rcu/tree: Call setschedule() gp ktread to SCHED_FIFO outside of atomic region
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
a056a5be
QY
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
029632fb 37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 38
e9666d10 39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
765cc3a4
PB
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
bf5c91ba 46 */
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 49const_debug unsigned int sysctl_sched_features =
391e43da 50#include "features.h"
f00b45c1 51 0;
f00b45c1 52#undef SCHED_FEAT
765cc3a4 53#endif
f00b45c1 54
b82d9fdd
PZ
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
fa85ae24 61/*
d1ccc66d 62 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
63 * default: 1s
64 */
9f0c1e56 65unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 66
029632fb 67__read_mostly int scheduler_running;
6892b75e 68
9f0c1e56
PZ
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
fa85ae24 74
3e71a462
PZ
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
eb580751 78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 89 rq_pin_lock(rq, rf);
3e71a462
PZ
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
eb580751 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
eb580751 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
c546951d 122 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
123 * the old rq->lock will fully serialize against the stores.
124 *
c546951d
AP
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 130 rq_pin_lock(rq, rf);
3e71a462
PZ
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
eb580751 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
535b9552
IM
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
11d4afd4
VG
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
535b9552
IM
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
11d4afd4 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 194 update_irq_load_avg(rq, irq_delta + steal);
535b9552 195#endif
23127296 196 update_rq_clock_pelt(rq, delta);
535b9552
IM
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
26ae58d2 213
535b9552
IM
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
8f4d37ec
PZ
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 225 */
8f4d37ec 226
8f4d37ec
PZ
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
8f4d37ec
PZ
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 240 struct rq_flags rf;
8f4d37ec
PZ
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
8a8c69c3 244 rq_lock(rq, &rf);
3e51f33f 245 update_rq_clock(rq);
8f4d37ec 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 247 rq_unlock(rq, &rf);
8f4d37ec
PZ
248
249 return HRTIMER_NORESTART;
250}
251
95e904c7 252#ifdef CONFIG_SMP
971ee28c 253
4961b6e1 254static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 257
4961b6e1 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
259}
260
31656519
PZ
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
b328ca18 265{
31656519 266 struct rq *rq = arg;
8a8c69c3 267 struct rq_flags rf;
b328ca18 268
8a8c69c3 269 rq_lock(rq, &rf);
971ee28c 270 __hrtick_restart(rq);
31656519 271 rq->hrtick_csd_pending = 0;
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519
PZ
294
295 if (rq == this_rq()) {
971ee28c 296 __hrtick_restart(rq);
31656519 297 } else if (!rq->hrtick_csd_pending) {
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
299 rq->hrtick_csd_pending = 1;
300 }
b328ca18
PZ
301}
302
31656519
PZ
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
029632fb 309void hrtick_start(struct rq *rq, u64 delay)
31656519 310{
86893335
WL
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
31656519 318}
31656519 319#endif /* CONFIG_SMP */
8f4d37ec 320
77a021be 321static void hrtick_rq_init(struct rq *rq)
8f4d37ec 322{
31656519
PZ
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
8f4d37ec 325
31656519
PZ
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
8f4d37ec 330
31656519
PZ
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
8f4d37ec 333}
006c75f1 334#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
77a021be 339static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
340{
341}
006c75f1 342#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 343
5529578a
FW
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
e3baac47 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
e3baac47
PZ
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
316c1608 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
fd99f91a
PZ
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
e3baac47
PZ
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
fd99f91a
PZ
411#endif
412
07879c6a 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
4c4e3731
PZ
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 424 */
4c4e3731 425 smp_mb__before_atomic();
87ff19cb 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 427 return false;
76751049
PZ
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
07879c6a
DB
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
76751049
PZ
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
d1ccc66d 487 /* Task can safely be re-inserted now: */
76751049
PZ
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
7696f991
AP
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
c24d20db 500/*
8875125e 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
8875125e 507void resched_curr(struct rq *rq)
c24d20db 508{
8875125e 509 struct task_struct *curr = rq->curr;
c24d20db
IM
510 int cpu;
511
8875125e 512 lockdep_assert_held(&rq->lock);
c24d20db 513
8875125e 514 if (test_tsk_need_resched(curr))
c24d20db
IM
515 return;
516
8875125e 517 cpu = cpu_of(rq);
fd99f91a 518
f27dde8d 519 if (cpu == smp_processor_id()) {
8875125e 520 set_tsk_need_resched(curr);
f27dde8d 521 set_preempt_need_resched();
c24d20db 522 return;
f27dde8d 523 }
c24d20db 524
8875125e 525 if (set_nr_and_not_polling(curr))
c24d20db 526 smp_send_reschedule(cpu);
dfc68f29
AL
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
7c2102e5 536 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c 541
b021fe3e 542#ifdef CONFIG_SMP
3451d024 543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 544/*
d1ccc66d
IM
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
547 *
548 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 551 */
bc7a34b8 552int get_nohz_timer_target(void)
83cd4fe2 553{
bc7a34b8 554 int i, cpu = smp_processor_id();
83cd4fe2
VP
555 struct sched_domain *sd;
556
de201559 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
558 return cpu;
559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
057f3fad 562 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
de201559 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
de201559
FW
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
d1ccc66d 579
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
379d9ecb
PM
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
c5bfece2 613 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
53c5fa16 616 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
617 return true;
618 }
619
620 return false;
621}
622
379d9ecb
PM
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
1c20091e
FW
628void wake_up_nohz_cpu(int cpu)
629{
c5bfece2 630 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
631 wake_up_idle_cpu(cpu);
632}
633
ca38062e 634static inline bool got_nohz_idle_kick(void)
45bf76df 635{
1c792db7 636 int cpu = smp_processor_id();
873b4c65 637
b7031a02 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
b7031a02 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 649 return false;
45bf76df
IM
650}
651
3451d024 652#else /* CONFIG_NO_HZ_COMMON */
45bf76df 653
ca38062e 654static inline bool got_nohz_idle_kick(void)
2069dd75 655{
ca38062e 656 return false;
2069dd75
PZ
657}
658
3451d024 659#endif /* CONFIG_NO_HZ_COMMON */
d842de87 660
ce831b38 661#ifdef CONFIG_NO_HZ_FULL
76d92ac3 662bool sched_can_stop_tick(struct rq *rq)
ce831b38 663{
76d92ac3
FW
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
1e78cdbd 670 /*
2548d546
PZ
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
1e78cdbd 673 */
76d92ac3
FW
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
1e78cdbd
RR
679 }
680
2548d546
PZ
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
541b8264 695 return false;
ce831b38 696
541b8264 697 return true;
ce831b38
FW
698}
699#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
9059393e 747static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
1da1843f 755 if (task_has_idle_policy(p)) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 758 p->se.runnable_weight = load->weight;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 771 p->se.runnable_weight = load->weight;
9059393e 772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
776/* Max allowed minimum utilization */
777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778
779/* Max allowed maximum utilization */
780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781
782/* All clamps are required to be less or equal than these values */
783static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
784
785/* Integer rounded range for each bucket */
786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787
788#define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790
791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792{
793 return clamp_value / UCLAMP_BUCKET_DELTA;
794}
795
60daf9c1
PB
796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797{
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799}
800
69842cba
PB
801static inline unsigned int uclamp_none(int clamp_id)
802{
803 if (clamp_id == UCLAMP_MIN)
804 return 0;
805 return SCHED_CAPACITY_SCALE;
806}
807
a509a7cd
PB
808static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 unsigned int value, bool user_defined)
69842cba
PB
810{
811 uc_se->value = value;
812 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 813 uc_se->user_defined = user_defined;
69842cba
PB
814}
815
e496187d
PB
816static inline unsigned int
817uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 unsigned int clamp_value)
819{
820 /*
821 * Avoid blocked utilization pushing up the frequency when we go
822 * idle (which drops the max-clamp) by retaining the last known
823 * max-clamp.
824 */
825 if (clamp_id == UCLAMP_MAX) {
826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 return clamp_value;
828 }
829
830 return uclamp_none(UCLAMP_MIN);
831}
832
833static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 unsigned int clamp_value)
835{
836 /* Reset max-clamp retention only on idle exit */
837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 return;
839
840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841}
842
69842cba 843static inline
e496187d
PB
844unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 unsigned int clamp_value)
69842cba
PB
846{
847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 int bucket_id = UCLAMP_BUCKETS - 1;
849
850 /*
851 * Since both min and max clamps are max aggregated, find the
852 * top most bucket with tasks in.
853 */
854 for ( ; bucket_id >= 0; bucket_id--) {
855 if (!bucket[bucket_id].tasks)
856 continue;
857 return bucket[bucket_id].value;
858 }
859
860 /* No tasks -- default clamp values */
e496187d 861 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
862}
863
e8f14172
PB
864/*
865 * The effective clamp bucket index of a task depends on, by increasing
866 * priority:
867 * - the task specific clamp value, when explicitly requested from userspace
868 * - the system default clamp value, defined by the sysadmin
869 */
870static inline struct uclamp_se
871uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872{
873 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 struct uclamp_se uc_max = uclamp_default[clamp_id];
875
876 /* System default restrictions always apply */
877 if (unlikely(uc_req.value > uc_max.value))
878 return uc_max;
879
880 return uc_req;
881}
882
9d20ad7d
PB
883unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
884{
885 struct uclamp_se uc_eff;
886
887 /* Task currently refcounted: use back-annotated (effective) value */
888 if (p->uclamp[clamp_id].active)
889 return p->uclamp[clamp_id].value;
890
891 uc_eff = uclamp_eff_get(p, clamp_id);
892
893 return uc_eff.value;
894}
895
69842cba
PB
896/*
897 * When a task is enqueued on a rq, the clamp bucket currently defined by the
898 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899 * updates the rq's clamp value if required.
60daf9c1
PB
900 *
901 * Tasks can have a task-specific value requested from user-space, track
902 * within each bucket the maximum value for tasks refcounted in it.
903 * This "local max aggregation" allows to track the exact "requested" value
904 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
905 */
906static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 unsigned int clamp_id)
908{
909 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 struct uclamp_bucket *bucket;
912
913 lockdep_assert_held(&rq->lock);
914
e8f14172
PB
915 /* Update task effective clamp */
916 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
917
69842cba
PB
918 bucket = &uc_rq->bucket[uc_se->bucket_id];
919 bucket->tasks++;
e8f14172 920 uc_se->active = true;
69842cba 921
e496187d
PB
922 uclamp_idle_reset(rq, clamp_id, uc_se->value);
923
60daf9c1
PB
924 /*
925 * Local max aggregation: rq buckets always track the max
926 * "requested" clamp value of its RUNNABLE tasks.
927 */
928 if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 bucket->value = uc_se->value;
930
69842cba 931 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 932 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
933}
934
935/*
936 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937 * is released. If this is the last task reference counting the rq's max
938 * active clamp value, then the rq's clamp value is updated.
939 *
940 * Both refcounted tasks and rq's cached clamp values are expected to be
941 * always valid. If it's detected they are not, as defensive programming,
942 * enforce the expected state and warn.
943 */
944static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 unsigned int clamp_id)
946{
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
e496187d 950 unsigned int bkt_clamp;
69842cba
PB
951 unsigned int rq_clamp;
952
953 lockdep_assert_held(&rq->lock);
954
955 bucket = &uc_rq->bucket[uc_se->bucket_id];
956 SCHED_WARN_ON(!bucket->tasks);
957 if (likely(bucket->tasks))
958 bucket->tasks--;
e8f14172 959 uc_se->active = false;
69842cba 960
60daf9c1
PB
961 /*
962 * Keep "local max aggregation" simple and accept to (possibly)
963 * overboost some RUNNABLE tasks in the same bucket.
964 * The rq clamp bucket value is reset to its base value whenever
965 * there are no more RUNNABLE tasks refcounting it.
966 */
69842cba
PB
967 if (likely(bucket->tasks))
968 return;
969
970 rq_clamp = READ_ONCE(uc_rq->value);
971 /*
972 * Defensive programming: this should never happen. If it happens,
973 * e.g. due to future modification, warn and fixup the expected value.
974 */
975 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
976 if (bucket->value >= rq_clamp) {
977 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 WRITE_ONCE(uc_rq->value, bkt_clamp);
979 }
69842cba
PB
980}
981
982static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
983{
984 unsigned int clamp_id;
985
986 if (unlikely(!p->sched_class->uclamp_enabled))
987 return;
988
989 for_each_clamp_id(clamp_id)
990 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
991
992 /* Reset clamp idle holding when there is one RUNNABLE task */
993 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
995}
996
997static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
998{
999 unsigned int clamp_id;
1000
1001 if (unlikely(!p->sched_class->uclamp_enabled))
1002 return;
1003
1004 for_each_clamp_id(clamp_id)
1005 uclamp_rq_dec_id(rq, p, clamp_id);
1006}
1007
e8f14172
PB
1008int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 void __user *buffer, size_t *lenp,
1010 loff_t *ppos)
1011{
1012 int old_min, old_max;
1013 static DEFINE_MUTEX(mutex);
1014 int result;
1015
1016 mutex_lock(&mutex);
1017 old_min = sysctl_sched_uclamp_util_min;
1018 old_max = sysctl_sched_uclamp_util_max;
1019
1020 result = proc_dointvec(table, write, buffer, lenp, ppos);
1021 if (result)
1022 goto undo;
1023 if (!write)
1024 goto done;
1025
1026 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028 result = -EINVAL;
1029 goto undo;
1030 }
1031
1032 if (old_min != sysctl_sched_uclamp_util_min) {
1033 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1034 sysctl_sched_uclamp_util_min, false);
e8f14172
PB
1035 }
1036 if (old_max != sysctl_sched_uclamp_util_max) {
1037 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1038 sysctl_sched_uclamp_util_max, false);
e8f14172
PB
1039 }
1040
1041 /*
1042 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 * just a lazy update at each next enqueue time.
1044 */
1045 goto done;
1046
1047undo:
1048 sysctl_sched_uclamp_util_min = old_min;
1049 sysctl_sched_uclamp_util_max = old_max;
1050done:
1051 mutex_unlock(&mutex);
1052
1053 return result;
1054}
1055
a509a7cd
PB
1056static int uclamp_validate(struct task_struct *p,
1057 const struct sched_attr *attr)
1058{
1059 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061
1062 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 lower_bound = attr->sched_util_min;
1064 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 upper_bound = attr->sched_util_max;
1066
1067 if (lower_bound > upper_bound)
1068 return -EINVAL;
1069 if (upper_bound > SCHED_CAPACITY_SCALE)
1070 return -EINVAL;
1071
1072 return 0;
1073}
1074
1075static void __setscheduler_uclamp(struct task_struct *p,
1076 const struct sched_attr *attr)
1077{
1a00d999
PB
1078 unsigned int clamp_id;
1079
1080 /*
1081 * On scheduling class change, reset to default clamps for tasks
1082 * without a task-specific value.
1083 */
1084 for_each_clamp_id(clamp_id) {
1085 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 unsigned int clamp_value = uclamp_none(clamp_id);
1087
1088 /* Keep using defined clamps across class changes */
1089 if (uc_se->user_defined)
1090 continue;
1091
1092 /* By default, RT tasks always get 100% boost */
1093 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 clamp_value = uclamp_none(UCLAMP_MAX);
1095
1096 uclamp_se_set(uc_se, clamp_value, false);
1097 }
1098
a509a7cd
PB
1099 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100 return;
1101
1102 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 attr->sched_util_min, true);
1105 }
1106
1107 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 attr->sched_util_max, true);
1110 }
1111}
1112
e8f14172
PB
1113static void uclamp_fork(struct task_struct *p)
1114{
1115 unsigned int clamp_id;
1116
1117 for_each_clamp_id(clamp_id)
1118 p->uclamp[clamp_id].active = false;
a87498ac
PB
1119
1120 if (likely(!p->sched_reset_on_fork))
1121 return;
1122
1123 for_each_clamp_id(clamp_id) {
1a00d999
PB
1124 unsigned int clamp_value = uclamp_none(clamp_id);
1125
1126 /* By default, RT tasks always get 100% boost */
1127 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 clamp_value = uclamp_none(UCLAMP_MAX);
1129
1130 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
a87498ac 1131 }
e8f14172
PB
1132}
1133
69842cba
PB
1134static void __init init_uclamp(void)
1135{
e8f14172 1136 struct uclamp_se uc_max = {};
69842cba
PB
1137 unsigned int clamp_id;
1138 int cpu;
1139
e496187d 1140 for_each_possible_cpu(cpu) {
69842cba 1141 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
e496187d
PB
1142 cpu_rq(cpu)->uclamp_flags = 0;
1143 }
69842cba 1144
69842cba 1145 for_each_clamp_id(clamp_id) {
e8f14172 1146 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1147 uclamp_none(clamp_id), false);
69842cba 1148 }
e8f14172
PB
1149
1150 /* System defaults allow max clamp values for both indexes */
a509a7cd 1151 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
e8f14172
PB
1152 for_each_clamp_id(clamp_id)
1153 uclamp_default[clamp_id] = uc_max;
69842cba
PB
1154}
1155
1156#else /* CONFIG_UCLAMP_TASK */
1157static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1159static inline int uclamp_validate(struct task_struct *p,
1160 const struct sched_attr *attr)
1161{
1162 return -EOPNOTSUPP;
1163}
1164static void __setscheduler_uclamp(struct task_struct *p,
1165 const struct sched_attr *attr) { }
e8f14172 1166static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1167static inline void init_uclamp(void) { }
1168#endif /* CONFIG_UCLAMP_TASK */
1169
1de64443 1170static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1171{
0a67d1ee
PZ
1172 if (!(flags & ENQUEUE_NOCLOCK))
1173 update_rq_clock(rq);
1174
eb414681 1175 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1176 sched_info_queued(rq, p);
eb414681
JW
1177 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178 }
0a67d1ee 1179
69842cba 1180 uclamp_rq_inc(rq, p);
371fd7e7 1181 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1182}
1183
1de64443 1184static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1185{
0a67d1ee
PZ
1186 if (!(flags & DEQUEUE_NOCLOCK))
1187 update_rq_clock(rq);
1188
eb414681 1189 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1190 sched_info_dequeued(rq, p);
eb414681
JW
1191 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192 }
0a67d1ee 1193
69842cba 1194 uclamp_rq_dec(rq, p);
371fd7e7 1195 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1196}
1197
029632fb 1198void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1199{
1200 if (task_contributes_to_load(p))
1201 rq->nr_uninterruptible--;
1202
371fd7e7 1203 enqueue_task(rq, p, flags);
7dd77884
PZ
1204
1205 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1206}
1207
029632fb 1208void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1209{
7dd77884
PZ
1210 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211
1e3c88bd
PZ
1212 if (task_contributes_to_load(p))
1213 rq->nr_uninterruptible++;
1214
371fd7e7 1215 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1216}
1217
14531189 1218/*
dd41f596 1219 * __normal_prio - return the priority that is based on the static prio
14531189 1220 */
14531189
IM
1221static inline int __normal_prio(struct task_struct *p)
1222{
dd41f596 1223 return p->static_prio;
14531189
IM
1224}
1225
b29739f9
IM
1226/*
1227 * Calculate the expected normal priority: i.e. priority
1228 * without taking RT-inheritance into account. Might be
1229 * boosted by interactivity modifiers. Changes upon fork,
1230 * setprio syscalls, and whenever the interactivity
1231 * estimator recalculates.
1232 */
36c8b586 1233static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1234{
1235 int prio;
1236
aab03e05
DF
1237 if (task_has_dl_policy(p))
1238 prio = MAX_DL_PRIO-1;
1239 else if (task_has_rt_policy(p))
b29739f9
IM
1240 prio = MAX_RT_PRIO-1 - p->rt_priority;
1241 else
1242 prio = __normal_prio(p);
1243 return prio;
1244}
1245
1246/*
1247 * Calculate the current priority, i.e. the priority
1248 * taken into account by the scheduler. This value might
1249 * be boosted by RT tasks, or might be boosted by
1250 * interactivity modifiers. Will be RT if the task got
1251 * RT-boosted. If not then it returns p->normal_prio.
1252 */
36c8b586 1253static int effective_prio(struct task_struct *p)
b29739f9
IM
1254{
1255 p->normal_prio = normal_prio(p);
1256 /*
1257 * If we are RT tasks or we were boosted to RT priority,
1258 * keep the priority unchanged. Otherwise, update priority
1259 * to the normal priority:
1260 */
1261 if (!rt_prio(p->prio))
1262 return p->normal_prio;
1263 return p->prio;
1264}
1265
1da177e4
LT
1266/**
1267 * task_curr - is this task currently executing on a CPU?
1268 * @p: the task in question.
e69f6186
YB
1269 *
1270 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1271 */
36c8b586 1272inline int task_curr(const struct task_struct *p)
1da177e4
LT
1273{
1274 return cpu_curr(task_cpu(p)) == p;
1275}
1276
67dfa1b7 1277/*
4c9a4bc8
PZ
1278 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279 * use the balance_callback list if you want balancing.
1280 *
1281 * this means any call to check_class_changed() must be followed by a call to
1282 * balance_callback().
67dfa1b7 1283 */
cb469845
SR
1284static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 const struct sched_class *prev_class,
da7a735e 1286 int oldprio)
cb469845
SR
1287{
1288 if (prev_class != p->sched_class) {
1289 if (prev_class->switched_from)
da7a735e 1290 prev_class->switched_from(rq, p);
4c9a4bc8 1291
da7a735e 1292 p->sched_class->switched_to(rq, p);
2d3d891d 1293 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1294 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1295}
1296
029632fb 1297void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1298{
1299 const struct sched_class *class;
1300
1301 if (p->sched_class == rq->curr->sched_class) {
1302 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303 } else {
1304 for_each_class(class) {
1305 if (class == rq->curr->sched_class)
1306 break;
1307 if (class == p->sched_class) {
8875125e 1308 resched_curr(rq);
1e5a7405
PZ
1309 break;
1310 }
1311 }
1312 }
1313
1314 /*
1315 * A queue event has occurred, and we're going to schedule. In
1316 * this case, we can save a useless back to back clock update.
1317 */
da0c1e65 1318 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1319 rq_clock_skip_update(rq);
1e5a7405
PZ
1320}
1321
1da177e4 1322#ifdef CONFIG_SMP
175f0e25
PZ
1323
1324static inline bool is_per_cpu_kthread(struct task_struct *p)
1325{
1326 if (!(p->flags & PF_KTHREAD))
1327 return false;
1328
1329 if (p->nr_cpus_allowed != 1)
1330 return false;
1331
1332 return true;
1333}
1334
1335/*
bee98539 1336 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1337 * __set_cpus_allowed_ptr() and select_fallback_rq().
1338 */
1339static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340{
3bd37062 1341 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1342 return false;
1343
1344 if (is_per_cpu_kthread(p))
1345 return cpu_online(cpu);
1346
1347 return cpu_active(cpu);
1348}
1349
5cc389bc
PZ
1350/*
1351 * This is how migration works:
1352 *
1353 * 1) we invoke migration_cpu_stop() on the target CPU using
1354 * stop_one_cpu().
1355 * 2) stopper starts to run (implicitly forcing the migrated thread
1356 * off the CPU)
1357 * 3) it checks whether the migrated task is still in the wrong runqueue.
1358 * 4) if it's in the wrong runqueue then the migration thread removes
1359 * it and puts it into the right queue.
1360 * 5) stopper completes and stop_one_cpu() returns and the migration
1361 * is done.
1362 */
1363
1364/*
1365 * move_queued_task - move a queued task to new rq.
1366 *
1367 * Returns (locked) new rq. Old rq's lock is released.
1368 */
8a8c69c3
PZ
1369static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 struct task_struct *p, int new_cpu)
5cc389bc 1371{
5cc389bc
PZ
1372 lockdep_assert_held(&rq->lock);
1373
c546951d 1374 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1375 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1376 set_task_cpu(p, new_cpu);
8a8c69c3 1377 rq_unlock(rq, rf);
5cc389bc
PZ
1378
1379 rq = cpu_rq(new_cpu);
1380
8a8c69c3 1381 rq_lock(rq, rf);
5cc389bc 1382 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1383 enqueue_task(rq, p, 0);
3ea94de1 1384 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1385 check_preempt_curr(rq, p, 0);
1386
1387 return rq;
1388}
1389
1390struct migration_arg {
1391 struct task_struct *task;
1392 int dest_cpu;
1393};
1394
1395/*
d1ccc66d 1396 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1397 * this because either it can't run here any more (set_cpus_allowed()
1398 * away from this CPU, or CPU going down), or because we're
1399 * attempting to rebalance this task on exec (sched_exec).
1400 *
1401 * So we race with normal scheduler movements, but that's OK, as long
1402 * as the task is no longer on this CPU.
5cc389bc 1403 */
8a8c69c3
PZ
1404static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 struct task_struct *p, int dest_cpu)
5cc389bc 1406{
5cc389bc 1407 /* Affinity changed (again). */
175f0e25 1408 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1409 return rq;
5cc389bc 1410
15ff991e 1411 update_rq_clock(rq);
8a8c69c3 1412 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1413
1414 return rq;
5cc389bc
PZ
1415}
1416
1417/*
1418 * migration_cpu_stop - this will be executed by a highprio stopper thread
1419 * and performs thread migration by bumping thread off CPU then
1420 * 'pushing' onto another runqueue.
1421 */
1422static int migration_cpu_stop(void *data)
1423{
1424 struct migration_arg *arg = data;
5e16bbc2
PZ
1425 struct task_struct *p = arg->task;
1426 struct rq *rq = this_rq();
8a8c69c3 1427 struct rq_flags rf;
5cc389bc
PZ
1428
1429 /*
d1ccc66d
IM
1430 * The original target CPU might have gone down and we might
1431 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1432 */
1433 local_irq_disable();
1434 /*
1435 * We need to explicitly wake pending tasks before running
3bd37062 1436 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1437 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438 */
1439 sched_ttwu_pending();
5e16bbc2
PZ
1440
1441 raw_spin_lock(&p->pi_lock);
8a8c69c3 1442 rq_lock(rq, &rf);
5e16bbc2
PZ
1443 /*
1444 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 * we're holding p->pi_lock.
1447 */
bf89a304
CC
1448 if (task_rq(p) == rq) {
1449 if (task_on_rq_queued(p))
8a8c69c3 1450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1451 else
1452 p->wake_cpu = arg->dest_cpu;
1453 }
8a8c69c3 1454 rq_unlock(rq, &rf);
5e16bbc2
PZ
1455 raw_spin_unlock(&p->pi_lock);
1456
5cc389bc
PZ
1457 local_irq_enable();
1458 return 0;
1459}
1460
c5b28038
PZ
1461/*
1462 * sched_class::set_cpus_allowed must do the below, but is not required to
1463 * actually call this function.
1464 */
1465void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1466{
3bd37062 1467 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1468 p->nr_cpus_allowed = cpumask_weight(new_mask);
1469}
1470
c5b28038
PZ
1471void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472{
6c37067e
PZ
1473 struct rq *rq = task_rq(p);
1474 bool queued, running;
1475
c5b28038 1476 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1477
1478 queued = task_on_rq_queued(p);
1479 running = task_current(rq, p);
1480
1481 if (queued) {
1482 /*
1483 * Because __kthread_bind() calls this on blocked tasks without
1484 * holding rq->lock.
1485 */
1486 lockdep_assert_held(&rq->lock);
7a57f32a 1487 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1488 }
1489 if (running)
1490 put_prev_task(rq, p);
1491
c5b28038 1492 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1493
6c37067e 1494 if (queued)
7134b3e9 1495 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1496 if (running)
b2bf6c31 1497 set_curr_task(rq, p);
c5b28038
PZ
1498}
1499
5cc389bc
PZ
1500/*
1501 * Change a given task's CPU affinity. Migrate the thread to a
1502 * proper CPU and schedule it away if the CPU it's executing on
1503 * is removed from the allowed bitmask.
1504 *
1505 * NOTE: the caller must have a valid reference to the task, the
1506 * task must not exit() & deallocate itself prematurely. The
1507 * call is not atomic; no spinlocks may be held.
