sched/fair: Expose newidle_balance()
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
a056a5be
QY
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
029632fb 37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 38
e9666d10 39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
765cc3a4
PB
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
bf5c91ba 46 */
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 49const_debug unsigned int sysctl_sched_features =
391e43da 50#include "features.h"
f00b45c1 51 0;
f00b45c1 52#undef SCHED_FEAT
765cc3a4 53#endif
f00b45c1 54
b82d9fdd
PZ
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
fa85ae24 61/*
d1ccc66d 62 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
63 * default: 1s
64 */
9f0c1e56 65unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 66
029632fb 67__read_mostly int scheduler_running;
6892b75e 68
9f0c1e56
PZ
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
fa85ae24 74
3e71a462
PZ
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
eb580751 78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 89 rq_pin_lock(rq, rf);
3e71a462
PZ
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
eb580751 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
eb580751 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
c546951d 122 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
123 * the old rq->lock will fully serialize against the stores.
124 *
c546951d
AP
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 130 rq_pin_lock(rq, rf);
3e71a462
PZ
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
eb580751 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
535b9552
IM
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
11d4afd4
VG
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
535b9552
IM
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
11d4afd4 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 194 update_irq_load_avg(rq, irq_delta + steal);
535b9552 195#endif
23127296 196 update_rq_clock_pelt(rq, delta);
535b9552
IM
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
26ae58d2 213
535b9552
IM
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
8f4d37ec
PZ
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 225 */
8f4d37ec 226
8f4d37ec
PZ
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
8f4d37ec
PZ
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 240 struct rq_flags rf;
8f4d37ec
PZ
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
8a8c69c3 244 rq_lock(rq, &rf);
3e51f33f 245 update_rq_clock(rq);
8f4d37ec 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 247 rq_unlock(rq, &rf);
8f4d37ec
PZ
248
249 return HRTIMER_NORESTART;
250}
251
95e904c7 252#ifdef CONFIG_SMP
971ee28c 253
4961b6e1 254static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 257
4961b6e1 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
259}
260
31656519
PZ
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
b328ca18 265{
31656519 266 struct rq *rq = arg;
8a8c69c3 267 struct rq_flags rf;
b328ca18 268
8a8c69c3 269 rq_lock(rq, &rf);
971ee28c 270 __hrtick_restart(rq);
31656519 271 rq->hrtick_csd_pending = 0;
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519
PZ
294
295 if (rq == this_rq()) {
971ee28c 296 __hrtick_restart(rq);
31656519 297 } else if (!rq->hrtick_csd_pending) {
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
299 rq->hrtick_csd_pending = 1;
300 }
b328ca18
PZ
301}
302
31656519
PZ
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
029632fb 309void hrtick_start(struct rq *rq, u64 delay)
31656519 310{
86893335
WL
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
31656519 318}
31656519 319#endif /* CONFIG_SMP */
8f4d37ec 320
77a021be 321static void hrtick_rq_init(struct rq *rq)
8f4d37ec 322{
31656519
PZ
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
8f4d37ec 325
31656519
PZ
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
8f4d37ec 330
31656519
PZ
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
8f4d37ec 333}
006c75f1 334#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
77a021be 339static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
340{
341}
006c75f1 342#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 343
5529578a
FW
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
e3baac47 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
e3baac47
PZ
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
316c1608 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
fd99f91a
PZ
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
e3baac47
PZ
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
fd99f91a
PZ
411#endif
412
07879c6a 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
4c4e3731
PZ
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 424 */
4c4e3731 425 smp_mb__before_atomic();
87ff19cb 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 427 return false;
76751049
PZ
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
07879c6a
DB
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
76751049
PZ
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
d1ccc66d 487 /* Task can safely be re-inserted now: */
76751049
PZ
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
7696f991
AP
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
c24d20db 500/*
8875125e 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
8875125e 507void resched_curr(struct rq *rq)
c24d20db 508{
8875125e 509 struct task_struct *curr = rq->curr;
c24d20db
IM
510 int cpu;
511
8875125e 512 lockdep_assert_held(&rq->lock);
c24d20db 513
8875125e 514 if (test_tsk_need_resched(curr))
c24d20db
IM
515 return;
516
8875125e 517 cpu = cpu_of(rq);
fd99f91a 518
f27dde8d 519 if (cpu == smp_processor_id()) {
8875125e 520 set_tsk_need_resched(curr);
f27dde8d 521 set_preempt_need_resched();
c24d20db 522 return;
f27dde8d 523 }
c24d20db 524
8875125e 525 if (set_nr_and_not_polling(curr))
c24d20db 526 smp_send_reschedule(cpu);
dfc68f29
AL
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
7c2102e5 536 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c 541
b021fe3e 542#ifdef CONFIG_SMP
3451d024 543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 544/*
d1ccc66d
IM
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
547 *
548 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 551 */
bc7a34b8 552int get_nohz_timer_target(void)
83cd4fe2 553{
bc7a34b8 554 int i, cpu = smp_processor_id();
83cd4fe2
VP
555 struct sched_domain *sd;
556
de201559 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
558 return cpu;
559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
057f3fad 562 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
de201559 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
de201559
FW
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
d1ccc66d 579
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
379d9ecb
PM
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
c5bfece2 613 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
53c5fa16 616 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
617 return true;
618 }
619
620 return false;
621}
622
379d9ecb
PM
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
1c20091e
FW
628void wake_up_nohz_cpu(int cpu)
629{
c5bfece2 630 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
631 wake_up_idle_cpu(cpu);
632}
633
ca38062e 634static inline bool got_nohz_idle_kick(void)
45bf76df 635{
1c792db7 636 int cpu = smp_processor_id();
873b4c65 637
b7031a02 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
b7031a02 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 649 return false;
45bf76df
IM
650}
651
3451d024 652#else /* CONFIG_NO_HZ_COMMON */
45bf76df 653
ca38062e 654static inline bool got_nohz_idle_kick(void)
2069dd75 655{
ca38062e 656 return false;
2069dd75
PZ
657}
658
3451d024 659#endif /* CONFIG_NO_HZ_COMMON */
d842de87 660
ce831b38 661#ifdef CONFIG_NO_HZ_FULL
76d92ac3 662bool sched_can_stop_tick(struct rq *rq)
ce831b38 663{
76d92ac3
FW
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
1e78cdbd 670 /*
2548d546
PZ
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
1e78cdbd 673 */
76d92ac3
FW
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
1e78cdbd
RR
679 }
680
2548d546
PZ
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
541b8264 695 return false;
ce831b38 696
541b8264 697 return true;
ce831b38
FW
698}
699#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
9059393e 747static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
1da1843f 755 if (task_has_idle_policy(p)) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 758 p->se.runnable_weight = load->weight;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 771 p->se.runnable_weight = load->weight;
9059393e 772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
776/* Max allowed minimum utilization */
777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778
779/* Max allowed maximum utilization */
780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781
782/* All clamps are required to be less or equal than these values */
783static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
784
785/* Integer rounded range for each bucket */
786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787
788#define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790
791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792{
793 return clamp_value / UCLAMP_BUCKET_DELTA;
794}
795
60daf9c1
PB
796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797{
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799}
800
69842cba
PB
801static inline unsigned int uclamp_none(int clamp_id)
802{
803 if (clamp_id == UCLAMP_MIN)
804 return 0;
805 return SCHED_CAPACITY_SCALE;
806}
807
a509a7cd
PB
808static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 unsigned int value, bool user_defined)
69842cba
PB
810{
811 uc_se->value = value;
812 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 813 uc_se->user_defined = user_defined;
69842cba
PB
814}
815
e496187d
PB
816static inline unsigned int
817uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 unsigned int clamp_value)
819{
820 /*
821 * Avoid blocked utilization pushing up the frequency when we go
822 * idle (which drops the max-clamp) by retaining the last known
823 * max-clamp.
824 */
825 if (clamp_id == UCLAMP_MAX) {
826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 return clamp_value;
828 }
829
830 return uclamp_none(UCLAMP_MIN);
831}
832
833static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 unsigned int clamp_value)
835{
836 /* Reset max-clamp retention only on idle exit */
837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 return;
839
840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841}
842
69842cba 843static inline
e496187d
PB
844unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 unsigned int clamp_value)
69842cba
PB
846{
847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 int bucket_id = UCLAMP_BUCKETS - 1;
849
850 /*
851 * Since both min and max clamps are max aggregated, find the
852 * top most bucket with tasks in.
853 */
854 for ( ; bucket_id >= 0; bucket_id--) {
855 if (!bucket[bucket_id].tasks)
856 continue;
857 return bucket[bucket_id].value;
858 }
859
860 /* No tasks -- default clamp values */
e496187d 861 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
862}
863
e8f14172
PB
864/*
865 * The effective clamp bucket index of a task depends on, by increasing
866 * priority:
867 * - the task specific clamp value, when explicitly requested from userspace
868 * - the system default clamp value, defined by the sysadmin
869 */
870static inline struct uclamp_se
871uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872{
873 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 struct uclamp_se uc_max = uclamp_default[clamp_id];
875
876 /* System default restrictions always apply */
877 if (unlikely(uc_req.value > uc_max.value))
878 return uc_max;
879
880 return uc_req;
881}
882
9d20ad7d
PB
883unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
884{
885 struct uclamp_se uc_eff;
886
887 /* Task currently refcounted: use back-annotated (effective) value */
888 if (p->uclamp[clamp_id].active)
889 return p->uclamp[clamp_id].value;
890
891 uc_eff = uclamp_eff_get(p, clamp_id);
892
893 return uc_eff.value;
894}
895
69842cba
PB
896/*
897 * When a task is enqueued on a rq, the clamp bucket currently defined by the
898 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899 * updates the rq's clamp value if required.
60daf9c1
PB
900 *
901 * Tasks can have a task-specific value requested from user-space, track
902 * within each bucket the maximum value for tasks refcounted in it.
903 * This "local max aggregation" allows to track the exact "requested" value
904 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
905 */
906static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 unsigned int clamp_id)
908{
909 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 struct uclamp_bucket *bucket;
912
913 lockdep_assert_held(&rq->lock);
914
e8f14172
PB
915 /* Update task effective clamp */
916 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
917
69842cba
PB
918 bucket = &uc_rq->bucket[uc_se->bucket_id];
919 bucket->tasks++;
e8f14172 920 uc_se->active = true;
69842cba 921
e496187d
PB
922 uclamp_idle_reset(rq, clamp_id, uc_se->value);
923
60daf9c1
PB
924 /*
925 * Local max aggregation: rq buckets always track the max
926 * "requested" clamp value of its RUNNABLE tasks.
927 */
928 if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 bucket->value = uc_se->value;
930
69842cba 931 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 932 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
933}
934
935/*
936 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937 * is released. If this is the last task reference counting the rq's max
938 * active clamp value, then the rq's clamp value is updated.
939 *
940 * Both refcounted tasks and rq's cached clamp values are expected to be
941 * always valid. If it's detected they are not, as defensive programming,
942 * enforce the expected state and warn.
943 */
944static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 unsigned int clamp_id)
946{
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
e496187d 950 unsigned int bkt_clamp;
69842cba
PB
951 unsigned int rq_clamp;
952
953 lockdep_assert_held(&rq->lock);
954
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 SCHED_WARN_ON(!bucket->tasks);
957 if (likely(bucket->tasks))
958 bucket->tasks--;
e8f14172 959 uc_se->active = false;
69842cba 960
60daf9c1
PB
961 /*
962 * Keep "local max aggregation" simple and accept to (possibly)
963 * overboost some RUNNABLE tasks in the same bucket.
964 * The rq clamp bucket value is reset to its base value whenever
965 * there are no more RUNNABLE tasks refcounting it.
966 */
69842cba
PB
967 if (likely(bucket->tasks))
968 return;
969
970 rq_clamp = READ_ONCE(uc_rq->value);
971 /*
972 * Defensive programming: this should never happen. If it happens,
973 * e.g. due to future modification, warn and fixup the expected value.
974 */
975 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
976 if (bucket->value >= rq_clamp) {
977 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 WRITE_ONCE(uc_rq->value, bkt_clamp);
979 }
69842cba
PB
980}
981
982static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
983{
984 unsigned int clamp_id;
985
986 if (unlikely(!p->sched_class->uclamp_enabled))
987 return;
988
989 for_each_clamp_id(clamp_id)
990 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
991
992 /* Reset clamp idle holding when there is one RUNNABLE task */
993 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
995}
996
997static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
998{
999 unsigned int clamp_id;
1000
1001 if (unlikely(!p->sched_class->uclamp_enabled))
1002 return;
1003
1004 for_each_clamp_id(clamp_id)
1005 uclamp_rq_dec_id(rq, p, clamp_id);
1006}
1007
e8f14172
PB
1008int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 void __user *buffer, size_t *lenp,
1010 loff_t *ppos)
1011{
1012 int old_min, old_max;
1013 static DEFINE_MUTEX(mutex);
1014 int result;
1015
1016 mutex_lock(&mutex);
1017 old_min = sysctl_sched_uclamp_util_min;
1018 old_max = sysctl_sched_uclamp_util_max;
1019
1020 result = proc_dointvec(table, write, buffer, lenp, ppos);
1021 if (result)
1022 goto undo;
1023 if (!write)
1024 goto done;
1025
1026 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028 result = -EINVAL;
1029 goto undo;
1030 }
1031
1032 if (old_min != sysctl_sched_uclamp_util_min) {
1033 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1034 sysctl_sched_uclamp_util_min, false);
e8f14172
PB
1035 }
1036 if (old_max != sysctl_sched_uclamp_util_max) {
1037 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1038 sysctl_sched_uclamp_util_max, false);
e8f14172
PB
1039 }
1040
1041 /*
1042 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 * just a lazy update at each next enqueue time.
1044 */
1045 goto done;
1046
1047undo:
1048 sysctl_sched_uclamp_util_min = old_min;
1049 sysctl_sched_uclamp_util_max = old_max;
1050done:
1051 mutex_unlock(&mutex);
1052
1053 return result;
1054}
1055
a509a7cd
PB
1056static int uclamp_validate(struct task_struct *p,
1057 const struct sched_attr *attr)
1058{
1059 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061
1062 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 lower_bound = attr->sched_util_min;
1064 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 upper_bound = attr->sched_util_max;
1066
1067 if (lower_bound > upper_bound)
1068 return -EINVAL;
1069 if (upper_bound > SCHED_CAPACITY_SCALE)
1070 return -EINVAL;
1071
1072 return 0;
1073}
1074
1075static void __setscheduler_uclamp(struct task_struct *p,
1076 const struct sched_attr *attr)
1077{
1a00d999
PB
1078 unsigned int clamp_id;
1079
1080 /*
1081 * On scheduling class change, reset to default clamps for tasks
1082 * without a task-specific value.
1083 */
1084 for_each_clamp_id(clamp_id) {
1085 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 unsigned int clamp_value = uclamp_none(clamp_id);
1087
1088 /* Keep using defined clamps across class changes */
1089 if (uc_se->user_defined)
1090 continue;
1091
1092 /* By default, RT tasks always get 100% boost */
1093 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 clamp_value = uclamp_none(UCLAMP_MAX);
1095
1096 uclamp_se_set(uc_se, clamp_value, false);
1097 }
1098
a509a7cd
PB
1099 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100 return;
1101
1102 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 attr->sched_util_min, true);
1105 }
1106
1107 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 attr->sched_util_max, true);
1110 }
1111}
1112
e8f14172
PB
1113static void uclamp_fork(struct task_struct *p)
1114{
1115 unsigned int clamp_id;
1116
1117 for_each_clamp_id(clamp_id)
1118 p->uclamp[clamp_id].active = false;
a87498ac
PB
1119
1120 if (likely(!p->sched_reset_on_fork))
1121 return;
1122
1123 for_each_clamp_id(clamp_id) {
1a00d999
PB
1124 unsigned int clamp_value = uclamp_none(clamp_id);
1125
1126 /* By default, RT tasks always get 100% boost */
1127 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 clamp_value = uclamp_none(UCLAMP_MAX);
1129
1130 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
a87498ac 1131 }
e8f14172
PB
1132}
1133
69842cba
PB
1134static void __init init_uclamp(void)
1135{
e8f14172 1136 struct uclamp_se uc_max = {};
69842cba
PB
1137 unsigned int clamp_id;
1138 int cpu;
1139
e496187d 1140 for_each_possible_cpu(cpu) {
69842cba 1141 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
e496187d
PB
1142 cpu_rq(cpu)->uclamp_flags = 0;
1143 }
69842cba 1144
69842cba 1145 for_each_clamp_id(clamp_id) {
e8f14172 1146 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1147 uclamp_none(clamp_id), false);
69842cba 1148 }
e8f14172
PB
1149
1150 /* System defaults allow max clamp values for both indexes */
a509a7cd 1151 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
e8f14172
PB
1152 for_each_clamp_id(clamp_id)
1153 uclamp_default[clamp_id] = uc_max;
69842cba
PB
1154}
1155
1156#else /* CONFIG_UCLAMP_TASK */
1157static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1159static inline int uclamp_validate(struct task_struct *p,
1160 const struct sched_attr *attr)
1161{
1162 return -EOPNOTSUPP;
1163}
1164static void __setscheduler_uclamp(struct task_struct *p,
1165 const struct sched_attr *attr) { }
e8f14172 1166static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1167static inline void init_uclamp(void) { }
1168#endif /* CONFIG_UCLAMP_TASK */
1169
1de64443 1170static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1171{
0a67d1ee
PZ
1172 if (!(flags & ENQUEUE_NOCLOCK))
1173 update_rq_clock(rq);
1174
eb414681 1175 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1176 sched_info_queued(rq, p);
eb414681
JW
1177 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178 }
0a67d1ee 1179
69842cba 1180 uclamp_rq_inc(rq, p);
371fd7e7 1181 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1182}
1183
1de64443 1184static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1185{
0a67d1ee
PZ
1186 if (!(flags & DEQUEUE_NOCLOCK))
1187 update_rq_clock(rq);
1188
eb414681 1189 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1190 sched_info_dequeued(rq, p);
eb414681
JW
1191 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192 }
0a67d1ee 1193
69842cba 1194 uclamp_rq_dec(rq, p);
371fd7e7 1195 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1196}
1197
029632fb 1198void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1199{
1200 if (task_contributes_to_load(p))
1201 rq->nr_uninterruptible--;
1202
371fd7e7 1203 enqueue_task(rq, p, flags);
7dd77884
PZ
1204
1205 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1206}
1207
029632fb 1208void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1209{
7dd77884
PZ
1210 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211
1e3c88bd
PZ
1212 if (task_contributes_to_load(p))
1213 rq->nr_uninterruptible++;
1214
371fd7e7 1215 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1216}
1217
14531189 1218/*
dd41f596 1219 * __normal_prio - return the priority that is based on the static prio
14531189 1220 */
14531189
IM
1221static inline int __normal_prio(struct task_struct *p)
1222{
dd41f596 1223 return p->static_prio;
14531189
IM
1224}
1225
b29739f9
IM
1226/*
1227 * Calculate the expected normal priority: i.e. priority
1228 * without taking RT-inheritance into account. Might be
1229 * boosted by interactivity modifiers. Changes upon fork,
1230 * setprio syscalls, and whenever the interactivity
1231 * estimator recalculates.
1232 */
36c8b586 1233static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1234{
1235 int prio;
1236
aab03e05
DF
1237 if (task_has_dl_policy(p))
1238 prio = MAX_DL_PRIO-1;
1239 else if (task_has_rt_policy(p))
b29739f9
IM
1240 prio = MAX_RT_PRIO-1 - p->rt_priority;
1241 else
1242 prio = __normal_prio(p);
1243 return prio;
1244}
1245
1246/*
1247 * Calculate the current priority, i.e. the priority
1248 * taken into account by the scheduler. This value might
1249 * be boosted by RT tasks, or might be boosted by
1250 * interactivity modifiers. Will be RT if the task got
1251 * RT-boosted. If not then it returns p->normal_prio.
1252 */
36c8b586 1253static int effective_prio(struct task_struct *p)
b29739f9
IM
1254{
1255 p->normal_prio = normal_prio(p);
1256 /*
1257 * If we are RT tasks or we were boosted to RT priority,
1258 * keep the priority unchanged. Otherwise, update priority
1259 * to the normal priority:
1260 */
1261 if (!rt_prio(p->prio))
1262 return p->normal_prio;
1263 return p->prio;
1264}
1265
1da177e4
LT
1266/**
1267 * task_curr - is this task currently executing on a CPU?
1268 * @p: the task in question.
e69f6186
YB
1269 *
1270 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1271 */
36c8b586 1272inline int task_curr(const struct task_struct *p)
1da177e4
LT
1273{
1274 return cpu_curr(task_cpu(p)) == p;
1275}
1276
67dfa1b7 1277/*
4c9a4bc8
PZ
1278 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279 * use the balance_callback list if you want balancing.
1280 *
1281 * this means any call to check_class_changed() must be followed by a call to
1282 * balance_callback().
67dfa1b7 1283 */
cb469845
SR
1284static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 const struct sched_class *prev_class,
da7a735e 1286 int oldprio)
cb469845
SR
1287{
1288 if (prev_class != p->sched_class) {
1289 if (prev_class->switched_from)
da7a735e 1290 prev_class->switched_from(rq, p);
4c9a4bc8 1291
da7a735e 1292 p->sched_class->switched_to(rq, p);
2d3d891d 1293 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1294 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1295}
1296
029632fb 1297void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1298{
1299 const struct sched_class *class;
1300
1301 if (p->sched_class == rq->curr->sched_class) {
1302 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303 } else {
1304 for_each_class(class) {
1305 if (class == rq->curr->sched_class)
1306 break;
1307 if (class == p->sched_class) {
8875125e 1308 resched_curr(rq);
1e5a7405
PZ
1309 break;
1310 }
1311 }
1312 }
1313
1314 /*
1315 * A queue event has occurred, and we're going to schedule. In
1316 * this case, we can save a useless back to back clock update.
1317 */
da0c1e65 1318 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1319 rq_clock_skip_update(rq);
1e5a7405
PZ
1320}
1321
1da177e4 1322#ifdef CONFIG_SMP
175f0e25
PZ
1323
1324static inline bool is_per_cpu_kthread(struct task_struct *p)
1325{
1326 if (!(p->flags & PF_KTHREAD))
1327 return false;
1328
1329 if (p->nr_cpus_allowed != 1)
1330 return false;
1331
1332 return true;
1333}
1334
1335/*
bee98539 1336 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1337 * __set_cpus_allowed_ptr() and select_fallback_rq().
1338 */
1339static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340{
3bd37062 1341 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1342 return false;
1343
1344 if (is_per_cpu_kthread(p))
1345 return cpu_online(cpu);
1346
1347 return cpu_active(cpu);
1348}
1349
5cc389bc
PZ
1350/*
1351 * This is how migration works:
1352 *
1353 * 1) we invoke migration_cpu_stop() on the target CPU using
1354 * stop_one_cpu().
1355 * 2) stopper starts to run (implicitly forcing the migrated thread
1356 * off the CPU)
1357 * 3) it checks whether the migrated task is still in the wrong runqueue.
1358 * 4) if it's in the wrong runqueue then the migration thread removes
1359 * it and puts it into the right queue.
1360 * 5) stopper completes and stop_one_cpu() returns and the migration
1361 * is done.
1362 */
1363
1364/*
1365 * move_queued_task - move a queued task to new rq.
1366 *
1367 * Returns (locked) new rq. Old rq's lock is released.
1368 */
8a8c69c3
PZ
1369static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 struct task_struct *p, int new_cpu)
5cc389bc 1371{
5cc389bc
PZ
1372 lockdep_assert_held(&rq->lock);
1373
c546951d 1374 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1375 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1376 set_task_cpu(p, new_cpu);
8a8c69c3 1377 rq_unlock(rq, rf);
5cc389bc
PZ
1378
1379 rq = cpu_rq(new_cpu);
1380
8a8c69c3 1381 rq_lock(rq, rf);
5cc389bc 1382 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1383 enqueue_task(rq, p, 0);
3ea94de1 1384 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1385 check_preempt_curr(rq, p, 0);
1386
1387 return rq;
1388}
1389
1390struct migration_arg {
1391 struct task_struct *task;
1392 int dest_cpu;
1393};
1394
1395/*
d1ccc66d 1396 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1397 * this because either it can't run here any more (set_cpus_allowed()
1398 * away from this CPU, or CPU going down), or because we're
1399 * attempting to rebalance this task on exec (sched_exec).
1400 *
1401 * So we race with normal scheduler movements, but that's OK, as long
1402 * as the task is no longer on this CPU.
5cc389bc 1403 */
8a8c69c3
PZ
1404static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 struct task_struct *p, int dest_cpu)
5cc389bc 1406{
5cc389bc 1407 /* Affinity changed (again). */
175f0e25 1408 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1409 return rq;
5cc389bc 1410
15ff991e 1411 update_rq_clock(rq);
8a8c69c3 1412 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1413
1414 return rq;
5cc389bc
PZ
1415}
1416
1417/*
1418 * migration_cpu_stop - this will be executed by a highprio stopper thread
1419 * and performs thread migration by bumping thread off CPU then
1420 * 'pushing' onto another runqueue.
1421 */
1422static int migration_cpu_stop(void *data)
1423{
1424 struct migration_arg *arg = data;
5e16bbc2
PZ
1425 struct task_struct *p = arg->task;
1426 struct rq *rq = this_rq();
8a8c69c3 1427 struct rq_flags rf;
5cc389bc
PZ
1428
1429 /*
d1ccc66d
IM
1430 * The original target CPU might have gone down and we might
1431 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1432 */
1433 local_irq_disable();
1434 /*
1435 * We need to explicitly wake pending tasks before running
3bd37062 1436 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1437 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438 */
1439 sched_ttwu_pending();
5e16bbc2
PZ
1440
1441 raw_spin_lock(&p->pi_lock);
8a8c69c3 1442 rq_lock(rq, &rf);
5e16bbc2
PZ
1443 /*
1444 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 * we're holding p->pi_lock.
1447 */
bf89a304
CC
1448 if (task_rq(p) == rq) {
1449 if (task_on_rq_queued(p))
8a8c69c3 1450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1451 else
1452 p->wake_cpu = arg->dest_cpu;
1453 }
8a8c69c3 1454 rq_unlock(rq, &rf);
5e16bbc2
PZ
1455 raw_spin_unlock(&p->pi_lock);
1456
5cc389bc
PZ
1457 local_irq_enable();
1458 return 0;
1459}
1460
c5b28038
PZ
1461/*
1462 * sched_class::set_cpus_allowed must do the below, but is not required to
1463 * actually call this function.
1464 */
1465void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1466{
3bd37062 1467 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1468 p->nr_cpus_allowed = cpumask_weight(new_mask);
1469}
1470
c5b28038
PZ
1471void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472{
6c37067e
PZ
1473 struct rq *rq = task_rq(p);
1474 bool queued, running;
1475
c5b28038 1476 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1477
1478 queued = task_on_rq_queued(p);
1479 running = task_current(rq, p);
1480
1481 if (queued) {
1482 /*
1483 * Because __kthread_bind() calls this on blocked tasks without
1484 * holding rq->lock.
1485 */
1486 lockdep_assert_held(&rq->lock);
7a57f32a 1487 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1488 }
1489 if (running)
1490 put_prev_task(rq, p);
1491
c5b28038 1492 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1493
6c37067e 1494 if (queued)
7134b3e9 1495 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1496 if (running)
03b7fad1 1497 set_next_task(rq, p);
c5b28038
PZ
1498}
1499
5cc389bc
PZ
1500/*
1501 * Change a given task's CPU affinity. Migrate the thread to a
1502 * proper CPU and schedule it away if the CPU it's executing on
1503 * is removed from the allowed bitmask.
1504 *
1505 * NOTE: the caller must have a valid reference to the task, the
1506 * task must not exit() & deallocate itself prematurely. The
1507 * call is not atomic; no spinlocks may be held.
