sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
1da177e4 12#include <linux/cpuset.h>
0ff92245 13#include <linux/delayacct.h>
f1c6f1a7 14#include <linux/init_task.h>
91d1aa43 15#include <linux/context_tracking.h>
f9411ebe 16#include <linux/rcupdate_wait.h>
004172bd
IM
17
18#include <linux/blkdev.h>
19#include <linux/kprobes.h>
20#include <linux/mmu_context.h>
21#include <linux/module.h>
22#include <linux/nmi.h>
6075620b 23#include <linux/prefetch.h>
004172bd
IM
24#include <linux/profile.h>
25#include <linux/security.h>
26#include <linux/syscalls.h>
1da177e4 27
96f951ed 28#include <asm/switch_to.h>
5517d86b 29#include <asm/tlb.h>
fd4a61e0
MB
30#ifdef CONFIG_PARAVIRT
31#include <asm/paravirt.h>
32#endif
1da177e4 33
029632fb 34#include "sched.h"
ea138446 35#include "../workqueue_internal.h"
29d5e047 36#include "../smpboot.h"
6e0534f2 37
a8d154b0 38#define CREATE_TRACE_POINTS
ad8d75ff 39#include <trace/events/sched.h>
a8d154b0 40
029632fb 41DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 42
bf5c91ba
IM
43/*
44 * Debugging: various feature bits
45 */
f00b45c1 46
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49
bf5c91ba 50const_debug unsigned int sysctl_sched_features =
391e43da 51#include "features.h"
f00b45c1
PZ
52 0;
53
54#undef SCHED_FEAT
55
b82d9fdd
PZ
56/*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
e9e9250b
PZ
62/*
63 * period over which we average the RT time consumption, measured
64 * in ms.
65 *
66 * default: 1s
67 */
68const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
69
fa85ae24 70/*
d1ccc66d 71 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
72 * default: 1s
73 */
9f0c1e56 74unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 75
029632fb 76__read_mostly int scheduler_running;
6892b75e 77
9f0c1e56
PZ
78/*
79 * part of the period that we allow rt tasks to run in us.
80 * default: 0.95s
81 */
82int sysctl_sched_rt_runtime = 950000;
fa85ae24 83
d1ccc66d 84/* CPUs with isolated domains */
3fa0818b
RR
85cpumask_var_t cpu_isolated_map;
86
1da177e4 87/*
cc2a73b5 88 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 89 */
a9957449 90static struct rq *this_rq_lock(void)
1da177e4
LT
91 __acquires(rq->lock)
92{
70b97a7f 93 struct rq *rq;
1da177e4
LT
94
95 local_irq_disable();
96 rq = this_rq();
05fa785c 97 raw_spin_lock(&rq->lock);
1da177e4
LT
98
99 return rq;
100}
101
3e71a462
PZ
102/*
103 * __task_rq_lock - lock the rq @p resides on.
104 */
eb580751 105struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
106 __acquires(rq->lock)
107{
108 struct rq *rq;
109
110 lockdep_assert_held(&p->pi_lock);
111
112 for (;;) {
113 rq = task_rq(p);
114 raw_spin_lock(&rq->lock);
115 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 116 rq_pin_lock(rq, rf);
3e71a462
PZ
117 return rq;
118 }
119 raw_spin_unlock(&rq->lock);
120
121 while (unlikely(task_on_rq_migrating(p)))
122 cpu_relax();
123 }
124}
125
126/*
127 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
128 */
eb580751 129struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
130 __acquires(p->pi_lock)
131 __acquires(rq->lock)
132{
133 struct rq *rq;
134
135 for (;;) {
eb580751 136 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
137 rq = task_rq(p);
138 raw_spin_lock(&rq->lock);
139 /*
140 * move_queued_task() task_rq_lock()
141 *
142 * ACQUIRE (rq->lock)
143 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
144 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
145 * [S] ->cpu = new_cpu [L] task_rq()
146 * [L] ->on_rq
147 * RELEASE (rq->lock)
148 *
149 * If we observe the old cpu in task_rq_lock, the acquire of
150 * the old rq->lock will fully serialize against the stores.
151 *
d1ccc66d 152 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
153 * pair with the WMB to ensure we must then also see migrating.
154 */
155 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 156 rq_pin_lock(rq, rf);
3e71a462
PZ
157 return rq;
158 }
159 raw_spin_unlock(&rq->lock);
eb580751 160 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
161
162 while (unlikely(task_on_rq_migrating(p)))
163 cpu_relax();
164 }
165}
166
535b9552
IM
167/*
168 * RQ-clock updating methods:
169 */
170
171static void update_rq_clock_task(struct rq *rq, s64 delta)
172{
173/*
174 * In theory, the compile should just see 0 here, and optimize out the call
175 * to sched_rt_avg_update. But I don't trust it...
176 */
177#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
178 s64 steal = 0, irq_delta = 0;
179#endif
180#ifdef CONFIG_IRQ_TIME_ACCOUNTING
181 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
182
183 /*
184 * Since irq_time is only updated on {soft,}irq_exit, we might run into
185 * this case when a previous update_rq_clock() happened inside a
186 * {soft,}irq region.
187 *
188 * When this happens, we stop ->clock_task and only update the
189 * prev_irq_time stamp to account for the part that fit, so that a next
190 * update will consume the rest. This ensures ->clock_task is
191 * monotonic.
192 *
193 * It does however cause some slight miss-attribution of {soft,}irq
194 * time, a more accurate solution would be to update the irq_time using
195 * the current rq->clock timestamp, except that would require using
196 * atomic ops.
197 */
198 if (irq_delta > delta)
199 irq_delta = delta;
200
201 rq->prev_irq_time += irq_delta;
202 delta -= irq_delta;
203#endif
204#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
205 if (static_key_false((&paravirt_steal_rq_enabled))) {
206 steal = paravirt_steal_clock(cpu_of(rq));
207 steal -= rq->prev_steal_time_rq;
208
209 if (unlikely(steal > delta))
210 steal = delta;
211
212 rq->prev_steal_time_rq += steal;
213 delta -= steal;
214 }
215#endif
216
217 rq->clock_task += delta;
218
219#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
220 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
221 sched_rt_avg_update(rq, irq_delta + steal);
222#endif
223}
224
225void update_rq_clock(struct rq *rq)
226{
227 s64 delta;
228
229 lockdep_assert_held(&rq->lock);
230
231 if (rq->clock_update_flags & RQCF_ACT_SKIP)
232 return;
233
234#ifdef CONFIG_SCHED_DEBUG
235 rq->clock_update_flags |= RQCF_UPDATED;
236#endif
237 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
238 if (delta < 0)
239 return;
240 rq->clock += delta;
241 update_rq_clock_task(rq, delta);
242}
243
244
8f4d37ec
PZ
245#ifdef CONFIG_SCHED_HRTICK
246/*
247 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 248 */
8f4d37ec 249
8f4d37ec
PZ
250static void hrtick_clear(struct rq *rq)
251{
252 if (hrtimer_active(&rq->hrtick_timer))
253 hrtimer_cancel(&rq->hrtick_timer);
254}
255
8f4d37ec
PZ
256/*
257 * High-resolution timer tick.
258 * Runs from hardirq context with interrupts disabled.
259 */
260static enum hrtimer_restart hrtick(struct hrtimer *timer)
261{
262 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
263
264 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
265
05fa785c 266 raw_spin_lock(&rq->lock);
3e51f33f 267 update_rq_clock(rq);
8f4d37ec 268 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 269 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
270
271 return HRTIMER_NORESTART;
272}
273
95e904c7 274#ifdef CONFIG_SMP
971ee28c 275
4961b6e1 276static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
277{
278 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 279
4961b6e1 280 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
281}
282
31656519
PZ
283/*
284 * called from hardirq (IPI) context
285 */
286static void __hrtick_start(void *arg)
b328ca18 287{
31656519 288 struct rq *rq = arg;
b328ca18 289
05fa785c 290 raw_spin_lock(&rq->lock);
971ee28c 291 __hrtick_restart(rq);
31656519 292 rq->hrtick_csd_pending = 0;
05fa785c 293 raw_spin_unlock(&rq->lock);
b328ca18
PZ
294}
295
31656519
PZ
296/*
297 * Called to set the hrtick timer state.
298 *
299 * called with rq->lock held and irqs disabled
300 */
029632fb 301void hrtick_start(struct rq *rq, u64 delay)
b328ca18 302{
31656519 303 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 304 ktime_t time;
305 s64 delta;
306
307 /*
308 * Don't schedule slices shorter than 10000ns, that just
309 * doesn't make sense and can cause timer DoS.
310 */
311 delta = max_t(s64, delay, 10000LL);
312 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 313
cc584b21 314 hrtimer_set_expires(timer, time);
31656519
PZ
315
316 if (rq == this_rq()) {
971ee28c 317 __hrtick_restart(rq);
31656519 318 } else if (!rq->hrtick_csd_pending) {
c46fff2a 319 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
320 rq->hrtick_csd_pending = 1;
321 }
b328ca18
PZ
322}
323
31656519
PZ
324#else
325/*
326 * Called to set the hrtick timer state.
327 *
328 * called with rq->lock held and irqs disabled
329 */
029632fb 330void hrtick_start(struct rq *rq, u64 delay)
31656519 331{
86893335
WL
332 /*
333 * Don't schedule slices shorter than 10000ns, that just
334 * doesn't make sense. Rely on vruntime for fairness.
335 */
336 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
337 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
338 HRTIMER_MODE_REL_PINNED);
31656519 339}
31656519 340#endif /* CONFIG_SMP */
8f4d37ec 341
31656519 342static void init_rq_hrtick(struct rq *rq)
8f4d37ec 343{
31656519
PZ
344#ifdef CONFIG_SMP
345 rq->hrtick_csd_pending = 0;
8f4d37ec 346
31656519
PZ
347 rq->hrtick_csd.flags = 0;
348 rq->hrtick_csd.func = __hrtick_start;
349 rq->hrtick_csd.info = rq;
350#endif
8f4d37ec 351
31656519
PZ
352 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
353 rq->hrtick_timer.function = hrtick;
8f4d37ec 354}
006c75f1 355#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
356static inline void hrtick_clear(struct rq *rq)
357{
358}
359
8f4d37ec
PZ
360static inline void init_rq_hrtick(struct rq *rq)
361{
362}
006c75f1 363#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 364
5529578a
FW
365/*
366 * cmpxchg based fetch_or, macro so it works for different integer types
367 */
368#define fetch_or(ptr, mask) \
369 ({ \
370 typeof(ptr) _ptr = (ptr); \
371 typeof(mask) _mask = (mask); \
372 typeof(*_ptr) _old, _val = *_ptr; \
373 \
374 for (;;) { \
375 _old = cmpxchg(_ptr, _val, _val | _mask); \
376 if (_old == _val) \
377 break; \
378 _val = _old; \
379 } \
380 _old; \
381})
382
e3baac47 383#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
384/*
385 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
386 * this avoids any races wrt polling state changes and thereby avoids
387 * spurious IPIs.
388 */
389static bool set_nr_and_not_polling(struct task_struct *p)
390{
391 struct thread_info *ti = task_thread_info(p);
392 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
393}
e3baac47
PZ
394
395/*
396 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
397 *
398 * If this returns true, then the idle task promises to call
399 * sched_ttwu_pending() and reschedule soon.
400 */
401static bool set_nr_if_polling(struct task_struct *p)
402{
403 struct thread_info *ti = task_thread_info(p);
316c1608 404 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
405
406 for (;;) {
407 if (!(val & _TIF_POLLING_NRFLAG))
408 return false;
409 if (val & _TIF_NEED_RESCHED)
410 return true;
411 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
412 if (old == val)
413 break;
414 val = old;
415 }
416 return true;
417}
418
fd99f91a
PZ
419#else
420static bool set_nr_and_not_polling(struct task_struct *p)
421{
422 set_tsk_need_resched(p);
423 return true;
424}
e3baac47
PZ
425
426#ifdef CONFIG_SMP
427static bool set_nr_if_polling(struct task_struct *p)
428{
429 return false;
430}
431#endif
fd99f91a
PZ
432#endif
433
76751049
PZ
434void wake_q_add(struct wake_q_head *head, struct task_struct *task)
435{
436 struct wake_q_node *node = &task->wake_q;
437
438 /*
439 * Atomically grab the task, if ->wake_q is !nil already it means
440 * its already queued (either by us or someone else) and will get the
441 * wakeup due to that.
442 *
443 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 444 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
445 */
446 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
447 return;
448
449 get_task_struct(task);
450
451 /*
452 * The head is context local, there can be no concurrency.
453 */
454 *head->lastp = node;
455 head->lastp = &node->next;
456}
457
458void wake_up_q(struct wake_q_head *head)
459{
460 struct wake_q_node *node = head->first;
461
462 while (node != WAKE_Q_TAIL) {
463 struct task_struct *task;
464
465 task = container_of(node, struct task_struct, wake_q);
466 BUG_ON(!task);
d1ccc66d 467 /* Task can safely be re-inserted now: */
76751049
PZ
468 node = node->next;
469 task->wake_q.next = NULL;
470
471 /*
472 * wake_up_process() implies a wmb() to pair with the queueing
473 * in wake_q_add() so as not to miss wakeups.
474 */
475 wake_up_process(task);
476 put_task_struct(task);
477 }
478}
479
c24d20db 480/*
8875125e 481 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
482 *
483 * On UP this means the setting of the need_resched flag, on SMP it
484 * might also involve a cross-CPU call to trigger the scheduler on
485 * the target CPU.
486 */
8875125e 487void resched_curr(struct rq *rq)
c24d20db 488{
8875125e 489 struct task_struct *curr = rq->curr;
c24d20db
IM
490 int cpu;
491
8875125e 492 lockdep_assert_held(&rq->lock);
c24d20db 493
8875125e 494 if (test_tsk_need_resched(curr))
c24d20db
IM
495 return;
496
8875125e 497 cpu = cpu_of(rq);
fd99f91a 498
f27dde8d 499 if (cpu == smp_processor_id()) {
8875125e 500 set_tsk_need_resched(curr);
f27dde8d 501 set_preempt_need_resched();
c24d20db 502 return;
f27dde8d 503 }
c24d20db 504
8875125e 505 if (set_nr_and_not_polling(curr))
c24d20db 506 smp_send_reschedule(cpu);
dfc68f29
AL
507 else
508 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
509}
510
029632fb 511void resched_cpu(int cpu)
c24d20db
IM
512{
513 struct rq *rq = cpu_rq(cpu);
514 unsigned long flags;
515
05fa785c 516 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 517 return;
8875125e 518 resched_curr(rq);
05fa785c 519 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 520}
06d8308c 521
b021fe3e 522#ifdef CONFIG_SMP
3451d024 523#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 524/*
d1ccc66d
IM
525 * In the semi idle case, use the nearest busy CPU for migrating timers
526 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
527 *
528 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
529 * selecting an idle CPU will add more delays to the timers than intended
530 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 531 */
bc7a34b8 532int get_nohz_timer_target(void)
83cd4fe2 533{
bc7a34b8 534 int i, cpu = smp_processor_id();
83cd4fe2
VP
535 struct sched_domain *sd;
536
9642d18e 537 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
538 return cpu;
539
057f3fad 540 rcu_read_lock();
83cd4fe2 541 for_each_domain(cpu, sd) {
057f3fad 542 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
543 if (cpu == i)
544 continue;
545
546 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
547 cpu = i;
548 goto unlock;
549 }
550 }
83cd4fe2 551 }
9642d18e
VH
552
553 if (!is_housekeeping_cpu(cpu))
554 cpu = housekeeping_any_cpu();
057f3fad
PZ
555unlock:
556 rcu_read_unlock();
83cd4fe2
VP
557 return cpu;
558}
d1ccc66d 559
06d8308c
TG
560/*
561 * When add_timer_on() enqueues a timer into the timer wheel of an
562 * idle CPU then this timer might expire before the next timer event
563 * which is scheduled to wake up that CPU. In case of a completely
564 * idle system the next event might even be infinite time into the
565 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
566 * leaves the inner idle loop so the newly added timer is taken into
567 * account when the CPU goes back to idle and evaluates the timer
568 * wheel for the next timer event.
569 */
1c20091e 570static void wake_up_idle_cpu(int cpu)
06d8308c
TG
571{
572 struct rq *rq = cpu_rq(cpu);
573
574 if (cpu == smp_processor_id())
575 return;
576
67b9ca70 577 if (set_nr_and_not_polling(rq->idle))
06d8308c 578 smp_send_reschedule(cpu);
dfc68f29
AL
579 else
580 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
581}
582
c5bfece2 583static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 584{
53c5fa16
FW
585 /*
586 * We just need the target to call irq_exit() and re-evaluate
587 * the next tick. The nohz full kick at least implies that.
588 * If needed we can still optimize that later with an
589 * empty IRQ.
590 */
379d9ecb
PM
591 if (cpu_is_offline(cpu))
592 return true; /* Don't try to wake offline CPUs. */
c5bfece2 593 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
594 if (cpu != smp_processor_id() ||
595 tick_nohz_tick_stopped())
53c5fa16 596 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
597 return true;
598 }
599
600 return false;
601}
602
379d9ecb
PM
603/*
604 * Wake up the specified CPU. If the CPU is going offline, it is the
605 * caller's responsibility to deal with the lost wakeup, for example,
606 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
607 */
1c20091e
FW
608void wake_up_nohz_cpu(int cpu)
609{
c5bfece2 610 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
611 wake_up_idle_cpu(cpu);
612}
613
ca38062e 614static inline bool got_nohz_idle_kick(void)
45bf76df 615{
1c792db7 616 int cpu = smp_processor_id();
873b4c65
VG
617
618 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
619 return false;
620
621 if (idle_cpu(cpu) && !need_resched())
622 return true;
623
624 /*
625 * We can't run Idle Load Balance on this CPU for this time so we
626 * cancel it and clear NOHZ_BALANCE_KICK
627 */
628 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
629 return false;
45bf76df
IM
630}
631
3451d024 632#else /* CONFIG_NO_HZ_COMMON */
45bf76df 633
ca38062e 634static inline bool got_nohz_idle_kick(void)
2069dd75 635{
ca38062e 636 return false;
2069dd75
PZ
637}
638
3451d024 639#endif /* CONFIG_NO_HZ_COMMON */
d842de87 640
ce831b38 641#ifdef CONFIG_NO_HZ_FULL
76d92ac3 642bool sched_can_stop_tick(struct rq *rq)
ce831b38 643{
76d92ac3
FW
644 int fifo_nr_running;
645
646 /* Deadline tasks, even if single, need the tick */
647 if (rq->dl.dl_nr_running)
648 return false;
649
1e78cdbd 650 /*
2548d546
PZ
651 * If there are more than one RR tasks, we need the tick to effect the
652 * actual RR behaviour.
1e78cdbd 653 */
76d92ac3
FW
654 if (rq->rt.rr_nr_running) {
655 if (rq->rt.rr_nr_running == 1)
656 return true;
657 else
658 return false;
1e78cdbd
RR
659 }
660
2548d546
PZ
661 /*
662 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
663 * forced preemption between FIFO tasks.
664 */
665 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
666 if (fifo_nr_running)
667 return true;
668
669 /*
670 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
671 * if there's more than one we need the tick for involuntary
672 * preemption.
673 */
674 if (rq->nr_running > 1)
541b8264 675 return false;
ce831b38 676
541b8264 677 return true;
ce831b38
FW
678}
679#endif /* CONFIG_NO_HZ_FULL */
d842de87 680
029632fb 681void sched_avg_update(struct rq *rq)
18d95a28 682{
e9e9250b
PZ
683 s64 period = sched_avg_period();
684
78becc27 685 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
686 /*
687 * Inline assembly required to prevent the compiler
688 * optimising this loop into a divmod call.
689 * See __iter_div_u64_rem() for another example of this.
690 */
691 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
692 rq->age_stamp += period;
693 rq->rt_avg /= 2;
694 }
18d95a28
PZ
695}
696
6d6bc0ad 697#endif /* CONFIG_SMP */
18d95a28 698
a790de99
PT
699#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
700 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 701/*
8277434e
PT
702 * Iterate task_group tree rooted at *from, calling @down when first entering a
703 * node and @up when leaving it for the final time.
704 *
705 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 706 */
029632fb 707int walk_tg_tree_from(struct task_group *from,
8277434e 708 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
709{
710 struct task_group *parent, *child;
eb755805 711 int ret;
c09595f6 712
8277434e
PT
713 parent = from;
714
c09595f6 715down:
eb755805
PZ
716 ret = (*down)(parent, data);
717 if (ret)
8277434e 718 goto out;
c09595f6
PZ
719 list_for_each_entry_rcu(child, &parent->children, siblings) {
720 parent = child;
721 goto down;
722
723up:
724 continue;
725 }
eb755805 726 ret = (*up)(parent, data);
8277434e
PT
727 if (ret || parent == from)
728 goto out;
c09595f6
PZ
729
730 child = parent;
731 parent = parent->parent;
732 if (parent)
733 goto up;
8277434e 734out:
eb755805 735 return ret;
c09595f6
PZ
736}
737
029632fb 738int tg_nop(struct task_group *tg, void *data)
eb755805 739{
e2b245f8 740 return 0;
eb755805 741}
18d95a28
PZ
742#endif
743
45bf76df
IM
744static void set_load_weight(struct task_struct *p)
745{
f05998d4
NR
746 int prio = p->static_prio - MAX_RT_PRIO;
747 struct load_weight *load = &p->se.load;
748
dd41f596
IM
749 /*
750 * SCHED_IDLE tasks get minimal weight:
751 */
20f9cd2a 752 if (idle_policy(p->policy)) {
c8b28116 753 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 754 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
755 return;
756 }
71f8bd46 757
ed82b8a1
AK
758 load->weight = scale_load(sched_prio_to_weight[prio]);
759 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
760}
761
1de64443 762static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 763{
a64692a3 764 update_rq_clock(rq);
1de64443
PZ
765 if (!(flags & ENQUEUE_RESTORE))
766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
1de64443 770static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
1de64443
PZ
773 if (!(flags & DEQUEUE_SAVE))
774 sched_info_dequeued(rq, p);
371fd7e7 775 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
776}
777
029632fb 778void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
779{
780 if (task_contributes_to_load(p))
781 rq->nr_uninterruptible--;
782
371fd7e7 783 enqueue_task(rq, p, flags);
1e3c88bd
PZ
784}
785
029632fb 786void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible++;
790
371fd7e7 791 dequeue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
34f971f6
PZ
794void sched_set_stop_task(int cpu, struct task_struct *stop)
795{
796 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
797 struct task_struct *old_stop = cpu_rq(cpu)->stop;
798
799 if (stop) {
800 /*
801 * Make it appear like a SCHED_FIFO task, its something
802 * userspace knows about and won't get confused about.
803 *
804 * Also, it will make PI more or less work without too
805 * much confusion -- but then, stop work should not
806 * rely on PI working anyway.
807 */
808 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
809
810 stop->sched_class = &stop_sched_class;
811 }
812
813 cpu_rq(cpu)->stop = stop;
814
815 if (old_stop) {
816 /*
817 * Reset it back to a normal scheduling class so that
818 * it can die in pieces.
819 */
820 old_stop->sched_class = &rt_sched_class;
821 }
822}
823
14531189 824/*
dd41f596 825 * __normal_prio - return the priority that is based on the static prio
14531189 826 */
14531189
IM
827static inline int __normal_prio(struct task_struct *p)
828{
dd41f596 829 return p->static_prio;
14531189
IM
830}
831
b29739f9
IM
832/*
833 * Calculate the expected normal priority: i.e. priority
834 * without taking RT-inheritance into account. Might be
835 * boosted by interactivity modifiers. Changes upon fork,
836 * setprio syscalls, and whenever the interactivity
837 * estimator recalculates.
838 */
36c8b586 839static inline int normal_prio(struct task_struct *p)
b29739f9
IM
840{
841 int prio;
842
aab03e05
DF
843 if (task_has_dl_policy(p))
844 prio = MAX_DL_PRIO-1;
845 else if (task_has_rt_policy(p))
b29739f9
IM
846 prio = MAX_RT_PRIO-1 - p->rt_priority;
847 else
848 prio = __normal_prio(p);
849 return prio;
850}
851
852/*
853 * Calculate the current priority, i.e. the priority
854 * taken into account by the scheduler. This value might
855 * be boosted by RT tasks, or might be boosted by
856 * interactivity modifiers. Will be RT if the task got
857 * RT-boosted. If not then it returns p->normal_prio.
858 */
36c8b586 859static int effective_prio(struct task_struct *p)
b29739f9
IM
860{
861 p->normal_prio = normal_prio(p);
862 /*
863 * If we are RT tasks or we were boosted to RT priority,
864 * keep the priority unchanged. Otherwise, update priority
865 * to the normal priority:
866 */
867 if (!rt_prio(p->prio))
868 return p->normal_prio;
869 return p->prio;
870}
871
1da177e4
LT
872/**
873 * task_curr - is this task currently executing on a CPU?
874 * @p: the task in question.
e69f6186
YB
875 *
876 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 877 */
36c8b586 878inline int task_curr(const struct task_struct *p)
1da177e4
LT
879{
880 return cpu_curr(task_cpu(p)) == p;
881}
882
67dfa1b7 883/*
4c9a4bc8
PZ
884 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
885 * use the balance_callback list if you want balancing.
886 *
887 * this means any call to check_class_changed() must be followed by a call to
888 * balance_callback().
67dfa1b7 889 */
cb469845
SR
890static inline void check_class_changed(struct rq *rq, struct task_struct *p,
891 const struct sched_class *prev_class,
da7a735e 892 int oldprio)
cb469845
SR
893{
894 if (prev_class != p->sched_class) {
895 if (prev_class->switched_from)
da7a735e 896 prev_class->switched_from(rq, p);
4c9a4bc8 897
da7a735e 898 p->sched_class->switched_to(rq, p);
2d3d891d 899 } else if (oldprio != p->prio || dl_task(p))
da7a735e 900 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
901}
902
029632fb 903void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
904{
905 const struct sched_class *class;
906
907 if (p->sched_class == rq->curr->sched_class) {
908 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
909 } else {
910 for_each_class(class) {
911 if (class == rq->curr->sched_class)
912 break;
913 if (class == p->sched_class) {
8875125e 914 resched_curr(rq);
1e5a7405
PZ
915 break;
916 }
917 }
918 }
919
920 /*
921 * A queue event has occurred, and we're going to schedule. In
922 * this case, we can save a useless back to back clock update.
923 */
da0c1e65 924 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 925 rq_clock_skip_update(rq, true);
1e5a7405
PZ
926}
927
1da177e4 928#ifdef CONFIG_SMP
5cc389bc
PZ
929/*
930 * This is how migration works:
931 *
932 * 1) we invoke migration_cpu_stop() on the target CPU using
933 * stop_one_cpu().
934 * 2) stopper starts to run (implicitly forcing the migrated thread
935 * off the CPU)
936 * 3) it checks whether the migrated task is still in the wrong runqueue.
937 * 4) if it's in the wrong runqueue then the migration thread removes
938 * it and puts it into the right queue.
939 * 5) stopper completes and stop_one_cpu() returns and the migration
940 * is done.
941 */
942
943/*
944 * move_queued_task - move a queued task to new rq.
945 *
946 * Returns (locked) new rq. Old rq's lock is released.
947 */
5e16bbc2 948static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 949{
5cc389bc
PZ
950 lockdep_assert_held(&rq->lock);
951
5cc389bc 952 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 953 dequeue_task(rq, p, 0);
5cc389bc
PZ
954 set_task_cpu(p, new_cpu);
955 raw_spin_unlock(&rq->lock);
956
957 rq = cpu_rq(new_cpu);
958
959 raw_spin_lock(&rq->lock);
960 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 961 enqueue_task(rq, p, 0);
3ea94de1 962 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
963 check_preempt_curr(rq, p, 0);
964
965 return rq;
966}
967
968struct migration_arg {
969 struct task_struct *task;
970 int dest_cpu;
971};
972
973/*
d1ccc66d 974 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
975 * this because either it can't run here any more (set_cpus_allowed()
976 * away from this CPU, or CPU going down), or because we're
977 * attempting to rebalance this task on exec (sched_exec).
978 *
979 * So we race with normal scheduler movements, but that's OK, as long
980 * as the task is no longer on this CPU.
5cc389bc 981 */
5e16bbc2 982static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 983{
5cc389bc 984 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 985 return rq;
5cc389bc
PZ
986
987 /* Affinity changed (again). */
0c98d344 988 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 989 return rq;
5cc389bc 990
5e16bbc2
PZ
991 rq = move_queued_task(rq, p, dest_cpu);
992
993 return rq;
5cc389bc
PZ
994}
995
996/*
997 * migration_cpu_stop - this will be executed by a highprio stopper thread
998 * and performs thread migration by bumping thread off CPU then
999 * 'pushing' onto another runqueue.