1508 */
25834c73
PZ
1509static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 const struct cpumask *new_mask, bool check)
5cc389bc 1511{
e9d867a6 1512 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1513 unsigned int dest_cpu;
eb580751
PZ
1514 struct rq_flags rf;
1515 struct rq *rq;
5cc389bc
PZ
1516 int ret = 0;
1517
eb580751 1518 rq = task_rq_lock(p, &rf);
a499c3ea 1519 update_rq_clock(rq);
5cc389bc 1520
e9d867a6
PZI
1521 if (p->flags & PF_KTHREAD) {
1522 /*
1523 * Kernel threads are allowed on online && !active CPUs
1524 */
1525 cpu_valid_mask = cpu_online_mask;
1526 }
1527
25834c73
PZ
1528 /*
1529 * Must re-check here, to close a race against __kthread_bind(),
1530 * sched_setaffinity() is not guaranteed to observe the flag.
1531 */
1532 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533 ret = -EINVAL;
1534 goto out;
1535 }
1536
3bd37062 1537 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1538 goto out;
1539
e9d867a6 1540 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1541 ret = -EINVAL;
1542 goto out;
1543 }
1544
1545 do_set_cpus_allowed(p, new_mask);
1546
e9d867a6
PZI
1547 if (p->flags & PF_KTHREAD) {
1548 /*
1549 * For kernel threads that do indeed end up on online &&
d1ccc66d 1550 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1551 */
1552 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 !cpumask_intersects(new_mask, cpu_active_mask) &&
1554 p->nr_cpus_allowed != 1);
1555 }
1556
5cc389bc
PZ
1557 /* Can the task run on the task's current CPU? If so, we're done */
1558 if (cpumask_test_cpu(task_cpu(p), new_mask))
1559 goto out;
1560
e9d867a6 1561 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1562 if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 struct migration_arg arg = { p, dest_cpu };
1564 /* Need help from migration thread: drop lock and wait. */
eb580751 1565 task_rq_unlock(rq, p, &rf);
5cc389bc 1566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1567 return 0;
cbce1a68
PZ
1568 } else if (task_on_rq_queued(p)) {
1569 /*
1570 * OK, since we're going to drop the lock immediately
1571 * afterwards anyway.
1572 */
8a8c69c3 1573 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1574 }
5cc389bc 1575out:
eb580751 1576 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1577
1578 return ret;
1579}
25834c73
PZ
1580
1581int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582{
1583 return __set_cpus_allowed_ptr(p, new_mask, false);
1584}
5cc389bc
PZ
1585EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586
dd41f596 1587void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1588{
e2912009
PZ
1589#ifdef CONFIG_SCHED_DEBUG
1590 /*
1591 * We should never call set_task_cpu() on a blocked task,
1592 * ttwu() will sort out the placement.
1593 */
077614ee 1594 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1595 !p->on_rq);
0122ec5b 1596
3ea94de1
JP
1597 /*
1598 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 * time relying on p->on_rq.
1601 */
1602 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 p->sched_class == &fair_sched_class &&
1604 (p->on_rq && !task_on_rq_migrating(p)));
1605
0122ec5b 1606#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1607 /*
1608 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610 *
1611 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1612 * see task_group().
6c6c54e1
PZ
1613 *
1614 * Furthermore, all task_rq users should acquire both locks, see
1615 * task_rq_lock().
1616 */
0122ec5b
PZ
1617 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 lockdep_is_held(&task_rq(p)->lock)));
1619#endif
4ff9083b
PZ
1620 /*
1621 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622 */
1623 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1624#endif
1625
de1d7286 1626 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1627
0c69774e 1628 if (task_cpu(p) != new_cpu) {
0a74bef8 1629 if (p->sched_class->migrate_task_rq)
1327237a 1630 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1631 p->se.nr_migrations++;
d7822b1e 1632 rseq_migrate(p);
ff303e66 1633 perf_event_task_migrate(p);
0c69774e 1634 }
dd41f596
IM
1635
1636 __set_task_cpu(p, new_cpu);
c65cc870
IM
1637}
1638
0ad4e3df 1639#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1640static void __migrate_swap_task(struct task_struct *p, int cpu)
1641{
da0c1e65 1642 if (task_on_rq_queued(p)) {
ac66f547 1643 struct rq *src_rq, *dst_rq;
8a8c69c3 1644 struct rq_flags srf, drf;
ac66f547
PZ
1645
1646 src_rq = task_rq(p);
1647 dst_rq = cpu_rq(cpu);
1648
8a8c69c3
PZ
1649 rq_pin_lock(src_rq, &srf);
1650 rq_pin_lock(dst_rq, &drf);
1651
ac66f547
PZ
1652 deactivate_task(src_rq, p, 0);
1653 set_task_cpu(p, cpu);
1654 activate_task(dst_rq, p, 0);
1655 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1656
1657 rq_unpin_lock(dst_rq, &drf);
1658 rq_unpin_lock(src_rq, &srf);
1659
ac66f547
PZ
1660 } else {
1661 /*
1662 * Task isn't running anymore; make it appear like we migrated
1663 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1664 * previous CPU our target instead of where it really is.
ac66f547
PZ
1665 */
1666 p->wake_cpu = cpu;
1667 }
1668}
1669
1670struct migration_swap_arg {
1671 struct task_struct *src_task, *dst_task;
1672 int src_cpu, dst_cpu;
1673};
1674
1675static int migrate_swap_stop(void *data)
1676{
1677 struct migration_swap_arg *arg = data;
1678 struct rq *src_rq, *dst_rq;
1679 int ret = -EAGAIN;
1680
62694cd5
PZ
1681 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682 return -EAGAIN;
1683
ac66f547
PZ
1684 src_rq = cpu_rq(arg->src_cpu);
1685 dst_rq = cpu_rq(arg->dst_cpu);
1686
74602315
PZ
1687 double_raw_lock(&arg->src_task->pi_lock,
1688 &arg->dst_task->pi_lock);
ac66f547 1689 double_rq_lock(src_rq, dst_rq);
62694cd5 1690
ac66f547
PZ
1691 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692 goto unlock;
1693
1694 if (task_cpu(arg->src_task) != arg->src_cpu)
1695 goto unlock;
1696
3bd37062 1697 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1698 goto unlock;
1699
3bd37062 1700 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1701 goto unlock;
1702
1703 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1705
1706 ret = 0;
1707
1708unlock:
1709 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1710 raw_spin_unlock(&arg->dst_task->pi_lock);
1711 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1712
1713 return ret;
1714}
1715
1716/*
1717 * Cross migrate two tasks
1718 */
0ad4e3df
SD
1719int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 int target_cpu, int curr_cpu)
ac66f547
PZ
1721{
1722 struct migration_swap_arg arg;
1723 int ret = -EINVAL;
1724
ac66f547
PZ
1725 arg = (struct migration_swap_arg){
1726 .src_task = cur,
0ad4e3df 1727 .src_cpu = curr_cpu,
ac66f547 1728 .dst_task = p,
0ad4e3df 1729 .dst_cpu = target_cpu,
ac66f547
PZ
1730 };
1731
1732 if (arg.src_cpu == arg.dst_cpu)
1733 goto out;
1734
6acce3ef
PZ
1735 /*
1736 * These three tests are all lockless; this is OK since all of them
1737 * will be re-checked with proper locks held further down the line.
1738 */
ac66f547
PZ
1739 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740 goto out;
1741
3bd37062 1742 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1743 goto out;
1744
3bd37062 1745 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1746 goto out;
1747
286549dc 1748 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1749 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750
1751out:
ac66f547
PZ
1752 return ret;
1753}
0ad4e3df 1754#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1755
1da177e4
LT
1756/*
1757 * wait_task_inactive - wait for a thread to unschedule.
1758 *
85ba2d86
RM
1759 * If @match_state is nonzero, it's the @p->state value just checked and
1760 * not expected to change. If it changes, i.e. @p might have woken up,
1761 * then return zero. When we succeed in waiting for @p to be off its CPU,
1762 * we return a positive number (its total switch count). If a second call
1763 * a short while later returns the same number, the caller can be sure that
1764 * @p has remained unscheduled the whole time.
1765 *
1da177e4
LT
1766 * The caller must ensure that the task *will* unschedule sometime soon,
1767 * else this function might spin for a *long* time. This function can't
1768 * be called with interrupts off, or it may introduce deadlock with
1769 * smp_call_function() if an IPI is sent by the same process we are
1770 * waiting to become inactive.
1771 */
85ba2d86 1772unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1773{
da0c1e65 1774 int running, queued;
eb580751 1775 struct rq_flags rf;
85ba2d86 1776 unsigned long ncsw;
70b97a7f 1777 struct rq *rq;
1da177e4 1778
3a5c359a
AK
1779 for (;;) {
1780 /*
1781 * We do the initial early heuristics without holding
1782 * any task-queue locks at all. We'll only try to get
1783 * the runqueue lock when things look like they will
1784 * work out!
1785 */
1786 rq = task_rq(p);
fa490cfd 1787
3a5c359a
AK
1788 /*
1789 * If the task is actively running on another CPU
1790 * still, just relax and busy-wait without holding
1791 * any locks.
1792 *
1793 * NOTE! Since we don't hold any locks, it's not
1794 * even sure that "rq" stays as the right runqueue!
1795 * But we don't care, since "task_running()" will
1796 * return false if the runqueue has changed and p
1797 * is actually now running somewhere else!
1798 */
85ba2d86
RM
1799 while (task_running(rq, p)) {
1800 if (match_state && unlikely(p->state != match_state))
1801 return 0;
3a5c359a 1802 cpu_relax();
85ba2d86 1803 }
fa490cfd 1804
3a5c359a
AK
1805 /*
1806 * Ok, time to look more closely! We need the rq
1807 * lock now, to be *sure*. If we're wrong, we'll
1808 * just go back and repeat.
1809 */
eb580751 1810 rq = task_rq_lock(p, &rf);
27a9da65 1811 trace_sched_wait_task(p);
3a5c359a 1812 running = task_running(rq, p);
da0c1e65 1813 queued = task_on_rq_queued(p);
85ba2d86 1814 ncsw = 0;
f31e11d8 1815 if (!match_state || p->state == match_state)
93dcf55f 1816 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1817 task_rq_unlock(rq, p, &rf);
fa490cfd 1818
85ba2d86
RM
1819 /*
1820 * If it changed from the expected state, bail out now.
1821 */
1822 if (unlikely(!ncsw))
1823 break;
1824
3a5c359a
AK
1825 /*
1826 * Was it really running after all now that we
1827 * checked with the proper locks actually held?
1828 *
1829 * Oops. Go back and try again..
1830 */
1831 if (unlikely(running)) {
1832 cpu_relax();
1833 continue;
1834 }
fa490cfd 1835
3a5c359a
AK
1836 /*
1837 * It's not enough that it's not actively running,
1838 * it must be off the runqueue _entirely_, and not
1839 * preempted!
1840 *
80dd99b3 1841 * So if it was still runnable (but just not actively
3a5c359a
AK
1842 * running right now), it's preempted, and we should
1843 * yield - it could be a while.
1844 */
da0c1e65 1845 if (unlikely(queued)) {
8b0e1953 1846 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1847
1848 set_current_state(TASK_UNINTERRUPTIBLE);
1849 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1850 continue;
1851 }
fa490cfd 1852
3a5c359a
AK
1853 /*
1854 * Ahh, all good. It wasn't running, and it wasn't
1855 * runnable, which means that it will never become
1856 * running in the future either. We're all done!
1857 */
1858 break;
1859 }
85ba2d86
RM
1860
1861 return ncsw;
1da177e4
LT
1862}
1863
1864/***
1865 * kick_process - kick a running thread to enter/exit the kernel
1866 * @p: the to-be-kicked thread
1867 *
1868 * Cause a process which is running on another CPU to enter
1869 * kernel-mode, without any delay. (to get signals handled.)
1870 *
25985edc 1871 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1872 * because all it wants to ensure is that the remote task enters
1873 * the kernel. If the IPI races and the task has been migrated
1874 * to another CPU then no harm is done and the purpose has been
1875 * achieved as well.
1876 */
36c8b586 1877void kick_process(struct task_struct *p)
1da177e4
LT
1878{
1879 int cpu;
1880
1881 preempt_disable();
1882 cpu = task_cpu(p);
1883 if ((cpu != smp_processor_id()) && task_curr(p))
1884 smp_send_reschedule(cpu);
1885 preempt_enable();
1886}
b43e3521 1887EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1888
30da688e 1889/*
3bd37062 1890 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1891 *
1892 * A few notes on cpu_active vs cpu_online:
1893 *
1894 * - cpu_active must be a subset of cpu_online
1895 *
97fb7a0a 1896 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1897 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1898 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1899 * see it.
1900 *
d1ccc66d 1901 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1902 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1903 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1904 * off.
1905 *
1906 * This means that fallback selection must not select !active CPUs.
1907 * And can assume that any active CPU must be online. Conversely
1908 * select_task_rq() below may allow selection of !active CPUs in order
1909 * to satisfy the above rules.
30da688e 1910 */
5da9a0fb
PZ
1911static int select_fallback_rq(int cpu, struct task_struct *p)
1912{
aa00d89c
TC
1913 int nid = cpu_to_node(cpu);
1914 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1915 enum { cpuset, possible, fail } state = cpuset;
1916 int dest_cpu;
5da9a0fb 1917
aa00d89c 1918 /*
d1ccc66d
IM
1919 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 * will return -1. There is no CPU on the node, and we should
1921 * select the CPU on the other node.
aa00d89c
TC
1922 */
1923 if (nid != -1) {
1924 nodemask = cpumask_of_node(nid);
1925
1926 /* Look for allowed, online CPU in same node. */
1927 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1928 if (!cpu_active(dest_cpu))
1929 continue;
3bd37062 1930 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1931 return dest_cpu;
1932 }
2baab4e9 1933 }
5da9a0fb 1934
2baab4e9
PZ
1935 for (;;) {
1936 /* Any allowed, online CPU? */
3bd37062 1937 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1938 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1939 continue;
175f0e25 1940
2baab4e9
PZ
1941 goto out;
1942 }
5da9a0fb 1943
e73e85f0 1944 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1945 switch (state) {
1946 case cpuset:
e73e85f0
ON
1947 if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 cpuset_cpus_allowed_fallback(p);
1949 state = possible;
1950 break;
1951 }
d1ccc66d 1952 /* Fall-through */
2baab4e9
PZ
1953 case possible:
1954 do_set_cpus_allowed(p, cpu_possible_mask);
1955 state = fail;
1956 break;
1957
1958 case fail:
1959 BUG();
1960 break;
1961 }
1962 }
1963
1964out:
1965 if (state != cpuset) {
1966 /*
1967 * Don't tell them about moving exiting tasks or
1968 * kernel threads (both mm NULL), since they never
1969 * leave kernel.
1970 */
1971 if (p->mm && printk_ratelimit()) {
aac74dc4 1972 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1973 task_pid_nr(p), p->comm, cpu);
1974 }
5da9a0fb
PZ
1975 }
1976
1977 return dest_cpu;
1978}
1979
e2912009 1980/*
3bd37062 1981 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1982 */
970b13ba 1983static inline
ac66f547 1984int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1985{
cbce1a68
PZ
1986 lockdep_assert_held(&p->pi_lock);
1987
4b53a341 1988 if (p->nr_cpus_allowed > 1)
6c1d9410 1989 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1990 else
3bd37062 1991 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1992
1993 /*
1994 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1995 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1996 * CPU.
e2912009
PZ
1997 *
1998 * Since this is common to all placement strategies, this lives here.
1999 *
2000 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 * not worry about this generic constraint ]
2002 */
7af443ee 2003 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2004 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2005
2006 return cpu;
970b13ba 2007}
09a40af5
MG
2008
2009static void update_avg(u64 *avg, u64 sample)
2010{
2011 s64 diff = sample - *avg;
2012 *avg += diff >> 3;
2013}
25834c73 2014
f5832c19
NP
2015void sched_set_stop_task(int cpu, struct task_struct *stop)
2016{
2017 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019
2020 if (stop) {
2021 /*
2022 * Make it appear like a SCHED_FIFO task, its something
2023 * userspace knows about and won't get confused about.
2024 *
2025 * Also, it will make PI more or less work without too
2026 * much confusion -- but then, stop work should not
2027 * rely on PI working anyway.
2028 */
2029 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030
2031 stop->sched_class = &stop_sched_class;
2032 }
2033
2034 cpu_rq(cpu)->stop = stop;
2035
2036 if (old_stop) {
2037 /*
2038 * Reset it back to a normal scheduling class so that
2039 * it can die in pieces.
2040 */
2041 old_stop->sched_class = &rt_sched_class;
2042 }
2043}
2044
25834c73
PZ
2045#else
2046
2047static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 const struct cpumask *new_mask, bool check)
2049{
2050 return set_cpus_allowed_ptr(p, new_mask);
2051}
2052
5cc389bc 2053#endif /* CONFIG_SMP */
970b13ba 2054
d7c01d27 2055static void
b84cb5df 2056ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2057{
4fa8d299 2058 struct rq *rq;
b84cb5df 2059
4fa8d299
JP
2060 if (!schedstat_enabled())
2061 return;
2062
2063 rq = this_rq();
d7c01d27 2064
4fa8d299
JP
2065#ifdef CONFIG_SMP
2066 if (cpu == rq->cpu) {
b85c8b71
PZ
2067 __schedstat_inc(rq->ttwu_local);
2068 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2069 } else {
2070 struct sched_domain *sd;
2071
b85c8b71 2072 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2073 rcu_read_lock();
4fa8d299 2074 for_each_domain(rq->cpu, sd) {
d7c01d27 2075 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2076 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2077 break;
2078 }
2079 }
057f3fad 2080 rcu_read_unlock();
d7c01d27 2081 }
f339b9dc
PZ
2082
2083 if (wake_flags & WF_MIGRATED)
b85c8b71 2084 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2085#endif /* CONFIG_SMP */
2086
b85c8b71
PZ
2087 __schedstat_inc(rq->ttwu_count);
2088 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2089
2090 if (wake_flags & WF_SYNC)
b85c8b71 2091 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2092}
2093
23f41eeb
PZ
2094/*
2095 * Mark the task runnable and perform wakeup-preemption.
2096 */
e7904a28 2097static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2098 struct rq_flags *rf)
9ed3811a 2099{
9ed3811a 2100 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2101 p->state = TASK_RUNNING;
fbd705a0
PZ
2102 trace_sched_wakeup(p);
2103
9ed3811a 2104#ifdef CONFIG_SMP
4c9a4bc8
PZ
2105 if (p->sched_class->task_woken) {
2106 /*
cbce1a68
PZ
2107 * Our task @p is fully woken up and running; so its safe to
2108 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2109 */
d8ac8971 2110 rq_unpin_lock(rq, rf);
9ed3811a 2111 p->sched_class->task_woken(rq, p);
d8ac8971 2112 rq_repin_lock(rq, rf);
4c9a4bc8 2113 }
9ed3811a 2114
e69c6341 2115 if (rq->idle_stamp) {
78becc27 2116 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2117 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2118
abfafa54
JL
2119 update_avg(&rq->avg_idle, delta);
2120
2121 if (rq->avg_idle > max)
9ed3811a 2122 rq->avg_idle = max;
abfafa54 2123
9ed3811a
TH
2124 rq->idle_stamp = 0;
2125 }
2126#endif
2127}
2128
c05fbafb 2129static void
e7904a28 2130ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2131 struct rq_flags *rf)
c05fbafb 2132{
77558e4d 2133 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2134
cbce1a68
PZ
2135 lockdep_assert_held(&rq->lock);
2136
c05fbafb
PZ
2137#ifdef CONFIG_SMP
2138 if (p->sched_contributes_to_load)
2139 rq->nr_uninterruptible--;
b5179ac7 2140
b5179ac7 2141 if (wake_flags & WF_MIGRATED)
59efa0ba 2142 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2143#endif
2144
1b174a2c 2145 activate_task(rq, p, en_flags);
d8ac8971 2146 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2147}
2148
2149/*
2150 * Called in case the task @p isn't fully descheduled from its runqueue,
2151 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152 * since all we need to do is flip p->state to TASK_RUNNING, since
2153 * the task is still ->on_rq.
2154 */
2155static int ttwu_remote(struct task_struct *p, int wake_flags)
2156{
eb580751 2157 struct rq_flags rf;
c05fbafb
PZ
2158 struct rq *rq;
2159 int ret = 0;
2160
eb580751 2161 rq = __task_rq_lock(p, &rf);
da0c1e65 2162 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2163 /* check_preempt_curr() may use rq clock */
2164 update_rq_clock(rq);
d8ac8971 2165 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2166 ret = 1;
2167 }
eb580751 2168 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2169
2170 return ret;
2171}
2172
317f3941 2173#ifdef CONFIG_SMP
e3baac47 2174void sched_ttwu_pending(void)
317f3941
PZ
2175{
2176 struct rq *rq = this_rq();
fa14ff4a 2177 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2178 struct task_struct *p, *t;
d8ac8971 2179 struct rq_flags rf;
317f3941 2180
e3baac47
PZ
2181 if (!llist)
2182 return;
2183
8a8c69c3 2184 rq_lock_irqsave(rq, &rf);
77558e4d 2185 update_rq_clock(rq);
317f3941 2186
73215849
BP
2187 llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2189
8a8c69c3 2190 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2191}
2192
2193void scheduler_ipi(void)
2194{
f27dde8d
PZ
2195 /*
2196 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 * TIF_NEED_RESCHED remotely (for the first time) will also send
2198 * this IPI.
2199 */
8cb75e0c 2200 preempt_fold_need_resched();
f27dde8d 2201
fd2ac4f4 2202 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2203 return;
2204
2205 /*
2206 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 * traditionally all their work was done from the interrupt return
2208 * path. Now that we actually do some work, we need to make sure
2209 * we do call them.
2210 *
2211 * Some archs already do call them, luckily irq_enter/exit nest
2212 * properly.
2213 *
2214 * Arguably we should visit all archs and update all handlers,
2215 * however a fair share of IPIs are still resched only so this would
2216 * somewhat pessimize the simple resched case.
2217 */
2218 irq_enter();
fa14ff4a 2219 sched_ttwu_pending();
ca38062e
SS
2220
2221 /*
2222 * Check if someone kicked us for doing the nohz idle load balance.
2223 */
873b4c65 2224 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2225 this_rq()->idle_balance = 1;
ca38062e 2226 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2227 }
c5d753a5 2228 irq_exit();
317f3941
PZ
2229}
2230
b7e7ade3 2231static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2232{
e3baac47
PZ
2233 struct rq *rq = cpu_rq(cpu);
2234
b7e7ade3
PZ
2235 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236
e3baac47
PZ
2237 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 if (!set_nr_if_polling(rq->idle))
2239 smp_send_reschedule(cpu);
2240 else
2241 trace_sched_wake_idle_without_ipi(cpu);
2242 }
317f3941 2243}
d6aa8f85 2244
f6be8af1
CL
2245void wake_up_if_idle(int cpu)
2246{
2247 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2248 struct rq_flags rf;
f6be8af1 2249
fd7de1e8
AL
2250 rcu_read_lock();
2251
2252 if (!is_idle_task(rcu_dereference(rq->curr)))
2253 goto out;
f6be8af1
CL
2254
2255 if (set_nr_if_polling(rq->idle)) {
2256 trace_sched_wake_idle_without_ipi(cpu);
2257 } else {
8a8c69c3 2258 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2259 if (is_idle_task(rq->curr))
2260 smp_send_reschedule(cpu);
d1ccc66d 2261 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2262 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2263 }
fd7de1e8
AL
2264
2265out:
2266 rcu_read_unlock();
f6be8af1
CL
2267}
2268
39be3501 2269bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2270{
2271 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272}
d6aa8f85 2273#endif /* CONFIG_SMP */
317f3941 2274
b5179ac7 2275static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2276{
2277 struct rq *rq = cpu_rq(cpu);
d8ac8971 2278 struct rq_flags rf;
c05fbafb 2279
17d9f311 2280#if defined(CONFIG_SMP)
39be3501 2281 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2282 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2283 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2284 return;
2285 }
2286#endif
2287
8a8c69c3 2288 rq_lock(rq, &rf);
77558e4d 2289 update_rq_clock(rq);
d8ac8971 2290 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2291 rq_unlock(rq, &rf);
9ed3811a
TH
2292}
2293
8643cda5
PZ
2294/*
2295 * Notes on Program-Order guarantees on SMP systems.
2296 *
2297 * MIGRATION
2298 *
2299 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2300 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301 * execution on its new CPU [c1].
8643cda5
PZ
2302 *
2303 * For migration (of runnable tasks) this is provided by the following means:
2304 *
2305 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2306 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2307 * rq(c1)->lock (if not at the same time, then in that order).
2308 * C) LOCK of the rq(c1)->lock scheduling in task
2309 *
7696f991 2310 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2311 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2312 *
2313 * Example:
2314 *
2315 * CPU0 CPU1 CPU2
2316 *
2317 * LOCK rq(0)->lock
2318 * sched-out X
2319 * sched-in Y
2320 * UNLOCK rq(0)->lock
2321 *
2322 * LOCK rq(0)->lock // orders against CPU0
2323 * dequeue X
2324 * UNLOCK rq(0)->lock
2325 *
2326 * LOCK rq(1)->lock
2327 * enqueue X
2328 * UNLOCK rq(1)->lock
2329 *
2330 * LOCK rq(1)->lock // orders against CPU2
2331 * sched-out Z
2332 * sched-in X
2333 * UNLOCK rq(1)->lock
2334 *
2335 *
2336 * BLOCKING -- aka. SLEEP + WAKEUP
2337 *
2338 * For blocking we (obviously) need to provide the same guarantee as for
2339 * migration. However the means are completely different as there is no lock
2340 * chain to provide order. Instead we do:
2341 *
2342 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2343 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2344 *
2345 * Example:
2346 *
2347 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2348 *
2349 * LOCK rq(0)->lock LOCK X->pi_lock
2350 * dequeue X
2351 * sched-out X
2352 * smp_store_release(X->on_cpu, 0);
2353 *
1f03e8d2 2354 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2355 * X->state = WAKING
2356 * set_task_cpu(X,2)
2357 *
2358 * LOCK rq(2)->lock
2359 * enqueue X
2360 * X->state = RUNNING
2361 * UNLOCK rq(2)->lock
2362 *
2363 * LOCK rq(2)->lock // orders against CPU1
2364 * sched-out Z
2365 * sched-in X
2366 * UNLOCK rq(2)->lock
2367 *
2368 * UNLOCK X->pi_lock
2369 * UNLOCK rq(0)->lock
2370 *
2371 *
7696f991
AP
2372 * However, for wakeups there is a second guarantee we must provide, namely we
2373 * must ensure that CONDITION=1 done by the caller can not be reordered with
2374 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2375 */
2376
9ed3811a 2377/**
1da177e4 2378 * try_to_wake_up - wake up a thread
9ed3811a 2379 * @p: the thread to be awakened
1da177e4 2380 * @state: the mask of task states that can be woken
9ed3811a 2381 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2382 *
a2250238 2383 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2384 *
a2250238
PZ
2385 * If the task was not queued/runnable, also place it back on a runqueue.
2386 *
2387 * Atomic against schedule() which would dequeue a task, also see
2388 * set_current_state().
2389 *
7696f991
AP
2390 * This function executes a full memory barrier before accessing the task
2391 * state; see set_current_state().
2392 *
a2250238
PZ
2393 * Return: %true if @p->state changes (an actual wakeup was done),
2394 * %false otherwise.
1da177e4 2395 */
e4a52bcb
PZ
2396static int
2397try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2398{
1da177e4 2399 unsigned long flags;
c05fbafb 2400 int cpu, success = 0;
2398f2c6 2401
e3d85487 2402 preempt_disable();
aacedf26
PZ
2403 if (p == current) {
2404 /*
2405 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2406 * == smp_processor_id()'. Together this means we can special
2407 * case the whole 'p->on_rq && ttwu_remote()' case below
2408 * without taking any locks.
2409 *
2410 * In particular:
2411 * - we rely on Program-Order guarantees for all the ordering,
2412 * - we're serialized against set_special_state() by virtue of
2413 * it disabling IRQs (this allows not taking ->pi_lock).
