sched/core: Optimize SCHED_SMT
[linux-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
bf89a304
CC
1066 if (task_rq(p) == rq) {
1067 if (task_on_rq_queued(p))
1068 rq = __migrate_task(rq, p, arg->dest_cpu);
1069 else
1070 p->wake_cpu = arg->dest_cpu;
1071 }
5e16bbc2
PZ
1072 raw_spin_unlock(&rq->lock);
1073 raw_spin_unlock(&p->pi_lock);
1074
5cc389bc
PZ
1075 local_irq_enable();
1076 return 0;
1077}
1078
c5b28038
PZ
1079/*
1080 * sched_class::set_cpus_allowed must do the below, but is not required to
1081 * actually call this function.
1082 */
1083void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1084{
5cc389bc
PZ
1085 cpumask_copy(&p->cpus_allowed, new_mask);
1086 p->nr_cpus_allowed = cpumask_weight(new_mask);
1087}
1088
c5b28038
PZ
1089void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1090{
6c37067e
PZ
1091 struct rq *rq = task_rq(p);
1092 bool queued, running;
1093
c5b28038 1094 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1095
1096 queued = task_on_rq_queued(p);
1097 running = task_current(rq, p);
1098
1099 if (queued) {
1100 /*
1101 * Because __kthread_bind() calls this on blocked tasks without
1102 * holding rq->lock.
1103 */
1104 lockdep_assert_held(&rq->lock);
1de64443 1105 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1106 }
1107 if (running)
1108 put_prev_task(rq, p);
1109
c5b28038 1110 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1111
1112 if (running)
1113 p->sched_class->set_curr_task(rq);
1114 if (queued)
1de64443 1115 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1116}
1117
5cc389bc
PZ
1118/*
1119 * Change a given task's CPU affinity. Migrate the thread to a
1120 * proper CPU and schedule it away if the CPU it's executing on
1121 * is removed from the allowed bitmask.
1122 *
1123 * NOTE: the caller must have a valid reference to the task, the
1124 * task must not exit() & deallocate itself prematurely. The
1125 * call is not atomic; no spinlocks may be held.
1126 */
25834c73
PZ
1127static int __set_cpus_allowed_ptr(struct task_struct *p,
1128 const struct cpumask *new_mask, bool check)
5cc389bc 1129{
e9d867a6 1130 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1131 unsigned int dest_cpu;
eb580751
PZ
1132 struct rq_flags rf;
1133 struct rq *rq;
5cc389bc
PZ
1134 int ret = 0;
1135
eb580751 1136 rq = task_rq_lock(p, &rf);
5cc389bc 1137
e9d867a6
PZI
1138 if (p->flags & PF_KTHREAD) {
1139 /*
1140 * Kernel threads are allowed on online && !active CPUs
1141 */
1142 cpu_valid_mask = cpu_online_mask;
1143 }
1144
25834c73
PZ
1145 /*
1146 * Must re-check here, to close a race against __kthread_bind(),
1147 * sched_setaffinity() is not guaranteed to observe the flag.
1148 */
1149 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1150 ret = -EINVAL;
1151 goto out;
1152 }
1153
5cc389bc
PZ
1154 if (cpumask_equal(&p->cpus_allowed, new_mask))
1155 goto out;
1156
e9d867a6 1157 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1158 ret = -EINVAL;
1159 goto out;
1160 }
1161
1162 do_set_cpus_allowed(p, new_mask);
1163
e9d867a6
PZI
1164 if (p->flags & PF_KTHREAD) {
1165 /*
1166 * For kernel threads that do indeed end up on online &&
1167 * !active we want to ensure they are strict per-cpu threads.
1168 */
1169 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1170 !cpumask_intersects(new_mask, cpu_active_mask) &&
1171 p->nr_cpus_allowed != 1);
1172 }
1173
5cc389bc
PZ
1174 /* Can the task run on the task's current CPU? If so, we're done */
1175 if (cpumask_test_cpu(task_cpu(p), new_mask))
1176 goto out;
1177
e9d867a6 1178 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1179 if (task_running(rq, p) || p->state == TASK_WAKING) {
1180 struct migration_arg arg = { p, dest_cpu };
1181 /* Need help from migration thread: drop lock and wait. */
eb580751 1182 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1183 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1184 tlb_migrate_finish(p->mm);
1185 return 0;
cbce1a68
PZ
1186 } else if (task_on_rq_queued(p)) {
1187 /*
1188 * OK, since we're going to drop the lock immediately
1189 * afterwards anyway.
1190 */
e7904a28 1191 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1192 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1193 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1194 }
5cc389bc 1195out:
eb580751 1196 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1197
1198 return ret;
1199}
25834c73
PZ
1200
1201int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1202{
1203 return __set_cpus_allowed_ptr(p, new_mask, false);
1204}
5cc389bc
PZ
1205EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1206
dd41f596 1207void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1208{
e2912009
PZ
1209#ifdef CONFIG_SCHED_DEBUG
1210 /*
1211 * We should never call set_task_cpu() on a blocked task,
1212 * ttwu() will sort out the placement.
1213 */
077614ee 1214 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1215 !p->on_rq);
0122ec5b 1216
3ea94de1
JP
1217 /*
1218 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1219 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1220 * time relying on p->on_rq.
1221 */
1222 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1223 p->sched_class == &fair_sched_class &&
1224 (p->on_rq && !task_on_rq_migrating(p)));
1225
0122ec5b 1226#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1227 /*
1228 * The caller should hold either p->pi_lock or rq->lock, when changing
1229 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1230 *
1231 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1232 * see task_group().
6c6c54e1
PZ
1233 *
1234 * Furthermore, all task_rq users should acquire both locks, see
1235 * task_rq_lock().
1236 */
0122ec5b
PZ
1237 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1238 lockdep_is_held(&task_rq(p)->lock)));
1239#endif
e2912009
PZ
1240#endif
1241
de1d7286 1242 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1243
0c69774e 1244 if (task_cpu(p) != new_cpu) {
0a74bef8 1245 if (p->sched_class->migrate_task_rq)
5a4fd036 1246 p->sched_class->migrate_task_rq(p);
0c69774e 1247 p->se.nr_migrations++;
ff303e66 1248 perf_event_task_migrate(p);
0c69774e 1249 }
dd41f596
IM
1250
1251 __set_task_cpu(p, new_cpu);
c65cc870
IM
1252}
1253
ac66f547
PZ
1254static void __migrate_swap_task(struct task_struct *p, int cpu)
1255{
da0c1e65 1256 if (task_on_rq_queued(p)) {
ac66f547
PZ
1257 struct rq *src_rq, *dst_rq;
1258
1259 src_rq = task_rq(p);
1260 dst_rq = cpu_rq(cpu);
1261
3ea94de1 1262 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1263 deactivate_task(src_rq, p, 0);
1264 set_task_cpu(p, cpu);
1265 activate_task(dst_rq, p, 0);
3ea94de1 1266 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1267 check_preempt_curr(dst_rq, p, 0);
1268 } else {
1269 /*
1270 * Task isn't running anymore; make it appear like we migrated
1271 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1272 * previous cpu our target instead of where it really is.
ac66f547
PZ
1273 */
1274 p->wake_cpu = cpu;
1275 }
1276}
1277
1278struct migration_swap_arg {
1279 struct task_struct *src_task, *dst_task;
1280 int src_cpu, dst_cpu;
1281};
1282
1283static int migrate_swap_stop(void *data)
1284{
1285 struct migration_swap_arg *arg = data;
1286 struct rq *src_rq, *dst_rq;
1287 int ret = -EAGAIN;
1288
62694cd5
PZ
1289 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1290 return -EAGAIN;
1291
ac66f547
PZ
1292 src_rq = cpu_rq(arg->src_cpu);
1293 dst_rq = cpu_rq(arg->dst_cpu);
1294
74602315
PZ
1295 double_raw_lock(&arg->src_task->pi_lock,
1296 &arg->dst_task->pi_lock);
ac66f547 1297 double_rq_lock(src_rq, dst_rq);
62694cd5 1298
ac66f547
PZ
1299 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1300 goto unlock;
1301
1302 if (task_cpu(arg->src_task) != arg->src_cpu)
1303 goto unlock;
1304
1305 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1306 goto unlock;
1307
1308 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1309 goto unlock;
1310
1311 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1312 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1313
1314 ret = 0;
1315
1316unlock:
1317 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1318 raw_spin_unlock(&arg->dst_task->pi_lock);
1319 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1320
1321 return ret;
1322}
1323
1324/*
1325 * Cross migrate two tasks
1326 */
1327int migrate_swap(struct task_struct *cur, struct task_struct *p)
1328{
1329 struct migration_swap_arg arg;
1330 int ret = -EINVAL;
1331
ac66f547
PZ
1332 arg = (struct migration_swap_arg){
1333 .src_task = cur,
1334 .src_cpu = task_cpu(cur),
1335 .dst_task = p,
1336 .dst_cpu = task_cpu(p),
1337 };
1338
1339 if (arg.src_cpu == arg.dst_cpu)
1340 goto out;
1341
6acce3ef
PZ
1342 /*
1343 * These three tests are all lockless; this is OK since all of them
1344 * will be re-checked with proper locks held further down the line.
1345 */
ac66f547
PZ
1346 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1347 goto out;
1348
1349 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1350 goto out;
1351
1352 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1353 goto out;
1354
286549dc 1355 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1356 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1357
1358out:
ac66f547
PZ
1359 return ret;
1360}
1361
1da177e4
LT
1362/*
1363 * wait_task_inactive - wait for a thread to unschedule.
1364 *
85ba2d86
RM
1365 * If @match_state is nonzero, it's the @p->state value just checked and
1366 * not expected to change. If it changes, i.e. @p might have woken up,
1367 * then return zero. When we succeed in waiting for @p to be off its CPU,
1368 * we return a positive number (its total switch count). If a second call
1369 * a short while later returns the same number, the caller can be sure that
1370 * @p has remained unscheduled the whole time.
1371 *
1da177e4
LT
1372 * The caller must ensure that the task *will* unschedule sometime soon,
1373 * else this function might spin for a *long* time. This function can't
1374 * be called with interrupts off, or it may introduce deadlock with
1375 * smp_call_function() if an IPI is sent by the same process we are
1376 * waiting to become inactive.
1377 */
85ba2d86 1378unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1379{
da0c1e65 1380 int running, queued;
eb580751 1381 struct rq_flags rf;
85ba2d86 1382 unsigned long ncsw;
70b97a7f 1383 struct rq *rq;
1da177e4 1384
3a5c359a
AK
1385 for (;;) {
1386 /*
1387 * We do the initial early heuristics without holding
1388 * any task-queue locks at all. We'll only try to get
1389 * the runqueue lock when things look like they will
1390 * work out!
1391 */
1392 rq = task_rq(p);
fa490cfd 1393
3a5c359a
AK
1394 /*
1395 * If the task is actively running on another CPU
1396 * still, just relax and busy-wait without holding
1397 * any locks.
1398 *
1399 * NOTE! Since we don't hold any locks, it's not
1400 * even sure that "rq" stays as the right runqueue!
1401 * But we don't care, since "task_running()" will
1402 * return false if the runqueue has changed and p
1403 * is actually now running somewhere else!
1404 */
85ba2d86
RM
1405 while (task_running(rq, p)) {
1406 if (match_state && unlikely(p->state != match_state))
1407 return 0;
3a5c359a 1408 cpu_relax();
85ba2d86 1409 }
fa490cfd 1410
3a5c359a
AK
1411 /*
1412 * Ok, time to look more closely! We need the rq
1413 * lock now, to be *sure*. If we're wrong, we'll
1414 * just go back and repeat.
1415 */
eb580751 1416 rq = task_rq_lock(p, &rf);
27a9da65 1417 trace_sched_wait_task(p);
3a5c359a 1418 running = task_running(rq, p);
da0c1e65 1419 queued = task_on_rq_queued(p);
85ba2d86 1420 ncsw = 0;
f31e11d8 1421 if (!match_state || p->state == match_state)
93dcf55f 1422 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1423 task_rq_unlock(rq, p, &rf);
fa490cfd 1424
85ba2d86
RM
1425 /*
1426 * If it changed from the expected state, bail out now.
1427 */
1428 if (unlikely(!ncsw))
1429 break;
1430
3a5c359a
AK
1431 /*
1432 * Was it really running after all now that we
1433 * checked with the proper locks actually held?
1434 *
1435 * Oops. Go back and try again..
1436 */
1437 if (unlikely(running)) {
1438 cpu_relax();
1439 continue;
1440 }
fa490cfd 1441
3a5c359a
AK
1442 /*
1443 * It's not enough that it's not actively running,
1444 * it must be off the runqueue _entirely_, and not
1445 * preempted!
1446 *
80dd99b3 1447 * So if it was still runnable (but just not actively
3a5c359a
AK
1448 * running right now), it's preempted, and we should
1449 * yield - it could be a while.
1450 */
da0c1e65 1451 if (unlikely(queued)) {
8eb90c30
TG
1452 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1453
1454 set_current_state(TASK_UNINTERRUPTIBLE);
1455 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1456 continue;
1457 }
fa490cfd 1458
3a5c359a
AK
1459 /*
1460 * Ahh, all good. It wasn't running, and it wasn't
1461 * runnable, which means that it will never become
1462 * running in the future either. We're all done!
1463 */
1464 break;
1465 }
85ba2d86
RM
1466
1467 return ncsw;
1da177e4
LT
1468}
1469
1470/***
1471 * kick_process - kick a running thread to enter/exit the kernel
1472 * @p: the to-be-kicked thread
1473 *
1474 * Cause a process which is running on another CPU to enter
1475 * kernel-mode, without any delay. (to get signals handled.)
1476 *
25985edc 1477 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1478 * because all it wants to ensure is that the remote task enters
1479 * the kernel. If the IPI races and the task has been migrated
1480 * to another CPU then no harm is done and the purpose has been
1481 * achieved as well.
1482 */
36c8b586 1483void kick_process(struct task_struct *p)
1da177e4
LT
1484{
1485 int cpu;
1486
1487 preempt_disable();
1488 cpu = task_cpu(p);
1489 if ((cpu != smp_processor_id()) && task_curr(p))
1490 smp_send_reschedule(cpu);
1491 preempt_enable();
1492}
b43e3521 1493EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1494
30da688e 1495/*
013fdb80 1496 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1497 *
1498 * A few notes on cpu_active vs cpu_online:
1499 *
1500 * - cpu_active must be a subset of cpu_online
1501 *
1502 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1503 * see __set_cpus_allowed_ptr(). At this point the newly online
1504 * cpu isn't yet part of the sched domains, and balancing will not
1505 * see it.
1506 *
1507 * - on cpu-down we clear cpu_active() to mask the sched domains and
1508 * avoid the load balancer to place new tasks on the to be removed
1509 * cpu. Existing tasks will remain running there and will be taken
1510 * off.
1511 *
1512 * This means that fallback selection must not select !active CPUs.
1513 * And can assume that any active CPU must be online. Conversely
1514 * select_task_rq() below may allow selection of !active CPUs in order
1515 * to satisfy the above rules.
30da688e 1516 */
5da9a0fb
PZ
1517static int select_fallback_rq(int cpu, struct task_struct *p)
1518{
aa00d89c
TC
1519 int nid = cpu_to_node(cpu);
1520 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1521 enum { cpuset, possible, fail } state = cpuset;
1522 int dest_cpu;
5da9a0fb 1523
aa00d89c
TC
1524 /*
1525 * If the node that the cpu is on has been offlined, cpu_to_node()
1526 * will return -1. There is no cpu on the node, and we should
1527 * select the cpu on the other node.
1528 */
1529 if (nid != -1) {
1530 nodemask = cpumask_of_node(nid);
1531
1532 /* Look for allowed, online CPU in same node. */
1533 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1534 if (!cpu_active(dest_cpu))
1535 continue;
1536 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1537 return dest_cpu;
1538 }
2baab4e9 1539 }
5da9a0fb 1540
2baab4e9
PZ
1541 for (;;) {
1542 /* Any allowed, online CPU? */
e3831edd 1543 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1544 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1545 continue;
1546 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1547 continue;
1548 goto out;
1549 }
5da9a0fb 1550
e73e85f0 1551 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1552 switch (state) {
1553 case cpuset:
e73e85f0
ON
1554 if (IS_ENABLED(CONFIG_CPUSETS)) {
1555 cpuset_cpus_allowed_fallback(p);
1556 state = possible;
1557 break;
1558 }
1559 /* fall-through */
2baab4e9
PZ
1560 case possible:
1561 do_set_cpus_allowed(p, cpu_possible_mask);
1562 state = fail;
1563 break;
1564
1565 case fail:
1566 BUG();
1567 break;
1568 }
1569 }
1570
1571out:
1572 if (state != cpuset) {
1573 /*
1574 * Don't tell them about moving exiting tasks or
1575 * kernel threads (both mm NULL), since they never
1576 * leave kernel.
1577 */
1578 if (p->mm && printk_ratelimit()) {
aac74dc4 1579 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1580 task_pid_nr(p), p->comm, cpu);
1581 }
5da9a0fb
PZ
1582 }
1583
1584 return dest_cpu;
1585}
1586
e2912009 1587/*
013fdb80 1588 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1589 */
970b13ba 1590static inline
ac66f547 1591int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1592{
cbce1a68
PZ
1593 lockdep_assert_held(&p->pi_lock);
1594
50605ffb 1595 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1596 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1597 else
1598 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1599
1600 /*
1601 * In order not to call set_task_cpu() on a blocking task we need
1602 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1603 * cpu.
1604 *
1605 * Since this is common to all placement strategies, this lives here.
1606 *
1607 * [ this allows ->select_task() to simply return task_cpu(p) and
1608 * not worry about this generic constraint ]
1609 */
fa17b507 1610 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1611 !cpu_online(cpu)))
5da9a0fb 1612 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1613
1614 return cpu;
970b13ba 1615}
09a40af5
MG
1616
1617static void update_avg(u64 *avg, u64 sample)
1618{
1619 s64 diff = sample - *avg;
1620 *avg += diff >> 3;
1621}
25834c73
PZ
1622
1623#else
1624
1625static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1626 const struct cpumask *new_mask, bool check)
1627{
1628 return set_cpus_allowed_ptr(p, new_mask);
1629}
1630
5cc389bc 1631#endif /* CONFIG_SMP */
970b13ba 1632
d7c01d27 1633static void
b84cb5df 1634ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1635{
4fa8d299 1636 struct rq *rq;
b84cb5df 1637
4fa8d299
JP
1638 if (!schedstat_enabled())
1639 return;
1640
1641 rq = this_rq();
d7c01d27 1642
4fa8d299
JP
1643#ifdef CONFIG_SMP
1644 if (cpu == rq->cpu) {
ae92882e
JP
1645 schedstat_inc(rq->ttwu_local);
1646 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1647 } else {
1648 struct sched_domain *sd;
1649
ae92882e 1650 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1651 rcu_read_lock();
4fa8d299 1652 for_each_domain(rq->cpu, sd) {
d7c01d27 1653 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1654 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1655 break;
1656 }
1657 }
057f3fad 1658 rcu_read_unlock();
d7c01d27 1659 }
f339b9dc
PZ
1660
1661 if (wake_flags & WF_MIGRATED)
ae92882e 1662 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1663#endif /* CONFIG_SMP */
1664
ae92882e
JP
1665 schedstat_inc(rq->ttwu_count);
1666 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1667
1668 if (wake_flags & WF_SYNC)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1670}
1671
1de64443 1672static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1673{
9ed3811a 1674 activate_task(rq, p, en_flags);
da0c1e65 1675 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1676
1677 /* if a worker is waking up, notify workqueue */
1678 if (p->flags & PF_WQ_WORKER)
1679 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1680}
1681
23f41eeb
PZ
1682/*
1683 * Mark the task runnable and perform wakeup-preemption.
1684 */
e7904a28
PZ
1685static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1686 struct pin_cookie cookie)
9ed3811a 1687{
9ed3811a 1688 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1689 p->state = TASK_RUNNING;
fbd705a0
PZ
1690 trace_sched_wakeup(p);
1691
9ed3811a 1692#ifdef CONFIG_SMP
4c9a4bc8
PZ
1693 if (p->sched_class->task_woken) {
1694 /*
cbce1a68
PZ
1695 * Our task @p is fully woken up and running; so its safe to
1696 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1697 */
e7904a28 1698 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1699 p->sched_class->task_woken(rq, p);
e7904a28 1700 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1701 }
9ed3811a 1702
e69c6341 1703 if (rq->idle_stamp) {
78becc27 1704 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1705 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1706
abfafa54
JL
1707 update_avg(&rq->avg_idle, delta);
1708
1709 if (rq->avg_idle > max)
9ed3811a 1710 rq->avg_idle = max;
abfafa54 1711
9ed3811a
TH
1712 rq->idle_stamp = 0;
1713 }
1714#endif
1715}
1716
c05fbafb 1717static void
e7904a28
PZ
1718ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1719 struct pin_cookie cookie)
c05fbafb 1720{
b5179ac7
PZ
1721 int en_flags = ENQUEUE_WAKEUP;
1722
cbce1a68
PZ
1723 lockdep_assert_held(&rq->lock);
1724
c05fbafb
PZ
1725#ifdef CONFIG_SMP
1726 if (p->sched_contributes_to_load)
1727 rq->nr_uninterruptible--;
b5179ac7 1728
b5179ac7 1729 if (wake_flags & WF_MIGRATED)
59efa0ba 1730 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1731#endif
1732
b5179ac7 1733 ttwu_activate(rq, p, en_flags);
e7904a28 1734 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1735}
1736
1737/*
1738 * Called in case the task @p isn't fully descheduled from its runqueue,
1739 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1740 * since all we need to do is flip p->state to TASK_RUNNING, since
1741 * the task is still ->on_rq.
1742 */
1743static int ttwu_remote(struct task_struct *p, int wake_flags)
1744{
eb580751 1745 struct rq_flags rf;
c05fbafb
PZ
1746 struct rq *rq;
1747 int ret = 0;
1748
eb580751 1749 rq = __task_rq_lock(p, &rf);
da0c1e65 1750 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1751 /* check_preempt_curr() may use rq clock */
1752 update_rq_clock(rq);
e7904a28 1753 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1754 ret = 1;
1755 }
eb580751 1756 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1757
1758 return ret;
1759}
1760
317f3941 1761#ifdef CONFIG_SMP
e3baac47 1762void sched_ttwu_pending(void)
317f3941
PZ
1763{
1764 struct rq *rq = this_rq();
fa14ff4a 1765 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1766 struct pin_cookie cookie;
fa14ff4a 1767 struct task_struct *p;
e3baac47 1768 unsigned long flags;
317f3941 1769
e3baac47
PZ
1770 if (!llist)
1771 return;
1772
1773 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1774 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1775
fa14ff4a 1776 while (llist) {
b7e7ade3
PZ
1777 int wake_flags = 0;
1778
fa14ff4a
PZ
1779 p = llist_entry(llist, struct task_struct, wake_entry);
1780 llist = llist_next(llist);
b7e7ade3
PZ
1781
1782 if (p->sched_remote_wakeup)
1783 wake_flags = WF_MIGRATED;
1784
1785 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1786 }
1787
e7904a28 1788 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1789 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1790}
1791
1792void scheduler_ipi(void)
1793{
f27dde8d
PZ
1794 /*
1795 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1796 * TIF_NEED_RESCHED remotely (for the first time) will also send
1797 * this IPI.
1798 */
8cb75e0c 1799 preempt_fold_need_resched();
f27dde8d 1800
fd2ac4f4 1801 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1802 return;
1803
1804 /*
1805 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1806 * traditionally all their work was done from the interrupt return
1807 * path. Now that we actually do some work, we need to make sure
1808 * we do call them.
1809 *
1810 * Some archs already do call them, luckily irq_enter/exit nest
1811 * properly.
1812 *
1813 * Arguably we should visit all archs and update all handlers,
1814 * however a fair share of IPIs are still resched only so this would
1815 * somewhat pessimize the simple resched case.
1816 */
1817 irq_enter();
fa14ff4a 1818 sched_ttwu_pending();
ca38062e
SS
1819
1820 /*
1821 * Check if someone kicked us for doing the nohz idle load balance.
1822 */
873b4c65 1823 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1824 this_rq()->idle_balance = 1;
ca38062e 1825 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1826 }
c5d753a5 1827 irq_exit();
317f3941
PZ
1828}
1829
b7e7ade3 1830static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1831{
e3baac47
PZ
1832 struct rq *rq = cpu_rq(cpu);
1833
b7e7ade3
PZ
1834 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1835
e3baac47
PZ
1836 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1837 if (!set_nr_if_polling(rq->idle))
1838 smp_send_reschedule(cpu);
1839 else
1840 trace_sched_wake_idle_without_ipi(cpu);
1841 }
317f3941 1842}
d6aa8f85 1843
f6be8af1
CL
1844void wake_up_if_idle(int cpu)
1845{
1846 struct rq *rq = cpu_rq(cpu);
1847 unsigned long flags;
1848
fd7de1e8
AL
1849 rcu_read_lock();
1850
1851 if (!is_idle_task(rcu_dereference(rq->curr)))
1852 goto out;
f6be8af1
CL
1853
1854 if (set_nr_if_polling(rq->idle)) {
1855 trace_sched_wake_idle_without_ipi(cpu);
1856 } else {
1857 raw_spin_lock_irqsave(&rq->lock, flags);
1858 if (is_idle_task(rq->curr))
1859 smp_send_reschedule(cpu);
1860 /* Else cpu is not in idle, do nothing here */
1861 raw_spin_unlock_irqrestore(&rq->lock, flags);
1862 }
fd7de1e8
AL
1863
1864out:
1865 rcu_read_unlock();
f6be8af1
CL
1866}
1867
39be3501 1868bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1869{
1870 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1871}
d6aa8f85 1872#endif /* CONFIG_SMP */
317f3941 1873
b5179ac7 1874static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1875{
1876 struct rq *rq = cpu_rq(cpu);
e7904a28 1877 struct pin_cookie cookie;
c05fbafb 1878
17d9f311 1879#if defined(CONFIG_SMP)
39be3501 1880 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1881 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1882 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1883 return;
1884 }
1885#endif
1886
c05fbafb 1887 raw_spin_lock(&rq->lock);
e7904a28 1888 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1889 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1890 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1891 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1892}
1893
8643cda5
PZ
1894/*
1895 * Notes on Program-Order guarantees on SMP systems.
1896 *
1897 * MIGRATION
1898 *
1899 * The basic program-order guarantee on SMP systems is that when a task [t]
1900 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1901 * execution on its new cpu [c1].
1902 *
1903 * For migration (of runnable tasks) this is provided by the following means:
1904 *
1905 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1906 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1907 * rq(c1)->lock (if not at the same time, then in that order).
1908 * C) LOCK of the rq(c1)->lock scheduling in task
1909 *
1910 * Transitivity guarantees that B happens after A and C after B.
1911 * Note: we only require RCpc transitivity.
1912 * Note: the cpu doing B need not be c0 or c1
1913 *
1914 * Example:
1915 *
1916 * CPU0 CPU1 CPU2
1917 *
1918 * LOCK rq(0)->lock
1919 * sched-out X
1920 * sched-in Y
1921 * UNLOCK rq(0)->lock
1922 *
1923 * LOCK rq(0)->lock // orders against CPU0
1924 * dequeue X
1925 * UNLOCK rq(0)->lock
1926 *
1927 * LOCK rq(1)->lock
1928 * enqueue X
1929 * UNLOCK rq(1)->lock
1930 *
1931 * LOCK rq(1)->lock // orders against CPU2
1932 * sched-out Z
1933 * sched-in X
1934 * UNLOCK rq(1)->lock
1935 *
1936 *
1937 * BLOCKING -- aka. SLEEP + WAKEUP
1938 *
1939 * For blocking we (obviously) need to provide the same guarantee as for
1940 * migration. However the means are completely different as there is no lock
1941 * chain to provide order. Instead we do:
1942 *
1943 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1944 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1945 *
1946 * Example:
1947 *
1948 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1949 *
1950 * LOCK rq(0)->lock LOCK X->pi_lock
1951 * dequeue X
1952 * sched-out X
1953 * smp_store_release(X->on_cpu, 0);
1954 *
1f03e8d2 1955 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1956 * X->state = WAKING
1957 * set_task_cpu(X,2)
1958 *
1959 * LOCK rq(2)->lock
1960 * enqueue X
1961 * X->state = RUNNING
1962 * UNLOCK rq(2)->lock
1963 *
1964 * LOCK rq(2)->lock // orders against CPU1
1965 * sched-out Z
1966 * sched-in X
1967 * UNLOCK rq(2)->lock
1968 *
1969 * UNLOCK X->pi_lock
1970 * UNLOCK rq(0)->lock
1971 *
1972 *
1973 * However; for wakeups there is a second guarantee we must provide, namely we
1974 * must observe the state that lead to our wakeup. That is, not only must our
1975 * task observe its own prior state, it must also observe the stores prior to
1976 * its wakeup.
1977 *
1978 * This means that any means of doing remote wakeups must order the CPU doing
1979 * the wakeup against the CPU the task is going to end up running on. This,
1980 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1981 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1982 *
1983 */
1984
9ed3811a 1985/**
1da177e4 1986 * try_to_wake_up - wake up a thread
9ed3811a 1987 * @p: the thread to be awakened
1da177e4 1988 * @state: the mask of task states that can be woken
9ed3811a 1989 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1990 *
1991 * Put it on the run-queue if it's not already there. The "current"
1992 * thread is always on the run-queue (except when the actual
1993 * re-schedule is in progress), and as such you're allowed to do
1994 * the simpler "current->state = TASK_RUNNING" to mark yourself
1995 * runnable without the overhead of this.
1996 *
e69f6186 1997 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1998 * or @state didn't match @p's state.
1da177e4 1999 */
e4a52bcb
PZ
2000static int
2001try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2002{
1da177e4 2003 unsigned long flags;
c05fbafb 2004 int cpu, success = 0;
2398f2c6 2005
e0acd0a6
ON
2006 /*
2007 * If we are going to wake up a thread waiting for CONDITION we
2008 * need to ensure that CONDITION=1 done by the caller can not be
2009 * reordered with p->state check below. This pairs with mb() in
2010 * set_current_state() the waiting thread does.
2011 */
2012 smp_mb__before_spinlock();
013fdb80 2013 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2014 if (!(p->state & state))
1da177e4
LT
2015 goto out;
2016
fbd705a0
PZ
2017 trace_sched_waking(p);
2018
c05fbafb 2019 success = 1; /* we're going to change ->state */
1da177e4 2020 cpu = task_cpu(p);
1da177e4 2021
135e8c92
BS
2022 /*
2023 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2024 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2025 * in smp_cond_load_acquire() below.
2026 *
2027 * sched_ttwu_pending() try_to_wake_up()
2028 * [S] p->on_rq = 1; [L] P->state
2029 * UNLOCK rq->lock -----.
