Merge tag 'trace-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most elegible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
90b5363a
PZI
323static inline void
324rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
325{
326 csd->flags = 0;
327 csd->func = func;
328 csd->info = rq;
329}
535b9552 330
8f4d37ec
PZ
331#ifdef CONFIG_SCHED_HRTICK
332/*
333 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 334 */
8f4d37ec 335
8f4d37ec
PZ
336static void hrtick_clear(struct rq *rq)
337{
338 if (hrtimer_active(&rq->hrtick_timer))
339 hrtimer_cancel(&rq->hrtick_timer);
340}
341
8f4d37ec
PZ
342/*
343 * High-resolution timer tick.
344 * Runs from hardirq context with interrupts disabled.
345 */
346static enum hrtimer_restart hrtick(struct hrtimer *timer)
347{
348 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 349 struct rq_flags rf;
8f4d37ec
PZ
350
351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
352
8a8c69c3 353 rq_lock(rq, &rf);
3e51f33f 354 update_rq_clock(rq);
8f4d37ec 355 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 356 rq_unlock(rq, &rf);
8f4d37ec
PZ
357
358 return HRTIMER_NORESTART;
359}
360
95e904c7 361#ifdef CONFIG_SMP
971ee28c 362
4961b6e1 363static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
364{
365 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 366
d5096aa6 367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
368}
369
31656519
PZ
370/*
371 * called from hardirq (IPI) context
372 */
373static void __hrtick_start(void *arg)
b328ca18 374{
31656519 375 struct rq *rq = arg;
8a8c69c3 376 struct rq_flags rf;
b328ca18 377
8a8c69c3 378 rq_lock(rq, &rf);
971ee28c 379 __hrtick_restart(rq);
8a8c69c3 380 rq_unlock(rq, &rf);
b328ca18
PZ
381}
382
31656519
PZ
383/*
384 * Called to set the hrtick timer state.
385 *
386 * called with rq->lock held and irqs disabled
387 */
029632fb 388void hrtick_start(struct rq *rq, u64 delay)
b328ca18 389{
31656519 390 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 391 ktime_t time;
392 s64 delta;
393
394 /*
395 * Don't schedule slices shorter than 10000ns, that just
396 * doesn't make sense and can cause timer DoS.
397 */
398 delta = max_t(s64, delay, 10000LL);
399 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 400
cc584b21 401 hrtimer_set_expires(timer, time);
31656519 402
fd3eafda 403 if (rq == this_rq())
971ee28c 404 __hrtick_restart(rq);
fd3eafda 405 else
c46fff2a 406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
407}
408
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 423 HRTIMER_MODE_REL_PINNED_HARD);
31656519 424}
90b5363a 425
31656519 426#endif /* CONFIG_SMP */
8f4d37ec 427
77a021be 428static void hrtick_rq_init(struct rq *rq)
8f4d37ec 429{
31656519 430#ifdef CONFIG_SMP
90b5363a 431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
31656519 432#endif
d5096aa6 433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 434 rq->hrtick_timer.function = hrtick;
8f4d37ec 435}
006c75f1 436#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
437static inline void hrtick_clear(struct rq *rq)
438{
439}
440
77a021be 441static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
442{
443}
006c75f1 444#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 445
5529578a
FW
446/*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449#define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462})
463
e3baac47 464#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
465/*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
470static bool set_nr_and_not_polling(struct task_struct *p)
471{
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474}
e3baac47
PZ
475
476/*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
482static bool set_nr_if_polling(struct task_struct *p)
483{
484 struct thread_info *ti = task_thread_info(p);
316c1608 485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498}
499
fd99f91a
PZ
500#else
501static bool set_nr_and_not_polling(struct task_struct *p)
502{
503 set_tsk_need_resched(p);
504 return true;
505}
e3baac47
PZ
506
507#ifdef CONFIG_SMP
508static bool set_nr_if_polling(struct task_struct *p)
509{
510 return false;
511}
512#endif
fd99f91a
PZ
513#endif
514
07879c6a 515static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
516{
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * its already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
4c4e3731
PZ
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 526 */
4c4e3731 527 smp_mb__before_atomic();
87ff19cb 528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 529 return false;
76751049
PZ
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
07879c6a
DB
536 return true;
537}
538
539/**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
551void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552{
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555}
556
557/**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
574void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575{
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
76751049
PZ
578}
579
580void wake_up_q(struct wake_q_head *head)
581{
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
d1ccc66d 589 /* Task can safely be re-inserted now: */
76751049
PZ
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
7696f991
AP
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600}
601
c24d20db 602/*
8875125e 603 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
8875125e 609void resched_curr(struct rq *rq)
c24d20db 610{
8875125e 611 struct task_struct *curr = rq->curr;
c24d20db
IM
612 int cpu;
613
8875125e 614 lockdep_assert_held(&rq->lock);
c24d20db 615
8875125e 616 if (test_tsk_need_resched(curr))
c24d20db
IM
617 return;
618
8875125e 619 cpu = cpu_of(rq);
fd99f91a 620
f27dde8d 621 if (cpu == smp_processor_id()) {
8875125e 622 set_tsk_need_resched(curr);
f27dde8d 623 set_preempt_need_resched();
c24d20db 624 return;
f27dde8d 625 }
c24d20db 626
8875125e 627 if (set_nr_and_not_polling(curr))
c24d20db 628 smp_send_reschedule(cpu);
dfc68f29
AL
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
631}
632
029632fb 633void resched_cpu(int cpu)
c24d20db
IM
634{
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
7c2102e5 638 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
05fa785c 641 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 642}
06d8308c 643
b021fe3e 644#ifdef CONFIG_SMP
3451d024 645#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 646/*
d1ccc66d
IM
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
649 *
650 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 653 */
bc7a34b8 654int get_nohz_timer_target(void)
83cd4fe2 655{
e938b9c9 656 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
657 struct sched_domain *sd;
658
e938b9c9
WL
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
6201b4d6 664
057f3fad 665 rcu_read_lock();
83cd4fe2 666 for_each_domain(cpu, sd) {
e938b9c9
WL
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
669 if (cpu == i)
670 continue;
671
e938b9c9 672 if (!idle_cpu(i)) {
057f3fad
PZ
673 cpu = i;
674 goto unlock;
675 }
676 }
83cd4fe2 677 }
9642d18e 678
e938b9c9
WL
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
057f3fad
PZ
682unlock:
683 rcu_read_unlock();
83cd4fe2
VP
684 return cpu;
685}
d1ccc66d 686
06d8308c
TG
687/*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
1c20091e 697static void wake_up_idle_cpu(int cpu)
06d8308c
TG
698{
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
67b9ca70 704 if (set_nr_and_not_polling(rq->idle))
06d8308c 705 smp_send_reschedule(cpu);
dfc68f29
AL
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
708}
709
c5bfece2 710static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 711{
53c5fa16
FW
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
379d9ecb
PM
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
c5bfece2 720 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
53c5fa16 723 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
724 return true;
725 }
726
727 return false;
728}
729
379d9ecb
PM
730/*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
1c20091e
FW
735void wake_up_nohz_cpu(int cpu)
736{
c5bfece2 737 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
738 wake_up_idle_cpu(cpu);
739}
740
19a1f5ec 741static void nohz_csd_func(void *info)
45bf76df 742{
19a1f5ec
PZ
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
873b4c65
VG
746
747 /*
19a1f5ec 748 * Release the rq::nohz_csd.
873b4c65 749 */
19a1f5ec
PZ
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 752
19a1f5ec
PZ
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
90b5363a
PZI
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
2069dd75
PZ
758}
759
3451d024 760#endif /* CONFIG_NO_HZ_COMMON */
d842de87 761
ce831b38 762#ifdef CONFIG_NO_HZ_FULL
76d92ac3 763bool sched_can_stop_tick(struct rq *rq)
ce831b38 764{
76d92ac3
FW
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
1e78cdbd 771 /*
2548d546
PZ
772 * If there are more than one RR tasks, we need the tick to effect the
773 * actual RR behaviour.
1e78cdbd 774 */
76d92ac3
FW
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
1e78cdbd
RR
780 }
781
2548d546
PZ
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
541b8264 796 return false;
ce831b38 797
541b8264 798 return true;
ce831b38
FW
799}
800#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 801#endif /* CONFIG_SMP */
18d95a28 802
a790de99
PT
803#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 805/*
8277434e
PT
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 810 */
029632fb 811int walk_tg_tree_from(struct task_group *from,
8277434e 812 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
813{
814 struct task_group *parent, *child;
eb755805 815 int ret;
c09595f6 816
8277434e
PT
817 parent = from;
818
c09595f6 819down:
eb755805
PZ
820 ret = (*down)(parent, data);
821 if (ret)
8277434e 822 goto out;
c09595f6
PZ
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827up:
828 continue;
829 }
eb755805 830 ret = (*up)(parent, data);
8277434e
PT
831 if (ret || parent == from)
832 goto out;
c09595f6
PZ
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
8277434e 838out:
eb755805 839 return ret;
c09595f6
PZ
840}
841
029632fb 842int tg_nop(struct task_group *tg, void *data)
eb755805 843{
e2b245f8 844 return 0;
eb755805 845}
18d95a28
PZ
846#endif
847
9059393e 848static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 849{
f05998d4
NR
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
dd41f596
IM
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
1da1843f 856 if (task_has_idle_policy(p)) {
c8b28116 857 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 858 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
859 return;
860 }
71f8bd46 861
9059393e
VG
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
71f8bd46
IM
872}
873
69842cba 874#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
875/*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885static DEFINE_MUTEX(uclamp_mutex);
886
e8f14172
PB
887/* Max allowed minimum utilization */
888unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890/* Max allowed maximum utilization */
891unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
13685c4a
QY
893/*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
e8f14172
PB
910/* All clamps are required to be less or equal than these values */
911static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 912
46609ce2
QY
913/*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
69842cba
PB
933/* Integer rounded range for each bucket */
934#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936#define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
939static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940{
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942}
943
7763baac 944static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
945{
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949}
950
a509a7cd
PB
951static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
69842cba
PB
953{
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 956 uc_se->user_defined = user_defined;
69842cba
PB
957}
958
e496187d 959static inline unsigned int
0413d7f3 960uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
961 unsigned int clamp_value)
962{
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974}
975
0413d7f3 976static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
977 unsigned int clamp_value)
978{
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984}
985
69842cba 986static inline
7763baac 987unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 988 unsigned int clamp_value)
69842cba
PB
989{
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
e496187d 1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1005}
1006
13685c4a
QY
1007static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008{
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022}
1023
1024static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025{
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036}
1037
1038static void uclamp_sync_util_min_rt_default(void)
1039{
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063}
1064
3eac870a 1065static inline struct uclamp_se
0413d7f3 1066uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1067{
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069#ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084#endif
1085
1086 return uc_req;
1087}
1088
e8f14172
PB
1089/*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
e8f14172
PB
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097static inline struct uclamp_se
0413d7f3 1098uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1099{
3eac870a 1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108}
1109
686516b5 1110unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1111{
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
686516b5 1116 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
686516b5 1120 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1121}
1122
69842cba
PB
1123/*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
60daf9c1
PB
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1132 */
1133static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1134 enum uclamp_id clamp_id)
69842cba
PB
1135{
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
e8f14172
PB
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
69842cba
PB
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
e8f14172 1147 uc_se->active = true;
69842cba 1148
e496187d
PB
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
60daf9c1
PB
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
69842cba 1158 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1159 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1160}
1161
1162/*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1172 enum uclamp_id clamp_id)
69842cba
PB
1173{
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
e496187d 1177 unsigned int bkt_clamp;
69842cba
PB
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
46609ce2
QY
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqeueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bukcet->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
69842cba 1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1209
69842cba
PB
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
46609ce2 1213
e8f14172 1214 uc_se->active = false;
69842cba 1215
60daf9c1
PB
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
69842cba
PB
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
69842cba
PB
1235}
1236
1237static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238{
0413d7f3 1239 enum uclamp_id clamp_id;
69842cba 1240
46609ce2
QY
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
69842cba
PB
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1259}
1260
1261static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262{
0413d7f3 1263 enum uclamp_id clamp_id;
69842cba 1264
46609ce2
QY
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
69842cba
PB
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279}
1280
babbe170 1281static inline void
0413d7f3 1282uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1283{
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
6e1ff077 1303 if (p->uclamp[clamp_id].active) {
babbe170
PB
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309}
1310
e3b8b6a0 1311#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1312static inline void
1313uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315{
0413d7f3 1316 enum uclamp_id clamp_id;
babbe170
PB
1317 struct css_task_iter it;
1318 struct task_struct *p;
babbe170
PB
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328}
1329
7274a5c1
PB
1330static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331static void uclamp_update_root_tg(void)
1332{
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343}
1344#else
1345static void uclamp_update_root_tg(void) { }
1346#endif
1347
e8f14172 1348int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1349 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1350{
7274a5c1 1351 bool update_root_tg = false;
13685c4a 1352 int old_min, old_max, old_min_rt;
e8f14172
PB
1353 int result;
1354
2480c093 1355 mutex_lock(&uclamp_mutex);
e8f14172
PB
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
e8f14172
PB
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1376 sysctl_sched_uclamp_util_min, false);
7274a5c1 1377 update_root_tg = true;
e8f14172
PB
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1381 sysctl_sched_uclamp_util_max, false);
7274a5c1 1382 update_root_tg = true;
e8f14172
PB
1383 }
1384
46609ce2
QY
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
7274a5c1 1387 uclamp_update_root_tg();
46609ce2 1388 }
7274a5c1 1389
13685c4a
QY
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
7274a5c1 1394
e8f14172 1395 /*
7274a5c1
PB
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
e8f14172 1399 */
7274a5c1 1400
e8f14172
PB
1401 goto done;
1402
1403undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1407done:
2480c093 1408 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1409
1410 return result;
1411}
1412
a509a7cd
PB
1413static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415{
1416 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1417 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1420 lower_bound = attr->sched_util_min;
1421 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1422 upper_bound = attr->sched_util_max;
1423
1424 if (lower_bound > upper_bound)
1425 return -EINVAL;
1426 if (upper_bound > SCHED_CAPACITY_SCALE)
1427 return -EINVAL;
1428
e65855a5
QY
1429 /*
1430 * We have valid uclamp attributes; make sure uclamp is enabled.
1431 *
1432 * We need to do that here, because enabling static branches is a
1433 * blocking operation which obviously cannot be done while holding
1434 * scheduler locks.
1435 */
1436 static_branch_enable(&sched_uclamp_used);
1437
a509a7cd
PB
1438 return 0;
1439}
1440
1441static void __setscheduler_uclamp(struct task_struct *p,
1442 const struct sched_attr *attr)
1443{
0413d7f3 1444 enum uclamp_id clamp_id;
1a00d999
PB
1445
1446 /*
1447 * On scheduling class change, reset to default clamps for tasks
1448 * without a task-specific value.
1449 */
1450 for_each_clamp_id(clamp_id) {
1451 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1a00d999
PB
1452
1453 /* Keep using defined clamps across class changes */
1454 if (uc_se->user_defined)
1455 continue;
1456
13685c4a
QY
1457 /*
1458 * RT by default have a 100% boost value that could be modified
1459 * at runtime.
1460 */
1a00d999 1461 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
13685c4a
QY
1462 __uclamp_update_util_min_rt_default(p);
1463 else
1464 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1a00d999 1465
1a00d999
PB
1466 }
1467
a509a7cd
PB
1468 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1469 return;
1470
1471 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1472 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1473 attr->sched_util_min, true);
1474 }
1475
1476 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1477 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1478 attr->sched_util_max, true);
1479 }
1480}
1481
e8f14172
PB
1482static void uclamp_fork(struct task_struct *p)
1483{
0413d7f3 1484 enum uclamp_id clamp_id;
e8f14172 1485
13685c4a
QY
1486 /*
1487 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1488 * as the task is still at its early fork stages.
1489 */
e8f14172
PB
1490 for_each_clamp_id(clamp_id)
1491 p->uclamp[clamp_id].active = false;
a87498ac
PB
1492
1493 if (likely(!p->sched_reset_on_fork))
1494 return;
1495
1496 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1497 uclamp_se_set(&p->uclamp_req[clamp_id],
1498 uclamp_none(clamp_id), false);
a87498ac 1499 }
e8f14172
PB
1500}
1501
13685c4a
QY
1502static void uclamp_post_fork(struct task_struct *p)
1503{
1504 uclamp_update_util_min_rt_default(p);
1505}
1506
d81ae8aa
QY
1507static void __init init_uclamp_rq(struct rq *rq)
1508{
1509 enum uclamp_id clamp_id;
1510 struct uclamp_rq *uc_rq = rq->uclamp;
1511
1512 for_each_clamp_id(clamp_id) {
1513 uc_rq[clamp_id] = (struct uclamp_rq) {
1514 .value = uclamp_none(clamp_id)
1515 };
1516 }
1517
1518 rq->uclamp_flags = 0;
1519}
1520
69842cba
PB
1521static void __init init_uclamp(void)
1522{
e8f14172 1523 struct uclamp_se uc_max = {};
0413d7f3 1524 enum uclamp_id clamp_id;
69842cba
PB
1525 int cpu;
1526
d81ae8aa
QY
1527 for_each_possible_cpu(cpu)
1528 init_uclamp_rq(cpu_rq(cpu));
69842cba 1529
69842cba 1530 for_each_clamp_id(clamp_id) {
e8f14172 1531 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1532 uclamp_none(clamp_id), false);
69842cba 1533 }
e8f14172
PB
1534
1535 /* System defaults allow max clamp values for both indexes */
a509a7cd 1536 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1537 for_each_clamp_id(clamp_id) {
e8f14172 1538 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1539#ifdef CONFIG_UCLAMP_TASK_GROUP
1540 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1541 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1542#endif
1543 }
69842cba
PB
1544}
1545
1546#else /* CONFIG_UCLAMP_TASK */
1547static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1548static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1549static inline int uclamp_validate(struct task_struct *p,
1550 const struct sched_attr *attr)
1551{
1552 return -EOPNOTSUPP;
1553}
1554static void __setscheduler_uclamp(struct task_struct *p,
1555 const struct sched_attr *attr) { }
e8f14172 1556static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1557static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1558static inline void init_uclamp(void) { }
1559#endif /* CONFIG_UCLAMP_TASK */
1560
1de64443 1561static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1562{
0a67d1ee
PZ
1563 if (!(flags & ENQUEUE_NOCLOCK))
1564 update_rq_clock(rq);
1565
eb414681 1566 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1567 sched_info_queued(rq, p);
eb414681
JW
1568 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1569 }
0a67d1ee 1570
69842cba 1571 uclamp_rq_inc(rq, p);
371fd7e7 1572 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1573}
1574
1de64443 1575static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1576{
0a67d1ee
PZ
1577 if (!(flags & DEQUEUE_NOCLOCK))
1578 update_rq_clock(rq);
1579
eb414681 1580 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1581 sched_info_dequeued(rq, p);
eb414681
JW
1582 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1583 }
0a67d1ee 1584
69842cba 1585 uclamp_rq_dec(rq, p);
371fd7e7 1586 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1587}
1588
029632fb 1589void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1590{
371fd7e7 1591 enqueue_task(rq, p, flags);
7dd77884
PZ
1592
1593 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1594}
1595
029632fb 1596void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1597{
7dd77884
PZ
1598 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1599
371fd7e7 1600 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1601}
1602
14531189 1603/*
dd41f596 1604 * __normal_prio - return the priority that is based on the static prio
14531189 1605 */
14531189
IM
1606static inline int __normal_prio(struct task_struct *p)
1607{
dd41f596 1608 return p->static_prio;
14531189
IM
1609}
1610
b29739f9
IM
1611/*
1612 * Calculate the expected normal priority: i.e. priority
1613 * without taking RT-inheritance into account. Might be
1614 * boosted by interactivity modifiers. Changes upon fork,
1615 * setprio syscalls, and whenever the interactivity
1616 * estimator recalculates.
1617 */
36c8b586 1618static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1619{
1620 int prio;
1621
aab03e05
DF
1622 if (task_has_dl_policy(p))
1623 prio = MAX_DL_PRIO-1;
1624 else if (task_has_rt_policy(p))
b29739f9
IM
1625 prio = MAX_RT_PRIO-1 - p->rt_priority;
1626 else
1627 prio = __normal_prio(p);
1628 return prio;
1629}
1630
1631/*
1632 * Calculate the current priority, i.e. the priority
1633 * taken into account by the scheduler. This value might
1634 * be boosted by RT tasks, or might be boosted by
1635 * interactivity modifiers. Will be RT if the task got
1636 * RT-boosted. If not then it returns p->normal_prio.
1637 */
36c8b586 1638static int effective_prio(struct task_struct *p)
b29739f9
IM
1639{
1640 p->normal_prio = normal_prio(p);
1641 /*
1642 * If we are RT tasks or we were boosted to RT priority,
1643 * keep the priority unchanged. Otherwise, update priority
1644 * to the normal priority:
1645 */
1646 if (!rt_prio(p->prio))
1647 return p->normal_prio;
1648 return p->prio;
1649}
1650
1da177e4
LT
1651/**
1652 * task_curr - is this task currently executing on a CPU?
1653 * @p: the task in question.
e69f6186
YB
1654 *
1655 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1656 */
36c8b586 1657inline int task_curr(const struct task_struct *p)
1da177e4
LT
1658{
1659 return cpu_curr(task_cpu(p)) == p;
1660}
1661
67dfa1b7 1662/*
4c9a4bc8
PZ
1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1664 * use the balance_callback list if you want balancing.
1665 *
1666 * this means any call to check_class_changed() must be followed by a call to
1667 * balance_callback().
67dfa1b7 1668 */
cb469845
SR
1669static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670 const struct sched_class *prev_class,
da7a735e 1671 int oldprio)
cb469845
SR
1672{
1673 if (prev_class != p->sched_class) {
1674 if (prev_class->switched_from)
da7a735e 1675 prev_class->switched_from(rq, p);
4c9a4bc8 1676
da7a735e 1677 p->sched_class->switched_to(rq, p);
2d3d891d 1678 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1679 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1680}
1681
029632fb 1682void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1683{
aa93cd53 1684 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1685 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1686 else if (p->sched_class > rq->curr->sched_class)
1687 resched_curr(rq);
1e5a7405
PZ
1688
1689 /*
1690 * A queue event has occurred, and we're going to schedule. In
1691 * this case, we can save a useless back to back clock update.
1692 */
da0c1e65 1693 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1694 rq_clock_skip_update(rq);
1e5a7405
PZ
1695}
1696
1da177e4 1697#ifdef CONFIG_SMP
175f0e25 1698
175f0e25 1699/*
bee98539 1700 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1701 * __set_cpus_allowed_ptr() and select_fallback_rq().
1702 */
1703static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1704{
3bd37062 1705 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1706 return false;
1707
1708 if (is_per_cpu_kthread(p))
1709 return cpu_online(cpu);
1710
1711 return cpu_active(cpu);
1712}
1713
5cc389bc
PZ
1714/*
1715 * This is how migration works:
1716 *
1717 * 1) we invoke migration_cpu_stop() on the target CPU using
1718 * stop_one_cpu().
1719 * 2) stopper starts to run (implicitly forcing the migrated thread
1720 * off the CPU)
1721 * 3) it checks whether the migrated task is still in the wrong runqueue.
1722 * 4) if it's in the wrong runqueue then the migration thread removes
1723 * it and puts it into the right queue.
1724 * 5) stopper completes and stop_one_cpu() returns and the migration
1725 * is done.
1726 */
1727
1728/*
1729 * move_queued_task - move a queued task to new rq.
1730 *
1731 * Returns (locked) new rq. Old rq's lock is released.
1732 */
8a8c69c3
PZ
1733static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1734 struct task_struct *p, int new_cpu)
5cc389bc 1735{
5cc389bc
PZ
1736 lockdep_assert_held(&rq->lock);
1737
58877d34 1738 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1739 set_task_cpu(p, new_cpu);
8a8c69c3 1740 rq_unlock(rq, rf);
5cc389bc
PZ
1741
1742 rq = cpu_rq(new_cpu);
1743
8a8c69c3 1744 rq_lock(rq, rf);
5cc389bc 1745 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1746 activate_task(rq, p, 0);
5cc389bc
PZ
1747 check_preempt_curr(rq, p, 0);
1748
1749 return rq;
1750}
1751
1752struct migration_arg {
1753 struct task_struct *task;
1754 int dest_cpu;
1755};
1756
1757/*
d1ccc66d 1758 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1759 * this because either it can't run here any more (set_cpus_allowed()
1760 * away from this CPU, or CPU going down), or because we're
1761 * attempting to rebalance this task on exec (sched_exec).
1762 *
1763 * So we race with normal scheduler movements, but that's OK, as long
1764 * as the task is no longer on this CPU.
5cc389bc 1765 */
8a8c69c3
PZ
1766static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1767 struct task_struct *p, int dest_cpu)
5cc389bc 1768{
5cc389bc 1769 /* Affinity changed (again). */
175f0e25 1770 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1771 return rq;
5cc389bc 1772
15ff991e 1773 update_rq_clock(rq);
8a8c69c3 1774 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1775
1776 return rq;
5cc389bc
PZ
1777}
1778
1779/*
1780 * migration_cpu_stop - this will be executed by a highprio stopper thread
1781 * and performs thread migration by bumping thread off CPU then
1782 * 'pushing' onto another runqueue.
1783 */
1784static int migration_cpu_stop(void *data)
1785{
1786 struct migration_arg *arg = data;
5e16bbc2
PZ
1787 struct task_struct *p = arg->task;
1788 struct rq *rq = this_rq();
8a8c69c3 1789 struct rq_flags rf;
5cc389bc
PZ
1790
1791 /*
d1ccc66d
IM
1792 * The original target CPU might have gone down and we might
1793 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1794 */
1795 local_irq_disable();
1796 /*
1797 * We need to explicitly wake pending tasks before running
3bd37062 1798 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1799 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1800 */
a1488664 1801 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1802
1803 raw_spin_lock(&p->pi_lock);
8a8c69c3 1804 rq_lock(rq, &rf);
5e16bbc2
PZ
1805 /*
1806 * If task_rq(p) != rq, it cannot be migrated here, because we're
1807 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1808 * we're holding p->pi_lock.
1809 */
bf89a304
CC
1810 if (task_rq(p) == rq) {
1811 if (task_on_rq_queued(p))
8a8c69c3 1812 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1813 else
1814 p->wake_cpu = arg->dest_cpu;
1815 }
8a8c69c3 1816 rq_unlock(rq, &rf);
5e16bbc2
PZ
1817 raw_spin_unlock(&p->pi_lock);
1818
5cc389bc
PZ
1819 local_irq_enable();
1820 return 0;
1821}
1822
c5b28038
PZ
1823/*
1824 * sched_class::set_cpus_allowed must do the below, but is not required to
1825 * actually call this function.
1826 */
1827void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1828{
3bd37062 1829 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1830 p->nr_cpus_allowed = cpumask_weight(new_mask);
1831}
1832
c5b28038
PZ
1833void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1834{
6c37067e
PZ
1835 struct rq *rq = task_rq(p);
1836 bool queued, running;
1837
c5b28038 1838 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1839
1840 queued = task_on_rq_queued(p);
1841 running = task_current(rq, p);
1842
1843 if (queued) {
1844 /*
1845 * Because __kthread_bind() calls this on blocked tasks without
1846 * holding rq->lock.
1847 */
1848 lockdep_assert_held(&rq->lock);
7a57f32a 1849 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1850 }
1851 if (running)
1852 put_prev_task(rq, p);
1853
c5b28038 1854 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1855
6c37067e 1856 if (queued)
7134b3e9 1857 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1858 if (running)
03b7fad1 1859 set_next_task(rq, p);
c5b28038
PZ
1860}
1861
5cc389bc
PZ
1862/*
1863 * Change a given task's CPU affinity. Migrate the thread to a
1864 * proper CPU and schedule it away if the CPU it's executing on
1865 * is removed from the allowed bitmask.
1866 *
1867 * NOTE: the caller must have a valid reference to the task, the
1868 * task must not exit() & deallocate itself prematurely. The
1869 * call is not atomic; no spinlocks may be held.
1870 */
25834c73
PZ
1871static int __set_cpus_allowed_ptr(struct task_struct *p,
1872 const struct cpumask *new_mask, bool check)
5cc389bc 1873{
e9d867a6 1874 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1875 unsigned int dest_cpu;
eb580751
PZ
1876 struct rq_flags rf;
1877 struct rq *rq;
5cc389bc
PZ
1878 int ret = 0;
1879
eb580751 1880 rq = task_rq_lock(p, &rf);
a499c3ea 1881 update_rq_clock(rq);
5cc389bc 1882
e9d867a6
PZI
1883 if (p->flags & PF_KTHREAD) {
1884 /*
1885 * Kernel threads are allowed on online && !active CPUs
1886 */
1887 cpu_valid_mask = cpu_online_mask;
1888 }
1889
25834c73
PZ
1890 /*
1891 * Must re-check here, to close a race against __kthread_bind(),
1892 * sched_setaffinity() is not guaranteed to observe the flag.
1893 */
1894 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1895 ret = -EINVAL;
1896 goto out;
1897 }
1898
fd844ba9 1899 if (cpumask_equal(&p->cpus_mask, new_mask))
5cc389bc
PZ
1900 goto out;
1901
46a87b38
PT
1902 /*
1903 * Picking a ~random cpu helps in cases where we are changing affinity
1904 * for groups of tasks (ie. cpuset), so that load balancing is not
1905 * immediately required to distribute the tasks within their new mask.
1906 */
1907 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1908 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1909 ret = -EINVAL;
1910 goto out;
1911 }
1912
1913 do_set_cpus_allowed(p, new_mask);
1914
e9d867a6
PZI
1915 if (p->flags & PF_KTHREAD) {
1916 /*
1917 * For kernel threads that do indeed end up on online &&
d1ccc66d 1918 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1919 */
1920 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1921 !cpumask_intersects(new_mask, cpu_active_mask) &&
1922 p->nr_cpus_allowed != 1);
1923 }
1924
5cc389bc
PZ
1925 /* Can the task run on the task's current CPU? If so, we're done */
1926 if (cpumask_test_cpu(task_cpu(p), new_mask))
1927 goto out;
1928
5cc389bc
PZ
1929 if (task_running(rq, p) || p->state == TASK_WAKING) {
1930 struct migration_arg arg = { p, dest_cpu };
1931 /* Need help from migration thread: drop lock and wait. */
eb580751 1932 task_rq_unlock(rq, p, &rf);
5cc389bc 1933 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1934 return 0;
cbce1a68
PZ
1935 } else if (task_on_rq_queued(p)) {
1936 /*
1937 * OK, since we're going to drop the lock immediately
1938 * afterwards anyway.