2414 */
2415 if (!(p->state & state))
e3d85487 2416 goto out;
aacedf26
PZ
2417
2418 success = 1;
2419 cpu = task_cpu(p);
2420 trace_sched_waking(p);
2421 p->state = TASK_RUNNING;
2422 trace_sched_wakeup(p);
2423 goto out;
2424 }
2425
e0acd0a6
ON
2426 /*
2427 * If we are going to wake up a thread waiting for CONDITION we
2428 * need to ensure that CONDITION=1 done by the caller can not be
2429 * reordered with p->state check below. This pairs with mb() in
2430 * set_current_state() the waiting thread does.
2431 */
013fdb80 2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2433 smp_mb__after_spinlock();
e9c84311 2434 if (!(p->state & state))
aacedf26 2435 goto unlock;
1da177e4 2436
fbd705a0
PZ
2437 trace_sched_waking(p);
2438
d1ccc66d
IM
2439 /* We're going to change ->state: */
2440 success = 1;
1da177e4 2441 cpu = task_cpu(p);
1da177e4 2442
135e8c92
BS
2443 /*
2444 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2445 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2446 * in smp_cond_load_acquire() below.
2447 *
3d85b270
AP
2448 * sched_ttwu_pending() try_to_wake_up()
2449 * STORE p->on_rq = 1 LOAD p->state
2450 * UNLOCK rq->lock
2451 *
2452 * __schedule() (switch to task 'p')
2453 * LOCK rq->lock smp_rmb();
2454 * smp_mb__after_spinlock();
2455 * UNLOCK rq->lock
135e8c92
BS
2456 *
2457 * [task p]
3d85b270 2458 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2459 *
3d85b270
AP
2460 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2461 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2462 */
2463 smp_rmb();
c05fbafb 2464 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2465 goto unlock;
1da177e4 2466
1da177e4 2467#ifdef CONFIG_SMP
ecf7d01c
PZ
2468 /*
2469 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2470 * possible to, falsely, observe p->on_cpu == 0.
2471 *
2472 * One must be running (->on_cpu == 1) in order to remove oneself
2473 * from the runqueue.
2474 *
3d85b270
AP
2475 * __schedule() (switch to task 'p') try_to_wake_up()
2476 * STORE p->on_cpu = 1 LOAD p->on_rq
2477 * UNLOCK rq->lock
2478 *
2479 * __schedule() (put 'p' to sleep)
2480 * LOCK rq->lock smp_rmb();
2481 * smp_mb__after_spinlock();
2482 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2483 *
3d85b270
AP
2484 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2485 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2486 */
2487 smp_rmb();
2488
e9c84311 2489 /*
d1ccc66d 2490 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2491 * this task as prev, wait until its done referencing the task.
b75a2253 2492 *
31cb1bc0 2493 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2494 *
2495 * This ensures that tasks getting woken will be fully ordered against
2496 * their previous state and preserve Program Order.
0970d299 2497 */
1f03e8d2 2498 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2499
a8e4f2ea 2500 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2501 p->state = TASK_WAKING;
e7693a36 2502
e33a9bba 2503 if (p->in_iowait) {
c96f5471 2504 delayacct_blkio_end(p);
e33a9bba
TH
2505 atomic_dec(&task_rq(p)->nr_iowait);
2506 }
2507
ac66f547 2508 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2509 if (task_cpu(p) != cpu) {
2510 wake_flags |= WF_MIGRATED;
eb414681 2511 psi_ttwu_dequeue(p);
e4a52bcb 2512 set_task_cpu(p, cpu);
f339b9dc 2513 }
e33a9bba
TH
2514
2515#else /* CONFIG_SMP */
2516
2517 if (p->in_iowait) {
c96f5471 2518 delayacct_blkio_end(p);
e33a9bba
TH
2519 atomic_dec(&task_rq(p)->nr_iowait);
2520 }
2521
1da177e4 2522#endif /* CONFIG_SMP */
1da177e4 2523
b5179ac7 2524 ttwu_queue(p, cpu, wake_flags);
aacedf26 2525unlock:
013fdb80 2526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2527out:
2528 if (success)
2529 ttwu_stat(p, cpu, wake_flags);
e3d85487 2530 preempt_enable();
1da177e4
LT
2531
2532 return success;
2533}
2534
50fa610a
DH
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2540 * processes.
2541 *
2542 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2543 *
7696f991 2544 * This function executes a full memory barrier before accessing the task state.
50fa610a 2545 */
7ad5b3a5 2546int wake_up_process(struct task_struct *p)
1da177e4 2547{
9067ac85 2548 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2549}
1da177e4
LT
2550EXPORT_SYMBOL(wake_up_process);
2551
7ad5b3a5 2552int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2553{
2554 return try_to_wake_up(p, state, 0);
2555}
2556
1da177e4
LT
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
dd41f596
IM
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
5e1576ed 2563static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2564{
fd2f4419
PZ
2565 p->on_rq = 0;
2566
2567 p->se.on_rq = 0;
dd41f596
IM
2568 p->se.exec_start = 0;
2569 p->se.sum_exec_runtime = 0;
f6cf891c 2570 p->se.prev_sum_exec_runtime = 0;
6c594c21 2571 p->se.nr_migrations = 0;
da7a735e 2572 p->se.vruntime = 0;
fd2f4419 2573 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2574
ad936d86
BP
2575#ifdef CONFIG_FAIR_GROUP_SCHED
2576 p->se.cfs_rq = NULL;
2577#endif
2578
6cfb0d5d 2579#ifdef CONFIG_SCHEDSTATS
cb251765 2580 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2581 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2582#endif
476d139c 2583
aab03e05 2584 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2585 init_dl_task_timer(&p->dl);
209a0cbd 2586 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2587 __dl_clear_params(p);
aab03e05 2588
fa717060 2589 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2590 p->rt.timeout = 0;
2591 p->rt.time_slice = sched_rr_timeslice;
2592 p->rt.on_rq = 0;
2593 p->rt.on_list = 0;
476d139c 2594
e107be36
AK
2595#ifdef CONFIG_PREEMPT_NOTIFIERS
2596 INIT_HLIST_HEAD(&p->preempt_notifiers);
2597#endif
cbee9f88 2598
5e1f0f09
MG
2599#ifdef CONFIG_COMPACTION
2600 p->capture_control = NULL;
2601#endif
13784475 2602 init_numa_balancing(clone_flags, p);
dd41f596
IM
2603}
2604
2a595721
SD
2605DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2606
1a687c2e 2607#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2608
1a687c2e
MG
2609void set_numabalancing_state(bool enabled)
2610{
2611 if (enabled)
2a595721 2612 static_branch_enable(&sched_numa_balancing);
1a687c2e 2613 else
2a595721 2614 static_branch_disable(&sched_numa_balancing);
1a687c2e 2615}
54a43d54
AK
2616
2617#ifdef CONFIG_PROC_SYSCTL
2618int sysctl_numa_balancing(struct ctl_table *table, int write,
2619 void __user *buffer, size_t *lenp, loff_t *ppos)
2620{
2621 struct ctl_table t;
2622 int err;
2a595721 2623 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2624
2625 if (write && !capable(CAP_SYS_ADMIN))
2626 return -EPERM;
2627
2628 t = *table;
2629 t.data = &state;
2630 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2631 if (err < 0)
2632 return err;
2633 if (write)
2634 set_numabalancing_state(state);
2635 return err;
2636}
2637#endif
2638#endif
dd41f596 2639
4698f88c
JP
2640#ifdef CONFIG_SCHEDSTATS
2641
cb251765 2642DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2643static bool __initdata __sched_schedstats = false;
cb251765 2644
cb251765
MG
2645static void set_schedstats(bool enabled)
2646{
2647 if (enabled)
2648 static_branch_enable(&sched_schedstats);
2649 else
2650 static_branch_disable(&sched_schedstats);
2651}
2652
2653void force_schedstat_enabled(void)
2654{
2655 if (!schedstat_enabled()) {
2656 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2657 static_branch_enable(&sched_schedstats);
2658 }
2659}
2660
2661static int __init setup_schedstats(char *str)
2662{
2663 int ret = 0;
2664 if (!str)
2665 goto out;
2666
4698f88c
JP
2667 /*
2668 * This code is called before jump labels have been set up, so we can't
2669 * change the static branch directly just yet. Instead set a temporary
2670 * variable so init_schedstats() can do it later.
2671 */
cb251765 2672 if (!strcmp(str, "enable")) {
4698f88c 2673 __sched_schedstats = true;
cb251765
MG
2674 ret = 1;
2675 } else if (!strcmp(str, "disable")) {
4698f88c 2676 __sched_schedstats = false;
cb251765
MG
2677 ret = 1;
2678 }
2679out:
2680 if (!ret)
2681 pr_warn("Unable to parse schedstats=\n");
2682
2683 return ret;
2684}
2685__setup("schedstats=", setup_schedstats);
2686
4698f88c
JP
2687static void __init init_schedstats(void)
2688{
2689 set_schedstats(__sched_schedstats);
2690}
2691
cb251765
MG
2692#ifdef CONFIG_PROC_SYSCTL
2693int sysctl_schedstats(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *lenp, loff_t *ppos)
2695{
2696 struct ctl_table t;
2697 int err;
2698 int state = static_branch_likely(&sched_schedstats);
2699
2700 if (write && !capable(CAP_SYS_ADMIN))
2701 return -EPERM;
2702
2703 t = *table;
2704 t.data = &state;
2705 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2706 if (err < 0)
2707 return err;
2708 if (write)
2709 set_schedstats(state);
2710 return err;
2711}
4698f88c
JP
2712#endif /* CONFIG_PROC_SYSCTL */
2713#else /* !CONFIG_SCHEDSTATS */
2714static inline void init_schedstats(void) {}
2715#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2716
2717/*
2718 * fork()/clone()-time setup:
2719 */
aab03e05 2720int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2721{
0122ec5b 2722 unsigned long flags;
dd41f596 2723
5e1576ed 2724 __sched_fork(clone_flags, p);
06b83b5f 2725 /*
7dc603c9 2726 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2727 * nobody will actually run it, and a signal or other external
2728 * event cannot wake it up and insert it on the runqueue either.
2729 */
7dc603c9 2730 p->state = TASK_NEW;
dd41f596 2731
c350a04e
MG
2732 /*
2733 * Make sure we do not leak PI boosting priority to the child.
2734 */
2735 p->prio = current->normal_prio;
2736
e8f14172
PB
2737 uclamp_fork(p);
2738
b9dc29e7
MG
2739 /*
2740 * Revert to default priority/policy on fork if requested.
2741 */
2742 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2743 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2744 p->policy = SCHED_NORMAL;
6c697bdf 2745 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2746 p->rt_priority = 0;
2747 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2748 p->static_prio = NICE_TO_PRIO(0);
2749
2750 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2751 set_load_weight(p, false);
6c697bdf 2752
b9dc29e7
MG
2753 /*
2754 * We don't need the reset flag anymore after the fork. It has
2755 * fulfilled its duty:
2756 */
2757 p->sched_reset_on_fork = 0;
2758 }
ca94c442 2759
af0fffd9 2760 if (dl_prio(p->prio))
aab03e05 2761 return -EAGAIN;
af0fffd9 2762 else if (rt_prio(p->prio))
aab03e05 2763 p->sched_class = &rt_sched_class;
af0fffd9 2764 else
2ddbf952 2765 p->sched_class = &fair_sched_class;
b29739f9 2766
7dc603c9 2767 init_entity_runnable_average(&p->se);
cd29fe6f 2768
86951599
PZ
2769 /*
2770 * The child is not yet in the pid-hash so no cgroup attach races,
2771 * and the cgroup is pinned to this child due to cgroup_fork()
2772 * is ran before sched_fork().
2773 *
2774 * Silence PROVE_RCU.
2775 */
0122ec5b 2776 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2777 /*
d1ccc66d 2778 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2779 * so use __set_task_cpu().
2780 */
af0fffd9 2781 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2782 if (p->sched_class->task_fork)
2783 p->sched_class->task_fork(p);
0122ec5b 2784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2785
f6db8347 2786#ifdef CONFIG_SCHED_INFO
dd41f596 2787 if (likely(sched_info_on()))
52f17b6c 2788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2789#endif
3ca7a440
PZ
2790#if defined(CONFIG_SMP)
2791 p->on_cpu = 0;
4866cde0 2792#endif
01028747 2793 init_task_preempt_count(p);
806c09a7 2794#ifdef CONFIG_SMP
917b627d 2795 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2796 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2797#endif
aab03e05 2798 return 0;
1da177e4
LT
2799}
2800
332ac17e
DF
2801unsigned long to_ratio(u64 period, u64 runtime)
2802{
2803 if (runtime == RUNTIME_INF)
c52f14d3 2804 return BW_UNIT;
332ac17e
DF
2805
2806 /*
2807 * Doing this here saves a lot of checks in all
2808 * the calling paths, and returning zero seems
2809 * safe for them anyway.
2810 */
2811 if (period == 0)
2812 return 0;
2813
c52f14d3 2814 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2815}
2816
1da177e4
LT
2817/*
2818 * wake_up_new_task - wake up a newly created task for the first time.
2819 *
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2823 */
3e51e3ed 2824void wake_up_new_task(struct task_struct *p)
1da177e4 2825{
eb580751 2826 struct rq_flags rf;
dd41f596 2827 struct rq *rq;
fabf318e 2828
eb580751 2829 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2830 p->state = TASK_RUNNING;
fabf318e
PZ
2831#ifdef CONFIG_SMP
2832 /*
2833 * Fork balancing, do it here and not earlier because:
3bd37062 2834 * - cpus_ptr can change in the fork path
d1ccc66d 2835 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2836 *
2837 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2838 * as we're not fully set-up yet.
fabf318e 2839 */
32e839dd 2840 p->recent_used_cpu = task_cpu(p);
e210bffd 2841 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2842#endif
b7fa30c9 2843 rq = __task_rq_lock(p, &rf);
4126bad6 2844 update_rq_clock(rq);
d0fe0b9c 2845 post_init_entity_util_avg(p);
0017d735 2846
7a57f32a 2847 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2848 trace_sched_wakeup_new(p);
a7558e01 2849 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2850#ifdef CONFIG_SMP
0aaafaab
PZ
2851 if (p->sched_class->task_woken) {
2852 /*
2853 * Nothing relies on rq->lock after this, so its fine to
2854 * drop it.
2855 */
d8ac8971 2856 rq_unpin_lock(rq, &rf);
efbbd05a 2857 p->sched_class->task_woken(rq, p);
d8ac8971 2858 rq_repin_lock(rq, &rf);
0aaafaab 2859 }
9a897c5a 2860#endif
eb580751 2861 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2862}
2863
e107be36
AK
2864#ifdef CONFIG_PREEMPT_NOTIFIERS
2865
b7203428 2866static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2867
2ecd9d29
PZ
2868void preempt_notifier_inc(void)
2869{
b7203428 2870 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2871}
2872EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2873
2874void preempt_notifier_dec(void)
2875{
b7203428 2876 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2877}
2878EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2879
e107be36 2880/**
80dd99b3 2881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2882 * @notifier: notifier struct to register
e107be36
AK
2883 */
2884void preempt_notifier_register(struct preempt_notifier *notifier)
2885{
b7203428 2886 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2887 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2888
e107be36
AK
2889 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2890}
2891EXPORT_SYMBOL_GPL(preempt_notifier_register);
2892
2893/**
2894 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2895 * @notifier: notifier struct to unregister
e107be36 2896 *
d84525a8 2897 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2898 */
2899void preempt_notifier_unregister(struct preempt_notifier *notifier)
2900{
2901 hlist_del(&notifier->link);
2902}
2903EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2904
1cde2930 2905static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2906{
2907 struct preempt_notifier *notifier;
e107be36 2908
b67bfe0d 2909 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2910 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2911}
2912
1cde2930
PZ
2913static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2914{
b7203428 2915 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2916 __fire_sched_in_preempt_notifiers(curr);
2917}
2918
e107be36 2919static void
1cde2930
PZ
2920__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2921 struct task_struct *next)
e107be36
AK
2922{
2923 struct preempt_notifier *notifier;
e107be36 2924
b67bfe0d 2925 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2926 notifier->ops->sched_out(notifier, next);
2927}
2928
1cde2930
PZ
2929static __always_inline void
2930fire_sched_out_preempt_notifiers(struct task_struct *curr,
2931 struct task_struct *next)
2932{
b7203428 2933 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2934 __fire_sched_out_preempt_notifiers(curr, next);
2935}
2936
6d6bc0ad 2937#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2938
1cde2930 2939static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2940{
2941}
2942
1cde2930 2943static inline void
e107be36
AK
2944fire_sched_out_preempt_notifiers(struct task_struct *curr,
2945 struct task_struct *next)
2946{
2947}
2948
6d6bc0ad 2949#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2950
31cb1bc0 2951static inline void prepare_task(struct task_struct *next)
2952{
2953#ifdef CONFIG_SMP
2954 /*
2955 * Claim the task as running, we do this before switching to it
2956 * such that any running task will have this set.
2957 */
2958 next->on_cpu = 1;
2959#endif
2960}
2961
2962static inline void finish_task(struct task_struct *prev)
2963{
2964#ifdef CONFIG_SMP
2965 /*
2966 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2967 * We must ensure this doesn't happen until the switch is completely
2968 * finished.
2969 *
2970 * In particular, the load of prev->state in finish_task_switch() must
2971 * happen before this.
2972 *
2973 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2974 */
2975 smp_store_release(&prev->on_cpu, 0);
2976#endif
2977}
2978
269d5992
PZ
2979static inline void
2980prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2981{
269d5992
PZ
2982 /*
2983 * Since the runqueue lock will be released by the next
2984 * task (which is an invalid locking op but in the case
2985 * of the scheduler it's an obvious special-case), so we
2986 * do an early lockdep release here:
2987 */
2988 rq_unpin_lock(rq, rf);
2989 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2990#ifdef CONFIG_DEBUG_SPINLOCK
2991 /* this is a valid case when another task releases the spinlock */
269d5992 2992 rq->lock.owner = next;
31cb1bc0 2993#endif
269d5992
PZ
2994}
2995
2996static inline void finish_lock_switch(struct rq *rq)
2997{
31cb1bc0 2998 /*
2999 * If we are tracking spinlock dependencies then we have to
3000 * fix up the runqueue lock - which gets 'carried over' from
3001 * prev into current:
3002 */
3003 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3004 raw_spin_unlock_irq(&rq->lock);
3005}
3006
325ea10c
IM
3007/*
3008 * NOP if the arch has not defined these:
3009 */
3010
3011#ifndef prepare_arch_switch
3012# define prepare_arch_switch(next) do { } while (0)
3013#endif
3014
3015#ifndef finish_arch_post_lock_switch
3016# define finish_arch_post_lock_switch() do { } while (0)
3017#endif
3018
4866cde0
NP
3019/**
3020 * prepare_task_switch - prepare to switch tasks
3021 * @rq: the runqueue preparing to switch
421cee29 3022 * @prev: the current task that is being switched out
4866cde0
NP
3023 * @next: the task we are going to switch to.
3024 *
3025 * This is called with the rq lock held and interrupts off. It must
3026 * be paired with a subsequent finish_task_switch after the context
3027 * switch.
3028 *
3029 * prepare_task_switch sets up locking and calls architecture specific
3030 * hooks.
3031 */
e107be36
AK
3032static inline void
3033prepare_task_switch(struct rq *rq, struct task_struct *prev,
3034 struct task_struct *next)
4866cde0 3035{
0ed557aa 3036 kcov_prepare_switch(prev);
43148951 3037 sched_info_switch(rq, prev, next);
fe4b04fa 3038 perf_event_task_sched_out(prev, next);
d7822b1e 3039 rseq_preempt(prev);
e107be36 3040 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3041 prepare_task(next);
4866cde0
NP
3042 prepare_arch_switch(next);
3043}
3044
1da177e4
LT
3045/**
3046 * finish_task_switch - clean up after a task-switch
3047 * @prev: the thread we just switched away from.
3048 *
4866cde0
NP
3049 * finish_task_switch must be called after the context switch, paired
3050 * with a prepare_task_switch call before the context switch.
3051 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3052 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3053 *
3054 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3055 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3056 * with the lock held can cause deadlocks; see schedule() for
3057 * details.)
dfa50b60
ON
3058 *
3059 * The context switch have flipped the stack from under us and restored the
3060 * local variables which were saved when this task called schedule() in the
3061 * past. prev == current is still correct but we need to recalculate this_rq
3062 * because prev may have moved to another CPU.
1da177e4 3063 */
dfa50b60 3064static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3065 __releases(rq->lock)
3066{
dfa50b60 3067 struct rq *rq = this_rq();
1da177e4 3068 struct mm_struct *mm = rq->prev_mm;
55a101f8 3069 long prev_state;
1da177e4 3070
609ca066
PZ
3071 /*
3072 * The previous task will have left us with a preempt_count of 2
3073 * because it left us after:
3074 *
3075 * schedule()
3076 * preempt_disable(); // 1
3077 * __schedule()
3078 * raw_spin_lock_irq(&rq->lock) // 2
3079 *
3080 * Also, see FORK_PREEMPT_COUNT.
3081 */
e2bf1c4b
PZ
3082 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3083 "corrupted preempt_count: %s/%d/0x%x\n",
3084 current->comm, current->pid, preempt_count()))
3085 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3086
1da177e4
LT
3087 rq->prev_mm = NULL;
3088
3089 /*
3090 * A task struct has one reference for the use as "current".
c394cc9f 3091 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3092 * schedule one last time. The schedule call will never return, and
3093 * the scheduled task must drop that reference.
95913d97
PZ
3094 *
3095 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3096 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3097 * running on another CPU and we could rave with its RUNNING -> DEAD
3098 * transition, resulting in a double drop.
1da177e4 3099 */
55a101f8 3100 prev_state = prev->state;
bf9fae9f 3101 vtime_task_switch(prev);
a8d757ef 3102 perf_event_task_sched_in(prev, current);
31cb1bc0 3103 finish_task(prev);
3104 finish_lock_switch(rq);
01f23e16 3105 finish_arch_post_lock_switch();
0ed557aa 3106 kcov_finish_switch(current);
e8fa1362 3107
e107be36 3108 fire_sched_in_preempt_notifiers(current);
306e0604 3109 /*
70216e18
MD
3110 * When switching through a kernel thread, the loop in
3111 * membarrier_{private,global}_expedited() may have observed that
3112 * kernel thread and not issued an IPI. It is therefore possible to
3113 * schedule between user->kernel->user threads without passing though
3114 * switch_mm(). Membarrier requires a barrier after storing to
3115 * rq->curr, before returning to userspace, so provide them here:
3116 *
3117 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3118 * provided by mmdrop(),
3119 * - a sync_core for SYNC_CORE.
306e0604 3120 */
70216e18
MD
3121 if (mm) {
3122 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3123 mmdrop(mm);
70216e18 3124 }
1cef1150
PZ
3125 if (unlikely(prev_state == TASK_DEAD)) {
3126 if (prev->sched_class->task_dead)
3127 prev->sched_class->task_dead(prev);
68f24b08 3128
1cef1150
PZ
3129 /*
3130 * Remove function-return probe instances associated with this
3131 * task and put them back on the free list.
3132 */
3133 kprobe_flush_task(prev);
3134
3135 /* Task is done with its stack. */
3136 put_task_stack(prev);
3137
3138 put_task_struct(prev);
c6fd91f0 3139 }
99e5ada9 3140
de734f89 3141 tick_nohz_task_switch();
dfa50b60 3142 return rq;
1da177e4
LT
3143}
3144
3f029d3c
GH
3145#ifdef CONFIG_SMP
3146
3f029d3c 3147/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3148static void __balance_callback(struct rq *rq)
3f029d3c 3149{
e3fca9e7
PZ
3150 struct callback_head *head, *next;
3151 void (*func)(struct rq *rq);
3152 unsigned long flags;
3f029d3c 3153
e3fca9e7
PZ
3154 raw_spin_lock_irqsave(&rq->lock, flags);
3155 head = rq->balance_callback;
3156 rq->balance_callback = NULL;
3157 while (head) {
3158 func = (void (*)(struct rq *))head->func;
3159 next = head->next;
3160 head->next = NULL;
3161 head = next;
3f029d3c 3162
e3fca9e7 3163 func(rq);
3f029d3c 3164 }
e3fca9e7
PZ
3165 raw_spin_unlock_irqrestore(&rq->lock, flags);
3166}
3167
3168static inline void balance_callback(struct rq *rq)
3169{
3170 if (unlikely(rq->balance_callback))
3171 __balance_callback(rq);
3f029d3c
GH
3172}
3173
3174#else
da19ab51 3175
e3fca9e7 3176static inline void balance_callback(struct rq *rq)
3f029d3c 3177{
1da177e4
LT
3178}
3179
3f029d3c
GH
3180#endif
3181
1da177e4
LT
3182/**
3183 * schedule_tail - first thing a freshly forked thread must call.
3184 * @prev: the thread we just switched away from.
3185 */
722a9f92 3186asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3187 __releases(rq->lock)
3188{
1a43a14a 3189 struct rq *rq;
da19ab51 3190
609ca066
PZ
3191 /*
3192 * New tasks start with FORK_PREEMPT_COUNT, see there and
3193 * finish_task_switch() for details.
3194 *
3195 * finish_task_switch() will drop rq->lock() and lower preempt_count
3196 * and the preempt_enable() will end up enabling preemption (on
3197 * PREEMPT_COUNT kernels).
3198 */
3199
dfa50b60 3200 rq = finish_task_switch(prev);
e3fca9e7 3201 balance_callback(rq);
1a43a14a 3202 preempt_enable();
70b97a7f 3203
1da177e4 3204 if (current->set_child_tid)
b488893a 3205 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3206
3207 calculate_sigpending();
1da177e4
LT
3208}
3209
3210/*
dfa50b60 3211 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3212 */
04936948 3213static __always_inline struct rq *
70b97a7f 3214context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3215 struct task_struct *next, struct rq_flags *rf)
1da177e4 3216{
dd41f596 3217 struct mm_struct *mm, *oldmm;
1da177e4 3218
e107be36 3219 prepare_task_switch(rq, prev, next);
fe4b04fa 3220
dd41f596
IM
3221 mm = next->mm;
3222 oldmm = prev->active_mm;
9226d125
ZA
3223 /*
3224 * For paravirt, this is coupled with an exit in switch_to to
3225 * combine the page table reload and the switch backend into
3226 * one hypercall.
3227 */
224101ed 3228 arch_start_context_switch(prev);
9226d125 3229
306e0604
MD
3230 /*
3231 * If mm is non-NULL, we pass through switch_mm(). If mm is
3232 * NULL, we will pass through mmdrop() in finish_task_switch().
3233 * Both of these contain the full memory barrier required by
3234 * membarrier after storing to rq->curr, before returning to
3235 * user-space.
3236 */
31915ab4 3237 if (!mm) {
1da177e4 3238 next->active_mm = oldmm;
f1f10076 3239 mmgrab(oldmm);
1da177e4
LT
3240 enter_lazy_tlb(oldmm, next);
3241 } else
f98db601 3242 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 3243
31915ab4 3244 if (!prev->mm) {
1da177e4 3245 prev->active_mm = NULL;
1da177e4
LT
3246 rq->prev_mm = oldmm;
3247 }
92509b73 3248
cb42c9a3 3249 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3250
269d5992 3251 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3252
3253 /* Here we just switch the register state and the stack. */
3254 switch_to(prev, next, prev);
dd41f596 3255 barrier();
dfa50b60
ON
3256
3257 return finish_task_switch(prev);
1da177e4
LT
3258}
3259
3260/*
1c3e8264 3261 * nr_running and nr_context_switches:
1da177e4
LT
3262 *
3263 * externally visible scheduler statistics: current number of runnable
1c3e8264 3264 * threads, total number of context switches performed since bootup.
