sched: Reject CPU affinity changes based on task_cpu_possible_mask()
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
c006fac5
PT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 72
b82d9fdd
PZ
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
fa85ae24 79/*
d1ccc66d 80 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
81 * default: 1s
82 */
9f0c1e56 83unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 84
029632fb 85__read_mostly int scheduler_running;
6892b75e 86
9edeaea1
PZ
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
8a311c74
PZ
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
c6047c2e 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
c6047c2e
JFG
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
c6047c2e 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
8a311c74
PZ
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
6e33cad0 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
6e33cad0 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
181{
182 rq->core->core_task_seq++;
183
6e33cad0 184 if (!sched_core_enqueued(p))
8a311c74
PZ
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
6e33cad0 188 RB_CLEAR_NODE(&p->core_node);
8a311c74
PZ
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
d2dfa17b
PZ
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
9edeaea1
PZ
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
875feb41 237static atomic_t sched_core_count;
9edeaea1
PZ
238static struct cpumask sched_core_mask;
239
240static void __sched_core_flip(bool enabled)
241{
242 int cpu, t, i;
243
244 cpus_read_lock();
245
246 /*
247 * Toggle the online cores, one by one.
248 */
249 cpumask_copy(&sched_core_mask, cpu_online_mask);
250 for_each_cpu(cpu, &sched_core_mask) {
251 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
252
253 i = 0;
254 local_irq_disable();
255 for_each_cpu(t, smt_mask) {
256 /* supports up to SMT8 */
257 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
258 }
259
260 for_each_cpu(t, smt_mask)
261 cpu_rq(t)->core_enabled = enabled;
262
263 for_each_cpu(t, smt_mask)
264 raw_spin_unlock(&cpu_rq(t)->__lock);
265 local_irq_enable();
266
267 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
268 }
269
270 /*
271 * Toggle the offline CPUs.
272 */
273 cpumask_copy(&sched_core_mask, cpu_possible_mask);
274 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
275
276 for_each_cpu(cpu, &sched_core_mask)
277 cpu_rq(cpu)->core_enabled = enabled;
278
279 cpus_read_unlock();
280}
281
8a311c74 282static void sched_core_assert_empty(void)
9edeaea1 283{
8a311c74 284 int cpu;
9edeaea1 285
8a311c74
PZ
286 for_each_possible_cpu(cpu)
287 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
288}
289
290static void __sched_core_enable(void)
291{
9edeaea1
PZ
292 static_branch_enable(&__sched_core_enabled);
293 /*
294 * Ensure all previous instances of raw_spin_rq_*lock() have finished
295 * and future ones will observe !sched_core_disabled().
296 */
297 synchronize_rcu();
298 __sched_core_flip(true);
8a311c74 299 sched_core_assert_empty();
9edeaea1
PZ
300}
301
302static void __sched_core_disable(void)
303{
8a311c74 304 sched_core_assert_empty();
9edeaea1
PZ
305 __sched_core_flip(false);
306 static_branch_disable(&__sched_core_enabled);
307}
308
309void sched_core_get(void)
310{
875feb41
PZ
311 if (atomic_inc_not_zero(&sched_core_count))
312 return;
313
9edeaea1 314 mutex_lock(&sched_core_mutex);
875feb41 315 if (!atomic_read(&sched_core_count))
9edeaea1 316 __sched_core_enable();
875feb41
PZ
317
318 smp_mb__before_atomic();
319 atomic_inc(&sched_core_count);
9edeaea1
PZ
320 mutex_unlock(&sched_core_mutex);
321}
322
875feb41 323static void __sched_core_put(struct work_struct *work)
9edeaea1 324{
875feb41 325 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 326 __sched_core_disable();
875feb41
PZ
327 mutex_unlock(&sched_core_mutex);
328 }
329}
330
331void sched_core_put(void)
332{
333 static DECLARE_WORK(_work, __sched_core_put);
334
335 /*
336 * "There can be only one"
337 *
338 * Either this is the last one, or we don't actually need to do any
339 * 'work'. If it is the last *again*, we rely on
340 * WORK_STRUCT_PENDING_BIT.
341 */
342 if (!atomic_add_unless(&sched_core_count, -1, 1))
343 schedule_work(&_work);
9edeaea1
PZ
344}
345
8a311c74
PZ
346#else /* !CONFIG_SCHED_CORE */
347
348static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
349static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
350
9edeaea1
PZ
351#endif /* CONFIG_SCHED_CORE */
352
9f0c1e56
PZ
353/*
354 * part of the period that we allow rt tasks to run in us.
355 * default: 0.95s
356 */
357int sysctl_sched_rt_runtime = 950000;
fa85ae24 358
58877d34
PZ
359
360/*
361 * Serialization rules:
362 *
363 * Lock order:
364 *
365 * p->pi_lock
366 * rq->lock
367 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
368 *
369 * rq1->lock
370 * rq2->lock where: rq1 < rq2
371 *
372 * Regular state:
373 *
374 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
375 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 376 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
377 * to run next.
378 *
379 * Task enqueue is also under rq->lock, possibly taken from another CPU.
380 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
381 * the local CPU to avoid bouncing the runqueue state around [ see
382 * ttwu_queue_wakelist() ]
383 *
384 * Task wakeup, specifically wakeups that involve migration, are horribly
385 * complicated to avoid having to take two rq->locks.
386 *
387 * Special state:
388 *
389 * System-calls and anything external will use task_rq_lock() which acquires
390 * both p->pi_lock and rq->lock. As a consequence the state they change is
391 * stable while holding either lock:
392 *
393 * - sched_setaffinity()/
394 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
395 * - set_user_nice(): p->se.load, p->*prio
396 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
397 * p->se.load, p->rt_priority,
398 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
399 * - sched_setnuma(): p->numa_preferred_nid
400 * - sched_move_task()/
401 * cpu_cgroup_fork(): p->sched_task_group
402 * - uclamp_update_active() p->uclamp*
403 *
404 * p->state <- TASK_*:
405 *
406 * is changed locklessly using set_current_state(), __set_current_state() or
407 * set_special_state(), see their respective comments, or by
408 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
409 * concurrent self.
410 *
411 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
412 *
413 * is set by activate_task() and cleared by deactivate_task(), under
414 * rq->lock. Non-zero indicates the task is runnable, the special
415 * ON_RQ_MIGRATING state is used for migration without holding both
416 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
417 *
418 * p->on_cpu <- { 0, 1 }:
419 *
420 * is set by prepare_task() and cleared by finish_task() such that it will be
421 * set before p is scheduled-in and cleared after p is scheduled-out, both
422 * under rq->lock. Non-zero indicates the task is running on its CPU.
423 *
424 * [ The astute reader will observe that it is possible for two tasks on one
425 * CPU to have ->on_cpu = 1 at the same time. ]
426 *
427 * task_cpu(p): is changed by set_task_cpu(), the rules are:
428 *
429 * - Don't call set_task_cpu() on a blocked task:
430 *
431 * We don't care what CPU we're not running on, this simplifies hotplug,
432 * the CPU assignment of blocked tasks isn't required to be valid.
433 *
434 * - for try_to_wake_up(), called under p->pi_lock:
435 *
436 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
437 *
438 * - for migration called under rq->lock:
439 * [ see task_on_rq_migrating() in task_rq_lock() ]
440 *
441 * o move_queued_task()
442 * o detach_task()
443 *
444 * - for migration called under double_rq_lock():
445 *
446 * o __migrate_swap_task()
447 * o push_rt_task() / pull_rt_task()
448 * o push_dl_task() / pull_dl_task()
449 * o dl_task_offline_migration()
450 *
451 */
452
39d371b7
PZ
453void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
454{
d66f1b06
PZ
455 raw_spinlock_t *lock;
456
9edeaea1
PZ
457 /* Matches synchronize_rcu() in __sched_core_enable() */
458 preempt_disable();
d66f1b06
PZ
459 if (sched_core_disabled()) {
460 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
461 /* preempt_count *MUST* be > 1 */
462 preempt_enable_no_resched();
d66f1b06
PZ
463 return;
464 }
465
466 for (;;) {
9ef7e7e3 467 lock = __rq_lockp(rq);
d66f1b06 468 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 469 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
470 /* preempt_count *MUST* be > 1 */
471 preempt_enable_no_resched();
d66f1b06 472 return;
9edeaea1 473 }
d66f1b06
PZ
474 raw_spin_unlock(lock);
475 }
39d371b7
PZ
476}
477
478bool raw_spin_rq_trylock(struct rq *rq)
479{
d66f1b06
PZ
480 raw_spinlock_t *lock;
481 bool ret;
482
9edeaea1
PZ
483 /* Matches synchronize_rcu() in __sched_core_enable() */
484 preempt_disable();
485 if (sched_core_disabled()) {
486 ret = raw_spin_trylock(&rq->__lock);
487 preempt_enable();
488 return ret;
489 }
d66f1b06
PZ
490
491 for (;;) {
9ef7e7e3 492 lock = __rq_lockp(rq);
d66f1b06 493 ret = raw_spin_trylock(lock);
9ef7e7e3 494 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 495 preempt_enable();
d66f1b06 496 return ret;
9edeaea1 497 }
d66f1b06
PZ
498 raw_spin_unlock(lock);
499 }
39d371b7
PZ
500}
501
502void raw_spin_rq_unlock(struct rq *rq)
503{
504 raw_spin_unlock(rq_lockp(rq));
505}
506
d66f1b06
PZ
507#ifdef CONFIG_SMP
508/*
509 * double_rq_lock - safely lock two runqueues
510 */
511void double_rq_lock(struct rq *rq1, struct rq *rq2)
512{
513 lockdep_assert_irqs_disabled();
514
515 if (rq_order_less(rq2, rq1))
516 swap(rq1, rq2);
517
518 raw_spin_rq_lock(rq1);
9ef7e7e3 519 if (__rq_lockp(rq1) == __rq_lockp(rq2))
d66f1b06
PZ
520 return;
521
522 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
523}
524#endif
525
3e71a462
PZ
526/*
527 * __task_rq_lock - lock the rq @p resides on.
528 */
eb580751 529struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
530 __acquires(rq->lock)
531{
532 struct rq *rq;
533
534 lockdep_assert_held(&p->pi_lock);
535
536 for (;;) {
537 rq = task_rq(p);
5cb9eaa3 538 raw_spin_rq_lock(rq);
3e71a462 539 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 540 rq_pin_lock(rq, rf);
3e71a462
PZ
541 return rq;
542 }
5cb9eaa3 543 raw_spin_rq_unlock(rq);
3e71a462
PZ
544
545 while (unlikely(task_on_rq_migrating(p)))
546 cpu_relax();
547 }
548}
549
550/*
551 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
552 */
eb580751 553struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
554 __acquires(p->pi_lock)
555 __acquires(rq->lock)
556{
557 struct rq *rq;
558
559 for (;;) {
eb580751 560 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 561 rq = task_rq(p);
5cb9eaa3 562 raw_spin_rq_lock(rq);
3e71a462
PZ
563 /*
564 * move_queued_task() task_rq_lock()
565 *
566 * ACQUIRE (rq->lock)
567 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
568 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
569 * [S] ->cpu = new_cpu [L] task_rq()
570 * [L] ->on_rq
571 * RELEASE (rq->lock)
572 *
c546951d 573 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
574 * the old rq->lock will fully serialize against the stores.
575 *
c546951d
AP
576 * If we observe the new CPU in task_rq_lock(), the address
577 * dependency headed by '[L] rq = task_rq()' and the acquire
578 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
579 */
580 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 581 rq_pin_lock(rq, rf);
3e71a462
PZ
582 return rq;
583 }
5cb9eaa3 584 raw_spin_rq_unlock(rq);
eb580751 585 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
586
587 while (unlikely(task_on_rq_migrating(p)))
588 cpu_relax();
589 }
590}
591
535b9552
IM
592/*
593 * RQ-clock updating methods:
594 */
595
596static void update_rq_clock_task(struct rq *rq, s64 delta)
597{
598/*
599 * In theory, the compile should just see 0 here, and optimize out the call
600 * to sched_rt_avg_update. But I don't trust it...
601 */
11d4afd4
VG
602 s64 __maybe_unused steal = 0, irq_delta = 0;
603
535b9552
IM
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
606
607 /*
608 * Since irq_time is only updated on {soft,}irq_exit, we might run into
609 * this case when a previous update_rq_clock() happened inside a
610 * {soft,}irq region.
611 *
612 * When this happens, we stop ->clock_task and only update the
613 * prev_irq_time stamp to account for the part that fit, so that a next
614 * update will consume the rest. This ensures ->clock_task is
615 * monotonic.
616 *
617 * It does however cause some slight miss-attribution of {soft,}irq
618 * time, a more accurate solution would be to update the irq_time using
619 * the current rq->clock timestamp, except that would require using
620 * atomic ops.
621 */
622 if (irq_delta > delta)
623 irq_delta = delta;
624
625 rq->prev_irq_time += irq_delta;
626 delta -= irq_delta;
627#endif
628#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 if (static_key_false((&paravirt_steal_rq_enabled))) {
630 steal = paravirt_steal_clock(cpu_of(rq));
631 steal -= rq->prev_steal_time_rq;
632
633 if (unlikely(steal > delta))
634 steal = delta;
635
636 rq->prev_steal_time_rq += steal;
637 delta -= steal;
638 }
639#endif
640
641 rq->clock_task += delta;
642
11d4afd4 643#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 644 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 645 update_irq_load_avg(rq, irq_delta + steal);
535b9552 646#endif
23127296 647 update_rq_clock_pelt(rq, delta);
535b9552
IM
648}
649
650void update_rq_clock(struct rq *rq)
651{
652 s64 delta;
653
5cb9eaa3 654 lockdep_assert_rq_held(rq);
535b9552
IM
655
656 if (rq->clock_update_flags & RQCF_ACT_SKIP)
657 return;
658
659#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
660 if (sched_feat(WARN_DOUBLE_CLOCK))
661 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
662 rq->clock_update_flags |= RQCF_UPDATED;
663#endif
26ae58d2 664
535b9552
IM
665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 if (delta < 0)
667 return;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
670}
671
8f4d37ec
PZ
672#ifdef CONFIG_SCHED_HRTICK
673/*
674 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 675 */
8f4d37ec 676
8f4d37ec
PZ
677static void hrtick_clear(struct rq *rq)
678{
679 if (hrtimer_active(&rq->hrtick_timer))
680 hrtimer_cancel(&rq->hrtick_timer);
681}
682
8f4d37ec
PZ
683/*
684 * High-resolution timer tick.
685 * Runs from hardirq context with interrupts disabled.
686 */
687static enum hrtimer_restart hrtick(struct hrtimer *timer)
688{
689 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 690 struct rq_flags rf;
8f4d37ec
PZ
691
692 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
693
8a8c69c3 694 rq_lock(rq, &rf);
3e51f33f 695 update_rq_clock(rq);
8f4d37ec 696 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 697 rq_unlock(rq, &rf);
8f4d37ec
PZ
698
699 return HRTIMER_NORESTART;
700}
701
95e904c7 702#ifdef CONFIG_SMP
971ee28c 703
4961b6e1 704static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
705{
706 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 707 ktime_t time = rq->hrtick_time;
971ee28c 708
156ec6f4 709 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
710}
711
31656519
PZ
712/*
713 * called from hardirq (IPI) context
714 */
715static void __hrtick_start(void *arg)
b328ca18 716{
31656519 717 struct rq *rq = arg;
8a8c69c3 718 struct rq_flags rf;
b328ca18 719
8a8c69c3 720 rq_lock(rq, &rf);
971ee28c 721 __hrtick_restart(rq);
8a8c69c3 722 rq_unlock(rq, &rf);
b328ca18
PZ
723}
724
31656519
PZ
725/*
726 * Called to set the hrtick timer state.
727 *
728 * called with rq->lock held and irqs disabled
729 */
029632fb 730void hrtick_start(struct rq *rq, u64 delay)
b328ca18 731{
31656519 732 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 733 s64 delta;
734
735 /*
736 * Don't schedule slices shorter than 10000ns, that just
737 * doesn't make sense and can cause timer DoS.
738 */
739 delta = max_t(s64, delay, 10000LL);
156ec6f4 740 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 741
fd3eafda 742 if (rq == this_rq())
971ee28c 743 __hrtick_restart(rq);
fd3eafda 744 else
c46fff2a 745 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
746}
747
31656519
PZ
748#else
749/*
750 * Called to set the hrtick timer state.
751 *
752 * called with rq->lock held and irqs disabled
753 */
029632fb 754void hrtick_start(struct rq *rq, u64 delay)
31656519 755{
86893335
WL
756 /*
757 * Don't schedule slices shorter than 10000ns, that just
758 * doesn't make sense. Rely on vruntime for fairness.
759 */
760 delay = max_t(u64, delay, 10000LL);
4961b6e1 761 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 762 HRTIMER_MODE_REL_PINNED_HARD);
31656519 763}
90b5363a 764
31656519 765#endif /* CONFIG_SMP */
8f4d37ec 766
77a021be 767static void hrtick_rq_init(struct rq *rq)
8f4d37ec 768{
31656519 769#ifdef CONFIG_SMP
545b8c8d 770 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 771#endif
d5096aa6 772 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 773 rq->hrtick_timer.function = hrtick;
8f4d37ec 774}
006c75f1 775#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
776static inline void hrtick_clear(struct rq *rq)
777{
778}
779
77a021be 780static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
781{
782}
006c75f1 783#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 784
5529578a
FW
785/*
786 * cmpxchg based fetch_or, macro so it works for different integer types
787 */
788#define fetch_or(ptr, mask) \
789 ({ \
790 typeof(ptr) _ptr = (ptr); \
791 typeof(mask) _mask = (mask); \
792 typeof(*_ptr) _old, _val = *_ptr; \
793 \
794 for (;;) { \
795 _old = cmpxchg(_ptr, _val, _val | _mask); \
796 if (_old == _val) \
797 break; \
798 _val = _old; \
799 } \
800 _old; \
801})
802
e3baac47 803#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
804/*
805 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
806 * this avoids any races wrt polling state changes and thereby avoids
807 * spurious IPIs.
808 */
809static bool set_nr_and_not_polling(struct task_struct *p)
810{
811 struct thread_info *ti = task_thread_info(p);
812 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
813}
e3baac47
PZ
814
815/*
816 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
817 *
818 * If this returns true, then the idle task promises to call
819 * sched_ttwu_pending() and reschedule soon.
820 */
821static bool set_nr_if_polling(struct task_struct *p)
822{
823 struct thread_info *ti = task_thread_info(p);
316c1608 824 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
825
826 for (;;) {
827 if (!(val & _TIF_POLLING_NRFLAG))
828 return false;
829 if (val & _TIF_NEED_RESCHED)
830 return true;
831 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
832 if (old == val)
833 break;
834 val = old;
835 }
836 return true;
837}
838
fd99f91a
PZ
839#else
840static bool set_nr_and_not_polling(struct task_struct *p)
841{
842 set_tsk_need_resched(p);
843 return true;
844}
e3baac47
PZ
845
846#ifdef CONFIG_SMP
847static bool set_nr_if_polling(struct task_struct *p)
848{
849 return false;
850}
851#endif
fd99f91a
PZ
852#endif
853
07879c6a 854static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
855{
856 struct wake_q_node *node = &task->wake_q;
857
858 /*
859 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 860 * it's already queued (either by us or someone else) and will get the
76751049
PZ
861 * wakeup due to that.
862 *
4c4e3731
PZ
863 * In order to ensure that a pending wakeup will observe our pending
864 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 865 */
4c4e3731 866 smp_mb__before_atomic();
87ff19cb 867 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 868 return false;
76751049
PZ
869
870 /*
871 * The head is context local, there can be no concurrency.
872 */
873 *head->lastp = node;
874 head->lastp = &node->next;
07879c6a
DB
875 return true;
876}
877
878/**
879 * wake_q_add() - queue a wakeup for 'later' waking.
880 * @head: the wake_q_head to add @task to
881 * @task: the task to queue for 'later' wakeup
882 *
883 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
884 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
885 * instantly.
886 *
887 * This function must be used as-if it were wake_up_process(); IOW the task
888 * must be ready to be woken at this location.
889 */
890void wake_q_add(struct wake_q_head *head, struct task_struct *task)
891{
892 if (__wake_q_add(head, task))
893 get_task_struct(task);
894}
895
896/**
897 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
898 * @head: the wake_q_head to add @task to
899 * @task: the task to queue for 'later' wakeup
900 *
901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
903 * instantly.
904 *
905 * This function must be used as-if it were wake_up_process(); IOW the task
906 * must be ready to be woken at this location.
907 *
908 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
909 * that already hold reference to @task can call the 'safe' version and trust
910 * wake_q to do the right thing depending whether or not the @task is already
911 * queued for wakeup.
912 */
913void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
914{
915 if (!__wake_q_add(head, task))
916 put_task_struct(task);
76751049
PZ
917}
918
919void wake_up_q(struct wake_q_head *head)
920{
921 struct wake_q_node *node = head->first;
922
923 while (node != WAKE_Q_TAIL) {
924 struct task_struct *task;
925
926 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 927 /* Task can safely be re-inserted now: */
76751049
PZ
928 node = node->next;
929 task->wake_q.next = NULL;
930
931 /*
7696f991
AP
932 * wake_up_process() executes a full barrier, which pairs with
933 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
934 */
935 wake_up_process(task);
936 put_task_struct(task);
937 }
938}
939
c24d20db 940/*
8875125e 941 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
942 *
943 * On UP this means the setting of the need_resched flag, on SMP it
944 * might also involve a cross-CPU call to trigger the scheduler on
945 * the target CPU.
946 */
8875125e 947void resched_curr(struct rq *rq)
c24d20db 948{
8875125e 949 struct task_struct *curr = rq->curr;
c24d20db
IM
950 int cpu;
951
5cb9eaa3 952 lockdep_assert_rq_held(rq);
c24d20db 953
8875125e 954 if (test_tsk_need_resched(curr))
c24d20db
IM
955 return;
956
8875125e 957 cpu = cpu_of(rq);
fd99f91a 958
f27dde8d 959 if (cpu == smp_processor_id()) {
8875125e 960 set_tsk_need_resched(curr);
f27dde8d 961 set_preempt_need_resched();
c24d20db 962 return;
f27dde8d 963 }
c24d20db 964
8875125e 965 if (set_nr_and_not_polling(curr))
c24d20db 966 smp_send_reschedule(cpu);
dfc68f29
AL
967 else
968 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
969}
970
029632fb 971void resched_cpu(int cpu)
c24d20db
IM
972{
973 struct rq *rq = cpu_rq(cpu);
974 unsigned long flags;
975
5cb9eaa3 976 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
977 if (cpu_online(cpu) || cpu == smp_processor_id())
978 resched_curr(rq);
5cb9eaa3 979 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 980}
06d8308c 981
b021fe3e 982#ifdef CONFIG_SMP
3451d024 983#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 984/*
d1ccc66d
IM
985 * In the semi idle case, use the nearest busy CPU for migrating timers
986 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
987 *
988 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
989 * selecting an idle CPU will add more delays to the timers than intended
990 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 991 */
bc7a34b8 992int get_nohz_timer_target(void)
83cd4fe2 993{
e938b9c9 994 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 995 struct sched_domain *sd;
031e3bd8 996 const struct cpumask *hk_mask;
83cd4fe2 997
e938b9c9
WL
998 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
999 if (!idle_cpu(cpu))
1000 return cpu;
1001 default_cpu = cpu;
1002 }
6201b4d6 1003
031e3bd8
YZ
1004 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1005
057f3fad 1006 rcu_read_lock();
83cd4fe2 1007 for_each_domain(cpu, sd) {
031e3bd8 1008 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1009 if (cpu == i)
1010 continue;
1011
e938b9c9 1012 if (!idle_cpu(i)) {
057f3fad
PZ
1013 cpu = i;
1014 goto unlock;
1015 }
1016 }
83cd4fe2 1017 }
9642d18e 1018
e938b9c9
WL
1019 if (default_cpu == -1)
1020 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1021 cpu = default_cpu;
057f3fad
PZ
1022unlock:
1023 rcu_read_unlock();
83cd4fe2
VP
1024 return cpu;
1025}
d1ccc66d 1026
06d8308c
TG
1027/*
1028 * When add_timer_on() enqueues a timer into the timer wheel of an
1029 * idle CPU then this timer might expire before the next timer event
1030 * which is scheduled to wake up that CPU. In case of a completely
1031 * idle system the next event might even be infinite time into the
1032 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1033 * leaves the inner idle loop so the newly added timer is taken into
1034 * account when the CPU goes back to idle and evaluates the timer
1035 * wheel for the next timer event.
1036 */
1c20091e 1037static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1038{
1039 struct rq *rq = cpu_rq(cpu);
1040
1041 if (cpu == smp_processor_id())
1042 return;
1043
67b9ca70 1044 if (set_nr_and_not_polling(rq->idle))
06d8308c 1045 smp_send_reschedule(cpu);
dfc68f29
AL
1046 else
1047 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1048}
1049
c5bfece2 1050static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1051{
53c5fa16
FW
1052 /*
1053 * We just need the target to call irq_exit() and re-evaluate
1054 * the next tick. The nohz full kick at least implies that.
1055 * If needed we can still optimize that later with an
1056 * empty IRQ.
1057 */
379d9ecb
PM
1058 if (cpu_is_offline(cpu))
1059 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1060 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1061 if (cpu != smp_processor_id() ||
1062 tick_nohz_tick_stopped())
53c5fa16 1063 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1064 return true;
1065 }
1066
1067 return false;
1068}
1069
379d9ecb
PM
1070/*
1071 * Wake up the specified CPU. If the CPU is going offline, it is the
1072 * caller's responsibility to deal with the lost wakeup, for example,
1073 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1074 */
1c20091e
FW
1075void wake_up_nohz_cpu(int cpu)
1076{
c5bfece2 1077 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1078 wake_up_idle_cpu(cpu);
1079}
1080
19a1f5ec 1081static void nohz_csd_func(void *info)
45bf76df 1082{
19a1f5ec
PZ
1083 struct rq *rq = info;
1084 int cpu = cpu_of(rq);
1085 unsigned int flags;
873b4c65
VG
1086
1087 /*
19a1f5ec 1088 * Release the rq::nohz_csd.
873b4c65 1089 */
c6f88654 1090 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1091 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1092
19a1f5ec
PZ
1093 rq->idle_balance = idle_cpu(cpu);
1094 if (rq->idle_balance && !need_resched()) {
1095 rq->nohz_idle_balance = flags;
90b5363a
PZI
1096 raise_softirq_irqoff(SCHED_SOFTIRQ);
1097 }
2069dd75
PZ
1098}
1099
3451d024 1100#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1101
ce831b38 1102#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1103bool sched_can_stop_tick(struct rq *rq)
ce831b38 1104{
76d92ac3
FW
1105 int fifo_nr_running;
1106
1107 /* Deadline tasks, even if single, need the tick */
1108 if (rq->dl.dl_nr_running)
1109 return false;
1110
1e78cdbd 1111 /*
b19a888c 1112 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1113 * actual RR behaviour.
1e78cdbd 1114 */
76d92ac3
FW
1115 if (rq->rt.rr_nr_running) {
1116 if (rq->rt.rr_nr_running == 1)
1117 return true;
1118 else
1119 return false;
1e78cdbd
RR
1120 }
1121
2548d546
PZ
1122 /*
1123 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1124 * forced preemption between FIFO tasks.
1125 */
1126 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1127 if (fifo_nr_running)
1128 return true;
1129
1130 /*
1131 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1132 * if there's more than one we need the tick for involuntary
1133 * preemption.
1134 */
1135 if (rq->nr_running > 1)
541b8264 1136 return false;
ce831b38 1137
541b8264 1138 return true;
ce831b38
FW
1139}
1140#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1141#endif /* CONFIG_SMP */
18d95a28 1142
a790de99
PT
1143#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1144 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1145/*
8277434e
PT
1146 * Iterate task_group tree rooted at *from, calling @down when first entering a
1147 * node and @up when leaving it for the final time.
1148 *
1149 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1150 */
029632fb 1151int walk_tg_tree_from(struct task_group *from,
8277434e 1152 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1153{
1154 struct task_group *parent, *child;
eb755805 1155 int ret;
c09595f6 1156
8277434e
PT
1157 parent = from;
1158
c09595f6 1159down:
eb755805
PZ
1160 ret = (*down)(parent, data);
1161 if (ret)
8277434e 1162 goto out;
c09595f6
PZ
1163 list_for_each_entry_rcu(child, &parent->children, siblings) {
1164 parent = child;
1165 goto down;
1166
1167up:
1168 continue;
1169 }
eb755805 1170 ret = (*up)(parent, data);
8277434e
PT
1171 if (ret || parent == from)
1172 goto out;
c09595f6
PZ
1173
1174 child = parent;
1175 parent = parent->parent;
1176 if (parent)
1177 goto up;
8277434e 1178out:
eb755805 1179 return ret;
c09595f6
PZ
1180}
1181
029632fb 1182int tg_nop(struct task_group *tg, void *data)
eb755805 1183{
e2b245f8 1184 return 0;
eb755805 1185}
18d95a28
PZ
1186#endif
1187
9059393e 1188static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1189{
f05998d4
NR
1190 int prio = p->static_prio - MAX_RT_PRIO;
1191 struct load_weight *load = &p->se.load;
1192
dd41f596
IM
1193 /*
1194 * SCHED_IDLE tasks get minimal weight:
1195 */
1da1843f 1196 if (task_has_idle_policy(p)) {
c8b28116 1197 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1198 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1199 return;
1200 }
71f8bd46 1201
9059393e
VG
1202 /*
1203 * SCHED_OTHER tasks have to update their load when changing their
1204 * weight
1205 */
1206 if (update_load && p->sched_class == &fair_sched_class) {
1207 reweight_task(p, prio);
1208 } else {
1209 load->weight = scale_load(sched_prio_to_weight[prio]);
1210 load->inv_weight = sched_prio_to_wmult[prio];
1211 }
71f8bd46
IM
1212}
1213
69842cba 1214#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1215/*
1216 * Serializes updates of utilization clamp values
1217 *
1218 * The (slow-path) user-space triggers utilization clamp value updates which
1219 * can require updates on (fast-path) scheduler's data structures used to
1220 * support enqueue/dequeue operations.
1221 * While the per-CPU rq lock protects fast-path update operations, user-space
1222 * requests are serialized using a mutex to reduce the risk of conflicting
1223 * updates or API abuses.
1224 */
1225static DEFINE_MUTEX(uclamp_mutex);
1226
e8f14172
PB
1227/* Max allowed minimum utilization */
1228unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1229
1230/* Max allowed maximum utilization */
1231unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1232
13685c4a
QY
1233/*
1234 * By default RT tasks run at the maximum performance point/capacity of the
1235 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1236 * SCHED_CAPACITY_SCALE.
1237 *
1238 * This knob allows admins to change the default behavior when uclamp is being
1239 * used. In battery powered devices, particularly, running at the maximum
1240 * capacity and frequency will increase energy consumption and shorten the
1241 * battery life.
1242 *
1243 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1244 *
1245 * This knob will not override the system default sched_util_clamp_min defined
1246 * above.
1247 */
1248unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1249
e8f14172
PB
1250/* All clamps are required to be less or equal than these values */
1251static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1252
46609ce2
QY
1253/*
1254 * This static key is used to reduce the uclamp overhead in the fast path. It
1255 * primarily disables the call to uclamp_rq_{inc, dec}() in
1256 * enqueue/dequeue_task().
1257 *
1258 * This allows users to continue to enable uclamp in their kernel config with
1259 * minimum uclamp overhead in the fast path.
1260 *
1261 * As soon as userspace modifies any of the uclamp knobs, the static key is
1262 * enabled, since we have an actual users that make use of uclamp
1263 * functionality.
1264 *
1265 * The knobs that would enable this static key are:
1266 *
1267 * * A task modifying its uclamp value with sched_setattr().
1268 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1269 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1270 */
1271DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1272
69842cba
PB
1273/* Integer rounded range for each bucket */
1274#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1275
1276#define for_each_clamp_id(clamp_id) \
1277 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1278
1279static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1280{
6d2f8909 1281 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1282}
1283
7763baac 1284static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1285{
1286 if (clamp_id == UCLAMP_MIN)
1287 return 0;
1288 return SCHED_CAPACITY_SCALE;
1289}
1290
a509a7cd
PB
1291static inline void uclamp_se_set(struct uclamp_se *uc_se,
1292 unsigned int value, bool user_defined)
69842cba
PB
1293{
1294 uc_se->value = value;
1295 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1296 uc_se->user_defined = user_defined;
69842cba
PB
1297}
1298
e496187d 1299static inline unsigned int
0413d7f3 1300uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1301 unsigned int clamp_value)
1302{
1303 /*
1304 * Avoid blocked utilization pushing up the frequency when we go
1305 * idle (which drops the max-clamp) by retaining the last known
1306 * max-clamp.
1307 */
1308 if (clamp_id == UCLAMP_MAX) {
1309 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1310 return clamp_value;
1311 }
1312
1313 return uclamp_none(UCLAMP_MIN);
1314}
1315
0413d7f3 1316static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1317 unsigned int clamp_value)
1318{
1319 /* Reset max-clamp retention only on idle exit */
1320 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1321 return;
1322
1323 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1324}
1325
69842cba 1326static inline
7763baac 1327unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1328 unsigned int clamp_value)
69842cba
PB
1329{
1330 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1331 int bucket_id = UCLAMP_BUCKETS - 1;
1332
1333 /*
1334 * Since both min and max clamps are max aggregated, find the
1335 * top most bucket with tasks in.
1336 */
1337 for ( ; bucket_id >= 0; bucket_id--) {
1338 if (!bucket[bucket_id].tasks)
1339 continue;
1340 return bucket[bucket_id].value;
1341 }
1342
1343 /* No tasks -- default clamp values */
e496187d 1344 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1345}
1346
13685c4a
QY
1347static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1348{
1349 unsigned int default_util_min;
1350 struct uclamp_se *uc_se;
1351
1352 lockdep_assert_held(&p->pi_lock);
1353
1354 uc_se = &p->uclamp_req[UCLAMP_MIN];
1355
1356 /* Only sync if user didn't override the default */
1357 if (uc_se->user_defined)
1358 return;
1359
1360 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1361 uclamp_se_set(uc_se, default_util_min, false);
1362}
1363
1364static void uclamp_update_util_min_rt_default(struct task_struct *p)
1365{
1366 struct rq_flags rf;
1367 struct rq *rq;
1368
1369 if (!rt_task(p))
1370 return;
1371
1372 /* Protect updates to p->uclamp_* */
1373 rq = task_rq_lock(p, &rf);
1374 __uclamp_update_util_min_rt_default(p);
1375 task_rq_unlock(rq, p, &rf);
1376}
1377
1378static void uclamp_sync_util_min_rt_default(void)
1379{
1380 struct task_struct *g, *p;
1381
1382 /*
1383 * copy_process() sysctl_uclamp
1384 * uclamp_min_rt = X;
1385 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1386 * // link thread smp_mb__after_spinlock()
1387 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1388 * sched_post_fork() for_each_process_thread()
1389 * __uclamp_sync_rt() __uclamp_sync_rt()
1390 *
1391 * Ensures that either sched_post_fork() will observe the new
1392 * uclamp_min_rt or for_each_process_thread() will observe the new
1393 * task.
1394 */
1395 read_lock(&tasklist_lock);
1396 smp_mb__after_spinlock();
1397 read_unlock(&tasklist_lock);
1398
1399 rcu_read_lock();
1400 for_each_process_thread(g, p)
1401 uclamp_update_util_min_rt_default(p);
1402 rcu_read_unlock();
1403}
1404
3eac870a 1405static inline struct uclamp_se
0413d7f3 1406uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1407{
0213b708 1408 /* Copy by value as we could modify it */
3eac870a
PB
1409 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1410#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1411 unsigned int tg_min, tg_max, value;
3eac870a
PB
1412
1413 /*
1414 * Tasks in autogroups or root task group will be
1415 * restricted by system defaults.
1416 */
1417 if (task_group_is_autogroup(task_group(p)))
1418 return uc_req;
1419 if (task_group(p) == &root_task_group)
1420 return uc_req;
1421
0213b708
QY
1422 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1423 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1424 value = uc_req.value;
1425 value = clamp(value, tg_min, tg_max);
1426 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1427#endif
1428
1429 return uc_req;
1430}
1431
e8f14172
PB
1432/*
1433 * The effective clamp bucket index of a task depends on, by increasing
1434 * priority:
1435 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1436 * - the task group effective clamp value, for tasks not either in the root
1437 * group or in an autogroup
e8f14172
PB
1438 * - the system default clamp value, defined by the sysadmin
1439 */
1440static inline struct uclamp_se
0413d7f3 1441uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1442{
3eac870a 1443 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1444 struct uclamp_se uc_max = uclamp_default[clamp_id];
1445
1446 /* System default restrictions always apply */
1447 if (unlikely(uc_req.value > uc_max.value))
1448 return uc_max;
1449
1450 return uc_req;
1451}
1452
686516b5 1453unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1454{
1455 struct uclamp_se uc_eff;
1456
1457 /* Task currently refcounted: use back-annotated (effective) value */
1458 if (p->uclamp[clamp_id].active)
686516b5 1459 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1460
1461 uc_eff = uclamp_eff_get(p, clamp_id);
1462
686516b5 1463 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1464}
1465
69842cba
PB
1466/*
1467 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1468 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1469 * updates the rq's clamp value if required.
60daf9c1
PB
1470 *
1471 * Tasks can have a task-specific value requested from user-space, track
1472 * within each bucket the maximum value for tasks refcounted in it.
1473 * This "local max aggregation" allows to track the exact "requested" value
1474 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1475 */
1476static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1477 enum uclamp_id clamp_id)
69842cba
PB
1478{
1479 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1480 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1481 struct uclamp_bucket *bucket;
1482
5cb9eaa3 1483 lockdep_assert_rq_held(rq);
69842cba 1484
e8f14172
PB
1485 /* Update task effective clamp */
1486 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1487
69842cba
PB
1488 bucket = &uc_rq->bucket[uc_se->bucket_id];
1489 bucket->tasks++;
e8f14172 1490 uc_se->active = true;
69842cba 1491
e496187d
PB
1492 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1493
60daf9c1
PB
1494 /*
1495 * Local max aggregation: rq buckets always track the max
1496 * "requested" clamp value of its RUNNABLE tasks.
1497 */
1498 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1499 bucket->value = uc_se->value;
1500
69842cba 1501 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1502 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1503}
1504
1505/*
1506 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1507 * is released. If this is the last task reference counting the rq's max
1508 * active clamp value, then the rq's clamp value is updated.
1509 *
1510 * Both refcounted tasks and rq's cached clamp values are expected to be
1511 * always valid. If it's detected they are not, as defensive programming,
1512 * enforce the expected state and warn.
1513 */
1514static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1515 enum uclamp_id clamp_id)
69842cba
PB
1516{
1517 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1518 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1519 struct uclamp_bucket *bucket;
e496187d 1520 unsigned int bkt_clamp;
69842cba
PB
1521 unsigned int rq_clamp;
1522
5cb9eaa3 1523 lockdep_assert_rq_held(rq);
69842cba 1524
46609ce2
QY
1525 /*
1526 * If sched_uclamp_used was enabled after task @p was enqueued,
1527 * we could end up with unbalanced call to uclamp_rq_dec_id().
1528 *
1529 * In this case the uc_se->active flag should be false since no uclamp
1530 * accounting was performed at enqueue time and we can just return
1531 * here.
1532 *
b19a888c 1533 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1534 * problem too
1535 *
1536 * enqueue(taskA)
1537 * // sched_uclamp_used gets enabled
1538 * enqueue(taskB)
1539 * dequeue(taskA)
b19a888c 1540 * // Must not decrement bucket->tasks here
46609ce2
QY
1541 * dequeue(taskB)
1542 *
1543 * where we could end up with stale data in uc_se and
1544 * bucket[uc_se->bucket_id].
1545 *
1546 * The following check here eliminates the possibility of such race.
1547 */
1548 if (unlikely(!uc_se->active))
1549 return;
1550
69842cba 1551 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1552
69842cba
PB
1553 SCHED_WARN_ON(!bucket->tasks);
1554 if (likely(bucket->tasks))
1555 bucket->tasks--;
46609ce2 1556
e8f14172 1557 uc_se->active = false;
69842cba 1558
60daf9c1
PB
1559 /*
1560 * Keep "local max aggregation" simple and accept to (possibly)
1561 * overboost some RUNNABLE tasks in the same bucket.
1562 * The rq clamp bucket value is reset to its base value whenever
1563 * there are no more RUNNABLE tasks refcounting it.
1564 */
69842cba
PB
1565 if (likely(bucket->tasks))
1566 return;
1567
1568 rq_clamp = READ_ONCE(uc_rq->value);
1569 /*
1570 * Defensive programming: this should never happen. If it happens,
1571 * e.g. due to future modification, warn and fixup the expected value.
