86d77 7519void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7520{
7521 /* wait for possible concurrent references to cfs_rqs complete */
7522 call_rcu(&tg->rcu, free_sched_group_rcu);
7523}
7524
7525void sched_offline_group(struct task_group *tg)
29f59db3 7526{
8ed36996 7527 unsigned long flags;
9b5b7751 7528 int i;
29f59db3 7529
3d4b47b4
PZ
7530 /* end participation in shares distribution */
7531 for_each_possible_cpu(i)
bccbe08a 7532 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7533
7534 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7535 list_del_rcu(&tg->list);
f473aa5e 7536 list_del_rcu(&tg->siblings);
8ed36996 7537 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7538}
7539
9b5b7751 7540/* change task's runqueue when it moves between groups.
3a252015
IM
7541 * The caller of this function should have put the task in its new group
7542 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7543 * reflect its new group.
9b5b7751
SV
7544 */
7545void sched_move_task(struct task_struct *tsk)
29f59db3 7546{
8323f26c 7547 struct task_group *tg;
da0c1e65 7548 int queued, running;
29f59db3
SV
7549 unsigned long flags;
7550 struct rq *rq;
7551
7552 rq = task_rq_lock(tsk, &flags);
7553
051a1d1a 7554 running = task_current(rq, tsk);
da0c1e65 7555 queued = task_on_rq_queued(tsk);
29f59db3 7556
da0c1e65 7557 if (queued)
29f59db3 7558 dequeue_task(rq, tsk, 0);
0e1f3483 7559 if (unlikely(running))
f3cd1c4e 7560 put_prev_task(rq, tsk);
29f59db3 7561
f7b8a47d
KT
7562 /*
7563 * All callers are synchronized by task_rq_lock(); we do not use RCU
7564 * which is pointless here. Thus, we pass "true" to task_css_check()
7565 * to prevent lockdep warnings.
7566 */
7567 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7568 struct task_group, css);
7569 tg = autogroup_task_group(tsk, tg);
7570 tsk->sched_task_group = tg;
7571
810b3817 7572#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7573 if (tsk->sched_class->task_move_group)
da0c1e65 7574 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7575 else
810b3817 7576#endif
b2b5ce02 7577 set_task_rq(tsk, task_cpu(tsk));
810b3817 7578
0e1f3483
HS
7579 if (unlikely(running))
7580 tsk->sched_class->set_curr_task(rq);
da0c1e65 7581 if (queued)
371fd7e7 7582 enqueue_task(rq, tsk, 0);
29f59db3 7583
0122ec5b 7584 task_rq_unlock(rq, tsk, &flags);
29f59db3 7585}
7c941438 7586#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7587
a790de99
PT
7588#ifdef CONFIG_RT_GROUP_SCHED
7589/*
7590 * Ensure that the real time constraints are schedulable.
7591 */
7592static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7593
9a7e0b18
PZ
7594/* Must be called with tasklist_lock held */
7595static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7596{
9a7e0b18 7597 struct task_struct *g, *p;
b40b2e8e 7598
1fe89e1b
PZ
7599 /*
7600 * Autogroups do not have RT tasks; see autogroup_create().
7601 */
7602 if (task_group_is_autogroup(tg))
7603 return 0;
7604
5d07f420 7605 for_each_process_thread(g, p) {
8651c658 7606 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7607 return 1;
5d07f420 7608 }
b40b2e8e 7609
9a7e0b18
PZ
7610 return 0;
7611}
b40b2e8e 7612
9a7e0b18
PZ
7613struct rt_schedulable_data {
7614 struct task_group *tg;
7615 u64 rt_period;
7616 u64 rt_runtime;
7617};
b40b2e8e 7618
a790de99 7619static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7620{
7621 struct rt_schedulable_data *d = data;
7622 struct task_group *child;
7623 unsigned long total, sum = 0;
7624 u64 period, runtime;
b40b2e8e 7625
9a7e0b18
PZ
7626 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7627 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7628
9a7e0b18
PZ
7629 if (tg == d->tg) {
7630 period = d->rt_period;
7631 runtime = d->rt_runtime;
b40b2e8e 7632 }
b40b2e8e 7633
4653f803
PZ
7634 /*
7635 * Cannot have more runtime than the period.