1939 */
8a8c69c3 1940 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1941 }
5cc389bc 1942out:
eb580751 1943 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1944
1945 return ret;
1946}
25834c73
PZ
1947
1948int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1949{
1950 return __set_cpus_allowed_ptr(p, new_mask, false);
1951}
5cc389bc
PZ
1952EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1953
dd41f596 1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1955{
e2912009
PZ
1956#ifdef CONFIG_SCHED_DEBUG
1957 /*
1958 * We should never call set_task_cpu() on a blocked task,
1959 * ttwu() will sort out the placement.
1960 */
077614ee 1961 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1962 !p->on_rq);
0122ec5b 1963
3ea94de1
JP
1964 /*
1965 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1966 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1967 * time relying on p->on_rq.
1968 */
1969 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1970 p->sched_class == &fair_sched_class &&
1971 (p->on_rq && !task_on_rq_migrating(p)));
1972
0122ec5b 1973#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1974 /*
1975 * The caller should hold either p->pi_lock or rq->lock, when changing
1976 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1977 *
1978 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1979 * see task_group().
6c6c54e1
PZ
1980 *
1981 * Furthermore, all task_rq users should acquire both locks, see
1982 * task_rq_lock().
1983 */
0122ec5b
PZ
1984 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1985 lockdep_is_held(&task_rq(p)->lock)));
1986#endif
4ff9083b
PZ
1987 /*
1988 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1989 */
1990 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1991#endif
1992
de1d7286 1993 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1994
0c69774e 1995 if (task_cpu(p) != new_cpu) {
0a74bef8 1996 if (p->sched_class->migrate_task_rq)
1327237a 1997 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1998 p->se.nr_migrations++;
d7822b1e 1999 rseq_migrate(p);
ff303e66 2000 perf_event_task_migrate(p);
0c69774e 2001 }
dd41f596
IM
2002
2003 __set_task_cpu(p, new_cpu);
c65cc870
IM
2004}
2005
0ad4e3df 2006#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2007static void __migrate_swap_task(struct task_struct *p, int cpu)
2008{
da0c1e65 2009 if (task_on_rq_queued(p)) {
ac66f547 2010 struct rq *src_rq, *dst_rq;
8a8c69c3 2011 struct rq_flags srf, drf;
ac66f547
PZ
2012
2013 src_rq = task_rq(p);
2014 dst_rq = cpu_rq(cpu);
2015
8a8c69c3
PZ
2016 rq_pin_lock(src_rq, &srf);
2017 rq_pin_lock(dst_rq, &drf);
2018
ac66f547
PZ
2019 deactivate_task(src_rq, p, 0);
2020 set_task_cpu(p, cpu);
2021 activate_task(dst_rq, p, 0);
2022 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2023
2024 rq_unpin_lock(dst_rq, &drf);
2025 rq_unpin_lock(src_rq, &srf);
2026
ac66f547
PZ
2027 } else {
2028 /*
2029 * Task isn't running anymore; make it appear like we migrated
2030 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2031 * previous CPU our target instead of where it really is.
ac66f547
PZ
2032 */
2033 p->wake_cpu = cpu;
2034 }
2035}
2036
2037struct migration_swap_arg {
2038 struct task_struct *src_task, *dst_task;
2039 int src_cpu, dst_cpu;
2040};
2041
2042static int migrate_swap_stop(void *data)
2043{
2044 struct migration_swap_arg *arg = data;
2045 struct rq *src_rq, *dst_rq;
2046 int ret = -EAGAIN;
2047
62694cd5
PZ
2048 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2049 return -EAGAIN;
2050
ac66f547
PZ
2051 src_rq = cpu_rq(arg->src_cpu);
2052 dst_rq = cpu_rq(arg->dst_cpu);
2053
74602315
PZ
2054 double_raw_lock(&arg->src_task->pi_lock,
2055 &arg->dst_task->pi_lock);
ac66f547 2056 double_rq_lock(src_rq, dst_rq);
62694cd5 2057
ac66f547
PZ
2058 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2059 goto unlock;
2060
2061 if (task_cpu(arg->src_task) != arg->src_cpu)
2062 goto unlock;
2063
3bd37062 2064 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2065 goto unlock;
2066
3bd37062 2067 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2068 goto unlock;
2069
2070 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2071 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2072
2073 ret = 0;
2074
2075unlock:
2076 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2077 raw_spin_unlock(&arg->dst_task->pi_lock);
2078 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2079
2080 return ret;
2081}
2082
2083/*
2084 * Cross migrate two tasks
2085 */
0ad4e3df
SD
2086int migrate_swap(struct task_struct *cur, struct task_struct *p,
2087 int target_cpu, int curr_cpu)
ac66f547
PZ
2088{
2089 struct migration_swap_arg arg;
2090 int ret = -EINVAL;
2091
ac66f547
PZ
2092 arg = (struct migration_swap_arg){
2093 .src_task = cur,
0ad4e3df 2094 .src_cpu = curr_cpu,
ac66f547 2095 .dst_task = p,
0ad4e3df 2096 .dst_cpu = target_cpu,
ac66f547
PZ
2097 };
2098
2099 if (arg.src_cpu == arg.dst_cpu)
2100 goto out;
2101
6acce3ef
PZ
2102 /*
2103 * These three tests are all lockless; this is OK since all of them
2104 * will be re-checked with proper locks held further down the line.
2105 */
ac66f547
PZ
2106 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2107 goto out;
2108
3bd37062 2109 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2110 goto out;
2111
3bd37062 2112 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2113 goto out;
2114
286549dc 2115 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2116 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2117
2118out:
ac66f547
PZ
2119 return ret;
2120}
0ad4e3df 2121#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2122
1da177e4
LT
2123/*
2124 * wait_task_inactive - wait for a thread to unschedule.
2125 *
85ba2d86
RM
2126 * If @match_state is nonzero, it's the @p->state value just checked and
2127 * not expected to change. If it changes, i.e. @p might have woken up,
2128 * then return zero. When we succeed in waiting for @p to be off its CPU,
2129 * we return a positive number (its total switch count). If a second call
2130 * a short while later returns the same number, the caller can be sure that
2131 * @p has remained unscheduled the whole time.
2132 *
1da177e4
LT
2133 * The caller must ensure that the task *will* unschedule sometime soon,
2134 * else this function might spin for a *long* time. This function can't
2135 * be called with interrupts off, or it may introduce deadlock with
2136 * smp_call_function() if an IPI is sent by the same process we are
2137 * waiting to become inactive.
2138 */
85ba2d86 2139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2140{
da0c1e65 2141 int running, queued;
eb580751 2142 struct rq_flags rf;
85ba2d86 2143 unsigned long ncsw;
70b97a7f 2144 struct rq *rq;
1da177e4 2145
3a5c359a
AK
2146 for (;;) {
2147 /*
2148 * We do the initial early heuristics without holding
2149 * any task-queue locks at all. We'll only try to get
2150 * the runqueue lock when things look like they will
2151 * work out!
2152 */
2153 rq = task_rq(p);
fa490cfd 2154
3a5c359a
AK
2155 /*
2156 * If the task is actively running on another CPU
2157 * still, just relax and busy-wait without holding
2158 * any locks.
2159 *
2160 * NOTE! Since we don't hold any locks, it's not
2161 * even sure that "rq" stays as the right runqueue!
2162 * But we don't care, since "task_running()" will
2163 * return false if the runqueue has changed and p
2164 * is actually now running somewhere else!
2165 */
85ba2d86
RM
2166 while (task_running(rq, p)) {
2167 if (match_state && unlikely(p->state != match_state))
2168 return 0;
3a5c359a 2169 cpu_relax();
85ba2d86 2170 }
fa490cfd 2171
3a5c359a
AK
2172 /*
2173 * Ok, time to look more closely! We need the rq
2174 * lock now, to be *sure*. If we're wrong, we'll
2175 * just go back and repeat.
2176 */
eb580751 2177 rq = task_rq_lock(p, &rf);
27a9da65 2178 trace_sched_wait_task(p);
3a5c359a 2179 running = task_running(rq, p);
da0c1e65 2180 queued = task_on_rq_queued(p);
85ba2d86 2181 ncsw = 0;
f31e11d8 2182 if (!match_state || p->state == match_state)
93dcf55f 2183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2184 task_rq_unlock(rq, p, &rf);
fa490cfd 2185
85ba2d86
RM
2186 /*
2187 * If it changed from the expected state, bail out now.
2188 */
2189 if (unlikely(!ncsw))
2190 break;
2191
3a5c359a
AK
2192 /*
2193 * Was it really running after all now that we
2194 * checked with the proper locks actually held?
2195 *
2196 * Oops. Go back and try again..
2197 */
2198 if (unlikely(running)) {
2199 cpu_relax();
2200 continue;
2201 }
fa490cfd 2202
3a5c359a
AK
2203 /*
2204 * It's not enough that it's not actively running,
2205 * it must be off the runqueue _entirely_, and not
2206 * preempted!
2207 *
80dd99b3 2208 * So if it was still runnable (but just not actively
3a5c359a
AK
2209 * running right now), it's preempted, and we should
2210 * yield - it could be a while.
2211 */
da0c1e65 2212 if (unlikely(queued)) {
8b0e1953 2213 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2214
2215 set_current_state(TASK_UNINTERRUPTIBLE);
2216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2217 continue;
2218 }
fa490cfd 2219
3a5c359a
AK
2220 /*
2221 * Ahh, all good. It wasn't running, and it wasn't
2222 * runnable, which means that it will never become
2223 * running in the future either. We're all done!
2224 */
2225 break;
2226 }
85ba2d86
RM
2227
2228 return ncsw;
1da177e4
LT
2229}
2230
2231/***
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2234 *
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2237 *
25985edc 2238 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2242 * achieved as well.
2243 */
36c8b586 2244void kick_process(struct task_struct *p)
1da177e4
LT
2245{
2246 int cpu;
2247
2248 preempt_disable();
2249 cpu = task_cpu(p);
2250 if ((cpu != smp_processor_id()) && task_curr(p))
2251 smp_send_reschedule(cpu);
2252 preempt_enable();
2253}
b43e3521 2254EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2255
30da688e 2256/*
3bd37062 2257 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2258 *
2259 * A few notes on cpu_active vs cpu_online:
2260 *
2261 * - cpu_active must be a subset of cpu_online
2262 *
97fb7a0a 2263 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2264 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2265 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2266 * see it.
2267 *
d1ccc66d 2268 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2269 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2270 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2271 * off.
2272 *
2273 * This means that fallback selection must not select !active CPUs.
2274 * And can assume that any active CPU must be online. Conversely
2275 * select_task_rq() below may allow selection of !active CPUs in order
2276 * to satisfy the above rules.
30da688e 2277 */
5da9a0fb
PZ
2278static int select_fallback_rq(int cpu, struct task_struct *p)
2279{
aa00d89c
TC
2280 int nid = cpu_to_node(cpu);
2281 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2282 enum { cpuset, possible, fail } state = cpuset;
2283 int dest_cpu;
5da9a0fb 2284
aa00d89c 2285 /*
d1ccc66d
IM
2286 * If the node that the CPU is on has been offlined, cpu_to_node()
2287 * will return -1. There is no CPU on the node, and we should
2288 * select the CPU on the other node.
aa00d89c
TC
2289 */
2290 if (nid != -1) {
2291 nodemask = cpumask_of_node(nid);
2292
2293 /* Look for allowed, online CPU in same node. */
2294 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2295 if (!cpu_active(dest_cpu))
2296 continue;
3bd37062 2297 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2298 return dest_cpu;
2299 }
2baab4e9 2300 }
5da9a0fb 2301
2baab4e9
PZ
2302 for (;;) {
2303 /* Any allowed, online CPU? */
3bd37062 2304 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2305 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2306 continue;
175f0e25 2307
2baab4e9
PZ
2308 goto out;
2309 }
5da9a0fb 2310
e73e85f0 2311 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2312 switch (state) {
2313 case cpuset:
e73e85f0
ON
2314 if (IS_ENABLED(CONFIG_CPUSETS)) {
2315 cpuset_cpus_allowed_fallback(p);
2316 state = possible;
2317 break;
2318 }
df561f66 2319 fallthrough;
2baab4e9
PZ
2320 case possible:
2321 do_set_cpus_allowed(p, cpu_possible_mask);
2322 state = fail;
2323 break;
2324
2325 case fail:
2326 BUG();
2327 break;
2328 }
2329 }
2330
2331out:
2332 if (state != cpuset) {
2333 /*
2334 * Don't tell them about moving exiting tasks or
2335 * kernel threads (both mm NULL), since they never
2336 * leave kernel.
2337 */
2338 if (p->mm && printk_ratelimit()) {
aac74dc4 2339 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2340 task_pid_nr(p), p->comm, cpu);
2341 }
5da9a0fb
PZ
2342 }
2343
2344 return dest_cpu;
2345}
2346
e2912009 2347/*
3bd37062 2348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2349 */
970b13ba 2350static inline
ac66f547 2351int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2352{
cbce1a68
PZ
2353 lockdep_assert_held(&p->pi_lock);
2354
4b53a341 2355 if (p->nr_cpus_allowed > 1)
6c1d9410 2356 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2357 else
3bd37062 2358 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2359
2360 /*
2361 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2362 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2363 * CPU.
e2912009
PZ
2364 *
2365 * Since this is common to all placement strategies, this lives here.
2366 *
2367 * [ this allows ->select_task() to simply return task_cpu(p) and
2368 * not worry about this generic constraint ]
2369 */
7af443ee 2370 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2371 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2372
2373 return cpu;
970b13ba 2374}
09a40af5 2375
f5832c19
NP
2376void sched_set_stop_task(int cpu, struct task_struct *stop)
2377{
2378 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2379 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2380
2381 if (stop) {
2382 /*
2383 * Make it appear like a SCHED_FIFO task, its something
2384 * userspace knows about and won't get confused about.
2385 *
2386 * Also, it will make PI more or less work without too
2387 * much confusion -- but then, stop work should not
2388 * rely on PI working anyway.
2389 */
2390 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2391
2392 stop->sched_class = &stop_sched_class;
2393 }
2394
2395 cpu_rq(cpu)->stop = stop;
2396
2397 if (old_stop) {
2398 /*
2399 * Reset it back to a normal scheduling class so that
2400 * it can die in pieces.
2401 */
2402 old_stop->sched_class = &rt_sched_class;
2403 }
2404}
2405
25834c73
PZ
2406#else
2407
2408static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2409 const struct cpumask *new_mask, bool check)
2410{
2411 return set_cpus_allowed_ptr(p, new_mask);
2412}
2413
5cc389bc 2414#endif /* CONFIG_SMP */
970b13ba 2415
d7c01d27 2416static void
b84cb5df 2417ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2418{
4fa8d299 2419 struct rq *rq;
b84cb5df 2420
4fa8d299
JP
2421 if (!schedstat_enabled())
2422 return;
2423
2424 rq = this_rq();
d7c01d27 2425
4fa8d299
JP
2426#ifdef CONFIG_SMP
2427 if (cpu == rq->cpu) {
b85c8b71
PZ
2428 __schedstat_inc(rq->ttwu_local);
2429 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2430 } else {
2431 struct sched_domain *sd;
2432
b85c8b71 2433 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2434 rcu_read_lock();
4fa8d299 2435 for_each_domain(rq->cpu, sd) {
d7c01d27 2436 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2437 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2438 break;
2439 }
2440 }
057f3fad 2441 rcu_read_unlock();
d7c01d27 2442 }
f339b9dc
PZ
2443
2444 if (wake_flags & WF_MIGRATED)
b85c8b71 2445 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2446#endif /* CONFIG_SMP */
2447
b85c8b71
PZ
2448 __schedstat_inc(rq->ttwu_count);
2449 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2450
2451 if (wake_flags & WF_SYNC)
b85c8b71 2452 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2453}
2454
23f41eeb
PZ
2455/*
2456 * Mark the task runnable and perform wakeup-preemption.
2457 */
e7904a28 2458static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2459 struct rq_flags *rf)
9ed3811a 2460{
9ed3811a 2461 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2462 p->state = TASK_RUNNING;
fbd705a0
PZ
2463 trace_sched_wakeup(p);
2464
9ed3811a 2465#ifdef CONFIG_SMP
4c9a4bc8
PZ
2466 if (p->sched_class->task_woken) {
2467 /*
cbce1a68
PZ
2468 * Our task @p is fully woken up and running; so its safe to
2469 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2470 */
d8ac8971 2471 rq_unpin_lock(rq, rf);
9ed3811a 2472 p->sched_class->task_woken(rq, p);
d8ac8971 2473 rq_repin_lock(rq, rf);
4c9a4bc8 2474 }
9ed3811a 2475
e69c6341 2476 if (rq->idle_stamp) {
78becc27 2477 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2478 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2479
abfafa54
JL
2480 update_avg(&rq->avg_idle, delta);
2481
2482 if (rq->avg_idle > max)
9ed3811a 2483 rq->avg_idle = max;
abfafa54 2484
9ed3811a
TH
2485 rq->idle_stamp = 0;
2486 }
2487#endif
2488}
2489
c05fbafb 2490static void
e7904a28 2491ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2492 struct rq_flags *rf)
c05fbafb 2493{
77558e4d 2494 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2495
cbce1a68
PZ
2496 lockdep_assert_held(&rq->lock);
2497
c05fbafb
PZ
2498 if (p->sched_contributes_to_load)
2499 rq->nr_uninterruptible--;
b5179ac7 2500
dbfb089d 2501#ifdef CONFIG_SMP
b5179ac7 2502 if (wake_flags & WF_MIGRATED)
59efa0ba 2503 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2504#endif
2505
1b174a2c 2506 activate_task(rq, p, en_flags);
d8ac8971 2507 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2508}
2509
2510/*
58877d34
PZ
2511 * Consider @p being inside a wait loop:
2512 *
2513 * for (;;) {
2514 * set_current_state(TASK_UNINTERRUPTIBLE);
2515 *
2516 * if (CONDITION)
2517 * break;
2518 *
2519 * schedule();
2520 * }
2521 * __set_current_state(TASK_RUNNING);
2522 *
2523 * between set_current_state() and schedule(). In this case @p is still
2524 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2525 * an atomic manner.
2526 *
2527 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2528 * then schedule() must still happen and p->state can be changed to
2529 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2530 * need to do a full wakeup with enqueue.
2531 *
2532 * Returns: %true when the wakeup is done,
2533 * %false otherwise.
c05fbafb 2534 */
58877d34 2535static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 2536{
eb580751 2537 struct rq_flags rf;
c05fbafb
PZ
2538 struct rq *rq;
2539 int ret = 0;
2540
eb580751 2541 rq = __task_rq_lock(p, &rf);
da0c1e65 2542 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2543 /* check_preempt_curr() may use rq clock */
2544 update_rq_clock(rq);
d8ac8971 2545 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2546 ret = 1;
2547 }
eb580751 2548 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2549
2550 return ret;
2551}
2552
317f3941 2553#ifdef CONFIG_SMP
a1488664 2554void sched_ttwu_pending(void *arg)
317f3941 2555{
a1488664 2556 struct llist_node *llist = arg;
317f3941 2557 struct rq *rq = this_rq();
73215849 2558 struct task_struct *p, *t;
d8ac8971 2559 struct rq_flags rf;
317f3941 2560
e3baac47
PZ
2561 if (!llist)
2562 return;
2563
126c2092
PZ
2564 /*
2565 * rq::ttwu_pending racy indication of out-standing wakeups.
2566 * Races such that false-negatives are possible, since they
2567 * are shorter lived that false-positives would be.
2568 */
2569 WRITE_ONCE(rq->ttwu_pending, 0);
2570
8a8c69c3 2571 rq_lock_irqsave(rq, &rf);
77558e4d 2572 update_rq_clock(rq);
317f3941 2573
8c4890d1 2574 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
2575 if (WARN_ON_ONCE(p->on_cpu))
2576 smp_cond_load_acquire(&p->on_cpu, !VAL);
2577
2578 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2579 set_task_cpu(p, cpu_of(rq));
2580
73215849 2581 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 2582 }
317f3941 2583
8a8c69c3 2584 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2585}
2586
b2a02fc4 2587void send_call_function_single_ipi(int cpu)
317f3941 2588{
b2a02fc4 2589 struct rq *rq = cpu_rq(cpu);
ca38062e 2590
b2a02fc4
PZ
2591 if (!set_nr_if_polling(rq->idle))
2592 arch_send_call_function_single_ipi(cpu);
2593 else
2594 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
2595}
2596
2ebb1771
MG
2597/*
2598 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2599 * necessary. The wakee CPU on receipt of the IPI will queue the task
2600 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2601 * of the wakeup instead of the waker.
2602 */
2603static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 2604{
e3baac47
PZ
2605 struct rq *rq = cpu_rq(cpu);
2606
b7e7ade3
PZ
2607 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2608
126c2092 2609 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 2610 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 2611}
d6aa8f85 2612
f6be8af1
CL
2613void wake_up_if_idle(int cpu)
2614{
2615 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2616 struct rq_flags rf;
f6be8af1 2617
fd7de1e8
AL
2618 rcu_read_lock();
2619
2620 if (!is_idle_task(rcu_dereference(rq->curr)))
2621 goto out;
f6be8af1
CL
2622
2623 if (set_nr_if_polling(rq->idle)) {
2624 trace_sched_wake_idle_without_ipi(cpu);
2625 } else {
8a8c69c3 2626 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2627 if (is_idle_task(rq->curr))
2628 smp_send_reschedule(cpu);
d1ccc66d 2629 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2630 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2631 }
fd7de1e8
AL
2632
2633out:
2634 rcu_read_unlock();
f6be8af1
CL
2635}
2636
39be3501 2637bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2638{
2639 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2640}
c6e7bd7a 2641
2ebb1771
MG
2642static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2643{
2644 /*
2645 * If the CPU does not share cache, then queue the task on the
2646 * remote rqs wakelist to avoid accessing remote data.
2647 */
2648 if (!cpus_share_cache(smp_processor_id(), cpu))
2649 return true;
2650
2651 /*
2652 * If the task is descheduling and the only running task on the
2653 * CPU then use the wakelist to offload the task activation to
2654 * the soon-to-be-idle CPU as the current CPU is likely busy.
2655 * nr_running is checked to avoid unnecessary task stacking.
2656 */
739f70b4 2657 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
2658 return true;
2659
2660 return false;
2661}
2662
2663static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 2664{
2ebb1771 2665 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
2666 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2667 return false;
2668
c6e7bd7a 2669 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 2670 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
2671 return true;
2672 }
2673
2674 return false;
2675}
58877d34
PZ
2676
2677#else /* !CONFIG_SMP */
2678
2679static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2680{
2681 return false;
2682}
2683
d6aa8f85 2684#endif /* CONFIG_SMP */
317f3941 2685
b5179ac7 2686static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2687{
2688 struct rq *rq = cpu_rq(cpu);
d8ac8971 2689 struct rq_flags rf;
c05fbafb 2690
2ebb1771 2691 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 2692 return;
317f3941 2693
8a8c69c3 2694 rq_lock(rq, &rf);
77558e4d 2695 update_rq_clock(rq);
d8ac8971 2696 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2697 rq_unlock(rq, &rf);
9ed3811a
TH
2698}
2699
8643cda5
PZ
2700/*
2701 * Notes on Program-Order guarantees on SMP systems.
2702 *
2703 * MIGRATION
2704 *
2705 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2706 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2707 * execution on its new CPU [c1].
8643cda5
PZ
2708 *
2709 * For migration (of runnable tasks) this is provided by the following means:
2710 *
2711 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2712 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2713 * rq(c1)->lock (if not at the same time, then in that order).
2714 * C) LOCK of the rq(c1)->lock scheduling in task
2715 *
7696f991 2716 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2717 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2718 *
2719 * Example:
2720 *
2721 * CPU0 CPU1 CPU2
2722 *
2723 * LOCK rq(0)->lock
2724 * sched-out X
2725 * sched-in Y
2726 * UNLOCK rq(0)->lock
2727 *
2728 * LOCK rq(0)->lock // orders against CPU0
2729 * dequeue X
2730 * UNLOCK rq(0)->lock
2731 *
2732 * LOCK rq(1)->lock
2733 * enqueue X
2734 * UNLOCK rq(1)->lock
2735 *
2736 * LOCK rq(1)->lock // orders against CPU2
2737 * sched-out Z
2738 * sched-in X
2739 * UNLOCK rq(1)->lock
2740 *
2741 *
2742 * BLOCKING -- aka. SLEEP + WAKEUP
2743 *
2744 * For blocking we (obviously) need to provide the same guarantee as for
2745 * migration. However the means are completely different as there is no lock
2746 * chain to provide order. Instead we do:
2747 *
58877d34
PZ
2748 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2749 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
2750 *
2751 * Example:
2752 *
2753 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2754 *
2755 * LOCK rq(0)->lock LOCK X->pi_lock
2756 * dequeue X
2757 * sched-out X
2758 * smp_store_release(X->on_cpu, 0);
2759 *
1f03e8d2 2760 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2761 * X->state = WAKING
2762 * set_task_cpu(X,2)
2763 *
2764 * LOCK rq(2)->lock
2765 * enqueue X
2766 * X->state = RUNNING
2767 * UNLOCK rq(2)->lock
2768 *
2769 * LOCK rq(2)->lock // orders against CPU1
2770 * sched-out Z
2771 * sched-in X
2772 * UNLOCK rq(2)->lock
2773 *
2774 * UNLOCK X->pi_lock
2775 * UNLOCK rq(0)->lock
2776 *
2777 *
7696f991
AP
2778 * However, for wakeups there is a second guarantee we must provide, namely we
2779 * must ensure that CONDITION=1 done by the caller can not be reordered with
2780 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2781 */
2782
9ed3811a 2783/**
1da177e4 2784 * try_to_wake_up - wake up a thread
9ed3811a 2785 * @p: the thread to be awakened
1da177e4 2786 * @state: the mask of task states that can be woken
9ed3811a 2787 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2788 *
58877d34
PZ
2789 * Conceptually does:
2790 *
2791 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2792 *
a2250238
PZ
2793 * If the task was not queued/runnable, also place it back on a runqueue.
2794 *
58877d34
PZ
2795 * This function is atomic against schedule() which would dequeue the task.
2796 *
2797 * It issues a full memory barrier before accessing @p->state, see the comment
2798 * with set_current_state().
a2250238 2799 *
58877d34 2800 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 2801 *
58877d34
PZ
2802 * Relies on p->pi_lock stabilizing:
2803 * - p->sched_class
2804 * - p->cpus_ptr
2805 * - p->sched_task_group
2806 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2807 *
2808 * Tries really hard to only take one task_rq(p)->lock for performance.
2809 * Takes rq->lock in:
2810 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2811 * - ttwu_queue() -- new rq, for enqueue of the task;
2812 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2813 *
2814 * As a consequence we race really badly with just about everything. See the
2815 * many memory barriers and their comments for details.
7696f991 2816 *
a2250238
PZ
2817 * Return: %true if @p->state changes (an actual wakeup was done),
2818 * %false otherwise.
1da177e4 2819 */
e4a52bcb
PZ
2820static int
2821try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2822{
1da177e4 2823 unsigned long flags;
c05fbafb 2824 int cpu, success = 0;
2398f2c6 2825
e3d85487 2826 preempt_disable();
aacedf26
PZ
2827 if (p == current) {
2828 /*
2829 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2830 * == smp_processor_id()'. Together this means we can special
58877d34 2831 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
2832 * without taking any locks.
2833 *
2834 * In particular:
2835 * - we rely on Program-Order guarantees for all the ordering,
2836 * - we're serialized against set_special_state() by virtue of
2837 * it disabling IRQs (this allows not taking ->pi_lock).
2838 */
2839 if (!(p->state & state))
e3d85487 2840 goto out;
aacedf26
PZ
2841
2842 success = 1;
aacedf26
PZ
2843 trace_sched_waking(p);
2844 p->state = TASK_RUNNING;
2845 trace_sched_wakeup(p);
2846 goto out;
2847 }
2848
e0acd0a6
ON
2849 /*
2850 * If we are going to wake up a thread waiting for CONDITION we
2851 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
2852 * reordered with p->state check below. This pairs with smp_store_mb()
2853 * in set_current_state() that the waiting thread does.
e0acd0a6 2854 */
013fdb80 2855 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2856 smp_mb__after_spinlock();
e9c84311 2857 if (!(p->state & state))
aacedf26 2858 goto unlock;
1da177e4 2859
fbd705a0
PZ
2860 trace_sched_waking(p);
2861
d1ccc66d
IM
2862 /* We're going to change ->state: */
2863 success = 1;
1da177e4 2864
135e8c92
BS
2865 /*
2866 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2867 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2868 * in smp_cond_load_acquire() below.
2869 *
3d85b270
AP
2870 * sched_ttwu_pending() try_to_wake_up()
2871 * STORE p->on_rq = 1 LOAD p->state
2872 * UNLOCK rq->lock
2873 *
2874 * __schedule() (switch to task 'p')
2875 * LOCK rq->lock smp_rmb();
2876 * smp_mb__after_spinlock();
2877 * UNLOCK rq->lock
135e8c92
BS
2878 *
2879 * [task p]
3d85b270 2880 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2881 *
3d85b270
AP
2882 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2883 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
2884 *
2885 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
2886 */
2887 smp_rmb();
58877d34 2888 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 2889 goto unlock;
1da177e4 2890
c6e7bd7a
PZ
2891 if (p->in_iowait) {
2892 delayacct_blkio_end(p);
2893 atomic_dec(&task_rq(p)->nr_iowait);
2894 }
2895
1da177e4 2896#ifdef CONFIG_SMP
ecf7d01c
PZ
2897 /*
2898 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2899 * possible to, falsely, observe p->on_cpu == 0.
2900 *
2901 * One must be running (->on_cpu == 1) in order to remove oneself
2902 * from the runqueue.