1572 */
1573 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1574 if (bucket->value >= rq_clamp) {
1575 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1576 WRITE_ONCE(uc_rq->value, bkt_clamp);
1577 }
69842cba
PB
1578}
1579
1580static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1581{
0413d7f3 1582 enum uclamp_id clamp_id;
69842cba 1583
46609ce2
QY
1584 /*
1585 * Avoid any overhead until uclamp is actually used by the userspace.
1586 *
1587 * The condition is constructed such that a NOP is generated when
1588 * sched_uclamp_used is disabled.
1589 */
1590 if (!static_branch_unlikely(&sched_uclamp_used))
1591 return;
1592
69842cba
PB
1593 if (unlikely(!p->sched_class->uclamp_enabled))
1594 return;
1595
1596 for_each_clamp_id(clamp_id)
1597 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1598
1599 /* Reset clamp idle holding when there is one RUNNABLE task */
1600 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1601 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1602}
1603
1604static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1605{
0413d7f3 1606 enum uclamp_id clamp_id;
69842cba 1607
46609ce2
QY
1608 /*
1609 * Avoid any overhead until uclamp is actually used by the userspace.
1610 *
1611 * The condition is constructed such that a NOP is generated when
1612 * sched_uclamp_used is disabled.
1613 */
1614 if (!static_branch_unlikely(&sched_uclamp_used))
1615 return;
1616
69842cba
PB
1617 if (unlikely(!p->sched_class->uclamp_enabled))
1618 return;
1619
1620 for_each_clamp_id(clamp_id)
1621 uclamp_rq_dec_id(rq, p, clamp_id);
1622}
1623
ca4984a7
QP
1624static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1625 enum uclamp_id clamp_id)
1626{
1627 if (!p->uclamp[clamp_id].active)
1628 return;
1629
1630 uclamp_rq_dec_id(rq, p, clamp_id);
1631 uclamp_rq_inc_id(rq, p, clamp_id);
1632
1633 /*
1634 * Make sure to clear the idle flag if we've transiently reached 0
1635 * active tasks on rq.
1636 */
1637 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1638 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1639}
1640
babbe170 1641static inline void
0213b708 1642uclamp_update_active(struct task_struct *p)
babbe170 1643{
0213b708 1644 enum uclamp_id clamp_id;
babbe170
PB
1645 struct rq_flags rf;
1646 struct rq *rq;
1647
1648 /*
1649 * Lock the task and the rq where the task is (or was) queued.
1650 *
1651 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1652 * price to pay to safely serialize util_{min,max} updates with
1653 * enqueues, dequeues and migration operations.
1654 * This is the same locking schema used by __set_cpus_allowed_ptr().
1655 */
1656 rq = task_rq_lock(p, &rf);
1657
1658 /*
1659 * Setting the clamp bucket is serialized by task_rq_lock().
1660 * If the task is not yet RUNNABLE and its task_struct is not
1661 * affecting a valid clamp bucket, the next time it's enqueued,
1662 * it will already see the updated clamp bucket value.
1663 */
ca4984a7
QP
1664 for_each_clamp_id(clamp_id)
1665 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1666
1667 task_rq_unlock(rq, p, &rf);
1668}
1669
e3b8b6a0 1670#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1671static inline void
0213b708 1672uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1673{
1674 struct css_task_iter it;
1675 struct task_struct *p;
babbe170
PB
1676
1677 css_task_iter_start(css, 0, &it);
0213b708
QY
1678 while ((p = css_task_iter_next(&it)))
1679 uclamp_update_active(p);
babbe170
PB
1680 css_task_iter_end(&it);
1681}
1682
7274a5c1
PB
1683static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1684static void uclamp_update_root_tg(void)
1685{
1686 struct task_group *tg = &root_task_group;
1687
1688 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1689 sysctl_sched_uclamp_util_min, false);
1690 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1691 sysctl_sched_uclamp_util_max, false);
1692
1693 rcu_read_lock();
1694 cpu_util_update_eff(&root_task_group.css);
1695 rcu_read_unlock();
1696}
1697#else
1698static void uclamp_update_root_tg(void) { }
1699#endif
1700
e8f14172 1701int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1702 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1703{
7274a5c1 1704 bool update_root_tg = false;
13685c4a 1705 int old_min, old_max, old_min_rt;
e8f14172
PB
1706 int result;
1707
2480c093 1708 mutex_lock(&uclamp_mutex);
e8f14172
PB
1709 old_min = sysctl_sched_uclamp_util_min;
1710 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1711 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1712
1713 result = proc_dointvec(table, write, buffer, lenp, ppos);
1714 if (result)
1715 goto undo;
1716 if (!write)
1717 goto done;
1718
1719 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1720 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1721 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1722
e8f14172
PB
1723 result = -EINVAL;
1724 goto undo;
1725 }
1726
1727 if (old_min != sysctl_sched_uclamp_util_min) {
1728 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1729 sysctl_sched_uclamp_util_min, false);
7274a5c1 1730 update_root_tg = true;
e8f14172
PB
1731 }
1732 if (old_max != sysctl_sched_uclamp_util_max) {
1733 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1734 sysctl_sched_uclamp_util_max, false);
7274a5c1 1735 update_root_tg = true;
e8f14172
PB
1736 }
1737
46609ce2
QY
1738 if (update_root_tg) {
1739 static_branch_enable(&sched_uclamp_used);
7274a5c1 1740 uclamp_update_root_tg();
46609ce2 1741 }
7274a5c1 1742
13685c4a
QY
1743 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1744 static_branch_enable(&sched_uclamp_used);
1745 uclamp_sync_util_min_rt_default();
1746 }
7274a5c1 1747
e8f14172 1748 /*
7274a5c1
PB
1749 * We update all RUNNABLE tasks only when task groups are in use.
1750 * Otherwise, keep it simple and do just a lazy update at each next
1751 * task enqueue time.
e8f14172 1752 */
7274a5c1 1753
e8f14172
PB
1754 goto done;
1755
1756undo:
1757 sysctl_sched_uclamp_util_min = old_min;
1758 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1759 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1760done:
2480c093 1761 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1762
1763 return result;
1764}
1765
a509a7cd
PB
1766static int uclamp_validate(struct task_struct *p,
1767 const struct sched_attr *attr)
1768{
480a6ca2
DE
1769 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1770 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1771
480a6ca2
DE
1772 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1773 util_min = attr->sched_util_min;
a509a7cd 1774
480a6ca2
DE
1775 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1776 return -EINVAL;
1777 }
1778
1779 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1780 util_max = attr->sched_util_max;
1781
1782 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1783 return -EINVAL;
1784 }
1785
1786 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1787 return -EINVAL;
1788
e65855a5
QY
1789 /*
1790 * We have valid uclamp attributes; make sure uclamp is enabled.
1791 *
1792 * We need to do that here, because enabling static branches is a
1793 * blocking operation which obviously cannot be done while holding
1794 * scheduler locks.
1795 */
1796 static_branch_enable(&sched_uclamp_used);
1797
a509a7cd
PB
1798 return 0;
1799}
1800
480a6ca2
DE
1801static bool uclamp_reset(const struct sched_attr *attr,
1802 enum uclamp_id clamp_id,
1803 struct uclamp_se *uc_se)
1804{
1805 /* Reset on sched class change for a non user-defined clamp value. */
1806 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1807 !uc_se->user_defined)
1808 return true;
1809
1810 /* Reset on sched_util_{min,max} == -1. */
1811 if (clamp_id == UCLAMP_MIN &&
1812 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1813 attr->sched_util_min == -1) {
1814 return true;
1815 }
1816
1817 if (clamp_id == UCLAMP_MAX &&
1818 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1819 attr->sched_util_max == -1) {
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
a509a7cd
PB
1826static void __setscheduler_uclamp(struct task_struct *p,
1827 const struct sched_attr *attr)
1828{
0413d7f3 1829 enum uclamp_id clamp_id;
1a00d999 1830
1a00d999
PB
1831 for_each_clamp_id(clamp_id) {
1832 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1833 unsigned int value;
1a00d999 1834
480a6ca2 1835 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1836 continue;
1837
13685c4a
QY
1838 /*
1839 * RT by default have a 100% boost value that could be modified
1840 * at runtime.
1841 */
1a00d999 1842 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1843 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1844 else
480a6ca2
DE
1845 value = uclamp_none(clamp_id);
1846
1847 uclamp_se_set(uc_se, value, false);
1a00d999 1848
1a00d999
PB
1849 }
1850
a509a7cd
PB
1851 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1852 return;
1853
480a6ca2
DE
1854 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1855 attr->sched_util_min != -1) {
a509a7cd
PB
1856 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1857 attr->sched_util_min, true);
1858 }
1859
480a6ca2
DE
1860 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1861 attr->sched_util_max != -1) {
a509a7cd
PB
1862 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1863 attr->sched_util_max, true);
1864 }
1865}
1866
e8f14172
PB
1867static void uclamp_fork(struct task_struct *p)
1868{
0413d7f3 1869 enum uclamp_id clamp_id;
e8f14172 1870
13685c4a
QY
1871 /*
1872 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1873 * as the task is still at its early fork stages.
1874 */
e8f14172
PB
1875 for_each_clamp_id(clamp_id)
1876 p->uclamp[clamp_id].active = false;
a87498ac
PB
1877
1878 if (likely(!p->sched_reset_on_fork))
1879 return;
1880
1881 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1882 uclamp_se_set(&p->uclamp_req[clamp_id],
1883 uclamp_none(clamp_id), false);
a87498ac 1884 }
e8f14172
PB
1885}
1886
13685c4a
QY
1887static void uclamp_post_fork(struct task_struct *p)
1888{
1889 uclamp_update_util_min_rt_default(p);
1890}
1891
d81ae8aa
QY
1892static void __init init_uclamp_rq(struct rq *rq)
1893{
1894 enum uclamp_id clamp_id;
1895 struct uclamp_rq *uc_rq = rq->uclamp;
1896
1897 for_each_clamp_id(clamp_id) {
1898 uc_rq[clamp_id] = (struct uclamp_rq) {
1899 .value = uclamp_none(clamp_id)
1900 };
1901 }
1902
1903 rq->uclamp_flags = 0;
1904}
1905
69842cba
PB
1906static void __init init_uclamp(void)
1907{
e8f14172 1908 struct uclamp_se uc_max = {};
0413d7f3 1909 enum uclamp_id clamp_id;
69842cba
PB
1910 int cpu;
1911
d81ae8aa
QY
1912 for_each_possible_cpu(cpu)
1913 init_uclamp_rq(cpu_rq(cpu));
69842cba 1914
69842cba 1915 for_each_clamp_id(clamp_id) {
e8f14172 1916 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1917 uclamp_none(clamp_id), false);
69842cba 1918 }
e8f14172
PB
1919
1920 /* System defaults allow max clamp values for both indexes */
a509a7cd 1921 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1922 for_each_clamp_id(clamp_id) {
e8f14172 1923 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1924#ifdef CONFIG_UCLAMP_TASK_GROUP
1925 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1926 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1927#endif
1928 }
69842cba
PB
1929}
1930
1931#else /* CONFIG_UCLAMP_TASK */
1932static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1933static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1934static inline int uclamp_validate(struct task_struct *p,
1935 const struct sched_attr *attr)
1936{
1937 return -EOPNOTSUPP;
1938}
1939static void __setscheduler_uclamp(struct task_struct *p,
1940 const struct sched_attr *attr) { }
e8f14172 1941static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1942static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1943static inline void init_uclamp(void) { }
1944#endif /* CONFIG_UCLAMP_TASK */
1945
1de64443 1946static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1947{
0a67d1ee
PZ
1948 if (!(flags & ENQUEUE_NOCLOCK))
1949 update_rq_clock(rq);
1950
eb414681 1951 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 1952 sched_info_enqueue(rq, p);
eb414681
JW
1953 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1954 }
0a67d1ee 1955
69842cba 1956 uclamp_rq_inc(rq, p);
371fd7e7 1957 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
1958
1959 if (sched_core_enabled(rq))
1960 sched_core_enqueue(rq, p);
71f8bd46
IM
1961}
1962
1de64443 1963static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1964{
8a311c74
PZ
1965 if (sched_core_enabled(rq))
1966 sched_core_dequeue(rq, p);
1967
0a67d1ee
PZ
1968 if (!(flags & DEQUEUE_NOCLOCK))
1969 update_rq_clock(rq);
1970
eb414681 1971 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 1972 sched_info_dequeue(rq, p);
eb414681
JW
1973 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1974 }
0a67d1ee 1975
69842cba 1976 uclamp_rq_dec(rq, p);
371fd7e7 1977 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1978}
1979
029632fb 1980void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1981{
371fd7e7 1982 enqueue_task(rq, p, flags);
7dd77884
PZ
1983
1984 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1985}
1986
029632fb 1987void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1988{
7dd77884
PZ
1989 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1990
371fd7e7 1991 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1992}
1993
14531189 1994/*
dd41f596 1995 * __normal_prio - return the priority that is based on the static prio
14531189 1996 */
14531189
IM
1997static inline int __normal_prio(struct task_struct *p)
1998{
dd41f596 1999 return p->static_prio;
14531189
IM
2000}
2001
b29739f9
IM
2002/*
2003 * Calculate the expected normal priority: i.e. priority
2004 * without taking RT-inheritance into account. Might be
2005 * boosted by interactivity modifiers. Changes upon fork,
2006 * setprio syscalls, and whenever the interactivity
2007 * estimator recalculates.
2008 */
36c8b586 2009static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2010{
2011 int prio;
2012
aab03e05
DF
2013 if (task_has_dl_policy(p))
2014 prio = MAX_DL_PRIO-1;
2015 else if (task_has_rt_policy(p))
b29739f9
IM
2016 prio = MAX_RT_PRIO-1 - p->rt_priority;
2017 else
2018 prio = __normal_prio(p);
2019 return prio;
2020}
2021
2022/*
2023 * Calculate the current priority, i.e. the priority
2024 * taken into account by the scheduler. This value might
2025 * be boosted by RT tasks, or might be boosted by
2026 * interactivity modifiers. Will be RT if the task got
2027 * RT-boosted. If not then it returns p->normal_prio.
2028 */
36c8b586 2029static int effective_prio(struct task_struct *p)
b29739f9
IM
2030{
2031 p->normal_prio = normal_prio(p);
2032 /*
2033 * If we are RT tasks or we were boosted to RT priority,
2034 * keep the priority unchanged. Otherwise, update priority
2035 * to the normal priority:
2036 */
2037 if (!rt_prio(p->prio))
2038 return p->normal_prio;
2039 return p->prio;
2040}
2041
1da177e4
LT
2042/**
2043 * task_curr - is this task currently executing on a CPU?
2044 * @p: the task in question.
e69f6186
YB
2045 *
2046 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2047 */
36c8b586 2048inline int task_curr(const struct task_struct *p)
1da177e4
LT
2049{
2050 return cpu_curr(task_cpu(p)) == p;
2051}
2052
67dfa1b7 2053/*
4c9a4bc8
PZ
2054 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2055 * use the balance_callback list if you want balancing.
2056 *
2057 * this means any call to check_class_changed() must be followed by a call to
2058 * balance_callback().
67dfa1b7 2059 */
cb469845
SR
2060static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2061 const struct sched_class *prev_class,
da7a735e 2062 int oldprio)
cb469845
SR
2063{
2064 if (prev_class != p->sched_class) {
2065 if (prev_class->switched_from)
da7a735e 2066 prev_class->switched_from(rq, p);
4c9a4bc8 2067
da7a735e 2068 p->sched_class->switched_to(rq, p);
2d3d891d 2069 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2070 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2071}
2072
029632fb 2073void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2074{
aa93cd53 2075 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2076 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
2077 else if (p->sched_class > rq->curr->sched_class)
2078 resched_curr(rq);
1e5a7405
PZ
2079
2080 /*
2081 * A queue event has occurred, and we're going to schedule. In
2082 * this case, we can save a useless back to back clock update.
2083 */
da0c1e65 2084 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2085 rq_clock_skip_update(rq);
1e5a7405
PZ
2086}
2087
1da177e4 2088#ifdef CONFIG_SMP
175f0e25 2089
af449901
PZ
2090static void
2091__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2092
2093static int __set_cpus_allowed_ptr(struct task_struct *p,
2094 const struct cpumask *new_mask,
2095 u32 flags);
2096
2097static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2098{
2099 if (likely(!p->migration_disabled))
2100 return;
2101
2102 if (p->cpus_ptr != &p->cpus_mask)
2103 return;
2104
2105 /*
2106 * Violates locking rules! see comment in __do_set_cpus_allowed().
2107 */
2108 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2109}
2110
2111void migrate_disable(void)
2112{
3015ef4b
TG
2113 struct task_struct *p = current;
2114
2115 if (p->migration_disabled) {
2116 p->migration_disabled++;
af449901 2117 return;
3015ef4b 2118 }
af449901 2119
3015ef4b
TG
2120 preempt_disable();
2121 this_rq()->nr_pinned++;
2122 p->migration_disabled = 1;
2123 preempt_enable();
af449901
PZ
2124}
2125EXPORT_SYMBOL_GPL(migrate_disable);
2126
2127void migrate_enable(void)
2128{
2129 struct task_struct *p = current;
2130
6d337eab
PZ
2131 if (p->migration_disabled > 1) {
2132 p->migration_disabled--;
af449901 2133 return;
6d337eab 2134 }
af449901 2135
6d337eab
PZ
2136 /*
2137 * Ensure stop_task runs either before or after this, and that
2138 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2139 */
2140 preempt_disable();
2141 if (p->cpus_ptr != &p->cpus_mask)
2142 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2143 /*
2144 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2145 * regular cpus_mask, otherwise things that race (eg.
2146 * select_fallback_rq) get confused.
2147 */
af449901 2148 barrier();
6d337eab 2149 p->migration_disabled = 0;
3015ef4b 2150 this_rq()->nr_pinned--;
6d337eab 2151 preempt_enable();
af449901
PZ
2152}
2153EXPORT_SYMBOL_GPL(migrate_enable);
2154
3015ef4b
TG
2155static inline bool rq_has_pinned_tasks(struct rq *rq)
2156{
2157 return rq->nr_pinned;
2158}
2159
175f0e25 2160/*
bee98539 2161 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2162 * __set_cpus_allowed_ptr() and select_fallback_rq().
2163 */
2164static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2165{
5ba2ffba 2166 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2167 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2168 return false;
2169
5ba2ffba
PZ
2170 /* migrate_disabled() must be allowed to finish. */
2171 if (is_migration_disabled(p))
175f0e25
PZ
2172 return cpu_online(cpu);
2173
5ba2ffba
PZ
2174 /* Non kernel threads are not allowed during either online or offline. */
2175 if (!(p->flags & PF_KTHREAD))
9ae606bc 2176 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2177
2178 /* KTHREAD_IS_PER_CPU is always allowed. */
2179 if (kthread_is_per_cpu(p))
2180 return cpu_online(cpu);
2181
2182 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2183 if (cpu_dying(cpu))
5ba2ffba
PZ
2184 return false;
2185
2186 /* But are allowed during online. */
2187 return cpu_online(cpu);
175f0e25
PZ
2188}
2189
5cc389bc
PZ
2190/*
2191 * This is how migration works:
2192 *
2193 * 1) we invoke migration_cpu_stop() on the target CPU using
2194 * stop_one_cpu().
2195 * 2) stopper starts to run (implicitly forcing the migrated thread
2196 * off the CPU)
2197 * 3) it checks whether the migrated task is still in the wrong runqueue.
2198 * 4) if it's in the wrong runqueue then the migration thread removes
2199 * it and puts it into the right queue.
2200 * 5) stopper completes and stop_one_cpu() returns and the migration
2201 * is done.
2202 */
2203
2204/*
2205 * move_queued_task - move a queued task to new rq.
2206 *
2207 * Returns (locked) new rq. Old rq's lock is released.
2208 */
8a8c69c3
PZ
2209static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2210 struct task_struct *p, int new_cpu)
5cc389bc 2211{
5cb9eaa3 2212 lockdep_assert_rq_held(rq);
5cc389bc 2213
58877d34 2214 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2215 set_task_cpu(p, new_cpu);
8a8c69c3 2216 rq_unlock(rq, rf);
5cc389bc
PZ
2217
2218 rq = cpu_rq(new_cpu);
2219
8a8c69c3 2220 rq_lock(rq, rf);
5cc389bc 2221 BUG_ON(task_cpu(p) != new_cpu);
58877d34 2222 activate_task(rq, p, 0);
5cc389bc
PZ
2223 check_preempt_curr(rq, p, 0);
2224
2225 return rq;
2226}
2227
2228struct migration_arg {
6d337eab
PZ
2229 struct task_struct *task;
2230 int dest_cpu;
2231 struct set_affinity_pending *pending;
2232};
2233
50caf9c1
PZ
2234/*
2235 * @refs: number of wait_for_completion()
2236 * @stop_pending: is @stop_work in use
2237 */
6d337eab
PZ
2238struct set_affinity_pending {
2239 refcount_t refs;
9e81889c 2240 unsigned int stop_pending;
6d337eab
PZ
2241 struct completion done;
2242 struct cpu_stop_work stop_work;
2243 struct migration_arg arg;
5cc389bc
PZ
2244};
2245
2246/*
d1ccc66d 2247 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2248 * this because either it can't run here any more (set_cpus_allowed()
2249 * away from this CPU, or CPU going down), or because we're
2250 * attempting to rebalance this task on exec (sched_exec).
2251 *
2252 * So we race with normal scheduler movements, but that's OK, as long
2253 * as the task is no longer on this CPU.
5cc389bc 2254 */
8a8c69c3
PZ
2255static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2256 struct task_struct *p, int dest_cpu)
5cc389bc 2257{
5cc389bc 2258 /* Affinity changed (again). */
175f0e25 2259 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2260 return rq;
5cc389bc 2261
15ff991e 2262 update_rq_clock(rq);
8a8c69c3 2263 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2264
2265 return rq;
5cc389bc
PZ
2266}
2267
2268/*
2269 * migration_cpu_stop - this will be executed by a highprio stopper thread
2270 * and performs thread migration by bumping thread off CPU then
2271 * 'pushing' onto another runqueue.
2272 */
2273static int migration_cpu_stop(void *data)
2274{
2275 struct migration_arg *arg = data;
c20cf065 2276 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2277 struct task_struct *p = arg->task;
2278 struct rq *rq = this_rq();
6d337eab 2279 bool complete = false;
8a8c69c3 2280 struct rq_flags rf;
5cc389bc
PZ
2281
2282 /*
d1ccc66d
IM
2283 * The original target CPU might have gone down and we might
2284 * be on another CPU but it doesn't matter.
5cc389bc 2285 */
6d337eab 2286 local_irq_save(rf.flags);
5cc389bc
PZ
2287 /*
2288 * We need to explicitly wake pending tasks before running
3bd37062 2289 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2290 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2291 */
a1488664 2292 flush_smp_call_function_from_idle();
5e16bbc2
PZ
2293
2294 raw_spin_lock(&p->pi_lock);
8a8c69c3 2295 rq_lock(rq, &rf);
6d337eab 2296
e140749c
VS
2297 /*
2298 * If we were passed a pending, then ->stop_pending was set, thus
2299 * p->migration_pending must have remained stable.
2300 */
2301 WARN_ON_ONCE(pending && pending != p->migration_pending);
2302
5e16bbc2
PZ
2303 /*
2304 * If task_rq(p) != rq, it cannot be migrated here, because we're
2305 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2306 * we're holding p->pi_lock.
2307 */
bf89a304 2308 if (task_rq(p) == rq) {
6d337eab
PZ
2309 if (is_migration_disabled(p))
2310 goto out;
2311
2312 if (pending) {
e140749c 2313 p->migration_pending = NULL;
6d337eab 2314 complete = true;
6d337eab 2315
3f1bc119
PZ
2316 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2317 goto out;
3f1bc119 2318 }
6d337eab 2319
bf89a304 2320 if (task_on_rq_queued(p))
475ea6c6 2321 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2322 else
475ea6c6 2323 p->wake_cpu = arg->dest_cpu;
6d337eab 2324
3f1bc119
PZ
2325 /*
2326 * XXX __migrate_task() can fail, at which point we might end
2327 * up running on a dodgy CPU, AFAICT this can only happen
2328 * during CPU hotplug, at which point we'll get pushed out
2329 * anyway, so it's probably not a big deal.
2330 */
2331
c20cf065 2332 } else if (pending) {
6d337eab
PZ
2333 /*
2334 * This happens when we get migrated between migrate_enable()'s
2335 * preempt_enable() and scheduling the stopper task. At that
2336 * point we're a regular task again and not current anymore.
2337 *
2338 * A !PREEMPT kernel has a giant hole here, which makes it far
2339 * more likely.
2340 */
2341
d707faa6
VS
2342 /*
2343 * The task moved before the stopper got to run. We're holding
2344 * ->pi_lock, so the allowed mask is stable - if it got
2345 * somewhere allowed, we're done.
2346 */
c20cf065 2347 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2348 p->migration_pending = NULL;
d707faa6
VS
2349 complete = true;
2350 goto out;
2351 }
2352
6d337eab
PZ
2353 /*
2354 * When migrate_enable() hits a rq mis-match we can't reliably
2355 * determine is_migration_disabled() and so have to chase after
2356 * it.
2357 */
9e81889c 2358 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2359 task_rq_unlock(rq, p, &rf);
2360 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2361 &pending->arg, &pending->stop_work);
2362 return 0;
bf89a304 2363 }
6d337eab 2364out:
9e81889c
PZ
2365 if (pending)
2366 pending->stop_pending = false;
6d337eab
PZ
2367 task_rq_unlock(rq, p, &rf);
2368
2369 if (complete)
2370 complete_all(&pending->done);
2371
5cc389bc
PZ
2372 return 0;
2373}
2374
a7c81556
PZ
2375int push_cpu_stop(void *arg)
2376{
2377 struct rq *lowest_rq = NULL, *rq = this_rq();
2378 struct task_struct *p = arg;
2379
2380 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2381 raw_spin_rq_lock(rq);
a7c81556
PZ
2382
2383 if (task_rq(p) != rq)
2384 goto out_unlock;
2385
2386 if (is_migration_disabled(p)) {
2387 p->migration_flags |= MDF_PUSH;
2388 goto out_unlock;
2389 }
2390
2391 p->migration_flags &= ~MDF_PUSH;
2392
2393 if (p->sched_class->find_lock_rq)
2394 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2395
a7c81556
PZ
2396 if (!lowest_rq)
2397 goto out_unlock;
2398
2399 // XXX validate p is still the highest prio task
2400 if (task_rq(p) == rq) {
2401 deactivate_task(rq, p, 0);
2402 set_task_cpu(p, lowest_rq->cpu);
2403 activate_task(lowest_rq, p, 0);
2404 resched_curr(lowest_rq);
2405 }
2406
2407 double_unlock_balance(rq, lowest_rq);
2408
2409out_unlock:
2410 rq->push_busy = false;
5cb9eaa3 2411 raw_spin_rq_unlock(rq);
a7c81556
PZ
2412 raw_spin_unlock_irq(&p->pi_lock);
2413
2414 put_task_struct(p);
5cc389bc
PZ
2415 return 0;
2416}
2417
c5b28038
PZ
2418/*
2419 * sched_class::set_cpus_allowed must do the below, but is not required to
2420 * actually call this function.
2421 */
9cfc3e18 2422void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2423{
af449901
PZ
2424 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2425 p->cpus_ptr = new_mask;
2426 return;
2427 }
2428
3bd37062 2429 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2430 p->nr_cpus_allowed = cpumask_weight(new_mask);
2431}
2432
9cfc3e18
PZ
2433static void
2434__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2435{
6c37067e
PZ
2436 struct rq *rq = task_rq(p);
2437 bool queued, running;
2438
af449901
PZ
2439 /*
2440 * This here violates the locking rules for affinity, since we're only
2441 * supposed to change these variables while holding both rq->lock and
2442 * p->pi_lock.
2443 *
2444 * HOWEVER, it magically works, because ttwu() is the only code that
2445 * accesses these variables under p->pi_lock and only does so after
2446 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2447 * before finish_task().
2448 *
2449 * XXX do further audits, this smells like something putrid.
2450 */
2451 if (flags & SCA_MIGRATE_DISABLE)
2452 SCHED_WARN_ON(!p->on_cpu);
2453 else
2454 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2455
2456 queued = task_on_rq_queued(p);
2457 running = task_current(rq, p);
2458
2459 if (queued) {
2460 /*
2461 * Because __kthread_bind() calls this on blocked tasks without
2462 * holding rq->lock.
2463 */
5cb9eaa3 2464 lockdep_assert_rq_held(rq);
7a57f32a 2465 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2466 }
2467 if (running)
2468 put_prev_task(rq, p);
2469
9cfc3e18 2470 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2471
6c37067e 2472 if (queued)
7134b3e9 2473 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2474 if (running)
03b7fad1 2475 set_next_task(rq, p);
c5b28038
PZ
2476}
2477
9cfc3e18
PZ
2478void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2479{
2480 __do_set_cpus_allowed(p, new_mask, 0);
2481}
2482
6d337eab 2483/*
c777d847
VS
2484 * This function is wildly self concurrent; here be dragons.
2485 *
2486 *
2487 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2488 * designated task is enqueued on an allowed CPU. If that task is currently
2489 * running, we have to kick it out using the CPU stopper.
2490 *
2491 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2492 * Consider:
2493 *
2494 * Initial conditions: P0->cpus_mask = [0, 1]
2495 *
2496 * P0@CPU0 P1
2497 *
2498 * migrate_disable();
2499 * <preempted>
2500 * set_cpus_allowed_ptr(P0, [1]);
2501 *
2502 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2503 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2504 * This means we need the following scheme:
2505 *
2506 * P0@CPU0 P1
2507 *
2508 * migrate_disable();
2509 * <preempted>
2510 * set_cpus_allowed_ptr(P0, [1]);
2511 * <blocks>
2512 * <resumes>
2513 * migrate_enable();
2514 * __set_cpus_allowed_ptr();
2515 * <wakes local stopper>
2516 * `--> <woken on migration completion>
2517 *
2518 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2519 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2520 * task p are serialized by p->pi_lock, which we can leverage: the one that
2521 * should come into effect at the end of the Migrate-Disable region is the last
2522 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2523 * but we still need to properly signal those waiting tasks at the appropriate
2524 * moment.
2525 *
2526 * This is implemented using struct set_affinity_pending. The first
2527 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2528 * setup an instance of that struct and install it on the targeted task_struct.
2529 * Any and all further callers will reuse that instance. Those then wait for
2530 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2531 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2532 *
2533 *
2534 * (1) In the cases covered above. There is one more where the completion is
2535 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2536 * occurs after the stopper bailed out due to the targeted task still being
2537 * Migrate-Disable. Consider:
c777d847
VS
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
e140749c
VS
2541 * CPU0 P1 P2
2542 * <P0>
2543 * migrate_disable();
2544 * <preempted>
c777d847
VS
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 * <blocks>
e140749c
VS
2547 * <migration/0>
2548 * migration_cpu_stop()
2549 * is_migration_disabled()
2550 * <bails>
c777d847
VS
2551 * set_cpus_allowed_ptr(P0, [0, 1]);
2552 * <signal completion>
2553 * <awakes>
2554 *
2555 * Note that the above is safe vs a concurrent migrate_enable(), as any
2556 * pending affinity completion is preceded by an uninstallation of
2557 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2558 */
2559static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2560 int dest_cpu, unsigned int flags)
2561{
2562 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2563 bool stop_pending, complete = false;
6d337eab
PZ
2564
2565 /* Can the task run on the task's current CPU? If so, we're done */
2566 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2567 struct task_struct *push_task = NULL;
2568
2569 if ((flags & SCA_MIGRATE_ENABLE) &&
2570 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2571 rq->push_busy = true;
2572 push_task = get_task_struct(p);
2573 }
2574
50caf9c1
PZ
2575 /*
2576 * If there are pending waiters, but no pending stop_work,
2577 * then complete now.
2578 */
6d337eab 2579 pending = p->migration_pending;
50caf9c1 2580 if (pending && !pending->stop_pending) {
6d337eab
PZ
2581 p->migration_pending = NULL;
2582 complete = true;
2583 }
50caf9c1 2584
6d337eab
PZ
2585 task_rq_unlock(rq, p, rf);
2586
a7c81556
PZ
2587 if (push_task) {
2588 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2589 p, &rq->push_work);
2590 }
2591
6d337eab 2592 if (complete)
50caf9c1 2593 complete_all(&pending->done);
6d337eab
PZ
2594
2595 return 0;
2596 }
2597
2598 if (!(flags & SCA_MIGRATE_ENABLE)) {
2599 /* serialized by p->pi_lock */
2600 if (!p->migration_pending) {
c777d847 2601 /* Install the request */
6d337eab
PZ
2602 refcount_set(&my_pending.refs, 1);
2603 init_completion(&my_pending.done);
8a6edb52
PZ
2604 my_pending.arg = (struct migration_arg) {
2605 .task = p,
475ea6c6 2606 .dest_cpu = dest_cpu,
8a6edb52
PZ
2607 .pending = &my_pending,
2608 };
2609
6d337eab
PZ
2610 p->migration_pending = &my_pending;
2611 } else {
2612 pending = p->migration_pending;
2613 refcount_inc(&pending->refs);
475ea6c6
VS
2614 /*
2615 * Affinity has changed, but we've already installed a
2616 * pending. migration_cpu_stop() *must* see this, else
2617 * we risk a completion of the pending despite having a
2618 * task on a disallowed CPU.
2619 *
2620 * Serialized by p->pi_lock, so this is safe.
2621 */
2622 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2623 }
2624 }
2625 pending = p->migration_pending;
2626 /*
2627 * - !MIGRATE_ENABLE:
2628 * we'll have installed a pending if there wasn't one already.
2629 *
2630 * - MIGRATE_ENABLE:
2631 * we're here because the current CPU isn't matching anymore,
2632 * the only way that can happen is because of a concurrent
2633 * set_cpus_allowed_ptr() call, which should then still be
2634 * pending completion.
2635 *
2636 * Either way, we really should have a @pending here.
2637 */
2638 if (WARN_ON_ONCE(!pending)) {
2639 task_rq_unlock(rq, p, rf);
2640 return -EINVAL;
2641 }
2642
2f064a59 2643 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2644 /*
58b1a450
PZ
2645 * MIGRATE_ENABLE gets here because 'p == current', but for
2646 * anything else we cannot do is_migration_disabled(), punt
2647 * and have the stopper function handle it all race-free.
c777d847 2648 */
9e81889c
PZ
2649 stop_pending = pending->stop_pending;
2650 if (!stop_pending)
2651 pending->stop_pending = true;
58b1a450 2652
58b1a450
PZ
2653 if (flags & SCA_MIGRATE_ENABLE)
2654 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2655
6d337eab 2656 task_rq_unlock(rq, p, rf);
8a6edb52 2657
9e81889c
PZ
2658 if (!stop_pending) {
2659 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2660 &pending->arg, &pending->stop_work);
2661 }
6d337eab 2662
58b1a450
PZ
2663 if (flags & SCA_MIGRATE_ENABLE)
2664 return 0;
6d337eab
PZ
2665 } else {
2666
2667 if (!is_migration_disabled(p)) {
2668 if (task_on_rq_queued(p))
2669 rq = move_queued_task(rq, rf, p, dest_cpu);
2670
50caf9c1
PZ
2671 if (!pending->stop_pending) {
2672 p->migration_pending = NULL;
2673 complete = true;
2674 }
6d337eab
PZ
2675 }
2676 task_rq_unlock(rq, p, rf);
2677
6d337eab
PZ
2678 if (complete)
2679 complete_all(&pending->done);
2680 }
2681
2682 wait_for_completion(&pending->done);
2683
2684 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2685 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2686
c777d847
VS
2687 /*
2688 * Block the original owner of &pending until all subsequent callers
2689 * have seen the completion and decremented the refcount
2690 */
6d337eab
PZ
2691 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2692
50caf9c1
PZ
2693 /* ARGH */
2694 WARN_ON_ONCE(my_pending.stop_pending);
2695
6d337eab
PZ
2696 return 0;
2697}
2698
5cc389bc
PZ
2699/*
2700 * Change a given task's CPU affinity. Migrate the thread to a
2701 * proper CPU and schedule it away if the CPU it's executing on
2702 * is removed from the allowed bitmask.
2703 *
2704 * NOTE: the caller must have a valid reference to the task, the
2705 * task must not exit() & deallocate itself prematurely. The
2706 * call is not atomic; no spinlocks may be held.
2707 */
25834c73 2708static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2709 const struct cpumask *new_mask,
2710 u32 flags)
5cc389bc 2711{
234a503e 2712 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2713 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2714 bool kthread = p->flags & PF_KTHREAD;
5cc389bc 2715 unsigned int dest_cpu;
eb580751
PZ
2716 struct rq_flags rf;
2717 struct rq *rq;
5cc389bc
PZ
2718 int ret = 0;
2719
eb580751 2720 rq = task_rq_lock(p, &rf);
a499c3ea 2721 update_rq_clock(rq);
5cc389bc 2722
234a503e 2723 if (kthread || is_migration_disabled(p)) {
e9d867a6 2724 /*
741ba80f
PZ
2725 * Kernel threads are allowed on online && !active CPUs,
2726 * however, during cpu-hot-unplug, even these might get pushed
2727 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2728 *
2729 * Specifically, migration_disabled() tasks must not fail the
2730 * cpumask_any_and_distribute() pick below, esp. so on
2731 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2732 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2733 */
2734 cpu_valid_mask = cpu_online_mask;
2735 }
2736
234a503e
WD
2737 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741
25834c73
PZ
2742 /*
2743 * Must re-check here, to close a race against __kthread_bind(),
2744 * sched_setaffinity() is not guaranteed to observe the flag.
2745 */
9cfc3e18 2746 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2747 ret = -EINVAL;
2748 goto out;
2749 }
2750
885b3ba4
VS
2751 if (!(flags & SCA_MIGRATE_ENABLE)) {
2752 if (cpumask_equal(&p->cpus_mask, new_mask))
2753 goto out;
2754
2755 if (WARN_ON_ONCE(p == current &&
2756 is_migration_disabled(p) &&
2757 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2758 ret = -EBUSY;
2759 goto out;
2760 }
2761 }
5cc389bc 2762
46a87b38
PT
2763 /*
2764 * Picking a ~random cpu helps in cases where we are changing affinity
2765 * for groups of tasks (ie. cpuset), so that load balancing is not
2766 * immediately required to distribute the tasks within their new mask.
2767 */
2768 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2769 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2770 ret = -EINVAL;
2771 goto out;
2772 }
2773
9cfc3e18 2774 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2775
6d337eab 2776 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2777
5cc389bc 2778out:
eb580751 2779 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2780
2781 return ret;
2782}
25834c73
PZ
2783
2784int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2785{
9cfc3e18 2786 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2787}
5cc389bc
PZ
2788EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2789
dd41f596 2790void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2791{
e2912009 2792#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
2793 unsigned int state = READ_ONCE(p->__state);
2794
e2912009
PZ
2795 /*
2796 * We should never call set_task_cpu() on a blocked task,
2797 * ttwu() will sort out the placement.
2798 */
2f064a59 2799 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 2800
3ea94de1
JP
2801 /*
2802 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2803 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2804 * time relying on p->on_rq.
2805 */
2f064a59 2806 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
2807 p->sched_class == &fair_sched_class &&
2808 (p->on_rq && !task_on_rq_migrating(p)));
2809
0122ec5b 2810#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2811 /*
2812 * The caller should hold either p->pi_lock or rq->lock, when changing
2813 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2814 *
2815 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2816 * see task_group().
6c6c54e1
PZ
2817 *
2818 * Furthermore, all task_rq users should acquire both locks, see
2819 * task_rq_lock().