2030 * \
2031 * +--- RMB
2032 * schedule() /
2033 * LOCK rq->lock -----'
2034 * UNLOCK rq->lock
2035 *
2036 * [task p]
2037 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2038 *
2039 * Pairs with the UNLOCK+LOCK on rq->lock from the
2040 * last wakeup of our task and the schedule that got our task
2041 * current.
2042 */
2043 smp_rmb();
c05fbafb
PZ
2044 if (p->on_rq && ttwu_remote(p, wake_flags))
2045 goto stat;
1da177e4 2046
1da177e4 2047#ifdef CONFIG_SMP
ecf7d01c
PZ
2048 /*
2049 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2050 * possible to, falsely, observe p->on_cpu == 0.
2051 *
2052 * One must be running (->on_cpu == 1) in order to remove oneself
2053 * from the runqueue.
2054 *
2055 * [S] ->on_cpu = 1; [L] ->on_rq
2056 * UNLOCK rq->lock
2057 * RMB
2058 * LOCK rq->lock
2059 * [S] ->on_rq = 0; [L] ->on_cpu
2060 *
2061 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2062 * from the consecutive calls to schedule(); the first switching to our
2063 * task, the second putting it to sleep.
2064 */
2065 smp_rmb();
2066
e9c84311 2067 /*
c05fbafb
PZ
2068 * If the owning (remote) cpu is still in the middle of schedule() with
2069 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2070 *
2071 * Pairs with the smp_store_release() in finish_lock_switch().
2072 *
2073 * This ensures that tasks getting woken will be fully ordered against
2074 * their previous state and preserve Program Order.
0970d299 2075 */
1f03e8d2 2076 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2077
a8e4f2ea 2078 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2079 p->state = TASK_WAKING;
e7693a36 2080
ac66f547 2081 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2082 if (task_cpu(p) != cpu) {
2083 wake_flags |= WF_MIGRATED;
e4a52bcb 2084 set_task_cpu(p, cpu);
f339b9dc 2085 }
1da177e4 2086#endif /* CONFIG_SMP */
1da177e4 2087
b5179ac7 2088 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2089stat:
4fa8d299 2090 ttwu_stat(p, cpu, wake_flags);
1da177e4 2091out:
013fdb80 2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2093
2094 return success;
2095}
2096
21aa9af0
TH
2097/**
2098 * try_to_wake_up_local - try to wake up a local task with rq lock held
2099 * @p: the thread to be awakened
9279e0d2 2100 * @cookie: context's cookie for pinning
21aa9af0 2101 *
2acca55e 2102 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2103 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2104 * the current task.
21aa9af0 2105 */
e7904a28 2106static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2107{
2108 struct rq *rq = task_rq(p);
21aa9af0 2109
383efcd0
TH
2110 if (WARN_ON_ONCE(rq != this_rq()) ||
2111 WARN_ON_ONCE(p == current))
2112 return;
2113
21aa9af0
TH
2114 lockdep_assert_held(&rq->lock);
2115
2acca55e 2116 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2117 /*
2118 * This is OK, because current is on_cpu, which avoids it being
2119 * picked for load-balance and preemption/IRQs are still
2120 * disabled avoiding further scheduler activity on it and we've
2121 * not yet picked a replacement task.
2122 */
e7904a28 2123 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2124 raw_spin_unlock(&rq->lock);
2125 raw_spin_lock(&p->pi_lock);
2126 raw_spin_lock(&rq->lock);
e7904a28 2127 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2128 }
2129
21aa9af0 2130 if (!(p->state & TASK_NORMAL))
2acca55e 2131 goto out;
21aa9af0 2132
fbd705a0
PZ
2133 trace_sched_waking(p);
2134
da0c1e65 2135 if (!task_on_rq_queued(p))
d7c01d27
PZ
2136 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2137
e7904a28 2138 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2139 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2140out:
2141 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2142}
2143
50fa610a
DH
2144/**
2145 * wake_up_process - Wake up a specific process
2146 * @p: The process to be woken up.
2147 *
2148 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2149 * processes.
2150 *
2151 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2152 *
2153 * It may be assumed that this function implies a write memory barrier before
2154 * changing the task state if and only if any tasks are woken up.
2155 */
7ad5b3a5 2156int wake_up_process(struct task_struct *p)
1da177e4 2157{
9067ac85 2158 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2159}
1da177e4
LT
2160EXPORT_SYMBOL(wake_up_process);
2161
7ad5b3a5 2162int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2163{
2164 return try_to_wake_up(p, state, 0);
2165}
2166
a5e7be3b
JL
2167/*
2168 * This function clears the sched_dl_entity static params.
2169 */
2170void __dl_clear_params(struct task_struct *p)
2171{
2172 struct sched_dl_entity *dl_se = &p->dl;
2173
2174 dl_se->dl_runtime = 0;
2175 dl_se->dl_deadline = 0;
2176 dl_se->dl_period = 0;
2177 dl_se->flags = 0;
2178 dl_se->dl_bw = 0;
40767b0d
PZ
2179
2180 dl_se->dl_throttled = 0;
40767b0d 2181 dl_se->dl_yielded = 0;
a5e7be3b
JL
2182}
2183
1da177e4
LT
2184/*
2185 * Perform scheduler related setup for a newly forked process p.
2186 * p is forked by current.
dd41f596
IM
2187 *
2188 * __sched_fork() is basic setup used by init_idle() too:
2189 */
5e1576ed 2190static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2191{
fd2f4419
PZ
2192 p->on_rq = 0;
2193
2194 p->se.on_rq = 0;
dd41f596
IM
2195 p->se.exec_start = 0;
2196 p->se.sum_exec_runtime = 0;
f6cf891c 2197 p->se.prev_sum_exec_runtime = 0;
6c594c21 2198 p->se.nr_migrations = 0;
da7a735e 2199 p->se.vruntime = 0;
fd2f4419 2200 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2201
ad936d86
BP
2202#ifdef CONFIG_FAIR_GROUP_SCHED
2203 p->se.cfs_rq = NULL;
2204#endif
2205
6cfb0d5d 2206#ifdef CONFIG_SCHEDSTATS
cb251765 2207 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2208 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2209#endif
476d139c 2210
aab03e05 2211 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2212 init_dl_task_timer(&p->dl);
a5e7be3b 2213 __dl_clear_params(p);
aab03e05 2214
fa717060 2215 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2216 p->rt.timeout = 0;
2217 p->rt.time_slice = sched_rr_timeslice;
2218 p->rt.on_rq = 0;
2219 p->rt.on_list = 0;
476d139c 2220
e107be36
AK
2221#ifdef CONFIG_PREEMPT_NOTIFIERS
2222 INIT_HLIST_HEAD(&p->preempt_notifiers);
2223#endif
cbee9f88
PZ
2224
2225#ifdef CONFIG_NUMA_BALANCING
2226 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2227 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2228 p->mm->numa_scan_seq = 0;
2229 }
2230
5e1576ed
RR
2231 if (clone_flags & CLONE_VM)
2232 p->numa_preferred_nid = current->numa_preferred_nid;
2233 else
2234 p->numa_preferred_nid = -1;
2235
cbee9f88
PZ
2236 p->node_stamp = 0ULL;
2237 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2238 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2239 p->numa_work.next = &p->numa_work;
44dba3d5 2240 p->numa_faults = NULL;
7e2703e6
RR
2241 p->last_task_numa_placement = 0;
2242 p->last_sum_exec_runtime = 0;
8c8a743c 2243
8c8a743c 2244 p->numa_group = NULL;
cbee9f88 2245#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2246}
2247
2a595721
SD
2248DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2249
1a687c2e 2250#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2251
1a687c2e
MG
2252void set_numabalancing_state(bool enabled)
2253{
2254 if (enabled)
2a595721 2255 static_branch_enable(&sched_numa_balancing);
1a687c2e 2256 else
2a595721 2257 static_branch_disable(&sched_numa_balancing);
1a687c2e 2258}
54a43d54
AK
2259
2260#ifdef CONFIG_PROC_SYSCTL
2261int sysctl_numa_balancing(struct ctl_table *table, int write,
2262 void __user *buffer, size_t *lenp, loff_t *ppos)
2263{
2264 struct ctl_table t;
2265 int err;
2a595721 2266 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2267
2268 if (write && !capable(CAP_SYS_ADMIN))
2269 return -EPERM;
2270
2271 t = *table;
2272 t.data = &state;
2273 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2274 if (err < 0)
2275 return err;
2276 if (write)
2277 set_numabalancing_state(state);
2278 return err;
2279}
2280#endif
2281#endif
dd41f596 2282
4698f88c
JP
2283#ifdef CONFIG_SCHEDSTATS
2284
cb251765 2285DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2286static bool __initdata __sched_schedstats = false;
cb251765 2287
cb251765
MG
2288static void set_schedstats(bool enabled)
2289{
2290 if (enabled)
2291 static_branch_enable(&sched_schedstats);
2292 else
2293 static_branch_disable(&sched_schedstats);
2294}
2295
2296void force_schedstat_enabled(void)
2297{
2298 if (!schedstat_enabled()) {
2299 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2300 static_branch_enable(&sched_schedstats);
2301 }
2302}
2303
2304static int __init setup_schedstats(char *str)
2305{
2306 int ret = 0;
2307 if (!str)
2308 goto out;
2309
4698f88c
JP
2310 /*
2311 * This code is called before jump labels have been set up, so we can't
2312 * change the static branch directly just yet. Instead set a temporary
2313 * variable so init_schedstats() can do it later.
2314 */
cb251765 2315 if (!strcmp(str, "enable")) {
4698f88c 2316 __sched_schedstats = true;
cb251765
MG
2317 ret = 1;
2318 } else if (!strcmp(str, "disable")) {
4698f88c 2319 __sched_schedstats = false;
cb251765
MG
2320 ret = 1;
2321 }
2322out:
2323 if (!ret)
2324 pr_warn("Unable to parse schedstats=\n");
2325
2326 return ret;
2327}
2328__setup("schedstats=", setup_schedstats);
2329
4698f88c
JP
2330static void __init init_schedstats(void)
2331{
2332 set_schedstats(__sched_schedstats);
2333}
2334
cb251765
MG
2335#ifdef CONFIG_PROC_SYSCTL
2336int sysctl_schedstats(struct ctl_table *table, int write,
2337 void __user *buffer, size_t *lenp, loff_t *ppos)
2338{
2339 struct ctl_table t;
2340 int err;
2341 int state = static_branch_likely(&sched_schedstats);
2342
2343 if (write && !capable(CAP_SYS_ADMIN))
2344 return -EPERM;
2345
2346 t = *table;
2347 t.data = &state;
2348 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2349 if (err < 0)
2350 return err;
2351 if (write)
2352 set_schedstats(state);
2353 return err;
2354}
4698f88c
JP
2355#endif /* CONFIG_PROC_SYSCTL */
2356#else /* !CONFIG_SCHEDSTATS */
2357static inline void init_schedstats(void) {}
2358#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2359
2360/*
2361 * fork()/clone()-time setup:
2362 */
aab03e05 2363int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2364{
0122ec5b 2365 unsigned long flags;
dd41f596
IM
2366 int cpu = get_cpu();
2367
5e1576ed 2368 __sched_fork(clone_flags, p);
06b83b5f 2369 /*
7dc603c9 2370 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2371 * nobody will actually run it, and a signal or other external
2372 * event cannot wake it up and insert it on the runqueue either.
2373 */
7dc603c9 2374 p->state = TASK_NEW;
dd41f596 2375
c350a04e
MG
2376 /*
2377 * Make sure we do not leak PI boosting priority to the child.
2378 */
2379 p->prio = current->normal_prio;
2380
b9dc29e7
MG
2381 /*
2382 * Revert to default priority/policy on fork if requested.
2383 */
2384 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2385 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2386 p->policy = SCHED_NORMAL;
6c697bdf 2387 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2388 p->rt_priority = 0;
2389 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2390 p->static_prio = NICE_TO_PRIO(0);
2391
2392 p->prio = p->normal_prio = __normal_prio(p);
2393 set_load_weight(p);
6c697bdf 2394
b9dc29e7
MG
2395 /*
2396 * We don't need the reset flag anymore after the fork. It has
2397 * fulfilled its duty:
2398 */
2399 p->sched_reset_on_fork = 0;
2400 }
ca94c442 2401
aab03e05
DF
2402 if (dl_prio(p->prio)) {
2403 put_cpu();
2404 return -EAGAIN;
2405 } else if (rt_prio(p->prio)) {
2406 p->sched_class = &rt_sched_class;
2407 } else {
2ddbf952 2408 p->sched_class = &fair_sched_class;
aab03e05 2409 }
b29739f9 2410
7dc603c9 2411 init_entity_runnable_average(&p->se);
cd29fe6f 2412
86951599
PZ
2413 /*
2414 * The child is not yet in the pid-hash so no cgroup attach races,
2415 * and the cgroup is pinned to this child due to cgroup_fork()
2416 * is ran before sched_fork().
2417 *
2418 * Silence PROVE_RCU.
2419 */
0122ec5b 2420 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2421 /*
2422 * We're setting the cpu for the first time, we don't migrate,
2423 * so use __set_task_cpu().
2424 */
2425 __set_task_cpu(p, cpu);
2426 if (p->sched_class->task_fork)
2427 p->sched_class->task_fork(p);
0122ec5b 2428 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2429
f6db8347 2430#ifdef CONFIG_SCHED_INFO
dd41f596 2431 if (likely(sched_info_on()))
52f17b6c 2432 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2433#endif
3ca7a440
PZ
2434#if defined(CONFIG_SMP)
2435 p->on_cpu = 0;
4866cde0 2436#endif
01028747 2437 init_task_preempt_count(p);
806c09a7 2438#ifdef CONFIG_SMP
917b627d 2439 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2440 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2441#endif
917b627d 2442
476d139c 2443 put_cpu();
aab03e05 2444 return 0;
1da177e4
LT
2445}
2446
332ac17e
DF
2447unsigned long to_ratio(u64 period, u64 runtime)
2448{
2449 if (runtime == RUNTIME_INF)
2450 return 1ULL << 20;
2451
2452 /*
2453 * Doing this here saves a lot of checks in all
2454 * the calling paths, and returning zero seems
2455 * safe for them anyway.
2456 */
2457 if (period == 0)
2458 return 0;
2459
2460 return div64_u64(runtime << 20, period);
2461}
2462
2463#ifdef CONFIG_SMP
2464inline struct dl_bw *dl_bw_of(int i)
2465{
f78f5b90
PM
2466 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2467 "sched RCU must be held");
332ac17e
DF
2468 return &cpu_rq(i)->rd->dl_bw;
2469}
2470
de212f18 2471static inline int dl_bw_cpus(int i)
332ac17e 2472{
de212f18
PZ
2473 struct root_domain *rd = cpu_rq(i)->rd;
2474 int cpus = 0;
2475
f78f5b90
PM
2476 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2477 "sched RCU must be held");
de212f18
PZ
2478 for_each_cpu_and(i, rd->span, cpu_active_mask)
2479 cpus++;
2480
2481 return cpus;
332ac17e
DF
2482}
2483#else
2484inline struct dl_bw *dl_bw_of(int i)
2485{
2486 return &cpu_rq(i)->dl.dl_bw;
2487}
2488
de212f18 2489static inline int dl_bw_cpus(int i)
332ac17e
DF
2490{
2491 return 1;
2492}
2493#endif
2494
332ac17e
DF
2495/*
2496 * We must be sure that accepting a new task (or allowing changing the
2497 * parameters of an existing one) is consistent with the bandwidth
2498 * constraints. If yes, this function also accordingly updates the currently
2499 * allocated bandwidth to reflect the new situation.
2500 *
2501 * This function is called while holding p's rq->lock.
40767b0d
PZ
2502 *
2503 * XXX we should delay bw change until the task's 0-lag point, see
2504 * __setparam_dl().
332ac17e
DF
2505 */
2506static int dl_overflow(struct task_struct *p, int policy,
2507 const struct sched_attr *attr)
2508{
2509
2510 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2511 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2512 u64 runtime = attr->sched_runtime;
2513 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2514 int cpus, err = -1;
332ac17e 2515
fec148c0
XP
2516 /* !deadline task may carry old deadline bandwidth */
2517 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2518 return 0;
2519
2520 /*
2521 * Either if a task, enters, leave, or stays -deadline but changes
2522 * its parameters, we may need to update accordingly the total
2523 * allocated bandwidth of the container.
2524 */
2525 raw_spin_lock(&dl_b->lock);
de212f18 2526 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2527 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2528 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2529 __dl_add(dl_b, new_bw);
2530 err = 0;
2531 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2532 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2533 __dl_clear(dl_b, p->dl.dl_bw);
2534 __dl_add(dl_b, new_bw);
2535 err = 0;
2536 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2537 __dl_clear(dl_b, p->dl.dl_bw);
2538 err = 0;
2539 }
2540 raw_spin_unlock(&dl_b->lock);
2541
2542 return err;
2543}
2544
2545extern void init_dl_bw(struct dl_bw *dl_b);
2546
1da177e4
LT
2547/*
2548 * wake_up_new_task - wake up a newly created task for the first time.
2549 *
2550 * This function will do some initial scheduler statistics housekeeping
2551 * that must be done for every newly created context, then puts the task
2552 * on the runqueue and wakes it.
2553 */
3e51e3ed 2554void wake_up_new_task(struct task_struct *p)
1da177e4 2555{
eb580751 2556 struct rq_flags rf;
dd41f596 2557 struct rq *rq;
fabf318e 2558
eb580751 2559 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2560 p->state = TASK_RUNNING;
fabf318e
PZ
2561#ifdef CONFIG_SMP
2562 /*
2563 * Fork balancing, do it here and not earlier because:
2564 * - cpus_allowed can change in the fork path
2565 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2566 *
2567 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2568 * as we're not fully set-up yet.
fabf318e 2569 */
e210bffd 2570 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2571#endif
b7fa30c9 2572 rq = __task_rq_lock(p, &rf);
2b8c41da 2573 post_init_entity_util_avg(&p->se);
0017d735 2574
cd29fe6f 2575 activate_task(rq, p, 0);
da0c1e65 2576 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2577 trace_sched_wakeup_new(p);
a7558e01 2578 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2579#ifdef CONFIG_SMP
0aaafaab
PZ
2580 if (p->sched_class->task_woken) {
2581 /*
2582 * Nothing relies on rq->lock after this, so its fine to
2583 * drop it.
2584 */
e7904a28 2585 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2586 p->sched_class->task_woken(rq, p);
e7904a28 2587 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2588 }
9a897c5a 2589#endif
eb580751 2590 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2591}
2592
e107be36
AK
2593#ifdef CONFIG_PREEMPT_NOTIFIERS
2594
1cde2930
PZ
2595static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2596
2ecd9d29
PZ
2597void preempt_notifier_inc(void)
2598{
2599 static_key_slow_inc(&preempt_notifier_key);
2600}
2601EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2602
2603void preempt_notifier_dec(void)
2604{
2605 static_key_slow_dec(&preempt_notifier_key);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2608
e107be36 2609/**
80dd99b3 2610 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2611 * @notifier: notifier struct to register
e107be36
AK
2612 */
2613void preempt_notifier_register(struct preempt_notifier *notifier)
2614{
2ecd9d29
PZ
2615 if (!static_key_false(&preempt_notifier_key))
2616 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2617
e107be36
AK
2618 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2619}
2620EXPORT_SYMBOL_GPL(preempt_notifier_register);
2621
2622/**
2623 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2624 * @notifier: notifier struct to unregister
e107be36 2625 *
d84525a8 2626 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2627 */
2628void preempt_notifier_unregister(struct preempt_notifier *notifier)
2629{
2630 hlist_del(&notifier->link);
2631}
2632EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2633
1cde2930 2634static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2635{
2636 struct preempt_notifier *notifier;
e107be36 2637
b67bfe0d 2638 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2639 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2640}
2641
1cde2930
PZ
2642static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644 if (static_key_false(&preempt_notifier_key))
2645 __fire_sched_in_preempt_notifiers(curr);
2646}
2647
e107be36 2648static void
1cde2930
PZ
2649__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2650 struct task_struct *next)
e107be36
AK
2651{
2652 struct preempt_notifier *notifier;
e107be36 2653
b67bfe0d 2654 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2655 notifier->ops->sched_out(notifier, next);
2656}
2657
1cde2930
PZ
2658static __always_inline void
2659fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2661{
2662 if (static_key_false(&preempt_notifier_key))
2663 __fire_sched_out_preempt_notifiers(curr, next);
2664}
2665
6d6bc0ad 2666#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2667
1cde2930 2668static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2669{
2670}
2671
1cde2930 2672static inline void
e107be36
AK
2673fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675{
2676}
2677
6d6bc0ad 2678#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2679
4866cde0
NP
2680/**
2681 * prepare_task_switch - prepare to switch tasks
2682 * @rq: the runqueue preparing to switch
421cee29 2683 * @prev: the current task that is being switched out
4866cde0
NP
2684 * @next: the task we are going to switch to.
2685 *
2686 * This is called with the rq lock held and interrupts off. It must
2687 * be paired with a subsequent finish_task_switch after the context
2688 * switch.
2689 *
2690 * prepare_task_switch sets up locking and calls architecture specific
2691 * hooks.
2692 */
e107be36
AK
2693static inline void
2694prepare_task_switch(struct rq *rq, struct task_struct *prev,
2695 struct task_struct *next)
4866cde0 2696{
43148951 2697 sched_info_switch(rq, prev, next);
fe4b04fa 2698 perf_event_task_sched_out(prev, next);
e107be36 2699 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2700 prepare_lock_switch(rq, next);
2701 prepare_arch_switch(next);
2702}
2703
1da177e4
LT
2704/**
2705 * finish_task_switch - clean up after a task-switch
2706 * @prev: the thread we just switched away from.
2707 *
4866cde0
NP
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2712 *
2713 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2714 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2715 * with the lock held can cause deadlocks; see schedule() for
2716 * details.)
dfa50b60
ON
2717 *
2718 * The context switch have flipped the stack from under us and restored the
2719 * local variables which were saved when this task called schedule() in the
2720 * past. prev == current is still correct but we need to recalculate this_rq
2721 * because prev may have moved to another CPU.
1da177e4 2722 */
dfa50b60 2723static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2724 __releases(rq->lock)
2725{
dfa50b60 2726 struct rq *rq = this_rq();
1da177e4 2727 struct mm_struct *mm = rq->prev_mm;
55a101f8 2728 long prev_state;
1da177e4 2729
609ca066
PZ
2730 /*
2731 * The previous task will have left us with a preempt_count of 2
2732 * because it left us after:
2733 *
2734 * schedule()
2735 * preempt_disable(); // 1
2736 * __schedule()
2737 * raw_spin_lock_irq(&rq->lock) // 2
2738 *
2739 * Also, see FORK_PREEMPT_COUNT.
2740 */
e2bf1c4b
PZ
2741 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2742 "corrupted preempt_count: %s/%d/0x%x\n",
2743 current->comm, current->pid, preempt_count()))
2744 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2745
1da177e4
LT
2746 rq->prev_mm = NULL;
2747
2748 /*
2749 * A task struct has one reference for the use as "current".
c394cc9f 2750 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2751 * schedule one last time. The schedule call will never return, and
2752 * the scheduled task must drop that reference.
95913d97
PZ
2753 *
2754 * We must observe prev->state before clearing prev->on_cpu (in
2755 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2756 * running on another CPU and we could rave with its RUNNING -> DEAD
2757 * transition, resulting in a double drop.
1da177e4 2758 */
55a101f8 2759 prev_state = prev->state;
bf9fae9f 2760 vtime_task_switch(prev);
a8d757ef 2761 perf_event_task_sched_in(prev, current);
4866cde0 2762 finish_lock_switch(rq, prev);
01f23e16 2763 finish_arch_post_lock_switch();
e8fa1362 2764
e107be36 2765 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2766 if (mm)
2767 mmdrop(mm);
c394cc9f 2768 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2769 if (prev->sched_class->task_dead)
2770 prev->sched_class->task_dead(prev);
2771
c6fd91f0 2772 /*
2773 * Remove function-return probe instances associated with this
2774 * task and put them back on the free list.
9761eea8 2775 */
c6fd91f0 2776 kprobe_flush_task(prev);
1da177e4 2777 put_task_struct(prev);
c6fd91f0 2778 }
99e5ada9 2779
de734f89 2780 tick_nohz_task_switch();
dfa50b60 2781 return rq;
1da177e4
LT
2782}
2783
3f029d3c
GH
2784#ifdef CONFIG_SMP
2785
3f029d3c 2786/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2787static void __balance_callback(struct rq *rq)
3f029d3c 2788{
e3fca9e7
PZ
2789 struct callback_head *head, *next;
2790 void (*func)(struct rq *rq);
2791 unsigned long flags;
3f029d3c 2792
e3fca9e7
PZ
2793 raw_spin_lock_irqsave(&rq->lock, flags);
2794 head = rq->balance_callback;
2795 rq->balance_callback = NULL;
2796 while (head) {
2797 func = (void (*)(struct rq *))head->func;
2798 next = head->next;
2799 head->next = NULL;
2800 head = next;
3f029d3c 2801
e3fca9e7 2802 func(rq);
3f029d3c 2803 }
e3fca9e7
PZ
2804 raw_spin_unlock_irqrestore(&rq->lock, flags);
2805}
2806
2807static inline void balance_callback(struct rq *rq)
2808{
2809 if (unlikely(rq->balance_callback))
2810 __balance_callback(rq);
3f029d3c
GH
2811}
2812
2813#else
da19ab51 2814
e3fca9e7 2815static inline void balance_callback(struct rq *rq)
3f029d3c 2816{
1da177e4
LT
2817}
2818
3f029d3c
GH
2819#endif
2820
1da177e4
LT
2821/**
2822 * schedule_tail - first thing a freshly forked thread must call.
2823 * @prev: the thread we just switched away from.
2824 */
722a9f92 2825asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2826 __releases(rq->lock)
2827{
1a43a14a 2828 struct rq *rq;
da19ab51 2829
609ca066
PZ
2830 /*
2831 * New tasks start with FORK_PREEMPT_COUNT, see there and
2832 * finish_task_switch() for details.
2833 *
2834 * finish_task_switch() will drop rq->lock() and lower preempt_count
2835 * and the preempt_enable() will end up enabling preemption (on
2836 * PREEMPT_COUNT kernels).
2837 */
2838
dfa50b60 2839 rq = finish_task_switch(prev);
e3fca9e7 2840 balance_callback(rq);
1a43a14a 2841 preempt_enable();
70b97a7f 2842
1da177e4 2843 if (current->set_child_tid)
b488893a 2844 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2845}
2846
2847/*
dfa50b60 2848 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2849 */
04936948 2850static __always_inline struct rq *
70b97a7f 2851context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2852 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2853{
dd41f596 2854 struct mm_struct *mm, *oldmm;
1da177e4 2855
e107be36 2856 prepare_task_switch(rq, prev, next);
fe4b04fa 2857
dd41f596
IM
2858 mm = next->mm;
2859 oldmm = prev->active_mm;
9226d125
ZA
2860 /*
2861 * For paravirt, this is coupled with an exit in switch_to to
2862 * combine the page table reload and the switch backend into
2863 * one hypercall.
2864 */
224101ed 2865 arch_start_context_switch(prev);
9226d125 2866
31915ab4 2867 if (!mm) {
1da177e4
LT
2868 next->active_mm = oldmm;
2869 atomic_inc(&oldmm->mm_count);
2870 enter_lazy_tlb(oldmm, next);
2871 } else
f98db601 2872 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2873
31915ab4 2874 if (!prev->mm) {
1da177e4 2875 prev->active_mm = NULL;
1da177e4
LT
2876 rq->prev_mm = oldmm;
2877 }
3a5f5e48
IM
2878 /*
2879 * Since the runqueue lock will be released by the next
2880 * task (which is an invalid locking op but in the case
2881 * of the scheduler it's an obvious special-case), so we
2882 * do an early lockdep release here:
2883 */
e7904a28 2884 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2885 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2886
2887 /* Here we just switch the register state and the stack. */
2888 switch_to(prev, next, prev);
dd41f596 2889 barrier();
dfa50b60
ON
2890
2891 return finish_task_switch(prev);
1da177e4
LT
2892}
2893
2894/*
1c3e8264 2895 * nr_running and nr_context_switches:
1da177e4
LT
2896 *
2897 * externally visible scheduler statistics: current number of runnable
1c3e8264 2898 * threads, total number of context switches performed since bootup.
1da177e4
LT
2899 */
2900unsigned long nr_running(void)
2901{
2902 unsigned long i, sum = 0;
2903
2904 for_each_online_cpu(i)
2905 sum += cpu_rq(i)->nr_running;
2906
2907 return sum;
f711f609 2908}
1da177e4 2909
2ee507c4
TC
2910/*
2911 * Check if only the current task is running on the cpu.
00cc1633
DD
2912 *
2913 * Caution: this function does not check that the caller has disabled
2914 * preemption, thus the result might have a time-of-check-to-time-of-use
2915 * race. The caller is responsible to use it correctly, for example:
2916 *
2917 * - from a non-preemptable section (of course)
2918 *
2919 * - from a thread that is bound to a single CPU
2920 *
2921 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2922 */
2923bool single_task_running(void)
2924{
00cc1633 2925 return raw_rq()->nr_running == 1;
2ee507c4
TC
2926}
2927EXPORT_SYMBOL(single_task_running);
2928
1da177e4 2929unsigned long long nr_context_switches(void)
46cb4b7c 2930{
cc94abfc
SR
2931 int i;
2932 unsigned long long sum = 0;
46cb4b7c 2933
0a945022 2934 for_each_possible_cpu(i)
1da177e4 2935 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2936
1da177e4
LT
2937 return sum;
2938}
483b4ee6 2939
1da177e4
LT
2940unsigned long nr_iowait(void)
2941{
2942 unsigned long i, sum = 0;
483b4ee6 2943
0a945022 2944 for_each_possible_cpu(i)
1da177e4 2945 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2946
1da177e4
LT
2947 return sum;
2948}
483b4ee6 2949
8c215bd3 2950unsigned long nr_iowait_cpu(int cpu)
69d25870 2951{
8c215bd3 2952 struct rq *this = cpu_rq(cpu);
69d25870
AV
2953 return atomic_read(&this->nr_iowait);
2954}
46cb4b7c 2955
372ba8cb
MG
2956void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2957{
3289bdb4
PZ
2958 struct rq *rq = this_rq();
2959 *nr_waiters = atomic_read(&rq->nr_iowait);
2960 *load = rq->load.weight;
372ba8cb
MG
2961}
2962
dd41f596 2963#ifdef CONFIG_SMP
8a0be9ef 2964
46cb4b7c 2965/*
38022906
PZ
2966 * sched_exec - execve() is a valuable balancing opportunity, because at
2967 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2968 */
38022906 2969void sched_exec(void)
46cb4b7c 2970{
38022906 2971 struct task_struct *p = current;
1da177e4 2972 unsigned long flags;
0017d735 2973 int dest_cpu;
46cb4b7c 2974
8f42ced9 2975 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2976 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2977 if (dest_cpu == smp_processor_id())
2978 goto unlock;
38022906 2979
8f42ced9 2980 if (likely(cpu_active(dest_cpu))) {
969c7921 2981 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2982
8f42ced9
PZ
2983 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2984 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2985 return;
2986 }
0017d735 2987unlock:
8f42ced9 2988 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2989}
dd41f596 2990
1da177e4
LT
2991#endif
2992
1da177e4 2993DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2994DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2995
2996EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2997EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2998
6075620b
GG
2999/*
3000 * The function fair_sched_class.update_curr accesses the struct curr
3001 * and its field curr->exec_start; when called from task_sched_runtime(),
3002 * we observe a high rate of cache misses in practice.