2903 *
3d85b270
AP
2904 * __schedule() (switch to task 'p') try_to_wake_up()
2905 * STORE p->on_cpu = 1 LOAD p->on_rq
2906 * UNLOCK rq->lock
2907 *
2908 * __schedule() (put 'p' to sleep)
2909 * LOCK rq->lock smp_rmb();
2910 * smp_mb__after_spinlock();
2911 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2912 *
3d85b270
AP
2913 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2914 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
2915 *
2916 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2917 * schedule()'s deactivate_task() has 'happened' and p will no longer
2918 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 2919 */
dbfb089d
PZ
2920 smp_acquire__after_ctrl_dep();
2921
2922 /*
2923 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2924 * == 0), which means we need to do an enqueue, change p->state to
2925 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2926 * enqueue, such as ttwu_queue_wakelist().
2927 */
2928 p->state = TASK_WAKING;
ecf7d01c 2929
c6e7bd7a
PZ
2930 /*
2931 * If the owning (remote) CPU is still in the middle of schedule() with
2932 * this task as prev, considering queueing p on the remote CPUs wake_list
2933 * which potentially sends an IPI instead of spinning on p->on_cpu to
2934 * let the waker make forward progress. This is safe because IRQs are
2935 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
2936 *
2937 * Ensure we load task_cpu(p) after p->on_cpu:
2938 *
2939 * set_task_cpu(p, cpu);
2940 * STORE p->cpu = @cpu
2941 * __schedule() (switch to task 'p')
2942 * LOCK rq->lock
2943 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2944 * STORE p->on_cpu = 1 LOAD p->cpu
2945 *
2946 * to ensure we observe the correct CPU on which the task is currently
2947 * scheduling.
c6e7bd7a 2948 */
b6e13e85 2949 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 2950 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
2951 goto unlock;
2952
e9c84311 2953 /*
d1ccc66d 2954 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2955 * this task as prev, wait until its done referencing the task.
b75a2253 2956 *
31cb1bc0 2957 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2958 *
2959 * This ensures that tasks getting woken will be fully ordered against
2960 * their previous state and preserve Program Order.
0970d299 2961 */
1f03e8d2 2962 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2963
ac66f547 2964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2965 if (task_cpu(p) != cpu) {
2966 wake_flags |= WF_MIGRATED;
eb414681 2967 psi_ttwu_dequeue(p);
e4a52bcb 2968 set_task_cpu(p, cpu);
f339b9dc 2969 }
b6e13e85
PZ
2970#else
2971 cpu = task_cpu(p);
1da177e4 2972#endif /* CONFIG_SMP */
1da177e4 2973
b5179ac7 2974 ttwu_queue(p, cpu, wake_flags);
aacedf26 2975unlock:
013fdb80 2976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2977out:
2978 if (success)
b6e13e85 2979 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 2980 preempt_enable();
1da177e4
LT
2981
2982 return success;
2983}
2984
2beaf328
PM
2985/**
2986 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2987 * @p: Process for which the function is to be invoked.
2988 * @func: Function to invoke.
2989 * @arg: Argument to function.
2990 *
2991 * If the specified task can be quickly locked into a definite state
2992 * (either sleeping or on a given runqueue), arrange to keep it in that
2993 * state while invoking @func(@arg). This function can use ->on_rq and
2994 * task_curr() to work out what the state is, if required. Given that
2995 * @func can be invoked with a runqueue lock held, it had better be quite
2996 * lightweight.
2997 *
2998 * Returns:
2999 * @false if the task slipped out from under the locks.
3000 * @true if the task was locked onto a runqueue or is sleeping.
3001 * However, @func can override this by returning @false.
3002 */
3003bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3004{
3005 bool ret = false;
3006 struct rq_flags rf;
3007 struct rq *rq;
3008
3009 lockdep_assert_irqs_enabled();
3010 raw_spin_lock_irq(&p->pi_lock);
3011 if (p->on_rq) {
3012 rq = __task_rq_lock(p, &rf);
3013 if (task_rq(p) == rq)
3014 ret = func(p, arg);
3015 rq_unlock(rq, &rf);
3016 } else {
3017 switch (p->state) {
3018 case TASK_RUNNING:
3019 case TASK_WAKING:
3020 break;
3021 default:
3022 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3023 if (!p->on_rq)
3024 ret = func(p, arg);
3025 }
3026 }
3027 raw_spin_unlock_irq(&p->pi_lock);
3028 return ret;
3029}
3030
50fa610a
DH
3031/**
3032 * wake_up_process - Wake up a specific process
3033 * @p: The process to be woken up.
3034 *
3035 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3036 * processes.
3037 *
3038 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3039 *
7696f991 3040 * This function executes a full memory barrier before accessing the task state.
50fa610a 3041 */
7ad5b3a5 3042int wake_up_process(struct task_struct *p)
1da177e4 3043{
9067ac85 3044 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3045}
1da177e4
LT
3046EXPORT_SYMBOL(wake_up_process);
3047
7ad5b3a5 3048int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3049{
3050 return try_to_wake_up(p, state, 0);
3051}
3052
1da177e4
LT
3053/*
3054 * Perform scheduler related setup for a newly forked process p.
3055 * p is forked by current.
dd41f596
IM
3056 *
3057 * __sched_fork() is basic setup used by init_idle() too:
3058 */
5e1576ed 3059static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3060{
fd2f4419
PZ
3061 p->on_rq = 0;
3062
3063 p->se.on_rq = 0;
dd41f596
IM
3064 p->se.exec_start = 0;
3065 p->se.sum_exec_runtime = 0;
f6cf891c 3066 p->se.prev_sum_exec_runtime = 0;
6c594c21 3067 p->se.nr_migrations = 0;
da7a735e 3068 p->se.vruntime = 0;
fd2f4419 3069 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3070
ad936d86
BP
3071#ifdef CONFIG_FAIR_GROUP_SCHED
3072 p->se.cfs_rq = NULL;
3073#endif
3074
6cfb0d5d 3075#ifdef CONFIG_SCHEDSTATS
cb251765 3076 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3077 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3078#endif
476d139c 3079
aab03e05 3080 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3081 init_dl_task_timer(&p->dl);
209a0cbd 3082 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3083 __dl_clear_params(p);
aab03e05 3084
fa717060 3085 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3086 p->rt.timeout = 0;
3087 p->rt.time_slice = sched_rr_timeslice;
3088 p->rt.on_rq = 0;
3089 p->rt.on_list = 0;
476d139c 3090
e107be36
AK
3091#ifdef CONFIG_PREEMPT_NOTIFIERS
3092 INIT_HLIST_HEAD(&p->preempt_notifiers);
3093#endif
cbee9f88 3094
5e1f0f09
MG
3095#ifdef CONFIG_COMPACTION
3096 p->capture_control = NULL;
3097#endif
13784475 3098 init_numa_balancing(clone_flags, p);
a1488664 3099#ifdef CONFIG_SMP
8c4890d1 3100 p->wake_entry.u_flags = CSD_TYPE_TTWU;
a1488664 3101#endif
dd41f596
IM
3102}
3103
2a595721
SD
3104DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3105
1a687c2e 3106#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3107
1a687c2e
MG
3108void set_numabalancing_state(bool enabled)
3109{
3110 if (enabled)
2a595721 3111 static_branch_enable(&sched_numa_balancing);
1a687c2e 3112 else
2a595721 3113 static_branch_disable(&sched_numa_balancing);
1a687c2e 3114}
54a43d54
AK
3115
3116#ifdef CONFIG_PROC_SYSCTL
3117int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3118 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3119{
3120 struct ctl_table t;
3121 int err;
2a595721 3122 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3123
3124 if (write && !capable(CAP_SYS_ADMIN))
3125 return -EPERM;
3126
3127 t = *table;
3128 t.data = &state;
3129 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3130 if (err < 0)
3131 return err;
3132 if (write)
3133 set_numabalancing_state(state);
3134 return err;
3135}
3136#endif
3137#endif
dd41f596 3138
4698f88c
JP
3139#ifdef CONFIG_SCHEDSTATS
3140
cb251765 3141DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3142static bool __initdata __sched_schedstats = false;
cb251765 3143
cb251765
MG
3144static void set_schedstats(bool enabled)
3145{
3146 if (enabled)
3147 static_branch_enable(&sched_schedstats);
3148 else
3149 static_branch_disable(&sched_schedstats);
3150}
3151
3152void force_schedstat_enabled(void)
3153{
3154 if (!schedstat_enabled()) {
3155 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3156 static_branch_enable(&sched_schedstats);
3157 }
3158}
3159
3160static int __init setup_schedstats(char *str)
3161{
3162 int ret = 0;
3163 if (!str)
3164 goto out;
3165
4698f88c
JP
3166 /*
3167 * This code is called before jump labels have been set up, so we can't
3168 * change the static branch directly just yet. Instead set a temporary
3169 * variable so init_schedstats() can do it later.
3170 */
cb251765 3171 if (!strcmp(str, "enable")) {
4698f88c 3172 __sched_schedstats = true;
cb251765
MG
3173 ret = 1;
3174 } else if (!strcmp(str, "disable")) {
4698f88c 3175 __sched_schedstats = false;
cb251765
MG
3176 ret = 1;
3177 }
3178out:
3179 if (!ret)
3180 pr_warn("Unable to parse schedstats=\n");
3181
3182 return ret;
3183}
3184__setup("schedstats=", setup_schedstats);
3185
4698f88c
JP
3186static void __init init_schedstats(void)
3187{
3188 set_schedstats(__sched_schedstats);
3189}
3190
cb251765 3191#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3192int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3193 size_t *lenp, loff_t *ppos)
cb251765
MG
3194{
3195 struct ctl_table t;
3196 int err;
3197 int state = static_branch_likely(&sched_schedstats);
3198
3199 if (write && !capable(CAP_SYS_ADMIN))
3200 return -EPERM;
3201
3202 t = *table;
3203 t.data = &state;
3204 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3205 if (err < 0)
3206 return err;
3207 if (write)
3208 set_schedstats(state);
3209 return err;
3210}
4698f88c
JP
3211#endif /* CONFIG_PROC_SYSCTL */
3212#else /* !CONFIG_SCHEDSTATS */
3213static inline void init_schedstats(void) {}
3214#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3215
3216/*
3217 * fork()/clone()-time setup:
3218 */
aab03e05 3219int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3220{
0122ec5b 3221 unsigned long flags;
dd41f596 3222
5e1576ed 3223 __sched_fork(clone_flags, p);
06b83b5f 3224 /*
7dc603c9 3225 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3226 * nobody will actually run it, and a signal or other external
3227 * event cannot wake it up and insert it on the runqueue either.
3228 */
7dc603c9 3229 p->state = TASK_NEW;
dd41f596 3230
c350a04e
MG
3231 /*
3232 * Make sure we do not leak PI boosting priority to the child.
3233 */
3234 p->prio = current->normal_prio;
3235
e8f14172
PB
3236 uclamp_fork(p);
3237
b9dc29e7
MG
3238 /*
3239 * Revert to default priority/policy on fork if requested.
3240 */
3241 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3242 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3243 p->policy = SCHED_NORMAL;
6c697bdf 3244 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3245 p->rt_priority = 0;
3246 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3247 p->static_prio = NICE_TO_PRIO(0);
3248
3249 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3250 set_load_weight(p, false);
6c697bdf 3251
b9dc29e7
MG
3252 /*
3253 * We don't need the reset flag anymore after the fork. It has
3254 * fulfilled its duty:
3255 */
3256 p->sched_reset_on_fork = 0;
3257 }
ca94c442 3258
af0fffd9 3259 if (dl_prio(p->prio))
aab03e05 3260 return -EAGAIN;
af0fffd9 3261 else if (rt_prio(p->prio))
aab03e05 3262 p->sched_class = &rt_sched_class;
af0fffd9 3263 else
2ddbf952 3264 p->sched_class = &fair_sched_class;
b29739f9 3265
7dc603c9 3266 init_entity_runnable_average(&p->se);
cd29fe6f 3267
86951599
PZ
3268 /*
3269 * The child is not yet in the pid-hash so no cgroup attach races,
3270 * and the cgroup is pinned to this child due to cgroup_fork()
3271 * is ran before sched_fork().
3272 *
3273 * Silence PROVE_RCU.
3274 */
0122ec5b 3275 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3276 rseq_migrate(p);
e210bffd 3277 /*
d1ccc66d 3278 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3279 * so use __set_task_cpu().
3280 */
af0fffd9 3281 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3282 if (p->sched_class->task_fork)
3283 p->sched_class->task_fork(p);
0122ec5b 3284 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3285
f6db8347 3286#ifdef CONFIG_SCHED_INFO
dd41f596 3287 if (likely(sched_info_on()))
52f17b6c 3288 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3289#endif
3ca7a440
PZ
3290#if defined(CONFIG_SMP)
3291 p->on_cpu = 0;
4866cde0 3292#endif
01028747 3293 init_task_preempt_count(p);
806c09a7 3294#ifdef CONFIG_SMP
917b627d 3295 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3296 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3297#endif
aab03e05 3298 return 0;
1da177e4
LT
3299}
3300
13685c4a
QY
3301void sched_post_fork(struct task_struct *p)
3302{
3303 uclamp_post_fork(p);
3304}
3305
332ac17e
DF
3306unsigned long to_ratio(u64 period, u64 runtime)
3307{
3308 if (runtime == RUNTIME_INF)
c52f14d3 3309 return BW_UNIT;
332ac17e
DF
3310
3311 /*
3312 * Doing this here saves a lot of checks in all
3313 * the calling paths, and returning zero seems
3314 * safe for them anyway.
3315 */
3316 if (period == 0)
3317 return 0;
3318
c52f14d3 3319 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3320}
3321
1da177e4
LT
3322/*
3323 * wake_up_new_task - wake up a newly created task for the first time.
3324 *
3325 * This function will do some initial scheduler statistics housekeeping
3326 * that must be done for every newly created context, then puts the task
3327 * on the runqueue and wakes it.
3328 */
3e51e3ed 3329void wake_up_new_task(struct task_struct *p)
1da177e4 3330{
eb580751 3331 struct rq_flags rf;
dd41f596 3332 struct rq *rq;
fabf318e 3333
eb580751 3334 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3335 p->state = TASK_RUNNING;
fabf318e
PZ
3336#ifdef CONFIG_SMP
3337 /*
3338 * Fork balancing, do it here and not earlier because:
3bd37062 3339 * - cpus_ptr can change in the fork path
d1ccc66d 3340 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3341 *
3342 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3343 * as we're not fully set-up yet.
fabf318e 3344 */
32e839dd 3345 p->recent_used_cpu = task_cpu(p);
ce3614da 3346 rseq_migrate(p);
e210bffd 3347 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 3348#endif
b7fa30c9 3349 rq = __task_rq_lock(p, &rf);
4126bad6 3350 update_rq_clock(rq);
d0fe0b9c 3351 post_init_entity_util_avg(p);
0017d735 3352
7a57f32a 3353 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3354 trace_sched_wakeup_new(p);
a7558e01 3355 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3356#ifdef CONFIG_SMP
0aaafaab
PZ
3357 if (p->sched_class->task_woken) {
3358 /*
3359 * Nothing relies on rq->lock after this, so its fine to
3360 * drop it.
3361 */
d8ac8971 3362 rq_unpin_lock(rq, &rf);
efbbd05a 3363 p->sched_class->task_woken(rq, p);
d8ac8971 3364 rq_repin_lock(rq, &rf);
0aaafaab 3365 }
9a897c5a 3366#endif
eb580751 3367 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3368}
3369
e107be36
AK
3370#ifdef CONFIG_PREEMPT_NOTIFIERS
3371
b7203428 3372static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3373
2ecd9d29
PZ
3374void preempt_notifier_inc(void)
3375{
b7203428 3376 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3377}
3378EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3379
3380void preempt_notifier_dec(void)
3381{
b7203428 3382 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3383}
3384EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3385
e107be36 3386/**
80dd99b3 3387 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3388 * @notifier: notifier struct to register
e107be36
AK
3389 */
3390void preempt_notifier_register(struct preempt_notifier *notifier)
3391{
b7203428 3392 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3393 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3394
e107be36
AK
3395 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3396}
3397EXPORT_SYMBOL_GPL(preempt_notifier_register);
3398
3399/**
3400 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3401 * @notifier: notifier struct to unregister
e107be36 3402 *
d84525a8 3403 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3404 */
3405void preempt_notifier_unregister(struct preempt_notifier *notifier)
3406{
3407 hlist_del(&notifier->link);
3408}
3409EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3410
1cde2930 3411static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3412{
3413 struct preempt_notifier *notifier;
e107be36 3414
b67bfe0d 3415 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3416 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3417}
3418
1cde2930
PZ
3419static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3420{
b7203428 3421 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3422 __fire_sched_in_preempt_notifiers(curr);
3423}
3424
e107be36 3425static void
1cde2930
PZ
3426__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3427 struct task_struct *next)
e107be36
AK
3428{
3429 struct preempt_notifier *notifier;
e107be36 3430
b67bfe0d 3431 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3432 notifier->ops->sched_out(notifier, next);
3433}
3434
1cde2930
PZ
3435static __always_inline void
3436fire_sched_out_preempt_notifiers(struct task_struct *curr,
3437 struct task_struct *next)
3438{
b7203428 3439 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3440 __fire_sched_out_preempt_notifiers(curr, next);
3441}
3442
6d6bc0ad 3443#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3444
1cde2930 3445static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3446{
3447}
3448
1cde2930 3449static inline void
e107be36
AK
3450fire_sched_out_preempt_notifiers(struct task_struct *curr,
3451 struct task_struct *next)
3452{
3453}
3454
6d6bc0ad 3455#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3456
31cb1bc0 3457static inline void prepare_task(struct task_struct *next)
3458{
3459#ifdef CONFIG_SMP
3460 /*
3461 * Claim the task as running, we do this before switching to it
3462 * such that any running task will have this set.
58877d34
PZ
3463 *
3464 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3465 */
58877d34 3466 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3467#endif
3468}
3469
3470static inline void finish_task(struct task_struct *prev)
3471{
3472#ifdef CONFIG_SMP
3473 /*
58877d34
PZ
3474 * This must be the very last reference to @prev from this CPU. After
3475 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3476 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3477 * finished.
3478 *
3479 * In particular, the load of prev->state in finish_task_switch() must
3480 * happen before this.
3481 *
3482 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3483 */
3484 smp_store_release(&prev->on_cpu, 0);
3485#endif
3486}
3487
269d5992
PZ
3488static inline void
3489prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3490{
269d5992
PZ
3491 /*
3492 * Since the runqueue lock will be released by the next
3493 * task (which is an invalid locking op but in the case
3494 * of the scheduler it's an obvious special-case), so we
3495 * do an early lockdep release here:
3496 */
3497 rq_unpin_lock(rq, rf);
5facae4f 3498 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3499#ifdef CONFIG_DEBUG_SPINLOCK
3500 /* this is a valid case when another task releases the spinlock */
269d5992 3501 rq->lock.owner = next;
31cb1bc0 3502#endif
269d5992
PZ
3503}
3504
3505static inline void finish_lock_switch(struct rq *rq)
3506{
31cb1bc0 3507 /*
3508 * If we are tracking spinlock dependencies then we have to
3509 * fix up the runqueue lock - which gets 'carried over' from
3510 * prev into current:
3511 */
3512 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3513 raw_spin_unlock_irq(&rq->lock);
3514}
3515
325ea10c
IM
3516/*
3517 * NOP if the arch has not defined these:
3518 */
3519
3520#ifndef prepare_arch_switch
3521# define prepare_arch_switch(next) do { } while (0)
3522#endif
3523
3524#ifndef finish_arch_post_lock_switch
3525# define finish_arch_post_lock_switch() do { } while (0)
3526#endif
3527
4866cde0
NP
3528/**
3529 * prepare_task_switch - prepare to switch tasks
3530 * @rq: the runqueue preparing to switch
421cee29 3531 * @prev: the current task that is being switched out
4866cde0
NP
3532 * @next: the task we are going to switch to.
3533 *
3534 * This is called with the rq lock held and interrupts off. It must
3535 * be paired with a subsequent finish_task_switch after the context
3536 * switch.
3537 *
3538 * prepare_task_switch sets up locking and calls architecture specific
3539 * hooks.
3540 */
e107be36
AK
3541static inline void
3542prepare_task_switch(struct rq *rq, struct task_struct *prev,
3543 struct task_struct *next)
4866cde0 3544{
0ed557aa 3545 kcov_prepare_switch(prev);
43148951 3546 sched_info_switch(rq, prev, next);
fe4b04fa 3547 perf_event_task_sched_out(prev, next);
d7822b1e 3548 rseq_preempt(prev);
e107be36 3549 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3550 prepare_task(next);
4866cde0
NP
3551 prepare_arch_switch(next);
3552}
3553
1da177e4
LT
3554/**
3555 * finish_task_switch - clean up after a task-switch
3556 * @prev: the thread we just switched away from.
3557 *
4866cde0
NP
3558 * finish_task_switch must be called after the context switch, paired
3559 * with a prepare_task_switch call before the context switch.
3560 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3561 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3562 *
3563 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3564 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3565 * with the lock held can cause deadlocks; see schedule() for
3566 * details.)
dfa50b60
ON
3567 *
3568 * The context switch have flipped the stack from under us and restored the
3569 * local variables which were saved when this task called schedule() in the
3570 * past. prev == current is still correct but we need to recalculate this_rq
3571 * because prev may have moved to another CPU.
1da177e4 3572 */
dfa50b60 3573static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3574 __releases(rq->lock)
3575{
dfa50b60 3576 struct rq *rq = this_rq();
1da177e4 3577 struct mm_struct *mm = rq->prev_mm;
55a101f8 3578 long prev_state;
1da177e4 3579
609ca066
PZ
3580 /*
3581 * The previous task will have left us with a preempt_count of 2
3582 * because it left us after:
3583 *
3584 * schedule()
3585 * preempt_disable(); // 1
3586 * __schedule()
3587 * raw_spin_lock_irq(&rq->lock) // 2
3588 *
3589 * Also, see FORK_PREEMPT_COUNT.
3590 */
e2bf1c4b
PZ
3591 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3592 "corrupted preempt_count: %s/%d/0x%x\n",
3593 current->comm, current->pid, preempt_count()))
3594 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3595
1da177e4
LT
3596 rq->prev_mm = NULL;
3597
3598 /*
3599 * A task struct has one reference for the use as "current".
c394cc9f 3600 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3601 * schedule one last time. The schedule call will never return, and
3602 * the scheduled task must drop that reference.
95913d97
PZ
3603 *
3604 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3605 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3606 * running on another CPU and we could rave with its RUNNING -> DEAD
3607 * transition, resulting in a double drop.
1da177e4 3608 */
55a101f8 3609 prev_state = prev->state;
bf9fae9f 3610 vtime_task_switch(prev);
a8d757ef 3611 perf_event_task_sched_in(prev, current);
31cb1bc0 3612 finish_task(prev);
3613 finish_lock_switch(rq);
01f23e16 3614 finish_arch_post_lock_switch();
0ed557aa 3615 kcov_finish_switch(current);
e8fa1362 3616
e107be36 3617 fire_sched_in_preempt_notifiers(current);
306e0604 3618 /*
70216e18
MD
3619 * When switching through a kernel thread, the loop in
3620 * membarrier_{private,global}_expedited() may have observed that
3621 * kernel thread and not issued an IPI. It is therefore possible to
3622 * schedule between user->kernel->user threads without passing though
3623 * switch_mm(). Membarrier requires a barrier after storing to
3624 * rq->curr, before returning to userspace, so provide them here:
3625 *
3626 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3627 * provided by mmdrop(),
3628 * - a sync_core for SYNC_CORE.
306e0604 3629 */
70216e18
MD
3630 if (mm) {
3631 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3632 mmdrop(mm);
70216e18 3633 }
1cef1150
PZ
3634 if (unlikely(prev_state == TASK_DEAD)) {
3635 if (prev->sched_class->task_dead)
3636 prev->sched_class->task_dead(prev);
68f24b08 3637
1cef1150
PZ
3638 /*
3639 * Remove function-return probe instances associated with this
3640 * task and put them back on the free list.
3641 */
3642 kprobe_flush_task(prev);
3643
3644 /* Task is done with its stack. */
3645 put_task_stack(prev);
3646
0ff7b2cf 3647 put_task_struct_rcu_user(prev);
c6fd91f0 3648 }
99e5ada9 3649
de734f89 3650 tick_nohz_task_switch();
dfa50b60 3651 return rq;
1da177e4
LT
3652}
3653
3f029d3c
GH
3654#ifdef CONFIG_SMP
3655
3f029d3c 3656/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3657static void __balance_callback(struct rq *rq)
3f029d3c 3658{
e3fca9e7
PZ
3659 struct callback_head *head, *next;
3660 void (*func)(struct rq *rq);
3661 unsigned long flags;
3f029d3c 3662
e3fca9e7
PZ
3663 raw_spin_lock_irqsave(&rq->lock, flags);
3664 head = rq->balance_callback;
3665 rq->balance_callback = NULL;
3666 while (head) {
3667 func = (void (*)(struct rq *))head->func;
3668 next = head->next;
3669 head->next = NULL;
3670 head = next;
3f029d3c 3671
e3fca9e7 3672 func(rq);
3f029d3c 3673 }
e3fca9e7
PZ
3674 raw_spin_unlock_irqrestore(&rq->lock, flags);
3675}
3676
3677static inline void balance_callback(struct rq *rq)
3678{
3679 if (unlikely(rq->balance_callback))
3680 __balance_callback(rq);
3f029d3c
GH
3681}
3682
3683#else
da19ab51 3684
e3fca9e7 3685static inline void balance_callback(struct rq *rq)
3f029d3c 3686{
1da177e4
LT
3687}
3688
3f029d3c
GH
3689#endif
3690
1da177e4
LT
3691/**
3692 * schedule_tail - first thing a freshly forked thread must call.
3693 * @prev: the thread we just switched away from.
3694 */
722a9f92 3695asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3696 __releases(rq->lock)
3697{
1a43a14a 3698 struct rq *rq;
da19ab51 3699
609ca066
PZ
3700 /*
3701 * New tasks start with FORK_PREEMPT_COUNT, see there and
3702 * finish_task_switch() for details.
3703 *
3704 * finish_task_switch() will drop rq->lock() and lower preempt_count
3705 * and the preempt_enable() will end up enabling preemption (on
3706 * PREEMPT_COUNT kernels).
3707 */
3708
dfa50b60 3709 rq = finish_task_switch(prev);
e3fca9e7 3710 balance_callback(rq);
1a43a14a 3711 preempt_enable();
70b97a7f 3712
1da177e4 3713 if (current->set_child_tid)
b488893a 3714 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3715
3716 calculate_sigpending();
1da177e4
LT
3717}
3718
3719/*
dfa50b60 3720 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3721 */
04936948 3722static __always_inline struct rq *
70b97a7f 3723context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3724 struct task_struct *next, struct rq_flags *rf)
1da177e4 3725{
e107be36 3726 prepare_task_switch(rq, prev, next);
fe4b04fa 3727
9226d125
ZA
3728 /*
3729 * For paravirt, this is coupled with an exit in switch_to to
3730 * combine the page table reload and the switch backend into
3731 * one hypercall.
3732 */
224101ed 3733 arch_start_context_switch(prev);
9226d125 3734
306e0604 3735 /*
139d025c
PZ
3736 * kernel -> kernel lazy + transfer active
3737 * user -> kernel lazy + mmgrab() active
3738 *
3739 * kernel -> user switch + mmdrop() active
3740 * user -> user switch
306e0604 3741 */
139d025c
PZ
3742 if (!next->mm) { // to kernel
3743 enter_lazy_tlb(prev->active_mm, next);
3744
3745 next->active_mm = prev->active_mm;
3746 if (prev->mm) // from user
3747 mmgrab(prev->active_mm);
3748 else
3749 prev->active_mm = NULL;
3750 } else { // to user
227a4aad 3751 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3752 /*
3753 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3754 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3755 *
3756 * The below provides this either through switch_mm(), or in
3757 * case 'prev->active_mm == next->mm' through
3758 * finish_task_switch()'s mmdrop().
3759 */
139d025c 3760 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3761
139d025c
PZ
3762 if (!prev->mm) { // from kernel
3763 /* will mmdrop() in finish_task_switch(). */
3764 rq->prev_mm = prev->active_mm;
3765 prev->active_mm = NULL;
3766 }
1da177e4 3767 }
92509b73 3768
cb42c9a3 3769 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3770
269d5992 3771 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3772
3773 /* Here we just switch the register state and the stack. */
3774 switch_to(prev, next, prev);
dd41f596 3775 barrier();
dfa50b60
ON
3776
3777 return finish_task_switch(prev);
1da177e4
LT
3778}
3779
3780/*
1c3e8264 3781 * nr_running and nr_context_switches:
1da177e4
LT
3782 *
3783 * externally visible scheduler statistics: current number of runnable
1c3e8264 3784 * threads, total number of context switches performed since bootup.
1da177e4
LT
3785 */
3786unsigned long nr_running(void)
3787{
3788 unsigned long i, sum = 0;
3789
3790 for_each_online_cpu(i)
3791 sum += cpu_rq(i)->nr_running;
3792
3793 return sum;
f711f609 3794}
1da177e4 3795
2ee507c4 3796/*
d1ccc66d 3797 * Check if only the current task is running on the CPU.
00cc1633
DD
3798 *
3799 * Caution: this function does not check that the caller has disabled
3800 * preemption, thus the result might have a time-of-check-to-time-of-use
3801 * race. The caller is responsible to use it correctly, for example:
3802 *
dfcb245e 3803 * - from a non-preemptible section (of course)
00cc1633
DD
3804 *
3805 * - from a thread that is bound to a single CPU
3806 *
3807 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3808 */
3809bool single_task_running(void)
3810{
00cc1633 3811 return raw_rq()->nr_running == 1;
2ee507c4
TC
3812}
3813EXPORT_SYMBOL(single_task_running);
3814
1da177e4 3815unsigned long long nr_context_switches(void)
46cb4b7c 3816{
cc94abfc
SR
3817 int i;
3818 unsigned long long sum = 0;
46cb4b7c 3819
0a945022 3820 for_each_possible_cpu(i)
1da177e4 3821 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3822
1da177e4
LT
3823 return sum;
3824}
483b4ee6 3825
145d952a
DL
3826/*
3827 * Consumers of these two interfaces, like for example the cpuidle menu
3828 * governor, are using nonsensical data. Preferring shallow idle state selection
3829 * for a CPU that has IO-wait which might not even end up running the task when
3830 * it does become runnable.