2820 */
0122ec5b 2821 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 2822 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 2823#endif
4ff9083b
PZ
2824 /*
2825 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2826 */
2827 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2828
2829 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2830#endif
2831
de1d7286 2832 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2833
0c69774e 2834 if (task_cpu(p) != new_cpu) {
0a74bef8 2835 if (p->sched_class->migrate_task_rq)
1327237a 2836 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2837 p->se.nr_migrations++;
d7822b1e 2838 rseq_migrate(p);
ff303e66 2839 perf_event_task_migrate(p);
0c69774e 2840 }
dd41f596
IM
2841
2842 __set_task_cpu(p, new_cpu);
c65cc870
IM
2843}
2844
0ad4e3df 2845#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2846static void __migrate_swap_task(struct task_struct *p, int cpu)
2847{
da0c1e65 2848 if (task_on_rq_queued(p)) {
ac66f547 2849 struct rq *src_rq, *dst_rq;
8a8c69c3 2850 struct rq_flags srf, drf;
ac66f547
PZ
2851
2852 src_rq = task_rq(p);
2853 dst_rq = cpu_rq(cpu);
2854
8a8c69c3
PZ
2855 rq_pin_lock(src_rq, &srf);
2856 rq_pin_lock(dst_rq, &drf);
2857
ac66f547
PZ
2858 deactivate_task(src_rq, p, 0);
2859 set_task_cpu(p, cpu);
2860 activate_task(dst_rq, p, 0);
2861 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2862
2863 rq_unpin_lock(dst_rq, &drf);
2864 rq_unpin_lock(src_rq, &srf);
2865
ac66f547
PZ
2866 } else {
2867 /*
2868 * Task isn't running anymore; make it appear like we migrated
2869 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2870 * previous CPU our target instead of where it really is.
ac66f547
PZ
2871 */
2872 p->wake_cpu = cpu;
2873 }
2874}
2875
2876struct migration_swap_arg {
2877 struct task_struct *src_task, *dst_task;
2878 int src_cpu, dst_cpu;
2879};
2880
2881static int migrate_swap_stop(void *data)
2882{
2883 struct migration_swap_arg *arg = data;
2884 struct rq *src_rq, *dst_rq;
2885 int ret = -EAGAIN;
2886
62694cd5
PZ
2887 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2888 return -EAGAIN;
2889
ac66f547
PZ
2890 src_rq = cpu_rq(arg->src_cpu);
2891 dst_rq = cpu_rq(arg->dst_cpu);
2892
74602315
PZ
2893 double_raw_lock(&arg->src_task->pi_lock,
2894 &arg->dst_task->pi_lock);
ac66f547 2895 double_rq_lock(src_rq, dst_rq);
62694cd5 2896
ac66f547
PZ
2897 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2898 goto unlock;
2899
2900 if (task_cpu(arg->src_task) != arg->src_cpu)
2901 goto unlock;
2902
3bd37062 2903 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2904 goto unlock;
2905
3bd37062 2906 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2907 goto unlock;
2908
2909 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2910 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2911
2912 ret = 0;
2913
2914unlock:
2915 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2916 raw_spin_unlock(&arg->dst_task->pi_lock);
2917 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2918
2919 return ret;
2920}
2921
2922/*
2923 * Cross migrate two tasks
2924 */
0ad4e3df
SD
2925int migrate_swap(struct task_struct *cur, struct task_struct *p,
2926 int target_cpu, int curr_cpu)
ac66f547
PZ
2927{
2928 struct migration_swap_arg arg;
2929 int ret = -EINVAL;
2930
ac66f547
PZ
2931 arg = (struct migration_swap_arg){
2932 .src_task = cur,
0ad4e3df 2933 .src_cpu = curr_cpu,
ac66f547 2934 .dst_task = p,
0ad4e3df 2935 .dst_cpu = target_cpu,
ac66f547
PZ
2936 };
2937
2938 if (arg.src_cpu == arg.dst_cpu)
2939 goto out;
2940
6acce3ef
PZ
2941 /*
2942 * These three tests are all lockless; this is OK since all of them
2943 * will be re-checked with proper locks held further down the line.
2944 */
ac66f547
PZ
2945 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2946 goto out;
2947
3bd37062 2948 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2949 goto out;
2950
3bd37062 2951 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2952 goto out;
2953
286549dc 2954 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2955 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2956
2957out:
ac66f547
PZ
2958 return ret;
2959}
0ad4e3df 2960#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2961
1da177e4
LT
2962/*
2963 * wait_task_inactive - wait for a thread to unschedule.
2964 *
85ba2d86
RM
2965 * If @match_state is nonzero, it's the @p->state value just checked and
2966 * not expected to change. If it changes, i.e. @p might have woken up,
2967 * then return zero. When we succeed in waiting for @p to be off its CPU,
2968 * we return a positive number (its total switch count). If a second call
2969 * a short while later returns the same number, the caller can be sure that
2970 * @p has remained unscheduled the whole time.
2971 *
1da177e4
LT
2972 * The caller must ensure that the task *will* unschedule sometime soon,
2973 * else this function might spin for a *long* time. This function can't
2974 * be called with interrupts off, or it may introduce deadlock with
2975 * smp_call_function() if an IPI is sent by the same process we are
2976 * waiting to become inactive.
2977 */
2f064a59 2978unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 2979{
da0c1e65 2980 int running, queued;
eb580751 2981 struct rq_flags rf;
85ba2d86 2982 unsigned long ncsw;
70b97a7f 2983 struct rq *rq;
1da177e4 2984
3a5c359a
AK
2985 for (;;) {
2986 /*
2987 * We do the initial early heuristics without holding
2988 * any task-queue locks at all. We'll only try to get
2989 * the runqueue lock when things look like they will
2990 * work out!
2991 */
2992 rq = task_rq(p);
fa490cfd 2993
3a5c359a
AK
2994 /*
2995 * If the task is actively running on another CPU
2996 * still, just relax and busy-wait without holding
2997 * any locks.
2998 *
2999 * NOTE! Since we don't hold any locks, it's not
3000 * even sure that "rq" stays as the right runqueue!
3001 * But we don't care, since "task_running()" will
3002 * return false if the runqueue has changed and p
3003 * is actually now running somewhere else!
3004 */
85ba2d86 3005 while (task_running(rq, p)) {
2f064a59 3006 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
85ba2d86 3007 return 0;
3a5c359a 3008 cpu_relax();
85ba2d86 3009 }
fa490cfd 3010
3a5c359a
AK
3011 /*
3012 * Ok, time to look more closely! We need the rq
3013 * lock now, to be *sure*. If we're wrong, we'll
3014 * just go back and repeat.
3015 */
eb580751 3016 rq = task_rq_lock(p, &rf);
27a9da65 3017 trace_sched_wait_task(p);
3a5c359a 3018 running = task_running(rq, p);
da0c1e65 3019 queued = task_on_rq_queued(p);
85ba2d86 3020 ncsw = 0;
2f064a59 3021 if (!match_state || READ_ONCE(p->__state) == match_state)
93dcf55f 3022 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3023 task_rq_unlock(rq, p, &rf);
fa490cfd 3024
85ba2d86
RM
3025 /*
3026 * If it changed from the expected state, bail out now.
3027 */
3028 if (unlikely(!ncsw))
3029 break;
3030
3a5c359a
AK
3031 /*
3032 * Was it really running after all now that we
3033 * checked with the proper locks actually held?
3034 *
3035 * Oops. Go back and try again..
3036 */
3037 if (unlikely(running)) {
3038 cpu_relax();
3039 continue;
3040 }
fa490cfd 3041
3a5c359a
AK
3042 /*
3043 * It's not enough that it's not actively running,
3044 * it must be off the runqueue _entirely_, and not
3045 * preempted!
3046 *
80dd99b3 3047 * So if it was still runnable (but just not actively
3a5c359a
AK
3048 * running right now), it's preempted, and we should
3049 * yield - it could be a while.
3050 */
da0c1e65 3051 if (unlikely(queued)) {
8b0e1953 3052 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3053
3054 set_current_state(TASK_UNINTERRUPTIBLE);
3055 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
3056 continue;
3057 }
fa490cfd 3058
3a5c359a
AK
3059 /*
3060 * Ahh, all good. It wasn't running, and it wasn't
3061 * runnable, which means that it will never become
3062 * running in the future either. We're all done!
3063 */
3064 break;
3065 }
85ba2d86
RM
3066
3067 return ncsw;
1da177e4
LT
3068}
3069
3070/***
3071 * kick_process - kick a running thread to enter/exit the kernel
3072 * @p: the to-be-kicked thread
3073 *
3074 * Cause a process which is running on another CPU to enter
3075 * kernel-mode, without any delay. (to get signals handled.)
3076 *
25985edc 3077 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3078 * because all it wants to ensure is that the remote task enters
3079 * the kernel. If the IPI races and the task has been migrated
3080 * to another CPU then no harm is done and the purpose has been
3081 * achieved as well.
3082 */
36c8b586 3083void kick_process(struct task_struct *p)
1da177e4
LT
3084{
3085 int cpu;
3086
3087 preempt_disable();
3088 cpu = task_cpu(p);
3089 if ((cpu != smp_processor_id()) && task_curr(p))
3090 smp_send_reschedule(cpu);
3091 preempt_enable();
3092}
b43e3521 3093EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3094
30da688e 3095/*
3bd37062 3096 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3097 *
3098 * A few notes on cpu_active vs cpu_online:
3099 *
3100 * - cpu_active must be a subset of cpu_online
3101 *
97fb7a0a 3102 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3103 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3104 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3105 * see it.
3106 *
d1ccc66d 3107 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3108 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3109 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3110 * off.
3111 *
3112 * This means that fallback selection must not select !active CPUs.
3113 * And can assume that any active CPU must be online. Conversely
3114 * select_task_rq() below may allow selection of !active CPUs in order
3115 * to satisfy the above rules.
30da688e 3116 */
5da9a0fb
PZ
3117static int select_fallback_rq(int cpu, struct task_struct *p)
3118{
aa00d89c
TC
3119 int nid = cpu_to_node(cpu);
3120 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3121 enum { cpuset, possible, fail } state = cpuset;
3122 int dest_cpu;
5da9a0fb 3123
aa00d89c 3124 /*
d1ccc66d
IM
3125 * If the node that the CPU is on has been offlined, cpu_to_node()
3126 * will return -1. There is no CPU on the node, and we should
3127 * select the CPU on the other node.
aa00d89c
TC
3128 */
3129 if (nid != -1) {
3130 nodemask = cpumask_of_node(nid);
3131
3132 /* Look for allowed, online CPU in same node. */
3133 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3134 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3135 return dest_cpu;
3136 }
2baab4e9 3137 }
5da9a0fb 3138
2baab4e9
PZ
3139 for (;;) {
3140 /* Any allowed, online CPU? */
3bd37062 3141 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3142 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3143 continue;
175f0e25 3144
2baab4e9
PZ
3145 goto out;
3146 }
5da9a0fb 3147
e73e85f0 3148 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3149 switch (state) {
3150 case cpuset:
97c0054d 3151 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3152 state = possible;
3153 break;
3154 }
df561f66 3155 fallthrough;
2baab4e9 3156 case possible:
af449901
PZ
3157 /*
3158 * XXX When called from select_task_rq() we only
3159 * hold p->pi_lock and again violate locking order.
3160 *
3161 * More yuck to audit.
3162 */
9ae606bc 3163 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3164 state = fail;
3165 break;
2baab4e9
PZ
3166 case fail:
3167 BUG();
3168 break;
3169 }
3170 }
3171
3172out:
3173 if (state != cpuset) {
3174 /*
3175 * Don't tell them about moving exiting tasks or
3176 * kernel threads (both mm NULL), since they never
3177 * leave kernel.
3178 */
3179 if (p->mm && printk_ratelimit()) {
aac74dc4 3180 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3181 task_pid_nr(p), p->comm, cpu);
3182 }
5da9a0fb
PZ
3183 }
3184
3185 return dest_cpu;
3186}
3187
e2912009 3188/*
3bd37062 3189 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3190 */
970b13ba 3191static inline
3aef1551 3192int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3193{
cbce1a68
PZ
3194 lockdep_assert_held(&p->pi_lock);
3195
af449901 3196 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3197 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3198 else
3bd37062 3199 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3200
3201 /*
3202 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3203 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3204 * CPU.
e2912009
PZ
3205 *
3206 * Since this is common to all placement strategies, this lives here.
3207 *
3208 * [ this allows ->select_task() to simply return task_cpu(p) and
3209 * not worry about this generic constraint ]
3210 */
7af443ee 3211 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3212 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3213
3214 return cpu;
970b13ba 3215}
09a40af5 3216
f5832c19
NP
3217void sched_set_stop_task(int cpu, struct task_struct *stop)
3218{
ded467dc 3219 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3220 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3221 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3222
3223 if (stop) {
3224 /*
3225 * Make it appear like a SCHED_FIFO task, its something
3226 * userspace knows about and won't get confused about.
3227 *
3228 * Also, it will make PI more or less work without too
3229 * much confusion -- but then, stop work should not
3230 * rely on PI working anyway.
3231 */
3232 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3233
3234 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3235
3236 /*
3237 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3238 * adjust the effective priority of a task. As a result,
3239 * rt_mutex_setprio() can trigger (RT) balancing operations,
3240 * which can then trigger wakeups of the stop thread to push
3241 * around the current task.
3242 *
3243 * The stop task itself will never be part of the PI-chain, it
3244 * never blocks, therefore that ->pi_lock recursion is safe.
3245 * Tell lockdep about this by placing the stop->pi_lock in its
3246 * own class.
3247 */
3248 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3249 }
3250
3251 cpu_rq(cpu)->stop = stop;
3252
3253 if (old_stop) {
3254 /*
3255 * Reset it back to a normal scheduling class so that
3256 * it can die in pieces.
3257 */
3258 old_stop->sched_class = &rt_sched_class;
3259 }
3260}
3261
74d862b6 3262#else /* CONFIG_SMP */
25834c73
PZ
3263
3264static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3265 const struct cpumask *new_mask,
3266 u32 flags)
25834c73
PZ
3267{
3268 return set_cpus_allowed_ptr(p, new_mask);
3269}
3270
af449901
PZ
3271static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3272
3015ef4b
TG
3273static inline bool rq_has_pinned_tasks(struct rq *rq)
3274{
3275 return false;
3276}
3277
74d862b6 3278#endif /* !CONFIG_SMP */
970b13ba 3279
d7c01d27 3280static void
b84cb5df 3281ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3282{
4fa8d299 3283 struct rq *rq;
b84cb5df 3284
4fa8d299
JP
3285 if (!schedstat_enabled())
3286 return;
3287
3288 rq = this_rq();
d7c01d27 3289
4fa8d299
JP
3290#ifdef CONFIG_SMP
3291 if (cpu == rq->cpu) {
b85c8b71
PZ
3292 __schedstat_inc(rq->ttwu_local);
3293 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
3294 } else {
3295 struct sched_domain *sd;
3296
b85c8b71 3297 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 3298 rcu_read_lock();
4fa8d299 3299 for_each_domain(rq->cpu, sd) {
d7c01d27 3300 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3301 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3302 break;
3303 }
3304 }
057f3fad 3305 rcu_read_unlock();
d7c01d27 3306 }
f339b9dc
PZ
3307
3308 if (wake_flags & WF_MIGRATED)
b85c8b71 3309 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
3310#endif /* CONFIG_SMP */
3311
b85c8b71
PZ
3312 __schedstat_inc(rq->ttwu_count);
3313 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
3314
3315 if (wake_flags & WF_SYNC)
b85c8b71 3316 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
3317}
3318
23f41eeb
PZ
3319/*
3320 * Mark the task runnable and perform wakeup-preemption.
3321 */
e7904a28 3322static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3323 struct rq_flags *rf)
9ed3811a 3324{
9ed3811a 3325 check_preempt_curr(rq, p, wake_flags);
2f064a59 3326 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3327 trace_sched_wakeup(p);
3328
9ed3811a 3329#ifdef CONFIG_SMP
4c9a4bc8
PZ
3330 if (p->sched_class->task_woken) {
3331 /*
b19a888c 3332 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3333 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3334 */
d8ac8971 3335 rq_unpin_lock(rq, rf);
9ed3811a 3336 p->sched_class->task_woken(rq, p);
d8ac8971 3337 rq_repin_lock(rq, rf);
4c9a4bc8 3338 }
9ed3811a 3339
e69c6341 3340 if (rq->idle_stamp) {
78becc27 3341 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3342 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3343
abfafa54
JL
3344 update_avg(&rq->avg_idle, delta);
3345
3346 if (rq->avg_idle > max)
9ed3811a 3347 rq->avg_idle = max;
abfafa54 3348
94aafc3e
PZ
3349 rq->wake_stamp = jiffies;
3350 rq->wake_avg_idle = rq->avg_idle / 2;
3351
9ed3811a
TH
3352 rq->idle_stamp = 0;
3353 }
3354#endif
3355}
3356
c05fbafb 3357static void
e7904a28 3358ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3359 struct rq_flags *rf)
c05fbafb 3360{
77558e4d 3361 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3362
5cb9eaa3 3363 lockdep_assert_rq_held(rq);
cbce1a68 3364
c05fbafb
PZ
3365 if (p->sched_contributes_to_load)
3366 rq->nr_uninterruptible--;
b5179ac7 3367
dbfb089d 3368#ifdef CONFIG_SMP
b5179ac7 3369 if (wake_flags & WF_MIGRATED)
59efa0ba 3370 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3371 else
c05fbafb 3372#endif
ec618b84
PZ
3373 if (p->in_iowait) {
3374 delayacct_blkio_end(p);
3375 atomic_dec(&task_rq(p)->nr_iowait);
3376 }
c05fbafb 3377
1b174a2c 3378 activate_task(rq, p, en_flags);
d8ac8971 3379 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3380}
3381
3382/*
58877d34
PZ
3383 * Consider @p being inside a wait loop:
3384 *
3385 * for (;;) {
3386 * set_current_state(TASK_UNINTERRUPTIBLE);
3387 *
3388 * if (CONDITION)
3389 * break;
3390 *
3391 * schedule();
3392 * }
3393 * __set_current_state(TASK_RUNNING);
3394 *
3395 * between set_current_state() and schedule(). In this case @p is still
3396 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3397 * an atomic manner.
3398 *
3399 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3400 * then schedule() must still happen and p->state can be changed to
3401 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3402 * need to do a full wakeup with enqueue.
3403 *
3404 * Returns: %true when the wakeup is done,
3405 * %false otherwise.
c05fbafb 3406 */
58877d34 3407static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3408{
eb580751 3409 struct rq_flags rf;
c05fbafb
PZ
3410 struct rq *rq;
3411 int ret = 0;
3412
eb580751 3413 rq = __task_rq_lock(p, &rf);
da0c1e65 3414 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3415 /* check_preempt_curr() may use rq clock */
3416 update_rq_clock(rq);
d8ac8971 3417 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3418 ret = 1;
3419 }
eb580751 3420 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3421
3422 return ret;
3423}
3424
317f3941 3425#ifdef CONFIG_SMP
a1488664 3426void sched_ttwu_pending(void *arg)
317f3941 3427{
a1488664 3428 struct llist_node *llist = arg;
317f3941 3429 struct rq *rq = this_rq();
73215849 3430 struct task_struct *p, *t;
d8ac8971 3431 struct rq_flags rf;
317f3941 3432
e3baac47
PZ
3433 if (!llist)
3434 return;
3435
126c2092
PZ
3436 /*
3437 * rq::ttwu_pending racy indication of out-standing wakeups.
3438 * Races such that false-negatives are possible, since they
3439 * are shorter lived that false-positives would be.
3440 */
3441 WRITE_ONCE(rq->ttwu_pending, 0);
3442
8a8c69c3 3443 rq_lock_irqsave(rq, &rf);
77558e4d 3444 update_rq_clock(rq);
317f3941 3445
8c4890d1 3446 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3447 if (WARN_ON_ONCE(p->on_cpu))
3448 smp_cond_load_acquire(&p->on_cpu, !VAL);
3449
3450 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3451 set_task_cpu(p, cpu_of(rq));
3452
73215849 3453 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3454 }
317f3941 3455
8a8c69c3 3456 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3457}
3458
b2a02fc4 3459void send_call_function_single_ipi(int cpu)
317f3941 3460{
b2a02fc4 3461 struct rq *rq = cpu_rq(cpu);
ca38062e 3462
b2a02fc4
PZ
3463 if (!set_nr_if_polling(rq->idle))
3464 arch_send_call_function_single_ipi(cpu);
3465 else
3466 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3467}
3468
2ebb1771
MG
3469/*
3470 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3471 * necessary. The wakee CPU on receipt of the IPI will queue the task
3472 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3473 * of the wakeup instead of the waker.
3474 */
3475static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3476{
e3baac47
PZ
3477 struct rq *rq = cpu_rq(cpu);
3478
b7e7ade3
PZ
3479 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3480
126c2092 3481 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3482 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3483}
d6aa8f85 3484
f6be8af1
CL
3485void wake_up_if_idle(int cpu)
3486{
3487 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3488 struct rq_flags rf;
f6be8af1 3489
fd7de1e8
AL
3490 rcu_read_lock();
3491
3492 if (!is_idle_task(rcu_dereference(rq->curr)))
3493 goto out;
f6be8af1
CL
3494
3495 if (set_nr_if_polling(rq->idle)) {
3496 trace_sched_wake_idle_without_ipi(cpu);
3497 } else {
8a8c69c3 3498 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3499 if (is_idle_task(rq->curr))
3500 smp_send_reschedule(cpu);
d1ccc66d 3501 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3502 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3503 }
fd7de1e8
AL
3504
3505out:
3506 rcu_read_unlock();
f6be8af1
CL
3507}
3508
39be3501 3509bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3510{
3511 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3512}
c6e7bd7a 3513
2ebb1771
MG
3514static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3515{
5ba2ffba
PZ
3516 /*
3517 * Do not complicate things with the async wake_list while the CPU is
3518 * in hotplug state.
3519 */
3520 if (!cpu_active(cpu))
3521 return false;
3522
2ebb1771
MG
3523 /*
3524 * If the CPU does not share cache, then queue the task on the
3525 * remote rqs wakelist to avoid accessing remote data.
3526 */
3527 if (!cpus_share_cache(smp_processor_id(), cpu))
3528 return true;
3529
3530 /*
3531 * If the task is descheduling and the only running task on the
3532 * CPU then use the wakelist to offload the task activation to
3533 * the soon-to-be-idle CPU as the current CPU is likely busy.
3534 * nr_running is checked to avoid unnecessary task stacking.
3535 */
739f70b4 3536 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3537 return true;
3538
3539 return false;
3540}
3541
3542static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3543{
2ebb1771 3544 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3545 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3546 return false;
3547
c6e7bd7a 3548 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3549 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3550 return true;
3551 }
3552
3553 return false;
3554}
58877d34
PZ
3555
3556#else /* !CONFIG_SMP */
3557
3558static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3559{
3560 return false;
3561}
3562
d6aa8f85 3563#endif /* CONFIG_SMP */
317f3941 3564
b5179ac7 3565static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3566{
3567 struct rq *rq = cpu_rq(cpu);
d8ac8971 3568 struct rq_flags rf;
c05fbafb 3569
2ebb1771 3570 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3571 return;
317f3941 3572
8a8c69c3 3573 rq_lock(rq, &rf);
77558e4d 3574 update_rq_clock(rq);
d8ac8971 3575 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3576 rq_unlock(rq, &rf);
9ed3811a
TH
3577}
3578
8643cda5
PZ
3579/*
3580 * Notes on Program-Order guarantees on SMP systems.
3581 *
3582 * MIGRATION
3583 *
3584 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3585 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3586 * execution on its new CPU [c1].
8643cda5
PZ
3587 *
3588 * For migration (of runnable tasks) this is provided by the following means:
3589 *
3590 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3591 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3592 * rq(c1)->lock (if not at the same time, then in that order).
3593 * C) LOCK of the rq(c1)->lock scheduling in task
3594 *
7696f991 3595 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3596 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3597 *
3598 * Example:
3599 *
3600 * CPU0 CPU1 CPU2
3601 *
3602 * LOCK rq(0)->lock
3603 * sched-out X
3604 * sched-in Y
3605 * UNLOCK rq(0)->lock
3606 *
3607 * LOCK rq(0)->lock // orders against CPU0
3608 * dequeue X
3609 * UNLOCK rq(0)->lock
3610 *
3611 * LOCK rq(1)->lock
3612 * enqueue X
3613 * UNLOCK rq(1)->lock
3614 *
3615 * LOCK rq(1)->lock // orders against CPU2
3616 * sched-out Z
3617 * sched-in X
3618 * UNLOCK rq(1)->lock
3619 *
3620 *
3621 * BLOCKING -- aka. SLEEP + WAKEUP
3622 *
3623 * For blocking we (obviously) need to provide the same guarantee as for
3624 * migration. However the means are completely different as there is no lock
3625 * chain to provide order. Instead we do:
3626 *
58877d34
PZ
3627 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3628 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3629 *
3630 * Example:
3631 *
3632 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3633 *
3634 * LOCK rq(0)->lock LOCK X->pi_lock
3635 * dequeue X
3636 * sched-out X
3637 * smp_store_release(X->on_cpu, 0);
3638 *
1f03e8d2 3639 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3640 * X->state = WAKING
3641 * set_task_cpu(X,2)
3642 *
3643 * LOCK rq(2)->lock
3644 * enqueue X
3645 * X->state = RUNNING
3646 * UNLOCK rq(2)->lock
3647 *
3648 * LOCK rq(2)->lock // orders against CPU1
3649 * sched-out Z
3650 * sched-in X
3651 * UNLOCK rq(2)->lock
3652 *
3653 * UNLOCK X->pi_lock
3654 * UNLOCK rq(0)->lock
3655 *
3656 *
7696f991
AP
3657 * However, for wakeups there is a second guarantee we must provide, namely we
3658 * must ensure that CONDITION=1 done by the caller can not be reordered with
3659 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3660 */
3661
9ed3811a 3662/**
1da177e4 3663 * try_to_wake_up - wake up a thread
9ed3811a 3664 * @p: the thread to be awakened
1da177e4 3665 * @state: the mask of task states that can be woken
9ed3811a 3666 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3667 *
58877d34
PZ
3668 * Conceptually does:
3669 *
3670 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3671 *
a2250238
PZ
3672 * If the task was not queued/runnable, also place it back on a runqueue.
3673 *
58877d34
PZ
3674 * This function is atomic against schedule() which would dequeue the task.
3675 *
3676 * It issues a full memory barrier before accessing @p->state, see the comment
3677 * with set_current_state().
a2250238 3678 *
58877d34 3679 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3680 *
58877d34
PZ
3681 * Relies on p->pi_lock stabilizing:
3682 * - p->sched_class
3683 * - p->cpus_ptr
3684 * - p->sched_task_group
3685 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3686 *
3687 * Tries really hard to only take one task_rq(p)->lock for performance.
3688 * Takes rq->lock in:
3689 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3690 * - ttwu_queue() -- new rq, for enqueue of the task;
3691 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3692 *
3693 * As a consequence we race really badly with just about everything. See the
3694 * many memory barriers and their comments for details.
7696f991 3695 *
a2250238
PZ
3696 * Return: %true if @p->state changes (an actual wakeup was done),
3697 * %false otherwise.
1da177e4 3698 */
e4a52bcb
PZ
3699static int
3700try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3701{
1da177e4 3702 unsigned long flags;
c05fbafb 3703 int cpu, success = 0;
2398f2c6 3704
e3d85487 3705 preempt_disable();
aacedf26
PZ
3706 if (p == current) {
3707 /*
3708 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3709 * == smp_processor_id()'. Together this means we can special
58877d34 3710 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3711 * without taking any locks.
3712 *
3713 * In particular:
3714 * - we rely on Program-Order guarantees for all the ordering,
3715 * - we're serialized against set_special_state() by virtue of
3716 * it disabling IRQs (this allows not taking ->pi_lock).
3717 */
2f064a59 3718 if (!(READ_ONCE(p->__state) & state))
e3d85487 3719 goto out;
aacedf26
PZ
3720
3721 success = 1;
aacedf26 3722 trace_sched_waking(p);
2f064a59 3723 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
3724 trace_sched_wakeup(p);
3725 goto out;
3726 }
3727
e0acd0a6
ON
3728 /*
3729 * If we are going to wake up a thread waiting for CONDITION we
3730 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3731 * reordered with p->state check below. This pairs with smp_store_mb()
3732 * in set_current_state() that the waiting thread does.
e0acd0a6 3733 */
013fdb80 3734 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3735 smp_mb__after_spinlock();
2f064a59 3736 if (!(READ_ONCE(p->__state) & state))
aacedf26 3737 goto unlock;
1da177e4 3738
fbd705a0
PZ
3739 trace_sched_waking(p);
3740
d1ccc66d
IM
3741 /* We're going to change ->state: */
3742 success = 1;
1da177e4 3743
135e8c92
BS
3744 /*
3745 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3746 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3747 * in smp_cond_load_acquire() below.
3748 *
3d85b270
AP
3749 * sched_ttwu_pending() try_to_wake_up()
3750 * STORE p->on_rq = 1 LOAD p->state
3751 * UNLOCK rq->lock
3752 *
3753 * __schedule() (switch to task 'p')
3754 * LOCK rq->lock smp_rmb();
3755 * smp_mb__after_spinlock();
3756 * UNLOCK rq->lock
135e8c92
BS
3757 *
3758 * [task p]
3d85b270 3759 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3760 *
3d85b270
AP
3761 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3762 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3763 *
3764 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3765 */
3766 smp_rmb();
58877d34 3767 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3768 goto unlock;
1da177e4 3769
1da177e4 3770#ifdef CONFIG_SMP
ecf7d01c
PZ
3771 /*
3772 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3773 * possible to, falsely, observe p->on_cpu == 0.
3774 *
3775 * One must be running (->on_cpu == 1) in order to remove oneself
3776 * from the runqueue.
3777 *
3d85b270
AP
3778 * __schedule() (switch to task 'p') try_to_wake_up()
3779 * STORE p->on_cpu = 1 LOAD p->on_rq
3780 * UNLOCK rq->lock
3781 *
3782 * __schedule() (put 'p' to sleep)
3783 * LOCK rq->lock smp_rmb();
3784 * smp_mb__after_spinlock();
3785 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3786 *
3d85b270
AP
3787 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3788 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3789 *
3790 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3791 * schedule()'s deactivate_task() has 'happened' and p will no longer
3792 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3793 */
dbfb089d
PZ
3794 smp_acquire__after_ctrl_dep();
3795
3796 /*
3797 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3798 * == 0), which means we need to do an enqueue, change p->state to
3799 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3800 * enqueue, such as ttwu_queue_wakelist().
3801 */
2f064a59 3802 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 3803
c6e7bd7a
PZ
3804 /*
3805 * If the owning (remote) CPU is still in the middle of schedule() with
3806 * this task as prev, considering queueing p on the remote CPUs wake_list
3807 * which potentially sends an IPI instead of spinning on p->on_cpu to
3808 * let the waker make forward progress. This is safe because IRQs are
3809 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3810 *
3811 * Ensure we load task_cpu(p) after p->on_cpu:
3812 *
3813 * set_task_cpu(p, cpu);
3814 * STORE p->cpu = @cpu
3815 * __schedule() (switch to task 'p')
3816 * LOCK rq->lock
3817 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3818 * STORE p->on_cpu = 1 LOAD p->cpu
3819 *
3820 * to ensure we observe the correct CPU on which the task is currently
3821 * scheduling.
c6e7bd7a 3822 */
b6e13e85 3823 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3824 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3825 goto unlock;
3826
e9c84311 3827 /*
d1ccc66d 3828 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3829 * this task as prev, wait until it's done referencing the task.
b75a2253 3830 *
31cb1bc0 3831 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3832 *
3833 * This ensures that tasks getting woken will be fully ordered against
3834 * their previous state and preserve Program Order.
0970d299 3835 */
1f03e8d2 3836 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3837
3aef1551 3838 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3839 if (task_cpu(p) != cpu) {
ec618b84
PZ
3840 if (p->in_iowait) {
3841 delayacct_blkio_end(p);
3842 atomic_dec(&task_rq(p)->nr_iowait);
3843 }
3844
f339b9dc 3845 wake_flags |= WF_MIGRATED;
eb414681 3846 psi_ttwu_dequeue(p);
e4a52bcb 3847 set_task_cpu(p, cpu);
f339b9dc 3848 }
b6e13e85
PZ
3849#else
3850 cpu = task_cpu(p);
1da177e4 3851#endif /* CONFIG_SMP */
1da177e4 3852
b5179ac7 3853 ttwu_queue(p, cpu, wake_flags);
aacedf26 3854unlock:
013fdb80 3855 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3856out:
3857 if (success)
b6e13e85 3858 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3859 preempt_enable();
1da177e4
LT
3860
3861 return success;
3862}
3863
2beaf328
PM
3864/**
3865 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3866 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3867 * @func: Function to invoke.
3868 * @arg: Argument to function.
3869 *
3870 * If the specified task can be quickly locked into a definite state
3871 * (either sleeping or on a given runqueue), arrange to keep it in that
3872 * state while invoking @func(@arg). This function can use ->on_rq and
3873 * task_curr() to work out what the state is, if required. Given that
3874 * @func can be invoked with a runqueue lock held, it had better be quite
3875 * lightweight.
3876 *
3877 * Returns:
3878 * @false if the task slipped out from under the locks.
3879 * @true if the task was locked onto a runqueue or is sleeping.
3880 * However, @func can override this by returning @false.
3881 */
3882bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3883{
2beaf328 3884 struct rq_flags rf;
1b7af295 3885 bool ret = false;
2beaf328
PM
3886 struct rq *rq;
3887
1b7af295 3888 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3889 if (p->on_rq) {
3890 rq = __task_rq_lock(p, &rf);
3891 if (task_rq(p) == rq)
3892 ret = func(p, arg);
3893 rq_unlock(rq, &rf);
3894 } else {
2f064a59 3895 switch (READ_ONCE(p->__state)) {
2beaf328
PM
3896 case TASK_RUNNING:
3897 case TASK_WAKING:
3898 break;
3899 default:
3900 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3901 if (!p->on_rq)
3902 ret = func(p, arg);
3903 }
3904 }
1b7af295 3905 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3906 return ret;
3907}
3908
50fa610a
DH
3909/**
3910 * wake_up_process - Wake up a specific process
3911 * @p: The process to be woken up.
3912 *
3913 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3914 * processes.
3915 *
3916 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3917 *
7696f991 3918 * This function executes a full memory barrier before accessing the task state.
50fa610a 3919 */
7ad5b3a5 3920int wake_up_process(struct task_struct *p)
1da177e4 3921{
9067ac85 3922 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3923}
1da177e4
LT
3924EXPORT_SYMBOL(wake_up_process);
3925
7ad5b3a5 3926int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3927{
3928 return try_to_wake_up(p, state, 0);
3929}
3930
1da177e4
LT
3931/*
3932 * Perform scheduler related setup for a newly forked process p.
3933 * p is forked by current.
dd41f596
IM
3934 *
3935 * __sched_fork() is basic setup used by init_idle() too:
3936 */
5e1576ed 3937static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3938{
fd2f4419
PZ
3939 p->on_rq = 0;
3940
3941 p->se.on_rq = 0;
dd41f596
IM
3942 p->se.exec_start = 0;
3943 p->se.sum_exec_runtime = 0;
f6cf891c 3944 p->se.prev_sum_exec_runtime = 0;
6c594c21 3945 p->se.nr_migrations = 0;
da7a735e 3946 p->se.vruntime = 0;
fd2f4419 3947 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3948
ad936d86
BP
3949#ifdef CONFIG_FAIR_GROUP_SCHED
3950 p->se.cfs_rq = NULL;
3951#endif
3952
6cfb0d5d 3953#ifdef CONFIG_SCHEDSTATS
cb251765 3954 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3955 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3956#endif
476d139c 3957
aab03e05 3958 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3959 init_dl_task_timer(&p->dl);
209a0cbd 3960 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3961 __dl_clear_params(p);
aab03e05 3962
fa717060 3963 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3964 p->rt.timeout = 0;
3965 p->rt.time_slice = sched_rr_timeslice;
3966 p->rt.on_rq = 0;
3967 p->rt.on_list = 0;
476d139c 3968
e107be36
AK
3969#ifdef CONFIG_PREEMPT_NOTIFIERS
3970 INIT_HLIST_HEAD(&p->preempt_notifiers);
3971#endif
cbee9f88 3972
5e1f0f09
MG
3973#ifdef CONFIG_COMPACTION
3974 p->capture_control = NULL;
3975#endif
13784475 3976 init_numa_balancing(clone_flags, p);
a1488664 3977#ifdef CONFIG_SMP
8c4890d1 3978 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3979 p->migration_pending = NULL;
a1488664 3980#endif
dd41f596
IM
3981}
3982
2a595721
SD
3983DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3984
1a687c2e 3985#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3986
1a687c2e
MG
3987void set_numabalancing_state(bool enabled)
3988{
3989 if (enabled)
2a595721 3990 static_branch_enable(&sched_numa_balancing);
1a687c2e 3991 else
2a595721 3992 static_branch_disable(&sched_numa_balancing);
1a687c2e 3993}
54a43d54
AK
3994
3995#ifdef CONFIG_PROC_SYSCTL
3996int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3997 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3998{
3999 struct ctl_table t;
4000 int err;
2a595721 4001 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
4002
4003 if (write && !capable(CAP_SYS_ADMIN))
4004 return -EPERM;
4005
4006 t = *table;
4007 t.data = &state;
4008 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4009 if (err < 0)
4010 return err;
4011 if (write)
4012 set_numabalancing_state(state);
4013 return err;
4014}
4015#endif
4016#endif
dd41f596 4017
4698f88c
JP
4018#ifdef CONFIG_SCHEDSTATS
4019
cb251765
MG
4020DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4021
cb251765
MG
4022static void set_schedstats(bool enabled)
4023{
4024 if (enabled)
4025 static_branch_enable(&sched_schedstats);
4026 else
4027 static_branch_disable(&sched_schedstats);
4028}
4029
4030void force_schedstat_enabled(void)
4031{
4032 if (!schedstat_enabled()) {
4033 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4034 static_branch_enable(&sched_schedstats);
4035 }
4036}
4037
4038static int __init setup_schedstats(char *str)
4039{
4040 int ret = 0;
4041 if (!str)
4042 goto out;
4043
4044 if (!strcmp(str, "enable")) {
1faa491a 4045 set_schedstats(true);
cb251765
MG
4046 ret = 1;
4047 } else if (!strcmp(str, "disable")) {
1faa491a 4048 set_schedstats(false);
cb251765
MG
4049 ret = 1;
4050 }
4051out:
4052 if (!ret)
4053 pr_warn("Unable to parse schedstats=\n");
4054
4055 return ret;
4056}
4057__setup("schedstats=", setup_schedstats);
4058
4059#ifdef CONFIG_PROC_SYSCTL
32927393
CH
4060int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4061 size_t *lenp, loff_t *ppos)
cb251765
MG
4062{
4063 struct ctl_table t;
4064 int err;
4065 int state = static_branch_likely(&sched_schedstats);
4066
4067 if (write && !capable(CAP_SYS_ADMIN))
4068 return -EPERM;
4069
4070 t = *table;
4071 t.data = &state;
4072 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4073 if (err < 0)
4074 return err;
4075 if (write)
4076 set_schedstats(state);
4077 return err;
4078}
4698f88c 4079#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4080#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
4081
4082/*
4083 * fork()/clone()-time setup:
4084 */
aab03e05 4085int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4086{
0122ec5b 4087 unsigned long flags;
dd41f596 4088
5e1576ed 4089 __sched_fork(clone_flags, p);
06b83b5f 4090 /*
7dc603c9 4091 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4092 * nobody will actually run it, and a signal or other external
4093 * event cannot wake it up and insert it on the runqueue either.
4094 */
2f064a59 4095 p->__state = TASK_NEW;
dd41f596 4096
c350a04e
MG
4097 /*
4098 * Make sure we do not leak PI boosting priority to the child.
4099 */
4100 p->prio = current->normal_prio;
4101
e8f14172
PB
4102 uclamp_fork(p);
4103
b9dc29e7
MG
4104 /*
4105 * Revert to default priority/policy on fork if requested.
4106 */
4107 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4108 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4109 p->policy = SCHED_NORMAL;
6c697bdf 4110 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4111 p->rt_priority = 0;
4112 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4113 p->static_prio = NICE_TO_PRIO(0);
4114
4115 p->prio = p->normal_prio = __normal_prio(p);
9059393e 4116 set_load_weight(p, false);
6c697bdf 4117
b9dc29e7
MG
4118 /*
4119 * We don't need the reset flag anymore after the fork. It has
4120 * fulfilled its duty:
4121 */
4122 p->sched_reset_on_fork = 0;
4123 }
ca94c442 4124
af0fffd9 4125 if (dl_prio(p->prio))
aab03e05 4126 return -EAGAIN;
af0fffd9 4127 else if (rt_prio(p->prio))
aab03e05 4128 p->sched_class = &rt_sched_class;
af0fffd9 4129 else
2ddbf952 4130 p->sched_class = &fair_sched_class;
b29739f9 4131
7dc603c9 4132 init_entity_runnable_average(&p->se);
cd29fe6f 4133
86951599
PZ
4134 /*
4135 * The child is not yet in the pid-hash so no cgroup attach races,
4136 * and the cgroup is pinned to this child due to cgroup_fork()
4137 * is ran before sched_fork().
4138 *
4139 * Silence PROVE_RCU.
4140 */
0122ec5b 4141 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 4142 rseq_migrate(p);
e210bffd 4143 /*
d1ccc66d 4144 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
4145 * so use __set_task_cpu().