1da177e4
LT
3265 */
3266unsigned long nr_running(void)
3267{
3268 unsigned long i, sum = 0;
3269
3270 for_each_online_cpu(i)
3271 sum += cpu_rq(i)->nr_running;
3272
3273 return sum;
f711f609 3274}
1da177e4 3275
2ee507c4 3276/*
d1ccc66d 3277 * Check if only the current task is running on the CPU.
00cc1633
DD
3278 *
3279 * Caution: this function does not check that the caller has disabled
3280 * preemption, thus the result might have a time-of-check-to-time-of-use
3281 * race. The caller is responsible to use it correctly, for example:
3282 *
dfcb245e 3283 * - from a non-preemptible section (of course)
00cc1633
DD
3284 *
3285 * - from a thread that is bound to a single CPU
3286 *
3287 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3288 */
3289bool single_task_running(void)
3290{
00cc1633 3291 return raw_rq()->nr_running == 1;
2ee507c4
TC
3292}
3293EXPORT_SYMBOL(single_task_running);
3294
1da177e4 3295unsigned long long nr_context_switches(void)
46cb4b7c 3296{
cc94abfc
SR
3297 int i;
3298 unsigned long long sum = 0;
46cb4b7c 3299
0a945022 3300 for_each_possible_cpu(i)
1da177e4 3301 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3302
1da177e4
LT
3303 return sum;
3304}
483b4ee6 3305
145d952a
DL
3306/*
3307 * Consumers of these two interfaces, like for example the cpuidle menu
3308 * governor, are using nonsensical data. Preferring shallow idle state selection
3309 * for a CPU that has IO-wait which might not even end up running the task when
3310 * it does become runnable.
3311 */
3312
3313unsigned long nr_iowait_cpu(int cpu)
3314{
3315 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3316}
3317
e33a9bba
TH
3318/*
3319 * IO-wait accounting, and how its mostly bollocks (on SMP).
3320 *
3321 * The idea behind IO-wait account is to account the idle time that we could
3322 * have spend running if it were not for IO. That is, if we were to improve the
3323 * storage performance, we'd have a proportional reduction in IO-wait time.
3324 *
3325 * This all works nicely on UP, where, when a task blocks on IO, we account
3326 * idle time as IO-wait, because if the storage were faster, it could've been
3327 * running and we'd not be idle.
3328 *
3329 * This has been extended to SMP, by doing the same for each CPU. This however
3330 * is broken.
3331 *
3332 * Imagine for instance the case where two tasks block on one CPU, only the one
3333 * CPU will have IO-wait accounted, while the other has regular idle. Even
3334 * though, if the storage were faster, both could've ran at the same time,
3335 * utilising both CPUs.
3336 *
3337 * This means, that when looking globally, the current IO-wait accounting on
3338 * SMP is a lower bound, by reason of under accounting.
3339 *
3340 * Worse, since the numbers are provided per CPU, they are sometimes
3341 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3342 * associated with any one particular CPU, it can wake to another CPU than it
3343 * blocked on. This means the per CPU IO-wait number is meaningless.
3344 *
3345 * Task CPU affinities can make all that even more 'interesting'.
3346 */
3347
1da177e4
LT
3348unsigned long nr_iowait(void)
3349{
3350 unsigned long i, sum = 0;
483b4ee6 3351
0a945022 3352 for_each_possible_cpu(i)
145d952a 3353 sum += nr_iowait_cpu(i);
46cb4b7c 3354
1da177e4
LT
3355 return sum;
3356}
483b4ee6 3357
dd41f596 3358#ifdef CONFIG_SMP
8a0be9ef 3359
46cb4b7c 3360/*
38022906
PZ
3361 * sched_exec - execve() is a valuable balancing opportunity, because at
3362 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3363 */
38022906 3364void sched_exec(void)
46cb4b7c 3365{
38022906 3366 struct task_struct *p = current;
1da177e4 3367 unsigned long flags;
0017d735 3368 int dest_cpu;
46cb4b7c 3369
8f42ced9 3370 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3371 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3372 if (dest_cpu == smp_processor_id())
3373 goto unlock;
38022906 3374
8f42ced9 3375 if (likely(cpu_active(dest_cpu))) {
969c7921 3376 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3377
8f42ced9
PZ
3378 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3379 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3380 return;
3381 }
0017d735 3382unlock:
8f42ced9 3383 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3384}
dd41f596 3385
1da177e4
LT
3386#endif
3387
1da177e4 3388DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3389DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3390
3391EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3392EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3393
6075620b
GG
3394/*
3395 * The function fair_sched_class.update_curr accesses the struct curr
3396 * and its field curr->exec_start; when called from task_sched_runtime(),
3397 * we observe a high rate of cache misses in practice.
3398 * Prefetching this data results in improved performance.
3399 */
3400static inline void prefetch_curr_exec_start(struct task_struct *p)
3401{
3402#ifdef CONFIG_FAIR_GROUP_SCHED
3403 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3404#else
3405 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3406#endif
3407 prefetch(curr);
3408 prefetch(&curr->exec_start);
3409}
3410
c5f8d995
HS
3411/*
3412 * Return accounted runtime for the task.
3413 * In case the task is currently running, return the runtime plus current's
3414 * pending runtime that have not been accounted yet.
3415 */
3416unsigned long long task_sched_runtime(struct task_struct *p)
3417{
eb580751 3418 struct rq_flags rf;
c5f8d995 3419 struct rq *rq;
6e998916 3420 u64 ns;
c5f8d995 3421
911b2898
PZ
3422#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3423 /*
97fb7a0a 3424 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3425 * So we have a optimization chance when the task's delta_exec is 0.
3426 * Reading ->on_cpu is racy, but this is ok.
3427 *
d1ccc66d
IM
3428 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3429 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3430 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3431 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3432 * been accounted, so we're correct here as well.
911b2898 3433 */
da0c1e65 3434 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3435 return p->se.sum_exec_runtime;
3436#endif
3437
eb580751 3438 rq = task_rq_lock(p, &rf);
6e998916
SG
3439 /*
3440 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3441 * project cycles that may never be accounted to this
3442 * thread, breaking clock_gettime().
3443 */
3444 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3445 prefetch_curr_exec_start(p);
6e998916
SG
3446 update_rq_clock(rq);
3447 p->sched_class->update_curr(rq);
3448 }
3449 ns = p->se.sum_exec_runtime;
eb580751 3450 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3451
3452 return ns;
3453}
48f24c4d 3454
7835b98b
CL
3455/*
3456 * This function gets called by the timer code, with HZ frequency.
3457 * We call it with interrupts disabled.
7835b98b
CL
3458 */
3459void scheduler_tick(void)
3460{
7835b98b
CL
3461 int cpu = smp_processor_id();
3462 struct rq *rq = cpu_rq(cpu);
dd41f596 3463 struct task_struct *curr = rq->curr;
8a8c69c3 3464 struct rq_flags rf;
3e51f33f
PZ
3465
3466 sched_clock_tick();
dd41f596 3467
8a8c69c3
PZ
3468 rq_lock(rq, &rf);
3469
3e51f33f 3470 update_rq_clock(rq);
fa85ae24 3471 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3472 calc_global_load_tick(rq);
eb414681 3473 psi_task_tick(rq);
8a8c69c3
PZ
3474
3475 rq_unlock(rq, &rf);
7835b98b 3476
e9d2b064 3477 perf_event_task_tick();
e220d2dc 3478
e418e1c2 3479#ifdef CONFIG_SMP
6eb57e0d 3480 rq->idle_balance = idle_cpu(cpu);
7caff66f 3481 trigger_load_balance(rq);
e418e1c2 3482#endif
1da177e4
LT
3483}
3484
265f22a9 3485#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3486
3487struct tick_work {
3488 int cpu;
84ec3a07 3489 atomic_t state;
d84b3131
FW
3490 struct delayed_work work;
3491};
84ec3a07
PM
3492/* Values for ->state, see diagram below. */
3493#define TICK_SCHED_REMOTE_OFFLINE 0
3494#define TICK_SCHED_REMOTE_OFFLINING 1
3495#define TICK_SCHED_REMOTE_RUNNING 2
3496
3497/*
3498 * State diagram for ->state:
3499 *
3500 *
3501 * TICK_SCHED_REMOTE_OFFLINE
3502 * | ^
3503 * | |
3504 * | | sched_tick_remote()
3505 * | |
3506 * | |
3507 * +--TICK_SCHED_REMOTE_OFFLINING
3508 * | ^
3509 * | |
3510 * sched_tick_start() | | sched_tick_stop()
3511 * | |
3512 * V |
3513 * TICK_SCHED_REMOTE_RUNNING
3514 *
3515 *
3516 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3517 * and sched_tick_start() are happy to leave the state in RUNNING.
3518 */
d84b3131
FW
3519
3520static struct tick_work __percpu *tick_work_cpu;
3521
3522static void sched_tick_remote(struct work_struct *work)
3523{
3524 struct delayed_work *dwork = to_delayed_work(work);
3525 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3526 int cpu = twork->cpu;
3527 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3528 struct task_struct *curr;
d84b3131 3529 struct rq_flags rf;
d9c0ffca 3530 u64 delta;
84ec3a07 3531 int os;
d84b3131
FW
3532
3533 /*
3534 * Handle the tick only if it appears the remote CPU is running in full
3535 * dynticks mode. The check is racy by nature, but missing a tick or
3536 * having one too much is no big deal because the scheduler tick updates
3537 * statistics and checks timeslices in a time-independent way, regardless
3538 * of when exactly it is running.
3539 */
d9c0ffca
FW
3540 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3541 goto out_requeue;
d84b3131 3542
d9c0ffca
FW
3543 rq_lock_irq(rq, &rf);
3544 curr = rq->curr;
84ec3a07 3545 if (is_idle_task(curr) || cpu_is_offline(cpu))
d9c0ffca 3546 goto out_unlock;
d84b3131 3547
d9c0ffca
FW
3548 update_rq_clock(rq);
3549 delta = rq_clock_task(rq) - curr->se.exec_start;
3550
3551 /*
3552 * Make sure the next tick runs within a reasonable
3553 * amount of time.
3554 */
3555 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3556 curr->sched_class->task_tick(rq, curr, 0);
3557
3558out_unlock:
3559 rq_unlock_irq(rq, &rf);
d84b3131 3560
d9c0ffca 3561out_requeue:
d84b3131
FW
3562 /*
3563 * Run the remote tick once per second (1Hz). This arbitrary
3564 * frequency is large enough to avoid overload but short enough
84ec3a07
PM
3565 * to keep scheduler internal stats reasonably up to date. But
3566 * first update state to reflect hotplug activity if required.
d84b3131 3567 */
84ec3a07
PM
3568 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3569 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3570 if (os == TICK_SCHED_REMOTE_RUNNING)
3571 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3572}
3573
3574static void sched_tick_start(int cpu)
3575{
84ec3a07 3576 int os;
d84b3131
FW
3577 struct tick_work *twork;
3578
3579 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3580 return;
3581
3582 WARN_ON_ONCE(!tick_work_cpu);
3583
3584 twork = per_cpu_ptr(tick_work_cpu, cpu);
84ec3a07
PM
3585 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3586 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3587 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3588 twork->cpu = cpu;
3589 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3590 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3591 }
d84b3131
FW
3592}
3593
3594#ifdef CONFIG_HOTPLUG_CPU
3595static void sched_tick_stop(int cpu)
3596{
3597 struct tick_work *twork;
84ec3a07 3598 int os;
d84b3131
FW
3599
3600 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3601 return;
3602
3603 WARN_ON_ONCE(!tick_work_cpu);
3604
3605 twork = per_cpu_ptr(tick_work_cpu, cpu);
84ec3a07
PM
3606 /* There cannot be competing actions, but don't rely on stop-machine. */
3607 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3608 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3609 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3610}
3611#endif /* CONFIG_HOTPLUG_CPU */
3612
3613int __init sched_tick_offload_init(void)
3614{
3615 tick_work_cpu = alloc_percpu(struct tick_work);
3616 BUG_ON(!tick_work_cpu);
d84b3131
FW
3617 return 0;
3618}
3619
3620#else /* !CONFIG_NO_HZ_FULL */
3621static inline void sched_tick_start(int cpu) { }
3622static inline void sched_tick_stop(int cpu) { }
265f22a9 3623#endif
1da177e4 3624
7e49fcce 3625#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3626 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3627/*
3628 * If the value passed in is equal to the current preempt count
3629 * then we just disabled preemption. Start timing the latency.
3630 */
3631static inline void preempt_latency_start(int val)
3632{
3633 if (preempt_count() == val) {
3634 unsigned long ip = get_lock_parent_ip();
3635#ifdef CONFIG_DEBUG_PREEMPT
3636 current->preempt_disable_ip = ip;
3637#endif
3638 trace_preempt_off(CALLER_ADDR0, ip);
3639 }
3640}
7e49fcce 3641
edafe3a5 3642void preempt_count_add(int val)
1da177e4 3643{
6cd8a4bb 3644#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3645 /*
3646 * Underflow?
3647 */
9a11b49a
IM
3648 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3649 return;
6cd8a4bb 3650#endif
bdb43806 3651 __preempt_count_add(val);
6cd8a4bb 3652#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3653 /*
3654 * Spinlock count overflowing soon?
3655 */
33859f7f
MOS
3656 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3657 PREEMPT_MASK - 10);
6cd8a4bb 3658#endif
47252cfb 3659 preempt_latency_start(val);
1da177e4 3660}
bdb43806 3661EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3662NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3663
47252cfb
SR
3664/*
3665 * If the value passed in equals to the current preempt count
3666 * then we just enabled preemption. Stop timing the latency.
3667 */
3668static inline void preempt_latency_stop(int val)
3669{
3670 if (preempt_count() == val)
3671 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3672}
3673
edafe3a5 3674void preempt_count_sub(int val)
1da177e4 3675{
6cd8a4bb 3676#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3677 /*
3678 * Underflow?
3679 */
01e3eb82 3680 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3681 return;
1da177e4
LT
3682 /*
3683 * Is the spinlock portion underflowing?
3684 */
9a11b49a
IM
3685 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3686 !(preempt_count() & PREEMPT_MASK)))
3687 return;
6cd8a4bb 3688#endif
9a11b49a 3689
47252cfb 3690 preempt_latency_stop(val);
bdb43806 3691 __preempt_count_sub(val);
1da177e4 3692}
bdb43806 3693EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3694NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3695
47252cfb
SR
3696#else
3697static inline void preempt_latency_start(int val) { }
3698static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3699#endif
3700
59ddbcb2
IM
3701static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3702{
3703#ifdef CONFIG_DEBUG_PREEMPT
3704 return p->preempt_disable_ip;
3705#else
3706 return 0;
3707#endif
3708}
3709
1da177e4 3710/*
dd41f596 3711 * Print scheduling while atomic bug:
1da177e4 3712 */
dd41f596 3713static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3714{
d1c6d149
VN
3715 /* Save this before calling printk(), since that will clobber it */
3716 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3717
664dfa65
DJ
3718 if (oops_in_progress)
3719 return;
3720
3df0fc5b
PZ
3721 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3722 prev->comm, prev->pid, preempt_count());
838225b4 3723
dd41f596 3724 debug_show_held_locks(prev);
e21f5b15 3725 print_modules();
dd41f596
IM
3726 if (irqs_disabled())
3727 print_irqtrace_events(prev);
d1c6d149
VN
3728 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3729 && in_atomic_preempt_off()) {
8f47b187 3730 pr_err("Preemption disabled at:");
d1c6d149 3731 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3732 pr_cont("\n");
3733 }
748c7201
DBO
3734 if (panic_on_warn)
3735 panic("scheduling while atomic\n");
3736
6135fc1e 3737 dump_stack();
373d4d09 3738 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3739}
1da177e4 3740
dd41f596
IM
3741/*
3742 * Various schedule()-time debugging checks and statistics:
3743 */
3744static inline void schedule_debug(struct task_struct *prev)
3745{
0d9e2632 3746#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3747 if (task_stack_end_corrupted(prev))
3748 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3749#endif
b99def8b 3750
1dc0fffc 3751 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3752 __schedule_bug(prev);
1dc0fffc
PZ
3753 preempt_count_set(PREEMPT_DISABLED);
3754 }
b3fbab05 3755 rcu_sleep_check();
dd41f596 3756
1da177e4
LT
3757 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3758
ae92882e 3759 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3760}
3761
3762/*
3763 * Pick up the highest-prio task:
3764 */
3765static inline struct task_struct *
d8ac8971 3766pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3767{
49ee5768 3768 const struct sched_class *class;
dd41f596 3769 struct task_struct *p;
1da177e4
LT
3770
3771 /*
0ba87bb2
PZ
3772 * Optimization: we know that if all tasks are in the fair class we can
3773 * call that function directly, but only if the @prev task wasn't of a
3774 * higher scheduling class, because otherwise those loose the
3775 * opportunity to pull in more work from other CPUs.
1da177e4 3776 */
0ba87bb2
PZ
3777 if (likely((prev->sched_class == &idle_sched_class ||
3778 prev->sched_class == &fair_sched_class) &&
3779 rq->nr_running == rq->cfs.h_nr_running)) {
3780
d8ac8971 3781 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3782 if (unlikely(p == RETRY_TASK))
3783 goto again;
3784
d1ccc66d 3785 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3786 if (unlikely(!p))
d8ac8971 3787 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3788
3789 return p;
1da177e4
LT
3790 }
3791
37e117c0 3792again:
34f971f6 3793 for_each_class(class) {
d8ac8971 3794 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3795 if (p) {
3796 if (unlikely(p == RETRY_TASK))
3797 goto again;
dd41f596 3798 return p;
37e117c0 3799 }
dd41f596 3800 }
34f971f6 3801
d1ccc66d
IM
3802 /* The idle class should always have a runnable task: */
3803 BUG();
dd41f596 3804}
1da177e4 3805
dd41f596 3806/*
c259e01a 3807 * __schedule() is the main scheduler function.
edde96ea
PE
3808 *
3809 * The main means of driving the scheduler and thus entering this function are:
3810 *
3811 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3812 *
3813 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3814 * paths. For example, see arch/x86/entry_64.S.
3815 *
3816 * To drive preemption between tasks, the scheduler sets the flag in timer
3817 * interrupt handler scheduler_tick().
3818 *
3819 * 3. Wakeups don't really cause entry into schedule(). They add a
3820 * task to the run-queue and that's it.
3821 *
3822 * Now, if the new task added to the run-queue preempts the current
3823 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3824 * called on the nearest possible occasion:
3825 *
3826 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3827 *
3828 * - in syscall or exception context, at the next outmost
3829 * preempt_enable(). (this might be as soon as the wake_up()'s
3830 * spin_unlock()!)
3831 *
3832 * - in IRQ context, return from interrupt-handler to
3833 * preemptible context
3834 *
3835 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3836 * then at the next:
3837 *
3838 * - cond_resched() call
3839 * - explicit schedule() call
3840 * - return from syscall or exception to user-space
3841 * - return from interrupt-handler to user-space
bfd9b2b5 3842 *
b30f0e3f 3843 * WARNING: must be called with preemption disabled!
dd41f596 3844 */
499d7955 3845static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3846{
3847 struct task_struct *prev, *next;
67ca7bde 3848 unsigned long *switch_count;
d8ac8971 3849 struct rq_flags rf;
dd41f596 3850 struct rq *rq;
31656519 3851 int cpu;
dd41f596 3852
dd41f596
IM
3853 cpu = smp_processor_id();
3854 rq = cpu_rq(cpu);
dd41f596 3855 prev = rq->curr;
dd41f596 3856
dd41f596 3857 schedule_debug(prev);
1da177e4 3858
31656519 3859 if (sched_feat(HRTICK))
f333fdc9 3860 hrtick_clear(rq);
8f4d37ec 3861
46a5d164 3862 local_irq_disable();
bcbfdd01 3863 rcu_note_context_switch(preempt);
46a5d164 3864
e0acd0a6
ON
3865 /*
3866 * Make sure that signal_pending_state()->signal_pending() below
3867 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3868 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3869 *
3870 * The membarrier system call requires a full memory barrier
3871 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3872 */
8a8c69c3 3873 rq_lock(rq, &rf);
d89e588c 3874 smp_mb__after_spinlock();
1da177e4 3875
d1ccc66d
IM
3876 /* Promote REQ to ACT */
3877 rq->clock_update_flags <<= 1;
bce4dc80 3878 update_rq_clock(rq);
9edfbfed 3879
246d86b5 3880 switch_count = &prev->nivcsw;
fc13aeba 3881 if (!preempt && prev->state) {
34ec35ad 3882 if (signal_pending_state(prev->state, prev)) {
1da177e4 3883 prev->state = TASK_RUNNING;
21aa9af0 3884 } else {
bce4dc80 3885 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3886
e33a9bba
TH
3887 if (prev->in_iowait) {
3888 atomic_inc(&rq->nr_iowait);
3889 delayacct_blkio_start();
3890 }
21aa9af0 3891 }
dd41f596 3892 switch_count = &prev->nvcsw;
1da177e4
LT
3893 }
3894
d8ac8971 3895 next = pick_next_task(rq, prev, &rf);
f26f9aff 3896 clear_tsk_need_resched(prev);
f27dde8d 3897 clear_preempt_need_resched();
1da177e4 3898
1da177e4 3899 if (likely(prev != next)) {
1da177e4
LT
3900 rq->nr_switches++;
3901 rq->curr = next;
22e4ebb9
MD
3902 /*
3903 * The membarrier system call requires each architecture
3904 * to have a full memory barrier after updating
306e0604
MD
3905 * rq->curr, before returning to user-space.
3906 *
3907 * Here are the schemes providing that barrier on the
3908 * various architectures:
3909 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3910 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3911 * - finish_lock_switch() for weakly-ordered
3912 * architectures where spin_unlock is a full barrier,
3913 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3914 * is a RELEASE barrier),
22e4ebb9 3915 */
1da177e4
LT
3916 ++*switch_count;
3917
c73464b1 3918 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3919
3920 /* Also unlocks the rq: */
3921 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3922 } else {
cb42c9a3 3923 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3924 rq_unlock_irq(rq, &rf);
cbce1a68 3925 }
1da177e4 3926
e3fca9e7 3927 balance_callback(rq);
1da177e4 3928}
c259e01a 3929
9af6528e
PZ
3930void __noreturn do_task_dead(void)
3931{
d1ccc66d 3932 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3933 set_special_state(TASK_DEAD);
d1ccc66d
IM
3934
3935 /* Tell freezer to ignore us: */
3936 current->flags |= PF_NOFREEZE;
3937
9af6528e
PZ
3938 __schedule(false);
3939 BUG();
d1ccc66d
IM
3940
3941 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3942 for (;;)
d1ccc66d 3943 cpu_relax();
9af6528e
PZ
3944}
3945
9c40cef2
TG
3946static inline void sched_submit_work(struct task_struct *tsk)
3947{
3c7d5184 3948 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3949 return;
6d25be57
TG
3950
3951 /*
3952 * If a worker went to sleep, notify and ask workqueue whether
3953 * it wants to wake up a task to maintain concurrency.
3954 * As this function is called inside the schedule() context,
3955 * we disable preemption to avoid it calling schedule() again
3956 * in the possible wakeup of a kworker.
3957 */
3958 if (tsk->flags & PF_WQ_WORKER) {
3959 preempt_disable();
3960 wq_worker_sleeping(tsk);
3961 preempt_enable_no_resched();
3962 }
3963
9c40cef2
TG
3964 /*
3965 * If we are going to sleep and we have plugged IO queued,
3966 * make sure to submit it to avoid deadlocks.
3967 */
3968 if (blk_needs_flush_plug(tsk))
3969 blk_schedule_flush_plug(tsk);
3970}
3971
6d25be57
TG
3972static void sched_update_worker(struct task_struct *tsk)
3973{
3974 if (tsk->flags & PF_WQ_WORKER)
3975 wq_worker_running(tsk);
3976}
3977
722a9f92 3978asmlinkage __visible void __sched schedule(void)
c259e01a 3979{
9c40cef2
TG
3980 struct task_struct *tsk = current;
3981
3982 sched_submit_work(tsk);
bfd9b2b5 3983 do {
b30f0e3f 3984 preempt_disable();
fc13aeba 3985 __schedule(false);
b30f0e3f 3986 sched_preempt_enable_no_resched();
bfd9b2b5 3987 } while (need_resched());
6d25be57 3988 sched_update_worker(tsk);
c259e01a 3989}
1da177e4
LT
3990EXPORT_SYMBOL(schedule);
3991
8663effb
SRV
3992/*
3993 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3994 * state (have scheduled out non-voluntarily) by making sure that all
3995 * tasks have either left the run queue or have gone into user space.
3996 * As idle tasks do not do either, they must not ever be preempted
3997 * (schedule out non-voluntarily).
3998 *
3999 * schedule_idle() is similar to schedule_preempt_disable() except that it
4000 * never enables preemption because it does not call sched_submit_work().
4001 */
4002void __sched schedule_idle(void)
4003{
4004 /*
4005 * As this skips calling sched_submit_work(), which the idle task does
4006 * regardless because that function is a nop when the task is in a
4007 * TASK_RUNNING state, make sure this isn't used someplace that the
4008 * current task can be in any other state. Note, idle is always in the
4009 * TASK_RUNNING state.
4010 */
4011 WARN_ON_ONCE(current->state);
4012 do {
4013 __schedule(false);
4014 } while (need_resched());
4015}
4016
91d1aa43 4017#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4018asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4019{
4020 /*
4021 * If we come here after a random call to set_need_resched(),
4022 * or we have been woken up remotely but the IPI has not yet arrived,
4023 * we haven't yet exited the RCU idle mode. Do it here manually until
4024 * we find a better solution.
7cc78f8f
AL
4025 *
4026 * NB: There are buggy callers of this function. Ideally we
c467ea76 4027 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4028 * too frequently to make sense yet.
20ab65e3 4029 */
7cc78f8f 4030 enum ctx_state prev_state = exception_enter();
20ab65e3 4031 schedule();
7cc78f8f 4032 exception_exit(prev_state);
20ab65e3
FW
4033}
4034#endif
4035
c5491ea7
TG
4036/**
4037 * schedule_preempt_disabled - called with preemption disabled
4038 *
4039 * Returns with preemption disabled. Note: preempt_count must be 1
4040 */
4041void __sched schedule_preempt_disabled(void)
4042{
ba74c144 4043 sched_preempt_enable_no_resched();
c5491ea7
TG
4044 schedule();
4045 preempt_disable();
4046}
4047
06b1f808 4048static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4049{
4050 do {
47252cfb
SR
4051 /*
4052 * Because the function tracer can trace preempt_count_sub()
4053 * and it also uses preempt_enable/disable_notrace(), if
4054 * NEED_RESCHED is set, the preempt_enable_notrace() called
4055 * by the function tracer will call this function again and
4056 * cause infinite recursion.
4057 *
4058 * Preemption must be disabled here before the function
4059 * tracer can trace. Break up preempt_disable() into two
4060 * calls. One to disable preemption without fear of being
4061 * traced. The other to still record the preemption latency,
4062 * which can also be traced by the function tracer.
4063 */
499d7955 4064 preempt_disable_notrace();
47252cfb 4065 preempt_latency_start(1);
fc13aeba 4066 __schedule(true);
47252cfb 4067 preempt_latency_stop(1);
499d7955 4068 preempt_enable_no_resched_notrace();
a18b5d01
FW
4069
4070 /*
4071 * Check again in case we missed a preemption opportunity
4072 * between schedule and now.
4073 */
a18b5d01
FW
4074 } while (need_resched());
4075}
4076
1da177e4
LT
4077#ifdef CONFIG_PREEMPT
4078/*
2ed6e34f 4079 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4080 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4081 * occur there and call schedule directly.
4082 */
722a9f92 4083asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4084{
1da177e4
LT
4085 /*
4086 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4087 * we do not want to preempt the current task. Just return..