1000 */
1001static int migration_cpu_stop(void *data)
1002{
1003 struct migration_arg *arg = data;
5e16bbc2
PZ
1004 struct task_struct *p = arg->task;
1005 struct rq *rq = this_rq();
5cc389bc
PZ
1006
1007 /*
d1ccc66d
IM
1008 * The original target CPU might have gone down and we might
1009 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1010 */
1011 local_irq_disable();
1012 /*
1013 * We need to explicitly wake pending tasks before running
1014 * __migrate_task() such that we will not miss enforcing cpus_allowed
1015 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1016 */
1017 sched_ttwu_pending();
5e16bbc2
PZ
1018
1019 raw_spin_lock(&p->pi_lock);
1020 raw_spin_lock(&rq->lock);
1021 /*
1022 * If task_rq(p) != rq, it cannot be migrated here, because we're
1023 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1024 * we're holding p->pi_lock.
1025 */
bf89a304
CC
1026 if (task_rq(p) == rq) {
1027 if (task_on_rq_queued(p))
1028 rq = __migrate_task(rq, p, arg->dest_cpu);
1029 else
1030 p->wake_cpu = arg->dest_cpu;
1031 }
5e16bbc2
PZ
1032 raw_spin_unlock(&rq->lock);
1033 raw_spin_unlock(&p->pi_lock);
1034
5cc389bc
PZ
1035 local_irq_enable();
1036 return 0;
1037}
1038
c5b28038
PZ
1039/*
1040 * sched_class::set_cpus_allowed must do the below, but is not required to
1041 * actually call this function.
1042 */
1043void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1044{
5cc389bc
PZ
1045 cpumask_copy(&p->cpus_allowed, new_mask);
1046 p->nr_cpus_allowed = cpumask_weight(new_mask);
1047}
1048
c5b28038
PZ
1049void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1050{
6c37067e
PZ
1051 struct rq *rq = task_rq(p);
1052 bool queued, running;
1053
c5b28038 1054 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1055
1056 queued = task_on_rq_queued(p);
1057 running = task_current(rq, p);
1058
1059 if (queued) {
1060 /*
1061 * Because __kthread_bind() calls this on blocked tasks without
1062 * holding rq->lock.
1063 */
1064 lockdep_assert_held(&rq->lock);
1de64443 1065 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1066 }
1067 if (running)
1068 put_prev_task(rq, p);
1069
c5b28038 1070 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1071
6c37067e 1072 if (queued)
1de64443 1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1074 if (running)
b2bf6c31 1075 set_curr_task(rq, p);
c5b28038
PZ
1076}
1077
5cc389bc
PZ
1078/*
1079 * Change a given task's CPU affinity. Migrate the thread to a
1080 * proper CPU and schedule it away if the CPU it's executing on
1081 * is removed from the allowed bitmask.
1082 *
1083 * NOTE: the caller must have a valid reference to the task, the
1084 * task must not exit() & deallocate itself prematurely. The
1085 * call is not atomic; no spinlocks may be held.
1086 */
25834c73
PZ
1087static int __set_cpus_allowed_ptr(struct task_struct *p,
1088 const struct cpumask *new_mask, bool check)
5cc389bc 1089{
e9d867a6 1090 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1091 unsigned int dest_cpu;
eb580751
PZ
1092 struct rq_flags rf;
1093 struct rq *rq;
5cc389bc
PZ
1094 int ret = 0;
1095
eb580751 1096 rq = task_rq_lock(p, &rf);
a499c3ea 1097 update_rq_clock(rq);
5cc389bc 1098
e9d867a6
PZI
1099 if (p->flags & PF_KTHREAD) {
1100 /*
1101 * Kernel threads are allowed on online && !active CPUs
1102 */
1103 cpu_valid_mask = cpu_online_mask;
1104 }
1105
25834c73
PZ
1106 /*
1107 * Must re-check here, to close a race against __kthread_bind(),
1108 * sched_setaffinity() is not guaranteed to observe the flag.
1109 */
1110 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1111 ret = -EINVAL;
1112 goto out;
1113 }
1114
5cc389bc
PZ
1115 if (cpumask_equal(&p->cpus_allowed, new_mask))
1116 goto out;
1117
e9d867a6 1118 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1119 ret = -EINVAL;
1120 goto out;
1121 }
1122
1123 do_set_cpus_allowed(p, new_mask);
1124
e9d867a6
PZI
1125 if (p->flags & PF_KTHREAD) {
1126 /*
1127 * For kernel threads that do indeed end up on online &&
d1ccc66d 1128 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1129 */
1130 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1131 !cpumask_intersects(new_mask, cpu_active_mask) &&
1132 p->nr_cpus_allowed != 1);
1133 }
1134
5cc389bc
PZ
1135 /* Can the task run on the task's current CPU? If so, we're done */
1136 if (cpumask_test_cpu(task_cpu(p), new_mask))
1137 goto out;
1138
e9d867a6 1139 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1140 if (task_running(rq, p) || p->state == TASK_WAKING) {
1141 struct migration_arg arg = { p, dest_cpu };
1142 /* Need help from migration thread: drop lock and wait. */
eb580751 1143 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1144 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1145 tlb_migrate_finish(p->mm);
1146 return 0;
cbce1a68
PZ
1147 } else if (task_on_rq_queued(p)) {
1148 /*
1149 * OK, since we're going to drop the lock immediately
1150 * afterwards anyway.
1151 */
d8ac8971 1152 rq_unpin_lock(rq, &rf);
5e16bbc2 1153 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1154 rq_repin_lock(rq, &rf);
cbce1a68 1155 }
5cc389bc 1156out:
eb580751 1157 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1158
1159 return ret;
1160}
25834c73
PZ
1161
1162int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1163{
1164 return __set_cpus_allowed_ptr(p, new_mask, false);
1165}
5cc389bc
PZ
1166EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1167
dd41f596 1168void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1169{
e2912009
PZ
1170#ifdef CONFIG_SCHED_DEBUG
1171 /*
1172 * We should never call set_task_cpu() on a blocked task,
1173 * ttwu() will sort out the placement.
1174 */
077614ee 1175 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1176 !p->on_rq);
0122ec5b 1177
3ea94de1
JP
1178 /*
1179 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1180 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1181 * time relying on p->on_rq.
1182 */
1183 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1184 p->sched_class == &fair_sched_class &&
1185 (p->on_rq && !task_on_rq_migrating(p)));
1186
0122ec5b 1187#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1188 /*
1189 * The caller should hold either p->pi_lock or rq->lock, when changing
1190 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1191 *
1192 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1193 * see task_group().
6c6c54e1
PZ
1194 *
1195 * Furthermore, all task_rq users should acquire both locks, see
1196 * task_rq_lock().
1197 */
0122ec5b
PZ
1198 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1199 lockdep_is_held(&task_rq(p)->lock)));
1200#endif
e2912009
PZ
1201#endif
1202
de1d7286 1203 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1204
0c69774e 1205 if (task_cpu(p) != new_cpu) {
0a74bef8 1206 if (p->sched_class->migrate_task_rq)
5a4fd036 1207 p->sched_class->migrate_task_rq(p);
0c69774e 1208 p->se.nr_migrations++;
ff303e66 1209 perf_event_task_migrate(p);
0c69774e 1210 }
dd41f596
IM
1211
1212 __set_task_cpu(p, new_cpu);
c65cc870
IM
1213}
1214
ac66f547
PZ
1215static void __migrate_swap_task(struct task_struct *p, int cpu)
1216{
da0c1e65 1217 if (task_on_rq_queued(p)) {
ac66f547
PZ
1218 struct rq *src_rq, *dst_rq;
1219
1220 src_rq = task_rq(p);
1221 dst_rq = cpu_rq(cpu);
1222
3ea94de1 1223 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1224 deactivate_task(src_rq, p, 0);
1225 set_task_cpu(p, cpu);
1226 activate_task(dst_rq, p, 0);
3ea94de1 1227 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1228 check_preempt_curr(dst_rq, p, 0);
1229 } else {
1230 /*
1231 * Task isn't running anymore; make it appear like we migrated
1232 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1233 * previous CPU our target instead of where it really is.
ac66f547
PZ
1234 */
1235 p->wake_cpu = cpu;
1236 }
1237}
1238
1239struct migration_swap_arg {
1240 struct task_struct *src_task, *dst_task;
1241 int src_cpu, dst_cpu;
1242};
1243
1244static int migrate_swap_stop(void *data)
1245{
1246 struct migration_swap_arg *arg = data;
1247 struct rq *src_rq, *dst_rq;
1248 int ret = -EAGAIN;
1249
62694cd5
PZ
1250 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1251 return -EAGAIN;
1252
ac66f547
PZ
1253 src_rq = cpu_rq(arg->src_cpu);
1254 dst_rq = cpu_rq(arg->dst_cpu);
1255
74602315
PZ
1256 double_raw_lock(&arg->src_task->pi_lock,
1257 &arg->dst_task->pi_lock);
ac66f547 1258 double_rq_lock(src_rq, dst_rq);
62694cd5 1259
ac66f547
PZ
1260 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1261 goto unlock;
1262
1263 if (task_cpu(arg->src_task) != arg->src_cpu)
1264 goto unlock;
1265
0c98d344 1266 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1267 goto unlock;
1268
0c98d344 1269 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1270 goto unlock;
1271
1272 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1273 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1274
1275 ret = 0;
1276
1277unlock:
1278 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1279 raw_spin_unlock(&arg->dst_task->pi_lock);
1280 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1281
1282 return ret;
1283}
1284
1285/*
1286 * Cross migrate two tasks
1287 */
1288int migrate_swap(struct task_struct *cur, struct task_struct *p)
1289{
1290 struct migration_swap_arg arg;
1291 int ret = -EINVAL;
1292
ac66f547
PZ
1293 arg = (struct migration_swap_arg){
1294 .src_task = cur,
1295 .src_cpu = task_cpu(cur),
1296 .dst_task = p,
1297 .dst_cpu = task_cpu(p),
1298 };
1299
1300 if (arg.src_cpu == arg.dst_cpu)
1301 goto out;
1302
6acce3ef
PZ
1303 /*
1304 * These three tests are all lockless; this is OK since all of them
1305 * will be re-checked with proper locks held further down the line.
1306 */
ac66f547
PZ
1307 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1308 goto out;
1309
0c98d344 1310 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1311 goto out;
1312
0c98d344 1313 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1314 goto out;
1315
286549dc 1316 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1317 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1318
1319out:
ac66f547
PZ
1320 return ret;
1321}
1322
1da177e4
LT
1323/*
1324 * wait_task_inactive - wait for a thread to unschedule.
1325 *
85ba2d86
RM
1326 * If @match_state is nonzero, it's the @p->state value just checked and
1327 * not expected to change. If it changes, i.e. @p might have woken up,
1328 * then return zero. When we succeed in waiting for @p to be off its CPU,
1329 * we return a positive number (its total switch count). If a second call
1330 * a short while later returns the same number, the caller can be sure that
1331 * @p has remained unscheduled the whole time.
1332 *
1da177e4
LT
1333 * The caller must ensure that the task *will* unschedule sometime soon,
1334 * else this function might spin for a *long* time. This function can't
1335 * be called with interrupts off, or it may introduce deadlock with
1336 * smp_call_function() if an IPI is sent by the same process we are
1337 * waiting to become inactive.
1338 */
85ba2d86 1339unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1340{
da0c1e65 1341 int running, queued;
eb580751 1342 struct rq_flags rf;
85ba2d86 1343 unsigned long ncsw;
70b97a7f 1344 struct rq *rq;
1da177e4 1345
3a5c359a
AK
1346 for (;;) {
1347 /*
1348 * We do the initial early heuristics without holding
1349 * any task-queue locks at all. We'll only try to get
1350 * the runqueue lock when things look like they will
1351 * work out!
1352 */
1353 rq = task_rq(p);
fa490cfd 1354
3a5c359a
AK
1355 /*
1356 * If the task is actively running on another CPU
1357 * still, just relax and busy-wait without holding
1358 * any locks.
1359 *
1360 * NOTE! Since we don't hold any locks, it's not
1361 * even sure that "rq" stays as the right runqueue!
1362 * But we don't care, since "task_running()" will
1363 * return false if the runqueue has changed and p
1364 * is actually now running somewhere else!
1365 */
85ba2d86
RM
1366 while (task_running(rq, p)) {
1367 if (match_state && unlikely(p->state != match_state))
1368 return 0;
3a5c359a 1369 cpu_relax();
85ba2d86 1370 }
fa490cfd 1371
3a5c359a
AK
1372 /*
1373 * Ok, time to look more closely! We need the rq
1374 * lock now, to be *sure*. If we're wrong, we'll
1375 * just go back and repeat.
1376 */
eb580751 1377 rq = task_rq_lock(p, &rf);
27a9da65 1378 trace_sched_wait_task(p);
3a5c359a 1379 running = task_running(rq, p);
da0c1e65 1380 queued = task_on_rq_queued(p);
85ba2d86 1381 ncsw = 0;
f31e11d8 1382 if (!match_state || p->state == match_state)
93dcf55f 1383 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1384 task_rq_unlock(rq, p, &rf);
fa490cfd 1385
85ba2d86
RM
1386 /*
1387 * If it changed from the expected state, bail out now.
1388 */
1389 if (unlikely(!ncsw))
1390 break;
1391
3a5c359a
AK
1392 /*
1393 * Was it really running after all now that we
1394 * checked with the proper locks actually held?
1395 *
1396 * Oops. Go back and try again..
1397 */
1398 if (unlikely(running)) {
1399 cpu_relax();
1400 continue;
1401 }
fa490cfd 1402
3a5c359a
AK
1403 /*
1404 * It's not enough that it's not actively running,
1405 * it must be off the runqueue _entirely_, and not
1406 * preempted!
1407 *
80dd99b3 1408 * So if it was still runnable (but just not actively
3a5c359a
AK
1409 * running right now), it's preempted, and we should
1410 * yield - it could be a while.
1411 */
da0c1e65 1412 if (unlikely(queued)) {
8b0e1953 1413 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1414
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1417 continue;
1418 }
fa490cfd 1419
3a5c359a
AK
1420 /*
1421 * Ahh, all good. It wasn't running, and it wasn't
1422 * runnable, which means that it will never become
1423 * running in the future either. We're all done!
1424 */
1425 break;
1426 }
85ba2d86
RM
1427
1428 return ncsw;
1da177e4
LT
1429}
1430
1431/***
1432 * kick_process - kick a running thread to enter/exit the kernel
1433 * @p: the to-be-kicked thread
1434 *
1435 * Cause a process which is running on another CPU to enter
1436 * kernel-mode, without any delay. (to get signals handled.)
1437 *
25985edc 1438 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1439 * because all it wants to ensure is that the remote task enters
1440 * the kernel. If the IPI races and the task has been migrated
1441 * to another CPU then no harm is done and the purpose has been
1442 * achieved as well.
1443 */
36c8b586 1444void kick_process(struct task_struct *p)
1da177e4
LT
1445{
1446 int cpu;
1447
1448 preempt_disable();
1449 cpu = task_cpu(p);
1450 if ((cpu != smp_processor_id()) && task_curr(p))
1451 smp_send_reschedule(cpu);
1452 preempt_enable();
1453}
b43e3521 1454EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1455
30da688e 1456/*
013fdb80 1457 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1458 *
1459 * A few notes on cpu_active vs cpu_online:
1460 *
1461 * - cpu_active must be a subset of cpu_online
1462 *
1463 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1464 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1465 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1466 * see it.
1467 *
d1ccc66d 1468 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1469 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1470 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1471 * off.
1472 *
1473 * This means that fallback selection must not select !active CPUs.
1474 * And can assume that any active CPU must be online. Conversely
1475 * select_task_rq() below may allow selection of !active CPUs in order
1476 * to satisfy the above rules.
30da688e 1477 */
5da9a0fb
PZ
1478static int select_fallback_rq(int cpu, struct task_struct *p)
1479{
aa00d89c
TC
1480 int nid = cpu_to_node(cpu);
1481 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1482 enum { cpuset, possible, fail } state = cpuset;
1483 int dest_cpu;
5da9a0fb 1484
aa00d89c 1485 /*
d1ccc66d
IM
1486 * If the node that the CPU is on has been offlined, cpu_to_node()
1487 * will return -1. There is no CPU on the node, and we should
1488 * select the CPU on the other node.
aa00d89c
TC
1489 */
1490 if (nid != -1) {
1491 nodemask = cpumask_of_node(nid);
1492
1493 /* Look for allowed, online CPU in same node. */
1494 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1495 if (!cpu_active(dest_cpu))
1496 continue;
0c98d344 1497 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1498 return dest_cpu;
1499 }
2baab4e9 1500 }
5da9a0fb 1501
2baab4e9
PZ
1502 for (;;) {
1503 /* Any allowed, online CPU? */
0c98d344 1504 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1505 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1506 continue;
1507 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1508 continue;
1509 goto out;
1510 }
5da9a0fb 1511
e73e85f0 1512 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1513 switch (state) {
1514 case cpuset:
e73e85f0
ON
1515 if (IS_ENABLED(CONFIG_CPUSETS)) {
1516 cpuset_cpus_allowed_fallback(p);
1517 state = possible;
1518 break;
1519 }
d1ccc66d 1520 /* Fall-through */
2baab4e9
PZ
1521 case possible:
1522 do_set_cpus_allowed(p, cpu_possible_mask);
1523 state = fail;
1524 break;
1525
1526 case fail:
1527 BUG();
1528 break;
1529 }
1530 }
1531
1532out:
1533 if (state != cpuset) {
1534 /*
1535 * Don't tell them about moving exiting tasks or
1536 * kernel threads (both mm NULL), since they never
1537 * leave kernel.
1538 */
1539 if (p->mm && printk_ratelimit()) {
aac74dc4 1540 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1541 task_pid_nr(p), p->comm, cpu);
1542 }
5da9a0fb
PZ
1543 }
1544
1545 return dest_cpu;
1546}
1547
e2912009 1548/*
013fdb80 1549 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1550 */
970b13ba 1551static inline
ac66f547 1552int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1553{
cbce1a68
PZ
1554 lockdep_assert_held(&p->pi_lock);
1555
4b53a341 1556 if (p->nr_cpus_allowed > 1)
6c1d9410 1557 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1558 else
0c98d344 1559 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1560
1561 /*
1562 * In order not to call set_task_cpu() on a blocking task we need
1563 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1564 * CPU.
e2912009
PZ
1565 *
1566 * Since this is common to all placement strategies, this lives here.
1567 *
1568 * [ this allows ->select_task() to simply return task_cpu(p) and
1569 * not worry about this generic constraint ]
1570 */
0c98d344 1571 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1572 !cpu_online(cpu)))
5da9a0fb 1573 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1574
1575 return cpu;
970b13ba 1576}
09a40af5
MG
1577
1578static void update_avg(u64 *avg, u64 sample)
1579{
1580 s64 diff = sample - *avg;
1581 *avg += diff >> 3;
1582}
25834c73
PZ
1583
1584#else
1585
1586static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1587 const struct cpumask *new_mask, bool check)
1588{
1589 return set_cpus_allowed_ptr(p, new_mask);
1590}
1591
5cc389bc 1592#endif /* CONFIG_SMP */
970b13ba 1593
d7c01d27 1594static void
b84cb5df 1595ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1596{
4fa8d299 1597 struct rq *rq;
b84cb5df 1598
4fa8d299
JP
1599 if (!schedstat_enabled())
1600 return;
1601
1602 rq = this_rq();
d7c01d27 1603
4fa8d299
JP
1604#ifdef CONFIG_SMP
1605 if (cpu == rq->cpu) {
ae92882e
JP
1606 schedstat_inc(rq->ttwu_local);
1607 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1608 } else {
1609 struct sched_domain *sd;
1610
ae92882e 1611 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1612 rcu_read_lock();
4fa8d299 1613 for_each_domain(rq->cpu, sd) {
d7c01d27 1614 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1615 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1616 break;
1617 }
1618 }
057f3fad 1619 rcu_read_unlock();
d7c01d27 1620 }
f339b9dc
PZ
1621
1622 if (wake_flags & WF_MIGRATED)
ae92882e 1623 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1624#endif /* CONFIG_SMP */
1625
ae92882e
JP
1626 schedstat_inc(rq->ttwu_count);
1627 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1628
1629 if (wake_flags & WF_SYNC)
ae92882e 1630 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1631}
1632
1de64443 1633static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1634{
9ed3811a 1635 activate_task(rq, p, en_flags);
da0c1e65 1636 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1637
d1ccc66d 1638 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1639 if (p->flags & PF_WQ_WORKER)
1640 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1641}
1642
23f41eeb
PZ
1643/*
1644 * Mark the task runnable and perform wakeup-preemption.
1645 */
e7904a28 1646static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1647 struct rq_flags *rf)
9ed3811a 1648{
9ed3811a 1649 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1650 p->state = TASK_RUNNING;
fbd705a0
PZ
1651 trace_sched_wakeup(p);
1652
9ed3811a 1653#ifdef CONFIG_SMP
4c9a4bc8
PZ
1654 if (p->sched_class->task_woken) {
1655 /*
cbce1a68
PZ
1656 * Our task @p is fully woken up and running; so its safe to
1657 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1658 */
d8ac8971 1659 rq_unpin_lock(rq, rf);
9ed3811a 1660 p->sched_class->task_woken(rq, p);
d8ac8971 1661 rq_repin_lock(rq, rf);
4c9a4bc8 1662 }
9ed3811a 1663
e69c6341 1664 if (rq->idle_stamp) {
78becc27 1665 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1666 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1667
abfafa54
JL
1668 update_avg(&rq->avg_idle, delta);
1669
1670 if (rq->avg_idle > max)
9ed3811a 1671 rq->avg_idle = max;
abfafa54 1672
9ed3811a
TH
1673 rq->idle_stamp = 0;
1674 }
1675#endif
1676}
1677
c05fbafb 1678static void
e7904a28 1679ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1680 struct rq_flags *rf)
c05fbafb 1681{
b5179ac7
PZ
1682 int en_flags = ENQUEUE_WAKEUP;
1683
cbce1a68
PZ
1684 lockdep_assert_held(&rq->lock);
1685
c05fbafb
PZ
1686#ifdef CONFIG_SMP
1687 if (p->sched_contributes_to_load)
1688 rq->nr_uninterruptible--;
b5179ac7 1689
b5179ac7 1690 if (wake_flags & WF_MIGRATED)
59efa0ba 1691 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1692#endif
1693
b5179ac7 1694 ttwu_activate(rq, p, en_flags);
d8ac8971 1695 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1696}
1697
1698/*
1699 * Called in case the task @p isn't fully descheduled from its runqueue,
1700 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1701 * since all we need to do is flip p->state to TASK_RUNNING, since
1702 * the task is still ->on_rq.
1703 */
1704static int ttwu_remote(struct task_struct *p, int wake_flags)
1705{
eb580751 1706 struct rq_flags rf;
c05fbafb
PZ
1707 struct rq *rq;
1708 int ret = 0;
1709
eb580751 1710 rq = __task_rq_lock(p, &rf);
da0c1e65 1711 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1712 /* check_preempt_curr() may use rq clock */
1713 update_rq_clock(rq);
d8ac8971 1714 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1715 ret = 1;
1716 }
eb580751 1717 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1718
1719 return ret;
1720}
1721
317f3941 1722#ifdef CONFIG_SMP
e3baac47 1723void sched_ttwu_pending(void)
317f3941
PZ
1724{
1725 struct rq *rq = this_rq();
fa14ff4a
PZ
1726 struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 struct task_struct *p;
e3baac47 1728 unsigned long flags;
d8ac8971 1729 struct rq_flags rf;
317f3941 1730
e3baac47
PZ
1731 if (!llist)
1732 return;
1733
1734 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1735 rq_pin_lock(rq, &rf);
317f3941 1736
fa14ff4a 1737 while (llist) {
b7e7ade3
PZ
1738 int wake_flags = 0;
1739
fa14ff4a
PZ
1740 p = llist_entry(llist, struct task_struct, wake_entry);
1741 llist = llist_next(llist);
b7e7ade3
PZ
1742
1743 if (p->sched_remote_wakeup)
1744 wake_flags = WF_MIGRATED;
1745
d8ac8971 1746 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1747 }
1748
d8ac8971 1749 rq_unpin_lock(rq, &rf);
e3baac47 1750 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1751}
1752
1753void scheduler_ipi(void)
1754{
f27dde8d
PZ
1755 /*
1756 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1757 * TIF_NEED_RESCHED remotely (for the first time) will also send
1758 * this IPI.
1759 */
8cb75e0c 1760 preempt_fold_need_resched();
f27dde8d 1761
fd2ac4f4 1762 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1763 return;
1764
1765 /*
1766 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1767 * traditionally all their work was done from the interrupt return
1768 * path. Now that we actually do some work, we need to make sure
1769 * we do call them.
1770 *
1771 * Some archs already do call them, luckily irq_enter/exit nest
1772 * properly.
1773 *
1774 * Arguably we should visit all archs and update all handlers,
1775 * however a fair share of IPIs are still resched only so this would
1776 * somewhat pessimize the simple resched case.
1777 */
1778 irq_enter();
fa14ff4a 1779 sched_ttwu_pending();
ca38062e
SS
1780
1781 /*
1782 * Check if someone kicked us for doing the nohz idle load balance.
1783 */
873b4c65 1784 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1785 this_rq()->idle_balance = 1;
ca38062e 1786 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1787 }
c5d753a5 1788 irq_exit();
317f3941
PZ
1789}
1790
b7e7ade3 1791static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1792{
e3baac47
PZ
1793 struct rq *rq = cpu_rq(cpu);
1794
b7e7ade3
PZ
1795 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1796
e3baac47
PZ
1797 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1798 if (!set_nr_if_polling(rq->idle))
1799 smp_send_reschedule(cpu);
1800 else
1801 trace_sched_wake_idle_without_ipi(cpu);
1802 }
317f3941 1803}
d6aa8f85 1804
f6be8af1
CL
1805void wake_up_if_idle(int cpu)
1806{
1807 struct rq *rq = cpu_rq(cpu);
1808 unsigned long flags;
1809
fd7de1e8
AL
1810 rcu_read_lock();
1811
1812 if (!is_idle_task(rcu_dereference(rq->curr)))
1813 goto out;
f6be8af1
CL
1814
1815 if (set_nr_if_polling(rq->idle)) {
1816 trace_sched_wake_idle_without_ipi(cpu);
1817 } else {
1818 raw_spin_lock_irqsave(&rq->lock, flags);
1819 if (is_idle_task(rq->curr))
1820 smp_send_reschedule(cpu);
d1ccc66d 1821 /* Else CPU is not idle, do nothing here: */
f6be8af1
CL
1822 raw_spin_unlock_irqrestore(&rq->lock, flags);
1823 }
fd7de1e8
AL
1824
1825out:
1826 rcu_read_unlock();
f6be8af1
CL
1827}
1828
39be3501 1829bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1830{
1831 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1832}
d6aa8f85 1833#endif /* CONFIG_SMP */
317f3941 1834
b5179ac7 1835static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1836{
1837 struct rq *rq = cpu_rq(cpu);
d8ac8971 1838 struct rq_flags rf;
c05fbafb 1839
17d9f311 1840#if defined(CONFIG_SMP)
39be3501 1841 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1842 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1843 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1844 return;
1845 }
1846#endif
1847
c05fbafb 1848 raw_spin_lock(&rq->lock);
d8ac8971
MF
1849 rq_pin_lock(rq, &rf);
1850 ttwu_do_activate(rq, p, wake_flags, &rf);
1851 rq_unpin_lock(rq, &rf);
c05fbafb 1852 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1853}
1854
8643cda5
PZ
1855/*
1856 * Notes on Program-Order guarantees on SMP systems.
1857 *
1858 * MIGRATION
1859 *
1860 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1861 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1862 * execution on its new CPU [c1].
8643cda5
PZ
1863 *
1864 * For migration (of runnable tasks) this is provided by the following means:
1865 *
1866 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1867 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1868 * rq(c1)->lock (if not at the same time, then in that order).
1869 * C) LOCK of the rq(c1)->lock scheduling in task
1870 *
1871 * Transitivity guarantees that B happens after A and C after B.
1872 * Note: we only require RCpc transitivity.
d1ccc66d 1873 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1874 *
1875 * Example:
1876 *
1877 * CPU0 CPU1 CPU2
1878 *
1879 * LOCK rq(0)->lock
1880 * sched-out X
1881 * sched-in Y
1882 * UNLOCK rq(0)->lock
1883 *
1884 * LOCK rq(0)->lock // orders against CPU0
1885 * dequeue X
1886 * UNLOCK rq(0)->lock
1887 *
1888 * LOCK rq(1)->lock
1889 * enqueue X
1890 * UNLOCK rq(1)->lock
1891 *
1892 * LOCK rq(1)->lock // orders against CPU2
1893 * sched-out Z
1894 * sched-in X
1895 * UNLOCK rq(1)->lock
1896 *
1897 *
1898 * BLOCKING -- aka. SLEEP + WAKEUP
1899 *
1900 * For blocking we (obviously) need to provide the same guarantee as for
1901 * migration. However the means are completely different as there is no lock
1902 * chain to provide order. Instead we do:
1903 *
1904 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1905 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1906 *
1907 * Example:
1908 *
1909 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1910 *
1911 * LOCK rq(0)->lock LOCK X->pi_lock
1912 * dequeue X
1913 * sched-out X
1914 * smp_store_release(X->on_cpu, 0);
1915 *
1f03e8d2 1916 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1917 * X->state = WAKING
1918 * set_task_cpu(X,2)
1919 *
1920 * LOCK rq(2)->lock
1921 * enqueue X
1922 * X->state = RUNNING
1923 * UNLOCK rq(2)->lock
1924 *
1925 * LOCK rq(2)->lock // orders against CPU1
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(2)->lock
1929 *
1930 * UNLOCK X->pi_lock
1931 * UNLOCK rq(0)->lock
1932 *
1933 *
1934 * However; for wakeups there is a second guarantee we must provide, namely we
1935 * must observe the state that lead to our wakeup. That is, not only must our
1936 * task observe its own prior state, it must also observe the stores prior to
1937 * its wakeup.