3003 * Prefetching this data results in improved performance.
3004 */
3005static inline void prefetch_curr_exec_start(struct task_struct *p)
3006{
3007#ifdef CONFIG_FAIR_GROUP_SCHED
3008 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3009#else
3010 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3011#endif
3012 prefetch(curr);
3013 prefetch(&curr->exec_start);
3014}
3015
c5f8d995
HS
3016/*
3017 * Return accounted runtime for the task.
3018 * In case the task is currently running, return the runtime plus current's
3019 * pending runtime that have not been accounted yet.
3020 */
3021unsigned long long task_sched_runtime(struct task_struct *p)
3022{
eb580751 3023 struct rq_flags rf;
c5f8d995 3024 struct rq *rq;
6e998916 3025 u64 ns;
c5f8d995 3026
911b2898
PZ
3027#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3028 /*
3029 * 64-bit doesn't need locks to atomically read a 64bit value.
3030 * So we have a optimization chance when the task's delta_exec is 0.
3031 * Reading ->on_cpu is racy, but this is ok.
3032 *
3033 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3034 * If we race with it entering cpu, unaccounted time is 0. This is
3035 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3036 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3037 * been accounted, so we're correct here as well.
911b2898 3038 */
da0c1e65 3039 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3040 return p->se.sum_exec_runtime;
3041#endif
3042
eb580751 3043 rq = task_rq_lock(p, &rf);
6e998916
SG
3044 /*
3045 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3046 * project cycles that may never be accounted to this
3047 * thread, breaking clock_gettime().
3048 */
3049 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3050 prefetch_curr_exec_start(p);
6e998916
SG
3051 update_rq_clock(rq);
3052 p->sched_class->update_curr(rq);
3053 }
3054 ns = p->se.sum_exec_runtime;
eb580751 3055 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3056
3057 return ns;
3058}
48f24c4d 3059
7835b98b
CL
3060/*
3061 * This function gets called by the timer code, with HZ frequency.
3062 * We call it with interrupts disabled.
7835b98b
CL
3063 */
3064void scheduler_tick(void)
3065{
7835b98b
CL
3066 int cpu = smp_processor_id();
3067 struct rq *rq = cpu_rq(cpu);
dd41f596 3068 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3069
3070 sched_clock_tick();
dd41f596 3071
05fa785c 3072 raw_spin_lock(&rq->lock);
3e51f33f 3073 update_rq_clock(rq);
fa85ae24 3074 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3075 cpu_load_update_active(rq);
3289bdb4 3076 calc_global_load_tick(rq);
05fa785c 3077 raw_spin_unlock(&rq->lock);
7835b98b 3078
e9d2b064 3079 perf_event_task_tick();
e220d2dc 3080
e418e1c2 3081#ifdef CONFIG_SMP
6eb57e0d 3082 rq->idle_balance = idle_cpu(cpu);
7caff66f 3083 trigger_load_balance(rq);
e418e1c2 3084#endif
265f22a9 3085 rq_last_tick_reset(rq);
1da177e4
LT
3086}
3087
265f22a9
FW
3088#ifdef CONFIG_NO_HZ_FULL
3089/**
3090 * scheduler_tick_max_deferment
3091 *
3092 * Keep at least one tick per second when a single
3093 * active task is running because the scheduler doesn't
3094 * yet completely support full dynticks environment.
3095 *
3096 * This makes sure that uptime, CFS vruntime, load
3097 * balancing, etc... continue to move forward, even
3098 * with a very low granularity.
e69f6186
YB
3099 *
3100 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3101 */
3102u64 scheduler_tick_max_deferment(void)
3103{
3104 struct rq *rq = this_rq();
316c1608 3105 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3106
3107 next = rq->last_sched_tick + HZ;
3108
3109 if (time_before_eq(next, now))
3110 return 0;
3111
8fe8ff09 3112 return jiffies_to_nsecs(next - now);
1da177e4 3113}
265f22a9 3114#endif
1da177e4 3115
7e49fcce
SR
3116#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3117 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3118/*
3119 * If the value passed in is equal to the current preempt count
3120 * then we just disabled preemption. Start timing the latency.
3121 */
3122static inline void preempt_latency_start(int val)
3123{
3124 if (preempt_count() == val) {
3125 unsigned long ip = get_lock_parent_ip();
3126#ifdef CONFIG_DEBUG_PREEMPT
3127 current->preempt_disable_ip = ip;
3128#endif
3129 trace_preempt_off(CALLER_ADDR0, ip);
3130 }
3131}
7e49fcce 3132
edafe3a5 3133void preempt_count_add(int val)
1da177e4 3134{
6cd8a4bb 3135#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3136 /*
3137 * Underflow?
3138 */
9a11b49a
IM
3139 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3140 return;
6cd8a4bb 3141#endif
bdb43806 3142 __preempt_count_add(val);
6cd8a4bb 3143#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3144 /*
3145 * Spinlock count overflowing soon?
3146 */
33859f7f
MOS
3147 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3148 PREEMPT_MASK - 10);
6cd8a4bb 3149#endif
47252cfb 3150 preempt_latency_start(val);
1da177e4 3151}
bdb43806 3152EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3153NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3154
47252cfb
SR
3155/*
3156 * If the value passed in equals to the current preempt count
3157 * then we just enabled preemption. Stop timing the latency.
3158 */
3159static inline void preempt_latency_stop(int val)
3160{
3161 if (preempt_count() == val)
3162 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3163}
3164
edafe3a5 3165void preempt_count_sub(int val)
1da177e4 3166{
6cd8a4bb 3167#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3168 /*
3169 * Underflow?
3170 */
01e3eb82 3171 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3172 return;
1da177e4
LT
3173 /*
3174 * Is the spinlock portion underflowing?
3175 */
9a11b49a
IM
3176 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3177 !(preempt_count() & PREEMPT_MASK)))
3178 return;
6cd8a4bb 3179#endif
9a11b49a 3180
47252cfb 3181 preempt_latency_stop(val);
bdb43806 3182 __preempt_count_sub(val);
1da177e4 3183}
bdb43806 3184EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3185NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3186
47252cfb
SR
3187#else
3188static inline void preempt_latency_start(int val) { }
3189static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3190#endif
3191
3192/*
dd41f596 3193 * Print scheduling while atomic bug:
1da177e4 3194 */
dd41f596 3195static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3196{
d1c6d149
VN
3197 /* Save this before calling printk(), since that will clobber it */
3198 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3199
664dfa65
DJ
3200 if (oops_in_progress)
3201 return;
3202
3df0fc5b
PZ
3203 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3204 prev->comm, prev->pid, preempt_count());
838225b4 3205
dd41f596 3206 debug_show_held_locks(prev);
e21f5b15 3207 print_modules();
dd41f596
IM
3208 if (irqs_disabled())
3209 print_irqtrace_events(prev);
d1c6d149
VN
3210 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3211 && in_atomic_preempt_off()) {
8f47b187 3212 pr_err("Preemption disabled at:");
d1c6d149 3213 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3214 pr_cont("\n");
3215 }
748c7201
DBO
3216 if (panic_on_warn)
3217 panic("scheduling while atomic\n");
3218
6135fc1e 3219 dump_stack();
373d4d09 3220 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3221}
1da177e4 3222
dd41f596
IM
3223/*
3224 * Various schedule()-time debugging checks and statistics:
3225 */
3226static inline void schedule_debug(struct task_struct *prev)
3227{
0d9e2632 3228#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3229 if (task_stack_end_corrupted(prev))
3230 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3231#endif
b99def8b 3232
1dc0fffc 3233 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3234 __schedule_bug(prev);
1dc0fffc
PZ
3235 preempt_count_set(PREEMPT_DISABLED);
3236 }
b3fbab05 3237 rcu_sleep_check();
dd41f596 3238
1da177e4
LT
3239 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3240
ae92882e 3241 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3242}
3243
3244/*
3245 * Pick up the highest-prio task:
3246 */
3247static inline struct task_struct *
e7904a28 3248pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3249{
37e117c0 3250 const struct sched_class *class = &fair_sched_class;
dd41f596 3251 struct task_struct *p;
1da177e4
LT
3252
3253 /*
dd41f596
IM
3254 * Optimization: we know that if all tasks are in
3255 * the fair class we can call that function directly:
1da177e4 3256 */
37e117c0 3257 if (likely(prev->sched_class == class &&
38033c37 3258 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3259 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3260 if (unlikely(p == RETRY_TASK))
3261 goto again;
3262
3263 /* assumes fair_sched_class->next == idle_sched_class */
3264 if (unlikely(!p))
e7904a28 3265 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3266
3267 return p;
1da177e4
LT
3268 }
3269
37e117c0 3270again:
34f971f6 3271 for_each_class(class) {
e7904a28 3272 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3273 if (p) {
3274 if (unlikely(p == RETRY_TASK))
3275 goto again;
dd41f596 3276 return p;
37e117c0 3277 }
dd41f596 3278 }
34f971f6
PZ
3279
3280 BUG(); /* the idle class will always have a runnable task */
dd41f596 3281}
1da177e4 3282
dd41f596 3283/*
c259e01a 3284 * __schedule() is the main scheduler function.
edde96ea
PE
3285 *
3286 * The main means of driving the scheduler and thus entering this function are:
3287 *
3288 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3289 *
3290 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3291 * paths. For example, see arch/x86/entry_64.S.
3292 *
3293 * To drive preemption between tasks, the scheduler sets the flag in timer
3294 * interrupt handler scheduler_tick().
3295 *
3296 * 3. Wakeups don't really cause entry into schedule(). They add a
3297 * task to the run-queue and that's it.
3298 *
3299 * Now, if the new task added to the run-queue preempts the current
3300 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3301 * called on the nearest possible occasion:
3302 *
3303 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3304 *
3305 * - in syscall or exception context, at the next outmost
3306 * preempt_enable(). (this might be as soon as the wake_up()'s
3307 * spin_unlock()!)
3308 *
3309 * - in IRQ context, return from interrupt-handler to
3310 * preemptible context
3311 *
3312 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3313 * then at the next:
3314 *
3315 * - cond_resched() call
3316 * - explicit schedule() call
3317 * - return from syscall or exception to user-space
3318 * - return from interrupt-handler to user-space
bfd9b2b5 3319 *
b30f0e3f 3320 * WARNING: must be called with preemption disabled!
dd41f596 3321 */
499d7955 3322static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3323{
3324 struct task_struct *prev, *next;
67ca7bde 3325 unsigned long *switch_count;
e7904a28 3326 struct pin_cookie cookie;
dd41f596 3327 struct rq *rq;
31656519 3328 int cpu;
dd41f596 3329
dd41f596
IM
3330 cpu = smp_processor_id();
3331 rq = cpu_rq(cpu);
dd41f596 3332 prev = rq->curr;
dd41f596 3333
dd41f596 3334 schedule_debug(prev);
1da177e4 3335
31656519 3336 if (sched_feat(HRTICK))
f333fdc9 3337 hrtick_clear(rq);
8f4d37ec 3338
46a5d164
PM
3339 local_irq_disable();
3340 rcu_note_context_switch();
3341
e0acd0a6
ON
3342 /*
3343 * Make sure that signal_pending_state()->signal_pending() below
3344 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3345 * done by the caller to avoid the race with signal_wake_up().
3346 */
3347 smp_mb__before_spinlock();
46a5d164 3348 raw_spin_lock(&rq->lock);
e7904a28 3349 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3350
9edfbfed
PZ
3351 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3352
246d86b5 3353 switch_count = &prev->nivcsw;
fc13aeba 3354 if (!preempt && prev->state) {
21aa9af0 3355 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3356 prev->state = TASK_RUNNING;
21aa9af0 3357 } else {
2acca55e
PZ
3358 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3359 prev->on_rq = 0;
3360
21aa9af0 3361 /*
2acca55e
PZ
3362 * If a worker went to sleep, notify and ask workqueue
3363 * whether it wants to wake up a task to maintain
3364 * concurrency.
21aa9af0
TH
3365 */
3366 if (prev->flags & PF_WQ_WORKER) {
3367 struct task_struct *to_wakeup;
3368
9b7f6597 3369 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3370 if (to_wakeup)
e7904a28 3371 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3372 }
21aa9af0 3373 }
dd41f596 3374 switch_count = &prev->nvcsw;
1da177e4
LT
3375 }
3376
9edfbfed 3377 if (task_on_rq_queued(prev))
606dba2e
PZ
3378 update_rq_clock(rq);
3379
e7904a28 3380 next = pick_next_task(rq, prev, cookie);
f26f9aff 3381 clear_tsk_need_resched(prev);
f27dde8d 3382 clear_preempt_need_resched();
9edfbfed 3383 rq->clock_skip_update = 0;
1da177e4 3384
1da177e4 3385 if (likely(prev != next)) {
1da177e4
LT
3386 rq->nr_switches++;
3387 rq->curr = next;
3388 ++*switch_count;
3389
c73464b1 3390 trace_sched_switch(preempt, prev, next);
e7904a28 3391 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3392 } else {
e7904a28 3393 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3394 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3395 }
1da177e4 3396
e3fca9e7 3397 balance_callback(rq);
1da177e4 3398}
8e05e96a 3399STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3400
9af6528e
PZ
3401void __noreturn do_task_dead(void)
3402{
3403 /*
3404 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3405 * when the following two conditions become true.
3406 * - There is race condition of mmap_sem (It is acquired by
3407 * exit_mm()), and
3408 * - SMI occurs before setting TASK_RUNINNG.
3409 * (or hypervisor of virtual machine switches to other guest)
3410 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3411 *
3412 * To avoid it, we have to wait for releasing tsk->pi_lock which
3413 * is held by try_to_wake_up()
3414 */
3415 smp_mb();
3416 raw_spin_unlock_wait(&current->pi_lock);
3417
3418 /* causes final put_task_struct in finish_task_switch(). */
3419 __set_current_state(TASK_DEAD);
3420 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3421 __schedule(false);
3422 BUG();
3423 /* Avoid "noreturn function does return". */
3424 for (;;)
3425 cpu_relax(); /* For when BUG is null */
3426}
3427
9c40cef2
TG
3428static inline void sched_submit_work(struct task_struct *tsk)
3429{
3c7d5184 3430 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3431 return;
3432 /*
3433 * If we are going to sleep and we have plugged IO queued,
3434 * make sure to submit it to avoid deadlocks.
3435 */
3436 if (blk_needs_flush_plug(tsk))
3437 blk_schedule_flush_plug(tsk);
3438}
3439
722a9f92 3440asmlinkage __visible void __sched schedule(void)
c259e01a 3441{
9c40cef2
TG
3442 struct task_struct *tsk = current;
3443
3444 sched_submit_work(tsk);
bfd9b2b5 3445 do {
b30f0e3f 3446 preempt_disable();
fc13aeba 3447 __schedule(false);
b30f0e3f 3448 sched_preempt_enable_no_resched();
bfd9b2b5 3449 } while (need_resched());
c259e01a 3450}
1da177e4
LT
3451EXPORT_SYMBOL(schedule);
3452
91d1aa43 3453#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3454asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3455{
3456 /*
3457 * If we come here after a random call to set_need_resched(),
3458 * or we have been woken up remotely but the IPI has not yet arrived,
3459 * we haven't yet exited the RCU idle mode. Do it here manually until
3460 * we find a better solution.
7cc78f8f
AL
3461 *
3462 * NB: There are buggy callers of this function. Ideally we
c467ea76 3463 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3464 * too frequently to make sense yet.
20ab65e3 3465 */
7cc78f8f 3466 enum ctx_state prev_state = exception_enter();
20ab65e3 3467 schedule();
7cc78f8f 3468 exception_exit(prev_state);
20ab65e3
FW
3469}
3470#endif
3471
c5491ea7
TG
3472/**
3473 * schedule_preempt_disabled - called with preemption disabled
3474 *
3475 * Returns with preemption disabled. Note: preempt_count must be 1
3476 */
3477void __sched schedule_preempt_disabled(void)
3478{
ba74c144 3479 sched_preempt_enable_no_resched();
c5491ea7
TG
3480 schedule();
3481 preempt_disable();
3482}
3483
06b1f808 3484static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3485{
3486 do {
47252cfb
SR
3487 /*
3488 * Because the function tracer can trace preempt_count_sub()
3489 * and it also uses preempt_enable/disable_notrace(), if
3490 * NEED_RESCHED is set, the preempt_enable_notrace() called
3491 * by the function tracer will call this function again and
3492 * cause infinite recursion.
3493 *
3494 * Preemption must be disabled here before the function
3495 * tracer can trace. Break up preempt_disable() into two
3496 * calls. One to disable preemption without fear of being
3497 * traced. The other to still record the preemption latency,
3498 * which can also be traced by the function tracer.
3499 */
499d7955 3500 preempt_disable_notrace();
47252cfb 3501 preempt_latency_start(1);
fc13aeba 3502 __schedule(true);
47252cfb 3503 preempt_latency_stop(1);
499d7955 3504 preempt_enable_no_resched_notrace();
a18b5d01
FW
3505
3506 /*
3507 * Check again in case we missed a preemption opportunity
3508 * between schedule and now.
3509 */
a18b5d01
FW
3510 } while (need_resched());
3511}
3512
1da177e4
LT
3513#ifdef CONFIG_PREEMPT
3514/*
2ed6e34f 3515 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3516 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3517 * occur there and call schedule directly.
3518 */
722a9f92 3519asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3520{
1da177e4
LT
3521 /*
3522 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3523 * we do not want to preempt the current task. Just return..
1da177e4 3524 */
fbb00b56 3525 if (likely(!preemptible()))
1da177e4
LT
3526 return;
3527
a18b5d01 3528 preempt_schedule_common();
1da177e4 3529}
376e2424 3530NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3531EXPORT_SYMBOL(preempt_schedule);
009f60e2 3532
009f60e2 3533/**
4eaca0a8 3534 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3535 *
3536 * The tracing infrastructure uses preempt_enable_notrace to prevent
3537 * recursion and tracing preempt enabling caused by the tracing
3538 * infrastructure itself. But as tracing can happen in areas coming
3539 * from userspace or just about to enter userspace, a preempt enable
3540 * can occur before user_exit() is called. This will cause the scheduler
3541 * to be called when the system is still in usermode.
3542 *
3543 * To prevent this, the preempt_enable_notrace will use this function
3544 * instead of preempt_schedule() to exit user context if needed before
3545 * calling the scheduler.
3546 */
4eaca0a8 3547asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3548{
3549 enum ctx_state prev_ctx;
3550
3551 if (likely(!preemptible()))
3552 return;
3553
3554 do {
47252cfb
SR
3555 /*
3556 * Because the function tracer can trace preempt_count_sub()
3557 * and it also uses preempt_enable/disable_notrace(), if
3558 * NEED_RESCHED is set, the preempt_enable_notrace() called
3559 * by the function tracer will call this function again and
3560 * cause infinite recursion.
3561 *
3562 * Preemption must be disabled here before the function
3563 * tracer can trace. Break up preempt_disable() into two
3564 * calls. One to disable preemption without fear of being
3565 * traced. The other to still record the preemption latency,
3566 * which can also be traced by the function tracer.
3567 */
3d8f74dd 3568 preempt_disable_notrace();
47252cfb 3569 preempt_latency_start(1);
009f60e2
ON
3570 /*
3571 * Needs preempt disabled in case user_exit() is traced
3572 * and the tracer calls preempt_enable_notrace() causing
3573 * an infinite recursion.
3574 */
3575 prev_ctx = exception_enter();
fc13aeba 3576 __schedule(true);
009f60e2
ON
3577 exception_exit(prev_ctx);
3578
47252cfb 3579 preempt_latency_stop(1);
3d8f74dd 3580 preempt_enable_no_resched_notrace();
009f60e2
ON
3581 } while (need_resched());
3582}
4eaca0a8 3583EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3584
32e475d7 3585#endif /* CONFIG_PREEMPT */
1da177e4
LT
3586
3587/*
2ed6e34f 3588 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3589 * off of irq context.
3590 * Note, that this is called and return with irqs disabled. This will
3591 * protect us against recursive calling from irq.
3592 */
722a9f92 3593asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3594{
b22366cd 3595 enum ctx_state prev_state;
6478d880 3596
2ed6e34f 3597 /* Catch callers which need to be fixed */
f27dde8d 3598 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3599
b22366cd
FW
3600 prev_state = exception_enter();
3601
3a5c359a 3602 do {
3d8f74dd 3603 preempt_disable();
3a5c359a 3604 local_irq_enable();
fc13aeba 3605 __schedule(true);
3a5c359a 3606 local_irq_disable();
3d8f74dd 3607 sched_preempt_enable_no_resched();
5ed0cec0 3608 } while (need_resched());
b22366cd
FW
3609
3610 exception_exit(prev_state);
1da177e4
LT
3611}
3612
63859d4f 3613int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3614 void *key)
1da177e4 3615{
63859d4f 3616 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3617}
1da177e4
LT
3618EXPORT_SYMBOL(default_wake_function);
3619
b29739f9
IM
3620#ifdef CONFIG_RT_MUTEXES
3621
3622/*
3623 * rt_mutex_setprio - set the current priority of a task
3624 * @p: task
3625 * @prio: prio value (kernel-internal form)
3626 *
3627 * This function changes the 'effective' priority of a task. It does
3628 * not touch ->normal_prio like __setscheduler().
3629 *
c365c292
TG
3630 * Used by the rt_mutex code to implement priority inheritance
3631 * logic. Call site only calls if the priority of the task changed.
b29739f9 3632 */
36c8b586 3633void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3634{
ff77e468 3635 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3636 const struct sched_class *prev_class;
eb580751
PZ
3637 struct rq_flags rf;
3638 struct rq *rq;
b29739f9 3639
aab03e05 3640 BUG_ON(prio > MAX_PRIO);
b29739f9 3641
eb580751 3642 rq = __task_rq_lock(p, &rf);
b29739f9 3643
1c4dd99b
TG
3644 /*
3645 * Idle task boosting is a nono in general. There is one
3646 * exception, when PREEMPT_RT and NOHZ is active:
3647 *
3648 * The idle task calls get_next_timer_interrupt() and holds
3649 * the timer wheel base->lock on the CPU and another CPU wants
3650 * to access the timer (probably to cancel it). We can safely
3651 * ignore the boosting request, as the idle CPU runs this code
3652 * with interrupts disabled and will complete the lock
3653 * protected section without being interrupted. So there is no
3654 * real need to boost.
3655 */
3656 if (unlikely(p == rq->idle)) {
3657 WARN_ON(p != rq->curr);
3658 WARN_ON(p->pi_blocked_on);
3659 goto out_unlock;
3660 }
3661
a8027073 3662 trace_sched_pi_setprio(p, prio);
d5f9f942 3663 oldprio = p->prio;
ff77e468
PZ
3664
3665 if (oldprio == prio)
3666 queue_flag &= ~DEQUEUE_MOVE;
3667
83ab0aa0 3668 prev_class = p->sched_class;
da0c1e65 3669 queued = task_on_rq_queued(p);
051a1d1a 3670 running = task_current(rq, p);
da0c1e65 3671 if (queued)
ff77e468 3672 dequeue_task(rq, p, queue_flag);
0e1f3483 3673 if (running)
f3cd1c4e 3674 put_prev_task(rq, p);
dd41f596 3675
2d3d891d
DF
3676 /*
3677 * Boosting condition are:
3678 * 1. -rt task is running and holds mutex A
3679 * --> -dl task blocks on mutex A
3680 *
3681 * 2. -dl task is running and holds mutex A
3682 * --> -dl task blocks on mutex A and could preempt the
3683 * running task
3684 */
3685 if (dl_prio(prio)) {
466af29b
ON
3686 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3687 if (!dl_prio(p->normal_prio) ||
3688 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3689 p->dl.dl_boosted = 1;
ff77e468 3690 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3691 } else
3692 p->dl.dl_boosted = 0;
aab03e05 3693 p->sched_class = &dl_sched_class;
2d3d891d
DF
3694 } else if (rt_prio(prio)) {
3695 if (dl_prio(oldprio))
3696 p->dl.dl_boosted = 0;
3697 if (oldprio < prio)
ff77e468 3698 queue_flag |= ENQUEUE_HEAD;
dd41f596 3699 p->sched_class = &rt_sched_class;
2d3d891d
DF
3700 } else {
3701 if (dl_prio(oldprio))
3702 p->dl.dl_boosted = 0;
746db944
BS
3703 if (rt_prio(oldprio))
3704 p->rt.timeout = 0;
dd41f596 3705 p->sched_class = &fair_sched_class;
2d3d891d 3706 }
dd41f596 3707
b29739f9
IM
3708 p->prio = prio;
3709
0e1f3483
HS
3710 if (running)
3711 p->sched_class->set_curr_task(rq);
da0c1e65 3712 if (queued)
ff77e468 3713 enqueue_task(rq, p, queue_flag);
cb469845 3714
da7a735e 3715 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3716out_unlock:
4c9a4bc8 3717 preempt_disable(); /* avoid rq from going away on us */
eb580751 3718 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3719
3720 balance_callback(rq);
3721 preempt_enable();
b29739f9 3722}
b29739f9 3723#endif
d50dde5a 3724
36c8b586 3725void set_user_nice(struct task_struct *p, long nice)
1da177e4 3726{
da0c1e65 3727 int old_prio, delta, queued;
eb580751 3728 struct rq_flags rf;
70b97a7f 3729 struct rq *rq;
1da177e4 3730
75e45d51 3731 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3732 return;
3733 /*
3734 * We have to be careful, if called from sys_setpriority(),
3735 * the task might be in the middle of scheduling on another CPU.
3736 */
eb580751 3737 rq = task_rq_lock(p, &rf);
1da177e4
LT
3738 /*
3739 * The RT priorities are set via sched_setscheduler(), but we still
3740 * allow the 'normal' nice value to be set - but as expected
3741 * it wont have any effect on scheduling until the task is
aab03e05 3742 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3743 */
aab03e05 3744 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3745 p->static_prio = NICE_TO_PRIO(nice);
3746 goto out_unlock;
3747 }
da0c1e65
KT
3748 queued = task_on_rq_queued(p);
3749 if (queued)
1de64443 3750 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3751
1da177e4 3752 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3753 set_load_weight(p);
b29739f9
IM
3754 old_prio = p->prio;
3755 p->prio = effective_prio(p);
3756 delta = p->prio - old_prio;
1da177e4 3757
da0c1e65 3758 if (queued) {
1de64443 3759 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3760 /*
d5f9f942
AM
3761 * If the task increased its priority or is running and
3762 * lowered its priority, then reschedule its CPU:
1da177e4 3763 */
d5f9f942 3764 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3765 resched_curr(rq);
1da177e4
LT
3766 }
3767out_unlock:
eb580751 3768 task_rq_unlock(rq, p, &rf);
1da177e4 3769}
1da177e4
LT
3770EXPORT_SYMBOL(set_user_nice);
3771
e43379f1
MM
3772/*
3773 * can_nice - check if a task can reduce its nice value
3774 * @p: task
3775 * @nice: nice value
3776 */
36c8b586 3777int can_nice(const struct task_struct *p, const int nice)
e43379f1 3778{
024f4747 3779 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3780 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3781
78d7d407 3782 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3783 capable(CAP_SYS_NICE));
3784}
3785
1da177e4
LT
3786#ifdef __ARCH_WANT_SYS_NICE
3787
3788/*
3789 * sys_nice - change the priority of the current process.
3790 * @increment: priority increment
3791 *
3792 * sys_setpriority is a more generic, but much slower function that
3793 * does similar things.
3794 */
5add95d4 3795SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3796{
48f24c4d 3797 long nice, retval;
1da177e4
LT
3798
3799 /*
3800 * Setpriority might change our priority at the same moment.
3801 * We don't have to worry. Conceptually one call occurs first
3802 * and we have a single winner.
3803 */
a9467fa3 3804 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3805 nice = task_nice(current) + increment;
1da177e4 3806
a9467fa3 3807 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3808 if (increment < 0 && !can_nice(current, nice))
3809 return -EPERM;
3810
1da177e4
LT
3811 retval = security_task_setnice(current, nice);
3812 if (retval)
3813 return retval;
3814
3815 set_user_nice(current, nice);
3816 return 0;
3817}
3818
3819#endif
3820
3821/**
3822 * task_prio - return the priority value of a given task.
3823 * @p: the task in question.
3824 *
e69f6186 3825 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3826 * RT tasks are offset by -200. Normal tasks are centered
3827 * around 0, value goes from -16 to +15.
3828 */
36c8b586 3829int task_prio(const struct task_struct *p)
1da177e4
LT
3830{
3831 return p->prio - MAX_RT_PRIO;
3832}
3833
1da177e4
LT
3834/**
3835 * idle_cpu - is a given cpu idle currently?
3836 * @cpu: the processor in question.
e69f6186
YB
3837 *
3838 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3839 */
3840int idle_cpu(int cpu)
3841{
908a3283
TG
3842 struct rq *rq = cpu_rq(cpu);
3843
3844 if (rq->curr != rq->idle)
3845 return 0;
3846
3847 if (rq->nr_running)
3848 return 0;
3849
3850#ifdef CONFIG_SMP
3851 if (!llist_empty(&rq->wake_list))
3852 return 0;
3853#endif
3854
3855 return 1;
1da177e4
LT
3856}
3857
1da177e4
LT
3858/**
3859 * idle_task - return the idle task for a given cpu.
3860 * @cpu: the processor in question.
e69f6186
YB
3861 *
3862 * Return: The idle task for the cpu @cpu.
1da177e4 3863 */
36c8b586 3864struct task_struct *idle_task(int cpu)
1da177e4
LT
3865{
3866 return cpu_rq(cpu)->idle;
3867}
3868
3869/**
3870 * find_process_by_pid - find a process with a matching PID value.
3871 * @pid: the pid in question.
e69f6186
YB
3872 *
3873 * The task of @pid, if found. %NULL otherwise.
1da177e4 3874 */
a9957449 3875static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3876{
228ebcbe 3877 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3878}
3879
aab03e05
DF
3880/*
3881 * This function initializes the sched_dl_entity of a newly becoming
3882 * SCHED_DEADLINE task.