3831 */
3832
3833unsigned long nr_iowait_cpu(int cpu)
3834{
3835 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3836}
3837
e33a9bba
TH
3838/*
3839 * IO-wait accounting, and how its mostly bollocks (on SMP).
3840 *
3841 * The idea behind IO-wait account is to account the idle time that we could
3842 * have spend running if it were not for IO. That is, if we were to improve the
3843 * storage performance, we'd have a proportional reduction in IO-wait time.
3844 *
3845 * This all works nicely on UP, where, when a task blocks on IO, we account
3846 * idle time as IO-wait, because if the storage were faster, it could've been
3847 * running and we'd not be idle.
3848 *
3849 * This has been extended to SMP, by doing the same for each CPU. This however
3850 * is broken.
3851 *
3852 * Imagine for instance the case where two tasks block on one CPU, only the one
3853 * CPU will have IO-wait accounted, while the other has regular idle. Even
3854 * though, if the storage were faster, both could've ran at the same time,
3855 * utilising both CPUs.
3856 *
3857 * This means, that when looking globally, the current IO-wait accounting on
3858 * SMP is a lower bound, by reason of under accounting.
3859 *
3860 * Worse, since the numbers are provided per CPU, they are sometimes
3861 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3862 * associated with any one particular CPU, it can wake to another CPU than it
3863 * blocked on. This means the per CPU IO-wait number is meaningless.
3864 *
3865 * Task CPU affinities can make all that even more 'interesting'.
3866 */
3867
1da177e4
LT
3868unsigned long nr_iowait(void)
3869{
3870 unsigned long i, sum = 0;
483b4ee6 3871
0a945022 3872 for_each_possible_cpu(i)
145d952a 3873 sum += nr_iowait_cpu(i);
46cb4b7c 3874
1da177e4
LT
3875 return sum;
3876}
483b4ee6 3877
dd41f596 3878#ifdef CONFIG_SMP
8a0be9ef 3879
46cb4b7c 3880/*
38022906
PZ
3881 * sched_exec - execve() is a valuable balancing opportunity, because at
3882 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3883 */
38022906 3884void sched_exec(void)
46cb4b7c 3885{
38022906 3886 struct task_struct *p = current;
1da177e4 3887 unsigned long flags;
0017d735 3888 int dest_cpu;
46cb4b7c 3889
8f42ced9 3890 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3891 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3892 if (dest_cpu == smp_processor_id())
3893 goto unlock;
38022906 3894
8f42ced9 3895 if (likely(cpu_active(dest_cpu))) {
969c7921 3896 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3897
8f42ced9
PZ
3898 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3899 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3900 return;
3901 }
0017d735 3902unlock:
8f42ced9 3903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3904}
dd41f596 3905
1da177e4
LT
3906#endif
3907
1da177e4 3908DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3909DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3910
3911EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3912EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3913
6075620b
GG
3914/*
3915 * The function fair_sched_class.update_curr accesses the struct curr
3916 * and its field curr->exec_start; when called from task_sched_runtime(),
3917 * we observe a high rate of cache misses in practice.
3918 * Prefetching this data results in improved performance.
3919 */
3920static inline void prefetch_curr_exec_start(struct task_struct *p)
3921{
3922#ifdef CONFIG_FAIR_GROUP_SCHED
3923 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3924#else
3925 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3926#endif
3927 prefetch(curr);
3928 prefetch(&curr->exec_start);
3929}
3930
c5f8d995
HS
3931/*
3932 * Return accounted runtime for the task.
3933 * In case the task is currently running, return the runtime plus current's
3934 * pending runtime that have not been accounted yet.
3935 */
3936unsigned long long task_sched_runtime(struct task_struct *p)
3937{
eb580751 3938 struct rq_flags rf;
c5f8d995 3939 struct rq *rq;
6e998916 3940 u64 ns;
c5f8d995 3941
911b2898
PZ
3942#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3943 /*
97fb7a0a 3944 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3945 * So we have a optimization chance when the task's delta_exec is 0.
3946 * Reading ->on_cpu is racy, but this is ok.
3947 *
d1ccc66d
IM
3948 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3949 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3950 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3951 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3952 * been accounted, so we're correct here as well.
911b2898 3953 */
da0c1e65 3954 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3955 return p->se.sum_exec_runtime;
3956#endif
3957
eb580751 3958 rq = task_rq_lock(p, &rf);
6e998916
SG
3959 /*
3960 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3961 * project cycles that may never be accounted to this
3962 * thread, breaking clock_gettime().
3963 */
3964 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3965 prefetch_curr_exec_start(p);
6e998916
SG
3966 update_rq_clock(rq);
3967 p->sched_class->update_curr(rq);
3968 }
3969 ns = p->se.sum_exec_runtime;
eb580751 3970 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3971
3972 return ns;
3973}
48f24c4d 3974
7835b98b
CL
3975/*
3976 * This function gets called by the timer code, with HZ frequency.
3977 * We call it with interrupts disabled.
7835b98b
CL
3978 */
3979void scheduler_tick(void)
3980{
7835b98b
CL
3981 int cpu = smp_processor_id();
3982 struct rq *rq = cpu_rq(cpu);
dd41f596 3983 struct task_struct *curr = rq->curr;
8a8c69c3 3984 struct rq_flags rf;
b4eccf5f 3985 unsigned long thermal_pressure;
3e51f33f 3986
1567c3e3 3987 arch_scale_freq_tick();
3e51f33f 3988 sched_clock_tick();
dd41f596 3989
8a8c69c3
PZ
3990 rq_lock(rq, &rf);
3991
3e51f33f 3992 update_rq_clock(rq);
b4eccf5f 3993 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3994 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3995 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3996 calc_global_load_tick(rq);
eb414681 3997 psi_task_tick(rq);
8a8c69c3
PZ
3998
3999 rq_unlock(rq, &rf);
7835b98b 4000
e9d2b064 4001 perf_event_task_tick();
e220d2dc 4002
e418e1c2 4003#ifdef CONFIG_SMP
6eb57e0d 4004 rq->idle_balance = idle_cpu(cpu);
7caff66f 4005 trigger_load_balance(rq);
e418e1c2 4006#endif
1da177e4
LT
4007}
4008
265f22a9 4009#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4010
4011struct tick_work {
4012 int cpu;
b55bd585 4013 atomic_t state;
d84b3131
FW
4014 struct delayed_work work;
4015};
b55bd585
PM
4016/* Values for ->state, see diagram below. */
4017#define TICK_SCHED_REMOTE_OFFLINE 0
4018#define TICK_SCHED_REMOTE_OFFLINING 1
4019#define TICK_SCHED_REMOTE_RUNNING 2
4020
4021/*
4022 * State diagram for ->state:
4023 *
4024 *
4025 * TICK_SCHED_REMOTE_OFFLINE
4026 * | ^
4027 * | |
4028 * | | sched_tick_remote()
4029 * | |
4030 * | |
4031 * +--TICK_SCHED_REMOTE_OFFLINING
4032 * | ^
4033 * | |
4034 * sched_tick_start() | | sched_tick_stop()
4035 * | |
4036 * V |
4037 * TICK_SCHED_REMOTE_RUNNING
4038 *
4039 *
4040 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4041 * and sched_tick_start() are happy to leave the state in RUNNING.
4042 */
d84b3131
FW
4043
4044static struct tick_work __percpu *tick_work_cpu;
4045
4046static void sched_tick_remote(struct work_struct *work)
4047{
4048 struct delayed_work *dwork = to_delayed_work(work);
4049 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4050 int cpu = twork->cpu;
4051 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4052 struct task_struct *curr;
d84b3131 4053 struct rq_flags rf;
d9c0ffca 4054 u64 delta;
b55bd585 4055 int os;
d84b3131
FW
4056
4057 /*
4058 * Handle the tick only if it appears the remote CPU is running in full
4059 * dynticks mode. The check is racy by nature, but missing a tick or
4060 * having one too much is no big deal because the scheduler tick updates
4061 * statistics and checks timeslices in a time-independent way, regardless
4062 * of when exactly it is running.
4063 */
488603b8 4064 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4065 goto out_requeue;
d84b3131 4066
d9c0ffca
FW
4067 rq_lock_irq(rq, &rf);
4068 curr = rq->curr;
488603b8 4069 if (cpu_is_offline(cpu))
d9c0ffca 4070 goto out_unlock;
d84b3131 4071
d9c0ffca 4072 update_rq_clock(rq);
d9c0ffca 4073
488603b8
SW
4074 if (!is_idle_task(curr)) {
4075 /*
4076 * Make sure the next tick runs within a reasonable
4077 * amount of time.
4078 */
4079 delta = rq_clock_task(rq) - curr->se.exec_start;
4080 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4081 }
d9c0ffca
FW
4082 curr->sched_class->task_tick(rq, curr, 0);
4083
ebc0f83c 4084 calc_load_nohz_remote(rq);
d9c0ffca
FW
4085out_unlock:
4086 rq_unlock_irq(rq, &rf);
d9c0ffca 4087out_requeue:
ebc0f83c 4088
d84b3131
FW
4089 /*
4090 * Run the remote tick once per second (1Hz). This arbitrary
4091 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4092 * to keep scheduler internal stats reasonably up to date. But
4093 * first update state to reflect hotplug activity if required.
d84b3131 4094 */
b55bd585
PM
4095 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4096 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4097 if (os == TICK_SCHED_REMOTE_RUNNING)
4098 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4099}
4100
4101static void sched_tick_start(int cpu)
4102{
b55bd585 4103 int os;
d84b3131
FW
4104 struct tick_work *twork;
4105
4106 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4107 return;
4108
4109 WARN_ON_ONCE(!tick_work_cpu);
4110
4111 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4112 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4113 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4114 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4115 twork->cpu = cpu;
4116 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4117 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4118 }
d84b3131
FW
4119}
4120
4121#ifdef CONFIG_HOTPLUG_CPU
4122static void sched_tick_stop(int cpu)
4123{
4124 struct tick_work *twork;
b55bd585 4125 int os;
d84b3131
FW
4126
4127 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4128 return;
4129
4130 WARN_ON_ONCE(!tick_work_cpu);
4131
4132 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4133 /* There cannot be competing actions, but don't rely on stop-machine. */
4134 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4135 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4136 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4137}
4138#endif /* CONFIG_HOTPLUG_CPU */
4139
4140int __init sched_tick_offload_init(void)
4141{
4142 tick_work_cpu = alloc_percpu(struct tick_work);
4143 BUG_ON(!tick_work_cpu);
d84b3131
FW
4144 return 0;
4145}
4146
4147#else /* !CONFIG_NO_HZ_FULL */
4148static inline void sched_tick_start(int cpu) { }
4149static inline void sched_tick_stop(int cpu) { }
265f22a9 4150#endif
1da177e4 4151
c1a280b6 4152#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4153 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4154/*
4155 * If the value passed in is equal to the current preempt count
4156 * then we just disabled preemption. Start timing the latency.
4157 */
4158static inline void preempt_latency_start(int val)
4159{
4160 if (preempt_count() == val) {
4161 unsigned long ip = get_lock_parent_ip();
4162#ifdef CONFIG_DEBUG_PREEMPT
4163 current->preempt_disable_ip = ip;
4164#endif
4165 trace_preempt_off(CALLER_ADDR0, ip);
4166 }
4167}
7e49fcce 4168
edafe3a5 4169void preempt_count_add(int val)
1da177e4 4170{
6cd8a4bb 4171#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4172 /*
4173 * Underflow?
4174 */
9a11b49a
IM
4175 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4176 return;
6cd8a4bb 4177#endif
bdb43806 4178 __preempt_count_add(val);
6cd8a4bb 4179#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4180 /*
4181 * Spinlock count overflowing soon?
4182 */
33859f7f
MOS
4183 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4184 PREEMPT_MASK - 10);
6cd8a4bb 4185#endif
47252cfb 4186 preempt_latency_start(val);
1da177e4 4187}
bdb43806 4188EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4189NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4190
47252cfb
SR
4191/*
4192 * If the value passed in equals to the current preempt count
4193 * then we just enabled preemption. Stop timing the latency.
4194 */
4195static inline void preempt_latency_stop(int val)
4196{
4197 if (preempt_count() == val)
4198 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4199}
4200
edafe3a5 4201void preempt_count_sub(int val)
1da177e4 4202{
6cd8a4bb 4203#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4204 /*
4205 * Underflow?
4206 */
01e3eb82 4207 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4208 return;
1da177e4
LT
4209 /*
4210 * Is the spinlock portion underflowing?
4211 */
9a11b49a
IM
4212 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4213 !(preempt_count() & PREEMPT_MASK)))
4214 return;
6cd8a4bb 4215#endif
9a11b49a 4216
47252cfb 4217 preempt_latency_stop(val);
bdb43806 4218 __preempt_count_sub(val);
1da177e4 4219}
bdb43806 4220EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4221NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4222
47252cfb
SR
4223#else
4224static inline void preempt_latency_start(int val) { }
4225static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4226#endif
4227
59ddbcb2
IM
4228static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4229{
4230#ifdef CONFIG_DEBUG_PREEMPT
4231 return p->preempt_disable_ip;
4232#else
4233 return 0;
4234#endif
4235}
4236
1da177e4 4237/*
dd41f596 4238 * Print scheduling while atomic bug:
1da177e4 4239 */
dd41f596 4240static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4241{
d1c6d149
VN
4242 /* Save this before calling printk(), since that will clobber it */
4243 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4244
664dfa65
DJ
4245 if (oops_in_progress)
4246 return;
4247
3df0fc5b
PZ
4248 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4249 prev->comm, prev->pid, preempt_count());
838225b4 4250
dd41f596 4251 debug_show_held_locks(prev);
e21f5b15 4252 print_modules();
dd41f596
IM
4253 if (irqs_disabled())
4254 print_irqtrace_events(prev);
d1c6d149
VN
4255 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4256 && in_atomic_preempt_off()) {
8f47b187 4257 pr_err("Preemption disabled at:");
2062a4e8 4258 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4259 }
748c7201
DBO
4260 if (panic_on_warn)
4261 panic("scheduling while atomic\n");
4262
6135fc1e 4263 dump_stack();
373d4d09 4264 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4265}
1da177e4 4266
dd41f596
IM
4267/*
4268 * Various schedule()-time debugging checks and statistics:
4269 */
312364f3 4270static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4271{
0d9e2632 4272#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4273 if (task_stack_end_corrupted(prev))
4274 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4275
4276 if (task_scs_end_corrupted(prev))
4277 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4278#endif
b99def8b 4279
312364f3
DV
4280#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4281 if (!preempt && prev->state && prev->non_block_count) {
4282 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4283 prev->comm, prev->pid, prev->non_block_count);
4284 dump_stack();
4285 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4286 }
4287#endif
4288
1dc0fffc 4289 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4290 __schedule_bug(prev);
1dc0fffc
PZ
4291 preempt_count_set(PREEMPT_DISABLED);
4292 }
b3fbab05 4293 rcu_sleep_check();
dd41f596 4294
1da177e4
LT
4295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4296
ae92882e 4297 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4298}
4299
457d1f46
CY
4300static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4301 struct rq_flags *rf)
4302{
4303#ifdef CONFIG_SMP
4304 const struct sched_class *class;
4305 /*
4306 * We must do the balancing pass before put_prev_task(), such
4307 * that when we release the rq->lock the task is in the same
4308 * state as before we took rq->lock.
4309 *
4310 * We can terminate the balance pass as soon as we know there is
4311 * a runnable task of @class priority or higher.
4312 */
4313 for_class_range(class, prev->sched_class, &idle_sched_class) {
4314 if (class->balance(rq, prev, rf))
4315 break;
4316 }
4317#endif
4318
4319 put_prev_task(rq, prev);
4320}
4321
dd41f596
IM
4322/*
4323 * Pick up the highest-prio task:
4324 */
4325static inline struct task_struct *
d8ac8971 4326pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4327{
49ee5768 4328 const struct sched_class *class;
dd41f596 4329 struct task_struct *p;
1da177e4
LT
4330
4331 /*
0ba87bb2
PZ
4332 * Optimization: we know that if all tasks are in the fair class we can
4333 * call that function directly, but only if the @prev task wasn't of a
4334 * higher scheduling class, because otherwise those loose the
4335 * opportunity to pull in more work from other CPUs.
1da177e4 4336 */
aa93cd53 4337 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4338 rq->nr_running == rq->cfs.h_nr_running)) {
4339
5d7d6056 4340 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4341 if (unlikely(p == RETRY_TASK))
67692435 4342 goto restart;
6ccdc84b 4343
d1ccc66d 4344 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4345 if (!p) {
f488e105 4346 put_prev_task(rq, prev);
98c2f700 4347 p = pick_next_task_idle(rq);
f488e105 4348 }
6ccdc84b
PZ
4349
4350 return p;
1da177e4
LT
4351 }
4352
67692435 4353restart:
457d1f46 4354 put_prev_task_balance(rq, prev, rf);
67692435 4355
34f971f6 4356 for_each_class(class) {
98c2f700 4357 p = class->pick_next_task(rq);
67692435 4358 if (p)
dd41f596 4359 return p;
dd41f596 4360 }
34f971f6 4361
d1ccc66d
IM
4362 /* The idle class should always have a runnable task: */
4363 BUG();
dd41f596 4364}
1da177e4 4365
dd41f596 4366/*
c259e01a 4367 * __schedule() is the main scheduler function.
edde96ea
PE
4368 *
4369 * The main means of driving the scheduler and thus entering this function are:
4370 *
4371 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4372 *
4373 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4374 * paths. For example, see arch/x86/entry_64.S.
4375 *
4376 * To drive preemption between tasks, the scheduler sets the flag in timer
4377 * interrupt handler scheduler_tick().
4378 *
4379 * 3. Wakeups don't really cause entry into schedule(). They add a
4380 * task to the run-queue and that's it.
4381 *
4382 * Now, if the new task added to the run-queue preempts the current
4383 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4384 * called on the nearest possible occasion:
4385 *
c1a280b6 4386 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4387 *
4388 * - in syscall or exception context, at the next outmost
4389 * preempt_enable(). (this might be as soon as the wake_up()'s
4390 * spin_unlock()!)
4391 *
4392 * - in IRQ context, return from interrupt-handler to
4393 * preemptible context
4394 *
c1a280b6 4395 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4396 * then at the next:
4397 *
4398 * - cond_resched() call
4399 * - explicit schedule() call
4400 * - return from syscall or exception to user-space
4401 * - return from interrupt-handler to user-space
bfd9b2b5 4402 *
b30f0e3f 4403 * WARNING: must be called with preemption disabled!
dd41f596 4404 */
499d7955 4405static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4406{
4407 struct task_struct *prev, *next;
67ca7bde 4408 unsigned long *switch_count;
dbfb089d 4409 unsigned long prev_state;
d8ac8971 4410 struct rq_flags rf;
dd41f596 4411 struct rq *rq;
31656519 4412 int cpu;
dd41f596 4413
dd41f596
IM
4414 cpu = smp_processor_id();
4415 rq = cpu_rq(cpu);
dd41f596 4416 prev = rq->curr;
dd41f596 4417
312364f3 4418 schedule_debug(prev, preempt);
1da177e4 4419
31656519 4420 if (sched_feat(HRTICK))
f333fdc9 4421 hrtick_clear(rq);
8f4d37ec 4422
46a5d164 4423 local_irq_disable();
bcbfdd01 4424 rcu_note_context_switch(preempt);
46a5d164 4425
e0acd0a6
ON
4426 /*
4427 * Make sure that signal_pending_state()->signal_pending() below
4428 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4429 * done by the caller to avoid the race with signal_wake_up():
4430 *
4431 * __set_current_state(@state) signal_wake_up()
4432 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4433 * wake_up_state(p, state)
4434 * LOCK rq->lock LOCK p->pi_state
4435 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4436 * if (signal_pending_state()) if (p->state & @state)
306e0604 4437 *
dbfb089d 4438 * Also, the membarrier system call requires a full memory barrier
306e0604 4439 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4440 */
8a8c69c3 4441 rq_lock(rq, &rf);
d89e588c 4442 smp_mb__after_spinlock();
1da177e4 4443
d1ccc66d
IM
4444 /* Promote REQ to ACT */
4445 rq->clock_update_flags <<= 1;
bce4dc80 4446 update_rq_clock(rq);
9edfbfed 4447
246d86b5 4448 switch_count = &prev->nivcsw;
d136122f 4449
dbfb089d 4450 /*
d136122f
PZ
4451 * We must load prev->state once (task_struct::state is volatile), such
4452 * that:
4453 *
4454 * - we form a control dependency vs deactivate_task() below.
4455 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 4456 */
d136122f
PZ
4457 prev_state = prev->state;
4458 if (!preempt && prev_state) {
dbfb089d 4459 if (signal_pending_state(prev_state, prev)) {
1da177e4 4460 prev->state = TASK_RUNNING;
21aa9af0 4461 } else {
dbfb089d
PZ
4462 prev->sched_contributes_to_load =
4463 (prev_state & TASK_UNINTERRUPTIBLE) &&
4464 !(prev_state & TASK_NOLOAD) &&
4465 !(prev->flags & PF_FROZEN);
4466
4467 if (prev->sched_contributes_to_load)
4468 rq->nr_uninterruptible++;
4469
4470 /*
4471 * __schedule() ttwu()
d136122f
PZ
4472 * prev_state = prev->state; if (p->on_rq && ...)
4473 * if (prev_state) goto out;
4474 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4475 * p->state = TASK_WAKING
4476 *
4477 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
4478 *
4479 * After this, schedule() must not care about p->state any more.
4480 */
bce4dc80 4481 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4482
e33a9bba
TH
4483 if (prev->in_iowait) {
4484 atomic_inc(&rq->nr_iowait);
4485 delayacct_blkio_start();
4486 }
21aa9af0 4487 }
dd41f596 4488 switch_count = &prev->nvcsw;
1da177e4
LT
4489 }
4490
d8ac8971 4491 next = pick_next_task(rq, prev, &rf);
f26f9aff 4492 clear_tsk_need_resched(prev);
f27dde8d 4493 clear_preempt_need_resched();
1da177e4 4494
1da177e4 4495 if (likely(prev != next)) {
1da177e4 4496 rq->nr_switches++;
5311a98f
EB
4497 /*
4498 * RCU users of rcu_dereference(rq->curr) may not see
4499 * changes to task_struct made by pick_next_task().
4500 */
4501 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4502 /*
4503 * The membarrier system call requires each architecture
4504 * to have a full memory barrier after updating
306e0604
MD
4505 * rq->curr, before returning to user-space.
4506 *
4507 * Here are the schemes providing that barrier on the
4508 * various architectures:
4509 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4510 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4511 * - finish_lock_switch() for weakly-ordered
4512 * architectures where spin_unlock is a full barrier,
4513 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4514 * is a RELEASE barrier),
22e4ebb9 4515 */
1da177e4
LT
4516 ++*switch_count;
4517
b05e75d6
JW
4518 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4519
c73464b1 4520 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4521
4522 /* Also unlocks the rq: */
4523 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4524 } else {
cb42c9a3 4525 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4526 rq_unlock_irq(rq, &rf);
cbce1a68 4527 }
1da177e4 4528
e3fca9e7 4529 balance_callback(rq);
1da177e4 4530}
c259e01a 4531
9af6528e
PZ
4532void __noreturn do_task_dead(void)
4533{
d1ccc66d 4534 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4535 set_special_state(TASK_DEAD);
d1ccc66d
IM
4536
4537 /* Tell freezer to ignore us: */
4538 current->flags |= PF_NOFREEZE;
4539
9af6528e
PZ
4540 __schedule(false);
4541 BUG();
d1ccc66d
IM
4542
4543 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4544 for (;;)
d1ccc66d 4545 cpu_relax();
9af6528e
PZ
4546}
4547
9c40cef2
TG
4548static inline void sched_submit_work(struct task_struct *tsk)
4549{
c1cecf88
SAS
4550 unsigned int task_flags;
4551
b0fdc013 4552 if (!tsk->state)
9c40cef2 4553 return;
6d25be57 4554
c1cecf88 4555 task_flags = tsk->flags;
6d25be57
TG
4556 /*
4557 * If a worker went to sleep, notify and ask workqueue whether
4558 * it wants to wake up a task to maintain concurrency.
4559 * As this function is called inside the schedule() context,
4560 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4561 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4562 * requires it.
6d25be57 4563 */
c1cecf88 4564 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4565 preempt_disable();
c1cecf88 4566 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
4567 wq_worker_sleeping(tsk);
4568 else
4569 io_wq_worker_sleeping(tsk);
6d25be57
TG
4570 preempt_enable_no_resched();
4571 }
4572
b0fdc013
SAS
4573 if (tsk_is_pi_blocked(tsk))
4574 return;
4575
9c40cef2
TG
4576 /*
4577 * If we are going to sleep and we have plugged IO queued,
4578 * make sure to submit it to avoid deadlocks.
4579 */
4580 if (blk_needs_flush_plug(tsk))
4581 blk_schedule_flush_plug(tsk);
4582}
4583
6d25be57
TG
4584static void sched_update_worker(struct task_struct *tsk)
4585{
771b53d0
JA
4586 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4587 if (tsk->flags & PF_WQ_WORKER)
4588 wq_worker_running(tsk);
4589 else
4590 io_wq_worker_running(tsk);
4591 }
6d25be57
TG
4592}
4593
722a9f92 4594asmlinkage __visible void __sched schedule(void)
c259e01a 4595{
9c40cef2
TG
4596 struct task_struct *tsk = current;
4597
4598 sched_submit_work(tsk);
bfd9b2b5 4599 do {
b30f0e3f 4600 preempt_disable();
fc13aeba 4601 __schedule(false);
b30f0e3f 4602 sched_preempt_enable_no_resched();
bfd9b2b5 4603 } while (need_resched());
6d25be57 4604 sched_update_worker(tsk);
c259e01a 4605}
1da177e4
LT
4606EXPORT_SYMBOL(schedule);
4607
8663effb
SRV
4608/*
4609 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4610 * state (have scheduled out non-voluntarily) by making sure that all
4611 * tasks have either left the run queue or have gone into user space.
4612 * As idle tasks do not do either, they must not ever be preempted
4613 * (schedule out non-voluntarily).
4614 *
4615 * schedule_idle() is similar to schedule_preempt_disable() except that it
4616 * never enables preemption because it does not call sched_submit_work().
4617 */
4618void __sched schedule_idle(void)
4619{
4620 /*
4621 * As this skips calling sched_submit_work(), which the idle task does
4622 * regardless because that function is a nop when the task is in a
4623 * TASK_RUNNING state, make sure this isn't used someplace that the
4624 * current task can be in any other state. Note, idle is always in the
4625 * TASK_RUNNING state.
4626 */
4627 WARN_ON_ONCE(current->state);
4628 do {
4629 __schedule(false);
4630 } while (need_resched());
4631}
4632
91d1aa43 4633#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4634asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4635{
4636 /*
4637 * If we come here after a random call to set_need_resched(),
4638 * or we have been woken up remotely but the IPI has not yet arrived,
4639 * we haven't yet exited the RCU idle mode. Do it here manually until
4640 * we find a better solution.
7cc78f8f
AL
4641 *
4642 * NB: There are buggy callers of this function. Ideally we
c467ea76 4643 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4644 * too frequently to make sense yet.
20ab65e3 4645 */
7cc78f8f 4646 enum ctx_state prev_state = exception_enter();
20ab65e3 4647 schedule();
7cc78f8f 4648 exception_exit(prev_state);
20ab65e3
FW
4649}
4650#endif
4651
c5491ea7
TG
4652/**
4653 * schedule_preempt_disabled - called with preemption disabled
4654 *
4655 * Returns with preemption disabled. Note: preempt_count must be 1
4656 */
4657void __sched schedule_preempt_disabled(void)
4658{
ba74c144 4659 sched_preempt_enable_no_resched();
c5491ea7
TG
4660 schedule();
4661 preempt_disable();
4662}
4663
06b1f808 4664static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4665{
4666 do {
47252cfb
SR
4667 /*
4668 * Because the function tracer can trace preempt_count_sub()
4669 * and it also uses preempt_enable/disable_notrace(), if
4670 * NEED_RESCHED is set, the preempt_enable_notrace() called
4671 * by the function tracer will call this function again and
4672 * cause infinite recursion.
4673 *
4674 * Preemption must be disabled here before the function
4675 * tracer can trace. Break up preempt_disable() into two
4676 * calls. One to disable preemption without fear of being
4677 * traced. The other to still record the preemption latency,
4678 * which can also be traced by the function tracer.
4679 */
499d7955 4680 preempt_disable_notrace();
47252cfb 4681 preempt_latency_start(1);
fc13aeba 4682 __schedule(true);
47252cfb 4683 preempt_latency_stop(1);
499d7955 4684 preempt_enable_no_resched_notrace();
a18b5d01
FW
4685
4686 /*
4687 * Check again in case we missed a preemption opportunity
4688 * between schedule and now.
4689 */
a18b5d01
FW
4690 } while (need_resched());
4691}
4692
c1a280b6 4693#ifdef CONFIG_PREEMPTION
1da177e4 4694/*
a49b4f40
VS
4695 * This is the entry point to schedule() from in-kernel preemption
4696 * off of preempt_enable.
1da177e4 4697 */
722a9f92 4698asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4699{
1da177e4
LT
4700 /*
4701 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4702 * we do not want to preempt the current task. Just return..
1da177e4 4703 */
fbb00b56 4704 if (likely(!preemptible()))
1da177e4
LT
4705 return;
4706
a18b5d01 4707 preempt_schedule_common();
1da177e4 4708}
376e2424 4709NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4710EXPORT_SYMBOL(preempt_schedule);
009f60e2 4711
009f60e2 4712/**
4eaca0a8 4713 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4714 *
4715 * The tracing infrastructure uses preempt_enable_notrace to prevent
4716 * recursion and tracing preempt enabling caused by the tracing
4717 * infrastructure itself. But as tracing can happen in areas coming
4718 * from userspace or just about to enter userspace, a preempt enable
4719 * can occur before user_exit() is called. This will cause the scheduler
4720 * to be called when the system is still in usermode.