4146 */
af0fffd9 4147 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
4148 if (p->sched_class->task_fork)
4149 p->sched_class->task_fork(p);
0122ec5b 4150 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 4151
f6db8347 4152#ifdef CONFIG_SCHED_INFO
dd41f596 4153 if (likely(sched_info_on()))
52f17b6c 4154 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4155#endif
3ca7a440
PZ
4156#if defined(CONFIG_SMP)
4157 p->on_cpu = 0;
4866cde0 4158#endif
01028747 4159 init_task_preempt_count(p);
806c09a7 4160#ifdef CONFIG_SMP
917b627d 4161 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4162 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4163#endif
aab03e05 4164 return 0;
1da177e4
LT
4165}
4166
13685c4a
QY
4167void sched_post_fork(struct task_struct *p)
4168{
4169 uclamp_post_fork(p);
4170}
4171
332ac17e
DF
4172unsigned long to_ratio(u64 period, u64 runtime)
4173{
4174 if (runtime == RUNTIME_INF)
c52f14d3 4175 return BW_UNIT;
332ac17e
DF
4176
4177 /*
4178 * Doing this here saves a lot of checks in all
4179 * the calling paths, and returning zero seems
4180 * safe for them anyway.
4181 */
4182 if (period == 0)
4183 return 0;
4184
c52f14d3 4185 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4186}
4187
1da177e4
LT
4188/*
4189 * wake_up_new_task - wake up a newly created task for the first time.
4190 *
4191 * This function will do some initial scheduler statistics housekeeping
4192 * that must be done for every newly created context, then puts the task
4193 * on the runqueue and wakes it.
4194 */
3e51e3ed 4195void wake_up_new_task(struct task_struct *p)
1da177e4 4196{
eb580751 4197 struct rq_flags rf;
dd41f596 4198 struct rq *rq;
fabf318e 4199
eb580751 4200 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4201 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4202#ifdef CONFIG_SMP
4203 /*
4204 * Fork balancing, do it here and not earlier because:
3bd37062 4205 * - cpus_ptr can change in the fork path
d1ccc66d 4206 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4207 *
4208 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4209 * as we're not fully set-up yet.
fabf318e 4210 */
32e839dd 4211 p->recent_used_cpu = task_cpu(p);
ce3614da 4212 rseq_migrate(p);
3aef1551 4213 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4214#endif
b7fa30c9 4215 rq = __task_rq_lock(p, &rf);
4126bad6 4216 update_rq_clock(rq);
d0fe0b9c 4217 post_init_entity_util_avg(p);
0017d735 4218
7a57f32a 4219 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4220 trace_sched_wakeup_new(p);
a7558e01 4221 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4222#ifdef CONFIG_SMP
0aaafaab
PZ
4223 if (p->sched_class->task_woken) {
4224 /*
b19a888c 4225 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4226 * drop it.
4227 */
d8ac8971 4228 rq_unpin_lock(rq, &rf);
efbbd05a 4229 p->sched_class->task_woken(rq, p);
d8ac8971 4230 rq_repin_lock(rq, &rf);
0aaafaab 4231 }
9a897c5a 4232#endif
eb580751 4233 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4234}
4235
e107be36
AK
4236#ifdef CONFIG_PREEMPT_NOTIFIERS
4237
b7203428 4238static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4239
2ecd9d29
PZ
4240void preempt_notifier_inc(void)
4241{
b7203428 4242 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4243}
4244EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4245
4246void preempt_notifier_dec(void)
4247{
b7203428 4248 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4249}
4250EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4251
e107be36 4252/**
80dd99b3 4253 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4254 * @notifier: notifier struct to register
e107be36
AK
4255 */
4256void preempt_notifier_register(struct preempt_notifier *notifier)
4257{
b7203428 4258 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4259 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4260
e107be36
AK
4261 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4262}
4263EXPORT_SYMBOL_GPL(preempt_notifier_register);
4264
4265/**
4266 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4267 * @notifier: notifier struct to unregister
e107be36 4268 *
d84525a8 4269 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4270 */
4271void preempt_notifier_unregister(struct preempt_notifier *notifier)
4272{
4273 hlist_del(&notifier->link);
4274}
4275EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4276
1cde2930 4277static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4278{
4279 struct preempt_notifier *notifier;
e107be36 4280
b67bfe0d 4281 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4282 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4283}
4284
1cde2930
PZ
4285static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4286{
b7203428 4287 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4288 __fire_sched_in_preempt_notifiers(curr);
4289}
4290
e107be36 4291static void
1cde2930
PZ
4292__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4293 struct task_struct *next)
e107be36
AK
4294{
4295 struct preempt_notifier *notifier;
e107be36 4296
b67bfe0d 4297 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4298 notifier->ops->sched_out(notifier, next);
4299}
4300
1cde2930
PZ
4301static __always_inline void
4302fire_sched_out_preempt_notifiers(struct task_struct *curr,
4303 struct task_struct *next)
4304{
b7203428 4305 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4306 __fire_sched_out_preempt_notifiers(curr, next);
4307}
4308
6d6bc0ad 4309#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4310
1cde2930 4311static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4312{
4313}
4314
1cde2930 4315static inline void
e107be36
AK
4316fire_sched_out_preempt_notifiers(struct task_struct *curr,
4317 struct task_struct *next)
4318{
4319}
4320
6d6bc0ad 4321#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4322
31cb1bc0 4323static inline void prepare_task(struct task_struct *next)
4324{
4325#ifdef CONFIG_SMP
4326 /*
4327 * Claim the task as running, we do this before switching to it
4328 * such that any running task will have this set.
58877d34
PZ
4329 *
4330 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 4331 */
58877d34 4332 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4333#endif
4334}
4335
4336static inline void finish_task(struct task_struct *prev)
4337{
4338#ifdef CONFIG_SMP
4339 /*
58877d34
PZ
4340 * This must be the very last reference to @prev from this CPU. After
4341 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4342 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4343 * finished.
4344 *
4345 * In particular, the load of prev->state in finish_task_switch() must
4346 * happen before this.
4347 *
4348 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4349 */
4350 smp_store_release(&prev->on_cpu, 0);
4351#endif
4352}
4353
565790d2
PZ
4354#ifdef CONFIG_SMP
4355
4356static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4357{
4358 void (*func)(struct rq *rq);
4359 struct callback_head *next;
4360
5cb9eaa3 4361 lockdep_assert_rq_held(rq);
565790d2
PZ
4362
4363 while (head) {
4364 func = (void (*)(struct rq *))head->func;
4365 next = head->next;
4366 head->next = NULL;
4367 head = next;
4368
4369 func(rq);
4370 }
4371}
4372
ae792702
PZ
4373static void balance_push(struct rq *rq);
4374
4375struct callback_head balance_push_callback = {
4376 .next = NULL,
4377 .func = (void (*)(struct callback_head *))balance_push,
4378};
4379
565790d2
PZ
4380static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4381{
4382 struct callback_head *head = rq->balance_callback;
4383
5cb9eaa3 4384 lockdep_assert_rq_held(rq);
ae792702 4385 if (head)
565790d2
PZ
4386 rq->balance_callback = NULL;
4387
4388 return head;
4389}
4390
4391static void __balance_callbacks(struct rq *rq)
4392{
4393 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4394}
4395
4396static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4397{
4398 unsigned long flags;
4399
4400 if (unlikely(head)) {
5cb9eaa3 4401 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4402 do_balance_callbacks(rq, head);
5cb9eaa3 4403 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4404 }
4405}
4406
4407#else
4408
4409static inline void __balance_callbacks(struct rq *rq)
4410{
4411}
4412
4413static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4414{
4415 return NULL;
4416}
4417
4418static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4419{
4420}
4421
4422#endif
4423
269d5992
PZ
4424static inline void
4425prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4426{
269d5992
PZ
4427 /*
4428 * Since the runqueue lock will be released by the next
4429 * task (which is an invalid locking op but in the case
4430 * of the scheduler it's an obvious special-case), so we
4431 * do an early lockdep release here:
4432 */
4433 rq_unpin_lock(rq, rf);
9ef7e7e3 4434 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4435#ifdef CONFIG_DEBUG_SPINLOCK
4436 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4437 rq_lockp(rq)->owner = next;
31cb1bc0 4438#endif
269d5992
PZ
4439}
4440
4441static inline void finish_lock_switch(struct rq *rq)
4442{
31cb1bc0 4443 /*
4444 * If we are tracking spinlock dependencies then we have to
4445 * fix up the runqueue lock - which gets 'carried over' from
4446 * prev into current:
4447 */
9ef7e7e3 4448 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4449 __balance_callbacks(rq);
5cb9eaa3 4450 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4451}
4452
325ea10c
IM
4453/*
4454 * NOP if the arch has not defined these:
4455 */
4456
4457#ifndef prepare_arch_switch
4458# define prepare_arch_switch(next) do { } while (0)
4459#endif
4460
4461#ifndef finish_arch_post_lock_switch
4462# define finish_arch_post_lock_switch() do { } while (0)
4463#endif
4464
5fbda3ec
TG
4465static inline void kmap_local_sched_out(void)
4466{
4467#ifdef CONFIG_KMAP_LOCAL
4468 if (unlikely(current->kmap_ctrl.idx))
4469 __kmap_local_sched_out();
4470#endif
4471}
4472
4473static inline void kmap_local_sched_in(void)
4474{
4475#ifdef CONFIG_KMAP_LOCAL
4476 if (unlikely(current->kmap_ctrl.idx))
4477 __kmap_local_sched_in();
4478#endif
4479}
4480
4866cde0
NP
4481/**
4482 * prepare_task_switch - prepare to switch tasks
4483 * @rq: the runqueue preparing to switch
421cee29 4484 * @prev: the current task that is being switched out
4866cde0
NP
4485 * @next: the task we are going to switch to.
4486 *
4487 * This is called with the rq lock held and interrupts off. It must
4488 * be paired with a subsequent finish_task_switch after the context
4489 * switch.
4490 *
4491 * prepare_task_switch sets up locking and calls architecture specific
4492 * hooks.
4493 */
e107be36
AK
4494static inline void
4495prepare_task_switch(struct rq *rq, struct task_struct *prev,
4496 struct task_struct *next)
4866cde0 4497{
0ed557aa 4498 kcov_prepare_switch(prev);
43148951 4499 sched_info_switch(rq, prev, next);
fe4b04fa 4500 perf_event_task_sched_out(prev, next);
d7822b1e 4501 rseq_preempt(prev);
e107be36 4502 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4503 kmap_local_sched_out();
31cb1bc0 4504 prepare_task(next);
4866cde0
NP
4505 prepare_arch_switch(next);
4506}
4507
1da177e4
LT
4508/**
4509 * finish_task_switch - clean up after a task-switch
4510 * @prev: the thread we just switched away from.
4511 *
4866cde0
NP
4512 * finish_task_switch must be called after the context switch, paired
4513 * with a prepare_task_switch call before the context switch.
4514 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4515 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4516 *
4517 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4518 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4519 * with the lock held can cause deadlocks; see schedule() for
4520 * details.)
dfa50b60
ON
4521 *
4522 * The context switch have flipped the stack from under us and restored the
4523 * local variables which were saved when this task called schedule() in the
4524 * past. prev == current is still correct but we need to recalculate this_rq
4525 * because prev may have moved to another CPU.
1da177e4 4526 */
dfa50b60 4527static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4528 __releases(rq->lock)
4529{
dfa50b60 4530 struct rq *rq = this_rq();
1da177e4 4531 struct mm_struct *mm = rq->prev_mm;
55a101f8 4532 long prev_state;
1da177e4 4533
609ca066
PZ
4534 /*
4535 * The previous task will have left us with a preempt_count of 2
4536 * because it left us after:
4537 *
4538 * schedule()
4539 * preempt_disable(); // 1
4540 * __schedule()
4541 * raw_spin_lock_irq(&rq->lock) // 2
4542 *
4543 * Also, see FORK_PREEMPT_COUNT.
4544 */
e2bf1c4b
PZ
4545 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4546 "corrupted preempt_count: %s/%d/0x%x\n",
4547 current->comm, current->pid, preempt_count()))
4548 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4549
1da177e4
LT
4550 rq->prev_mm = NULL;
4551
4552 /*
4553 * A task struct has one reference for the use as "current".
c394cc9f 4554 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4555 * schedule one last time. The schedule call will never return, and
4556 * the scheduled task must drop that reference.
95913d97
PZ
4557 *
4558 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4559 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4560 * running on another CPU and we could rave with its RUNNING -> DEAD
4561 * transition, resulting in a double drop.
1da177e4 4562 */
2f064a59 4563 prev_state = READ_ONCE(prev->__state);
bf9fae9f 4564 vtime_task_switch(prev);
a8d757ef 4565 perf_event_task_sched_in(prev, current);
31cb1bc0 4566 finish_task(prev);
4567 finish_lock_switch(rq);
01f23e16 4568 finish_arch_post_lock_switch();
0ed557aa 4569 kcov_finish_switch(current);
5fbda3ec
TG
4570 /*
4571 * kmap_local_sched_out() is invoked with rq::lock held and
4572 * interrupts disabled. There is no requirement for that, but the
4573 * sched out code does not have an interrupt enabled section.
4574 * Restoring the maps on sched in does not require interrupts being
4575 * disabled either.
4576 */
4577 kmap_local_sched_in();
e8fa1362 4578
e107be36 4579 fire_sched_in_preempt_notifiers(current);
306e0604 4580 /*
70216e18
MD
4581 * When switching through a kernel thread, the loop in
4582 * membarrier_{private,global}_expedited() may have observed that
4583 * kernel thread and not issued an IPI. It is therefore possible to
4584 * schedule between user->kernel->user threads without passing though
4585 * switch_mm(). Membarrier requires a barrier after storing to
4586 * rq->curr, before returning to userspace, so provide them here:
4587 *
4588 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4589 * provided by mmdrop(),
4590 * - a sync_core for SYNC_CORE.
306e0604 4591 */
70216e18
MD
4592 if (mm) {
4593 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4594 mmdrop(mm);
70216e18 4595 }
1cef1150
PZ
4596 if (unlikely(prev_state == TASK_DEAD)) {
4597 if (prev->sched_class->task_dead)
4598 prev->sched_class->task_dead(prev);
68f24b08 4599
1cef1150
PZ
4600 /*
4601 * Remove function-return probe instances associated with this
4602 * task and put them back on the free list.
4603 */
4604 kprobe_flush_task(prev);
4605
4606 /* Task is done with its stack. */
4607 put_task_stack(prev);
4608
0ff7b2cf 4609 put_task_struct_rcu_user(prev);
c6fd91f0 4610 }
99e5ada9 4611
de734f89 4612 tick_nohz_task_switch();
dfa50b60 4613 return rq;
1da177e4
LT
4614}
4615
4616/**
4617 * schedule_tail - first thing a freshly forked thread must call.
4618 * @prev: the thread we just switched away from.
4619 */
722a9f92 4620asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4621 __releases(rq->lock)
4622{
609ca066
PZ
4623 /*
4624 * New tasks start with FORK_PREEMPT_COUNT, see there and
4625 * finish_task_switch() for details.
4626 *
4627 * finish_task_switch() will drop rq->lock() and lower preempt_count
4628 * and the preempt_enable() will end up enabling preemption (on
4629 * PREEMPT_COUNT kernels).
4630 */
4631
13c2235b 4632 finish_task_switch(prev);
1a43a14a 4633 preempt_enable();
70b97a7f 4634
1da177e4 4635 if (current->set_child_tid)
b488893a 4636 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4637
4638 calculate_sigpending();
1da177e4
LT
4639}
4640
4641/*
dfa50b60 4642 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4643 */
04936948 4644static __always_inline struct rq *
70b97a7f 4645context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4646 struct task_struct *next, struct rq_flags *rf)
1da177e4 4647{
e107be36 4648 prepare_task_switch(rq, prev, next);
fe4b04fa 4649
9226d125
ZA
4650 /*
4651 * For paravirt, this is coupled with an exit in switch_to to
4652 * combine the page table reload and the switch backend into
4653 * one hypercall.
4654 */
224101ed 4655 arch_start_context_switch(prev);
9226d125 4656
306e0604 4657 /*
139d025c
PZ
4658 * kernel -> kernel lazy + transfer active
4659 * user -> kernel lazy + mmgrab() active
4660 *
4661 * kernel -> user switch + mmdrop() active
4662 * user -> user switch
306e0604 4663 */
139d025c
PZ
4664 if (!next->mm) { // to kernel
4665 enter_lazy_tlb(prev->active_mm, next);
4666
4667 next->active_mm = prev->active_mm;
4668 if (prev->mm) // from user
4669 mmgrab(prev->active_mm);
4670 else
4671 prev->active_mm = NULL;
4672 } else { // to user
227a4aad 4673 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4674 /*
4675 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4676 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4677 *
4678 * The below provides this either through switch_mm(), or in
4679 * case 'prev->active_mm == next->mm' through
4680 * finish_task_switch()'s mmdrop().
4681 */
139d025c 4682 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4683
139d025c
PZ
4684 if (!prev->mm) { // from kernel
4685 /* will mmdrop() in finish_task_switch(). */
4686 rq->prev_mm = prev->active_mm;
4687 prev->active_mm = NULL;
4688 }
1da177e4 4689 }
92509b73 4690
cb42c9a3 4691 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4692
269d5992 4693 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4694
4695 /* Here we just switch the register state and the stack. */
4696 switch_to(prev, next, prev);
dd41f596 4697 barrier();
dfa50b60
ON
4698
4699 return finish_task_switch(prev);
1da177e4
LT
4700}
4701
4702/*
1c3e8264 4703 * nr_running and nr_context_switches:
1da177e4
LT
4704 *
4705 * externally visible scheduler statistics: current number of runnable
1c3e8264 4706 * threads, total number of context switches performed since bootup.
1da177e4 4707 */
01aee8fd 4708unsigned int nr_running(void)
1da177e4 4709{
01aee8fd 4710 unsigned int i, sum = 0;
1da177e4
LT
4711
4712 for_each_online_cpu(i)
4713 sum += cpu_rq(i)->nr_running;
4714
4715 return sum;
f711f609 4716}
1da177e4 4717
2ee507c4 4718/*
d1ccc66d 4719 * Check if only the current task is running on the CPU.
00cc1633
DD
4720 *
4721 * Caution: this function does not check that the caller has disabled
4722 * preemption, thus the result might have a time-of-check-to-time-of-use
4723 * race. The caller is responsible to use it correctly, for example:
4724 *
dfcb245e 4725 * - from a non-preemptible section (of course)
00cc1633
DD
4726 *
4727 * - from a thread that is bound to a single CPU
4728 *
4729 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4730 */
4731bool single_task_running(void)
4732{
00cc1633 4733 return raw_rq()->nr_running == 1;
2ee507c4
TC
4734}
4735EXPORT_SYMBOL(single_task_running);
4736
1da177e4 4737unsigned long long nr_context_switches(void)
46cb4b7c 4738{
cc94abfc
SR
4739 int i;
4740 unsigned long long sum = 0;
46cb4b7c 4741
0a945022 4742 for_each_possible_cpu(i)
1da177e4 4743 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4744
1da177e4
LT
4745 return sum;
4746}
483b4ee6 4747
145d952a
DL
4748/*
4749 * Consumers of these two interfaces, like for example the cpuidle menu
4750 * governor, are using nonsensical data. Preferring shallow idle state selection
4751 * for a CPU that has IO-wait which might not even end up running the task when
4752 * it does become runnable.
4753 */
4754
8fc2858e 4755unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
4756{
4757 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4758}
4759
e33a9bba 4760/*
b19a888c 4761 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4762 *
4763 * The idea behind IO-wait account is to account the idle time that we could
4764 * have spend running if it were not for IO. That is, if we were to improve the
4765 * storage performance, we'd have a proportional reduction in IO-wait time.
4766 *
4767 * This all works nicely on UP, where, when a task blocks on IO, we account
4768 * idle time as IO-wait, because if the storage were faster, it could've been
4769 * running and we'd not be idle.
4770 *
4771 * This has been extended to SMP, by doing the same for each CPU. This however
4772 * is broken.
4773 *
4774 * Imagine for instance the case where two tasks block on one CPU, only the one
4775 * CPU will have IO-wait accounted, while the other has regular idle. Even
4776 * though, if the storage were faster, both could've ran at the same time,
4777 * utilising both CPUs.
4778 *
4779 * This means, that when looking globally, the current IO-wait accounting on
4780 * SMP is a lower bound, by reason of under accounting.
4781 *
4782 * Worse, since the numbers are provided per CPU, they are sometimes
4783 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4784 * associated with any one particular CPU, it can wake to another CPU than it
4785 * blocked on. This means the per CPU IO-wait number is meaningless.
4786 *
4787 * Task CPU affinities can make all that even more 'interesting'.
4788 */
4789
97455168 4790unsigned int nr_iowait(void)
1da177e4 4791{
97455168 4792 unsigned int i, sum = 0;
483b4ee6 4793
0a945022 4794 for_each_possible_cpu(i)
145d952a 4795 sum += nr_iowait_cpu(i);
46cb4b7c 4796
1da177e4
LT
4797 return sum;
4798}
483b4ee6 4799
dd41f596 4800#ifdef CONFIG_SMP
8a0be9ef 4801
46cb4b7c 4802/*
38022906
PZ
4803 * sched_exec - execve() is a valuable balancing opportunity, because at
4804 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4805 */
38022906 4806void sched_exec(void)
46cb4b7c 4807{
38022906 4808 struct task_struct *p = current;
1da177e4 4809 unsigned long flags;
0017d735 4810 int dest_cpu;
46cb4b7c 4811
8f42ced9 4812 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4813 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4814 if (dest_cpu == smp_processor_id())
4815 goto unlock;
38022906 4816
8f42ced9 4817 if (likely(cpu_active(dest_cpu))) {
969c7921 4818 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4819
8f42ced9
PZ
4820 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4821 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4822 return;
4823 }
0017d735 4824unlock:
8f42ced9 4825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4826}
dd41f596 4827
1da177e4
LT
4828#endif
4829
1da177e4 4830DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4831DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4832
4833EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4834EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4835
6075620b
GG
4836/*
4837 * The function fair_sched_class.update_curr accesses the struct curr
4838 * and its field curr->exec_start; when called from task_sched_runtime(),
4839 * we observe a high rate of cache misses in practice.
4840 * Prefetching this data results in improved performance.
4841 */
4842static inline void prefetch_curr_exec_start(struct task_struct *p)
4843{
4844#ifdef CONFIG_FAIR_GROUP_SCHED
4845 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4846#else
4847 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4848#endif
4849 prefetch(curr);
4850 prefetch(&curr->exec_start);
4851}
4852
c5f8d995
HS
4853/*
4854 * Return accounted runtime for the task.
4855 * In case the task is currently running, return the runtime plus current's
4856 * pending runtime that have not been accounted yet.
4857 */
4858unsigned long long task_sched_runtime(struct task_struct *p)
4859{
eb580751 4860 struct rq_flags rf;
c5f8d995 4861 struct rq *rq;
6e998916 4862 u64 ns;
c5f8d995 4863
911b2898
PZ
4864#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4865 /*
97fb7a0a 4866 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4867 * So we have a optimization chance when the task's delta_exec is 0.
4868 * Reading ->on_cpu is racy, but this is ok.
4869 *
d1ccc66d
IM
4870 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4871 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4872 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4873 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4874 * been accounted, so we're correct here as well.
911b2898 4875 */
da0c1e65 4876 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4877 return p->se.sum_exec_runtime;
4878#endif
4879
eb580751 4880 rq = task_rq_lock(p, &rf);
6e998916
SG
4881 /*
4882 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4883 * project cycles that may never be accounted to this
4884 * thread, breaking clock_gettime().
4885 */
4886 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4887 prefetch_curr_exec_start(p);
6e998916
SG
4888 update_rq_clock(rq);
4889 p->sched_class->update_curr(rq);
4890 }
4891 ns = p->se.sum_exec_runtime;
eb580751 4892 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4893
4894 return ns;
4895}
48f24c4d 4896
c006fac5
PT
4897#ifdef CONFIG_SCHED_DEBUG
4898static u64 cpu_resched_latency(struct rq *rq)
4899{
4900 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4901 u64 resched_latency, now = rq_clock(rq);
4902 static bool warned_once;
4903
4904 if (sysctl_resched_latency_warn_once && warned_once)
4905 return 0;
4906
4907 if (!need_resched() || !latency_warn_ms)
4908 return 0;
4909
4910 if (system_state == SYSTEM_BOOTING)
4911 return 0;
4912
4913 if (!rq->last_seen_need_resched_ns) {
4914 rq->last_seen_need_resched_ns = now;
4915 rq->ticks_without_resched = 0;
4916 return 0;
4917 }
4918
4919 rq->ticks_without_resched++;
4920 resched_latency = now - rq->last_seen_need_resched_ns;
4921 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4922 return 0;
4923
4924 warned_once = true;
4925
4926 return resched_latency;
4927}
4928
4929static int __init setup_resched_latency_warn_ms(char *str)
4930{
4931 long val;
4932
4933 if ((kstrtol(str, 0, &val))) {
4934 pr_warn("Unable to set resched_latency_warn_ms\n");
4935 return 1;
4936 }
4937
4938 sysctl_resched_latency_warn_ms = val;
4939 return 1;
4940}
4941__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4942#else
4943static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4944#endif /* CONFIG_SCHED_DEBUG */
4945
7835b98b
CL
4946/*
4947 * This function gets called by the timer code, with HZ frequency.
4948 * We call it with interrupts disabled.
7835b98b
CL
4949 */
4950void scheduler_tick(void)
4951{
7835b98b
CL
4952 int cpu = smp_processor_id();
4953 struct rq *rq = cpu_rq(cpu);
dd41f596 4954 struct task_struct *curr = rq->curr;
8a8c69c3 4955 struct rq_flags rf;
b4eccf5f 4956 unsigned long thermal_pressure;
c006fac5 4957 u64 resched_latency;
3e51f33f 4958
1567c3e3 4959 arch_scale_freq_tick();
3e51f33f 4960 sched_clock_tick();
dd41f596 4961
8a8c69c3
PZ
4962 rq_lock(rq, &rf);
4963
3e51f33f 4964 update_rq_clock(rq);
b4eccf5f 4965 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4966 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4967 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
4968 if (sched_feat(LATENCY_WARN))
4969 resched_latency = cpu_resched_latency(rq);
3289bdb4 4970 calc_global_load_tick(rq);
8a8c69c3
PZ
4971
4972 rq_unlock(rq, &rf);
7835b98b 4973
c006fac5
PT
4974 if (sched_feat(LATENCY_WARN) && resched_latency)
4975 resched_latency_warn(cpu, resched_latency);
4976
e9d2b064 4977 perf_event_task_tick();
e220d2dc 4978
e418e1c2 4979#ifdef CONFIG_SMP
6eb57e0d 4980 rq->idle_balance = idle_cpu(cpu);
7caff66f 4981 trigger_load_balance(rq);
e418e1c2 4982#endif
1da177e4
LT
4983}
4984
265f22a9 4985#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4986
4987struct tick_work {
4988 int cpu;
b55bd585 4989 atomic_t state;
d84b3131
FW
4990 struct delayed_work work;
4991};
b55bd585
PM
4992/* Values for ->state, see diagram below. */
4993#define TICK_SCHED_REMOTE_OFFLINE 0
4994#define TICK_SCHED_REMOTE_OFFLINING 1
4995#define TICK_SCHED_REMOTE_RUNNING 2
4996
4997/*
4998 * State diagram for ->state:
4999 *
5000 *
5001 * TICK_SCHED_REMOTE_OFFLINE
5002 * | ^
5003 * | |
5004 * | | sched_tick_remote()
5005 * | |
5006 * | |
5007 * +--TICK_SCHED_REMOTE_OFFLINING
5008 * | ^
5009 * | |
5010 * sched_tick_start() | | sched_tick_stop()
5011 * | |
5012 * V |
5013 * TICK_SCHED_REMOTE_RUNNING
5014 *
5015 *
5016 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5017 * and sched_tick_start() are happy to leave the state in RUNNING.
5018 */
d84b3131
FW
5019
5020static struct tick_work __percpu *tick_work_cpu;
5021
5022static void sched_tick_remote(struct work_struct *work)
5023{
5024 struct delayed_work *dwork = to_delayed_work(work);
5025 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5026 int cpu = twork->cpu;
5027 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5028 struct task_struct *curr;
d84b3131 5029 struct rq_flags rf;
d9c0ffca 5030 u64 delta;
b55bd585 5031 int os;
d84b3131
FW
5032
5033 /*
5034 * Handle the tick only if it appears the remote CPU is running in full
5035 * dynticks mode. The check is racy by nature, but missing a tick or
5036 * having one too much is no big deal because the scheduler tick updates
5037 * statistics and checks timeslices in a time-independent way, regardless
5038 * of when exactly it is running.
5039 */
488603b8 5040 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5041 goto out_requeue;
d84b3131 5042
d9c0ffca
FW
5043 rq_lock_irq(rq, &rf);
5044 curr = rq->curr;
488603b8 5045 if (cpu_is_offline(cpu))
d9c0ffca 5046 goto out_unlock;
d84b3131 5047
d9c0ffca 5048 update_rq_clock(rq);
d9c0ffca 5049
488603b8
SW
5050 if (!is_idle_task(curr)) {
5051 /*
5052 * Make sure the next tick runs within a reasonable
5053 * amount of time.
5054 */
5055 delta = rq_clock_task(rq) - curr->se.exec_start;
5056 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5057 }
d9c0ffca
FW
5058 curr->sched_class->task_tick(rq, curr, 0);
5059
ebc0f83c 5060 calc_load_nohz_remote(rq);
d9c0ffca
FW
5061out_unlock:
5062 rq_unlock_irq(rq, &rf);
d9c0ffca 5063out_requeue:
ebc0f83c 5064
d84b3131
FW
5065 /*
5066 * Run the remote tick once per second (1Hz). This arbitrary
5067 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5068 * to keep scheduler internal stats reasonably up to date. But
5069 * first update state to reflect hotplug activity if required.
d84b3131 5070 */
b55bd585
PM
5071 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5072 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5073 if (os == TICK_SCHED_REMOTE_RUNNING)
5074 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5075}
5076
5077static void sched_tick_start(int cpu)
5078{
b55bd585 5079 int os;
d84b3131
FW
5080 struct tick_work *twork;
5081
5082 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5083 return;
5084
5085 WARN_ON_ONCE(!tick_work_cpu);
5086
5087 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5088 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5089 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5090 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5091 twork->cpu = cpu;
5092 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5093 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5094 }
d84b3131
FW
5095}
5096
5097#ifdef CONFIG_HOTPLUG_CPU
5098static void sched_tick_stop(int cpu)
5099{
5100 struct tick_work *twork;
b55bd585 5101 int os;
d84b3131
FW
5102
5103 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5104 return;
5105
5106 WARN_ON_ONCE(!tick_work_cpu);
5107
5108 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5109 /* There cannot be competing actions, but don't rely on stop-machine. */
5110 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5111 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5112 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5113}
5114#endif /* CONFIG_HOTPLUG_CPU */
5115
5116int __init sched_tick_offload_init(void)
5117{
5118 tick_work_cpu = alloc_percpu(struct tick_work);
5119 BUG_ON(!tick_work_cpu);
d84b3131
FW
5120 return 0;
5121}
5122
5123#else /* !CONFIG_NO_HZ_FULL */
5124static inline void sched_tick_start(int cpu) { }
5125static inline void sched_tick_stop(int cpu) { }
265f22a9 5126#endif
1da177e4 5127
c1a280b6 5128#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5129 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5130/*
5131 * If the value passed in is equal to the current preempt count
5132 * then we just disabled preemption. Start timing the latency.
5133 */
5134static inline void preempt_latency_start(int val)
5135{
5136 if (preempt_count() == val) {
5137 unsigned long ip = get_lock_parent_ip();
5138#ifdef CONFIG_DEBUG_PREEMPT
5139 current->preempt_disable_ip = ip;
5140#endif
5141 trace_preempt_off(CALLER_ADDR0, ip);
5142 }
5143}
7e49fcce 5144
edafe3a5 5145void preempt_count_add(int val)
1da177e4 5146{
6cd8a4bb 5147#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5148 /*
5149 * Underflow?
5150 */
9a11b49a
IM
5151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5152 return;
6cd8a4bb 5153#endif
bdb43806 5154 __preempt_count_add(val);
6cd8a4bb 5155#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5156 /*
5157 * Spinlock count overflowing soon?
5158 */
33859f7f
MOS
5159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5160 PREEMPT_MASK - 10);
6cd8a4bb 5161#endif
47252cfb 5162 preempt_latency_start(val);
1da177e4 5163}
bdb43806 5164EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5165NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5166
47252cfb
SR
5167/*
5168 * If the value passed in equals to the current preempt count
5169 * then we just enabled preemption. Stop timing the latency.
5170 */
5171static inline void preempt_latency_stop(int val)
5172{
5173 if (preempt_count() == val)
5174 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5175}
5176
edafe3a5 5177void preempt_count_sub(int val)
1da177e4 5178{
6cd8a4bb 5179#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5180 /*
5181 * Underflow?
5182 */
01e3eb82 5183 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5184 return;
1da177e4
LT
5185 /*
5186 * Is the spinlock portion underflowing?
5187 */
9a11b49a
IM
5188 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5189 !(preempt_count() & PREEMPT_MASK)))
5190 return;
6cd8a4bb 5191#endif
9a11b49a 5192
47252cfb 5193 preempt_latency_stop(val);
bdb43806 5194 __preempt_count_sub(val);
1da177e4 5195}
bdb43806 5196EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5197NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5198
47252cfb
SR
5199#else
5200static inline void preempt_latency_start(int val) { }
5201static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5202#endif
5203
59ddbcb2
IM
5204static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5205{
5206#ifdef CONFIG_DEBUG_PREEMPT
5207 return p->preempt_disable_ip;
5208#else
5209 return 0;
5210#endif
5211}
5212
1da177e4 5213/*
dd41f596 5214 * Print scheduling while atomic bug:
1da177e4 5215 */
dd41f596 5216static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5217{
d1c6d149
VN
5218 /* Save this before calling printk(), since that will clobber it */
5219 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5220
664dfa65
DJ
5221 if (oops_in_progress)
5222 return;
5223
3df0fc5b
PZ
5224 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5225 prev->comm, prev->pid, preempt_count());
838225b4 5226
dd41f596 5227 debug_show_held_locks(prev);
e21f5b15 5228 print_modules();
dd41f596
IM
5229 if (irqs_disabled())
5230 print_irqtrace_events(prev);
d1c6d149
VN
5231 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5232 && in_atomic_preempt_off()) {
8f47b187 5233 pr_err("Preemption disabled at:");
2062a4e8 5234 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5235 }
748c7201
DBO
5236 if (panic_on_warn)
5237 panic("scheduling while atomic\n");
5238
6135fc1e 5239 dump_stack();
373d4d09 5240 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5241}
1da177e4 5242
dd41f596
IM
5243/*
5244 * Various schedule()-time debugging checks and statistics:
5245 */
312364f3 5246static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5247{
0d9e2632 5248#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5249 if (task_stack_end_corrupted(prev))
5250 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5251
5252 if (task_scs_end_corrupted(prev))
5253 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5254#endif
b99def8b 5255
312364f3 5256#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5257 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5258 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5259 prev->comm, prev->pid, prev->non_block_count);
5260 dump_stack();
5261 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5262 }
5263#endif
5264
1dc0fffc 5265 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5266 __schedule_bug(prev);
1dc0fffc
PZ
5267 preempt_count_set(PREEMPT_DISABLED);
5268 }
b3fbab05 5269 rcu_sleep_check();
9f68b5b7 5270 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5271
1da177e4
LT
5272 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5273
ae92882e 5274 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5275}
5276
457d1f46
CY
5277static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5278 struct rq_flags *rf)
5279{
5280#ifdef CONFIG_SMP
5281 const struct sched_class *class;
5282 /*
5283 * We must do the balancing pass before put_prev_task(), such
5284 * that when we release the rq->lock the task is in the same
5285 * state as before we took rq->lock.
5286 *
5287 * We can terminate the balance pass as soon as we know there is
5288 * a runnable task of @class priority or higher.
5289 */
5290 for_class_range(class, prev->sched_class, &idle_sched_class) {
5291 if (class->balance(rq, prev, rf))
5292 break;
5293 }
5294#endif
5295
5296 put_prev_task(rq, prev);
5297}
5298
dd41f596
IM
5299/*
5300 * Pick up the highest-prio task:
5301 */
5302static inline struct task_struct *
539f6512 5303__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5304{
49ee5768 5305 const struct sched_class *class;
dd41f596 5306 struct task_struct *p;
1da177e4
LT
5307
5308 /*
0ba87bb2
PZ
5309 * Optimization: we know that if all tasks are in the fair class we can
5310 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5311 * higher scheduling class, because otherwise those lose the
0ba87bb2 5312 * opportunity to pull in more work from other CPUs.
1da177e4 5313 */
aa93cd53 5314 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
5315 rq->nr_running == rq->cfs.h_nr_running)) {
5316
5d7d6056 5317 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5318 if (unlikely(p == RETRY_TASK))
67692435 5319 goto restart;
6ccdc84b 5320
1699949d 5321 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5322 if (!p) {
f488e105 5323 put_prev_task(rq, prev);
98c2f700 5324 p = pick_next_task_idle(rq);
f488e105 5325 }
6ccdc84b
PZ
5326
5327 return p;
1da177e4
LT
5328 }
5329
67692435 5330restart:
457d1f46 5331 put_prev_task_balance(rq, prev, rf);
67692435 5332
34f971f6 5333 for_each_class(class) {
98c2f700 5334 p = class->pick_next_task(rq);
67692435 5335 if (p)
dd41f596 5336 return p;
dd41f596 5337 }
34f971f6 5338
d1ccc66d
IM
5339 /* The idle class should always have a runnable task: */
5340 BUG();
dd41f596 5341}
1da177e4 5342
9edeaea1 5343#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5344static inline bool is_task_rq_idle(struct task_struct *t)
5345{
5346 return (task_rq(t)->idle == t);
5347}
5348
5349static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5350{
5351 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5352}
5353
5354static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5355{
5356 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5357 return true;
5358
5359 return a->core_cookie == b->core_cookie;
5360}
5361
5362// XXX fairness/fwd progress conditions
5363/*
5364 * Returns
5365 * - NULL if there is no runnable task for this class.
5366 * - the highest priority task for this runqueue if it matches
5367 * rq->core->core_cookie or its priority is greater than max.
5368 * - Else returns idle_task.
5369 */
5370static struct task_struct *
c6047c2e 5371pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
539f6512
PZ
5372{
5373 struct task_struct *class_pick, *cookie_pick;
5374 unsigned long cookie = rq->core->core_cookie;
5375
5376 class_pick = class->pick_task(rq);
5377 if (!class_pick)
5378 return NULL;
5379
5380 if (!cookie) {
5381 /*
5382 * If class_pick is tagged, return it only if it has
5383 * higher priority than max.
5384 */
5385 if (max && class_pick->core_cookie &&
c6047c2e 5386 prio_less(class_pick, max, in_fi))
539f6512
PZ
5387 return idle_sched_class.pick_task(rq);
5388
5389 return class_pick;
5390 }
5391
5392 /*
5393 * If class_pick is idle or matches cookie, return early.
5394 */
5395 if (cookie_equals(class_pick, cookie))
5396 return class_pick;
5397
5398 cookie_pick = sched_core_find(rq, cookie);
5399
5400 /*
5401 * If class > max && class > cookie, it is the highest priority task on
5402 * the core (so far) and it must be selected, otherwise we must go with
5403 * the cookie pick in order to satisfy the constraint.
5404 */
c6047c2e
JFG
5405 if (prio_less(cookie_pick, class_pick, in_fi) &&
5406 (!max || prio_less(max, class_pick, in_fi)))
539f6512
PZ
5407 return class_pick;
5408
5409 return cookie_pick;
5410}
5411
c6047c2e
JFG
5412extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5413
539f6512
PZ
5414static struct task_struct *
5415pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5416{
5417 struct task_struct *next, *max = NULL;
5418 const struct sched_class *class;
5419 const struct cpumask *smt_mask;
c6047c2e 5420 bool fi_before = false;
d2dfa17b 5421 int i, j, cpu, occ = 0;
539f6512 5422 bool need_sync;
539f6512
PZ
5423
5424 if (!sched_core_enabled(rq))
5425 return __pick_next_task(rq, prev, rf);
5426
5427 cpu = cpu_of(rq);
5428
5429 /* Stopper task is switching into idle, no need core-wide selection. */
5430 if (cpu_is_offline(cpu)) {
5431 /*
5432 * Reset core_pick so that we don't enter the fastpath when
5433 * coming online. core_pick would already be migrated to
5434 * another cpu during offline.