1508 */
25834c73
PZ
1509static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 const struct cpumask *new_mask, bool check)
5cc389bc 1511{
e9d867a6 1512 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1513 unsigned int dest_cpu;
eb580751
PZ
1514 struct rq_flags rf;
1515 struct rq *rq;
5cc389bc
PZ
1516 int ret = 0;
1517
eb580751 1518 rq = task_rq_lock(p, &rf);
a499c3ea 1519 update_rq_clock(rq);
5cc389bc 1520
e9d867a6
PZI
1521 if (p->flags & PF_KTHREAD) {
1522 /*
1523 * Kernel threads are allowed on online && !active CPUs
1524 */
1525 cpu_valid_mask = cpu_online_mask;
1526 }
1527
25834c73
PZ
1528 /*
1529 * Must re-check here, to close a race against __kthread_bind(),
1530 * sched_setaffinity() is not guaranteed to observe the flag.
1531 */
1532 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533 ret = -EINVAL;
1534 goto out;
1535 }
1536
3bd37062 1537 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1538 goto out;
1539
e9d867a6 1540 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1541 ret = -EINVAL;
1542 goto out;
1543 }
1544
1545 do_set_cpus_allowed(p, new_mask);
1546
e9d867a6
PZI
1547 if (p->flags & PF_KTHREAD) {
1548 /*
1549 * For kernel threads that do indeed end up on online &&
d1ccc66d 1550 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1551 */
1552 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 !cpumask_intersects(new_mask, cpu_active_mask) &&
1554 p->nr_cpus_allowed != 1);
1555 }
1556
5cc389bc
PZ
1557 /* Can the task run on the task's current CPU? If so, we're done */
1558 if (cpumask_test_cpu(task_cpu(p), new_mask))
1559 goto out;
1560
e9d867a6 1561 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1562 if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 struct migration_arg arg = { p, dest_cpu };
1564 /* Need help from migration thread: drop lock and wait. */
eb580751 1565 task_rq_unlock(rq, p, &rf);
5cc389bc 1566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1567 return 0;
cbce1a68
PZ
1568 } else if (task_on_rq_queued(p)) {
1569 /*
1570 * OK, since we're going to drop the lock immediately
1571 * afterwards anyway.
1572 */
8a8c69c3 1573 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1574 }
5cc389bc 1575out:
eb580751 1576 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1577
1578 return ret;
1579}
25834c73
PZ
1580
1581int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582{
1583 return __set_cpus_allowed_ptr(p, new_mask, false);
1584}
5cc389bc
PZ
1585EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586
dd41f596 1587void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1588{
e2912009
PZ
1589#ifdef CONFIG_SCHED_DEBUG
1590 /*
1591 * We should never call set_task_cpu() on a blocked task,
1592 * ttwu() will sort out the placement.
1593 */
077614ee 1594 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1595 !p->on_rq);
0122ec5b 1596
3ea94de1
JP
1597 /*
1598 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 * time relying on p->on_rq.
1601 */
1602 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 p->sched_class == &fair_sched_class &&
1604 (p->on_rq && !task_on_rq_migrating(p)));
1605
0122ec5b 1606#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1607 /*
1608 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610 *
1611 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1612 * see task_group().
6c6c54e1
PZ
1613 *
1614 * Furthermore, all task_rq users should acquire both locks, see
1615 * task_rq_lock().
1616 */
0122ec5b
PZ
1617 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 lockdep_is_held(&task_rq(p)->lock)));
1619#endif
4ff9083b
PZ
1620 /*
1621 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622 */
1623 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1624#endif
1625
de1d7286 1626 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1627
0c69774e 1628 if (task_cpu(p) != new_cpu) {
0a74bef8 1629 if (p->sched_class->migrate_task_rq)
1327237a 1630 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1631 p->se.nr_migrations++;
d7822b1e 1632 rseq_migrate(p);
ff303e66 1633 perf_event_task_migrate(p);
0c69774e 1634 }
dd41f596
IM
1635
1636 __set_task_cpu(p, new_cpu);
c65cc870
IM
1637}
1638
0ad4e3df 1639#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1640static void __migrate_swap_task(struct task_struct *p, int cpu)
1641{
da0c1e65 1642 if (task_on_rq_queued(p)) {
ac66f547 1643 struct rq *src_rq, *dst_rq;
8a8c69c3 1644 struct rq_flags srf, drf;
ac66f547
PZ
1645
1646 src_rq = task_rq(p);
1647 dst_rq = cpu_rq(cpu);
1648
8a8c69c3
PZ
1649 rq_pin_lock(src_rq, &srf);
1650 rq_pin_lock(dst_rq, &drf);
1651
ac66f547
PZ
1652 deactivate_task(src_rq, p, 0);
1653 set_task_cpu(p, cpu);
1654 activate_task(dst_rq, p, 0);
1655 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1656
1657 rq_unpin_lock(dst_rq, &drf);
1658 rq_unpin_lock(src_rq, &srf);
1659
ac66f547
PZ
1660 } else {
1661 /*
1662 * Task isn't running anymore; make it appear like we migrated
1663 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1664 * previous CPU our target instead of where it really is.
ac66f547
PZ
1665 */
1666 p->wake_cpu = cpu;
1667 }
1668}
1669
1670struct migration_swap_arg {
1671 struct task_struct *src_task, *dst_task;
1672 int src_cpu, dst_cpu;
1673};
1674
1675static int migrate_swap_stop(void *data)
1676{
1677 struct migration_swap_arg *arg = data;
1678 struct rq *src_rq, *dst_rq;
1679 int ret = -EAGAIN;
1680
62694cd5
PZ
1681 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682 return -EAGAIN;
1683
ac66f547
PZ
1684 src_rq = cpu_rq(arg->src_cpu);
1685 dst_rq = cpu_rq(arg->dst_cpu);
1686
74602315
PZ
1687 double_raw_lock(&arg->src_task->pi_lock,
1688 &arg->dst_task->pi_lock);
ac66f547 1689 double_rq_lock(src_rq, dst_rq);
62694cd5 1690
ac66f547
PZ
1691 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692 goto unlock;
1693
1694 if (task_cpu(arg->src_task) != arg->src_cpu)
1695 goto unlock;
1696
3bd37062 1697 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1698 goto unlock;
1699
3bd37062 1700 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1701 goto unlock;
1702
1703 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1705
1706 ret = 0;
1707
1708unlock:
1709 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1710 raw_spin_unlock(&arg->dst_task->pi_lock);
1711 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1712
1713 return ret;
1714}
1715
1716/*
1717 * Cross migrate two tasks
1718 */
0ad4e3df
SD
1719int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 int target_cpu, int curr_cpu)
ac66f547
PZ
1721{
1722 struct migration_swap_arg arg;
1723 int ret = -EINVAL;
1724
ac66f547
PZ
1725 arg = (struct migration_swap_arg){
1726 .src_task = cur,
0ad4e3df 1727 .src_cpu = curr_cpu,
ac66f547 1728 .dst_task = p,
0ad4e3df 1729 .dst_cpu = target_cpu,
ac66f547
PZ
1730 };
1731
1732 if (arg.src_cpu == arg.dst_cpu)
1733 goto out;
1734
6acce3ef
PZ
1735 /*
1736 * These three tests are all lockless; this is OK since all of them
1737 * will be re-checked with proper locks held further down the line.
1738 */
ac66f547
PZ
1739 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740 goto out;
1741
3bd37062 1742 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1743 goto out;
1744
3bd37062 1745 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1746 goto out;
1747
286549dc 1748 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1749 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750
1751out:
ac66f547
PZ
1752 return ret;
1753}
0ad4e3df 1754#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1755
1da177e4
LT
1756/*
1757 * wait_task_inactive - wait for a thread to unschedule.
1758 *
85ba2d86
RM
1759 * If @match_state is nonzero, it's the @p->state value just checked and
1760 * not expected to change. If it changes, i.e. @p might have woken up,
1761 * then return zero. When we succeed in waiting for @p to be off its CPU,
1762 * we return a positive number (its total switch count). If a second call
1763 * a short while later returns the same number, the caller can be sure that
1764 * @p has remained unscheduled the whole time.
1765 *
1da177e4
LT
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1771 */
85ba2d86 1772unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1773{
da0c1e65 1774 int running, queued;
eb580751 1775 struct rq_flags rf;
85ba2d86 1776 unsigned long ncsw;
70b97a7f 1777 struct rq *rq;
1da177e4 1778
3a5c359a
AK
1779 for (;;) {
1780 /*
1781 * We do the initial early heuristics without holding
1782 * any task-queue locks at all. We'll only try to get
1783 * the runqueue lock when things look like they will
1784 * work out!
1785 */
1786 rq = task_rq(p);
fa490cfd 1787
3a5c359a
AK
1788 /*
1789 * If the task is actively running on another CPU
1790 * still, just relax and busy-wait without holding
1791 * any locks.
1792 *
1793 * NOTE! Since we don't hold any locks, it's not
1794 * even sure that "rq" stays as the right runqueue!
1795 * But we don't care, since "task_running()" will
1796 * return false if the runqueue has changed and p
1797 * is actually now running somewhere else!
1798 */
85ba2d86
RM
1799 while (task_running(rq, p)) {
1800 if (match_state && unlikely(p->state != match_state))
1801 return 0;
3a5c359a 1802 cpu_relax();
85ba2d86 1803 }
fa490cfd 1804
3a5c359a
AK
1805 /*
1806 * Ok, time to look more closely! We need the rq
1807 * lock now, to be *sure*. If we're wrong, we'll
1808 * just go back and repeat.
1809 */
eb580751 1810 rq = task_rq_lock(p, &rf);
27a9da65 1811 trace_sched_wait_task(p);
3a5c359a 1812 running = task_running(rq, p);
da0c1e65 1813 queued = task_on_rq_queued(p);
85ba2d86 1814 ncsw = 0;
f31e11d8 1815 if (!match_state || p->state == match_state)
93dcf55f 1816 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1817 task_rq_unlock(rq, p, &rf);
fa490cfd 1818
85ba2d86
RM
1819 /*
1820 * If it changed from the expected state, bail out now.
1821 */
1822 if (unlikely(!ncsw))
1823 break;
1824
3a5c359a
AK
1825 /*
1826 * Was it really running after all now that we
1827 * checked with the proper locks actually held?
1828 *
1829 * Oops. Go back and try again..
1830 */
1831 if (unlikely(running)) {
1832 cpu_relax();
1833 continue;
1834 }
fa490cfd 1835
3a5c359a
AK
1836 /*
1837 * It's not enough that it's not actively running,
1838 * it must be off the runqueue _entirely_, and not
1839 * preempted!
1840 *
80dd99b3 1841 * So if it was still runnable (but just not actively
3a5c359a
AK
1842 * running right now), it's preempted, and we should
1843 * yield - it could be a while.
1844 */
da0c1e65 1845 if (unlikely(queued)) {
8b0e1953 1846 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1847
1848 set_current_state(TASK_UNINTERRUPTIBLE);
1849 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1850 continue;
1851 }
fa490cfd 1852
3a5c359a
AK
1853 /*
1854 * Ahh, all good. It wasn't running, and it wasn't
1855 * runnable, which means that it will never become
1856 * running in the future either. We're all done!
1857 */
1858 break;
1859 }
85ba2d86
RM
1860
1861 return ncsw;
1da177e4
LT
1862}
1863
1864/***
1865 * kick_process - kick a running thread to enter/exit the kernel
1866 * @p: the to-be-kicked thread
1867 *
1868 * Cause a process which is running on another CPU to enter
1869 * kernel-mode, without any delay. (to get signals handled.)
1870 *
25985edc 1871 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1872 * because all it wants to ensure is that the remote task enters
1873 * the kernel. If the IPI races and the task has been migrated
1874 * to another CPU then no harm is done and the purpose has been
1875 * achieved as well.
1876 */
36c8b586 1877void kick_process(struct task_struct *p)
1da177e4
LT
1878{
1879 int cpu;
1880
1881 preempt_disable();
1882 cpu = task_cpu(p);
1883 if ((cpu != smp_processor_id()) && task_curr(p))
1884 smp_send_reschedule(cpu);
1885 preempt_enable();
1886}
b43e3521 1887EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1888
30da688e 1889/*
3bd37062 1890 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1891 *
1892 * A few notes on cpu_active vs cpu_online:
1893 *
1894 * - cpu_active must be a subset of cpu_online
1895 *
97fb7a0a 1896 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1897 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1898 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1899 * see it.
1900 *
d1ccc66d 1901 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1902 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1903 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1904 * off.
1905 *
1906 * This means that fallback selection must not select !active CPUs.
1907 * And can assume that any active CPU must be online. Conversely
1908 * select_task_rq() below may allow selection of !active CPUs in order
1909 * to satisfy the above rules.
30da688e 1910 */
5da9a0fb
PZ
1911static int select_fallback_rq(int cpu, struct task_struct *p)
1912{
aa00d89c
TC
1913 int nid = cpu_to_node(cpu);
1914 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1915 enum { cpuset, possible, fail } state = cpuset;
1916 int dest_cpu;
5da9a0fb 1917
aa00d89c 1918 /*
d1ccc66d
IM
1919 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 * will return -1. There is no CPU on the node, and we should
1921 * select the CPU on the other node.
aa00d89c
TC
1922 */
1923 if (nid != -1) {
1924 nodemask = cpumask_of_node(nid);
1925
1926 /* Look for allowed, online CPU in same node. */
1927 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1928 if (!cpu_active(dest_cpu))
1929 continue;
3bd37062 1930 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1931 return dest_cpu;
1932 }
2baab4e9 1933 }
5da9a0fb 1934
2baab4e9
PZ
1935 for (;;) {
1936 /* Any allowed, online CPU? */
3bd37062 1937 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1938 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1939 continue;
175f0e25 1940
2baab4e9
PZ
1941 goto out;
1942 }
5da9a0fb 1943
e73e85f0 1944 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1945 switch (state) {
1946 case cpuset:
e73e85f0
ON
1947 if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 cpuset_cpus_allowed_fallback(p);
1949 state = possible;
1950 break;
1951 }
d1ccc66d 1952 /* Fall-through */
2baab4e9
PZ
1953 case possible:
1954 do_set_cpus_allowed(p, cpu_possible_mask);
1955 state = fail;
1956 break;
1957
1958 case fail:
1959 BUG();
1960 break;
1961 }
1962 }
1963
1964out:
1965 if (state != cpuset) {
1966 /*
1967 * Don't tell them about moving exiting tasks or
1968 * kernel threads (both mm NULL), since they never
1969 * leave kernel.
1970 */
1971 if (p->mm && printk_ratelimit()) {
aac74dc4 1972 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1973 task_pid_nr(p), p->comm, cpu);
1974 }
5da9a0fb
PZ
1975 }
1976
1977 return dest_cpu;
1978}
1979
e2912009 1980/*
3bd37062 1981 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1982 */
970b13ba 1983static inline
ac66f547 1984int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1985{
cbce1a68
PZ
1986 lockdep_assert_held(&p->pi_lock);
1987
4b53a341 1988 if (p->nr_cpus_allowed > 1)
6c1d9410 1989 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1990 else
3bd37062 1991 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1992
1993 /*
1994 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1995 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1996 * CPU.
e2912009
PZ
1997 *
1998 * Since this is common to all placement strategies, this lives here.
1999 *
2000 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 * not worry about this generic constraint ]
2002 */
7af443ee 2003 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2004 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2005
2006 return cpu;
970b13ba 2007}
09a40af5
MG
2008
2009static void update_avg(u64 *avg, u64 sample)
2010{
2011 s64 diff = sample - *avg;
2012 *avg += diff >> 3;
2013}
25834c73 2014
f5832c19
NP
2015void sched_set_stop_task(int cpu, struct task_struct *stop)
2016{
2017 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019
2020 if (stop) {
2021 /*
2022 * Make it appear like a SCHED_FIFO task, its something
2023 * userspace knows about and won't get confused about.
2024 *
2025 * Also, it will make PI more or less work without too
2026 * much confusion -- but then, stop work should not
2027 * rely on PI working anyway.
2028 */
2029 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030
2031 stop->sched_class = &stop_sched_class;
2032 }
2033
2034 cpu_rq(cpu)->stop = stop;
2035
2036 if (old_stop) {
2037 /*
2038 * Reset it back to a normal scheduling class so that
2039 * it can die in pieces.
2040 */
2041 old_stop->sched_class = &rt_sched_class;
2042 }
2043}
2044
25834c73
PZ
2045#else
2046
2047static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 const struct cpumask *new_mask, bool check)
2049{
2050 return set_cpus_allowed_ptr(p, new_mask);
2051}
2052
5cc389bc 2053#endif /* CONFIG_SMP */
970b13ba 2054
d7c01d27 2055static void
b84cb5df 2056ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2057{
4fa8d299 2058 struct rq *rq;
b84cb5df 2059
4fa8d299
JP
2060 if (!schedstat_enabled())
2061 return;
2062
2063 rq = this_rq();
d7c01d27 2064
4fa8d299
JP
2065#ifdef CONFIG_SMP
2066 if (cpu == rq->cpu) {
b85c8b71
PZ
2067 __schedstat_inc(rq->ttwu_local);
2068 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2069 } else {
2070 struct sched_domain *sd;
2071
b85c8b71 2072 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2073 rcu_read_lock();
4fa8d299 2074 for_each_domain(rq->cpu, sd) {
d7c01d27 2075 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2076 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2077 break;
2078 }
2079 }
057f3fad 2080 rcu_read_unlock();
d7c01d27 2081 }
f339b9dc
PZ
2082
2083 if (wake_flags & WF_MIGRATED)
b85c8b71 2084 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2085#endif /* CONFIG_SMP */
2086
b85c8b71
PZ
2087 __schedstat_inc(rq->ttwu_count);
2088 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2089
2090 if (wake_flags & WF_SYNC)
b85c8b71 2091 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2092}
2093
23f41eeb
PZ
2094/*
2095 * Mark the task runnable and perform wakeup-preemption.
2096 */
e7904a28 2097static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2098 struct rq_flags *rf)
9ed3811a 2099{
9ed3811a 2100 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2101 p->state = TASK_RUNNING;
fbd705a0
PZ
2102 trace_sched_wakeup(p);
2103
9ed3811a 2104#ifdef CONFIG_SMP
4c9a4bc8
PZ
2105 if (p->sched_class->task_woken) {
2106 /*
cbce1a68
PZ
2107 * Our task @p is fully woken up and running; so its safe to
2108 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2109 */
d8ac8971 2110 rq_unpin_lock(rq, rf);
9ed3811a 2111 p->sched_class->task_woken(rq, p);
d8ac8971 2112 rq_repin_lock(rq, rf);
4c9a4bc8 2113 }
9ed3811a 2114
e69c6341 2115 if (rq->idle_stamp) {
78becc27 2116 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2117 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2118
abfafa54
JL
2119 update_avg(&rq->avg_idle, delta);
2120
2121 if (rq->avg_idle > max)
9ed3811a 2122 rq->avg_idle = max;
abfafa54 2123
9ed3811a
TH
2124 rq->idle_stamp = 0;
2125 }
2126#endif
2127}
2128
c05fbafb 2129static void
e7904a28 2130ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2131 struct rq_flags *rf)
c05fbafb 2132{
77558e4d 2133 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2134
cbce1a68
PZ
2135 lockdep_assert_held(&rq->lock);
2136
c05fbafb
PZ
2137#ifdef CONFIG_SMP
2138 if (p->sched_contributes_to_load)
2139 rq->nr_uninterruptible--;
b5179ac7 2140
b5179ac7 2141 if (wake_flags & WF_MIGRATED)
59efa0ba 2142 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2143#endif
2144
1b174a2c 2145 activate_task(rq, p, en_flags);
d8ac8971 2146 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2147}
2148
2149/*
2150 * Called in case the task @p isn't fully descheduled from its runqueue,
2151 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152 * since all we need to do is flip p->state to TASK_RUNNING, since
2153 * the task is still ->on_rq.
2154 */
2155static int ttwu_remote(struct task_struct *p, int wake_flags)
2156{
eb580751 2157 struct rq_flags rf;
c05fbafb
PZ
2158 struct rq *rq;
2159 int ret = 0;
2160
eb580751 2161 rq = __task_rq_lock(p, &rf);
da0c1e65 2162 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2163 /* check_preempt_curr() may use rq clock */
2164 update_rq_clock(rq);
d8ac8971 2165 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2166 ret = 1;
2167 }
eb580751 2168 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2169
2170 return ret;
2171}
2172
317f3941 2173#ifdef CONFIG_SMP
e3baac47 2174void sched_ttwu_pending(void)
317f3941
PZ
2175{
2176 struct rq *rq = this_rq();
fa14ff4a 2177 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2178 struct task_struct *p, *t;
d8ac8971 2179 struct rq_flags rf;
317f3941 2180
e3baac47
PZ
2181 if (!llist)
2182 return;
2183
8a8c69c3 2184 rq_lock_irqsave(rq, &rf);
77558e4d 2185 update_rq_clock(rq);
317f3941 2186
73215849
BP
2187 llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2189
8a8c69c3 2190 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2191}
2192
2193void scheduler_ipi(void)
2194{
f27dde8d
PZ
2195 /*
2196 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 * TIF_NEED_RESCHED remotely (for the first time) will also send
2198 * this IPI.
2199 */
8cb75e0c 2200 preempt_fold_need_resched();
f27dde8d 2201
fd2ac4f4 2202 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2203 return;
2204
2205 /*
2206 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 * traditionally all their work was done from the interrupt return
2208 * path. Now that we actually do some work, we need to make sure
2209 * we do call them.
2210 *
2211 * Some archs already do call them, luckily irq_enter/exit nest
2212 * properly.
2213 *
2214 * Arguably we should visit all archs and update all handlers,
2215 * however a fair share of IPIs are still resched only so this would
2216 * somewhat pessimize the simple resched case.
2217 */
2218 irq_enter();
fa14ff4a 2219 sched_ttwu_pending();
ca38062e
SS
2220
2221 /*
2222 * Check if someone kicked us for doing the nohz idle load balance.
2223 */
873b4c65 2224 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2225 this_rq()->idle_balance = 1;
ca38062e 2226 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2227 }
c5d753a5 2228 irq_exit();
317f3941
PZ
2229}
2230
b7e7ade3 2231static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2232{
e3baac47
PZ
2233 struct rq *rq = cpu_rq(cpu);
2234
b7e7ade3
PZ
2235 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236
e3baac47
PZ
2237 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 if (!set_nr_if_polling(rq->idle))
2239 smp_send_reschedule(cpu);
2240 else
2241 trace_sched_wake_idle_without_ipi(cpu);
2242 }
317f3941 2243}
d6aa8f85 2244
f6be8af1
CL
2245void wake_up_if_idle(int cpu)
2246{
2247 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2248 struct rq_flags rf;
f6be8af1 2249
fd7de1e8
AL
2250 rcu_read_lock();
2251
2252 if (!is_idle_task(rcu_dereference(rq->curr)))
2253 goto out;
f6be8af1
CL
2254
2255 if (set_nr_if_polling(rq->idle)) {
2256 trace_sched_wake_idle_without_ipi(cpu);
2257 } else {
8a8c69c3 2258 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2259 if (is_idle_task(rq->curr))
2260 smp_send_reschedule(cpu);
d1ccc66d 2261 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2262 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2263 }
fd7de1e8
AL
2264
2265out:
2266 rcu_read_unlock();
f6be8af1
CL
2267}
2268
39be3501 2269bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2270{
2271 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272}
d6aa8f85 2273#endif /* CONFIG_SMP */
317f3941 2274
b5179ac7 2275static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2276{
2277 struct rq *rq = cpu_rq(cpu);
d8ac8971 2278 struct rq_flags rf;
c05fbafb 2279
17d9f311 2280#if defined(CONFIG_SMP)
39be3501 2281 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2282 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2283 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2284 return;
2285 }
2286#endif
2287
8a8c69c3 2288 rq_lock(rq, &rf);
77558e4d 2289 update_rq_clock(rq);
d8ac8971 2290 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2291 rq_unlock(rq, &rf);
9ed3811a
TH
2292}
2293
8643cda5
PZ
2294/*
2295 * Notes on Program-Order guarantees on SMP systems.
2296 *
2297 * MIGRATION
2298 *
2299 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2300 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301 * execution on its new CPU [c1].
8643cda5
PZ
2302 *
2303 * For migration (of runnable tasks) this is provided by the following means:
2304 *
2305 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2306 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2307 * rq(c1)->lock (if not at the same time, then in that order).
2308 * C) LOCK of the rq(c1)->lock scheduling in task
2309 *
7696f991 2310 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2311 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2312 *
2313 * Example:
2314 *
2315 * CPU0 CPU1 CPU2
2316 *
2317 * LOCK rq(0)->lock
2318 * sched-out X
2319 * sched-in Y
2320 * UNLOCK rq(0)->lock
2321 *
2322 * LOCK rq(0)->lock // orders against CPU0
2323 * dequeue X
2324 * UNLOCK rq(0)->lock
2325 *
2326 * LOCK rq(1)->lock
2327 * enqueue X
2328 * UNLOCK rq(1)->lock
2329 *
2330 * LOCK rq(1)->lock // orders against CPU2
2331 * sched-out Z
2332 * sched-in X
2333 * UNLOCK rq(1)->lock
2334 *
2335 *
2336 * BLOCKING -- aka. SLEEP + WAKEUP
2337 *
2338 * For blocking we (obviously) need to provide the same guarantee as for
2339 * migration. However the means are completely different as there is no lock
2340 * chain to provide order. Instead we do:
2341 *
2342 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2343 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2344 *
2345 * Example:
2346 *
2347 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2348 *
2349 * LOCK rq(0)->lock LOCK X->pi_lock
2350 * dequeue X
2351 * sched-out X
2352 * smp_store_release(X->on_cpu, 0);
2353 *
1f03e8d2 2354 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2355 * X->state = WAKING
2356 * set_task_cpu(X,2)
2357 *
2358 * LOCK rq(2)->lock
2359 * enqueue X
2360 * X->state = RUNNING
2361 * UNLOCK rq(2)->lock
2362 *
2363 * LOCK rq(2)->lock // orders against CPU1
2364 * sched-out Z
2365 * sched-in X
2366 * UNLOCK rq(2)->lock
2367 *
2368 * UNLOCK X->pi_lock
2369 * UNLOCK rq(0)->lock
2370 *
2371 *
7696f991
AP
2372 * However, for wakeups there is a second guarantee we must provide, namely we
2373 * must ensure that CONDITION=1 done by the caller can not be reordered with
2374 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2375 */
2376
9ed3811a 2377/**
1da177e4 2378 * try_to_wake_up - wake up a thread
9ed3811a 2379 * @p: the thread to be awakened
1da177e4 2380 * @state: the mask of task states that can be woken
9ed3811a 2381 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2382 *
a2250238 2383 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2384 *
a2250238
PZ
2385 * If the task was not queued/runnable, also place it back on a runqueue.
2386 *
2387 * Atomic against schedule() which would dequeue a task, also see
2388 * set_current_state().
2389 *
7696f991
AP
2390 * This function executes a full memory barrier before accessing the task
2391 * state; see set_current_state().
2392 *
a2250238
PZ
2393 * Return: %true if @p->state changes (an actual wakeup was done),
2394 * %false otherwise.
1da177e4 2395 */
e4a52bcb
PZ
2396static int
2397try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2398{
1da177e4 2399 unsigned long flags;
c05fbafb 2400 int cpu, success = 0;
2398f2c6 2401
e3d85487 2402 preempt_disable();
aacedf26
PZ
2403 if (p == current) {
2404 /*
2405 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406 * == smp_processor_id()'. Together this means we can special
2407 * case the whole 'p->on_rq && ttwu_remote()' case below
2408 * without taking any locks.
2409 *
2410 * In particular:
2411 * - we rely on Program-Order guarantees for all the ordering,
2412 * - we're serialized against set_special_state() by virtue of
2413 * it disabling IRQs (this allows not taking ->pi_lock).