1938 *
1939 * This means that any means of doing remote wakeups must order the CPU doing
1940 * the wakeup against the CPU the task is going to end up running on. This,
1941 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1942 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1943 *
1944 */
1945
9ed3811a 1946/**
1da177e4 1947 * try_to_wake_up - wake up a thread
9ed3811a 1948 * @p: the thread to be awakened
1da177e4 1949 * @state: the mask of task states that can be woken
9ed3811a 1950 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1951 *
a2250238 1952 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1953 *
a2250238
PZ
1954 * If the task was not queued/runnable, also place it back on a runqueue.
1955 *
1956 * Atomic against schedule() which would dequeue a task, also see
1957 * set_current_state().
1958 *
1959 * Return: %true if @p->state changes (an actual wakeup was done),
1960 * %false otherwise.
1da177e4 1961 */
e4a52bcb
PZ
1962static int
1963try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1964{
1da177e4 1965 unsigned long flags;
c05fbafb 1966 int cpu, success = 0;
2398f2c6 1967
e0acd0a6
ON
1968 /*
1969 * If we are going to wake up a thread waiting for CONDITION we
1970 * need to ensure that CONDITION=1 done by the caller can not be
1971 * reordered with p->state check below. This pairs with mb() in
1972 * set_current_state() the waiting thread does.
1973 */
1974 smp_mb__before_spinlock();
013fdb80 1975 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1976 if (!(p->state & state))
1da177e4
LT
1977 goto out;
1978
fbd705a0
PZ
1979 trace_sched_waking(p);
1980
d1ccc66d
IM
1981 /* We're going to change ->state: */
1982 success = 1;
1da177e4 1983 cpu = task_cpu(p);
1da177e4 1984
135e8c92
BS
1985 /*
1986 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1987 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1988 * in smp_cond_load_acquire() below.
1989 *
1990 * sched_ttwu_pending() try_to_wake_up()
1991 * [S] p->on_rq = 1; [L] P->state
1992 * UNLOCK rq->lock -----.
1993 * \
1994 * +--- RMB
1995 * schedule() /
1996 * LOCK rq->lock -----'
1997 * UNLOCK rq->lock
1998 *
1999 * [task p]
2000 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2001 *
2002 * Pairs with the UNLOCK+LOCK on rq->lock from the
2003 * last wakeup of our task and the schedule that got our task
2004 * current.
2005 */
2006 smp_rmb();
c05fbafb
PZ
2007 if (p->on_rq && ttwu_remote(p, wake_flags))
2008 goto stat;
1da177e4 2009
1da177e4 2010#ifdef CONFIG_SMP
ecf7d01c
PZ
2011 /*
2012 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2013 * possible to, falsely, observe p->on_cpu == 0.
2014 *
2015 * One must be running (->on_cpu == 1) in order to remove oneself
2016 * from the runqueue.
2017 *
2018 * [S] ->on_cpu = 1; [L] ->on_rq
2019 * UNLOCK rq->lock
2020 * RMB
2021 * LOCK rq->lock
2022 * [S] ->on_rq = 0; [L] ->on_cpu
2023 *
2024 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2025 * from the consecutive calls to schedule(); the first switching to our
2026 * task, the second putting it to sleep.
2027 */
2028 smp_rmb();
2029
e9c84311 2030 /*
d1ccc66d 2031 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2032 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2033 *
2034 * Pairs with the smp_store_release() in finish_lock_switch().
2035 *
2036 * This ensures that tasks getting woken will be fully ordered against
2037 * their previous state and preserve Program Order.
0970d299 2038 */
1f03e8d2 2039 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2040
a8e4f2ea 2041 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2042 p->state = TASK_WAKING;
e7693a36 2043
e33a9bba
TH
2044 if (p->in_iowait) {
2045 delayacct_blkio_end();
2046 atomic_dec(&task_rq(p)->nr_iowait);
2047 }
2048
ac66f547 2049 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2050 if (task_cpu(p) != cpu) {
2051 wake_flags |= WF_MIGRATED;
e4a52bcb 2052 set_task_cpu(p, cpu);
f339b9dc 2053 }
e33a9bba
TH
2054
2055#else /* CONFIG_SMP */
2056
2057 if (p->in_iowait) {
2058 delayacct_blkio_end();
2059 atomic_dec(&task_rq(p)->nr_iowait);
2060 }
2061
1da177e4 2062#endif /* CONFIG_SMP */
1da177e4 2063
b5179ac7 2064 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2065stat:
4fa8d299 2066 ttwu_stat(p, cpu, wake_flags);
1da177e4 2067out:
013fdb80 2068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2069
2070 return success;
2071}
2072
21aa9af0
TH
2073/**
2074 * try_to_wake_up_local - try to wake up a local task with rq lock held
2075 * @p: the thread to be awakened
9279e0d2 2076 * @cookie: context's cookie for pinning
21aa9af0 2077 *
2acca55e 2078 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2079 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2080 * the current task.
21aa9af0 2081 */
d8ac8971 2082static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2083{
2084 struct rq *rq = task_rq(p);
21aa9af0 2085
383efcd0
TH
2086 if (WARN_ON_ONCE(rq != this_rq()) ||
2087 WARN_ON_ONCE(p == current))
2088 return;
2089
21aa9af0
TH
2090 lockdep_assert_held(&rq->lock);
2091
2acca55e 2092 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2093 /*
2094 * This is OK, because current is on_cpu, which avoids it being
2095 * picked for load-balance and preemption/IRQs are still
2096 * disabled avoiding further scheduler activity on it and we've
2097 * not yet picked a replacement task.
2098 */
d8ac8971 2099 rq_unpin_lock(rq, rf);
2acca55e
PZ
2100 raw_spin_unlock(&rq->lock);
2101 raw_spin_lock(&p->pi_lock);
2102 raw_spin_lock(&rq->lock);
d8ac8971 2103 rq_repin_lock(rq, rf);
2acca55e
PZ
2104 }
2105
21aa9af0 2106 if (!(p->state & TASK_NORMAL))
2acca55e 2107 goto out;
21aa9af0 2108
fbd705a0
PZ
2109 trace_sched_waking(p);
2110
e33a9bba
TH
2111 if (!task_on_rq_queued(p)) {
2112 if (p->in_iowait) {
2113 delayacct_blkio_end();
2114 atomic_dec(&rq->nr_iowait);
2115 }
d7c01d27 2116 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
e33a9bba 2117 }
d7c01d27 2118
d8ac8971 2119 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2120 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2121out:
2122 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2123}
2124
50fa610a
DH
2125/**
2126 * wake_up_process - Wake up a specific process
2127 * @p: The process to be woken up.
2128 *
2129 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2130 * processes.
2131 *
2132 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2133 *
2134 * It may be assumed that this function implies a write memory barrier before
2135 * changing the task state if and only if any tasks are woken up.
2136 */
7ad5b3a5 2137int wake_up_process(struct task_struct *p)
1da177e4 2138{
9067ac85 2139 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2140}
1da177e4
LT
2141EXPORT_SYMBOL(wake_up_process);
2142
7ad5b3a5 2143int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2144{
2145 return try_to_wake_up(p, state, 0);
2146}
2147
a5e7be3b
JL
2148/*
2149 * This function clears the sched_dl_entity static params.
2150 */
2151void __dl_clear_params(struct task_struct *p)
2152{
2153 struct sched_dl_entity *dl_se = &p->dl;
2154
2155 dl_se->dl_runtime = 0;
2156 dl_se->dl_deadline = 0;
2157 dl_se->dl_period = 0;
2158 dl_se->flags = 0;
2159 dl_se->dl_bw = 0;
40767b0d
PZ
2160
2161 dl_se->dl_throttled = 0;
40767b0d 2162 dl_se->dl_yielded = 0;
a5e7be3b
JL
2163}
2164
1da177e4
LT
2165/*
2166 * Perform scheduler related setup for a newly forked process p.
2167 * p is forked by current.
dd41f596
IM
2168 *
2169 * __sched_fork() is basic setup used by init_idle() too:
2170 */
5e1576ed 2171static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2172{
fd2f4419
PZ
2173 p->on_rq = 0;
2174
2175 p->se.on_rq = 0;
dd41f596
IM
2176 p->se.exec_start = 0;
2177 p->se.sum_exec_runtime = 0;
f6cf891c 2178 p->se.prev_sum_exec_runtime = 0;
6c594c21 2179 p->se.nr_migrations = 0;
da7a735e 2180 p->se.vruntime = 0;
fd2f4419 2181 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2182
ad936d86
BP
2183#ifdef CONFIG_FAIR_GROUP_SCHED
2184 p->se.cfs_rq = NULL;
2185#endif
2186
6cfb0d5d 2187#ifdef CONFIG_SCHEDSTATS
cb251765 2188 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2189 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2190#endif
476d139c 2191
aab03e05 2192 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2193 init_dl_task_timer(&p->dl);
a5e7be3b 2194 __dl_clear_params(p);
aab03e05 2195
fa717060 2196 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2197 p->rt.timeout = 0;
2198 p->rt.time_slice = sched_rr_timeslice;
2199 p->rt.on_rq = 0;
2200 p->rt.on_list = 0;
476d139c 2201
e107be36
AK
2202#ifdef CONFIG_PREEMPT_NOTIFIERS
2203 INIT_HLIST_HEAD(&p->preempt_notifiers);
2204#endif
cbee9f88
PZ
2205
2206#ifdef CONFIG_NUMA_BALANCING
2207 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2208 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2209 p->mm->numa_scan_seq = 0;
2210 }
2211
5e1576ed
RR
2212 if (clone_flags & CLONE_VM)
2213 p->numa_preferred_nid = current->numa_preferred_nid;
2214 else
2215 p->numa_preferred_nid = -1;
2216
cbee9f88
PZ
2217 p->node_stamp = 0ULL;
2218 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2219 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2220 p->numa_work.next = &p->numa_work;
44dba3d5 2221 p->numa_faults = NULL;
7e2703e6
RR
2222 p->last_task_numa_placement = 0;
2223 p->last_sum_exec_runtime = 0;
8c8a743c 2224
8c8a743c 2225 p->numa_group = NULL;
cbee9f88 2226#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2227}
2228
2a595721
SD
2229DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2230
1a687c2e 2231#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2232
1a687c2e
MG
2233void set_numabalancing_state(bool enabled)
2234{
2235 if (enabled)
2a595721 2236 static_branch_enable(&sched_numa_balancing);
1a687c2e 2237 else
2a595721 2238 static_branch_disable(&sched_numa_balancing);
1a687c2e 2239}
54a43d54
AK
2240
2241#ifdef CONFIG_PROC_SYSCTL
2242int sysctl_numa_balancing(struct ctl_table *table, int write,
2243 void __user *buffer, size_t *lenp, loff_t *ppos)
2244{
2245 struct ctl_table t;
2246 int err;
2a595721 2247 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2248
2249 if (write && !capable(CAP_SYS_ADMIN))
2250 return -EPERM;
2251
2252 t = *table;
2253 t.data = &state;
2254 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2255 if (err < 0)
2256 return err;
2257 if (write)
2258 set_numabalancing_state(state);
2259 return err;
2260}
2261#endif
2262#endif
dd41f596 2263
4698f88c
JP
2264#ifdef CONFIG_SCHEDSTATS
2265
cb251765 2266DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2267static bool __initdata __sched_schedstats = false;
cb251765 2268
cb251765
MG
2269static void set_schedstats(bool enabled)
2270{
2271 if (enabled)
2272 static_branch_enable(&sched_schedstats);
2273 else
2274 static_branch_disable(&sched_schedstats);
2275}
2276
2277void force_schedstat_enabled(void)
2278{
2279 if (!schedstat_enabled()) {
2280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2281 static_branch_enable(&sched_schedstats);
2282 }
2283}
2284
2285static int __init setup_schedstats(char *str)
2286{
2287 int ret = 0;
2288 if (!str)
2289 goto out;
2290
4698f88c
JP
2291 /*
2292 * This code is called before jump labels have been set up, so we can't
2293 * change the static branch directly just yet. Instead set a temporary
2294 * variable so init_schedstats() can do it later.
2295 */
cb251765 2296 if (!strcmp(str, "enable")) {
4698f88c 2297 __sched_schedstats = true;
cb251765
MG
2298 ret = 1;
2299 } else if (!strcmp(str, "disable")) {
4698f88c 2300 __sched_schedstats = false;
cb251765
MG
2301 ret = 1;
2302 }
2303out:
2304 if (!ret)
2305 pr_warn("Unable to parse schedstats=\n");
2306
2307 return ret;
2308}
2309__setup("schedstats=", setup_schedstats);
2310
4698f88c
JP
2311static void __init init_schedstats(void)
2312{
2313 set_schedstats(__sched_schedstats);
2314}
2315
cb251765
MG
2316#ifdef CONFIG_PROC_SYSCTL
2317int sysctl_schedstats(struct ctl_table *table, int write,
2318 void __user *buffer, size_t *lenp, loff_t *ppos)
2319{
2320 struct ctl_table t;
2321 int err;
2322 int state = static_branch_likely(&sched_schedstats);
2323
2324 if (write && !capable(CAP_SYS_ADMIN))
2325 return -EPERM;
2326
2327 t = *table;
2328 t.data = &state;
2329 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2330 if (err < 0)
2331 return err;
2332 if (write)
2333 set_schedstats(state);
2334 return err;
2335}
4698f88c
JP
2336#endif /* CONFIG_PROC_SYSCTL */
2337#else /* !CONFIG_SCHEDSTATS */
2338static inline void init_schedstats(void) {}
2339#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2340
2341/*
2342 * fork()/clone()-time setup:
2343 */
aab03e05 2344int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2345{
0122ec5b 2346 unsigned long flags;
dd41f596
IM
2347 int cpu = get_cpu();
2348
5e1576ed 2349 __sched_fork(clone_flags, p);
06b83b5f 2350 /*
7dc603c9 2351 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2352 * nobody will actually run it, and a signal or other external
2353 * event cannot wake it up and insert it on the runqueue either.
2354 */
7dc603c9 2355 p->state = TASK_NEW;
dd41f596 2356
c350a04e
MG
2357 /*
2358 * Make sure we do not leak PI boosting priority to the child.
2359 */
2360 p->prio = current->normal_prio;
2361
b9dc29e7
MG
2362 /*
2363 * Revert to default priority/policy on fork if requested.
2364 */
2365 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2366 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2367 p->policy = SCHED_NORMAL;
6c697bdf 2368 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2369 p->rt_priority = 0;
2370 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2371 p->static_prio = NICE_TO_PRIO(0);
2372
2373 p->prio = p->normal_prio = __normal_prio(p);
2374 set_load_weight(p);
6c697bdf 2375
b9dc29e7
MG
2376 /*
2377 * We don't need the reset flag anymore after the fork. It has
2378 * fulfilled its duty:
2379 */
2380 p->sched_reset_on_fork = 0;
2381 }
ca94c442 2382
aab03e05
DF
2383 if (dl_prio(p->prio)) {
2384 put_cpu();
2385 return -EAGAIN;
2386 } else if (rt_prio(p->prio)) {
2387 p->sched_class = &rt_sched_class;
2388 } else {
2ddbf952 2389 p->sched_class = &fair_sched_class;
aab03e05 2390 }
b29739f9 2391
7dc603c9 2392 init_entity_runnable_average(&p->se);
cd29fe6f 2393
86951599
PZ
2394 /*
2395 * The child is not yet in the pid-hash so no cgroup attach races,
2396 * and the cgroup is pinned to this child due to cgroup_fork()
2397 * is ran before sched_fork().
2398 *
2399 * Silence PROVE_RCU.
2400 */
0122ec5b 2401 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2402 /*
d1ccc66d 2403 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2404 * so use __set_task_cpu().
2405 */
2406 __set_task_cpu(p, cpu);
2407 if (p->sched_class->task_fork)
2408 p->sched_class->task_fork(p);
0122ec5b 2409 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2410
f6db8347 2411#ifdef CONFIG_SCHED_INFO
dd41f596 2412 if (likely(sched_info_on()))
52f17b6c 2413 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2414#endif
3ca7a440
PZ
2415#if defined(CONFIG_SMP)
2416 p->on_cpu = 0;
4866cde0 2417#endif
01028747 2418 init_task_preempt_count(p);
806c09a7 2419#ifdef CONFIG_SMP
917b627d 2420 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2421 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2422#endif
917b627d 2423
476d139c 2424 put_cpu();
aab03e05 2425 return 0;
1da177e4
LT
2426}
2427
332ac17e
DF
2428unsigned long to_ratio(u64 period, u64 runtime)
2429{
2430 if (runtime == RUNTIME_INF)
2431 return 1ULL << 20;
2432
2433 /*
2434 * Doing this here saves a lot of checks in all
2435 * the calling paths, and returning zero seems
2436 * safe for them anyway.
2437 */
2438 if (period == 0)
2439 return 0;
2440
2441 return div64_u64(runtime << 20, period);
2442}
2443
2444#ifdef CONFIG_SMP
2445inline struct dl_bw *dl_bw_of(int i)
2446{
f78f5b90
PM
2447 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2448 "sched RCU must be held");
332ac17e
DF
2449 return &cpu_rq(i)->rd->dl_bw;
2450}
2451
de212f18 2452static inline int dl_bw_cpus(int i)
332ac17e 2453{
de212f18
PZ
2454 struct root_domain *rd = cpu_rq(i)->rd;
2455 int cpus = 0;
2456
f78f5b90
PM
2457 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2458 "sched RCU must be held");
de212f18
PZ
2459 for_each_cpu_and(i, rd->span, cpu_active_mask)
2460 cpus++;
2461
2462 return cpus;
332ac17e
DF
2463}
2464#else
2465inline struct dl_bw *dl_bw_of(int i)
2466{
2467 return &cpu_rq(i)->dl.dl_bw;
2468}
2469
de212f18 2470static inline int dl_bw_cpus(int i)
332ac17e
DF
2471{
2472 return 1;
2473}
2474#endif
2475
332ac17e
DF
2476/*
2477 * We must be sure that accepting a new task (or allowing changing the
2478 * parameters of an existing one) is consistent with the bandwidth
2479 * constraints. If yes, this function also accordingly updates the currently
2480 * allocated bandwidth to reflect the new situation.
2481 *
2482 * This function is called while holding p's rq->lock.
40767b0d
PZ
2483 *
2484 * XXX we should delay bw change until the task's 0-lag point, see
2485 * __setparam_dl().
332ac17e
DF
2486 */
2487static int dl_overflow(struct task_struct *p, int policy,
2488 const struct sched_attr *attr)
2489{
2490
2491 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2492 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2493 u64 runtime = attr->sched_runtime;
2494 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2495 int cpus, err = -1;
332ac17e 2496
fec148c0
XP
2497 /* !deadline task may carry old deadline bandwidth */
2498 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2499 return 0;
2500
2501 /*
2502 * Either if a task, enters, leave, or stays -deadline but changes
2503 * its parameters, we may need to update accordingly the total
2504 * allocated bandwidth of the container.
2505 */
2506 raw_spin_lock(&dl_b->lock);
de212f18 2507 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2508 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2509 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2510 __dl_add(dl_b, new_bw);
2511 err = 0;
2512 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2513 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2514 __dl_clear(dl_b, p->dl.dl_bw);
2515 __dl_add(dl_b, new_bw);
2516 err = 0;
2517 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2518 __dl_clear(dl_b, p->dl.dl_bw);
2519 err = 0;
2520 }
2521 raw_spin_unlock(&dl_b->lock);
2522
2523 return err;
2524}
2525
2526extern void init_dl_bw(struct dl_bw *dl_b);
2527
1da177e4
LT
2528/*
2529 * wake_up_new_task - wake up a newly created task for the first time.
2530 *
2531 * This function will do some initial scheduler statistics housekeeping
2532 * that must be done for every newly created context, then puts the task
2533 * on the runqueue and wakes it.
2534 */
3e51e3ed 2535void wake_up_new_task(struct task_struct *p)
1da177e4 2536{
eb580751 2537 struct rq_flags rf;
dd41f596 2538 struct rq *rq;
fabf318e 2539
eb580751 2540 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2541 p->state = TASK_RUNNING;
fabf318e
PZ
2542#ifdef CONFIG_SMP
2543 /*
2544 * Fork balancing, do it here and not earlier because:
2545 * - cpus_allowed can change in the fork path
d1ccc66d 2546 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2547 *
2548 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2549 * as we're not fully set-up yet.
fabf318e 2550 */
e210bffd 2551 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2552#endif
b7fa30c9 2553 rq = __task_rq_lock(p, &rf);
4126bad6 2554 update_rq_clock(rq);
2b8c41da 2555 post_init_entity_util_avg(&p->se);
0017d735 2556
cd29fe6f 2557 activate_task(rq, p, 0);
da0c1e65 2558 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2559 trace_sched_wakeup_new(p);
a7558e01 2560 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2561#ifdef CONFIG_SMP
0aaafaab
PZ
2562 if (p->sched_class->task_woken) {
2563 /*
2564 * Nothing relies on rq->lock after this, so its fine to
2565 * drop it.
2566 */
d8ac8971 2567 rq_unpin_lock(rq, &rf);
efbbd05a 2568 p->sched_class->task_woken(rq, p);
d8ac8971 2569 rq_repin_lock(rq, &rf);
0aaafaab 2570 }
9a897c5a 2571#endif
eb580751 2572 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2573}
2574
e107be36
AK
2575#ifdef CONFIG_PREEMPT_NOTIFIERS
2576
1cde2930
PZ
2577static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2578
2ecd9d29
PZ
2579void preempt_notifier_inc(void)
2580{
2581 static_key_slow_inc(&preempt_notifier_key);
2582}
2583EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2584
2585void preempt_notifier_dec(void)
2586{
2587 static_key_slow_dec(&preempt_notifier_key);
2588}
2589EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2590
e107be36 2591/**
80dd99b3 2592 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2593 * @notifier: notifier struct to register
e107be36
AK
2594 */
2595void preempt_notifier_register(struct preempt_notifier *notifier)
2596{
2ecd9d29
PZ
2597 if (!static_key_false(&preempt_notifier_key))
2598 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2599
e107be36
AK
2600 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2601}
2602EXPORT_SYMBOL_GPL(preempt_notifier_register);
2603
2604/**
2605 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2606 * @notifier: notifier struct to unregister
e107be36 2607 *
d84525a8 2608 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2609 */
2610void preempt_notifier_unregister(struct preempt_notifier *notifier)
2611{
2612 hlist_del(&notifier->link);
2613}
2614EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2615
1cde2930 2616static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2617{
2618 struct preempt_notifier *notifier;
e107be36 2619
b67bfe0d 2620 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622}
2623
1cde2930
PZ
2624static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2625{
2626 if (static_key_false(&preempt_notifier_key))
2627 __fire_sched_in_preempt_notifiers(curr);
2628}
2629
e107be36 2630static void
1cde2930
PZ
2631__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
e107be36
AK
2633{
2634 struct preempt_notifier *notifier;
e107be36 2635
b67bfe0d 2636 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2637 notifier->ops->sched_out(notifier, next);
2638}
2639
1cde2930
PZ
2640static __always_inline void
2641fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642 struct task_struct *next)
2643{
2644 if (static_key_false(&preempt_notifier_key))
2645 __fire_sched_out_preempt_notifiers(curr, next);
2646}
2647
6d6bc0ad 2648#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2649
1cde2930 2650static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2651{
2652}
2653
1cde2930 2654static inline void
e107be36
AK
2655fire_sched_out_preempt_notifiers(struct task_struct *curr,
2656 struct task_struct *next)
2657{
2658}
2659
6d6bc0ad 2660#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2661
4866cde0
NP
2662/**
2663 * prepare_task_switch - prepare to switch tasks
2664 * @rq: the runqueue preparing to switch
421cee29 2665 * @prev: the current task that is being switched out
4866cde0
NP
2666 * @next: the task we are going to switch to.
2667 *
2668 * This is called with the rq lock held and interrupts off. It must
2669 * be paired with a subsequent finish_task_switch after the context
2670 * switch.
2671 *
2672 * prepare_task_switch sets up locking and calls architecture specific
2673 * hooks.
2674 */
e107be36
AK
2675static inline void
2676prepare_task_switch(struct rq *rq, struct task_struct *prev,
2677 struct task_struct *next)
4866cde0 2678{
43148951 2679 sched_info_switch(rq, prev, next);
fe4b04fa 2680 perf_event_task_sched_out(prev, next);
e107be36 2681 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2682 prepare_lock_switch(rq, next);
2683 prepare_arch_switch(next);
2684}
2685
1da177e4
LT
2686/**
2687 * finish_task_switch - clean up after a task-switch
2688 * @prev: the thread we just switched away from.
2689 *
4866cde0
NP
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2694 *
2695 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2696 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2697 * with the lock held can cause deadlocks; see schedule() for
2698 * details.)
dfa50b60
ON
2699 *
2700 * The context switch have flipped the stack from under us and restored the
2701 * local variables which were saved when this task called schedule() in the
2702 * past. prev == current is still correct but we need to recalculate this_rq
2703 * because prev may have moved to another CPU.
1da177e4 2704 */
dfa50b60 2705static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2706 __releases(rq->lock)
2707{
dfa50b60 2708 struct rq *rq = this_rq();
1da177e4 2709 struct mm_struct *mm = rq->prev_mm;
55a101f8 2710 long prev_state;
1da177e4 2711
609ca066
PZ
2712 /*
2713 * The previous task will have left us with a preempt_count of 2
2714 * because it left us after:
2715 *
2716 * schedule()
2717 * preempt_disable(); // 1
2718 * __schedule()
2719 * raw_spin_lock_irq(&rq->lock) // 2
2720 *
2721 * Also, see FORK_PREEMPT_COUNT.
2722 */
e2bf1c4b
PZ
2723 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2724 "corrupted preempt_count: %s/%d/0x%x\n",
2725 current->comm, current->pid, preempt_count()))
2726 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2727
1da177e4
LT
2728 rq->prev_mm = NULL;
2729
2730 /*
2731 * A task struct has one reference for the use as "current".
c394cc9f 2732 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2733 * schedule one last time. The schedule call will never return, and
2734 * the scheduled task must drop that reference.
95913d97
PZ
2735 *
2736 * We must observe prev->state before clearing prev->on_cpu (in
2737 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2738 * running on another CPU and we could rave with its RUNNING -> DEAD
2739 * transition, resulting in a double drop.
1da177e4 2740 */
55a101f8 2741 prev_state = prev->state;
bf9fae9f 2742 vtime_task_switch(prev);
a8d757ef 2743 perf_event_task_sched_in(prev, current);
4866cde0 2744 finish_lock_switch(rq, prev);
01f23e16 2745 finish_arch_post_lock_switch();
e8fa1362 2746
e107be36 2747 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2748 if (mm)
2749 mmdrop(mm);
c394cc9f 2750 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2751 if (prev->sched_class->task_dead)
2752 prev->sched_class->task_dead(prev);
2753
c6fd91f0 2754 /*
2755 * Remove function-return probe instances associated with this
2756 * task and put them back on the free list.
9761eea8 2757 */
c6fd91f0 2758 kprobe_flush_task(prev);
68f24b08
AL
2759
2760 /* Task is done with its stack. */
2761 put_task_stack(prev);
2762
1da177e4 2763 put_task_struct(prev);
c6fd91f0 2764 }
99e5ada9 2765
de734f89 2766 tick_nohz_task_switch();
dfa50b60 2767 return rq;
1da177e4
LT
2768}
2769
3f029d3c
GH
2770#ifdef CONFIG_SMP
2771
3f029d3c 2772/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2773static void __balance_callback(struct rq *rq)
3f029d3c 2774{
e3fca9e7
PZ
2775 struct callback_head *head, *next;
2776 void (*func)(struct rq *rq);
2777 unsigned long flags;
3f029d3c 2778
e3fca9e7
PZ
2779 raw_spin_lock_irqsave(&rq->lock, flags);
2780 head = rq->balance_callback;
2781 rq->balance_callback = NULL;
2782 while (head) {
2783 func = (void (*)(struct rq *))head->func;
2784 next = head->next;
2785 head->next = NULL;
2786 head = next;
3f029d3c 2787
e3fca9e7 2788 func(rq);
3f029d3c 2789 }
e3fca9e7
PZ
2790 raw_spin_unlock_irqrestore(&rq->lock, flags);
2791}
2792
2793static inline void balance_callback(struct rq *rq)
2794{
2795 if (unlikely(rq->balance_callback))
2796 __balance_callback(rq);
3f029d3c
GH
2797}
2798
2799#else
da19ab51 2800
e3fca9e7 2801static inline void balance_callback(struct rq *rq)
3f029d3c 2802{
1da177e4
LT
2803}
2804
3f029d3c
GH
2805#endif
2806
1da177e4
LT
2807/**
2808 * schedule_tail - first thing a freshly forked thread must call.