7636 */
7637 if (runtime > period && runtime != RUNTIME_INF)
7638 return -EINVAL;
6f505b16 7639
4653f803
PZ
7640 /*
7641 * Ensure we don't starve existing RT tasks.
7642 */
9a7e0b18
PZ
7643 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7644 return -EBUSY;
6f505b16 7645
9a7e0b18 7646 total = to_ratio(period, runtime);
6f505b16 7647
4653f803
PZ
7648 /*
7649 * Nobody can have more than the global setting allows.
7650 */
7651 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7652 return -EINVAL;
6f505b16 7653
4653f803
PZ
7654 /*
7655 * The sum of our children's runtime should not exceed our own.
7656 */
9a7e0b18
PZ
7657 list_for_each_entry_rcu(child, &tg->children, siblings) {
7658 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7659 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7660
9a7e0b18
PZ
7661 if (child == d->tg) {
7662 period = d->rt_period;
7663 runtime = d->rt_runtime;
7664 }
6f505b16 7665
9a7e0b18 7666 sum += to_ratio(period, runtime);
9f0c1e56 7667 }
6f505b16 7668
9a7e0b18
PZ
7669 if (sum > total)
7670 return -EINVAL;
7671
7672 return 0;
6f505b16
PZ
7673}
7674
9a7e0b18 7675static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7676{
8277434e
PT
7677 int ret;
7678
9a7e0b18
PZ
7679 struct rt_schedulable_data data = {
7680 .tg = tg,
7681 .rt_period = period,
7682 .rt_runtime = runtime,
7683 };
7684
8277434e
PT
7685 rcu_read_lock();
7686 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7687 rcu_read_unlock();
7688
7689 return ret;
521f1a24
DG
7690}
7691
ab84d31e 7692static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7693 u64 rt_period, u64 rt_runtime)
6f505b16 7694{
ac086bc2 7695 int i, err = 0;
9f0c1e56 7696
2636ed5f
PZ
7697 /*
7698 * Disallowing the root group RT runtime is BAD, it would disallow the
7699 * kernel creating (and or operating) RT threads.
7700 */
7701 if (tg == &root_task_group && rt_runtime == 0)
7702 return -EINVAL;
7703
7704 /* No period doesn't make any sense. */
7705 if (rt_period == 0)
7706 return -EINVAL;
7707
9f0c1e56 7708 mutex_lock(&rt_constraints_mutex);
521f1a24 7709 read_lock(&tasklist_lock);
9a7e0b18
PZ
7710 err = __rt_schedulable(tg, rt_period, rt_runtime);
7711 if (err)
9f0c1e56 7712 goto unlock;
ac086bc2 7713
0986b11b 7714 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7715 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7716 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7717
7718 for_each_possible_cpu(i) {
7719 struct rt_rq *rt_rq = tg->rt_rq[i];
7720
0986b11b 7721 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7722 rt_rq->rt_runtime = rt_runtime;
0986b11b 7723 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7724 }
0986b11b 7725 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7726unlock:
521f1a24 7727 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7728 mutex_unlock(&rt_constraints_mutex);
7729
7730 return err;
6f505b16
PZ
7731}
7732
25cc7da7 7733static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7734{
7735 u64 rt_runtime, rt_period;
7736
7737 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7738 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7739 if (rt_runtime_us < 0)
7740 rt_runtime = RUNTIME_INF;
7741
ab84d31e 7742 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7743}
7744
25cc7da7 7745static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7746{
7747 u64 rt_runtime_us;
7748
d0b27fa7 7749 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7750 return -1;
7751
d0b27fa7 7752 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7753 do_div(rt_runtime_us, NSEC_PER_USEC);
7754 return rt_runtime_us;
7755}
d0b27fa7 7756