2414 */
2415 if (!(p->state & state))
e3d85487 2416 goto out;
aacedf26
PZ
2417
2418 success = 1;
2419 cpu = task_cpu(p);
2420 trace_sched_waking(p);
2421 p->state = TASK_RUNNING;
2422 trace_sched_wakeup(p);
2423 goto out;
2424 }
2425
e0acd0a6
ON
2426 /*
2427 * If we are going to wake up a thread waiting for CONDITION we
2428 * need to ensure that CONDITION=1 done by the caller can not be
2429 * reordered with p->state check below. This pairs with mb() in
2430 * set_current_state() the waiting thread does.
2431 */
013fdb80 2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2433 smp_mb__after_spinlock();
e9c84311 2434 if (!(p->state & state))
aacedf26 2435 goto unlock;
1da177e4 2436
fbd705a0
PZ
2437 trace_sched_waking(p);
2438
d1ccc66d
IM
2439 /* We're going to change ->state: */
2440 success = 1;
1da177e4 2441 cpu = task_cpu(p);
1da177e4 2442
135e8c92
BS
2443 /*
2444 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446 * in smp_cond_load_acquire() below.
2447 *
3d85b270
AP
2448 * sched_ttwu_pending() try_to_wake_up()
2449 * STORE p->on_rq = 1 LOAD p->state
2450 * UNLOCK rq->lock
2451 *
2452 * __schedule() (switch to task 'p')
2453 * LOCK rq->lock smp_rmb();
2454 * smp_mb__after_spinlock();
2455 * UNLOCK rq->lock
135e8c92
BS
2456 *
2457 * [task p]
3d85b270 2458 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2459 *
3d85b270
AP
2460 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2462 */
2463 smp_rmb();
c05fbafb 2464 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2465 goto unlock;
1da177e4 2466
1da177e4 2467#ifdef CONFIG_SMP
ecf7d01c
PZ
2468 /*
2469 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470 * possible to, falsely, observe p->on_cpu == 0.
2471 *
2472 * One must be running (->on_cpu == 1) in order to remove oneself
2473 * from the runqueue.
2474 *
3d85b270
AP
2475 * __schedule() (switch to task 'p') try_to_wake_up()
2476 * STORE p->on_cpu = 1 LOAD p->on_rq
2477 * UNLOCK rq->lock
2478 *
2479 * __schedule() (put 'p' to sleep)
2480 * LOCK rq->lock smp_rmb();
2481 * smp_mb__after_spinlock();
2482 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2483 *
3d85b270
AP
2484 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2486 */
2487 smp_rmb();
2488
e9c84311 2489 /*
d1ccc66d 2490 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2491 * this task as prev, wait until its done referencing the task.
b75a2253 2492 *
31cb1bc0 2493 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2494 *
2495 * This ensures that tasks getting woken will be fully ordered against
2496 * their previous state and preserve Program Order.
0970d299 2497 */
1f03e8d2 2498 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2499
a8e4f2ea 2500 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2501 p->state = TASK_WAKING;
e7693a36 2502
e33a9bba 2503 if (p->in_iowait) {
c96f5471 2504 delayacct_blkio_end(p);
e33a9bba
TH
2505 atomic_dec(&task_rq(p)->nr_iowait);
2506 }
2507
ac66f547 2508 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2509 if (task_cpu(p) != cpu) {
2510 wake_flags |= WF_MIGRATED;
eb414681 2511 psi_ttwu_dequeue(p);
e4a52bcb 2512 set_task_cpu(p, cpu);
f339b9dc 2513 }
e33a9bba
TH
2514
2515#else /* CONFIG_SMP */
2516
2517 if (p->in_iowait) {
c96f5471 2518 delayacct_blkio_end(p);
e33a9bba
TH
2519 atomic_dec(&task_rq(p)->nr_iowait);
2520 }
2521
1da177e4 2522#endif /* CONFIG_SMP */
1da177e4 2523
b5179ac7 2524 ttwu_queue(p, cpu, wake_flags);
aacedf26 2525unlock:
013fdb80 2526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2527out:
2528 if (success)
2529 ttwu_stat(p, cpu, wake_flags);
e3d85487 2530 preempt_enable();
1da177e4
LT
2531
2532 return success;
2533}
2534
50fa610a
DH
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2540 * processes.
2541 *
2542 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2543 *
7696f991 2544 * This function executes a full memory barrier before accessing the task state.
50fa610a 2545 */
7ad5b3a5 2546int wake_up_process(struct task_struct *p)
1da177e4 2547{
9067ac85 2548 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2549}
1da177e4
LT
2550EXPORT_SYMBOL(wake_up_process);
2551
7ad5b3a5 2552int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2553{
2554 return try_to_wake_up(p, state, 0);
2555}
2556
1da177e4
LT
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
dd41f596
IM
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
5e1576ed 2563static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2564{
fd2f4419
PZ
2565 p->on_rq = 0;
2566
2567 p->se.on_rq = 0;
dd41f596
IM
2568 p->se.exec_start = 0;
2569 p->se.sum_exec_runtime = 0;
f6cf891c 2570 p->se.prev_sum_exec_runtime = 0;
6c594c21 2571 p->se.nr_migrations = 0;
da7a735e 2572 p->se.vruntime = 0;
fd2f4419 2573 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2574
ad936d86
BP
2575#ifdef CONFIG_FAIR_GROUP_SCHED
2576 p->se.cfs_rq = NULL;
2577#endif
2578
6cfb0d5d 2579#ifdef CONFIG_SCHEDSTATS
cb251765 2580 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2581 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2582#endif
476d139c 2583
aab03e05 2584 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2585 init_dl_task_timer(&p->dl);
209a0cbd 2586 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2587 __dl_clear_params(p);
aab03e05 2588
fa717060 2589 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2590 p->rt.timeout = 0;
2591 p->rt.time_slice = sched_rr_timeslice;
2592 p->rt.on_rq = 0;
2593 p->rt.on_list = 0;
476d139c 2594
e107be36
AK
2595#ifdef CONFIG_PREEMPT_NOTIFIERS
2596 INIT_HLIST_HEAD(&p->preempt_notifiers);
2597#endif
cbee9f88 2598
5e1f0f09
MG
2599#ifdef CONFIG_COMPACTION
2600 p->capture_control = NULL;
2601#endif
13784475 2602 init_numa_balancing(clone_flags, p);
dd41f596
IM
2603}
2604
2a595721
SD
2605DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2606
1a687c2e 2607#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2608
1a687c2e
MG
2609void set_numabalancing_state(bool enabled)
2610{
2611 if (enabled)
2a595721 2612 static_branch_enable(&sched_numa_balancing);
1a687c2e 2613 else
2a595721 2614 static_branch_disable(&sched_numa_balancing);
1a687c2e 2615}
54a43d54
AK
2616
2617#ifdef CONFIG_PROC_SYSCTL
2618int sysctl_numa_balancing(struct ctl_table *table, int write,
2619 void __user *buffer, size_t *lenp, loff_t *ppos)
2620{
2621 struct ctl_table t;
2622 int err;
2a595721 2623 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2624
2625 if (write && !capable(CAP_SYS_ADMIN))
2626 return -EPERM;
2627
2628 t = *table;
2629 t.data = &state;
2630 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2631 if (err < 0)
2632 return err;
2633 if (write)
2634 set_numabalancing_state(state);
2635 return err;
2636}
2637#endif
2638#endif
dd41f596 2639
4698f88c
JP
2640#ifdef CONFIG_SCHEDSTATS
2641
cb251765 2642DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2643static bool __initdata __sched_schedstats = false;
cb251765 2644
cb251765
MG
2645static void set_schedstats(bool enabled)
2646{
2647 if (enabled)
2648 static_branch_enable(&sched_schedstats);
2649 else
2650 static_branch_disable(&sched_schedstats);
2651}
2652
2653void force_schedstat_enabled(void)
2654{
2655 if (!schedstat_enabled()) {
2656 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657 static_branch_enable(&sched_schedstats);
2658 }
2659}
2660
2661static int __init setup_schedstats(char *str)
2662{
2663 int ret = 0;
2664 if (!str)
2665 goto out;
2666
4698f88c
JP
2667 /*
2668 * This code is called before jump labels have been set up, so we can't
2669 * change the static branch directly just yet. Instead set a temporary
2670 * variable so init_schedstats() can do it later.
2671 */
cb251765 2672 if (!strcmp(str, "enable")) {
4698f88c 2673 __sched_schedstats = true;
cb251765
MG
2674 ret = 1;
2675 } else if (!strcmp(str, "disable")) {
4698f88c 2676 __sched_schedstats = false;
cb251765
MG
2677 ret = 1;
2678 }
2679out:
2680 if (!ret)
2681 pr_warn("Unable to parse schedstats=\n");
2682
2683 return ret;
2684}
2685__setup("schedstats=", setup_schedstats);
2686
4698f88c
JP
2687static void __init init_schedstats(void)
2688{
2689 set_schedstats(__sched_schedstats);
2690}
2691
cb251765
MG
2692#ifdef CONFIG_PROC_SYSCTL
2693int sysctl_schedstats(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *lenp, loff_t *ppos)
2695{
2696 struct ctl_table t;
2697 int err;
2698 int state = static_branch_likely(&sched_schedstats);
2699
2700 if (write && !capable(CAP_SYS_ADMIN))
2701 return -EPERM;
2702
2703 t = *table;
2704 t.data = &state;
2705 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2706 if (err < 0)
2707 return err;
2708 if (write)
2709 set_schedstats(state);
2710 return err;
2711}
4698f88c
JP
2712#endif /* CONFIG_PROC_SYSCTL */
2713#else /* !CONFIG_SCHEDSTATS */
2714static inline void init_schedstats(void) {}
2715#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2716
2717/*
2718 * fork()/clone()-time setup:
2719 */
aab03e05 2720int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2721{
0122ec5b 2722 unsigned long flags;
dd41f596 2723
5e1576ed 2724 __sched_fork(clone_flags, p);
06b83b5f 2725 /*
7dc603c9 2726 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2727 * nobody will actually run it, and a signal or other external
2728 * event cannot wake it up and insert it on the runqueue either.
2729 */
7dc603c9 2730 p->state = TASK_NEW;
dd41f596 2731
c350a04e
MG
2732 /*
2733 * Make sure we do not leak PI boosting priority to the child.
2734 */
2735 p->prio = current->normal_prio;
2736
e8f14172
PB
2737 uclamp_fork(p);
2738
b9dc29e7
MG
2739 /*
2740 * Revert to default priority/policy on fork if requested.
2741 */
2742 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2743 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2744 p->policy = SCHED_NORMAL;
6c697bdf 2745 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2746 p->rt_priority = 0;
2747 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2748 p->static_prio = NICE_TO_PRIO(0);
2749
2750 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2751 set_load_weight(p, false);
6c697bdf 2752
b9dc29e7
MG
2753 /*
2754 * We don't need the reset flag anymore after the fork. It has
2755 * fulfilled its duty:
2756 */
2757 p->sched_reset_on_fork = 0;
2758 }
ca94c442 2759
af0fffd9 2760 if (dl_prio(p->prio))
aab03e05 2761 return -EAGAIN;
af0fffd9 2762 else if (rt_prio(p->prio))
aab03e05 2763 p->sched_class = &rt_sched_class;
af0fffd9 2764 else
2ddbf952 2765 p->sched_class = &fair_sched_class;
b29739f9 2766
7dc603c9 2767 init_entity_runnable_average(&p->se);
cd29fe6f 2768
86951599
PZ
2769 /*
2770 * The child is not yet in the pid-hash so no cgroup attach races,
2771 * and the cgroup is pinned to this child due to cgroup_fork()
2772 * is ran before sched_fork().
2773 *
2774 * Silence PROVE_RCU.
2775 */
0122ec5b 2776 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2777 /*
d1ccc66d 2778 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2779 * so use __set_task_cpu().
2780 */
af0fffd9 2781 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2782 if (p->sched_class->task_fork)
2783 p->sched_class->task_fork(p);
0122ec5b 2784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2785
f6db8347 2786#ifdef CONFIG_SCHED_INFO
dd41f596 2787 if (likely(sched_info_on()))
52f17b6c 2788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2789#endif
3ca7a440
PZ
2790#if defined(CONFIG_SMP)
2791 p->on_cpu = 0;
4866cde0 2792#endif
01028747 2793 init_task_preempt_count(p);
806c09a7 2794#ifdef CONFIG_SMP
917b627d 2795 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2796 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2797#endif
aab03e05 2798 return 0;
1da177e4
LT
2799}
2800
332ac17e
DF
2801unsigned long to_ratio(u64 period, u64 runtime)
2802{
2803 if (runtime == RUNTIME_INF)
c52f14d3 2804 return BW_UNIT;
332ac17e
DF
2805
2806 /*
2807 * Doing this here saves a lot of checks in all
2808 * the calling paths, and returning zero seems
2809 * safe for them anyway.
2810 */
2811 if (period == 0)
2812 return 0;
2813
c52f14d3 2814 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2815}
2816
1da177e4
LT
2817/*
2818 * wake_up_new_task - wake up a newly created task for the first time.
2819 *
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2823 */
3e51e3ed 2824void wake_up_new_task(struct task_struct *p)
1da177e4 2825{
eb580751 2826 struct rq_flags rf;
dd41f596 2827 struct rq *rq;
fabf318e 2828
eb580751 2829 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2830 p->state = TASK_RUNNING;
fabf318e
PZ
2831#ifdef CONFIG_SMP
2832 /*
2833 * Fork balancing, do it here and not earlier because:
3bd37062 2834 * - cpus_ptr can change in the fork path
d1ccc66d 2835 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2836 *
2837 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838 * as we're not fully set-up yet.
fabf318e 2839 */
32e839dd 2840 p->recent_used_cpu = task_cpu(p);
e210bffd 2841 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2842#endif
b7fa30c9 2843 rq = __task_rq_lock(p, &rf);
4126bad6 2844 update_rq_clock(rq);
d0fe0b9c 2845 post_init_entity_util_avg(p);
0017d735 2846
7a57f32a 2847 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2848 trace_sched_wakeup_new(p);
a7558e01 2849 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2850#ifdef CONFIG_SMP
0aaafaab
PZ
2851 if (p->sched_class->task_woken) {
2852 /*
2853 * Nothing relies on rq->lock after this, so its fine to
2854 * drop it.
2855 */
d8ac8971 2856 rq_unpin_lock(rq, &rf);
efbbd05a 2857 p->sched_class->task_woken(rq, p);
d8ac8971 2858 rq_repin_lock(rq, &rf);
0aaafaab 2859 }
9a897c5a 2860#endif
eb580751 2861 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2862}
2863
e107be36
AK
2864#ifdef CONFIG_PREEMPT_NOTIFIERS
2865
b7203428 2866static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2867
2ecd9d29
PZ
2868void preempt_notifier_inc(void)
2869{
b7203428 2870 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2871}
2872EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2873
2874void preempt_notifier_dec(void)
2875{
b7203428 2876 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2877}
2878EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2879
e107be36 2880/**
80dd99b3 2881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2882 * @notifier: notifier struct to register
e107be36
AK
2883 */
2884void preempt_notifier_register(struct preempt_notifier *notifier)
2885{
b7203428 2886 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2887 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2888
e107be36
AK
2889 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2890}
2891EXPORT_SYMBOL_GPL(preempt_notifier_register);
2892
2893/**
2894 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2895 * @notifier: notifier struct to unregister
e107be36 2896 *
d84525a8 2897 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2898 */
2899void preempt_notifier_unregister(struct preempt_notifier *notifier)
2900{
2901 hlist_del(&notifier->link);
2902}
2903EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2904
1cde2930 2905static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2906{
2907 struct preempt_notifier *notifier;
e107be36 2908
b67bfe0d 2909 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2910 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2911}
2912
1cde2930
PZ
2913static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2914{
b7203428 2915 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2916 __fire_sched_in_preempt_notifiers(curr);
2917}
2918
e107be36 2919static void
1cde2930
PZ
2920__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921 struct task_struct *next)
e107be36
AK
2922{
2923 struct preempt_notifier *notifier;
e107be36 2924
b67bfe0d 2925 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2926 notifier->ops->sched_out(notifier, next);
2927}
2928
1cde2930
PZ
2929static __always_inline void
2930fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931 struct task_struct *next)
2932{
b7203428 2933 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2934 __fire_sched_out_preempt_notifiers(curr, next);
2935}
2936
6d6bc0ad 2937#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2938
1cde2930 2939static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2940{
2941}
2942
1cde2930 2943static inline void
e107be36
AK
2944fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945 struct task_struct *next)
2946{
2947}
2948
6d6bc0ad 2949#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2950
31cb1bc0 2951static inline void prepare_task(struct task_struct *next)
2952{
2953#ifdef CONFIG_SMP
2954 /*
2955 * Claim the task as running, we do this before switching to it
2956 * such that any running task will have this set.
2957 */
2958 next->on_cpu = 1;
2959#endif
2960}
2961
2962static inline void finish_task(struct task_struct *prev)
2963{
2964#ifdef CONFIG_SMP
2965 /*
2966 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967 * We must ensure this doesn't happen until the switch is completely
2968 * finished.
2969 *
2970 * In particular, the load of prev->state in finish_task_switch() must
2971 * happen before this.
2972 *
2973 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2974 */
2975 smp_store_release(&prev->on_cpu, 0);
2976#endif
2977}
2978
269d5992
PZ
2979static inline void
2980prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2981{
269d5992
PZ
2982 /*
2983 * Since the runqueue lock will be released by the next
2984 * task (which is an invalid locking op but in the case
2985 * of the scheduler it's an obvious special-case), so we
2986 * do an early lockdep release here:
2987 */
2988 rq_unpin_lock(rq, rf);
2989 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2990#ifdef CONFIG_DEBUG_SPINLOCK
2991 /* this is a valid case when another task releases the spinlock */
269d5992 2992 rq->lock.owner = next;
31cb1bc0 2993#endif
269d5992
PZ
2994}
2995
2996static inline void finish_lock_switch(struct rq *rq)
2997{
31cb1bc0 2998 /*
2999 * If we are tracking spinlock dependencies then we have to
3000 * fix up the runqueue lock - which gets 'carried over' from
3001 * prev into current:
3002 */
3003 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3004 raw_spin_unlock_irq(&rq->lock);
3005}
3006
325ea10c
IM
3007/*
3008 * NOP if the arch has not defined these:
3009 */
3010
3011#ifndef prepare_arch_switch
3012# define prepare_arch_switch(next) do { } while (0)
3013#endif
3014
3015#ifndef finish_arch_post_lock_switch
3016# define finish_arch_post_lock_switch() do { } while (0)
3017#endif
3018
4866cde0
NP
3019/**
3020 * prepare_task_switch - prepare to switch tasks
3021 * @rq: the runqueue preparing to switch
421cee29 3022 * @prev: the current task that is being switched out
4866cde0
NP
3023 * @next: the task we are going to switch to.
3024 *
3025 * This is called with the rq lock held and interrupts off. It must
3026 * be paired with a subsequent finish_task_switch after the context
3027 * switch.
3028 *
3029 * prepare_task_switch sets up locking and calls architecture specific
3030 * hooks.
3031 */
e107be36
AK
3032static inline void
3033prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034 struct task_struct *next)
4866cde0 3035{
0ed557aa 3036 kcov_prepare_switch(prev);
43148951 3037 sched_info_switch(rq, prev, next);
fe4b04fa 3038 perf_event_task_sched_out(prev, next);
d7822b1e 3039 rseq_preempt(prev);
e107be36 3040 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3041 prepare_task(next);
4866cde0
NP
3042 prepare_arch_switch(next);
3043}
3044
1da177e4
LT
3045/**
3046 * finish_task_switch - clean up after a task-switch
3047 * @prev: the thread we just switched away from.
3048 *
4866cde0
NP
3049 * finish_task_switch must be called after the context switch, paired
3050 * with a prepare_task_switch call before the context switch.
3051 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3053 *
3054 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3055 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3056 * with the lock held can cause deadlocks; see schedule() for
3057 * details.)
dfa50b60
ON
3058 *
3059 * The context switch have flipped the stack from under us and restored the
3060 * local variables which were saved when this task called schedule() in the
3061 * past. prev == current is still correct but we need to recalculate this_rq
3062 * because prev may have moved to another CPU.
1da177e4 3063 */
dfa50b60 3064static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3065 __releases(rq->lock)
3066{
dfa50b60 3067 struct rq *rq = this_rq();
1da177e4 3068 struct mm_struct *mm = rq->prev_mm;
55a101f8 3069 long prev_state;
1da177e4 3070
609ca066
PZ
3071 /*
3072 * The previous task will have left us with a preempt_count of 2
3073 * because it left us after:
3074 *
3075 * schedule()
3076 * preempt_disable(); // 1
3077 * __schedule()
3078 * raw_spin_lock_irq(&rq->lock) // 2
3079 *
3080 * Also, see FORK_PREEMPT_COUNT.
3081 */
e2bf1c4b
PZ
3082 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083 "corrupted preempt_count: %s/%d/0x%x\n",
3084 current->comm, current->pid, preempt_count()))
3085 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3086
1da177e4
LT
3087 rq->prev_mm = NULL;
3088
3089 /*
3090 * A task struct has one reference for the use as "current".
c394cc9f 3091 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3092 * schedule one last time. The schedule call will never return, and
3093 * the scheduled task must drop that reference.
95913d97
PZ
3094 *
3095 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3096 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3097 * running on another CPU and we could rave with its RUNNING -> DEAD
3098 * transition, resulting in a double drop.
1da177e4 3099 */
55a101f8 3100 prev_state = prev->state;
bf9fae9f 3101 vtime_task_switch(prev);
a8d757ef 3102 perf_event_task_sched_in(prev, current);
31cb1bc0 3103 finish_task(prev);
3104 finish_lock_switch(rq);
01f23e16 3105 finish_arch_post_lock_switch();
0ed557aa 3106 kcov_finish_switch(current);
e8fa1362 3107
e107be36 3108 fire_sched_in_preempt_notifiers(current);
306e0604 3109 /*
70216e18
MD
3110 * When switching through a kernel thread, the loop in
3111 * membarrier_{private,global}_expedited() may have observed that
3112 * kernel thread and not issued an IPI. It is therefore possible to
3113 * schedule between user->kernel->user threads without passing though
3114 * switch_mm(). Membarrier requires a barrier after storing to
3115 * rq->curr, before returning to userspace, so provide them here:
3116 *
3117 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118 * provided by mmdrop(),
3119 * - a sync_core for SYNC_CORE.
306e0604 3120 */
70216e18
MD
3121 if (mm) {
3122 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3123 mmdrop(mm);
70216e18 3124 }
1cef1150
PZ
3125 if (unlikely(prev_state == TASK_DEAD)) {
3126 if (prev->sched_class->task_dead)
3127 prev->sched_class->task_dead(prev);
68f24b08 3128
1cef1150
PZ
3129 /*
3130 * Remove function-return probe instances associated with this
3131 * task and put them back on the free list.
3132 */
3133 kprobe_flush_task(prev);
3134
3135 /* Task is done with its stack. */
3136 put_task_stack(prev);
3137
3138 put_task_struct(prev);
c6fd91f0 3139 }
99e5ada9 3140
de734f89 3141 tick_nohz_task_switch();
dfa50b60 3142 return rq;
1da177e4
LT
3143}
3144
3f029d3c
GH
3145#ifdef CONFIG_SMP
3146
3f029d3c 3147/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3148static void __balance_callback(struct rq *rq)
3f029d3c 3149{
e3fca9e7
PZ
3150 struct callback_head *head, *next;
3151 void (*func)(struct rq *rq);
3152 unsigned long flags;
3f029d3c 3153
e3fca9e7
PZ
3154 raw_spin_lock_irqsave(&rq->lock, flags);
3155 head = rq->balance_callback;
3156 rq->balance_callback = NULL;
3157 while (head) {
3158 func = (void (*)(struct rq *))head->func;
3159 next = head->next;
3160 head->next = NULL;
3161 head = next;
3f029d3c 3162
e3fca9e7 3163 func(rq);
3f029d3c 3164 }
e3fca9e7
PZ
3165 raw_spin_unlock_irqrestore(&rq->lock, flags);
3166}
3167
3168static inline void balance_callback(struct rq *rq)
3169{
3170 if (unlikely(rq->balance_callback))
3171 __balance_callback(rq);
3f029d3c
GH
3172}
3173
3174#else
da19ab51 3175
e3fca9e7 3176static inline void balance_callback(struct rq *rq)
3f029d3c 3177{
1da177e4
LT
3178}
3179
3f029d3c
GH
3180#endif
3181
1da177e4
LT
3182/**
3183 * schedule_tail - first thing a freshly forked thread must call.
3184 * @prev: the thread we just switched away from.
3185 */
722a9f92 3186asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3187 __releases(rq->lock)
3188{
1a43a14a 3189 struct rq *rq;
da19ab51 3190
609ca066
PZ
3191 /*
3192 * New tasks start with FORK_PREEMPT_COUNT, see there and
3193 * finish_task_switch() for details.
3194 *
3195 * finish_task_switch() will drop rq->lock() and lower preempt_count
3196 * and the preempt_enable() will end up enabling preemption (on
3197 * PREEMPT_COUNT kernels).
3198 */
3199
dfa50b60 3200 rq = finish_task_switch(prev);
e3fca9e7 3201 balance_callback(rq);
1a43a14a 3202 preempt_enable();
70b97a7f 3203
1da177e4 3204 if (current->set_child_tid)
b488893a 3205 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3206
3207 calculate_sigpending();
1da177e4
LT
3208}
3209
3210/*
dfa50b60 3211 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3212 */
04936948 3213static __always_inline struct rq *
70b97a7f 3214context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3215 struct task_struct *next, struct rq_flags *rf)
1da177e4 3216{
e107be36 3217 prepare_task_switch(rq, prev, next);
fe4b04fa 3218
9226d125
ZA
3219 /*
3220 * For paravirt, this is coupled with an exit in switch_to to
3221 * combine the page table reload and the switch backend into
3222 * one hypercall.
3223 */
224101ed 3224 arch_start_context_switch(prev);
9226d125 3225
306e0604 3226 /*
139d025c
PZ
3227 * kernel -> kernel lazy + transfer active
3228 * user -> kernel lazy + mmgrab() active
3229 *
3230 * kernel -> user switch + mmdrop() active
3231 * user -> user switch
306e0604 3232 */
139d025c
PZ
3233 if (!next->mm) { // to kernel
3234 enter_lazy_tlb(prev->active_mm, next);
3235
3236 next->active_mm = prev->active_mm;
3237 if (prev->mm) // from user
3238 mmgrab(prev->active_mm);
3239 else
3240 prev->active_mm = NULL;
3241 } else { // to user
3242 /*
3243 * sys_membarrier() requires an smp_mb() between setting
3244 * rq->curr and returning to userspace.
3245 *
3246 * The below provides this either through switch_mm(), or in
3247 * case 'prev->active_mm == next->mm' through
3248 * finish_task_switch()'s mmdrop().
3249 */
3250
3251 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3252
3253 if (!prev->mm) { // from kernel
3254 /* will mmdrop() in finish_task_switch(). */
3255 rq->prev_mm = prev->active_mm;
3256 prev->active_mm = NULL;
3257 }
1da177e4 3258 }
92509b73 3259
cb42c9a3 3260 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3261
269d5992 3262 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3263
3264 /* Here we just switch the register state and the stack. */
3265 switch_to(prev, next, prev);
dd41f596 3266 barrier();
dfa50b60
ON
3267
3268 return finish_task_switch(prev);
1da177e4
LT
3269}
3270
3271/*
1c3e8264 3272 * nr_running and nr_context_switches:
1da177e4
LT
3273 *
3274 * externally visible scheduler statistics: current number of runnable
1c3e8264 3275 * threads, total number of context switches performed since bootup.
1da177e4
LT
3276 */
3277unsigned long nr_running(void)
3278{
3279 unsigned long i, sum = 0;
3280
3281 for_each_online_cpu(i)
3282 sum += cpu_rq(i)->nr_running;
3283
3284 return sum;
f711f609 3285}
1da177e4 3286
2ee507c4 3287/*
d1ccc66d 3288 * Check if only the current task is running on the CPU.