5435 */
5436 rq->core_pick = NULL;
5437 return __pick_next_task(rq, prev, rf);
5438 }
5439
5440 /*
5441 * If there were no {en,de}queues since we picked (IOW, the task
5442 * pointers are all still valid), and we haven't scheduled the last
5443 * pick yet, do so now.
5444 *
5445 * rq->core_pick can be NULL if no selection was made for a CPU because
5446 * it was either offline or went offline during a sibling's core-wide
5447 * selection. In this case, do a core-wide selection.
5448 */
5449 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5450 rq->core->core_pick_seq != rq->core_sched_seq &&
5451 rq->core_pick) {
5452 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5453
5454 next = rq->core_pick;
5455 if (next != prev) {
5456 put_prev_task(rq, prev);
5457 set_next_task(rq, next);
5458 }
5459
5460 rq->core_pick = NULL;
5461 return next;
5462 }
5463
5464 put_prev_task_balance(rq, prev, rf);
5465
5466 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5467 need_sync = !!rq->core->core_cookie;
5468
5469 /* reset state */
5470 rq->core->core_cookie = 0UL;
5471 if (rq->core->core_forceidle) {
5472 need_sync = true;
5473 fi_before = true;
5474 rq->core->core_forceidle = false;
5475 }
539f6512
PZ
5476
5477 /*
5478 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5479 *
5480 * @task_seq guards the task state ({en,de}queues)
5481 * @pick_seq is the @task_seq we did a selection on
5482 * @sched_seq is the @pick_seq we scheduled
5483 *
5484 * However, preemptions can cause multiple picks on the same task set.
5485 * 'Fix' this by also increasing @task_seq for every pick.
5486 */
5487 rq->core->core_task_seq++;
539f6512 5488
7afbba11
JFG
5489 /*
5490 * Optimize for common case where this CPU has no cookies
5491 * and there are no cookied tasks running on siblings.
5492 */
5493 if (!need_sync) {
5494 for_each_class(class) {
5495 next = class->pick_task(rq);
5496 if (next)
5497 break;
5498 }
5499
5500 if (!next->core_cookie) {
5501 rq->core_pick = NULL;
c6047c2e
JFG
5502 /*
5503 * For robustness, update the min_vruntime_fi for
5504 * unconstrained picks as well.
5505 */
5506 WARN_ON_ONCE(fi_before);
5507 task_vruntime_update(rq, next, false);
7afbba11
JFG
5508 goto done;
5509 }
8039e96f 5510 }
7afbba11 5511
539f6512
PZ
5512 for_each_cpu(i, smt_mask) {
5513 struct rq *rq_i = cpu_rq(i);
5514
5515 rq_i->core_pick = NULL;
5516
539f6512
PZ
5517 if (i != cpu)
5518 update_rq_clock(rq_i);
5519 }
5520
5521 /*
cc00c198 5522 * Try and select tasks for each sibling in descending sched_class
539f6512
PZ
5523 * order.
5524 */
5525 for_each_class(class) {
5526again:
5527 for_each_cpu_wrap(i, smt_mask, cpu) {
5528 struct rq *rq_i = cpu_rq(i);
5529 struct task_struct *p;
5530
5531 if (rq_i->core_pick)
5532 continue;
5533
5534 /*
5535 * If this sibling doesn't yet have a suitable task to
cc00c198 5536 * run; ask for the most eligible task, given the
539f6512
PZ
5537 * highest priority task already selected for this
5538 * core.
5539 */
c6047c2e 5540 p = pick_task(rq_i, class, max, fi_before);
7afbba11 5541 if (!p)
539f6512 5542 continue;
539f6512 5543
d2dfa17b
PZ
5544 if (!is_task_rq_idle(p))
5545 occ++;
5546
539f6512 5547 rq_i->core_pick = p;
c6047c2e
JFG
5548 if (rq_i->idle == p && rq_i->nr_running) {
5549 rq->core->core_forceidle = true;
5550 if (!fi_before)
5551 rq->core->core_forceidle_seq++;
5552 }
539f6512
PZ
5553
5554 /*
5555 * If this new candidate is of higher priority than the
5556 * previous; and they're incompatible; we need to wipe
5557 * the slate and start over. pick_task makes sure that
5558 * p's priority is more than max if it doesn't match
5559 * max's cookie.
5560 *
5561 * NOTE: this is a linear max-filter and is thus bounded
5562 * in execution time.
5563 */
5564 if (!max || !cookie_match(max, p)) {
5565 struct task_struct *old_max = max;
5566
5567 rq->core->core_cookie = p->core_cookie;
5568 max = p;
5569
5570 if (old_max) {
c6047c2e 5571 rq->core->core_forceidle = false;
539f6512
PZ
5572 for_each_cpu(j, smt_mask) {
5573 if (j == i)
5574 continue;
5575
5576 cpu_rq(j)->core_pick = NULL;
5577 }
d2dfa17b 5578 occ = 1;
539f6512 5579 goto again;
539f6512 5580 }
539f6512
PZ
5581 }
5582 }
539f6512
PZ
5583 }
5584
5585 rq->core->core_pick_seq = rq->core->core_task_seq;
5586 next = rq->core_pick;
5587 rq->core_sched_seq = rq->core->core_pick_seq;
5588
5589 /* Something should have been selected for current CPU */
5590 WARN_ON_ONCE(!next);
5591
5592 /*
5593 * Reschedule siblings
5594 *
5595 * NOTE: L1TF -- at this point we're no longer running the old task and
5596 * sending an IPI (below) ensures the sibling will no longer be running
5597 * their task. This ensures there is no inter-sibling overlap between
5598 * non-matching user state.
5599 */
5600 for_each_cpu(i, smt_mask) {
5601 struct rq *rq_i = cpu_rq(i);
5602
5603 /*
5604 * An online sibling might have gone offline before a task
5605 * could be picked for it, or it might be offline but later
5606 * happen to come online, but its too late and nothing was
5607 * picked for it. That's Ok - it will pick tasks for itself,
5608 * so ignore it.
5609 */
5610 if (!rq_i->core_pick)
5611 continue;
5612
c6047c2e
JFG
5613 /*
5614 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5615 * fi_before fi update?
5616 * 0 0 1
5617 * 0 1 1
5618 * 1 0 1
5619 * 1 1 0
5620 */
5621 if (!(fi_before && rq->core->core_forceidle))
5622 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
539f6512 5623
d2dfa17b
PZ
5624 rq_i->core_pick->core_occupation = occ;
5625
539f6512
PZ
5626 if (i == cpu) {
5627 rq_i->core_pick = NULL;
5628 continue;
5629 }
5630
5631 /* Did we break L1TF mitigation requirements? */
5632 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5633
5634 if (rq_i->curr == rq_i->core_pick) {
5635 rq_i->core_pick = NULL;
5636 continue;
5637 }
5638
5639 resched_curr(rq_i);
5640 }
5641
5642done:
5643 set_next_task(rq, next);
5644 return next;
5645}
9edeaea1 5646
d2dfa17b
PZ
5647static bool try_steal_cookie(int this, int that)
5648{
5649 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5650 struct task_struct *p;
5651 unsigned long cookie;
5652 bool success = false;
5653
5654 local_irq_disable();
5655 double_rq_lock(dst, src);
5656
5657 cookie = dst->core->core_cookie;
5658 if (!cookie)
5659 goto unlock;
5660
5661 if (dst->curr != dst->idle)
5662 goto unlock;
5663
5664 p = sched_core_find(src, cookie);
5665 if (p == src->idle)
5666 goto unlock;
5667
5668 do {
5669 if (p == src->core_pick || p == src->curr)
5670 goto next;
5671
5672 if (!cpumask_test_cpu(this, &p->cpus_mask))
5673 goto next;
5674
5675 if (p->core_occupation > dst->idle->core_occupation)
5676 goto next;
5677
d2dfa17b
PZ
5678 deactivate_task(src, p, 0);
5679 set_task_cpu(p, this);
5680 activate_task(dst, p, 0);
d2dfa17b
PZ
5681
5682 resched_curr(dst);
5683
5684 success = true;
5685 break;
5686
5687next:
5688 p = sched_core_next(p, cookie);
5689 } while (p);
5690
5691unlock:
5692 double_rq_unlock(dst, src);
5693 local_irq_enable();
5694
5695 return success;
5696}
5697
5698static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5699{
5700 int i;
5701
5702 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5703 if (i == cpu)
5704 continue;
5705
5706 if (need_resched())
5707 break;
5708
5709 if (try_steal_cookie(cpu, i))
5710 return true;
5711 }
5712
5713 return false;
5714}
5715
5716static void sched_core_balance(struct rq *rq)
5717{
5718 struct sched_domain *sd;
5719 int cpu = cpu_of(rq);
5720
5721 preempt_disable();
5722 rcu_read_lock();
5723 raw_spin_rq_unlock_irq(rq);
5724 for_each_domain(cpu, sd) {
5725 if (need_resched())
5726 break;
5727
5728 if (steal_cookie_task(cpu, sd))
5729 break;
5730 }
5731 raw_spin_rq_lock_irq(rq);
5732 rcu_read_unlock();
5733 preempt_enable();
5734}
5735
5736static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5737
5738void queue_core_balance(struct rq *rq)
5739{
5740 if (!sched_core_enabled(rq))
5741 return;
5742
5743 if (!rq->core->core_cookie)
5744 return;
5745
5746 if (!rq->nr_running) /* not forced idle */
5747 return;
5748
5749 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5750}
5751
9edeaea1
PZ
5752static inline void sched_core_cpu_starting(unsigned int cpu)
5753{
5754 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5755 struct rq *rq, *core_rq = NULL;
5756 int i;
5757
5758 core_rq = cpu_rq(cpu)->core;
5759
5760 if (!core_rq) {
5761 for_each_cpu(i, smt_mask) {
5762 rq = cpu_rq(i);
5763 if (rq->core && rq->core == rq)
5764 core_rq = rq;
5765 }
5766
5767 if (!core_rq)
5768 core_rq = cpu_rq(cpu);
5769
5770 for_each_cpu(i, smt_mask) {
5771 rq = cpu_rq(i);
5772
5773 WARN_ON_ONCE(rq->core && rq->core != core_rq);
5774 rq->core = core_rq;
5775 }
5776 }
5777}
5778#else /* !CONFIG_SCHED_CORE */
5779
5780static inline void sched_core_cpu_starting(unsigned int cpu) {}
5781
539f6512
PZ
5782static struct task_struct *
5783pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5784{
5785 return __pick_next_task(rq, prev, rf);
5786}
5787
9edeaea1
PZ
5788#endif /* CONFIG_SCHED_CORE */
5789
dd41f596 5790/*
c259e01a 5791 * __schedule() is the main scheduler function.
edde96ea
PE
5792 *
5793 * The main means of driving the scheduler and thus entering this function are:
5794 *
5795 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5796 *
5797 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5798 * paths. For example, see arch/x86/entry_64.S.
5799 *
5800 * To drive preemption between tasks, the scheduler sets the flag in timer
5801 * interrupt handler scheduler_tick().
5802 *
5803 * 3. Wakeups don't really cause entry into schedule(). They add a
5804 * task to the run-queue and that's it.
5805 *
5806 * Now, if the new task added to the run-queue preempts the current
5807 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5808 * called on the nearest possible occasion:
5809 *
c1a280b6 5810 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
5811 *
5812 * - in syscall or exception context, at the next outmost
5813 * preempt_enable(). (this might be as soon as the wake_up()'s
5814 * spin_unlock()!)
5815 *
5816 * - in IRQ context, return from interrupt-handler to
5817 * preemptible context
5818 *
c1a280b6 5819 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
5820 * then at the next:
5821 *
5822 * - cond_resched() call
5823 * - explicit schedule() call
5824 * - return from syscall or exception to user-space
5825 * - return from interrupt-handler to user-space
bfd9b2b5 5826 *
b30f0e3f 5827 * WARNING: must be called with preemption disabled!
dd41f596 5828 */
499d7955 5829static void __sched notrace __schedule(bool preempt)
dd41f596
IM
5830{
5831 struct task_struct *prev, *next;
67ca7bde 5832 unsigned long *switch_count;
dbfb089d 5833 unsigned long prev_state;
d8ac8971 5834 struct rq_flags rf;
dd41f596 5835 struct rq *rq;
31656519 5836 int cpu;
dd41f596 5837
dd41f596
IM
5838 cpu = smp_processor_id();
5839 rq = cpu_rq(cpu);
dd41f596 5840 prev = rq->curr;
dd41f596 5841
312364f3 5842 schedule_debug(prev, preempt);
1da177e4 5843
e0ee463c 5844 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 5845 hrtick_clear(rq);
8f4d37ec 5846
46a5d164 5847 local_irq_disable();
bcbfdd01 5848 rcu_note_context_switch(preempt);
46a5d164 5849
e0acd0a6
ON
5850 /*
5851 * Make sure that signal_pending_state()->signal_pending() below
5852 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
5853 * done by the caller to avoid the race with signal_wake_up():
5854 *
5855 * __set_current_state(@state) signal_wake_up()
5856 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5857 * wake_up_state(p, state)
5858 * LOCK rq->lock LOCK p->pi_state
5859 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5860 * if (signal_pending_state()) if (p->state & @state)
306e0604 5861 *
dbfb089d 5862 * Also, the membarrier system call requires a full memory barrier
306e0604 5863 * after coming from user-space, before storing to rq->curr.
e0acd0a6 5864 */
8a8c69c3 5865 rq_lock(rq, &rf);
d89e588c 5866 smp_mb__after_spinlock();
1da177e4 5867
d1ccc66d
IM
5868 /* Promote REQ to ACT */
5869 rq->clock_update_flags <<= 1;
bce4dc80 5870 update_rq_clock(rq);
9edfbfed 5871
246d86b5 5872 switch_count = &prev->nivcsw;
d136122f 5873
dbfb089d 5874 /*
d136122f
PZ
5875 * We must load prev->state once (task_struct::state is volatile), such
5876 * that:
5877 *
5878 * - we form a control dependency vs deactivate_task() below.
5879 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5880 */
2f064a59 5881 prev_state = READ_ONCE(prev->__state);
d136122f 5882 if (!preempt && prev_state) {
dbfb089d 5883 if (signal_pending_state(prev_state, prev)) {
2f064a59 5884 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 5885 } else {
dbfb089d
PZ
5886 prev->sched_contributes_to_load =
5887 (prev_state & TASK_UNINTERRUPTIBLE) &&
5888 !(prev_state & TASK_NOLOAD) &&
5889 !(prev->flags & PF_FROZEN);
5890
5891 if (prev->sched_contributes_to_load)
5892 rq->nr_uninterruptible++;
5893
5894 /*
5895 * __schedule() ttwu()
d136122f
PZ
5896 * prev_state = prev->state; if (p->on_rq && ...)
5897 * if (prev_state) goto out;
5898 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5899 * p->state = TASK_WAKING
5900 *
5901 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5902 *
5903 * After this, schedule() must not care about p->state any more.
5904 */
bce4dc80 5905 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5906
e33a9bba
TH
5907 if (prev->in_iowait) {
5908 atomic_inc(&rq->nr_iowait);
5909 delayacct_blkio_start();
5910 }
21aa9af0 5911 }
dd41f596 5912 switch_count = &prev->nvcsw;
1da177e4
LT
5913 }
5914
d8ac8971 5915 next = pick_next_task(rq, prev, &rf);
f26f9aff 5916 clear_tsk_need_resched(prev);
f27dde8d 5917 clear_preempt_need_resched();
c006fac5
PT
5918#ifdef CONFIG_SCHED_DEBUG
5919 rq->last_seen_need_resched_ns = 0;
5920#endif
1da177e4 5921
1da177e4 5922 if (likely(prev != next)) {
1da177e4 5923 rq->nr_switches++;
5311a98f
EB
5924 /*
5925 * RCU users of rcu_dereference(rq->curr) may not see
5926 * changes to task_struct made by pick_next_task().
5927 */
5928 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5929 /*
5930 * The membarrier system call requires each architecture
5931 * to have a full memory barrier after updating
306e0604
MD
5932 * rq->curr, before returning to user-space.
5933 *
5934 * Here are the schemes providing that barrier on the
5935 * various architectures:
5936 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5937 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5938 * - finish_lock_switch() for weakly-ordered
5939 * architectures where spin_unlock is a full barrier,
5940 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5941 * is a RELEASE barrier),
22e4ebb9 5942 */
1da177e4
LT
5943 ++*switch_count;
5944
af449901 5945 migrate_disable_switch(rq, prev);
b05e75d6
JW
5946 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5947
c73464b1 5948 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5949
5950 /* Also unlocks the rq: */
5951 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5952 } else {
cb42c9a3 5953 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5954
565790d2
PZ
5955 rq_unpin_lock(rq, &rf);
5956 __balance_callbacks(rq);
5cb9eaa3 5957 raw_spin_rq_unlock_irq(rq);
565790d2 5958 }
1da177e4 5959}
c259e01a 5960
9af6528e
PZ
5961void __noreturn do_task_dead(void)
5962{
d1ccc66d 5963 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5964 set_special_state(TASK_DEAD);
d1ccc66d
IM
5965
5966 /* Tell freezer to ignore us: */
5967 current->flags |= PF_NOFREEZE;
5968
9af6528e
PZ
5969 __schedule(false);
5970 BUG();
d1ccc66d
IM
5971
5972 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5973 for (;;)
d1ccc66d 5974 cpu_relax();
9af6528e
PZ
5975}
5976
9c40cef2
TG
5977static inline void sched_submit_work(struct task_struct *tsk)
5978{
c1cecf88
SAS
5979 unsigned int task_flags;
5980
b03fbd4f 5981 if (task_is_running(tsk))
9c40cef2 5982 return;
6d25be57 5983
c1cecf88 5984 task_flags = tsk->flags;
6d25be57
TG
5985 /*
5986 * If a worker went to sleep, notify and ask workqueue whether
5987 * it wants to wake up a task to maintain concurrency.
5988 * As this function is called inside the schedule() context,
5989 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5990 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5991 * requires it.
6d25be57 5992 */
c1cecf88 5993 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5994 preempt_disable();
c1cecf88 5995 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5996 wq_worker_sleeping(tsk);
5997 else
5998 io_wq_worker_sleeping(tsk);
6d25be57
TG
5999 preempt_enable_no_resched();
6000 }
6001
b0fdc013
SAS
6002 if (tsk_is_pi_blocked(tsk))
6003 return;
6004
9c40cef2
TG
6005 /*
6006 * If we are going to sleep and we have plugged IO queued,
6007 * make sure to submit it to avoid deadlocks.
6008 */
6009 if (blk_needs_flush_plug(tsk))
6010 blk_schedule_flush_plug(tsk);
6011}
6012
6d25be57
TG
6013static void sched_update_worker(struct task_struct *tsk)
6014{
771b53d0
JA
6015 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6016 if (tsk->flags & PF_WQ_WORKER)
6017 wq_worker_running(tsk);
6018 else
6019 io_wq_worker_running(tsk);
6020 }
6d25be57
TG
6021}
6022
722a9f92 6023asmlinkage __visible void __sched schedule(void)
c259e01a 6024{
9c40cef2
TG
6025 struct task_struct *tsk = current;
6026
6027 sched_submit_work(tsk);
bfd9b2b5 6028 do {
b30f0e3f 6029 preempt_disable();
fc13aeba 6030 __schedule(false);
b30f0e3f 6031 sched_preempt_enable_no_resched();
bfd9b2b5 6032 } while (need_resched());
6d25be57 6033 sched_update_worker(tsk);
c259e01a 6034}
1da177e4
LT
6035EXPORT_SYMBOL(schedule);
6036
8663effb
SRV
6037/*
6038 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6039 * state (have scheduled out non-voluntarily) by making sure that all
6040 * tasks have either left the run queue or have gone into user space.
6041 * As idle tasks do not do either, they must not ever be preempted
6042 * (schedule out non-voluntarily).
6043 *
6044 * schedule_idle() is similar to schedule_preempt_disable() except that it
6045 * never enables preemption because it does not call sched_submit_work().
6046 */
6047void __sched schedule_idle(void)
6048{
6049 /*
6050 * As this skips calling sched_submit_work(), which the idle task does
6051 * regardless because that function is a nop when the task is in a
6052 * TASK_RUNNING state, make sure this isn't used someplace that the
6053 * current task can be in any other state. Note, idle is always in the
6054 * TASK_RUNNING state.
6055 */
2f064a59 6056 WARN_ON_ONCE(current->__state);
8663effb
SRV
6057 do {
6058 __schedule(false);
6059 } while (need_resched());
6060}
6061
6775de49 6062#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 6063asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6064{
6065 /*
6066 * If we come here after a random call to set_need_resched(),
6067 * or we have been woken up remotely but the IPI has not yet arrived,
6068 * we haven't yet exited the RCU idle mode. Do it here manually until
6069 * we find a better solution.
7cc78f8f
AL
6070 *
6071 * NB: There are buggy callers of this function. Ideally we
c467ea76 6072 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6073 * too frequently to make sense yet.
20ab65e3 6074 */
7cc78f8f 6075 enum ctx_state prev_state = exception_enter();
20ab65e3 6076 schedule();
7cc78f8f 6077 exception_exit(prev_state);
20ab65e3
FW
6078}
6079#endif
6080
c5491ea7
TG
6081/**
6082 * schedule_preempt_disabled - called with preemption disabled
6083 *
6084 * Returns with preemption disabled. Note: preempt_count must be 1
6085 */
6086void __sched schedule_preempt_disabled(void)
6087{
ba74c144 6088 sched_preempt_enable_no_resched();
c5491ea7
TG
6089 schedule();
6090 preempt_disable();
6091}
6092
06b1f808 6093static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6094{
6095 do {
47252cfb
SR
6096 /*
6097 * Because the function tracer can trace preempt_count_sub()
6098 * and it also uses preempt_enable/disable_notrace(), if
6099 * NEED_RESCHED is set, the preempt_enable_notrace() called
6100 * by the function tracer will call this function again and
6101 * cause infinite recursion.
6102 *
6103 * Preemption must be disabled here before the function
6104 * tracer can trace. Break up preempt_disable() into two
6105 * calls. One to disable preemption without fear of being
6106 * traced. The other to still record the preemption latency,
6107 * which can also be traced by the function tracer.
6108 */
499d7955 6109 preempt_disable_notrace();
47252cfb 6110 preempt_latency_start(1);
fc13aeba 6111 __schedule(true);
47252cfb 6112 preempt_latency_stop(1);
499d7955 6113 preempt_enable_no_resched_notrace();
a18b5d01
FW
6114
6115 /*
6116 * Check again in case we missed a preemption opportunity
6117 * between schedule and now.
6118 */
a18b5d01
FW
6119 } while (need_resched());
6120}
6121
c1a280b6 6122#ifdef CONFIG_PREEMPTION
1da177e4 6123/*
a49b4f40
VS
6124 * This is the entry point to schedule() from in-kernel preemption
6125 * off of preempt_enable.
1da177e4 6126 */
722a9f92 6127asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6128{
1da177e4
LT
6129 /*
6130 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6131 * we do not want to preempt the current task. Just return..
1da177e4 6132 */
fbb00b56 6133 if (likely(!preemptible()))
1da177e4
LT
6134 return;
6135
a18b5d01 6136 preempt_schedule_common();
1da177e4 6137}
376e2424 6138NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6139EXPORT_SYMBOL(preempt_schedule);
009f60e2 6140
2c9a98d3
PZI
6141#ifdef CONFIG_PREEMPT_DYNAMIC
6142DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 6143EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
6144#endif
6145
6146
009f60e2 6147/**
4eaca0a8 6148 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6149 *
6150 * The tracing infrastructure uses preempt_enable_notrace to prevent
6151 * recursion and tracing preempt enabling caused by the tracing
6152 * infrastructure itself. But as tracing can happen in areas coming
6153 * from userspace or just about to enter userspace, a preempt enable
6154 * can occur before user_exit() is called. This will cause the scheduler
6155 * to be called when the system is still in usermode.
6156 *
6157 * To prevent this, the preempt_enable_notrace will use this function
6158 * instead of preempt_schedule() to exit user context if needed before
6159 * calling the scheduler.
6160 */
4eaca0a8 6161asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6162{
6163 enum ctx_state prev_ctx;
6164
6165 if (likely(!preemptible()))
6166 return;
6167
6168 do {
47252cfb
SR
6169 /*
6170 * Because the function tracer can trace preempt_count_sub()
6171 * and it also uses preempt_enable/disable_notrace(), if
6172 * NEED_RESCHED is set, the preempt_enable_notrace() called
6173 * by the function tracer will call this function again and
6174 * cause infinite recursion.
6175 *
6176 * Preemption must be disabled here before the function
6177 * tracer can trace. Break up preempt_disable() into two
6178 * calls. One to disable preemption without fear of being
6179 * traced. The other to still record the preemption latency,
6180 * which can also be traced by the function tracer.
6181 */
3d8f74dd 6182 preempt_disable_notrace();
47252cfb 6183 preempt_latency_start(1);
009f60e2
ON
6184 /*
6185 * Needs preempt disabled in case user_exit() is traced
6186 * and the tracer calls preempt_enable_notrace() causing
6187 * an infinite recursion.
6188 */
6189 prev_ctx = exception_enter();
fc13aeba 6190 __schedule(true);
009f60e2
ON
6191 exception_exit(prev_ctx);
6192
47252cfb 6193 preempt_latency_stop(1);
3d8f74dd 6194 preempt_enable_no_resched_notrace();
009f60e2
ON
6195 } while (need_resched());
6196}
4eaca0a8 6197EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6198
2c9a98d3
PZI
6199#ifdef CONFIG_PREEMPT_DYNAMIC
6200DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 6201EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
6202#endif
6203
c1a280b6 6204#endif /* CONFIG_PREEMPTION */
1da177e4 6205
826bfeb3
PZI
6206#ifdef CONFIG_PREEMPT_DYNAMIC
6207
6208#include <linux/entry-common.h>
6209
6210/*
6211 * SC:cond_resched
6212 * SC:might_resched
6213 * SC:preempt_schedule
6214 * SC:preempt_schedule_notrace
6215 * SC:irqentry_exit_cond_resched
6216 *
6217 *
6218 * NONE:
6219 * cond_resched <- __cond_resched
6220 * might_resched <- RET0
6221 * preempt_schedule <- NOP
6222 * preempt_schedule_notrace <- NOP
6223 * irqentry_exit_cond_resched <- NOP
6224 *
6225 * VOLUNTARY:
6226 * cond_resched <- __cond_resched
6227 * might_resched <- __cond_resched
6228 * preempt_schedule <- NOP
6229 * preempt_schedule_notrace <- NOP
6230 * irqentry_exit_cond_resched <- NOP
6231 *
6232 * FULL:
6233 * cond_resched <- RET0
6234 * might_resched <- RET0
6235 * preempt_schedule <- preempt_schedule
6236 * preempt_schedule_notrace <- preempt_schedule_notrace
6237 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6238 */
e59e10f8
PZ
6239
6240enum {
6241 preempt_dynamic_none = 0,
6242 preempt_dynamic_voluntary,
6243 preempt_dynamic_full,
6244};
6245
1011dcce 6246int preempt_dynamic_mode = preempt_dynamic_full;
e59e10f8 6247
1011dcce 6248int sched_dynamic_mode(const char *str)
826bfeb3 6249{
e59e10f8 6250 if (!strcmp(str, "none"))
7e1b2eb7 6251 return preempt_dynamic_none;
e59e10f8
PZ
6252
6253 if (!strcmp(str, "voluntary"))
7e1b2eb7 6254 return preempt_dynamic_voluntary;
e59e10f8
PZ
6255
6256 if (!strcmp(str, "full"))
7e1b2eb7 6257 return preempt_dynamic_full;
e59e10f8 6258
c4681f3f 6259 return -EINVAL;
e59e10f8
PZ
6260}
6261
1011dcce 6262void sched_dynamic_update(int mode)
e59e10f8
PZ
6263{
6264 /*
6265 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6266 * the ZERO state, which is invalid.
6267 */
6268 static_call_update(cond_resched, __cond_resched);
6269 static_call_update(might_resched, __cond_resched);
6270 static_call_update(preempt_schedule, __preempt_schedule_func);
6271 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6272 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6273
6274 switch (mode) {
6275 case preempt_dynamic_none:
826bfeb3 6276 static_call_update(cond_resched, __cond_resched);
9432bbd9
PZ
6277 static_call_update(might_resched, (void *)&__static_call_return0);
6278 static_call_update(preempt_schedule, NULL);
6279 static_call_update(preempt_schedule_notrace, NULL);
6280 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6281 pr_info("Dynamic Preempt: none\n");
6282 break;
6283
6284 case preempt_dynamic_voluntary:
826bfeb3
PZI
6285 static_call_update(cond_resched, __cond_resched);
6286 static_call_update(might_resched, __cond_resched);
9432bbd9
PZ
6287 static_call_update(preempt_schedule, NULL);
6288 static_call_update(preempt_schedule_notrace, NULL);
6289 static_call_update(irqentry_exit_cond_resched, NULL);
e59e10f8
PZ
6290 pr_info("Dynamic Preempt: voluntary\n");
6291 break;
6292
6293 case preempt_dynamic_full:
9432bbd9
PZ
6294 static_call_update(cond_resched, (void *)&__static_call_return0);
6295 static_call_update(might_resched, (void *)&__static_call_return0);
826bfeb3
PZI
6296 static_call_update(preempt_schedule, __preempt_schedule_func);
6297 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6298 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
6299 pr_info("Dynamic Preempt: full\n");
6300 break;
6301 }
6302
6303 preempt_dynamic_mode = mode;
6304}
6305
6306static int __init setup_preempt_mode(char *str)
6307{
6308 int mode = sched_dynamic_mode(str);
6309 if (mode < 0) {
6310 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
6311 return 1;
6312 }
e59e10f8
PZ
6313
6314 sched_dynamic_update(mode);
826bfeb3
PZI
6315 return 0;
6316}
6317__setup("preempt=", setup_preempt_mode);
6318
6319#endif /* CONFIG_PREEMPT_DYNAMIC */
6320
1da177e4 6321/*
a49b4f40 6322 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6323 * off of irq context.
6324 * Note, that this is called and return with irqs disabled. This will
6325 * protect us against recursive calling from irq.
6326 */
722a9f92 6327asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6328{
b22366cd 6329 enum ctx_state prev_state;
6478d880 6330
2ed6e34f 6331 /* Catch callers which need to be fixed */
f27dde8d 6332 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6333
b22366cd
FW
6334 prev_state = exception_enter();
6335
3a5c359a 6336 do {
3d8f74dd 6337 preempt_disable();
3a5c359a 6338 local_irq_enable();
fc13aeba 6339 __schedule(true);
3a5c359a 6340 local_irq_disable();
3d8f74dd 6341 sched_preempt_enable_no_resched();
5ed0cec0 6342 } while (need_resched());
b22366cd
FW
6343
6344 exception_exit(prev_state);
1da177e4
LT
6345}
6346
ac6424b9 6347int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6348 void *key)
1da177e4 6349{
062d3f95 6350 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6351 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6352}
1da177e4
LT
6353EXPORT_SYMBOL(default_wake_function);
6354
b29739f9
IM
6355#ifdef CONFIG_RT_MUTEXES
6356
acd58620
PZ
6357static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6358{
6359 if (pi_task)
6360 prio = min(prio, pi_task->prio);
6361
6362 return prio;
6363}
6364
6365static inline int rt_effective_prio(struct task_struct *p, int prio)
6366{
6367 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6368
6369 return __rt_effective_prio(pi_task, prio);
6370}
6371
b29739f9
IM
6372/*
6373 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6374 * @p: task to boost
6375 * @pi_task: donor task
b29739f9
IM
6376 *
6377 * This function changes the 'effective' priority of a task. It does
6378 * not touch ->normal_prio like __setscheduler().
6379 *
c365c292
TG
6380 * Used by the rt_mutex code to implement priority inheritance
6381 * logic. Call site only calls if the priority of the task changed.
b29739f9 6382 */
acd58620 6383void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6384{
acd58620 6385 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6386 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6387 const struct sched_class *prev_class;
eb580751
PZ
6388 struct rq_flags rf;
6389 struct rq *rq;
b29739f9 6390
acd58620
PZ
6391 /* XXX used to be waiter->prio, not waiter->task->prio */
6392 prio = __rt_effective_prio(pi_task, p->normal_prio);
6393
6394 /*
6395 * If nothing changed; bail early.
6396 */
6397 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6398 return;
b29739f9 6399
eb580751 6400 rq = __task_rq_lock(p, &rf);
80f5c1b8 6401 update_rq_clock(rq);
acd58620
PZ
6402 /*
6403 * Set under pi_lock && rq->lock, such that the value can be used under
6404 * either lock.
6405 *
6406 * Note that there is loads of tricky to make this pointer cache work
6407 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6408 * ensure a task is de-boosted (pi_task is set to NULL) before the
6409 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6410 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6411 */
6412 p->pi_top_task = pi_task;
6413
6414 /*
6415 * For FIFO/RR we only need to set prio, if that matches we're done.
6416 */
6417 if (prio == p->prio && !dl_prio(prio))
6418 goto out_unlock;
b29739f9 6419
1c4dd99b
TG
6420 /*
6421 * Idle task boosting is a nono in general. There is one
6422 * exception, when PREEMPT_RT and NOHZ is active:
6423 *
6424 * The idle task calls get_next_timer_interrupt() and holds
6425 * the timer wheel base->lock on the CPU and another CPU wants
6426 * to access the timer (probably to cancel it). We can safely
6427 * ignore the boosting request, as the idle CPU runs this code
6428 * with interrupts disabled and will complete the lock
6429 * protected section without being interrupted. So there is no
6430 * real need to boost.
6431 */
6432 if (unlikely(p == rq->idle)) {
6433 WARN_ON(p != rq->curr);
6434 WARN_ON(p->pi_blocked_on);
6435 goto out_unlock;
6436 }
6437
b91473ff 6438 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6439 oldprio = p->prio;
ff77e468
PZ
6440
6441 if (oldprio == prio)
6442 queue_flag &= ~DEQUEUE_MOVE;
6443
83ab0aa0 6444 prev_class = p->sched_class;
da0c1e65 6445 queued = task_on_rq_queued(p);
051a1d1a 6446 running = task_current(rq, p);
da0c1e65 6447 if (queued)
ff77e468 6448 dequeue_task(rq, p, queue_flag);
0e1f3483 6449 if (running)
f3cd1c4e 6450 put_prev_task(rq, p);
dd41f596 6451
2d3d891d
DF
6452 /*
6453 * Boosting condition are:
6454 * 1. -rt task is running and holds mutex A
6455 * --> -dl task blocks on mutex A
6456 *
6457 * 2. -dl task is running and holds mutex A
6458 * --> -dl task blocks on mutex A and could preempt the
6459 * running task
6460 */
6461 if (dl_prio(prio)) {
466af29b 6462 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6463 (pi_task && dl_prio(pi_task->prio) &&
6464 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6465 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6466 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6467 } else {
6468 p->dl.pi_se = &p->dl;
6469 }
aab03e05 6470 p->sched_class = &dl_sched_class;
2d3d891d
DF
6471 } else if (rt_prio(prio)) {
6472 if (dl_prio(oldprio))
2279f540 6473 p->dl.pi_se = &p->dl;
2d3d891d 6474 if (oldprio < prio)
ff77e468 6475 queue_flag |= ENQUEUE_HEAD;
dd41f596 6476 p->sched_class = &rt_sched_class;
2d3d891d
DF
6477 } else {
6478 if (dl_prio(oldprio))
2279f540 6479 p->dl.pi_se = &p->dl;
746db944
BS
6480 if (rt_prio(oldprio))
6481 p->rt.timeout = 0;
dd41f596 6482 p->sched_class = &fair_sched_class;
2d3d891d 6483 }
dd41f596 6484
b29739f9
IM
6485 p->prio = prio;
6486
da0c1e65 6487 if (queued)
ff77e468 6488 enqueue_task(rq, p, queue_flag);
a399d233 6489 if (running)
03b7fad1 6490 set_next_task(rq, p);
cb469845 6491
da7a735e 6492 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6493out_unlock:
d1ccc66d
IM
6494 /* Avoid rq from going away on us: */
6495 preempt_disable();
4c9a4bc8 6496
565790d2
PZ
6497 rq_unpin_lock(rq, &rf);
6498 __balance_callbacks(rq);
5cb9eaa3 6499 raw_spin_rq_unlock(rq);
565790d2 6500
4c9a4bc8 6501 preempt_enable();
b29739f9 6502}
acd58620
PZ
6503#else
6504static inline int rt_effective_prio(struct task_struct *p, int prio)
6505{
6506 return prio;
6507}
b29739f9 6508#endif
d50dde5a 6509
36c8b586 6510void set_user_nice(struct task_struct *p, long nice)
1da177e4 6511{
49bd21ef 6512 bool queued, running;
53a23364 6513 int old_prio;
eb580751 6514 struct rq_flags rf;
70b97a7f 6515 struct rq *rq;
1da177e4 6516
75e45d51 6517 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
6518 return;
6519 /*
6520 * We have to be careful, if called from sys_setpriority(),
6521 * the task might be in the middle of scheduling on another CPU.
6522 */
eb580751 6523 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
6524 update_rq_clock(rq);
6525
1da177e4
LT
6526 /*
6527 * The RT priorities are set via sched_setscheduler(), but we still
6528 * allow the 'normal' nice value to be set - but as expected
b19a888c 6529 * it won't have any effect on scheduling until the task is
aab03e05 6530 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 6531 */
aab03e05 6532 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
6533 p->static_prio = NICE_TO_PRIO(nice);
6534 goto out_unlock;
6535 }
da0c1e65 6536 queued = task_on_rq_queued(p);
49bd21ef 6537 running = task_current(rq, p);
da0c1e65 6538 if (queued)
7a57f32a 6539 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
6540 if (running)
6541 put_prev_task(rq, p);
1da177e4 6542
1da177e4 6543 p->static_prio = NICE_TO_PRIO(nice);
9059393e 6544 set_load_weight(p, true);
b29739f9
IM
6545 old_prio = p->prio;
6546 p->prio = effective_prio(p);
1da177e4 6547
5443a0be 6548 if (queued)
7134b3e9 6549 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 6550 if (running)
03b7fad1 6551 set_next_task(rq, p);
5443a0be
FW
6552
6553 /*
6554 * If the task increased its priority or is running and
6555 * lowered its priority, then reschedule its CPU:
6556 */
6557 p->sched_class->prio_changed(rq, p, old_prio);
6558
1da177e4 6559out_unlock:
eb580751 6560 task_rq_unlock(rq, p, &rf);
1da177e4 6561}
1da177e4
LT
6562EXPORT_SYMBOL(set_user_nice);
6563
e43379f1
MM
6564/*
6565 * can_nice - check if a task can reduce its nice value
6566 * @p: task
6567 * @nice: nice value
6568 */
36c8b586 6569int can_nice(const struct task_struct *p, const int nice)
e43379f1 6570{
d1ccc66d 6571 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 6572 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 6573
78d7d407 6574 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
6575 capable(CAP_SYS_NICE));
6576}
6577
1da177e4
LT
6578#ifdef __ARCH_WANT_SYS_NICE
6579
6580/*
6581 * sys_nice - change the priority of the current process.
6582 * @increment: priority increment
6583 *
6584 * sys_setpriority is a more generic, but much slower function that
6585 * does similar things.
6586 */
5add95d4 6587SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6588{
48f24c4d 6589 long nice, retval;
1da177e4
LT
6590
6591 /*
6592 * Setpriority might change our priority at the same moment.
6593 * We don't have to worry. Conceptually one call occurs first
6594 * and we have a single winner.
6595 */
a9467fa3 6596 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 6597 nice = task_nice(current) + increment;
1da177e4 6598
a9467fa3 6599 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
6600 if (increment < 0 && !can_nice(current, nice))
6601 return -EPERM;
6602
1da177e4
LT
6603 retval = security_task_setnice(current, nice);
6604 if (retval)
6605 return retval;
6606
6607 set_user_nice(current, nice);
6608 return 0;
6609}
6610
6611#endif
6612
6613/**
6614 * task_prio - return the priority value of a given task.
6615 * @p: the task in question.
6616 *
e69f6186 6617 * Return: The priority value as seen by users in /proc.
c541bb78
DE
6618 *
6619 * sched policy return value kernel prio user prio/nice
6620 *
6621 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6622 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6623 * deadline -101 -1 0
1da177e4 6624 */
36c8b586 6625int task_prio(const struct task_struct *p)
1da177e4
LT
6626{
6627 return p->prio - MAX_RT_PRIO;
6628}
6629
1da177e4 6630/**
d1ccc66d 6631 * idle_cpu - is a given CPU idle currently?