4721 *
4722 * To prevent this, the preempt_enable_notrace will use this function
4723 * instead of preempt_schedule() to exit user context if needed before
4724 * calling the scheduler.
4725 */
4eaca0a8 4726asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4727{
4728 enum ctx_state prev_ctx;
4729
4730 if (likely(!preemptible()))
4731 return;
4732
4733 do {
47252cfb
SR
4734 /*
4735 * Because the function tracer can trace preempt_count_sub()
4736 * and it also uses preempt_enable/disable_notrace(), if
4737 * NEED_RESCHED is set, the preempt_enable_notrace() called
4738 * by the function tracer will call this function again and
4739 * cause infinite recursion.
4740 *
4741 * Preemption must be disabled here before the function
4742 * tracer can trace. Break up preempt_disable() into two
4743 * calls. One to disable preemption without fear of being
4744 * traced. The other to still record the preemption latency,
4745 * which can also be traced by the function tracer.
4746 */
3d8f74dd 4747 preempt_disable_notrace();
47252cfb 4748 preempt_latency_start(1);
009f60e2
ON
4749 /*
4750 * Needs preempt disabled in case user_exit() is traced
4751 * and the tracer calls preempt_enable_notrace() causing
4752 * an infinite recursion.
4753 */
4754 prev_ctx = exception_enter();
fc13aeba 4755 __schedule(true);
009f60e2
ON
4756 exception_exit(prev_ctx);
4757
47252cfb 4758 preempt_latency_stop(1);
3d8f74dd 4759 preempt_enable_no_resched_notrace();
009f60e2
ON
4760 } while (need_resched());
4761}
4eaca0a8 4762EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4763
c1a280b6 4764#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4765
4766/*
a49b4f40 4767 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4768 * off of irq context.
4769 * Note, that this is called and return with irqs disabled. This will
4770 * protect us against recursive calling from irq.
4771 */
722a9f92 4772asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4773{
b22366cd 4774 enum ctx_state prev_state;
6478d880 4775
2ed6e34f 4776 /* Catch callers which need to be fixed */
f27dde8d 4777 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4778
b22366cd
FW
4779 prev_state = exception_enter();
4780
3a5c359a 4781 do {
3d8f74dd 4782 preempt_disable();
3a5c359a 4783 local_irq_enable();
fc13aeba 4784 __schedule(true);
3a5c359a 4785 local_irq_disable();
3d8f74dd 4786 sched_preempt_enable_no_resched();
5ed0cec0 4787 } while (need_resched());
b22366cd
FW
4788
4789 exception_exit(prev_state);
1da177e4
LT
4790}
4791
ac6424b9 4792int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4793 void *key)
1da177e4 4794{
062d3f95 4795 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 4796 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4797}
1da177e4
LT
4798EXPORT_SYMBOL(default_wake_function);
4799
b29739f9
IM
4800#ifdef CONFIG_RT_MUTEXES
4801
acd58620
PZ
4802static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4803{
4804 if (pi_task)
4805 prio = min(prio, pi_task->prio);
4806
4807 return prio;
4808}
4809
4810static inline int rt_effective_prio(struct task_struct *p, int prio)
4811{
4812 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4813
4814 return __rt_effective_prio(pi_task, prio);
4815}
4816
b29739f9
IM
4817/*
4818 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4819 * @p: task to boost
4820 * @pi_task: donor task
b29739f9
IM
4821 *
4822 * This function changes the 'effective' priority of a task. It does
4823 * not touch ->normal_prio like __setscheduler().
4824 *
c365c292
TG
4825 * Used by the rt_mutex code to implement priority inheritance
4826 * logic. Call site only calls if the priority of the task changed.
b29739f9 4827 */
acd58620 4828void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4829{
acd58620 4830 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4831 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4832 const struct sched_class *prev_class;
eb580751
PZ
4833 struct rq_flags rf;
4834 struct rq *rq;
b29739f9 4835
acd58620
PZ
4836 /* XXX used to be waiter->prio, not waiter->task->prio */
4837 prio = __rt_effective_prio(pi_task, p->normal_prio);
4838
4839 /*
4840 * If nothing changed; bail early.
4841 */
4842 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4843 return;
b29739f9 4844
eb580751 4845 rq = __task_rq_lock(p, &rf);
80f5c1b8 4846 update_rq_clock(rq);
acd58620
PZ
4847 /*
4848 * Set under pi_lock && rq->lock, such that the value can be used under
4849 * either lock.
4850 *
4851 * Note that there is loads of tricky to make this pointer cache work
4852 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4853 * ensure a task is de-boosted (pi_task is set to NULL) before the
4854 * task is allowed to run again (and can exit). This ensures the pointer
4855 * points to a blocked task -- which guaratees the task is present.
4856 */
4857 p->pi_top_task = pi_task;
4858
4859 /*
4860 * For FIFO/RR we only need to set prio, if that matches we're done.
4861 */
4862 if (prio == p->prio && !dl_prio(prio))
4863 goto out_unlock;
b29739f9 4864
1c4dd99b
TG
4865 /*
4866 * Idle task boosting is a nono in general. There is one
4867 * exception, when PREEMPT_RT and NOHZ is active:
4868 *
4869 * The idle task calls get_next_timer_interrupt() and holds
4870 * the timer wheel base->lock on the CPU and another CPU wants
4871 * to access the timer (probably to cancel it). We can safely
4872 * ignore the boosting request, as the idle CPU runs this code
4873 * with interrupts disabled and will complete the lock
4874 * protected section without being interrupted. So there is no
4875 * real need to boost.
4876 */
4877 if (unlikely(p == rq->idle)) {
4878 WARN_ON(p != rq->curr);
4879 WARN_ON(p->pi_blocked_on);
4880 goto out_unlock;
4881 }
4882
b91473ff 4883 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4884 oldprio = p->prio;
ff77e468
PZ
4885
4886 if (oldprio == prio)
4887 queue_flag &= ~DEQUEUE_MOVE;
4888
83ab0aa0 4889 prev_class = p->sched_class;
da0c1e65 4890 queued = task_on_rq_queued(p);
051a1d1a 4891 running = task_current(rq, p);
da0c1e65 4892 if (queued)
ff77e468 4893 dequeue_task(rq, p, queue_flag);
0e1f3483 4894 if (running)
f3cd1c4e 4895 put_prev_task(rq, p);
dd41f596 4896
2d3d891d
DF
4897 /*
4898 * Boosting condition are:
4899 * 1. -rt task is running and holds mutex A
4900 * --> -dl task blocks on mutex A
4901 *
4902 * 2. -dl task is running and holds mutex A
4903 * --> -dl task blocks on mutex A and could preempt the
4904 * running task
4905 */
4906 if (dl_prio(prio)) {
466af29b 4907 if (!dl_prio(p->normal_prio) ||
740797ce
JL
4908 (pi_task && dl_prio(pi_task->prio) &&
4909 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4910 p->dl.dl_boosted = 1;
ff77e468 4911 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4912 } else
4913 p->dl.dl_boosted = 0;
aab03e05 4914 p->sched_class = &dl_sched_class;
2d3d891d
DF
4915 } else if (rt_prio(prio)) {
4916 if (dl_prio(oldprio))
4917 p->dl.dl_boosted = 0;
4918 if (oldprio < prio)
ff77e468 4919 queue_flag |= ENQUEUE_HEAD;
dd41f596 4920 p->sched_class = &rt_sched_class;
2d3d891d
DF
4921 } else {
4922 if (dl_prio(oldprio))
4923 p->dl.dl_boosted = 0;
746db944
BS
4924 if (rt_prio(oldprio))
4925 p->rt.timeout = 0;
dd41f596 4926 p->sched_class = &fair_sched_class;
2d3d891d 4927 }
dd41f596 4928
b29739f9
IM
4929 p->prio = prio;
4930
da0c1e65 4931 if (queued)
ff77e468 4932 enqueue_task(rq, p, queue_flag);
a399d233 4933 if (running)
03b7fad1 4934 set_next_task(rq, p);
cb469845 4935
da7a735e 4936 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4937out_unlock:
d1ccc66d
IM
4938 /* Avoid rq from going away on us: */
4939 preempt_disable();
eb580751 4940 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4941
4942 balance_callback(rq);
4943 preempt_enable();
b29739f9 4944}
acd58620
PZ
4945#else
4946static inline int rt_effective_prio(struct task_struct *p, int prio)
4947{
4948 return prio;
4949}
b29739f9 4950#endif
d50dde5a 4951
36c8b586 4952void set_user_nice(struct task_struct *p, long nice)
1da177e4 4953{
49bd21ef 4954 bool queued, running;
53a23364 4955 int old_prio;
eb580751 4956 struct rq_flags rf;
70b97a7f 4957 struct rq *rq;
1da177e4 4958
75e45d51 4959 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4960 return;
4961 /*
4962 * We have to be careful, if called from sys_setpriority(),
4963 * the task might be in the middle of scheduling on another CPU.
4964 */
eb580751 4965 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4966 update_rq_clock(rq);
4967
1da177e4
LT
4968 /*
4969 * The RT priorities are set via sched_setscheduler(), but we still
4970 * allow the 'normal' nice value to be set - but as expected
4971 * it wont have any effect on scheduling until the task is
aab03e05 4972 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4973 */
aab03e05 4974 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4975 p->static_prio = NICE_TO_PRIO(nice);
4976 goto out_unlock;
4977 }
da0c1e65 4978 queued = task_on_rq_queued(p);
49bd21ef 4979 running = task_current(rq, p);
da0c1e65 4980 if (queued)
7a57f32a 4981 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4982 if (running)
4983 put_prev_task(rq, p);
1da177e4 4984
1da177e4 4985 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4986 set_load_weight(p, true);
b29739f9
IM
4987 old_prio = p->prio;
4988 p->prio = effective_prio(p);
1da177e4 4989
5443a0be 4990 if (queued)
7134b3e9 4991 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4992 if (running)
03b7fad1 4993 set_next_task(rq, p);
5443a0be
FW
4994
4995 /*
4996 * If the task increased its priority or is running and
4997 * lowered its priority, then reschedule its CPU:
4998 */
4999 p->sched_class->prio_changed(rq, p, old_prio);
5000
1da177e4 5001out_unlock:
eb580751 5002 task_rq_unlock(rq, p, &rf);
1da177e4 5003}
1da177e4
LT
5004EXPORT_SYMBOL(set_user_nice);
5005
e43379f1
MM
5006/*
5007 * can_nice - check if a task can reduce its nice value
5008 * @p: task
5009 * @nice: nice value
5010 */
36c8b586 5011int can_nice(const struct task_struct *p, const int nice)
e43379f1 5012{
d1ccc66d 5013 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5014 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5015
78d7d407 5016 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5017 capable(CAP_SYS_NICE));
5018}
5019
1da177e4
LT
5020#ifdef __ARCH_WANT_SYS_NICE
5021
5022/*
5023 * sys_nice - change the priority of the current process.
5024 * @increment: priority increment
5025 *
5026 * sys_setpriority is a more generic, but much slower function that
5027 * does similar things.
5028 */
5add95d4 5029SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5030{
48f24c4d 5031 long nice, retval;
1da177e4
LT
5032
5033 /*
5034 * Setpriority might change our priority at the same moment.
5035 * We don't have to worry. Conceptually one call occurs first
5036 * and we have a single winner.
5037 */
a9467fa3 5038 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5039 nice = task_nice(current) + increment;
1da177e4 5040
a9467fa3 5041 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5042 if (increment < 0 && !can_nice(current, nice))
5043 return -EPERM;
5044
1da177e4
LT
5045 retval = security_task_setnice(current, nice);
5046 if (retval)
5047 return retval;
5048
5049 set_user_nice(current, nice);
5050 return 0;
5051}
5052
5053#endif
5054
5055/**
5056 * task_prio - return the priority value of a given task.
5057 * @p: the task in question.
5058 *
e69f6186 5059 * Return: The priority value as seen by users in /proc.
1da177e4
LT
5060 * RT tasks are offset by -200. Normal tasks are centered
5061 * around 0, value goes from -16 to +15.
5062 */
36c8b586 5063int task_prio(const struct task_struct *p)
1da177e4
LT
5064{
5065 return p->prio - MAX_RT_PRIO;
5066}
5067
1da177e4 5068/**
d1ccc66d 5069 * idle_cpu - is a given CPU idle currently?
1da177e4 5070 * @cpu: the processor in question.
e69f6186
YB
5071 *
5072 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5073 */
5074int idle_cpu(int cpu)
5075{
908a3283
TG
5076 struct rq *rq = cpu_rq(cpu);
5077
5078 if (rq->curr != rq->idle)
5079 return 0;
5080
5081 if (rq->nr_running)
5082 return 0;
5083
5084#ifdef CONFIG_SMP
126c2092 5085 if (rq->ttwu_pending)
908a3283
TG
5086 return 0;
5087#endif
5088
5089 return 1;
1da177e4
LT
5090}
5091
943d355d
RJ
5092/**
5093 * available_idle_cpu - is a given CPU idle for enqueuing work.
5094 * @cpu: the CPU in question.
5095 *
5096 * Return: 1 if the CPU is currently idle. 0 otherwise.
5097 */
5098int available_idle_cpu(int cpu)
5099{
5100 if (!idle_cpu(cpu))
5101 return 0;
5102
247f2f6f
RJ
5103 if (vcpu_is_preempted(cpu))
5104 return 0;
5105
908a3283 5106 return 1;
1da177e4
LT
5107}
5108
1da177e4 5109/**
d1ccc66d 5110 * idle_task - return the idle task for a given CPU.
1da177e4 5111 * @cpu: the processor in question.
e69f6186 5112 *
d1ccc66d 5113 * Return: The idle task for the CPU @cpu.
1da177e4 5114 */
36c8b586 5115struct task_struct *idle_task(int cpu)
1da177e4
LT
5116{
5117 return cpu_rq(cpu)->idle;
5118}
5119
5120/**
5121 * find_process_by_pid - find a process with a matching PID value.
5122 * @pid: the pid in question.
e69f6186
YB
5123 *
5124 * The task of @pid, if found. %NULL otherwise.
1da177e4 5125 */
a9957449 5126static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5127{
228ebcbe 5128 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5129}
5130
c13db6b1
SR
5131/*
5132 * sched_setparam() passes in -1 for its policy, to let the functions
5133 * it calls know not to change it.
5134 */
5135#define SETPARAM_POLICY -1
5136
c365c292
TG
5137static void __setscheduler_params(struct task_struct *p,
5138 const struct sched_attr *attr)
1da177e4 5139{
d50dde5a
DF
5140 int policy = attr->sched_policy;
5141
c13db6b1 5142 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
5143 policy = p->policy;
5144
1da177e4 5145 p->policy = policy;
d50dde5a 5146
aab03e05
DF
5147 if (dl_policy(policy))
5148 __setparam_dl(p, attr);
39fd8fd2 5149 else if (fair_policy(policy))
d50dde5a
DF
5150 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5151
39fd8fd2
PZ
5152 /*
5153 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5154 * !rt_policy. Always setting this ensures that things like
5155 * getparam()/getattr() don't report silly values for !rt tasks.
5156 */
5157 p->rt_priority = attr->sched_priority;
383afd09 5158 p->normal_prio = normal_prio(p);
9059393e 5159 set_load_weight(p, true);
c365c292 5160}
39fd8fd2 5161
c365c292
TG
5162/* Actually do priority change: must hold pi & rq lock. */
5163static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 5164 const struct sched_attr *attr, bool keep_boost)
c365c292 5165{
a509a7cd
PB
5166 /*
5167 * If params can't change scheduling class changes aren't allowed
5168 * either.
5169 */
5170 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5171 return;
5172
c365c292 5173 __setscheduler_params(p, attr);
d50dde5a 5174
383afd09 5175 /*
0782e63b
TG
5176 * Keep a potential priority boosting if called from
5177 * sched_setscheduler().
383afd09 5178 */
acd58620 5179 p->prio = normal_prio(p);
0782e63b 5180 if (keep_boost)
acd58620 5181 p->prio = rt_effective_prio(p, p->prio);
383afd09 5182
aab03e05
DF
5183 if (dl_prio(p->prio))
5184 p->sched_class = &dl_sched_class;
5185 else if (rt_prio(p->prio))
ffd44db5
PZ
5186 p->sched_class = &rt_sched_class;
5187 else
5188 p->sched_class = &fair_sched_class;
1da177e4 5189}
aab03e05 5190
c69e8d9c 5191/*
d1ccc66d 5192 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
5193 */
5194static bool check_same_owner(struct task_struct *p)
5195{
5196 const struct cred *cred = current_cred(), *pcred;
5197 bool match;
5198
5199 rcu_read_lock();
5200 pcred = __task_cred(p);
9c806aa0
EB
5201 match = (uid_eq(cred->euid, pcred->euid) ||
5202 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
5203 rcu_read_unlock();
5204 return match;
5205}
5206
d50dde5a
DF
5207static int __sched_setscheduler(struct task_struct *p,
5208 const struct sched_attr *attr,
dbc7f069 5209 bool user, bool pi)
1da177e4 5210{
383afd09
SR
5211 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5212 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 5213 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 5214 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 5215 const struct sched_class *prev_class;
eb580751 5216 struct rq_flags rf;
ca94c442 5217 int reset_on_fork;
7a57f32a 5218 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 5219 struct rq *rq;
1da177e4 5220
896bbb25
SRV
5221 /* The pi code expects interrupts enabled */
5222 BUG_ON(pi && in_interrupt());
1da177e4 5223recheck:
d1ccc66d 5224 /* Double check policy once rq lock held: */
ca94c442
LP
5225 if (policy < 0) {
5226 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5227 policy = oldpolicy = p->policy;
ca94c442 5228 } else {
7479f3c9 5229 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 5230
20f9cd2a 5231 if (!valid_policy(policy))
ca94c442
LP
5232 return -EINVAL;
5233 }
5234
794a56eb 5235 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
5236 return -EINVAL;
5237
1da177e4
LT
5238 /*
5239 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5240 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5241 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 5242 */
0bb040a4 5243 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 5244 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 5245 return -EINVAL;
aab03e05
DF
5246 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5247 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
5248 return -EINVAL;
5249
37e4ab3f
OC
5250 /*
5251 * Allow unprivileged RT tasks to decrease priority:
5252 */
961ccddd 5253 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 5254 if (fair_policy(policy)) {
d0ea0268 5255 if (attr->sched_nice < task_nice(p) &&
eaad4513 5256 !can_nice(p, attr->sched_nice))
d50dde5a
DF
5257 return -EPERM;
5258 }
5259
e05606d3 5260 if (rt_policy(policy)) {
a44702e8
ON
5261 unsigned long rlim_rtprio =
5262 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 5263
d1ccc66d 5264 /* Can't set/change the rt policy: */
8dc3e909
ON
5265 if (policy != p->policy && !rlim_rtprio)
5266 return -EPERM;
5267
d1ccc66d 5268 /* Can't increase priority: */
d50dde5a
DF
5269 if (attr->sched_priority > p->rt_priority &&
5270 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
5271 return -EPERM;
5272 }
c02aa73b 5273
d44753b8
JL
5274 /*
5275 * Can't set/change SCHED_DEADLINE policy at all for now
5276 * (safest behavior); in the future we would like to allow
5277 * unprivileged DL tasks to increase their relative deadline
5278 * or reduce their runtime (both ways reducing utilization)
5279 */
5280 if (dl_policy(policy))
5281 return -EPERM;
5282
dd41f596 5283 /*
c02aa73b
DH
5284 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5285 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5286 */
1da1843f 5287 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 5288 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
5289 return -EPERM;
5290 }
5fe1d75f 5291
d1ccc66d 5292 /* Can't change other user's priorities: */
c69e8d9c 5293 if (!check_same_owner(p))
37e4ab3f 5294 return -EPERM;
ca94c442 5295
d1ccc66d 5296 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
5297 if (p->sched_reset_on_fork && !reset_on_fork)
5298 return -EPERM;
37e4ab3f 5299 }
1da177e4 5300
725aad24 5301 if (user) {
794a56eb
JL
5302 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5303 return -EINVAL;
5304
b0ae1981 5305 retval = security_task_setscheduler(p);
725aad24
JF
5306 if (retval)
5307 return retval;
5308 }
5309
a509a7cd
PB
5310 /* Update task specific "requested" clamps */
5311 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5312 retval = uclamp_validate(p, attr);
5313 if (retval)
5314 return retval;
5315 }
5316
710da3c8
JL
5317 if (pi)
5318 cpuset_read_lock();
5319
b29739f9 5320 /*
d1ccc66d 5321 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 5322 * changing the priority of the task:
0122ec5b 5323 *
25985edc 5324 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5325 * runqueue lock must be held.
5326 */
eb580751 5327 rq = task_rq_lock(p, &rf);
80f5c1b8 5328 update_rq_clock(rq);
dc61b1d6 5329
34f971f6 5330 /*
d1ccc66d 5331 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
5332 */
5333 if (p == rq->stop) {
4b211f2b
MP
5334 retval = -EINVAL;
5335 goto unlock;
34f971f6
PZ
5336 }
5337
a51e9198 5338 /*
d6b1e911
TG
5339 * If not changing anything there's no need to proceed further,
5340 * but store a possible modification of reset_on_fork.
a51e9198 5341 */
d50dde5a 5342 if (unlikely(policy == p->policy)) {
d0ea0268 5343 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
5344 goto change;
5345 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5346 goto change;
75381608 5347 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 5348 goto change;
a509a7cd
PB
5349 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5350 goto change;
d50dde5a 5351
d6b1e911 5352 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
5353 retval = 0;
5354 goto unlock;
a51e9198 5355 }
d50dde5a 5356change:
a51e9198 5357
dc61b1d6 5358 if (user) {
332ac17e 5359#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
5360 /*
5361 * Do not allow realtime tasks into groups that have no runtime
5362 * assigned.
5363 */
5364 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5365 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5366 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
5367 retval = -EPERM;
5368 goto unlock;
dc61b1d6 5369 }
dc61b1d6 5370#endif
332ac17e 5371#ifdef CONFIG_SMP
794a56eb
JL
5372 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5373 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 5374 cpumask_t *span = rq->rd->span;
332ac17e
DF
5375
5376 /*
5377 * Don't allow tasks with an affinity mask smaller than
5378 * the entire root_domain to become SCHED_DEADLINE. We
5379 * will also fail if there's no bandwidth available.
5380 */
3bd37062 5381 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 5382 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
5383 retval = -EPERM;
5384 goto unlock;
332ac17e
DF
5385 }
5386 }
5387#endif
5388 }
dc61b1d6 5389
d1ccc66d 5390 /* Re-check policy now with rq lock held: */
1da177e4
LT
5391 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5392 policy = oldpolicy = -1;
eb580751 5393 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5394 if (pi)
5395 cpuset_read_unlock();
1da177e4
LT
5396 goto recheck;
5397 }
332ac17e
DF
5398
5399 /*
5400 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5401 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5402 * is available.
5403 */
06a76fe0 5404 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
5405 retval = -EBUSY;
5406 goto unlock;
332ac17e
DF
5407 }
5408
c365c292
TG
5409 p->sched_reset_on_fork = reset_on_fork;
5410 oldprio = p->prio;
5411
dbc7f069
PZ
5412 if (pi) {
5413 /*
5414 * Take priority boosted tasks into account. If the new
5415 * effective priority is unchanged, we just store the new
5416 * normal parameters and do not touch the scheduler class and
5417 * the runqueue. This will be done when the task deboost
5418 * itself.
5419 */
acd58620 5420 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
5421 if (new_effective_prio == oldprio)
5422 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
5423 }
5424
da0c1e65 5425 queued = task_on_rq_queued(p);
051a1d1a 5426 running = task_current(rq, p);
da0c1e65 5427 if (queued)
ff77e468 5428 dequeue_task(rq, p, queue_flags);
0e1f3483 5429 if (running)
f3cd1c4e 5430 put_prev_task(rq, p);
f6b53205 5431
83ab0aa0 5432 prev_class = p->sched_class;
a509a7cd 5433
dbc7f069 5434 __setscheduler(rq, p, attr, pi);
a509a7cd 5435 __setscheduler_uclamp(p, attr);
f6b53205 5436
da0c1e65 5437 if (queued) {
81a44c54
TG
5438 /*
5439 * We enqueue to tail when the priority of a task is
5440 * increased (user space view).
5441 */
ff77e468
PZ
5442 if (oldprio < p->prio)
5443 queue_flags |= ENQUEUE_HEAD;
1de64443 5444
ff77e468 5445 enqueue_task(rq, p, queue_flags);
81a44c54 5446 }
a399d233 5447 if (running)
03b7fad1 5448 set_next_task(rq, p);
cb469845 5449
da7a735e 5450 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5451
5452 /* Avoid rq from going away on us: */
5453 preempt_disable();
eb580751 5454 task_rq_unlock(rq, p, &rf);
b29739f9 5455
710da3c8
JL
5456 if (pi) {
5457 cpuset_read_unlock();
dbc7f069 5458 rt_mutex_adjust_pi(p);
710da3c8 5459 }
95e02ca9 5460
d1ccc66d 5461 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5462 balance_callback(rq);
5463 preempt_enable();
95e02ca9 5464
1da177e4 5465 return 0;
4b211f2b
MP
5466
5467unlock:
5468 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5469 if (pi)
5470 cpuset_read_unlock();
4b211f2b 5471 return retval;
1da177e4 5472}
961ccddd 5473
7479f3c9
PZ
5474static int _sched_setscheduler(struct task_struct *p, int policy,
5475 const struct sched_param *param, bool check)
5476{
5477 struct sched_attr attr = {
5478 .sched_policy = policy,
5479 .sched_priority = param->sched_priority,
5480 .sched_nice = PRIO_TO_NICE(p->static_prio),
5481 };
5482
c13db6b1
SR
5483 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5484 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5485 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5486 policy &= ~SCHED_RESET_ON_FORK;
5487 attr.sched_policy = policy;
5488 }
5489
dbc7f069 5490 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5491}
961ccddd
RR
5492/**
5493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5494 * @p: the task in question.
5495 * @policy: new policy.
5496 * @param: structure containing the new RT priority.
5497 *
7318d4cc
PZ
5498 * Use sched_set_fifo(), read its comment.
5499 *
e69f6186
YB
5500 * Return: 0 on success. An error code otherwise.
5501 *
961ccddd
RR
5502 * NOTE that the task may be already dead.
5503 */
5504int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5505 const struct sched_param *param)
961ccddd 5506{
7479f3c9 5507 return _sched_setscheduler(p, policy, param, true);
961ccddd 5508}
1da177e4 5509
d50dde5a
DF
5510int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5511{
dbc7f069 5512 return __sched_setscheduler(p, attr, true, true);
d50dde5a 5513}
d50dde5a 5514
794a56eb
JL
5515int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5516{
5517 return __sched_setscheduler(p, attr, false, true);
5518}
5519
961ccddd
RR
5520/**
5521 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5522 * @p: the task in question.
5523 * @policy: new policy.
5524 * @param: structure containing the new RT priority.
5525 *
5526 * Just like sched_setscheduler, only don't bother checking if the
5527 * current context has permission. For example, this is needed in
5528 * stop_machine(): we create temporary high priority worker threads,
5529 * but our caller might not have that capability.
e69f6186
YB
5530 *
5531 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5532 */
5533int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5534 const struct sched_param *param)
961ccddd 5535{
7479f3c9 5536 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
5537}
5538
7318d4cc
PZ
5539/*
5540 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5541 * incapable of resource management, which is the one thing an OS really should
5542 * be doing.
5543 *
5544 * This is of course the reason it is limited to privileged users only.
5545 *
5546 * Worse still; it is fundamentally impossible to compose static priority
5547 * workloads. You cannot take two correctly working static prio workloads
5548 * and smash them together and still expect them to work.
5549 *
5550 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5551 *
5552 * MAX_RT_PRIO / 2
5553 *
5554 * The administrator _MUST_ configure the system, the kernel simply doesn't
5555 * know enough information to make a sensible choice.
5556 */
8b700983 5557void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
5558{
5559 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 5560 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5561}
5562EXPORT_SYMBOL_GPL(sched_set_fifo);
5563
5564/*
5565 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5566 */
8b700983 5567void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
5568{
5569 struct sched_param sp = { .sched_priority = 1 };
8b700983 5570 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5571}
5572EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5573
8b700983 5574void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
5575{
5576 struct sched_attr attr = {
5577 .sched_policy = SCHED_NORMAL,
5578 .sched_nice = nice,
5579 };
8b700983 5580 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
5581}
5582EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 5583
95cdf3b7
IM
5584static int
5585do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5586{
1da177e4
LT
5587 struct sched_param lparam;
5588 struct task_struct *p;
36c8b586 5589 int retval;
1da177e4
LT
5590
5591 if (!param || pid < 0)
5592 return -EINVAL;
5593 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5594 return -EFAULT;
5fe1d75f
ON
5595
5596 rcu_read_lock();
5597 retval = -ESRCH;
1da177e4 5598 p = find_process_by_pid(pid);
710da3c8
JL
5599 if (likely(p))
5600 get_task_struct(p);
5fe1d75f 5601 rcu_read_unlock();
36c8b586 5602
710da3c8
JL
5603 if (likely(p)) {
5604 retval = sched_setscheduler(p, policy, &lparam);
5605 put_task_struct(p);
5606 }
5607
1da177e4
LT
5608 return retval;
5609}
5610
d50dde5a
DF
5611/*
5612 * Mimics kernel/events/core.c perf_copy_attr().
5613 */
d1ccc66d 5614static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5615{
5616 u32 size;
5617 int ret;
5618
d1ccc66d 5619 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5620 memset(attr, 0, sizeof(*attr));
5621
5622 ret = get_user(size, &uattr->size);
5623 if (ret)
5624 return ret;
5625
d1ccc66d
IM
5626 /* ABI compatibility quirk: */
5627 if (!size)
d50dde5a 5628 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5629 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5630 goto err_size;
5631
dff3a85f
AS
5632 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5633 if (ret) {
5634 if (ret == -E2BIG)
5635 goto err_size;
5636 return ret;
d50dde5a
DF
5637 }
5638
a509a7cd
PB
5639 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5640 size < SCHED_ATTR_SIZE_VER1)
5641 return -EINVAL;
5642
d50dde5a 5643 /*
d1ccc66d 5644 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5645 * to be strict and return an error on out-of-bounds values?