2809 * @prev: the thread we just switched away from.
2810 */
722a9f92 2811asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2812 __releases(rq->lock)
2813{
1a43a14a 2814 struct rq *rq;
da19ab51 2815
609ca066
PZ
2816 /*
2817 * New tasks start with FORK_PREEMPT_COUNT, see there and
2818 * finish_task_switch() for details.
2819 *
2820 * finish_task_switch() will drop rq->lock() and lower preempt_count
2821 * and the preempt_enable() will end up enabling preemption (on
2822 * PREEMPT_COUNT kernels).
2823 */
2824
dfa50b60 2825 rq = finish_task_switch(prev);
e3fca9e7 2826 balance_callback(rq);
1a43a14a 2827 preempt_enable();
70b97a7f 2828
1da177e4 2829 if (current->set_child_tid)
b488893a 2830 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2831}
2832
2833/*
dfa50b60 2834 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2835 */
04936948 2836static __always_inline struct rq *
70b97a7f 2837context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2838 struct task_struct *next, struct rq_flags *rf)
1da177e4 2839{
dd41f596 2840 struct mm_struct *mm, *oldmm;
1da177e4 2841
e107be36 2842 prepare_task_switch(rq, prev, next);
fe4b04fa 2843
dd41f596
IM
2844 mm = next->mm;
2845 oldmm = prev->active_mm;
9226d125
ZA
2846 /*
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2849 * one hypercall.
2850 */
224101ed 2851 arch_start_context_switch(prev);
9226d125 2852
31915ab4 2853 if (!mm) {
1da177e4 2854 next->active_mm = oldmm;
f1f10076 2855 mmgrab(oldmm);
1da177e4
LT
2856 enter_lazy_tlb(oldmm, next);
2857 } else
f98db601 2858 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2859
31915ab4 2860 if (!prev->mm) {
1da177e4 2861 prev->active_mm = NULL;
1da177e4
LT
2862 rq->prev_mm = oldmm;
2863 }
92509b73 2864
cb42c9a3 2865 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2866
3a5f5e48
IM
2867 /*
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2872 */
d8ac8971 2873 rq_unpin_lock(rq, rf);
8a25d5de 2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2875
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev, next, prev);
dd41f596 2878 barrier();
dfa50b60
ON
2879
2880 return finish_task_switch(prev);
1da177e4
LT
2881}
2882
2883/*
1c3e8264 2884 * nr_running and nr_context_switches:
1da177e4
LT
2885 *
2886 * externally visible scheduler statistics: current number of runnable
1c3e8264 2887 * threads, total number of context switches performed since bootup.
1da177e4
LT
2888 */
2889unsigned long nr_running(void)
2890{
2891 unsigned long i, sum = 0;
2892
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2895
2896 return sum;
f711f609 2897}
1da177e4 2898
2ee507c4 2899/*
d1ccc66d 2900 * Check if only the current task is running on the CPU.
00cc1633
DD
2901 *
2902 * Caution: this function does not check that the caller has disabled
2903 * preemption, thus the result might have a time-of-check-to-time-of-use
2904 * race. The caller is responsible to use it correctly, for example:
2905 *
2906 * - from a non-preemptable section (of course)
2907 *
2908 * - from a thread that is bound to a single CPU
2909 *
2910 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2911 */
2912bool single_task_running(void)
2913{
00cc1633 2914 return raw_rq()->nr_running == 1;
2ee507c4
TC
2915}
2916EXPORT_SYMBOL(single_task_running);
2917
1da177e4 2918unsigned long long nr_context_switches(void)
46cb4b7c 2919{
cc94abfc
SR
2920 int i;
2921 unsigned long long sum = 0;
46cb4b7c 2922
0a945022 2923 for_each_possible_cpu(i)
1da177e4 2924 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2925
1da177e4
LT
2926 return sum;
2927}
483b4ee6 2928
e33a9bba
TH
2929/*
2930 * IO-wait accounting, and how its mostly bollocks (on SMP).
2931 *
2932 * The idea behind IO-wait account is to account the idle time that we could
2933 * have spend running if it were not for IO. That is, if we were to improve the
2934 * storage performance, we'd have a proportional reduction in IO-wait time.
2935 *
2936 * This all works nicely on UP, where, when a task blocks on IO, we account
2937 * idle time as IO-wait, because if the storage were faster, it could've been
2938 * running and we'd not be idle.
2939 *
2940 * This has been extended to SMP, by doing the same for each CPU. This however
2941 * is broken.
2942 *
2943 * Imagine for instance the case where two tasks block on one CPU, only the one
2944 * CPU will have IO-wait accounted, while the other has regular idle. Even
2945 * though, if the storage were faster, both could've ran at the same time,
2946 * utilising both CPUs.
2947 *
2948 * This means, that when looking globally, the current IO-wait accounting on
2949 * SMP is a lower bound, by reason of under accounting.
2950 *
2951 * Worse, since the numbers are provided per CPU, they are sometimes
2952 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2953 * associated with any one particular CPU, it can wake to another CPU than it
2954 * blocked on. This means the per CPU IO-wait number is meaningless.
2955 *
2956 * Task CPU affinities can make all that even more 'interesting'.
2957 */
2958
1da177e4
LT
2959unsigned long nr_iowait(void)
2960{
2961 unsigned long i, sum = 0;
483b4ee6 2962
0a945022 2963 for_each_possible_cpu(i)
1da177e4 2964 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2965
1da177e4
LT
2966 return sum;
2967}
483b4ee6 2968
e33a9bba
TH
2969/*
2970 * Consumers of these two interfaces, like for example the cpufreq menu
2971 * governor are using nonsensical data. Boosting frequency for a CPU that has
2972 * IO-wait which might not even end up running the task when it does become
2973 * runnable.
2974 */
2975
8c215bd3 2976unsigned long nr_iowait_cpu(int cpu)
69d25870 2977{
8c215bd3 2978 struct rq *this = cpu_rq(cpu);
69d25870
AV
2979 return atomic_read(&this->nr_iowait);
2980}
46cb4b7c 2981
372ba8cb
MG
2982void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2983{
3289bdb4
PZ
2984 struct rq *rq = this_rq();
2985 *nr_waiters = atomic_read(&rq->nr_iowait);
2986 *load = rq->load.weight;
372ba8cb
MG
2987}
2988
dd41f596 2989#ifdef CONFIG_SMP
8a0be9ef 2990
46cb4b7c 2991/*
38022906
PZ
2992 * sched_exec - execve() is a valuable balancing opportunity, because at
2993 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2994 */
38022906 2995void sched_exec(void)
46cb4b7c 2996{
38022906 2997 struct task_struct *p = current;
1da177e4 2998 unsigned long flags;
0017d735 2999 int dest_cpu;
46cb4b7c 3000
8f42ced9 3001 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3002 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3003 if (dest_cpu == smp_processor_id())
3004 goto unlock;
38022906 3005
8f42ced9 3006 if (likely(cpu_active(dest_cpu))) {
969c7921 3007 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3008
8f42ced9
PZ
3009 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3010 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3011 return;
3012 }
0017d735 3013unlock:
8f42ced9 3014 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3015}
dd41f596 3016
1da177e4
LT
3017#endif
3018
1da177e4 3019DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3020DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3021
3022EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3023EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3024
6075620b
GG
3025/*
3026 * The function fair_sched_class.update_curr accesses the struct curr
3027 * and its field curr->exec_start; when called from task_sched_runtime(),
3028 * we observe a high rate of cache misses in practice.
3029 * Prefetching this data results in improved performance.
3030 */
3031static inline void prefetch_curr_exec_start(struct task_struct *p)
3032{
3033#ifdef CONFIG_FAIR_GROUP_SCHED
3034 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3035#else
3036 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3037#endif
3038 prefetch(curr);
3039 prefetch(&curr->exec_start);
3040}
3041
c5f8d995
HS
3042/*
3043 * Return accounted runtime for the task.
3044 * In case the task is currently running, return the runtime plus current's
3045 * pending runtime that have not been accounted yet.
3046 */
3047unsigned long long task_sched_runtime(struct task_struct *p)
3048{
eb580751 3049 struct rq_flags rf;
c5f8d995 3050 struct rq *rq;
6e998916 3051 u64 ns;
c5f8d995 3052
911b2898
PZ
3053#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3054 /*
3055 * 64-bit doesn't need locks to atomically read a 64bit value.
3056 * So we have a optimization chance when the task's delta_exec is 0.
3057 * Reading ->on_cpu is racy, but this is ok.
3058 *
d1ccc66d
IM
3059 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3060 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3061 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3062 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3063 * been accounted, so we're correct here as well.
911b2898 3064 */
da0c1e65 3065 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3066 return p->se.sum_exec_runtime;
3067#endif
3068
eb580751 3069 rq = task_rq_lock(p, &rf);
6e998916
SG
3070 /*
3071 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3072 * project cycles that may never be accounted to this
3073 * thread, breaking clock_gettime().
3074 */
3075 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3076 prefetch_curr_exec_start(p);
6e998916
SG
3077 update_rq_clock(rq);
3078 p->sched_class->update_curr(rq);
3079 }
3080 ns = p->se.sum_exec_runtime;
eb580751 3081 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3082
3083 return ns;
3084}
48f24c4d 3085
7835b98b
CL
3086/*
3087 * This function gets called by the timer code, with HZ frequency.
3088 * We call it with interrupts disabled.
7835b98b
CL
3089 */
3090void scheduler_tick(void)
3091{
7835b98b
CL
3092 int cpu = smp_processor_id();
3093 struct rq *rq = cpu_rq(cpu);
dd41f596 3094 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3095
3096 sched_clock_tick();
dd41f596 3097
05fa785c 3098 raw_spin_lock(&rq->lock);
3e51f33f 3099 update_rq_clock(rq);
fa85ae24 3100 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3101 cpu_load_update_active(rq);
3289bdb4 3102 calc_global_load_tick(rq);
05fa785c 3103 raw_spin_unlock(&rq->lock);
7835b98b 3104
e9d2b064 3105 perf_event_task_tick();
e220d2dc 3106
e418e1c2 3107#ifdef CONFIG_SMP
6eb57e0d 3108 rq->idle_balance = idle_cpu(cpu);
7caff66f 3109 trigger_load_balance(rq);
e418e1c2 3110#endif
265f22a9 3111 rq_last_tick_reset(rq);
1da177e4
LT
3112}
3113
265f22a9
FW
3114#ifdef CONFIG_NO_HZ_FULL
3115/**
3116 * scheduler_tick_max_deferment
3117 *
3118 * Keep at least one tick per second when a single
3119 * active task is running because the scheduler doesn't
3120 * yet completely support full dynticks environment.
3121 *
3122 * This makes sure that uptime, CFS vruntime, load
3123 * balancing, etc... continue to move forward, even
3124 * with a very low granularity.
e69f6186
YB
3125 *
3126 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3127 */
3128u64 scheduler_tick_max_deferment(void)
3129{
3130 struct rq *rq = this_rq();
316c1608 3131 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3132
3133 next = rq->last_sched_tick + HZ;
3134
3135 if (time_before_eq(next, now))
3136 return 0;
3137
8fe8ff09 3138 return jiffies_to_nsecs(next - now);
1da177e4 3139}
265f22a9 3140#endif
1da177e4 3141
7e49fcce
SR
3142#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3143 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3144/*
3145 * If the value passed in is equal to the current preempt count
3146 * then we just disabled preemption. Start timing the latency.
3147 */
3148static inline void preempt_latency_start(int val)
3149{
3150 if (preempt_count() == val) {
3151 unsigned long ip = get_lock_parent_ip();
3152#ifdef CONFIG_DEBUG_PREEMPT
3153 current->preempt_disable_ip = ip;
3154#endif
3155 trace_preempt_off(CALLER_ADDR0, ip);
3156 }
3157}
7e49fcce 3158
edafe3a5 3159void preempt_count_add(int val)
1da177e4 3160{
6cd8a4bb 3161#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3162 /*
3163 * Underflow?
3164 */
9a11b49a
IM
3165 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3166 return;
6cd8a4bb 3167#endif
bdb43806 3168 __preempt_count_add(val);
6cd8a4bb 3169#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3170 /*
3171 * Spinlock count overflowing soon?
3172 */
33859f7f
MOS
3173 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3174 PREEMPT_MASK - 10);
6cd8a4bb 3175#endif
47252cfb 3176 preempt_latency_start(val);
1da177e4 3177}
bdb43806 3178EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3179NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3180
47252cfb
SR
3181/*
3182 * If the value passed in equals to the current preempt count
3183 * then we just enabled preemption. Stop timing the latency.
3184 */
3185static inline void preempt_latency_stop(int val)
3186{
3187 if (preempt_count() == val)
3188 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3189}
3190
edafe3a5 3191void preempt_count_sub(int val)
1da177e4 3192{
6cd8a4bb 3193#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3194 /*
3195 * Underflow?
3196 */
01e3eb82 3197 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3198 return;
1da177e4
LT
3199 /*
3200 * Is the spinlock portion underflowing?
3201 */
9a11b49a
IM
3202 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3203 !(preempt_count() & PREEMPT_MASK)))
3204 return;
6cd8a4bb 3205#endif
9a11b49a 3206
47252cfb 3207 preempt_latency_stop(val);
bdb43806 3208 __preempt_count_sub(val);
1da177e4 3209}
bdb43806 3210EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3211NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3212
47252cfb
SR
3213#else
3214static inline void preempt_latency_start(int val) { }
3215static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3216#endif
3217
59ddbcb2
IM
3218static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3219{
3220#ifdef CONFIG_DEBUG_PREEMPT
3221 return p->preempt_disable_ip;
3222#else
3223 return 0;
3224#endif
3225}
3226
1da177e4 3227/*
dd41f596 3228 * Print scheduling while atomic bug:
1da177e4 3229 */
dd41f596 3230static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3231{
d1c6d149
VN
3232 /* Save this before calling printk(), since that will clobber it */
3233 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3234
664dfa65
DJ
3235 if (oops_in_progress)
3236 return;
3237
3df0fc5b
PZ
3238 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3239 prev->comm, prev->pid, preempt_count());
838225b4 3240
dd41f596 3241 debug_show_held_locks(prev);
e21f5b15 3242 print_modules();
dd41f596
IM
3243 if (irqs_disabled())
3244 print_irqtrace_events(prev);
d1c6d149
VN
3245 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3246 && in_atomic_preempt_off()) {
8f47b187 3247 pr_err("Preemption disabled at:");
d1c6d149 3248 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3249 pr_cont("\n");
3250 }
748c7201
DBO
3251 if (panic_on_warn)
3252 panic("scheduling while atomic\n");
3253
6135fc1e 3254 dump_stack();
373d4d09 3255 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3256}
1da177e4 3257
dd41f596
IM
3258/*
3259 * Various schedule()-time debugging checks and statistics:
3260 */
3261static inline void schedule_debug(struct task_struct *prev)
3262{
0d9e2632 3263#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3264 if (task_stack_end_corrupted(prev))
3265 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3266#endif
b99def8b 3267
1dc0fffc 3268 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3269 __schedule_bug(prev);
1dc0fffc
PZ
3270 preempt_count_set(PREEMPT_DISABLED);
3271 }
b3fbab05 3272 rcu_sleep_check();
dd41f596 3273
1da177e4
LT
3274 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3275
ae92882e 3276 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3277}
3278
3279/*
3280 * Pick up the highest-prio task:
3281 */
3282static inline struct task_struct *
d8ac8971 3283pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3284{
49ee5768 3285 const struct sched_class *class;
dd41f596 3286 struct task_struct *p;
1da177e4
LT
3287
3288 /*
dd41f596
IM
3289 * Optimization: we know that if all tasks are in
3290 * the fair class we can call that function directly:
1da177e4 3291 */
49ee5768 3292 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3293 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3294 if (unlikely(p == RETRY_TASK))
3295 goto again;
3296
d1ccc66d 3297 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3298 if (unlikely(!p))
d8ac8971 3299 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3300
3301 return p;
1da177e4
LT
3302 }
3303
37e117c0 3304again:
34f971f6 3305 for_each_class(class) {
d8ac8971 3306 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3307 if (p) {
3308 if (unlikely(p == RETRY_TASK))
3309 goto again;
dd41f596 3310 return p;
37e117c0 3311 }
dd41f596 3312 }
34f971f6 3313
d1ccc66d
IM
3314 /* The idle class should always have a runnable task: */
3315 BUG();
dd41f596 3316}
1da177e4 3317
dd41f596 3318/*
c259e01a 3319 * __schedule() is the main scheduler function.
edde96ea
PE
3320 *
3321 * The main means of driving the scheduler and thus entering this function are:
3322 *
3323 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3324 *
3325 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3326 * paths. For example, see arch/x86/entry_64.S.
3327 *
3328 * To drive preemption between tasks, the scheduler sets the flag in timer
3329 * interrupt handler scheduler_tick().
3330 *
3331 * 3. Wakeups don't really cause entry into schedule(). They add a
3332 * task to the run-queue and that's it.
3333 *
3334 * Now, if the new task added to the run-queue preempts the current
3335 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3336 * called on the nearest possible occasion:
3337 *
3338 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3339 *
3340 * - in syscall or exception context, at the next outmost
3341 * preempt_enable(). (this might be as soon as the wake_up()'s
3342 * spin_unlock()!)
3343 *
3344 * - in IRQ context, return from interrupt-handler to
3345 * preemptible context
3346 *
3347 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3348 * then at the next:
3349 *
3350 * - cond_resched() call
3351 * - explicit schedule() call
3352 * - return from syscall or exception to user-space
3353 * - return from interrupt-handler to user-space
bfd9b2b5 3354 *
b30f0e3f 3355 * WARNING: must be called with preemption disabled!
dd41f596 3356 */
499d7955 3357static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3358{
3359 struct task_struct *prev, *next;
67ca7bde 3360 unsigned long *switch_count;
d8ac8971 3361 struct rq_flags rf;
dd41f596 3362 struct rq *rq;
31656519 3363 int cpu;
dd41f596 3364
dd41f596
IM
3365 cpu = smp_processor_id();
3366 rq = cpu_rq(cpu);
dd41f596 3367 prev = rq->curr;
dd41f596 3368
dd41f596 3369 schedule_debug(prev);
1da177e4 3370
31656519 3371 if (sched_feat(HRTICK))
f333fdc9 3372 hrtick_clear(rq);
8f4d37ec 3373
46a5d164
PM
3374 local_irq_disable();
3375 rcu_note_context_switch();
3376
e0acd0a6
ON
3377 /*
3378 * Make sure that signal_pending_state()->signal_pending() below
3379 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3380 * done by the caller to avoid the race with signal_wake_up().
3381 */
3382 smp_mb__before_spinlock();
46a5d164 3383 raw_spin_lock(&rq->lock);
d8ac8971 3384 rq_pin_lock(rq, &rf);
1da177e4 3385
d1ccc66d
IM
3386 /* Promote REQ to ACT */
3387 rq->clock_update_flags <<= 1;
9edfbfed 3388
246d86b5 3389 switch_count = &prev->nivcsw;
fc13aeba 3390 if (!preempt && prev->state) {
21aa9af0 3391 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3392 prev->state = TASK_RUNNING;
21aa9af0 3393 } else {
2acca55e
PZ
3394 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3395 prev->on_rq = 0;
3396
e33a9bba
TH
3397 if (prev->in_iowait) {
3398 atomic_inc(&rq->nr_iowait);
3399 delayacct_blkio_start();
3400 }
3401
21aa9af0 3402 /*
2acca55e
PZ
3403 * If a worker went to sleep, notify and ask workqueue
3404 * whether it wants to wake up a task to maintain
3405 * concurrency.
21aa9af0
TH
3406 */
3407 if (prev->flags & PF_WQ_WORKER) {
3408 struct task_struct *to_wakeup;
3409
9b7f6597 3410 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3411 if (to_wakeup)
d8ac8971 3412 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3413 }
21aa9af0 3414 }
dd41f596 3415 switch_count = &prev->nvcsw;
1da177e4
LT
3416 }
3417
9edfbfed 3418 if (task_on_rq_queued(prev))
606dba2e
PZ
3419 update_rq_clock(rq);
3420
d8ac8971 3421 next = pick_next_task(rq, prev, &rf);
f26f9aff 3422 clear_tsk_need_resched(prev);
f27dde8d 3423 clear_preempt_need_resched();
1da177e4 3424
1da177e4 3425 if (likely(prev != next)) {
1da177e4
LT
3426 rq->nr_switches++;
3427 rq->curr = next;
3428 ++*switch_count;
3429
c73464b1 3430 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3431
3432 /* Also unlocks the rq: */
3433 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3434 } else {
cb42c9a3 3435 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
d8ac8971 3436 rq_unpin_lock(rq, &rf);
05fa785c 3437 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3438 }
1da177e4 3439
e3fca9e7 3440 balance_callback(rq);
1da177e4 3441}
c259e01a 3442
9af6528e
PZ
3443void __noreturn do_task_dead(void)
3444{
3445 /*
3446 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3447 * when the following two conditions become true.
3448 * - There is race condition of mmap_sem (It is acquired by
3449 * exit_mm()), and
3450 * - SMI occurs before setting TASK_RUNINNG.
3451 * (or hypervisor of virtual machine switches to other guest)
3452 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3453 *
3454 * To avoid it, we have to wait for releasing tsk->pi_lock which
3455 * is held by try_to_wake_up()
3456 */
3457 smp_mb();
3458 raw_spin_unlock_wait(&current->pi_lock);
3459
d1ccc66d 3460 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3461 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3462
3463 /* Tell freezer to ignore us: */
3464 current->flags |= PF_NOFREEZE;
3465
9af6528e
PZ
3466 __schedule(false);
3467 BUG();
d1ccc66d
IM
3468
3469 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3470 for (;;)
d1ccc66d 3471 cpu_relax();
9af6528e
PZ
3472}
3473
9c40cef2
TG
3474static inline void sched_submit_work(struct task_struct *tsk)
3475{
3c7d5184 3476 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3477 return;
3478 /*
3479 * If we are going to sleep and we have plugged IO queued,
3480 * make sure to submit it to avoid deadlocks.
3481 */
3482 if (blk_needs_flush_plug(tsk))
3483 blk_schedule_flush_plug(tsk);
3484}
3485
722a9f92 3486asmlinkage __visible void __sched schedule(void)
c259e01a 3487{
9c40cef2
TG
3488 struct task_struct *tsk = current;
3489
3490 sched_submit_work(tsk);
bfd9b2b5 3491 do {
b30f0e3f 3492 preempt_disable();
fc13aeba 3493 __schedule(false);
b30f0e3f 3494 sched_preempt_enable_no_resched();
bfd9b2b5 3495 } while (need_resched());
c259e01a 3496}
1da177e4
LT
3497EXPORT_SYMBOL(schedule);
3498
91d1aa43 3499#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3500asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3501{
3502 /*
3503 * If we come here after a random call to set_need_resched(),
3504 * or we have been woken up remotely but the IPI has not yet arrived,
3505 * we haven't yet exited the RCU idle mode. Do it here manually until
3506 * we find a better solution.
7cc78f8f
AL
3507 *
3508 * NB: There are buggy callers of this function. Ideally we
c467ea76 3509 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3510 * too frequently to make sense yet.
20ab65e3 3511 */
7cc78f8f 3512 enum ctx_state prev_state = exception_enter();
20ab65e3 3513 schedule();
7cc78f8f 3514 exception_exit(prev_state);
20ab65e3
FW
3515}
3516#endif
3517
c5491ea7
TG
3518/**
3519 * schedule_preempt_disabled - called with preemption disabled
3520 *
3521 * Returns with preemption disabled. Note: preempt_count must be 1
3522 */
3523void __sched schedule_preempt_disabled(void)
3524{
ba74c144 3525 sched_preempt_enable_no_resched();
c5491ea7
TG
3526 schedule();
3527 preempt_disable();
3528}
3529
06b1f808 3530static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3531{
3532 do {
47252cfb
SR
3533 /*
3534 * Because the function tracer can trace preempt_count_sub()
3535 * and it also uses preempt_enable/disable_notrace(), if
3536 * NEED_RESCHED is set, the preempt_enable_notrace() called
3537 * by the function tracer will call this function again and
3538 * cause infinite recursion.
3539 *
3540 * Preemption must be disabled here before the function
3541 * tracer can trace. Break up preempt_disable() into two
3542 * calls. One to disable preemption without fear of being
3543 * traced. The other to still record the preemption latency,
3544 * which can also be traced by the function tracer.
3545 */
499d7955 3546 preempt_disable_notrace();
47252cfb 3547 preempt_latency_start(1);
fc13aeba 3548 __schedule(true);
47252cfb 3549 preempt_latency_stop(1);
499d7955 3550 preempt_enable_no_resched_notrace();
a18b5d01
FW
3551
3552 /*
3553 * Check again in case we missed a preemption opportunity
3554 * between schedule and now.
3555 */
a18b5d01
FW
3556 } while (need_resched());
3557}
3558
1da177e4
LT
3559#ifdef CONFIG_PREEMPT
3560/*
2ed6e34f 3561 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3562 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3563 * occur there and call schedule directly.
3564 */
722a9f92 3565asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3566{
1da177e4
LT
3567 /*
3568 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3569 * we do not want to preempt the current task. Just return..
1da177e4 3570 */
fbb00b56 3571 if (likely(!preemptible()))
1da177e4
LT
3572 return;
3573
a18b5d01 3574 preempt_schedule_common();
1da177e4 3575}
376e2424 3576NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3577EXPORT_SYMBOL(preempt_schedule);
009f60e2 3578
009f60e2 3579/**
4eaca0a8 3580 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3581 *
3582 * The tracing infrastructure uses preempt_enable_notrace to prevent
3583 * recursion and tracing preempt enabling caused by the tracing
3584 * infrastructure itself. But as tracing can happen in areas coming
3585 * from userspace or just about to enter userspace, a preempt enable
3586 * can occur before user_exit() is called. This will cause the scheduler
3587 * to be called when the system is still in usermode.
3588 *
3589 * To prevent this, the preempt_enable_notrace will use this function
3590 * instead of preempt_schedule() to exit user context if needed before
3591 * calling the scheduler.
3592 */
4eaca0a8 3593asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3594{
3595 enum ctx_state prev_ctx;
3596
3597 if (likely(!preemptible()))
3598 return;
3599
3600 do {
47252cfb
SR
3601 /*
3602 * Because the function tracer can trace preempt_count_sub()
3603 * and it also uses preempt_enable/disable_notrace(), if
3604 * NEED_RESCHED is set, the preempt_enable_notrace() called
3605 * by the function tracer will call this function again and
3606 * cause infinite recursion.
3607 *
3608 * Preemption must be disabled here before the function
3609 * tracer can trace. Break up preempt_disable() into two
3610 * calls. One to disable preemption without fear of being
3611 * traced. The other to still record the preemption latency,
3612 * which can also be traced by the function tracer.
3613 */
3d8f74dd 3614 preempt_disable_notrace();
47252cfb 3615 preempt_latency_start(1);
009f60e2
ON
3616 /*
3617 * Needs preempt disabled in case user_exit() is traced
3618 * and the tracer calls preempt_enable_notrace() causing
3619 * an infinite recursion.
3620 */
3621 prev_ctx = exception_enter();
fc13aeba 3622 __schedule(true);
009f60e2
ON
3623 exception_exit(prev_ctx);
3624
47252cfb 3625 preempt_latency_stop(1);
3d8f74dd 3626 preempt_enable_no_resched_notrace();
009f60e2
ON
3627 } while (need_resched());
3628}
4eaca0a8 3629EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3630
32e475d7 3631#endif /* CONFIG_PREEMPT */
1da177e4
LT
3632
3633/*
2ed6e34f 3634 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3635 * off of irq context.
3636 * Note, that this is called and return with irqs disabled. This will
3637 * protect us against recursive calling from irq.
3638 */
722a9f92 3639asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3640{
b22366cd 3641 enum ctx_state prev_state;
6478d880 3642
2ed6e34f 3643 /* Catch callers which need to be fixed */
f27dde8d 3644 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3645
b22366cd
FW
3646 prev_state = exception_enter();
3647
3a5c359a 3648 do {
3d8f74dd 3649 preempt_disable();
3a5c359a 3650 local_irq_enable();
fc13aeba 3651 __schedule(true);
3a5c359a 3652 local_irq_disable();
3d8f74dd 3653 sched_preempt_enable_no_resched();
5ed0cec0 3654 } while (need_resched());
b22366cd
FW
3655
3656 exception_exit(prev_state);
1da177e4
LT
3657}
3658
63859d4f 3659int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3660 void *key)
1da177e4 3661{
63859d4f 3662 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3663}
1da177e4
LT
3664EXPORT_SYMBOL(default_wake_function);
3665
b29739f9
IM
3666#ifdef CONFIG_RT_MUTEXES
3667
3668/*
3669 * rt_mutex_setprio - set the current priority of a task
3670 * @p: task
3671 * @prio: prio value (kernel-internal form)
3672 *
3673 * This function changes the 'effective' priority of a task. It does
3674 * not touch ->normal_prio like __setscheduler().