3883 *
3884 * Only the static values are considered here, the actual runtime and the
3885 * absolute deadline will be properly calculated when the task is enqueued
3886 * for the first time with its new policy.
3887 */
3888static void
3889__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3890{
3891 struct sched_dl_entity *dl_se = &p->dl;
3892
aab03e05
DF
3893 dl_se->dl_runtime = attr->sched_runtime;
3894 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3895 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3896 dl_se->flags = attr->sched_flags;
332ac17e 3897 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3898
3899 /*
3900 * Changing the parameters of a task is 'tricky' and we're not doing
3901 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3902 *
3903 * What we SHOULD do is delay the bandwidth release until the 0-lag
3904 * point. This would include retaining the task_struct until that time
3905 * and change dl_overflow() to not immediately decrement the current
3906 * amount.
3907 *
3908 * Instead we retain the current runtime/deadline and let the new
3909 * parameters take effect after the current reservation period lapses.
3910 * This is safe (albeit pessimistic) because the 0-lag point is always
3911 * before the current scheduling deadline.
3912 *
3913 * We can still have temporary overloads because we do not delay the
3914 * change in bandwidth until that time; so admission control is
3915 * not on the safe side. It does however guarantee tasks will never
3916 * consume more than promised.
3917 */
aab03e05
DF
3918}
3919
c13db6b1
SR
3920/*
3921 * sched_setparam() passes in -1 for its policy, to let the functions
3922 * it calls know not to change it.
3923 */
3924#define SETPARAM_POLICY -1
3925
c365c292
TG
3926static void __setscheduler_params(struct task_struct *p,
3927 const struct sched_attr *attr)
1da177e4 3928{
d50dde5a
DF
3929 int policy = attr->sched_policy;
3930
c13db6b1 3931 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3932 policy = p->policy;
3933
1da177e4 3934 p->policy = policy;
d50dde5a 3935
aab03e05
DF
3936 if (dl_policy(policy))
3937 __setparam_dl(p, attr);
39fd8fd2 3938 else if (fair_policy(policy))
d50dde5a
DF
3939 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3940
39fd8fd2
PZ
3941 /*
3942 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3943 * !rt_policy. Always setting this ensures that things like
3944 * getparam()/getattr() don't report silly values for !rt tasks.
3945 */
3946 p->rt_priority = attr->sched_priority;
383afd09 3947 p->normal_prio = normal_prio(p);
c365c292
TG
3948 set_load_weight(p);
3949}
39fd8fd2 3950
c365c292
TG
3951/* Actually do priority change: must hold pi & rq lock. */
3952static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3953 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3954{
3955 __setscheduler_params(p, attr);
d50dde5a 3956
383afd09 3957 /*
0782e63b
TG
3958 * Keep a potential priority boosting if called from
3959 * sched_setscheduler().
383afd09 3960 */
0782e63b
TG
3961 if (keep_boost)
3962 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3963 else
3964 p->prio = normal_prio(p);
383afd09 3965
aab03e05
DF
3966 if (dl_prio(p->prio))
3967 p->sched_class = &dl_sched_class;
3968 else if (rt_prio(p->prio))
ffd44db5
PZ
3969 p->sched_class = &rt_sched_class;
3970 else
3971 p->sched_class = &fair_sched_class;
1da177e4 3972}
aab03e05
DF
3973
3974static void
3975__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3976{
3977 struct sched_dl_entity *dl_se = &p->dl;
3978
3979 attr->sched_priority = p->rt_priority;
3980 attr->sched_runtime = dl_se->dl_runtime;
3981 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3982 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3983 attr->sched_flags = dl_se->flags;
3984}
3985
3986/*
3987 * This function validates the new parameters of a -deadline task.
3988 * We ask for the deadline not being zero, and greater or equal
755378a4 3989 * than the runtime, as well as the period of being zero or
332ac17e 3990 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3991 * user parameters are above the internal resolution of 1us (we
3992 * check sched_runtime only since it is always the smaller one) and
3993 * below 2^63 ns (we have to check both sched_deadline and
3994 * sched_period, as the latter can be zero).
aab03e05
DF
3995 */
3996static bool
3997__checkparam_dl(const struct sched_attr *attr)
3998{
b0827819
JL
3999 /* deadline != 0 */
4000 if (attr->sched_deadline == 0)
4001 return false;
4002
4003 /*
4004 * Since we truncate DL_SCALE bits, make sure we're at least
4005 * that big.
4006 */
4007 if (attr->sched_runtime < (1ULL << DL_SCALE))
4008 return false;
4009
4010 /*
4011 * Since we use the MSB for wrap-around and sign issues, make
4012 * sure it's not set (mind that period can be equal to zero).
4013 */
4014 if (attr->sched_deadline & (1ULL << 63) ||
4015 attr->sched_period & (1ULL << 63))
4016 return false;
4017
4018 /* runtime <= deadline <= period (if period != 0) */
4019 if ((attr->sched_period != 0 &&
4020 attr->sched_period < attr->sched_deadline) ||
4021 attr->sched_deadline < attr->sched_runtime)
4022 return false;
4023
4024 return true;
aab03e05
DF
4025}
4026
c69e8d9c
DH
4027/*
4028 * check the target process has a UID that matches the current process's
4029 */
4030static bool check_same_owner(struct task_struct *p)
4031{
4032 const struct cred *cred = current_cred(), *pcred;
4033 bool match;
4034
4035 rcu_read_lock();
4036 pcred = __task_cred(p);
9c806aa0
EB
4037 match = (uid_eq(cred->euid, pcred->euid) ||
4038 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4039 rcu_read_unlock();
4040 return match;
4041}
4042
75381608
WL
4043static bool dl_param_changed(struct task_struct *p,
4044 const struct sched_attr *attr)
4045{
4046 struct sched_dl_entity *dl_se = &p->dl;
4047
4048 if (dl_se->dl_runtime != attr->sched_runtime ||
4049 dl_se->dl_deadline != attr->sched_deadline ||
4050 dl_se->dl_period != attr->sched_period ||
4051 dl_se->flags != attr->sched_flags)
4052 return true;
4053
4054 return false;
4055}
4056
d50dde5a
DF
4057static int __sched_setscheduler(struct task_struct *p,
4058 const struct sched_attr *attr,
dbc7f069 4059 bool user, bool pi)
1da177e4 4060{
383afd09
SR
4061 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4062 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4063 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4064 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4065 const struct sched_class *prev_class;
eb580751 4066 struct rq_flags rf;
ca94c442 4067 int reset_on_fork;
ff77e468 4068 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4069 struct rq *rq;
1da177e4 4070
66e5393a
SR
4071 /* may grab non-irq protected spin_locks */
4072 BUG_ON(in_interrupt());
1da177e4
LT
4073recheck:
4074 /* double check policy once rq lock held */
ca94c442
LP
4075 if (policy < 0) {
4076 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4077 policy = oldpolicy = p->policy;
ca94c442 4078 } else {
7479f3c9 4079 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4080
20f9cd2a 4081 if (!valid_policy(policy))
ca94c442
LP
4082 return -EINVAL;
4083 }
4084
7479f3c9
PZ
4085 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4086 return -EINVAL;
4087
1da177e4
LT
4088 /*
4089 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4090 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4091 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4092 */
0bb040a4 4093 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4094 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4095 return -EINVAL;
aab03e05
DF
4096 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4097 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4098 return -EINVAL;
4099
37e4ab3f
OC
4100 /*
4101 * Allow unprivileged RT tasks to decrease priority:
4102 */
961ccddd 4103 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4104 if (fair_policy(policy)) {
d0ea0268 4105 if (attr->sched_nice < task_nice(p) &&
eaad4513 4106 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4107 return -EPERM;
4108 }
4109
e05606d3 4110 if (rt_policy(policy)) {
a44702e8
ON
4111 unsigned long rlim_rtprio =
4112 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4113
4114 /* can't set/change the rt policy */
4115 if (policy != p->policy && !rlim_rtprio)
4116 return -EPERM;
4117
4118 /* can't increase priority */
d50dde5a
DF
4119 if (attr->sched_priority > p->rt_priority &&
4120 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4121 return -EPERM;
4122 }
c02aa73b 4123
d44753b8
JL
4124 /*
4125 * Can't set/change SCHED_DEADLINE policy at all for now
4126 * (safest behavior); in the future we would like to allow
4127 * unprivileged DL tasks to increase their relative deadline
4128 * or reduce their runtime (both ways reducing utilization)
4129 */
4130 if (dl_policy(policy))
4131 return -EPERM;
4132
dd41f596 4133 /*
c02aa73b
DH
4134 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4135 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4136 */
20f9cd2a 4137 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4138 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4139 return -EPERM;
4140 }
5fe1d75f 4141
37e4ab3f 4142 /* can't change other user's priorities */
c69e8d9c 4143 if (!check_same_owner(p))
37e4ab3f 4144 return -EPERM;
ca94c442
LP
4145
4146 /* Normal users shall not reset the sched_reset_on_fork flag */
4147 if (p->sched_reset_on_fork && !reset_on_fork)
4148 return -EPERM;
37e4ab3f 4149 }
1da177e4 4150
725aad24 4151 if (user) {
b0ae1981 4152 retval = security_task_setscheduler(p);
725aad24
JF
4153 if (retval)
4154 return retval;
4155 }
4156
b29739f9
IM
4157 /*
4158 * make sure no PI-waiters arrive (or leave) while we are
4159 * changing the priority of the task:
0122ec5b 4160 *
25985edc 4161 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4162 * runqueue lock must be held.
4163 */
eb580751 4164 rq = task_rq_lock(p, &rf);
dc61b1d6 4165
34f971f6
PZ
4166 /*
4167 * Changing the policy of the stop threads its a very bad idea
4168 */
4169 if (p == rq->stop) {
eb580751 4170 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4171 return -EINVAL;
4172 }
4173
a51e9198 4174 /*
d6b1e911
TG
4175 * If not changing anything there's no need to proceed further,
4176 * but store a possible modification of reset_on_fork.
a51e9198 4177 */
d50dde5a 4178 if (unlikely(policy == p->policy)) {
d0ea0268 4179 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4180 goto change;
4181 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4182 goto change;
75381608 4183 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4184 goto change;
d50dde5a 4185
d6b1e911 4186 p->sched_reset_on_fork = reset_on_fork;
eb580751 4187 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4188 return 0;
4189 }
d50dde5a 4190change:
a51e9198 4191
dc61b1d6 4192 if (user) {
332ac17e 4193#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4194 /*
4195 * Do not allow realtime tasks into groups that have no runtime
4196 * assigned.
4197 */
4198 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4199 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4200 !task_group_is_autogroup(task_group(p))) {
eb580751 4201 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4202 return -EPERM;
4203 }
dc61b1d6 4204#endif
332ac17e
DF
4205#ifdef CONFIG_SMP
4206 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4207 cpumask_t *span = rq->rd->span;
332ac17e
DF
4208
4209 /*
4210 * Don't allow tasks with an affinity mask smaller than
4211 * the entire root_domain to become SCHED_DEADLINE. We
4212 * will also fail if there's no bandwidth available.
4213 */
e4099a5e
PZ
4214 if (!cpumask_subset(span, &p->cpus_allowed) ||
4215 rq->rd->dl_bw.bw == 0) {
eb580751 4216 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4217 return -EPERM;
4218 }
4219 }
4220#endif
4221 }
dc61b1d6 4222
1da177e4
LT
4223 /* recheck policy now with rq lock held */
4224 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4225 policy = oldpolicy = -1;
eb580751 4226 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4227 goto recheck;
4228 }
332ac17e
DF
4229
4230 /*
4231 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4232 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4233 * is available.
4234 */
e4099a5e 4235 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4236 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4237 return -EBUSY;
4238 }
4239
c365c292
TG
4240 p->sched_reset_on_fork = reset_on_fork;
4241 oldprio = p->prio;
4242
dbc7f069
PZ
4243 if (pi) {
4244 /*
4245 * Take priority boosted tasks into account. If the new
4246 * effective priority is unchanged, we just store the new
4247 * normal parameters and do not touch the scheduler class and
4248 * the runqueue. This will be done when the task deboost
4249 * itself.
4250 */
4251 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4252 if (new_effective_prio == oldprio)
4253 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4254 }
4255
da0c1e65 4256 queued = task_on_rq_queued(p);
051a1d1a 4257 running = task_current(rq, p);
da0c1e65 4258 if (queued)
ff77e468 4259 dequeue_task(rq, p, queue_flags);
0e1f3483 4260 if (running)
f3cd1c4e 4261 put_prev_task(rq, p);
f6b53205 4262
83ab0aa0 4263 prev_class = p->sched_class;
dbc7f069 4264 __setscheduler(rq, p, attr, pi);
f6b53205 4265
0e1f3483
HS
4266 if (running)
4267 p->sched_class->set_curr_task(rq);
da0c1e65 4268 if (queued) {
81a44c54
TG
4269 /*
4270 * We enqueue to tail when the priority of a task is
4271 * increased (user space view).
4272 */
ff77e468
PZ
4273 if (oldprio < p->prio)
4274 queue_flags |= ENQUEUE_HEAD;
1de64443 4275
ff77e468 4276 enqueue_task(rq, p, queue_flags);
81a44c54 4277 }
cb469845 4278
da7a735e 4279 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4280 preempt_disable(); /* avoid rq from going away on us */
eb580751 4281 task_rq_unlock(rq, p, &rf);
b29739f9 4282
dbc7f069
PZ
4283 if (pi)
4284 rt_mutex_adjust_pi(p);
95e02ca9 4285
4c9a4bc8
PZ
4286 /*
4287 * Run balance callbacks after we've adjusted the PI chain.
4288 */
4289 balance_callback(rq);
4290 preempt_enable();
95e02ca9 4291
1da177e4
LT
4292 return 0;
4293}
961ccddd 4294
7479f3c9
PZ
4295static int _sched_setscheduler(struct task_struct *p, int policy,
4296 const struct sched_param *param, bool check)
4297{
4298 struct sched_attr attr = {
4299 .sched_policy = policy,
4300 .sched_priority = param->sched_priority,
4301 .sched_nice = PRIO_TO_NICE(p->static_prio),
4302 };
4303
c13db6b1
SR
4304 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4305 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4306 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4307 policy &= ~SCHED_RESET_ON_FORK;
4308 attr.sched_policy = policy;
4309 }
4310
dbc7f069 4311 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4312}
961ccddd
RR
4313/**
4314 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4315 * @p: the task in question.
4316 * @policy: new policy.
4317 * @param: structure containing the new RT priority.
4318 *
e69f6186
YB
4319 * Return: 0 on success. An error code otherwise.
4320 *
961ccddd
RR
4321 * NOTE that the task may be already dead.
4322 */
4323int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4324 const struct sched_param *param)
961ccddd 4325{
7479f3c9 4326 return _sched_setscheduler(p, policy, param, true);
961ccddd 4327}
1da177e4
LT
4328EXPORT_SYMBOL_GPL(sched_setscheduler);
4329
d50dde5a
DF
4330int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4331{
dbc7f069 4332 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4333}
4334EXPORT_SYMBOL_GPL(sched_setattr);
4335
961ccddd
RR
4336/**
4337 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4338 * @p: the task in question.
4339 * @policy: new policy.
4340 * @param: structure containing the new RT priority.
4341 *
4342 * Just like sched_setscheduler, only don't bother checking if the
4343 * current context has permission. For example, this is needed in
4344 * stop_machine(): we create temporary high priority worker threads,
4345 * but our caller might not have that capability.
e69f6186
YB
4346 *
4347 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4348 */
4349int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4350 const struct sched_param *param)
961ccddd 4351{
7479f3c9 4352 return _sched_setscheduler(p, policy, param, false);
961ccddd 4353}
84778472 4354EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4355
95cdf3b7
IM
4356static int
4357do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4358{
1da177e4
LT
4359 struct sched_param lparam;
4360 struct task_struct *p;
36c8b586 4361 int retval;
1da177e4
LT
4362
4363 if (!param || pid < 0)
4364 return -EINVAL;
4365 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4366 return -EFAULT;
5fe1d75f
ON
4367
4368 rcu_read_lock();
4369 retval = -ESRCH;
1da177e4 4370 p = find_process_by_pid(pid);
5fe1d75f
ON
4371 if (p != NULL)
4372 retval = sched_setscheduler(p, policy, &lparam);
4373 rcu_read_unlock();
36c8b586 4374
1da177e4
LT
4375 return retval;
4376}
4377
d50dde5a
DF
4378/*
4379 * Mimics kernel/events/core.c perf_copy_attr().
4380 */
4381static int sched_copy_attr(struct sched_attr __user *uattr,
4382 struct sched_attr *attr)
4383{
4384 u32 size;
4385 int ret;
4386
4387 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4388 return -EFAULT;
4389
4390 /*
4391 * zero the full structure, so that a short copy will be nice.
4392 */
4393 memset(attr, 0, sizeof(*attr));
4394
4395 ret = get_user(size, &uattr->size);
4396 if (ret)
4397 return ret;
4398
4399 if (size > PAGE_SIZE) /* silly large */
4400 goto err_size;
4401
4402 if (!size) /* abi compat */
4403 size = SCHED_ATTR_SIZE_VER0;
4404
4405 if (size < SCHED_ATTR_SIZE_VER0)
4406 goto err_size;
4407
4408 /*
4409 * If we're handed a bigger struct than we know of,
4410 * ensure all the unknown bits are 0 - i.e. new
4411 * user-space does not rely on any kernel feature
4412 * extensions we dont know about yet.
4413 */
4414 if (size > sizeof(*attr)) {
4415 unsigned char __user *addr;
4416 unsigned char __user *end;
4417 unsigned char val;
4418
4419 addr = (void __user *)uattr + sizeof(*attr);
4420 end = (void __user *)uattr + size;
4421
4422 for (; addr < end; addr++) {
4423 ret = get_user(val, addr);
4424 if (ret)
4425 return ret;
4426 if (val)
4427 goto err_size;
4428 }
4429 size = sizeof(*attr);
4430 }
4431
4432 ret = copy_from_user(attr, uattr, size);
4433 if (ret)
4434 return -EFAULT;
4435
4436 /*
4437 * XXX: do we want to be lenient like existing syscalls; or do we want
4438 * to be strict and return an error on out-of-bounds values?
4439 */
75e45d51 4440 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4441
e78c7bca 4442 return 0;
d50dde5a
DF
4443
4444err_size:
4445 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4446 return -E2BIG;
d50dde5a
DF
4447}
4448
1da177e4
LT
4449/**
4450 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4451 * @pid: the pid in question.
4452 * @policy: new policy.
4453 * @param: structure containing the new RT priority.
e69f6186
YB
4454 *
4455 * Return: 0 on success. An error code otherwise.
1da177e4 4456 */
5add95d4
HC
4457SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4458 struct sched_param __user *, param)
1da177e4 4459{
c21761f1
JB
4460 /* negative values for policy are not valid */
4461 if (policy < 0)
4462 return -EINVAL;
4463
1da177e4
LT
4464 return do_sched_setscheduler(pid, policy, param);
4465}
4466
4467/**
4468 * sys_sched_setparam - set/change the RT priority of a thread
4469 * @pid: the pid in question.
4470 * @param: structure containing the new RT priority.
e69f6186
YB
4471 *
4472 * Return: 0 on success. An error code otherwise.
1da177e4 4473 */
5add95d4 4474SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4475{
c13db6b1 4476 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4477}
4478
d50dde5a
DF
4479/**
4480 * sys_sched_setattr - same as above, but with extended sched_attr
4481 * @pid: the pid in question.
5778fccf 4482 * @uattr: structure containing the extended parameters.
db66d756 4483 * @flags: for future extension.
d50dde5a 4484 */
6d35ab48
PZ
4485SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4486 unsigned int, flags)
d50dde5a
DF
4487{
4488 struct sched_attr attr;
4489 struct task_struct *p;
4490 int retval;
4491
6d35ab48 4492 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4493 return -EINVAL;
4494
143cf23d
MK
4495 retval = sched_copy_attr(uattr, &attr);
4496 if (retval)
4497 return retval;
d50dde5a 4498
b14ed2c2 4499 if ((int)attr.sched_policy < 0)
dbdb2275 4500 return -EINVAL;
d50dde5a
DF
4501
4502 rcu_read_lock();
4503 retval = -ESRCH;
4504 p = find_process_by_pid(pid);
4505 if (p != NULL)
4506 retval = sched_setattr(p, &attr);
4507 rcu_read_unlock();
4508
4509 return retval;
4510}
4511
1da177e4
LT
4512/**
4513 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4514 * @pid: the pid in question.
e69f6186
YB
4515 *
4516 * Return: On success, the policy of the thread. Otherwise, a negative error
4517 * code.
1da177e4 4518 */
5add95d4 4519SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4520{
36c8b586 4521 struct task_struct *p;
3a5c359a 4522 int retval;
1da177e4
LT
4523
4524 if (pid < 0)
3a5c359a 4525 return -EINVAL;
1da177e4
LT
4526
4527 retval = -ESRCH;
5fe85be0 4528 rcu_read_lock();
1da177e4
LT
4529 p = find_process_by_pid(pid);
4530 if (p) {
4531 retval = security_task_getscheduler(p);
4532 if (!retval)
ca94c442
LP
4533 retval = p->policy
4534 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4535 }
5fe85be0 4536 rcu_read_unlock();
1da177e4
LT
4537 return retval;
4538}
4539
4540/**
ca94c442 4541 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4542 * @pid: the pid in question.
4543 * @param: structure containing the RT priority.
e69f6186
YB
4544 *
4545 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4546 * code.
1da177e4 4547 */
5add95d4 4548SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4549{
ce5f7f82 4550 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4551 struct task_struct *p;
3a5c359a 4552 int retval;
1da177e4
LT
4553
4554 if (!param || pid < 0)
3a5c359a 4555 return -EINVAL;
1da177e4 4556
5fe85be0 4557 rcu_read_lock();
1da177e4
LT
4558 p = find_process_by_pid(pid);
4559 retval = -ESRCH;
4560 if (!p)
4561 goto out_unlock;
4562
4563 retval = security_task_getscheduler(p);
4564 if (retval)
4565 goto out_unlock;
4566
ce5f7f82
PZ
4567 if (task_has_rt_policy(p))
4568 lp.sched_priority = p->rt_priority;
5fe85be0 4569 rcu_read_unlock();
1da177e4
LT
4570
4571 /*
4572 * This one might sleep, we cannot do it with a spinlock held ...
4573 */
4574 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4575
1da177e4
LT
4576 return retval;
4577
4578out_unlock:
5fe85be0 4579 rcu_read_unlock();
1da177e4
LT
4580 return retval;
4581}
4582
d50dde5a
DF
4583static int sched_read_attr(struct sched_attr __user *uattr,
4584 struct sched_attr *attr,
4585 unsigned int usize)
4586{
4587 int ret;
4588
4589 if (!access_ok(VERIFY_WRITE, uattr, usize))
4590 return -EFAULT;
4591
4592 /*
4593 * If we're handed a smaller struct than we know of,
4594 * ensure all the unknown bits are 0 - i.e. old
4595 * user-space does not get uncomplete information.
4596 */
4597 if (usize < sizeof(*attr)) {
4598 unsigned char *addr;
4599 unsigned char *end;
4600
4601 addr = (void *)attr + usize;
4602 end = (void *)attr + sizeof(*attr);
4603
4604 for (; addr < end; addr++) {
4605 if (*addr)
22400674 4606 return -EFBIG;
d50dde5a
DF
4607 }
4608
4609 attr->size = usize;
4610 }
4611
4efbc454 4612 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4613 if (ret)
4614 return -EFAULT;
4615
22400674 4616 return 0;
d50dde5a
DF
4617}
4618
4619/**
aab03e05 4620 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4621 * @pid: the pid in question.
5778fccf 4622 * @uattr: structure containing the extended parameters.
d50dde5a 4623 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4624 * @flags: for future extension.
d50dde5a 4625 */
6d35ab48
PZ
4626SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4627 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4628{
4629 struct sched_attr attr = {
4630 .size = sizeof(struct sched_attr),
4631 };
4632 struct task_struct *p;
4633 int retval;
4634
4635 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4636 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4637 return -EINVAL;
4638
4639 rcu_read_lock();
4640 p = find_process_by_pid(pid);
4641 retval = -ESRCH;
4642 if (!p)
4643 goto out_unlock;
4644
4645 retval = security_task_getscheduler(p);
4646 if (retval)
4647 goto out_unlock;
4648
4649 attr.sched_policy = p->policy;
7479f3c9
PZ
4650 if (p->sched_reset_on_fork)
4651 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4652 if (task_has_dl_policy(p))
4653 __getparam_dl(p, &attr);
4654 else if (task_has_rt_policy(p))
d50dde5a
DF
4655 attr.sched_priority = p->rt_priority;
4656 else
d0ea0268 4657 attr.sched_nice = task_nice(p);
d50dde5a
DF
4658
4659 rcu_read_unlock();
4660
4661 retval = sched_read_attr(uattr, &attr, size);
4662 return retval;
4663
4664out_unlock:
4665 rcu_read_unlock();
4666 return retval;
4667}
4668
96f874e2 4669long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4670{
5a16f3d3 4671 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4672 struct task_struct *p;
4673 int retval;
1da177e4 4674
23f5d142 4675 rcu_read_lock();
1da177e4
LT
4676
4677 p = find_process_by_pid(pid);
4678 if (!p) {
23f5d142 4679 rcu_read_unlock();
1da177e4
LT
4680 return -ESRCH;
4681 }
4682
23f5d142 4683 /* Prevent p going away */
1da177e4 4684 get_task_struct(p);
23f5d142 4685 rcu_read_unlock();
1da177e4 4686
14a40ffc
TH
4687 if (p->flags & PF_NO_SETAFFINITY) {
4688 retval = -EINVAL;
4689 goto out_put_task;
4690 }
5a16f3d3
RR
4691 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4692 retval = -ENOMEM;
4693 goto out_put_task;
4694 }
4695 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4696 retval = -ENOMEM;
4697 goto out_free_cpus_allowed;
4698 }
1da177e4 4699 retval = -EPERM;
4c44aaaf
EB
4700 if (!check_same_owner(p)) {
4701 rcu_read_lock();
4702 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4703 rcu_read_unlock();
16303ab2 4704 goto out_free_new_mask;
4c44aaaf
EB
4705 }
4706 rcu_read_unlock();
4707 }
1da177e4 4708
b0ae1981 4709 retval = security_task_setscheduler(p);
e7834f8f 4710 if (retval)
16303ab2 4711 goto out_free_new_mask;
e7834f8f 4712
e4099a5e
PZ
4713
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 cpumask_and(new_mask, in_mask, cpus_allowed);
4716
332ac17e
DF
4717 /*
4718 * Since bandwidth control happens on root_domain basis,
4719 * if admission test is enabled, we only admit -deadline
4720 * tasks allowed to run on all the CPUs in the task's
4721 * root_domain.
4722 */
4723#ifdef CONFIG_SMP
f1e3a093
KT
4724 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4725 rcu_read_lock();
4726 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4727 retval = -EBUSY;
f1e3a093 4728 rcu_read_unlock();
16303ab2 4729 goto out_free_new_mask;
332ac17e 4730 }
f1e3a093 4731 rcu_read_unlock();
332ac17e
DF
4732 }
4733#endif
49246274 4734again:
25834c73 4735 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4736
8707d8b8 4737 if (!retval) {
5a16f3d3
RR
4738 cpuset_cpus_allowed(p, cpus_allowed);
4739 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4740 /*
4741 * We must have raced with a concurrent cpuset
4742 * update. Just reset the cpus_allowed to the
4743 * cpuset's cpus_allowed
4744 */
5a16f3d3 4745 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4746 goto again;
4747 }
4748 }
16303ab2 4749out_free_new_mask:
5a16f3d3
RR
4750 free_cpumask_var(new_mask);
4751out_free_cpus_allowed:
4752 free_cpumask_var(cpus_allowed);
4753out_put_task:
1da177e4 4754 put_task_struct(p);
1da177e4
LT
4755 return retval;
4756}
4757
4758static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4759 struct cpumask *new_mask)
1da177e4 4760{
96f874e2
RR
4761 if (len < cpumask_size())
4762 cpumask_clear(new_mask);
4763 else if (len > cpumask_size())
4764 len = cpumask_size();
4765
1da177e4
LT
4766 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4767}
4768
4769/**
4770 * sys_sched_setaffinity - set the cpu affinity of a process
4771 * @pid: pid of the process
4772 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4773 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4774 *
4775 * Return: 0 on success. An error code otherwise.
1da177e4 4776 */
5add95d4
HC
4777SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4778 unsigned long __user *, user_mask_ptr)
1da177e4 4779{
5a16f3d3 4780 cpumask_var_t new_mask;
1da177e4
LT
4781 int retval;
4782
5a16f3d3
RR
4783 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4784 return -ENOMEM;
1da177e4 4785
5a16f3d3
RR
4786 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4787 if (retval == 0)
4788 retval = sched_setaffinity(pid, new_mask);
4789 free_cpumask_var(new_mask);
4790 return retval;
1da177e4
LT
4791}
4792
96f874e2 4793long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4794{
36c8b586 4795 struct task_struct *p;
31605683 4796 unsigned long flags;
1da177e4 4797 int retval;
1da177e4 4798
23f5d142 4799 rcu_read_lock();
1da177e4
LT
4800
4801 retval = -ESRCH;
4802 p = find_process_by_pid(pid);
4803 if (!p)
4804 goto out_unlock;
4805
e7834f8f
DQ
4806 retval = security_task_getscheduler(p);
4807 if (retval)
4808 goto out_unlock;
4809
013fdb80 4810 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4811 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4812 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4813
4814out_unlock:
23f5d142 4815 rcu_read_unlock();
1da177e4 4816
9531b62f 4817 return retval;
1da177e4
LT
4818}
4819
4820/**
4821 * sys_sched_getaffinity - get the cpu affinity of a process
4822 * @pid: pid of the process
4823 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4824 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4825 *
599b4840
ZW
4826 * Return: size of CPU mask copied to user_mask_ptr on success. An
4827 * error code otherwise.
1da177e4 4828 */
5add95d4
HC
4829SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4830 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4831{
4832 int ret;
f17c8607 4833 cpumask_var_t mask;
1da177e4 4834
84fba5ec 4835 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4836 return -EINVAL;
4837 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4838 return -EINVAL;
4839
f17c8607
RR
4840 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4841 return -ENOMEM;
1da177e4 4842
f17c8607
RR
4843 ret = sched_getaffinity(pid, mask);
4844 if (ret == 0) {
8bc037fb 4845 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4846
4847 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4848 ret = -EFAULT;
4849 else
cd3d8031 4850 ret = retlen;
f17c8607
RR
4851 }
4852 free_cpumask_var(mask);
1da177e4 4853
f17c8607 4854 return ret;
1da177e4
LT
4855}
4856
4857/**
4858 * sys_sched_yield - yield the current processor to other threads.
4859 *
dd41f596
IM
4860 * This function yields the current CPU to other tasks. If there are no
4861 * other threads running on this CPU then this function will return.
e69f6186
YB
4862 *
4863 * Return: 0.