ce2f5fe4 7757static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7758{
7759 u64 rt_runtime, rt_period;
7760
ce2f5fe4 7761 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7762 rt_runtime = tg->rt_bandwidth.rt_runtime;
7763
ab84d31e 7764 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7765}
7766
25cc7da7 7767static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7768{
7769 u64 rt_period_us;
7770
7771 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7772 do_div(rt_period_us, NSEC_PER_USEC);
7773 return rt_period_us;
7774}
332ac17e 7775#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7776
332ac17e 7777#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7778static int sched_rt_global_constraints(void)
7779{
7780 int ret = 0;
7781
7782 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7783 read_lock(&tasklist_lock);
4653f803 7784 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7785 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7786 mutex_unlock(&rt_constraints_mutex);
7787
7788 return ret;
7789}
54e99124 7790
25cc7da7 7791static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7792{
7793 /* Don't accept realtime tasks when there is no way for them to run */
7794 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7795 return 0;
7796
7797 return 1;
7798}
7799
6d6bc0ad 7800#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7801static int sched_rt_global_constraints(void)
7802{
ac086bc2 7803 unsigned long flags;
332ac17e 7804 int i, ret = 0;
ec5d4989 7805
0986b11b 7806 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7807 for_each_possible_cpu(i) {
7808 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7809
0986b11b 7810 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7811 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7812 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7813 }
0986b11b 7814 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7815
332ac17e 7816 return ret;
d0b27fa7 7817}
6d6bc0ad 7818#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7819
a1963b81 7820static int sched_dl_global_validate(void)
332ac17e 7821{
1724813d
PZ
7822 u64 runtime = global_rt_runtime();
7823 u64 period = global_rt_period();
332ac17e 7824 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7825 struct dl_bw *dl_b;
1724813d 7826 int cpu, ret = 0;
49516342 7827 unsigned long flags;
332ac17e
DF
7828
7829 /*
7830 * Here we want to check the bandwidth not being set to some
7831 * value smaller than the currently allocated bandwidth in
7832 * any of the root_domains.
7833 *
7834 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7835 * cycling on root_domains... Discussion on different/better
7836 * solutions is welcome!
7837 */
1724813d 7838 for_each_possible_cpu(cpu) {
f10e00f4
KT
7839 rcu_read_lock_sched();
7840 dl_b = dl_bw_of(cpu);
332ac17e 7841
49516342 7842 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7843 if (new_bw < dl_b->total_bw)
7844 ret = -EBUSY;
49516342 7845 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7846
f10e00f4
KT
7847 rcu_read_unlock_sched();
7848
1724813d
PZ
7849 if (ret)
7850 break;
332ac17e
DF
7851 }
7852
1724813d 7853 return ret;
332ac17e
DF
7854}
7855
1724813d 7856static void sched_dl_do_global(void)
ce0dbbbb 7857{
1724813d 7858 u64 new_bw = -1;
f10e00f4 7859 struct dl_bw *dl_b;
1724813d 7860 int cpu;
49516342 7861 unsigned long flags;
ce0dbbbb 7862
1724813d
PZ
7863 def_dl_bandwidth.dl_period = global_rt_period();
7864 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7865
7866 if (global_rt_runtime() != RUNTIME_INF)
7867 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7868
7869 /*
7870 * FIXME: As above...