1da177e4 6632 * @cpu: the processor in question.
e69f6186
YB
6633 *
6634 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
6635 */
6636int idle_cpu(int cpu)
6637{
908a3283
TG
6638 struct rq *rq = cpu_rq(cpu);
6639
6640 if (rq->curr != rq->idle)
6641 return 0;
6642
6643 if (rq->nr_running)
6644 return 0;
6645
6646#ifdef CONFIG_SMP
126c2092 6647 if (rq->ttwu_pending)
908a3283
TG
6648 return 0;
6649#endif
6650
6651 return 1;
1da177e4
LT
6652}
6653
943d355d
RJ
6654/**
6655 * available_idle_cpu - is a given CPU idle for enqueuing work.
6656 * @cpu: the CPU in question.
6657 *
6658 * Return: 1 if the CPU is currently idle. 0 otherwise.
6659 */
6660int available_idle_cpu(int cpu)
6661{
6662 if (!idle_cpu(cpu))
6663 return 0;
6664
247f2f6f
RJ
6665 if (vcpu_is_preempted(cpu))
6666 return 0;
6667
908a3283 6668 return 1;
1da177e4
LT
6669}
6670
1da177e4 6671/**
d1ccc66d 6672 * idle_task - return the idle task for a given CPU.
1da177e4 6673 * @cpu: the processor in question.
e69f6186 6674 *
d1ccc66d 6675 * Return: The idle task for the CPU @cpu.
1da177e4 6676 */
36c8b586 6677struct task_struct *idle_task(int cpu)
1da177e4
LT
6678{
6679 return cpu_rq(cpu)->idle;
6680}
6681
7d6a905f
VK
6682#ifdef CONFIG_SMP
6683/*
6684 * This function computes an effective utilization for the given CPU, to be
6685 * used for frequency selection given the linear relation: f = u * f_max.
6686 *
6687 * The scheduler tracks the following metrics:
6688 *
6689 * cpu_util_{cfs,rt,dl,irq}()
6690 * cpu_bw_dl()
6691 *
6692 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6693 * synchronized windows and are thus directly comparable.
6694 *
6695 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6696 * which excludes things like IRQ and steal-time. These latter are then accrued
6697 * in the irq utilization.
6698 *
6699 * The DL bandwidth number otoh is not a measured metric but a value computed
6700 * based on the task model parameters and gives the minimal utilization
6701 * required to meet deadlines.
6702 */
a5418be9
VK
6703unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6704 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
6705 struct task_struct *p)
6706{
6707 unsigned long dl_util, util, irq;
6708 struct rq *rq = cpu_rq(cpu);
6709
6710 if (!uclamp_is_used() &&
6711 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6712 return max;
6713 }
6714
6715 /*
6716 * Early check to see if IRQ/steal time saturates the CPU, can be
6717 * because of inaccuracies in how we track these -- see
6718 * update_irq_load_avg().
6719 */
6720 irq = cpu_util_irq(rq);
6721 if (unlikely(irq >= max))
6722 return max;
6723
6724 /*
6725 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6726 * CFS tasks and we use the same metric to track the effective
6727 * utilization (PELT windows are synchronized) we can directly add them
6728 * to obtain the CPU's actual utilization.
6729 *
6730 * CFS and RT utilization can be boosted or capped, depending on
6731 * utilization clamp constraints requested by currently RUNNABLE
6732 * tasks.
6733 * When there are no CFS RUNNABLE tasks, clamps are released and
6734 * frequency will be gracefully reduced with the utilization decay.
6735 */
6736 util = util_cfs + cpu_util_rt(rq);
6737 if (type == FREQUENCY_UTIL)
6738 util = uclamp_rq_util_with(rq, util, p);
6739
6740 dl_util = cpu_util_dl(rq);
6741
6742 /*
6743 * For frequency selection we do not make cpu_util_dl() a permanent part
6744 * of this sum because we want to use cpu_bw_dl() later on, but we need
6745 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6746 * that we select f_max when there is no idle time.
6747 *
6748 * NOTE: numerical errors or stop class might cause us to not quite hit
6749 * saturation when we should -- something for later.
6750 */
6751 if (util + dl_util >= max)
6752 return max;
6753
6754 /*
6755 * OTOH, for energy computation we need the estimated running time, so
6756 * include util_dl and ignore dl_bw.
6757 */
6758 if (type == ENERGY_UTIL)
6759 util += dl_util;
6760
6761 /*
6762 * There is still idle time; further improve the number by using the
6763 * irq metric. Because IRQ/steal time is hidden from the task clock we
6764 * need to scale the task numbers:
6765 *
6766 * max - irq
6767 * U' = irq + --------- * U
6768 * max
6769 */
6770 util = scale_irq_capacity(util, irq, max);
6771 util += irq;
6772
6773 /*
6774 * Bandwidth required by DEADLINE must always be granted while, for
6775 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6776 * to gracefully reduce the frequency when no tasks show up for longer
6777 * periods of time.
6778 *
6779 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6780 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6781 * an interface. So, we only do the latter for now.
6782 */
6783 if (type == FREQUENCY_UTIL)
6784 util += cpu_bw_dl(rq);
6785
6786 return min(max, util);
6787}
a5418be9
VK
6788
6789unsigned long sched_cpu_util(int cpu, unsigned long max)
6790{
6791 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6792 ENERGY_UTIL, NULL);
6793}
7d6a905f
VK
6794#endif /* CONFIG_SMP */
6795
1da177e4
LT
6796/**
6797 * find_process_by_pid - find a process with a matching PID value.
6798 * @pid: the pid in question.
e69f6186
YB
6799 *
6800 * The task of @pid, if found. %NULL otherwise.
1da177e4 6801 */
a9957449 6802static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6803{
228ebcbe 6804 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6805}
6806
c13db6b1
SR
6807/*
6808 * sched_setparam() passes in -1 for its policy, to let the functions
6809 * it calls know not to change it.
6810 */
6811#define SETPARAM_POLICY -1
6812
c365c292
TG
6813static void __setscheduler_params(struct task_struct *p,
6814 const struct sched_attr *attr)
1da177e4 6815{
d50dde5a
DF
6816 int policy = attr->sched_policy;
6817
c13db6b1 6818 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6819 policy = p->policy;
6820
1da177e4 6821 p->policy = policy;
d50dde5a 6822
aab03e05
DF
6823 if (dl_policy(policy))
6824 __setparam_dl(p, attr);
39fd8fd2 6825 else if (fair_policy(policy))
d50dde5a
DF
6826 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6827
39fd8fd2
PZ
6828 /*
6829 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6830 * !rt_policy. Always setting this ensures that things like
6831 * getparam()/getattr() don't report silly values for !rt tasks.
6832 */
6833 p->rt_priority = attr->sched_priority;
383afd09 6834 p->normal_prio = normal_prio(p);
9059393e 6835 set_load_weight(p, true);
c365c292 6836}
39fd8fd2 6837
c365c292
TG
6838/* Actually do priority change: must hold pi & rq lock. */
6839static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6840 const struct sched_attr *attr, bool keep_boost)
c365c292 6841{
a509a7cd
PB
6842 /*
6843 * If params can't change scheduling class changes aren't allowed
6844 * either.
6845 */
6846 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6847 return;
6848
c365c292 6849 __setscheduler_params(p, attr);
d50dde5a 6850
383afd09 6851 /*
0782e63b
TG
6852 * Keep a potential priority boosting if called from
6853 * sched_setscheduler().
383afd09 6854 */
acd58620 6855 p->prio = normal_prio(p);
0782e63b 6856 if (keep_boost)
acd58620 6857 p->prio = rt_effective_prio(p, p->prio);
383afd09 6858
aab03e05
DF
6859 if (dl_prio(p->prio))
6860 p->sched_class = &dl_sched_class;
6861 else if (rt_prio(p->prio))
ffd44db5
PZ
6862 p->sched_class = &rt_sched_class;
6863 else
6864 p->sched_class = &fair_sched_class;
1da177e4 6865}
aab03e05 6866
c69e8d9c 6867/*
d1ccc66d 6868 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6869 */
6870static bool check_same_owner(struct task_struct *p)
6871{
6872 const struct cred *cred = current_cred(), *pcred;
6873 bool match;
6874
6875 rcu_read_lock();
6876 pcred = __task_cred(p);
9c806aa0
EB
6877 match = (uid_eq(cred->euid, pcred->euid) ||
6878 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6879 rcu_read_unlock();
6880 return match;
6881}
6882
d50dde5a
DF
6883static int __sched_setscheduler(struct task_struct *p,
6884 const struct sched_attr *attr,
dbc7f069 6885 bool user, bool pi)
1da177e4 6886{
383afd09
SR
6887 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6888 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6889 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6890 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6891 const struct sched_class *prev_class;
565790d2 6892 struct callback_head *head;
eb580751 6893 struct rq_flags rf;
ca94c442 6894 int reset_on_fork;
7a57f32a 6895 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6896 struct rq *rq;
1da177e4 6897
896bbb25
SRV
6898 /* The pi code expects interrupts enabled */
6899 BUG_ON(pi && in_interrupt());
1da177e4 6900recheck:
d1ccc66d 6901 /* Double check policy once rq lock held: */
ca94c442
LP
6902 if (policy < 0) {
6903 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6904 policy = oldpolicy = p->policy;
ca94c442 6905 } else {
7479f3c9 6906 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6907
20f9cd2a 6908 if (!valid_policy(policy))
ca94c442
LP
6909 return -EINVAL;
6910 }
6911
794a56eb 6912 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6913 return -EINVAL;
6914
1da177e4
LT
6915 /*
6916 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6917 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6918 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6919 */
ae18ad28 6920 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6921 return -EINVAL;
aab03e05
DF
6922 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6923 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6924 return -EINVAL;
6925
37e4ab3f
OC
6926 /*
6927 * Allow unprivileged RT tasks to decrease priority:
6928 */
961ccddd 6929 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6930 if (fair_policy(policy)) {
d0ea0268 6931 if (attr->sched_nice < task_nice(p) &&
eaad4513 6932 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6933 return -EPERM;
6934 }
6935
e05606d3 6936 if (rt_policy(policy)) {
a44702e8
ON
6937 unsigned long rlim_rtprio =
6938 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6939
d1ccc66d 6940 /* Can't set/change the rt policy: */
8dc3e909
ON
6941 if (policy != p->policy && !rlim_rtprio)
6942 return -EPERM;
6943
d1ccc66d 6944 /* Can't increase priority: */
d50dde5a
DF
6945 if (attr->sched_priority > p->rt_priority &&
6946 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6947 return -EPERM;
6948 }
c02aa73b 6949
d44753b8
JL
6950 /*
6951 * Can't set/change SCHED_DEADLINE policy at all for now
6952 * (safest behavior); in the future we would like to allow
6953 * unprivileged DL tasks to increase their relative deadline
6954 * or reduce their runtime (both ways reducing utilization)
6955 */
6956 if (dl_policy(policy))
6957 return -EPERM;
6958
dd41f596 6959 /*
c02aa73b
DH
6960 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6961 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6962 */
1da1843f 6963 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6964 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6965 return -EPERM;
6966 }
5fe1d75f 6967
d1ccc66d 6968 /* Can't change other user's priorities: */
c69e8d9c 6969 if (!check_same_owner(p))
37e4ab3f 6970 return -EPERM;
ca94c442 6971
d1ccc66d 6972 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6973 if (p->sched_reset_on_fork && !reset_on_fork)
6974 return -EPERM;
37e4ab3f 6975 }
1da177e4 6976
725aad24 6977 if (user) {
794a56eb
JL
6978 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6979 return -EINVAL;
6980
b0ae1981 6981 retval = security_task_setscheduler(p);
725aad24
JF
6982 if (retval)
6983 return retval;
6984 }
6985
a509a7cd
PB
6986 /* Update task specific "requested" clamps */
6987 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6988 retval = uclamp_validate(p, attr);
6989 if (retval)
6990 return retval;
6991 }
6992
710da3c8
JL
6993 if (pi)
6994 cpuset_read_lock();
6995
b29739f9 6996 /*
d1ccc66d 6997 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6998 * changing the priority of the task:
0122ec5b 6999 *
25985edc 7000 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7001 * runqueue lock must be held.
7002 */
eb580751 7003 rq = task_rq_lock(p, &rf);
80f5c1b8 7004 update_rq_clock(rq);
dc61b1d6 7005
34f971f6 7006 /*
d1ccc66d 7007 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7008 */
7009 if (p == rq->stop) {
4b211f2b
MP
7010 retval = -EINVAL;
7011 goto unlock;
34f971f6
PZ
7012 }
7013
a51e9198 7014 /*
d6b1e911
TG
7015 * If not changing anything there's no need to proceed further,
7016 * but store a possible modification of reset_on_fork.
a51e9198 7017 */
d50dde5a 7018 if (unlikely(policy == p->policy)) {
d0ea0268 7019 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7020 goto change;
7021 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7022 goto change;
75381608 7023 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7024 goto change;
a509a7cd
PB
7025 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7026 goto change;
d50dde5a 7027
d6b1e911 7028 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7029 retval = 0;
7030 goto unlock;
a51e9198 7031 }
d50dde5a 7032change:
a51e9198 7033
dc61b1d6 7034 if (user) {
332ac17e 7035#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7036 /*
7037 * Do not allow realtime tasks into groups that have no runtime
7038 * assigned.
7039 */
7040 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7041 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7042 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7043 retval = -EPERM;
7044 goto unlock;
dc61b1d6 7045 }
dc61b1d6 7046#endif
332ac17e 7047#ifdef CONFIG_SMP
794a56eb
JL
7048 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7049 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7050 cpumask_t *span = rq->rd->span;
332ac17e
DF
7051
7052 /*
7053 * Don't allow tasks with an affinity mask smaller than
7054 * the entire root_domain to become SCHED_DEADLINE. We
7055 * will also fail if there's no bandwidth available.
7056 */
3bd37062 7057 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7058 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7059 retval = -EPERM;
7060 goto unlock;
332ac17e
DF
7061 }
7062 }
7063#endif
7064 }
dc61b1d6 7065
d1ccc66d 7066 /* Re-check policy now with rq lock held: */
1da177e4
LT
7067 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7068 policy = oldpolicy = -1;
eb580751 7069 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7070 if (pi)
7071 cpuset_read_unlock();
1da177e4
LT
7072 goto recheck;
7073 }
332ac17e
DF
7074
7075 /*
7076 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7077 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7078 * is available.
7079 */
06a76fe0 7080 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7081 retval = -EBUSY;
7082 goto unlock;
332ac17e
DF
7083 }
7084
c365c292
TG
7085 p->sched_reset_on_fork = reset_on_fork;
7086 oldprio = p->prio;
7087
dbc7f069
PZ
7088 if (pi) {
7089 /*
7090 * Take priority boosted tasks into account. If the new
7091 * effective priority is unchanged, we just store the new
7092 * normal parameters and do not touch the scheduler class and
7093 * the runqueue. This will be done when the task deboost
7094 * itself.
7095 */
acd58620 7096 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
7097 if (new_effective_prio == oldprio)
7098 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7099 }
7100
da0c1e65 7101 queued = task_on_rq_queued(p);
051a1d1a 7102 running = task_current(rq, p);
da0c1e65 7103 if (queued)
ff77e468 7104 dequeue_task(rq, p, queue_flags);
0e1f3483 7105 if (running)
f3cd1c4e 7106 put_prev_task(rq, p);
f6b53205 7107
83ab0aa0 7108 prev_class = p->sched_class;
a509a7cd 7109
dbc7f069 7110 __setscheduler(rq, p, attr, pi);
a509a7cd 7111 __setscheduler_uclamp(p, attr);
f6b53205 7112
da0c1e65 7113 if (queued) {
81a44c54
TG
7114 /*
7115 * We enqueue to tail when the priority of a task is
7116 * increased (user space view).
7117 */
ff77e468
PZ
7118 if (oldprio < p->prio)
7119 queue_flags |= ENQUEUE_HEAD;
1de64443 7120
ff77e468 7121 enqueue_task(rq, p, queue_flags);
81a44c54 7122 }
a399d233 7123 if (running)
03b7fad1 7124 set_next_task(rq, p);
cb469845 7125
da7a735e 7126 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7127
7128 /* Avoid rq from going away on us: */
7129 preempt_disable();
565790d2 7130 head = splice_balance_callbacks(rq);
eb580751 7131 task_rq_unlock(rq, p, &rf);
b29739f9 7132
710da3c8
JL
7133 if (pi) {
7134 cpuset_read_unlock();
dbc7f069 7135 rt_mutex_adjust_pi(p);
710da3c8 7136 }
95e02ca9 7137
d1ccc66d 7138 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7139 balance_callbacks(rq, head);
4c9a4bc8 7140 preempt_enable();
95e02ca9 7141
1da177e4 7142 return 0;
4b211f2b
MP
7143
7144unlock:
7145 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7146 if (pi)
7147 cpuset_read_unlock();
4b211f2b 7148 return retval;
1da177e4 7149}
961ccddd 7150
7479f3c9
PZ
7151static int _sched_setscheduler(struct task_struct *p, int policy,
7152 const struct sched_param *param, bool check)
7153{
7154 struct sched_attr attr = {
7155 .sched_policy = policy,
7156 .sched_priority = param->sched_priority,
7157 .sched_nice = PRIO_TO_NICE(p->static_prio),
7158 };
7159
c13db6b1
SR
7160 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7161 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7162 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7163 policy &= ~SCHED_RESET_ON_FORK;
7164 attr.sched_policy = policy;
7165 }
7166
dbc7f069 7167 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7168}
961ccddd
RR
7169/**
7170 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7171 * @p: the task in question.
7172 * @policy: new policy.
7173 * @param: structure containing the new RT priority.
7174 *
7318d4cc
PZ
7175 * Use sched_set_fifo(), read its comment.
7176 *
e69f6186
YB
7177 * Return: 0 on success. An error code otherwise.
7178 *
961ccddd
RR
7179 * NOTE that the task may be already dead.
7180 */
7181int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7182 const struct sched_param *param)
961ccddd 7183{
7479f3c9 7184 return _sched_setscheduler(p, policy, param, true);
961ccddd 7185}
1da177e4 7186
d50dde5a
DF
7187int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7188{
dbc7f069 7189 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7190}
d50dde5a 7191
794a56eb
JL
7192int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7193{
7194 return __sched_setscheduler(p, attr, false, true);
7195}
4c38f2df 7196EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7197
961ccddd
RR
7198/**
7199 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7200 * @p: the task in question.
7201 * @policy: new policy.
7202 * @param: structure containing the new RT priority.
7203 *
7204 * Just like sched_setscheduler, only don't bother checking if the
7205 * current context has permission. For example, this is needed in
7206 * stop_machine(): we create temporary high priority worker threads,
7207 * but our caller might not have that capability.
e69f6186
YB
7208 *
7209 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7210 */
7211int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7212 const struct sched_param *param)
961ccddd 7213{
7479f3c9 7214 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7215}
7216
7318d4cc
PZ
7217/*
7218 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7219 * incapable of resource management, which is the one thing an OS really should
7220 * be doing.
7221 *
7222 * This is of course the reason it is limited to privileged users only.
7223 *
7224 * Worse still; it is fundamentally impossible to compose static priority
7225 * workloads. You cannot take two correctly working static prio workloads
7226 * and smash them together and still expect them to work.
7227 *
7228 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7229 *
7230 * MAX_RT_PRIO / 2
7231 *
7232 * The administrator _MUST_ configure the system, the kernel simply doesn't
7233 * know enough information to make a sensible choice.
7234 */
8b700983 7235void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7236{
7237 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7238 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7239}
7240EXPORT_SYMBOL_GPL(sched_set_fifo);
7241
7242/*
7243 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7244 */
8b700983 7245void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7246{
7247 struct sched_param sp = { .sched_priority = 1 };
8b700983 7248 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7249}
7250EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7251
8b700983 7252void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7253{
7254 struct sched_attr attr = {
7255 .sched_policy = SCHED_NORMAL,
7256 .sched_nice = nice,
7257 };
8b700983 7258 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7259}
7260EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7261
95cdf3b7
IM
7262static int
7263do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7264{
1da177e4
LT
7265 struct sched_param lparam;
7266 struct task_struct *p;
36c8b586 7267 int retval;
1da177e4
LT
7268
7269 if (!param || pid < 0)
7270 return -EINVAL;
7271 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7272 return -EFAULT;
5fe1d75f
ON
7273
7274 rcu_read_lock();
7275 retval = -ESRCH;
1da177e4 7276 p = find_process_by_pid(pid);
710da3c8
JL
7277 if (likely(p))
7278 get_task_struct(p);
5fe1d75f 7279 rcu_read_unlock();
36c8b586 7280
710da3c8
JL
7281 if (likely(p)) {
7282 retval = sched_setscheduler(p, policy, &lparam);
7283 put_task_struct(p);
7284 }
7285
1da177e4
LT
7286 return retval;
7287}
7288
d50dde5a
DF
7289/*
7290 * Mimics kernel/events/core.c perf_copy_attr().
7291 */
d1ccc66d 7292static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7293{
7294 u32 size;
7295 int ret;
7296
d1ccc66d 7297 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7298 memset(attr, 0, sizeof(*attr));
7299
7300 ret = get_user(size, &uattr->size);
7301 if (ret)
7302 return ret;
7303
d1ccc66d
IM
7304 /* ABI compatibility quirk: */
7305 if (!size)
d50dde5a 7306 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7307 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7308 goto err_size;
7309
dff3a85f
AS
7310 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7311 if (ret) {
7312 if (ret == -E2BIG)
7313 goto err_size;
7314 return ret;
d50dde5a
DF
7315 }
7316
a509a7cd
PB
7317 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7318 size < SCHED_ATTR_SIZE_VER1)
7319 return -EINVAL;
7320
d50dde5a 7321 /*
d1ccc66d 7322 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7323 * to be strict and return an error on out-of-bounds values?
7324 */
75e45d51 7325 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7326
e78c7bca 7327 return 0;
d50dde5a
DF
7328
7329err_size:
7330 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7331 return -E2BIG;
d50dde5a
DF
7332}
7333
f4dddf90
QP
7334static void get_params(struct task_struct *p, struct sched_attr *attr)
7335{
7336 if (task_has_dl_policy(p))
7337 __getparam_dl(p, attr);
7338 else if (task_has_rt_policy(p))
7339 attr->sched_priority = p->rt_priority;
7340 else
7341 attr->sched_nice = task_nice(p);
7342}
7343
1da177e4
LT
7344/**
7345 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7346 * @pid: the pid in question.
7347 * @policy: new policy.
7348 * @param: structure containing the new RT priority.
e69f6186
YB
7349 *
7350 * Return: 0 on success. An error code otherwise.
1da177e4 7351 */
d1ccc66d 7352SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7353{
c21761f1
JB
7354 if (policy < 0)
7355 return -EINVAL;
7356
1da177e4
LT
7357 return do_sched_setscheduler(pid, policy, param);
7358}
7359
7360/**
7361 * sys_sched_setparam - set/change the RT priority of a thread
7362 * @pid: the pid in question.
7363 * @param: structure containing the new RT priority.
e69f6186
YB
7364 *
7365 * Return: 0 on success. An error code otherwise.
1da177e4 7366 */
5add95d4 7367SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7368{
c13db6b1 7369 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7370}
7371
d50dde5a
DF
7372/**
7373 * sys_sched_setattr - same as above, but with extended sched_attr
7374 * @pid: the pid in question.
5778fccf 7375 * @uattr: structure containing the extended parameters.
db66d756 7376 * @flags: for future extension.
d50dde5a 7377 */
6d35ab48
PZ
7378SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7379 unsigned int, flags)
d50dde5a
DF
7380{
7381 struct sched_attr attr;
7382 struct task_struct *p;
7383 int retval;
7384
6d35ab48 7385 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7386 return -EINVAL;
7387
143cf23d
MK
7388 retval = sched_copy_attr(uattr, &attr);
7389 if (retval)
7390 return retval;
d50dde5a 7391
b14ed2c2 7392 if ((int)attr.sched_policy < 0)
dbdb2275 7393 return -EINVAL;
1d6362fa
PB
7394 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7395 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7396
7397 rcu_read_lock();
7398 retval = -ESRCH;
7399 p = find_process_by_pid(pid);
a509a7cd
PB
7400 if (likely(p))
7401 get_task_struct(p);
d50dde5a
DF
7402 rcu_read_unlock();
7403
a509a7cd 7404 if (likely(p)) {
f4dddf90
QP
7405 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7406 get_params(p, &attr);
a509a7cd
PB
7407 retval = sched_setattr(p, &attr);
7408 put_task_struct(p);
7409 }
7410
d50dde5a
DF
7411 return retval;
7412}
7413
1da177e4
LT
7414/**
7415 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7416 * @pid: the pid in question.
e69f6186
YB
7417 *
7418 * Return: On success, the policy of the thread. Otherwise, a negative error
7419 * code.
1da177e4 7420 */
5add95d4 7421SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7422{
36c8b586 7423 struct task_struct *p;
3a5c359a 7424 int retval;
1da177e4
LT
7425
7426 if (pid < 0)
3a5c359a 7427 return -EINVAL;
1da177e4
LT
7428
7429 retval = -ESRCH;
5fe85be0 7430 rcu_read_lock();
1da177e4
LT
7431 p = find_process_by_pid(pid);
7432 if (p) {
7433 retval = security_task_getscheduler(p);
7434 if (!retval)
ca94c442
LP
7435 retval = p->policy
7436 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7437 }
5fe85be0 7438 rcu_read_unlock();
1da177e4
LT
7439 return retval;
7440}
7441
7442/**
ca94c442 7443 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7444 * @pid: the pid in question.
7445 * @param: structure containing the RT priority.
e69f6186
YB
7446 *
7447 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7448 * code.
1da177e4 7449 */
5add95d4 7450SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7451{
ce5f7f82 7452 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7453 struct task_struct *p;
3a5c359a 7454 int retval;
1da177e4
LT
7455
7456 if (!param || pid < 0)
3a5c359a 7457 return -EINVAL;
1da177e4 7458
5fe85be0 7459 rcu_read_lock();
1da177e4
LT
7460 p = find_process_by_pid(pid);
7461 retval = -ESRCH;
7462 if (!p)
7463 goto out_unlock;
7464
7465 retval = security_task_getscheduler(p);
7466 if (retval)
7467 goto out_unlock;
7468
ce5f7f82
PZ
7469 if (task_has_rt_policy(p))
7470 lp.sched_priority = p->rt_priority;
5fe85be0 7471 rcu_read_unlock();
1da177e4
LT
7472
7473 /*
7474 * This one might sleep, we cannot do it with a spinlock held ...
7475 */
7476 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7477
1da177e4
LT
7478 return retval;
7479
7480out_unlock:
5fe85be0 7481 rcu_read_unlock();
1da177e4
LT
7482 return retval;
7483}
7484
1251201c
IM
7485/*
7486 * Copy the kernel size attribute structure (which might be larger
7487 * than what user-space knows about) to user-space.
7488 *
7489 * Note that all cases are valid: user-space buffer can be larger or
7490 * smaller than the kernel-space buffer. The usual case is that both
7491 * have the same size.
7492 */
7493static int
7494sched_attr_copy_to_user(struct sched_attr __user *uattr,
7495 struct sched_attr *kattr,
7496 unsigned int usize)
d50dde5a 7497{
1251201c 7498 unsigned int ksize = sizeof(*kattr);
d50dde5a 7499
96d4f267 7500 if (!access_ok(uattr, usize))
d50dde5a
DF
7501 return -EFAULT;
7502
7503 /*
1251201c
IM
7504 * sched_getattr() ABI forwards and backwards compatibility:
7505 *
7506 * If usize == ksize then we just copy everything to user-space and all is good.
7507 *
7508 * If usize < ksize then we only copy as much as user-space has space for,
7509 * this keeps ABI compatibility as well. We skip the rest.
7510 *
7511 * If usize > ksize then user-space is using a newer version of the ABI,
7512 * which part the kernel doesn't know about. Just ignore it - tooling can
7513 * detect the kernel's knowledge of attributes from the attr->size value
7514 * which is set to ksize in this case.
d50dde5a 7515 */
1251201c 7516 kattr->size = min(usize, ksize);
d50dde5a 7517
1251201c 7518 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
7519 return -EFAULT;
7520
22400674 7521 return 0;
d50dde5a
DF
7522}
7523
7524/**
aab03e05 7525 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 7526 * @pid: the pid in question.
5778fccf 7527 * @uattr: structure containing the extended parameters.
dff3a85f 7528 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 7529 * @flags: for future extension.
d50dde5a 7530 */
6d35ab48 7531SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 7532 unsigned int, usize, unsigned int, flags)
d50dde5a 7533{
1251201c 7534 struct sched_attr kattr = { };
d50dde5a
DF
7535 struct task_struct *p;
7536 int retval;
7537
1251201c
IM
7538 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7539 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
7540 return -EINVAL;
7541
7542 rcu_read_lock();
7543 p = find_process_by_pid(pid);
7544 retval = -ESRCH;
7545 if (!p)
7546 goto out_unlock;
7547
7548 retval = security_task_getscheduler(p);
7549 if (retval)
7550 goto out_unlock;
7551
1251201c 7552 kattr.sched_policy = p->policy;
7479f3c9 7553 if (p->sched_reset_on_fork)
1251201c 7554 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 7555 get_params(p, &kattr);
7ad721bf 7556 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 7557
a509a7cd 7558#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
7559 /*
7560 * This could race with another potential updater, but this is fine
7561 * because it'll correctly read the old or the new value. We don't need
7562 * to guarantee who wins the race as long as it doesn't return garbage.
7563 */
1251201c
IM
7564 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7565 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
7566#endif
7567
d50dde5a
DF
7568 rcu_read_unlock();
7569
1251201c 7570 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
7571
7572out_unlock:
7573 rcu_read_unlock();
7574 return retval;
7575}
7576
96f874e2 7577long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 7578{
5a16f3d3 7579 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
7580 struct task_struct *p;
7581 int retval;
1da177e4 7582
23f5d142 7583 rcu_read_lock();
1da177e4
LT
7584
7585 p = find_process_by_pid(pid);
7586 if (!p) {
23f5d142 7587 rcu_read_unlock();
1da177e4
LT
7588 return -ESRCH;
7589 }
7590
23f5d142 7591 /* Prevent p going away */
1da177e4 7592 get_task_struct(p);
23f5d142 7593 rcu_read_unlock();
1da177e4 7594
14a40ffc
TH
7595 if (p->flags & PF_NO_SETAFFINITY) {
7596 retval = -EINVAL;
7597 goto out_put_task;
7598 }
5a16f3d3
RR
7599 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7600 retval = -ENOMEM;
7601 goto out_put_task;
7602 }
7603 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7604 retval = -ENOMEM;
7605 goto out_free_cpus_allowed;
7606 }
1da177e4 7607 retval = -EPERM;
4c44aaaf
EB
7608 if (!check_same_owner(p)) {
7609 rcu_read_lock();
7610 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7611 rcu_read_unlock();
16303ab2 7612 goto out_free_new_mask;
4c44aaaf
EB
7613 }
7614 rcu_read_unlock();
7615 }
1da177e4 7616
b0ae1981 7617 retval = security_task_setscheduler(p);
e7834f8f 7618 if (retval)
16303ab2 7619 goto out_free_new_mask;
e7834f8f 7620
e4099a5e
PZ
7621
7622 cpuset_cpus_allowed(p, cpus_allowed);
7623 cpumask_and(new_mask, in_mask, cpus_allowed);
7624
332ac17e
DF
7625 /*
7626 * Since bandwidth control happens on root_domain basis,
7627 * if admission test is enabled, we only admit -deadline
7628 * tasks allowed to run on all the CPUs in the task's
7629 * root_domain.
7630 */
7631#ifdef CONFIG_SMP
f1e3a093
KT
7632 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7633 rcu_read_lock();
7634 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 7635 retval = -EBUSY;
f1e3a093 7636 rcu_read_unlock();
16303ab2 7637 goto out_free_new_mask;
332ac17e 7638 }
f1e3a093 7639 rcu_read_unlock();
332ac17e
DF
7640 }
7641#endif
49246274 7642again:
9cfc3e18 7643 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 7644
8707d8b8 7645 if (!retval) {
5a16f3d3
RR
7646 cpuset_cpus_allowed(p, cpus_allowed);
7647 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
7648 /*
7649 * We must have raced with a concurrent cpuset
7650 * update. Just reset the cpus_allowed to the
7651 * cpuset's cpus_allowed
7652 */
5a16f3d3 7653 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
7654 goto again;
7655 }
7656 }
16303ab2 7657out_free_new_mask:
5a16f3d3
RR
7658 free_cpumask_var(new_mask);
7659out_free_cpus_allowed:
7660 free_cpumask_var(cpus_allowed);
7661out_put_task:
1da177e4 7662 put_task_struct(p);
1da177e4
LT
7663 return retval;
7664}
7665
7666static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 7667 struct cpumask *new_mask)
1da177e4 7668{
96f874e2
RR
7669 if (len < cpumask_size())
7670 cpumask_clear(new_mask);
7671 else if (len > cpumask_size())
7672 len = cpumask_size();
7673
1da177e4
LT
7674 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7675}
7676
7677/**
d1ccc66d 7678 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
7679 * @pid: pid of the process
7680 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7681 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
7682 *
7683 * Return: 0 on success. An error code otherwise.
1da177e4 7684 */
5add95d4
HC
7685SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7686 unsigned long __user *, user_mask_ptr)
1da177e4 7687{
5a16f3d3 7688 cpumask_var_t new_mask;
1da177e4
LT
7689 int retval;
7690
5a16f3d3
RR
7691 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7692 return -ENOMEM;
1da177e4 7693
5a16f3d3
RR
7694 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7695 if (retval == 0)
7696 retval = sched_setaffinity(pid, new_mask);
7697 free_cpumask_var(new_mask);
7698 return retval;
1da177e4
LT
7699}
7700
96f874e2 7701long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 7702{
36c8b586 7703 struct task_struct *p;
31605683 7704 unsigned long flags;
1da177e4 7705 int retval;
1da177e4 7706
23f5d142 7707 rcu_read_lock();
1da177e4
LT
7708
7709 retval = -ESRCH;
7710 p = find_process_by_pid(pid);
7711 if (!p)
7712 goto out_unlock;
7713
e7834f8f
DQ
7714 retval = security_task_getscheduler(p);
7715 if (retval)
7716 goto out_unlock;
7717
013fdb80 7718 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 7719 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 7720 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7721
7722out_unlock:
23f5d142 7723 rcu_read_unlock();
1da177e4 7724
9531b62f 7725 return retval;
1da177e4
LT
7726}
7727
7728/**
d1ccc66d 7729 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
7730 * @pid: pid of the process
7731 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 7732 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 7733 *
599b4840
ZW
7734 * Return: size of CPU mask copied to user_mask_ptr on success. An
7735 * error code otherwise.
1da177e4 7736 */
5add95d4
HC
7737SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7738 unsigned long __user *, user_mask_ptr)
1da177e4
LT
7739{
7740 int ret;
f17c8607 7741 cpumask_var_t mask;
1da177e4 7742
84fba5ec 7743 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
7744 return -EINVAL;
7745 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
7746 return -EINVAL;
7747
f17c8607
RR
7748 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7749 return -ENOMEM;
1da177e4 7750
f17c8607
RR
7751 ret = sched_getaffinity(pid, mask);
7752 if (ret == 0) {
4de373a1 7753 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
7754
7755 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
7756 ret = -EFAULT;
7757 else
cd3d8031 7758 ret = retlen;
f17c8607
RR
7759 }
7760 free_cpumask_var(mask);
1da177e4 7761
f17c8607 7762 return ret;
1da177e4
LT
7763}
7764
7d4dd4f1 7765static void do_sched_yield(void)
1da177e4 7766{
8a8c69c3
PZ
7767 struct rq_flags rf;
7768 struct rq *rq;
7769
246b3b33 7770 rq = this_rq_lock_irq(&rf);
1da177e4 7771
ae92882e 7772 schedstat_inc(rq->yld_count);
4530d7ab 7773 current->sched_class->yield_task(rq);
1da177e4 7774
8a8c69c3 7775 preempt_disable();
345a957f 7776 rq_unlock_irq(rq, &rf);
ba74c144 7777 sched_preempt_enable_no_resched();
1da177e4
LT
7778
7779 schedule();
7d4dd4f1 7780}
1da177e4 7781
59a74b15
MCC
7782/**
7783 * sys_sched_yield - yield the current processor to other threads.
7784 *
7785 * This function yields the current CPU to other tasks. If there are no
7786 * other threads running on this CPU then this function will return.
7787 *
7788 * Return: 0.
7789 */
7d4dd4f1
DB
7790SYSCALL_DEFINE0(sched_yield)
7791{
7792 do_sched_yield();
1da177e4
LT
7793 return 0;
7794}
7795
b965f1dd
PZI
7796#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7797int __sched __cond_resched(void)
1da177e4 7798{
fe32d3cd 7799 if (should_resched(0)) {
a18b5d01 7800 preempt_schedule_common();
1da177e4
LT
7801 return 1;
7802 }
b965f1dd 7803#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 7804 rcu_all_qs();
b965f1dd 7805#endif
1da177e4
LT
7806 return 0;
7807}
b965f1dd
PZI
7808EXPORT_SYMBOL(__cond_resched);
7809#endif
7810
7811#ifdef CONFIG_PREEMPT_DYNAMIC
7812DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 7813EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
7814
7815DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 7816EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 7817#endif
1da177e4
LT
7818
7819/*
613afbf8 7820 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
7821 * call schedule, and on return reacquire the lock.
7822 *
c1a280b6 7823 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
7824 * operations here to prevent schedule() from being called twice (once via
7825 * spin_unlock(), once by hand).
7826 */
613afbf8 7827int __cond_resched_lock(spinlock_t *lock)
1da177e4 7828{
fe32d3cd 7829 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7830 int ret = 0;
7831
f607c668
PZ
7832 lockdep_assert_held(lock);
7833
4a81e832 7834 if (spin_needbreak(lock) || resched) {
1da177e4 7835 spin_unlock(lock);
d86ee480 7836 if (resched)
a18b5d01 7837 preempt_schedule_common();
95c354fe
NP
7838 else
7839 cpu_relax();
6df3cecb 7840 ret = 1;
1da177e4 7841 spin_lock(lock);
1da177e4 7842 }
6df3cecb 7843 return ret;
1da177e4 7844}
613afbf8 7845EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7846
f3d4b4b1
BG
7847int __cond_resched_rwlock_read(rwlock_t *lock)
7848{
7849 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7850 int ret = 0;
7851
7852 lockdep_assert_held_read(lock);
7853
7854 if (rwlock_needbreak(lock) || resched) {
7855 read_unlock(lock);
7856 if (resched)
7857 preempt_schedule_common();
7858 else
7859 cpu_relax();
7860 ret = 1;
7861 read_lock(lock);
7862 }
7863 return ret;
7864}
7865EXPORT_SYMBOL(__cond_resched_rwlock_read);
7866
7867int __cond_resched_rwlock_write(rwlock_t *lock)
7868{
7869 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7870 int ret = 0;
7871
7872 lockdep_assert_held_write(lock);
7873
7874 if (rwlock_needbreak(lock) || resched) {
7875 write_unlock(lock);
7876 if (resched)
7877 preempt_schedule_common();
7878 else
7879 cpu_relax();
7880 ret = 1;
7881 write_lock(lock);
7882 }
7883 return ret;
7884}
7885EXPORT_SYMBOL(__cond_resched_rwlock_write);
7886
1da177e4
LT
7887/**
7888 * yield - yield the current processor to other threads.
7889 *
8e3fabfd
PZ
7890 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7891 *
7892 * The scheduler is at all times free to pick the calling task as the most
7893 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7894 * it, it's already broken.
8e3fabfd
PZ
7895 *
7896 * Typical broken usage is:
7897 *
7898 * while (!event)
d1ccc66d 7899 * yield();
8e3fabfd
PZ
7900 *
7901 * where one assumes that yield() will let 'the other' process run that will
7902 * make event true. If the current task is a SCHED_FIFO task that will never
7903 * happen. Never use yield() as a progress guarantee!!
7904 *
7905 * If you want to use yield() to wait for something, use wait_event().
7906 * If you want to use yield() to be 'nice' for others, use cond_resched().
7907 * If you still want to use yield(), do not!
1da177e4
LT
7908 */
7909void __sched yield(void)
7910{
7911 set_current_state(TASK_RUNNING);
7d4dd4f1 7912 do_sched_yield();
1da177e4 7913}
1da177e4
LT
7914EXPORT_SYMBOL(yield);
7915
d95f4122
MG
7916/**
7917 * yield_to - yield the current processor to another thread in
7918 * your thread group, or accelerate that thread toward the
7919 * processor it's on.
16addf95
RD
7920 * @p: target task
7921 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7922 *
7923 * It's the caller's job to ensure that the target task struct
7924 * can't go away on us before we can do any checks.
7925 *
e69f6186 7926 * Return:
7b270f60
PZ
7927 * true (>0) if we indeed boosted the target task.