1da177e4 4864 */
5add95d4 4865SYSCALL_DEFINE0(sched_yield)
1da177e4 4866{
70b97a7f 4867 struct rq *rq = this_rq_lock();
1da177e4 4868
ae92882e 4869 schedstat_inc(rq->yld_count);
4530d7ab 4870 current->sched_class->yield_task(rq);
1da177e4
LT
4871
4872 /*
4873 * Since we are going to call schedule() anyway, there's
4874 * no need to preempt or enable interrupts:
4875 */
4876 __release(rq->lock);
8a25d5de 4877 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4878 do_raw_spin_unlock(&rq->lock);
ba74c144 4879 sched_preempt_enable_no_resched();
1da177e4
LT
4880
4881 schedule();
4882
4883 return 0;
4884}
4885
35a773a0 4886#ifndef CONFIG_PREEMPT
02b67cc3 4887int __sched _cond_resched(void)
1da177e4 4888{
fe32d3cd 4889 if (should_resched(0)) {
a18b5d01 4890 preempt_schedule_common();
1da177e4
LT
4891 return 1;
4892 }
4893 return 0;
4894}
02b67cc3 4895EXPORT_SYMBOL(_cond_resched);
35a773a0 4896#endif
1da177e4
LT
4897
4898/*
613afbf8 4899 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4900 * call schedule, and on return reacquire the lock.
4901 *
41a2d6cf 4902 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4903 * operations here to prevent schedule() from being called twice (once via
4904 * spin_unlock(), once by hand).
4905 */
613afbf8 4906int __cond_resched_lock(spinlock_t *lock)
1da177e4 4907{
fe32d3cd 4908 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4909 int ret = 0;
4910
f607c668
PZ
4911 lockdep_assert_held(lock);
4912
4a81e832 4913 if (spin_needbreak(lock) || resched) {
1da177e4 4914 spin_unlock(lock);
d86ee480 4915 if (resched)
a18b5d01 4916 preempt_schedule_common();
95c354fe
NP
4917 else
4918 cpu_relax();
6df3cecb 4919 ret = 1;
1da177e4 4920 spin_lock(lock);
1da177e4 4921 }
6df3cecb 4922 return ret;
1da177e4 4923}
613afbf8 4924EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4925
613afbf8 4926int __sched __cond_resched_softirq(void)
1da177e4
LT
4927{
4928 BUG_ON(!in_softirq());
4929
fe32d3cd 4930 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4931 local_bh_enable();
a18b5d01 4932 preempt_schedule_common();
1da177e4
LT
4933 local_bh_disable();
4934 return 1;
4935 }
4936 return 0;
4937}
613afbf8 4938EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4939
1da177e4
LT
4940/**
4941 * yield - yield the current processor to other threads.
4942 *
8e3fabfd
PZ
4943 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4944 *
4945 * The scheduler is at all times free to pick the calling task as the most
4946 * eligible task to run, if removing the yield() call from your code breaks
4947 * it, its already broken.
4948 *
4949 * Typical broken usage is:
4950 *
4951 * while (!event)
4952 * yield();
4953 *
4954 * where one assumes that yield() will let 'the other' process run that will
4955 * make event true. If the current task is a SCHED_FIFO task that will never
4956 * happen. Never use yield() as a progress guarantee!!
4957 *
4958 * If you want to use yield() to wait for something, use wait_event().
4959 * If you want to use yield() to be 'nice' for others, use cond_resched().
4960 * If you still want to use yield(), do not!
1da177e4
LT
4961 */
4962void __sched yield(void)
4963{
4964 set_current_state(TASK_RUNNING);
4965 sys_sched_yield();
4966}
1da177e4
LT
4967EXPORT_SYMBOL(yield);
4968
d95f4122
MG
4969/**
4970 * yield_to - yield the current processor to another thread in
4971 * your thread group, or accelerate that thread toward the
4972 * processor it's on.
16addf95
RD
4973 * @p: target task
4974 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4975 *
4976 * It's the caller's job to ensure that the target task struct
4977 * can't go away on us before we can do any checks.
4978 *
e69f6186 4979 * Return:
7b270f60
PZ
4980 * true (>0) if we indeed boosted the target task.
4981 * false (0) if we failed to boost the target.
4982 * -ESRCH if there's no task to yield to.
d95f4122 4983 */
fa93384f 4984int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4985{
4986 struct task_struct *curr = current;
4987 struct rq *rq, *p_rq;
4988 unsigned long flags;
c3c18640 4989 int yielded = 0;
d95f4122
MG
4990
4991 local_irq_save(flags);
4992 rq = this_rq();
4993
4994again:
4995 p_rq = task_rq(p);
7b270f60
PZ
4996 /*
4997 * If we're the only runnable task on the rq and target rq also
4998 * has only one task, there's absolutely no point in yielding.
4999 */
5000 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5001 yielded = -ESRCH;
5002 goto out_irq;
5003 }
5004
d95f4122 5005 double_rq_lock(rq, p_rq);
39e24d8f 5006 if (task_rq(p) != p_rq) {
d95f4122
MG
5007 double_rq_unlock(rq, p_rq);
5008 goto again;
5009 }
5010
5011 if (!curr->sched_class->yield_to_task)
7b270f60 5012 goto out_unlock;
d95f4122
MG
5013
5014 if (curr->sched_class != p->sched_class)
7b270f60 5015 goto out_unlock;
d95f4122
MG
5016
5017 if (task_running(p_rq, p) || p->state)
7b270f60 5018 goto out_unlock;
d95f4122
MG
5019
5020 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5021 if (yielded) {
ae92882e 5022 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5023 /*
5024 * Make p's CPU reschedule; pick_next_entity takes care of
5025 * fairness.
5026 */
5027 if (preempt && rq != p_rq)
8875125e 5028 resched_curr(p_rq);
6d1cafd8 5029 }
d95f4122 5030
7b270f60 5031out_unlock:
d95f4122 5032 double_rq_unlock(rq, p_rq);
7b270f60 5033out_irq:
d95f4122
MG
5034 local_irq_restore(flags);
5035
7b270f60 5036 if (yielded > 0)
d95f4122
MG
5037 schedule();
5038
5039 return yielded;
5040}
5041EXPORT_SYMBOL_GPL(yield_to);
5042
1da177e4 5043/*
41a2d6cf 5044 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5045 * that process accounting knows that this is a task in IO wait state.
1da177e4 5046 */
1da177e4
LT
5047long __sched io_schedule_timeout(long timeout)
5048{
9cff8ade
N
5049 int old_iowait = current->in_iowait;
5050 struct rq *rq;
1da177e4
LT
5051 long ret;
5052
9cff8ade 5053 current->in_iowait = 1;
10d784ea 5054 blk_schedule_flush_plug(current);
9cff8ade 5055
0ff92245 5056 delayacct_blkio_start();
9cff8ade 5057 rq = raw_rq();
1da177e4
LT
5058 atomic_inc(&rq->nr_iowait);
5059 ret = schedule_timeout(timeout);
9cff8ade 5060 current->in_iowait = old_iowait;
1da177e4 5061 atomic_dec(&rq->nr_iowait);
0ff92245 5062 delayacct_blkio_end();
9cff8ade 5063
1da177e4
LT
5064 return ret;
5065}
9cff8ade 5066EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5067
5068/**
5069 * sys_sched_get_priority_max - return maximum RT priority.
5070 * @policy: scheduling class.
5071 *
e69f6186
YB
5072 * Return: On success, this syscall returns the maximum
5073 * rt_priority that can be used by a given scheduling class.
5074 * On failure, a negative error code is returned.
1da177e4 5075 */
5add95d4 5076SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5077{
5078 int ret = -EINVAL;
5079
5080 switch (policy) {
5081 case SCHED_FIFO:
5082 case SCHED_RR:
5083 ret = MAX_USER_RT_PRIO-1;
5084 break;
aab03e05 5085 case SCHED_DEADLINE:
1da177e4 5086 case SCHED_NORMAL:
b0a9499c 5087 case SCHED_BATCH:
dd41f596 5088 case SCHED_IDLE:
1da177e4
LT
5089 ret = 0;
5090 break;
5091 }
5092 return ret;
5093}
5094
5095/**
5096 * sys_sched_get_priority_min - return minimum RT priority.
5097 * @policy: scheduling class.
5098 *
e69f6186
YB
5099 * Return: On success, this syscall returns the minimum
5100 * rt_priority that can be used by a given scheduling class.
5101 * On failure, a negative error code is returned.
1da177e4 5102 */
5add95d4 5103SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5104{
5105 int ret = -EINVAL;
5106
5107 switch (policy) {
5108 case SCHED_FIFO:
5109 case SCHED_RR:
5110 ret = 1;
5111 break;
aab03e05 5112 case SCHED_DEADLINE:
1da177e4 5113 case SCHED_NORMAL:
b0a9499c 5114 case SCHED_BATCH:
dd41f596 5115 case SCHED_IDLE:
1da177e4
LT
5116 ret = 0;
5117 }
5118 return ret;
5119}
5120
5121/**
5122 * sys_sched_rr_get_interval - return the default timeslice of a process.
5123 * @pid: pid of the process.
5124 * @interval: userspace pointer to the timeslice value.
5125 *
5126 * this syscall writes the default timeslice value of a given process
5127 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5128 *
5129 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5130 * an error code.
1da177e4 5131 */
17da2bd9 5132SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5133 struct timespec __user *, interval)
1da177e4 5134{
36c8b586 5135 struct task_struct *p;
a4ec24b4 5136 unsigned int time_slice;
eb580751
PZ
5137 struct rq_flags rf;
5138 struct timespec t;
dba091b9 5139 struct rq *rq;
3a5c359a 5140 int retval;
1da177e4
LT
5141
5142 if (pid < 0)
3a5c359a 5143 return -EINVAL;
1da177e4
LT
5144
5145 retval = -ESRCH;
1a551ae7 5146 rcu_read_lock();
1da177e4
LT
5147 p = find_process_by_pid(pid);
5148 if (!p)
5149 goto out_unlock;
5150
5151 retval = security_task_getscheduler(p);
5152 if (retval)
5153 goto out_unlock;
5154
eb580751 5155 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5156 time_slice = 0;
5157 if (p->sched_class->get_rr_interval)
5158 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5159 task_rq_unlock(rq, p, &rf);
a4ec24b4 5160
1a551ae7 5161 rcu_read_unlock();
a4ec24b4 5162 jiffies_to_timespec(time_slice, &t);
1da177e4 5163 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5164 return retval;
3a5c359a 5165
1da177e4 5166out_unlock:
1a551ae7 5167 rcu_read_unlock();
1da177e4
LT
5168 return retval;
5169}
5170
7c731e0a 5171static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5172
82a1fcb9 5173void sched_show_task(struct task_struct *p)
1da177e4 5174{
1da177e4 5175 unsigned long free = 0;
4e79752c 5176 int ppid;
1f8a7633 5177 unsigned long state = p->state;
1da177e4 5178
1f8a7633
TH
5179 if (state)
5180 state = __ffs(state) + 1;
28d0686c 5181 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5182 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5183#if BITS_PER_LONG == 32
1da177e4 5184 if (state == TASK_RUNNING)
3df0fc5b 5185 printk(KERN_CONT " running ");
1da177e4 5186 else
3df0fc5b 5187 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5188#else
5189 if (state == TASK_RUNNING)
3df0fc5b 5190 printk(KERN_CONT " running task ");
1da177e4 5191 else
3df0fc5b 5192 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5193#endif
5194#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5195 free = stack_not_used(p);
1da177e4 5196#endif
a90e984c 5197 ppid = 0;
4e79752c 5198 rcu_read_lock();
a90e984c
ON
5199 if (pid_alive(p))
5200 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5201 rcu_read_unlock();
3df0fc5b 5202 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5203 task_pid_nr(p), ppid,
aa47b7e0 5204 (unsigned long)task_thread_info(p)->flags);
1da177e4 5205
3d1cb205 5206 print_worker_info(KERN_INFO, p);
5fb5e6de 5207 show_stack(p, NULL);
1da177e4
LT
5208}
5209
e59e2ae2 5210void show_state_filter(unsigned long state_filter)
1da177e4 5211{
36c8b586 5212 struct task_struct *g, *p;
1da177e4 5213
4bd77321 5214#if BITS_PER_LONG == 32
3df0fc5b
PZ
5215 printk(KERN_INFO
5216 " task PC stack pid father\n");
1da177e4 5217#else
3df0fc5b
PZ
5218 printk(KERN_INFO
5219 " task PC stack pid father\n");
1da177e4 5220#endif
510f5acc 5221 rcu_read_lock();
5d07f420 5222 for_each_process_thread(g, p) {
1da177e4
LT
5223 /*
5224 * reset the NMI-timeout, listing all files on a slow
25985edc 5225 * console might take a lot of time:
57675cb9
AR
5226 * Also, reset softlockup watchdogs on all CPUs, because
5227 * another CPU might be blocked waiting for us to process
5228 * an IPI.
1da177e4
LT
5229 */
5230 touch_nmi_watchdog();
57675cb9 5231 touch_all_softlockup_watchdogs();
39bc89fd 5232 if (!state_filter || (p->state & state_filter))
82a1fcb9 5233 sched_show_task(p);
5d07f420 5234 }
1da177e4 5235
dd41f596 5236#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5237 if (!state_filter)
5238 sysrq_sched_debug_show();
dd41f596 5239#endif
510f5acc 5240 rcu_read_unlock();
e59e2ae2
IM
5241 /*
5242 * Only show locks if all tasks are dumped:
5243 */
93335a21 5244 if (!state_filter)
e59e2ae2 5245 debug_show_all_locks();
1da177e4
LT
5246}
5247
0db0628d 5248void init_idle_bootup_task(struct task_struct *idle)
1df21055 5249{
dd41f596 5250 idle->sched_class = &idle_sched_class;
1df21055
IM
5251}
5252
f340c0d1
IM
5253/**
5254 * init_idle - set up an idle thread for a given CPU
5255 * @idle: task in question
5256 * @cpu: cpu the idle task belongs to
5257 *
5258 * NOTE: this function does not set the idle thread's NEED_RESCHED
5259 * flag, to make booting more robust.
5260 */
0db0628d 5261void init_idle(struct task_struct *idle, int cpu)
1da177e4 5262{
70b97a7f 5263 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5264 unsigned long flags;
5265
25834c73
PZ
5266 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5267 raw_spin_lock(&rq->lock);
5cbd54ef 5268
5e1576ed 5269 __sched_fork(0, idle);
06b83b5f 5270 idle->state = TASK_RUNNING;
dd41f596
IM
5271 idle->se.exec_start = sched_clock();
5272
e1b77c92
MR
5273 kasan_unpoison_task_stack(idle);
5274
de9b8f5d
PZ
5275#ifdef CONFIG_SMP
5276 /*
5277 * Its possible that init_idle() gets called multiple times on a task,
5278 * in that case do_set_cpus_allowed() will not do the right thing.
5279 *
5280 * And since this is boot we can forgo the serialization.
5281 */
5282 set_cpus_allowed_common(idle, cpumask_of(cpu));
5283#endif
6506cf6c
PZ
5284 /*
5285 * We're having a chicken and egg problem, even though we are
5286 * holding rq->lock, the cpu isn't yet set to this cpu so the
5287 * lockdep check in task_group() will fail.
5288 *
5289 * Similar case to sched_fork(). / Alternatively we could
5290 * use task_rq_lock() here and obtain the other rq->lock.
5291 *
5292 * Silence PROVE_RCU
5293 */
5294 rcu_read_lock();
dd41f596 5295 __set_task_cpu(idle, cpu);
6506cf6c 5296 rcu_read_unlock();
1da177e4 5297
1da177e4 5298 rq->curr = rq->idle = idle;
da0c1e65 5299 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5300#ifdef CONFIG_SMP
3ca7a440 5301 idle->on_cpu = 1;
4866cde0 5302#endif
25834c73
PZ
5303 raw_spin_unlock(&rq->lock);
5304 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5305
5306 /* Set the preempt count _outside_ the spinlocks! */
01028747 5307 init_idle_preempt_count(idle, cpu);
55cd5340 5308
dd41f596
IM
5309 /*
5310 * The idle tasks have their own, simple scheduling class:
5311 */
5312 idle->sched_class = &idle_sched_class;
868baf07 5313 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5314 vtime_init_idle(idle, cpu);
de9b8f5d 5315#ifdef CONFIG_SMP
f1c6f1a7
CE
5316 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5317#endif
19978ca6
IM
5318}
5319
f82f8042
JL
5320int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5321 const struct cpumask *trial)
5322{
5323 int ret = 1, trial_cpus;
5324 struct dl_bw *cur_dl_b;
5325 unsigned long flags;
5326
bb2bc55a
MG
5327 if (!cpumask_weight(cur))
5328 return ret;
5329
75e23e49 5330 rcu_read_lock_sched();
f82f8042
JL
5331 cur_dl_b = dl_bw_of(cpumask_any(cur));
5332 trial_cpus = cpumask_weight(trial);
5333
5334 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5335 if (cur_dl_b->bw != -1 &&
5336 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5337 ret = 0;
5338 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5339 rcu_read_unlock_sched();
f82f8042
JL
5340
5341 return ret;
5342}
5343
7f51412a
JL
5344int task_can_attach(struct task_struct *p,
5345 const struct cpumask *cs_cpus_allowed)
5346{
5347 int ret = 0;
5348
5349 /*
5350 * Kthreads which disallow setaffinity shouldn't be moved
5351 * to a new cpuset; we don't want to change their cpu
5352 * affinity and isolating such threads by their set of
5353 * allowed nodes is unnecessary. Thus, cpusets are not
5354 * applicable for such threads. This prevents checking for
5355 * success of set_cpus_allowed_ptr() on all attached tasks
5356 * before cpus_allowed may be changed.
5357 */
5358 if (p->flags & PF_NO_SETAFFINITY) {
5359 ret = -EINVAL;
5360 goto out;
5361 }
5362
5363#ifdef CONFIG_SMP
5364 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5365 cs_cpus_allowed)) {
5366 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5367 cs_cpus_allowed);
75e23e49 5368 struct dl_bw *dl_b;
7f51412a
JL
5369 bool overflow;
5370 int cpus;
5371 unsigned long flags;
5372
75e23e49
JL
5373 rcu_read_lock_sched();
5374 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5375 raw_spin_lock_irqsave(&dl_b->lock, flags);
5376 cpus = dl_bw_cpus(dest_cpu);
5377 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5378 if (overflow)
5379 ret = -EBUSY;
5380 else {
5381 /*
5382 * We reserve space for this task in the destination
5383 * root_domain, as we can't fail after this point.
5384 * We will free resources in the source root_domain
5385 * later on (see set_cpus_allowed_dl()).
5386 */
5387 __dl_add(dl_b, p->dl.dl_bw);
5388 }
5389 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5390 rcu_read_unlock_sched();
7f51412a
JL
5391
5392 }
5393#endif
5394out:
5395 return ret;
5396}
5397
1da177e4 5398#ifdef CONFIG_SMP
1da177e4 5399
e26fbffd
TG
5400static bool sched_smp_initialized __read_mostly;
5401
e6628d5b
MG
5402#ifdef CONFIG_NUMA_BALANCING
5403/* Migrate current task p to target_cpu */
5404int migrate_task_to(struct task_struct *p, int target_cpu)
5405{
5406 struct migration_arg arg = { p, target_cpu };
5407 int curr_cpu = task_cpu(p);
5408
5409 if (curr_cpu == target_cpu)
5410 return 0;
5411
5412 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5413 return -EINVAL;
5414
5415 /* TODO: This is not properly updating schedstats */
5416
286549dc 5417 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5418 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5419}
0ec8aa00
PZ
5420
5421/*
5422 * Requeue a task on a given node and accurately track the number of NUMA
5423 * tasks on the runqueues
5424 */
5425void sched_setnuma(struct task_struct *p, int nid)
5426{
da0c1e65 5427 bool queued, running;
eb580751
PZ
5428 struct rq_flags rf;
5429 struct rq *rq;
0ec8aa00 5430
eb580751 5431 rq = task_rq_lock(p, &rf);
da0c1e65 5432 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5433 running = task_current(rq, p);
5434
da0c1e65 5435 if (queued)
1de64443 5436 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5437 if (running)
f3cd1c4e 5438 put_prev_task(rq, p);
0ec8aa00
PZ
5439
5440 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5441
5442 if (running)
5443 p->sched_class->set_curr_task(rq);
da0c1e65 5444 if (queued)
1de64443 5445 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5446 task_rq_unlock(rq, p, &rf);
0ec8aa00 5447}
5cc389bc 5448#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5449
1da177e4 5450#ifdef CONFIG_HOTPLUG_CPU
054b9108 5451/*
48c5ccae
PZ
5452 * Ensures that the idle task is using init_mm right before its cpu goes
5453 * offline.
054b9108 5454 */
48c5ccae 5455void idle_task_exit(void)
1da177e4 5456{
48c5ccae 5457 struct mm_struct *mm = current->active_mm;
e76bd8d9 5458
48c5ccae 5459 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5460
a53efe5f 5461 if (mm != &init_mm) {
f98db601 5462 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5463 finish_arch_post_lock_switch();
5464 }
48c5ccae 5465 mmdrop(mm);
1da177e4
LT
5466}
5467
5468/*
5d180232
PZ
5469 * Since this CPU is going 'away' for a while, fold any nr_active delta
5470 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5471 * nr_active count is stable. We need to take the teardown thread which
5472 * is calling this into account, so we hand in adjust = 1 to the load
5473 * calculation.
5d180232
PZ
5474 *
5475 * Also see the comment "Global load-average calculations".
1da177e4 5476 */
5d180232 5477static void calc_load_migrate(struct rq *rq)
1da177e4 5478{
d60585c5 5479 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5480 if (delta)
5481 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5482}
5483
3f1d2a31
PZ
5484static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5485{
5486}
5487
5488static const struct sched_class fake_sched_class = {
5489 .put_prev_task = put_prev_task_fake,
5490};
5491
5492static struct task_struct fake_task = {
5493 /*
5494 * Avoid pull_{rt,dl}_task()
5495 */
5496 .prio = MAX_PRIO + 1,
5497 .sched_class = &fake_sched_class,
5498};
5499
48f24c4d 5500/*
48c5ccae
PZ
5501 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5502 * try_to_wake_up()->select_task_rq().
5503 *
5504 * Called with rq->lock held even though we'er in stop_machine() and
5505 * there's no concurrency possible, we hold the required locks anyway
5506 * because of lock validation efforts.
1da177e4 5507 */
5e16bbc2 5508static void migrate_tasks(struct rq *dead_rq)
1da177e4 5509{
5e16bbc2 5510 struct rq *rq = dead_rq;
48c5ccae 5511 struct task_struct *next, *stop = rq->stop;
e7904a28 5512 struct pin_cookie cookie;
48c5ccae 5513 int dest_cpu;
1da177e4
LT
5514
5515 /*
48c5ccae
PZ
5516 * Fudge the rq selection such that the below task selection loop
5517 * doesn't get stuck on the currently eligible stop task.
5518 *
5519 * We're currently inside stop_machine() and the rq is either stuck
5520 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5521 * either way we should never end up calling schedule() until we're
5522 * done here.
1da177e4 5523 */
48c5ccae 5524 rq->stop = NULL;
48f24c4d 5525
77bd3970
FW
5526 /*
5527 * put_prev_task() and pick_next_task() sched
5528 * class method both need to have an up-to-date
5529 * value of rq->clock[_task]
5530 */
5531 update_rq_clock(rq);
5532
5e16bbc2 5533 for (;;) {
48c5ccae
PZ
5534 /*
5535 * There's this thread running, bail when that's the only
5536 * remaining thread.
5537 */
5538 if (rq->nr_running == 1)
dd41f596 5539 break;
48c5ccae 5540
cbce1a68 5541 /*
5473e0cc 5542 * pick_next_task assumes pinned rq->lock.
cbce1a68 5543 */
e7904a28
PZ
5544 cookie = lockdep_pin_lock(&rq->lock);
5545 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5546 BUG_ON(!next);
79c53799 5547 next->sched_class->put_prev_task(rq, next);
e692ab53 5548
5473e0cc
WL
5549 /*
5550 * Rules for changing task_struct::cpus_allowed are holding
5551 * both pi_lock and rq->lock, such that holding either
5552 * stabilizes the mask.
5553 *
5554 * Drop rq->lock is not quite as disastrous as it usually is
5555 * because !cpu_active at this point, which means load-balance
5556 * will not interfere. Also, stop-machine.
5557 */
e7904a28 5558 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5559 raw_spin_unlock(&rq->lock);
5560 raw_spin_lock(&next->pi_lock);
5561 raw_spin_lock(&rq->lock);
5562
5563 /*
5564 * Since we're inside stop-machine, _nothing_ should have
5565 * changed the task, WARN if weird stuff happened, because in
5566 * that case the above rq->lock drop is a fail too.
5567 */
5568 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5569 raw_spin_unlock(&next->pi_lock);
5570 continue;
5571 }
5572
48c5ccae 5573 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5574 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5575
5e16bbc2
PZ
5576 rq = __migrate_task(rq, next, dest_cpu);
5577 if (rq != dead_rq) {
5578 raw_spin_unlock(&rq->lock);
5579 rq = dead_rq;
5580 raw_spin_lock(&rq->lock);
5581 }
5473e0cc 5582 raw_spin_unlock(&next->pi_lock);
1da177e4 5583 }
dce48a84 5584
48c5ccae 5585 rq->stop = stop;
dce48a84 5586}
1da177e4
LT
5587#endif /* CONFIG_HOTPLUG_CPU */
5588
1f11eb6a
GH
5589static void set_rq_online(struct rq *rq)
5590{
5591 if (!rq->online) {
5592 const struct sched_class *class;
5593
c6c4927b 5594 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5595 rq->online = 1;
5596
5597 for_each_class(class) {
5598 if (class->rq_online)
5599 class->rq_online(rq);
5600 }
5601 }
5602}
5603
5604static void set_rq_offline(struct rq *rq)
5605{
5606 if (rq->online) {
5607 const struct sched_class *class;
5608
5609 for_each_class(class) {
5610 if (class->rq_offline)
5611 class->rq_offline(rq);
5612 }
5613
c6c4927b 5614 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5615 rq->online = 0;
5616 }
5617}
5618
9cf7243d 5619static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5620{
969c7921 5621 struct rq *rq = cpu_rq(cpu);
1da177e4 5622
a803f026
CM
5623 rq->age_stamp = sched_clock_cpu(cpu);
5624}
5625
4cb98839
PZ
5626static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5627
3e9830dc 5628#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5629
d039ac60 5630static __read_mostly int sched_debug_enabled;
f6630114 5631
d039ac60 5632static int __init sched_debug_setup(char *str)
f6630114 5633{
d039ac60 5634 sched_debug_enabled = 1;
f6630114
MT
5635
5636 return 0;
5637}
d039ac60
PZ
5638early_param("sched_debug", sched_debug_setup);
5639
5640static inline bool sched_debug(void)
5641{
5642 return sched_debug_enabled;
5643}
f6630114 5644
7c16ec58 5645static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5646 struct cpumask *groupmask)
1da177e4 5647{
4dcf6aff 5648 struct sched_group *group = sd->groups;
1da177e4 5649
96f874e2 5650 cpumask_clear(groupmask);
4dcf6aff
IM
5651
5652 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5653
5654 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5655 printk("does not load-balance\n");
4dcf6aff 5656 if (sd->parent)
3df0fc5b
PZ
5657 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5658 " has parent");
4dcf6aff 5659 return -1;
41c7ce9a
NP
5660 }
5661
333470ee
TH
5662 printk(KERN_CONT "span %*pbl level %s\n",
5663 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5664
758b2cdc 5665 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5666 printk(KERN_ERR "ERROR: domain->span does not contain "
5667 "CPU%d\n", cpu);
4dcf6aff 5668 }
758b2cdc 5669 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5670 printk(KERN_ERR "ERROR: domain->groups does not contain"
5671 " CPU%d\n", cpu);
4dcf6aff 5672 }
1da177e4 5673
4dcf6aff 5674 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5675 do {
4dcf6aff 5676 if (!group) {
3df0fc5b
PZ
5677 printk("\n");
5678 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5679 break;
5680 }
5681
758b2cdc 5682 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5683 printk(KERN_CONT "\n");
5684 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5685 break;
5686 }
1da177e4 5687
cb83b629
PZ
5688 if (!(sd->flags & SD_OVERLAP) &&
5689 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5690 printk(KERN_CONT "\n");
5691 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5692 break;
5693 }
1da177e4 5694
758b2cdc 5695 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5696
333470ee
TH
5697 printk(KERN_CONT " %*pbl",
5698 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5699 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5700 printk(KERN_CONT " (cpu_capacity = %d)",
5701 group->sgc->capacity);
381512cf 5702 }
1da177e4 5703
4dcf6aff
IM
5704 group = group->next;
5705 } while (group != sd->groups);
3df0fc5b 5706 printk(KERN_CONT "\n");
1da177e4 5707
758b2cdc 5708 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5709 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5710
758b2cdc
RR
5711 if (sd->parent &&
5712 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5713 printk(KERN_ERR "ERROR: parent span is not a superset "
5714 "of domain->span\n");
4dcf6aff
IM
5715 return 0;
5716}
1da177e4 5717
4dcf6aff
IM
5718static void sched_domain_debug(struct sched_domain *sd, int cpu)
5719{
5720 int level = 0;
1da177e4 5721
d039ac60 5722 if (!sched_debug_enabled)
f6630114
MT
5723 return;
5724
4dcf6aff
IM
5725 if (!sd) {
5726 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5727 return;
5728 }
1da177e4 5729
4dcf6aff
IM
5730 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5731
5732 for (;;) {
4cb98839 5733 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5734 break;
1da177e4
LT
5735 level++;
5736 sd = sd->parent;
33859f7f 5737 if (!sd)
4dcf6aff
IM
5738 break;
5739 }
1da177e4 5740}
6d6bc0ad 5741#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5742
5743# define sched_debug_enabled 0
48f24c4d 5744# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5745static inline bool sched_debug(void)
5746{
5747 return false;
5748}
6d6bc0ad 5749#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5750
1a20ff27 5751static int sd_degenerate(struct sched_domain *sd)
245af2c7 5752{
758b2cdc 5753 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5754 return 1;
5755
5756 /* Following flags need at least 2 groups */
5757 if (sd->flags & (SD_LOAD_BALANCE |
5758 SD_BALANCE_NEWIDLE |
5759 SD_BALANCE_FORK |
89c4710e 5760 SD_BALANCE_EXEC |
5d4dfddd 5761 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5762 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5763 SD_SHARE_PKG_RESOURCES |
5764 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5765 if (sd->groups != sd->groups->next)
5766 return 0;
5767 }
5768
5769 /* Following flags don't use groups */
c88d5910 5770 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5771 return 0;
5772
5773 return 1;
5774}
5775
48f24c4d
IM
5776static int
5777sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5778{
5779 unsigned long cflags = sd->flags, pflags = parent->flags;
5780
5781 if (sd_degenerate(parent))
5782 return 1;
5783
758b2cdc 5784 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5785 return 0;
5786
245af2c7
SS
5787 /* Flags needing groups don't count if only 1 group in parent */
5788 if (parent->groups == parent->groups->next) {
5789 pflags &= ~(SD_LOAD_BALANCE |
5790 SD_BALANCE_NEWIDLE |
5791 SD_BALANCE_FORK |
89c4710e 5792 SD_BALANCE_EXEC |
1f6e6c7c 5793 SD_ASYM_CPUCAPACITY |
5d4dfddd 5794 SD_SHARE_CPUCAPACITY |
10866e62 5795 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5796 SD_PREFER_SIBLING |
5797 SD_SHARE_POWERDOMAIN);
5436499e
KC
5798 if (nr_node_ids == 1)
5799 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5800 }
5801 if (~cflags & pflags)
5802 return 0;
5803
5804 return 1;
5805}
5806
dce840a0 5807static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5808{
dce840a0 5809 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5810
68e74568 5811 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5812 cpudl_cleanup(&rd->cpudl);
1baca4ce 5813 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5814 free_cpumask_var(rd->rto_mask);
5815 free_cpumask_var(rd->online);
5816 free_cpumask_var(rd->span);
5817 kfree(rd);
5818}
5819
57d885fe
GH
5820static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5821{
a0490fa3 5822 struct root_domain *old_rd = NULL;
57d885fe 5823 unsigned long flags;
57d885fe 5824
05fa785c 5825 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5826
5827 if (rq->rd) {
a0490fa3 5828 old_rd = rq->rd;
57d885fe 5829
c6c4927b 5830 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5831 set_rq_offline(rq);
57d885fe 5832
c6c4927b 5833 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5834
a0490fa3 5835 /*
0515973f 5836 * If we dont want to free the old_rd yet then
a0490fa3
IM
5837 * set old_rd to NULL to skip the freeing later
5838 * in this function:
5839 */
5840 if (!atomic_dec_and_test(&old_rd->refcount))
5841 old_rd = NULL;
57d885fe
GH
5842 }
5843
5844 atomic_inc(&rd->refcount);
5845 rq->rd = rd;
5846
c6c4927b 5847 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5848 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5849 set_rq_online(rq);
57d885fe 5850
05fa785c 5851 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5852
5853 if (old_rd)
dce840a0 5854 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5855}
5856
68c38fc3 5857static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5858{
5859 memset(rd, 0, sizeof(*rd));
5860
8295c699 5861 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5862 goto out;
8295c699 5863 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5864 goto free_span;
8295c699 5865 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5866 goto free_online;
8295c699 5867 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5868 goto free_dlo_mask;
6e0534f2 5869
332ac17e 5870 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5871 if (cpudl_init(&rd->cpudl) != 0)
5872 goto free_dlo_mask;
332ac17e 5873
68c38fc3 5874 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5875 goto free_rto_mask;
c6c4927b 5876 return 0;
6e0534f2 5877
68e74568
RR
5878free_rto_mask:
5879 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5880free_dlo_mask:
5881 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5882free_online:
5883 free_cpumask_var(rd->online);
5884free_span:
5885 free_cpumask_var(rd->span);
0c910d28 5886out:
c6c4927b 5887 return -ENOMEM;
57d885fe
GH
5888}
5889
029632fb
PZ
5890/*
5891 * By default the system creates a single root-domain with all cpus as
5892 * members (mimicking the global state we have today).