1da177e4 4088 */
fbb00b56 4089 if (likely(!preemptible()))
1da177e4
LT
4090 return;
4091
a18b5d01 4092 preempt_schedule_common();
1da177e4 4093}
376e2424 4094NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4095EXPORT_SYMBOL(preempt_schedule);
009f60e2 4096
009f60e2 4097/**
4eaca0a8 4098 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4099 *
4100 * The tracing infrastructure uses preempt_enable_notrace to prevent
4101 * recursion and tracing preempt enabling caused by the tracing
4102 * infrastructure itself. But as tracing can happen in areas coming
4103 * from userspace or just about to enter userspace, a preempt enable
4104 * can occur before user_exit() is called. This will cause the scheduler
4105 * to be called when the system is still in usermode.
4106 *
4107 * To prevent this, the preempt_enable_notrace will use this function
4108 * instead of preempt_schedule() to exit user context if needed before
4109 * calling the scheduler.
4110 */
4eaca0a8 4111asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4112{
4113 enum ctx_state prev_ctx;
4114
4115 if (likely(!preemptible()))
4116 return;
4117
4118 do {
47252cfb
SR
4119 /*
4120 * Because the function tracer can trace preempt_count_sub()
4121 * and it also uses preempt_enable/disable_notrace(), if
4122 * NEED_RESCHED is set, the preempt_enable_notrace() called
4123 * by the function tracer will call this function again and
4124 * cause infinite recursion.
4125 *
4126 * Preemption must be disabled here before the function
4127 * tracer can trace. Break up preempt_disable() into two
4128 * calls. One to disable preemption without fear of being
4129 * traced. The other to still record the preemption latency,
4130 * which can also be traced by the function tracer.
4131 */
3d8f74dd 4132 preempt_disable_notrace();
47252cfb 4133 preempt_latency_start(1);
009f60e2
ON
4134 /*
4135 * Needs preempt disabled in case user_exit() is traced
4136 * and the tracer calls preempt_enable_notrace() causing
4137 * an infinite recursion.
4138 */
4139 prev_ctx = exception_enter();
fc13aeba 4140 __schedule(true);
009f60e2
ON
4141 exception_exit(prev_ctx);
4142
47252cfb 4143 preempt_latency_stop(1);
3d8f74dd 4144 preempt_enable_no_resched_notrace();
009f60e2
ON
4145 } while (need_resched());
4146}
4eaca0a8 4147EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4148
32e475d7 4149#endif /* CONFIG_PREEMPT */
1da177e4
LT
4150
4151/*
2ed6e34f 4152 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4153 * off of irq context.
4154 * Note, that this is called and return with irqs disabled. This will
4155 * protect us against recursive calling from irq.
4156 */
722a9f92 4157asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4158{
b22366cd 4159 enum ctx_state prev_state;
6478d880 4160
2ed6e34f 4161 /* Catch callers which need to be fixed */
f27dde8d 4162 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4163
b22366cd
FW
4164 prev_state = exception_enter();
4165
3a5c359a 4166 do {
3d8f74dd 4167 preempt_disable();
3a5c359a 4168 local_irq_enable();
fc13aeba 4169 __schedule(true);
3a5c359a 4170 local_irq_disable();
3d8f74dd 4171 sched_preempt_enable_no_resched();
5ed0cec0 4172 } while (need_resched());
b22366cd
FW
4173
4174 exception_exit(prev_state);
1da177e4
LT
4175}
4176
ac6424b9 4177int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4178 void *key)
1da177e4 4179{
63859d4f 4180 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4181}
1da177e4
LT
4182EXPORT_SYMBOL(default_wake_function);
4183
b29739f9
IM
4184#ifdef CONFIG_RT_MUTEXES
4185
acd58620
PZ
4186static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4187{
4188 if (pi_task)
4189 prio = min(prio, pi_task->prio);
4190
4191 return prio;
4192}
4193
4194static inline int rt_effective_prio(struct task_struct *p, int prio)
4195{
4196 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4197
4198 return __rt_effective_prio(pi_task, prio);
4199}
4200
b29739f9
IM
4201/*
4202 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4203 * @p: task to boost
4204 * @pi_task: donor task
b29739f9
IM
4205 *
4206 * This function changes the 'effective' priority of a task. It does
4207 * not touch ->normal_prio like __setscheduler().
4208 *
c365c292
TG
4209 * Used by the rt_mutex code to implement priority inheritance
4210 * logic. Call site only calls if the priority of the task changed.
b29739f9 4211 */
acd58620 4212void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4213{
acd58620 4214 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4215 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4216 const struct sched_class *prev_class;
eb580751
PZ
4217 struct rq_flags rf;
4218 struct rq *rq;
b29739f9 4219
acd58620
PZ
4220 /* XXX used to be waiter->prio, not waiter->task->prio */
4221 prio = __rt_effective_prio(pi_task, p->normal_prio);
4222
4223 /*
4224 * If nothing changed; bail early.
4225 */
4226 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4227 return;
b29739f9 4228
eb580751 4229 rq = __task_rq_lock(p, &rf);
80f5c1b8 4230 update_rq_clock(rq);
acd58620
PZ
4231 /*
4232 * Set under pi_lock && rq->lock, such that the value can be used under
4233 * either lock.
4234 *
4235 * Note that there is loads of tricky to make this pointer cache work
4236 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4237 * ensure a task is de-boosted (pi_task is set to NULL) before the
4238 * task is allowed to run again (and can exit). This ensures the pointer
4239 * points to a blocked task -- which guaratees the task is present.
4240 */
4241 p->pi_top_task = pi_task;
4242
4243 /*
4244 * For FIFO/RR we only need to set prio, if that matches we're done.
4245 */
4246 if (prio == p->prio && !dl_prio(prio))
4247 goto out_unlock;
b29739f9 4248
1c4dd99b
TG
4249 /*
4250 * Idle task boosting is a nono in general. There is one
4251 * exception, when PREEMPT_RT and NOHZ is active:
4252 *
4253 * The idle task calls get_next_timer_interrupt() and holds
4254 * the timer wheel base->lock on the CPU and another CPU wants
4255 * to access the timer (probably to cancel it). We can safely
4256 * ignore the boosting request, as the idle CPU runs this code
4257 * with interrupts disabled and will complete the lock
4258 * protected section without being interrupted. So there is no
4259 * real need to boost.
4260 */
4261 if (unlikely(p == rq->idle)) {
4262 WARN_ON(p != rq->curr);
4263 WARN_ON(p->pi_blocked_on);
4264 goto out_unlock;
4265 }
4266
b91473ff 4267 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4268 oldprio = p->prio;
ff77e468
PZ
4269
4270 if (oldprio == prio)
4271 queue_flag &= ~DEQUEUE_MOVE;
4272
83ab0aa0 4273 prev_class = p->sched_class;
da0c1e65 4274 queued = task_on_rq_queued(p);
051a1d1a 4275 running = task_current(rq, p);
da0c1e65 4276 if (queued)
ff77e468 4277 dequeue_task(rq, p, queue_flag);
0e1f3483 4278 if (running)
f3cd1c4e 4279 put_prev_task(rq, p);
dd41f596 4280
2d3d891d
DF
4281 /*
4282 * Boosting condition are:
4283 * 1. -rt task is running and holds mutex A
4284 * --> -dl task blocks on mutex A
4285 *
4286 * 2. -dl task is running and holds mutex A
4287 * --> -dl task blocks on mutex A and could preempt the
4288 * running task
4289 */
4290 if (dl_prio(prio)) {
466af29b
ON
4291 if (!dl_prio(p->normal_prio) ||
4292 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4293 p->dl.dl_boosted = 1;
ff77e468 4294 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4295 } else
4296 p->dl.dl_boosted = 0;
aab03e05 4297 p->sched_class = &dl_sched_class;
2d3d891d
DF
4298 } else if (rt_prio(prio)) {
4299 if (dl_prio(oldprio))
4300 p->dl.dl_boosted = 0;
4301 if (oldprio < prio)
ff77e468 4302 queue_flag |= ENQUEUE_HEAD;
dd41f596 4303 p->sched_class = &rt_sched_class;
2d3d891d
DF
4304 } else {
4305 if (dl_prio(oldprio))
4306 p->dl.dl_boosted = 0;
746db944
BS
4307 if (rt_prio(oldprio))
4308 p->rt.timeout = 0;
dd41f596 4309 p->sched_class = &fair_sched_class;
2d3d891d 4310 }
dd41f596 4311
b29739f9
IM
4312 p->prio = prio;
4313
da0c1e65 4314 if (queued)
ff77e468 4315 enqueue_task(rq, p, queue_flag);
a399d233 4316 if (running)
b2bf6c31 4317 set_curr_task(rq, p);
cb469845 4318
da7a735e 4319 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4320out_unlock:
d1ccc66d
IM
4321 /* Avoid rq from going away on us: */
4322 preempt_disable();
eb580751 4323 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4324
4325 balance_callback(rq);
4326 preempt_enable();
b29739f9 4327}
acd58620
PZ
4328#else
4329static inline int rt_effective_prio(struct task_struct *p, int prio)
4330{
4331 return prio;
4332}
b29739f9 4333#endif
d50dde5a 4334
36c8b586 4335void set_user_nice(struct task_struct *p, long nice)
1da177e4 4336{
49bd21ef
PZ
4337 bool queued, running;
4338 int old_prio, delta;
eb580751 4339 struct rq_flags rf;
70b97a7f 4340 struct rq *rq;
1da177e4 4341
75e45d51 4342 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4343 return;
4344 /*
4345 * We have to be careful, if called from sys_setpriority(),
4346 * the task might be in the middle of scheduling on another CPU.
4347 */
eb580751 4348 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4349 update_rq_clock(rq);
4350
1da177e4
LT
4351 /*
4352 * The RT priorities are set via sched_setscheduler(), but we still
4353 * allow the 'normal' nice value to be set - but as expected
4354 * it wont have any effect on scheduling until the task is
aab03e05 4355 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4356 */
aab03e05 4357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4358 p->static_prio = NICE_TO_PRIO(nice);
4359 goto out_unlock;
4360 }
da0c1e65 4361 queued = task_on_rq_queued(p);
49bd21ef 4362 running = task_current(rq, p);
da0c1e65 4363 if (queued)
7a57f32a 4364 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4365 if (running)
4366 put_prev_task(rq, p);
1da177e4 4367
1da177e4 4368 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4369 set_load_weight(p, true);
b29739f9
IM
4370 old_prio = p->prio;
4371 p->prio = effective_prio(p);
4372 delta = p->prio - old_prio;
1da177e4 4373
da0c1e65 4374 if (queued) {
7134b3e9 4375 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 4376 /*
d5f9f942
AM
4377 * If the task increased its priority or is running and
4378 * lowered its priority, then reschedule its CPU:
1da177e4 4379 */
d5f9f942 4380 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 4381 resched_curr(rq);
1da177e4 4382 }
49bd21ef
PZ
4383 if (running)
4384 set_curr_task(rq, p);
1da177e4 4385out_unlock:
eb580751 4386 task_rq_unlock(rq, p, &rf);
1da177e4 4387}
1da177e4
LT
4388EXPORT_SYMBOL(set_user_nice);
4389
e43379f1
MM
4390/*
4391 * can_nice - check if a task can reduce its nice value
4392 * @p: task
4393 * @nice: nice value
4394 */
36c8b586 4395int can_nice(const struct task_struct *p, const int nice)
e43379f1 4396{
d1ccc66d 4397 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4398 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4399
78d7d407 4400 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4401 capable(CAP_SYS_NICE));
4402}
4403
1da177e4
LT
4404#ifdef __ARCH_WANT_SYS_NICE
4405
4406/*
4407 * sys_nice - change the priority of the current process.
4408 * @increment: priority increment
4409 *
4410 * sys_setpriority is a more generic, but much slower function that
4411 * does similar things.
4412 */
5add95d4 4413SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4414{
48f24c4d 4415 long nice, retval;
1da177e4
LT
4416
4417 /*
4418 * Setpriority might change our priority at the same moment.
4419 * We don't have to worry. Conceptually one call occurs first
4420 * and we have a single winner.
4421 */
a9467fa3 4422 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4423 nice = task_nice(current) + increment;
1da177e4 4424
a9467fa3 4425 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4426 if (increment < 0 && !can_nice(current, nice))
4427 return -EPERM;
4428
1da177e4
LT
4429 retval = security_task_setnice(current, nice);
4430 if (retval)
4431 return retval;
4432
4433 set_user_nice(current, nice);
4434 return 0;
4435}
4436
4437#endif
4438
4439/**
4440 * task_prio - return the priority value of a given task.
4441 * @p: the task in question.
4442 *
e69f6186 4443 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4444 * RT tasks are offset by -200. Normal tasks are centered
4445 * around 0, value goes from -16 to +15.
4446 */
36c8b586 4447int task_prio(const struct task_struct *p)
1da177e4
LT
4448{
4449 return p->prio - MAX_RT_PRIO;
4450}
4451
1da177e4 4452/**
d1ccc66d 4453 * idle_cpu - is a given CPU idle currently?
1da177e4 4454 * @cpu: the processor in question.
e69f6186
YB
4455 *
4456 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4457 */
4458int idle_cpu(int cpu)
4459{
908a3283
TG
4460 struct rq *rq = cpu_rq(cpu);
4461
4462 if (rq->curr != rq->idle)
4463 return 0;
4464
4465 if (rq->nr_running)
4466 return 0;
4467
4468#ifdef CONFIG_SMP
4469 if (!llist_empty(&rq->wake_list))
4470 return 0;
4471#endif
4472
4473 return 1;
1da177e4
LT
4474}
4475
943d355d
RJ
4476/**
4477 * available_idle_cpu - is a given CPU idle for enqueuing work.
4478 * @cpu: the CPU in question.
4479 *
4480 * Return: 1 if the CPU is currently idle. 0 otherwise.
4481 */
4482int available_idle_cpu(int cpu)
4483{
4484 if (!idle_cpu(cpu))
4485 return 0;
4486
247f2f6f
RJ
4487 if (vcpu_is_preempted(cpu))
4488 return 0;
4489
908a3283 4490 return 1;
1da177e4
LT
4491}
4492
1da177e4 4493/**
d1ccc66d 4494 * idle_task - return the idle task for a given CPU.
1da177e4 4495 * @cpu: the processor in question.
e69f6186 4496 *
d1ccc66d 4497 * Return: The idle task for the CPU @cpu.
1da177e4 4498 */
36c8b586 4499struct task_struct *idle_task(int cpu)
1da177e4
LT
4500{
4501 return cpu_rq(cpu)->idle;
4502}
4503
4504/**
4505 * find_process_by_pid - find a process with a matching PID value.
4506 * @pid: the pid in question.
e69f6186
YB
4507 *
4508 * The task of @pid, if found. %NULL otherwise.
1da177e4 4509 */
a9957449 4510static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4511{
228ebcbe 4512 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4513}
4514
c13db6b1
SR
4515/*
4516 * sched_setparam() passes in -1 for its policy, to let the functions
4517 * it calls know not to change it.
4518 */
4519#define SETPARAM_POLICY -1
4520
c365c292
TG
4521static void __setscheduler_params(struct task_struct *p,
4522 const struct sched_attr *attr)
1da177e4 4523{
d50dde5a
DF
4524 int policy = attr->sched_policy;
4525
c13db6b1 4526 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4527 policy = p->policy;
4528
1da177e4 4529 p->policy = policy;
d50dde5a 4530
aab03e05
DF
4531 if (dl_policy(policy))
4532 __setparam_dl(p, attr);
39fd8fd2 4533 else if (fair_policy(policy))
d50dde5a
DF
4534 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4535
39fd8fd2
PZ
4536 /*
4537 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4538 * !rt_policy. Always setting this ensures that things like
4539 * getparam()/getattr() don't report silly values for !rt tasks.
4540 */
4541 p->rt_priority = attr->sched_priority;
383afd09 4542 p->normal_prio = normal_prio(p);
9059393e 4543 set_load_weight(p, true);
c365c292 4544}
39fd8fd2 4545
c365c292
TG
4546/* Actually do priority change: must hold pi & rq lock. */
4547static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4548 const struct sched_attr *attr, bool keep_boost)
c365c292 4549{
a509a7cd
PB
4550 /*
4551 * If params can't change scheduling class changes aren't allowed
4552 * either.
4553 */
4554 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4555 return;
4556
c365c292 4557 __setscheduler_params(p, attr);
d50dde5a 4558
383afd09 4559 /*
0782e63b
TG
4560 * Keep a potential priority boosting if called from
4561 * sched_setscheduler().
383afd09 4562 */
acd58620 4563 p->prio = normal_prio(p);
0782e63b 4564 if (keep_boost)
acd58620 4565 p->prio = rt_effective_prio(p, p->prio);
383afd09 4566
aab03e05
DF
4567 if (dl_prio(p->prio))
4568 p->sched_class = &dl_sched_class;
4569 else if (rt_prio(p->prio))
ffd44db5
PZ
4570 p->sched_class = &rt_sched_class;
4571 else
4572 p->sched_class = &fair_sched_class;
1da177e4 4573}
aab03e05 4574
c69e8d9c 4575/*
d1ccc66d 4576 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4577 */
4578static bool check_same_owner(struct task_struct *p)
4579{
4580 const struct cred *cred = current_cred(), *pcred;
4581 bool match;
4582
4583 rcu_read_lock();
4584 pcred = __task_cred(p);
9c806aa0
EB
4585 match = (uid_eq(cred->euid, pcred->euid) ||
4586 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4587 rcu_read_unlock();
4588 return match;
4589}
4590
d50dde5a
DF
4591static int __sched_setscheduler(struct task_struct *p,
4592 const struct sched_attr *attr,
dbc7f069 4593 bool user, bool pi)
1da177e4 4594{
383afd09
SR
4595 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4596 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4597 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4598 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4599 const struct sched_class *prev_class;
eb580751 4600 struct rq_flags rf;
ca94c442 4601 int reset_on_fork;
7a57f32a 4602 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4603 struct rq *rq;
1da177e4 4604
896bbb25
SRV
4605 /* The pi code expects interrupts enabled */
4606 BUG_ON(pi && in_interrupt());
1da177e4 4607recheck:
d1ccc66d 4608 /* Double check policy once rq lock held: */
ca94c442
LP
4609 if (policy < 0) {
4610 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4611 policy = oldpolicy = p->policy;
ca94c442 4612 } else {
7479f3c9 4613 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4614
20f9cd2a 4615 if (!valid_policy(policy))
ca94c442
LP
4616 return -EINVAL;
4617 }
4618
794a56eb 4619 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4620 return -EINVAL;
4621
1da177e4
LT
4622 /*
4623 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4624 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4625 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4626 */
0bb040a4 4627 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4628 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4629 return -EINVAL;
aab03e05
DF
4630 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4631 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4632 return -EINVAL;
4633
37e4ab3f
OC
4634 /*
4635 * Allow unprivileged RT tasks to decrease priority:
4636 */
961ccddd 4637 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4638 if (fair_policy(policy)) {
d0ea0268 4639 if (attr->sched_nice < task_nice(p) &&
eaad4513 4640 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4641 return -EPERM;
4642 }
4643
e05606d3 4644 if (rt_policy(policy)) {
a44702e8
ON
4645 unsigned long rlim_rtprio =
4646 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4647
d1ccc66d 4648 /* Can't set/change the rt policy: */
8dc3e909
ON
4649 if (policy != p->policy && !rlim_rtprio)
4650 return -EPERM;
4651
d1ccc66d 4652 /* Can't increase priority: */
d50dde5a
DF
4653 if (attr->sched_priority > p->rt_priority &&
4654 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4655 return -EPERM;
4656 }
c02aa73b 4657
d44753b8
JL
4658 /*
4659 * Can't set/change SCHED_DEADLINE policy at all for now
4660 * (safest behavior); in the future we would like to allow
4661 * unprivileged DL tasks to increase their relative deadline
4662 * or reduce their runtime (both ways reducing utilization)
4663 */
4664 if (dl_policy(policy))
4665 return -EPERM;
4666
dd41f596 4667 /*
c02aa73b
DH
4668 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4669 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4670 */
1da1843f 4671 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4672 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4673 return -EPERM;
4674 }
5fe1d75f 4675
d1ccc66d 4676 /* Can't change other user's priorities: */
c69e8d9c 4677 if (!check_same_owner(p))
37e4ab3f 4678 return -EPERM;
ca94c442 4679
d1ccc66d 4680 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4681 if (p->sched_reset_on_fork && !reset_on_fork)
4682 return -EPERM;
37e4ab3f 4683 }
1da177e4 4684
725aad24 4685 if (user) {
794a56eb
JL
4686 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4687 return -EINVAL;
4688
b0ae1981 4689 retval = security_task_setscheduler(p);
725aad24
JF
4690 if (retval)
4691 return retval;
4692 }
4693
a509a7cd
PB
4694 /* Update task specific "requested" clamps */
4695 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4696 retval = uclamp_validate(p, attr);
4697 if (retval)
4698 return retval;
4699 }
4700
b29739f9 4701 /*
d1ccc66d 4702 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4703 * changing the priority of the task:
0122ec5b 4704 *
25985edc 4705 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4706 * runqueue lock must be held.
4707 */
eb580751 4708 rq = task_rq_lock(p, &rf);
80f5c1b8 4709 update_rq_clock(rq);
dc61b1d6 4710
34f971f6 4711 /*
d1ccc66d 4712 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4713 */
4714 if (p == rq->stop) {
4b211f2b
MP
4715 retval = -EINVAL;
4716 goto unlock;
34f971f6
PZ
4717 }
4718
a51e9198 4719 /*
d6b1e911
TG
4720 * If not changing anything there's no need to proceed further,
4721 * but store a possible modification of reset_on_fork.
a51e9198 4722 */
d50dde5a 4723 if (unlikely(policy == p->policy)) {
d0ea0268 4724 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4725 goto change;
4726 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4727 goto change;
75381608 4728 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4729 goto change;
a509a7cd
PB
4730 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4731 goto change;
d50dde5a 4732
d6b1e911 4733 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4734 retval = 0;
4735 goto unlock;
a51e9198 4736 }
d50dde5a 4737change:
a51e9198 4738
dc61b1d6 4739 if (user) {
332ac17e 4740#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4741 /*
4742 * Do not allow realtime tasks into groups that have no runtime
4743 * assigned.
4744 */
4745 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4746 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4747 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4748 retval = -EPERM;
4749 goto unlock;
dc61b1d6 4750 }
dc61b1d6 4751#endif
332ac17e 4752#ifdef CONFIG_SMP
794a56eb
JL
4753 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4754 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4755 cpumask_t *span = rq->rd->span;
332ac17e
DF
4756
4757 /*
4758 * Don't allow tasks with an affinity mask smaller than
4759 * the entire root_domain to become SCHED_DEADLINE. We
4760 * will also fail if there's no bandwidth available.
4761 */
3bd37062 4762 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4763 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4764 retval = -EPERM;
4765 goto unlock;
332ac17e
DF
4766 }
4767 }
4768#endif
4769 }
dc61b1d6 4770
d1ccc66d 4771 /* Re-check policy now with rq lock held: */
1da177e4
LT
4772 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4773 policy = oldpolicy = -1;
eb580751 4774 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4775 goto recheck;
4776 }
332ac17e
DF
4777
4778 /*
4779 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4780 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4781 * is available.
4782 */
06a76fe0 4783 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4784 retval = -EBUSY;
4785 goto unlock;
332ac17e
DF
4786 }
4787
c365c292
TG
4788 p->sched_reset_on_fork = reset_on_fork;
4789 oldprio = p->prio;
4790
dbc7f069
PZ
4791 if (pi) {
4792 /*
4793 * Take priority boosted tasks into account. If the new
4794 * effective priority is unchanged, we just store the new
4795 * normal parameters and do not touch the scheduler class and
4796 * the runqueue. This will be done when the task deboost
4797 * itself.
4798 */
acd58620 4799 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4800 if (new_effective_prio == oldprio)
4801 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4802 }
4803
da0c1e65 4804 queued = task_on_rq_queued(p);
051a1d1a 4805 running = task_current(rq, p);
da0c1e65 4806 if (queued)
ff77e468 4807 dequeue_task(rq, p, queue_flags);
0e1f3483 4808 if (running)
f3cd1c4e 4809 put_prev_task(rq, p);
f6b53205 4810
83ab0aa0 4811 prev_class = p->sched_class;
a509a7cd 4812
dbc7f069 4813 __setscheduler(rq, p, attr, pi);
a509a7cd 4814 __setscheduler_uclamp(p, attr);
f6b53205 4815
da0c1e65 4816 if (queued) {
81a44c54
TG
4817 /*
4818 * We enqueue to tail when the priority of a task is
4819 * increased (user space view).
4820 */
ff77e468
PZ
4821 if (oldprio < p->prio)
4822 queue_flags |= ENQUEUE_HEAD;
1de64443 4823
ff77e468 4824 enqueue_task(rq, p, queue_flags);
81a44c54 4825 }
a399d233 4826 if (running)
b2bf6c31 4827 set_curr_task(rq, p);
cb469845 4828
da7a735e 4829 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4830
4831 /* Avoid rq from going away on us: */
4832 preempt_disable();
eb580751 4833 task_rq_unlock(rq, p, &rf);
b29739f9 4834
dbc7f069
PZ
4835 if (pi)
4836 rt_mutex_adjust_pi(p);
95e02ca9 4837
d1ccc66d 4838 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4839 balance_callback(rq);
4840 preempt_enable();
95e02ca9 4841
1da177e4 4842 return 0;
4b211f2b
MP
4843
4844unlock:
4845 task_rq_unlock(rq, p, &rf);
4846 return retval;
1da177e4 4847}
961ccddd 4848
7479f3c9
PZ
4849static int _sched_setscheduler(struct task_struct *p, int policy,
4850 const struct sched_param *param, bool check)
4851{
4852 struct sched_attr attr = {
4853 .sched_policy = policy,
4854 .sched_priority = param->sched_priority,
4855 .sched_nice = PRIO_TO_NICE(p->static_prio),
4856 };
4857
c13db6b1
SR
4858 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4859 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4860 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4861 policy &= ~SCHED_RESET_ON_FORK;
4862 attr.sched_policy = policy;
4863 }
4864
dbc7f069 4865 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4866}
961ccddd
RR
4867/**
4868 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4869 * @p: the task in question.
4870 * @policy: new policy.
4871 * @param: structure containing the new RT priority.
4872 *
e69f6186
YB
4873 * Return: 0 on success. An error code otherwise.
4874 *
961ccddd
RR
4875 * NOTE that the task may be already dead.
4876 */
4877int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4878 const struct sched_param *param)
961ccddd 4879{
7479f3c9 4880 return _sched_setscheduler(p, policy, param, true);
961ccddd 4881}
1da177e4
LT
4882EXPORT_SYMBOL_GPL(sched_setscheduler);
4883
d50dde5a
DF
4884int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4885{
dbc7f069 4886 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4887}
4888EXPORT_SYMBOL_GPL(sched_setattr);
4889
794a56eb
JL
4890int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4891{
4892 return __sched_setscheduler(p, attr, false, true);
4893}
4894
961ccddd
RR
4895/**
4896 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4897 * @p: the task in question.
4898 * @policy: new policy.
4899 * @param: structure containing the new RT priority.
4900 *
4901 * Just like sched_setscheduler, only don't bother checking if the
4902 * current context has permission. For example, this is needed in
4903 * stop_machine(): we create temporary high priority worker threads,
4904 * but our caller might not have that capability.
e69f6186
YB
4905 *
4906 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4907 */
4908int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4909 const struct sched_param *param)
961ccddd 4910{
7479f3c9 4911 return _sched_setscheduler(p, policy, param, false);
961ccddd 4912}
84778472 4913EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4914
95cdf3b7
IM
4915static int
4916do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4917{
1da177e4
LT
4918 struct sched_param lparam;
4919 struct task_struct *p;
36c8b586 4920 int retval;
1da177e4
LT
4921
4922 if (!param || pid < 0)
4923 return -EINVAL;
4924 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4925 return -EFAULT;
5fe1d75f
ON
4926
4927 rcu_read_lock();
4928 retval = -ESRCH;
1da177e4 4929 p = find_process_by_pid(pid);
5fe1d75f
ON
4930 if (p != NULL)
4931 retval = sched_setscheduler(p, policy, &lparam);
4932 rcu_read_unlock();
36c8b586 4933
1da177e4
LT
4934 return retval;
4935}
4936
d50dde5a
DF
4937/*
4938 * Mimics kernel/events/core.c perf_copy_attr().