7928 * false (0) if we failed to boost the target.
7929 * -ESRCH if there's no task to yield to.
d95f4122 7930 */
fa93384f 7931int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7932{
7933 struct task_struct *curr = current;
7934 struct rq *rq, *p_rq;
7935 unsigned long flags;
c3c18640 7936 int yielded = 0;
d95f4122
MG
7937
7938 local_irq_save(flags);
7939 rq = this_rq();
7940
7941again:
7942 p_rq = task_rq(p);
7b270f60
PZ
7943 /*
7944 * If we're the only runnable task on the rq and target rq also
7945 * has only one task, there's absolutely no point in yielding.
7946 */
7947 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7948 yielded = -ESRCH;
7949 goto out_irq;
7950 }
7951
d95f4122 7952 double_rq_lock(rq, p_rq);
39e24d8f 7953 if (task_rq(p) != p_rq) {
d95f4122
MG
7954 double_rq_unlock(rq, p_rq);
7955 goto again;
7956 }
7957
7958 if (!curr->sched_class->yield_to_task)
7b270f60 7959 goto out_unlock;
d95f4122
MG
7960
7961 if (curr->sched_class != p->sched_class)
7b270f60 7962 goto out_unlock;
d95f4122 7963
b03fbd4f 7964 if (task_running(p_rq, p) || !task_is_running(p))
7b270f60 7965 goto out_unlock;
d95f4122 7966
0900acf2 7967 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7968 if (yielded) {
ae92882e 7969 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7970 /*
7971 * Make p's CPU reschedule; pick_next_entity takes care of
7972 * fairness.
7973 */
7974 if (preempt && rq != p_rq)
8875125e 7975 resched_curr(p_rq);
6d1cafd8 7976 }
d95f4122 7977
7b270f60 7978out_unlock:
d95f4122 7979 double_rq_unlock(rq, p_rq);
7b270f60 7980out_irq:
d95f4122
MG
7981 local_irq_restore(flags);
7982
7b270f60 7983 if (yielded > 0)
d95f4122
MG
7984 schedule();
7985
7986 return yielded;
7987}
7988EXPORT_SYMBOL_GPL(yield_to);
7989
10ab5643
TH
7990int io_schedule_prepare(void)
7991{
7992 int old_iowait = current->in_iowait;
7993
7994 current->in_iowait = 1;
7995 blk_schedule_flush_plug(current);
7996
7997 return old_iowait;
7998}
7999
8000void io_schedule_finish(int token)
8001{
8002 current->in_iowait = token;
8003}
8004
1da177e4 8005/*
41a2d6cf 8006 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8007 * that process accounting knows that this is a task in IO wait state.
1da177e4 8008 */
1da177e4
LT
8009long __sched io_schedule_timeout(long timeout)
8010{
10ab5643 8011 int token;
1da177e4
LT
8012 long ret;
8013
10ab5643 8014 token = io_schedule_prepare();
1da177e4 8015 ret = schedule_timeout(timeout);
10ab5643 8016 io_schedule_finish(token);
9cff8ade 8017
1da177e4
LT
8018 return ret;
8019}
9cff8ade 8020EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8021
e3b929b0 8022void __sched io_schedule(void)
10ab5643
TH
8023{
8024 int token;
8025
8026 token = io_schedule_prepare();
8027 schedule();
8028 io_schedule_finish(token);
8029}
8030EXPORT_SYMBOL(io_schedule);
8031
1da177e4
LT
8032/**
8033 * sys_sched_get_priority_max - return maximum RT priority.
8034 * @policy: scheduling class.
8035 *
e69f6186
YB
8036 * Return: On success, this syscall returns the maximum
8037 * rt_priority that can be used by a given scheduling class.
8038 * On failure, a negative error code is returned.
1da177e4 8039 */
5add95d4 8040SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8041{
8042 int ret = -EINVAL;
8043
8044 switch (policy) {
8045 case SCHED_FIFO:
8046 case SCHED_RR:
ae18ad28 8047 ret = MAX_RT_PRIO-1;
1da177e4 8048 break;
aab03e05 8049 case SCHED_DEADLINE:
1da177e4 8050 case SCHED_NORMAL:
b0a9499c 8051 case SCHED_BATCH:
dd41f596 8052 case SCHED_IDLE:
1da177e4
LT
8053 ret = 0;
8054 break;
8055 }
8056 return ret;
8057}
8058
8059/**
8060 * sys_sched_get_priority_min - return minimum RT priority.
8061 * @policy: scheduling class.
8062 *
e69f6186
YB
8063 * Return: On success, this syscall returns the minimum
8064 * rt_priority that can be used by a given scheduling class.
8065 * On failure, a negative error code is returned.
1da177e4 8066 */
5add95d4 8067SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8068{
8069 int ret = -EINVAL;
8070
8071 switch (policy) {
8072 case SCHED_FIFO:
8073 case SCHED_RR:
8074 ret = 1;
8075 break;
aab03e05 8076 case SCHED_DEADLINE:
1da177e4 8077 case SCHED_NORMAL:
b0a9499c 8078 case SCHED_BATCH:
dd41f596 8079 case SCHED_IDLE:
1da177e4
LT
8080 ret = 0;
8081 }
8082 return ret;
8083}
8084
abca5fc5 8085static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8086{
36c8b586 8087 struct task_struct *p;
a4ec24b4 8088 unsigned int time_slice;
eb580751 8089 struct rq_flags rf;
dba091b9 8090 struct rq *rq;
3a5c359a 8091 int retval;
1da177e4
LT
8092
8093 if (pid < 0)
3a5c359a 8094 return -EINVAL;
1da177e4
LT
8095
8096 retval = -ESRCH;
1a551ae7 8097 rcu_read_lock();
1da177e4
LT
8098 p = find_process_by_pid(pid);
8099 if (!p)
8100 goto out_unlock;
8101
8102 retval = security_task_getscheduler(p);
8103 if (retval)
8104 goto out_unlock;
8105
eb580751 8106 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8107 time_slice = 0;
8108 if (p->sched_class->get_rr_interval)
8109 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8110 task_rq_unlock(rq, p, &rf);
a4ec24b4 8111
1a551ae7 8112 rcu_read_unlock();
abca5fc5
AV
8113 jiffies_to_timespec64(time_slice, t);
8114 return 0;
3a5c359a 8115
1da177e4 8116out_unlock:
1a551ae7 8117 rcu_read_unlock();
1da177e4
LT
8118 return retval;
8119}
8120
2064a5ab
RD
8121/**
8122 * sys_sched_rr_get_interval - return the default timeslice of a process.
8123 * @pid: pid of the process.
8124 * @interval: userspace pointer to the timeslice value.
8125 *
8126 * this syscall writes the default timeslice value of a given process
8127 * into the user-space timespec buffer. A value of '0' means infinity.
8128 *
8129 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8130 * an error code.
8131 */
abca5fc5 8132SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8133 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8134{
8135 struct timespec64 t;
8136 int retval = sched_rr_get_interval(pid, &t);
8137
8138 if (retval == 0)
8139 retval = put_timespec64(&t, interval);
8140
8141 return retval;
8142}
8143
474b9c77 8144#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8145SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8146 struct old_timespec32 __user *, interval)
abca5fc5
AV
8147{
8148 struct timespec64 t;
8149 int retval = sched_rr_get_interval(pid, &t);
8150
8151 if (retval == 0)
9afc5eee 8152 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8153 return retval;
8154}
8155#endif
8156
82a1fcb9 8157void sched_show_task(struct task_struct *p)
1da177e4 8158{
1da177e4 8159 unsigned long free = 0;
4e79752c 8160 int ppid;
c930b2c0 8161
38200502
TH
8162 if (!try_get_task_stack(p))
8163 return;
20435d84 8164
cc172ff3 8165 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8166
b03fbd4f 8167 if (task_is_running(p))
cc172ff3 8168 pr_cont(" running task ");
1da177e4 8169#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8170 free = stack_not_used(p);
1da177e4 8171#endif
a90e984c 8172 ppid = 0;
4e79752c 8173 rcu_read_lock();
a90e984c
ON
8174 if (pid_alive(p))
8175 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8176 rcu_read_unlock();
cc172ff3
LZ
8177 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8178 free, task_pid_nr(p), ppid,
aa47b7e0 8179 (unsigned long)task_thread_info(p)->flags);
1da177e4 8180
3d1cb205 8181 print_worker_info(KERN_INFO, p);
a8b62fd0 8182 print_stop_info(KERN_INFO, p);
9cb8f069 8183 show_stack(p, NULL, KERN_INFO);
38200502 8184 put_task_stack(p);
1da177e4 8185}
0032f4e8 8186EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8187
5d68cc95
PZ
8188static inline bool
8189state_filter_match(unsigned long state_filter, struct task_struct *p)
8190{
2f064a59
PZ
8191 unsigned int state = READ_ONCE(p->__state);
8192
5d68cc95
PZ
8193 /* no filter, everything matches */
8194 if (!state_filter)
8195 return true;
8196
8197 /* filter, but doesn't match */
2f064a59 8198 if (!(state & state_filter))
5d68cc95
PZ
8199 return false;
8200
8201 /*
8202 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8203 * TASK_KILLABLE).
8204 */
2f064a59 8205 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
5d68cc95
PZ
8206 return false;
8207
8208 return true;
8209}
8210
8211
2f064a59 8212void show_state_filter(unsigned int state_filter)
1da177e4 8213{
36c8b586 8214 struct task_struct *g, *p;
1da177e4 8215
510f5acc 8216 rcu_read_lock();
5d07f420 8217 for_each_process_thread(g, p) {
1da177e4
LT
8218 /*
8219 * reset the NMI-timeout, listing all files on a slow
25985edc 8220 * console might take a lot of time:
57675cb9
AR
8221 * Also, reset softlockup watchdogs on all CPUs, because
8222 * another CPU might be blocked waiting for us to process
8223 * an IPI.
1da177e4
LT
8224 */
8225 touch_nmi_watchdog();
57675cb9 8226 touch_all_softlockup_watchdogs();
5d68cc95 8227 if (state_filter_match(state_filter, p))
82a1fcb9 8228 sched_show_task(p);
5d07f420 8229 }
1da177e4 8230
dd41f596 8231#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8232 if (!state_filter)
8233 sysrq_sched_debug_show();
dd41f596 8234#endif
510f5acc 8235 rcu_read_unlock();
e59e2ae2
IM
8236 /*
8237 * Only show locks if all tasks are dumped:
8238 */
93335a21 8239 if (!state_filter)
e59e2ae2 8240 debug_show_all_locks();
1da177e4
LT
8241}
8242
f340c0d1
IM
8243/**
8244 * init_idle - set up an idle thread for a given CPU
8245 * @idle: task in question
d1ccc66d 8246 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8247 *
8248 * NOTE: this function does not set the idle thread's NEED_RESCHED
8249 * flag, to make booting more robust.
8250 */
f1a0a376 8251void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8252{
70b97a7f 8253 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8254 unsigned long flags;
8255
ff51ff84
PZ
8256 __sched_fork(0, idle);
8257
00b89fe0
VS
8258 /*
8259 * The idle task doesn't need the kthread struct to function, but it
8260 * is dressed up as a per-CPU kthread and thus needs to play the part
8261 * if we want to avoid special-casing it in code that deals with per-CPU
8262 * kthreads.
8263 */
8264 set_kthread_struct(idle);
8265
25834c73 8266 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8267 raw_spin_rq_lock(rq);
5cbd54ef 8268
2f064a59 8269 idle->__state = TASK_RUNNING;
dd41f596 8270 idle->se.exec_start = sched_clock();
00b89fe0
VS
8271 /*
8272 * PF_KTHREAD should already be set at this point; regardless, make it
8273 * look like a proper per-CPU kthread.
8274 */
8275 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8276 kthread_set_per_cpu(idle, cpu);
dd41f596 8277
d08b9f0c 8278 scs_task_reset(idle);
e1b77c92
MR
8279 kasan_unpoison_task_stack(idle);
8280
de9b8f5d
PZ
8281#ifdef CONFIG_SMP
8282 /*
b19a888c 8283 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8284 * in that case do_set_cpus_allowed() will not do the right thing.
8285 *
8286 * And since this is boot we can forgo the serialization.
8287 */
9cfc3e18 8288 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8289#endif
6506cf6c
PZ
8290 /*
8291 * We're having a chicken and egg problem, even though we are
d1ccc66d 8292 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8293 * lockdep check in task_group() will fail.
8294 *
8295 * Similar case to sched_fork(). / Alternatively we could
8296 * use task_rq_lock() here and obtain the other rq->lock.
8297 *
8298 * Silence PROVE_RCU
8299 */
8300 rcu_read_lock();
dd41f596 8301 __set_task_cpu(idle, cpu);
6506cf6c 8302 rcu_read_unlock();
1da177e4 8303
5311a98f
EB
8304 rq->idle = idle;
8305 rcu_assign_pointer(rq->curr, idle);
da0c1e65 8306 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 8307#ifdef CONFIG_SMP
3ca7a440 8308 idle->on_cpu = 1;
4866cde0 8309#endif
5cb9eaa3 8310 raw_spin_rq_unlock(rq);
25834c73 8311 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
8312
8313 /* Set the preempt count _outside_ the spinlocks! */
01028747 8314 init_idle_preempt_count(idle, cpu);
55cd5340 8315
dd41f596
IM
8316 /*
8317 * The idle tasks have their own, simple scheduling class:
8318 */
8319 idle->sched_class = &idle_sched_class;
868baf07 8320 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 8321 vtime_init_idle(idle, cpu);
de9b8f5d 8322#ifdef CONFIG_SMP
f1c6f1a7
CE
8323 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8324#endif
19978ca6
IM
8325}
8326
e1d4eeec
NP
8327#ifdef CONFIG_SMP
8328
f82f8042
JL
8329int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8330 const struct cpumask *trial)
8331{
06a76fe0 8332 int ret = 1;
f82f8042 8333
bb2bc55a
MG
8334 if (!cpumask_weight(cur))
8335 return ret;
8336
06a76fe0 8337 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
8338
8339 return ret;
8340}
8341
7f51412a
JL
8342int task_can_attach(struct task_struct *p,
8343 const struct cpumask *cs_cpus_allowed)
8344{
8345 int ret = 0;
8346
8347 /*
8348 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 8349 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
8350 * affinity and isolating such threads by their set of
8351 * allowed nodes is unnecessary. Thus, cpusets are not
8352 * applicable for such threads. This prevents checking for
8353 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 8354 * before cpus_mask may be changed.
7f51412a
JL
8355 */
8356 if (p->flags & PF_NO_SETAFFINITY) {
8357 ret = -EINVAL;
8358 goto out;
8359 }
8360
7f51412a 8361 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
8362 cs_cpus_allowed))
8363 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 8364
7f51412a
JL
8365out:
8366 return ret;
8367}
8368
f2cb1360 8369bool sched_smp_initialized __read_mostly;
e26fbffd 8370
e6628d5b
MG
8371#ifdef CONFIG_NUMA_BALANCING
8372/* Migrate current task p to target_cpu */
8373int migrate_task_to(struct task_struct *p, int target_cpu)
8374{
8375 struct migration_arg arg = { p, target_cpu };
8376 int curr_cpu = task_cpu(p);
8377
8378 if (curr_cpu == target_cpu)
8379 return 0;
8380
3bd37062 8381 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
8382 return -EINVAL;
8383
8384 /* TODO: This is not properly updating schedstats */
8385
286549dc 8386 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
8387 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8388}
0ec8aa00
PZ
8389
8390/*
8391 * Requeue a task on a given node and accurately track the number of NUMA
8392 * tasks on the runqueues
8393 */
8394void sched_setnuma(struct task_struct *p, int nid)
8395{
da0c1e65 8396 bool queued, running;
eb580751
PZ
8397 struct rq_flags rf;
8398 struct rq *rq;
0ec8aa00 8399
eb580751 8400 rq = task_rq_lock(p, &rf);
da0c1e65 8401 queued = task_on_rq_queued(p);
0ec8aa00
PZ
8402 running = task_current(rq, p);
8403
da0c1e65 8404 if (queued)
1de64443 8405 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 8406 if (running)
f3cd1c4e 8407 put_prev_task(rq, p);
0ec8aa00
PZ
8408
8409 p->numa_preferred_nid = nid;
0ec8aa00 8410
da0c1e65 8411 if (queued)
7134b3e9 8412 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 8413 if (running)
03b7fad1 8414 set_next_task(rq, p);
eb580751 8415 task_rq_unlock(rq, p, &rf);
0ec8aa00 8416}
5cc389bc 8417#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 8418
1da177e4 8419#ifdef CONFIG_HOTPLUG_CPU
054b9108 8420/*
d1ccc66d 8421 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 8422 * offline.
054b9108 8423 */
48c5ccae 8424void idle_task_exit(void)
1da177e4 8425{
48c5ccae 8426 struct mm_struct *mm = current->active_mm;
e76bd8d9 8427
48c5ccae 8428 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 8429 BUG_ON(current != this_rq()->idle);
e76bd8d9 8430
a53efe5f 8431 if (mm != &init_mm) {
252d2a41 8432 switch_mm(mm, &init_mm, current);
a53efe5f
MS
8433 finish_arch_post_lock_switch();
8434 }
bf2c59fc
PZ
8435
8436 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
8437}
8438
2558aacf 8439static int __balance_push_cpu_stop(void *arg)
1da177e4 8440{
2558aacf
PZ
8441 struct task_struct *p = arg;
8442 struct rq *rq = this_rq();
8443 struct rq_flags rf;
8444 int cpu;
1da177e4 8445
2558aacf
PZ
8446 raw_spin_lock_irq(&p->pi_lock);
8447 rq_lock(rq, &rf);
3f1d2a31 8448
2558aacf
PZ
8449 update_rq_clock(rq);
8450
8451 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8452 cpu = select_fallback_rq(rq->cpu, p);
8453 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 8454 }
3f1d2a31 8455
2558aacf
PZ
8456 rq_unlock(rq, &rf);
8457 raw_spin_unlock_irq(&p->pi_lock);
8458
8459 put_task_struct(p);
8460
8461 return 0;
10e7071b 8462}
3f1d2a31 8463
2558aacf
PZ
8464static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8465
48f24c4d 8466/*
2558aacf 8467 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
8468 *
8469 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8470 * effective when the hotplug motion is down.
1da177e4 8471 */
2558aacf 8472static void balance_push(struct rq *rq)
1da177e4 8473{
2558aacf
PZ
8474 struct task_struct *push_task = rq->curr;
8475
5cb9eaa3 8476 lockdep_assert_rq_held(rq);
2558aacf 8477 SCHED_WARN_ON(rq->cpu != smp_processor_id());
b5c44773 8478
ae792702
PZ
8479 /*
8480 * Ensure the thing is persistent until balance_push_set(.on = false);
8481 */
8482 rq->balance_callback = &balance_push_callback;
1da177e4 8483
b5c44773
PZ
8484 /*
8485 * Only active while going offline.
8486 */
8487 if (!cpu_dying(rq->cpu))
8488 return;
8489
1da177e4 8490 /*
2558aacf
PZ
8491 * Both the cpu-hotplug and stop task are in this case and are
8492 * required to complete the hotplug process.
1da177e4 8493 */
00b89fe0 8494 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
8495 is_migration_disabled(push_task)) {
8496
f2469a1f
TG
8497 /*
8498 * If this is the idle task on the outgoing CPU try to wake
8499 * up the hotplug control thread which might wait for the
8500 * last task to vanish. The rcuwait_active() check is
8501 * accurate here because the waiter is pinned on this CPU
8502 * and can't obviously be running in parallel.
3015ef4b
TG
8503 *
8504 * On RT kernels this also has to check whether there are
8505 * pinned and scheduled out tasks on the runqueue. They
8506 * need to leave the migrate disabled section first.
f2469a1f 8507 */
3015ef4b
TG
8508 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8509 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 8510 raw_spin_rq_unlock(rq);
f2469a1f 8511 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 8512 raw_spin_rq_lock(rq);
f2469a1f 8513 }
2558aacf 8514 return;
f2469a1f 8515 }
48f24c4d 8516
2558aacf 8517 get_task_struct(push_task);
77bd3970 8518 /*
2558aacf
PZ
8519 * Temporarily drop rq->lock such that we can wake-up the stop task.
8520 * Both preemption and IRQs are still disabled.
77bd3970 8521 */
5cb9eaa3 8522 raw_spin_rq_unlock(rq);
2558aacf
PZ
8523 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8524 this_cpu_ptr(&push_work));
8525 /*
8526 * At this point need_resched() is true and we'll take the loop in
8527 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 8528 * which kthread_is_per_cpu() and will push this task away.
2558aacf 8529 */
5cb9eaa3 8530 raw_spin_rq_lock(rq);
2558aacf 8531}
77bd3970 8532
2558aacf
PZ
8533static void balance_push_set(int cpu, bool on)
8534{
8535 struct rq *rq = cpu_rq(cpu);
8536 struct rq_flags rf;
48c5ccae 8537
2558aacf 8538 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
8539 if (on) {
8540 WARN_ON_ONCE(rq->balance_callback);
ae792702 8541 rq->balance_callback = &balance_push_callback;
22f667c9 8542 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 8543 rq->balance_callback = NULL;
22f667c9 8544 }
2558aacf
PZ
8545 rq_unlock_irqrestore(rq, &rf);
8546}
e692ab53 8547
f2469a1f
TG
8548/*
8549 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8550 * inactive. All tasks which are not per CPU kernel threads are either
8551 * pushed off this CPU now via balance_push() or placed on a different CPU
8552 * during wakeup. Wait until the CPU is quiescent.
8553 */
8554static void balance_hotplug_wait(void)
8555{
8556 struct rq *rq = this_rq();
5473e0cc 8557
3015ef4b
TG
8558 rcuwait_wait_event(&rq->hotplug_wait,
8559 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
8560 TASK_UNINTERRUPTIBLE);
8561}
5473e0cc 8562
2558aacf 8563#else
dce48a84 8564
2558aacf
PZ
8565static inline void balance_push(struct rq *rq)
8566{
dce48a84 8567}
dce48a84 8568
2558aacf
PZ
8569static inline void balance_push_set(int cpu, bool on)
8570{
8571}
8572
f2469a1f
TG
8573static inline void balance_hotplug_wait(void)
8574{
dce48a84 8575}
f2469a1f 8576
1da177e4
LT
8577#endif /* CONFIG_HOTPLUG_CPU */
8578
f2cb1360 8579void set_rq_online(struct rq *rq)
1f11eb6a
GH
8580{
8581 if (!rq->online) {
8582 const struct sched_class *class;
8583
c6c4927b 8584 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8585 rq->online = 1;
8586
8587 for_each_class(class) {
8588 if (class->rq_online)
8589 class->rq_online(rq);
8590 }
8591 }
8592}
8593
f2cb1360 8594void set_rq_offline(struct rq *rq)
1f11eb6a
GH
8595{
8596 if (rq->online) {
8597 const struct sched_class *class;
8598
8599 for_each_class(class) {
8600 if (class->rq_offline)
8601 class->rq_offline(rq);
8602 }
8603
c6c4927b 8604 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
8605 rq->online = 0;
8606 }
8607}
8608
d1ccc66d
IM
8609/*
8610 * used to mark begin/end of suspend/resume:
8611 */
8612static int num_cpus_frozen;
d35be8ba 8613
1da177e4 8614/*
3a101d05
TH
8615 * Update cpusets according to cpu_active mask. If cpusets are
8616 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8617 * around partition_sched_domains().
d35be8ba
SB
8618 *
8619 * If we come here as part of a suspend/resume, don't touch cpusets because we
8620 * want to restore it back to its original state upon resume anyway.
1da177e4 8621 */
40190a78 8622static void cpuset_cpu_active(void)
e761b772 8623{
40190a78 8624 if (cpuhp_tasks_frozen) {
d35be8ba
SB
8625 /*
8626 * num_cpus_frozen tracks how many CPUs are involved in suspend
8627 * resume sequence. As long as this is not the last online
8628 * operation in the resume sequence, just build a single sched
8629 * domain, ignoring cpusets.
8630 */
50e76632
PZ
8631 partition_sched_domains(1, NULL, NULL);
8632 if (--num_cpus_frozen)
135fb3e1 8633 return;
d35be8ba
SB
8634 /*
8635 * This is the last CPU online operation. So fall through and
8636 * restore the original sched domains by considering the
8637 * cpuset configurations.
8638 */
50e76632 8639 cpuset_force_rebuild();
3a101d05 8640 }
30e03acd 8641 cpuset_update_active_cpus();
3a101d05 8642}
e761b772 8643
40190a78 8644static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 8645{
40190a78 8646 if (!cpuhp_tasks_frozen) {
06a76fe0 8647 if (dl_cpu_busy(cpu))
135fb3e1 8648 return -EBUSY;
30e03acd 8649 cpuset_update_active_cpus();
135fb3e1 8650 } else {
d35be8ba
SB
8651 num_cpus_frozen++;
8652 partition_sched_domains(1, NULL, NULL);
e761b772 8653 }
135fb3e1 8654 return 0;
e761b772 8655}
e761b772 8656
40190a78 8657int sched_cpu_activate(unsigned int cpu)
135fb3e1 8658{
7d976699 8659 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8660 struct rq_flags rf;
7d976699 8661
22f667c9 8662 /*
b5c44773
PZ
8663 * Clear the balance_push callback and prepare to schedule
8664 * regular tasks.
22f667c9 8665 */
2558aacf
PZ
8666 balance_push_set(cpu, false);
8667
ba2591a5
PZ
8668#ifdef CONFIG_SCHED_SMT
8669 /*
c5511d03 8670 * When going up, increment the number of cores with SMT present.
ba2591a5 8671 */
c5511d03
PZI
8672 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8673 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 8674#endif
40190a78 8675 set_cpu_active(cpu, true);
135fb3e1 8676
40190a78 8677 if (sched_smp_initialized) {
135fb3e1 8678 sched_domains_numa_masks_set(cpu);
40190a78 8679 cpuset_cpu_active();
e761b772 8680 }
7d976699
TG
8681
8682 /*
8683 * Put the rq online, if not already. This happens:
8684 *
8685 * 1) In the early boot process, because we build the real domains
d1ccc66d 8686 * after all CPUs have been brought up.
7d976699
TG
8687 *
8688 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8689 * domains.
8690 */
8a8c69c3 8691 rq_lock_irqsave(rq, &rf);
7d976699
TG
8692 if (rq->rd) {
8693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8694 set_rq_online(rq);
8695 }
8a8c69c3 8696 rq_unlock_irqrestore(rq, &rf);
7d976699 8697
40190a78 8698 return 0;
135fb3e1
TG
8699}
8700
40190a78 8701int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 8702{
120455c5
PZ
8703 struct rq *rq = cpu_rq(cpu);
8704 struct rq_flags rf;
135fb3e1
TG
8705 int ret;
8706
e0b257c3
AMB
8707 /*
8708 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8709 * load balancing when not active
8710 */
8711 nohz_balance_exit_idle(rq);
8712
40190a78 8713 set_cpu_active(cpu, false);
741ba80f
PZ
8714
8715 /*
8716 * From this point forward, this CPU will refuse to run any task that
8717 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8718 * push those tasks away until this gets cleared, see
8719 * sched_cpu_dying().
8720 */
975707f2
PZ
8721 balance_push_set(cpu, true);
8722
b2454caa 8723 /*
975707f2
PZ
8724 * We've cleared cpu_active_mask / set balance_push, wait for all
8725 * preempt-disabled and RCU users of this state to go away such that
8726 * all new such users will observe it.
b2454caa 8727 *
5ba2ffba
PZ
8728 * Specifically, we rely on ttwu to no longer target this CPU, see
8729 * ttwu_queue_cond() and is_cpu_allowed().
8730 *
b2454caa
PZ
8731 * Do sync before park smpboot threads to take care the rcu boost case.
8732 */
309ba859 8733 synchronize_rcu();
40190a78 8734
120455c5
PZ
8735 rq_lock_irqsave(rq, &rf);
8736 if (rq->rd) {
8737 update_rq_clock(rq);
8738 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8739 set_rq_offline(rq);
8740 }
8741 rq_unlock_irqrestore(rq, &rf);
8742
c5511d03
PZI
8743#ifdef CONFIG_SCHED_SMT
8744 /*
8745 * When going down, decrement the number of cores with SMT present.
8746 */
8747 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8748 static_branch_dec_cpuslocked(&sched_smt_present);
8749#endif
8750
40190a78
TG
8751 if (!sched_smp_initialized)
8752 return 0;
8753
8754 ret = cpuset_cpu_inactive(cpu);
8755 if (ret) {
2558aacf 8756 balance_push_set(cpu, false);
40190a78
TG
8757 set_cpu_active(cpu, true);
8758 return ret;
135fb3e1 8759 }
40190a78
TG
8760 sched_domains_numa_masks_clear(cpu);
8761 return 0;
135fb3e1
TG
8762}
8763
94baf7a5
TG
8764static void sched_rq_cpu_starting(unsigned int cpu)
8765{
8766 struct rq *rq = cpu_rq(cpu);
8767
8768 rq->calc_load_update = calc_load_update;
94baf7a5
TG
8769 update_max_interval();
8770}
8771
135fb3e1
TG
8772int sched_cpu_starting(unsigned int cpu)
8773{
9edeaea1 8774 sched_core_cpu_starting(cpu);
94baf7a5 8775 sched_rq_cpu_starting(cpu);
d84b3131 8776 sched_tick_start(cpu);
135fb3e1 8777 return 0;
e761b772 8778}
e761b772 8779
f2785ddb 8780#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
8781
8782/*
8783 * Invoked immediately before the stopper thread is invoked to bring the
8784 * CPU down completely. At this point all per CPU kthreads except the
8785 * hotplug thread (current) and the stopper thread (inactive) have been
8786 * either parked or have been unbound from the outgoing CPU. Ensure that
8787 * any of those which might be on the way out are gone.
8788 *
8789 * If after this point a bound task is being woken on this CPU then the
8790 * responsible hotplug callback has failed to do it's job.
8791 * sched_cpu_dying() will catch it with the appropriate fireworks.
8792 */
8793int sched_cpu_wait_empty(unsigned int cpu)
8794{
8795 balance_hotplug_wait();
8796 return 0;
8797}
8798
8799/*
8800 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8801 * might have. Called from the CPU stopper task after ensuring that the
8802 * stopper is the last running task on the CPU, so nr_active count is
8803 * stable. We need to take the teardown thread which is calling this into
8804 * account, so we hand in adjust = 1 to the load calculation.
8805 *
8806 * Also see the comment "Global load-average calculations".
8807 */
8808static void calc_load_migrate(struct rq *rq)
8809{
8810 long delta = calc_load_fold_active(rq, 1);
8811
8812 if (delta)
8813 atomic_long_add(delta, &calc_load_tasks);
8814}
8815
36c6e17b
VS
8816static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8817{
8818 struct task_struct *g, *p;
8819 int cpu = cpu_of(rq);
8820
5cb9eaa3 8821 lockdep_assert_rq_held(rq);
36c6e17b
VS
8822
8823 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8824 for_each_process_thread(g, p) {
8825 if (task_cpu(p) != cpu)
8826 continue;
8827
8828 if (!task_on_rq_queued(p))
8829 continue;
8830
8831 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8832 }
8833}
8834
f2785ddb
TG
8835int sched_cpu_dying(unsigned int cpu)
8836{
8837 struct rq *rq = cpu_rq(cpu);
8a8c69c3 8838 struct rq_flags rf;
f2785ddb
TG
8839
8840 /* Handle pending wakeups and then migrate everything off */
d84b3131 8841 sched_tick_stop(cpu);
8a8c69c3
PZ
8842
8843 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
8844 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8845 WARN(true, "Dying CPU not properly vacated!");
8846 dump_rq_tasks(rq, KERN_WARNING);
8847 }
8a8c69c3
PZ
8848 rq_unlock_irqrestore(rq, &rf);
8849
f2785ddb
TG
8850 calc_load_migrate(rq);
8851 update_max_interval();
e5ef27d0 8852 hrtick_clear(rq);
f2785ddb
TG
8853 return 0;
8854}
8855#endif
8856
1da177e4
LT
8857void __init sched_init_smp(void)
8858{
cb83b629
PZ
8859 sched_init_numa();
8860
6acce3ef
PZ
8861 /*
8862 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8863 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8864 * happen.
6acce3ef 8865 */
712555ee 8866 mutex_lock(&sched_domains_mutex);
8d5dc512 8867 sched_init_domains(cpu_active_mask);
712555ee 8868 mutex_unlock(&sched_domains_mutex);
e761b772 8869
5c1e1767 8870 /* Move init over to a non-isolated CPU */
edb93821 8871 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8872 BUG();
15faafc6 8873 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 8874 sched_init_granularity();
4212823f 8875
0e3900e6 8876 init_sched_rt_class();
1baca4ce 8877 init_sched_dl_class();
1b568f0a 8878
e26fbffd 8879 sched_smp_initialized = true;
1da177e4 8880}
e26fbffd
TG
8881
8882static int __init migration_init(void)
8883{
77a5352b 8884 sched_cpu_starting(smp_processor_id());
e26fbffd 8885 return 0;
1da177e4 8886}
e26fbffd
TG
8887early_initcall(migration_init);
8888
1da177e4
LT
8889#else
8890void __init sched_init_smp(void)
8891{
19978ca6 8892 sched_init_granularity();
1da177e4
LT
8893}
8894#endif /* CONFIG_SMP */
8895
8896int in_sched_functions(unsigned long addr)
8897{
1da177e4
LT
8898 return in_lock_functions(addr) ||
8899 (addr >= (unsigned long)__sched_text_start
8900 && addr < (unsigned long)__sched_text_end);
8901}
8902
029632fb 8903#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8904/*
8905 * Default task group.
8906 * Every task in system belongs to this group at bootup.
8907 */
029632fb 8908struct task_group root_task_group;
35cf4e50 8909LIST_HEAD(task_groups);
b0367629
WL
8910
8911/* Cacheline aligned slab cache for task_group */
8912static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8913#endif
6f505b16 8914
e6252c3e 8915DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8916DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8917
1da177e4
LT
8918void __init sched_init(void)
8919{
a1dc0446 8920 unsigned long ptr = 0;
55627e3c 8921 int i;
434d53b0 8922
c3a340f7
SRV
8923 /* Make sure the linker didn't screw up */
8924 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8925 &fair_sched_class + 1 != &rt_sched_class ||
8926 &rt_sched_class + 1 != &dl_sched_class);
8927#ifdef CONFIG_SMP
8928 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8929#endif
8930
5822a454 8931 wait_bit_init();
9dcb8b68 8932
434d53b0 8933#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8934 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8935#endif
8936#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8937 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8938#endif
a1dc0446
QC
8939 if (ptr) {
8940 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8941
8942#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8943 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8944 ptr += nr_cpu_ids * sizeof(void **);
8945
07e06b01 8946 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8947 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8948
b1d1779e
WY
8949 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8950 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8951#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8952#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8953 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8954 ptr += nr_cpu_ids * sizeof(void **);
8955
07e06b01 8956 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8957 ptr += nr_cpu_ids * sizeof(void **);
8958
6d6bc0ad 8959#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8960 }
df7c8e84 8961#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8962 for_each_possible_cpu(i) {
8963 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8964 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8965 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8966 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8967 }
b74e6278 8968#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8969
d1ccc66d
IM
8970 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8971 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8972
57d885fe
GH
8973#ifdef CONFIG_SMP
8974 init_defrootdomain();
8975#endif
8976
d0b27fa7 8977#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8978 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8979 global_rt_period(), global_rt_runtime());
6d6bc0ad 8980#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8981
7c941438 8982#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8983 task_group_cache = KMEM_CACHE(task_group, 0);
8984
07e06b01
YZ
8985 list_add(&root_task_group.list, &task_groups);
8986 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8987 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8988 autogroup_init(&init_task);
7c941438 8989#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8990
0a945022 8991 for_each_possible_cpu(i) {
70b97a7f 8992 struct rq *rq;
1da177e4
LT
8993
8994 rq = cpu_rq(i);
5cb9eaa3 8995 raw_spin_lock_init(&rq->__lock);
7897986b 8996 rq->nr_running = 0;
dce48a84
TG
8997 rq->calc_load_active = 0;
8998 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8999 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9000 init_rt_rq(&rq->rt);
9001 init_dl_rq(&rq->dl);
dd41f596 9002#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9003 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9004 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9005 /*
d1ccc66d 9006 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9007 *
9008 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9009 * gets 100% of the CPU resources in the system. This overall
9010 * system CPU resource is divided among the tasks of
07e06b01 9011 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9012 * based on each entity's (task or task-group's) weight
9013 * (se->load.weight).
9014 *
07e06b01 9015 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9016 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9017 * then A0's share of the CPU resource is:
354d60c2 9018 *
0d905bca 9019 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9020 *
07e06b01
YZ
9021 * We achieve this by letting root_task_group's tasks sit
9022 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9023 */
07e06b01 9024 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9025#endif /* CONFIG_FAIR_GROUP_SCHED */
9026
9027 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9028#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9029 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9030#endif
1da177e4 9031#ifdef CONFIG_SMP
41c7ce9a 9032 rq->sd = NULL;
57d885fe 9033 rq->rd = NULL;
ca6d75e6 9034 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9035 rq->balance_callback = &balance_push_callback;
1da177e4 9036 rq->active_balance = 0;
dd41f596 9037 rq->next_balance = jiffies;
1da177e4 9038 rq->push_cpu = 0;
0a2966b4 9039 rq->cpu = i;
1f11eb6a 9040 rq->online = 0;
eae0c9df
MG
9041 rq->idle_stamp = 0;
9042 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9043 rq->wake_stamp = jiffies;
9044 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9045 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9046
9047 INIT_LIST_HEAD(&rq->cfs_tasks);
9048
dc938520 9049 rq_attach_root(rq, &def_root_domain);
3451d024 9050#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9051 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9052 atomic_set(&rq->nohz_flags, 0);
90b5363a 9053
545b8c8d 9054 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9055#endif
f2469a1f
TG
9056#ifdef CONFIG_HOTPLUG_CPU
9057 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9058#endif
9fd81dd5 9059#endif /* CONFIG_SMP */
77a021be 9060 hrtick_rq_init(rq);
1da177e4 9061 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9062
9063#ifdef CONFIG_SCHED_CORE
9064 rq->core = NULL;
539f6512 9065 rq->core_pick = NULL;
9edeaea1 9066 rq->core_enabled = 0;
539f6512
PZ
9067 rq->core_tree = RB_ROOT;
9068 rq->core_forceidle = false;
9069
9070 rq->core_cookie = 0UL;
9edeaea1 9071#endif
1da177e4
LT
9072 }
9073
9059393e 9074 set_load_weight(&init_task, false);
b50f60ce 9075
1da177e4
LT
9076 /*
9077 * The boot idle thread does lazy MMU switching as well:
9078 */
f1f10076 9079 mmgrab(&init_mm);
1da177e4
LT
9080 enter_lazy_tlb(&init_mm, current);
9081
9082 /*
9083 * Make us the idle thread. Technically, schedule() should not be
9084 * called from this thread, however somewhere below it might be,
9085 * but because we are the idle thread, we just pick up running again
9086 * when this runqueue becomes "idle".
9087 */
9088 init_idle(current, smp_processor_id());
dce48a84
TG
9089
9090 calc_load_update = jiffies + LOAD_FREQ;
9091
bf4d83f6 9092#ifdef CONFIG_SMP
29d5e047 9093 idle_thread_set_boot_cpu();
b5c44773 9094 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9095#endif
9096 init_sched_fair_class();
6a7b3dc3 9097
eb414681
JW
9098 psi_init();
9099
69842cba
PB
9100 init_uclamp();
9101
6892b75e 9102 scheduler_running = 1;
1da177e4
LT
9103}
9104
d902db1e 9105#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
9106static inline int preempt_count_equals(int preempt_offset)
9107{
da7142e2 9108 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 9109
4ba8216c 9110 return (nested == preempt_offset);
e4aafea2
FW
9111}
9112
d894837f 9113void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9114{
d6c23bb3 9115 unsigned int state = get_current_state();
8eb23b9f
PZ
9116 /*
9117 * Blocking primitives will set (and therefore destroy) current->state,
9118 * since we will exit with TASK_RUNNING make sure we enter with it,
9119 * otherwise we will destroy state.