5893 */
5894struct root_domain def_root_domain;
5895
57d885fe
GH
5896static void init_defrootdomain(void)
5897{
68c38fc3 5898 init_rootdomain(&def_root_domain);
c6c4927b 5899
57d885fe
GH
5900 atomic_set(&def_root_domain.refcount, 1);
5901}
5902
dc938520 5903static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5904{
5905 struct root_domain *rd;
5906
5907 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5908 if (!rd)
5909 return NULL;
5910
68c38fc3 5911 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5912 kfree(rd);
5913 return NULL;
5914 }
57d885fe
GH
5915
5916 return rd;
5917}
5918
63b2ca30 5919static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5920{
5921 struct sched_group *tmp, *first;
5922
5923 if (!sg)
5924 return;
5925
5926 first = sg;
5927 do {
5928 tmp = sg->next;
5929
63b2ca30
NP
5930 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5931 kfree(sg->sgc);
e3589f6c
PZ
5932
5933 kfree(sg);
5934 sg = tmp;
5935 } while (sg != first);
5936}
5937
16f3ef46 5938static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5939{
e3589f6c
PZ
5940 /*
5941 * If its an overlapping domain it has private groups, iterate and
5942 * nuke them all.
5943 */
5944 if (sd->flags & SD_OVERLAP) {
5945 free_sched_groups(sd->groups, 1);
5946 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5947 kfree(sd->groups->sgc);
dce840a0 5948 kfree(sd->groups);
9c3f75cb 5949 }
24fc7edb
PZ
5950 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5951 kfree(sd->shared);
dce840a0
PZ
5952 kfree(sd);
5953}
5954
16f3ef46 5955static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5956{
16f3ef46
PZ
5957 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5958
5959 while (sd) {
5960 struct sched_domain *parent = sd->parent;
5961 destroy_sched_domain(sd);
5962 sd = parent;
5963 }
dce840a0
PZ
5964}
5965
f39180ef 5966static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5967{
16f3ef46
PZ
5968 if (sd)
5969 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5970}
5971
518cd623
PZ
5972/*
5973 * Keep a special pointer to the highest sched_domain that has
5974 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5975 * allows us to avoid some pointer chasing select_idle_sibling().
5976 *
5977 * Also keep a unique ID per domain (we use the first cpu number in
5978 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5979 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5980 */
5981DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5982DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5983DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 5984DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 5985DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 5986DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5987
5988static void update_top_cache_domain(int cpu)
5989{
0e369d75 5990 struct sched_domain_shared *sds = NULL;
518cd623
PZ
5991 struct sched_domain *sd;
5992 int id = cpu;
7d9ffa89 5993 int size = 1;
518cd623
PZ
5994
5995 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5996 if (sd) {
518cd623 5997 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5998 size = cpumask_weight(sched_domain_span(sd));
0e369d75 5999 sds = sd->shared;
7d9ffa89 6000 }
518cd623
PZ
6001
6002 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6003 per_cpu(sd_llc_size, cpu) = size;
518cd623 6004 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6005 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6006
6007 sd = lowest_flag_domain(cpu, SD_NUMA);
6008 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6009
6010 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6011 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6012}
6013
1da177e4 6014/*
0eab9146 6015 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6016 * hold the hotplug lock.
6017 */
0eab9146
IM
6018static void
6019cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6020{
70b97a7f 6021 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6022 struct sched_domain *tmp;
6023
6024 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6025 for (tmp = sd; tmp; ) {
245af2c7
SS
6026 struct sched_domain *parent = tmp->parent;
6027 if (!parent)
6028 break;
f29c9b1c 6029
1a848870 6030 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6031 tmp->parent = parent->parent;
1a848870
SS
6032 if (parent->parent)
6033 parent->parent->child = tmp;
10866e62
PZ
6034 /*
6035 * Transfer SD_PREFER_SIBLING down in case of a
6036 * degenerate parent; the spans match for this
6037 * so the property transfers.
6038 */
6039 if (parent->flags & SD_PREFER_SIBLING)
6040 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6041 destroy_sched_domain(parent);
f29c9b1c
LZ
6042 } else
6043 tmp = tmp->parent;
245af2c7
SS
6044 }
6045
1a848870 6046 if (sd && sd_degenerate(sd)) {
dce840a0 6047 tmp = sd;
245af2c7 6048 sd = sd->parent;
f39180ef 6049 destroy_sched_domain(tmp);
1a848870
SS
6050 if (sd)
6051 sd->child = NULL;
6052 }
1da177e4 6053
4cb98839 6054 sched_domain_debug(sd, cpu);
1da177e4 6055
57d885fe 6056 rq_attach_root(rq, rd);
dce840a0 6057 tmp = rq->sd;
674311d5 6058 rcu_assign_pointer(rq->sd, sd);
f39180ef 6059 destroy_sched_domains(tmp);
518cd623
PZ
6060
6061 update_top_cache_domain(cpu);
1da177e4
LT
6062}
6063
1da177e4
LT
6064/* Setup the mask of cpus configured for isolated domains */
6065static int __init isolated_cpu_setup(char *str)
6066{
a6e4491c
PB
6067 int ret;
6068
bdddd296 6069 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6070 ret = cpulist_parse(str, cpu_isolated_map);
6071 if (ret) {
6072 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6073 return 0;
6074 }
1da177e4
LT
6075 return 1;
6076}
8927f494 6077__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6078
49a02c51 6079struct s_data {
21d42ccf 6080 struct sched_domain ** __percpu sd;
49a02c51
AH
6081 struct root_domain *rd;
6082};
6083
2109b99e 6084enum s_alloc {
2109b99e 6085 sa_rootdomain,
21d42ccf 6086 sa_sd,
dce840a0 6087 sa_sd_storage,
2109b99e
AH
6088 sa_none,
6089};
6090
c1174876
PZ
6091/*
6092 * Build an iteration mask that can exclude certain CPUs from the upwards
6093 * domain traversal.
6094 *
6095 * Asymmetric node setups can result in situations where the domain tree is of
6096 * unequal depth, make sure to skip domains that already cover the entire
6097 * range.
6098 *
6099 * In that case build_sched_domains() will have terminated the iteration early
6100 * and our sibling sd spans will be empty. Domains should always include the
6101 * cpu they're built on, so check that.
6102 *
6103 */
6104static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6105{
6106 const struct cpumask *span = sched_domain_span(sd);
6107 struct sd_data *sdd = sd->private;
6108 struct sched_domain *sibling;
6109 int i;
6110
6111 for_each_cpu(i, span) {
6112 sibling = *per_cpu_ptr(sdd->sd, i);
6113 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6114 continue;
6115
6116 cpumask_set_cpu(i, sched_group_mask(sg));
6117 }
6118}
6119
6120/*
6121 * Return the canonical balance cpu for this group, this is the first cpu
6122 * of this group that's also in the iteration mask.
6123 */
6124int group_balance_cpu(struct sched_group *sg)
6125{
6126 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6127}
6128
e3589f6c
PZ
6129static int
6130build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6131{
6132 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6133 const struct cpumask *span = sched_domain_span(sd);
6134 struct cpumask *covered = sched_domains_tmpmask;
6135 struct sd_data *sdd = sd->private;
aaecac4a 6136 struct sched_domain *sibling;
e3589f6c
PZ
6137 int i;
6138
6139 cpumask_clear(covered);
6140
6141 for_each_cpu(i, span) {
6142 struct cpumask *sg_span;
6143
6144 if (cpumask_test_cpu(i, covered))
6145 continue;
6146
aaecac4a 6147 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6148
6149 /* See the comment near build_group_mask(). */
aaecac4a 6150 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6151 continue;
6152
e3589f6c 6153 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6154 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6155
6156 if (!sg)
6157 goto fail;
6158
6159 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6160 if (sibling->child)
6161 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6162 else
e3589f6c
PZ
6163 cpumask_set_cpu(i, sg_span);
6164
6165 cpumask_or(covered, covered, sg_span);
6166
63b2ca30
NP
6167 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6168 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6169 build_group_mask(sd, sg);
6170
c3decf0d 6171 /*
63b2ca30 6172 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6173 * domains and no possible iteration will get us here, we won't
6174 * die on a /0 trap.
6175 */
ca8ce3d0 6176 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6177
c1174876
PZ
6178 /*
6179 * Make sure the first group of this domain contains the
6180 * canonical balance cpu. Otherwise the sched_domain iteration
6181 * breaks. See update_sg_lb_stats().
6182 */
74a5ce20 6183 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6184 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6185 groups = sg;
6186
6187 if (!first)
6188 first = sg;
6189 if (last)
6190 last->next = sg;
6191 last = sg;
6192 last->next = first;
6193 }
6194 sd->groups = groups;
6195
6196 return 0;
6197
6198fail:
6199 free_sched_groups(first, 0);
6200
6201 return -ENOMEM;
6202}
6203
dce840a0 6204static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6205{
dce840a0
PZ
6206 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6207 struct sched_domain *child = sd->child;
1da177e4 6208
dce840a0
PZ
6209 if (child)
6210 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6211
9c3f75cb 6212 if (sg) {
dce840a0 6213 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6214 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6215 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6216 }
dce840a0
PZ
6217
6218 return cpu;
1e9f28fa 6219}
1e9f28fa 6220
01a08546 6221/*
dce840a0
PZ
6222 * build_sched_groups will build a circular linked list of the groups
6223 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6224 * and ->cpu_capacity to 0.
e3589f6c
PZ
6225 *
6226 * Assumes the sched_domain tree is fully constructed
01a08546 6227 */
e3589f6c
PZ
6228static int
6229build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6230{
dce840a0
PZ
6231 struct sched_group *first = NULL, *last = NULL;
6232 struct sd_data *sdd = sd->private;
6233 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6234 struct cpumask *covered;
dce840a0 6235 int i;
9c1cfda2 6236
e3589f6c
PZ
6237 get_group(cpu, sdd, &sd->groups);
6238 atomic_inc(&sd->groups->ref);
6239
0936629f 6240 if (cpu != cpumask_first(span))
e3589f6c
PZ
6241 return 0;
6242
f96225fd
PZ
6243 lockdep_assert_held(&sched_domains_mutex);
6244 covered = sched_domains_tmpmask;
6245
dce840a0 6246 cpumask_clear(covered);
6711cab4 6247
dce840a0
PZ
6248 for_each_cpu(i, span) {
6249 struct sched_group *sg;
cd08e923 6250 int group, j;
6711cab4 6251
dce840a0
PZ
6252 if (cpumask_test_cpu(i, covered))
6253 continue;
6711cab4 6254
cd08e923 6255 group = get_group(i, sdd, &sg);
c1174876 6256 cpumask_setall(sched_group_mask(sg));
0601a88d 6257
dce840a0
PZ
6258 for_each_cpu(j, span) {
6259 if (get_group(j, sdd, NULL) != group)
6260 continue;
0601a88d 6261
dce840a0
PZ
6262 cpumask_set_cpu(j, covered);
6263 cpumask_set_cpu(j, sched_group_cpus(sg));
6264 }
0601a88d 6265
dce840a0
PZ
6266 if (!first)
6267 first = sg;
6268 if (last)
6269 last->next = sg;
6270 last = sg;
6271 }
6272 last->next = first;
e3589f6c
PZ
6273
6274 return 0;
0601a88d 6275}
51888ca2 6276
89c4710e 6277/*
63b2ca30 6278 * Initialize sched groups cpu_capacity.
89c4710e 6279 *
63b2ca30 6280 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6281 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6282 * Typically cpu_capacity for all the groups in a sched domain will be same
6283 * unless there are asymmetries in the topology. If there are asymmetries,
6284 * group having more cpu_capacity will pickup more load compared to the
6285 * group having less cpu_capacity.
89c4710e 6286 */
63b2ca30 6287static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6288{
e3589f6c 6289 struct sched_group *sg = sd->groups;
89c4710e 6290
94c95ba6 6291 WARN_ON(!sg);
e3589f6c
PZ
6292
6293 do {
6294 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6295 sg = sg->next;
6296 } while (sg != sd->groups);
89c4710e 6297
c1174876 6298 if (cpu != group_balance_cpu(sg))
e3589f6c 6299 return;
aae6d3dd 6300
63b2ca30 6301 update_group_capacity(sd, cpu);
89c4710e
SS
6302}
6303
7c16ec58
MT
6304/*
6305 * Initializers for schedule domains
6306 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6307 */
6308
1d3504fc 6309static int default_relax_domain_level = -1;
60495e77 6310int sched_domain_level_max;
1d3504fc
HS
6311
6312static int __init setup_relax_domain_level(char *str)
6313{
a841f8ce
DS
6314 if (kstrtoint(str, 0, &default_relax_domain_level))
6315 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6316
1d3504fc
HS
6317 return 1;
6318}
6319__setup("relax_domain_level=", setup_relax_domain_level);
6320
6321static void set_domain_attribute(struct sched_domain *sd,
6322 struct sched_domain_attr *attr)
6323{
6324 int request;
6325
6326 if (!attr || attr->relax_domain_level < 0) {
6327 if (default_relax_domain_level < 0)
6328 return;
6329 else
6330 request = default_relax_domain_level;
6331 } else
6332 request = attr->relax_domain_level;
6333 if (request < sd->level) {
6334 /* turn off idle balance on this domain */
c88d5910 6335 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6336 } else {
6337 /* turn on idle balance on this domain */
c88d5910 6338 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6339 }
6340}
6341
54ab4ff4
PZ
6342static void __sdt_free(const struct cpumask *cpu_map);
6343static int __sdt_alloc(const struct cpumask *cpu_map);
6344
2109b99e
AH
6345static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6346 const struct cpumask *cpu_map)
6347{
6348 switch (what) {
2109b99e 6349 case sa_rootdomain:
822ff793
PZ
6350 if (!atomic_read(&d->rd->refcount))
6351 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6352 case sa_sd:
6353 free_percpu(d->sd); /* fall through */
dce840a0 6354 case sa_sd_storage:
54ab4ff4 6355 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6356 case sa_none:
6357 break;
6358 }
6359}
3404c8d9 6360
2109b99e
AH
6361static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6362 const struct cpumask *cpu_map)
6363{
dce840a0
PZ
6364 memset(d, 0, sizeof(*d));
6365
54ab4ff4
PZ
6366 if (__sdt_alloc(cpu_map))
6367 return sa_sd_storage;
dce840a0
PZ
6368 d->sd = alloc_percpu(struct sched_domain *);
6369 if (!d->sd)
6370 return sa_sd_storage;
2109b99e 6371 d->rd = alloc_rootdomain();
dce840a0 6372 if (!d->rd)
21d42ccf 6373 return sa_sd;
2109b99e
AH
6374 return sa_rootdomain;
6375}
57d885fe 6376
dce840a0
PZ
6377/*
6378 * NULL the sd_data elements we've used to build the sched_domain and
6379 * sched_group structure so that the subsequent __free_domain_allocs()
6380 * will not free the data we're using.
6381 */
6382static void claim_allocations(int cpu, struct sched_domain *sd)
6383{
6384 struct sd_data *sdd = sd->private;
dce840a0
PZ
6385
6386 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6387 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6388
24fc7edb
PZ
6389 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6390 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6391
e3589f6c 6392 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6393 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6394
63b2ca30
NP
6395 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6396 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6397}
6398
cb83b629 6399#ifdef CONFIG_NUMA
cb83b629 6400static int sched_domains_numa_levels;
e3fe70b1 6401enum numa_topology_type sched_numa_topology_type;
cb83b629 6402static int *sched_domains_numa_distance;
9942f79b 6403int sched_max_numa_distance;
cb83b629
PZ
6404static struct cpumask ***sched_domains_numa_masks;
6405static int sched_domains_curr_level;
143e1e28 6406#endif
cb83b629 6407
143e1e28
VG
6408/*
6409 * SD_flags allowed in topology descriptions.
6410 *
94f438c8
PZ
6411 * These flags are purely descriptive of the topology and do not prescribe
6412 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6413 * function:
143e1e28 6414 *
94f438c8
PZ
6415 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6416 * SD_SHARE_PKG_RESOURCES - describes shared caches
6417 * SD_NUMA - describes NUMA topologies
6418 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6419 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6420 *
6421 * Odd one out, which beside describing the topology has a quirk also
6422 * prescribes the desired behaviour that goes along with it:
6423 *
6424 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6425 */
6426#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6427 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6428 SD_SHARE_PKG_RESOURCES | \
6429 SD_NUMA | \
d77b3ed5 6430 SD_ASYM_PACKING | \
1f6e6c7c 6431 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6432 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6433
6434static struct sched_domain *
3676b13e 6435sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6436 const struct cpumask *cpu_map,
3676b13e 6437 struct sched_domain *child, int cpu)
cb83b629 6438{
24fc7edb
PZ
6439 struct sd_data *sdd = &tl->data;
6440 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6441 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6442
6443#ifdef CONFIG_NUMA
6444 /*
6445 * Ugly hack to pass state to sd_numa_mask()...
6446 */
6447 sched_domains_curr_level = tl->numa_level;
6448#endif
6449
6450 sd_weight = cpumask_weight(tl->mask(cpu));
6451
6452 if (tl->sd_flags)
6453 sd_flags = (*tl->sd_flags)();
6454 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6455 "wrong sd_flags in topology description\n"))
6456 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6457
6458 *sd = (struct sched_domain){
6459 .min_interval = sd_weight,
6460 .max_interval = 2*sd_weight,
6461 .busy_factor = 32,
870a0bb5 6462 .imbalance_pct = 125,
143e1e28
VG
6463
6464 .cache_nice_tries = 0,
6465 .busy_idx = 0,
6466 .idle_idx = 0,
cb83b629
PZ
6467 .newidle_idx = 0,
6468 .wake_idx = 0,
6469 .forkexec_idx = 0,
6470
6471 .flags = 1*SD_LOAD_BALANCE
6472 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6473 | 1*SD_BALANCE_EXEC
6474 | 1*SD_BALANCE_FORK
cb83b629 6475 | 0*SD_BALANCE_WAKE
143e1e28 6476 | 1*SD_WAKE_AFFINE
5d4dfddd 6477 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6478 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6479 | 0*SD_SERIALIZE
cb83b629 6480 | 0*SD_PREFER_SIBLING
143e1e28
VG
6481 | 0*SD_NUMA
6482 | sd_flags
cb83b629 6483 ,
143e1e28 6484
cb83b629
PZ
6485 .last_balance = jiffies,
6486 .balance_interval = sd_weight,
143e1e28 6487 .smt_gain = 0,
2b4cfe64
JL
6488 .max_newidle_lb_cost = 0,
6489 .next_decay_max_lb_cost = jiffies,
3676b13e 6490 .child = child,
143e1e28
VG
6491#ifdef CONFIG_SCHED_DEBUG
6492 .name = tl->name,
6493#endif
cb83b629 6494 };
cb83b629 6495
24fc7edb
PZ
6496 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6497 sd_id = cpumask_first(sched_domain_span(sd));
6498
cb83b629 6499 /*
143e1e28 6500 * Convert topological properties into behaviour.
cb83b629 6501 */
143e1e28 6502
9ee1cda5
MR
6503 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6504 struct sched_domain *t = sd;
6505
6506 for_each_lower_domain(t)
6507 t->flags |= SD_BALANCE_WAKE;
6508 }
6509
5d4dfddd 6510 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6511 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6512 sd->imbalance_pct = 110;
6513 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6514
6515 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6516 sd->imbalance_pct = 117;
6517 sd->cache_nice_tries = 1;
6518 sd->busy_idx = 2;
6519
6520#ifdef CONFIG_NUMA
6521 } else if (sd->flags & SD_NUMA) {
6522 sd->cache_nice_tries = 2;
6523 sd->busy_idx = 3;
6524 sd->idle_idx = 2;
6525
6526 sd->flags |= SD_SERIALIZE;
6527 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6528 sd->flags &= ~(SD_BALANCE_EXEC |
6529 SD_BALANCE_FORK |
6530 SD_WAKE_AFFINE);
6531 }
6532
6533#endif
6534 } else {
6535 sd->flags |= SD_PREFER_SIBLING;
6536 sd->cache_nice_tries = 1;
6537 sd->busy_idx = 2;
6538 sd->idle_idx = 1;
6539 }
6540
24fc7edb
PZ
6541 /*
6542 * For all levels sharing cache; connect a sched_domain_shared
6543 * instance.
6544 */
6545 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6546 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6547 atomic_inc(&sd->shared->ref);
0e369d75 6548 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6549 }
6550
6551 sd->private = sdd;
cb83b629
PZ
6552
6553 return sd;
6554}
6555
143e1e28
VG
6556/*
6557 * Topology list, bottom-up.
6558 */
6559static struct sched_domain_topology_level default_topology[] = {
6560#ifdef CONFIG_SCHED_SMT
6561 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6562#endif
6563#ifdef CONFIG_SCHED_MC
6564 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6565#endif
6566 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6567 { NULL, },
6568};
6569
c6e1e7b5
JG
6570static struct sched_domain_topology_level *sched_domain_topology =
6571 default_topology;
143e1e28
VG
6572
6573#define for_each_sd_topology(tl) \
6574 for (tl = sched_domain_topology; tl->mask; tl++)
6575
6576void set_sched_topology(struct sched_domain_topology_level *tl)
6577{
8f37961c
TC
6578 if (WARN_ON_ONCE(sched_smp_initialized))
6579 return;
6580
143e1e28
VG
6581 sched_domain_topology = tl;
6582}
6583
6584#ifdef CONFIG_NUMA
6585
cb83b629
PZ
6586static const struct cpumask *sd_numa_mask(int cpu)
6587{
6588 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6589}
6590
d039ac60
PZ
6591static void sched_numa_warn(const char *str)
6592{
6593 static int done = false;
6594 int i,j;
6595
6596 if (done)
6597 return;
6598
6599 done = true;
6600
6601 printk(KERN_WARNING "ERROR: %s\n\n", str);
6602
6603 for (i = 0; i < nr_node_ids; i++) {
6604 printk(KERN_WARNING " ");
6605 for (j = 0; j < nr_node_ids; j++)
6606 printk(KERN_CONT "%02d ", node_distance(i,j));
6607 printk(KERN_CONT "\n");
6608 }
6609 printk(KERN_WARNING "\n");
6610}
6611
9942f79b 6612bool find_numa_distance(int distance)
d039ac60
PZ
6613{
6614 int i;
6615
6616 if (distance == node_distance(0, 0))
6617 return true;
6618
6619 for (i = 0; i < sched_domains_numa_levels; i++) {
6620 if (sched_domains_numa_distance[i] == distance)
6621 return true;
6622 }
6623
6624 return false;
6625}
6626
e3fe70b1
RR
6627/*
6628 * A system can have three types of NUMA topology:
6629 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6630 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6631 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6632 *
6633 * The difference between a glueless mesh topology and a backplane
6634 * topology lies in whether communication between not directly
6635 * connected nodes goes through intermediary nodes (where programs
6636 * could run), or through backplane controllers. This affects
6637 * placement of programs.
6638 *
6639 * The type of topology can be discerned with the following tests:
6640 * - If the maximum distance between any nodes is 1 hop, the system
6641 * is directly connected.
6642 * - If for two nodes A and B, located N > 1 hops away from each other,
6643 * there is an intermediary node C, which is < N hops away from both
6644 * nodes A and B, the system is a glueless mesh.
6645 */
6646static void init_numa_topology_type(void)
6647{
6648 int a, b, c, n;
6649
6650 n = sched_max_numa_distance;
6651
e237882b 6652 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6653 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6654 return;
6655 }
e3fe70b1
RR
6656
6657 for_each_online_node(a) {
6658 for_each_online_node(b) {
6659 /* Find two nodes furthest removed from each other. */
6660 if (node_distance(a, b) < n)
6661 continue;
6662
6663 /* Is there an intermediary node between a and b? */
6664 for_each_online_node(c) {
6665 if (node_distance(a, c) < n &&
6666 node_distance(b, c) < n) {
6667 sched_numa_topology_type =
6668 NUMA_GLUELESS_MESH;
6669 return;
6670 }
6671 }
6672
6673 sched_numa_topology_type = NUMA_BACKPLANE;
6674 return;
6675 }
6676 }
6677}
6678
cb83b629
PZ
6679static void sched_init_numa(void)
6680{
6681 int next_distance, curr_distance = node_distance(0, 0);
6682 struct sched_domain_topology_level *tl;
6683 int level = 0;
6684 int i, j, k;
6685
cb83b629
PZ
6686 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6687 if (!sched_domains_numa_distance)
6688 return;
6689
6690 /*
6691 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6692 * unique distances in the node_distance() table.
6693 *
6694 * Assumes node_distance(0,j) includes all distances in
6695 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6696 */
6697 next_distance = curr_distance;
6698 for (i = 0; i < nr_node_ids; i++) {
6699 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6700 for (k = 0; k < nr_node_ids; k++) {
6701 int distance = node_distance(i, k);
6702
6703 if (distance > curr_distance &&
6704 (distance < next_distance ||
6705 next_distance == curr_distance))
6706 next_distance = distance;
6707
6708 /*
6709 * While not a strong assumption it would be nice to know
6710 * about cases where if node A is connected to B, B is not
6711 * equally connected to A.
6712 */
6713 if (sched_debug() && node_distance(k, i) != distance)
6714 sched_numa_warn("Node-distance not symmetric");
6715
6716 if (sched_debug() && i && !find_numa_distance(distance))
6717 sched_numa_warn("Node-0 not representative");
6718 }
6719 if (next_distance != curr_distance) {
6720 sched_domains_numa_distance[level++] = next_distance;
6721 sched_domains_numa_levels = level;
6722 curr_distance = next_distance;
6723 } else break;
cb83b629 6724 }
d039ac60
PZ
6725
6726 /*
6727 * In case of sched_debug() we verify the above assumption.
6728 */
6729 if (!sched_debug())
6730 break;
cb83b629 6731 }
c123588b
AR
6732
6733 if (!level)
6734 return;
6735
cb83b629
PZ
6736 /*
6737 * 'level' contains the number of unique distances, excluding the
6738 * identity distance node_distance(i,i).
6739 *
28b4a521 6740 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6741 * numbers.
6742 */
6743
5f7865f3
TC
6744 /*
6745 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6746 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6747 * the array will contain less then 'level' members. This could be
6748 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6749 * in other functions.
6750 *
6751 * We reset it to 'level' at the end of this function.
6752 */
6753 sched_domains_numa_levels = 0;
6754
cb83b629
PZ
6755 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6756 if (!sched_domains_numa_masks)
6757 return;
6758
6759 /*
6760 * Now for each level, construct a mask per node which contains all
6761 * cpus of nodes that are that many hops away from us.
6762 */
6763 for (i = 0; i < level; i++) {
6764 sched_domains_numa_masks[i] =
6765 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6766 if (!sched_domains_numa_masks[i])
6767 return;
6768
6769 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6770 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6771 if (!mask)
6772 return;
6773
6774 sched_domains_numa_masks[i][j] = mask;
6775
9c03ee14 6776 for_each_node(k) {
dd7d8634 6777 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6778 continue;
6779
6780 cpumask_or(mask, mask, cpumask_of_node(k));
6781 }
6782 }
6783 }
6784
143e1e28
VG
6785 /* Compute default topology size */
6786 for (i = 0; sched_domain_topology[i].mask; i++);
6787
c515db8c 6788 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6789 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6790 if (!tl)
6791 return;
6792
6793 /*
6794 * Copy the default topology bits..