5646 */
75e45d51 5647 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5648
e78c7bca 5649 return 0;
d50dde5a
DF
5650
5651err_size:
5652 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5653 return -E2BIG;
d50dde5a
DF
5654}
5655
1da177e4
LT
5656/**
5657 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5658 * @pid: the pid in question.
5659 * @policy: new policy.
5660 * @param: structure containing the new RT priority.
e69f6186
YB
5661 *
5662 * Return: 0 on success. An error code otherwise.
1da177e4 5663 */
d1ccc66d 5664SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5665{
c21761f1
JB
5666 if (policy < 0)
5667 return -EINVAL;
5668
1da177e4
LT
5669 return do_sched_setscheduler(pid, policy, param);
5670}
5671
5672/**
5673 * sys_sched_setparam - set/change the RT priority of a thread
5674 * @pid: the pid in question.
5675 * @param: structure containing the new RT priority.
e69f6186
YB
5676 *
5677 * Return: 0 on success. An error code otherwise.
1da177e4 5678 */
5add95d4 5679SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5680{
c13db6b1 5681 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5682}
5683
d50dde5a
DF
5684/**
5685 * sys_sched_setattr - same as above, but with extended sched_attr
5686 * @pid: the pid in question.
5778fccf 5687 * @uattr: structure containing the extended parameters.
db66d756 5688 * @flags: for future extension.
d50dde5a 5689 */
6d35ab48
PZ
5690SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5691 unsigned int, flags)
d50dde5a
DF
5692{
5693 struct sched_attr attr;
5694 struct task_struct *p;
5695 int retval;
5696
6d35ab48 5697 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5698 return -EINVAL;
5699
143cf23d
MK
5700 retval = sched_copy_attr(uattr, &attr);
5701 if (retval)
5702 return retval;
d50dde5a 5703
b14ed2c2 5704 if ((int)attr.sched_policy < 0)
dbdb2275 5705 return -EINVAL;
1d6362fa
PB
5706 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5707 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5708
5709 rcu_read_lock();
5710 retval = -ESRCH;
5711 p = find_process_by_pid(pid);
a509a7cd
PB
5712 if (likely(p))
5713 get_task_struct(p);
d50dde5a
DF
5714 rcu_read_unlock();
5715
a509a7cd
PB
5716 if (likely(p)) {
5717 retval = sched_setattr(p, &attr);
5718 put_task_struct(p);
5719 }
5720
d50dde5a
DF
5721 return retval;
5722}
5723
1da177e4
LT
5724/**
5725 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5726 * @pid: the pid in question.
e69f6186
YB
5727 *
5728 * Return: On success, the policy of the thread. Otherwise, a negative error
5729 * code.
1da177e4 5730 */
5add95d4 5731SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5732{
36c8b586 5733 struct task_struct *p;
3a5c359a 5734 int retval;
1da177e4
LT
5735
5736 if (pid < 0)
3a5c359a 5737 return -EINVAL;
1da177e4
LT
5738
5739 retval = -ESRCH;
5fe85be0 5740 rcu_read_lock();
1da177e4
LT
5741 p = find_process_by_pid(pid);
5742 if (p) {
5743 retval = security_task_getscheduler(p);
5744 if (!retval)
ca94c442
LP
5745 retval = p->policy
5746 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5747 }
5fe85be0 5748 rcu_read_unlock();
1da177e4
LT
5749 return retval;
5750}
5751
5752/**
ca94c442 5753 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5754 * @pid: the pid in question.
5755 * @param: structure containing the RT priority.
e69f6186
YB
5756 *
5757 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5758 * code.
1da177e4 5759 */
5add95d4 5760SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5761{
ce5f7f82 5762 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5763 struct task_struct *p;
3a5c359a 5764 int retval;
1da177e4
LT
5765
5766 if (!param || pid < 0)
3a5c359a 5767 return -EINVAL;
1da177e4 5768
5fe85be0 5769 rcu_read_lock();
1da177e4
LT
5770 p = find_process_by_pid(pid);
5771 retval = -ESRCH;
5772 if (!p)
5773 goto out_unlock;
5774
5775 retval = security_task_getscheduler(p);
5776 if (retval)
5777 goto out_unlock;
5778
ce5f7f82
PZ
5779 if (task_has_rt_policy(p))
5780 lp.sched_priority = p->rt_priority;
5fe85be0 5781 rcu_read_unlock();
1da177e4
LT
5782
5783 /*
5784 * This one might sleep, we cannot do it with a spinlock held ...
5785 */
5786 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5787
1da177e4
LT
5788 return retval;
5789
5790out_unlock:
5fe85be0 5791 rcu_read_unlock();
1da177e4
LT
5792 return retval;
5793}
5794
1251201c
IM
5795/*
5796 * Copy the kernel size attribute structure (which might be larger
5797 * than what user-space knows about) to user-space.
5798 *
5799 * Note that all cases are valid: user-space buffer can be larger or
5800 * smaller than the kernel-space buffer. The usual case is that both
5801 * have the same size.
5802 */
5803static int
5804sched_attr_copy_to_user(struct sched_attr __user *uattr,
5805 struct sched_attr *kattr,
5806 unsigned int usize)
d50dde5a 5807{
1251201c 5808 unsigned int ksize = sizeof(*kattr);
d50dde5a 5809
96d4f267 5810 if (!access_ok(uattr, usize))
d50dde5a
DF
5811 return -EFAULT;
5812
5813 /*
1251201c
IM
5814 * sched_getattr() ABI forwards and backwards compatibility:
5815 *
5816 * If usize == ksize then we just copy everything to user-space and all is good.
5817 *
5818 * If usize < ksize then we only copy as much as user-space has space for,
5819 * this keeps ABI compatibility as well. We skip the rest.
5820 *
5821 * If usize > ksize then user-space is using a newer version of the ABI,
5822 * which part the kernel doesn't know about. Just ignore it - tooling can
5823 * detect the kernel's knowledge of attributes from the attr->size value
5824 * which is set to ksize in this case.
d50dde5a 5825 */
1251201c 5826 kattr->size = min(usize, ksize);
d50dde5a 5827
1251201c 5828 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5829 return -EFAULT;
5830
22400674 5831 return 0;
d50dde5a
DF
5832}
5833
5834/**
aab03e05 5835 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5836 * @pid: the pid in question.
5778fccf 5837 * @uattr: structure containing the extended parameters.
dff3a85f 5838 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5839 * @flags: for future extension.
d50dde5a 5840 */
6d35ab48 5841SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5842 unsigned int, usize, unsigned int, flags)
d50dde5a 5843{
1251201c 5844 struct sched_attr kattr = { };
d50dde5a
DF
5845 struct task_struct *p;
5846 int retval;
5847
1251201c
IM
5848 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5849 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5850 return -EINVAL;
5851
5852 rcu_read_lock();
5853 p = find_process_by_pid(pid);
5854 retval = -ESRCH;
5855 if (!p)
5856 goto out_unlock;
5857
5858 retval = security_task_getscheduler(p);
5859 if (retval)
5860 goto out_unlock;
5861
1251201c 5862 kattr.sched_policy = p->policy;
7479f3c9 5863 if (p->sched_reset_on_fork)
1251201c 5864 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5865 if (task_has_dl_policy(p))
1251201c 5866 __getparam_dl(p, &kattr);
aab03e05 5867 else if (task_has_rt_policy(p))
1251201c 5868 kattr.sched_priority = p->rt_priority;
d50dde5a 5869 else
1251201c 5870 kattr.sched_nice = task_nice(p);
d50dde5a 5871
a509a7cd 5872#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
5873 /*
5874 * This could race with another potential updater, but this is fine
5875 * because it'll correctly read the old or the new value. We don't need
5876 * to guarantee who wins the race as long as it doesn't return garbage.
5877 */
1251201c
IM
5878 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5879 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5880#endif
5881
d50dde5a
DF
5882 rcu_read_unlock();
5883
1251201c 5884 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5885
5886out_unlock:
5887 rcu_read_unlock();
5888 return retval;
5889}
5890
96f874e2 5891long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5892{
5a16f3d3 5893 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5894 struct task_struct *p;
5895 int retval;
1da177e4 5896
23f5d142 5897 rcu_read_lock();
1da177e4
LT
5898
5899 p = find_process_by_pid(pid);
5900 if (!p) {
23f5d142 5901 rcu_read_unlock();
1da177e4
LT
5902 return -ESRCH;
5903 }
5904
23f5d142 5905 /* Prevent p going away */
1da177e4 5906 get_task_struct(p);
23f5d142 5907 rcu_read_unlock();
1da177e4 5908
14a40ffc
TH
5909 if (p->flags & PF_NO_SETAFFINITY) {
5910 retval = -EINVAL;
5911 goto out_put_task;
5912 }
5a16f3d3
RR
5913 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5914 retval = -ENOMEM;
5915 goto out_put_task;
5916 }
5917 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5918 retval = -ENOMEM;
5919 goto out_free_cpus_allowed;
5920 }
1da177e4 5921 retval = -EPERM;
4c44aaaf
EB
5922 if (!check_same_owner(p)) {
5923 rcu_read_lock();
5924 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5925 rcu_read_unlock();
16303ab2 5926 goto out_free_new_mask;
4c44aaaf
EB
5927 }
5928 rcu_read_unlock();
5929 }
1da177e4 5930
b0ae1981 5931 retval = security_task_setscheduler(p);
e7834f8f 5932 if (retval)
16303ab2 5933 goto out_free_new_mask;
e7834f8f 5934
e4099a5e
PZ
5935
5936 cpuset_cpus_allowed(p, cpus_allowed);
5937 cpumask_and(new_mask, in_mask, cpus_allowed);
5938
332ac17e
DF
5939 /*
5940 * Since bandwidth control happens on root_domain basis,
5941 * if admission test is enabled, we only admit -deadline
5942 * tasks allowed to run on all the CPUs in the task's
5943 * root_domain.
5944 */
5945#ifdef CONFIG_SMP
f1e3a093
KT
5946 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5947 rcu_read_lock();
5948 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5949 retval = -EBUSY;
f1e3a093 5950 rcu_read_unlock();
16303ab2 5951 goto out_free_new_mask;
332ac17e 5952 }
f1e3a093 5953 rcu_read_unlock();
332ac17e
DF
5954 }
5955#endif
49246274 5956again:
25834c73 5957 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5958
8707d8b8 5959 if (!retval) {
5a16f3d3
RR
5960 cpuset_cpus_allowed(p, cpus_allowed);
5961 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5962 /*
5963 * We must have raced with a concurrent cpuset
5964 * update. Just reset the cpus_allowed to the
5965 * cpuset's cpus_allowed
5966 */
5a16f3d3 5967 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5968 goto again;
5969 }
5970 }
16303ab2 5971out_free_new_mask:
5a16f3d3
RR
5972 free_cpumask_var(new_mask);
5973out_free_cpus_allowed:
5974 free_cpumask_var(cpus_allowed);
5975out_put_task:
1da177e4 5976 put_task_struct(p);
1da177e4
LT
5977 return retval;
5978}
5979
5980static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5981 struct cpumask *new_mask)
1da177e4 5982{
96f874e2
RR
5983 if (len < cpumask_size())
5984 cpumask_clear(new_mask);
5985 else if (len > cpumask_size())
5986 len = cpumask_size();
5987
1da177e4
LT
5988 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5989}
5990
5991/**
d1ccc66d 5992 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5993 * @pid: pid of the process
5994 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5995 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5996 *
5997 * Return: 0 on success. An error code otherwise.
1da177e4 5998 */
5add95d4
HC
5999SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6000 unsigned long __user *, user_mask_ptr)
1da177e4 6001{
5a16f3d3 6002 cpumask_var_t new_mask;
1da177e4
LT
6003 int retval;
6004
5a16f3d3
RR
6005 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6006 return -ENOMEM;
1da177e4 6007
5a16f3d3
RR
6008 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6009 if (retval == 0)
6010 retval = sched_setaffinity(pid, new_mask);
6011 free_cpumask_var(new_mask);
6012 return retval;
1da177e4
LT
6013}
6014
96f874e2 6015long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6016{
36c8b586 6017 struct task_struct *p;
31605683 6018 unsigned long flags;
1da177e4 6019 int retval;
1da177e4 6020
23f5d142 6021 rcu_read_lock();
1da177e4
LT
6022
6023 retval = -ESRCH;
6024 p = find_process_by_pid(pid);
6025 if (!p)
6026 goto out_unlock;
6027
e7834f8f
DQ
6028 retval = security_task_getscheduler(p);
6029 if (retval)
6030 goto out_unlock;
6031
013fdb80 6032 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6033 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6034 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6035
6036out_unlock:
23f5d142 6037 rcu_read_unlock();
1da177e4 6038
9531b62f 6039 return retval;
1da177e4
LT
6040}
6041
6042/**
d1ccc66d 6043 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6044 * @pid: pid of the process
6045 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6046 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6047 *
599b4840
ZW
6048 * Return: size of CPU mask copied to user_mask_ptr on success. An
6049 * error code otherwise.
1da177e4 6050 */
5add95d4
HC
6051SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6052 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6053{
6054 int ret;
f17c8607 6055 cpumask_var_t mask;
1da177e4 6056
84fba5ec 6057 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6058 return -EINVAL;
6059 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6060 return -EINVAL;
6061
f17c8607
RR
6062 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6063 return -ENOMEM;
1da177e4 6064
f17c8607
RR
6065 ret = sched_getaffinity(pid, mask);
6066 if (ret == 0) {
4de373a1 6067 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6068
6069 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6070 ret = -EFAULT;
6071 else
cd3d8031 6072 ret = retlen;
f17c8607
RR
6073 }
6074 free_cpumask_var(mask);
1da177e4 6075
f17c8607 6076 return ret;
1da177e4
LT
6077}
6078
6079/**
6080 * sys_sched_yield - yield the current processor to other threads.
6081 *
dd41f596
IM
6082 * This function yields the current CPU to other tasks. If there are no
6083 * other threads running on this CPU then this function will return.
e69f6186
YB
6084 *
6085 * Return: 0.
1da177e4 6086 */
7d4dd4f1 6087static void do_sched_yield(void)
1da177e4 6088{
8a8c69c3
PZ
6089 struct rq_flags rf;
6090 struct rq *rq;
6091
246b3b33 6092 rq = this_rq_lock_irq(&rf);
1da177e4 6093
ae92882e 6094 schedstat_inc(rq->yld_count);
4530d7ab 6095 current->sched_class->yield_task(rq);
1da177e4
LT
6096
6097 /*
6098 * Since we are going to call schedule() anyway, there's
6099 * no need to preempt or enable interrupts:
6100 */
8a8c69c3
PZ
6101 preempt_disable();
6102 rq_unlock(rq, &rf);
ba74c144 6103 sched_preempt_enable_no_resched();
1da177e4
LT
6104
6105 schedule();
7d4dd4f1 6106}
1da177e4 6107
7d4dd4f1
DB
6108SYSCALL_DEFINE0(sched_yield)
6109{
6110 do_sched_yield();
1da177e4
LT
6111 return 0;
6112}
6113
c1a280b6 6114#ifndef CONFIG_PREEMPTION
02b67cc3 6115int __sched _cond_resched(void)
1da177e4 6116{
fe32d3cd 6117 if (should_resched(0)) {
a18b5d01 6118 preempt_schedule_common();
1da177e4
LT
6119 return 1;
6120 }
f79c3ad6 6121 rcu_all_qs();
1da177e4
LT
6122 return 0;
6123}
02b67cc3 6124EXPORT_SYMBOL(_cond_resched);
35a773a0 6125#endif
1da177e4
LT
6126
6127/*
613afbf8 6128 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6129 * call schedule, and on return reacquire the lock.
6130 *
c1a280b6 6131 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
6132 * operations here to prevent schedule() from being called twice (once via
6133 * spin_unlock(), once by hand).
6134 */
613afbf8 6135int __cond_resched_lock(spinlock_t *lock)
1da177e4 6136{
fe32d3cd 6137 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
6138 int ret = 0;
6139
f607c668
PZ
6140 lockdep_assert_held(lock);
6141
4a81e832 6142 if (spin_needbreak(lock) || resched) {
1da177e4 6143 spin_unlock(lock);
d86ee480 6144 if (resched)
a18b5d01 6145 preempt_schedule_common();
95c354fe
NP
6146 else
6147 cpu_relax();
6df3cecb 6148 ret = 1;
1da177e4 6149 spin_lock(lock);
1da177e4 6150 }
6df3cecb 6151 return ret;
1da177e4 6152}
613afbf8 6153EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6154
1da177e4
LT
6155/**
6156 * yield - yield the current processor to other threads.
6157 *
8e3fabfd
PZ
6158 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6159 *
6160 * The scheduler is at all times free to pick the calling task as the most
6161 * eligible task to run, if removing the yield() call from your code breaks
6162 * it, its already broken.
6163 *
6164 * Typical broken usage is:
6165 *
6166 * while (!event)
d1ccc66d 6167 * yield();
8e3fabfd
PZ
6168 *
6169 * where one assumes that yield() will let 'the other' process run that will
6170 * make event true. If the current task is a SCHED_FIFO task that will never
6171 * happen. Never use yield() as a progress guarantee!!
6172 *
6173 * If you want to use yield() to wait for something, use wait_event().
6174 * If you want to use yield() to be 'nice' for others, use cond_resched().
6175 * If you still want to use yield(), do not!
1da177e4
LT
6176 */
6177void __sched yield(void)
6178{
6179 set_current_state(TASK_RUNNING);
7d4dd4f1 6180 do_sched_yield();
1da177e4 6181}
1da177e4
LT
6182EXPORT_SYMBOL(yield);
6183
d95f4122
MG
6184/**
6185 * yield_to - yield the current processor to another thread in
6186 * your thread group, or accelerate that thread toward the
6187 * processor it's on.
16addf95
RD
6188 * @p: target task
6189 * @preempt: whether task preemption is allowed or not
d95f4122
MG
6190 *
6191 * It's the caller's job to ensure that the target task struct
6192 * can't go away on us before we can do any checks.
6193 *
e69f6186 6194 * Return:
7b270f60
PZ
6195 * true (>0) if we indeed boosted the target task.
6196 * false (0) if we failed to boost the target.
6197 * -ESRCH if there's no task to yield to.
d95f4122 6198 */
fa93384f 6199int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
6200{
6201 struct task_struct *curr = current;
6202 struct rq *rq, *p_rq;
6203 unsigned long flags;
c3c18640 6204 int yielded = 0;
d95f4122
MG
6205
6206 local_irq_save(flags);
6207 rq = this_rq();
6208
6209again:
6210 p_rq = task_rq(p);
7b270f60
PZ
6211 /*
6212 * If we're the only runnable task on the rq and target rq also
6213 * has only one task, there's absolutely no point in yielding.
6214 */
6215 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6216 yielded = -ESRCH;
6217 goto out_irq;
6218 }
6219
d95f4122 6220 double_rq_lock(rq, p_rq);
39e24d8f 6221 if (task_rq(p) != p_rq) {
d95f4122
MG
6222 double_rq_unlock(rq, p_rq);
6223 goto again;
6224 }
6225
6226 if (!curr->sched_class->yield_to_task)
7b270f60 6227 goto out_unlock;
d95f4122
MG
6228
6229 if (curr->sched_class != p->sched_class)
7b270f60 6230 goto out_unlock;
d95f4122
MG
6231
6232 if (task_running(p_rq, p) || p->state)
7b270f60 6233 goto out_unlock;
d95f4122 6234
0900acf2 6235 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 6236 if (yielded) {
ae92882e 6237 schedstat_inc(rq->yld_count);
6d1cafd8
VP
6238 /*
6239 * Make p's CPU reschedule; pick_next_entity takes care of
6240 * fairness.
6241 */
6242 if (preempt && rq != p_rq)
8875125e 6243 resched_curr(p_rq);
6d1cafd8 6244 }
d95f4122 6245
7b270f60 6246out_unlock:
d95f4122 6247 double_rq_unlock(rq, p_rq);
7b270f60 6248out_irq:
d95f4122
MG
6249 local_irq_restore(flags);
6250
7b270f60 6251 if (yielded > 0)
d95f4122
MG
6252 schedule();
6253
6254 return yielded;
6255}
6256EXPORT_SYMBOL_GPL(yield_to);
6257
10ab5643
TH
6258int io_schedule_prepare(void)
6259{
6260 int old_iowait = current->in_iowait;
6261
6262 current->in_iowait = 1;
6263 blk_schedule_flush_plug(current);
6264
6265 return old_iowait;
6266}
6267
6268void io_schedule_finish(int token)
6269{
6270 current->in_iowait = token;
6271}
6272
1da177e4 6273/*
41a2d6cf 6274 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6275 * that process accounting knows that this is a task in IO wait state.
1da177e4 6276 */
1da177e4
LT
6277long __sched io_schedule_timeout(long timeout)
6278{
10ab5643 6279 int token;
1da177e4
LT
6280 long ret;
6281
10ab5643 6282 token = io_schedule_prepare();
1da177e4 6283 ret = schedule_timeout(timeout);
10ab5643 6284 io_schedule_finish(token);
9cff8ade 6285
1da177e4
LT
6286 return ret;
6287}
9cff8ade 6288EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 6289
e3b929b0 6290void __sched io_schedule(void)
10ab5643
TH
6291{
6292 int token;
6293
6294 token = io_schedule_prepare();
6295 schedule();
6296 io_schedule_finish(token);
6297}
6298EXPORT_SYMBOL(io_schedule);
6299
1da177e4
LT
6300/**
6301 * sys_sched_get_priority_max - return maximum RT priority.
6302 * @policy: scheduling class.
6303 *
e69f6186
YB
6304 * Return: On success, this syscall returns the maximum
6305 * rt_priority that can be used by a given scheduling class.
6306 * On failure, a negative error code is returned.
1da177e4 6307 */
5add95d4 6308SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6309{
6310 int ret = -EINVAL;
6311
6312 switch (policy) {
6313 case SCHED_FIFO:
6314 case SCHED_RR:
6315 ret = MAX_USER_RT_PRIO-1;
6316 break;
aab03e05 6317 case SCHED_DEADLINE:
1da177e4 6318 case SCHED_NORMAL:
b0a9499c 6319 case SCHED_BATCH:
dd41f596 6320 case SCHED_IDLE:
1da177e4
LT
6321 ret = 0;
6322 break;
6323 }
6324 return ret;
6325}
6326
6327/**
6328 * sys_sched_get_priority_min - return minimum RT priority.
6329 * @policy: scheduling class.
6330 *
e69f6186
YB
6331 * Return: On success, this syscall returns the minimum
6332 * rt_priority that can be used by a given scheduling class.
6333 * On failure, a negative error code is returned.
1da177e4 6334 */
5add95d4 6335SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6336{
6337 int ret = -EINVAL;
6338
6339 switch (policy) {
6340 case SCHED_FIFO:
6341 case SCHED_RR:
6342 ret = 1;
6343 break;
aab03e05 6344 case SCHED_DEADLINE:
1da177e4 6345 case SCHED_NORMAL:
b0a9499c 6346 case SCHED_BATCH:
dd41f596 6347 case SCHED_IDLE:
1da177e4
LT
6348 ret = 0;
6349 }
6350 return ret;
6351}
6352
abca5fc5 6353static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 6354{
36c8b586 6355 struct task_struct *p;
a4ec24b4 6356 unsigned int time_slice;
eb580751 6357 struct rq_flags rf;
dba091b9 6358 struct rq *rq;
3a5c359a 6359 int retval;
1da177e4
LT
6360
6361 if (pid < 0)
3a5c359a 6362 return -EINVAL;
1da177e4
LT
6363
6364 retval = -ESRCH;
1a551ae7 6365 rcu_read_lock();
1da177e4
LT
6366 p = find_process_by_pid(pid);
6367 if (!p)
6368 goto out_unlock;
6369
6370 retval = security_task_getscheduler(p);
6371 if (retval)
6372 goto out_unlock;
6373
eb580751 6374 rq = task_rq_lock(p, &rf);
a57beec5
PZ
6375 time_slice = 0;
6376 if (p->sched_class->get_rr_interval)
6377 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 6378 task_rq_unlock(rq, p, &rf);
a4ec24b4 6379
1a551ae7 6380 rcu_read_unlock();
abca5fc5
AV
6381 jiffies_to_timespec64(time_slice, t);
6382 return 0;
3a5c359a 6383
1da177e4 6384out_unlock:
1a551ae7 6385 rcu_read_unlock();
1da177e4
LT
6386 return retval;
6387}
6388
2064a5ab
RD
6389/**
6390 * sys_sched_rr_get_interval - return the default timeslice of a process.
6391 * @pid: pid of the process.
6392 * @interval: userspace pointer to the timeslice value.
6393 *
6394 * this syscall writes the default timeslice value of a given process
6395 * into the user-space timespec buffer. A value of '0' means infinity.
6396 *
6397 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6398 * an error code.
6399 */
abca5fc5 6400SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 6401 struct __kernel_timespec __user *, interval)
abca5fc5
AV
6402{
6403 struct timespec64 t;
6404 int retval = sched_rr_get_interval(pid, &t);
6405
6406 if (retval == 0)
6407 retval = put_timespec64(&t, interval);
6408
6409 return retval;
6410}
6411
474b9c77 6412#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
6413SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6414 struct old_timespec32 __user *, interval)
abca5fc5
AV
6415{
6416 struct timespec64 t;
6417 int retval = sched_rr_get_interval(pid, &t);
6418
6419 if (retval == 0)
9afc5eee 6420 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
6421 return retval;
6422}
6423#endif
6424
82a1fcb9 6425void sched_show_task(struct task_struct *p)
1da177e4 6426{
1da177e4 6427 unsigned long free = 0;
4e79752c 6428 int ppid;
c930b2c0 6429
38200502
TH
6430 if (!try_get_task_stack(p))
6431 return;
20435d84 6432
cc172ff3 6433 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
6434
6435 if (p->state == TASK_RUNNING)
cc172ff3 6436 pr_cont(" running task ");
1da177e4 6437#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6438 free = stack_not_used(p);
1da177e4 6439#endif
a90e984c 6440 ppid = 0;
4e79752c 6441 rcu_read_lock();
a90e984c
ON
6442 if (pid_alive(p))
6443 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 6444 rcu_read_unlock();
cc172ff3
LZ
6445 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6446 free, task_pid_nr(p), ppid,
aa47b7e0 6447 (unsigned long)task_thread_info(p)->flags);
1da177e4 6448
3d1cb205 6449 print_worker_info(KERN_INFO, p);
9cb8f069 6450 show_stack(p, NULL, KERN_INFO);
38200502 6451 put_task_stack(p);
1da177e4 6452}
0032f4e8 6453EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 6454
5d68cc95
PZ
6455static inline bool
6456state_filter_match(unsigned long state_filter, struct task_struct *p)
6457{
6458 /* no filter, everything matches */
6459 if (!state_filter)
6460 return true;
6461
6462 /* filter, but doesn't match */
6463 if (!(p->state & state_filter))
6464 return false;
6465
6466 /*
6467 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6468 * TASK_KILLABLE).
6469 */
6470 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6471 return false;
6472
6473 return true;
6474}
6475
6476
e59e2ae2 6477void show_state_filter(unsigned long state_filter)
1da177e4 6478{
36c8b586 6479 struct task_struct *g, *p;
1da177e4 6480
510f5acc 6481 rcu_read_lock();
5d07f420 6482 for_each_process_thread(g, p) {
1da177e4
LT
6483 /*
6484 * reset the NMI-timeout, listing all files on a slow
25985edc 6485 * console might take a lot of time:
57675cb9
AR
6486 * Also, reset softlockup watchdogs on all CPUs, because
6487 * another CPU might be blocked waiting for us to process
6488 * an IPI.
1da177e4
LT
6489 */
6490 touch_nmi_watchdog();
57675cb9 6491 touch_all_softlockup_watchdogs();
5d68cc95 6492 if (state_filter_match(state_filter, p))
82a1fcb9 6493 sched_show_task(p);
5d07f420 6494 }
1da177e4 6495
dd41f596 6496#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6497 if (!state_filter)
6498 sysrq_sched_debug_show();
dd41f596 6499#endif
510f5acc 6500 rcu_read_unlock();
e59e2ae2
IM
6501 /*
6502 * Only show locks if all tasks are dumped:
6503 */
93335a21 6504 if (!state_filter)
e59e2ae2 6505 debug_show_all_locks();
1da177e4
LT
6506}
6507
f340c0d1
IM
6508/**
6509 * init_idle - set up an idle thread for a given CPU
6510 * @idle: task in question
d1ccc66d 6511 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6512 *
6513 * NOTE: this function does not set the idle thread's NEED_RESCHED
6514 * flag, to make booting more robust.
6515 */
0db0628d 6516void init_idle(struct task_struct *idle, int cpu)
1da177e4 6517{
70b97a7f 6518 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6519 unsigned long flags;
6520
ff51ff84
PZ
6521 __sched_fork(0, idle);
6522
25834c73
PZ
6523 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6524 raw_spin_lock(&rq->lock);
5cbd54ef 6525
06b83b5f 6526 idle->state = TASK_RUNNING;
dd41f596 6527 idle->se.exec_start = sched_clock();
c1de45ca 6528 idle->flags |= PF_IDLE;
dd41f596 6529
d08b9f0c 6530 scs_task_reset(idle);
e1b77c92
MR
6531 kasan_unpoison_task_stack(idle);
6532
de9b8f5d
PZ
6533#ifdef CONFIG_SMP
6534 /*
6535 * Its possible that init_idle() gets called multiple times on a task,
6536 * in that case do_set_cpus_allowed() will not do the right thing.
6537 *
6538 * And since this is boot we can forgo the serialization.
6539 */
6540 set_cpus_allowed_common(idle, cpumask_of(cpu));
6541#endif
6506cf6c
PZ
6542 /*
6543 * We're having a chicken and egg problem, even though we are
d1ccc66d 6544 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6545 * lockdep check in task_group() will fail.
6546 *
6547 * Similar case to sched_fork(). / Alternatively we could
6548 * use task_rq_lock() here and obtain the other rq->lock.