9120 */
d6c23bb3 9121 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9122 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9123 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9124 (void *)current->task_state_change,
00845eb9 9125 (void *)current->task_state_change);
8eb23b9f 9126
3427445a
PZ
9127 ___might_sleep(file, line, preempt_offset);
9128}
9129EXPORT_SYMBOL(__might_sleep);
9130
9131void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 9132{
d1ccc66d
IM
9133 /* Ratelimiting timestamp: */
9134 static unsigned long prev_jiffy;
9135
d1c6d149 9136 unsigned long preempt_disable_ip;
1da177e4 9137
d1ccc66d
IM
9138 /* WARN_ON_ONCE() by default, no rate limit required: */
9139 rcu_sleep_check();
9140
db273be2 9141 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 9142 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9143 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9144 oops_in_progress)
aef745fc 9145 return;
1c3c5eab 9146
aef745fc
IM
9147 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9148 return;
9149 prev_jiffy = jiffies;
9150
d1ccc66d 9151 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9152 preempt_disable_ip = get_preempt_disable_ip(current);
9153
3df0fc5b
PZ
9154 printk(KERN_ERR
9155 "BUG: sleeping function called from invalid context at %s:%d\n",
9156 file, line);
9157 printk(KERN_ERR
312364f3
DV
9158 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9159 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 9160 current->pid, current->comm);
aef745fc 9161
a8b686b3
ES
9162 if (task_stack_end_corrupted(current))
9163 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9164
aef745fc
IM
9165 debug_show_held_locks(current);
9166 if (irqs_disabled())
9167 print_irqtrace_events(current);
d1c6d149
VN
9168 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9169 && !preempt_count_equals(preempt_offset)) {
8f47b187 9170 pr_err("Preemption disabled at:");
2062a4e8 9171 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 9172 }
aef745fc 9173 dump_stack();
f0b22e39 9174 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9175}
3427445a 9176EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
9177
9178void __cant_sleep(const char *file, int line, int preempt_offset)
9179{
9180 static unsigned long prev_jiffy;
9181
9182 if (irqs_disabled())
9183 return;
9184
9185 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9186 return;
9187
9188 if (preempt_count() > preempt_offset)
9189 return;
9190
9191 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9192 return;
9193 prev_jiffy = jiffies;
9194
9195 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9196 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9197 in_atomic(), irqs_disabled(),
9198 current->pid, current->comm);
9199
9200 debug_show_held_locks(current);
9201 dump_stack();
9202 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9203}
9204EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9205
9206#ifdef CONFIG_SMP
9207void __cant_migrate(const char *file, int line)
9208{
9209 static unsigned long prev_jiffy;
9210
9211 if (irqs_disabled())
9212 return;
9213
9214 if (is_migration_disabled(current))
9215 return;
9216
9217 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9218 return;
9219
9220 if (preempt_count() > 0)
9221 return;
9222
9223 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9224 return;
9225 prev_jiffy = jiffies;
9226
9227 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9228 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9229 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9230 current->pid, current->comm);
9231
9232 debug_show_held_locks(current);
9233 dump_stack();
9234 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9235}
9236EXPORT_SYMBOL_GPL(__cant_migrate);
9237#endif
1da177e4
LT
9238#endif
9239
9240#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9241void normalize_rt_tasks(void)
3a5e4dc1 9242{
dbc7f069 9243 struct task_struct *g, *p;
d50dde5a
DF
9244 struct sched_attr attr = {
9245 .sched_policy = SCHED_NORMAL,
9246 };
1da177e4 9247
3472eaa1 9248 read_lock(&tasklist_lock);
5d07f420 9249 for_each_process_thread(g, p) {
178be793
IM
9250 /*
9251 * Only normalize user tasks:
9252 */
3472eaa1 9253 if (p->flags & PF_KTHREAD)
178be793
IM
9254 continue;
9255
4fa8d299
JP
9256 p->se.exec_start = 0;
9257 schedstat_set(p->se.statistics.wait_start, 0);
9258 schedstat_set(p->se.statistics.sleep_start, 0);
9259 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 9260
aab03e05 9261 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9262 /*
9263 * Renice negative nice level userspace
9264 * tasks back to 0:
9265 */
3472eaa1 9266 if (task_nice(p) < 0)
dd41f596 9267 set_user_nice(p, 0);
1da177e4 9268 continue;
dd41f596 9269 }
1da177e4 9270
dbc7f069 9271 __sched_setscheduler(p, &attr, false, false);
5d07f420 9272 }
3472eaa1 9273 read_unlock(&tasklist_lock);
1da177e4
LT
9274}
9275
9276#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 9277
67fc4e0c 9278#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 9279/*
67fc4e0c 9280 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
9281 *
9282 * They can only be called when the whole system has been
9283 * stopped - every CPU needs to be quiescent, and no scheduling
9284 * activity can take place. Using them for anything else would
9285 * be a serious bug, and as a result, they aren't even visible
9286 * under any other configuration.
9287 */
9288
9289/**
d1ccc66d 9290 * curr_task - return the current task for a given CPU.
1df5c10a
LT
9291 * @cpu: the processor in question.
9292 *
9293 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
9294 *
9295 * Return: The current task for @cpu.
1df5c10a 9296 */
36c8b586 9297struct task_struct *curr_task(int cpu)
1df5c10a
LT
9298{
9299 return cpu_curr(cpu);
9300}
9301
67fc4e0c
JW
9302#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9303
9304#ifdef CONFIG_IA64
1df5c10a 9305/**
5feeb783 9306 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
9307 * @cpu: the processor in question.
9308 * @p: the task pointer to set.
9309 *
9310 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 9311 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 9312 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
9313 * must be called with all CPU's synchronized, and interrupts disabled, the
9314 * and caller must save the original value of the current task (see
9315 * curr_task() above) and restore that value before reenabling interrupts and
9316 * re-starting the system.
9317 *
9318 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9319 */
a458ae2e 9320void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9321{
9322 cpu_curr(cpu) = p;
9323}
9324
9325#endif
29f59db3 9326
7c941438 9327#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
9328/* task_group_lock serializes the addition/removal of task groups */
9329static DEFINE_SPINLOCK(task_group_lock);
9330
2480c093
PB
9331static inline void alloc_uclamp_sched_group(struct task_group *tg,
9332 struct task_group *parent)
9333{
9334#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 9335 enum uclamp_id clamp_id;
2480c093
PB
9336
9337 for_each_clamp_id(clamp_id) {
9338 uclamp_se_set(&tg->uclamp_req[clamp_id],
9339 uclamp_none(clamp_id), false);
0b60ba2d 9340 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
9341 }
9342#endif
9343}
9344
2f5177f0 9345static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
9346{
9347 free_fair_sched_group(tg);
9348 free_rt_sched_group(tg);
e9aa1dd1 9349 autogroup_free(tg);
b0367629 9350 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
9351}
9352
9353/* allocate runqueue etc for a new task group */
ec7dc8ac 9354struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9355{
9356 struct task_group *tg;
bccbe08a 9357
b0367629 9358 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
9359 if (!tg)
9360 return ERR_PTR(-ENOMEM);
9361
ec7dc8ac 9362 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9363 goto err;
9364
ec7dc8ac 9365 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9366 goto err;
9367
2480c093
PB
9368 alloc_uclamp_sched_group(tg, parent);
9369
ace783b9
LZ
9370 return tg;
9371
9372err:
2f5177f0 9373 sched_free_group(tg);
ace783b9
LZ
9374 return ERR_PTR(-ENOMEM);
9375}
9376
9377void sched_online_group(struct task_group *tg, struct task_group *parent)
9378{
9379 unsigned long flags;
9380
8ed36996 9381 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9382 list_add_rcu(&tg->list, &task_groups);
f473aa5e 9383
d1ccc66d
IM
9384 /* Root should already exist: */
9385 WARN_ON(!parent);
f473aa5e
PZ
9386
9387 tg->parent = parent;
f473aa5e 9388 INIT_LIST_HEAD(&tg->children);
09f2724a 9389 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9390 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
9391
9392 online_fair_sched_group(tg);
29f59db3
SV
9393}
9394
9b5b7751 9395/* rcu callback to free various structures associated with a task group */
2f5177f0 9396static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 9397{
d1ccc66d 9398 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 9399 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9400}
9401
4cf86d77 9402void sched_destroy_group(struct task_group *tg)
ace783b9 9403{
d1ccc66d 9404 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 9405 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
9406}
9407
9408void sched_offline_group(struct task_group *tg)
29f59db3 9409{
8ed36996 9410 unsigned long flags;
29f59db3 9411
d1ccc66d 9412 /* End participation in shares distribution: */
6fe1f348 9413 unregister_fair_sched_group(tg);
3d4b47b4
PZ
9414
9415 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 9416 list_del_rcu(&tg->list);
f473aa5e 9417 list_del_rcu(&tg->siblings);
8ed36996 9418 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
9419}
9420
ea86cb4b 9421static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 9422{
8323f26c 9423 struct task_group *tg;
29f59db3 9424
f7b8a47d
KT
9425 /*
9426 * All callers are synchronized by task_rq_lock(); we do not use RCU
9427 * which is pointless here. Thus, we pass "true" to task_css_check()
9428 * to prevent lockdep warnings.
9429 */
9430 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
9431 struct task_group, css);
9432 tg = autogroup_task_group(tsk, tg);
9433 tsk->sched_task_group = tg;
9434
810b3817 9435#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9436 if (tsk->sched_class->task_change_group)
9437 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 9438 else
810b3817 9439#endif
b2b5ce02 9440 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
9441}
9442
9443/*
9444 * Change task's runqueue when it moves between groups.
9445 *
9446 * The caller of this function should have put the task in its new group by
9447 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9448 * its new group.
9449 */
9450void sched_move_task(struct task_struct *tsk)
9451{
7a57f32a
PZ
9452 int queued, running, queue_flags =
9453 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
9454 struct rq_flags rf;
9455 struct rq *rq;
9456
9457 rq = task_rq_lock(tsk, &rf);
1b1d6225 9458 update_rq_clock(rq);
ea86cb4b
VG
9459
9460 running = task_current(rq, tsk);
9461 queued = task_on_rq_queued(tsk);
9462
9463 if (queued)
7a57f32a 9464 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 9465 if (running)
ea86cb4b
VG
9466 put_prev_task(rq, tsk);
9467
9468 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 9469
da0c1e65 9470 if (queued)
7a57f32a 9471 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 9472 if (running) {
03b7fad1 9473 set_next_task(rq, tsk);
2a4b03ff
VG
9474 /*
9475 * After changing group, the running task may have joined a
9476 * throttled one but it's still the running task. Trigger a
9477 * resched to make sure that task can still run.
9478 */
9479 resched_curr(rq);
9480 }
29f59db3 9481
eb580751 9482 task_rq_unlock(rq, tsk, &rf);
29f59db3 9483}
68318b8e 9484
a7c6d554 9485static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 9486{
a7c6d554 9487 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
9488}
9489
eb95419b
TH
9490static struct cgroup_subsys_state *
9491cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 9492{
eb95419b
TH
9493 struct task_group *parent = css_tg(parent_css);
9494 struct task_group *tg;
68318b8e 9495
eb95419b 9496 if (!parent) {
68318b8e 9497 /* This is early initialization for the top cgroup */
07e06b01 9498 return &root_task_group.css;
68318b8e
SV
9499 }
9500
ec7dc8ac 9501 tg = sched_create_group(parent);
68318b8e
SV
9502 if (IS_ERR(tg))
9503 return ERR_PTR(-ENOMEM);
9504
68318b8e
SV
9505 return &tg->css;
9506}
9507
96b77745
KK
9508/* Expose task group only after completing cgroup initialization */
9509static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9510{
9511 struct task_group *tg = css_tg(css);
9512 struct task_group *parent = css_tg(css->parent);
9513
9514 if (parent)
9515 sched_online_group(tg, parent);
7226017a
QY
9516
9517#ifdef CONFIG_UCLAMP_TASK_GROUP
9518 /* Propagate the effective uclamp value for the new group */
93b73858
QY
9519 mutex_lock(&uclamp_mutex);
9520 rcu_read_lock();
7226017a 9521 cpu_util_update_eff(css);
93b73858
QY
9522 rcu_read_unlock();
9523 mutex_unlock(&uclamp_mutex);
7226017a
QY
9524#endif
9525
96b77745
KK
9526 return 0;
9527}
9528
2f5177f0 9529static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 9530{
eb95419b 9531 struct task_group *tg = css_tg(css);
ace783b9 9532
2f5177f0 9533 sched_offline_group(tg);
ace783b9
LZ
9534}
9535
eb95419b 9536static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 9537{
eb95419b 9538 struct task_group *tg = css_tg(css);
68318b8e 9539
2f5177f0
PZ
9540 /*
9541 * Relies on the RCU grace period between css_released() and this.
9542 */
9543 sched_free_group(tg);
ace783b9
LZ
9544}
9545
ea86cb4b
VG
9546/*
9547 * This is called before wake_up_new_task(), therefore we really only
9548 * have to set its group bits, all the other stuff does not apply.
9549 */
b53202e6 9550static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 9551{
ea86cb4b
VG
9552 struct rq_flags rf;
9553 struct rq *rq;
9554
9555 rq = task_rq_lock(task, &rf);
9556
80f5c1b8 9557 update_rq_clock(rq);
ea86cb4b
VG
9558 sched_change_group(task, TASK_SET_GROUP);
9559
9560 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
9561}
9562
1f7dd3e5 9563static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 9564{
bb9d97b6 9565 struct task_struct *task;
1f7dd3e5 9566 struct cgroup_subsys_state *css;
7dc603c9 9567 int ret = 0;
bb9d97b6 9568
1f7dd3e5 9569 cgroup_taskset_for_each(task, css, tset) {
b68aa230 9570#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 9571 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 9572 return -EINVAL;
b68aa230 9573#endif
7dc603c9 9574 /*
b19a888c 9575 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
9576 * running, we're sure to observe its full state.
9577 */
9578 raw_spin_lock_irq(&task->pi_lock);
9579 /*
9580 * Avoid calling sched_move_task() before wake_up_new_task()
9581 * has happened. This would lead to problems with PELT, due to
9582 * move wanting to detach+attach while we're not attached yet.
9583 */
2f064a59 9584 if (READ_ONCE(task->__state) == TASK_NEW)
7dc603c9
PZ
9585 ret = -EINVAL;
9586 raw_spin_unlock_irq(&task->pi_lock);
9587
9588 if (ret)
9589 break;
bb9d97b6 9590 }
7dc603c9 9591 return ret;
be367d09 9592}
68318b8e 9593
1f7dd3e5 9594static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 9595{
bb9d97b6 9596 struct task_struct *task;
1f7dd3e5 9597 struct cgroup_subsys_state *css;
bb9d97b6 9598
1f7dd3e5 9599 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9600 sched_move_task(task);
68318b8e
SV
9601}
9602
2480c093 9603#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
9604static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9605{
9606 struct cgroup_subsys_state *top_css = css;
9607 struct uclamp_se *uc_parent = NULL;
9608 struct uclamp_se *uc_se = NULL;
9609 unsigned int eff[UCLAMP_CNT];
0413d7f3 9610 enum uclamp_id clamp_id;
0b60ba2d
PB
9611 unsigned int clamps;
9612
93b73858
QY
9613 lockdep_assert_held(&uclamp_mutex);
9614 SCHED_WARN_ON(!rcu_read_lock_held());
9615
0b60ba2d
PB
9616 css_for_each_descendant_pre(css, top_css) {
9617 uc_parent = css_tg(css)->parent
9618 ? css_tg(css)->parent->uclamp : NULL;
9619
9620 for_each_clamp_id(clamp_id) {
9621 /* Assume effective clamps matches requested clamps */
9622 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9623 /* Cap effective clamps with parent's effective clamps */
9624 if (uc_parent &&
9625 eff[clamp_id] > uc_parent[clamp_id].value) {
9626 eff[clamp_id] = uc_parent[clamp_id].value;
9627 }
9628 }
9629 /* Ensure protection is always capped by limit */
9630 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9631
9632 /* Propagate most restrictive effective clamps */
9633 clamps = 0x0;
9634 uc_se = css_tg(css)->uclamp;
9635 for_each_clamp_id(clamp_id) {
9636 if (eff[clamp_id] == uc_se[clamp_id].value)
9637 continue;
9638 uc_se[clamp_id].value = eff[clamp_id];
9639 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9640 clamps |= (0x1 << clamp_id);
9641 }
babbe170 9642 if (!clamps) {
0b60ba2d 9643 css = css_rightmost_descendant(css);
babbe170
PB
9644 continue;
9645 }
9646
9647 /* Immediately update descendants RUNNABLE tasks */
0213b708 9648 uclamp_update_active_tasks(css);
0b60ba2d
PB
9649 }
9650}
2480c093
PB
9651
9652/*
9653 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9654 * C expression. Since there is no way to convert a macro argument (N) into a
9655 * character constant, use two levels of macros.
9656 */
9657#define _POW10(exp) ((unsigned int)1e##exp)
9658#define POW10(exp) _POW10(exp)
9659
9660struct uclamp_request {
9661#define UCLAMP_PERCENT_SHIFT 2
9662#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9663 s64 percent;
9664 u64 util;
9665 int ret;
9666};
9667
9668static inline struct uclamp_request
9669capacity_from_percent(char *buf)
9670{
9671 struct uclamp_request req = {
9672 .percent = UCLAMP_PERCENT_SCALE,
9673 .util = SCHED_CAPACITY_SCALE,
9674 .ret = 0,
9675 };
9676
9677 buf = strim(buf);
9678 if (strcmp(buf, "max")) {
9679 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9680 &req.percent);
9681 if (req.ret)
9682 return req;
b562d140 9683 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
9684 req.ret = -ERANGE;
9685 return req;
9686 }
9687
9688 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9689 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9690 }
9691
9692 return req;
9693}
9694
9695static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9696 size_t nbytes, loff_t off,
9697 enum uclamp_id clamp_id)
9698{
9699 struct uclamp_request req;
9700 struct task_group *tg;
9701
9702 req = capacity_from_percent(buf);
9703 if (req.ret)
9704 return req.ret;
9705
46609ce2
QY
9706 static_branch_enable(&sched_uclamp_used);
9707
2480c093
PB
9708 mutex_lock(&uclamp_mutex);
9709 rcu_read_lock();
9710
9711 tg = css_tg(of_css(of));
9712 if (tg->uclamp_req[clamp_id].value != req.util)
9713 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9714
9715 /*
9716 * Because of not recoverable conversion rounding we keep track of the
9717 * exact requested value
9718 */
9719 tg->uclamp_pct[clamp_id] = req.percent;
9720
0b60ba2d
PB
9721 /* Update effective clamps to track the most restrictive value */
9722 cpu_util_update_eff(of_css(of));
9723
2480c093
PB
9724 rcu_read_unlock();
9725 mutex_unlock(&uclamp_mutex);
9726
9727 return nbytes;
9728}
9729
9730static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9731 char *buf, size_t nbytes,
9732 loff_t off)
9733{
9734 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9735}
9736
9737static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9738 char *buf, size_t nbytes,
9739 loff_t off)
9740{
9741 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9742}
9743
9744static inline void cpu_uclamp_print(struct seq_file *sf,
9745 enum uclamp_id clamp_id)
9746{
9747 struct task_group *tg;
9748 u64 util_clamp;
9749 u64 percent;
9750 u32 rem;
9751
9752 rcu_read_lock();
9753 tg = css_tg(seq_css(sf));
9754 util_clamp = tg->uclamp_req[clamp_id].value;
9755 rcu_read_unlock();
9756
9757 if (util_clamp == SCHED_CAPACITY_SCALE) {
9758 seq_puts(sf, "max\n");
9759 return;
9760 }
9761
9762 percent = tg->uclamp_pct[clamp_id];
9763 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9764 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9765}
9766
9767static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9768{
9769 cpu_uclamp_print(sf, UCLAMP_MIN);
9770 return 0;
9771}
9772
9773static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9774{
9775 cpu_uclamp_print(sf, UCLAMP_MAX);
9776 return 0;
9777}
9778#endif /* CONFIG_UCLAMP_TASK_GROUP */
9779
052f1dc7 9780#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
9781static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9782 struct cftype *cftype, u64 shareval)
68318b8e 9783{
5b61d50a
KK
9784 if (shareval > scale_load_down(ULONG_MAX))
9785 shareval = MAX_SHARES;
182446d0 9786 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
9787}
9788
182446d0
TH
9789static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9790 struct cftype *cft)
68318b8e 9791{
182446d0 9792 struct task_group *tg = css_tg(css);
68318b8e 9793
c8b28116 9794 return (u64) scale_load_down(tg->shares);
68318b8e 9795}
ab84d31e
PT
9796
9797#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9798static DEFINE_MUTEX(cfs_constraints_mutex);
9799
ab84d31e 9800const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 9801static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
9802/* More than 203 days if BW_SHIFT equals 20. */
9803static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 9804
a790de99
PT
9805static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9806
f4183717
HC
9807static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9808 u64 burst)
ab84d31e 9809{
56f570e5 9810 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 9811 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
9812
9813 if (tg == &root_task_group)
9814 return -EINVAL;
9815
9816 /*
9817 * Ensure we have at some amount of bandwidth every period. This is
9818 * to prevent reaching a state of large arrears when throttled via
9819 * entity_tick() resulting in prolonged exit starvation.
9820 */
9821 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9822 return -EINVAL;
9823
9824 /*
3b03706f 9825 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
9826 * periods. This also allows us to normalize in computing quota
9827 * feasibility.
9828 */
9829 if (period > max_cfs_quota_period)
9830 return -EINVAL;
9831
d505b8af
HC
9832 /*
9833 * Bound quota to defend quota against overflow during bandwidth shift.
9834 */
9835 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9836 return -EINVAL;
9837
f4183717
HC
9838 if (quota != RUNTIME_INF && (burst > quota ||
9839 burst + quota > max_cfs_runtime))
9840 return -EINVAL;
9841
0e59bdae
KT
9842 /*
9843 * Prevent race between setting of cfs_rq->runtime_enabled and
9844 * unthrottle_offline_cfs_rqs().
9845 */
746f5ea9 9846 cpus_read_lock();
a790de99
PT
9847 mutex_lock(&cfs_constraints_mutex);
9848 ret = __cfs_schedulable(tg, period, quota);
9849 if (ret)
9850 goto out_unlock;
9851
58088ad0 9852 runtime_enabled = quota != RUNTIME_INF;
56f570e5 9853 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
9854 /*
9855 * If we need to toggle cfs_bandwidth_used, off->on must occur
9856 * before making related changes, and on->off must occur afterwards
9857 */
9858 if (runtime_enabled && !runtime_was_enabled)
9859 cfs_bandwidth_usage_inc();
ab84d31e
PT
9860 raw_spin_lock_irq(&cfs_b->lock);
9861 cfs_b->period = ns_to_ktime(period);
9862 cfs_b->quota = quota;
f4183717 9863 cfs_b->burst = burst;
58088ad0 9864
a9cf55b2 9865 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9866
9867 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9868 if (runtime_enabled)
9869 start_cfs_bandwidth(cfs_b);
d1ccc66d 9870
ab84d31e
PT
9871 raw_spin_unlock_irq(&cfs_b->lock);
9872
0e59bdae 9873 for_each_online_cpu(i) {
ab84d31e 9874 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9875 struct rq *rq = cfs_rq->rq;
8a8c69c3 9876 struct rq_flags rf;
ab84d31e 9877
8a8c69c3 9878 rq_lock_irq(rq, &rf);
58088ad0 9879 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9880 cfs_rq->runtime_remaining = 0;
671fd9da 9881
029632fb 9882 if (cfs_rq->throttled)
671fd9da 9883 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9884 rq_unlock_irq(rq, &rf);
ab84d31e 9885 }
1ee14e6c
BS
9886 if (runtime_was_enabled && !runtime_enabled)
9887 cfs_bandwidth_usage_dec();
a790de99
PT
9888out_unlock:
9889 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 9890 cpus_read_unlock();
ab84d31e 9891
a790de99 9892 return ret;
ab84d31e
PT
9893}
9894
b1546edc 9895static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 9896{
f4183717 9897 u64 quota, period, burst;
ab84d31e 9898
029632fb 9899 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 9900 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
9901 if (cfs_quota_us < 0)
9902 quota = RUNTIME_INF;
1a8b4540 9903 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9904 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9905 else
9906 return -EINVAL;
ab84d31e 9907
f4183717 9908 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9909}
9910
b1546edc 9911static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9912{
9913 u64 quota_us;
9914
029632fb 9915 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9916 return -1;
9917
029632fb 9918 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9919 do_div(quota_us, NSEC_PER_USEC);
9920
9921 return quota_us;
9922}
9923
b1546edc 9924static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 9925{
f4183717 9926 u64 quota, period, burst;
ab84d31e 9927
1a8b4540
KK
9928 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9929 return -EINVAL;
9930
ab84d31e 9931 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9932 quota = tg->cfs_bandwidth.quota;
f4183717 9933 burst = tg->cfs_bandwidth.burst;
ab84d31e 9934
f4183717 9935 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
9936}
9937
b1546edc 9938static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9939{
9940 u64 cfs_period_us;
9941
029632fb 9942 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9943 do_div(cfs_period_us, NSEC_PER_USEC);
9944
9945 return cfs_period_us;
9946}
9947
f4183717
HC
9948static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9949{
9950 u64 quota, period, burst;
9951
9952 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9953 return -EINVAL;
9954
9955 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9956 period = ktime_to_ns(tg->cfs_bandwidth.period);
9957 quota = tg->cfs_bandwidth.quota;
9958
9959 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9960}
9961
9962static long tg_get_cfs_burst(struct task_group *tg)
9963{
9964 u64 burst_us;
9965
9966 burst_us = tg->cfs_bandwidth.burst;
9967 do_div(burst_us, NSEC_PER_USEC);
9968
9969 return burst_us;
9970}
9971
182446d0
TH
9972static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9973 struct cftype *cft)
ab84d31e 9974{
182446d0 9975 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9976}
9977
182446d0
TH
9978static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9979 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9980{
182446d0 9981 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9982}
9983
182446d0
TH
9984static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9985 struct cftype *cft)
ab84d31e 9986{
182446d0 9987 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9988}
9989
182446d0
TH
9990static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9991 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9992{
182446d0 9993 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9994}
9995
f4183717
HC
9996static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9997 struct cftype *cft)
9998{
9999 return tg_get_cfs_burst(css_tg(css));
10000}
10001
10002static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10003 struct cftype *cftype, u64 cfs_burst_us)
10004{
10005 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10006}
10007
a790de99
PT
10008struct cfs_schedulable_data {
10009 struct task_group *tg;
10010 u64 period, quota;
10011};
10012
10013/*
10014 * normalize group quota/period to be quota/max_period
10015 * note: units are usecs
10016 */
10017static u64 normalize_cfs_quota(struct task_group *tg,
10018 struct cfs_schedulable_data *d)
10019{
10020 u64 quota, period;
10021
10022 if (tg == d->tg) {
10023 period = d->period;
10024 quota = d->quota;
10025 } else {
10026 period = tg_get_cfs_period(tg);
10027 quota = tg_get_cfs_quota(tg);
10028 }
10029
10030 /* note: these should typically be equivalent */
10031 if (quota == RUNTIME_INF || quota == -1)
10032 return RUNTIME_INF;
10033
10034 return to_ratio(period, quota);
10035}
10036
10037static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10038{
10039 struct cfs_schedulable_data *d = data;
029632fb 10040 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10041 s64 quota = 0, parent_quota = -1;
10042
10043 if (!tg->parent) {
10044 quota = RUNTIME_INF;
10045 } else {
029632fb 10046 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10047
10048 quota = normalize_cfs_quota(tg, d);
9c58c79a 10049 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10050
10051 /*
c53593e5
TH
10052 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10053 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10054 * limit is set:
a790de99 10055 */
c53593e5
TH
10056 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10057 quota = min(quota, parent_quota);
10058 } else {
10059 if (quota == RUNTIME_INF)
10060 quota = parent_quota;
10061 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10062 return -EINVAL;
10063 }
a790de99 10064 }
9c58c79a 10065 cfs_b->hierarchical_quota = quota;
a790de99
PT
10066
10067 return 0;
10068}
10069
10070static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10071{
8277434e 10072 int ret;
a790de99
PT
10073 struct cfs_schedulable_data data = {
10074 .tg = tg,
10075 .period = period,
10076 .quota = quota,
10077 };
10078
10079 if (quota != RUNTIME_INF) {
10080 do_div(data.period, NSEC_PER_USEC);
10081 do_div(data.quota, NSEC_PER_USEC);
10082 }
10083
8277434e
PT
10084 rcu_read_lock();
10085 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10086 rcu_read_unlock();
10087
10088 return ret;
a790de99 10089}
e8da1b18 10090
a1f7164c 10091static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10092{
2da8ca82 10093 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10094 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10095
44ffc75b
TH
10096 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10097 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10098 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10099
3d6c50c2
YW
10100 if (schedstat_enabled() && tg != &root_task_group) {
10101 u64 ws = 0;
10102 int i;
10103
10104 for_each_possible_cpu(i)
10105 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10106
10107 seq_printf(sf, "wait_sum %llu\n", ws);
10108 }
10109
e8da1b18
NR
10110 return 0;
10111}
ab84d31e 10112#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10113#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10114
052f1dc7 10115#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10116static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10117 struct cftype *cft, s64 val)
6f505b16 10118{
182446d0 10119 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10120}
10121
182446d0
TH
10122static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10123 struct cftype *cft)
6f505b16 10124{
182446d0 10125 return sched_group_rt_runtime(css_tg(css));
6f505b16 10126}
d0b27fa7 10127
182446d0
TH
10128static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10129 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10130{
182446d0 10131 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10132}
10133
182446d0
TH
10134static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10135 struct cftype *cft)
d0b27fa7 10136{
182446d0 10137 return sched_group_rt_period(css_tg(css));
d0b27fa7 10138}
6d6bc0ad 10139#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10140
30400039
JD
10141#ifdef CONFIG_FAIR_GROUP_SCHED
10142static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10143 struct cftype *cft)
10144{
10145 return css_tg(css)->idle;
10146}
10147
10148static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10149 struct cftype *cft, s64 idle)
10150{
10151 return sched_group_set_idle(css_tg(css), idle);
10152}
10153#endif
10154
a1f7164c 10155static struct cftype cpu_legacy_files[] = {
052f1dc7 10156#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10157 {
10158 .name = "shares",
f4c753b7
PM
10159 .read_u64 = cpu_shares_read_u64,
10160 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10161 },
30400039
JD
10162 {
10163 .name = "idle",
10164 .read_s64 = cpu_idle_read_s64,
10165 .write_s64 = cpu_idle_write_s64,
10166 },
052f1dc7 10167#endif
ab84d31e
PT
10168#ifdef CONFIG_CFS_BANDWIDTH
10169 {
10170 .name = "cfs_quota_us",
10171 .read_s64 = cpu_cfs_quota_read_s64,
10172 .write_s64 = cpu_cfs_quota_write_s64,
10173 },
10174 {
10175 .name = "cfs_period_us",
10176 .read_u64 = cpu_cfs_period_read_u64,
10177 .write_u64 = cpu_cfs_period_write_u64,
10178 },
f4183717
HC
10179 {
10180 .name = "cfs_burst_us",
10181 .read_u64 = cpu_cfs_burst_read_u64,
10182 .write_u64 = cpu_cfs_burst_write_u64,
10183 },
e8da1b18
NR
10184 {
10185 .name = "stat",
a1f7164c 10186 .seq_show = cpu_cfs_stat_show,
e8da1b18 10187 },
ab84d31e 10188#endif
052f1dc7 10189#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10190 {
9f0c1e56 10191 .name = "rt_runtime_us",
06ecb27c
PM
10192 .read_s64 = cpu_rt_runtime_read,
10193 .write_s64 = cpu_rt_runtime_write,
6f505b16 10194 },
d0b27fa7
PZ
10195 {
10196 .name = "rt_period_us",
f4c753b7
PM
10197 .read_u64 = cpu_rt_period_read_uint,
10198 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10199 },
2480c093
PB
10200#endif
10201#ifdef CONFIG_UCLAMP_TASK_GROUP
10202 {
10203 .name = "uclamp.min",
10204 .flags = CFTYPE_NOT_ON_ROOT,
10205 .seq_show = cpu_uclamp_min_show,
10206 .write = cpu_uclamp_min_write,
10207 },
10208 {
10209 .name = "uclamp.max",
10210 .flags = CFTYPE_NOT_ON_ROOT,
10211 .seq_show = cpu_uclamp_max_show,
10212 .write = cpu_uclamp_max_write,
10213 },
052f1dc7 10214#endif
d1ccc66d 10215 { } /* Terminate */
68318b8e
SV
10216};
10217
d41bf8c9
TH
10218static int cpu_extra_stat_show(struct seq_file *sf,
10219 struct cgroup_subsys_state *css)
0d593634 10220{
0d593634
TH
10221#ifdef CONFIG_CFS_BANDWIDTH
10222 {
d41bf8c9 10223 struct task_group *tg = css_tg(css);
0d593634
TH
10224 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10225 u64 throttled_usec;
10226
10227 throttled_usec = cfs_b->throttled_time;
10228 do_div(throttled_usec, NSEC_PER_USEC);
10229
10230 seq_printf(sf, "nr_periods %d\n"
10231 "nr_throttled %d\n"
10232 "throttled_usec %llu\n",
10233 cfs_b->nr_periods, cfs_b->nr_throttled,
10234 throttled_usec);
10235 }
10236#endif
10237 return 0;
10238}
10239
10240#ifdef CONFIG_FAIR_GROUP_SCHED
10241static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10242 struct cftype *cft)
10243{
10244 struct task_group *tg = css_tg(css);
10245 u64 weight = scale_load_down(tg->shares);
10246
10247 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10248}
10249
10250static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10251 struct cftype *cft, u64 weight)
10252{
10253 /*
10254 * cgroup weight knobs should use the common MIN, DFL and MAX
10255 * values which are 1, 100 and 10000 respectively. While it loses
10256 * a bit of range on both ends, it maps pretty well onto the shares
10257 * value used by scheduler and the round-trip conversions preserve
10258 * the original value over the entire range.
10259 */
10260 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10261 return -ERANGE;
10262
10263 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10264
10265 return sched_group_set_shares(css_tg(css), scale_load(weight));
10266}
10267
10268static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10269 struct cftype *cft)
10270{
10271 unsigned long weight = scale_load_down(css_tg(css)->shares);
10272 int last_delta = INT_MAX;
10273 int prio, delta;
10274
10275 /* find the closest nice value to the current weight */
10276 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10277 delta = abs(sched_prio_to_weight[prio] - weight);
10278 if (delta >= last_delta)
10279 break;
10280 last_delta = delta;
10281 }
10282
10283 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10284}
10285
10286static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10287 struct cftype *cft, s64 nice)
10288{
10289 unsigned long weight;
7281c8de 10290 int idx;
0d593634
TH
10291
10292 if (nice < MIN_NICE || nice > MAX_NICE)
10293 return -ERANGE;
10294
7281c8de
PZ
10295 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10296 idx = array_index_nospec(idx, 40);
10297 weight = sched_prio_to_weight[idx];
10298
0d593634
TH
10299 return sched_group_set_shares(css_tg(css), scale_load(weight));
10300}
10301#endif
10302
10303static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10304 long period, long quota)
10305{
10306 if (quota < 0)
10307 seq_puts(sf, "max");
10308 else
10309 seq_printf(sf, "%ld", quota);
10310
10311 seq_printf(sf, " %ld\n", period);
10312}
10313
10314/* caller should put the current value in *@periodp before calling */
10315static int __maybe_unused cpu_period_quota_parse(char *buf,
10316 u64 *periodp, u64 *quotap)
10317{
10318 char tok[21]; /* U64_MAX */
10319
4c47acd8 10320 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
10321 return -EINVAL;
10322
10323 *periodp *= NSEC_PER_USEC;
10324
10325 if (sscanf(tok, "%llu", quotap))
10326 *quotap *= NSEC_PER_USEC;
10327 else if (!strcmp(tok, "max"))
10328 *quotap = RUNTIME_INF;
10329 else
10330 return -EINVAL;
10331
10332 return 0;
10333}
10334
10335#ifdef CONFIG_CFS_BANDWIDTH
10336static int cpu_max_show(struct seq_file *sf, void *v)
10337{
10338 struct task_group *tg = css_tg(seq_css(sf));
10339
10340 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10341 return 0;
10342}
10343
10344static ssize_t cpu_max_write(struct kernfs_open_file *of,
10345 char *buf, size_t nbytes, loff_t off)
10346{
10347 struct task_group *tg = css_tg(of_css(of));
10348 u64 period = tg_get_cfs_period(tg);
f4183717 10349 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
10350 u64 quota;
10351 int ret;
10352
10353 ret = cpu_period_quota_parse(buf, &period, &quota);
10354 if (!ret)
f4183717 10355 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
10356 return ret ?: nbytes;
10357}
10358#endif
10359
10360static struct cftype cpu_files[] = {
0d593634
TH
10361#ifdef CONFIG_FAIR_GROUP_SCHED
10362 {
10363 .name = "weight",
10364 .flags = CFTYPE_NOT_ON_ROOT,
10365 .read_u64 = cpu_weight_read_u64,
10366 .write_u64 = cpu_weight_write_u64,
10367 },
10368 {
10369 .name = "weight.nice",
10370 .flags = CFTYPE_NOT_ON_ROOT,
10371 .read_s64 = cpu_weight_nice_read_s64,
10372 .write_s64 = cpu_weight_nice_write_s64,
10373 },
30400039
JD
10374 {
10375 .name = "idle",
10376 .flags = CFTYPE_NOT_ON_ROOT,
10377 .read_s64 = cpu_idle_read_s64,
10378 .write_s64 = cpu_idle_write_s64,
10379 },
0d593634
TH
10380#endif
10381#ifdef CONFIG_CFS_BANDWIDTH
10382 {
10383 .name = "max",
10384 .flags = CFTYPE_NOT_ON_ROOT,
10385 .seq_show = cpu_max_show,
10386 .write = cpu_max_write,
10387 },
f4183717
HC
10388 {
10389 .name = "max.burst",
10390 .flags = CFTYPE_NOT_ON_ROOT,
10391 .read_u64 = cpu_cfs_burst_read_u64,
10392 .write_u64 = cpu_cfs_burst_write_u64,
10393 },
2480c093
PB
10394#endif
10395#ifdef CONFIG_UCLAMP_TASK_GROUP
10396 {
10397 .name = "uclamp.min",
10398 .flags = CFTYPE_NOT_ON_ROOT,
10399 .seq_show = cpu_uclamp_min_show,
10400 .write = cpu_uclamp_min_write,
10401 },
10402 {
10403 .name = "uclamp.max",
10404 .flags = CFTYPE_NOT_ON_ROOT,
10405 .seq_show = cpu_uclamp_max_show,
10406 .write = cpu_uclamp_max_write,
10407 },
0d593634
TH
10408#endif
10409 { } /* terminate */
10410};
10411
073219e9 10412struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 10413 .css_alloc = cpu_cgroup_css_alloc,
96b77745 10414 .css_online = cpu_cgroup_css_online,
2f5177f0 10415 .css_released = cpu_cgroup_css_released,
92fb9748 10416 .css_free = cpu_cgroup_css_free,
d41bf8c9 10417 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 10418 .fork = cpu_cgroup_fork,
bb9d97b6
TH
10419 .can_attach = cpu_cgroup_can_attach,
10420 .attach = cpu_cgroup_attach,
a1f7164c 10421 .legacy_cftypes = cpu_legacy_files,
0d593634 10422 .dfl_cftypes = cpu_files,
b38e42e9 10423 .early_init = true,
0d593634 10424 .threaded = true,
68318b8e
SV
10425};
10426
052f1dc7 10427#endif /* CONFIG_CGROUP_SCHED */
d842de87 10428
b637a328
PM
10429void dump_cpu_task(int cpu)
10430{
10431 pr_info("Task dump for CPU %d:\n", cpu);
10432 sched_show_task(cpu_curr(cpu));
10433}
ed82b8a1
AK
10434
10435/*
10436 * Nice levels are multiplicative, with a gentle 10% change for every
10437 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10438 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10439 * that remained on nice 0.
10440 *
10441 * The "10% effect" is relative and cumulative: from _any_ nice level,
10442 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10443 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10444 * If a task goes up by ~10% and another task goes down by ~10% then
10445 * the relative distance between them is ~25%.)
10446 */
10447const int sched_prio_to_weight[40] = {
10448 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10449 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10450 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10451 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10452 /* 0 */ 1024, 820, 655, 526, 423,
10453 /* 5 */ 335, 272, 215, 172, 137,
10454 /* 10 */ 110, 87, 70, 56, 45,
10455 /* 15 */ 36, 29, 23, 18, 15,
10456};
10457
10458/*
10459 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10460 *
10461 * In cases where the weight does not change often, we can use the
10462 * precalculated inverse to speed up arithmetics by turning divisions
10463 * into multiplications:
10464 */
10465const u32 sched_prio_to_wmult[40] = {
10466 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10467 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10468 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10469 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10470 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10471 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10472 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10473 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10474};
14a7405b 10475
9d246053
PA
10476void call_trace_sched_update_nr_running(struct rq *rq, int count)
10477{
10478 trace_sched_update_nr_running_tp(rq, count);
10479}