6795 */
143e1e28
VG
6796 for (i = 0; sched_domain_topology[i].mask; i++)
6797 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6798
6799 /*
6800 * .. and append 'j' levels of NUMA goodness.
6801 */
6802 for (j = 0; j < level; i++, j++) {
6803 tl[i] = (struct sched_domain_topology_level){
cb83b629 6804 .mask = sd_numa_mask,
143e1e28 6805 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6806 .flags = SDTL_OVERLAP,
6807 .numa_level = j,
143e1e28 6808 SD_INIT_NAME(NUMA)
cb83b629
PZ
6809 };
6810 }
6811
6812 sched_domain_topology = tl;
5f7865f3
TC
6813
6814 sched_domains_numa_levels = level;
9942f79b 6815 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6816
6817 init_numa_topology_type();
cb83b629 6818}
301a5cba 6819
135fb3e1 6820static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6821{
301a5cba 6822 int node = cpu_to_node(cpu);
135fb3e1 6823 int i, j;
301a5cba
TC
6824
6825 for (i = 0; i < sched_domains_numa_levels; i++) {
6826 for (j = 0; j < nr_node_ids; j++) {
6827 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6828 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6829 }
6830 }
6831}
6832
135fb3e1 6833static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6834{
6835 int i, j;
135fb3e1 6836
301a5cba
TC
6837 for (i = 0; i < sched_domains_numa_levels; i++) {
6838 for (j = 0; j < nr_node_ids; j++)
6839 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6840 }
6841}
6842
cb83b629 6843#else
135fb3e1
TG
6844static inline void sched_init_numa(void) { }
6845static void sched_domains_numa_masks_set(unsigned int cpu) { }
6846static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6847#endif /* CONFIG_NUMA */
6848
54ab4ff4
PZ
6849static int __sdt_alloc(const struct cpumask *cpu_map)
6850{
6851 struct sched_domain_topology_level *tl;
6852 int j;
6853
27723a68 6854 for_each_sd_topology(tl) {
54ab4ff4
PZ
6855 struct sd_data *sdd = &tl->data;
6856
6857 sdd->sd = alloc_percpu(struct sched_domain *);
6858 if (!sdd->sd)
6859 return -ENOMEM;
6860
24fc7edb
PZ
6861 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6862 if (!sdd->sds)
6863 return -ENOMEM;
6864
54ab4ff4
PZ
6865 sdd->sg = alloc_percpu(struct sched_group *);
6866 if (!sdd->sg)
6867 return -ENOMEM;
6868
63b2ca30
NP
6869 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6870 if (!sdd->sgc)
9c3f75cb
PZ
6871 return -ENOMEM;
6872
54ab4ff4
PZ
6873 for_each_cpu(j, cpu_map) {
6874 struct sched_domain *sd;
24fc7edb 6875 struct sched_domain_shared *sds;
54ab4ff4 6876 struct sched_group *sg;
63b2ca30 6877 struct sched_group_capacity *sgc;
54ab4ff4 6878
5cc389bc 6879 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6880 GFP_KERNEL, cpu_to_node(j));
6881 if (!sd)
6882 return -ENOMEM;
6883
6884 *per_cpu_ptr(sdd->sd, j) = sd;
6885
24fc7edb
PZ
6886 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6887 GFP_KERNEL, cpu_to_node(j));
6888 if (!sds)
6889 return -ENOMEM;
6890
6891 *per_cpu_ptr(sdd->sds, j) = sds;
6892
54ab4ff4
PZ
6893 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6894 GFP_KERNEL, cpu_to_node(j));
6895 if (!sg)
6896 return -ENOMEM;
6897
30b4e9eb
IM
6898 sg->next = sg;
6899
54ab4ff4 6900 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6901
63b2ca30 6902 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6903 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6904 if (!sgc)
9c3f75cb
PZ
6905 return -ENOMEM;
6906
63b2ca30 6907 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6908 }
6909 }
6910
6911 return 0;
6912}
6913
6914static void __sdt_free(const struct cpumask *cpu_map)
6915{
6916 struct sched_domain_topology_level *tl;
6917 int j;
6918
27723a68 6919 for_each_sd_topology(tl) {
54ab4ff4
PZ
6920 struct sd_data *sdd = &tl->data;
6921
6922 for_each_cpu(j, cpu_map) {
fb2cf2c6 6923 struct sched_domain *sd;
6924
6925 if (sdd->sd) {
6926 sd = *per_cpu_ptr(sdd->sd, j);
6927 if (sd && (sd->flags & SD_OVERLAP))
6928 free_sched_groups(sd->groups, 0);
6929 kfree(*per_cpu_ptr(sdd->sd, j));
6930 }
6931
24fc7edb
PZ
6932 if (sdd->sds)
6933 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6934 if (sdd->sg)
6935 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6936 if (sdd->sgc)
6937 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6938 }
6939 free_percpu(sdd->sd);
fb2cf2c6 6940 sdd->sd = NULL;
24fc7edb
PZ
6941 free_percpu(sdd->sds);
6942 sdd->sds = NULL;
54ab4ff4 6943 free_percpu(sdd->sg);
fb2cf2c6 6944 sdd->sg = NULL;
63b2ca30
NP
6945 free_percpu(sdd->sgc);
6946 sdd->sgc = NULL;
54ab4ff4
PZ
6947 }
6948}
6949
2c402dc3 6950struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6951 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6952 struct sched_domain *child, int cpu)
2c402dc3 6953{
24fc7edb 6954 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6955
60495e77
PZ
6956 if (child) {
6957 sd->level = child->level + 1;
6958 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6959 child->parent = sd;
6ae72dff
PZ
6960
6961 if (!cpumask_subset(sched_domain_span(child),
6962 sched_domain_span(sd))) {
6963 pr_err("BUG: arch topology borken\n");
6964#ifdef CONFIG_SCHED_DEBUG
6965 pr_err(" the %s domain not a subset of the %s domain\n",
6966 child->name, sd->name);
6967#endif
6968 /* Fixup, ensure @sd has at least @child cpus. */
6969 cpumask_or(sched_domain_span(sd),
6970 sched_domain_span(sd),
6971 sched_domain_span(child));
6972 }
6973
60495e77 6974 }
a841f8ce 6975 set_domain_attribute(sd, attr);
2c402dc3
PZ
6976
6977 return sd;
6978}
6979
2109b99e
AH
6980/*
6981 * Build sched domains for a given set of cpus and attach the sched domains
6982 * to the individual cpus
6983 */
dce840a0
PZ
6984static int build_sched_domains(const struct cpumask *cpu_map,
6985 struct sched_domain_attr *attr)
2109b99e 6986{
1c632169 6987 enum s_alloc alloc_state;
dce840a0 6988 struct sched_domain *sd;
2109b99e 6989 struct s_data d;
cd92bfd3 6990 struct rq *rq = NULL;
822ff793 6991 int i, ret = -ENOMEM;
9c1cfda2 6992
2109b99e
AH
6993 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6994 if (alloc_state != sa_rootdomain)
6995 goto error;
9c1cfda2 6996
dce840a0 6997 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6998 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6999 struct sched_domain_topology_level *tl;
7000
3bd65a80 7001 sd = NULL;
27723a68 7002 for_each_sd_topology(tl) {
4a850cbe 7003 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7004 if (tl == sched_domain_topology)
7005 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7006 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7007 sd->flags |= SD_OVERLAP;
d110235d
PZ
7008 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7009 break;
e3589f6c 7010 }
dce840a0
PZ
7011 }
7012
7013 /* Build the groups for the domains */
7014 for_each_cpu(i, cpu_map) {
7015 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7016 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7017 if (sd->flags & SD_OVERLAP) {
7018 if (build_overlap_sched_groups(sd, i))
7019 goto error;
7020 } else {
7021 if (build_sched_groups(sd, i))
7022 goto error;
7023 }
1cf51902 7024 }
a06dadbe 7025 }
9c1cfda2 7026
ced549fa 7027 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7028 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7029 if (!cpumask_test_cpu(i, cpu_map))
7030 continue;
9c1cfda2 7031
dce840a0
PZ
7032 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7033 claim_allocations(i, sd);
63b2ca30 7034 init_sched_groups_capacity(i, sd);
dce840a0 7035 }
f712c0c7 7036 }
9c1cfda2 7037
1da177e4 7038 /* Attach the domains */
dce840a0 7039 rcu_read_lock();
abcd083a 7040 for_each_cpu(i, cpu_map) {
cd92bfd3 7041 rq = cpu_rq(i);
21d42ccf 7042 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7043
7044 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7045 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7046 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7047
49a02c51 7048 cpu_attach_domain(sd, d.rd, i);
1da177e4 7049 }
dce840a0 7050 rcu_read_unlock();
51888ca2 7051
a18a579e 7052 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7053 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7054 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7055 }
7056
822ff793 7057 ret = 0;
51888ca2 7058error:
2109b99e 7059 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7060 return ret;
1da177e4 7061}
029190c5 7062
acc3f5d7 7063static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7064static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7065static struct sched_domain_attr *dattr_cur;
7066 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7067
7068/*
7069 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7070 * cpumask) fails, then fallback to a single sched domain,
7071 * as determined by the single cpumask fallback_doms.
029190c5 7072 */
4212823f 7073static cpumask_var_t fallback_doms;
029190c5 7074
ee79d1bd
HC
7075/*
7076 * arch_update_cpu_topology lets virtualized architectures update the
7077 * cpu core maps. It is supposed to return 1 if the topology changed
7078 * or 0 if it stayed the same.
7079 */
52f5684c 7080int __weak arch_update_cpu_topology(void)
22e52b07 7081{
ee79d1bd 7082 return 0;
22e52b07
HC
7083}
7084
acc3f5d7
RR
7085cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7086{
7087 int i;
7088 cpumask_var_t *doms;
7089
7090 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7091 if (!doms)
7092 return NULL;
7093 for (i = 0; i < ndoms; i++) {
7094 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7095 free_sched_domains(doms, i);
7096 return NULL;
7097 }
7098 }
7099 return doms;
7100}
7101
7102void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7103{
7104 unsigned int i;
7105 for (i = 0; i < ndoms; i++)
7106 free_cpumask_var(doms[i]);
7107 kfree(doms);
7108}
7109
1a20ff27 7110/*
41a2d6cf 7111 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7112 * For now this just excludes isolated cpus, but could be used to
7113 * exclude other special cases in the future.
1a20ff27 7114 */
c4a8849a 7115static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7116{
7378547f
MM
7117 int err;
7118
22e52b07 7119 arch_update_cpu_topology();
029190c5 7120 ndoms_cur = 1;
acc3f5d7 7121 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7122 if (!doms_cur)
acc3f5d7
RR
7123 doms_cur = &fallback_doms;
7124 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7125 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7126 register_sched_domain_sysctl();
7378547f
MM
7127
7128 return err;
1a20ff27
DG
7129}
7130
1a20ff27
DG
7131/*
7132 * Detach sched domains from a group of cpus specified in cpu_map
7133 * These cpus will now be attached to the NULL domain
7134 */
96f874e2 7135static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7136{
7137 int i;
7138
dce840a0 7139 rcu_read_lock();
abcd083a 7140 for_each_cpu(i, cpu_map)
57d885fe 7141 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7142 rcu_read_unlock();
1a20ff27
DG
7143}
7144
1d3504fc
HS
7145/* handle null as "default" */
7146static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7147 struct sched_domain_attr *new, int idx_new)
7148{
7149 struct sched_domain_attr tmp;
7150
7151 /* fast path */
7152 if (!new && !cur)
7153 return 1;
7154
7155 tmp = SD_ATTR_INIT;
7156 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7157 new ? (new + idx_new) : &tmp,
7158 sizeof(struct sched_domain_attr));
7159}
7160
029190c5
PJ
7161/*
7162 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7163 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7164 * doms_new[] to the current sched domain partitioning, doms_cur[].
7165 * It destroys each deleted domain and builds each new domain.
7166 *
acc3f5d7 7167 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7168 * The masks don't intersect (don't overlap.) We should setup one
7169 * sched domain for each mask. CPUs not in any of the cpumasks will
7170 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7171 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7172 * it as it is.
7173 *
acc3f5d7
RR
7174 * The passed in 'doms_new' should be allocated using
7175 * alloc_sched_domains. This routine takes ownership of it and will
7176 * free_sched_domains it when done with it. If the caller failed the
7177 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7178 * and partition_sched_domains() will fallback to the single partition
7179 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7180 *
96f874e2 7181 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7182 * ndoms_new == 0 is a special case for destroying existing domains,
7183 * and it will not create the default domain.
dfb512ec 7184 *
029190c5
PJ
7185 * Call with hotplug lock held
7186 */
acc3f5d7 7187void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7188 struct sched_domain_attr *dattr_new)
029190c5 7189{
dfb512ec 7190 int i, j, n;
d65bd5ec 7191 int new_topology;
029190c5 7192
712555ee 7193 mutex_lock(&sched_domains_mutex);
a1835615 7194
7378547f
MM
7195 /* always unregister in case we don't destroy any domains */
7196 unregister_sched_domain_sysctl();
7197
d65bd5ec
HC
7198 /* Let architecture update cpu core mappings. */
7199 new_topology = arch_update_cpu_topology();
7200
dfb512ec 7201 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7202
7203 /* Destroy deleted domains */
7204 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7205 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7206 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7207 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7208 goto match1;
7209 }
7210 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7211 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7212match1:
7213 ;
7214 }
7215
c8d2d47a 7216 n = ndoms_cur;
e761b772 7217 if (doms_new == NULL) {
c8d2d47a 7218 n = 0;
acc3f5d7 7219 doms_new = &fallback_doms;
6ad4c188 7220 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7221 WARN_ON_ONCE(dattr_new);
e761b772
MK
7222 }
7223
029190c5
PJ
7224 /* Build new domains */
7225 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7226 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7227 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7228 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7229 goto match2;
7230 }
7231 /* no match - add a new doms_new */
dce840a0 7232 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7233match2:
7234 ;
7235 }
7236
7237 /* Remember the new sched domains */
acc3f5d7
RR
7238 if (doms_cur != &fallback_doms)
7239 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7240 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7241 doms_cur = doms_new;
1d3504fc 7242 dattr_cur = dattr_new;
029190c5 7243 ndoms_cur = ndoms_new;
7378547f
MM
7244
7245 register_sched_domain_sysctl();
a1835615 7246
712555ee 7247 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7248}
7249
d35be8ba
SB
7250static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7251
1da177e4 7252/*
3a101d05
TH
7253 * Update cpusets according to cpu_active mask. If cpusets are
7254 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7255 * around partition_sched_domains().
d35be8ba
SB
7256 *
7257 * If we come here as part of a suspend/resume, don't touch cpusets because we
7258 * want to restore it back to its original state upon resume anyway.
1da177e4 7259 */
40190a78 7260static void cpuset_cpu_active(void)
e761b772 7261{
40190a78 7262 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7263 /*
7264 * num_cpus_frozen tracks how many CPUs are involved in suspend
7265 * resume sequence. As long as this is not the last online
7266 * operation in the resume sequence, just build a single sched
7267 * domain, ignoring cpusets.
7268 */
7269 num_cpus_frozen--;
7270 if (likely(num_cpus_frozen)) {
7271 partition_sched_domains(1, NULL, NULL);
135fb3e1 7272 return;
d35be8ba 7273 }
d35be8ba
SB
7274 /*
7275 * This is the last CPU online operation. So fall through and
7276 * restore the original sched domains by considering the
7277 * cpuset configurations.
7278 */
3a101d05 7279 }
135fb3e1 7280 cpuset_update_active_cpus(true);
3a101d05 7281}
e761b772 7282
40190a78 7283static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7284{
3c18d447 7285 unsigned long flags;
3c18d447 7286 struct dl_bw *dl_b;
533445c6
OS
7287 bool overflow;
7288 int cpus;
3c18d447 7289
40190a78 7290 if (!cpuhp_tasks_frozen) {
533445c6
OS
7291 rcu_read_lock_sched();
7292 dl_b = dl_bw_of(cpu);
3c18d447 7293
533445c6
OS
7294 raw_spin_lock_irqsave(&dl_b->lock, flags);
7295 cpus = dl_bw_cpus(cpu);
7296 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7297 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7298
533445c6 7299 rcu_read_unlock_sched();
3c18d447 7300
533445c6 7301 if (overflow)
135fb3e1 7302 return -EBUSY;
7ddf96b0 7303 cpuset_update_active_cpus(false);
135fb3e1 7304 } else {
d35be8ba
SB
7305 num_cpus_frozen++;
7306 partition_sched_domains(1, NULL, NULL);
e761b772 7307 }
135fb3e1 7308 return 0;
e761b772 7309}
e761b772 7310
40190a78 7311int sched_cpu_activate(unsigned int cpu)
135fb3e1 7312{
7d976699
TG
7313 struct rq *rq = cpu_rq(cpu);
7314 unsigned long flags;
7315
40190a78 7316 set_cpu_active(cpu, true);
135fb3e1 7317
40190a78 7318 if (sched_smp_initialized) {
135fb3e1 7319 sched_domains_numa_masks_set(cpu);
40190a78 7320 cpuset_cpu_active();
e761b772 7321 }
7d976699
TG
7322
7323 /*
7324 * Put the rq online, if not already. This happens:
7325 *
7326 * 1) In the early boot process, because we build the real domains
7327 * after all cpus have been brought up.
7328 *
7329 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7330 * domains.
7331 */
7332 raw_spin_lock_irqsave(&rq->lock, flags);
7333 if (rq->rd) {
7334 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7335 set_rq_online(rq);
7336 }
7337 raw_spin_unlock_irqrestore(&rq->lock, flags);
7338
7339 update_max_interval();
7340
40190a78 7341 return 0;
135fb3e1
TG
7342}
7343
40190a78 7344int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7345{
135fb3e1
TG
7346 int ret;
7347
40190a78 7348 set_cpu_active(cpu, false);
b2454caa
PZ
7349 /*
7350 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7351 * users of this state to go away such that all new such users will
7352 * observe it.
7353 *
7354 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7355 * not imply sync_sched(), so wait for both.
7356 *
7357 * Do sync before park smpboot threads to take care the rcu boost case.
7358 */
7359 if (IS_ENABLED(CONFIG_PREEMPT))
7360 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7361 else
7362 synchronize_rcu();
40190a78
TG
7363
7364 if (!sched_smp_initialized)
7365 return 0;
7366
7367 ret = cpuset_cpu_inactive(cpu);
7368 if (ret) {
7369 set_cpu_active(cpu, true);
7370 return ret;
135fb3e1 7371 }
40190a78
TG
7372 sched_domains_numa_masks_clear(cpu);
7373 return 0;
135fb3e1
TG
7374}
7375
94baf7a5
TG
7376static void sched_rq_cpu_starting(unsigned int cpu)
7377{
7378 struct rq *rq = cpu_rq(cpu);
7379
7380 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7381 update_max_interval();
7382}
7383
135fb3e1
TG
7384int sched_cpu_starting(unsigned int cpu)
7385{
7386 set_cpu_rq_start_time(cpu);
94baf7a5 7387 sched_rq_cpu_starting(cpu);
135fb3e1 7388 return 0;
e761b772 7389}
e761b772 7390
f2785ddb
TG
7391#ifdef CONFIG_HOTPLUG_CPU
7392int sched_cpu_dying(unsigned int cpu)
7393{
7394 struct rq *rq = cpu_rq(cpu);
7395 unsigned long flags;
7396
7397 /* Handle pending wakeups and then migrate everything off */
7398 sched_ttwu_pending();
7399 raw_spin_lock_irqsave(&rq->lock, flags);
7400 if (rq->rd) {
7401 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7402 set_rq_offline(rq);
7403 }
7404 migrate_tasks(rq);
7405 BUG_ON(rq->nr_running != 1);
7406 raw_spin_unlock_irqrestore(&rq->lock, flags);
7407 calc_load_migrate(rq);
7408 update_max_interval();
20a5c8cc 7409 nohz_balance_exit_idle(cpu);
e5ef27d0 7410 hrtick_clear(rq);
f2785ddb
TG
7411 return 0;
7412}
7413#endif
7414
1b568f0a
PZ
7415#ifdef CONFIG_SCHED_SMT
7416DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7417
7418static void sched_init_smt(void)
7419{
7420 /*
7421 * We've enumerated all CPUs and will assume that if any CPU
7422 * has SMT siblings, CPU0 will too.
7423 */
7424 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7425 static_branch_enable(&sched_smt_present);
7426}
7427#else
7428static inline void sched_init_smt(void) { }
7429#endif
7430
1da177e4
LT
7431void __init sched_init_smp(void)
7432{
dcc30a35
RR
7433 cpumask_var_t non_isolated_cpus;
7434
7435 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7436 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7437
cb83b629
PZ
7438 sched_init_numa();
7439
6acce3ef
PZ
7440 /*
7441 * There's no userspace yet to cause hotplug operations; hence all the
7442 * cpu masks are stable and all blatant races in the below code cannot
7443 * happen.
7444 */
712555ee 7445 mutex_lock(&sched_domains_mutex);
c4a8849a 7446 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7447 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7448 if (cpumask_empty(non_isolated_cpus))
7449 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7450 mutex_unlock(&sched_domains_mutex);
e761b772 7451
5c1e1767 7452 /* Move init over to a non-isolated CPU */
dcc30a35 7453 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7454 BUG();
19978ca6 7455 sched_init_granularity();
dcc30a35 7456 free_cpumask_var(non_isolated_cpus);
4212823f 7457
0e3900e6 7458 init_sched_rt_class();
1baca4ce 7459 init_sched_dl_class();
1b568f0a
PZ
7460
7461 sched_init_smt();
7462
e26fbffd 7463 sched_smp_initialized = true;
1da177e4 7464}
e26fbffd
TG
7465
7466static int __init migration_init(void)
7467{
94baf7a5 7468 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7469 return 0;
1da177e4 7470}
e26fbffd
TG
7471early_initcall(migration_init);
7472
1da177e4
LT
7473#else
7474void __init sched_init_smp(void)
7475{
19978ca6 7476 sched_init_granularity();
1da177e4
LT
7477}
7478#endif /* CONFIG_SMP */
7479
7480int in_sched_functions(unsigned long addr)
7481{
1da177e4
LT
7482 return in_lock_functions(addr) ||
7483 (addr >= (unsigned long)__sched_text_start
7484 && addr < (unsigned long)__sched_text_end);
7485}
7486
029632fb 7487#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7488/*
7489 * Default task group.
7490 * Every task in system belongs to this group at bootup.
7491 */
029632fb 7492struct task_group root_task_group;
35cf4e50 7493LIST_HEAD(task_groups);
b0367629
WL
7494
7495/* Cacheline aligned slab cache for task_group */
7496static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7497#endif
6f505b16 7498
e6252c3e 7499DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7500DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7501
1da177e4
LT
7502void __init sched_init(void)
7503{
dd41f596 7504 int i, j;
434d53b0
MT
7505 unsigned long alloc_size = 0, ptr;
7506
7507#ifdef CONFIG_FAIR_GROUP_SCHED
7508 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7509#endif
7510#ifdef CONFIG_RT_GROUP_SCHED
7511 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7512#endif
434d53b0 7513 if (alloc_size) {
36b7b6d4 7514 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7515
7516#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7517 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7518 ptr += nr_cpu_ids * sizeof(void **);
7519
07e06b01 7520 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7521 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7522
6d6bc0ad 7523#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7524#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7525 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7526 ptr += nr_cpu_ids * sizeof(void **);
7527
07e06b01 7528 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7529 ptr += nr_cpu_ids * sizeof(void **);
7530
6d6bc0ad 7531#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7532 }
df7c8e84 7533#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7534 for_each_possible_cpu(i) {
7535 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7536 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7537 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7538 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7539 }
b74e6278 7540#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7541
332ac17e
DF
7542 init_rt_bandwidth(&def_rt_bandwidth,
7543 global_rt_period(), global_rt_runtime());
7544 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7545 global_rt_period(), global_rt_runtime());
332ac17e 7546
57d885fe
GH
7547#ifdef CONFIG_SMP
7548 init_defrootdomain();
7549#endif
7550
d0b27fa7 7551#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7552 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7553 global_rt_period(), global_rt_runtime());
6d6bc0ad 7554#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7555
7c941438 7556#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7557 task_group_cache = KMEM_CACHE(task_group, 0);
7558
07e06b01
YZ
7559 list_add(&root_task_group.list, &task_groups);
7560 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7561 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7562 autogroup_init(&init_task);
7c941438 7563#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7564
0a945022 7565 for_each_possible_cpu(i) {
70b97a7f 7566 struct rq *rq;
1da177e4
LT
7567
7568 rq = cpu_rq(i);
05fa785c 7569 raw_spin_lock_init(&rq->lock);
7897986b 7570 rq->nr_running = 0;
dce48a84
TG
7571 rq->calc_load_active = 0;
7572 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7573 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7574 init_rt_rq(&rq->rt);
7575 init_dl_rq(&rq->dl);
dd41f596 7576#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7577 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7578 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7579 /*
07e06b01 7580 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7581 *
7582 * In case of task-groups formed thr' the cgroup filesystem, it
7583 * gets 100% of the cpu resources in the system. This overall
7584 * system cpu resource is divided among the tasks of
07e06b01 7585 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7586 * based on each entity's (task or task-group's) weight
7587 * (se->load.weight).
7588 *
07e06b01 7589 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7590 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7591 * then A0's share of the cpu resource is:
7592 *
0d905bca 7593 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7594 *
07e06b01
YZ
7595 * We achieve this by letting root_task_group's tasks sit
7596 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7597 */
ab84d31e 7598 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7599 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7600#endif /* CONFIG_FAIR_GROUP_SCHED */
7601
7602 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7603#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7604 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7605#endif
1da177e4 7606
dd41f596
IM
7607 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7608 rq->cpu_load[j] = 0;
fdf3e95d 7609
1da177e4 7610#ifdef CONFIG_SMP
41c7ce9a 7611 rq->sd = NULL;
57d885fe 7612 rq->rd = NULL;
ca6d75e6 7613 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7614 rq->balance_callback = NULL;
1da177e4 7615 rq->active_balance = 0;
dd41f596 7616 rq->next_balance = jiffies;
1da177e4 7617 rq->push_cpu = 0;
0a2966b4 7618 rq->cpu = i;
1f11eb6a 7619 rq->online = 0;
eae0c9df
MG
7620 rq->idle_stamp = 0;
7621 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7622 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7623
7624 INIT_LIST_HEAD(&rq->cfs_tasks);
7625
dc938520 7626 rq_attach_root(rq, &def_root_domain);
3451d024 7627#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7628 rq->last_load_update_tick = jiffies;
1c792db7 7629 rq->nohz_flags = 0;
83cd4fe2 7630#endif
265f22a9
FW
7631#ifdef CONFIG_NO_HZ_FULL
7632 rq->last_sched_tick = 0;
7633#endif
9fd81dd5 7634#endif /* CONFIG_SMP */
8f4d37ec 7635 init_rq_hrtick(rq);
1da177e4 7636 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7637 }
7638
2dd73a4f 7639 set_load_weight(&init_task);
b50f60ce 7640
1da177e4
LT
7641 /*
7642 * The boot idle thread does lazy MMU switching as well:
7643 */
7644 atomic_inc(&init_mm.mm_count);
7645 enter_lazy_tlb(&init_mm, current);
7646
7647 /*
7648 * Make us the idle thread. Technically, schedule() should not be
7649 * called from this thread, however somewhere below it might be,
7650 * but because we are the idle thread, we just pick up running again
7651 * when this runqueue becomes "idle".
7652 */
7653 init_idle(current, smp_processor_id());
dce48a84
TG
7654
7655 calc_load_update = jiffies + LOAD_FREQ;
7656
bf4d83f6 7657#ifdef CONFIG_SMP
4cb98839 7658 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7659 /* May be allocated at isolcpus cmdline parse time */
7660 if (cpu_isolated_map == NULL)
7661 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7662 idle_thread_set_boot_cpu();
9cf7243d 7663 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7664#endif
7665 init_sched_fair_class();
6a7b3dc3 7666
4698f88c
JP
7667 init_schedstats();
7668
6892b75e 7669 scheduler_running = 1;
1da177e4
LT
7670}
7671
d902db1e 7672#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7673static inline int preempt_count_equals(int preempt_offset)
7674{
da7142e2 7675 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7676
4ba8216c 7677 return (nested == preempt_offset);
e4aafea2
FW
7678}
7679
d894837f 7680void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7681{
8eb23b9f
PZ
7682 /*
7683 * Blocking primitives will set (and therefore destroy) current->state,
7684 * since we will exit with TASK_RUNNING make sure we enter with it,
7685 * otherwise we will destroy state.
7686 */
00845eb9 7687 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7688 "do not call blocking ops when !TASK_RUNNING; "
7689 "state=%lx set at [<%p>] %pS\n",
7690 current->state,
7691 (void *)current->task_state_change,
00845eb9 7692 (void *)current->task_state_change);
8eb23b9f 7693
3427445a
PZ
7694 ___might_sleep(file, line, preempt_offset);
7695}
7696EXPORT_SYMBOL(__might_sleep);
7697
7698void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7699{
1da177e4 7700 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7701 unsigned long preempt_disable_ip;
1da177e4 7702
b3fbab05 7703 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7704 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7705 !is_idle_task(current)) ||
e4aafea2 7706 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7707 return;
7708 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7709 return;
7710 prev_jiffy = jiffies;
7711
d1c6d149
VN
7712 /* Save this before calling printk(), since that will clobber it */
7713 preempt_disable_ip = get_preempt_disable_ip(current);
7714
3df0fc5b
PZ
7715 printk(KERN_ERR
7716 "BUG: sleeping function called from invalid context at %s:%d\n",
7717 file, line);
7718 printk(KERN_ERR
7719 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7720 in_atomic(), irqs_disabled(),
7721 current->pid, current->comm);
aef745fc 7722
a8b686b3
ES
7723 if (task_stack_end_corrupted(current))
7724 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7725
aef745fc
IM
7726 debug_show_held_locks(current);
7727 if (irqs_disabled())
7728 print_irqtrace_events(current);
d1c6d149
VN
7729 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7730 && !preempt_count_equals(preempt_offset)) {
8f47b187 7731 pr_err("Preemption disabled at:");
d1c6d149 7732 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7733 pr_cont("\n");
7734 }
aef745fc 7735 dump_stack();
f0b22e39 7736 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7737}
3427445a 7738EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7739#endif
7740
7741#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7742void normalize_rt_tasks(void)
3a5e4dc1 7743{
dbc7f069 7744 struct task_struct *g, *p;
d50dde5a
DF
7745 struct sched_attr attr = {
7746 .sched_policy = SCHED_NORMAL,
7747 };
1da177e4 7748
3472eaa1 7749 read_lock(&tasklist_lock);
5d07f420 7750 for_each_process_thread(g, p) {
178be793
IM
7751 /*
7752 * Only normalize user tasks:
7753 */
3472eaa1 7754 if (p->flags & PF_KTHREAD)
178be793
IM
7755 continue;
7756
4fa8d299
JP
7757 p->se.exec_start = 0;
7758 schedstat_set(p->se.statistics.wait_start, 0);
7759 schedstat_set(p->se.statistics.sleep_start, 0);
7760 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7761
aab03e05 7762 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7763 /*
7764 * Renice negative nice level userspace
7765 * tasks back to 0:
7766 */
3472eaa1 7767 if (task_nice(p) < 0)
dd41f596 7768 set_user_nice(p, 0);
1da177e4 7769 continue;
dd41f596 7770 }
1da177e4 7771
dbc7f069 7772 __sched_setscheduler(p, &attr, false, false);
5d07f420 7773 }
3472eaa1 7774 read_unlock(&tasklist_lock);
1da177e4
LT
7775}
7776
7777#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7778
67fc4e0c 7779#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7780/*
67fc4e0c 7781 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7782 *
7783 * They can only be called when the whole system has been
7784 * stopped - every CPU needs to be quiescent, and no scheduling
7785 * activity can take place. Using them for anything else would
7786 * be a serious bug, and as a result, they aren't even visible
7787 * under any other configuration.