00cc1633
DD
3289 *
3290 * Caution: this function does not check that the caller has disabled
3291 * preemption, thus the result might have a time-of-check-to-time-of-use
3292 * race. The caller is responsible to use it correctly, for example:
3293 *
dfcb245e 3294 * - from a non-preemptible section (of course)
00cc1633
DD
3295 *
3296 * - from a thread that is bound to a single CPU
3297 *
3298 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3299 */
3300bool single_task_running(void)
3301{
00cc1633 3302 return raw_rq()->nr_running == 1;
2ee507c4
TC
3303}
3304EXPORT_SYMBOL(single_task_running);
3305
1da177e4 3306unsigned long long nr_context_switches(void)
46cb4b7c 3307{
cc94abfc
SR
3308 int i;
3309 unsigned long long sum = 0;
46cb4b7c 3310
0a945022 3311 for_each_possible_cpu(i)
1da177e4 3312 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3313
1da177e4
LT
3314 return sum;
3315}
483b4ee6 3316
145d952a
DL
3317/*
3318 * Consumers of these two interfaces, like for example the cpuidle menu
3319 * governor, are using nonsensical data. Preferring shallow idle state selection
3320 * for a CPU that has IO-wait which might not even end up running the task when
3321 * it does become runnable.
3322 */
3323
3324unsigned long nr_iowait_cpu(int cpu)
3325{
3326 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3327}
3328
e33a9bba
TH
3329/*
3330 * IO-wait accounting, and how its mostly bollocks (on SMP).
3331 *
3332 * The idea behind IO-wait account is to account the idle time that we could
3333 * have spend running if it were not for IO. That is, if we were to improve the
3334 * storage performance, we'd have a proportional reduction in IO-wait time.
3335 *
3336 * This all works nicely on UP, where, when a task blocks on IO, we account
3337 * idle time as IO-wait, because if the storage were faster, it could've been
3338 * running and we'd not be idle.
3339 *
3340 * This has been extended to SMP, by doing the same for each CPU. This however
3341 * is broken.
3342 *
3343 * Imagine for instance the case where two tasks block on one CPU, only the one
3344 * CPU will have IO-wait accounted, while the other has regular idle. Even
3345 * though, if the storage were faster, both could've ran at the same time,
3346 * utilising both CPUs.
3347 *
3348 * This means, that when looking globally, the current IO-wait accounting on
3349 * SMP is a lower bound, by reason of under accounting.
3350 *
3351 * Worse, since the numbers are provided per CPU, they are sometimes
3352 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3353 * associated with any one particular CPU, it can wake to another CPU than it
3354 * blocked on. This means the per CPU IO-wait number is meaningless.
3355 *
3356 * Task CPU affinities can make all that even more 'interesting'.
3357 */
3358
1da177e4
LT
3359unsigned long nr_iowait(void)
3360{
3361 unsigned long i, sum = 0;
483b4ee6 3362
0a945022 3363 for_each_possible_cpu(i)
145d952a 3364 sum += nr_iowait_cpu(i);
46cb4b7c 3365
1da177e4
LT
3366 return sum;
3367}
483b4ee6 3368
dd41f596 3369#ifdef CONFIG_SMP
8a0be9ef 3370
46cb4b7c 3371/*
38022906
PZ
3372 * sched_exec - execve() is a valuable balancing opportunity, because at
3373 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3374 */
38022906 3375void sched_exec(void)
46cb4b7c 3376{
38022906 3377 struct task_struct *p = current;
1da177e4 3378 unsigned long flags;
0017d735 3379 int dest_cpu;
46cb4b7c 3380
8f42ced9 3381 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3382 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3383 if (dest_cpu == smp_processor_id())
3384 goto unlock;
38022906 3385
8f42ced9 3386 if (likely(cpu_active(dest_cpu))) {
969c7921 3387 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3388
8f42ced9
PZ
3389 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3390 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3391 return;
3392 }
0017d735 3393unlock:
8f42ced9 3394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3395}
dd41f596 3396
1da177e4
LT
3397#endif
3398
1da177e4 3399DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3400DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3401
3402EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3403EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3404
6075620b
GG
3405/*
3406 * The function fair_sched_class.update_curr accesses the struct curr
3407 * and its field curr->exec_start; when called from task_sched_runtime(),
3408 * we observe a high rate of cache misses in practice.
3409 * Prefetching this data results in improved performance.
3410 */
3411static inline void prefetch_curr_exec_start(struct task_struct *p)
3412{
3413#ifdef CONFIG_FAIR_GROUP_SCHED
3414 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3415#else
3416 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3417#endif
3418 prefetch(curr);
3419 prefetch(&curr->exec_start);
3420}
3421
c5f8d995
HS
3422/*
3423 * Return accounted runtime for the task.
3424 * In case the task is currently running, return the runtime plus current's
3425 * pending runtime that have not been accounted yet.
3426 */
3427unsigned long long task_sched_runtime(struct task_struct *p)
3428{
eb580751 3429 struct rq_flags rf;
c5f8d995 3430 struct rq *rq;
6e998916 3431 u64 ns;
c5f8d995 3432
911b2898
PZ
3433#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3434 /*
97fb7a0a 3435 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3436 * So we have a optimization chance when the task's delta_exec is 0.
3437 * Reading ->on_cpu is racy, but this is ok.
3438 *
d1ccc66d
IM
3439 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3440 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3441 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3442 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3443 * been accounted, so we're correct here as well.
911b2898 3444 */
da0c1e65 3445 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3446 return p->se.sum_exec_runtime;
3447#endif
3448
eb580751 3449 rq = task_rq_lock(p, &rf);
6e998916
SG
3450 /*
3451 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3452 * project cycles that may never be accounted to this
3453 * thread, breaking clock_gettime().
3454 */
3455 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3456 prefetch_curr_exec_start(p);
6e998916
SG
3457 update_rq_clock(rq);
3458 p->sched_class->update_curr(rq);
3459 }
3460 ns = p->se.sum_exec_runtime;
eb580751 3461 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3462
3463 return ns;
3464}
48f24c4d 3465
7835b98b
CL
3466/*
3467 * This function gets called by the timer code, with HZ frequency.
3468 * We call it with interrupts disabled.
7835b98b
CL
3469 */
3470void scheduler_tick(void)
3471{
7835b98b
CL
3472 int cpu = smp_processor_id();
3473 struct rq *rq = cpu_rq(cpu);
dd41f596 3474 struct task_struct *curr = rq->curr;
8a8c69c3 3475 struct rq_flags rf;
3e51f33f
PZ
3476
3477 sched_clock_tick();
dd41f596 3478
8a8c69c3
PZ
3479 rq_lock(rq, &rf);
3480
3e51f33f 3481 update_rq_clock(rq);
fa85ae24 3482 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3483 calc_global_load_tick(rq);
eb414681 3484 psi_task_tick(rq);
8a8c69c3
PZ
3485
3486 rq_unlock(rq, &rf);
7835b98b 3487
e9d2b064 3488 perf_event_task_tick();
e220d2dc 3489
e418e1c2 3490#ifdef CONFIG_SMP
6eb57e0d 3491 rq->idle_balance = idle_cpu(cpu);
7caff66f 3492 trigger_load_balance(rq);
e418e1c2 3493#endif
1da177e4
LT
3494}
3495
265f22a9 3496#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3497
3498struct tick_work {
3499 int cpu;
84ec3a07 3500 atomic_t state;
d84b3131
FW
3501 struct delayed_work work;
3502};
84ec3a07
PM
3503/* Values for ->state, see diagram below. */
3504#define TICK_SCHED_REMOTE_OFFLINE 0
3505#define TICK_SCHED_REMOTE_OFFLINING 1
3506#define TICK_SCHED_REMOTE_RUNNING 2
3507
3508/*
3509 * State diagram for ->state:
3510 *
3511 *
3512 * TICK_SCHED_REMOTE_OFFLINE
3513 * | ^
3514 * | |
3515 * | | sched_tick_remote()
3516 * | |
3517 * | |
3518 * +--TICK_SCHED_REMOTE_OFFLINING
3519 * | ^
3520 * | |
3521 * sched_tick_start() | | sched_tick_stop()
3522 * | |
3523 * V |
3524 * TICK_SCHED_REMOTE_RUNNING
3525 *
3526 *
3527 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3528 * and sched_tick_start() are happy to leave the state in RUNNING.
3529 */
d84b3131
FW
3530
3531static struct tick_work __percpu *tick_work_cpu;
3532
3533static void sched_tick_remote(struct work_struct *work)
3534{
3535 struct delayed_work *dwork = to_delayed_work(work);
3536 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3537 int cpu = twork->cpu;
3538 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3539 struct task_struct *curr;
d84b3131 3540 struct rq_flags rf;
d9c0ffca 3541 u64 delta;
84ec3a07 3542 int os;
d84b3131
FW
3543
3544 /*
3545 * Handle the tick only if it appears the remote CPU is running in full
3546 * dynticks mode. The check is racy by nature, but missing a tick or
3547 * having one too much is no big deal because the scheduler tick updates
3548 * statistics and checks timeslices in a time-independent way, regardless
3549 * of when exactly it is running.
3550 */
d9c0ffca
FW
3551 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3552 goto out_requeue;
d84b3131 3553
d9c0ffca
FW
3554 rq_lock_irq(rq, &rf);
3555 curr = rq->curr;
84ec3a07 3556 if (is_idle_task(curr) || cpu_is_offline(cpu))
d9c0ffca 3557 goto out_unlock;
d84b3131 3558
d9c0ffca
FW
3559 update_rq_clock(rq);
3560 delta = rq_clock_task(rq) - curr->se.exec_start;
3561
3562 /*
3563 * Make sure the next tick runs within a reasonable
3564 * amount of time.
3565 */
3566 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3567 curr->sched_class->task_tick(rq, curr, 0);
3568
3569out_unlock:
3570 rq_unlock_irq(rq, &rf);
d84b3131 3571
d9c0ffca 3572out_requeue:
d84b3131
FW
3573 /*
3574 * Run the remote tick once per second (1Hz). This arbitrary
3575 * frequency is large enough to avoid overload but short enough
84ec3a07
PM
3576 * to keep scheduler internal stats reasonably up to date. But
3577 * first update state to reflect hotplug activity if required.
d84b3131 3578 */
84ec3a07
PM
3579 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3580 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3581 if (os == TICK_SCHED_REMOTE_RUNNING)
3582 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3583}
3584
3585static void sched_tick_start(int cpu)
3586{
84ec3a07 3587 int os;
d84b3131
FW
3588 struct tick_work *twork;
3589
3590 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3591 return;
3592
3593 WARN_ON_ONCE(!tick_work_cpu);
3594
3595 twork = per_cpu_ptr(tick_work_cpu, cpu);
84ec3a07
PM
3596 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3597 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3598 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3599 twork->cpu = cpu;
3600 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3601 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3602 }
d84b3131
FW
3603}
3604
3605#ifdef CONFIG_HOTPLUG_CPU
3606static void sched_tick_stop(int cpu)
3607{
3608 struct tick_work *twork;
84ec3a07 3609 int os;
d84b3131
FW
3610
3611 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3612 return;
3613
3614 WARN_ON_ONCE(!tick_work_cpu);
3615
3616 twork = per_cpu_ptr(tick_work_cpu, cpu);
84ec3a07
PM
3617 /* There cannot be competing actions, but don't rely on stop-machine. */
3618 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3619 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3620 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3621}
3622#endif /* CONFIG_HOTPLUG_CPU */
3623
3624int __init sched_tick_offload_init(void)
3625{
3626 tick_work_cpu = alloc_percpu(struct tick_work);
3627 BUG_ON(!tick_work_cpu);
d84b3131
FW
3628 return 0;
3629}
3630
3631#else /* !CONFIG_NO_HZ_FULL */
3632static inline void sched_tick_start(int cpu) { }
3633static inline void sched_tick_stop(int cpu) { }
265f22a9 3634#endif
1da177e4 3635
7e49fcce 3636#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3637 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3638/*
3639 * If the value passed in is equal to the current preempt count
3640 * then we just disabled preemption. Start timing the latency.
3641 */
3642static inline void preempt_latency_start(int val)
3643{
3644 if (preempt_count() == val) {
3645 unsigned long ip = get_lock_parent_ip();
3646#ifdef CONFIG_DEBUG_PREEMPT
3647 current->preempt_disable_ip = ip;
3648#endif
3649 trace_preempt_off(CALLER_ADDR0, ip);
3650 }
3651}
7e49fcce 3652
edafe3a5 3653void preempt_count_add(int val)
1da177e4 3654{
6cd8a4bb 3655#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3656 /*
3657 * Underflow?
3658 */
9a11b49a
IM
3659 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3660 return;
6cd8a4bb 3661#endif
bdb43806 3662 __preempt_count_add(val);
6cd8a4bb 3663#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3664 /*
3665 * Spinlock count overflowing soon?
3666 */
33859f7f
MOS
3667 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3668 PREEMPT_MASK - 10);
6cd8a4bb 3669#endif
47252cfb 3670 preempt_latency_start(val);
1da177e4 3671}
bdb43806 3672EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3673NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3674
47252cfb
SR
3675/*
3676 * If the value passed in equals to the current preempt count
3677 * then we just enabled preemption. Stop timing the latency.
3678 */
3679static inline void preempt_latency_stop(int val)
3680{
3681 if (preempt_count() == val)
3682 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3683}
3684
edafe3a5 3685void preempt_count_sub(int val)
1da177e4 3686{
6cd8a4bb 3687#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3688 /*
3689 * Underflow?
3690 */
01e3eb82 3691 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3692 return;
1da177e4
LT
3693 /*
3694 * Is the spinlock portion underflowing?
3695 */
9a11b49a
IM
3696 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3697 !(preempt_count() & PREEMPT_MASK)))
3698 return;
6cd8a4bb 3699#endif
9a11b49a 3700
47252cfb 3701 preempt_latency_stop(val);
bdb43806 3702 __preempt_count_sub(val);
1da177e4 3703}
bdb43806 3704EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3705NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3706
47252cfb
SR
3707#else
3708static inline void preempt_latency_start(int val) { }
3709static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3710#endif
3711
59ddbcb2
IM
3712static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3713{
3714#ifdef CONFIG_DEBUG_PREEMPT
3715 return p->preempt_disable_ip;
3716#else
3717 return 0;
3718#endif
3719}
3720
1da177e4 3721/*
dd41f596 3722 * Print scheduling while atomic bug:
1da177e4 3723 */
dd41f596 3724static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3725{
d1c6d149
VN
3726 /* Save this before calling printk(), since that will clobber it */
3727 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3728
664dfa65
DJ
3729 if (oops_in_progress)
3730 return;
3731
3df0fc5b
PZ
3732 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3733 prev->comm, prev->pid, preempt_count());
838225b4 3734
dd41f596 3735 debug_show_held_locks(prev);
e21f5b15 3736 print_modules();
dd41f596
IM
3737 if (irqs_disabled())
3738 print_irqtrace_events(prev);
d1c6d149
VN
3739 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3740 && in_atomic_preempt_off()) {
8f47b187 3741 pr_err("Preemption disabled at:");
d1c6d149 3742 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3743 pr_cont("\n");
3744 }
748c7201
DBO
3745 if (panic_on_warn)
3746 panic("scheduling while atomic\n");
3747
6135fc1e 3748 dump_stack();
373d4d09 3749 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3750}
1da177e4 3751
dd41f596
IM
3752/*
3753 * Various schedule()-time debugging checks and statistics:
3754 */
3755static inline void schedule_debug(struct task_struct *prev)
3756{
0d9e2632 3757#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3758 if (task_stack_end_corrupted(prev))
3759 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3760#endif
b99def8b 3761
1dc0fffc 3762 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3763 __schedule_bug(prev);
1dc0fffc
PZ
3764 preempt_count_set(PREEMPT_DISABLED);
3765 }
b3fbab05 3766 rcu_sleep_check();
dd41f596 3767
1da177e4
LT
3768 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3769
ae92882e 3770 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3771}
3772
3773/*
3774 * Pick up the highest-prio task:
3775 */
3776static inline struct task_struct *
d8ac8971 3777pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3778{
49ee5768 3779 const struct sched_class *class;
dd41f596 3780 struct task_struct *p;
1da177e4
LT
3781
3782 /*
0ba87bb2
PZ
3783 * Optimization: we know that if all tasks are in the fair class we can
3784 * call that function directly, but only if the @prev task wasn't of a
3785 * higher scheduling class, because otherwise those loose the
3786 * opportunity to pull in more work from other CPUs.
1da177e4 3787 */
0ba87bb2
PZ
3788 if (likely((prev->sched_class == &idle_sched_class ||
3789 prev->sched_class == &fair_sched_class) &&
3790 rq->nr_running == rq->cfs.h_nr_running)) {
3791
d8ac8971 3792 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3793 if (unlikely(p == RETRY_TASK))
3794 goto again;
3795
d1ccc66d 3796 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3797 if (unlikely(!p))
d8ac8971 3798 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3799
3800 return p;
1da177e4
LT
3801 }
3802
37e117c0 3803again:
34f971f6 3804 for_each_class(class) {
d8ac8971 3805 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3806 if (p) {
3807 if (unlikely(p == RETRY_TASK))
3808 goto again;
dd41f596 3809 return p;
37e117c0 3810 }
dd41f596 3811 }
34f971f6 3812
d1ccc66d
IM
3813 /* The idle class should always have a runnable task: */
3814 BUG();
dd41f596 3815}
1da177e4 3816
dd41f596 3817/*
c259e01a 3818 * __schedule() is the main scheduler function.
edde96ea
PE
3819 *
3820 * The main means of driving the scheduler and thus entering this function are:
3821 *
3822 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3823 *
3824 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3825 * paths. For example, see arch/x86/entry_64.S.
3826 *
3827 * To drive preemption between tasks, the scheduler sets the flag in timer
3828 * interrupt handler scheduler_tick().
3829 *
3830 * 3. Wakeups don't really cause entry into schedule(). They add a
3831 * task to the run-queue and that's it.
3832 *
3833 * Now, if the new task added to the run-queue preempts the current
3834 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3835 * called on the nearest possible occasion:
3836 *
3837 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3838 *
3839 * - in syscall or exception context, at the next outmost
3840 * preempt_enable(). (this might be as soon as the wake_up()'s
3841 * spin_unlock()!)
3842 *
3843 * - in IRQ context, return from interrupt-handler to
3844 * preemptible context
3845 *
3846 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3847 * then at the next:
3848 *
3849 * - cond_resched() call
3850 * - explicit schedule() call
3851 * - return from syscall or exception to user-space
3852 * - return from interrupt-handler to user-space
bfd9b2b5 3853 *
b30f0e3f 3854 * WARNING: must be called with preemption disabled!
dd41f596 3855 */
499d7955 3856static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3857{
3858 struct task_struct *prev, *next;
67ca7bde 3859 unsigned long *switch_count;
d8ac8971 3860 struct rq_flags rf;
dd41f596 3861 struct rq *rq;
31656519 3862 int cpu;
dd41f596 3863
dd41f596
IM
3864 cpu = smp_processor_id();
3865 rq = cpu_rq(cpu);
dd41f596 3866 prev = rq->curr;
dd41f596 3867
dd41f596 3868 schedule_debug(prev);
1da177e4 3869
31656519 3870 if (sched_feat(HRTICK))
f333fdc9 3871 hrtick_clear(rq);
8f4d37ec 3872
46a5d164 3873 local_irq_disable();
bcbfdd01 3874 rcu_note_context_switch(preempt);
46a5d164 3875
e0acd0a6
ON
3876 /*
3877 * Make sure that signal_pending_state()->signal_pending() below
3878 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3879 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3880 *
3881 * The membarrier system call requires a full memory barrier
3882 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3883 */
8a8c69c3 3884 rq_lock(rq, &rf);
d89e588c 3885 smp_mb__after_spinlock();
1da177e4 3886
d1ccc66d
IM
3887 /* Promote REQ to ACT */
3888 rq->clock_update_flags <<= 1;
bce4dc80 3889 update_rq_clock(rq);
9edfbfed 3890
246d86b5 3891 switch_count = &prev->nivcsw;
fc13aeba 3892 if (!preempt && prev->state) {
34ec35ad 3893 if (signal_pending_state(prev->state, prev)) {
1da177e4 3894 prev->state = TASK_RUNNING;
21aa9af0 3895 } else {
bce4dc80 3896 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3897
e33a9bba
TH
3898 if (prev->in_iowait) {
3899 atomic_inc(&rq->nr_iowait);
3900 delayacct_blkio_start();
3901 }
21aa9af0 3902 }
dd41f596 3903 switch_count = &prev->nvcsw;
1da177e4
LT
3904 }
3905
d8ac8971 3906 next = pick_next_task(rq, prev, &rf);
f26f9aff 3907 clear_tsk_need_resched(prev);
f27dde8d 3908 clear_preempt_need_resched();
1da177e4 3909
1da177e4 3910 if (likely(prev != next)) {
1da177e4
LT
3911 rq->nr_switches++;
3912 rq->curr = next;
22e4ebb9
MD
3913 /*
3914 * The membarrier system call requires each architecture
3915 * to have a full memory barrier after updating
306e0604
MD
3916 * rq->curr, before returning to user-space.
3917 *
3918 * Here are the schemes providing that barrier on the
3919 * various architectures:
3920 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3921 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3922 * - finish_lock_switch() for weakly-ordered
3923 * architectures where spin_unlock is a full barrier,
3924 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3925 * is a RELEASE barrier),
22e4ebb9 3926 */
1da177e4
LT
3927 ++*switch_count;
3928
c73464b1 3929 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3930
3931 /* Also unlocks the rq: */
3932 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3933 } else {
cb42c9a3 3934 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3935 rq_unlock_irq(rq, &rf);
cbce1a68 3936 }
1da177e4 3937
e3fca9e7 3938 balance_callback(rq);
1da177e4 3939}
c259e01a 3940
9af6528e
PZ
3941void __noreturn do_task_dead(void)
3942{
d1ccc66d 3943 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3944 set_special_state(TASK_DEAD);
d1ccc66d
IM
3945
3946 /* Tell freezer to ignore us: */
3947 current->flags |= PF_NOFREEZE;
3948
9af6528e
PZ
3949 __schedule(false);
3950 BUG();
d1ccc66d
IM
3951
3952 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3953 for (;;)
d1ccc66d 3954 cpu_relax();
9af6528e
PZ
3955}
3956
9c40cef2
TG
3957static inline void sched_submit_work(struct task_struct *tsk)
3958{
3c7d5184 3959 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3960 return;
6d25be57
TG
3961
3962 /*
3963 * If a worker went to sleep, notify and ask workqueue whether
3964 * it wants to wake up a task to maintain concurrency.
3965 * As this function is called inside the schedule() context,
3966 * we disable preemption to avoid it calling schedule() again
3967 * in the possible wakeup of a kworker.
3968 */
3969 if (tsk->flags & PF_WQ_WORKER) {
3970 preempt_disable();
3971 wq_worker_sleeping(tsk);
3972 preempt_enable_no_resched();
3973 }
3974
9c40cef2
TG
3975 /*
3976 * If we are going to sleep and we have plugged IO queued,
3977 * make sure to submit it to avoid deadlocks.
3978 */
3979 if (blk_needs_flush_plug(tsk))
3980 blk_schedule_flush_plug(tsk);
3981}
3982
6d25be57
TG
3983static void sched_update_worker(struct task_struct *tsk)
3984{
3985 if (tsk->flags & PF_WQ_WORKER)
3986 wq_worker_running(tsk);
3987}
3988
722a9f92 3989asmlinkage __visible void __sched schedule(void)
c259e01a 3990{
9c40cef2
TG
3991 struct task_struct *tsk = current;
3992
3993 sched_submit_work(tsk);
bfd9b2b5 3994 do {
b30f0e3f 3995 preempt_disable();
fc13aeba 3996 __schedule(false);
b30f0e3f 3997 sched_preempt_enable_no_resched();
bfd9b2b5 3998 } while (need_resched());
6d25be57 3999 sched_update_worker(tsk);
c259e01a 4000}
1da177e4
LT
4001EXPORT_SYMBOL(schedule);
4002
8663effb
SRV
4003/*
4004 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4005 * state (have scheduled out non-voluntarily) by making sure that all
4006 * tasks have either left the run queue or have gone into user space.
4007 * As idle tasks do not do either, they must not ever be preempted
4008 * (schedule out non-voluntarily).
4009 *
4010 * schedule_idle() is similar to schedule_preempt_disable() except that it
4011 * never enables preemption because it does not call sched_submit_work().
4012 */
4013void __sched schedule_idle(void)
4014{
4015 /*
4016 * As this skips calling sched_submit_work(), which the idle task does
4017 * regardless because that function is a nop when the task is in a
4018 * TASK_RUNNING state, make sure this isn't used someplace that the
4019 * current task can be in any other state. Note, idle is always in the
4020 * TASK_RUNNING state.
4021 */
4022 WARN_ON_ONCE(current->state);
4023 do {
4024 __schedule(false);
4025 } while (need_resched());
4026}
4027
91d1aa43 4028#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4029asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4030{
4031 /*
4032 * If we come here after a random call to set_need_resched(),
4033 * or we have been woken up remotely but the IPI has not yet arrived,
4034 * we haven't yet exited the RCU idle mode. Do it here manually until
4035 * we find a better solution.
7cc78f8f
AL
4036 *
4037 * NB: There are buggy callers of this function. Ideally we
c467ea76 4038 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4039 * too frequently to make sense yet.
20ab65e3 4040 */
7cc78f8f 4041 enum ctx_state prev_state = exception_enter();
20ab65e3 4042 schedule();
7cc78f8f 4043 exception_exit(prev_state);
20ab65e3
FW
4044}
4045#endif
4046
c5491ea7
TG
4047/**
4048 * schedule_preempt_disabled - called with preemption disabled
4049 *
4050 * Returns with preemption disabled. Note: preempt_count must be 1
4051 */
4052void __sched schedule_preempt_disabled(void)
4053{
ba74c144 4054 sched_preempt_enable_no_resched();
c5491ea7
TG
4055 schedule();
4056 preempt_disable();
4057}
4058
06b1f808 4059static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4060{
4061 do {
47252cfb
SR
4062 /*
4063 * Because the function tracer can trace preempt_count_sub()
4064 * and it also uses preempt_enable/disable_notrace(), if
4065 * NEED_RESCHED is set, the preempt_enable_notrace() called
4066 * by the function tracer will call this function again and
4067 * cause infinite recursion.
4068 *
4069 * Preemption must be disabled here before the function
4070 * tracer can trace. Break up preempt_disable() into two
4071 * calls. One to disable preemption without fear of being
4072 * traced. The other to still record the preemption latency,
4073 * which can also be traced by the function tracer.
4074 */
499d7955 4075 preempt_disable_notrace();
47252cfb 4076 preempt_latency_start(1);
fc13aeba 4077 __schedule(true);
47252cfb 4078 preempt_latency_stop(1);
499d7955 4079 preempt_enable_no_resched_notrace();
a18b5d01
FW
4080
4081 /*
4082 * Check again in case we missed a preemption opportunity
4083 * between schedule and now.
4084 */
a18b5d01
FW
4085 } while (need_resched());
4086}
4087
1da177e4
LT
4088#ifdef CONFIG_PREEMPT
4089/*
2ed6e34f 4090 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4091 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4092 * occur there and call schedule directly.
4093 */
722a9f92 4094asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4095{
1da177e4
LT
4096 /*
4097 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4098 * we do not want to preempt the current task. Just return..
1da177e4 4099 */
fbb00b56 4100 if (likely(!preemptible()))
1da177e4
LT
4101 return;
4102
a18b5d01 4103 preempt_schedule_common();
1da177e4 4104}
376e2424 4105NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4106EXPORT_SYMBOL(preempt_schedule);
009f60e2 4107
009f60e2 4108/**
4eaca0a8 4109 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4110 *
4111 * The tracing infrastructure uses preempt_enable_notrace to prevent
4112 * recursion and tracing preempt enabling caused by the tracing
4113 * infrastructure itself. But as tracing can happen in areas coming
4114 * from userspace or just about to enter userspace, a preempt enable
4115 * can occur before user_exit() is called. This will cause the scheduler
4116 * to be called when the system is still in usermode.