4939 */
d1ccc66d 4940static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4941{
4942 u32 size;
4943 int ret;
4944
96d4f267 4945 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4946 return -EFAULT;
4947
d1ccc66d 4948 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4949 memset(attr, 0, sizeof(*attr));
4950
4951 ret = get_user(size, &uattr->size);
4952 if (ret)
4953 return ret;
4954
d1ccc66d
IM
4955 /* Bail out on silly large: */
4956 if (size > PAGE_SIZE)
d50dde5a
DF
4957 goto err_size;
4958
d1ccc66d
IM
4959 /* ABI compatibility quirk: */
4960 if (!size)
d50dde5a
DF
4961 size = SCHED_ATTR_SIZE_VER0;
4962
4963 if (size < SCHED_ATTR_SIZE_VER0)
4964 goto err_size;
4965
4966 /*
4967 * If we're handed a bigger struct than we know of,
4968 * ensure all the unknown bits are 0 - i.e. new
4969 * user-space does not rely on any kernel feature
4970 * extensions we dont know about yet.
4971 */
4972 if (size > sizeof(*attr)) {
4973 unsigned char __user *addr;
4974 unsigned char __user *end;
4975 unsigned char val;
4976
4977 addr = (void __user *)uattr + sizeof(*attr);
4978 end = (void __user *)uattr + size;
4979
4980 for (; addr < end; addr++) {
4981 ret = get_user(val, addr);
4982 if (ret)
4983 return ret;
4984 if (val)
4985 goto err_size;
4986 }
4987 size = sizeof(*attr);
4988 }
4989
4990 ret = copy_from_user(attr, uattr, size);
4991 if (ret)
4992 return -EFAULT;
4993
a509a7cd
PB
4994 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4995 size < SCHED_ATTR_SIZE_VER1)
4996 return -EINVAL;
4997
d50dde5a 4998 /*
d1ccc66d 4999 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5000 * to be strict and return an error on out-of-bounds values?
5001 */
75e45d51 5002 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5003
e78c7bca 5004 return 0;
d50dde5a
DF
5005
5006err_size:
5007 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5008 return -E2BIG;
d50dde5a
DF
5009}
5010
1da177e4
LT
5011/**
5012 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5013 * @pid: the pid in question.
5014 * @policy: new policy.
5015 * @param: structure containing the new RT priority.
e69f6186
YB
5016 *
5017 * Return: 0 on success. An error code otherwise.
1da177e4 5018 */
d1ccc66d 5019SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5020{
c21761f1
JB
5021 if (policy < 0)
5022 return -EINVAL;
5023
1da177e4
LT
5024 return do_sched_setscheduler(pid, policy, param);
5025}
5026
5027/**
5028 * sys_sched_setparam - set/change the RT priority of a thread
5029 * @pid: the pid in question.
5030 * @param: structure containing the new RT priority.
e69f6186
YB
5031 *
5032 * Return: 0 on success. An error code otherwise.
1da177e4 5033 */
5add95d4 5034SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5035{
c13db6b1 5036 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5037}
5038
d50dde5a
DF
5039/**
5040 * sys_sched_setattr - same as above, but with extended sched_attr
5041 * @pid: the pid in question.
5778fccf 5042 * @uattr: structure containing the extended parameters.
db66d756 5043 * @flags: for future extension.
d50dde5a 5044 */
6d35ab48
PZ
5045SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5046 unsigned int, flags)
d50dde5a
DF
5047{
5048 struct sched_attr attr;
5049 struct task_struct *p;
5050 int retval;
5051
6d35ab48 5052 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5053 return -EINVAL;
5054
143cf23d
MK
5055 retval = sched_copy_attr(uattr, &attr);
5056 if (retval)
5057 return retval;
d50dde5a 5058
b14ed2c2 5059 if ((int)attr.sched_policy < 0)
dbdb2275 5060 return -EINVAL;
1d6362fa
PB
5061 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5062 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5063
5064 rcu_read_lock();
5065 retval = -ESRCH;
5066 p = find_process_by_pid(pid);
a509a7cd
PB
5067 if (likely(p))
5068 get_task_struct(p);
d50dde5a
DF
5069 rcu_read_unlock();
5070
a509a7cd
PB
5071 if (likely(p)) {
5072 retval = sched_setattr(p, &attr);
5073 put_task_struct(p);
5074 }
5075
d50dde5a
DF
5076 return retval;
5077}
5078
1da177e4
LT
5079/**
5080 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5081 * @pid: the pid in question.
e69f6186
YB
5082 *
5083 * Return: On success, the policy of the thread. Otherwise, a negative error
5084 * code.
1da177e4 5085 */
5add95d4 5086SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5087{
36c8b586 5088 struct task_struct *p;
3a5c359a 5089 int retval;
1da177e4
LT
5090
5091 if (pid < 0)
3a5c359a 5092 return -EINVAL;
1da177e4
LT
5093
5094 retval = -ESRCH;
5fe85be0 5095 rcu_read_lock();
1da177e4
LT
5096 p = find_process_by_pid(pid);
5097 if (p) {
5098 retval = security_task_getscheduler(p);
5099 if (!retval)
ca94c442
LP
5100 retval = p->policy
5101 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5102 }
5fe85be0 5103 rcu_read_unlock();
1da177e4
LT
5104 return retval;
5105}
5106
5107/**
ca94c442 5108 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5109 * @pid: the pid in question.
5110 * @param: structure containing the RT priority.
e69f6186
YB
5111 *
5112 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5113 * code.
1da177e4 5114 */
5add95d4 5115SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5116{
ce5f7f82 5117 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5118 struct task_struct *p;
3a5c359a 5119 int retval;
1da177e4
LT
5120
5121 if (!param || pid < 0)
3a5c359a 5122 return -EINVAL;
1da177e4 5123
5fe85be0 5124 rcu_read_lock();
1da177e4
LT
5125 p = find_process_by_pid(pid);
5126 retval = -ESRCH;
5127 if (!p)
5128 goto out_unlock;
5129
5130 retval = security_task_getscheduler(p);
5131 if (retval)
5132 goto out_unlock;
5133
ce5f7f82
PZ
5134 if (task_has_rt_policy(p))
5135 lp.sched_priority = p->rt_priority;
5fe85be0 5136 rcu_read_unlock();
1da177e4
LT
5137
5138 /*
5139 * This one might sleep, we cannot do it with a spinlock held ...
5140 */
5141 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5142
1da177e4
LT
5143 return retval;
5144
5145out_unlock:
5fe85be0 5146 rcu_read_unlock();
1da177e4
LT
5147 return retval;
5148}
5149
d50dde5a
DF
5150static int sched_read_attr(struct sched_attr __user *uattr,
5151 struct sched_attr *attr,
5152 unsigned int usize)
5153{
5154 int ret;
5155
96d4f267 5156 if (!access_ok(uattr, usize))
d50dde5a
DF
5157 return -EFAULT;
5158
5159 /*
5160 * If we're handed a smaller struct than we know of,
5161 * ensure all the unknown bits are 0 - i.e. old
5162 * user-space does not get uncomplete information.
5163 */
5164 if (usize < sizeof(*attr)) {
5165 unsigned char *addr;
5166 unsigned char *end;
5167
5168 addr = (void *)attr + usize;
5169 end = (void *)attr + sizeof(*attr);
5170
5171 for (; addr < end; addr++) {
5172 if (*addr)
22400674 5173 return -EFBIG;
d50dde5a
DF
5174 }
5175
5176 attr->size = usize;
5177 }
5178
4efbc454 5179 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
5180 if (ret)
5181 return -EFAULT;
5182
22400674 5183 return 0;
d50dde5a
DF
5184}
5185
5186/**
aab03e05 5187 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5188 * @pid: the pid in question.
5778fccf 5189 * @uattr: structure containing the extended parameters.
d50dde5a 5190 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 5191 * @flags: for future extension.
d50dde5a 5192 */
6d35ab48
PZ
5193SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5194 unsigned int, size, unsigned int, flags)
d50dde5a
DF
5195{
5196 struct sched_attr attr = {
5197 .size = sizeof(struct sched_attr),
5198 };
5199 struct task_struct *p;
5200 int retval;
5201
5202 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 5203 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5204 return -EINVAL;
5205
5206 rcu_read_lock();
5207 p = find_process_by_pid(pid);
5208 retval = -ESRCH;
5209 if (!p)
5210 goto out_unlock;
5211
5212 retval = security_task_getscheduler(p);
5213 if (retval)
5214 goto out_unlock;
5215
5216 attr.sched_policy = p->policy;
7479f3c9
PZ
5217 if (p->sched_reset_on_fork)
5218 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
5219 if (task_has_dl_policy(p))
5220 __getparam_dl(p, &attr);
5221 else if (task_has_rt_policy(p))
d50dde5a
DF
5222 attr.sched_priority = p->rt_priority;
5223 else
d0ea0268 5224 attr.sched_nice = task_nice(p);
d50dde5a 5225
a509a7cd
PB
5226#ifdef CONFIG_UCLAMP_TASK
5227 attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5228 attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5229#endif
5230
d50dde5a
DF
5231 rcu_read_unlock();
5232
5233 retval = sched_read_attr(uattr, &attr, size);
5234 return retval;
5235
5236out_unlock:
5237 rcu_read_unlock();
5238 return retval;
5239}
5240
96f874e2 5241long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5242{
5a16f3d3 5243 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5244 struct task_struct *p;
5245 int retval;
1da177e4 5246
23f5d142 5247 rcu_read_lock();
1da177e4
LT
5248
5249 p = find_process_by_pid(pid);
5250 if (!p) {
23f5d142 5251 rcu_read_unlock();
1da177e4
LT
5252 return -ESRCH;
5253 }
5254
23f5d142 5255 /* Prevent p going away */
1da177e4 5256 get_task_struct(p);
23f5d142 5257 rcu_read_unlock();
1da177e4 5258
14a40ffc
TH
5259 if (p->flags & PF_NO_SETAFFINITY) {
5260 retval = -EINVAL;
5261 goto out_put_task;
5262 }
5a16f3d3
RR
5263 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5264 retval = -ENOMEM;
5265 goto out_put_task;
5266 }
5267 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5268 retval = -ENOMEM;
5269 goto out_free_cpus_allowed;
5270 }
1da177e4 5271 retval = -EPERM;
4c44aaaf
EB
5272 if (!check_same_owner(p)) {
5273 rcu_read_lock();
5274 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5275 rcu_read_unlock();
16303ab2 5276 goto out_free_new_mask;
4c44aaaf
EB
5277 }
5278 rcu_read_unlock();
5279 }
1da177e4 5280
b0ae1981 5281 retval = security_task_setscheduler(p);
e7834f8f 5282 if (retval)
16303ab2 5283 goto out_free_new_mask;
e7834f8f 5284
e4099a5e
PZ
5285
5286 cpuset_cpus_allowed(p, cpus_allowed);
5287 cpumask_and(new_mask, in_mask, cpus_allowed);
5288
332ac17e
DF
5289 /*
5290 * Since bandwidth control happens on root_domain basis,
5291 * if admission test is enabled, we only admit -deadline
5292 * tasks allowed to run on all the CPUs in the task's
5293 * root_domain.
5294 */
5295#ifdef CONFIG_SMP
f1e3a093
KT
5296 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5297 rcu_read_lock();
5298 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5299 retval = -EBUSY;
f1e3a093 5300 rcu_read_unlock();
16303ab2 5301 goto out_free_new_mask;
332ac17e 5302 }
f1e3a093 5303 rcu_read_unlock();
332ac17e
DF
5304 }
5305#endif
49246274 5306again:
25834c73 5307 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5308
8707d8b8 5309 if (!retval) {
5a16f3d3
RR
5310 cpuset_cpus_allowed(p, cpus_allowed);
5311 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5312 /*
5313 * We must have raced with a concurrent cpuset
5314 * update. Just reset the cpus_allowed to the
5315 * cpuset's cpus_allowed
5316 */
5a16f3d3 5317 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5318 goto again;
5319 }
5320 }
16303ab2 5321out_free_new_mask:
5a16f3d3
RR
5322 free_cpumask_var(new_mask);
5323out_free_cpus_allowed:
5324 free_cpumask_var(cpus_allowed);
5325out_put_task:
1da177e4 5326 put_task_struct(p);
1da177e4
LT
5327 return retval;
5328}
5329
5330static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5331 struct cpumask *new_mask)
1da177e4 5332{
96f874e2
RR
5333 if (len < cpumask_size())
5334 cpumask_clear(new_mask);
5335 else if (len > cpumask_size())
5336 len = cpumask_size();
5337
1da177e4
LT
5338 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5339}
5340
5341/**
d1ccc66d 5342 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5343 * @pid: pid of the process
5344 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5345 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5346 *
5347 * Return: 0 on success. An error code otherwise.
1da177e4 5348 */
5add95d4
HC
5349SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5350 unsigned long __user *, user_mask_ptr)
1da177e4 5351{
5a16f3d3 5352 cpumask_var_t new_mask;
1da177e4
LT
5353 int retval;
5354
5a16f3d3
RR
5355 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5356 return -ENOMEM;
1da177e4 5357
5a16f3d3
RR
5358 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5359 if (retval == 0)
5360 retval = sched_setaffinity(pid, new_mask);
5361 free_cpumask_var(new_mask);
5362 return retval;
1da177e4
LT
5363}
5364
96f874e2 5365long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5366{
36c8b586 5367 struct task_struct *p;
31605683 5368 unsigned long flags;
1da177e4 5369 int retval;
1da177e4 5370
23f5d142 5371 rcu_read_lock();
1da177e4
LT
5372
5373 retval = -ESRCH;
5374 p = find_process_by_pid(pid);
5375 if (!p)
5376 goto out_unlock;
5377
e7834f8f
DQ
5378 retval = security_task_getscheduler(p);
5379 if (retval)
5380 goto out_unlock;
5381
013fdb80 5382 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5383 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5384 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5385
5386out_unlock:
23f5d142 5387 rcu_read_unlock();
1da177e4 5388
9531b62f 5389 return retval;
1da177e4
LT
5390}
5391
5392/**
d1ccc66d 5393 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5394 * @pid: pid of the process
5395 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5396 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5397 *
599b4840
ZW
5398 * Return: size of CPU mask copied to user_mask_ptr on success. An
5399 * error code otherwise.
1da177e4 5400 */
5add95d4
HC
5401SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5402 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5403{
5404 int ret;
f17c8607 5405 cpumask_var_t mask;
1da177e4 5406
84fba5ec 5407 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5408 return -EINVAL;
5409 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5410 return -EINVAL;
5411
f17c8607
RR
5412 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5413 return -ENOMEM;
1da177e4 5414
f17c8607
RR
5415 ret = sched_getaffinity(pid, mask);
5416 if (ret == 0) {
4de373a1 5417 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5418
5419 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5420 ret = -EFAULT;
5421 else
cd3d8031 5422 ret = retlen;
f17c8607
RR
5423 }
5424 free_cpumask_var(mask);
1da177e4 5425
f17c8607 5426 return ret;
1da177e4
LT
5427}
5428
5429/**
5430 * sys_sched_yield - yield the current processor to other threads.
5431 *
dd41f596
IM
5432 * This function yields the current CPU to other tasks. If there are no
5433 * other threads running on this CPU then this function will return.
e69f6186
YB
5434 *
5435 * Return: 0.
1da177e4 5436 */
7d4dd4f1 5437static void do_sched_yield(void)
1da177e4 5438{
8a8c69c3
PZ
5439 struct rq_flags rf;
5440 struct rq *rq;
5441
246b3b33 5442 rq = this_rq_lock_irq(&rf);
1da177e4 5443
ae92882e 5444 schedstat_inc(rq->yld_count);
4530d7ab 5445 current->sched_class->yield_task(rq);
1da177e4
LT
5446
5447 /*
5448 * Since we are going to call schedule() anyway, there's
5449 * no need to preempt or enable interrupts:
5450 */
8a8c69c3
PZ
5451 preempt_disable();
5452 rq_unlock(rq, &rf);
ba74c144 5453 sched_preempt_enable_no_resched();
1da177e4
LT
5454
5455 schedule();
7d4dd4f1 5456}
1da177e4 5457
7d4dd4f1
DB
5458SYSCALL_DEFINE0(sched_yield)
5459{
5460 do_sched_yield();
1da177e4
LT
5461 return 0;
5462}
5463
35a773a0 5464#ifndef CONFIG_PREEMPT
02b67cc3 5465int __sched _cond_resched(void)
1da177e4 5466{
fe32d3cd 5467 if (should_resched(0)) {
a18b5d01 5468 preempt_schedule_common();
1da177e4
LT
5469 return 1;
5470 }
f79c3ad6 5471 rcu_all_qs();
1da177e4
LT
5472 return 0;
5473}
02b67cc3 5474EXPORT_SYMBOL(_cond_resched);
35a773a0 5475#endif
1da177e4
LT
5476
5477/*
613afbf8 5478 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5479 * call schedule, and on return reacquire the lock.
5480 *
41a2d6cf 5481 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5482 * operations here to prevent schedule() from being called twice (once via
5483 * spin_unlock(), once by hand).
5484 */
613afbf8 5485int __cond_resched_lock(spinlock_t *lock)
1da177e4 5486{
fe32d3cd 5487 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5488 int ret = 0;
5489
f607c668
PZ
5490 lockdep_assert_held(lock);
5491
4a81e832 5492 if (spin_needbreak(lock) || resched) {
1da177e4 5493 spin_unlock(lock);
d86ee480 5494 if (resched)
a18b5d01 5495 preempt_schedule_common();
95c354fe
NP
5496 else
5497 cpu_relax();
6df3cecb 5498 ret = 1;
1da177e4 5499 spin_lock(lock);
1da177e4 5500 }
6df3cecb 5501 return ret;
1da177e4 5502}
613afbf8 5503EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5504
1da177e4
LT
5505/**
5506 * yield - yield the current processor to other threads.
5507 *
8e3fabfd
PZ
5508 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5509 *
5510 * The scheduler is at all times free to pick the calling task as the most
5511 * eligible task to run, if removing the yield() call from your code breaks
5512 * it, its already broken.
5513 *
5514 * Typical broken usage is:
5515 *
5516 * while (!event)
d1ccc66d 5517 * yield();
8e3fabfd
PZ
5518 *
5519 * where one assumes that yield() will let 'the other' process run that will
5520 * make event true. If the current task is a SCHED_FIFO task that will never
5521 * happen. Never use yield() as a progress guarantee!!
5522 *
5523 * If you want to use yield() to wait for something, use wait_event().
5524 * If you want to use yield() to be 'nice' for others, use cond_resched().
5525 * If you still want to use yield(), do not!
1da177e4
LT
5526 */
5527void __sched yield(void)
5528{
5529 set_current_state(TASK_RUNNING);
7d4dd4f1 5530 do_sched_yield();
1da177e4 5531}
1da177e4
LT
5532EXPORT_SYMBOL(yield);
5533
d95f4122
MG
5534/**
5535 * yield_to - yield the current processor to another thread in
5536 * your thread group, or accelerate that thread toward the
5537 * processor it's on.
16addf95
RD
5538 * @p: target task
5539 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5540 *
5541 * It's the caller's job to ensure that the target task struct
5542 * can't go away on us before we can do any checks.
5543 *
e69f6186 5544 * Return:
7b270f60
PZ
5545 * true (>0) if we indeed boosted the target task.
5546 * false (0) if we failed to boost the target.
5547 * -ESRCH if there's no task to yield to.
d95f4122 5548 */
fa93384f 5549int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5550{
5551 struct task_struct *curr = current;
5552 struct rq *rq, *p_rq;
5553 unsigned long flags;
c3c18640 5554 int yielded = 0;
d95f4122
MG
5555
5556 local_irq_save(flags);
5557 rq = this_rq();
5558
5559again:
5560 p_rq = task_rq(p);
7b270f60
PZ
5561 /*
5562 * If we're the only runnable task on the rq and target rq also
5563 * has only one task, there's absolutely no point in yielding.
5564 */
5565 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5566 yielded = -ESRCH;
5567 goto out_irq;
5568 }
5569
d95f4122 5570 double_rq_lock(rq, p_rq);
39e24d8f 5571 if (task_rq(p) != p_rq) {
d95f4122
MG
5572 double_rq_unlock(rq, p_rq);
5573 goto again;
5574 }
5575
5576 if (!curr->sched_class->yield_to_task)
7b270f60 5577 goto out_unlock;
d95f4122
MG
5578
5579 if (curr->sched_class != p->sched_class)
7b270f60 5580 goto out_unlock;
d95f4122
MG
5581
5582 if (task_running(p_rq, p) || p->state)
7b270f60 5583 goto out_unlock;
d95f4122
MG
5584
5585 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5586 if (yielded) {
ae92882e 5587 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5588 /*
5589 * Make p's CPU reschedule; pick_next_entity takes care of
5590 * fairness.
5591 */
5592 if (preempt && rq != p_rq)
8875125e 5593 resched_curr(p_rq);
6d1cafd8 5594 }
d95f4122 5595
7b270f60 5596out_unlock:
d95f4122 5597 double_rq_unlock(rq, p_rq);
7b270f60 5598out_irq:
d95f4122
MG
5599 local_irq_restore(flags);
5600
7b270f60 5601 if (yielded > 0)
d95f4122
MG
5602 schedule();
5603
5604 return yielded;
5605}
5606EXPORT_SYMBOL_GPL(yield_to);
5607
10ab5643
TH
5608int io_schedule_prepare(void)
5609{
5610 int old_iowait = current->in_iowait;
5611
5612 current->in_iowait = 1;
5613 blk_schedule_flush_plug(current);
5614
5615 return old_iowait;
5616}
5617
5618void io_schedule_finish(int token)
5619{
5620 current->in_iowait = token;
5621}
5622
1da177e4 5623/*
41a2d6cf 5624 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5625 * that process accounting knows that this is a task in IO wait state.
1da177e4 5626 */
1da177e4
LT
5627long __sched io_schedule_timeout(long timeout)
5628{
10ab5643 5629 int token;
1da177e4
LT
5630 long ret;
5631
10ab5643 5632 token = io_schedule_prepare();
1da177e4 5633 ret = schedule_timeout(timeout);
10ab5643 5634 io_schedule_finish(token);
9cff8ade 5635
1da177e4
LT
5636 return ret;
5637}
9cff8ade 5638EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5639
e3b929b0 5640void __sched io_schedule(void)
10ab5643
TH
5641{
5642 int token;
5643
5644 token = io_schedule_prepare();
5645 schedule();
5646 io_schedule_finish(token);
5647}
5648EXPORT_SYMBOL(io_schedule);
5649
1da177e4
LT
5650/**
5651 * sys_sched_get_priority_max - return maximum RT priority.
5652 * @policy: scheduling class.
5653 *
e69f6186
YB
5654 * Return: On success, this syscall returns the maximum
5655 * rt_priority that can be used by a given scheduling class.
5656 * On failure, a negative error code is returned.
1da177e4 5657 */
5add95d4 5658SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5659{
5660 int ret = -EINVAL;
5661
5662 switch (policy) {
5663 case SCHED_FIFO:
5664 case SCHED_RR:
5665 ret = MAX_USER_RT_PRIO-1;
5666 break;
aab03e05 5667 case SCHED_DEADLINE:
1da177e4 5668 case SCHED_NORMAL:
b0a9499c 5669 case SCHED_BATCH:
dd41f596 5670 case SCHED_IDLE:
1da177e4
LT
5671 ret = 0;
5672 break;
5673 }
5674 return ret;
5675}
5676
5677/**
5678 * sys_sched_get_priority_min - return minimum RT priority.
5679 * @policy: scheduling class.
5680 *
e69f6186
YB
5681 * Return: On success, this syscall returns the minimum
5682 * rt_priority that can be used by a given scheduling class.
5683 * On failure, a negative error code is returned.
1da177e4 5684 */
5add95d4 5685SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5686{
5687 int ret = -EINVAL;
5688
5689 switch (policy) {
5690 case SCHED_FIFO:
5691 case SCHED_RR:
5692 ret = 1;
5693 break;
aab03e05 5694 case SCHED_DEADLINE:
1da177e4 5695 case SCHED_NORMAL:
b0a9499c 5696 case SCHED_BATCH:
dd41f596 5697 case SCHED_IDLE:
1da177e4
LT
5698 ret = 0;
5699 }
5700 return ret;
5701}
5702
abca5fc5 5703static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5704{
36c8b586 5705 struct task_struct *p;
a4ec24b4 5706 unsigned int time_slice;
eb580751 5707 struct rq_flags rf;
dba091b9 5708 struct rq *rq;
3a5c359a 5709 int retval;
1da177e4
LT
5710
5711 if (pid < 0)
3a5c359a 5712 return -EINVAL;
1da177e4
LT
5713
5714 retval = -ESRCH;
1a551ae7 5715 rcu_read_lock();
1da177e4
LT
5716 p = find_process_by_pid(pid);
5717 if (!p)
5718 goto out_unlock;
5719
5720 retval = security_task_getscheduler(p);
5721 if (retval)
5722 goto out_unlock;
5723
eb580751 5724 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5725 time_slice = 0;
5726 if (p->sched_class->get_rr_interval)
5727 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5728 task_rq_unlock(rq, p, &rf);
a4ec24b4 5729
1a551ae7 5730 rcu_read_unlock();
abca5fc5
AV
5731 jiffies_to_timespec64(time_slice, t);
5732 return 0;
3a5c359a 5733
1da177e4 5734out_unlock:
1a551ae7 5735 rcu_read_unlock();
1da177e4
LT
5736 return retval;
5737}
5738
2064a5ab
RD
5739/**
5740 * sys_sched_rr_get_interval - return the default timeslice of a process.
5741 * @pid: pid of the process.
5742 * @interval: userspace pointer to the timeslice value.
5743 *
5744 * this syscall writes the default timeslice value of a given process
5745 * into the user-space timespec buffer. A value of '0' means infinity.
5746 *
5747 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5748 * an error code.
5749 */
abca5fc5 5750SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5751 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5752{
5753 struct timespec64 t;
5754 int retval = sched_rr_get_interval(pid, &t);
5755
5756 if (retval == 0)
5757 retval = put_timespec64(&t, interval);
5758
5759 return retval;
5760}
5761
474b9c77 5762#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5763SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5764 struct old_timespec32 __user *, interval)
abca5fc5
AV
5765{
5766 struct timespec64 t;
5767 int retval = sched_rr_get_interval(pid, &t);
5768
5769 if (retval == 0)
9afc5eee 5770 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5771 return retval;
5772}
5773#endif
5774
82a1fcb9 5775void sched_show_task(struct task_struct *p)
1da177e4 5776{
1da177e4 5777 unsigned long free = 0;
4e79752c 5778 int ppid;
c930b2c0 5779
38200502
TH
5780 if (!try_get_task_stack(p))
5781 return;
20435d84
XX
5782
5783 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5784
5785 if (p->state == TASK_RUNNING)
3df0fc5b 5786 printk(KERN_CONT " running task ");
1da177e4 5787#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5788 free = stack_not_used(p);
1da177e4 5789#endif
a90e984c 5790 ppid = 0;
4e79752c 5791 rcu_read_lock();
a90e984c
ON
5792 if (pid_alive(p))
5793 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5794 rcu_read_unlock();
3df0fc5b 5795 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5796 task_pid_nr(p), ppid,
aa47b7e0 5797 (unsigned long)task_thread_info(p)->flags);
1da177e4 5798
3d1cb205 5799 print_worker_info(KERN_INFO, p);
5fb5e6de 5800 show_stack(p, NULL);
38200502 5801 put_task_stack(p);
1da177e4 5802}
0032f4e8 5803EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5804
5d68cc95
PZ
5805static inline bool
5806state_filter_match(unsigned long state_filter, struct task_struct *p)
5807{
5808 /* no filter, everything matches */
5809 if (!state_filter)
5810 return true;
5811
5812 /* filter, but doesn't match */
5813 if (!(p->state & state_filter))
5814 return false;
5815
5816 /*
5817 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5818 * TASK_KILLABLE).