6549 *
6550 * Silence PROVE_RCU
6551 */
6552 rcu_read_lock();
dd41f596 6553 __set_task_cpu(idle, cpu);
6506cf6c 6554 rcu_read_unlock();
1da177e4 6555
5311a98f
EB
6556 rq->idle = idle;
6557 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6558 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6559#ifdef CONFIG_SMP
3ca7a440 6560 idle->on_cpu = 1;
4866cde0 6561#endif
25834c73
PZ
6562 raw_spin_unlock(&rq->lock);
6563 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6564
6565 /* Set the preempt count _outside_ the spinlocks! */
01028747 6566 init_idle_preempt_count(idle, cpu);
55cd5340 6567
dd41f596
IM
6568 /*
6569 * The idle tasks have their own, simple scheduling class:
6570 */
6571 idle->sched_class = &idle_sched_class;
868baf07 6572 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6573 vtime_init_idle(idle, cpu);
de9b8f5d 6574#ifdef CONFIG_SMP
f1c6f1a7
CE
6575 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6576#endif
19978ca6
IM
6577}
6578
e1d4eeec
NP
6579#ifdef CONFIG_SMP
6580
f82f8042
JL
6581int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6582 const struct cpumask *trial)
6583{
06a76fe0 6584 int ret = 1;
f82f8042 6585
bb2bc55a
MG
6586 if (!cpumask_weight(cur))
6587 return ret;
6588
06a76fe0 6589 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6590
6591 return ret;
6592}
6593
7f51412a
JL
6594int task_can_attach(struct task_struct *p,
6595 const struct cpumask *cs_cpus_allowed)
6596{
6597 int ret = 0;
6598
6599 /*
6600 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6601 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6602 * affinity and isolating such threads by their set of
6603 * allowed nodes is unnecessary. Thus, cpusets are not
6604 * applicable for such threads. This prevents checking for
6605 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6606 * before cpus_mask may be changed.
7f51412a
JL
6607 */
6608 if (p->flags & PF_NO_SETAFFINITY) {
6609 ret = -EINVAL;
6610 goto out;
6611 }
6612
7f51412a 6613 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6614 cs_cpus_allowed))
6615 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6616
7f51412a
JL
6617out:
6618 return ret;
6619}
6620
f2cb1360 6621bool sched_smp_initialized __read_mostly;
e26fbffd 6622
e6628d5b
MG
6623#ifdef CONFIG_NUMA_BALANCING
6624/* Migrate current task p to target_cpu */
6625int migrate_task_to(struct task_struct *p, int target_cpu)
6626{
6627 struct migration_arg arg = { p, target_cpu };
6628 int curr_cpu = task_cpu(p);
6629
6630 if (curr_cpu == target_cpu)
6631 return 0;
6632
3bd37062 6633 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6634 return -EINVAL;
6635
6636 /* TODO: This is not properly updating schedstats */
6637
286549dc 6638 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6639 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6640}
0ec8aa00
PZ
6641
6642/*
6643 * Requeue a task on a given node and accurately track the number of NUMA
6644 * tasks on the runqueues
6645 */
6646void sched_setnuma(struct task_struct *p, int nid)
6647{
da0c1e65 6648 bool queued, running;
eb580751
PZ
6649 struct rq_flags rf;
6650 struct rq *rq;
0ec8aa00 6651
eb580751 6652 rq = task_rq_lock(p, &rf);
da0c1e65 6653 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6654 running = task_current(rq, p);
6655
da0c1e65 6656 if (queued)
1de64443 6657 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6658 if (running)
f3cd1c4e 6659 put_prev_task(rq, p);
0ec8aa00
PZ
6660
6661 p->numa_preferred_nid = nid;
0ec8aa00 6662
da0c1e65 6663 if (queued)
7134b3e9 6664 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6665 if (running)
03b7fad1 6666 set_next_task(rq, p);
eb580751 6667 task_rq_unlock(rq, p, &rf);
0ec8aa00 6668}
5cc389bc 6669#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6670
1da177e4 6671#ifdef CONFIG_HOTPLUG_CPU
054b9108 6672/*
d1ccc66d 6673 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6674 * offline.
054b9108 6675 */
48c5ccae 6676void idle_task_exit(void)
1da177e4 6677{
48c5ccae 6678 struct mm_struct *mm = current->active_mm;
e76bd8d9 6679
48c5ccae 6680 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 6681 BUG_ON(current != this_rq()->idle);
e76bd8d9 6682
a53efe5f 6683 if (mm != &init_mm) {
252d2a41 6684 switch_mm(mm, &init_mm, current);
a53efe5f
MS
6685 finish_arch_post_lock_switch();
6686 }
bf2c59fc
PZ
6687
6688 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
6689}
6690
6691/*
5d180232
PZ
6692 * Since this CPU is going 'away' for a while, fold any nr_active delta
6693 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6694 * nr_active count is stable. We need to take the teardown thread which
6695 * is calling this into account, so we hand in adjust = 1 to the load
6696 * calculation.
5d180232
PZ
6697 *
6698 * Also see the comment "Global load-average calculations".
1da177e4 6699 */
5d180232 6700static void calc_load_migrate(struct rq *rq)
1da177e4 6701{
d60585c5 6702 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6703 if (delta)
6704 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6705}
6706
10e7071b 6707static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6708{
10e7071b
PZ
6709 const struct sched_class *class;
6710 struct task_struct *next;
3f1d2a31 6711
10e7071b 6712 for_each_class(class) {
98c2f700 6713 next = class->pick_next_task(rq);
10e7071b 6714 if (next) {
6e2df058 6715 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6716 return next;
6717 }
6718 }
3f1d2a31 6719
10e7071b
PZ
6720 /* The idle class should always have a runnable task */
6721 BUG();
6722}
3f1d2a31 6723
48f24c4d 6724/*
48c5ccae
PZ
6725 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6726 * try_to_wake_up()->select_task_rq().
6727 *
6728 * Called with rq->lock held even though we'er in stop_machine() and
6729 * there's no concurrency possible, we hold the required locks anyway
6730 * because of lock validation efforts.
1da177e4 6731 */
8a8c69c3 6732static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6733{
5e16bbc2 6734 struct rq *rq = dead_rq;
48c5ccae 6735 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6736 struct rq_flags orf = *rf;
48c5ccae 6737 int dest_cpu;
1da177e4
LT
6738
6739 /*
48c5ccae
PZ
6740 * Fudge the rq selection such that the below task selection loop
6741 * doesn't get stuck on the currently eligible stop task.
6742 *
6743 * We're currently inside stop_machine() and the rq is either stuck
6744 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6745 * either way we should never end up calling schedule() until we're
6746 * done here.
1da177e4 6747 */
48c5ccae 6748 rq->stop = NULL;
48f24c4d 6749
77bd3970
FW
6750 /*
6751 * put_prev_task() and pick_next_task() sched
6752 * class method both need to have an up-to-date
6753 * value of rq->clock[_task]
6754 */
6755 update_rq_clock(rq);
6756
5e16bbc2 6757 for (;;) {
48c5ccae
PZ
6758 /*
6759 * There's this thread running, bail when that's the only
d1ccc66d 6760 * remaining thread:
48c5ccae
PZ
6761 */
6762 if (rq->nr_running == 1)
dd41f596 6763 break;
48c5ccae 6764
10e7071b 6765 next = __pick_migrate_task(rq);
e692ab53 6766
5473e0cc 6767 /*
3bd37062 6768 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6769 * both pi_lock and rq->lock, such that holding either
6770 * stabilizes the mask.
6771 *
6772 * Drop rq->lock is not quite as disastrous as it usually is
6773 * because !cpu_active at this point, which means load-balance
6774 * will not interfere. Also, stop-machine.
6775 */
8a8c69c3 6776 rq_unlock(rq, rf);
5473e0cc 6777 raw_spin_lock(&next->pi_lock);
8a8c69c3 6778 rq_relock(rq, rf);
5473e0cc
WL
6779
6780 /*
6781 * Since we're inside stop-machine, _nothing_ should have
6782 * changed the task, WARN if weird stuff happened, because in
6783 * that case the above rq->lock drop is a fail too.
6784 */
6785 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6786 raw_spin_unlock(&next->pi_lock);
6787 continue;
6788 }
6789
48c5ccae 6790 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6791 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6792 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6793 if (rq != dead_rq) {
8a8c69c3 6794 rq_unlock(rq, rf);
5e16bbc2 6795 rq = dead_rq;
8a8c69c3
PZ
6796 *rf = orf;
6797 rq_relock(rq, rf);
5e16bbc2 6798 }
5473e0cc 6799 raw_spin_unlock(&next->pi_lock);
1da177e4 6800 }
dce48a84 6801
48c5ccae 6802 rq->stop = stop;
dce48a84 6803}
1da177e4
LT
6804#endif /* CONFIG_HOTPLUG_CPU */
6805
f2cb1360 6806void set_rq_online(struct rq *rq)
1f11eb6a
GH
6807{
6808 if (!rq->online) {
6809 const struct sched_class *class;
6810
c6c4927b 6811 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6812 rq->online = 1;
6813
6814 for_each_class(class) {
6815 if (class->rq_online)
6816 class->rq_online(rq);
6817 }
6818 }
6819}
6820
f2cb1360 6821void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6822{
6823 if (rq->online) {
6824 const struct sched_class *class;
6825
6826 for_each_class(class) {
6827 if (class->rq_offline)
6828 class->rq_offline(rq);
6829 }
6830
c6c4927b 6831 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6832 rq->online = 0;
6833 }
6834}
6835
d1ccc66d
IM
6836/*
6837 * used to mark begin/end of suspend/resume:
6838 */
6839static int num_cpus_frozen;
d35be8ba 6840
1da177e4 6841/*
3a101d05
TH
6842 * Update cpusets according to cpu_active mask. If cpusets are
6843 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6844 * around partition_sched_domains().
d35be8ba
SB
6845 *
6846 * If we come here as part of a suspend/resume, don't touch cpusets because we
6847 * want to restore it back to its original state upon resume anyway.
1da177e4 6848 */
40190a78 6849static void cpuset_cpu_active(void)
e761b772 6850{
40190a78 6851 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6852 /*
6853 * num_cpus_frozen tracks how many CPUs are involved in suspend
6854 * resume sequence. As long as this is not the last online
6855 * operation in the resume sequence, just build a single sched
6856 * domain, ignoring cpusets.
6857 */
50e76632
PZ
6858 partition_sched_domains(1, NULL, NULL);
6859 if (--num_cpus_frozen)
135fb3e1 6860 return;
d35be8ba
SB
6861 /*
6862 * This is the last CPU online operation. So fall through and
6863 * restore the original sched domains by considering the
6864 * cpuset configurations.
6865 */
50e76632 6866 cpuset_force_rebuild();
3a101d05 6867 }
30e03acd 6868 cpuset_update_active_cpus();
3a101d05 6869}
e761b772 6870
40190a78 6871static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6872{
40190a78 6873 if (!cpuhp_tasks_frozen) {
06a76fe0 6874 if (dl_cpu_busy(cpu))
135fb3e1 6875 return -EBUSY;
30e03acd 6876 cpuset_update_active_cpus();
135fb3e1 6877 } else {
d35be8ba
SB
6878 num_cpus_frozen++;
6879 partition_sched_domains(1, NULL, NULL);
e761b772 6880 }
135fb3e1 6881 return 0;
e761b772 6882}
e761b772 6883
40190a78 6884int sched_cpu_activate(unsigned int cpu)
135fb3e1 6885{
7d976699 6886 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6887 struct rq_flags rf;
7d976699 6888
ba2591a5
PZ
6889#ifdef CONFIG_SCHED_SMT
6890 /*
c5511d03 6891 * When going up, increment the number of cores with SMT present.
ba2591a5 6892 */
c5511d03
PZI
6893 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6894 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6895#endif
40190a78 6896 set_cpu_active(cpu, true);
135fb3e1 6897
40190a78 6898 if (sched_smp_initialized) {
135fb3e1 6899 sched_domains_numa_masks_set(cpu);
40190a78 6900 cpuset_cpu_active();
e761b772 6901 }
7d976699
TG
6902
6903 /*
6904 * Put the rq online, if not already. This happens:
6905 *
6906 * 1) In the early boot process, because we build the real domains
d1ccc66d 6907 * after all CPUs have been brought up.
7d976699
TG
6908 *
6909 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6910 * domains.
6911 */
8a8c69c3 6912 rq_lock_irqsave(rq, &rf);
7d976699
TG
6913 if (rq->rd) {
6914 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6915 set_rq_online(rq);
6916 }
8a8c69c3 6917 rq_unlock_irqrestore(rq, &rf);
7d976699 6918
40190a78 6919 return 0;
135fb3e1
TG
6920}
6921
40190a78 6922int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6923{
135fb3e1
TG
6924 int ret;
6925
40190a78 6926 set_cpu_active(cpu, false);
b2454caa
PZ
6927 /*
6928 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6929 * users of this state to go away such that all new such users will
6930 * observe it.
6931 *
b2454caa
PZ
6932 * Do sync before park smpboot threads to take care the rcu boost case.
6933 */
309ba859 6934 synchronize_rcu();
40190a78 6935
c5511d03
PZI
6936#ifdef CONFIG_SCHED_SMT
6937 /*
6938 * When going down, decrement the number of cores with SMT present.
6939 */
6940 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6941 static_branch_dec_cpuslocked(&sched_smt_present);
6942#endif
6943
40190a78
TG
6944 if (!sched_smp_initialized)
6945 return 0;
6946
6947 ret = cpuset_cpu_inactive(cpu);
6948 if (ret) {
6949 set_cpu_active(cpu, true);
6950 return ret;
135fb3e1 6951 }
40190a78
TG
6952 sched_domains_numa_masks_clear(cpu);
6953 return 0;
135fb3e1
TG
6954}
6955
94baf7a5
TG
6956static void sched_rq_cpu_starting(unsigned int cpu)
6957{
6958 struct rq *rq = cpu_rq(cpu);
6959
6960 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6961 update_max_interval();
6962}
6963
135fb3e1
TG
6964int sched_cpu_starting(unsigned int cpu)
6965{
94baf7a5 6966 sched_rq_cpu_starting(cpu);
d84b3131 6967 sched_tick_start(cpu);
135fb3e1 6968 return 0;
e761b772 6969}
e761b772 6970
f2785ddb
TG
6971#ifdef CONFIG_HOTPLUG_CPU
6972int sched_cpu_dying(unsigned int cpu)
6973{
6974 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6975 struct rq_flags rf;
f2785ddb
TG
6976
6977 /* Handle pending wakeups and then migrate everything off */
d84b3131 6978 sched_tick_stop(cpu);
8a8c69c3
PZ
6979
6980 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6981 if (rq->rd) {
6982 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6983 set_rq_offline(rq);
6984 }
8a8c69c3 6985 migrate_tasks(rq, &rf);
f2785ddb 6986 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6987 rq_unlock_irqrestore(rq, &rf);
6988
f2785ddb
TG
6989 calc_load_migrate(rq);
6990 update_max_interval();
00357f5e 6991 nohz_balance_exit_idle(rq);
e5ef27d0 6992 hrtick_clear(rq);
f2785ddb
TG
6993 return 0;
6994}
6995#endif
6996
1da177e4
LT
6997void __init sched_init_smp(void)
6998{
cb83b629
PZ
6999 sched_init_numa();
7000
6acce3ef
PZ
7001 /*
7002 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 7003 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 7004 * happen.
6acce3ef 7005 */
712555ee 7006 mutex_lock(&sched_domains_mutex);
8d5dc512 7007 sched_init_domains(cpu_active_mask);
712555ee 7008 mutex_unlock(&sched_domains_mutex);
e761b772 7009
5c1e1767 7010 /* Move init over to a non-isolated CPU */
edb93821 7011 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 7012 BUG();
19978ca6 7013 sched_init_granularity();
4212823f 7014
0e3900e6 7015 init_sched_rt_class();
1baca4ce 7016 init_sched_dl_class();
1b568f0a 7017
e26fbffd 7018 sched_smp_initialized = true;
1da177e4 7019}
e26fbffd
TG
7020
7021static int __init migration_init(void)
7022{
77a5352b 7023 sched_cpu_starting(smp_processor_id());
e26fbffd 7024 return 0;
1da177e4 7025}
e26fbffd
TG
7026early_initcall(migration_init);
7027
1da177e4
LT
7028#else
7029void __init sched_init_smp(void)
7030{
19978ca6 7031 sched_init_granularity();
1da177e4
LT
7032}
7033#endif /* CONFIG_SMP */
7034
7035int in_sched_functions(unsigned long addr)
7036{
1da177e4
LT
7037 return in_lock_functions(addr) ||
7038 (addr >= (unsigned long)__sched_text_start
7039 && addr < (unsigned long)__sched_text_end);
7040}
7041
029632fb 7042#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7043/*
7044 * Default task group.
7045 * Every task in system belongs to this group at bootup.
7046 */
029632fb 7047struct task_group root_task_group;
35cf4e50 7048LIST_HEAD(task_groups);
b0367629
WL
7049
7050/* Cacheline aligned slab cache for task_group */
7051static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7052#endif
6f505b16 7053
e6252c3e 7054DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7055DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7056
1da177e4
LT
7057void __init sched_init(void)
7058{
a1dc0446 7059 unsigned long ptr = 0;
55627e3c 7060 int i;
434d53b0 7061
c3a340f7
SRV
7062 /* Make sure the linker didn't screw up */
7063 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7064 &fair_sched_class + 1 != &rt_sched_class ||
7065 &rt_sched_class + 1 != &dl_sched_class);
7066#ifdef CONFIG_SMP
7067 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7068#endif
7069
5822a454 7070 wait_bit_init();
9dcb8b68 7071
434d53b0 7072#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 7073 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
7074#endif
7075#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 7076 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 7077#endif
a1dc0446
QC
7078 if (ptr) {
7079 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
7080
7081#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7082 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7083 ptr += nr_cpu_ids * sizeof(void **);
7084
07e06b01 7085 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7086 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7087
b1d1779e
WY
7088 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7089 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 7090#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7091#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7092 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7093 ptr += nr_cpu_ids * sizeof(void **);
7094
07e06b01 7095 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7096 ptr += nr_cpu_ids * sizeof(void **);
7097
6d6bc0ad 7098#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7099 }
df7c8e84 7100#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7101 for_each_possible_cpu(i) {
7102 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7103 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7104 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7105 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7106 }
b74e6278 7107#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7108
d1ccc66d
IM
7109 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7110 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 7111
57d885fe
GH
7112#ifdef CONFIG_SMP
7113 init_defrootdomain();
7114#endif
7115
d0b27fa7 7116#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7117 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7118 global_rt_period(), global_rt_runtime());
6d6bc0ad 7119#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7120
7c941438 7121#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7122 task_group_cache = KMEM_CACHE(task_group, 0);
7123
07e06b01
YZ
7124 list_add(&root_task_group.list, &task_groups);
7125 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7126 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7127 autogroup_init(&init_task);
7c941438 7128#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7129
0a945022 7130 for_each_possible_cpu(i) {
70b97a7f 7131 struct rq *rq;
1da177e4
LT
7132
7133 rq = cpu_rq(i);
05fa785c 7134 raw_spin_lock_init(&rq->lock);
7897986b 7135 rq->nr_running = 0;
dce48a84
TG
7136 rq->calc_load_active = 0;
7137 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7138 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7139 init_rt_rq(&rq->rt);
7140 init_dl_rq(&rq->dl);
dd41f596 7141#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 7142 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7143 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7144 /*
d1ccc66d 7145 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
7146 *
7147 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
7148 * gets 100% of the CPU resources in the system. This overall
7149 * system CPU resource is divided among the tasks of
07e06b01 7150 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7151 * based on each entity's (task or task-group's) weight
7152 * (se->load.weight).
7153 *
07e06b01 7154 * In other words, if root_task_group has 10 tasks of weight
354d60c2 7155 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 7156 * then A0's share of the CPU resource is:
354d60c2 7157 *
0d905bca 7158 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7159 *
07e06b01
YZ
7160 * We achieve this by letting root_task_group's tasks sit
7161 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7162 */
07e06b01 7163 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7164#endif /* CONFIG_FAIR_GROUP_SCHED */
7165
7166 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7167#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7168 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7169#endif
1da177e4 7170#ifdef CONFIG_SMP
41c7ce9a 7171 rq->sd = NULL;
57d885fe 7172 rq->rd = NULL;
ca6d75e6 7173 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7174 rq->balance_callback = NULL;
1da177e4 7175 rq->active_balance = 0;
dd41f596 7176 rq->next_balance = jiffies;
1da177e4 7177 rq->push_cpu = 0;
0a2966b4 7178 rq->cpu = i;
1f11eb6a 7179 rq->online = 0;
eae0c9df
MG
7180 rq->idle_stamp = 0;
7181 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7182 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7183
7184 INIT_LIST_HEAD(&rq->cfs_tasks);
7185
dc938520 7186 rq_attach_root(rq, &def_root_domain);
3451d024 7187#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 7188 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 7189 atomic_set(&rq->nohz_flags, 0);
90b5363a
PZI
7190
7191 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
83cd4fe2 7192#endif
9fd81dd5 7193#endif /* CONFIG_SMP */
77a021be 7194 hrtick_rq_init(rq);
1da177e4 7195 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7196 }
7197
9059393e 7198 set_load_weight(&init_task, false);
b50f60ce 7199
1da177e4
LT
7200 /*
7201 * The boot idle thread does lazy MMU switching as well:
7202 */
f1f10076 7203 mmgrab(&init_mm);
1da177e4
LT
7204 enter_lazy_tlb(&init_mm, current);
7205
7206 /*
7207 * Make us the idle thread. Technically, schedule() should not be
7208 * called from this thread, however somewhere below it might be,
7209 * but because we are the idle thread, we just pick up running again
7210 * when this runqueue becomes "idle".
7211 */
7212 init_idle(current, smp_processor_id());
dce48a84
TG
7213
7214 calc_load_update = jiffies + LOAD_FREQ;
7215
bf4d83f6 7216#ifdef CONFIG_SMP
29d5e047 7217 idle_thread_set_boot_cpu();
029632fb
PZ
7218#endif
7219 init_sched_fair_class();
6a7b3dc3 7220
4698f88c
JP
7221 init_schedstats();
7222
eb414681
JW
7223 psi_init();
7224
69842cba
PB
7225 init_uclamp();
7226
6892b75e 7227 scheduler_running = 1;
1da177e4
LT
7228}
7229
d902db1e 7230#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7231static inline int preempt_count_equals(int preempt_offset)
7232{
da7142e2 7233 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7234
4ba8216c 7235 return (nested == preempt_offset);
e4aafea2
FW
7236}
7237
d894837f 7238void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7239{
8eb23b9f
PZ
7240 /*
7241 * Blocking primitives will set (and therefore destroy) current->state,
7242 * since we will exit with TASK_RUNNING make sure we enter with it,
7243 * otherwise we will destroy state.
7244 */
00845eb9 7245 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7246 "do not call blocking ops when !TASK_RUNNING; "
7247 "state=%lx set at [<%p>] %pS\n",
7248 current->state,
7249 (void *)current->task_state_change,
00845eb9 7250 (void *)current->task_state_change);
8eb23b9f 7251
3427445a
PZ
7252 ___might_sleep(file, line, preempt_offset);
7253}
7254EXPORT_SYMBOL(__might_sleep);
7255
7256void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7257{
d1ccc66d
IM
7258 /* Ratelimiting timestamp: */
7259 static unsigned long prev_jiffy;
7260
d1c6d149 7261 unsigned long preempt_disable_ip;
1da177e4 7262
d1ccc66d
IM
7263 /* WARN_ON_ONCE() by default, no rate limit required: */
7264 rcu_sleep_check();
7265
db273be2 7266 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 7267 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
7268 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7269 oops_in_progress)
aef745fc 7270 return;
1c3c5eab 7271
aef745fc
IM
7272 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7273 return;
7274 prev_jiffy = jiffies;
7275
d1ccc66d 7276 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
7277 preempt_disable_ip = get_preempt_disable_ip(current);
7278
3df0fc5b
PZ
7279 printk(KERN_ERR
7280 "BUG: sleeping function called from invalid context at %s:%d\n",
7281 file, line);
7282 printk(KERN_ERR
312364f3
DV
7283 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7284 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 7285 current->pid, current->comm);
aef745fc 7286
a8b686b3
ES
7287 if (task_stack_end_corrupted(current))
7288 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7289
aef745fc
IM
7290 debug_show_held_locks(current);
7291 if (irqs_disabled())
7292 print_irqtrace_events(current);
d1c6d149
VN
7293 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7294 && !preempt_count_equals(preempt_offset)) {
8f47b187 7295 pr_err("Preemption disabled at:");
2062a4e8 7296 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 7297 }
aef745fc 7298 dump_stack();
f0b22e39 7299 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7300}
3427445a 7301EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
7302
7303void __cant_sleep(const char *file, int line, int preempt_offset)
7304{
7305 static unsigned long prev_jiffy;
7306
7307 if (irqs_disabled())
7308 return;
7309
7310 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7311 return;
7312
7313 if (preempt_count() > preempt_offset)
7314 return;
7315
7316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7317 return;
7318 prev_jiffy = jiffies;
7319
7320 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7321 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7322 in_atomic(), irqs_disabled(),
7323 current->pid, current->comm);
7324
7325 debug_show_held_locks(current);
7326 dump_stack();
7327 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7328}
7329EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
7330#endif
7331
7332#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7333void normalize_rt_tasks(void)
3a5e4dc1 7334{
dbc7f069 7335 struct task_struct *g, *p;
d50dde5a
DF
7336 struct sched_attr attr = {
7337 .sched_policy = SCHED_NORMAL,
7338 };
1da177e4 7339
3472eaa1 7340 read_lock(&tasklist_lock);
5d07f420 7341 for_each_process_thread(g, p) {
178be793
IM
7342 /*
7343 * Only normalize user tasks:
7344 */
3472eaa1 7345 if (p->flags & PF_KTHREAD)
178be793
IM
7346 continue;
7347
4fa8d299
JP
7348 p->se.exec_start = 0;
7349 schedstat_set(p->se.statistics.wait_start, 0);
7350 schedstat_set(p->se.statistics.sleep_start, 0);
7351 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7352
aab03e05 7353 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7354 /*
7355 * Renice negative nice level userspace
7356 * tasks back to 0:
7357 */
3472eaa1 7358 if (task_nice(p) < 0)
dd41f596 7359 set_user_nice(p, 0);
1da177e4 7360 continue;
dd41f596 7361 }
1da177e4 7362
dbc7f069 7363 __sched_setscheduler(p, &attr, false, false);
5d07f420 7364 }
3472eaa1 7365 read_unlock(&tasklist_lock);
1da177e4
LT
7366}
7367
7368#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7369
67fc4e0c 7370#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7371/*
67fc4e0c 7372 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7373 *
7374 * They can only be called when the whole system has been
7375 * stopped - every CPU needs to be quiescent, and no scheduling
7376 * activity can take place. Using them for anything else would
7377 * be a serious bug, and as a result, they aren't even visible
7378 * under any other configuration.
7379 */
7380
7381/**
d1ccc66d 7382 * curr_task - return the current task for a given CPU.
1df5c10a
LT
7383 * @cpu: the processor in question.
7384 *
7385 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7386 *
7387 * Return: The current task for @cpu.
1df5c10a 7388 */
36c8b586 7389struct task_struct *curr_task(int cpu)
1df5c10a
LT
7390{
7391 return cpu_curr(cpu);
7392}
7393
67fc4e0c
JW
7394#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7395
7396#ifdef CONFIG_IA64
1df5c10a 7397/**
5feeb783 7398 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
7399 * @cpu: the processor in question.
7400 * @p: the task pointer to set.
7401 *
7402 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 7403 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 7404 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
7405 * must be called with all CPU's synchronized, and interrupts disabled, the
7406 * and caller must save the original value of the current task (see
7407 * curr_task() above) and restore that value before reenabling interrupts and
7408 * re-starting the system.
7409 *
7410 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7411 */
a458ae2e 7412void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7413{
7414 cpu_curr(cpu) = p;
7415}
7416
7417#endif
29f59db3 7418
7c941438 7419#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7420/* task_group_lock serializes the addition/removal of task groups */
7421static DEFINE_SPINLOCK(task_group_lock);
7422
2480c093
PB
7423static inline void alloc_uclamp_sched_group(struct task_group *tg,
7424 struct task_group *parent)
7425{
7426#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 7427 enum uclamp_id clamp_id;
2480c093
PB
7428
7429 for_each_clamp_id(clamp_id) {
7430 uclamp_se_set(&tg->uclamp_req[clamp_id],
7431 uclamp_none(clamp_id), false);
0b60ba2d 7432 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
7433 }
7434#endif
7435}
7436
2f5177f0 7437static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7438{
7439 free_fair_sched_group(tg);
7440 free_rt_sched_group(tg);
e9aa1dd1 7441 autogroup_free(tg);
b0367629 7442 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7443}
7444
7445/* allocate runqueue etc for a new task group */
ec7dc8ac 7446struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7447{
7448 struct task_group *tg;
bccbe08a 7449
b0367629 7450 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7451 if (!tg)
7452 return ERR_PTR(-ENOMEM);
7453
ec7dc8ac 7454 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7455 goto err;
7456
ec7dc8ac 7457 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7458 goto err;
7459
2480c093
PB
7460 alloc_uclamp_sched_group(tg, parent);
7461
ace783b9
LZ
7462 return tg;
7463
7464err:
2f5177f0 7465 sched_free_group(tg);
ace783b9
LZ
7466 return ERR_PTR(-ENOMEM);
7467}
7468
7469void sched_online_group(struct task_group *tg, struct task_group *parent)
7470{
7471 unsigned long flags;
7472
8ed36996 7473 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7474 list_add_rcu(&tg->list, &task_groups);
f473aa5e 7475
d1ccc66d
IM
7476 /* Root should already exist: */
7477 WARN_ON(!parent);
f473aa5e
PZ
7478
7479 tg->parent = parent;
f473aa5e 7480 INIT_LIST_HEAD(&tg->children);
09f2724a 7481 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7482 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7483
7484 online_fair_sched_group(tg);
29f59db3
SV
7485}
7486
9b5b7751 7487/* rcu callback to free various structures associated with a task group */
2f5177f0 7488static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7489{
d1ccc66d 7490 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 7491 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7492}
7493
4cf86d77 7494void sched_destroy_group(struct task_group *tg)
ace783b9 7495{
d1ccc66d 7496 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7497 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7498}
7499
7500void sched_offline_group(struct task_group *tg)
29f59db3 7501{
8ed36996 7502 unsigned long flags;
29f59db3 7503
d1ccc66d 7504 /* End participation in shares distribution: */
6fe1f348 7505 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7506
7507 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7508 list_del_rcu(&tg->list);
f473aa5e 7509 list_del_rcu(&tg->siblings);
8ed36996 7510 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7511}
7512
ea86cb4b 7513static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7514{
8323f26c 7515 struct task_group *tg;
29f59db3 7516
f7b8a47d
KT
7517 /*
7518 * All callers are synchronized by task_rq_lock(); we do not use RCU
7519 * which is pointless here. Thus, we pass "true" to task_css_check()
7520 * to prevent lockdep warnings.