4117 *
4118 * To prevent this, the preempt_enable_notrace will use this function
4119 * instead of preempt_schedule() to exit user context if needed before
4120 * calling the scheduler.
4121 */
4eaca0a8 4122asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4123{
4124 enum ctx_state prev_ctx;
4125
4126 if (likely(!preemptible()))
4127 return;
4128
4129 do {
47252cfb
SR
4130 /*
4131 * Because the function tracer can trace preempt_count_sub()
4132 * and it also uses preempt_enable/disable_notrace(), if
4133 * NEED_RESCHED is set, the preempt_enable_notrace() called
4134 * by the function tracer will call this function again and
4135 * cause infinite recursion.
4136 *
4137 * Preemption must be disabled here before the function
4138 * tracer can trace. Break up preempt_disable() into two
4139 * calls. One to disable preemption without fear of being
4140 * traced. The other to still record the preemption latency,
4141 * which can also be traced by the function tracer.
4142 */
3d8f74dd 4143 preempt_disable_notrace();
47252cfb 4144 preempt_latency_start(1);
009f60e2
ON
4145 /*
4146 * Needs preempt disabled in case user_exit() is traced
4147 * and the tracer calls preempt_enable_notrace() causing
4148 * an infinite recursion.
4149 */
4150 prev_ctx = exception_enter();
fc13aeba 4151 __schedule(true);
009f60e2
ON
4152 exception_exit(prev_ctx);
4153
47252cfb 4154 preempt_latency_stop(1);
3d8f74dd 4155 preempt_enable_no_resched_notrace();
009f60e2
ON
4156 } while (need_resched());
4157}
4eaca0a8 4158EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4159
32e475d7 4160#endif /* CONFIG_PREEMPT */
1da177e4
LT
4161
4162/*
2ed6e34f 4163 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4164 * off of irq context.
4165 * Note, that this is called and return with irqs disabled. This will
4166 * protect us against recursive calling from irq.
4167 */
722a9f92 4168asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4169{
b22366cd 4170 enum ctx_state prev_state;
6478d880 4171
2ed6e34f 4172 /* Catch callers which need to be fixed */
f27dde8d 4173 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4174
b22366cd
FW
4175 prev_state = exception_enter();
4176
3a5c359a 4177 do {
3d8f74dd 4178 preempt_disable();
3a5c359a 4179 local_irq_enable();
fc13aeba 4180 __schedule(true);
3a5c359a 4181 local_irq_disable();
3d8f74dd 4182 sched_preempt_enable_no_resched();
5ed0cec0 4183 } while (need_resched());
b22366cd
FW
4184
4185 exception_exit(prev_state);
1da177e4
LT
4186}
4187
ac6424b9 4188int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4189 void *key)
1da177e4 4190{
63859d4f 4191 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4192}
1da177e4
LT
4193EXPORT_SYMBOL(default_wake_function);
4194
b29739f9
IM
4195#ifdef CONFIG_RT_MUTEXES
4196
acd58620
PZ
4197static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4198{
4199 if (pi_task)
4200 prio = min(prio, pi_task->prio);
4201
4202 return prio;
4203}
4204
4205static inline int rt_effective_prio(struct task_struct *p, int prio)
4206{
4207 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4208
4209 return __rt_effective_prio(pi_task, prio);
4210}
4211
b29739f9
IM
4212/*
4213 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4214 * @p: task to boost
4215 * @pi_task: donor task
b29739f9
IM
4216 *
4217 * This function changes the 'effective' priority of a task. It does
4218 * not touch ->normal_prio like __setscheduler().
4219 *
c365c292
TG
4220 * Used by the rt_mutex code to implement priority inheritance
4221 * logic. Call site only calls if the priority of the task changed.
b29739f9 4222 */
acd58620 4223void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4224{
acd58620 4225 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4226 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4227 const struct sched_class *prev_class;
eb580751
PZ
4228 struct rq_flags rf;
4229 struct rq *rq;
b29739f9 4230
acd58620
PZ
4231 /* XXX used to be waiter->prio, not waiter->task->prio */
4232 prio = __rt_effective_prio(pi_task, p->normal_prio);
4233
4234 /*
4235 * If nothing changed; bail early.
4236 */
4237 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4238 return;
b29739f9 4239
eb580751 4240 rq = __task_rq_lock(p, &rf);
80f5c1b8 4241 update_rq_clock(rq);
acd58620
PZ
4242 /*
4243 * Set under pi_lock && rq->lock, such that the value can be used under
4244 * either lock.
4245 *
4246 * Note that there is loads of tricky to make this pointer cache work
4247 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4248 * ensure a task is de-boosted (pi_task is set to NULL) before the
4249 * task is allowed to run again (and can exit). This ensures the pointer
4250 * points to a blocked task -- which guaratees the task is present.
4251 */
4252 p->pi_top_task = pi_task;
4253
4254 /*
4255 * For FIFO/RR we only need to set prio, if that matches we're done.
4256 */
4257 if (prio == p->prio && !dl_prio(prio))
4258 goto out_unlock;
b29739f9 4259
1c4dd99b
TG
4260 /*
4261 * Idle task boosting is a nono in general. There is one
4262 * exception, when PREEMPT_RT and NOHZ is active:
4263 *
4264 * The idle task calls get_next_timer_interrupt() and holds
4265 * the timer wheel base->lock on the CPU and another CPU wants
4266 * to access the timer (probably to cancel it). We can safely
4267 * ignore the boosting request, as the idle CPU runs this code
4268 * with interrupts disabled and will complete the lock
4269 * protected section without being interrupted. So there is no
4270 * real need to boost.
4271 */
4272 if (unlikely(p == rq->idle)) {
4273 WARN_ON(p != rq->curr);
4274 WARN_ON(p->pi_blocked_on);
4275 goto out_unlock;
4276 }
4277
b91473ff 4278 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4279 oldprio = p->prio;
ff77e468
PZ
4280
4281 if (oldprio == prio)
4282 queue_flag &= ~DEQUEUE_MOVE;
4283
83ab0aa0 4284 prev_class = p->sched_class;
da0c1e65 4285 queued = task_on_rq_queued(p);
051a1d1a 4286 running = task_current(rq, p);
da0c1e65 4287 if (queued)
ff77e468 4288 dequeue_task(rq, p, queue_flag);
0e1f3483 4289 if (running)
f3cd1c4e 4290 put_prev_task(rq, p);
dd41f596 4291
2d3d891d
DF
4292 /*
4293 * Boosting condition are:
4294 * 1. -rt task is running and holds mutex A
4295 * --> -dl task blocks on mutex A
4296 *
4297 * 2. -dl task is running and holds mutex A
4298 * --> -dl task blocks on mutex A and could preempt the
4299 * running task
4300 */
4301 if (dl_prio(prio)) {
466af29b
ON
4302 if (!dl_prio(p->normal_prio) ||
4303 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4304 p->dl.dl_boosted = 1;
ff77e468 4305 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4306 } else
4307 p->dl.dl_boosted = 0;
aab03e05 4308 p->sched_class = &dl_sched_class;
2d3d891d
DF
4309 } else if (rt_prio(prio)) {
4310 if (dl_prio(oldprio))
4311 p->dl.dl_boosted = 0;
4312 if (oldprio < prio)
ff77e468 4313 queue_flag |= ENQUEUE_HEAD;
dd41f596 4314 p->sched_class = &rt_sched_class;
2d3d891d
DF
4315 } else {
4316 if (dl_prio(oldprio))
4317 p->dl.dl_boosted = 0;
746db944
BS
4318 if (rt_prio(oldprio))
4319 p->rt.timeout = 0;
dd41f596 4320 p->sched_class = &fair_sched_class;
2d3d891d 4321 }
dd41f596 4322
b29739f9
IM
4323 p->prio = prio;
4324
da0c1e65 4325 if (queued)
ff77e468 4326 enqueue_task(rq, p, queue_flag);
a399d233 4327 if (running)
03b7fad1 4328 set_next_task(rq, p);
cb469845 4329
da7a735e 4330 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4331out_unlock:
d1ccc66d
IM
4332 /* Avoid rq from going away on us: */
4333 preempt_disable();
eb580751 4334 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4335
4336 balance_callback(rq);
4337 preempt_enable();
b29739f9 4338}
acd58620
PZ
4339#else
4340static inline int rt_effective_prio(struct task_struct *p, int prio)
4341{
4342 return prio;
4343}
b29739f9 4344#endif
d50dde5a 4345
36c8b586 4346void set_user_nice(struct task_struct *p, long nice)
1da177e4 4347{
49bd21ef
PZ
4348 bool queued, running;
4349 int old_prio, delta;
eb580751 4350 struct rq_flags rf;
70b97a7f 4351 struct rq *rq;
1da177e4 4352
75e45d51 4353 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4354 return;
4355 /*
4356 * We have to be careful, if called from sys_setpriority(),
4357 * the task might be in the middle of scheduling on another CPU.
4358 */
eb580751 4359 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4360 update_rq_clock(rq);
4361
1da177e4
LT
4362 /*
4363 * The RT priorities are set via sched_setscheduler(), but we still
4364 * allow the 'normal' nice value to be set - but as expected
4365 * it wont have any effect on scheduling until the task is
aab03e05 4366 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4367 */
aab03e05 4368 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4369 p->static_prio = NICE_TO_PRIO(nice);
4370 goto out_unlock;
4371 }
da0c1e65 4372 queued = task_on_rq_queued(p);
49bd21ef 4373 running = task_current(rq, p);
da0c1e65 4374 if (queued)
7a57f32a 4375 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4376 if (running)
4377 put_prev_task(rq, p);
1da177e4 4378
1da177e4 4379 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4380 set_load_weight(p, true);
b29739f9
IM
4381 old_prio = p->prio;
4382 p->prio = effective_prio(p);
4383 delta = p->prio - old_prio;
1da177e4 4384
da0c1e65 4385 if (queued) {
7134b3e9 4386 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 4387 /*
d5f9f942
AM
4388 * If the task increased its priority or is running and
4389 * lowered its priority, then reschedule its CPU:
1da177e4 4390 */
d5f9f942 4391 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 4392 resched_curr(rq);
1da177e4 4393 }
49bd21ef 4394 if (running)
03b7fad1 4395 set_next_task(rq, p);
1da177e4 4396out_unlock:
eb580751 4397 task_rq_unlock(rq, p, &rf);
1da177e4 4398}
1da177e4
LT
4399EXPORT_SYMBOL(set_user_nice);
4400
e43379f1
MM
4401/*
4402 * can_nice - check if a task can reduce its nice value
4403 * @p: task
4404 * @nice: nice value
4405 */
36c8b586 4406int can_nice(const struct task_struct *p, const int nice)
e43379f1 4407{
d1ccc66d 4408 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4409 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4410
78d7d407 4411 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4412 capable(CAP_SYS_NICE));
4413}
4414
1da177e4
LT
4415#ifdef __ARCH_WANT_SYS_NICE
4416
4417/*
4418 * sys_nice - change the priority of the current process.
4419 * @increment: priority increment
4420 *
4421 * sys_setpriority is a more generic, but much slower function that
4422 * does similar things.
4423 */
5add95d4 4424SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4425{
48f24c4d 4426 long nice, retval;
1da177e4
LT
4427
4428 /*
4429 * Setpriority might change our priority at the same moment.
4430 * We don't have to worry. Conceptually one call occurs first
4431 * and we have a single winner.
4432 */
a9467fa3 4433 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4434 nice = task_nice(current) + increment;
1da177e4 4435
a9467fa3 4436 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4437 if (increment < 0 && !can_nice(current, nice))
4438 return -EPERM;
4439
1da177e4
LT
4440 retval = security_task_setnice(current, nice);
4441 if (retval)
4442 return retval;
4443
4444 set_user_nice(current, nice);
4445 return 0;
4446}
4447
4448#endif
4449
4450/**
4451 * task_prio - return the priority value of a given task.
4452 * @p: the task in question.
4453 *
e69f6186 4454 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4455 * RT tasks are offset by -200. Normal tasks are centered
4456 * around 0, value goes from -16 to +15.
4457 */
36c8b586 4458int task_prio(const struct task_struct *p)
1da177e4
LT
4459{
4460 return p->prio - MAX_RT_PRIO;
4461}
4462
1da177e4 4463/**
d1ccc66d 4464 * idle_cpu - is a given CPU idle currently?
1da177e4 4465 * @cpu: the processor in question.
e69f6186
YB
4466 *
4467 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4468 */
4469int idle_cpu(int cpu)
4470{
908a3283
TG
4471 struct rq *rq = cpu_rq(cpu);
4472
4473 if (rq->curr != rq->idle)
4474 return 0;
4475
4476 if (rq->nr_running)
4477 return 0;
4478
4479#ifdef CONFIG_SMP
4480 if (!llist_empty(&rq->wake_list))
4481 return 0;
4482#endif
4483
4484 return 1;
1da177e4
LT
4485}
4486
943d355d
RJ
4487/**
4488 * available_idle_cpu - is a given CPU idle for enqueuing work.
4489 * @cpu: the CPU in question.
4490 *
4491 * Return: 1 if the CPU is currently idle. 0 otherwise.
4492 */
4493int available_idle_cpu(int cpu)
4494{
4495 if (!idle_cpu(cpu))
4496 return 0;
4497
247f2f6f
RJ
4498 if (vcpu_is_preempted(cpu))
4499 return 0;
4500
908a3283 4501 return 1;
1da177e4
LT
4502}
4503
1da177e4 4504/**
d1ccc66d 4505 * idle_task - return the idle task for a given CPU.
1da177e4 4506 * @cpu: the processor in question.
e69f6186 4507 *
d1ccc66d 4508 * Return: The idle task for the CPU @cpu.
1da177e4 4509 */
36c8b586 4510struct task_struct *idle_task(int cpu)
1da177e4
LT
4511{
4512 return cpu_rq(cpu)->idle;
4513}
4514
4515/**
4516 * find_process_by_pid - find a process with a matching PID value.
4517 * @pid: the pid in question.
e69f6186
YB
4518 *
4519 * The task of @pid, if found. %NULL otherwise.
1da177e4 4520 */
a9957449 4521static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4522{
228ebcbe 4523 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4524}
4525
c13db6b1
SR
4526/*
4527 * sched_setparam() passes in -1 for its policy, to let the functions
4528 * it calls know not to change it.
4529 */
4530#define SETPARAM_POLICY -1
4531
c365c292
TG
4532static void __setscheduler_params(struct task_struct *p,
4533 const struct sched_attr *attr)
1da177e4 4534{
d50dde5a
DF
4535 int policy = attr->sched_policy;
4536
c13db6b1 4537 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4538 policy = p->policy;
4539
1da177e4 4540 p->policy = policy;
d50dde5a 4541
aab03e05
DF
4542 if (dl_policy(policy))
4543 __setparam_dl(p, attr);
39fd8fd2 4544 else if (fair_policy(policy))
d50dde5a
DF
4545 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4546
39fd8fd2
PZ
4547 /*
4548 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4549 * !rt_policy. Always setting this ensures that things like
4550 * getparam()/getattr() don't report silly values for !rt tasks.
4551 */
4552 p->rt_priority = attr->sched_priority;
383afd09 4553 p->normal_prio = normal_prio(p);
9059393e 4554 set_load_weight(p, true);
c365c292 4555}
39fd8fd2 4556
c365c292
TG
4557/* Actually do priority change: must hold pi & rq lock. */
4558static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4559 const struct sched_attr *attr, bool keep_boost)
c365c292 4560{
a509a7cd
PB
4561 /*
4562 * If params can't change scheduling class changes aren't allowed
4563 * either.
4564 */
4565 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4566 return;
4567
c365c292 4568 __setscheduler_params(p, attr);
d50dde5a 4569
383afd09 4570 /*
0782e63b
TG
4571 * Keep a potential priority boosting if called from
4572 * sched_setscheduler().
383afd09 4573 */
acd58620 4574 p->prio = normal_prio(p);
0782e63b 4575 if (keep_boost)
acd58620 4576 p->prio = rt_effective_prio(p, p->prio);
383afd09 4577
aab03e05
DF
4578 if (dl_prio(p->prio))
4579 p->sched_class = &dl_sched_class;
4580 else if (rt_prio(p->prio))
ffd44db5
PZ
4581 p->sched_class = &rt_sched_class;
4582 else
4583 p->sched_class = &fair_sched_class;
1da177e4 4584}
aab03e05 4585
c69e8d9c 4586/*
d1ccc66d 4587 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4588 */
4589static bool check_same_owner(struct task_struct *p)
4590{
4591 const struct cred *cred = current_cred(), *pcred;
4592 bool match;
4593
4594 rcu_read_lock();
4595 pcred = __task_cred(p);
9c806aa0
EB
4596 match = (uid_eq(cred->euid, pcred->euid) ||
4597 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4598 rcu_read_unlock();
4599 return match;
4600}
4601
d50dde5a
DF
4602static int __sched_setscheduler(struct task_struct *p,
4603 const struct sched_attr *attr,
dbc7f069 4604 bool user, bool pi)
1da177e4 4605{
383afd09
SR
4606 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4607 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4608 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4609 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4610 const struct sched_class *prev_class;
eb580751 4611 struct rq_flags rf;
ca94c442 4612 int reset_on_fork;
7a57f32a 4613 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4614 struct rq *rq;
1da177e4 4615
896bbb25
SRV
4616 /* The pi code expects interrupts enabled */
4617 BUG_ON(pi && in_interrupt());
1da177e4 4618recheck:
d1ccc66d 4619 /* Double check policy once rq lock held: */
ca94c442
LP
4620 if (policy < 0) {
4621 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4622 policy = oldpolicy = p->policy;
ca94c442 4623 } else {
7479f3c9 4624 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4625
20f9cd2a 4626 if (!valid_policy(policy))
ca94c442
LP
4627 return -EINVAL;
4628 }
4629
794a56eb 4630 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4631 return -EINVAL;
4632
1da177e4
LT
4633 /*
4634 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4635 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4636 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4637 */
0bb040a4 4638 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4639 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4640 return -EINVAL;
aab03e05
DF
4641 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4642 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4643 return -EINVAL;
4644
37e4ab3f
OC
4645 /*
4646 * Allow unprivileged RT tasks to decrease priority:
4647 */
961ccddd 4648 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4649 if (fair_policy(policy)) {
d0ea0268 4650 if (attr->sched_nice < task_nice(p) &&
eaad4513 4651 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4652 return -EPERM;
4653 }
4654
e05606d3 4655 if (rt_policy(policy)) {
a44702e8
ON
4656 unsigned long rlim_rtprio =
4657 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4658
d1ccc66d 4659 /* Can't set/change the rt policy: */
8dc3e909
ON
4660 if (policy != p->policy && !rlim_rtprio)
4661 return -EPERM;
4662
d1ccc66d 4663 /* Can't increase priority: */
d50dde5a
DF
4664 if (attr->sched_priority > p->rt_priority &&
4665 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4666 return -EPERM;
4667 }
c02aa73b 4668
d44753b8
JL
4669 /*
4670 * Can't set/change SCHED_DEADLINE policy at all for now
4671 * (safest behavior); in the future we would like to allow
4672 * unprivileged DL tasks to increase their relative deadline
4673 * or reduce their runtime (both ways reducing utilization)
4674 */
4675 if (dl_policy(policy))
4676 return -EPERM;
4677
dd41f596 4678 /*
c02aa73b
DH
4679 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4680 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4681 */
1da1843f 4682 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4683 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4684 return -EPERM;
4685 }
5fe1d75f 4686
d1ccc66d 4687 /* Can't change other user's priorities: */
c69e8d9c 4688 if (!check_same_owner(p))
37e4ab3f 4689 return -EPERM;
ca94c442 4690
d1ccc66d 4691 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4692 if (p->sched_reset_on_fork && !reset_on_fork)
4693 return -EPERM;
37e4ab3f 4694 }
1da177e4 4695
725aad24 4696 if (user) {
794a56eb
JL
4697 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4698 return -EINVAL;
4699
b0ae1981 4700 retval = security_task_setscheduler(p);
725aad24
JF
4701 if (retval)
4702 return retval;
4703 }
4704
a509a7cd
PB
4705 /* Update task specific "requested" clamps */
4706 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4707 retval = uclamp_validate(p, attr);
4708 if (retval)
4709 return retval;
4710 }
4711
710da3c8
JL
4712 if (pi)
4713 cpuset_read_lock();
4714
b29739f9 4715 /*
d1ccc66d 4716 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4717 * changing the priority of the task:
0122ec5b 4718 *
25985edc 4719 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4720 * runqueue lock must be held.
4721 */
eb580751 4722 rq = task_rq_lock(p, &rf);
80f5c1b8 4723 update_rq_clock(rq);
dc61b1d6 4724
34f971f6 4725 /*
d1ccc66d 4726 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4727 */
4728 if (p == rq->stop) {
4b211f2b
MP
4729 retval = -EINVAL;
4730 goto unlock;
34f971f6
PZ
4731 }
4732
a51e9198 4733 /*
d6b1e911
TG
4734 * If not changing anything there's no need to proceed further,
4735 * but store a possible modification of reset_on_fork.
a51e9198 4736 */
d50dde5a 4737 if (unlikely(policy == p->policy)) {
d0ea0268 4738 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4739 goto change;
4740 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4741 goto change;
75381608 4742 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4743 goto change;
a509a7cd
PB
4744 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4745 goto change;
d50dde5a 4746
d6b1e911 4747 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4748 retval = 0;
4749 goto unlock;
a51e9198 4750 }
d50dde5a 4751change:
a51e9198 4752
dc61b1d6 4753 if (user) {
332ac17e 4754#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4755 /*
4756 * Do not allow realtime tasks into groups that have no runtime
4757 * assigned.
4758 */
4759 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4760 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4761 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4762 retval = -EPERM;
4763 goto unlock;
dc61b1d6 4764 }
dc61b1d6 4765#endif
332ac17e 4766#ifdef CONFIG_SMP
794a56eb
JL
4767 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4768 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4769 cpumask_t *span = rq->rd->span;
332ac17e
DF
4770
4771 /*
4772 * Don't allow tasks with an affinity mask smaller than
4773 * the entire root_domain to become SCHED_DEADLINE. We
4774 * will also fail if there's no bandwidth available.
4775 */
3bd37062 4776 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4777 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4778 retval = -EPERM;
4779 goto unlock;
332ac17e
DF
4780 }
4781 }
4782#endif
4783 }
dc61b1d6 4784
d1ccc66d 4785 /* Re-check policy now with rq lock held: */
1da177e4
LT
4786 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4787 policy = oldpolicy = -1;
eb580751 4788 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4789 if (pi)
4790 cpuset_read_unlock();
1da177e4
LT
4791 goto recheck;
4792 }
332ac17e
DF
4793
4794 /*
4795 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4796 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4797 * is available.
4798 */
06a76fe0 4799 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4800 retval = -EBUSY;
4801 goto unlock;
332ac17e
DF
4802 }
4803
c365c292
TG
4804 p->sched_reset_on_fork = reset_on_fork;
4805 oldprio = p->prio;
4806
dbc7f069
PZ
4807 if (pi) {
4808 /*
4809 * Take priority boosted tasks into account. If the new
4810 * effective priority is unchanged, we just store the new
4811 * normal parameters and do not touch the scheduler class and
4812 * the runqueue. This will be done when the task deboost
4813 * itself.
4814 */
acd58620 4815 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4816 if (new_effective_prio == oldprio)
4817 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4818 }
4819
da0c1e65 4820 queued = task_on_rq_queued(p);
051a1d1a 4821 running = task_current(rq, p);
da0c1e65 4822 if (queued)
ff77e468 4823 dequeue_task(rq, p, queue_flags);
0e1f3483 4824 if (running)
f3cd1c4e 4825 put_prev_task(rq, p);
f6b53205 4826
83ab0aa0 4827 prev_class = p->sched_class;
a509a7cd 4828
dbc7f069 4829 __setscheduler(rq, p, attr, pi);
a509a7cd 4830 __setscheduler_uclamp(p, attr);
f6b53205 4831
da0c1e65 4832 if (queued) {
81a44c54
TG
4833 /*
4834 * We enqueue to tail when the priority of a task is
4835 * increased (user space view).
4836 */
ff77e468
PZ
4837 if (oldprio < p->prio)
4838 queue_flags |= ENQUEUE_HEAD;
1de64443 4839
ff77e468 4840 enqueue_task(rq, p, queue_flags);
81a44c54 4841 }
a399d233 4842 if (running)
03b7fad1 4843 set_next_task(rq, p);
cb469845 4844
da7a735e 4845 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4846
4847 /* Avoid rq from going away on us: */
4848 preempt_disable();
eb580751 4849 task_rq_unlock(rq, p, &rf);
b29739f9 4850
710da3c8
JL
4851 if (pi) {
4852 cpuset_read_unlock();
dbc7f069 4853 rt_mutex_adjust_pi(p);
710da3c8 4854 }
95e02ca9 4855
d1ccc66d 4856 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4857 balance_callback(rq);
4858 preempt_enable();
95e02ca9 4859
1da177e4 4860 return 0;
4b211f2b
MP
4861
4862unlock:
4863 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4864 if (pi)
4865 cpuset_read_unlock();
4b211f2b 4866 return retval;
1da177e4 4867}
961ccddd 4868
7479f3c9
PZ
4869static int _sched_setscheduler(struct task_struct *p, int policy,
4870 const struct sched_param *param, bool check)
4871{
4872 struct sched_attr attr = {
4873 .sched_policy = policy,
4874 .sched_priority = param->sched_priority,
4875 .sched_nice = PRIO_TO_NICE(p->static_prio),
4876 };
4877
c13db6b1
SR
4878 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4879 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4880 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4881 policy &= ~SCHED_RESET_ON_FORK;
4882 attr.sched_policy = policy;
4883 }
4884
dbc7f069 4885 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4886}
961ccddd
RR
4887/**
4888 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4889 * @p: the task in question.
4890 * @policy: new policy.
4891 * @param: structure containing the new RT priority.
4892 *
e69f6186
YB
4893 * Return: 0 on success. An error code otherwise.
4894 *
961ccddd
RR
4895 * NOTE that the task may be already dead.
4896 */
4897int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4898 const struct sched_param *param)
961ccddd 4899{
7479f3c9 4900 return _sched_setscheduler(p, policy, param, true);
961ccddd 4901}
1da177e4
LT
4902EXPORT_SYMBOL_GPL(sched_setscheduler);
4903
d50dde5a
DF
4904int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4905{
dbc7f069 4906 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4907}
4908EXPORT_SYMBOL_GPL(sched_setattr);
4909
794a56eb
JL
4910int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4911{
4912 return __sched_setscheduler(p, attr, false, true);
4913}
4914
961ccddd
RR
4915/**
4916 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4917 * @p: the task in question.
4918 * @policy: new policy.
4919 * @param: structure containing the new RT priority.
4920 *
4921 * Just like sched_setscheduler, only don't bother checking if the
4922 * current context has permission. For example, this is needed in
4923 * stop_machine(): we create temporary high priority worker threads,
4924 * but our caller might not have that capability.
e69f6186
YB
4925 *
4926 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4927 */
4928int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4929 const struct sched_param *param)
961ccddd 4930{
7479f3c9 4931 return _sched_setscheduler(p, policy, param, false);
961ccddd 4932}
84778472 4933EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4934
95cdf3b7
IM
4935static int
4936do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4937{
1da177e4
LT
4938 struct sched_param lparam;
4939 struct task_struct *p;
36c8b586 4940 int retval;
1da177e4
LT
4941
4942 if (!param || pid < 0)
4943 return -EINVAL;
4944 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4945 return -EFAULT;
5fe1d75f
ON
4946
4947 rcu_read_lock();
4948 retval = -ESRCH;
1da177e4 4949 p = find_process_by_pid(pid);
710da3c8
JL
4950 if (likely(p))
4951 get_task_struct(p);
5fe1d75f 4952 rcu_read_unlock();
36c8b586 4953
710da3c8
JL
4954 if (likely(p)) {
4955 retval = sched_setscheduler(p, policy, &lparam);
4956 put_task_struct(p);
4957 }
4958
1da177e4
LT
4959 return retval;
4960}
4961
d50dde5a
DF
4962/*
4963 * Mimics kernel/events/core.c perf_copy_attr().