7871 */
7872 for_each_possible_cpu(cpu) {
f10e00f4
KT
7873 rcu_read_lock_sched();
7874 dl_b = dl_bw_of(cpu);
1724813d 7875
49516342 7876 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7877 dl_b->bw = new_bw;
49516342 7878 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7879
7880 rcu_read_unlock_sched();
ce0dbbbb 7881 }
1724813d
PZ
7882}
7883
7884static int sched_rt_global_validate(void)
7885{
7886 if (sysctl_sched_rt_period <= 0)
7887 return -EINVAL;
7888
e9e7cb38
JL
7889 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7890 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7891 return -EINVAL;
7892
7893 return 0;
7894}
7895
7896static void sched_rt_do_global(void)
7897{
7898 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7899 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7900}
7901
d0b27fa7 7902int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7903 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7904 loff_t *ppos)
7905{
d0b27fa7
PZ
7906 int old_period, old_runtime;
7907 static DEFINE_MUTEX(mutex);
1724813d 7908 int ret;
d0b27fa7
PZ
7909
7910 mutex_lock(&mutex);
7911 old_period = sysctl_sched_rt_period;
7912 old_runtime = sysctl_sched_rt_runtime;
7913
8d65af78 7914 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7915
7916 if (!ret && write) {
1724813d
PZ
7917 ret = sched_rt_global_validate();
7918 if (ret)
7919 goto undo;
7920
a1963b81 7921 ret = sched_dl_global_validate();
1724813d
PZ
7922 if (ret)
7923 goto undo;
7924
a1963b81 7925 ret = sched_rt_global_constraints();
1724813d
PZ
7926 if (ret)
7927 goto undo;
7928
7929 sched_rt_do_global();
7930 sched_dl_do_global();
7931 }
7932 if (0) {
7933undo:
7934 sysctl_sched_rt_period = old_period;
7935 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7936 }
7937 mutex_unlock(&mutex);
7938
7939 return ret;
7940}
68318b8e 7941
1724813d 7942int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7943 void __user *buffer, size_t *lenp,
7944 loff_t *ppos)
7945{
7946 int ret;
332ac17e 7947 static DEFINE_MUTEX(mutex);
332ac17e
DF
7948
7949 mutex_lock(&mutex);
332ac17e 7950 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7951 /* make sure that internally we keep jiffies */
7952 /* also, writing zero resets timeslice to default */
332ac17e 7953 if (!ret && write) {
1724813d
PZ
7954 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7955 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7956 }
7957 mutex_unlock(&mutex);
332ac17e
DF
7958 return ret;
7959}
7960
052f1dc7 7961#ifdef CONFIG_CGROUP_SCHED
68318b8e 7962
a7c6d554 7963static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7964{
a7c6d554 7965 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7966}
7967
eb95419b
TH
7968static struct cgroup_subsys_state *
7969cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7970{
eb95419b
TH
7971 struct task_group *parent = css_tg(parent_css);
7972 struct task_group *tg;
68318b8e 7973
eb95419b 7974 if (!parent) {
68318b8e 7975 /* This is early initialization for the top cgroup */
07e06b01 7976 return &root_task_group.css;
68318b8e
SV
7977 }
7978
ec7dc8ac 7979 tg = sched_create_group(parent);
68318b8e
SV
7980 if (IS_ERR(tg))
7981 return ERR_PTR(-ENOMEM);
7982
68318b8e
SV
7983 return &tg->css;
7984}
7985
eb95419b 7986static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7987{
eb95419b 7988 struct task_group *tg = css_tg(css);
5c9d535b 7989 struct task_group *parent = css_tg(css->parent);
ace783b9 7990
63876986
TH
7991 if (parent)
7992 sched_online_group(tg, parent);
ace783b9
LZ
7993 return 0;
7994}
7995
eb95419b 7996static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7997{