3675 *
c365c292
TG
3676 * Used by the rt_mutex code to implement priority inheritance
3677 * logic. Call site only calls if the priority of the task changed.
b29739f9 3678 */
36c8b586 3679void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3680{
ff77e468 3681 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3682 const struct sched_class *prev_class;
eb580751
PZ
3683 struct rq_flags rf;
3684 struct rq *rq;
b29739f9 3685
aab03e05 3686 BUG_ON(prio > MAX_PRIO);
b29739f9 3687
eb580751 3688 rq = __task_rq_lock(p, &rf);
80f5c1b8 3689 update_rq_clock(rq);
b29739f9 3690
1c4dd99b
TG
3691 /*
3692 * Idle task boosting is a nono in general. There is one
3693 * exception, when PREEMPT_RT and NOHZ is active:
3694 *
3695 * The idle task calls get_next_timer_interrupt() and holds
3696 * the timer wheel base->lock on the CPU and another CPU wants
3697 * to access the timer (probably to cancel it). We can safely
3698 * ignore the boosting request, as the idle CPU runs this code
3699 * with interrupts disabled and will complete the lock
3700 * protected section without being interrupted. So there is no
3701 * real need to boost.
3702 */
3703 if (unlikely(p == rq->idle)) {
3704 WARN_ON(p != rq->curr);
3705 WARN_ON(p->pi_blocked_on);
3706 goto out_unlock;
3707 }
3708
a8027073 3709 trace_sched_pi_setprio(p, prio);
d5f9f942 3710 oldprio = p->prio;
ff77e468
PZ
3711
3712 if (oldprio == prio)
3713 queue_flag &= ~DEQUEUE_MOVE;
3714
83ab0aa0 3715 prev_class = p->sched_class;
da0c1e65 3716 queued = task_on_rq_queued(p);
051a1d1a 3717 running = task_current(rq, p);
da0c1e65 3718 if (queued)
ff77e468 3719 dequeue_task(rq, p, queue_flag);
0e1f3483 3720 if (running)
f3cd1c4e 3721 put_prev_task(rq, p);
dd41f596 3722
2d3d891d
DF
3723 /*
3724 * Boosting condition are:
3725 * 1. -rt task is running and holds mutex A
3726 * --> -dl task blocks on mutex A
3727 *
3728 * 2. -dl task is running and holds mutex A
3729 * --> -dl task blocks on mutex A and could preempt the
3730 * running task
3731 */
3732 if (dl_prio(prio)) {
466af29b
ON
3733 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3734 if (!dl_prio(p->normal_prio) ||
3735 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3736 p->dl.dl_boosted = 1;
ff77e468 3737 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3738 } else
3739 p->dl.dl_boosted = 0;
aab03e05 3740 p->sched_class = &dl_sched_class;
2d3d891d
DF
3741 } else if (rt_prio(prio)) {
3742 if (dl_prio(oldprio))
3743 p->dl.dl_boosted = 0;
3744 if (oldprio < prio)
ff77e468 3745 queue_flag |= ENQUEUE_HEAD;
dd41f596 3746 p->sched_class = &rt_sched_class;
2d3d891d
DF
3747 } else {
3748 if (dl_prio(oldprio))
3749 p->dl.dl_boosted = 0;
746db944
BS
3750 if (rt_prio(oldprio))
3751 p->rt.timeout = 0;
dd41f596 3752 p->sched_class = &fair_sched_class;
2d3d891d 3753 }
dd41f596 3754
b29739f9
IM
3755 p->prio = prio;
3756
da0c1e65 3757 if (queued)
ff77e468 3758 enqueue_task(rq, p, queue_flag);
a399d233 3759 if (running)
b2bf6c31 3760 set_curr_task(rq, p);
cb469845 3761
da7a735e 3762 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3763out_unlock:
d1ccc66d
IM
3764 /* Avoid rq from going away on us: */
3765 preempt_disable();
eb580751 3766 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3767
3768 balance_callback(rq);
3769 preempt_enable();
b29739f9 3770}
b29739f9 3771#endif
d50dde5a 3772
36c8b586 3773void set_user_nice(struct task_struct *p, long nice)
1da177e4 3774{
49bd21ef
PZ
3775 bool queued, running;
3776 int old_prio, delta;
eb580751 3777 struct rq_flags rf;
70b97a7f 3778 struct rq *rq;
1da177e4 3779
75e45d51 3780 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3781 return;
3782 /*
3783 * We have to be careful, if called from sys_setpriority(),
3784 * the task might be in the middle of scheduling on another CPU.
3785 */
eb580751 3786 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3787 update_rq_clock(rq);
3788
1da177e4
LT
3789 /*
3790 * The RT priorities are set via sched_setscheduler(), but we still
3791 * allow the 'normal' nice value to be set - but as expected
3792 * it wont have any effect on scheduling until the task is
aab03e05 3793 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3794 */
aab03e05 3795 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3796 p->static_prio = NICE_TO_PRIO(nice);
3797 goto out_unlock;
3798 }
da0c1e65 3799 queued = task_on_rq_queued(p);
49bd21ef 3800 running = task_current(rq, p);
da0c1e65 3801 if (queued)
1de64443 3802 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3803 if (running)
3804 put_prev_task(rq, p);
1da177e4 3805
1da177e4 3806 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3807 set_load_weight(p);
b29739f9
IM
3808 old_prio = p->prio;
3809 p->prio = effective_prio(p);
3810 delta = p->prio - old_prio;
1da177e4 3811
da0c1e65 3812 if (queued) {
1de64443 3813 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3814 /*
d5f9f942
AM
3815 * If the task increased its priority or is running and
3816 * lowered its priority, then reschedule its CPU:
1da177e4 3817 */
d5f9f942 3818 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3819 resched_curr(rq);
1da177e4 3820 }
49bd21ef
PZ
3821 if (running)
3822 set_curr_task(rq, p);
1da177e4 3823out_unlock:
eb580751 3824 task_rq_unlock(rq, p, &rf);
1da177e4 3825}
1da177e4
LT
3826EXPORT_SYMBOL(set_user_nice);
3827
e43379f1
MM
3828/*
3829 * can_nice - check if a task can reduce its nice value
3830 * @p: task
3831 * @nice: nice value
3832 */
36c8b586 3833int can_nice(const struct task_struct *p, const int nice)
e43379f1 3834{
d1ccc66d 3835 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3836 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3837
78d7d407 3838 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3839 capable(CAP_SYS_NICE));
3840}
3841
1da177e4
LT
3842#ifdef __ARCH_WANT_SYS_NICE
3843
3844/*
3845 * sys_nice - change the priority of the current process.
3846 * @increment: priority increment
3847 *
3848 * sys_setpriority is a more generic, but much slower function that
3849 * does similar things.
3850 */
5add95d4 3851SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3852{
48f24c4d 3853 long nice, retval;
1da177e4
LT
3854
3855 /*
3856 * Setpriority might change our priority at the same moment.
3857 * We don't have to worry. Conceptually one call occurs first
3858 * and we have a single winner.
3859 */
a9467fa3 3860 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3861 nice = task_nice(current) + increment;
1da177e4 3862
a9467fa3 3863 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3864 if (increment < 0 && !can_nice(current, nice))
3865 return -EPERM;
3866
1da177e4
LT
3867 retval = security_task_setnice(current, nice);
3868 if (retval)
3869 return retval;
3870
3871 set_user_nice(current, nice);
3872 return 0;
3873}
3874
3875#endif
3876
3877/**
3878 * task_prio - return the priority value of a given task.
3879 * @p: the task in question.
3880 *
e69f6186 3881 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3882 * RT tasks are offset by -200. Normal tasks are centered
3883 * around 0, value goes from -16 to +15.
3884 */
36c8b586 3885int task_prio(const struct task_struct *p)
1da177e4
LT
3886{
3887 return p->prio - MAX_RT_PRIO;
3888}
3889
1da177e4 3890/**
d1ccc66d 3891 * idle_cpu - is a given CPU idle currently?
1da177e4 3892 * @cpu: the processor in question.
e69f6186
YB
3893 *
3894 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3895 */
3896int idle_cpu(int cpu)
3897{
908a3283
TG
3898 struct rq *rq = cpu_rq(cpu);
3899
3900 if (rq->curr != rq->idle)
3901 return 0;
3902
3903 if (rq->nr_running)
3904 return 0;
3905
3906#ifdef CONFIG_SMP
3907 if (!llist_empty(&rq->wake_list))
3908 return 0;
3909#endif
3910
3911 return 1;
1da177e4
LT
3912}
3913
1da177e4 3914/**
d1ccc66d 3915 * idle_task - return the idle task for a given CPU.
1da177e4 3916 * @cpu: the processor in question.
e69f6186 3917 *
d1ccc66d 3918 * Return: The idle task for the CPU @cpu.
1da177e4 3919 */
36c8b586 3920struct task_struct *idle_task(int cpu)
1da177e4
LT
3921{
3922 return cpu_rq(cpu)->idle;
3923}
3924
3925/**
3926 * find_process_by_pid - find a process with a matching PID value.
3927 * @pid: the pid in question.
e69f6186
YB
3928 *
3929 * The task of @pid, if found. %NULL otherwise.
1da177e4 3930 */
a9957449 3931static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3932{
228ebcbe 3933 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3934}
3935
aab03e05
DF
3936/*
3937 * This function initializes the sched_dl_entity of a newly becoming
3938 * SCHED_DEADLINE task.
3939 *
3940 * Only the static values are considered here, the actual runtime and the
3941 * absolute deadline will be properly calculated when the task is enqueued
3942 * for the first time with its new policy.
3943 */
3944static void
3945__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3946{
3947 struct sched_dl_entity *dl_se = &p->dl;
3948
aab03e05
DF
3949 dl_se->dl_runtime = attr->sched_runtime;
3950 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3951 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3952 dl_se->flags = attr->sched_flags;
332ac17e 3953 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3954
3955 /*
3956 * Changing the parameters of a task is 'tricky' and we're not doing
3957 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3958 *
3959 * What we SHOULD do is delay the bandwidth release until the 0-lag
3960 * point. This would include retaining the task_struct until that time
3961 * and change dl_overflow() to not immediately decrement the current
3962 * amount.
3963 *
3964 * Instead we retain the current runtime/deadline and let the new
3965 * parameters take effect after the current reservation period lapses.
3966 * This is safe (albeit pessimistic) because the 0-lag point is always
3967 * before the current scheduling deadline.
3968 *
3969 * We can still have temporary overloads because we do not delay the
3970 * change in bandwidth until that time; so admission control is
3971 * not on the safe side. It does however guarantee tasks will never
3972 * consume more than promised.
3973 */
aab03e05
DF
3974}
3975
c13db6b1
SR
3976/*
3977 * sched_setparam() passes in -1 for its policy, to let the functions
3978 * it calls know not to change it.
3979 */
3980#define SETPARAM_POLICY -1
3981
c365c292
TG
3982static void __setscheduler_params(struct task_struct *p,
3983 const struct sched_attr *attr)
1da177e4 3984{
d50dde5a
DF
3985 int policy = attr->sched_policy;
3986
c13db6b1 3987 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3988 policy = p->policy;
3989
1da177e4 3990 p->policy = policy;
d50dde5a 3991
aab03e05
DF
3992 if (dl_policy(policy))
3993 __setparam_dl(p, attr);
39fd8fd2 3994 else if (fair_policy(policy))
d50dde5a
DF
3995 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3996
39fd8fd2
PZ
3997 /*
3998 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3999 * !rt_policy. Always setting this ensures that things like
4000 * getparam()/getattr() don't report silly values for !rt tasks.
4001 */
4002 p->rt_priority = attr->sched_priority;
383afd09 4003 p->normal_prio = normal_prio(p);
c365c292
TG
4004 set_load_weight(p);
4005}
39fd8fd2 4006
c365c292
TG
4007/* Actually do priority change: must hold pi & rq lock. */
4008static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4009 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4010{
4011 __setscheduler_params(p, attr);
d50dde5a 4012
383afd09 4013 /*
0782e63b
TG
4014 * Keep a potential priority boosting if called from
4015 * sched_setscheduler().
383afd09 4016 */
0782e63b
TG
4017 if (keep_boost)
4018 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4019 else
4020 p->prio = normal_prio(p);
383afd09 4021
aab03e05
DF
4022 if (dl_prio(p->prio))
4023 p->sched_class = &dl_sched_class;
4024 else if (rt_prio(p->prio))
ffd44db5
PZ
4025 p->sched_class = &rt_sched_class;
4026 else
4027 p->sched_class = &fair_sched_class;
1da177e4 4028}
aab03e05
DF
4029
4030static void
4031__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4032{
4033 struct sched_dl_entity *dl_se = &p->dl;
4034
4035 attr->sched_priority = p->rt_priority;
4036 attr->sched_runtime = dl_se->dl_runtime;
4037 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4038 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4039 attr->sched_flags = dl_se->flags;
4040}
4041
4042/*
4043 * This function validates the new parameters of a -deadline task.
4044 * We ask for the deadline not being zero, and greater or equal
755378a4 4045 * than the runtime, as well as the period of being zero or
332ac17e 4046 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4047 * user parameters are above the internal resolution of 1us (we
4048 * check sched_runtime only since it is always the smaller one) and
4049 * below 2^63 ns (we have to check both sched_deadline and
4050 * sched_period, as the latter can be zero).
aab03e05
DF
4051 */
4052static bool
4053__checkparam_dl(const struct sched_attr *attr)
4054{
b0827819
JL
4055 /* deadline != 0 */
4056 if (attr->sched_deadline == 0)
4057 return false;
4058
4059 /*
4060 * Since we truncate DL_SCALE bits, make sure we're at least
4061 * that big.
4062 */
4063 if (attr->sched_runtime < (1ULL << DL_SCALE))
4064 return false;
4065
4066 /*
4067 * Since we use the MSB for wrap-around and sign issues, make
4068 * sure it's not set (mind that period can be equal to zero).
4069 */
4070 if (attr->sched_deadline & (1ULL << 63) ||
4071 attr->sched_period & (1ULL << 63))
4072 return false;
4073
4074 /* runtime <= deadline <= period (if period != 0) */
4075 if ((attr->sched_period != 0 &&
4076 attr->sched_period < attr->sched_deadline) ||
4077 attr->sched_deadline < attr->sched_runtime)
4078 return false;
4079
4080 return true;
aab03e05
DF
4081}
4082
c69e8d9c 4083/*
d1ccc66d 4084 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4085 */
4086static bool check_same_owner(struct task_struct *p)
4087{
4088 const struct cred *cred = current_cred(), *pcred;
4089 bool match;
4090
4091 rcu_read_lock();
4092 pcred = __task_cred(p);
9c806aa0
EB
4093 match = (uid_eq(cred->euid, pcred->euid) ||
4094 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4095 rcu_read_unlock();
4096 return match;
4097}
4098
d1ccc66d 4099static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4100{
4101 struct sched_dl_entity *dl_se = &p->dl;
4102
4103 if (dl_se->dl_runtime != attr->sched_runtime ||
4104 dl_se->dl_deadline != attr->sched_deadline ||
4105 dl_se->dl_period != attr->sched_period ||
4106 dl_se->flags != attr->sched_flags)
4107 return true;
4108
4109 return false;
4110}
4111
d50dde5a
DF
4112static int __sched_setscheduler(struct task_struct *p,
4113 const struct sched_attr *attr,
dbc7f069 4114 bool user, bool pi)
1da177e4 4115{
383afd09
SR
4116 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4117 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4118 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4119 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4120 const struct sched_class *prev_class;
eb580751 4121 struct rq_flags rf;
ca94c442 4122 int reset_on_fork;
ff77e468 4123 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4124 struct rq *rq;
1da177e4 4125
d1ccc66d 4126 /* May grab non-irq protected spin_locks: */
66e5393a 4127 BUG_ON(in_interrupt());
1da177e4 4128recheck:
d1ccc66d 4129 /* Double check policy once rq lock held: */
ca94c442
LP
4130 if (policy < 0) {
4131 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4132 policy = oldpolicy = p->policy;
ca94c442 4133 } else {
7479f3c9 4134 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4135
20f9cd2a 4136 if (!valid_policy(policy))
ca94c442
LP
4137 return -EINVAL;
4138 }
4139
7479f3c9
PZ
4140 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4141 return -EINVAL;
4142
1da177e4
LT
4143 /*
4144 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4145 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4146 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4147 */
0bb040a4 4148 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4149 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4150 return -EINVAL;
aab03e05
DF
4151 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4152 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4153 return -EINVAL;
4154
37e4ab3f
OC
4155 /*
4156 * Allow unprivileged RT tasks to decrease priority:
4157 */
961ccddd 4158 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4159 if (fair_policy(policy)) {
d0ea0268 4160 if (attr->sched_nice < task_nice(p) &&
eaad4513 4161 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4162 return -EPERM;
4163 }
4164
e05606d3 4165 if (rt_policy(policy)) {
a44702e8
ON
4166 unsigned long rlim_rtprio =
4167 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4168
d1ccc66d 4169 /* Can't set/change the rt policy: */
8dc3e909
ON
4170 if (policy != p->policy && !rlim_rtprio)
4171 return -EPERM;
4172
d1ccc66d 4173 /* Can't increase priority: */
d50dde5a
DF
4174 if (attr->sched_priority > p->rt_priority &&
4175 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4176 return -EPERM;
4177 }
c02aa73b 4178
d44753b8
JL
4179 /*
4180 * Can't set/change SCHED_DEADLINE policy at all for now
4181 * (safest behavior); in the future we would like to allow
4182 * unprivileged DL tasks to increase their relative deadline
4183 * or reduce their runtime (both ways reducing utilization)
4184 */
4185 if (dl_policy(policy))
4186 return -EPERM;
4187
dd41f596 4188 /*
c02aa73b
DH
4189 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4190 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4191 */
20f9cd2a 4192 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4193 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4194 return -EPERM;
4195 }
5fe1d75f 4196
d1ccc66d 4197 /* Can't change other user's priorities: */
c69e8d9c 4198 if (!check_same_owner(p))
37e4ab3f 4199 return -EPERM;
ca94c442 4200
d1ccc66d 4201 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4202 if (p->sched_reset_on_fork && !reset_on_fork)
4203 return -EPERM;
37e4ab3f 4204 }
1da177e4 4205
725aad24 4206 if (user) {
b0ae1981 4207 retval = security_task_setscheduler(p);
725aad24
JF
4208 if (retval)
4209 return retval;
4210 }
4211
b29739f9 4212 /*
d1ccc66d 4213 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4214 * changing the priority of the task:
0122ec5b 4215 *
25985edc 4216 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4217 * runqueue lock must be held.
4218 */
eb580751 4219 rq = task_rq_lock(p, &rf);
80f5c1b8 4220 update_rq_clock(rq);
dc61b1d6 4221
34f971f6 4222 /*
d1ccc66d 4223 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4224 */
4225 if (p == rq->stop) {
eb580751 4226 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4227 return -EINVAL;
4228 }
4229
a51e9198 4230 /*
d6b1e911
TG
4231 * If not changing anything there's no need to proceed further,
4232 * but store a possible modification of reset_on_fork.
a51e9198 4233 */
d50dde5a 4234 if (unlikely(policy == p->policy)) {
d0ea0268 4235 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4236 goto change;
4237 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4238 goto change;
75381608 4239 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4240 goto change;
d50dde5a 4241
d6b1e911 4242 p->sched_reset_on_fork = reset_on_fork;
eb580751 4243 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4244 return 0;
4245 }
d50dde5a 4246change:
a51e9198 4247
dc61b1d6 4248 if (user) {
332ac17e 4249#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4250 /*
4251 * Do not allow realtime tasks into groups that have no runtime
4252 * assigned.
4253 */
4254 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4255 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4256 !task_group_is_autogroup(task_group(p))) {
eb580751 4257 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4258 return -EPERM;
4259 }
dc61b1d6 4260#endif
332ac17e
DF
4261#ifdef CONFIG_SMP
4262 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4263 cpumask_t *span = rq->rd->span;
332ac17e
DF
4264
4265 /*
4266 * Don't allow tasks with an affinity mask smaller than
4267 * the entire root_domain to become SCHED_DEADLINE. We
4268 * will also fail if there's no bandwidth available.
4269 */
e4099a5e
PZ
4270 if (!cpumask_subset(span, &p->cpus_allowed) ||
4271 rq->rd->dl_bw.bw == 0) {
eb580751 4272 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4273 return -EPERM;
4274 }
4275 }
4276#endif
4277 }
dc61b1d6 4278
d1ccc66d 4279 /* Re-check policy now with rq lock held: */
1da177e4
LT
4280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4281 policy = oldpolicy = -1;
eb580751 4282 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4283 goto recheck;
4284 }
332ac17e
DF
4285
4286 /*
4287 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4288 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4289 * is available.
4290 */
e4099a5e 4291 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4292 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4293 return -EBUSY;
4294 }
4295
c365c292
TG
4296 p->sched_reset_on_fork = reset_on_fork;
4297 oldprio = p->prio;
4298
dbc7f069
PZ
4299 if (pi) {
4300 /*
4301 * Take priority boosted tasks into account. If the new
4302 * effective priority is unchanged, we just store the new
4303 * normal parameters and do not touch the scheduler class and
4304 * the runqueue. This will be done when the task deboost
4305 * itself.
4306 */
4307 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4308 if (new_effective_prio == oldprio)
4309 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4310 }
4311
da0c1e65 4312 queued = task_on_rq_queued(p);
051a1d1a 4313 running = task_current(rq, p);
da0c1e65 4314 if (queued)
ff77e468 4315 dequeue_task(rq, p, queue_flags);
0e1f3483 4316 if (running)
f3cd1c4e 4317 put_prev_task(rq, p);
f6b53205 4318
83ab0aa0 4319 prev_class = p->sched_class;
dbc7f069 4320 __setscheduler(rq, p, attr, pi);
f6b53205 4321
da0c1e65 4322 if (queued) {
81a44c54
TG
4323 /*
4324 * We enqueue to tail when the priority of a task is
4325 * increased (user space view).
4326 */
ff77e468
PZ
4327 if (oldprio < p->prio)
4328 queue_flags |= ENQUEUE_HEAD;
1de64443 4329
ff77e468 4330 enqueue_task(rq, p, queue_flags);
81a44c54 4331 }
a399d233 4332 if (running)
b2bf6c31 4333 set_curr_task(rq, p);
cb469845 4334
da7a735e 4335 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4336
4337 /* Avoid rq from going away on us: */
4338 preempt_disable();
eb580751 4339 task_rq_unlock(rq, p, &rf);
b29739f9 4340
dbc7f069
PZ
4341 if (pi)
4342 rt_mutex_adjust_pi(p);
95e02ca9 4343
d1ccc66d 4344 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4345 balance_callback(rq);
4346 preempt_enable();
95e02ca9 4347
1da177e4
LT
4348 return 0;
4349}
961ccddd 4350
7479f3c9
PZ
4351static int _sched_setscheduler(struct task_struct *p, int policy,
4352 const struct sched_param *param, bool check)
4353{
4354 struct sched_attr attr = {
4355 .sched_policy = policy,
4356 .sched_priority = param->sched_priority,
4357 .sched_nice = PRIO_TO_NICE(p->static_prio),
4358 };
4359
c13db6b1
SR
4360 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4361 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4362 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4363 policy &= ~SCHED_RESET_ON_FORK;
4364 attr.sched_policy = policy;
4365 }
4366
dbc7f069 4367 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4368}
961ccddd
RR
4369/**
4370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4371 * @p: the task in question.
4372 * @policy: new policy.
4373 * @param: structure containing the new RT priority.
4374 *
e69f6186
YB
4375 * Return: 0 on success. An error code otherwise.
4376 *
961ccddd
RR
4377 * NOTE that the task may be already dead.
4378 */
4379int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4380 const struct sched_param *param)
961ccddd 4381{
7479f3c9 4382 return _sched_setscheduler(p, policy, param, true);
961ccddd 4383}
1da177e4
LT
4384EXPORT_SYMBOL_GPL(sched_setscheduler);
4385
d50dde5a
DF
4386int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4387{
dbc7f069 4388 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4389}
4390EXPORT_SYMBOL_GPL(sched_setattr);
4391
961ccddd
RR
4392/**
4393 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4394 * @p: the task in question.
4395 * @policy: new policy.
4396 * @param: structure containing the new RT priority.
4397 *
4398 * Just like sched_setscheduler, only don't bother checking if the
4399 * current context has permission. For example, this is needed in
4400 * stop_machine(): we create temporary high priority worker threads,
4401 * but our caller might not have that capability.
e69f6186
YB
4402 *
4403 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4404 */
4405int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4406 const struct sched_param *param)
961ccddd 4407{
7479f3c9 4408 return _sched_setscheduler(p, policy, param, false);
961ccddd 4409}
84778472 4410EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4411
95cdf3b7
IM
4412static int
4413do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4414{
1da177e4
LT
4415 struct sched_param lparam;
4416 struct task_struct *p;
36c8b586 4417 int retval;
1da177e4
LT
4418
4419 if (!param || pid < 0)
4420 return -EINVAL;
4421 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4422 return -EFAULT;
5fe1d75f
ON
4423
4424 rcu_read_lock();
4425 retval = -ESRCH;
1da177e4 4426 p = find_process_by_pid(pid);
5fe1d75f
ON
4427 if (p != NULL)
4428 retval = sched_setscheduler(p, policy, &lparam);
4429 rcu_read_unlock();
36c8b586 4430
1da177e4
LT
4431 return retval;
4432}
4433
d50dde5a
DF
4434/*
4435 * Mimics kernel/events/core.c perf_copy_attr().
4436 */
d1ccc66d 4437static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4438{
4439 u32 size;
4440 int ret;
4441
4442 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4443 return -EFAULT;
4444
d1ccc66d 4445 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4446 memset(attr, 0, sizeof(*attr));
4447
4448 ret = get_user(size, &uattr->size);
4449 if (ret)
4450 return ret;
4451
d1ccc66d
IM
4452 /* Bail out on silly large: */
4453 if (size > PAGE_SIZE)
d50dde5a
DF
4454 goto err_size;
4455
d1ccc66d
IM
4456 /* ABI compatibility quirk: */
4457 if (!size)
d50dde5a
DF
4458 size = SCHED_ATTR_SIZE_VER0;
4459
4460 if (size < SCHED_ATTR_SIZE_VER0)
4461 goto err_size;
4462
4463 /*
4464 * If we're handed a bigger struct than we know of,
4465 * ensure all the unknown bits are 0 - i.e. new
4466 * user-space does not rely on any kernel feature
4467 * extensions we dont know about yet.
4468 */
4469 if (size > sizeof(*attr)) {
4470 unsigned char __user *addr;
4471 unsigned char __user *end;
4472 unsigned char val;
4473
4474 addr = (void __user *)uattr + sizeof(*attr);
4475 end = (void __user *)uattr + size;
4476
4477 for (; addr < end; addr++) {
4478 ret = get_user(val, addr);
4479 if (ret)
4480 return ret;
4481 if (val)
4482 goto err_size;
4483 }
4484 size = sizeof(*attr);
4485 }
4486
4487 ret = copy_from_user(attr, uattr, size);
4488 if (ret)
4489 return -EFAULT;
4490
4491 /*
d1ccc66d 4492 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4493 * to be strict and return an error on out-of-bounds values?
4494 */
75e45d51 4495 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4496
e78c7bca 4497 return 0;
d50dde5a
DF
4498
4499err_size:
4500 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4501 return -E2BIG;
d50dde5a
DF
4502}
4503
1da177e4
LT
4504/**
4505 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4506 * @pid: the pid in question.
4507 * @policy: new policy.
4508 * @param: structure containing the new RT priority.
e69f6186
YB
4509 *
4510 * Return: 0 on success. An error code otherwise.
1da177e4 4511 */
d1ccc66d 4512SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4513{
c21761f1
JB
4514 if (policy < 0)
4515 return -EINVAL;
4516
1da177e4
LT
4517 return do_sched_setscheduler(pid, policy, param);
4518}
4519
4520/**
4521 * sys_sched_setparam - set/change the RT priority of a thread
4522 * @pid: the pid in question.
4523 * @param: structure containing the new RT priority.
e69f6186
YB
4524 *
4525 * Return: 0 on success. An error code otherwise.
1da177e4 4526 */
5add95d4 4527SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4528{
c13db6b1 4529 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4530}
4531
d50dde5a
DF
4532/**
4533 * sys_sched_setattr - same as above, but with extended sched_attr
4534 * @pid: the pid in question.