7788 */
7789
7790/**
7791 * curr_task - return the current task for a given cpu.
7792 * @cpu: the processor in question.
7793 *
7794 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7795 *
7796 * Return: The current task for @cpu.
1df5c10a 7797 */
36c8b586 7798struct task_struct *curr_task(int cpu)
1df5c10a
LT
7799{
7800 return cpu_curr(cpu);
7801}
7802
67fc4e0c
JW
7803#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7804
7805#ifdef CONFIG_IA64
1df5c10a
LT
7806/**
7807 * set_curr_task - set the current task for a given cpu.
7808 * @cpu: the processor in question.
7809 * @p: the task pointer to set.
7810 *
7811 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7812 * are serviced on a separate stack. It allows the architecture to switch the
7813 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7814 * must be called with all CPU's synchronized, and interrupts disabled, the
7815 * and caller must save the original value of the current task (see
7816 * curr_task() above) and restore that value before reenabling interrupts and
7817 * re-starting the system.
7818 *
7819 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7820 */
36c8b586 7821void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7822{
7823 cpu_curr(cpu) = p;
7824}
7825
7826#endif
29f59db3 7827
7c941438 7828#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7829/* task_group_lock serializes the addition/removal of task groups */
7830static DEFINE_SPINLOCK(task_group_lock);
7831
2f5177f0 7832static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7833{
7834 free_fair_sched_group(tg);
7835 free_rt_sched_group(tg);
e9aa1dd1 7836 autogroup_free(tg);
b0367629 7837 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7838}
7839
7840/* allocate runqueue etc for a new task group */
ec7dc8ac 7841struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7842{
7843 struct task_group *tg;
bccbe08a 7844
b0367629 7845 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7846 if (!tg)
7847 return ERR_PTR(-ENOMEM);
7848
ec7dc8ac 7849 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7850 goto err;
7851
ec7dc8ac 7852 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7853 goto err;
7854
ace783b9
LZ
7855 return tg;
7856
7857err:
2f5177f0 7858 sched_free_group(tg);
ace783b9
LZ
7859 return ERR_PTR(-ENOMEM);
7860}
7861
7862void sched_online_group(struct task_group *tg, struct task_group *parent)
7863{
7864 unsigned long flags;
7865
8ed36996 7866 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7867 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7868
7869 WARN_ON(!parent); /* root should already exist */
7870
7871 tg->parent = parent;
f473aa5e 7872 INIT_LIST_HEAD(&tg->children);
09f2724a 7873 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7874 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7875
7876 online_fair_sched_group(tg);
29f59db3
SV
7877}
7878
9b5b7751 7879/* rcu callback to free various structures associated with a task group */
2f5177f0 7880static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7881{
29f59db3 7882 /* now it should be safe to free those cfs_rqs */
2f5177f0 7883 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7884}
7885
4cf86d77 7886void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7887{
7888 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7889 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7890}
7891
7892void sched_offline_group(struct task_group *tg)
29f59db3 7893{
8ed36996 7894 unsigned long flags;
29f59db3 7895
3d4b47b4 7896 /* end participation in shares distribution */
6fe1f348 7897 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7898
7899 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7900 list_del_rcu(&tg->list);
f473aa5e 7901 list_del_rcu(&tg->siblings);
8ed36996 7902 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7903}
7904
ea86cb4b 7905static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7906{
8323f26c 7907 struct task_group *tg;
29f59db3 7908
f7b8a47d
KT
7909 /*
7910 * All callers are synchronized by task_rq_lock(); we do not use RCU
7911 * which is pointless here. Thus, we pass "true" to task_css_check()
7912 * to prevent lockdep warnings.
7913 */
7914 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7915 struct task_group, css);
7916 tg = autogroup_task_group(tsk, tg);
7917 tsk->sched_task_group = tg;
7918
810b3817 7919#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7920 if (tsk->sched_class->task_change_group)
7921 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7922 else
810b3817 7923#endif
b2b5ce02 7924 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7925}
7926
7927/*
7928 * Change task's runqueue when it moves between groups.
7929 *
7930 * The caller of this function should have put the task in its new group by
7931 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7932 * its new group.
7933 */
7934void sched_move_task(struct task_struct *tsk)
7935{
7936 int queued, running;
7937 struct rq_flags rf;
7938 struct rq *rq;
7939
7940 rq = task_rq_lock(tsk, &rf);
7941
7942 running = task_current(rq, tsk);
7943 queued = task_on_rq_queued(tsk);
7944
7945 if (queued)
7946 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7947 if (unlikely(running))
7948 put_prev_task(rq, tsk);
7949
7950 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7951
0e1f3483
HS
7952 if (unlikely(running))
7953 tsk->sched_class->set_curr_task(rq);
da0c1e65 7954 if (queued)
ff77e468 7955 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7956
eb580751 7957 task_rq_unlock(rq, tsk, &rf);
29f59db3 7958}
7c941438 7959#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7960
a790de99
PT
7961#ifdef CONFIG_RT_GROUP_SCHED
7962/*
7963 * Ensure that the real time constraints are schedulable.
7964 */
7965static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7966
9a7e0b18
PZ
7967/* Must be called with tasklist_lock held */
7968static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7969{
9a7e0b18 7970 struct task_struct *g, *p;
b40b2e8e 7971
1fe89e1b
PZ
7972 /*
7973 * Autogroups do not have RT tasks; see autogroup_create().
7974 */
7975 if (task_group_is_autogroup(tg))
7976 return 0;
7977
5d07f420 7978 for_each_process_thread(g, p) {
8651c658 7979 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7980 return 1;
5d07f420 7981 }
b40b2e8e 7982
9a7e0b18
PZ
7983 return 0;
7984}
b40b2e8e 7985
9a7e0b18
PZ
7986struct rt_schedulable_data {
7987 struct task_group *tg;
7988 u64 rt_period;
7989 u64 rt_runtime;
7990};
b40b2e8e 7991
a790de99 7992static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7993{
7994 struct rt_schedulable_data *d = data;
7995 struct task_group *child;
7996 unsigned long total, sum = 0;
7997 u64 period, runtime;
b40b2e8e 7998
9a7e0b18
PZ
7999 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8000 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8001
9a7e0b18
PZ
8002 if (tg == d->tg) {
8003 period = d->rt_period;
8004 runtime = d->rt_runtime;
b40b2e8e 8005 }
b40b2e8e 8006
4653f803
PZ
8007 /*
8008 * Cannot have more runtime than the period.
8009 */
8010 if (runtime > period && runtime != RUNTIME_INF)
8011 return -EINVAL;
6f505b16 8012
4653f803
PZ
8013 /*
8014 * Ensure we don't starve existing RT tasks.
8015 */
9a7e0b18
PZ
8016 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8017 return -EBUSY;
6f505b16 8018
9a7e0b18 8019 total = to_ratio(period, runtime);
6f505b16 8020
4653f803
PZ
8021 /*
8022 * Nobody can have more than the global setting allows.
8023 */
8024 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8025 return -EINVAL;
6f505b16 8026
4653f803
PZ
8027 /*
8028 * The sum of our children's runtime should not exceed our own.
8029 */
9a7e0b18
PZ
8030 list_for_each_entry_rcu(child, &tg->children, siblings) {
8031 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8032 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8033
9a7e0b18
PZ
8034 if (child == d->tg) {
8035 period = d->rt_period;
8036 runtime = d->rt_runtime;
8037 }
6f505b16 8038
9a7e0b18 8039 sum += to_ratio(period, runtime);
9f0c1e56 8040 }
6f505b16 8041
9a7e0b18
PZ
8042 if (sum > total)
8043 return -EINVAL;
8044
8045 return 0;
6f505b16
PZ
8046}
8047
9a7e0b18 8048static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8049{
8277434e
PT
8050 int ret;
8051
9a7e0b18
PZ
8052 struct rt_schedulable_data data = {
8053 .tg = tg,
8054 .rt_period = period,
8055 .rt_runtime = runtime,
8056 };
8057
8277434e
PT
8058 rcu_read_lock();
8059 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8060 rcu_read_unlock();
8061
8062 return ret;
521f1a24
DG
8063}
8064
ab84d31e 8065static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8066 u64 rt_period, u64 rt_runtime)
6f505b16 8067{
ac086bc2 8068 int i, err = 0;
9f0c1e56 8069
2636ed5f
PZ
8070 /*
8071 * Disallowing the root group RT runtime is BAD, it would disallow the
8072 * kernel creating (and or operating) RT threads.
8073 */
8074 if (tg == &root_task_group && rt_runtime == 0)
8075 return -EINVAL;
8076
8077 /* No period doesn't make any sense. */
8078 if (rt_period == 0)
8079 return -EINVAL;
8080
9f0c1e56 8081 mutex_lock(&rt_constraints_mutex);
521f1a24 8082 read_lock(&tasklist_lock);
9a7e0b18
PZ
8083 err = __rt_schedulable(tg, rt_period, rt_runtime);
8084 if (err)
9f0c1e56 8085 goto unlock;
ac086bc2 8086
0986b11b 8087 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8088 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8089 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8090
8091 for_each_possible_cpu(i) {
8092 struct rt_rq *rt_rq = tg->rt_rq[i];
8093
0986b11b 8094 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8095 rt_rq->rt_runtime = rt_runtime;
0986b11b 8096 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8097 }
0986b11b 8098 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8099unlock:
521f1a24 8100 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8101 mutex_unlock(&rt_constraints_mutex);
8102
8103 return err;
6f505b16
PZ
8104}
8105
25cc7da7 8106static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8107{
8108 u64 rt_runtime, rt_period;
8109
8110 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8111 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8112 if (rt_runtime_us < 0)
8113 rt_runtime = RUNTIME_INF;
8114
ab84d31e 8115 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8116}
8117
25cc7da7 8118static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8119{
8120 u64 rt_runtime_us;
8121
d0b27fa7 8122 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8123 return -1;
8124
d0b27fa7 8125 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8126 do_div(rt_runtime_us, NSEC_PER_USEC);
8127 return rt_runtime_us;
8128}
d0b27fa7 8129
ce2f5fe4 8130static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8131{
8132 u64 rt_runtime, rt_period;
8133
ce2f5fe4 8134 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8135 rt_runtime = tg->rt_bandwidth.rt_runtime;
8136
ab84d31e 8137 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8138}
8139
25cc7da7 8140static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8141{
8142 u64 rt_period_us;
8143
8144 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8145 do_div(rt_period_us, NSEC_PER_USEC);
8146 return rt_period_us;
8147}
332ac17e 8148#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8149
332ac17e 8150#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8151static int sched_rt_global_constraints(void)
8152{
8153 int ret = 0;
8154
8155 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8156 read_lock(&tasklist_lock);
4653f803 8157 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8158 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8159 mutex_unlock(&rt_constraints_mutex);
8160
8161 return ret;
8162}
54e99124 8163
25cc7da7 8164static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8165{
8166 /* Don't accept realtime tasks when there is no way for them to run */
8167 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8168 return 0;
8169
8170 return 1;
8171}
8172
6d6bc0ad 8173#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8174static int sched_rt_global_constraints(void)
8175{
ac086bc2 8176 unsigned long flags;
8c5e9554 8177 int i;
ec5d4989 8178
0986b11b 8179 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8180 for_each_possible_cpu(i) {
8181 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8182
0986b11b 8183 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8184 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8185 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8186 }
0986b11b 8187 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8188
8c5e9554 8189 return 0;
d0b27fa7 8190}
6d6bc0ad 8191#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8192
a1963b81 8193static int sched_dl_global_validate(void)
332ac17e 8194{
1724813d
PZ
8195 u64 runtime = global_rt_runtime();
8196 u64 period = global_rt_period();
332ac17e 8197 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8198 struct dl_bw *dl_b;
1724813d 8199 int cpu, ret = 0;
49516342 8200 unsigned long flags;
332ac17e
DF
8201
8202 /*
8203 * Here we want to check the bandwidth not being set to some
8204 * value smaller than the currently allocated bandwidth in
8205 * any of the root_domains.
8206 *
8207 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8208 * cycling on root_domains... Discussion on different/better
8209 * solutions is welcome!
8210 */
1724813d 8211 for_each_possible_cpu(cpu) {
f10e00f4
KT
8212 rcu_read_lock_sched();
8213 dl_b = dl_bw_of(cpu);
332ac17e 8214
49516342 8215 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8216 if (new_bw < dl_b->total_bw)
8217 ret = -EBUSY;
49516342 8218 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8219
f10e00f4
KT
8220 rcu_read_unlock_sched();
8221
1724813d
PZ
8222 if (ret)
8223 break;
332ac17e
DF
8224 }
8225
1724813d 8226 return ret;
332ac17e
DF
8227}
8228
1724813d 8229static void sched_dl_do_global(void)
ce0dbbbb 8230{
1724813d 8231 u64 new_bw = -1;
f10e00f4 8232 struct dl_bw *dl_b;
1724813d 8233 int cpu;
49516342 8234 unsigned long flags;
ce0dbbbb 8235
1724813d
PZ
8236 def_dl_bandwidth.dl_period = global_rt_period();
8237 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8238
8239 if (global_rt_runtime() != RUNTIME_INF)
8240 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8241
8242 /*
8243 * FIXME: As above...
8244 */
8245 for_each_possible_cpu(cpu) {
f10e00f4
KT
8246 rcu_read_lock_sched();
8247 dl_b = dl_bw_of(cpu);
1724813d 8248
49516342 8249 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8250 dl_b->bw = new_bw;
49516342 8251 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8252
8253 rcu_read_unlock_sched();
ce0dbbbb 8254 }
1724813d
PZ
8255}
8256
8257static int sched_rt_global_validate(void)
8258{
8259 if (sysctl_sched_rt_period <= 0)
8260 return -EINVAL;
8261
e9e7cb38
JL
8262 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8263 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8264 return -EINVAL;
8265
8266 return 0;
8267}
8268
8269static void sched_rt_do_global(void)
8270{
8271 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8272 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8273}
8274
d0b27fa7 8275int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8276 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8277 loff_t *ppos)
8278{
d0b27fa7
PZ
8279 int old_period, old_runtime;
8280 static DEFINE_MUTEX(mutex);
1724813d 8281 int ret;
d0b27fa7
PZ
8282
8283 mutex_lock(&mutex);
8284 old_period = sysctl_sched_rt_period;
8285 old_runtime = sysctl_sched_rt_runtime;
8286
8d65af78 8287 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8288
8289 if (!ret && write) {
1724813d
PZ
8290 ret = sched_rt_global_validate();
8291 if (ret)
8292 goto undo;
8293
a1963b81 8294 ret = sched_dl_global_validate();
1724813d
PZ
8295 if (ret)
8296 goto undo;
8297
a1963b81 8298 ret = sched_rt_global_constraints();
1724813d
PZ
8299 if (ret)
8300 goto undo;
8301
8302 sched_rt_do_global();
8303 sched_dl_do_global();
8304 }
8305 if (0) {
8306undo:
8307 sysctl_sched_rt_period = old_period;
8308 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8309 }
8310 mutex_unlock(&mutex);
8311
8312 return ret;
8313}
68318b8e 8314
1724813d 8315int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8316 void __user *buffer, size_t *lenp,
8317 loff_t *ppos)
8318{
8319 int ret;
332ac17e 8320 static DEFINE_MUTEX(mutex);
332ac17e
DF
8321
8322 mutex_lock(&mutex);
332ac17e 8323 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8324 /* make sure that internally we keep jiffies */
8325 /* also, writing zero resets timeslice to default */
332ac17e 8326 if (!ret && write) {
1724813d
PZ
8327 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8328 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8329 }
8330 mutex_unlock(&mutex);
332ac17e
DF
8331 return ret;
8332}
8333
052f1dc7 8334#ifdef CONFIG_CGROUP_SCHED
68318b8e 8335
a7c6d554 8336static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8337{
a7c6d554 8338 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8339}
8340
eb95419b
TH
8341static struct cgroup_subsys_state *
8342cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8343{
eb95419b
TH
8344 struct task_group *parent = css_tg(parent_css);
8345 struct task_group *tg;
68318b8e 8346
eb95419b 8347 if (!parent) {
68318b8e 8348 /* This is early initialization for the top cgroup */
07e06b01 8349 return &root_task_group.css;
68318b8e
SV
8350 }
8351
ec7dc8ac 8352 tg = sched_create_group(parent);
68318b8e
SV
8353 if (IS_ERR(tg))
8354 return ERR_PTR(-ENOMEM);
8355
2f5177f0
PZ
8356 sched_online_group(tg, parent);
8357
68318b8e
SV
8358 return &tg->css;
8359}
8360
2f5177f0 8361static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8362{
eb95419b 8363 struct task_group *tg = css_tg(css);
ace783b9 8364
2f5177f0 8365 sched_offline_group(tg);
ace783b9
LZ
8366}
8367
eb95419b 8368static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8369{
eb95419b 8370 struct task_group *tg = css_tg(css);
68318b8e 8371
2f5177f0
PZ
8372 /*
8373 * Relies on the RCU grace period between css_released() and this.
8374 */
8375 sched_free_group(tg);
ace783b9
LZ
8376}
8377
ea86cb4b
VG
8378/*
8379 * This is called before wake_up_new_task(), therefore we really only
8380 * have to set its group bits, all the other stuff does not apply.
8381 */
b53202e6 8382static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8383{
ea86cb4b
VG
8384 struct rq_flags rf;
8385 struct rq *rq;
8386
8387 rq = task_rq_lock(task, &rf);
8388
8389 sched_change_group(task, TASK_SET_GROUP);
8390
8391 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8392}
8393
1f7dd3e5 8394static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8395{
bb9d97b6 8396 struct task_struct *task;
1f7dd3e5 8397 struct cgroup_subsys_state *css;
7dc603c9 8398 int ret = 0;
bb9d97b6 8399
1f7dd3e5 8400 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8401#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8402 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8403 return -EINVAL;
b68aa230 8404#else
bb9d97b6
TH
8405 /* We don't support RT-tasks being in separate groups */
8406 if (task->sched_class != &fair_sched_class)
8407 return -EINVAL;
b68aa230 8408#endif
7dc603c9
PZ
8409 /*
8410 * Serialize against wake_up_new_task() such that if its
8411 * running, we're sure to observe its full state.
8412 */
8413 raw_spin_lock_irq(&task->pi_lock);
8414 /*
8415 * Avoid calling sched_move_task() before wake_up_new_task()
8416 * has happened. This would lead to problems with PELT, due to
8417 * move wanting to detach+attach while we're not attached yet.
8418 */
8419 if (task->state == TASK_NEW)
8420 ret = -EINVAL;
8421 raw_spin_unlock_irq(&task->pi_lock);
8422
8423 if (ret)
8424 break;
bb9d97b6 8425 }
7dc603c9 8426 return ret;
be367d09 8427}
68318b8e 8428
1f7dd3e5 8429static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8430{
bb9d97b6 8431 struct task_struct *task;
1f7dd3e5 8432 struct cgroup_subsys_state *css;
bb9d97b6 8433
1f7dd3e5 8434 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8435 sched_move_task(task);
68318b8e
SV
8436}
8437
052f1dc7 8438#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8439static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8440 struct cftype *cftype, u64 shareval)
68318b8e 8441{
182446d0 8442 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8443}
8444
182446d0
TH
8445static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8446 struct cftype *cft)
68318b8e 8447{
182446d0 8448 struct task_group *tg = css_tg(css);
68318b8e 8449
c8b28116 8450 return (u64) scale_load_down(tg->shares);
68318b8e 8451}
ab84d31e
PT
8452
8453#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8454static DEFINE_MUTEX(cfs_constraints_mutex);
8455
ab84d31e
PT
8456const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8457const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8458
a790de99
PT
8459static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8460
ab84d31e
PT
8461static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8462{
56f570e5 8463 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8464 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8465
8466 if (tg == &root_task_group)
8467 return -EINVAL;
8468
8469 /*
8470 * Ensure we have at some amount of bandwidth every period. This is
8471 * to prevent reaching a state of large arrears when throttled via
8472 * entity_tick() resulting in prolonged exit starvation.
8473 */
8474 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8475 return -EINVAL;
8476
8477 /*
8478 * Likewise, bound things on the otherside by preventing insane quota
8479 * periods. This also allows us to normalize in computing quota
8480 * feasibility.
8481 */
8482 if (period > max_cfs_quota_period)
8483 return -EINVAL;
8484
0e59bdae
KT
8485 /*
8486 * Prevent race between setting of cfs_rq->runtime_enabled and
8487 * unthrottle_offline_cfs_rqs().
8488 */
8489 get_online_cpus();
a790de99
PT
8490 mutex_lock(&cfs_constraints_mutex);
8491 ret = __cfs_schedulable(tg, period, quota);
8492 if (ret)
8493 goto out_unlock;
8494
58088ad0 8495 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8496 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8497 /*
8498 * If we need to toggle cfs_bandwidth_used, off->on must occur
8499 * before making related changes, and on->off must occur afterwards
8500 */
8501 if (runtime_enabled && !runtime_was_enabled)
8502 cfs_bandwidth_usage_inc();
ab84d31e
PT
8503 raw_spin_lock_irq(&cfs_b->lock);
8504 cfs_b->period = ns_to_ktime(period);
8505 cfs_b->quota = quota;
58088ad0 8506
a9cf55b2 8507 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8508 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8509 if (runtime_enabled)
8510 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8511 raw_spin_unlock_irq(&cfs_b->lock);
8512
0e59bdae 8513 for_each_online_cpu(i) {
ab84d31e 8514 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8515 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8516
8517 raw_spin_lock_irq(&rq->lock);
58088ad0 8518 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8519 cfs_rq->runtime_remaining = 0;
671fd9da 8520
029632fb 8521 if (cfs_rq->throttled)
671fd9da 8522 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8523 raw_spin_unlock_irq(&rq->lock);
8524 }
1ee14e6c
BS
8525 if (runtime_was_enabled && !runtime_enabled)
8526 cfs_bandwidth_usage_dec();
a790de99
PT
8527out_unlock:
8528 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8529 put_online_cpus();
ab84d31e 8530
a790de99 8531 return ret;
ab84d31e
PT
8532}
8533
8534int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8535{
8536 u64 quota, period;
8537
029632fb 8538 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8539 if (cfs_quota_us < 0)
8540 quota = RUNTIME_INF;
8541 else
8542 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8543
8544 return tg_set_cfs_bandwidth(tg, period, quota);
8545}
8546
8547long tg_get_cfs_quota(struct task_group *tg)
8548{
8549 u64 quota_us;
8550
029632fb 8551 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8552 return -1;
8553
029632fb 8554 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8555 do_div(quota_us, NSEC_PER_USEC);
8556
8557 return quota_us;
8558}
8559
8560int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8561{
8562 u64 quota, period;
8563
8564 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8565 quota = tg->cfs_bandwidth.quota;
ab84d31e 8566
ab84d31e
PT
8567 return tg_set_cfs_bandwidth(tg, period, quota);
8568}
8569
8570long tg_get_cfs_period(struct task_group *tg)
8571{
8572 u64 cfs_period_us;
8573
029632fb 8574 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8575 do_div(cfs_period_us, NSEC_PER_USEC);
8576
8577 return cfs_period_us;
8578}
8579
182446d0
TH
8580static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8581 struct cftype *cft)
ab84d31e 8582{
182446d0 8583 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8584}
8585
182446d0
TH
8586static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8587 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8588{
182446d0 8589 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8590}
8591
182446d0
TH
8592static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8593 struct cftype *cft)
ab84d31e 8594{
182446d0 8595 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8596}
8597
182446d0
TH
8598static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8599 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8600{
182446d0 8601 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8602}
8603
a790de99
PT
8604struct cfs_schedulable_data {
8605 struct task_group *tg;
8606 u64 period, quota;
8607};
8608
8609/*
8610 * normalize group quota/period to be quota/max_period
8611 * note: units are usecs
8612 */
8613static u64 normalize_cfs_quota(struct task_group *tg,
8614 struct cfs_schedulable_data *d)
8615{
8616 u64 quota, period;
8617
8618 if (tg == d->tg) {
8619 period = d->period;
8620 quota = d->quota;
8621 } else {
8622 period = tg_get_cfs_period(tg);
8623 quota = tg_get_cfs_quota(tg);
8624 }
8625
8626 /* note: these should typically be equivalent */
8627 if (quota == RUNTIME_INF || quota == -1)
8628 return RUNTIME_INF;
8629
8630 return to_ratio(period, quota);
8631}
8632
8633static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8634{
8635 struct cfs_schedulable_data *d = data;
029632fb 8636 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8637 s64 quota = 0, parent_quota = -1;
8638
8639 if (!tg->parent) {
8640 quota = RUNTIME_INF;
8641 } else {
029632fb 8642 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8643
8644 quota = normalize_cfs_quota(tg, d);
9c58c79a 8645 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8646
8647 /*
8648 * ensure max(child_quota) <= parent_quota, inherit when no
8649 * limit is set
8650 */
8651 if (quota == RUNTIME_INF)
8652 quota = parent_quota;
8653 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8654 return -EINVAL;
8655 }
9c58c79a 8656 cfs_b->hierarchical_quota = quota;
a790de99
PT
8657
8658 return 0;
8659}
8660
8661static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8662{
8277434e 8663 int ret;
a790de99
PT
8664 struct cfs_schedulable_data data = {
8665 .tg = tg,
8666 .period = period,
8667 .quota = quota,
8668 };
8669
8670 if (quota != RUNTIME_INF) {
8671 do_div(data.period, NSEC_PER_USEC);
8672 do_div(data.quota, NSEC_PER_USEC);
8673 }
8674
8277434e
PT
8675 rcu_read_lock();
8676 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8677 rcu_read_unlock();
8678
8679 return ret;
a790de99 8680}
e8da1b18 8681
2da8ca82 8682static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8683{
2da8ca82 8684 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8685 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8686
44ffc75b
TH
8687 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8688 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8689 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8690
8691 return 0;
8692}
ab84d31e 8693#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8694#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8695
052f1dc7 8696#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8697static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8698 struct cftype *cft, s64 val)
6f505b16 8699{
182446d0 8700 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8701}
8702
182446d0
TH
8703static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8704 struct cftype *cft)
6f505b16 8705{
182446d0 8706 return sched_group_rt_runtime(css_tg(css));
6f505b16 8707}
d0b27fa7 8708
182446d0
TH
8709static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8710 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8711{
182446d0 8712 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8713}
8714
182446d0
TH
8715static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8716 struct cftype *cft)
d0b27fa7 8717{
182446d0 8718 return sched_group_rt_period(css_tg(css));
d0b27fa7 8719}
6d6bc0ad 8720#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8721
fe5c7cc2 8722static struct cftype cpu_files[] = {
052f1dc7 8723#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8724 {
8725 .name = "shares",
f4c753b7
PM
8726 .read_u64 = cpu_shares_read_u64,
8727 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8728 },
052f1dc7 8729#endif
ab84d31e
PT
8730#ifdef CONFIG_CFS_BANDWIDTH
8731 {
8732 .name = "cfs_quota_us",
8733 .read_s64 = cpu_cfs_quota_read_s64,
8734 .write_s64 = cpu_cfs_quota_write_s64,
8735 },
8736 {
8737 .name = "cfs_period_us",
8738 .read_u64 = cpu_cfs_period_read_u64,
8739 .write_u64 = cpu_cfs_period_write_u64,
8740 },
e8da1b18
NR
8741 {
8742 .name = "stat",
2da8ca82 8743 .seq_show = cpu_stats_show,
e8da1b18 8744 },
ab84d31e 8745#endif
052f1dc7 8746#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8747 {
9f0c1e56 8748 .name = "rt_runtime_us",
06ecb27c
PM
8749 .read_s64 = cpu_rt_runtime_read,
8750 .write_s64 = cpu_rt_runtime_write,
6f505b16 8751 },
d0b27fa7
PZ
8752 {
8753 .name = "rt_period_us",
f4c753b7
PM
8754 .read_u64 = cpu_rt_period_read_uint,
8755 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8756 },
052f1dc7 8757#endif
4baf6e33 8758 { } /* terminate */
68318b8e
SV
8759};
8760
073219e9 8761struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8762 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8763 .css_released = cpu_cgroup_css_released,
92fb9748 8764 .css_free = cpu_cgroup_css_free,
eeb61e53 8765 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8766 .can_attach = cpu_cgroup_can_attach,
8767 .attach = cpu_cgroup_attach,
5577964e 8768 .legacy_cftypes = cpu_files,
b38e42e9 8769 .early_init = true,
68318b8e
SV
8770};
8771
052f1dc7 8772#endif /* CONFIG_CGROUP_SCHED */
d842de87 8773
b637a328
PM
8774void dump_cpu_task(int cpu)
8775{
8776 pr_info("Task dump for CPU %d:\n", cpu);
8777 sched_show_task(cpu_curr(cpu));
8778}
ed82b8a1
AK
8779
8780/*
8781 * Nice levels are multiplicative, with a gentle 10% change for every
8782 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8783 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8784 * that remained on nice 0.
8785 *
8786 * The "10% effect" is relative and cumulative: from _any_ nice level,
8787 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8788 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8789 * If a task goes up by ~10% and another task goes down by ~10% then
8790 * the relative distance between them is ~25%.)
8791 */
8792const int sched_prio_to_weight[40] = {
8793 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8794 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8795 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8796 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8797 /* 0 */ 1024, 820, 655, 526, 423,
8798 /* 5 */ 335, 272, 215, 172, 137,
8799 /* 10 */ 110, 87, 70, 56, 45,
8800 /* 15 */ 36, 29, 23, 18, 15,
8801};
8802
8803/*
8804 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8805 *
8806 * In cases where the weight does not change often, we can use the
8807 * precalculated inverse to speed up arithmetics by turning divisions
8808 * into multiplications:
8809 */
8810const u32 sched_prio_to_wmult[40] = {
8811 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8812 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8813 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8814 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8815 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8816 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8817 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8818 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8819};