4964 */
d1ccc66d 4965static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4966{
4967 u32 size;
4968 int ret;
4969
96d4f267 4970 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4971 return -EFAULT;
4972
d1ccc66d 4973 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4974 memset(attr, 0, sizeof(*attr));
4975
4976 ret = get_user(size, &uattr->size);
4977 if (ret)
4978 return ret;
4979
d1ccc66d
IM
4980 /* Bail out on silly large: */
4981 if (size > PAGE_SIZE)
d50dde5a
DF
4982 goto err_size;
4983
d1ccc66d
IM
4984 /* ABI compatibility quirk: */
4985 if (!size)
d50dde5a
DF
4986 size = SCHED_ATTR_SIZE_VER0;
4987
4988 if (size < SCHED_ATTR_SIZE_VER0)
4989 goto err_size;
4990
4991 /*
4992 * If we're handed a bigger struct than we know of,
4993 * ensure all the unknown bits are 0 - i.e. new
4994 * user-space does not rely on any kernel feature
4995 * extensions we dont know about yet.
4996 */
4997 if (size > sizeof(*attr)) {
4998 unsigned char __user *addr;
4999 unsigned char __user *end;
5000 unsigned char val;
5001
5002 addr = (void __user *)uattr + sizeof(*attr);
5003 end = (void __user *)uattr + size;
5004
5005 for (; addr < end; addr++) {
5006 ret = get_user(val, addr);
5007 if (ret)
5008 return ret;
5009 if (val)
5010 goto err_size;
5011 }
5012 size = sizeof(*attr);
5013 }
5014
5015 ret = copy_from_user(attr, uattr, size);
5016 if (ret)
5017 return -EFAULT;
5018
a509a7cd
PB
5019 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5020 size < SCHED_ATTR_SIZE_VER1)
5021 return -EINVAL;
5022
d50dde5a 5023 /*
d1ccc66d 5024 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5025 * to be strict and return an error on out-of-bounds values?
5026 */
75e45d51 5027 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5028
e78c7bca 5029 return 0;
d50dde5a
DF
5030
5031err_size:
5032 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5033 return -E2BIG;
d50dde5a
DF
5034}
5035
1da177e4
LT
5036/**
5037 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5038 * @pid: the pid in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
e69f6186
YB
5041 *
5042 * Return: 0 on success. An error code otherwise.
1da177e4 5043 */
d1ccc66d 5044SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5045{
c21761f1
JB
5046 if (policy < 0)
5047 return -EINVAL;
5048
1da177e4
LT
5049 return do_sched_setscheduler(pid, policy, param);
5050}
5051
5052/**
5053 * sys_sched_setparam - set/change the RT priority of a thread
5054 * @pid: the pid in question.
5055 * @param: structure containing the new RT priority.
e69f6186
YB
5056 *
5057 * Return: 0 on success. An error code otherwise.
1da177e4 5058 */
5add95d4 5059SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5060{
c13db6b1 5061 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5062}
5063
d50dde5a
DF
5064/**
5065 * sys_sched_setattr - same as above, but with extended sched_attr
5066 * @pid: the pid in question.
5778fccf 5067 * @uattr: structure containing the extended parameters.
db66d756 5068 * @flags: for future extension.
d50dde5a 5069 */
6d35ab48
PZ
5070SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5071 unsigned int, flags)
d50dde5a
DF
5072{
5073 struct sched_attr attr;
5074 struct task_struct *p;
5075 int retval;
5076
6d35ab48 5077 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5078 return -EINVAL;
5079
143cf23d
MK
5080 retval = sched_copy_attr(uattr, &attr);
5081 if (retval)
5082 return retval;
d50dde5a 5083
b14ed2c2 5084 if ((int)attr.sched_policy < 0)
dbdb2275 5085 return -EINVAL;
1d6362fa
PB
5086 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5087 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5088
5089 rcu_read_lock();
5090 retval = -ESRCH;
5091 p = find_process_by_pid(pid);
a509a7cd
PB
5092 if (likely(p))
5093 get_task_struct(p);
d50dde5a
DF
5094 rcu_read_unlock();
5095
a509a7cd
PB
5096 if (likely(p)) {
5097 retval = sched_setattr(p, &attr);
5098 put_task_struct(p);
5099 }
5100
d50dde5a
DF
5101 return retval;
5102}
5103
1da177e4
LT
5104/**
5105 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5106 * @pid: the pid in question.
e69f6186
YB
5107 *
5108 * Return: On success, the policy of the thread. Otherwise, a negative error
5109 * code.
1da177e4 5110 */
5add95d4 5111SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5112{
36c8b586 5113 struct task_struct *p;
3a5c359a 5114 int retval;
1da177e4
LT
5115
5116 if (pid < 0)
3a5c359a 5117 return -EINVAL;
1da177e4
LT
5118
5119 retval = -ESRCH;
5fe85be0 5120 rcu_read_lock();
1da177e4
LT
5121 p = find_process_by_pid(pid);
5122 if (p) {
5123 retval = security_task_getscheduler(p);
5124 if (!retval)
ca94c442
LP
5125 retval = p->policy
5126 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5127 }
5fe85be0 5128 rcu_read_unlock();
1da177e4
LT
5129 return retval;
5130}
5131
5132/**
ca94c442 5133 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5134 * @pid: the pid in question.
5135 * @param: structure containing the RT priority.
e69f6186
YB
5136 *
5137 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5138 * code.
1da177e4 5139 */
5add95d4 5140SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5141{
ce5f7f82 5142 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5143 struct task_struct *p;
3a5c359a 5144 int retval;
1da177e4
LT
5145
5146 if (!param || pid < 0)
3a5c359a 5147 return -EINVAL;
1da177e4 5148
5fe85be0 5149 rcu_read_lock();
1da177e4
LT
5150 p = find_process_by_pid(pid);
5151 retval = -ESRCH;
5152 if (!p)
5153 goto out_unlock;
5154
5155 retval = security_task_getscheduler(p);
5156 if (retval)
5157 goto out_unlock;
5158
ce5f7f82
PZ
5159 if (task_has_rt_policy(p))
5160 lp.sched_priority = p->rt_priority;
5fe85be0 5161 rcu_read_unlock();
1da177e4
LT
5162
5163 /*
5164 * This one might sleep, we cannot do it with a spinlock held ...
5165 */
5166 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5167
1da177e4
LT
5168 return retval;
5169
5170out_unlock:
5fe85be0 5171 rcu_read_unlock();
1da177e4
LT
5172 return retval;
5173}
5174
d50dde5a
DF
5175static int sched_read_attr(struct sched_attr __user *uattr,
5176 struct sched_attr *attr,
5177 unsigned int usize)
5178{
5179 int ret;
5180
96d4f267 5181 if (!access_ok(uattr, usize))
d50dde5a
DF
5182 return -EFAULT;
5183
5184 /*
5185 * If we're handed a smaller struct than we know of,
5186 * ensure all the unknown bits are 0 - i.e. old
5187 * user-space does not get uncomplete information.
5188 */
5189 if (usize < sizeof(*attr)) {
5190 unsigned char *addr;
5191 unsigned char *end;
5192
5193 addr = (void *)attr + usize;
5194 end = (void *)attr + sizeof(*attr);
5195
5196 for (; addr < end; addr++) {
5197 if (*addr)
22400674 5198 return -EFBIG;
d50dde5a
DF
5199 }
5200
5201 attr->size = usize;
5202 }
5203
4efbc454 5204 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
5205 if (ret)
5206 return -EFAULT;
5207
22400674 5208 return 0;
d50dde5a
DF
5209}
5210
5211/**
aab03e05 5212 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5213 * @pid: the pid in question.
5778fccf 5214 * @uattr: structure containing the extended parameters.
d50dde5a 5215 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 5216 * @flags: for future extension.
d50dde5a 5217 */
6d35ab48
PZ
5218SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5219 unsigned int, size, unsigned int, flags)
d50dde5a
DF
5220{
5221 struct sched_attr attr = {
5222 .size = sizeof(struct sched_attr),
5223 };
5224 struct task_struct *p;
5225 int retval;
5226
5227 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 5228 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5229 return -EINVAL;
5230
5231 rcu_read_lock();
5232 p = find_process_by_pid(pid);
5233 retval = -ESRCH;
5234 if (!p)
5235 goto out_unlock;
5236
5237 retval = security_task_getscheduler(p);
5238 if (retval)
5239 goto out_unlock;
5240
5241 attr.sched_policy = p->policy;
7479f3c9
PZ
5242 if (p->sched_reset_on_fork)
5243 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
5244 if (task_has_dl_policy(p))
5245 __getparam_dl(p, &attr);
5246 else if (task_has_rt_policy(p))
d50dde5a
DF
5247 attr.sched_priority = p->rt_priority;
5248 else
d0ea0268 5249 attr.sched_nice = task_nice(p);
d50dde5a 5250
a509a7cd
PB
5251#ifdef CONFIG_UCLAMP_TASK
5252 attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5253 attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5254#endif
5255
d50dde5a
DF
5256 rcu_read_unlock();
5257
5258 retval = sched_read_attr(uattr, &attr, size);
5259 return retval;
5260
5261out_unlock:
5262 rcu_read_unlock();
5263 return retval;
5264}
5265
96f874e2 5266long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5267{
5a16f3d3 5268 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5269 struct task_struct *p;
5270 int retval;
1da177e4 5271
23f5d142 5272 rcu_read_lock();
1da177e4
LT
5273
5274 p = find_process_by_pid(pid);
5275 if (!p) {
23f5d142 5276 rcu_read_unlock();
1da177e4
LT
5277 return -ESRCH;
5278 }
5279
23f5d142 5280 /* Prevent p going away */
1da177e4 5281 get_task_struct(p);
23f5d142 5282 rcu_read_unlock();
1da177e4 5283
14a40ffc
TH
5284 if (p->flags & PF_NO_SETAFFINITY) {
5285 retval = -EINVAL;
5286 goto out_put_task;
5287 }
5a16f3d3
RR
5288 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5289 retval = -ENOMEM;
5290 goto out_put_task;
5291 }
5292 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5293 retval = -ENOMEM;
5294 goto out_free_cpus_allowed;
5295 }
1da177e4 5296 retval = -EPERM;
4c44aaaf
EB
5297 if (!check_same_owner(p)) {
5298 rcu_read_lock();
5299 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5300 rcu_read_unlock();
16303ab2 5301 goto out_free_new_mask;
4c44aaaf
EB
5302 }
5303 rcu_read_unlock();
5304 }
1da177e4 5305
b0ae1981 5306 retval = security_task_setscheduler(p);
e7834f8f 5307 if (retval)
16303ab2 5308 goto out_free_new_mask;
e7834f8f 5309
e4099a5e
PZ
5310
5311 cpuset_cpus_allowed(p, cpus_allowed);
5312 cpumask_and(new_mask, in_mask, cpus_allowed);
5313
332ac17e
DF
5314 /*
5315 * Since bandwidth control happens on root_domain basis,
5316 * if admission test is enabled, we only admit -deadline
5317 * tasks allowed to run on all the CPUs in the task's
5318 * root_domain.
5319 */
5320#ifdef CONFIG_SMP
f1e3a093
KT
5321 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5322 rcu_read_lock();
5323 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5324 retval = -EBUSY;
f1e3a093 5325 rcu_read_unlock();
16303ab2 5326 goto out_free_new_mask;
332ac17e 5327 }
f1e3a093 5328 rcu_read_unlock();
332ac17e
DF
5329 }
5330#endif
49246274 5331again:
25834c73 5332 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5333
8707d8b8 5334 if (!retval) {
5a16f3d3
RR
5335 cpuset_cpus_allowed(p, cpus_allowed);
5336 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5337 /*
5338 * We must have raced with a concurrent cpuset
5339 * update. Just reset the cpus_allowed to the
5340 * cpuset's cpus_allowed
5341 */
5a16f3d3 5342 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5343 goto again;
5344 }
5345 }
16303ab2 5346out_free_new_mask:
5a16f3d3
RR
5347 free_cpumask_var(new_mask);
5348out_free_cpus_allowed:
5349 free_cpumask_var(cpus_allowed);
5350out_put_task:
1da177e4 5351 put_task_struct(p);
1da177e4
LT
5352 return retval;
5353}
5354
5355static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5356 struct cpumask *new_mask)
1da177e4 5357{
96f874e2
RR
5358 if (len < cpumask_size())
5359 cpumask_clear(new_mask);
5360 else if (len > cpumask_size())
5361 len = cpumask_size();
5362
1da177e4
LT
5363 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5364}
5365
5366/**
d1ccc66d 5367 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5368 * @pid: pid of the process
5369 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5370 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5371 *
5372 * Return: 0 on success. An error code otherwise.
1da177e4 5373 */
5add95d4
HC
5374SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5375 unsigned long __user *, user_mask_ptr)
1da177e4 5376{
5a16f3d3 5377 cpumask_var_t new_mask;
1da177e4
LT
5378 int retval;
5379
5a16f3d3
RR
5380 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5381 return -ENOMEM;
1da177e4 5382
5a16f3d3
RR
5383 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5384 if (retval == 0)
5385 retval = sched_setaffinity(pid, new_mask);
5386 free_cpumask_var(new_mask);
5387 return retval;
1da177e4
LT
5388}
5389
96f874e2 5390long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5391{
36c8b586 5392 struct task_struct *p;
31605683 5393 unsigned long flags;
1da177e4 5394 int retval;
1da177e4 5395
23f5d142 5396 rcu_read_lock();
1da177e4
LT
5397
5398 retval = -ESRCH;
5399 p = find_process_by_pid(pid);
5400 if (!p)
5401 goto out_unlock;
5402
e7834f8f
DQ
5403 retval = security_task_getscheduler(p);
5404 if (retval)
5405 goto out_unlock;
5406
013fdb80 5407 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5408 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5409 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5410
5411out_unlock:
23f5d142 5412 rcu_read_unlock();
1da177e4 5413
9531b62f 5414 return retval;
1da177e4
LT
5415}
5416
5417/**
d1ccc66d 5418 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5419 * @pid: pid of the process
5420 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5421 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5422 *
599b4840
ZW
5423 * Return: size of CPU mask copied to user_mask_ptr on success. An
5424 * error code otherwise.
1da177e4 5425 */
5add95d4
HC
5426SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5427 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5428{
5429 int ret;
f17c8607 5430 cpumask_var_t mask;
1da177e4 5431
84fba5ec 5432 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5433 return -EINVAL;
5434 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5435 return -EINVAL;
5436
f17c8607
RR
5437 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5438 return -ENOMEM;
1da177e4 5439
f17c8607
RR
5440 ret = sched_getaffinity(pid, mask);
5441 if (ret == 0) {
4de373a1 5442 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5443
5444 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5445 ret = -EFAULT;
5446 else
cd3d8031 5447 ret = retlen;
f17c8607
RR
5448 }
5449 free_cpumask_var(mask);
1da177e4 5450
f17c8607 5451 return ret;
1da177e4
LT
5452}
5453
5454/**
5455 * sys_sched_yield - yield the current processor to other threads.
5456 *
dd41f596
IM
5457 * This function yields the current CPU to other tasks. If there are no
5458 * other threads running on this CPU then this function will return.
e69f6186
YB
5459 *
5460 * Return: 0.
1da177e4 5461 */
7d4dd4f1 5462static void do_sched_yield(void)
1da177e4 5463{
8a8c69c3
PZ
5464 struct rq_flags rf;
5465 struct rq *rq;
5466
246b3b33 5467 rq = this_rq_lock_irq(&rf);
1da177e4 5468
ae92882e 5469 schedstat_inc(rq->yld_count);
4530d7ab 5470 current->sched_class->yield_task(rq);
1da177e4
LT
5471
5472 /*
5473 * Since we are going to call schedule() anyway, there's
5474 * no need to preempt or enable interrupts:
5475 */
8a8c69c3
PZ
5476 preempt_disable();
5477 rq_unlock(rq, &rf);
ba74c144 5478 sched_preempt_enable_no_resched();
1da177e4
LT
5479
5480 schedule();
7d4dd4f1 5481}
1da177e4 5482
7d4dd4f1
DB
5483SYSCALL_DEFINE0(sched_yield)
5484{
5485 do_sched_yield();
1da177e4
LT
5486 return 0;
5487}
5488
35a773a0 5489#ifndef CONFIG_PREEMPT
02b67cc3 5490int __sched _cond_resched(void)
1da177e4 5491{
fe32d3cd 5492 if (should_resched(0)) {
a18b5d01 5493 preempt_schedule_common();
1da177e4
LT
5494 return 1;
5495 }
f79c3ad6 5496 rcu_all_qs();
1da177e4
LT
5497 return 0;
5498}
02b67cc3 5499EXPORT_SYMBOL(_cond_resched);
35a773a0 5500#endif
1da177e4
LT
5501
5502/*
613afbf8 5503 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5504 * call schedule, and on return reacquire the lock.
5505 *
41a2d6cf 5506 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5507 * operations here to prevent schedule() from being called twice (once via
5508 * spin_unlock(), once by hand).
5509 */
613afbf8 5510int __cond_resched_lock(spinlock_t *lock)
1da177e4 5511{
fe32d3cd 5512 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5513 int ret = 0;
5514
f607c668
PZ
5515 lockdep_assert_held(lock);
5516
4a81e832 5517 if (spin_needbreak(lock) || resched) {
1da177e4 5518 spin_unlock(lock);
d86ee480 5519 if (resched)
a18b5d01 5520 preempt_schedule_common();
95c354fe
NP
5521 else
5522 cpu_relax();
6df3cecb 5523 ret = 1;
1da177e4 5524 spin_lock(lock);
1da177e4 5525 }
6df3cecb 5526 return ret;
1da177e4 5527}
613afbf8 5528EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5529
1da177e4
LT
5530/**
5531 * yield - yield the current processor to other threads.
5532 *
8e3fabfd
PZ
5533 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5534 *
5535 * The scheduler is at all times free to pick the calling task as the most
5536 * eligible task to run, if removing the yield() call from your code breaks
5537 * it, its already broken.
5538 *
5539 * Typical broken usage is:
5540 *
5541 * while (!event)
d1ccc66d 5542 * yield();
8e3fabfd
PZ
5543 *
5544 * where one assumes that yield() will let 'the other' process run that will
5545 * make event true. If the current task is a SCHED_FIFO task that will never
5546 * happen. Never use yield() as a progress guarantee!!
5547 *
5548 * If you want to use yield() to wait for something, use wait_event().
5549 * If you want to use yield() to be 'nice' for others, use cond_resched().
5550 * If you still want to use yield(), do not!
1da177e4
LT
5551 */
5552void __sched yield(void)
5553{
5554 set_current_state(TASK_RUNNING);
7d4dd4f1 5555 do_sched_yield();
1da177e4 5556}
1da177e4
LT
5557EXPORT_SYMBOL(yield);
5558
d95f4122
MG
5559/**
5560 * yield_to - yield the current processor to another thread in
5561 * your thread group, or accelerate that thread toward the
5562 * processor it's on.
16addf95
RD
5563 * @p: target task
5564 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5565 *
5566 * It's the caller's job to ensure that the target task struct
5567 * can't go away on us before we can do any checks.
5568 *
e69f6186 5569 * Return:
7b270f60
PZ
5570 * true (>0) if we indeed boosted the target task.
5571 * false (0) if we failed to boost the target.
5572 * -ESRCH if there's no task to yield to.
d95f4122 5573 */
fa93384f 5574int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5575{
5576 struct task_struct *curr = current;
5577 struct rq *rq, *p_rq;
5578 unsigned long flags;
c3c18640 5579 int yielded = 0;
d95f4122
MG
5580
5581 local_irq_save(flags);
5582 rq = this_rq();
5583
5584again:
5585 p_rq = task_rq(p);
7b270f60
PZ
5586 /*
5587 * If we're the only runnable task on the rq and target rq also
5588 * has only one task, there's absolutely no point in yielding.
5589 */
5590 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5591 yielded = -ESRCH;
5592 goto out_irq;
5593 }
5594
d95f4122 5595 double_rq_lock(rq, p_rq);
39e24d8f 5596 if (task_rq(p) != p_rq) {
d95f4122
MG
5597 double_rq_unlock(rq, p_rq);
5598 goto again;
5599 }
5600
5601 if (!curr->sched_class->yield_to_task)
7b270f60 5602 goto out_unlock;
d95f4122
MG
5603
5604 if (curr->sched_class != p->sched_class)
7b270f60 5605 goto out_unlock;
d95f4122
MG
5606
5607 if (task_running(p_rq, p) || p->state)
7b270f60 5608 goto out_unlock;
d95f4122
MG
5609
5610 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5611 if (yielded) {
ae92882e 5612 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5613 /*
5614 * Make p's CPU reschedule; pick_next_entity takes care of
5615 * fairness.
5616 */
5617 if (preempt && rq != p_rq)
8875125e 5618 resched_curr(p_rq);
6d1cafd8 5619 }
d95f4122 5620
7b270f60 5621out_unlock:
d95f4122 5622 double_rq_unlock(rq, p_rq);
7b270f60 5623out_irq:
d95f4122
MG
5624 local_irq_restore(flags);
5625
7b270f60 5626 if (yielded > 0)
d95f4122
MG
5627 schedule();
5628
5629 return yielded;
5630}
5631EXPORT_SYMBOL_GPL(yield_to);
5632
10ab5643
TH
5633int io_schedule_prepare(void)
5634{
5635 int old_iowait = current->in_iowait;
5636
5637 current->in_iowait = 1;
5638 blk_schedule_flush_plug(current);
5639
5640 return old_iowait;
5641}
5642
5643void io_schedule_finish(int token)
5644{
5645 current->in_iowait = token;
5646}
5647
1da177e4 5648/*
41a2d6cf 5649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5650 * that process accounting knows that this is a task in IO wait state.
1da177e4 5651 */
1da177e4
LT
5652long __sched io_schedule_timeout(long timeout)
5653{
10ab5643 5654 int token;
1da177e4
LT
5655 long ret;
5656
10ab5643 5657 token = io_schedule_prepare();
1da177e4 5658 ret = schedule_timeout(timeout);
10ab5643 5659 io_schedule_finish(token);
9cff8ade 5660
1da177e4
LT
5661 return ret;
5662}
9cff8ade 5663EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5664
e3b929b0 5665void __sched io_schedule(void)
10ab5643
TH
5666{
5667 int token;
5668
5669 token = io_schedule_prepare();
5670 schedule();
5671 io_schedule_finish(token);
5672}
5673EXPORT_SYMBOL(io_schedule);
5674
1da177e4
LT
5675/**
5676 * sys_sched_get_priority_max - return maximum RT priority.
5677 * @policy: scheduling class.
5678 *
e69f6186
YB
5679 * Return: On success, this syscall returns the maximum
5680 * rt_priority that can be used by a given scheduling class.
5681 * On failure, a negative error code is returned.
1da177e4 5682 */
5add95d4 5683SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5684{
5685 int ret = -EINVAL;
5686
5687 switch (policy) {
5688 case SCHED_FIFO:
5689 case SCHED_RR:
5690 ret = MAX_USER_RT_PRIO-1;
5691 break;
aab03e05 5692 case SCHED_DEADLINE:
1da177e4 5693 case SCHED_NORMAL:
b0a9499c 5694 case SCHED_BATCH:
dd41f596 5695 case SCHED_IDLE:
1da177e4
LT
5696 ret = 0;
5697 break;
5698 }
5699 return ret;
5700}
5701
5702/**
5703 * sys_sched_get_priority_min - return minimum RT priority.
5704 * @policy: scheduling class.
5705 *
e69f6186
YB
5706 * Return: On success, this syscall returns the minimum
5707 * rt_priority that can be used by a given scheduling class.
5708 * On failure, a negative error code is returned.
1da177e4 5709 */
5add95d4 5710SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5711{
5712 int ret = -EINVAL;
5713
5714 switch (policy) {
5715 case SCHED_FIFO:
5716 case SCHED_RR:
5717 ret = 1;
5718 break;
aab03e05 5719 case SCHED_DEADLINE:
1da177e4 5720 case SCHED_NORMAL:
b0a9499c 5721 case SCHED_BATCH:
dd41f596 5722 case SCHED_IDLE:
1da177e4
LT
5723 ret = 0;
5724 }
5725 return ret;
5726}
5727
abca5fc5 5728static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5729{
36c8b586 5730 struct task_struct *p;
a4ec24b4 5731 unsigned int time_slice;
eb580751 5732 struct rq_flags rf;
dba091b9 5733 struct rq *rq;
3a5c359a 5734 int retval;
1da177e4
LT
5735
5736 if (pid < 0)
3a5c359a 5737 return -EINVAL;
1da177e4
LT
5738
5739 retval = -ESRCH;
1a551ae7 5740 rcu_read_lock();
1da177e4
LT
5741 p = find_process_by_pid(pid);
5742 if (!p)
5743 goto out_unlock;
5744
5745 retval = security_task_getscheduler(p);
5746 if (retval)
5747 goto out_unlock;
5748
eb580751 5749 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5750 time_slice = 0;
5751 if (p->sched_class->get_rr_interval)
5752 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5753 task_rq_unlock(rq, p, &rf);
a4ec24b4 5754
1a551ae7 5755 rcu_read_unlock();
abca5fc5
AV
5756 jiffies_to_timespec64(time_slice, t);
5757 return 0;
3a5c359a 5758
1da177e4 5759out_unlock:
1a551ae7 5760 rcu_read_unlock();
1da177e4
LT
5761 return retval;
5762}
5763
2064a5ab
RD
5764/**
5765 * sys_sched_rr_get_interval - return the default timeslice of a process.
5766 * @pid: pid of the process.
5767 * @interval: userspace pointer to the timeslice value.
5768 *
5769 * this syscall writes the default timeslice value of a given process
5770 * into the user-space timespec buffer. A value of '0' means infinity.
5771 *
5772 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5773 * an error code.
5774 */
abca5fc5 5775SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5776 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5777{
5778 struct timespec64 t;
5779 int retval = sched_rr_get_interval(pid, &t);
5780
5781 if (retval == 0)
5782 retval = put_timespec64(&t, interval);
5783
5784 return retval;
5785}
5786
474b9c77 5787#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5788SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5789 struct old_timespec32 __user *, interval)
abca5fc5
AV
5790{
5791 struct timespec64 t;
5792 int retval = sched_rr_get_interval(pid, &t);
5793
5794 if (retval == 0)
9afc5eee 5795 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5796 return retval;
5797}
5798#endif
5799
82a1fcb9 5800void sched_show_task(struct task_struct *p)
1da177e4 5801{
1da177e4 5802 unsigned long free = 0;
4e79752c 5803 int ppid;
c930b2c0 5804
38200502
TH
5805 if (!try_get_task_stack(p))
5806 return;
20435d84
XX
5807
5808 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5809
5810 if (p->state == TASK_RUNNING)
3df0fc5b 5811 printk(KERN_CONT " running task ");
1da177e4 5812#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5813 free = stack_not_used(p);
1da177e4 5814#endif
a90e984c 5815 ppid = 0;
4e79752c 5816 rcu_read_lock();
a90e984c
ON
5817 if (pid_alive(p))
5818 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5819 rcu_read_unlock();
3df0fc5b 5820 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5821 task_pid_nr(p), ppid,
aa47b7e0 5822 (unsigned long)task_thread_info(p)->flags);
1da177e4 5823
3d1cb205 5824 print_worker_info(KERN_INFO, p);
5fb5e6de 5825 show_stack(p, NULL);
38200502 5826 put_task_stack(p);
1da177e4 5827}
0032f4e8 5828EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5829
5d68cc95
PZ
5830static inline bool
5831state_filter_match(unsigned long state_filter, struct task_struct *p)
5832{
5833 /* no filter, everything matches */
5834 if (!state_filter)
5835 return true;
5836
5837 /* filter, but doesn't match */
5838 if (!(p->state & state_filter))
5839 return false;
5840
5841 /*
5842 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5843 * TASK_KILLABLE).