5778fccf 4535 * @uattr: structure containing the extended parameters.
db66d756 4536 * @flags: for future extension.
d50dde5a 4537 */
6d35ab48
PZ
4538SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4539 unsigned int, flags)
d50dde5a
DF
4540{
4541 struct sched_attr attr;
4542 struct task_struct *p;
4543 int retval;
4544
6d35ab48 4545 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4546 return -EINVAL;
4547
143cf23d
MK
4548 retval = sched_copy_attr(uattr, &attr);
4549 if (retval)
4550 return retval;
d50dde5a 4551
b14ed2c2 4552 if ((int)attr.sched_policy < 0)
dbdb2275 4553 return -EINVAL;
d50dde5a
DF
4554
4555 rcu_read_lock();
4556 retval = -ESRCH;
4557 p = find_process_by_pid(pid);
4558 if (p != NULL)
4559 retval = sched_setattr(p, &attr);
4560 rcu_read_unlock();
4561
4562 return retval;
4563}
4564
1da177e4
LT
4565/**
4566 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4567 * @pid: the pid in question.
e69f6186
YB
4568 *
4569 * Return: On success, the policy of the thread. Otherwise, a negative error
4570 * code.
1da177e4 4571 */
5add95d4 4572SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4573{
36c8b586 4574 struct task_struct *p;
3a5c359a 4575 int retval;
1da177e4
LT
4576
4577 if (pid < 0)
3a5c359a 4578 return -EINVAL;
1da177e4
LT
4579
4580 retval = -ESRCH;
5fe85be0 4581 rcu_read_lock();
1da177e4
LT
4582 p = find_process_by_pid(pid);
4583 if (p) {
4584 retval = security_task_getscheduler(p);
4585 if (!retval)
ca94c442
LP
4586 retval = p->policy
4587 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4588 }
5fe85be0 4589 rcu_read_unlock();
1da177e4
LT
4590 return retval;
4591}
4592
4593/**
ca94c442 4594 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4595 * @pid: the pid in question.
4596 * @param: structure containing the RT priority.
e69f6186
YB
4597 *
4598 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4599 * code.
1da177e4 4600 */
5add95d4 4601SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4602{
ce5f7f82 4603 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4604 struct task_struct *p;
3a5c359a 4605 int retval;
1da177e4
LT
4606
4607 if (!param || pid < 0)
3a5c359a 4608 return -EINVAL;
1da177e4 4609
5fe85be0 4610 rcu_read_lock();
1da177e4
LT
4611 p = find_process_by_pid(pid);
4612 retval = -ESRCH;
4613 if (!p)
4614 goto out_unlock;
4615
4616 retval = security_task_getscheduler(p);
4617 if (retval)
4618 goto out_unlock;
4619
ce5f7f82
PZ
4620 if (task_has_rt_policy(p))
4621 lp.sched_priority = p->rt_priority;
5fe85be0 4622 rcu_read_unlock();
1da177e4
LT
4623
4624 /*
4625 * This one might sleep, we cannot do it with a spinlock held ...
4626 */
4627 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4628
1da177e4
LT
4629 return retval;
4630
4631out_unlock:
5fe85be0 4632 rcu_read_unlock();
1da177e4
LT
4633 return retval;
4634}
4635
d50dde5a
DF
4636static int sched_read_attr(struct sched_attr __user *uattr,
4637 struct sched_attr *attr,
4638 unsigned int usize)
4639{
4640 int ret;
4641
4642 if (!access_ok(VERIFY_WRITE, uattr, usize))
4643 return -EFAULT;
4644
4645 /*
4646 * If we're handed a smaller struct than we know of,
4647 * ensure all the unknown bits are 0 - i.e. old
4648 * user-space does not get uncomplete information.
4649 */
4650 if (usize < sizeof(*attr)) {
4651 unsigned char *addr;
4652 unsigned char *end;
4653
4654 addr = (void *)attr + usize;
4655 end = (void *)attr + sizeof(*attr);
4656
4657 for (; addr < end; addr++) {
4658 if (*addr)
22400674 4659 return -EFBIG;
d50dde5a
DF
4660 }
4661
4662 attr->size = usize;
4663 }
4664
4efbc454 4665 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4666 if (ret)
4667 return -EFAULT;
4668
22400674 4669 return 0;
d50dde5a
DF
4670}
4671
4672/**
aab03e05 4673 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4674 * @pid: the pid in question.
5778fccf 4675 * @uattr: structure containing the extended parameters.
d50dde5a 4676 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4677 * @flags: for future extension.
d50dde5a 4678 */
6d35ab48
PZ
4679SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4680 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4681{
4682 struct sched_attr attr = {
4683 .size = sizeof(struct sched_attr),
4684 };
4685 struct task_struct *p;
4686 int retval;
4687
4688 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4689 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4690 return -EINVAL;
4691
4692 rcu_read_lock();
4693 p = find_process_by_pid(pid);
4694 retval = -ESRCH;
4695 if (!p)
4696 goto out_unlock;
4697
4698 retval = security_task_getscheduler(p);
4699 if (retval)
4700 goto out_unlock;
4701
4702 attr.sched_policy = p->policy;
7479f3c9
PZ
4703 if (p->sched_reset_on_fork)
4704 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4705 if (task_has_dl_policy(p))
4706 __getparam_dl(p, &attr);
4707 else if (task_has_rt_policy(p))
d50dde5a
DF
4708 attr.sched_priority = p->rt_priority;
4709 else
d0ea0268 4710 attr.sched_nice = task_nice(p);
d50dde5a
DF
4711
4712 rcu_read_unlock();
4713
4714 retval = sched_read_attr(uattr, &attr, size);
4715 return retval;
4716
4717out_unlock:
4718 rcu_read_unlock();
4719 return retval;
4720}
4721
96f874e2 4722long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4723{
5a16f3d3 4724 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4725 struct task_struct *p;
4726 int retval;
1da177e4 4727
23f5d142 4728 rcu_read_lock();
1da177e4
LT
4729
4730 p = find_process_by_pid(pid);
4731 if (!p) {
23f5d142 4732 rcu_read_unlock();
1da177e4
LT
4733 return -ESRCH;
4734 }
4735
23f5d142 4736 /* Prevent p going away */
1da177e4 4737 get_task_struct(p);
23f5d142 4738 rcu_read_unlock();
1da177e4 4739
14a40ffc
TH
4740 if (p->flags & PF_NO_SETAFFINITY) {
4741 retval = -EINVAL;
4742 goto out_put_task;
4743 }
5a16f3d3
RR
4744 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4745 retval = -ENOMEM;
4746 goto out_put_task;
4747 }
4748 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4749 retval = -ENOMEM;
4750 goto out_free_cpus_allowed;
4751 }
1da177e4 4752 retval = -EPERM;
4c44aaaf
EB
4753 if (!check_same_owner(p)) {
4754 rcu_read_lock();
4755 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4756 rcu_read_unlock();
16303ab2 4757 goto out_free_new_mask;
4c44aaaf
EB
4758 }
4759 rcu_read_unlock();
4760 }
1da177e4 4761
b0ae1981 4762 retval = security_task_setscheduler(p);
e7834f8f 4763 if (retval)
16303ab2 4764 goto out_free_new_mask;
e7834f8f 4765
e4099a5e
PZ
4766
4767 cpuset_cpus_allowed(p, cpus_allowed);
4768 cpumask_and(new_mask, in_mask, cpus_allowed);
4769
332ac17e
DF
4770 /*
4771 * Since bandwidth control happens on root_domain basis,
4772 * if admission test is enabled, we only admit -deadline
4773 * tasks allowed to run on all the CPUs in the task's
4774 * root_domain.
4775 */
4776#ifdef CONFIG_SMP
f1e3a093
KT
4777 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4778 rcu_read_lock();
4779 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4780 retval = -EBUSY;
f1e3a093 4781 rcu_read_unlock();
16303ab2 4782 goto out_free_new_mask;
332ac17e 4783 }
f1e3a093 4784 rcu_read_unlock();
332ac17e
DF
4785 }
4786#endif
49246274 4787again:
25834c73 4788 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4789
8707d8b8 4790 if (!retval) {
5a16f3d3
RR
4791 cpuset_cpus_allowed(p, cpus_allowed);
4792 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4793 /*
4794 * We must have raced with a concurrent cpuset
4795 * update. Just reset the cpus_allowed to the
4796 * cpuset's cpus_allowed
4797 */
5a16f3d3 4798 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4799 goto again;
4800 }
4801 }
16303ab2 4802out_free_new_mask:
5a16f3d3
RR
4803 free_cpumask_var(new_mask);
4804out_free_cpus_allowed:
4805 free_cpumask_var(cpus_allowed);
4806out_put_task:
1da177e4 4807 put_task_struct(p);
1da177e4
LT
4808 return retval;
4809}
4810
4811static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4812 struct cpumask *new_mask)
1da177e4 4813{
96f874e2
RR
4814 if (len < cpumask_size())
4815 cpumask_clear(new_mask);
4816 else if (len > cpumask_size())
4817 len = cpumask_size();
4818
1da177e4
LT
4819 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4820}
4821
4822/**
d1ccc66d 4823 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4824 * @pid: pid of the process
4825 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4826 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4827 *
4828 * Return: 0 on success. An error code otherwise.
1da177e4 4829 */
5add95d4
HC
4830SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4831 unsigned long __user *, user_mask_ptr)
1da177e4 4832{
5a16f3d3 4833 cpumask_var_t new_mask;
1da177e4
LT
4834 int retval;
4835
5a16f3d3
RR
4836 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4837 return -ENOMEM;
1da177e4 4838
5a16f3d3
RR
4839 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4840 if (retval == 0)
4841 retval = sched_setaffinity(pid, new_mask);
4842 free_cpumask_var(new_mask);
4843 return retval;
1da177e4
LT
4844}
4845
96f874e2 4846long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4847{
36c8b586 4848 struct task_struct *p;
31605683 4849 unsigned long flags;
1da177e4 4850 int retval;
1da177e4 4851
23f5d142 4852 rcu_read_lock();
1da177e4
LT
4853
4854 retval = -ESRCH;
4855 p = find_process_by_pid(pid);
4856 if (!p)
4857 goto out_unlock;
4858
e7834f8f
DQ
4859 retval = security_task_getscheduler(p);
4860 if (retval)
4861 goto out_unlock;
4862
013fdb80 4863 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4864 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4865 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4866
4867out_unlock:
23f5d142 4868 rcu_read_unlock();
1da177e4 4869
9531b62f 4870 return retval;
1da177e4
LT
4871}
4872
4873/**
d1ccc66d 4874 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4875 * @pid: pid of the process
4876 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4877 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4878 *
599b4840
ZW
4879 * Return: size of CPU mask copied to user_mask_ptr on success. An
4880 * error code otherwise.
1da177e4 4881 */
5add95d4
HC
4882SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4883 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4884{
4885 int ret;
f17c8607 4886 cpumask_var_t mask;
1da177e4 4887
84fba5ec 4888 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4889 return -EINVAL;
4890 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4891 return -EINVAL;
4892
f17c8607
RR
4893 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4894 return -ENOMEM;
1da177e4 4895
f17c8607
RR
4896 ret = sched_getaffinity(pid, mask);
4897 if (ret == 0) {
8bc037fb 4898 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4899
4900 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4901 ret = -EFAULT;
4902 else
cd3d8031 4903 ret = retlen;
f17c8607
RR
4904 }
4905 free_cpumask_var(mask);
1da177e4 4906
f17c8607 4907 return ret;
1da177e4
LT
4908}
4909
4910/**
4911 * sys_sched_yield - yield the current processor to other threads.
4912 *
dd41f596
IM
4913 * This function yields the current CPU to other tasks. If there are no
4914 * other threads running on this CPU then this function will return.
e69f6186
YB
4915 *
4916 * Return: 0.
1da177e4 4917 */
5add95d4 4918SYSCALL_DEFINE0(sched_yield)
1da177e4 4919{
70b97a7f 4920 struct rq *rq = this_rq_lock();
1da177e4 4921
ae92882e 4922 schedstat_inc(rq->yld_count);
4530d7ab 4923 current->sched_class->yield_task(rq);
1da177e4
LT
4924
4925 /*
4926 * Since we are going to call schedule() anyway, there's
4927 * no need to preempt or enable interrupts:
4928 */
4929 __release(rq->lock);
8a25d5de 4930 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4931 do_raw_spin_unlock(&rq->lock);
ba74c144 4932 sched_preempt_enable_no_resched();
1da177e4
LT
4933
4934 schedule();
4935
4936 return 0;
4937}
4938
35a773a0 4939#ifndef CONFIG_PREEMPT
02b67cc3 4940int __sched _cond_resched(void)
1da177e4 4941{
fe32d3cd 4942 if (should_resched(0)) {
a18b5d01 4943 preempt_schedule_common();
1da177e4
LT
4944 return 1;
4945 }
4946 return 0;
4947}
02b67cc3 4948EXPORT_SYMBOL(_cond_resched);
35a773a0 4949#endif
1da177e4
LT
4950
4951/*
613afbf8 4952 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4953 * call schedule, and on return reacquire the lock.
4954 *
41a2d6cf 4955 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4956 * operations here to prevent schedule() from being called twice (once via
4957 * spin_unlock(), once by hand).
4958 */
613afbf8 4959int __cond_resched_lock(spinlock_t *lock)
1da177e4 4960{
fe32d3cd 4961 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4962 int ret = 0;
4963
f607c668
PZ
4964 lockdep_assert_held(lock);
4965
4a81e832 4966 if (spin_needbreak(lock) || resched) {
1da177e4 4967 spin_unlock(lock);
d86ee480 4968 if (resched)
a18b5d01 4969 preempt_schedule_common();
95c354fe
NP
4970 else
4971 cpu_relax();
6df3cecb 4972 ret = 1;
1da177e4 4973 spin_lock(lock);
1da177e4 4974 }
6df3cecb 4975 return ret;
1da177e4 4976}
613afbf8 4977EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4978
613afbf8 4979int __sched __cond_resched_softirq(void)
1da177e4
LT
4980{
4981 BUG_ON(!in_softirq());
4982
fe32d3cd 4983 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4984 local_bh_enable();
a18b5d01 4985 preempt_schedule_common();
1da177e4
LT
4986 local_bh_disable();
4987 return 1;
4988 }
4989 return 0;
4990}
613afbf8 4991EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4992
1da177e4
LT
4993/**
4994 * yield - yield the current processor to other threads.
4995 *
8e3fabfd
PZ
4996 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4997 *
4998 * The scheduler is at all times free to pick the calling task as the most
4999 * eligible task to run, if removing the yield() call from your code breaks
5000 * it, its already broken.
5001 *
5002 * Typical broken usage is:
5003 *
5004 * while (!event)
d1ccc66d 5005 * yield();
8e3fabfd
PZ
5006 *
5007 * where one assumes that yield() will let 'the other' process run that will
5008 * make event true. If the current task is a SCHED_FIFO task that will never
5009 * happen. Never use yield() as a progress guarantee!!
5010 *
5011 * If you want to use yield() to wait for something, use wait_event().
5012 * If you want to use yield() to be 'nice' for others, use cond_resched().
5013 * If you still want to use yield(), do not!
1da177e4
LT
5014 */
5015void __sched yield(void)
5016{
5017 set_current_state(TASK_RUNNING);
5018 sys_sched_yield();
5019}
1da177e4
LT
5020EXPORT_SYMBOL(yield);
5021
d95f4122
MG
5022/**
5023 * yield_to - yield the current processor to another thread in
5024 * your thread group, or accelerate that thread toward the
5025 * processor it's on.
16addf95
RD
5026 * @p: target task
5027 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5028 *
5029 * It's the caller's job to ensure that the target task struct
5030 * can't go away on us before we can do any checks.
5031 *
e69f6186 5032 * Return:
7b270f60
PZ
5033 * true (>0) if we indeed boosted the target task.
5034 * false (0) if we failed to boost the target.
5035 * -ESRCH if there's no task to yield to.
d95f4122 5036 */
fa93384f 5037int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5038{
5039 struct task_struct *curr = current;
5040 struct rq *rq, *p_rq;
5041 unsigned long flags;
c3c18640 5042 int yielded = 0;
d95f4122
MG
5043
5044 local_irq_save(flags);
5045 rq = this_rq();
5046
5047again:
5048 p_rq = task_rq(p);
7b270f60
PZ
5049 /*
5050 * If we're the only runnable task on the rq and target rq also
5051 * has only one task, there's absolutely no point in yielding.
5052 */
5053 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5054 yielded = -ESRCH;
5055 goto out_irq;
5056 }
5057
d95f4122 5058 double_rq_lock(rq, p_rq);
39e24d8f 5059 if (task_rq(p) != p_rq) {
d95f4122
MG
5060 double_rq_unlock(rq, p_rq);
5061 goto again;
5062 }
5063
5064 if (!curr->sched_class->yield_to_task)
7b270f60 5065 goto out_unlock;
d95f4122
MG
5066
5067 if (curr->sched_class != p->sched_class)
7b270f60 5068 goto out_unlock;
d95f4122
MG
5069
5070 if (task_running(p_rq, p) || p->state)
7b270f60 5071 goto out_unlock;
d95f4122
MG
5072
5073 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5074 if (yielded) {
ae92882e 5075 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5076 /*
5077 * Make p's CPU reschedule; pick_next_entity takes care of
5078 * fairness.
5079 */
5080 if (preempt && rq != p_rq)
8875125e 5081 resched_curr(p_rq);
6d1cafd8 5082 }
d95f4122 5083
7b270f60 5084out_unlock:
d95f4122 5085 double_rq_unlock(rq, p_rq);
7b270f60 5086out_irq:
d95f4122
MG
5087 local_irq_restore(flags);
5088
7b270f60 5089 if (yielded > 0)
d95f4122
MG
5090 schedule();
5091
5092 return yielded;
5093}
5094EXPORT_SYMBOL_GPL(yield_to);
5095
10ab5643
TH
5096int io_schedule_prepare(void)
5097{
5098 int old_iowait = current->in_iowait;
5099
5100 current->in_iowait = 1;
5101 blk_schedule_flush_plug(current);
5102
5103 return old_iowait;
5104}
5105
5106void io_schedule_finish(int token)
5107{
5108 current->in_iowait = token;
5109}
5110
1da177e4 5111/*
41a2d6cf 5112 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5113 * that process accounting knows that this is a task in IO wait state.
1da177e4 5114 */
1da177e4
LT
5115long __sched io_schedule_timeout(long timeout)
5116{
10ab5643 5117 int token;
1da177e4
LT
5118 long ret;
5119
10ab5643 5120 token = io_schedule_prepare();
1da177e4 5121 ret = schedule_timeout(timeout);
10ab5643 5122 io_schedule_finish(token);
9cff8ade 5123
1da177e4
LT
5124 return ret;
5125}
9cff8ade 5126EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5127
10ab5643
TH
5128void io_schedule(void)
5129{
5130 int token;
5131
5132 token = io_schedule_prepare();
5133 schedule();
5134 io_schedule_finish(token);
5135}
5136EXPORT_SYMBOL(io_schedule);
5137
1da177e4
LT
5138/**
5139 * sys_sched_get_priority_max - return maximum RT priority.
5140 * @policy: scheduling class.
5141 *
e69f6186
YB
5142 * Return: On success, this syscall returns the maximum
5143 * rt_priority that can be used by a given scheduling class.
5144 * On failure, a negative error code is returned.
1da177e4 5145 */
5add95d4 5146SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5147{
5148 int ret = -EINVAL;
5149
5150 switch (policy) {
5151 case SCHED_FIFO:
5152 case SCHED_RR:
5153 ret = MAX_USER_RT_PRIO-1;
5154 break;
aab03e05 5155 case SCHED_DEADLINE:
1da177e4 5156 case SCHED_NORMAL:
b0a9499c 5157 case SCHED_BATCH:
dd41f596 5158 case SCHED_IDLE:
1da177e4
LT
5159 ret = 0;
5160 break;
5161 }
5162 return ret;
5163}
5164
5165/**
5166 * sys_sched_get_priority_min - return minimum RT priority.
5167 * @policy: scheduling class.
5168 *
e69f6186
YB
5169 * Return: On success, this syscall returns the minimum
5170 * rt_priority that can be used by a given scheduling class.
5171 * On failure, a negative error code is returned.
1da177e4 5172 */
5add95d4 5173SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5174{
5175 int ret = -EINVAL;
5176
5177 switch (policy) {
5178 case SCHED_FIFO:
5179 case SCHED_RR:
5180 ret = 1;
5181 break;
aab03e05 5182 case SCHED_DEADLINE:
1da177e4 5183 case SCHED_NORMAL:
b0a9499c 5184 case SCHED_BATCH:
dd41f596 5185 case SCHED_IDLE:
1da177e4
LT
5186 ret = 0;
5187 }
5188 return ret;
5189}
5190
5191/**
5192 * sys_sched_rr_get_interval - return the default timeslice of a process.
5193 * @pid: pid of the process.
5194 * @interval: userspace pointer to the timeslice value.
5195 *
5196 * this syscall writes the default timeslice value of a given process
5197 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5198 *
5199 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5200 * an error code.
1da177e4 5201 */
17da2bd9 5202SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5203 struct timespec __user *, interval)
1da177e4 5204{
36c8b586 5205 struct task_struct *p;
a4ec24b4 5206 unsigned int time_slice;
eb580751
PZ
5207 struct rq_flags rf;
5208 struct timespec t;
dba091b9 5209 struct rq *rq;
3a5c359a 5210 int retval;
1da177e4
LT
5211
5212 if (pid < 0)
3a5c359a 5213 return -EINVAL;
1da177e4
LT
5214
5215 retval = -ESRCH;
1a551ae7 5216 rcu_read_lock();
1da177e4
LT
5217 p = find_process_by_pid(pid);
5218 if (!p)
5219 goto out_unlock;
5220
5221 retval = security_task_getscheduler(p);
5222 if (retval)
5223 goto out_unlock;
5224
eb580751 5225 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5226 time_slice = 0;
5227 if (p->sched_class->get_rr_interval)
5228 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5229 task_rq_unlock(rq, p, &rf);
a4ec24b4 5230
1a551ae7 5231 rcu_read_unlock();
a4ec24b4 5232 jiffies_to_timespec(time_slice, &t);
1da177e4 5233 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5234 return retval;
3a5c359a 5235
1da177e4 5236out_unlock:
1a551ae7 5237 rcu_read_unlock();
1da177e4
LT
5238 return retval;
5239}
5240
7c731e0a 5241static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5242
82a1fcb9 5243void sched_show_task(struct task_struct *p)
1da177e4 5244{
1da177e4 5245 unsigned long free = 0;
4e79752c 5246 int ppid;
1f8a7633 5247 unsigned long state = p->state;
1da177e4 5248
c930b2c0
IM
5249 /* Make sure the string lines up properly with the number of task states: */
5250 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5251
38200502
TH
5252 if (!try_get_task_stack(p))
5253 return;
1f8a7633
TH
5254 if (state)
5255 state = __ffs(state) + 1;
28d0686c 5256 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5257 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5258 if (state == TASK_RUNNING)
3df0fc5b 5259 printk(KERN_CONT " running task ");
1da177e4 5260#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5261 free = stack_not_used(p);
1da177e4 5262#endif
a90e984c 5263 ppid = 0;
4e79752c 5264 rcu_read_lock();
a90e984c
ON
5265 if (pid_alive(p))
5266 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5267 rcu_read_unlock();
3df0fc5b 5268 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5269 task_pid_nr(p), ppid,
aa47b7e0 5270 (unsigned long)task_thread_info(p)->flags);
1da177e4 5271
3d1cb205 5272 print_worker_info(KERN_INFO, p);
5fb5e6de 5273 show_stack(p, NULL);
38200502 5274 put_task_stack(p);
1da177e4
LT
5275}
5276
e59e2ae2 5277void show_state_filter(unsigned long state_filter)
1da177e4 5278{
36c8b586 5279 struct task_struct *g, *p;
1da177e4 5280
4bd77321 5281#if BITS_PER_LONG == 32
3df0fc5b
PZ
5282 printk(KERN_INFO
5283 " task PC stack pid father\n");
1da177e4 5284#else
3df0fc5b
PZ
5285 printk(KERN_INFO
5286 " task PC stack pid father\n");
1da177e4 5287#endif
510f5acc 5288 rcu_read_lock();
5d07f420 5289 for_each_process_thread(g, p) {
1da177e4
LT
5290 /*
5291 * reset the NMI-timeout, listing all files on a slow
25985edc 5292 * console might take a lot of time:
57675cb9
AR
5293 * Also, reset softlockup watchdogs on all CPUs, because
5294 * another CPU might be blocked waiting for us to process
5295 * an IPI.
1da177e4
LT
5296 */
5297 touch_nmi_watchdog();
57675cb9 5298 touch_all_softlockup_watchdogs();
39bc89fd 5299 if (!state_filter || (p->state & state_filter))
82a1fcb9 5300 sched_show_task(p);
5d07f420 5301 }
1da177e4 5302
dd41f596 5303#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5304 if (!state_filter)
5305 sysrq_sched_debug_show();
dd41f596 5306#endif
510f5acc 5307 rcu_read_unlock();
e59e2ae2
IM
5308 /*
5309 * Only show locks if all tasks are dumped:
5310 */
93335a21 5311 if (!state_filter)
e59e2ae2 5312 debug_show_all_locks();
1da177e4
LT
5313}
5314
0db0628d 5315void init_idle_bootup_task(struct task_struct *idle)
1df21055 5316{
dd41f596 5317 idle->sched_class = &idle_sched_class;
1df21055
IM
5318}
5319
f340c0d1
IM
5320/**
5321 * init_idle - set up an idle thread for a given CPU
5322 * @idle: task in question
d1ccc66d 5323 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5324 *
5325 * NOTE: this function does not set the idle thread's NEED_RESCHED
5326 * flag, to make booting more robust.
5327 */
0db0628d 5328void init_idle(struct task_struct *idle, int cpu)
1da177e4 5329{
70b97a7f 5330 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5331 unsigned long flags;
5332
25834c73
PZ
5333 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5334 raw_spin_lock(&rq->lock);
5cbd54ef 5335
5e1576ed 5336 __sched_fork(0, idle);
06b83b5f 5337 idle->state = TASK_RUNNING;
dd41f596 5338 idle->se.exec_start = sched_clock();
c1de45ca 5339 idle->flags |= PF_IDLE;
dd41f596 5340
e1b77c92
MR
5341 kasan_unpoison_task_stack(idle);
5342
de9b8f5d
PZ
5343#ifdef CONFIG_SMP
5344 /*
5345 * Its possible that init_idle() gets called multiple times on a task,
5346 * in that case do_set_cpus_allowed() will not do the right thing.
5347 *
5348 * And since this is boot we can forgo the serialization.
5349 */
5350 set_cpus_allowed_common(idle, cpumask_of(cpu));
5351#endif
6506cf6c
PZ
5352 /*
5353 * We're having a chicken and egg problem, even though we are
d1ccc66d 5354 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5355 * lockdep check in task_group() will fail.
5356 *
5357 * Similar case to sched_fork(). / Alternatively we could
5358 * use task_rq_lock() here and obtain the other rq->lock.
5359 *
5360 * Silence PROVE_RCU
5361 */
5362 rcu_read_lock();
dd41f596 5363 __set_task_cpu(idle, cpu);
6506cf6c 5364 rcu_read_unlock();
1da177e4 5365
1da177e4 5366 rq->curr = rq->idle = idle;
da0c1e65 5367 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5368#ifdef CONFIG_SMP
3ca7a440 5369 idle->on_cpu = 1;
4866cde0 5370#endif
25834c73
PZ
5371 raw_spin_unlock(&rq->lock);
5372 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5373
5374 /* Set the preempt count _outside_ the spinlocks! */
01028747 5375 init_idle_preempt_count(idle, cpu);
55cd5340 5376
dd41f596
IM
5377 /*
5378 * The idle tasks have their own, simple scheduling class:
5379 */
5380 idle->sched_class = &idle_sched_class;
868baf07 5381 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5382 vtime_init_idle(idle, cpu);
de9b8f5d 5383#ifdef CONFIG_SMP
f1c6f1a7
CE
5384 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5385#endif
19978ca6
IM
5386}
5387
f82f8042
JL
5388int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5389 const struct cpumask *trial)
5390{
5391 int ret = 1, trial_cpus;
5392 struct dl_bw *cur_dl_b;
5393 unsigned long flags;
5394
bb2bc55a
MG
5395 if (!cpumask_weight(cur))
5396 return ret;
5397
75e23e49 5398 rcu_read_lock_sched();
f82f8042
JL
5399 cur_dl_b = dl_bw_of(cpumask_any(cur));
5400 trial_cpus = cpumask_weight(trial);
5401
5402 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5403 if (cur_dl_b->bw != -1 &&
5404 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5405 ret = 0;
5406 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5407 rcu_read_unlock_sched();
f82f8042
JL
5408
5409 return ret;
5410}
5411
7f51412a
JL
5412int task_can_attach(struct task_struct *p,
5413 const struct cpumask *cs_cpus_allowed)
5414{
5415 int ret = 0;
5416
5417 /*
5418 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5419 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5420 * affinity and isolating such threads by their set of
5421 * allowed nodes is unnecessary. Thus, cpusets are not
5422 * applicable for such threads. This prevents checking for
5423 * success of set_cpus_allowed_ptr() on all attached tasks
5424 * before cpus_allowed may be changed.