eb95419b 7998 struct task_group *tg = css_tg(css);
68318b8e
SV
7999
8000 sched_destroy_group(tg);
8001}
8002
eb95419b 8003static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8004{
eb95419b 8005 struct task_group *tg = css_tg(css);
ace783b9
LZ
8006
8007 sched_offline_group(tg);
8008}
8009
eeb61e53
KT
8010static void cpu_cgroup_fork(struct task_struct *task)
8011{
8012 sched_move_task(task);
8013}
8014
eb95419b 8015static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8016 struct cgroup_taskset *tset)
68318b8e 8017{
bb9d97b6
TH
8018 struct task_struct *task;
8019
924f0d9a 8020 cgroup_taskset_for_each(task, tset) {
b68aa230 8021#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8022 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8023 return -EINVAL;
b68aa230 8024#else
bb9d97b6
TH
8025 /* We don't support RT-tasks being in separate groups */
8026 if (task->sched_class != &fair_sched_class)
8027 return -EINVAL;
b68aa230 8028#endif
bb9d97b6 8029 }
be367d09
BB
8030 return 0;
8031}
68318b8e 8032
eb95419b 8033static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8034 struct cgroup_taskset *tset)
68318b8e 8035{
bb9d97b6
TH
8036 struct task_struct *task;
8037
924f0d9a 8038 cgroup_taskset_for_each(task, tset)
bb9d97b6 8039 sched_move_task(task);
68318b8e
SV
8040}
8041
eb95419b
TH
8042static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8043 struct cgroup_subsys_state *old_css,
8044 struct task_struct *task)
068c5cc5
PZ
8045{
8046 /*
8047 * cgroup_exit() is called in the copy_process() failure path.
8048 * Ignore this case since the task hasn't ran yet, this avoids
8049 * trying to poke a half freed task state from generic code.
8050 */
8051 if (!(task->flags & PF_EXITING))
8052 return;
8053
8054 sched_move_task(task);
8055}
8056
052f1dc7 8057#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8058static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8059 struct cftype *cftype, u64 shareval)
68318b8e 8060{
182446d0 8061 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8062}
8063
182446d0
TH
8064static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8065 struct cftype *cft)
68318b8e 8066{
182446d0 8067 struct task_group *tg = css_tg(css);
68318b8e 8068
c8b28116 8069 return (u64) scale_load_down(tg->shares);
68318b8e 8070}
ab84d31e
PT
8071
8072#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8073static DEFINE_MUTEX(cfs_constraints_mutex);
8074
ab84d31e
PT
8075const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8076const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8077
a790de99
PT
8078static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8079
ab84d31e
PT
8080static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8081{
56f570e5 8082 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8083 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8084
8085 if (tg == &root_task_group)
8086 return -EINVAL;
8087
8088 /*
8089 * Ensure we have at some amount of bandwidth every period. This is
8090 * to prevent reaching a state of large arrears when throttled via
8091 * entity_tick() resulting in prolonged exit starvation.
8092 */
8093 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8094 return -EINVAL;
8095
8096 /*
8097 * Likewise, bound things on the otherside by preventing insane quota
8098 * periods. This also allows us to normalize in computing quota
8099 * feasibility.
8100 */
8101 if (period > max_cfs_quota_period)
8102 return -EINVAL;
8103
0e59bdae
KT
8104 /*
8105 * Prevent race between setting of cfs_rq->runtime_enabled and
8106 * unthrottle_offline_cfs_rqs().