5819 */
5820 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5821 return false;
5822
5823 return true;
5824}
5825
5826
e59e2ae2 5827void show_state_filter(unsigned long state_filter)
1da177e4 5828{
36c8b586 5829 struct task_struct *g, *p;
1da177e4 5830
4bd77321 5831#if BITS_PER_LONG == 32
3df0fc5b
PZ
5832 printk(KERN_INFO
5833 " task PC stack pid father\n");
1da177e4 5834#else
3df0fc5b
PZ
5835 printk(KERN_INFO
5836 " task PC stack pid father\n");
1da177e4 5837#endif
510f5acc 5838 rcu_read_lock();
5d07f420 5839 for_each_process_thread(g, p) {
1da177e4
LT
5840 /*
5841 * reset the NMI-timeout, listing all files on a slow
25985edc 5842 * console might take a lot of time:
57675cb9
AR
5843 * Also, reset softlockup watchdogs on all CPUs, because
5844 * another CPU might be blocked waiting for us to process
5845 * an IPI.
1da177e4
LT
5846 */
5847 touch_nmi_watchdog();
57675cb9 5848 touch_all_softlockup_watchdogs();
5d68cc95 5849 if (state_filter_match(state_filter, p))
82a1fcb9 5850 sched_show_task(p);
5d07f420 5851 }
1da177e4 5852
dd41f596 5853#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5854 if (!state_filter)
5855 sysrq_sched_debug_show();
dd41f596 5856#endif
510f5acc 5857 rcu_read_unlock();
e59e2ae2
IM
5858 /*
5859 * Only show locks if all tasks are dumped:
5860 */
93335a21 5861 if (!state_filter)
e59e2ae2 5862 debug_show_all_locks();
1da177e4
LT
5863}
5864
f340c0d1
IM
5865/**
5866 * init_idle - set up an idle thread for a given CPU
5867 * @idle: task in question
d1ccc66d 5868 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5869 *
5870 * NOTE: this function does not set the idle thread's NEED_RESCHED
5871 * flag, to make booting more robust.
5872 */
0db0628d 5873void init_idle(struct task_struct *idle, int cpu)
1da177e4 5874{
70b97a7f 5875 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5876 unsigned long flags;
5877
25834c73
PZ
5878 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5879 raw_spin_lock(&rq->lock);
5cbd54ef 5880
5e1576ed 5881 __sched_fork(0, idle);
06b83b5f 5882 idle->state = TASK_RUNNING;
dd41f596 5883 idle->se.exec_start = sched_clock();
c1de45ca 5884 idle->flags |= PF_IDLE;
dd41f596 5885
e1b77c92
MR
5886 kasan_unpoison_task_stack(idle);
5887
de9b8f5d
PZ
5888#ifdef CONFIG_SMP
5889 /*
5890 * Its possible that init_idle() gets called multiple times on a task,
5891 * in that case do_set_cpus_allowed() will not do the right thing.
5892 *
5893 * And since this is boot we can forgo the serialization.
5894 */
5895 set_cpus_allowed_common(idle, cpumask_of(cpu));
5896#endif
6506cf6c
PZ
5897 /*
5898 * We're having a chicken and egg problem, even though we are
d1ccc66d 5899 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5900 * lockdep check in task_group() will fail.
5901 *
5902 * Similar case to sched_fork(). / Alternatively we could
5903 * use task_rq_lock() here and obtain the other rq->lock.
5904 *
5905 * Silence PROVE_RCU
5906 */
5907 rcu_read_lock();
dd41f596 5908 __set_task_cpu(idle, cpu);
6506cf6c 5909 rcu_read_unlock();
1da177e4 5910
1da177e4 5911 rq->curr = rq->idle = idle;
da0c1e65 5912 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5913#ifdef CONFIG_SMP
3ca7a440 5914 idle->on_cpu = 1;
4866cde0 5915#endif
25834c73
PZ
5916 raw_spin_unlock(&rq->lock);
5917 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5918
5919 /* Set the preempt count _outside_ the spinlocks! */
01028747 5920 init_idle_preempt_count(idle, cpu);
55cd5340 5921
dd41f596
IM
5922 /*
5923 * The idle tasks have their own, simple scheduling class:
5924 */
5925 idle->sched_class = &idle_sched_class;
868baf07 5926 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5927 vtime_init_idle(idle, cpu);
de9b8f5d 5928#ifdef CONFIG_SMP
f1c6f1a7
CE
5929 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5930#endif
19978ca6
IM
5931}
5932
e1d4eeec
NP
5933#ifdef CONFIG_SMP
5934
f82f8042
JL
5935int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5936 const struct cpumask *trial)
5937{
06a76fe0 5938 int ret = 1;
f82f8042 5939
bb2bc55a
MG
5940 if (!cpumask_weight(cur))
5941 return ret;
5942
06a76fe0 5943 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5944
5945 return ret;
5946}
5947
7f51412a
JL
5948int task_can_attach(struct task_struct *p,
5949 const struct cpumask *cs_cpus_allowed)
5950{
5951 int ret = 0;
5952
5953 /*
5954 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5955 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5956 * affinity and isolating such threads by their set of
5957 * allowed nodes is unnecessary. Thus, cpusets are not
5958 * applicable for such threads. This prevents checking for
5959 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5960 * before cpus_mask may be changed.
7f51412a
JL
5961 */
5962 if (p->flags & PF_NO_SETAFFINITY) {
5963 ret = -EINVAL;
5964 goto out;
5965 }
5966
7f51412a 5967 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5968 cs_cpus_allowed))
5969 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5970
7f51412a
JL
5971out:
5972 return ret;
5973}
5974
f2cb1360 5975bool sched_smp_initialized __read_mostly;
e26fbffd 5976
e6628d5b
MG
5977#ifdef CONFIG_NUMA_BALANCING
5978/* Migrate current task p to target_cpu */
5979int migrate_task_to(struct task_struct *p, int target_cpu)
5980{
5981 struct migration_arg arg = { p, target_cpu };
5982 int curr_cpu = task_cpu(p);
5983
5984 if (curr_cpu == target_cpu)
5985 return 0;
5986
3bd37062 5987 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
5988 return -EINVAL;
5989
5990 /* TODO: This is not properly updating schedstats */
5991
286549dc 5992 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5993 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5994}
0ec8aa00
PZ
5995
5996/*
5997 * Requeue a task on a given node and accurately track the number of NUMA
5998 * tasks on the runqueues
5999 */
6000void sched_setnuma(struct task_struct *p, int nid)
6001{
da0c1e65 6002 bool queued, running;
eb580751
PZ
6003 struct rq_flags rf;
6004 struct rq *rq;
0ec8aa00 6005
eb580751 6006 rq = task_rq_lock(p, &rf);
da0c1e65 6007 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6008 running = task_current(rq, p);
6009
da0c1e65 6010 if (queued)
1de64443 6011 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6012 if (running)
f3cd1c4e 6013 put_prev_task(rq, p);
0ec8aa00
PZ
6014
6015 p->numa_preferred_nid = nid;
0ec8aa00 6016
da0c1e65 6017 if (queued)
7134b3e9 6018 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6019 if (running)
b2bf6c31 6020 set_curr_task(rq, p);
eb580751 6021 task_rq_unlock(rq, p, &rf);
0ec8aa00 6022}
5cc389bc 6023#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6024
1da177e4 6025#ifdef CONFIG_HOTPLUG_CPU
054b9108 6026/*
d1ccc66d 6027 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6028 * offline.
054b9108 6029 */
48c5ccae 6030void idle_task_exit(void)
1da177e4 6031{
48c5ccae 6032 struct mm_struct *mm = current->active_mm;
e76bd8d9 6033
48c5ccae 6034 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6035
a53efe5f 6036 if (mm != &init_mm) {
252d2a41 6037 switch_mm(mm, &init_mm, current);
3eda69c9 6038 current->active_mm = &init_mm;
a53efe5f
MS
6039 finish_arch_post_lock_switch();
6040 }
48c5ccae 6041 mmdrop(mm);
1da177e4
LT
6042}
6043
6044/*
5d180232
PZ
6045 * Since this CPU is going 'away' for a while, fold any nr_active delta
6046 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6047 * nr_active count is stable. We need to take the teardown thread which
6048 * is calling this into account, so we hand in adjust = 1 to the load
6049 * calculation.
5d180232
PZ
6050 *
6051 * Also see the comment "Global load-average calculations".
1da177e4 6052 */
5d180232 6053static void calc_load_migrate(struct rq *rq)
1da177e4 6054{
d60585c5 6055 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6056 if (delta)
6057 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6058}
6059
3f1d2a31
PZ
6060static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6061{
6062}
6063
6064static const struct sched_class fake_sched_class = {
6065 .put_prev_task = put_prev_task_fake,
6066};
6067
6068static struct task_struct fake_task = {
6069 /*
6070 * Avoid pull_{rt,dl}_task()
6071 */
6072 .prio = MAX_PRIO + 1,
6073 .sched_class = &fake_sched_class,
6074};
6075
48f24c4d 6076/*
48c5ccae
PZ
6077 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6078 * try_to_wake_up()->select_task_rq().
6079 *
6080 * Called with rq->lock held even though we'er in stop_machine() and
6081 * there's no concurrency possible, we hold the required locks anyway
6082 * because of lock validation efforts.
1da177e4 6083 */
8a8c69c3 6084static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6085{
5e16bbc2 6086 struct rq *rq = dead_rq;
48c5ccae 6087 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6088 struct rq_flags orf = *rf;
48c5ccae 6089 int dest_cpu;
1da177e4
LT
6090
6091 /*
48c5ccae
PZ
6092 * Fudge the rq selection such that the below task selection loop
6093 * doesn't get stuck on the currently eligible stop task.
6094 *
6095 * We're currently inside stop_machine() and the rq is either stuck
6096 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6097 * either way we should never end up calling schedule() until we're
6098 * done here.
1da177e4 6099 */
48c5ccae 6100 rq->stop = NULL;
48f24c4d 6101
77bd3970
FW
6102 /*
6103 * put_prev_task() and pick_next_task() sched
6104 * class method both need to have an up-to-date
6105 * value of rq->clock[_task]
6106 */
6107 update_rq_clock(rq);
6108
5e16bbc2 6109 for (;;) {
48c5ccae
PZ
6110 /*
6111 * There's this thread running, bail when that's the only
d1ccc66d 6112 * remaining thread:
48c5ccae
PZ
6113 */
6114 if (rq->nr_running == 1)
dd41f596 6115 break;
48c5ccae 6116
cbce1a68 6117 /*
d1ccc66d 6118 * pick_next_task() assumes pinned rq->lock:
cbce1a68 6119 */
8a8c69c3 6120 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 6121 BUG_ON(!next);
5b713a3d 6122 put_prev_task(rq, next);
e692ab53 6123
5473e0cc 6124 /*
3bd37062 6125 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6126 * both pi_lock and rq->lock, such that holding either
6127 * stabilizes the mask.
6128 *
6129 * Drop rq->lock is not quite as disastrous as it usually is
6130 * because !cpu_active at this point, which means load-balance
6131 * will not interfere. Also, stop-machine.
6132 */
8a8c69c3 6133 rq_unlock(rq, rf);
5473e0cc 6134 raw_spin_lock(&next->pi_lock);
8a8c69c3 6135 rq_relock(rq, rf);
5473e0cc
WL
6136
6137 /*
6138 * Since we're inside stop-machine, _nothing_ should have
6139 * changed the task, WARN if weird stuff happened, because in
6140 * that case the above rq->lock drop is a fail too.
6141 */
6142 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6143 raw_spin_unlock(&next->pi_lock);
6144 continue;
6145 }
6146
48c5ccae 6147 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6148 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6149 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6150 if (rq != dead_rq) {
8a8c69c3 6151 rq_unlock(rq, rf);
5e16bbc2 6152 rq = dead_rq;
8a8c69c3
PZ
6153 *rf = orf;
6154 rq_relock(rq, rf);
5e16bbc2 6155 }
5473e0cc 6156 raw_spin_unlock(&next->pi_lock);
1da177e4 6157 }
dce48a84 6158
48c5ccae 6159 rq->stop = stop;
dce48a84 6160}
1da177e4
LT
6161#endif /* CONFIG_HOTPLUG_CPU */
6162
f2cb1360 6163void set_rq_online(struct rq *rq)
1f11eb6a
GH
6164{
6165 if (!rq->online) {
6166 const struct sched_class *class;
6167
c6c4927b 6168 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6169 rq->online = 1;
6170
6171 for_each_class(class) {
6172 if (class->rq_online)
6173 class->rq_online(rq);
6174 }
6175 }
6176}
6177
f2cb1360 6178void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6179{
6180 if (rq->online) {
6181 const struct sched_class *class;
6182
6183 for_each_class(class) {
6184 if (class->rq_offline)
6185 class->rq_offline(rq);
6186 }
6187
c6c4927b 6188 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6189 rq->online = 0;
6190 }
6191}
6192
d1ccc66d
IM
6193/*
6194 * used to mark begin/end of suspend/resume:
6195 */
6196static int num_cpus_frozen;
d35be8ba 6197
1da177e4 6198/*
3a101d05
TH
6199 * Update cpusets according to cpu_active mask. If cpusets are
6200 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6201 * around partition_sched_domains().
d35be8ba
SB
6202 *
6203 * If we come here as part of a suspend/resume, don't touch cpusets because we
6204 * want to restore it back to its original state upon resume anyway.
1da177e4 6205 */
40190a78 6206static void cpuset_cpu_active(void)
e761b772 6207{
40190a78 6208 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6209 /*
6210 * num_cpus_frozen tracks how many CPUs are involved in suspend
6211 * resume sequence. As long as this is not the last online
6212 * operation in the resume sequence, just build a single sched
6213 * domain, ignoring cpusets.
6214 */
50e76632
PZ
6215 partition_sched_domains(1, NULL, NULL);
6216 if (--num_cpus_frozen)
135fb3e1 6217 return;
d35be8ba
SB
6218 /*
6219 * This is the last CPU online operation. So fall through and
6220 * restore the original sched domains by considering the
6221 * cpuset configurations.
6222 */
50e76632 6223 cpuset_force_rebuild();
3a101d05 6224 }
30e03acd 6225 cpuset_update_active_cpus();
3a101d05 6226}
e761b772 6227
40190a78 6228static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6229{
40190a78 6230 if (!cpuhp_tasks_frozen) {
06a76fe0 6231 if (dl_cpu_busy(cpu))
135fb3e1 6232 return -EBUSY;
30e03acd 6233 cpuset_update_active_cpus();
135fb3e1 6234 } else {
d35be8ba
SB
6235 num_cpus_frozen++;
6236 partition_sched_domains(1, NULL, NULL);
e761b772 6237 }
135fb3e1 6238 return 0;
e761b772 6239}
e761b772 6240
40190a78 6241int sched_cpu_activate(unsigned int cpu)
135fb3e1 6242{
7d976699 6243 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6244 struct rq_flags rf;
7d976699 6245
ba2591a5
PZ
6246#ifdef CONFIG_SCHED_SMT
6247 /*
c5511d03 6248 * When going up, increment the number of cores with SMT present.
ba2591a5 6249 */
c5511d03
PZI
6250 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6251 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6252#endif
40190a78 6253 set_cpu_active(cpu, true);
135fb3e1 6254
40190a78 6255 if (sched_smp_initialized) {
135fb3e1 6256 sched_domains_numa_masks_set(cpu);
40190a78 6257 cpuset_cpu_active();
e761b772 6258 }
7d976699
TG
6259
6260 /*
6261 * Put the rq online, if not already. This happens:
6262 *
6263 * 1) In the early boot process, because we build the real domains
d1ccc66d 6264 * after all CPUs have been brought up.
7d976699
TG
6265 *
6266 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6267 * domains.
6268 */
8a8c69c3 6269 rq_lock_irqsave(rq, &rf);
7d976699
TG
6270 if (rq->rd) {
6271 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6272 set_rq_online(rq);
6273 }
8a8c69c3 6274 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
6275
6276 update_max_interval();
6277
40190a78 6278 return 0;
135fb3e1
TG
6279}
6280
40190a78 6281int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6282{
135fb3e1
TG
6283 int ret;
6284
40190a78 6285 set_cpu_active(cpu, false);
b2454caa
PZ
6286 /*
6287 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6288 * users of this state to go away such that all new such users will
6289 * observe it.
6290 *
b2454caa
PZ
6291 * Do sync before park smpboot threads to take care the rcu boost case.
6292 */
309ba859 6293 synchronize_rcu();
40190a78 6294
c5511d03
PZI
6295#ifdef CONFIG_SCHED_SMT
6296 /*
6297 * When going down, decrement the number of cores with SMT present.
6298 */
6299 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6300 static_branch_dec_cpuslocked(&sched_smt_present);
6301#endif
6302
40190a78
TG
6303 if (!sched_smp_initialized)
6304 return 0;
6305
6306 ret = cpuset_cpu_inactive(cpu);
6307 if (ret) {
6308 set_cpu_active(cpu, true);
6309 return ret;
135fb3e1 6310 }
40190a78
TG
6311 sched_domains_numa_masks_clear(cpu);
6312 return 0;
135fb3e1
TG
6313}
6314
94baf7a5
TG
6315static void sched_rq_cpu_starting(unsigned int cpu)
6316{
6317 struct rq *rq = cpu_rq(cpu);
6318
6319 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6320 update_max_interval();
6321}
6322
135fb3e1
TG
6323int sched_cpu_starting(unsigned int cpu)
6324{
94baf7a5 6325 sched_rq_cpu_starting(cpu);
d84b3131 6326 sched_tick_start(cpu);
135fb3e1 6327 return 0;
e761b772 6328}
e761b772 6329
f2785ddb
TG
6330#ifdef CONFIG_HOTPLUG_CPU
6331int sched_cpu_dying(unsigned int cpu)
6332{
6333 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6334 struct rq_flags rf;
f2785ddb
TG
6335
6336 /* Handle pending wakeups and then migrate everything off */
6337 sched_ttwu_pending();
d84b3131 6338 sched_tick_stop(cpu);
8a8c69c3
PZ
6339
6340 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6341 if (rq->rd) {
6342 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6343 set_rq_offline(rq);
6344 }
8a8c69c3 6345 migrate_tasks(rq, &rf);
f2785ddb 6346 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6347 rq_unlock_irqrestore(rq, &rf);
6348
f2785ddb
TG
6349 calc_load_migrate(rq);
6350 update_max_interval();
00357f5e 6351 nohz_balance_exit_idle(rq);
e5ef27d0 6352 hrtick_clear(rq);
f2785ddb
TG
6353 return 0;
6354}
6355#endif
6356
1da177e4
LT
6357void __init sched_init_smp(void)
6358{
cb83b629
PZ
6359 sched_init_numa();
6360
6acce3ef
PZ
6361 /*
6362 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6363 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6364 * happen.
6acce3ef 6365 */
712555ee 6366 mutex_lock(&sched_domains_mutex);
8d5dc512 6367 sched_init_domains(cpu_active_mask);
712555ee 6368 mutex_unlock(&sched_domains_mutex);
e761b772 6369
5c1e1767 6370 /* Move init over to a non-isolated CPU */
edb93821 6371 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6372 BUG();
19978ca6 6373 sched_init_granularity();
4212823f 6374
0e3900e6 6375 init_sched_rt_class();
1baca4ce 6376 init_sched_dl_class();
1b568f0a 6377
e26fbffd 6378 sched_smp_initialized = true;
1da177e4 6379}
e26fbffd
TG
6380
6381static int __init migration_init(void)
6382{
77a5352b 6383 sched_cpu_starting(smp_processor_id());
e26fbffd 6384 return 0;
1da177e4 6385}
e26fbffd
TG
6386early_initcall(migration_init);
6387
1da177e4
LT
6388#else
6389void __init sched_init_smp(void)
6390{
19978ca6 6391 sched_init_granularity();
1da177e4
LT
6392}
6393#endif /* CONFIG_SMP */
6394
6395int in_sched_functions(unsigned long addr)
6396{
1da177e4
LT
6397 return in_lock_functions(addr) ||
6398 (addr >= (unsigned long)__sched_text_start
6399 && addr < (unsigned long)__sched_text_end);
6400}
6401
029632fb 6402#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6403/*
6404 * Default task group.
6405 * Every task in system belongs to this group at bootup.
6406 */
029632fb 6407struct task_group root_task_group;
35cf4e50 6408LIST_HEAD(task_groups);
b0367629
WL
6409
6410/* Cacheline aligned slab cache for task_group */
6411static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6412#endif
6f505b16 6413
e6252c3e 6414DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6415DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6416
1da177e4
LT
6417void __init sched_init(void)
6418{
434d53b0 6419 unsigned long alloc_size = 0, ptr;
55627e3c 6420 int i;
434d53b0 6421
5822a454 6422 wait_bit_init();
9dcb8b68 6423
434d53b0
MT
6424#ifdef CONFIG_FAIR_GROUP_SCHED
6425 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6426#endif
6427#ifdef CONFIG_RT_GROUP_SCHED
6428 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6429#endif
434d53b0 6430 if (alloc_size) {
36b7b6d4 6431 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6432
6433#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6434 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6435 ptr += nr_cpu_ids * sizeof(void **);
6436
07e06b01 6437 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6438 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6439
6d6bc0ad 6440#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6441#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6442 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6443 ptr += nr_cpu_ids * sizeof(void **);
6444
07e06b01 6445 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6446 ptr += nr_cpu_ids * sizeof(void **);
6447
6d6bc0ad 6448#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6449 }
df7c8e84 6450#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6451 for_each_possible_cpu(i) {
6452 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6453 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6454 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6455 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6456 }
b74e6278 6457#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6458
d1ccc66d
IM
6459 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6460 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6461
57d885fe
GH
6462#ifdef CONFIG_SMP
6463 init_defrootdomain();
6464#endif
6465
d0b27fa7 6466#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6467 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6468 global_rt_period(), global_rt_runtime());
6d6bc0ad 6469#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6470
7c941438 6471#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6472 task_group_cache = KMEM_CACHE(task_group, 0);
6473
07e06b01
YZ
6474 list_add(&root_task_group.list, &task_groups);
6475 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6476 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6477 autogroup_init(&init_task);
7c941438 6478#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6479
0a945022 6480 for_each_possible_cpu(i) {
70b97a7f 6481 struct rq *rq;
1da177e4
LT
6482
6483 rq = cpu_rq(i);
05fa785c 6484 raw_spin_lock_init(&rq->lock);
7897986b 6485 rq->nr_running = 0;
dce48a84
TG
6486 rq->calc_load_active = 0;
6487 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6488 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6489 init_rt_rq(&rq->rt);
6490 init_dl_rq(&rq->dl);
dd41f596 6491#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6492 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6493 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6494 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6495 /*
d1ccc66d 6496 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6497 *
6498 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6499 * gets 100% of the CPU resources in the system. This overall
6500 * system CPU resource is divided among the tasks of
07e06b01 6501 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6502 * based on each entity's (task or task-group's) weight
6503 * (se->load.weight).
6504 *
07e06b01 6505 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6506 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6507 * then A0's share of the CPU resource is:
354d60c2 6508 *
0d905bca 6509 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6510 *
07e06b01
YZ
6511 * We achieve this by letting root_task_group's tasks sit
6512 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6513 */
ab84d31e 6514 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6515 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6516#endif /* CONFIG_FAIR_GROUP_SCHED */
6517
6518 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6519#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6520 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6521#endif
1da177e4 6522#ifdef CONFIG_SMP
41c7ce9a 6523 rq->sd = NULL;
57d885fe 6524 rq->rd = NULL;
ca6d75e6 6525 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6526 rq->balance_callback = NULL;
1da177e4 6527 rq->active_balance = 0;
dd41f596 6528 rq->next_balance = jiffies;
1da177e4 6529 rq->push_cpu = 0;
0a2966b4 6530 rq->cpu = i;
1f11eb6a 6531 rq->online = 0;
eae0c9df
MG
6532 rq->idle_stamp = 0;
6533 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6534 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6535
6536 INIT_LIST_HEAD(&rq->cfs_tasks);
6537
dc938520 6538 rq_attach_root(rq, &def_root_domain);
3451d024 6539#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6540 rq->last_load_update_tick = jiffies;
e022e0d3 6541 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6542 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6543#endif
9fd81dd5 6544#endif /* CONFIG_SMP */
77a021be 6545 hrtick_rq_init(rq);
1da177e4 6546 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6547 }
6548
9059393e 6549 set_load_weight(&init_task, false);
b50f60ce 6550
1da177e4
LT
6551 /*
6552 * The boot idle thread does lazy MMU switching as well:
6553 */
f1f10076 6554 mmgrab(&init_mm);
1da177e4
LT
6555 enter_lazy_tlb(&init_mm, current);
6556
6557 /*
6558 * Make us the idle thread. Technically, schedule() should not be
6559 * called from this thread, however somewhere below it might be,
6560 * but because we are the idle thread, we just pick up running again
6561 * when this runqueue becomes "idle".
6562 */
6563 init_idle(current, smp_processor_id());
dce48a84
TG
6564
6565 calc_load_update = jiffies + LOAD_FREQ;
6566
bf4d83f6 6567#ifdef CONFIG_SMP
29d5e047 6568 idle_thread_set_boot_cpu();
029632fb
PZ
6569#endif
6570 init_sched_fair_class();
6a7b3dc3 6571
4698f88c
JP
6572 init_schedstats();
6573
eb414681
JW
6574 psi_init();
6575
69842cba
PB
6576 init_uclamp();
6577
6892b75e 6578 scheduler_running = 1;
1da177e4
LT
6579}
6580
d902db1e 6581#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6582static inline int preempt_count_equals(int preempt_offset)
6583{
da7142e2 6584 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6585
4ba8216c 6586 return (nested == preempt_offset);
e4aafea2
FW
6587}
6588
d894837f 6589void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6590{
8eb23b9f
PZ
6591 /*
6592 * Blocking primitives will set (and therefore destroy) current->state,
6593 * since we will exit with TASK_RUNNING make sure we enter with it,
6594 * otherwise we will destroy state.