5425 */
5426 if (p->flags & PF_NO_SETAFFINITY) {
5427 ret = -EINVAL;
5428 goto out;
5429 }
5430
5431#ifdef CONFIG_SMP
5432 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5433 cs_cpus_allowed)) {
5434 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5435 cs_cpus_allowed);
75e23e49 5436 struct dl_bw *dl_b;
7f51412a
JL
5437 bool overflow;
5438 int cpus;
5439 unsigned long flags;
5440
75e23e49
JL
5441 rcu_read_lock_sched();
5442 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5443 raw_spin_lock_irqsave(&dl_b->lock, flags);
5444 cpus = dl_bw_cpus(dest_cpu);
5445 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5446 if (overflow)
5447 ret = -EBUSY;
5448 else {
5449 /*
5450 * We reserve space for this task in the destination
5451 * root_domain, as we can't fail after this point.
5452 * We will free resources in the source root_domain
5453 * later on (see set_cpus_allowed_dl()).
5454 */
5455 __dl_add(dl_b, p->dl.dl_bw);
5456 }
5457 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5458 rcu_read_unlock_sched();
7f51412a
JL
5459
5460 }
5461#endif
5462out:
5463 return ret;
5464}
5465
1da177e4 5466#ifdef CONFIG_SMP
1da177e4 5467
f2cb1360 5468bool sched_smp_initialized __read_mostly;
e26fbffd 5469
e6628d5b
MG
5470#ifdef CONFIG_NUMA_BALANCING
5471/* Migrate current task p to target_cpu */
5472int migrate_task_to(struct task_struct *p, int target_cpu)
5473{
5474 struct migration_arg arg = { p, target_cpu };
5475 int curr_cpu = task_cpu(p);
5476
5477 if (curr_cpu == target_cpu)
5478 return 0;
5479
0c98d344 5480 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5481 return -EINVAL;
5482
5483 /* TODO: This is not properly updating schedstats */
5484
286549dc 5485 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5486 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5487}
0ec8aa00
PZ
5488
5489/*
5490 * Requeue a task on a given node and accurately track the number of NUMA
5491 * tasks on the runqueues
5492 */
5493void sched_setnuma(struct task_struct *p, int nid)
5494{
da0c1e65 5495 bool queued, running;
eb580751
PZ
5496 struct rq_flags rf;
5497 struct rq *rq;
0ec8aa00 5498
eb580751 5499 rq = task_rq_lock(p, &rf);
da0c1e65 5500 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5501 running = task_current(rq, p);
5502
da0c1e65 5503 if (queued)
1de64443 5504 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5505 if (running)
f3cd1c4e 5506 put_prev_task(rq, p);
0ec8aa00
PZ
5507
5508 p->numa_preferred_nid = nid;
0ec8aa00 5509
da0c1e65 5510 if (queued)
1de64443 5511 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5512 if (running)
b2bf6c31 5513 set_curr_task(rq, p);
eb580751 5514 task_rq_unlock(rq, p, &rf);
0ec8aa00 5515}
5cc389bc 5516#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5517
1da177e4 5518#ifdef CONFIG_HOTPLUG_CPU
054b9108 5519/*
d1ccc66d 5520 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5521 * offline.
054b9108 5522 */
48c5ccae 5523void idle_task_exit(void)
1da177e4 5524{
48c5ccae 5525 struct mm_struct *mm = current->active_mm;
e76bd8d9 5526
48c5ccae 5527 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5528
a53efe5f 5529 if (mm != &init_mm) {
f98db601 5530 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5531 finish_arch_post_lock_switch();
5532 }
48c5ccae 5533 mmdrop(mm);
1da177e4
LT
5534}
5535
5536/*
5d180232
PZ
5537 * Since this CPU is going 'away' for a while, fold any nr_active delta
5538 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5539 * nr_active count is stable. We need to take the teardown thread which
5540 * is calling this into account, so we hand in adjust = 1 to the load
5541 * calculation.
5d180232
PZ
5542 *
5543 * Also see the comment "Global load-average calculations".
1da177e4 5544 */
5d180232 5545static void calc_load_migrate(struct rq *rq)
1da177e4 5546{
d60585c5 5547 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5548 if (delta)
5549 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5550}
5551
3f1d2a31
PZ
5552static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5553{
5554}
5555
5556static const struct sched_class fake_sched_class = {
5557 .put_prev_task = put_prev_task_fake,
5558};
5559
5560static struct task_struct fake_task = {
5561 /*
5562 * Avoid pull_{rt,dl}_task()
5563 */
5564 .prio = MAX_PRIO + 1,
5565 .sched_class = &fake_sched_class,
5566};
5567
48f24c4d 5568/*
48c5ccae
PZ
5569 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5570 * try_to_wake_up()->select_task_rq().
5571 *
5572 * Called with rq->lock held even though we'er in stop_machine() and
5573 * there's no concurrency possible, we hold the required locks anyway
5574 * because of lock validation efforts.
1da177e4 5575 */
5e16bbc2 5576static void migrate_tasks(struct rq *dead_rq)
1da177e4 5577{
5e16bbc2 5578 struct rq *rq = dead_rq;
48c5ccae 5579 struct task_struct *next, *stop = rq->stop;
8cb68b34 5580 struct rq_flags rf;
48c5ccae 5581 int dest_cpu;
1da177e4
LT
5582
5583 /*
48c5ccae
PZ
5584 * Fudge the rq selection such that the below task selection loop
5585 * doesn't get stuck on the currently eligible stop task.
5586 *
5587 * We're currently inside stop_machine() and the rq is either stuck
5588 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5589 * either way we should never end up calling schedule() until we're
5590 * done here.
1da177e4 5591 */
48c5ccae 5592 rq->stop = NULL;
48f24c4d 5593
77bd3970
FW
5594 /*
5595 * put_prev_task() and pick_next_task() sched
5596 * class method both need to have an up-to-date
5597 * value of rq->clock[_task]
5598 */
8cb68b34 5599 rq_pin_lock(rq, &rf);
77bd3970 5600 update_rq_clock(rq);
8cb68b34 5601 rq_unpin_lock(rq, &rf);
77bd3970 5602
5e16bbc2 5603 for (;;) {
48c5ccae
PZ
5604 /*
5605 * There's this thread running, bail when that's the only
d1ccc66d 5606 * remaining thread:
48c5ccae
PZ
5607 */
5608 if (rq->nr_running == 1)
dd41f596 5609 break;
48c5ccae 5610
cbce1a68 5611 /*
d1ccc66d 5612 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5613 */
8cb68b34 5614 rq_repin_lock(rq, &rf);
d8ac8971 5615 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5616 BUG_ON(!next);
79c53799 5617 next->sched_class->put_prev_task(rq, next);
e692ab53 5618
5473e0cc
WL
5619 /*
5620 * Rules for changing task_struct::cpus_allowed are holding
5621 * both pi_lock and rq->lock, such that holding either
5622 * stabilizes the mask.
5623 *
5624 * Drop rq->lock is not quite as disastrous as it usually is
5625 * because !cpu_active at this point, which means load-balance
5626 * will not interfere. Also, stop-machine.
5627 */
d8ac8971 5628 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5629 raw_spin_unlock(&rq->lock);
5630 raw_spin_lock(&next->pi_lock);
5631 raw_spin_lock(&rq->lock);
5632
5633 /*
5634 * Since we're inside stop-machine, _nothing_ should have
5635 * changed the task, WARN if weird stuff happened, because in
5636 * that case the above rq->lock drop is a fail too.
5637 */
5638 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5639 raw_spin_unlock(&next->pi_lock);
5640 continue;
5641 }
5642
48c5ccae 5643 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5644 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5645
5e16bbc2
PZ
5646 rq = __migrate_task(rq, next, dest_cpu);
5647 if (rq != dead_rq) {
5648 raw_spin_unlock(&rq->lock);
5649 rq = dead_rq;
5650 raw_spin_lock(&rq->lock);
5651 }
5473e0cc 5652 raw_spin_unlock(&next->pi_lock);
1da177e4 5653 }
dce48a84 5654
48c5ccae 5655 rq->stop = stop;
dce48a84 5656}
1da177e4
LT
5657#endif /* CONFIG_HOTPLUG_CPU */
5658
f2cb1360 5659void set_rq_online(struct rq *rq)
1f11eb6a
GH
5660{
5661 if (!rq->online) {
5662 const struct sched_class *class;
5663
c6c4927b 5664 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5665 rq->online = 1;
5666
5667 for_each_class(class) {
5668 if (class->rq_online)
5669 class->rq_online(rq);
5670 }
5671 }
5672}
5673
f2cb1360 5674void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5675{
5676 if (rq->online) {
5677 const struct sched_class *class;
5678
5679 for_each_class(class) {
5680 if (class->rq_offline)
5681 class->rq_offline(rq);
5682 }
5683
c6c4927b 5684 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5685 rq->online = 0;
5686 }
5687}
5688
9cf7243d 5689static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5690{
969c7921 5691 struct rq *rq = cpu_rq(cpu);
1da177e4 5692
a803f026
CM
5693 rq->age_stamp = sched_clock_cpu(cpu);
5694}
5695
d1ccc66d
IM
5696/*
5697 * used to mark begin/end of suspend/resume:
5698 */
5699static int num_cpus_frozen;
d35be8ba 5700
1da177e4 5701/*
3a101d05
TH
5702 * Update cpusets according to cpu_active mask. If cpusets are
5703 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5704 * around partition_sched_domains().
d35be8ba
SB
5705 *
5706 * If we come here as part of a suspend/resume, don't touch cpusets because we
5707 * want to restore it back to its original state upon resume anyway.
1da177e4 5708 */
40190a78 5709static void cpuset_cpu_active(void)
e761b772 5710{
40190a78 5711 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5712 /*
5713 * num_cpus_frozen tracks how many CPUs are involved in suspend
5714 * resume sequence. As long as this is not the last online
5715 * operation in the resume sequence, just build a single sched
5716 * domain, ignoring cpusets.
5717 */
5718 num_cpus_frozen--;
5719 if (likely(num_cpus_frozen)) {
5720 partition_sched_domains(1, NULL, NULL);
135fb3e1 5721 return;
d35be8ba 5722 }
d35be8ba
SB
5723 /*
5724 * This is the last CPU online operation. So fall through and
5725 * restore the original sched domains by considering the
5726 * cpuset configurations.
5727 */
3a101d05 5728 }
135fb3e1 5729 cpuset_update_active_cpus(true);
3a101d05 5730}
e761b772 5731
40190a78 5732static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5733{
3c18d447 5734 unsigned long flags;
3c18d447 5735 struct dl_bw *dl_b;
533445c6
OS
5736 bool overflow;
5737 int cpus;
3c18d447 5738
40190a78 5739 if (!cpuhp_tasks_frozen) {
533445c6
OS
5740 rcu_read_lock_sched();
5741 dl_b = dl_bw_of(cpu);
3c18d447 5742
533445c6
OS
5743 raw_spin_lock_irqsave(&dl_b->lock, flags);
5744 cpus = dl_bw_cpus(cpu);
5745 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5746 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5747
533445c6 5748 rcu_read_unlock_sched();
3c18d447 5749
533445c6 5750 if (overflow)
135fb3e1 5751 return -EBUSY;
7ddf96b0 5752 cpuset_update_active_cpus(false);
135fb3e1 5753 } else {
d35be8ba
SB
5754 num_cpus_frozen++;
5755 partition_sched_domains(1, NULL, NULL);
e761b772 5756 }
135fb3e1 5757 return 0;
e761b772 5758}
e761b772 5759
40190a78 5760int sched_cpu_activate(unsigned int cpu)
135fb3e1 5761{
7d976699
TG
5762 struct rq *rq = cpu_rq(cpu);
5763 unsigned long flags;
5764
40190a78 5765 set_cpu_active(cpu, true);
135fb3e1 5766
40190a78 5767 if (sched_smp_initialized) {
135fb3e1 5768 sched_domains_numa_masks_set(cpu);
40190a78 5769 cpuset_cpu_active();
e761b772 5770 }
7d976699
TG
5771
5772 /*
5773 * Put the rq online, if not already. This happens:
5774 *
5775 * 1) In the early boot process, because we build the real domains
d1ccc66d 5776 * after all CPUs have been brought up.
7d976699
TG
5777 *
5778 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5779 * domains.
5780 */
5781 raw_spin_lock_irqsave(&rq->lock, flags);
5782 if (rq->rd) {
5783 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5784 set_rq_online(rq);
5785 }
5786 raw_spin_unlock_irqrestore(&rq->lock, flags);
5787
5788 update_max_interval();
5789
40190a78 5790 return 0;
135fb3e1
TG
5791}
5792
40190a78 5793int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5794{
135fb3e1
TG
5795 int ret;
5796
40190a78 5797 set_cpu_active(cpu, false);
b2454caa
PZ
5798 /*
5799 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5800 * users of this state to go away such that all new such users will
5801 * observe it.
5802 *
5803 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5804 * not imply sync_sched(), so wait for both.
5805 *
5806 * Do sync before park smpboot threads to take care the rcu boost case.
5807 */
5808 if (IS_ENABLED(CONFIG_PREEMPT))
5809 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5810 else
5811 synchronize_rcu();
40190a78
TG
5812
5813 if (!sched_smp_initialized)
5814 return 0;
5815
5816 ret = cpuset_cpu_inactive(cpu);
5817 if (ret) {
5818 set_cpu_active(cpu, true);
5819 return ret;
135fb3e1 5820 }
40190a78
TG
5821 sched_domains_numa_masks_clear(cpu);
5822 return 0;
135fb3e1
TG
5823}
5824
94baf7a5
TG
5825static void sched_rq_cpu_starting(unsigned int cpu)
5826{
5827 struct rq *rq = cpu_rq(cpu);
5828
5829 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5830 update_max_interval();
5831}
5832
135fb3e1
TG
5833int sched_cpu_starting(unsigned int cpu)
5834{
5835 set_cpu_rq_start_time(cpu);
94baf7a5 5836 sched_rq_cpu_starting(cpu);
135fb3e1 5837 return 0;
e761b772 5838}
e761b772 5839
f2785ddb
TG
5840#ifdef CONFIG_HOTPLUG_CPU
5841int sched_cpu_dying(unsigned int cpu)
5842{
5843 struct rq *rq = cpu_rq(cpu);
5844 unsigned long flags;
5845
5846 /* Handle pending wakeups and then migrate everything off */
5847 sched_ttwu_pending();
5848 raw_spin_lock_irqsave(&rq->lock, flags);
5849 if (rq->rd) {
5850 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5851 set_rq_offline(rq);
5852 }
5853 migrate_tasks(rq);
5854 BUG_ON(rq->nr_running != 1);
5855 raw_spin_unlock_irqrestore(&rq->lock, flags);
5856 calc_load_migrate(rq);
5857 update_max_interval();
20a5c8cc 5858 nohz_balance_exit_idle(cpu);
e5ef27d0 5859 hrtick_clear(rq);
f2785ddb
TG
5860 return 0;
5861}
5862#endif
5863
1b568f0a
PZ
5864#ifdef CONFIG_SCHED_SMT
5865DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5866
5867static void sched_init_smt(void)
5868{
5869 /*
5870 * We've enumerated all CPUs and will assume that if any CPU
5871 * has SMT siblings, CPU0 will too.
5872 */
5873 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5874 static_branch_enable(&sched_smt_present);
5875}
5876#else
5877static inline void sched_init_smt(void) { }
5878#endif
5879
1da177e4
LT
5880void __init sched_init_smp(void)
5881{
dcc30a35
RR
5882 cpumask_var_t non_isolated_cpus;
5883
5884 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 5885 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 5886
cb83b629
PZ
5887 sched_init_numa();
5888
6acce3ef
PZ
5889 /*
5890 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5891 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5892 * happen.
5893 */
712555ee 5894 mutex_lock(&sched_domains_mutex);
c4a8849a 5895 init_sched_domains(cpu_active_mask);
dcc30a35
RR
5896 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5897 if (cpumask_empty(non_isolated_cpus))
5898 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5899 mutex_unlock(&sched_domains_mutex);
e761b772 5900
5c1e1767 5901 /* Move init over to a non-isolated CPU */
dcc30a35 5902 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5903 BUG();
19978ca6 5904 sched_init_granularity();
dcc30a35 5905 free_cpumask_var(non_isolated_cpus);
4212823f 5906
0e3900e6 5907 init_sched_rt_class();
1baca4ce 5908 init_sched_dl_class();
1b568f0a
PZ
5909
5910 sched_init_smt();
9881b024 5911 sched_clock_init_late();
1b568f0a 5912
e26fbffd 5913 sched_smp_initialized = true;
1da177e4 5914}
e26fbffd
TG
5915
5916static int __init migration_init(void)
5917{
94baf7a5 5918 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5919 return 0;
1da177e4 5920}
e26fbffd
TG
5921early_initcall(migration_init);
5922
1da177e4
LT
5923#else
5924void __init sched_init_smp(void)
5925{
19978ca6 5926 sched_init_granularity();
9881b024 5927 sched_clock_init_late();
1da177e4
LT
5928}
5929#endif /* CONFIG_SMP */
5930
5931int in_sched_functions(unsigned long addr)
5932{
1da177e4
LT
5933 return in_lock_functions(addr) ||
5934 (addr >= (unsigned long)__sched_text_start
5935 && addr < (unsigned long)__sched_text_end);
5936}
5937
029632fb 5938#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5939/*
5940 * Default task group.
5941 * Every task in system belongs to this group at bootup.
5942 */
029632fb 5943struct task_group root_task_group;
35cf4e50 5944LIST_HEAD(task_groups);
b0367629
WL
5945
5946/* Cacheline aligned slab cache for task_group */
5947static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5948#endif
6f505b16 5949
e6252c3e 5950DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5951DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5952
9dcb8b68
LT
5953#define WAIT_TABLE_BITS 8
5954#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5955static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5956
5957wait_queue_head_t *bit_waitqueue(void *word, int bit)
5958{
5959 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5960 unsigned long val = (unsigned long)word << shift | bit;
5961
5962 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5963}
5964EXPORT_SYMBOL(bit_waitqueue);
5965
1da177e4
LT
5966void __init sched_init(void)
5967{
dd41f596 5968 int i, j;
434d53b0
MT
5969 unsigned long alloc_size = 0, ptr;
5970
9881b024
PZ
5971 sched_clock_init();
5972
9dcb8b68
LT
5973 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5974 init_waitqueue_head(bit_wait_table + i);
5975
434d53b0
MT
5976#ifdef CONFIG_FAIR_GROUP_SCHED
5977 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5978#endif
5979#ifdef CONFIG_RT_GROUP_SCHED
5980 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5981#endif
434d53b0 5982 if (alloc_size) {
36b7b6d4 5983 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5984
5985#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5986 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5987 ptr += nr_cpu_ids * sizeof(void **);
5988
07e06b01 5989 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5990 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5991
6d6bc0ad 5992#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5993#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5994 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5995 ptr += nr_cpu_ids * sizeof(void **);
5996
07e06b01 5997 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5998 ptr += nr_cpu_ids * sizeof(void **);
5999
6d6bc0ad 6000#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6001 }
df7c8e84 6002#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6003 for_each_possible_cpu(i) {
6004 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6005 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6006 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6007 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6008 }
b74e6278 6009#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6010
d1ccc66d
IM
6011 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6012 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6013
57d885fe
GH
6014#ifdef CONFIG_SMP
6015 init_defrootdomain();
6016#endif
6017
d0b27fa7 6018#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6019 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6020 global_rt_period(), global_rt_runtime());
6d6bc0ad 6021#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6022
7c941438 6023#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6024 task_group_cache = KMEM_CACHE(task_group, 0);
6025
07e06b01
YZ
6026 list_add(&root_task_group.list, &task_groups);
6027 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6028 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6029 autogroup_init(&init_task);
7c941438 6030#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6031
0a945022 6032 for_each_possible_cpu(i) {
70b97a7f 6033 struct rq *rq;
1da177e4
LT
6034
6035 rq = cpu_rq(i);
05fa785c 6036 raw_spin_lock_init(&rq->lock);
7897986b 6037 rq->nr_running = 0;
dce48a84
TG
6038 rq->calc_load_active = 0;
6039 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6040 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6041 init_rt_rq(&rq->rt);
6042 init_dl_rq(&rq->dl);
dd41f596 6043#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6044 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6045 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6046 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6047 /*
d1ccc66d 6048 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6049 *
6050 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6051 * gets 100% of the CPU resources in the system. This overall
6052 * system CPU resource is divided among the tasks of
07e06b01 6053 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6054 * based on each entity's (task or task-group's) weight
6055 * (se->load.weight).
6056 *
07e06b01 6057 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6058 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6059 * then A0's share of the CPU resource is:
354d60c2 6060 *
0d905bca 6061 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6062 *
07e06b01
YZ
6063 * We achieve this by letting root_task_group's tasks sit
6064 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6065 */
ab84d31e 6066 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6067 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6068#endif /* CONFIG_FAIR_GROUP_SCHED */
6069
6070 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6071#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6072 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6073#endif
1da177e4 6074
dd41f596
IM
6075 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6076 rq->cpu_load[j] = 0;
fdf3e95d 6077
1da177e4 6078#ifdef CONFIG_SMP
41c7ce9a 6079 rq->sd = NULL;
57d885fe 6080 rq->rd = NULL;
ca6d75e6 6081 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6082 rq->balance_callback = NULL;
1da177e4 6083 rq->active_balance = 0;
dd41f596 6084 rq->next_balance = jiffies;
1da177e4 6085 rq->push_cpu = 0;
0a2966b4 6086 rq->cpu = i;
1f11eb6a 6087 rq->online = 0;
eae0c9df
MG
6088 rq->idle_stamp = 0;
6089 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6090 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6091
6092 INIT_LIST_HEAD(&rq->cfs_tasks);
6093
dc938520 6094 rq_attach_root(rq, &def_root_domain);
3451d024 6095#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6096 rq->last_load_update_tick = jiffies;
1c792db7 6097 rq->nohz_flags = 0;
83cd4fe2 6098#endif
265f22a9
FW
6099#ifdef CONFIG_NO_HZ_FULL
6100 rq->last_sched_tick = 0;
6101#endif
9fd81dd5 6102#endif /* CONFIG_SMP */
8f4d37ec 6103 init_rq_hrtick(rq);
1da177e4 6104 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6105 }
6106
2dd73a4f 6107 set_load_weight(&init_task);
b50f60ce 6108
1da177e4
LT
6109 /*
6110 * The boot idle thread does lazy MMU switching as well:
6111 */
f1f10076 6112 mmgrab(&init_mm);
1da177e4
LT
6113 enter_lazy_tlb(&init_mm, current);
6114
6115 /*
6116 * Make us the idle thread. Technically, schedule() should not be
6117 * called from this thread, however somewhere below it might be,
6118 * but because we are the idle thread, we just pick up running again
6119 * when this runqueue becomes "idle".
6120 */
6121 init_idle(current, smp_processor_id());
dce48a84
TG
6122
6123 calc_load_update = jiffies + LOAD_FREQ;
6124
bf4d83f6 6125#ifdef CONFIG_SMP
4cb98839 6126 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6127 /* May be allocated at isolcpus cmdline parse time */
6128 if (cpu_isolated_map == NULL)
6129 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6130 idle_thread_set_boot_cpu();
9cf7243d 6131 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6132#endif
6133 init_sched_fair_class();
6a7b3dc3 6134
4698f88c
JP
6135 init_schedstats();
6136
6892b75e 6137 scheduler_running = 1;
1da177e4
LT
6138}
6139
d902db1e 6140#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6141static inline int preempt_count_equals(int preempt_offset)
6142{
da7142e2 6143 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6144
4ba8216c 6145 return (nested == preempt_offset);
e4aafea2
FW
6146}
6147
d894837f 6148void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6149{
8eb23b9f
PZ
6150 /*
6151 * Blocking primitives will set (and therefore destroy) current->state,
6152 * since we will exit with TASK_RUNNING make sure we enter with it,
6153 * otherwise we will destroy state.
6154 */
00845eb9 6155 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6156 "do not call blocking ops when !TASK_RUNNING; "
6157 "state=%lx set at [<%p>] %pS\n",
6158 current->state,
6159 (void *)current->task_state_change,
00845eb9 6160 (void *)current->task_state_change);
8eb23b9f 6161
3427445a
PZ
6162 ___might_sleep(file, line, preempt_offset);
6163}
6164EXPORT_SYMBOL(__might_sleep);
6165
6166void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6167{
d1ccc66d
IM
6168 /* Ratelimiting timestamp: */
6169 static unsigned long prev_jiffy;
6170
d1c6d149 6171 unsigned long preempt_disable_ip;
1da177e4 6172
d1ccc66d
IM
6173 /* WARN_ON_ONCE() by default, no rate limit required: */
6174 rcu_sleep_check();
6175
db273be2
TG
6176 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6177 !is_idle_task(current)) ||
e4aafea2 6178 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6179 return;
6180 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6181 return;
6182 prev_jiffy = jiffies;
6183
d1ccc66d 6184 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6185 preempt_disable_ip = get_preempt_disable_ip(current);
6186
3df0fc5b
PZ
6187 printk(KERN_ERR
6188 "BUG: sleeping function called from invalid context at %s:%d\n",
6189 file, line);
6190 printk(KERN_ERR
6191 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6192 in_atomic(), irqs_disabled(),
6193 current->pid, current->comm);
aef745fc 6194
a8b686b3
ES
6195 if (task_stack_end_corrupted(current))
6196 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6197
aef745fc
IM
6198 debug_show_held_locks(current);
6199 if (irqs_disabled())
6200 print_irqtrace_events(current);
d1c6d149
VN
6201 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6202 && !preempt_count_equals(preempt_offset)) {
8f47b187 6203 pr_err("Preemption disabled at:");
d1c6d149 6204 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6205 pr_cont("\n");
6206 }
aef745fc 6207 dump_stack();
f0b22e39 6208 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6209}
3427445a 6210EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6211#endif
6212
6213#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6214void normalize_rt_tasks(void)
3a5e4dc1 6215{
dbc7f069 6216 struct task_struct *g, *p;
d50dde5a
DF
6217 struct sched_attr attr = {
6218 .sched_policy = SCHED_NORMAL,
6219 };
1da177e4 6220
3472eaa1 6221 read_lock(&tasklist_lock);
5d07f420 6222 for_each_process_thread(g, p) {
178be793
IM
6223 /*
6224 * Only normalize user tasks:
6225 */
3472eaa1 6226 if (p->flags & PF_KTHREAD)
178be793
IM
6227 continue;
6228
4fa8d299
JP
6229 p->se.exec_start = 0;
6230 schedstat_set(p->se.statistics.wait_start, 0);
6231 schedstat_set(p->se.statistics.sleep_start, 0);
6232 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6233
aab03e05 6234 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6235 /*
6236 * Renice negative nice level userspace
6237 * tasks back to 0:
6238 */
3472eaa1 6239 if (task_nice(p) < 0)
dd41f596 6240 set_user_nice(p, 0);
1da177e4 6241 continue;
dd41f596 6242 }
1da177e4 6243
dbc7f069 6244 __sched_setscheduler(p, &attr, false, false);
5d07f420 6245 }
3472eaa1 6246 read_unlock(&tasklist_lock);
1da177e4
LT
6247}
6248
6249#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6250
67fc4e0c 6251#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6252/*
67fc4e0c 6253 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6254 *
6255 * They can only be called when the whole system has been
6256 * stopped - every CPU needs to be quiescent, and no scheduling
6257 * activity can take place. Using them for anything else would
6258 * be a serious bug, and as a result, they aren't even visible
6259 * under any other configuration.
6260 */
6261
6262/**
d1ccc66d 6263 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6264 * @cpu: the processor in question.
6265 *
6266 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6267 *
6268 * Return: The current task for @cpu.
1df5c10a 6269 */
36c8b586 6270struct task_struct *curr_task(int cpu)
1df5c10a
LT
6271{
6272 return cpu_curr(cpu);
6273}
6274
67fc4e0c
JW
6275#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6276
6277#ifdef CONFIG_IA64
1df5c10a 6278/**
d1ccc66d 6279 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6280 * @cpu: the processor in question.
6281 * @p: the task pointer to set.
6282 *
6283 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6284 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6285 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6286 * must be called with all CPU's synchronized, and interrupts disabled, the
6287 * and caller must save the original value of the current task (see
6288 * curr_task() above) and restore that value before reenabling interrupts and
6289 * re-starting the system.