8107 */
8108 get_online_cpus();
a790de99
PT
8109 mutex_lock(&cfs_constraints_mutex);
8110 ret = __cfs_schedulable(tg, period, quota);
8111 if (ret)
8112 goto out_unlock;
8113
58088ad0 8114 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8115 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8116 /*
8117 * If we need to toggle cfs_bandwidth_used, off->on must occur
8118 * before making related changes, and on->off must occur afterwards
8119 */
8120 if (runtime_enabled && !runtime_was_enabled)
8121 cfs_bandwidth_usage_inc();
ab84d31e
PT
8122 raw_spin_lock_irq(&cfs_b->lock);
8123 cfs_b->period = ns_to_ktime(period);
8124 cfs_b->quota = quota;
58088ad0 8125
a9cf55b2 8126 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8127 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8128 if (runtime_enabled)
8129 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8130 raw_spin_unlock_irq(&cfs_b->lock);
8131
0e59bdae 8132 for_each_online_cpu(i) {
ab84d31e 8133 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8134 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8135
8136 raw_spin_lock_irq(&rq->lock);
58088ad0 8137 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8138 cfs_rq->runtime_remaining = 0;
671fd9da 8139
029632fb 8140 if (cfs_rq->throttled)
671fd9da 8141 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8142 raw_spin_unlock_irq(&rq->lock);
8143 }
1ee14e6c
BS
8144 if (runtime_was_enabled && !runtime_enabled)
8145 cfs_bandwidth_usage_dec();
a790de99
PT
8146out_unlock:
8147 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8148 put_online_cpus();
ab84d31e 8149
a790de99 8150 return ret;
ab84d31e
PT
8151}
8152
8153int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8154{
8155 u64 quota, period;
8156
029632fb 8157 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8158 if (cfs_quota_us < 0)
8159 quota = RUNTIME_INF;
8160 else
8161 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8162
8163 return tg_set_cfs_bandwidth(tg, period, quota);
8164}
8165
8166long tg_get_cfs_quota(struct task_group *tg)
8167{
8168 u64 quota_us;
8169
029632fb 8170 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8171 return -1;
8172
029632fb 8173 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8174 do_div(quota_us, NSEC_PER_USEC);
8175
8176 return quota_us;
8177}
8178
8179int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8180{
8181 u64 quota, period;
8182
8183 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8184 quota = tg->cfs_bandwidth.quota;
ab84d31e 8185
ab84d31e
PT
8186 return tg_set_cfs_bandwidth(tg, period, quota);
8187}
8188
8189long tg_get_cfs_period(struct task_group *tg)
8190{
8191 u64 cfs_period_us;
8192
029632fb 8193 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8194 do_div(cfs_period_us, NSEC_PER_USEC);
8195
8196 return cfs_period_us;
8197}
8198
182446d0
TH
8199static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8200 struct cftype *cft)
ab84d31e 8201{
182446d0 8202 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8203}
8204
182446d0
TH
8205static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8206 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8207{
182446d0 8208 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8209}
8210
182446d0
TH
8211static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8212 struct cftype *cft)
ab84d31e 8213{
182446d0 8214 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8215}
8216
182446d0
TH
8217static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8218 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8219{
182446d0 8220 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8221}
8222
a790de99
PT
8223struct cfs_schedulable_data {
8224 struct task_group *tg;
8225 u64 period, quota;
8226};
8227
8228/*
8229 * normalize group quota/period to be quota/max_period
8230 * note: units are usecs
8231 */
8232static u64 normalize_cfs_quota(struct task_group *tg,
8233 struct cfs_schedulable_data *d)
8234{
8235 u64 quota, period;
8236
8237 if (tg == d->tg) {
8238 period = d->period;
8239 quota = d->quota;
8240 } else {
8241 period = tg_get_cfs_period(tg);
8242 quota = tg_get_cfs_quota(tg);
8243 }
8244
8245 /* note: these should typically be equivalent */
8246 if (quota == RUNTIME_INF || quota == -1)
8247 return RUNTIME_INF;
8248
8249 return to_ratio(period, quota);
8250}
8251
8252static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8253{
8254 struct cfs_schedulable_data *d = data;