6595 */
00845eb9 6596 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6597 "do not call blocking ops when !TASK_RUNNING; "
6598 "state=%lx set at [<%p>] %pS\n",
6599 current->state,
6600 (void *)current->task_state_change,
00845eb9 6601 (void *)current->task_state_change);
8eb23b9f 6602
3427445a
PZ
6603 ___might_sleep(file, line, preempt_offset);
6604}
6605EXPORT_SYMBOL(__might_sleep);
6606
6607void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6608{
d1ccc66d
IM
6609 /* Ratelimiting timestamp: */
6610 static unsigned long prev_jiffy;
6611
d1c6d149 6612 unsigned long preempt_disable_ip;
1da177e4 6613
d1ccc66d
IM
6614 /* WARN_ON_ONCE() by default, no rate limit required: */
6615 rcu_sleep_check();
6616
db273be2
TG
6617 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6618 !is_idle_task(current)) ||
1c3c5eab
TG
6619 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6620 oops_in_progress)
aef745fc 6621 return;
1c3c5eab 6622
aef745fc
IM
6623 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6624 return;
6625 prev_jiffy = jiffies;
6626
d1ccc66d 6627 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6628 preempt_disable_ip = get_preempt_disable_ip(current);
6629
3df0fc5b
PZ
6630 printk(KERN_ERR
6631 "BUG: sleeping function called from invalid context at %s:%d\n",
6632 file, line);
6633 printk(KERN_ERR
6634 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6635 in_atomic(), irqs_disabled(),
6636 current->pid, current->comm);
aef745fc 6637
a8b686b3
ES
6638 if (task_stack_end_corrupted(current))
6639 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6640
aef745fc
IM
6641 debug_show_held_locks(current);
6642 if (irqs_disabled())
6643 print_irqtrace_events(current);
d1c6d149
VN
6644 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6645 && !preempt_count_equals(preempt_offset)) {
8f47b187 6646 pr_err("Preemption disabled at:");
d1c6d149 6647 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6648 pr_cont("\n");
6649 }
aef745fc 6650 dump_stack();
f0b22e39 6651 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6652}
3427445a 6653EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6654
6655void __cant_sleep(const char *file, int line, int preempt_offset)
6656{
6657 static unsigned long prev_jiffy;
6658
6659 if (irqs_disabled())
6660 return;
6661
6662 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6663 return;
6664
6665 if (preempt_count() > preempt_offset)
6666 return;
6667
6668 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6669 return;
6670 prev_jiffy = jiffies;
6671
6672 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6673 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6674 in_atomic(), irqs_disabled(),
6675 current->pid, current->comm);
6676
6677 debug_show_held_locks(current);
6678 dump_stack();
6679 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6680}
6681EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6682#endif
6683
6684#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6685void normalize_rt_tasks(void)
3a5e4dc1 6686{
dbc7f069 6687 struct task_struct *g, *p;
d50dde5a
DF
6688 struct sched_attr attr = {
6689 .sched_policy = SCHED_NORMAL,
6690 };
1da177e4 6691
3472eaa1 6692 read_lock(&tasklist_lock);
5d07f420 6693 for_each_process_thread(g, p) {
178be793
IM
6694 /*
6695 * Only normalize user tasks:
6696 */
3472eaa1 6697 if (p->flags & PF_KTHREAD)
178be793
IM
6698 continue;
6699
4fa8d299
JP
6700 p->se.exec_start = 0;
6701 schedstat_set(p->se.statistics.wait_start, 0);
6702 schedstat_set(p->se.statistics.sleep_start, 0);
6703 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6704
aab03e05 6705 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6706 /*
6707 * Renice negative nice level userspace
6708 * tasks back to 0:
6709 */
3472eaa1 6710 if (task_nice(p) < 0)
dd41f596 6711 set_user_nice(p, 0);
1da177e4 6712 continue;
dd41f596 6713 }
1da177e4 6714
dbc7f069 6715 __sched_setscheduler(p, &attr, false, false);
5d07f420 6716 }
3472eaa1 6717 read_unlock(&tasklist_lock);
1da177e4
LT
6718}
6719
6720#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6721
67fc4e0c 6722#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6723/*
67fc4e0c 6724 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6725 *
6726 * They can only be called when the whole system has been
6727 * stopped - every CPU needs to be quiescent, and no scheduling
6728 * activity can take place. Using them for anything else would
6729 * be a serious bug, and as a result, they aren't even visible
6730 * under any other configuration.
6731 */
6732
6733/**
d1ccc66d 6734 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6735 * @cpu: the processor in question.
6736 *
6737 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6738 *
6739 * Return: The current task for @cpu.
1df5c10a 6740 */
36c8b586 6741struct task_struct *curr_task(int cpu)
1df5c10a
LT
6742{
6743 return cpu_curr(cpu);
6744}
6745
67fc4e0c
JW
6746#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6747
6748#ifdef CONFIG_IA64
1df5c10a 6749/**
d1ccc66d 6750 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6751 * @cpu: the processor in question.
6752 * @p: the task pointer to set.
6753 *
6754 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6755 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6756 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6757 * must be called with all CPU's synchronized, and interrupts disabled, the
6758 * and caller must save the original value of the current task (see
6759 * curr_task() above) and restore that value before reenabling interrupts and
6760 * re-starting the system.
6761 *
6762 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6763 */
a458ae2e 6764void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6765{
6766 cpu_curr(cpu) = p;
6767}
6768
6769#endif
29f59db3 6770
7c941438 6771#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6772/* task_group_lock serializes the addition/removal of task groups */
6773static DEFINE_SPINLOCK(task_group_lock);
6774
2f5177f0 6775static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6776{
6777 free_fair_sched_group(tg);
6778 free_rt_sched_group(tg);
e9aa1dd1 6779 autogroup_free(tg);
b0367629 6780 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6781}
6782
6783/* allocate runqueue etc for a new task group */
ec7dc8ac 6784struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6785{
6786 struct task_group *tg;
bccbe08a 6787
b0367629 6788 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6789 if (!tg)
6790 return ERR_PTR(-ENOMEM);
6791
ec7dc8ac 6792 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6793 goto err;
6794
ec7dc8ac 6795 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6796 goto err;
6797
ace783b9
LZ
6798 return tg;
6799
6800err:
2f5177f0 6801 sched_free_group(tg);
ace783b9
LZ
6802 return ERR_PTR(-ENOMEM);
6803}
6804
6805void sched_online_group(struct task_group *tg, struct task_group *parent)
6806{
6807 unsigned long flags;
6808
8ed36996 6809 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6810 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6811
d1ccc66d
IM
6812 /* Root should already exist: */
6813 WARN_ON(!parent);
f473aa5e
PZ
6814
6815 tg->parent = parent;
f473aa5e 6816 INIT_LIST_HEAD(&tg->children);
09f2724a 6817 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6818 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6819
6820 online_fair_sched_group(tg);
29f59db3
SV
6821}
6822
9b5b7751 6823/* rcu callback to free various structures associated with a task group */
2f5177f0 6824static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6825{
d1ccc66d 6826 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6827 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6828}
6829
4cf86d77 6830void sched_destroy_group(struct task_group *tg)
ace783b9 6831{
d1ccc66d 6832 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6833 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6834}
6835
6836void sched_offline_group(struct task_group *tg)
29f59db3 6837{
8ed36996 6838 unsigned long flags;
29f59db3 6839
d1ccc66d 6840 /* End participation in shares distribution: */
6fe1f348 6841 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6842
6843 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6844 list_del_rcu(&tg->list);
f473aa5e 6845 list_del_rcu(&tg->siblings);
8ed36996 6846 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6847}
6848
ea86cb4b 6849static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6850{
8323f26c 6851 struct task_group *tg;
29f59db3 6852
f7b8a47d
KT
6853 /*
6854 * All callers are synchronized by task_rq_lock(); we do not use RCU
6855 * which is pointless here. Thus, we pass "true" to task_css_check()
6856 * to prevent lockdep warnings.
6857 */
6858 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6859 struct task_group, css);
6860 tg = autogroup_task_group(tsk, tg);
6861 tsk->sched_task_group = tg;
6862
810b3817 6863#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6864 if (tsk->sched_class->task_change_group)
6865 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6866 else
810b3817 6867#endif
b2b5ce02 6868 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6869}
6870
6871/*
6872 * Change task's runqueue when it moves between groups.
6873 *
6874 * The caller of this function should have put the task in its new group by
6875 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6876 * its new group.
6877 */
6878void sched_move_task(struct task_struct *tsk)
6879{
7a57f32a
PZ
6880 int queued, running, queue_flags =
6881 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6882 struct rq_flags rf;
6883 struct rq *rq;
6884
6885 rq = task_rq_lock(tsk, &rf);
1b1d6225 6886 update_rq_clock(rq);
ea86cb4b
VG
6887
6888 running = task_current(rq, tsk);
6889 queued = task_on_rq_queued(tsk);
6890
6891 if (queued)
7a57f32a 6892 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6893 if (running)
ea86cb4b
VG
6894 put_prev_task(rq, tsk);
6895
6896 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6897
da0c1e65 6898 if (queued)
7a57f32a 6899 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6900 if (running)
b2bf6c31 6901 set_curr_task(rq, tsk);
29f59db3 6902
eb580751 6903 task_rq_unlock(rq, tsk, &rf);
29f59db3 6904}
68318b8e 6905
a7c6d554 6906static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6907{
a7c6d554 6908 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6909}
6910
eb95419b
TH
6911static struct cgroup_subsys_state *
6912cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6913{
eb95419b
TH
6914 struct task_group *parent = css_tg(parent_css);
6915 struct task_group *tg;
68318b8e 6916
eb95419b 6917 if (!parent) {
68318b8e 6918 /* This is early initialization for the top cgroup */
07e06b01 6919 return &root_task_group.css;
68318b8e
SV
6920 }
6921
ec7dc8ac 6922 tg = sched_create_group(parent);
68318b8e
SV
6923 if (IS_ERR(tg))
6924 return ERR_PTR(-ENOMEM);
6925
68318b8e
SV
6926 return &tg->css;
6927}
6928
96b77745
KK
6929/* Expose task group only after completing cgroup initialization */
6930static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6931{
6932 struct task_group *tg = css_tg(css);
6933 struct task_group *parent = css_tg(css->parent);
6934
6935 if (parent)
6936 sched_online_group(tg, parent);
6937 return 0;
6938}
6939
2f5177f0 6940static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6941{
eb95419b 6942 struct task_group *tg = css_tg(css);
ace783b9 6943
2f5177f0 6944 sched_offline_group(tg);
ace783b9
LZ
6945}
6946
eb95419b 6947static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6948{
eb95419b 6949 struct task_group *tg = css_tg(css);
68318b8e 6950
2f5177f0
PZ
6951 /*
6952 * Relies on the RCU grace period between css_released() and this.
6953 */
6954 sched_free_group(tg);
ace783b9
LZ
6955}
6956
ea86cb4b
VG
6957/*
6958 * This is called before wake_up_new_task(), therefore we really only
6959 * have to set its group bits, all the other stuff does not apply.
6960 */
b53202e6 6961static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6962{
ea86cb4b
VG
6963 struct rq_flags rf;
6964 struct rq *rq;
6965
6966 rq = task_rq_lock(task, &rf);
6967
80f5c1b8 6968 update_rq_clock(rq);
ea86cb4b
VG
6969 sched_change_group(task, TASK_SET_GROUP);
6970
6971 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6972}
6973
1f7dd3e5 6974static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6975{
bb9d97b6 6976 struct task_struct *task;
1f7dd3e5 6977 struct cgroup_subsys_state *css;
7dc603c9 6978 int ret = 0;
bb9d97b6 6979
1f7dd3e5 6980 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6981#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6982 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6983 return -EINVAL;
b68aa230 6984#else
bb9d97b6
TH
6985 /* We don't support RT-tasks being in separate groups */
6986 if (task->sched_class != &fair_sched_class)
6987 return -EINVAL;
b68aa230 6988#endif
7dc603c9
PZ
6989 /*
6990 * Serialize against wake_up_new_task() such that if its
6991 * running, we're sure to observe its full state.
6992 */
6993 raw_spin_lock_irq(&task->pi_lock);
6994 /*
6995 * Avoid calling sched_move_task() before wake_up_new_task()
6996 * has happened. This would lead to problems with PELT, due to
6997 * move wanting to detach+attach while we're not attached yet.
6998 */
6999 if (task->state == TASK_NEW)
7000 ret = -EINVAL;
7001 raw_spin_unlock_irq(&task->pi_lock);
7002
7003 if (ret)
7004 break;
bb9d97b6 7005 }
7dc603c9 7006 return ret;
be367d09 7007}
68318b8e 7008
1f7dd3e5 7009static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7010{
bb9d97b6 7011 struct task_struct *task;
1f7dd3e5 7012 struct cgroup_subsys_state *css;
bb9d97b6 7013
1f7dd3e5 7014 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7015 sched_move_task(task);
68318b8e
SV
7016}
7017
052f1dc7 7018#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7019static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7020 struct cftype *cftype, u64 shareval)
68318b8e 7021{
5b61d50a
KK
7022 if (shareval > scale_load_down(ULONG_MAX))
7023 shareval = MAX_SHARES;
182446d0 7024 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7025}
7026
182446d0
TH
7027static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7028 struct cftype *cft)
68318b8e 7029{
182446d0 7030 struct task_group *tg = css_tg(css);
68318b8e 7031
c8b28116 7032 return (u64) scale_load_down(tg->shares);
68318b8e 7033}
ab84d31e
PT
7034
7035#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7036static DEFINE_MUTEX(cfs_constraints_mutex);
7037
ab84d31e 7038const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7039static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7040
a790de99
PT
7041static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7042
ab84d31e
PT
7043static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7044{
56f570e5 7045 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7046 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7047
7048 if (tg == &root_task_group)
7049 return -EINVAL;
7050
7051 /*
7052 * Ensure we have at some amount of bandwidth every period. This is
7053 * to prevent reaching a state of large arrears when throttled via
7054 * entity_tick() resulting in prolonged exit starvation.
7055 */
7056 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7057 return -EINVAL;
7058
7059 /*
7060 * Likewise, bound things on the otherside by preventing insane quota
7061 * periods. This also allows us to normalize in computing quota
7062 * feasibility.
7063 */
7064 if (period > max_cfs_quota_period)
7065 return -EINVAL;
7066
0e59bdae
KT
7067 /*
7068 * Prevent race between setting of cfs_rq->runtime_enabled and
7069 * unthrottle_offline_cfs_rqs().
7070 */
7071 get_online_cpus();
a790de99
PT
7072 mutex_lock(&cfs_constraints_mutex);
7073 ret = __cfs_schedulable(tg, period, quota);
7074 if (ret)
7075 goto out_unlock;
7076
58088ad0 7077 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7078 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7079 /*
7080 * If we need to toggle cfs_bandwidth_used, off->on must occur
7081 * before making related changes, and on->off must occur afterwards
7082 */
7083 if (runtime_enabled && !runtime_was_enabled)
7084 cfs_bandwidth_usage_inc();
ab84d31e
PT
7085 raw_spin_lock_irq(&cfs_b->lock);
7086 cfs_b->period = ns_to_ktime(period);
7087 cfs_b->quota = quota;
58088ad0 7088
a9cf55b2 7089 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7090
7091 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7092 if (runtime_enabled)
7093 start_cfs_bandwidth(cfs_b);
d1ccc66d 7094
ab84d31e
PT
7095 raw_spin_unlock_irq(&cfs_b->lock);
7096
0e59bdae 7097 for_each_online_cpu(i) {
ab84d31e 7098 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7099 struct rq *rq = cfs_rq->rq;
8a8c69c3 7100 struct rq_flags rf;
ab84d31e 7101
8a8c69c3 7102 rq_lock_irq(rq, &rf);
58088ad0 7103 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7104 cfs_rq->runtime_remaining = 0;
671fd9da 7105
029632fb 7106 if (cfs_rq->throttled)
671fd9da 7107 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7108 rq_unlock_irq(rq, &rf);
ab84d31e 7109 }
1ee14e6c
BS
7110 if (runtime_was_enabled && !runtime_enabled)
7111 cfs_bandwidth_usage_dec();
a790de99
PT
7112out_unlock:
7113 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7114 put_online_cpus();
ab84d31e 7115
a790de99 7116 return ret;
ab84d31e
PT
7117}
7118
b1546edc 7119static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7120{
7121 u64 quota, period;
7122
029632fb 7123 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7124 if (cfs_quota_us < 0)
7125 quota = RUNTIME_INF;
1a8b4540 7126 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7127 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7128 else
7129 return -EINVAL;
ab84d31e
PT
7130
7131 return tg_set_cfs_bandwidth(tg, period, quota);
7132}
7133
b1546edc 7134static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7135{
7136 u64 quota_us;
7137
029632fb 7138 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7139 return -1;
7140
029632fb 7141 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7142 do_div(quota_us, NSEC_PER_USEC);
7143
7144 return quota_us;
7145}
7146
b1546edc 7147static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7148{
7149 u64 quota, period;
7150
1a8b4540
KK
7151 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7152 return -EINVAL;
7153
ab84d31e 7154 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7155 quota = tg->cfs_bandwidth.quota;
ab84d31e 7156
ab84d31e
PT
7157 return tg_set_cfs_bandwidth(tg, period, quota);
7158}
7159
b1546edc 7160static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7161{
7162 u64 cfs_period_us;
7163
029632fb 7164 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7165 do_div(cfs_period_us, NSEC_PER_USEC);
7166
7167 return cfs_period_us;
7168}
7169
182446d0
TH
7170static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7171 struct cftype *cft)
ab84d31e 7172{
182446d0 7173 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7174}
7175
182446d0
TH
7176static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7177 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7178{
182446d0 7179 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7180}
7181
182446d0
TH
7182static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7183 struct cftype *cft)
ab84d31e 7184{
182446d0 7185 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7186}
7187
182446d0
TH
7188static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7189 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7190{
182446d0 7191 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7192}
7193
a790de99
PT
7194struct cfs_schedulable_data {
7195 struct task_group *tg;
7196 u64 period, quota;
7197};
7198
7199/*
7200 * normalize group quota/period to be quota/max_period
7201 * note: units are usecs
7202 */
7203static u64 normalize_cfs_quota(struct task_group *tg,
7204 struct cfs_schedulable_data *d)
7205{
7206 u64 quota, period;
7207
7208 if (tg == d->tg) {
7209 period = d->period;
7210 quota = d->quota;
7211 } else {
7212 period = tg_get_cfs_period(tg);
7213 quota = tg_get_cfs_quota(tg);
7214 }
7215
7216 /* note: these should typically be equivalent */
7217 if (quota == RUNTIME_INF || quota == -1)
7218 return RUNTIME_INF;
7219
7220 return to_ratio(period, quota);
7221}
7222
7223static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7224{
7225 struct cfs_schedulable_data *d = data;
029632fb 7226 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7227 s64 quota = 0, parent_quota = -1;
7228
7229 if (!tg->parent) {
7230 quota = RUNTIME_INF;
7231 } else {
029632fb 7232 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7233
7234 quota = normalize_cfs_quota(tg, d);
9c58c79a 7235 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7236
7237 /*
c53593e5
TH
7238 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7239 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7240 * limit is set:
a790de99 7241 */
c53593e5
TH
7242 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7243 quota = min(quota, parent_quota);
7244 } else {
7245 if (quota == RUNTIME_INF)
7246 quota = parent_quota;
7247 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7248 return -EINVAL;
7249 }
a790de99 7250 }
9c58c79a 7251 cfs_b->hierarchical_quota = quota;
a790de99
PT
7252
7253 return 0;
7254}
7255
7256static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7257{
8277434e 7258 int ret;
a790de99
PT
7259 struct cfs_schedulable_data data = {
7260 .tg = tg,
7261 .period = period,
7262 .quota = quota,
7263 };
7264
7265 if (quota != RUNTIME_INF) {
7266 do_div(data.period, NSEC_PER_USEC);
7267 do_div(data.quota, NSEC_PER_USEC);
7268 }
7269
8277434e
PT
7270 rcu_read_lock();
7271 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7272 rcu_read_unlock();
7273
7274 return ret;
a790de99 7275}
e8da1b18 7276
a1f7164c 7277static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7278{
2da8ca82 7279 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7280 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7281
44ffc75b
TH
7282 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7283 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7284 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7285
3d6c50c2
YW
7286 if (schedstat_enabled() && tg != &root_task_group) {
7287 u64 ws = 0;
7288 int i;
7289
7290 for_each_possible_cpu(i)
7291 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7292
7293 seq_printf(sf, "wait_sum %llu\n", ws);
7294 }
7295
e8da1b18
NR
7296 return 0;
7297}
ab84d31e 7298#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7299#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7300
052f1dc7 7301#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7302static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7303 struct cftype *cft, s64 val)
6f505b16 7304{
182446d0 7305 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7306}
7307
182446d0
TH
7308static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7309 struct cftype *cft)
6f505b16 7310{
182446d0 7311 return sched_group_rt_runtime(css_tg(css));
6f505b16 7312}
d0b27fa7 7313
182446d0
TH
7314static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7315 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7316{
182446d0 7317 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7318}
7319
182446d0
TH
7320static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7321 struct cftype *cft)
d0b27fa7 7322{
182446d0 7323 return sched_group_rt_period(css_tg(css));
d0b27fa7 7324}
6d6bc0ad 7325#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7326
a1f7164c 7327static struct cftype cpu_legacy_files[] = {
052f1dc7 7328#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7329 {
7330 .name = "shares",
f4c753b7
PM
7331 .read_u64 = cpu_shares_read_u64,
7332 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7333 },
052f1dc7 7334#endif
ab84d31e
PT
7335#ifdef CONFIG_CFS_BANDWIDTH
7336 {
7337 .name = "cfs_quota_us",
7338 .read_s64 = cpu_cfs_quota_read_s64,
7339 .write_s64 = cpu_cfs_quota_write_s64,
7340 },
7341 {
7342 .name = "cfs_period_us",
7343 .read_u64 = cpu_cfs_period_read_u64,
7344 .write_u64 = cpu_cfs_period_write_u64,
7345 },
e8da1b18
NR
7346 {
7347 .name = "stat",
a1f7164c 7348 .seq_show = cpu_cfs_stat_show,
e8da1b18 7349 },
ab84d31e 7350#endif
052f1dc7 7351#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7352 {
9f0c1e56 7353 .name = "rt_runtime_us",
06ecb27c
PM
7354 .read_s64 = cpu_rt_runtime_read,
7355 .write_s64 = cpu_rt_runtime_write,
6f505b16 7356 },
d0b27fa7
PZ
7357 {
7358 .name = "rt_period_us",
f4c753b7
PM
7359 .read_u64 = cpu_rt_period_read_uint,
7360 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7361 },
052f1dc7 7362#endif
d1ccc66d 7363 { } /* Terminate */
68318b8e
SV
7364};
7365
d41bf8c9
TH
7366static int cpu_extra_stat_show(struct seq_file *sf,
7367 struct cgroup_subsys_state *css)
0d593634 7368{
0d593634
TH
7369#ifdef CONFIG_CFS_BANDWIDTH
7370 {
d41bf8c9 7371 struct task_group *tg = css_tg(css);
0d593634
TH
7372 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7373 u64 throttled_usec;
7374
7375 throttled_usec = cfs_b->throttled_time;
7376 do_div(throttled_usec, NSEC_PER_USEC);
7377
7378 seq_printf(sf, "nr_periods %d\n"
7379 "nr_throttled %d\n"
7380 "throttled_usec %llu\n",
7381 cfs_b->nr_periods, cfs_b->nr_throttled,
7382 throttled_usec);
7383 }
7384#endif
7385 return 0;
7386}
7387
7388#ifdef CONFIG_FAIR_GROUP_SCHED
7389static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7390 struct cftype *cft)
7391{
7392 struct task_group *tg = css_tg(css);
7393 u64 weight = scale_load_down(tg->shares);
7394
7395 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7396}
7397
7398static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7399 struct cftype *cft, u64 weight)
7400{
7401 /*
7402 * cgroup weight knobs should use the common MIN, DFL and MAX
7403 * values which are 1, 100 and 10000 respectively. While it loses
7404 * a bit of range on both ends, it maps pretty well onto the shares
7405 * value used by scheduler and the round-trip conversions preserve
7406 * the original value over the entire range.
7407 */
7408 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7409 return -ERANGE;
7410
7411 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7412
7413 return sched_group_set_shares(css_tg(css), scale_load(weight));
7414}
7415
7416static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7417 struct cftype *cft)
7418{
7419 unsigned long weight = scale_load_down(css_tg(css)->shares);
7420 int last_delta = INT_MAX;
7421 int prio, delta;
7422
7423 /* find the closest nice value to the current weight */
7424 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7425 delta = abs(sched_prio_to_weight[prio] - weight);
7426 if (delta >= last_delta)
7427 break;
7428 last_delta = delta;
7429 }
7430
7431 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7432}
7433
7434static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7435 struct cftype *cft, s64 nice)
7436{
7437 unsigned long weight;
7281c8de 7438 int idx;
0d593634
TH
7439
7440 if (nice < MIN_NICE || nice > MAX_NICE)
7441 return -ERANGE;
7442
7281c8de
PZ
7443 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7444 idx = array_index_nospec(idx, 40);
7445 weight = sched_prio_to_weight[idx];
7446
0d593634
TH
7447 return sched_group_set_shares(css_tg(css), scale_load(weight));
7448}
7449#endif
7450
7451static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7452 long period, long quota)
7453{
7454 if (quota < 0)
7455 seq_puts(sf, "max");
7456 else
7457 seq_printf(sf, "%ld", quota);
7458
7459 seq_printf(sf, " %ld\n", period);
7460}
7461
7462/* caller should put the current value in *@periodp before calling */
7463static int __maybe_unused cpu_period_quota_parse(char *buf,
7464 u64 *periodp, u64 *quotap)
7465{
7466 char tok[21]; /* U64_MAX */
7467
4c47acd8 7468 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7469 return -EINVAL;
7470
7471 *periodp *= NSEC_PER_USEC;
7472
7473 if (sscanf(tok, "%llu", quotap))
7474 *quotap *= NSEC_PER_USEC;
7475 else if (!strcmp(tok, "max"))
7476 *quotap = RUNTIME_INF;
7477 else
7478 return -EINVAL;
7479
7480 return 0;
7481}
7482
7483#ifdef CONFIG_CFS_BANDWIDTH
7484static int cpu_max_show(struct seq_file *sf, void *v)
7485{
7486 struct task_group *tg = css_tg(seq_css(sf));
7487
7488 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7489 return 0;
7490}
7491
7492static ssize_t cpu_max_write(struct kernfs_open_file *of,
7493 char *buf, size_t nbytes, loff_t off)
7494{
7495 struct task_group *tg = css_tg(of_css(of));
7496 u64 period = tg_get_cfs_period(tg);
7497 u64 quota;
7498 int ret;
7499
7500 ret = cpu_period_quota_parse(buf, &period, &quota);
7501 if (!ret)
7502 ret = tg_set_cfs_bandwidth(tg, period, quota);
7503 return ret ?: nbytes;
7504}
7505#endif
7506
7507static struct cftype cpu_files[] = {
0d593634
TH
7508#ifdef CONFIG_FAIR_GROUP_SCHED
7509 {
7510 .name = "weight",
7511 .flags = CFTYPE_NOT_ON_ROOT,
7512 .read_u64 = cpu_weight_read_u64,
7513 .write_u64 = cpu_weight_write_u64,
7514 },
7515 {
7516 .name = "weight.nice",
7517 .flags = CFTYPE_NOT_ON_ROOT,
7518 .read_s64 = cpu_weight_nice_read_s64,
7519 .write_s64 = cpu_weight_nice_write_s64,
7520 },
7521#endif
7522#ifdef CONFIG_CFS_BANDWIDTH
7523 {
7524 .name = "max",
7525 .flags = CFTYPE_NOT_ON_ROOT,
7526 .seq_show = cpu_max_show,
7527 .write = cpu_max_write,
7528 },
7529#endif
7530 { } /* terminate */
7531};
7532
073219e9 7533struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7534 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7535 .css_online = cpu_cgroup_css_online,
2f5177f0 7536 .css_released = cpu_cgroup_css_released,
92fb9748 7537 .css_free = cpu_cgroup_css_free,
d41bf8c9 7538 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7539 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7540 .can_attach = cpu_cgroup_can_attach,
7541 .attach = cpu_cgroup_attach,
a1f7164c 7542 .legacy_cftypes = cpu_legacy_files,
0d593634 7543 .dfl_cftypes = cpu_files,
b38e42e9 7544 .early_init = true,
0d593634 7545 .threaded = true,
68318b8e
SV
7546};
7547
052f1dc7 7548#endif /* CONFIG_CGROUP_SCHED */
d842de87 7549
b637a328
PM
7550void dump_cpu_task(int cpu)
7551{
7552 pr_info("Task dump for CPU %d:\n", cpu);
7553 sched_show_task(cpu_curr(cpu));
7554}
ed82b8a1
AK
7555
7556/*
7557 * Nice levels are multiplicative, with a gentle 10% change for every
7558 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7559 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7560 * that remained on nice 0.
7561 *
7562 * The "10% effect" is relative and cumulative: from _any_ nice level,
7563 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7564 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7565 * If a task goes up by ~10% and another task goes down by ~10% then
7566 * the relative distance between them is ~25%.)
7567 */
7568const int sched_prio_to_weight[40] = {
7569 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7570 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7571 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7572 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7573 /* 0 */ 1024, 820, 655, 526, 423,
7574 /* 5 */ 335, 272, 215, 172, 137,
7575 /* 10 */ 110, 87, 70, 56, 45,
7576 /* 15 */ 36, 29, 23, 18, 15,
7577};
7578
7579/*
7580 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7581 *
7582 * In cases where the weight does not change often, we can use the
7583 * precalculated inverse to speed up arithmetics by turning divisions
7584 * into multiplications:
7585 */
7586const u32 sched_prio_to_wmult[40] = {
7587 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7588 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7589 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7590 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7591 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7592 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7593 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7594 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7595};
14a7405b
IM
7596
7597#undef CREATE_TRACE_POINTS