6290 *
6291 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6292 */
a458ae2e 6293void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6294{
6295 cpu_curr(cpu) = p;
6296}
6297
6298#endif
29f59db3 6299
7c941438 6300#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6301/* task_group_lock serializes the addition/removal of task groups */
6302static DEFINE_SPINLOCK(task_group_lock);
6303
2f5177f0 6304static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6305{
6306 free_fair_sched_group(tg);
6307 free_rt_sched_group(tg);
e9aa1dd1 6308 autogroup_free(tg);
b0367629 6309 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6310}
6311
6312/* allocate runqueue etc for a new task group */
ec7dc8ac 6313struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6314{
6315 struct task_group *tg;
bccbe08a 6316
b0367629 6317 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6318 if (!tg)
6319 return ERR_PTR(-ENOMEM);
6320
ec7dc8ac 6321 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6322 goto err;
6323
ec7dc8ac 6324 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6325 goto err;
6326
ace783b9
LZ
6327 return tg;
6328
6329err:
2f5177f0 6330 sched_free_group(tg);
ace783b9
LZ
6331 return ERR_PTR(-ENOMEM);
6332}
6333
6334void sched_online_group(struct task_group *tg, struct task_group *parent)
6335{
6336 unsigned long flags;
6337
8ed36996 6338 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6339 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6340
d1ccc66d
IM
6341 /* Root should already exist: */
6342 WARN_ON(!parent);
f473aa5e
PZ
6343
6344 tg->parent = parent;
f473aa5e 6345 INIT_LIST_HEAD(&tg->children);
09f2724a 6346 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6347 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6348
6349 online_fair_sched_group(tg);
29f59db3
SV
6350}
6351
9b5b7751 6352/* rcu callback to free various structures associated with a task group */
2f5177f0 6353static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6354{
d1ccc66d 6355 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6356 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6357}
6358
4cf86d77 6359void sched_destroy_group(struct task_group *tg)
ace783b9 6360{
d1ccc66d 6361 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6362 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6363}
6364
6365void sched_offline_group(struct task_group *tg)
29f59db3 6366{
8ed36996 6367 unsigned long flags;
29f59db3 6368
d1ccc66d 6369 /* End participation in shares distribution: */
6fe1f348 6370 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6371
6372 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6373 list_del_rcu(&tg->list);
f473aa5e 6374 list_del_rcu(&tg->siblings);
8ed36996 6375 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6376}
6377
ea86cb4b 6378static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6379{
8323f26c 6380 struct task_group *tg;
29f59db3 6381
f7b8a47d
KT
6382 /*
6383 * All callers are synchronized by task_rq_lock(); we do not use RCU
6384 * which is pointless here. Thus, we pass "true" to task_css_check()
6385 * to prevent lockdep warnings.
6386 */
6387 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6388 struct task_group, css);
6389 tg = autogroup_task_group(tsk, tg);
6390 tsk->sched_task_group = tg;
6391
810b3817 6392#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6393 if (tsk->sched_class->task_change_group)
6394 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6395 else
810b3817 6396#endif
b2b5ce02 6397 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6398}
6399
6400/*
6401 * Change task's runqueue when it moves between groups.
6402 *
6403 * The caller of this function should have put the task in its new group by
6404 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6405 * its new group.
6406 */
6407void sched_move_task(struct task_struct *tsk)
6408{
6409 int queued, running;
6410 struct rq_flags rf;
6411 struct rq *rq;
6412
6413 rq = task_rq_lock(tsk, &rf);
1b1d6225 6414 update_rq_clock(rq);
ea86cb4b
VG
6415
6416 running = task_current(rq, tsk);
6417 queued = task_on_rq_queued(tsk);
6418
6419 if (queued)
6420 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
bb3bac2c 6421 if (running)
ea86cb4b
VG
6422 put_prev_task(rq, tsk);
6423
6424 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6425
da0c1e65 6426 if (queued)
ff77e468 6427 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
bb3bac2c 6428 if (running)
b2bf6c31 6429 set_curr_task(rq, tsk);
29f59db3 6430
eb580751 6431 task_rq_unlock(rq, tsk, &rf);
29f59db3 6432}
7c941438 6433#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6434
a790de99
PT
6435#ifdef CONFIG_RT_GROUP_SCHED
6436/*
6437 * Ensure that the real time constraints are schedulable.
6438 */
6439static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6440
9a7e0b18
PZ
6441/* Must be called with tasklist_lock held */
6442static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6443{
9a7e0b18 6444 struct task_struct *g, *p;
b40b2e8e 6445
1fe89e1b
PZ
6446 /*
6447 * Autogroups do not have RT tasks; see autogroup_create().
6448 */
6449 if (task_group_is_autogroup(tg))
6450 return 0;
6451
5d07f420 6452 for_each_process_thread(g, p) {
8651c658 6453 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6454 return 1;
5d07f420 6455 }
b40b2e8e 6456
9a7e0b18
PZ
6457 return 0;
6458}
b40b2e8e 6459
9a7e0b18
PZ
6460struct rt_schedulable_data {
6461 struct task_group *tg;
6462 u64 rt_period;
6463 u64 rt_runtime;
6464};
b40b2e8e 6465
a790de99 6466static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6467{
6468 struct rt_schedulable_data *d = data;
6469 struct task_group *child;
6470 unsigned long total, sum = 0;
6471 u64 period, runtime;
b40b2e8e 6472
9a7e0b18
PZ
6473 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6474 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6475
9a7e0b18
PZ
6476 if (tg == d->tg) {
6477 period = d->rt_period;
6478 runtime = d->rt_runtime;
b40b2e8e 6479 }
b40b2e8e 6480
4653f803
PZ
6481 /*
6482 * Cannot have more runtime than the period.
6483 */
6484 if (runtime > period && runtime != RUNTIME_INF)
6485 return -EINVAL;
6f505b16 6486
4653f803
PZ
6487 /*
6488 * Ensure we don't starve existing RT tasks.
6489 */
9a7e0b18
PZ
6490 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6491 return -EBUSY;
6f505b16 6492
9a7e0b18 6493 total = to_ratio(period, runtime);
6f505b16 6494
4653f803
PZ
6495 /*
6496 * Nobody can have more than the global setting allows.
6497 */
6498 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6499 return -EINVAL;
6f505b16 6500
4653f803
PZ
6501 /*
6502 * The sum of our children's runtime should not exceed our own.
6503 */
9a7e0b18
PZ
6504 list_for_each_entry_rcu(child, &tg->children, siblings) {
6505 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6506 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6507
9a7e0b18
PZ
6508 if (child == d->tg) {
6509 period = d->rt_period;
6510 runtime = d->rt_runtime;
6511 }
6f505b16 6512
9a7e0b18 6513 sum += to_ratio(period, runtime);
9f0c1e56 6514 }
6f505b16 6515
9a7e0b18
PZ
6516 if (sum > total)
6517 return -EINVAL;
6518
6519 return 0;
6f505b16
PZ
6520}
6521
9a7e0b18 6522static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6523{
8277434e
PT
6524 int ret;
6525
9a7e0b18
PZ
6526 struct rt_schedulable_data data = {
6527 .tg = tg,
6528 .rt_period = period,
6529 .rt_runtime = runtime,
6530 };
6531
8277434e
PT
6532 rcu_read_lock();
6533 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6534 rcu_read_unlock();
6535
6536 return ret;
521f1a24
DG
6537}
6538
ab84d31e 6539static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6540 u64 rt_period, u64 rt_runtime)
6f505b16 6541{
ac086bc2 6542 int i, err = 0;
9f0c1e56 6543
2636ed5f
PZ
6544 /*
6545 * Disallowing the root group RT runtime is BAD, it would disallow the
6546 * kernel creating (and or operating) RT threads.
6547 */
6548 if (tg == &root_task_group && rt_runtime == 0)
6549 return -EINVAL;
6550
6551 /* No period doesn't make any sense. */
6552 if (rt_period == 0)
6553 return -EINVAL;
6554
9f0c1e56 6555 mutex_lock(&rt_constraints_mutex);
521f1a24 6556 read_lock(&tasklist_lock);
9a7e0b18
PZ
6557 err = __rt_schedulable(tg, rt_period, rt_runtime);
6558 if (err)
9f0c1e56 6559 goto unlock;
ac086bc2 6560
0986b11b 6561 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6562 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6563 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6564
6565 for_each_possible_cpu(i) {
6566 struct rt_rq *rt_rq = tg->rt_rq[i];
6567
0986b11b 6568 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6569 rt_rq->rt_runtime = rt_runtime;
0986b11b 6570 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6571 }
0986b11b 6572 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6573unlock:
521f1a24 6574 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6575 mutex_unlock(&rt_constraints_mutex);
6576
6577 return err;
6f505b16
PZ
6578}
6579
25cc7da7 6580static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6581{
6582 u64 rt_runtime, rt_period;
6583
6584 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6585 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6586 if (rt_runtime_us < 0)
6587 rt_runtime = RUNTIME_INF;
6588
ab84d31e 6589 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6590}
6591
25cc7da7 6592static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6593{
6594 u64 rt_runtime_us;
6595
d0b27fa7 6596 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6597 return -1;
6598
d0b27fa7 6599 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6600 do_div(rt_runtime_us, NSEC_PER_USEC);
6601 return rt_runtime_us;
6602}
d0b27fa7 6603
ce2f5fe4 6604static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6605{
6606 u64 rt_runtime, rt_period;
6607
ce2f5fe4 6608 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6609 rt_runtime = tg->rt_bandwidth.rt_runtime;
6610
ab84d31e 6611 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6612}
6613
25cc7da7 6614static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6615{
6616 u64 rt_period_us;
6617
6618 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6619 do_div(rt_period_us, NSEC_PER_USEC);
6620 return rt_period_us;
6621}
332ac17e 6622#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6623
332ac17e 6624#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6625static int sched_rt_global_constraints(void)
6626{
6627 int ret = 0;
6628
6629 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6630 read_lock(&tasklist_lock);
4653f803 6631 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6632 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6633 mutex_unlock(&rt_constraints_mutex);
6634
6635 return ret;
6636}
54e99124 6637
25cc7da7 6638static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6639{
6640 /* Don't accept realtime tasks when there is no way for them to run */
6641 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6642 return 0;
6643
6644 return 1;
6645}
6646
6d6bc0ad 6647#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6648static int sched_rt_global_constraints(void)
6649{
ac086bc2 6650 unsigned long flags;
8c5e9554 6651 int i;
ec5d4989 6652
0986b11b 6653 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6654 for_each_possible_cpu(i) {
6655 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6656
0986b11b 6657 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6658 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6659 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6660 }
0986b11b 6661 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6662
8c5e9554 6663 return 0;
d0b27fa7 6664}
6d6bc0ad 6665#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6666
a1963b81 6667static int sched_dl_global_validate(void)
332ac17e 6668{
1724813d
PZ
6669 u64 runtime = global_rt_runtime();
6670 u64 period = global_rt_period();
332ac17e 6671 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6672 struct dl_bw *dl_b;
1724813d 6673 int cpu, ret = 0;
49516342 6674 unsigned long flags;
332ac17e
DF
6675
6676 /*
6677 * Here we want to check the bandwidth not being set to some
6678 * value smaller than the currently allocated bandwidth in
6679 * any of the root_domains.
6680 *
6681 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6682 * cycling on root_domains... Discussion on different/better
6683 * solutions is welcome!
6684 */
1724813d 6685 for_each_possible_cpu(cpu) {
f10e00f4
KT
6686 rcu_read_lock_sched();
6687 dl_b = dl_bw_of(cpu);
332ac17e 6688
49516342 6689 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6690 if (new_bw < dl_b->total_bw)
6691 ret = -EBUSY;
49516342 6692 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6693
f10e00f4
KT
6694 rcu_read_unlock_sched();
6695
1724813d
PZ
6696 if (ret)
6697 break;
332ac17e
DF
6698 }
6699
1724813d 6700 return ret;
332ac17e
DF
6701}
6702
1724813d 6703static void sched_dl_do_global(void)
ce0dbbbb 6704{
1724813d 6705 u64 new_bw = -1;
f10e00f4 6706 struct dl_bw *dl_b;
1724813d 6707 int cpu;
49516342 6708 unsigned long flags;
ce0dbbbb 6709
1724813d
PZ
6710 def_dl_bandwidth.dl_period = global_rt_period();
6711 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6712
6713 if (global_rt_runtime() != RUNTIME_INF)
6714 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6715
6716 /*
6717 * FIXME: As above...
6718 */
6719 for_each_possible_cpu(cpu) {
f10e00f4
KT
6720 rcu_read_lock_sched();
6721 dl_b = dl_bw_of(cpu);
1724813d 6722
49516342 6723 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6724 dl_b->bw = new_bw;
49516342 6725 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6726
6727 rcu_read_unlock_sched();
ce0dbbbb 6728 }
1724813d
PZ
6729}
6730
6731static int sched_rt_global_validate(void)
6732{
6733 if (sysctl_sched_rt_period <= 0)
6734 return -EINVAL;
6735
e9e7cb38
JL
6736 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6737 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6738 return -EINVAL;
6739
6740 return 0;
6741}
6742
6743static void sched_rt_do_global(void)
6744{
6745 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6746 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6747}
6748
d0b27fa7 6749int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6750 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6751 loff_t *ppos)
6752{
d0b27fa7
PZ
6753 int old_period, old_runtime;
6754 static DEFINE_MUTEX(mutex);
1724813d 6755 int ret;
d0b27fa7
PZ
6756
6757 mutex_lock(&mutex);
6758 old_period = sysctl_sched_rt_period;
6759 old_runtime = sysctl_sched_rt_runtime;
6760
8d65af78 6761 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6762
6763 if (!ret && write) {
1724813d
PZ
6764 ret = sched_rt_global_validate();
6765 if (ret)
6766 goto undo;
6767
a1963b81 6768 ret = sched_dl_global_validate();
1724813d
PZ
6769 if (ret)
6770 goto undo;
6771
a1963b81 6772 ret = sched_rt_global_constraints();
1724813d
PZ
6773 if (ret)
6774 goto undo;
6775
6776 sched_rt_do_global();
6777 sched_dl_do_global();
6778 }
6779 if (0) {
6780undo:
6781 sysctl_sched_rt_period = old_period;
6782 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6783 }
6784 mutex_unlock(&mutex);
6785
6786 return ret;
6787}
68318b8e 6788
1724813d 6789int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6790 void __user *buffer, size_t *lenp,
6791 loff_t *ppos)
6792{
6793 int ret;
332ac17e 6794 static DEFINE_MUTEX(mutex);
332ac17e
DF
6795
6796 mutex_lock(&mutex);
332ac17e 6797 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6798 /*
6799 * Make sure that internally we keep jiffies.
6800 * Also, writing zero resets the timeslice to default:
6801 */
332ac17e 6802 if (!ret && write) {
975e155e
SZ
6803 sched_rr_timeslice =
6804 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6805 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6806 }
6807 mutex_unlock(&mutex);
332ac17e
DF
6808 return ret;
6809}
6810
052f1dc7 6811#ifdef CONFIG_CGROUP_SCHED
68318b8e 6812
a7c6d554 6813static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6814{
a7c6d554 6815 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6816}
6817
eb95419b
TH
6818static struct cgroup_subsys_state *
6819cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6820{
eb95419b
TH
6821 struct task_group *parent = css_tg(parent_css);
6822 struct task_group *tg;
68318b8e 6823
eb95419b 6824 if (!parent) {
68318b8e 6825 /* This is early initialization for the top cgroup */
07e06b01 6826 return &root_task_group.css;
68318b8e
SV
6827 }
6828
ec7dc8ac 6829 tg = sched_create_group(parent);
68318b8e
SV
6830 if (IS_ERR(tg))
6831 return ERR_PTR(-ENOMEM);
6832
68318b8e
SV
6833 return &tg->css;
6834}
6835
96b77745
KK
6836/* Expose task group only after completing cgroup initialization */
6837static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6838{
6839 struct task_group *tg = css_tg(css);
6840 struct task_group *parent = css_tg(css->parent);
6841
6842 if (parent)
6843 sched_online_group(tg, parent);
6844 return 0;
6845}
6846
2f5177f0 6847static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6848{
eb95419b 6849 struct task_group *tg = css_tg(css);
ace783b9 6850
2f5177f0 6851 sched_offline_group(tg);
ace783b9
LZ
6852}
6853
eb95419b 6854static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6855{
eb95419b 6856 struct task_group *tg = css_tg(css);
68318b8e 6857
2f5177f0
PZ
6858 /*
6859 * Relies on the RCU grace period between css_released() and this.
6860 */
6861 sched_free_group(tg);
ace783b9
LZ
6862}
6863
ea86cb4b
VG
6864/*
6865 * This is called before wake_up_new_task(), therefore we really only
6866 * have to set its group bits, all the other stuff does not apply.
6867 */
b53202e6 6868static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6869{
ea86cb4b
VG
6870 struct rq_flags rf;
6871 struct rq *rq;
6872
6873 rq = task_rq_lock(task, &rf);
6874
80f5c1b8 6875 update_rq_clock(rq);
ea86cb4b
VG
6876 sched_change_group(task, TASK_SET_GROUP);
6877
6878 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6879}
6880
1f7dd3e5 6881static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6882{
bb9d97b6 6883 struct task_struct *task;
1f7dd3e5 6884 struct cgroup_subsys_state *css;
7dc603c9 6885 int ret = 0;
bb9d97b6 6886
1f7dd3e5 6887 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6888#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6889 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6890 return -EINVAL;
b68aa230 6891#else
bb9d97b6
TH
6892 /* We don't support RT-tasks being in separate groups */
6893 if (task->sched_class != &fair_sched_class)
6894 return -EINVAL;
b68aa230 6895#endif
7dc603c9
PZ
6896 /*
6897 * Serialize against wake_up_new_task() such that if its
6898 * running, we're sure to observe its full state.
6899 */
6900 raw_spin_lock_irq(&task->pi_lock);
6901 /*
6902 * Avoid calling sched_move_task() before wake_up_new_task()
6903 * has happened. This would lead to problems with PELT, due to
6904 * move wanting to detach+attach while we're not attached yet.
6905 */
6906 if (task->state == TASK_NEW)
6907 ret = -EINVAL;
6908 raw_spin_unlock_irq(&task->pi_lock);
6909
6910 if (ret)
6911 break;
bb9d97b6 6912 }
7dc603c9 6913 return ret;
be367d09 6914}
68318b8e 6915
1f7dd3e5 6916static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6917{
bb9d97b6 6918 struct task_struct *task;
1f7dd3e5 6919 struct cgroup_subsys_state *css;
bb9d97b6 6920
1f7dd3e5 6921 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6922 sched_move_task(task);
68318b8e
SV
6923}
6924
052f1dc7 6925#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6926static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6927 struct cftype *cftype, u64 shareval)
68318b8e 6928{
182446d0 6929 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6930}
6931
182446d0
TH
6932static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6933 struct cftype *cft)
68318b8e 6934{
182446d0 6935 struct task_group *tg = css_tg(css);
68318b8e 6936
c8b28116 6937 return (u64) scale_load_down(tg->shares);
68318b8e 6938}
ab84d31e
PT
6939
6940#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6941static DEFINE_MUTEX(cfs_constraints_mutex);
6942
ab84d31e
PT
6943const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6944const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6945
a790de99
PT
6946static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6947
ab84d31e
PT
6948static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6949{
56f570e5 6950 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6951 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6952
6953 if (tg == &root_task_group)
6954 return -EINVAL;
6955
6956 /*
6957 * Ensure we have at some amount of bandwidth every period. This is
6958 * to prevent reaching a state of large arrears when throttled via
6959 * entity_tick() resulting in prolonged exit starvation.
6960 */
6961 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6962 return -EINVAL;
6963
6964 /*
6965 * Likewise, bound things on the otherside by preventing insane quota
6966 * periods. This also allows us to normalize in computing quota
6967 * feasibility.
6968 */
6969 if (period > max_cfs_quota_period)
6970 return -EINVAL;
6971
0e59bdae
KT
6972 /*
6973 * Prevent race between setting of cfs_rq->runtime_enabled and
6974 * unthrottle_offline_cfs_rqs().
6975 */
6976 get_online_cpus();
a790de99
PT
6977 mutex_lock(&cfs_constraints_mutex);
6978 ret = __cfs_schedulable(tg, period, quota);
6979 if (ret)
6980 goto out_unlock;
6981
58088ad0 6982 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6983 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6984 /*
6985 * If we need to toggle cfs_bandwidth_used, off->on must occur
6986 * before making related changes, and on->off must occur afterwards
6987 */
6988 if (runtime_enabled && !runtime_was_enabled)
6989 cfs_bandwidth_usage_inc();
ab84d31e
PT
6990 raw_spin_lock_irq(&cfs_b->lock);
6991 cfs_b->period = ns_to_ktime(period);
6992 cfs_b->quota = quota;
58088ad0 6993
a9cf55b2 6994 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6995
6996 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6997 if (runtime_enabled)
6998 start_cfs_bandwidth(cfs_b);
d1ccc66d 6999
ab84d31e
PT
7000 raw_spin_unlock_irq(&cfs_b->lock);
7001
0e59bdae 7002 for_each_online_cpu(i) {
ab84d31e 7003 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7004 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7005
7006 raw_spin_lock_irq(&rq->lock);
58088ad0 7007 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7008 cfs_rq->runtime_remaining = 0;
671fd9da 7009
029632fb 7010 if (cfs_rq->throttled)
671fd9da 7011 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7012 raw_spin_unlock_irq(&rq->lock);
7013 }
1ee14e6c
BS
7014 if (runtime_was_enabled && !runtime_enabled)
7015 cfs_bandwidth_usage_dec();
a790de99
PT
7016out_unlock:
7017 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7018 put_online_cpus();
ab84d31e 7019
a790de99 7020 return ret;
ab84d31e
PT
7021}
7022
7023int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7024{
7025 u64 quota, period;
7026
029632fb 7027 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7028 if (cfs_quota_us < 0)
7029 quota = RUNTIME_INF;
7030 else
7031 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7032
7033 return tg_set_cfs_bandwidth(tg, period, quota);
7034}
7035
7036long tg_get_cfs_quota(struct task_group *tg)
7037{
7038 u64 quota_us;
7039
029632fb 7040 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7041 return -1;
7042
029632fb 7043 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7044 do_div(quota_us, NSEC_PER_USEC);
7045
7046 return quota_us;
7047}
7048
7049int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7050{
7051 u64 quota, period;
7052
7053 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7054 quota = tg->cfs_bandwidth.quota;
ab84d31e 7055
ab84d31e
PT
7056 return tg_set_cfs_bandwidth(tg, period, quota);
7057}
7058
7059long tg_get_cfs_period(struct task_group *tg)
7060{
7061 u64 cfs_period_us;
7062
029632fb 7063 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7064 do_div(cfs_period_us, NSEC_PER_USEC);
7065
7066 return cfs_period_us;
7067}
7068
182446d0
TH
7069static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7070 struct cftype *cft)
ab84d31e 7071{
182446d0 7072 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7073}
7074
182446d0
TH
7075static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7076 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7077{
182446d0 7078 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7079}
7080
182446d0
TH
7081static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7082 struct cftype *cft)
ab84d31e 7083{
182446d0 7084 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7085}
7086
182446d0
TH
7087static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7088 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7089{
182446d0 7090 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7091}
7092
a790de99
PT
7093struct cfs_schedulable_data {
7094 struct task_group *tg;
7095 u64 period, quota;
7096};
7097
7098/*
7099 * normalize group quota/period to be quota/max_period
7100 * note: units are usecs
7101 */
7102static u64 normalize_cfs_quota(struct task_group *tg,
7103 struct cfs_schedulable_data *d)
7104{
7105 u64 quota, period;
7106
7107 if (tg == d->tg) {
7108 period = d->period;
7109 quota = d->quota;
7110 } else {
7111 period = tg_get_cfs_period(tg);
7112 quota = tg_get_cfs_quota(tg);
7113 }
7114
7115 /* note: these should typically be equivalent */
7116 if (quota == RUNTIME_INF || quota == -1)
7117 return RUNTIME_INF;
7118
7119 return to_ratio(period, quota);
7120}
7121
7122static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7123{
7124 struct cfs_schedulable_data *d = data;
029632fb 7125 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7126 s64 quota = 0, parent_quota = -1;
7127
7128 if (!tg->parent) {
7129 quota = RUNTIME_INF;
7130 } else {
029632fb 7131 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7132
7133 quota = normalize_cfs_quota(tg, d);
9c58c79a 7134 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7135
7136 /*
d1ccc66d
IM
7137 * Ensure max(child_quota) <= parent_quota, inherit when no
7138 * limit is set:
a790de99
PT
7139 */
7140 if (quota == RUNTIME_INF)
7141 quota = parent_quota;
7142 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7143 return -EINVAL;
7144 }
9c58c79a 7145 cfs_b->hierarchical_quota = quota;
a790de99
PT
7146
7147 return 0;
7148}
7149
7150static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7151{
8277434e 7152 int ret;
a790de99
PT
7153 struct cfs_schedulable_data data = {
7154 .tg = tg,
7155 .period = period,
7156 .quota = quota,
7157 };
7158
7159 if (quota != RUNTIME_INF) {
7160 do_div(data.period, NSEC_PER_USEC);
7161 do_div(data.quota, NSEC_PER_USEC);
7162 }
7163
8277434e
PT
7164 rcu_read_lock();
7165 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7166 rcu_read_unlock();
7167
7168 return ret;
a790de99 7169}
e8da1b18 7170
2da8ca82 7171static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7172{
2da8ca82 7173 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7174 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7175
44ffc75b
TH
7176 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7177 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7178 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7179
7180 return 0;
7181}
ab84d31e 7182#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7183#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7184
052f1dc7 7185#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7186static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7187 struct cftype *cft, s64 val)
6f505b16 7188{
182446d0 7189 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7190}
7191
182446d0
TH
7192static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7193 struct cftype *cft)
6f505b16 7194{
182446d0 7195 return sched_group_rt_runtime(css_tg(css));
6f505b16 7196}
d0b27fa7 7197
182446d0
TH
7198static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7199 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7200{
182446d0 7201 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7202}
7203
182446d0
TH
7204static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7205 struct cftype *cft)
d0b27fa7 7206{
182446d0 7207 return sched_group_rt_period(css_tg(css));
d0b27fa7 7208}
6d6bc0ad 7209#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7210
fe5c7cc2 7211static struct cftype cpu_files[] = {
052f1dc7 7212#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7213 {
7214 .name = "shares",
f4c753b7
PM
7215 .read_u64 = cpu_shares_read_u64,
7216 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7217 },
052f1dc7 7218#endif
ab84d31e
PT
7219#ifdef CONFIG_CFS_BANDWIDTH
7220 {
7221 .name = "cfs_quota_us",
7222 .read_s64 = cpu_cfs_quota_read_s64,
7223 .write_s64 = cpu_cfs_quota_write_s64,
7224 },
7225 {
7226 .name = "cfs_period_us",
7227 .read_u64 = cpu_cfs_period_read_u64,
7228 .write_u64 = cpu_cfs_period_write_u64,
7229 },
e8da1b18
NR
7230 {
7231 .name = "stat",
2da8ca82 7232 .seq_show = cpu_stats_show,
e8da1b18 7233 },
ab84d31e 7234#endif
052f1dc7 7235#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7236 {
9f0c1e56 7237 .name = "rt_runtime_us",
06ecb27c
PM
7238 .read_s64 = cpu_rt_runtime_read,
7239 .write_s64 = cpu_rt_runtime_write,
6f505b16 7240 },
d0b27fa7
PZ
7241 {
7242 .name = "rt_period_us",
f4c753b7
PM
7243 .read_u64 = cpu_rt_period_read_uint,
7244 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7245 },
052f1dc7 7246#endif
d1ccc66d 7247 { } /* Terminate */
68318b8e
SV
7248};
7249
073219e9 7250struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7251 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7252 .css_online = cpu_cgroup_css_online,
2f5177f0 7253 .css_released = cpu_cgroup_css_released,
92fb9748 7254 .css_free = cpu_cgroup_css_free,
eeb61e53 7255 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7256 .can_attach = cpu_cgroup_can_attach,
7257 .attach = cpu_cgroup_attach,
5577964e 7258 .legacy_cftypes = cpu_files,
b38e42e9 7259 .early_init = true,
68318b8e
SV
7260};
7261
052f1dc7 7262#endif /* CONFIG_CGROUP_SCHED */
d842de87 7263
b637a328
PM
7264void dump_cpu_task(int cpu)
7265{
7266 pr_info("Task dump for CPU %d:\n", cpu);
7267 sched_show_task(cpu_curr(cpu));
7268}
ed82b8a1
AK
7269
7270/*
7271 * Nice levels are multiplicative, with a gentle 10% change for every
7272 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7273 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7274 * that remained on nice 0.
7275 *
7276 * The "10% effect" is relative and cumulative: from _any_ nice level,
7277 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7278 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7279 * If a task goes up by ~10% and another task goes down by ~10% then
7280 * the relative distance between them is ~25%.)
7281 */
7282const int sched_prio_to_weight[40] = {
7283 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7284 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7285 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7286 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7287 /* 0 */ 1024, 820, 655, 526, 423,
7288 /* 5 */ 335, 272, 215, 172, 137,
7289 /* 10 */ 110, 87, 70, 56, 45,
7290 /* 15 */ 36, 29, 23, 18, 15,
7291};
7292
7293/*
7294 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7295 *
7296 * In cases where the weight does not change often, we can use the
7297 * precalculated inverse to speed up arithmetics by turning divisions
7298 * into multiplications:
7299 */
7300const u32 sched_prio_to_wmult[40] = {
7301 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7302 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7303 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7304 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7305 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7306 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7307 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7308 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7309};