029632fb 8255 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8256 s64 quota = 0, parent_quota = -1;
8257
8258 if (!tg->parent) {
8259 quota = RUNTIME_INF;
8260 } else {
029632fb 8261 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8262
8263 quota = normalize_cfs_quota(tg, d);
9c58c79a 8264 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8265
8266 /*
8267 * ensure max(child_quota) <= parent_quota, inherit when no
8268 * limit is set
8269 */
8270 if (quota == RUNTIME_INF)
8271 quota = parent_quota;
8272 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8273 return -EINVAL;
8274 }
9c58c79a 8275 cfs_b->hierarchical_quota = quota;
a790de99
PT
8276
8277 return 0;
8278}
8279
8280static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8281{
8277434e 8282 int ret;
a790de99
PT
8283 struct cfs_schedulable_data data = {
8284 .tg = tg,
8285 .period = period,
8286 .quota = quota,
8287 };
8288
8289 if (quota != RUNTIME_INF) {
8290 do_div(data.period, NSEC_PER_USEC);
8291 do_div(data.quota, NSEC_PER_USEC);
8292 }
8293
8277434e
PT
8294 rcu_read_lock();
8295 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8296 rcu_read_unlock();
8297
8298 return ret;
a790de99 8299}
e8da1b18 8300
2da8ca82 8301static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8302{
2da8ca82 8303 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8304 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8305
44ffc75b
TH
8306 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8307 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8308 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8309
8310 return 0;
8311}
ab84d31e 8312#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8313#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8314
052f1dc7 8315#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8316static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8317 struct cftype *cft, s64 val)
6f505b16 8318{
182446d0 8319 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8320}
8321
182446d0
TH
8322static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8323 struct cftype *cft)
6f505b16 8324{
182446d0 8325 return sched_group_rt_runtime(css_tg(css));
6f505b16 8326}
d0b27fa7 8327
182446d0
TH
8328static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8329 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8330{
182446d0 8331 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8332}
8333
182446d0
TH
8334static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
d0b27fa7 8336{
182446d0 8337 return sched_group_rt_period(css_tg(css));
d0b27fa7 8338}
6d6bc0ad 8339#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8340
fe5c7cc2 8341static struct cftype cpu_files[] = {
052f1dc7 8342#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8343 {
8344 .name = "shares",
f4c753b7
PM
8345 .read_u64 = cpu_shares_read_u64,
8346 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8347 },
052f1dc7 8348#endif
ab84d31e
PT
8349#ifdef CONFIG_CFS_BANDWIDTH
8350 {
8351 .name = "cfs_quota_us",
8352 .read_s64 = cpu_cfs_quota_read_s64,
8353 .write_s64 = cpu_cfs_quota_write_s64,
8354 },
8355 {
8356 .name = "cfs_period_us",
8357 .read_u64 = cpu_cfs_period_read_u64,
8358 .write_u64 = cpu_cfs_period_write_u64,
8359 },
e8da1b18
NR
8360 {
8361 .name = "stat",
2da8ca82 8362 .seq_show = cpu_stats_show,
e8da1b18 8363 },
ab84d31e 8364#endif
052f1dc7 8365#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8366 {
9f0c1e56 8367 .name = "rt_runtime_us",
06ecb27c
PM
8368 .read_s64 = cpu_rt_runtime_read,
8369 .write_s64 = cpu_rt_runtime_write,
6f505b16 8370 },
d0b27fa7
PZ
8371 {
8372 .name = "rt_period_us",
f4c753b7
PM
8373 .read_u64 = cpu_rt_period_read_uint,
8374 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8375 },
052f1dc7 8376#endif
4baf6e33 8377 { } /* terminate */
68318b8e
SV
8378};
8379
073219e9 8380struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8381 .css_alloc = cpu_cgroup_css_alloc,
8382 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8383 .css_online = cpu_cgroup_css_online,
8384 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8385 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8386 .can_attach = cpu_cgroup_can_attach,
8387 .attach = cpu_cgroup_attach,
068c5cc5 8388 .exit = cpu_cgroup_exit,
5577964e 8389 .legacy_cftypes = cpu_files,
68318b8e
SV
8390 .early_init = 1,
8391};
8392
052f1dc7 8393#endif /* CONFIG_CGROUP_SCHED */
d842de87 8394
b637a328
PM
8395void dump_cpu_task(int cpu)
8396{
8397 pr_info("Task dump for CPU %d:\n", cpu);
8398 sched_show_task(cpu_curr(cpu));
8399}