7521 */
7522 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7523 struct task_group, css);
7524 tg = autogroup_task_group(tsk, tg);
7525 tsk->sched_task_group = tg;
7526
810b3817 7527#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7528 if (tsk->sched_class->task_change_group)
7529 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7530 else
810b3817 7531#endif
b2b5ce02 7532 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7533}
7534
7535/*
7536 * Change task's runqueue when it moves between groups.
7537 *
7538 * The caller of this function should have put the task in its new group by
7539 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7540 * its new group.
7541 */
7542void sched_move_task(struct task_struct *tsk)
7543{
7a57f32a
PZ
7544 int queued, running, queue_flags =
7545 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7546 struct rq_flags rf;
7547 struct rq *rq;
7548
7549 rq = task_rq_lock(tsk, &rf);
1b1d6225 7550 update_rq_clock(rq);
ea86cb4b
VG
7551
7552 running = task_current(rq, tsk);
7553 queued = task_on_rq_queued(tsk);
7554
7555 if (queued)
7a57f32a 7556 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7557 if (running)
ea86cb4b
VG
7558 put_prev_task(rq, tsk);
7559
7560 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7561
da0c1e65 7562 if (queued)
7a57f32a 7563 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7564 if (running) {
03b7fad1 7565 set_next_task(rq, tsk);
2a4b03ff
VG
7566 /*
7567 * After changing group, the running task may have joined a
7568 * throttled one but it's still the running task. Trigger a
7569 * resched to make sure that task can still run.
7570 */
7571 resched_curr(rq);
7572 }
29f59db3 7573
eb580751 7574 task_rq_unlock(rq, tsk, &rf);
29f59db3 7575}
68318b8e 7576
a7c6d554 7577static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7578{
a7c6d554 7579 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7580}
7581
eb95419b
TH
7582static struct cgroup_subsys_state *
7583cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7584{
eb95419b
TH
7585 struct task_group *parent = css_tg(parent_css);
7586 struct task_group *tg;
68318b8e 7587
eb95419b 7588 if (!parent) {
68318b8e 7589 /* This is early initialization for the top cgroup */
07e06b01 7590 return &root_task_group.css;
68318b8e
SV
7591 }
7592
ec7dc8ac 7593 tg = sched_create_group(parent);
68318b8e
SV
7594 if (IS_ERR(tg))
7595 return ERR_PTR(-ENOMEM);
7596
68318b8e
SV
7597 return &tg->css;
7598}
7599
96b77745
KK
7600/* Expose task group only after completing cgroup initialization */
7601static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7602{
7603 struct task_group *tg = css_tg(css);
7604 struct task_group *parent = css_tg(css->parent);
7605
7606 if (parent)
7607 sched_online_group(tg, parent);
7226017a
QY
7608
7609#ifdef CONFIG_UCLAMP_TASK_GROUP
7610 /* Propagate the effective uclamp value for the new group */
7611 cpu_util_update_eff(css);
7612#endif
7613
96b77745
KK
7614 return 0;
7615}
7616
2f5177f0 7617static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7618{
eb95419b 7619 struct task_group *tg = css_tg(css);
ace783b9 7620
2f5177f0 7621 sched_offline_group(tg);
ace783b9
LZ
7622}
7623
eb95419b 7624static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7625{
eb95419b 7626 struct task_group *tg = css_tg(css);
68318b8e 7627
2f5177f0
PZ
7628 /*
7629 * Relies on the RCU grace period between css_released() and this.
7630 */
7631 sched_free_group(tg);
ace783b9
LZ
7632}
7633
ea86cb4b
VG
7634/*
7635 * This is called before wake_up_new_task(), therefore we really only
7636 * have to set its group bits, all the other stuff does not apply.
7637 */
b53202e6 7638static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7639{
ea86cb4b
VG
7640 struct rq_flags rf;
7641 struct rq *rq;
7642
7643 rq = task_rq_lock(task, &rf);
7644
80f5c1b8 7645 update_rq_clock(rq);
ea86cb4b
VG
7646 sched_change_group(task, TASK_SET_GROUP);
7647
7648 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7649}
7650
1f7dd3e5 7651static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7652{
bb9d97b6 7653 struct task_struct *task;
1f7dd3e5 7654 struct cgroup_subsys_state *css;
7dc603c9 7655 int ret = 0;
bb9d97b6 7656
1f7dd3e5 7657 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7658#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7659 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7660 return -EINVAL;
b68aa230 7661#endif
7dc603c9
PZ
7662 /*
7663 * Serialize against wake_up_new_task() such that if its
7664 * running, we're sure to observe its full state.
7665 */
7666 raw_spin_lock_irq(&task->pi_lock);
7667 /*
7668 * Avoid calling sched_move_task() before wake_up_new_task()
7669 * has happened. This would lead to problems with PELT, due to
7670 * move wanting to detach+attach while we're not attached yet.
7671 */
7672 if (task->state == TASK_NEW)
7673 ret = -EINVAL;
7674 raw_spin_unlock_irq(&task->pi_lock);
7675
7676 if (ret)
7677 break;
bb9d97b6 7678 }
7dc603c9 7679 return ret;
be367d09 7680}
68318b8e 7681
1f7dd3e5 7682static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7683{
bb9d97b6 7684 struct task_struct *task;
1f7dd3e5 7685 struct cgroup_subsys_state *css;
bb9d97b6 7686
1f7dd3e5 7687 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7688 sched_move_task(task);
68318b8e
SV
7689}
7690
2480c093 7691#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7692static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7693{
7694 struct cgroup_subsys_state *top_css = css;
7695 struct uclamp_se *uc_parent = NULL;
7696 struct uclamp_se *uc_se = NULL;
7697 unsigned int eff[UCLAMP_CNT];
0413d7f3 7698 enum uclamp_id clamp_id;
0b60ba2d
PB
7699 unsigned int clamps;
7700
7701 css_for_each_descendant_pre(css, top_css) {
7702 uc_parent = css_tg(css)->parent
7703 ? css_tg(css)->parent->uclamp : NULL;
7704
7705 for_each_clamp_id(clamp_id) {
7706 /* Assume effective clamps matches requested clamps */
7707 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7708 /* Cap effective clamps with parent's effective clamps */
7709 if (uc_parent &&
7710 eff[clamp_id] > uc_parent[clamp_id].value) {
7711 eff[clamp_id] = uc_parent[clamp_id].value;
7712 }
7713 }
7714 /* Ensure protection is always capped by limit */
7715 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7716
7717 /* Propagate most restrictive effective clamps */
7718 clamps = 0x0;
7719 uc_se = css_tg(css)->uclamp;
7720 for_each_clamp_id(clamp_id) {
7721 if (eff[clamp_id] == uc_se[clamp_id].value)
7722 continue;
7723 uc_se[clamp_id].value = eff[clamp_id];
7724 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7725 clamps |= (0x1 << clamp_id);
7726 }
babbe170 7727 if (!clamps) {
0b60ba2d 7728 css = css_rightmost_descendant(css);
babbe170
PB
7729 continue;
7730 }
7731
7732 /* Immediately update descendants RUNNABLE tasks */
7733 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7734 }
7735}
2480c093
PB
7736
7737/*
7738 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7739 * C expression. Since there is no way to convert a macro argument (N) into a
7740 * character constant, use two levels of macros.
7741 */
7742#define _POW10(exp) ((unsigned int)1e##exp)
7743#define POW10(exp) _POW10(exp)
7744
7745struct uclamp_request {
7746#define UCLAMP_PERCENT_SHIFT 2
7747#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7748 s64 percent;
7749 u64 util;
7750 int ret;
7751};
7752
7753static inline struct uclamp_request
7754capacity_from_percent(char *buf)
7755{
7756 struct uclamp_request req = {
7757 .percent = UCLAMP_PERCENT_SCALE,
7758 .util = SCHED_CAPACITY_SCALE,
7759 .ret = 0,
7760 };
7761
7762 buf = strim(buf);
7763 if (strcmp(buf, "max")) {
7764 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7765 &req.percent);
7766 if (req.ret)
7767 return req;
b562d140 7768 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7769 req.ret = -ERANGE;
7770 return req;
7771 }
7772
7773 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7774 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7775 }
7776
7777 return req;
7778}
7779
7780static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7781 size_t nbytes, loff_t off,
7782 enum uclamp_id clamp_id)
7783{
7784 struct uclamp_request req;
7785 struct task_group *tg;
7786
7787 req = capacity_from_percent(buf);
7788 if (req.ret)
7789 return req.ret;
7790
46609ce2
QY
7791 static_branch_enable(&sched_uclamp_used);
7792
2480c093
PB
7793 mutex_lock(&uclamp_mutex);
7794 rcu_read_lock();
7795
7796 tg = css_tg(of_css(of));
7797 if (tg->uclamp_req[clamp_id].value != req.util)
7798 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7799
7800 /*
7801 * Because of not recoverable conversion rounding we keep track of the
7802 * exact requested value
7803 */
7804 tg->uclamp_pct[clamp_id] = req.percent;
7805
0b60ba2d
PB
7806 /* Update effective clamps to track the most restrictive value */
7807 cpu_util_update_eff(of_css(of));
7808
2480c093
PB
7809 rcu_read_unlock();
7810 mutex_unlock(&uclamp_mutex);
7811
7812 return nbytes;
7813}
7814
7815static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7816 char *buf, size_t nbytes,
7817 loff_t off)
7818{
7819 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7820}
7821
7822static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7823 char *buf, size_t nbytes,
7824 loff_t off)
7825{
7826 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7827}
7828
7829static inline void cpu_uclamp_print(struct seq_file *sf,
7830 enum uclamp_id clamp_id)
7831{
7832 struct task_group *tg;
7833 u64 util_clamp;
7834 u64 percent;
7835 u32 rem;
7836
7837 rcu_read_lock();
7838 tg = css_tg(seq_css(sf));
7839 util_clamp = tg->uclamp_req[clamp_id].value;
7840 rcu_read_unlock();
7841
7842 if (util_clamp == SCHED_CAPACITY_SCALE) {
7843 seq_puts(sf, "max\n");
7844 return;
7845 }
7846
7847 percent = tg->uclamp_pct[clamp_id];
7848 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7849 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7850}
7851
7852static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7853{
7854 cpu_uclamp_print(sf, UCLAMP_MIN);
7855 return 0;
7856}
7857
7858static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7859{
7860 cpu_uclamp_print(sf, UCLAMP_MAX);
7861 return 0;
7862}
7863#endif /* CONFIG_UCLAMP_TASK_GROUP */
7864
052f1dc7 7865#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7866static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7867 struct cftype *cftype, u64 shareval)
68318b8e 7868{
5b61d50a
KK
7869 if (shareval > scale_load_down(ULONG_MAX))
7870 shareval = MAX_SHARES;
182446d0 7871 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7872}
7873
182446d0
TH
7874static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7875 struct cftype *cft)
68318b8e 7876{
182446d0 7877 struct task_group *tg = css_tg(css);
68318b8e 7878
c8b28116 7879 return (u64) scale_load_down(tg->shares);
68318b8e 7880}
ab84d31e
PT
7881
7882#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7883static DEFINE_MUTEX(cfs_constraints_mutex);
7884
ab84d31e 7885const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7886static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
7887/* More than 203 days if BW_SHIFT equals 20. */
7888static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 7889
a790de99
PT
7890static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7891
ab84d31e
PT
7892static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7893{
56f570e5 7894 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7895 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7896
7897 if (tg == &root_task_group)
7898 return -EINVAL;
7899
7900 /*
7901 * Ensure we have at some amount of bandwidth every period. This is
7902 * to prevent reaching a state of large arrears when throttled via
7903 * entity_tick() resulting in prolonged exit starvation.
7904 */
7905 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7906 return -EINVAL;
7907
7908 /*
7909 * Likewise, bound things on the otherside by preventing insane quota
7910 * periods. This also allows us to normalize in computing quota
7911 * feasibility.
7912 */
7913 if (period > max_cfs_quota_period)
7914 return -EINVAL;
7915
d505b8af
HC
7916 /*
7917 * Bound quota to defend quota against overflow during bandwidth shift.
7918 */
7919 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7920 return -EINVAL;
7921
0e59bdae
KT
7922 /*
7923 * Prevent race between setting of cfs_rq->runtime_enabled and
7924 * unthrottle_offline_cfs_rqs().
7925 */
7926 get_online_cpus();
a790de99
PT
7927 mutex_lock(&cfs_constraints_mutex);
7928 ret = __cfs_schedulable(tg, period, quota);
7929 if (ret)
7930 goto out_unlock;
7931
58088ad0 7932 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7933 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7934 /*
7935 * If we need to toggle cfs_bandwidth_used, off->on must occur
7936 * before making related changes, and on->off must occur afterwards
7937 */
7938 if (runtime_enabled && !runtime_was_enabled)
7939 cfs_bandwidth_usage_inc();
ab84d31e
PT
7940 raw_spin_lock_irq(&cfs_b->lock);
7941 cfs_b->period = ns_to_ktime(period);
7942 cfs_b->quota = quota;
58088ad0 7943
a9cf55b2 7944 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7945
7946 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7947 if (runtime_enabled)
7948 start_cfs_bandwidth(cfs_b);
d1ccc66d 7949
ab84d31e
PT
7950 raw_spin_unlock_irq(&cfs_b->lock);
7951
0e59bdae 7952 for_each_online_cpu(i) {
ab84d31e 7953 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7954 struct rq *rq = cfs_rq->rq;
8a8c69c3 7955 struct rq_flags rf;
ab84d31e 7956
8a8c69c3 7957 rq_lock_irq(rq, &rf);
58088ad0 7958 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7959 cfs_rq->runtime_remaining = 0;
671fd9da 7960
029632fb 7961 if (cfs_rq->throttled)
671fd9da 7962 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7963 rq_unlock_irq(rq, &rf);
ab84d31e 7964 }
1ee14e6c
BS
7965 if (runtime_was_enabled && !runtime_enabled)
7966 cfs_bandwidth_usage_dec();
a790de99
PT
7967out_unlock:
7968 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7969 put_online_cpus();
ab84d31e 7970
a790de99 7971 return ret;
ab84d31e
PT
7972}
7973
b1546edc 7974static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7975{
7976 u64 quota, period;
7977
029632fb 7978 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7979 if (cfs_quota_us < 0)
7980 quota = RUNTIME_INF;
1a8b4540 7981 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7982 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7983 else
7984 return -EINVAL;
ab84d31e
PT
7985
7986 return tg_set_cfs_bandwidth(tg, period, quota);
7987}
7988
b1546edc 7989static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7990{
7991 u64 quota_us;
7992
029632fb 7993 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7994 return -1;
7995
029632fb 7996 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7997 do_div(quota_us, NSEC_PER_USEC);
7998
7999 return quota_us;
8000}
8001
b1546edc 8002static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
8003{
8004 u64 quota, period;
8005
1a8b4540
KK
8006 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8007 return -EINVAL;
8008
ab84d31e 8009 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8010 quota = tg->cfs_bandwidth.quota;
ab84d31e 8011
ab84d31e
PT
8012 return tg_set_cfs_bandwidth(tg, period, quota);
8013}
8014
b1546edc 8015static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
8016{
8017 u64 cfs_period_us;
8018
029632fb 8019 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8020 do_div(cfs_period_us, NSEC_PER_USEC);
8021
8022 return cfs_period_us;
8023}
8024
182446d0
TH
8025static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8026 struct cftype *cft)
ab84d31e 8027{
182446d0 8028 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8029}
8030
182446d0
TH
8031static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8032 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8033{
182446d0 8034 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8035}
8036
182446d0
TH
8037static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8038 struct cftype *cft)
ab84d31e 8039{
182446d0 8040 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8041}
8042
182446d0
TH
8043static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8044 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8045{
182446d0 8046 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8047}
8048
a790de99
PT
8049struct cfs_schedulable_data {
8050 struct task_group *tg;
8051 u64 period, quota;
8052};
8053
8054/*
8055 * normalize group quota/period to be quota/max_period
8056 * note: units are usecs
8057 */
8058static u64 normalize_cfs_quota(struct task_group *tg,
8059 struct cfs_schedulable_data *d)
8060{
8061 u64 quota, period;
8062
8063 if (tg == d->tg) {
8064 period = d->period;
8065 quota = d->quota;
8066 } else {
8067 period = tg_get_cfs_period(tg);
8068 quota = tg_get_cfs_quota(tg);
8069 }
8070
8071 /* note: these should typically be equivalent */
8072 if (quota == RUNTIME_INF || quota == -1)
8073 return RUNTIME_INF;
8074
8075 return to_ratio(period, quota);
8076}
8077
8078static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8079{
8080 struct cfs_schedulable_data *d = data;
029632fb 8081 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8082 s64 quota = 0, parent_quota = -1;
8083
8084 if (!tg->parent) {
8085 quota = RUNTIME_INF;
8086 } else {
029632fb 8087 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8088
8089 quota = normalize_cfs_quota(tg, d);
9c58c79a 8090 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8091
8092 /*
c53593e5
TH
8093 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8094 * always take the min. On cgroup1, only inherit when no
d1ccc66d 8095 * limit is set:
a790de99 8096 */
c53593e5
TH
8097 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8098 quota = min(quota, parent_quota);
8099 } else {
8100 if (quota == RUNTIME_INF)
8101 quota = parent_quota;
8102 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8103 return -EINVAL;
8104 }
a790de99 8105 }
9c58c79a 8106 cfs_b->hierarchical_quota = quota;
a790de99
PT
8107
8108 return 0;
8109}
8110
8111static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8112{
8277434e 8113 int ret;
a790de99
PT
8114 struct cfs_schedulable_data data = {
8115 .tg = tg,
8116 .period = period,
8117 .quota = quota,
8118 };
8119
8120 if (quota != RUNTIME_INF) {
8121 do_div(data.period, NSEC_PER_USEC);
8122 do_div(data.quota, NSEC_PER_USEC);
8123 }
8124
8277434e
PT
8125 rcu_read_lock();
8126 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8127 rcu_read_unlock();
8128
8129 return ret;
a790de99 8130}
e8da1b18 8131
a1f7164c 8132static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 8133{
2da8ca82 8134 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8135 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8136
44ffc75b
TH
8137 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8138 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8139 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 8140
3d6c50c2
YW
8141 if (schedstat_enabled() && tg != &root_task_group) {
8142 u64 ws = 0;
8143 int i;
8144
8145 for_each_possible_cpu(i)
8146 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8147
8148 seq_printf(sf, "wait_sum %llu\n", ws);
8149 }
8150
e8da1b18
NR
8151 return 0;
8152}
ab84d31e 8153#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8154#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8155
052f1dc7 8156#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8157static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8158 struct cftype *cft, s64 val)
6f505b16 8159{
182446d0 8160 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8161}
8162
182446d0
TH
8163static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8164 struct cftype *cft)
6f505b16 8165{
182446d0 8166 return sched_group_rt_runtime(css_tg(css));
6f505b16 8167}
d0b27fa7 8168
182446d0
TH
8169static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8170 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8171{
182446d0 8172 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8173}
8174
182446d0
TH
8175static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8176 struct cftype *cft)
d0b27fa7 8177{
182446d0 8178 return sched_group_rt_period(css_tg(css));
d0b27fa7 8179}
6d6bc0ad 8180#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8181
a1f7164c 8182static struct cftype cpu_legacy_files[] = {
052f1dc7 8183#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8184 {
8185 .name = "shares",
f4c753b7
PM
8186 .read_u64 = cpu_shares_read_u64,
8187 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8188 },
052f1dc7 8189#endif
ab84d31e
PT
8190#ifdef CONFIG_CFS_BANDWIDTH
8191 {
8192 .name = "cfs_quota_us",
8193 .read_s64 = cpu_cfs_quota_read_s64,
8194 .write_s64 = cpu_cfs_quota_write_s64,
8195 },
8196 {
8197 .name = "cfs_period_us",
8198 .read_u64 = cpu_cfs_period_read_u64,
8199 .write_u64 = cpu_cfs_period_write_u64,
8200 },
e8da1b18
NR
8201 {
8202 .name = "stat",
a1f7164c 8203 .seq_show = cpu_cfs_stat_show,
e8da1b18 8204 },
ab84d31e 8205#endif
052f1dc7 8206#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8207 {
9f0c1e56 8208 .name = "rt_runtime_us",
06ecb27c
PM
8209 .read_s64 = cpu_rt_runtime_read,
8210 .write_s64 = cpu_rt_runtime_write,
6f505b16 8211 },
d0b27fa7
PZ
8212 {
8213 .name = "rt_period_us",
f4c753b7
PM
8214 .read_u64 = cpu_rt_period_read_uint,
8215 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8216 },
2480c093
PB
8217#endif
8218#ifdef CONFIG_UCLAMP_TASK_GROUP
8219 {
8220 .name = "uclamp.min",
8221 .flags = CFTYPE_NOT_ON_ROOT,
8222 .seq_show = cpu_uclamp_min_show,
8223 .write = cpu_uclamp_min_write,
8224 },
8225 {
8226 .name = "uclamp.max",
8227 .flags = CFTYPE_NOT_ON_ROOT,
8228 .seq_show = cpu_uclamp_max_show,
8229 .write = cpu_uclamp_max_write,
8230 },
052f1dc7 8231#endif
d1ccc66d 8232 { } /* Terminate */
68318b8e
SV
8233};
8234
d41bf8c9
TH
8235static int cpu_extra_stat_show(struct seq_file *sf,
8236 struct cgroup_subsys_state *css)
0d593634 8237{
0d593634
TH
8238#ifdef CONFIG_CFS_BANDWIDTH
8239 {
d41bf8c9 8240 struct task_group *tg = css_tg(css);
0d593634
TH
8241 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8242 u64 throttled_usec;
8243
8244 throttled_usec = cfs_b->throttled_time;
8245 do_div(throttled_usec, NSEC_PER_USEC);
8246
8247 seq_printf(sf, "nr_periods %d\n"
8248 "nr_throttled %d\n"
8249 "throttled_usec %llu\n",
8250 cfs_b->nr_periods, cfs_b->nr_throttled,
8251 throttled_usec);
8252 }
8253#endif
8254 return 0;
8255}
8256
8257#ifdef CONFIG_FAIR_GROUP_SCHED
8258static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8259 struct cftype *cft)
8260{
8261 struct task_group *tg = css_tg(css);
8262 u64 weight = scale_load_down(tg->shares);
8263
8264 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8265}
8266
8267static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8268 struct cftype *cft, u64 weight)
8269{
8270 /*
8271 * cgroup weight knobs should use the common MIN, DFL and MAX
8272 * values which are 1, 100 and 10000 respectively. While it loses
8273 * a bit of range on both ends, it maps pretty well onto the shares
8274 * value used by scheduler and the round-trip conversions preserve
8275 * the original value over the entire range.
8276 */
8277 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8278 return -ERANGE;
8279
8280 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8281
8282 return sched_group_set_shares(css_tg(css), scale_load(weight));
8283}
8284
8285static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8286 struct cftype *cft)
8287{
8288 unsigned long weight = scale_load_down(css_tg(css)->shares);
8289 int last_delta = INT_MAX;
8290 int prio, delta;
8291
8292 /* find the closest nice value to the current weight */
8293 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8294 delta = abs(sched_prio_to_weight[prio] - weight);
8295 if (delta >= last_delta)
8296 break;
8297 last_delta = delta;
8298 }
8299
8300 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8301}
8302
8303static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8304 struct cftype *cft, s64 nice)
8305{
8306 unsigned long weight;
7281c8de 8307 int idx;
0d593634
TH
8308
8309 if (nice < MIN_NICE || nice > MAX_NICE)
8310 return -ERANGE;
8311
7281c8de
PZ
8312 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8313 idx = array_index_nospec(idx, 40);
8314 weight = sched_prio_to_weight[idx];
8315
0d593634
TH
8316 return sched_group_set_shares(css_tg(css), scale_load(weight));
8317}
8318#endif
8319
8320static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8321 long period, long quota)
8322{
8323 if (quota < 0)
8324 seq_puts(sf, "max");
8325 else
8326 seq_printf(sf, "%ld", quota);
8327
8328 seq_printf(sf, " %ld\n", period);
8329}
8330
8331/* caller should put the current value in *@periodp before calling */
8332static int __maybe_unused cpu_period_quota_parse(char *buf,
8333 u64 *periodp, u64 *quotap)
8334{
8335 char tok[21]; /* U64_MAX */
8336
4c47acd8 8337 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
8338 return -EINVAL;
8339
8340 *periodp *= NSEC_PER_USEC;
8341
8342 if (sscanf(tok, "%llu", quotap))
8343 *quotap *= NSEC_PER_USEC;
8344 else if (!strcmp(tok, "max"))
8345 *quotap = RUNTIME_INF;
8346 else
8347 return -EINVAL;
8348
8349 return 0;
8350}
8351
8352#ifdef CONFIG_CFS_BANDWIDTH
8353static int cpu_max_show(struct seq_file *sf, void *v)
8354{
8355 struct task_group *tg = css_tg(seq_css(sf));
8356
8357 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8358 return 0;
8359}
8360
8361static ssize_t cpu_max_write(struct kernfs_open_file *of,
8362 char *buf, size_t nbytes, loff_t off)
8363{
8364 struct task_group *tg = css_tg(of_css(of));
8365 u64 period = tg_get_cfs_period(tg);
8366 u64 quota;
8367 int ret;
8368
8369 ret = cpu_period_quota_parse(buf, &period, &quota);
8370 if (!ret)
8371 ret = tg_set_cfs_bandwidth(tg, period, quota);
8372 return ret ?: nbytes;
8373}
8374#endif
8375
8376static struct cftype cpu_files[] = {
0d593634
TH
8377#ifdef CONFIG_FAIR_GROUP_SCHED
8378 {
8379 .name = "weight",
8380 .flags = CFTYPE_NOT_ON_ROOT,
8381 .read_u64 = cpu_weight_read_u64,
8382 .write_u64 = cpu_weight_write_u64,
8383 },
8384 {
8385 .name = "weight.nice",
8386 .flags = CFTYPE_NOT_ON_ROOT,
8387 .read_s64 = cpu_weight_nice_read_s64,
8388 .write_s64 = cpu_weight_nice_write_s64,
8389 },
8390#endif
8391#ifdef CONFIG_CFS_BANDWIDTH
8392 {
8393 .name = "max",
8394 .flags = CFTYPE_NOT_ON_ROOT,
8395 .seq_show = cpu_max_show,
8396 .write = cpu_max_write,
8397 },
2480c093
PB
8398#endif
8399#ifdef CONFIG_UCLAMP_TASK_GROUP
8400 {
8401 .name = "uclamp.min",
8402 .flags = CFTYPE_NOT_ON_ROOT,
8403 .seq_show = cpu_uclamp_min_show,
8404 .write = cpu_uclamp_min_write,
8405 },
8406 {
8407 .name = "uclamp.max",
8408 .flags = CFTYPE_NOT_ON_ROOT,
8409 .seq_show = cpu_uclamp_max_show,
8410 .write = cpu_uclamp_max_write,
8411 },
0d593634
TH
8412#endif
8413 { } /* terminate */
8414};
8415
073219e9 8416struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8417 .css_alloc = cpu_cgroup_css_alloc,
96b77745 8418 .css_online = cpu_cgroup_css_online,
2f5177f0 8419 .css_released = cpu_cgroup_css_released,
92fb9748 8420 .css_free = cpu_cgroup_css_free,
d41bf8c9 8421 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 8422 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8423 .can_attach = cpu_cgroup_can_attach,
8424 .attach = cpu_cgroup_attach,
a1f7164c 8425 .legacy_cftypes = cpu_legacy_files,
0d593634 8426 .dfl_cftypes = cpu_files,
b38e42e9 8427 .early_init = true,
0d593634 8428 .threaded = true,
68318b8e
SV
8429};
8430
052f1dc7 8431#endif /* CONFIG_CGROUP_SCHED */
d842de87 8432
b637a328
PM
8433void dump_cpu_task(int cpu)
8434{
8435 pr_info("Task dump for CPU %d:\n", cpu);
8436 sched_show_task(cpu_curr(cpu));
8437}
ed82b8a1
AK
8438
8439/*
8440 * Nice levels are multiplicative, with a gentle 10% change for every
8441 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8442 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8443 * that remained on nice 0.
8444 *
8445 * The "10% effect" is relative and cumulative: from _any_ nice level,
8446 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8447 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8448 * If a task goes up by ~10% and another task goes down by ~10% then
8449 * the relative distance between them is ~25%.)
8450 */
8451const int sched_prio_to_weight[40] = {
8452 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8453 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8454 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8455 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8456 /* 0 */ 1024, 820, 655, 526, 423,
8457 /* 5 */ 335, 272, 215, 172, 137,
8458 /* 10 */ 110, 87, 70, 56, 45,
8459 /* 15 */ 36, 29, 23, 18, 15,
8460};
8461
8462/*
8463 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8464 *
8465 * In cases where the weight does not change often, we can use the
8466 * precalculated inverse to speed up arithmetics by turning divisions
8467 * into multiplications:
8468 */
8469const u32 sched_prio_to_wmult[40] = {
8470 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8471 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8472 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8473 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8474 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8475 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8476 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8477 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8478};
14a7405b 8479
9d246053
PA
8480void call_trace_sched_update_nr_running(struct rq *rq, int count)
8481{
8482 trace_sched_update_nr_running_tp(rq, count);
8483}