5844 */
5845 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5846 return false;
5847
5848 return true;
5849}
5850
5851
e59e2ae2 5852void show_state_filter(unsigned long state_filter)
1da177e4 5853{
36c8b586 5854 struct task_struct *g, *p;
1da177e4 5855
4bd77321 5856#if BITS_PER_LONG == 32
3df0fc5b
PZ
5857 printk(KERN_INFO
5858 " task PC stack pid father\n");
1da177e4 5859#else
3df0fc5b
PZ
5860 printk(KERN_INFO
5861 " task PC stack pid father\n");
1da177e4 5862#endif
510f5acc 5863 rcu_read_lock();
5d07f420 5864 for_each_process_thread(g, p) {
1da177e4
LT
5865 /*
5866 * reset the NMI-timeout, listing all files on a slow
25985edc 5867 * console might take a lot of time:
57675cb9
AR
5868 * Also, reset softlockup watchdogs on all CPUs, because
5869 * another CPU might be blocked waiting for us to process
5870 * an IPI.
1da177e4
LT
5871 */
5872 touch_nmi_watchdog();
57675cb9 5873 touch_all_softlockup_watchdogs();
5d68cc95 5874 if (state_filter_match(state_filter, p))
82a1fcb9 5875 sched_show_task(p);
5d07f420 5876 }
1da177e4 5877
dd41f596 5878#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5879 if (!state_filter)
5880 sysrq_sched_debug_show();
dd41f596 5881#endif
510f5acc 5882 rcu_read_unlock();
e59e2ae2
IM
5883 /*
5884 * Only show locks if all tasks are dumped:
5885 */
93335a21 5886 if (!state_filter)
e59e2ae2 5887 debug_show_all_locks();
1da177e4
LT
5888}
5889
f340c0d1
IM
5890/**
5891 * init_idle - set up an idle thread for a given CPU
5892 * @idle: task in question
d1ccc66d 5893 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5894 *
5895 * NOTE: this function does not set the idle thread's NEED_RESCHED
5896 * flag, to make booting more robust.
5897 */
0db0628d 5898void init_idle(struct task_struct *idle, int cpu)
1da177e4 5899{
70b97a7f 5900 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5901 unsigned long flags;
5902
25834c73
PZ
5903 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5904 raw_spin_lock(&rq->lock);
5cbd54ef 5905
5e1576ed 5906 __sched_fork(0, idle);
06b83b5f 5907 idle->state = TASK_RUNNING;
dd41f596 5908 idle->se.exec_start = sched_clock();
c1de45ca 5909 idle->flags |= PF_IDLE;
dd41f596 5910
e1b77c92
MR
5911 kasan_unpoison_task_stack(idle);
5912
de9b8f5d
PZ
5913#ifdef CONFIG_SMP
5914 /*
5915 * Its possible that init_idle() gets called multiple times on a task,
5916 * in that case do_set_cpus_allowed() will not do the right thing.
5917 *
5918 * And since this is boot we can forgo the serialization.
5919 */
5920 set_cpus_allowed_common(idle, cpumask_of(cpu));
5921#endif
6506cf6c
PZ
5922 /*
5923 * We're having a chicken and egg problem, even though we are
d1ccc66d 5924 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5925 * lockdep check in task_group() will fail.
5926 *
5927 * Similar case to sched_fork(). / Alternatively we could
5928 * use task_rq_lock() here and obtain the other rq->lock.
5929 *
5930 * Silence PROVE_RCU
5931 */
5932 rcu_read_lock();
dd41f596 5933 __set_task_cpu(idle, cpu);
6506cf6c 5934 rcu_read_unlock();
1da177e4 5935
1da177e4 5936 rq->curr = rq->idle = idle;
da0c1e65 5937 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5938#ifdef CONFIG_SMP
3ca7a440 5939 idle->on_cpu = 1;
4866cde0 5940#endif
25834c73
PZ
5941 raw_spin_unlock(&rq->lock);
5942 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5943
5944 /* Set the preempt count _outside_ the spinlocks! */
01028747 5945 init_idle_preempt_count(idle, cpu);
55cd5340 5946
dd41f596
IM
5947 /*
5948 * The idle tasks have their own, simple scheduling class:
5949 */
5950 idle->sched_class = &idle_sched_class;
868baf07 5951 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5952 vtime_init_idle(idle, cpu);
de9b8f5d 5953#ifdef CONFIG_SMP
f1c6f1a7
CE
5954 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5955#endif
19978ca6
IM
5956}
5957
e1d4eeec
NP
5958#ifdef CONFIG_SMP
5959
f82f8042
JL
5960int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5961 const struct cpumask *trial)
5962{
06a76fe0 5963 int ret = 1;
f82f8042 5964
bb2bc55a
MG
5965 if (!cpumask_weight(cur))
5966 return ret;
5967
06a76fe0 5968 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5969
5970 return ret;
5971}
5972
7f51412a
JL
5973int task_can_attach(struct task_struct *p,
5974 const struct cpumask *cs_cpus_allowed)
5975{
5976 int ret = 0;
5977
5978 /*
5979 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5980 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5981 * affinity and isolating such threads by their set of
5982 * allowed nodes is unnecessary. Thus, cpusets are not
5983 * applicable for such threads. This prevents checking for
5984 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5985 * before cpus_mask may be changed.
7f51412a
JL
5986 */
5987 if (p->flags & PF_NO_SETAFFINITY) {
5988 ret = -EINVAL;
5989 goto out;
5990 }
5991
7f51412a 5992 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5993 cs_cpus_allowed))
5994 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5995
7f51412a
JL
5996out:
5997 return ret;
5998}
5999
f2cb1360 6000bool sched_smp_initialized __read_mostly;
e26fbffd 6001
e6628d5b
MG
6002#ifdef CONFIG_NUMA_BALANCING
6003/* Migrate current task p to target_cpu */
6004int migrate_task_to(struct task_struct *p, int target_cpu)
6005{
6006 struct migration_arg arg = { p, target_cpu };
6007 int curr_cpu = task_cpu(p);
6008
6009 if (curr_cpu == target_cpu)
6010 return 0;
6011
3bd37062 6012 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6013 return -EINVAL;
6014
6015 /* TODO: This is not properly updating schedstats */
6016
286549dc 6017 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6018 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6019}
0ec8aa00
PZ
6020
6021/*
6022 * Requeue a task on a given node and accurately track the number of NUMA
6023 * tasks on the runqueues
6024 */
6025void sched_setnuma(struct task_struct *p, int nid)
6026{
da0c1e65 6027 bool queued, running;
eb580751
PZ
6028 struct rq_flags rf;
6029 struct rq *rq;
0ec8aa00 6030
eb580751 6031 rq = task_rq_lock(p, &rf);
da0c1e65 6032 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6033 running = task_current(rq, p);
6034
da0c1e65 6035 if (queued)
1de64443 6036 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6037 if (running)
f3cd1c4e 6038 put_prev_task(rq, p);
0ec8aa00
PZ
6039
6040 p->numa_preferred_nid = nid;
0ec8aa00 6041
da0c1e65 6042 if (queued)
7134b3e9 6043 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6044 if (running)
03b7fad1 6045 set_next_task(rq, p);
eb580751 6046 task_rq_unlock(rq, p, &rf);
0ec8aa00 6047}
5cc389bc 6048#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6049
1da177e4 6050#ifdef CONFIG_HOTPLUG_CPU
054b9108 6051/*
d1ccc66d 6052 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6053 * offline.
054b9108 6054 */
48c5ccae 6055void idle_task_exit(void)
1da177e4 6056{
48c5ccae 6057 struct mm_struct *mm = current->active_mm;
e76bd8d9 6058
48c5ccae 6059 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6060
a53efe5f 6061 if (mm != &init_mm) {
252d2a41 6062 switch_mm(mm, &init_mm, current);
3eda69c9 6063 current->active_mm = &init_mm;
a53efe5f
MS
6064 finish_arch_post_lock_switch();
6065 }
48c5ccae 6066 mmdrop(mm);
1da177e4
LT
6067}
6068
6069/*
5d180232
PZ
6070 * Since this CPU is going 'away' for a while, fold any nr_active delta
6071 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6072 * nr_active count is stable. We need to take the teardown thread which
6073 * is calling this into account, so we hand in adjust = 1 to the load
6074 * calculation.
5d180232
PZ
6075 *
6076 * Also see the comment "Global load-average calculations".
1da177e4 6077 */
5d180232 6078static void calc_load_migrate(struct rq *rq)
1da177e4 6079{
d60585c5 6080 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6081 if (delta)
6082 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6083}
6084
10e7071b 6085static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6086{
10e7071b
PZ
6087 const struct sched_class *class;
6088 struct task_struct *next;
3f1d2a31 6089
10e7071b
PZ
6090 for_each_class(class) {
6091 next = class->pick_next_task(rq, NULL, NULL);
6092 if (next) {
6093 next->sched_class->put_prev_task(rq, next);
6094 return next;
6095 }
6096 }
3f1d2a31 6097
10e7071b
PZ
6098 /* The idle class should always have a runnable task */
6099 BUG();
6100}
3f1d2a31 6101
48f24c4d 6102/*
48c5ccae
PZ
6103 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6104 * try_to_wake_up()->select_task_rq().
6105 *
6106 * Called with rq->lock held even though we'er in stop_machine() and
6107 * there's no concurrency possible, we hold the required locks anyway
6108 * because of lock validation efforts.
1da177e4 6109 */
8a8c69c3 6110static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6111{
5e16bbc2 6112 struct rq *rq = dead_rq;
48c5ccae 6113 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6114 struct rq_flags orf = *rf;
48c5ccae 6115 int dest_cpu;
1da177e4
LT
6116
6117 /*
48c5ccae
PZ
6118 * Fudge the rq selection such that the below task selection loop
6119 * doesn't get stuck on the currently eligible stop task.
6120 *
6121 * We're currently inside stop_machine() and the rq is either stuck
6122 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6123 * either way we should never end up calling schedule() until we're
6124 * done here.
1da177e4 6125 */
48c5ccae 6126 rq->stop = NULL;
48f24c4d 6127
77bd3970
FW
6128 /*
6129 * put_prev_task() and pick_next_task() sched
6130 * class method both need to have an up-to-date
6131 * value of rq->clock[_task]
6132 */
6133 update_rq_clock(rq);
6134
5e16bbc2 6135 for (;;) {
48c5ccae
PZ
6136 /*
6137 * There's this thread running, bail when that's the only
d1ccc66d 6138 * remaining thread:
48c5ccae
PZ
6139 */
6140 if (rq->nr_running == 1)
dd41f596 6141 break;
48c5ccae 6142
10e7071b 6143 next = __pick_migrate_task(rq);
e692ab53 6144
5473e0cc 6145 /*
3bd37062 6146 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6147 * both pi_lock and rq->lock, such that holding either
6148 * stabilizes the mask.
6149 *
6150 * Drop rq->lock is not quite as disastrous as it usually is
6151 * because !cpu_active at this point, which means load-balance
6152 * will not interfere. Also, stop-machine.
6153 */
8a8c69c3 6154 rq_unlock(rq, rf);
5473e0cc 6155 raw_spin_lock(&next->pi_lock);
8a8c69c3 6156 rq_relock(rq, rf);
5473e0cc
WL
6157
6158 /*
6159 * Since we're inside stop-machine, _nothing_ should have
6160 * changed the task, WARN if weird stuff happened, because in
6161 * that case the above rq->lock drop is a fail too.
6162 */
6163 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6164 raw_spin_unlock(&next->pi_lock);
6165 continue;
6166 }
6167
48c5ccae 6168 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6169 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6170 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6171 if (rq != dead_rq) {
8a8c69c3 6172 rq_unlock(rq, rf);
5e16bbc2 6173 rq = dead_rq;
8a8c69c3
PZ
6174 *rf = orf;
6175 rq_relock(rq, rf);
5e16bbc2 6176 }
5473e0cc 6177 raw_spin_unlock(&next->pi_lock);
1da177e4 6178 }
dce48a84 6179
48c5ccae 6180 rq->stop = stop;
dce48a84 6181}
1da177e4
LT
6182#endif /* CONFIG_HOTPLUG_CPU */
6183
f2cb1360 6184void set_rq_online(struct rq *rq)
1f11eb6a
GH
6185{
6186 if (!rq->online) {
6187 const struct sched_class *class;
6188
c6c4927b 6189 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6190 rq->online = 1;
6191
6192 for_each_class(class) {
6193 if (class->rq_online)
6194 class->rq_online(rq);
6195 }
6196 }
6197}
6198
f2cb1360 6199void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6200{
6201 if (rq->online) {
6202 const struct sched_class *class;
6203
6204 for_each_class(class) {
6205 if (class->rq_offline)
6206 class->rq_offline(rq);
6207 }
6208
c6c4927b 6209 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6210 rq->online = 0;
6211 }
6212}
6213
d1ccc66d
IM
6214/*
6215 * used to mark begin/end of suspend/resume:
6216 */
6217static int num_cpus_frozen;
d35be8ba 6218
1da177e4 6219/*
3a101d05
TH
6220 * Update cpusets according to cpu_active mask. If cpusets are
6221 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6222 * around partition_sched_domains().
d35be8ba
SB
6223 *
6224 * If we come here as part of a suspend/resume, don't touch cpusets because we
6225 * want to restore it back to its original state upon resume anyway.
1da177e4 6226 */
40190a78 6227static void cpuset_cpu_active(void)
e761b772 6228{
40190a78 6229 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6230 /*
6231 * num_cpus_frozen tracks how many CPUs are involved in suspend
6232 * resume sequence. As long as this is not the last online
6233 * operation in the resume sequence, just build a single sched
6234 * domain, ignoring cpusets.
6235 */
50e76632
PZ
6236 partition_sched_domains(1, NULL, NULL);
6237 if (--num_cpus_frozen)
135fb3e1 6238 return;
d35be8ba
SB
6239 /*
6240 * This is the last CPU online operation. So fall through and
6241 * restore the original sched domains by considering the
6242 * cpuset configurations.
6243 */
50e76632 6244 cpuset_force_rebuild();
3a101d05 6245 }
30e03acd 6246 cpuset_update_active_cpus();
3a101d05 6247}
e761b772 6248
40190a78 6249static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6250{
40190a78 6251 if (!cpuhp_tasks_frozen) {
06a76fe0 6252 if (dl_cpu_busy(cpu))
135fb3e1 6253 return -EBUSY;
30e03acd 6254 cpuset_update_active_cpus();
135fb3e1 6255 } else {
d35be8ba
SB
6256 num_cpus_frozen++;
6257 partition_sched_domains(1, NULL, NULL);
e761b772 6258 }
135fb3e1 6259 return 0;
e761b772 6260}
e761b772 6261
40190a78 6262int sched_cpu_activate(unsigned int cpu)
135fb3e1 6263{
7d976699 6264 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6265 struct rq_flags rf;
7d976699 6266
ba2591a5
PZ
6267#ifdef CONFIG_SCHED_SMT
6268 /*
c5511d03 6269 * When going up, increment the number of cores with SMT present.
ba2591a5 6270 */
c5511d03
PZI
6271 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6272 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6273#endif
40190a78 6274 set_cpu_active(cpu, true);
135fb3e1 6275
40190a78 6276 if (sched_smp_initialized) {
135fb3e1 6277 sched_domains_numa_masks_set(cpu);
40190a78 6278 cpuset_cpu_active();
e761b772 6279 }
7d976699
TG
6280
6281 /*
6282 * Put the rq online, if not already. This happens:
6283 *
6284 * 1) In the early boot process, because we build the real domains
d1ccc66d 6285 * after all CPUs have been brought up.
7d976699
TG
6286 *
6287 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6288 * domains.
6289 */
8a8c69c3 6290 rq_lock_irqsave(rq, &rf);
7d976699
TG
6291 if (rq->rd) {
6292 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6293 set_rq_online(rq);
6294 }
8a8c69c3 6295 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
6296
6297 update_max_interval();
6298
40190a78 6299 return 0;
135fb3e1
TG
6300}
6301
40190a78 6302int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6303{
135fb3e1
TG
6304 int ret;
6305
40190a78 6306 set_cpu_active(cpu, false);
b2454caa
PZ
6307 /*
6308 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6309 * users of this state to go away such that all new such users will
6310 * observe it.
6311 *
b2454caa
PZ
6312 * Do sync before park smpboot threads to take care the rcu boost case.
6313 */
309ba859 6314 synchronize_rcu();
40190a78 6315
c5511d03
PZI
6316#ifdef CONFIG_SCHED_SMT
6317 /*
6318 * When going down, decrement the number of cores with SMT present.
6319 */
6320 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6321 static_branch_dec_cpuslocked(&sched_smt_present);
6322#endif
6323
40190a78
TG
6324 if (!sched_smp_initialized)
6325 return 0;
6326
6327 ret = cpuset_cpu_inactive(cpu);
6328 if (ret) {
6329 set_cpu_active(cpu, true);
6330 return ret;
135fb3e1 6331 }
40190a78
TG
6332 sched_domains_numa_masks_clear(cpu);
6333 return 0;
135fb3e1
TG
6334}
6335
94baf7a5
TG
6336static void sched_rq_cpu_starting(unsigned int cpu)
6337{
6338 struct rq *rq = cpu_rq(cpu);
6339
6340 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6341 update_max_interval();
6342}
6343
135fb3e1
TG
6344int sched_cpu_starting(unsigned int cpu)
6345{
94baf7a5 6346 sched_rq_cpu_starting(cpu);
d84b3131 6347 sched_tick_start(cpu);
135fb3e1 6348 return 0;
e761b772 6349}
e761b772 6350
f2785ddb
TG
6351#ifdef CONFIG_HOTPLUG_CPU
6352int sched_cpu_dying(unsigned int cpu)
6353{
6354 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6355 struct rq_flags rf;
f2785ddb
TG
6356
6357 /* Handle pending wakeups and then migrate everything off */
6358 sched_ttwu_pending();
d84b3131 6359 sched_tick_stop(cpu);
8a8c69c3
PZ
6360
6361 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6362 if (rq->rd) {
6363 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6364 set_rq_offline(rq);
6365 }
8a8c69c3 6366 migrate_tasks(rq, &rf);
f2785ddb 6367 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6368 rq_unlock_irqrestore(rq, &rf);
6369
f2785ddb
TG
6370 calc_load_migrate(rq);
6371 update_max_interval();
00357f5e 6372 nohz_balance_exit_idle(rq);
e5ef27d0 6373 hrtick_clear(rq);
f2785ddb
TG
6374 return 0;
6375}
6376#endif
6377
1da177e4
LT
6378void __init sched_init_smp(void)
6379{
cb83b629
PZ
6380 sched_init_numa();
6381
6acce3ef
PZ
6382 /*
6383 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6384 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6385 * happen.
6acce3ef 6386 */
712555ee 6387 mutex_lock(&sched_domains_mutex);
8d5dc512 6388 sched_init_domains(cpu_active_mask);
712555ee 6389 mutex_unlock(&sched_domains_mutex);
e761b772 6390
5c1e1767 6391 /* Move init over to a non-isolated CPU */
edb93821 6392 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6393 BUG();
19978ca6 6394 sched_init_granularity();
4212823f 6395
0e3900e6 6396 init_sched_rt_class();
1baca4ce 6397 init_sched_dl_class();
1b568f0a 6398
e26fbffd 6399 sched_smp_initialized = true;
1da177e4 6400}
e26fbffd
TG
6401
6402static int __init migration_init(void)
6403{
77a5352b 6404 sched_cpu_starting(smp_processor_id());
e26fbffd 6405 return 0;
1da177e4 6406}
e26fbffd
TG
6407early_initcall(migration_init);
6408
1da177e4
LT
6409#else
6410void __init sched_init_smp(void)
6411{
19978ca6 6412 sched_init_granularity();
1da177e4
LT
6413}
6414#endif /* CONFIG_SMP */
6415
6416int in_sched_functions(unsigned long addr)
6417{
1da177e4
LT
6418 return in_lock_functions(addr) ||
6419 (addr >= (unsigned long)__sched_text_start
6420 && addr < (unsigned long)__sched_text_end);
6421}
6422
029632fb 6423#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6424/*
6425 * Default task group.
6426 * Every task in system belongs to this group at bootup.
6427 */
029632fb 6428struct task_group root_task_group;
35cf4e50 6429LIST_HEAD(task_groups);
b0367629
WL
6430
6431/* Cacheline aligned slab cache for task_group */
6432static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6433#endif
6f505b16 6434
e6252c3e 6435DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6436DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6437
1da177e4
LT
6438void __init sched_init(void)
6439{
a1dc0446 6440 unsigned long ptr = 0;
55627e3c 6441 int i;
434d53b0 6442
5822a454 6443 wait_bit_init();
9dcb8b68 6444
434d53b0 6445#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6446 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6447#endif
6448#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6449 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6450#endif
a1dc0446
QC
6451 if (ptr) {
6452 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6453
6454#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6455 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6456 ptr += nr_cpu_ids * sizeof(void **);
6457
07e06b01 6458 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6459 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6460
6d6bc0ad 6461#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6462#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6463 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6464 ptr += nr_cpu_ids * sizeof(void **);
6465
07e06b01 6466 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6467 ptr += nr_cpu_ids * sizeof(void **);
6468
6d6bc0ad 6469#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6470 }
df7c8e84 6471#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6472 for_each_possible_cpu(i) {
6473 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6474 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6475 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6476 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6477 }
b74e6278 6478#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6479
d1ccc66d
IM
6480 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6481 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6482
57d885fe
GH
6483#ifdef CONFIG_SMP
6484 init_defrootdomain();
6485#endif
6486
d0b27fa7 6487#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6488 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6489 global_rt_period(), global_rt_runtime());
6d6bc0ad 6490#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6491
7c941438 6492#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6493 task_group_cache = KMEM_CACHE(task_group, 0);
6494
07e06b01
YZ
6495 list_add(&root_task_group.list, &task_groups);
6496 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6497 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6498 autogroup_init(&init_task);
7c941438 6499#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6500
0a945022 6501 for_each_possible_cpu(i) {
70b97a7f 6502 struct rq *rq;
1da177e4
LT
6503
6504 rq = cpu_rq(i);
05fa785c 6505 raw_spin_lock_init(&rq->lock);
7897986b 6506 rq->nr_running = 0;
dce48a84
TG
6507 rq->calc_load_active = 0;
6508 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6509 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6510 init_rt_rq(&rq->rt);
6511 init_dl_rq(&rq->dl);
dd41f596 6512#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6513 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6514 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6515 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6516 /*
d1ccc66d 6517 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6518 *
6519 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6520 * gets 100% of the CPU resources in the system. This overall
6521 * system CPU resource is divided among the tasks of
07e06b01 6522 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6523 * based on each entity's (task or task-group's) weight
6524 * (se->load.weight).
6525 *
07e06b01 6526 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6527 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6528 * then A0's share of the CPU resource is:
354d60c2 6529 *
0d905bca 6530 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6531 *
07e06b01
YZ
6532 * We achieve this by letting root_task_group's tasks sit
6533 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6534 */
ab84d31e 6535 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6536 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6537#endif /* CONFIG_FAIR_GROUP_SCHED */
6538
6539 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6540#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6541 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6542#endif
1da177e4 6543#ifdef CONFIG_SMP
41c7ce9a 6544 rq->sd = NULL;
57d885fe 6545 rq->rd = NULL;
ca6d75e6 6546 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6547 rq->balance_callback = NULL;
1da177e4 6548 rq->active_balance = 0;
dd41f596 6549 rq->next_balance = jiffies;
1da177e4 6550 rq->push_cpu = 0;
0a2966b4 6551 rq->cpu = i;
1f11eb6a 6552 rq->online = 0;
eae0c9df
MG
6553 rq->idle_stamp = 0;
6554 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6555 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6556
6557 INIT_LIST_HEAD(&rq->cfs_tasks);
6558
dc938520 6559 rq_attach_root(rq, &def_root_domain);
3451d024 6560#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6561 rq->last_load_update_tick = jiffies;
e022e0d3 6562 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6563 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6564#endif
9fd81dd5 6565#endif /* CONFIG_SMP */
77a021be 6566 hrtick_rq_init(rq);
1da177e4 6567 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6568 }
6569
9059393e 6570 set_load_weight(&init_task, false);
b50f60ce 6571
1da177e4
LT
6572 /*
6573 * The boot idle thread does lazy MMU switching as well:
6574 */
f1f10076 6575 mmgrab(&init_mm);
1da177e4
LT
6576 enter_lazy_tlb(&init_mm, current);
6577
6578 /*
6579 * Make us the idle thread. Technically, schedule() should not be
6580 * called from this thread, however somewhere below it might be,
6581 * but because we are the idle thread, we just pick up running again
6582 * when this runqueue becomes "idle".
6583 */
6584 init_idle(current, smp_processor_id());
dce48a84
TG
6585
6586 calc_load_update = jiffies + LOAD_FREQ;
6587
bf4d83f6 6588#ifdef CONFIG_SMP
29d5e047 6589 idle_thread_set_boot_cpu();
029632fb
PZ
6590#endif
6591 init_sched_fair_class();
6a7b3dc3 6592
4698f88c
JP
6593 init_schedstats();
6594
eb414681
JW
6595 psi_init();
6596
69842cba
PB
6597 init_uclamp();
6598
6892b75e 6599 scheduler_running = 1;
1da177e4
LT
6600}
6601
d902db1e 6602#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6603static inline int preempt_count_equals(int preempt_offset)
6604{
da7142e2 6605 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6606
4ba8216c 6607 return (nested == preempt_offset);
e4aafea2
FW
6608}
6609
d894837f 6610void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6611{
8eb23b9f
PZ
6612 /*
6613 * Blocking primitives will set (and therefore destroy) current->state,
6614 * since we will exit with TASK_RUNNING make sure we enter with it,
6615 * otherwise we will destroy state.
6616 */
00845eb9 6617 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6618 "do not call blocking ops when !TASK_RUNNING; "
6619 "state=%lx set at [<%p>] %pS\n",
6620 current->state,
6621 (void *)current->task_state_change,
00845eb9 6622 (void *)current->task_state_change);
8eb23b9f 6623
3427445a
PZ
6624 ___might_sleep(file, line, preempt_offset);
6625}
6626EXPORT_SYMBOL(__might_sleep);
6627
6628void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6629{
d1ccc66d
IM
6630 /* Ratelimiting timestamp: */
6631 static unsigned long prev_jiffy;
6632
d1c6d149 6633 unsigned long preempt_disable_ip;
1da177e4 6634
d1ccc66d
IM
6635 /* WARN_ON_ONCE() by default, no rate limit required: */
6636 rcu_sleep_check();
6637
db273be2
TG
6638 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6639 !is_idle_task(current)) ||
1c3c5eab
TG
6640 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6641 oops_in_progress)
aef745fc 6642 return;
1c3c5eab 6643
aef745fc
IM
6644 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6645 return;
6646 prev_jiffy = jiffies;
6647
d1ccc66d 6648 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6649 preempt_disable_ip = get_preempt_disable_ip(current);
6650
3df0fc5b
PZ
6651 printk(KERN_ERR
6652 "BUG: sleeping function called from invalid context at %s:%d\n",
6653 file, line);
6654 printk(KERN_ERR
6655 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6656 in_atomic(), irqs_disabled(),
6657 current->pid, current->comm);
aef745fc 6658
a8b686b3
ES
6659 if (task_stack_end_corrupted(current))
6660 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6661
aef745fc
IM
6662 debug_show_held_locks(current);
6663 if (irqs_disabled())
6664 print_irqtrace_events(current);
d1c6d149
VN
6665 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6666 && !preempt_count_equals(preempt_offset)) {
8f47b187 6667 pr_err("Preemption disabled at:");
d1c6d149 6668 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6669 pr_cont("\n");
6670 }
aef745fc 6671 dump_stack();
f0b22e39 6672 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6673}
3427445a 6674EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6675
6676void __cant_sleep(const char *file, int line, int preempt_offset)
6677{
6678 static unsigned long prev_jiffy;
6679
6680 if (irqs_disabled())
6681 return;
6682
6683 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6684 return;
6685
6686 if (preempt_count() > preempt_offset)
6687 return;
6688
6689 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6690 return;
6691 prev_jiffy = jiffies;
6692
6693 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6694 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6695 in_atomic(), irqs_disabled(),
6696 current->pid, current->comm);
6697
6698 debug_show_held_locks(current);
6699 dump_stack();
6700 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6701}
6702EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6703#endif
6704
6705#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6706void normalize_rt_tasks(void)
3a5e4dc1 6707{
dbc7f069 6708 struct task_struct *g, *p;
d50dde5a
DF
6709 struct sched_attr attr = {
6710 .sched_policy = SCHED_NORMAL,
6711 };
1da177e4 6712
3472eaa1 6713 read_lock(&tasklist_lock);
5d07f420 6714 for_each_process_thread(g, p) {
178be793
IM
6715 /*
6716 * Only normalize user tasks:
6717 */
3472eaa1 6718 if (p->flags & PF_KTHREAD)
178be793
IM
6719 continue;
6720
4fa8d299
JP
6721 p->se.exec_start = 0;
6722 schedstat_set(p->se.statistics.wait_start, 0);
6723 schedstat_set(p->se.statistics.sleep_start, 0);
6724 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6725
aab03e05 6726 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6727 /*
6728 * Renice negative nice level userspace
6729 * tasks back to 0:
6730 */
3472eaa1 6731 if (task_nice(p) < 0)
dd41f596 6732 set_user_nice(p, 0);
1da177e4 6733 continue;
dd41f596 6734 }
1da177e4 6735
dbc7f069 6736 __sched_setscheduler(p, &attr, false, false);
5d07f420 6737 }
3472eaa1 6738 read_unlock(&tasklist_lock);
1da177e4
LT
6739}
6740
6741#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6742
67fc4e0c 6743#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6744/*
67fc4e0c 6745 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6746 *
6747 * They can only be called when the whole system has been
6748 * stopped - every CPU needs to be quiescent, and no scheduling
6749 * activity can take place. Using them for anything else would
6750 * be a serious bug, and as a result, they aren't even visible
6751 * under any other configuration.
6752 */
6753
6754/**
d1ccc66d 6755 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6756 * @cpu: the processor in question.
6757 *
6758 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6759 *
6760 * Return: The current task for @cpu.
1df5c10a 6761 */
36c8b586 6762struct task_struct *curr_task(int cpu)
1df5c10a
LT
6763{
6764 return cpu_curr(cpu);
6765}
6766
67fc4e0c
JW
6767#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6768
6769#ifdef CONFIG_IA64
1df5c10a 6770/**
5feeb783 6771 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6772 * @cpu: the processor in question.
6773 * @p: the task pointer to set.
6774 *
6775 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6776 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6777 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6778 * must be called with all CPU's synchronized, and interrupts disabled, the
6779 * and caller must save the original value of the current task (see
6780 * curr_task() above) and restore that value before reenabling interrupts and
6781 * re-starting the system.
6782 *
6783 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6784 */
a458ae2e 6785void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6786{
6787 cpu_curr(cpu) = p;
6788}
6789
6790#endif
29f59db3 6791
7c941438 6792#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6793/* task_group_lock serializes the addition/removal of task groups */
6794static DEFINE_SPINLOCK(task_group_lock);
6795
2f5177f0 6796static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6797{
6798 free_fair_sched_group(tg);
6799 free_rt_sched_group(tg);
e9aa1dd1 6800 autogroup_free(tg);
b0367629 6801 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6802}
6803
6804/* allocate runqueue etc for a new task group */
ec7dc8ac 6805struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6806{
6807 struct task_group *tg;
bccbe08a 6808
b0367629 6809 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6810 if (!tg)
6811 return ERR_PTR(-ENOMEM);
6812
ec7dc8ac 6813 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6814 goto err;
6815
ec7dc8ac 6816 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6817 goto err;
6818
ace783b9
LZ
6819 return tg;
6820
6821err:
2f5177f0 6822 sched_free_group(tg);
ace783b9
LZ
6823 return ERR_PTR(-ENOMEM);
6824}
6825
6826void sched_online_group(struct task_group *tg, struct task_group *parent)
6827{
6828 unsigned long flags;
6829
8ed36996 6830 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6831 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6832
d1ccc66d
IM
6833 /* Root should already exist: */
6834 WARN_ON(!parent);
f473aa5e
PZ
6835
6836 tg->parent = parent;
f473aa5e 6837 INIT_LIST_HEAD(&tg->children);
09f2724a 6838 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6839 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6840
6841 online_fair_sched_group(tg);
29f59db3
SV
6842}
6843
9b5b7751 6844/* rcu callback to free various structures associated with a task group */
2f5177f0 6845static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6846{
d1ccc66d 6847 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6848 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6849}
6850
4cf86d77 6851void sched_destroy_group(struct task_group *tg)
ace783b9 6852{
d1ccc66d 6853 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6854 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6855}
6856
6857void sched_offline_group(struct task_group *tg)
29f59db3 6858{
8ed36996 6859 unsigned long flags;
29f59db3 6860
d1ccc66d 6861 /* End participation in shares distribution: */
6fe1f348 6862 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6863
6864 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6865 list_del_rcu(&tg->list);
f473aa5e 6866 list_del_rcu(&tg->siblings);
8ed36996 6867 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6868}
6869
ea86cb4b 6870static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6871{
8323f26c 6872 struct task_group *tg;
29f59db3 6873
f7b8a47d
KT
6874 /*
6875 * All callers are synchronized by task_rq_lock(); we do not use RCU
6876 * which is pointless here. Thus, we pass "true" to task_css_check()
6877 * to prevent lockdep warnings.
6878 */
6879 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6880 struct task_group, css);
6881 tg = autogroup_task_group(tsk, tg);
6882 tsk->sched_task_group = tg;
6883
810b3817 6884#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6885 if (tsk->sched_class->task_change_group)
6886 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6887 else
810b3817 6888#endif
b2b5ce02 6889 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6890}
6891
6892/*
6893 * Change task's runqueue when it moves between groups.
6894 *
6895 * The caller of this function should have put the task in its new group by
6896 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6897 * its new group.
6898 */
6899void sched_move_task(struct task_struct *tsk)
6900{
7a57f32a
PZ
6901 int queued, running, queue_flags =
6902 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6903 struct rq_flags rf;
6904 struct rq *rq;
6905
6906 rq = task_rq_lock(tsk, &rf);
1b1d6225 6907 update_rq_clock(rq);
ea86cb4b
VG
6908
6909 running = task_current(rq, tsk);
6910 queued = task_on_rq_queued(tsk);
6911
6912 if (queued)
7a57f32a 6913 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6914 if (running)
ea86cb4b
VG
6915 put_prev_task(rq, tsk);
6916
6917 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6918
da0c1e65 6919 if (queued)
7a57f32a 6920 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6921 if (running)
03b7fad1 6922 set_next_task(rq, tsk);
29f59db3 6923
eb580751 6924 task_rq_unlock(rq, tsk, &rf);
29f59db3 6925}
68318b8e 6926
a7c6d554 6927static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6928{
a7c6d554 6929 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6930}
6931
eb95419b
TH
6932static struct cgroup_subsys_state *
6933cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6934{
eb95419b
TH
6935 struct task_group *parent = css_tg(parent_css);
6936 struct task_group *tg;
68318b8e 6937
eb95419b 6938 if (!parent) {
68318b8e 6939 /* This is early initialization for the top cgroup */
07e06b01 6940 return &root_task_group.css;
68318b8e
SV
6941 }
6942
ec7dc8ac 6943 tg = sched_create_group(parent);
68318b8e
SV
6944 if (IS_ERR(tg))
6945 return ERR_PTR(-ENOMEM);
6946
68318b8e
SV
6947 return &tg->css;
6948}
6949
96b77745
KK
6950/* Expose task group only after completing cgroup initialization */
6951static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6952{
6953 struct task_group *tg = css_tg(css);
6954 struct task_group *parent = css_tg(css->parent);
6955
6956 if (parent)
6957 sched_online_group(tg, parent);
6958 return 0;
6959}
6960
2f5177f0 6961static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6962{
eb95419b 6963 struct task_group *tg = css_tg(css);
ace783b9 6964
2f5177f0 6965 sched_offline_group(tg);
ace783b9
LZ
6966}
6967
eb95419b 6968static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6969{
eb95419b 6970 struct task_group *tg = css_tg(css);
68318b8e 6971
2f5177f0
PZ
6972 /*
6973 * Relies on the RCU grace period between css_released() and this.
6974 */
6975 sched_free_group(tg);
ace783b9
LZ
6976}
6977
ea86cb4b
VG
6978/*
6979 * This is called before wake_up_new_task(), therefore we really only
6980 * have to set its group bits, all the other stuff does not apply.
6981 */
b53202e6 6982static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6983{
ea86cb4b
VG
6984 struct rq_flags rf;
6985 struct rq *rq;
6986
6987 rq = task_rq_lock(task, &rf);
6988
80f5c1b8 6989 update_rq_clock(rq);
ea86cb4b
VG
6990 sched_change_group(task, TASK_SET_GROUP);
6991
6992 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6993}
6994
1f7dd3e5 6995static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6996{
bb9d97b6 6997 struct task_struct *task;
1f7dd3e5 6998 struct cgroup_subsys_state *css;
7dc603c9 6999 int ret = 0;
bb9d97b6 7000
1f7dd3e5 7001 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7002#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7003 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7004 return -EINVAL;
b68aa230 7005#endif
7dc603c9
PZ
7006 /*
7007 * Serialize against wake_up_new_task() such that if its
7008 * running, we're sure to observe its full state.
7009 */
7010 raw_spin_lock_irq(&task->pi_lock);
7011 /*
7012 * Avoid calling sched_move_task() before wake_up_new_task()
7013 * has happened. This would lead to problems with PELT, due to
7014 * move wanting to detach+attach while we're not attached yet.
7015 */
7016 if (task->state == TASK_NEW)
7017 ret = -EINVAL;
7018 raw_spin_unlock_irq(&task->pi_lock);
7019
7020 if (ret)
7021 break;
bb9d97b6 7022 }
7dc603c9 7023 return ret;
be367d09 7024}
68318b8e 7025
1f7dd3e5 7026static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7027{
bb9d97b6 7028 struct task_struct *task;
1f7dd3e5 7029 struct cgroup_subsys_state *css;
bb9d97b6 7030
1f7dd3e5 7031 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7032 sched_move_task(task);
68318b8e
SV
7033}
7034
052f1dc7 7035#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7036static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7037 struct cftype *cftype, u64 shareval)
68318b8e 7038{
5b61d50a
KK
7039 if (shareval > scale_load_down(ULONG_MAX))
7040 shareval = MAX_SHARES;
182446d0 7041 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7042}
7043
182446d0
TH
7044static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7045 struct cftype *cft)
68318b8e 7046{
182446d0 7047 struct task_group *tg = css_tg(css);
68318b8e 7048
c8b28116 7049 return (u64) scale_load_down(tg->shares);
68318b8e 7050}
ab84d31e
PT
7051
7052#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7053static DEFINE_MUTEX(cfs_constraints_mutex);
7054
ab84d31e 7055const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7056static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7057
a790de99
PT
7058static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7059
ab84d31e
PT
7060static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7061{
56f570e5 7062 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7063 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7064
7065 if (tg == &root_task_group)
7066 return -EINVAL;
7067
7068 /*
7069 * Ensure we have at some amount of bandwidth every period. This is
7070 * to prevent reaching a state of large arrears when throttled via
7071 * entity_tick() resulting in prolonged exit starvation.
7072 */
7073 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7074 return -EINVAL;
7075
7076 /*
7077 * Likewise, bound things on the otherside by preventing insane quota
7078 * periods. This also allows us to normalize in computing quota
7079 * feasibility.
7080 */
7081 if (period > max_cfs_quota_period)
7082 return -EINVAL;
7083
0e59bdae
KT
7084 /*
7085 * Prevent race between setting of cfs_rq->runtime_enabled and
7086 * unthrottle_offline_cfs_rqs().
7087 */
7088 get_online_cpus();
a790de99
PT
7089 mutex_lock(&cfs_constraints_mutex);
7090 ret = __cfs_schedulable(tg, period, quota);
7091 if (ret)
7092 goto out_unlock;
7093
58088ad0 7094 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7095 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7096 /*
7097 * If we need to toggle cfs_bandwidth_used, off->on must occur
7098 * before making related changes, and on->off must occur afterwards
7099 */
7100 if (runtime_enabled && !runtime_was_enabled)
7101 cfs_bandwidth_usage_inc();
ab84d31e
PT
7102 raw_spin_lock_irq(&cfs_b->lock);
7103 cfs_b->period = ns_to_ktime(period);
7104 cfs_b->quota = quota;
58088ad0 7105
a9cf55b2 7106 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7107
7108 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7109 if (runtime_enabled)
7110 start_cfs_bandwidth(cfs_b);
d1ccc66d 7111
ab84d31e
PT
7112 raw_spin_unlock_irq(&cfs_b->lock);
7113
0e59bdae 7114 for_each_online_cpu(i) {
ab84d31e 7115 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7116 struct rq *rq = cfs_rq->rq;
8a8c69c3 7117 struct rq_flags rf;
ab84d31e 7118
8a8c69c3 7119 rq_lock_irq(rq, &rf);
58088ad0 7120 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7121 cfs_rq->runtime_remaining = 0;
671fd9da 7122
029632fb 7123 if (cfs_rq->throttled)
671fd9da 7124 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7125 rq_unlock_irq(rq, &rf);
ab84d31e 7126 }
1ee14e6c
BS
7127 if (runtime_was_enabled && !runtime_enabled)
7128 cfs_bandwidth_usage_dec();
a790de99
PT
7129out_unlock:
7130 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7131 put_online_cpus();
ab84d31e 7132
a790de99 7133 return ret;
ab84d31e
PT
7134}
7135
b1546edc 7136static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7137{
7138 u64 quota, period;
7139
029632fb 7140 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7141 if (cfs_quota_us < 0)
7142 quota = RUNTIME_INF;
1a8b4540 7143 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7144 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7145 else
7146 return -EINVAL;
ab84d31e
PT
7147
7148 return tg_set_cfs_bandwidth(tg, period, quota);
7149}
7150
b1546edc 7151static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7152{
7153 u64 quota_us;
7154
029632fb 7155 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7156 return -1;
7157
029632fb 7158 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7159 do_div(quota_us, NSEC_PER_USEC);
7160
7161 return quota_us;
7162}
7163
b1546edc 7164static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7165{
7166 u64 quota, period;
7167
1a8b4540
KK
7168 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7169 return -EINVAL;
7170
ab84d31e 7171 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7172 quota = tg->cfs_bandwidth.quota;
ab84d31e 7173
ab84d31e
PT
7174 return tg_set_cfs_bandwidth(tg, period, quota);
7175}
7176
b1546edc 7177static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7178{
7179 u64 cfs_period_us;
7180
029632fb 7181 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7182 do_div(cfs_period_us, NSEC_PER_USEC);
7183
7184 return cfs_period_us;
7185}
7186
182446d0
TH
7187static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7188 struct cftype *cft)
ab84d31e 7189{
182446d0 7190 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7191}
7192
182446d0
TH
7193static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7194 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7195{
182446d0 7196 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7197}
7198
182446d0
TH
7199static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7200 struct cftype *cft)
ab84d31e 7201{
182446d0 7202 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7203}
7204
182446d0
TH
7205static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7206 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7207{
182446d0 7208 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7209}
7210
a790de99
PT
7211struct cfs_schedulable_data {
7212 struct task_group *tg;
7213 u64 period, quota;
7214};
7215
7216/*
7217 * normalize group quota/period to be quota/max_period
7218 * note: units are usecs
7219 */
7220static u64 normalize_cfs_quota(struct task_group *tg,
7221 struct cfs_schedulable_data *d)
7222{
7223 u64 quota, period;
7224
7225 if (tg == d->tg) {
7226 period = d->period;
7227 quota = d->quota;
7228 } else {
7229 period = tg_get_cfs_period(tg);
7230 quota = tg_get_cfs_quota(tg);
7231 }
7232
7233 /* note: these should typically be equivalent */
7234 if (quota == RUNTIME_INF || quota == -1)
7235 return RUNTIME_INF;
7236
7237 return to_ratio(period, quota);
7238}
7239
7240static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7241{
7242 struct cfs_schedulable_data *d = data;
029632fb 7243 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7244 s64 quota = 0, parent_quota = -1;
7245
7246 if (!tg->parent) {
7247 quota = RUNTIME_INF;
7248 } else {
029632fb 7249 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7250
7251 quota = normalize_cfs_quota(tg, d);
9c58c79a 7252 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7253
7254 /*
c53593e5
TH
7255 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7256 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7257 * limit is set:
a790de99 7258 */
c53593e5
TH
7259 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7260 quota = min(quota, parent_quota);
7261 } else {
7262 if (quota == RUNTIME_INF)
7263 quota = parent_quota;
7264 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7265 return -EINVAL;
7266 }
a790de99 7267 }
9c58c79a 7268 cfs_b->hierarchical_quota = quota;
a790de99
PT
7269
7270 return 0;
7271}
7272
7273static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7274{
8277434e 7275 int ret;
a790de99
PT
7276 struct cfs_schedulable_data data = {
7277 .tg = tg,
7278 .period = period,
7279 .quota = quota,
7280 };
7281
7282 if (quota != RUNTIME_INF) {
7283 do_div(data.period, NSEC_PER_USEC);
7284 do_div(data.quota, NSEC_PER_USEC);
7285 }
7286
8277434e
PT
7287 rcu_read_lock();
7288 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7289 rcu_read_unlock();
7290
7291 return ret;
a790de99 7292}
e8da1b18 7293
a1f7164c 7294static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7295{
2da8ca82 7296 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7297 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7298
44ffc75b
TH
7299 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7300 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7301 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7302
3d6c50c2
YW
7303 if (schedstat_enabled() && tg != &root_task_group) {
7304 u64 ws = 0;
7305 int i;
7306
7307 for_each_possible_cpu(i)
7308 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7309
7310 seq_printf(sf, "wait_sum %llu\n", ws);
7311 }
7312
e8da1b18
NR
7313 return 0;
7314}
ab84d31e 7315#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7316#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7317
052f1dc7 7318#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7319static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7320 struct cftype *cft, s64 val)
6f505b16 7321{
182446d0 7322 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7323}
7324
182446d0
TH
7325static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7326 struct cftype *cft)
6f505b16 7327{
182446d0 7328 return sched_group_rt_runtime(css_tg(css));
6f505b16 7329}
d0b27fa7 7330
182446d0
TH
7331static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7332 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7333{
182446d0 7334 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7335}
7336
182446d0
TH
7337static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7338 struct cftype *cft)
d0b27fa7 7339{
182446d0 7340 return sched_group_rt_period(css_tg(css));
d0b27fa7 7341}
6d6bc0ad 7342#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7343
a1f7164c 7344static struct cftype cpu_legacy_files[] = {
052f1dc7 7345#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7346 {
7347 .name = "shares",
f4c753b7
PM
7348 .read_u64 = cpu_shares_read_u64,
7349 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7350 },
052f1dc7 7351#endif
ab84d31e
PT
7352#ifdef CONFIG_CFS_BANDWIDTH
7353 {
7354 .name = "cfs_quota_us",
7355 .read_s64 = cpu_cfs_quota_read_s64,
7356 .write_s64 = cpu_cfs_quota_write_s64,
7357 },
7358 {
7359 .name = "cfs_period_us",
7360 .read_u64 = cpu_cfs_period_read_u64,
7361 .write_u64 = cpu_cfs_period_write_u64,
7362 },
e8da1b18
NR
7363 {
7364 .name = "stat",
a1f7164c 7365 .seq_show = cpu_cfs_stat_show,
e8da1b18 7366 },
ab84d31e 7367#endif
052f1dc7 7368#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7369 {
9f0c1e56 7370 .name = "rt_runtime_us",
06ecb27c
PM
7371 .read_s64 = cpu_rt_runtime_read,
7372 .write_s64 = cpu_rt_runtime_write,
6f505b16 7373 },
d0b27fa7
PZ
7374 {
7375 .name = "rt_period_us",
f4c753b7
PM
7376 .read_u64 = cpu_rt_period_read_uint,
7377 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7378 },
052f1dc7 7379#endif
d1ccc66d 7380 { } /* Terminate */
68318b8e
SV
7381};
7382
d41bf8c9
TH
7383static int cpu_extra_stat_show(struct seq_file *sf,
7384 struct cgroup_subsys_state *css)
0d593634 7385{
0d593634
TH
7386#ifdef CONFIG_CFS_BANDWIDTH
7387 {
d41bf8c9 7388 struct task_group *tg = css_tg(css);
0d593634
TH
7389 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7390 u64 throttled_usec;
7391
7392 throttled_usec = cfs_b->throttled_time;
7393 do_div(throttled_usec, NSEC_PER_USEC);
7394
7395 seq_printf(sf, "nr_periods %d\n"
7396 "nr_throttled %d\n"
7397 "throttled_usec %llu\n",
7398 cfs_b->nr_periods, cfs_b->nr_throttled,
7399 throttled_usec);
7400 }
7401#endif
7402 return 0;
7403}
7404
7405#ifdef CONFIG_FAIR_GROUP_SCHED
7406static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7407 struct cftype *cft)
7408{
7409 struct task_group *tg = css_tg(css);
7410 u64 weight = scale_load_down(tg->shares);
7411
7412 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7413}
7414
7415static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7416 struct cftype *cft, u64 weight)
7417{
7418 /*
7419 * cgroup weight knobs should use the common MIN, DFL and MAX
7420 * values which are 1, 100 and 10000 respectively. While it loses
7421 * a bit of range on both ends, it maps pretty well onto the shares
7422 * value used by scheduler and the round-trip conversions preserve
7423 * the original value over the entire range.
7424 */
7425 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7426 return -ERANGE;
7427
7428 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7429
7430 return sched_group_set_shares(css_tg(css), scale_load(weight));
7431}
7432
7433static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7434 struct cftype *cft)
7435{
7436 unsigned long weight = scale_load_down(css_tg(css)->shares);
7437 int last_delta = INT_MAX;
7438 int prio, delta;
7439
7440 /* find the closest nice value to the current weight */
7441 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7442 delta = abs(sched_prio_to_weight[prio] - weight);
7443 if (delta >= last_delta)
7444 break;
7445 last_delta = delta;
7446 }
7447
7448 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7449}
7450
7451static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7452 struct cftype *cft, s64 nice)
7453{
7454 unsigned long weight;
7281c8de 7455 int idx;
0d593634
TH
7456
7457 if (nice < MIN_NICE || nice > MAX_NICE)
7458 return -ERANGE;
7459
7281c8de
PZ
7460 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7461 idx = array_index_nospec(idx, 40);
7462 weight = sched_prio_to_weight[idx];
7463
0d593634
TH
7464 return sched_group_set_shares(css_tg(css), scale_load(weight));
7465}
7466#endif
7467
7468static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7469 long period, long quota)
7470{
7471 if (quota < 0)
7472 seq_puts(sf, "max");
7473 else
7474 seq_printf(sf, "%ld", quota);
7475
7476 seq_printf(sf, " %ld\n", period);
7477}
7478
7479/* caller should put the current value in *@periodp before calling */
7480static int __maybe_unused cpu_period_quota_parse(char *buf,
7481 u64 *periodp, u64 *quotap)
7482{
7483 char tok[21]; /* U64_MAX */
7484
4c47acd8 7485 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7486 return -EINVAL;
7487
7488 *periodp *= NSEC_PER_USEC;
7489
7490 if (sscanf(tok, "%llu", quotap))
7491 *quotap *= NSEC_PER_USEC;
7492 else if (!strcmp(tok, "max"))
7493 *quotap = RUNTIME_INF;
7494 else
7495 return -EINVAL;
7496
7497 return 0;
7498}
7499
7500#ifdef CONFIG_CFS_BANDWIDTH
7501static int cpu_max_show(struct seq_file *sf, void *v)
7502{
7503 struct task_group *tg = css_tg(seq_css(sf));
7504
7505 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7506 return 0;
7507}
7508
7509static ssize_t cpu_max_write(struct kernfs_open_file *of,
7510 char *buf, size_t nbytes, loff_t off)
7511{
7512 struct task_group *tg = css_tg(of_css(of));
7513 u64 period = tg_get_cfs_period(tg);
7514 u64 quota;
7515 int ret;
7516
7517 ret = cpu_period_quota_parse(buf, &period, &quota);
7518 if (!ret)
7519 ret = tg_set_cfs_bandwidth(tg, period, quota);
7520 return ret ?: nbytes;
7521}
7522#endif
7523
7524static struct cftype cpu_files[] = {
0d593634
TH
7525#ifdef CONFIG_FAIR_GROUP_SCHED
7526 {
7527 .name = "weight",
7528 .flags = CFTYPE_NOT_ON_ROOT,
7529 .read_u64 = cpu_weight_read_u64,
7530 .write_u64 = cpu_weight_write_u64,
7531 },
7532 {
7533 .name = "weight.nice",
7534 .flags = CFTYPE_NOT_ON_ROOT,
7535 .read_s64 = cpu_weight_nice_read_s64,
7536 .write_s64 = cpu_weight_nice_write_s64,
7537 },
7538#endif
7539#ifdef CONFIG_CFS_BANDWIDTH
7540 {
7541 .name = "max",
7542 .flags = CFTYPE_NOT_ON_ROOT,
7543 .seq_show = cpu_max_show,
7544 .write = cpu_max_write,
7545 },
7546#endif
7547 { } /* terminate */
7548};
7549
073219e9 7550struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7551 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7552 .css_online = cpu_cgroup_css_online,
2f5177f0 7553 .css_released = cpu_cgroup_css_released,
92fb9748 7554 .css_free = cpu_cgroup_css_free,
d41bf8c9 7555 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7556 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7557 .can_attach = cpu_cgroup_can_attach,
7558 .attach = cpu_cgroup_attach,
a1f7164c 7559 .legacy_cftypes = cpu_legacy_files,
0d593634 7560 .dfl_cftypes = cpu_files,
b38e42e9 7561 .early_init = true,
0d593634 7562 .threaded = true,
68318b8e
SV
7563};
7564
052f1dc7 7565#endif /* CONFIG_CGROUP_SCHED */
d842de87 7566
b637a328
PM
7567void dump_cpu_task(int cpu)
7568{
7569 pr_info("Task dump for CPU %d:\n", cpu);
7570 sched_show_task(cpu_curr(cpu));
7571}
ed82b8a1
AK
7572
7573/*
7574 * Nice levels are multiplicative, with a gentle 10% change for every
7575 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7576 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7577 * that remained on nice 0.
7578 *
7579 * The "10% effect" is relative and cumulative: from _any_ nice level,
7580 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7581 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7582 * If a task goes up by ~10% and another task goes down by ~10% then
7583 * the relative distance between them is ~25%.)
7584 */
7585const int sched_prio_to_weight[40] = {
7586 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7587 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7588 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7589 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7590 /* 0 */ 1024, 820, 655, 526, 423,
7591 /* 5 */ 335, 272, 215, 172, 137,
7592 /* 10 */ 110, 87, 70, 56, 45,
7593 /* 15 */ 36, 29, 23, 18, 15,
7594};
7595
7596/*
7597 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7598 *
7599 * In cases where the weight does not change often, we can use the
7600 * precalculated inverse to speed up arithmetics by turning divisions
7601 * into multiplications:
7602 */
7603const u32 sched_prio_to_wmult[40] = {
7604 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7605 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7606 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7607 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7608 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7609 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7610 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7611 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7612};
14a7405b
IM
7613
7614#undef CREATE_TRACE_POINTS